
OLYMPUS EX. 1010 - 1/1582

S-DOS_
| Encyclopedia

Foreword, Bill Gates
General Editor, Ray Duncan

OLYMPUSEX. 1010 - 1/1582

OLYMPUS EX. 1010 - 2/1582

 MS-DOS _
Encyclopedia

OLYMPUSEX. 1010 - 2/1582

OLYMPUS EX. 1010 - 3/1582

dea

Published by
Microsoft Press

A Division of Microsoft Corporation
16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717
Copyright @ 1988 by Microsoft Press
All rights reserved. No part of the contents of this book
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Cataloging in Publication Data
The MS-DOS encyclopedia: versions 1.0 through 3.2 /
editor, Ray Duncan.

P. cm.
Includes indexes.

1. MS-DOS (Computer operating system) 1. Duncan, Ray, 1952-
Il. Microsoft Press.

QA76.76.063M74 1988 87-21452
005.4'46--del9 cIP
ISBN 1-55615-174-8

Printed and bound in the United States of America.

123456789RMRM 321098

Distributed to the book trade in the

Dnited States by Harper & Row.

Distcibuted to the book trade in

Canada by General Publishing Company, Ltd.

Distributed to the book trade outside the

United States and Canada by Penguin BooksLtd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Lid., Ringwood, Victoria, Australia
Penguin Books N.Z.Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

IBM®, IBM AT®, P5/28, and TapView® are registered trademarks of International Business Machines Corporation.
GOW-BASIC®, Microsoft®, MS®, MS-DOS®, SOFTCARD®, and XENIX® are registered trademarks of
Microsoft Corporation.

Microsoft Press gratefully acknowledges permission to reproduce material listed below.
Page 4: Courtesy The Computer Museum.
Pages 5, 11, 42: Intel 4004, 8008, 8080, 8086, and 80286 microprocessor photographs. Courtesy Intel Corporation.
Page 6: Reprinted from PopularElectronics, january 1975 Copyright © 1975 Ziff Communications Company.
Page 13: Reprinted with permission of Rod Brock.
Page 16: Reprinted with permission ofThe Seattle Times Copyright © 1983.
Pages 19, 34, 42: IBM PC advertisements and photographs of the PC, PC/XT, and PC/AT reproduced with
permission of International Business Machines Corporation Copyright © 1981, 1982, 1984. All rights reserved.
Page 21: “Big IBM's Little Computer" Capyright © 1981 by The New York Times Company. Reprinted by

- permission.
“IBM Announces New Microcomputer System” Reprinted with permission of [InfoWorld Copyright © 1981.
“TBMreally gets personal" Reprinted with permission of Personal Computing Copyright © 1981.
“Personal Computer from IBM” Reprinted from DATAMATION Magazine, October 1981 Copyright © by Cahners
Publishing Company.
“IBM’s New Line Likely to Shake up che Marketfor Personal Computers” Reprinted by permission ofThe Wall
Street Journal Copyright © Dow Jones & Company, Inc. 1981, Al] Rights Reserved.
Page 36; “Irresistible DOS 3.0" and “The Ascent of DOS” Reprinted from PC Techjournal,
December 1984 and October 1986. Copyright @ 1984, 1986 Ziff Communications Company.
“MS-DOS 2.00: A Hands-OnTutorial” Reprinted by permission ofPC World from VolumeJ, Issue 3, March 1983,
published at $01 Second Street, Suite 600, San Francisca, CA 94107.

Special thanks to Bob O'Rear, Aaron Reynolds, and Kenichi Ikeda.

OLYMPUSEX. 1010 - 3/1582

OLYMPUS EX. 1010 - 4/1582

Encyclopedia Staff

Editor-in-Chief: Susan Lammers

Editorial Director: Patricia Pratt

Senior Editor: Dorothy L. Shattuck

Senior Technical Editor: David L. Rygmyr

Special Projects Editor: Sally A. Brunsman

Editorial Coordinator: Sarah Hersack

Associate Editors and Technical Editors:

Pamela Beason, Ann Becherer, Bob Combs,
Michael Halvorson,Jeff Hinsch, Dean Holmes,
Chris Kinata, Gary Masters, Claudette Moore,
Steve Ross, Roger Shanafelt, Eric Stroo,
Lee,Thomas, JoAnne Woodcock

Copy Chief: Brianna Morgan. Proofreaders:
Kathleen Atkins, Julie Carter, Elizabeth
Eisenhood, Matthew Eliot, Patrick Forgette,
Alex Hancock,Richard Isomaki, Shawn Peck,
Alice Copp Smith

Editorial Assistants: Wallis Bolz, Charles Brod,
Stephen Brown,Pat Erickson, Debbie Kem, Susanne
McRhoton, Vihn Nguyen, Cheryl VanGeystel

Index: Shane-Armstrong Information Services

Production: Larry Anderson, Jane Bennett, Rick
Bourgoin, Darcie S. Furlan, Nick Gregoric, Peggy
Herman, Lisa Iversen, Rebecca Johnson, Ruth Pettis,
Russell Steele, Jean Trenary, Joy Ulskey

Marketing and Sales Director: James Brown

Director of Production: Christopher D. Banks

Publisher: Min S. Yee

OLYMPUSEX. 1010 - 4/1582

���������	�
�
�����
��OLYMPUS EX. 1010 - 5/1582

Contributors
i Ray Duncan, General Editer Duncan received a B.A. in Chemistry from the University ofCalifor-
z nia, Riverside, and an M.D. from the University of California, Los Angeles, and subsequently received

specialized training in Pediatrics and Neonatology at the Cedars-Sinai Medical Center in Los Angeles. He
has written many articles for personal computing magazines, including BYTE, PC Magazine, Dr. Dobb's
journal, and Softatk/PC, and is the author of the Microsoft Press book AduincedMS-DOS. He is the
founder of Laboratory Microsystems Incorporated, a software house specializing in FORTH interpreters
and compilers.

Steve Bostwick Bostwick holds a B.S. in Physics from the University of California, Los Angeles, and
has over 20 years' experience in scientific and commercial dara processing. He is president of Query
Computing Systems, Inc., a software firm specializing in the creation of systemsfor applications that
interface microcomputers with specialized hardware. He is also an instructor for the UCLA Extension
Departmentof Engineering and Science and helped design their popular Microprocessor Hardware and
Software Engineering Certificate Program.

Keith Burgoyne—Born and raised in Orange County,California, Burgoyne began programming in
1974 on IBM 370 mainframes. In 1979, he began developing microcomputer products for Apples,
TRS-80s, Ataris, Commodores, and IBM PCs. He is presently Senior Systems Engineer at Local Data of
Torrance, California, which is a major producer of IBM 3174/3274 and System 3X protocol conversion
products. His previous writing credits include numerous user manuals and tutorials.

RobertA. Byers—Byers is the author of the bestselling Everyman's Database Prinver. He is presently
involved with the Emerald Bay database project with RSPI and Migent,Inc.

Thom Hogan=During 11 years working with personal computers, Hogan has been a software devel-
oper, a programmer,a technical writer, a marketing manager, and a lecturer. He has written six books,
numerous magazinearticles, and four manuals. Hogan is the authorofthe forthcoming Microsoft Press
book PC Programmer's Sourcebook,

Jim Kyle—Kyle has 23 years’ experience in computing. Since 1967, he has been a systems program-
mer with strong telecommunications orientation. His interest in microcomputers dates from 1975. He is
currently MIS Administrator for BTI Systems, Inc., the OEM Division of BancTec Inc., manufacturers of
MICR equipmentfor the banking industry. He has written 14 books and numerous magazine articles
Gmostly on ham radio and hebby electronics) and has been primary Forum Administrator for Computer
Language Magazine's CLMFORUM on CompuServe since early 1985.

Gordon Letwin—Letwin is ChiefArchitect, Systems Software, Microsoft Corporation. He is the author
of Inside OS/2, published by Microsoft Press.

Chartes Petzold—Petzoid holds an M.S. in Mathematics from Stevens Institute of Technology. Before
launching his writing career, he worked 10 years in the insurance industry, programming and teaching
programming on [BM mainframes and PCs. He is the author of the Microsoft Press book Programming
Windows 2.0, a contributing editor to PC Magazine, and a frequent contributorto the Microsoft Systems

journal.

Chip Rabinowitz Rabinowitz has been a programmerfor 11 years. He is presently chief program-
metfor Productivity Solutions, a microcomputer consulting firm based in Pennsylvania, and has been
Forum Administrator for the CompuServe MICROSOFTSIG since 1986.

Contributors vit

OLYMPUSEX.1010- 5/1582

OLYMPUS EX. 1010 - 6/1582

Jim Tomlin—Tomlin holds a B.S. and an M.S. in Mathematics. He has programmedat Boeing,
Microsoft, and Opcon and hastaughtat Seattle Pacific University. He now heads his own companyin
Seattle, which specializes in PC systems programming andindustrial machinevision applications.

Richard Wilton Wilton has programmedextensively in PL/1, FORTRAN, FORTH,C,and several

assembly languages. Heis the author of Programmer’s Guide to PC & PS/2 Video Systems, published
by Microsoft Press.

Van Wolverton A professional writer since 1963, Wolverton has had bylines as a newspaper reporter,
editorial writer, political columnist, and technica! writer. He is the author of Running MS-DOS and
Supercharging MS-DOS, both published by Microsoft Press.

Wiliam Wong Wong holds engineering and computer science degrees from Georgia Tech and
Rutgers University. He is director of PC Labs andpresidentofLogic Fusion, Inc. His interests include
operating systems, computerlanguages, and artificial intelligence. He has written numerous magazine
articles and a book on MS-DOS.

JoAnne Woodcock Woodcock, a former senior editor at Microsoft Press, has been a writer for
Encyclopaedia Britannica anda freelance and project editor on marine biological studies at the
University of Southern California. She is co-editor (with Michael Halvorson) of XENIXat Work and
co-author (with Peter Rinearson) of Microsoft Word Style Sheets, both published by Microsoft Press.

Special Technical Advisor
Mark Zbikowski

TechnicalAdvisors

Paul Allen Michael Geary David Melin John Pollock
Steve Ballmer Bob Griffin Charles Mergentime Aaron Reynolds
Reuben Borman Doug Hogarth Randy Nevin Darryl Rubin
Rob Bowman James W. Johnson Dan Newell Ralph Ryan /
John Butler Kaamel Kermaani Tani Newell Karl Schulmeisters

Chuck Carrol! Adrian King David Norris Rajen Shah
Mark Chamberlain Reed Koch Mike O'Leary Barry Shaw
David Chell James Landowski Bob O’Rear Anthony Short
Mike Colee Chris Larson Mike Olsson BenSlivka

Mike Courtney Thomas Lennon Larry Osterman Jon Smirl
Mike Dryfoos DanLipkie Ridge Ostling Betty Stillmaker
Rachel Duncan Marc McDonald Sunil Pai John Stoddard
Kurt Eckhardt Bruce McKinney Tim Paterson Dennis Tillman
Eric Evans Pascal Martin Gary Perez . Greg Whitten
Rick Farmer Estelle Mathers Chris Peters Natalie Yount
Bill Gates Bob Matthews Charles Petzold Steve Zeck

add Thin AAO TNO Penta

OLYMPUSEX. 1010 - 6/1582

OLYMPUS EX. 1010 - 7/1582

Contents

Foreword byBill Gates

Preface by Ray Duncan

Introduction

Section I: The Development ofMS-DOS

Section II: Programming in the MS-DOS Environment
Part A: Structure of MS-DOS

Article1: An Introduction to MS-DOS 51

Article 2: The Components of MS-DOS 61
Article 3:|MS-DOSStorage Devices 85

Part B: Programming for MS-DOS

Article 4: Structure of an Application Program 107
Article 5: Chatacter Device Input and Output 149
Article 6: Interrupt-Driven Communications 167
Article 7: File and Record Management 247
Article 8: Disk Directories and Volume Labels 279

Article 9: Memory Management 297
Article 10: The MS-DOS EXEC Function 321

PartC: Customizing MS-DOS

Article 11: Terminate-and-Stay-Resident Utilities 347
Article 12: Exception Handlers 385
Article 13: Hardware Interrupt Handlers 409
Article 14: Writing MS-DOSFilters 429
Article 15: Installable Device Drivers 447

Part D: Directions ofMS-DOS

Article 16: Writing Applications for Upward Compatibility 489
Article 17: Windows 499

PartE: Programming Tools

Article 18: Debugging in the MS-DOS Environment 541
Article 19: Object Modules 643
Article 20: The Microsoft Object Linker 701

xvii

47

OLYMPUS EX.1010 - 7/1582

OLYMPUS EX. 1010 - 8/1582

Section III: UserCommands 723

Introduction 725

User commandsarelisted in alphabetic order. This section includes ANSLSYS,
BATCH, CONFIG.SYS, DRIVER.SYS, EDLIN, RAMDRIVE.SYS, and VDISK.SYS.

Section IV: ProgrammingUtilities 961

Introduction 963

CREF 967

EXE2BIN 971

EXEMOD 974
EXEPACK 977

LIB 980

LINK 987

MAKE 999
MAPSYM 1004
MASM_ 1007

Microsoft Debuggers:

DEBUG 1020
SYMDEB 1054

CodeView 1157

Section V: System Calls 1175
Introduction 1177

System calls are listed in numeric order.

Appendixes 1431

Appendix A: MS-DOSVersion 3.3 1433
Appendix B: Critical Error Codes 1459
Appendix C: Extended Error Codes 1461 |
Appendix D: ASCII and IBM Extended ASCII Character Sets 1465
Appendix E:|EBCDIC Character Set 1469
Appendix F:|ANSISYS Key and Extended Key Codes 1471
Appendix G: File Control Block (FCB) Structure 1473
Appendix H: Program Segment Prefix (PSP) Structure 1477
Appendix!I: 8086/8088/80286/80386 Instruction Sets. 1479
Appendix]:|Common MS-DOSFilename Extensions 1485
Appendix K: Segmented (New) .EXE File Header Format 1487
AppendixL: Intel Hexadecimal Object File Format 1499
Appendix M: 8086/8088 Software CompatibilityIssues 1507
Appendix N: An Object Module DumpUtility 1509
Appendix O: IBM PC BIOSCalls 1513

The MSDOS Fucwuclonedia

OLYMPUSEX. 1010 - 8/1582

OLYMPUS EX. 1010 - 9/1582

Indexes 1531

Subject 1533
Commands and System Calls 1565

Cnatont

OLYMPUSEX.1010 - 9/1582

���������	�
�
����
��
��OLYMPUS EX. 1010 - 10/1582

Foreword

Microsoft's MS-DOSis the most popularpiece of software in the world, It runs on more
than 10 million persona! computers worldwide andis the foundationforat least 20,000
applications — the largest set of applications in any computer environment. As an industry
standard for the family of 8086-based microcomputers, MS-DOShas had a centralrole in
the personal computer revolution andis the most significant and enduring factor in Fur-
thering Microsoft's original vision — a computerfor every desktop and in every home. The
challenge of maintaining a single operating system over the entire range of 8086-based
microcomputers andapplicationsis incredible, but Microsoft has been committed to meet-
ing this challenge since the release of MS-DOSin 1981. The true measure of our success
in this effort is M8-DOS's continued prominence in the microcomputerindustry.

Since MS-DOS&'s creation, more powerful and much-improved computers have entered the
marketplace, yet cach new version of MS-DOSreestablishesits position as the foundation
for new applications as well as for old. To explain this extraordinary prominence, we must
look to the origins of the personal computer industry. The three mostsignificant factors in
the creation of MS-DOS were the compatibility revolution, the developmentof Microsoft
BASIC andits widespread acceptance by the personal computer industry, and IBM’s deci-
sion to build a computer that incorporated 16-bit technology.

The compatibility revolution began with the Intel 8080 microprocessor. This technolog-
ical breakthrough brought unprecedented opportunities in the emerging microcomputer
industry, promising continued improvements in power, speed, and cost of desktop com-
puting. In the minicomputer market, every hardware manufacturer had its own special
instruction set and operating system, so software developed for a specific machine was in-
compatible with the machines of other hardware vendors, This specialization also meant
tremendous duplication ofeffort — each hardware vendorhad to write language compilers,
databases, and other developmenttools to fit its particular machine. Microcomputers
based on the 8080 microprocessor promised to changeall this because different manu-
facturers would buy the same chip with the same instruction set.

From 1975 to 1981 (the 8-bit era of microcomputing), Microsoft convinced virtually
every personal computer manufacturer — Radio Shack, Commodore, Apple, and dozens
of others—to build Microsoft BASIC into its machines. Forthefirst time, one common Jan-

guage cut across all hardware vendorlines, The success of our BASIC demonstrated the
advantages of compatibility: To their great benefit, users were finally able to move appli-
cations from one vendor's machineto another.

Most machines produced during this early period did not have a built-in disk drive.
Gradually, however, floppy disks, andlater fixed disks, became less expensive and more
common, and a numberofdisk-based programs, including WordStar and dBASE, entered
the market. A standard disk operating systern that could accommodate these develop-
ments became extremely important, leading Lifeboat, Microsoft, and Digital Researchall to
support CP/M-80, Digital Research’s 8080 DOS.

Foreword xttt
PIP PAVAIFMTL mW ANNAN ANIALFOAN

OLYMPUSEX. 1010 - 10/1582

OLYMPUS EX. 1010 - 11/1582

The 8-bit era proved the importance of having a multiple-manufacturer standard that
permitted the free interchange of programs.It was importantthat software designed for
the new 16-bit machines have this same advantage. No personal] computer manufacturer in
1980 could have predicted with any accuracy how quickly a third-party software industry
would grow and get behind a strong staridard —a standard that would be the software
industry’s lifeblood. The intricacies of how MS-DOS became the most common 16-bit
operating system, in part through the work wedid for IBM,is not the key point here. The
key pointis that it was inevitable for a popular operating system to emerge for the 16-bit
machine, just as Microsoft’s BASIC had prevailed on the 8-bit systems.

It was overwhelmingly evidentthat the personal computer had reached broad acceptance
in the market when Time in 1982 named the personal computer “Man ofthe Year.” MS-
DOS wasintegral to this acceptance and popularity, and we have continued te adapt
MS-DOSto support more powerful computers without sacrificing the compatibility that is
essential to keeping it an industry standard. The presence ofthe 80386 microprocessor
guarantees that continued investments in Intel-architecture software will be worthwhile.

Ourgoal with The MS-DOS Encyclopedia is to provide the most thorough and accessible
resource available anywhere for MS-DOS programmers. The length of this book is many
times greater than the source listing ofthe first version of MS-DOS — evidence of the
growing complexity and sophistication of the operating system. The encyclopedia will be
especially useful to software developers faced with preserving continuity yet enhancing
the portability of their applications.

Ourthriving industry is committed to exploiting the advantages offered by the protected
mode introduced with the 80286 microprocessor and the virtual mode introduced with the
80386 microprocessor. MS-DOSwill continue to play an integral part in this effort. Faster
and more powerful machines running Microsoft OS/2 mean an exciting future of multi-
tasking systems, networking, improved levels of data protection, better hardware memory
managementfor multiple applications, stunning graphics systems that can display an inno-
vative graphical user interface, and communication subsystems. MS-DOS version 3, which
runs in real mode on 80286-based and 80386-based machines, is a vital link in the Family
API of OS/2. Users will continue to benefit from our commitmentto improved operating-
system performance and usability as the future unfolds.

Bill Gates

vir! Tho MCPWC Bescurinnscdia

OLYMPUSEX. 1010 - 11/1582

OLYMPUS EX. 1010 - 12/1582

| Preface
In the space of six years, MS-DOS has become the most widely used computer operating
system in the world, running on more than 10 million machines. It has grown, matured,
and stabilized into a flexible, easily extendable system that can support networking,
graphical userinterfaces, nearly any peripheral device, and even CD ROMscontaining
massive amounts of on-line information, MS-DOS will be with us for many years to come
as the platform for applications that run on low-cost, 8086/8088-based machines,

Not surprisingly, the success of MS-DOS has drawn many writers and publishersinto its
orbit. The number of books on MS-DOSandits commands, languages, and applications
dwarfs the list of titles for any other operating system. Why, then, yet another book on
MS-DOS? And what can we say about the operating system that has not been said already?

First, we have written and edited The MS-DOSEncyclopedia with one audience in mind:
the community of working programmers. We have therefore been free to bypass elemen-
tary subjects such as the numberofbits in a byte and the interpretation of hexadecimal
numbers. Instead, we have emphasized detailed technical explanations, working code ex-
amples that can be adapted and incorporated into new applications, and a systems view of
even the most common MS-DOS commands andutilities.

Second, because we were not subject to size restrictions, we have explored topics in depth
that other MS-DOS books mention only briefly, such as exception and error handling,
interrupt-driven communications, debugging strategies, memory management, andinstall-
able device drivers. We have commissioned definitive articles on the relocatable object

' modules generated by Microsoft language translators, the operation of the Microsoft Ob-
ject Linker, and terminate-and-stay-residentutilities. We have even interviewed the key
developers of MS-DOS and drawn on their files and bulletin boards to offer an entertain-
ing, illustrated accountofthe origins of Microsoft's standard-setting operating system.

Finally, by combining the viewpoints and experience of non-Microsoft programmers and
writers, the expertise and resources of Microsoft software developers, and the publishing
know-how of Microsoft Press, we have assembled a unique and comprehensive reference
to MS-DOSservices, commands, directives, and utilities. In many instances, the manu-
scripts have been reviewed by the authors of the Microsoft tools described.

We have madeevery effort during the creation of this book to ensure that its contents are
timely and trustworthy. In a workofthis size, however,it is inevitable that errors and omis-
sions will occur. If you discover any such errors, please bring ther to our attention so that
they can be repaired in future printings and thusaid your fellow programmers. To this
end, Microsoft Press has established a bulletin board on MCI Mailfor posting corrections
and comments. Please refer to page xvi for more information. ,

Ray Duncan

Preface

OLYMPUSEX.1010- 12/1582

OLYMPUS EX. 1010 - 13/1582

Introduction

The MS-DOS Encyclopedia is the most comprehensive reference work available on
Microsoft’s industry-standard operating system. Written for experienced microcomputer
users and programmers,it contains detailed, version-specific information onall the
MS-DOS commands,utilities, and system calis, plus articles by recognized experts in
specialized areas of MS-DOS programming. This wealth of material is organized into
major topic areas, each with a format suited to its content. Special typographic conven-
tions are also used to clarify the material.

Organization ofthe Book

The MS-DOS Encyclopedia is organized into five major sections, plus appendixes. Each
section has a unique interna! organization; explanatory introductions are included where
appropriate.

Section I, The Development of MS-DOS, presents the history of Microsoft’s standard-
settling operating system from its immediate predecessors through version 3.2. Numerous
photographs, anecdotes, and quotationsare included,

Section II, Programming in the MS-DOS Environment,is divided into five parts: Structure
of MS-DOS, Programming for MS-DOS, Customizing MS-DO5, Directions of MS-DOS,and
Programming Tools. Each part containsseveralarticles by acknowledged experts on these
topics, The articles include numerous figures, tables, and programming examples that pro-
vide detail about the subject.

Section [1I, User Commands, presents al] the MS-DOSinternal and external commands in
alphabetic order, including ANSLSYS, BATCH, CONFIG.SYS, DRIVER.SYS, EDLIN,
RAMDRIVE.SYS, and VDISK.SYS. Each commandis presented in a structure that allows
the experienced userto quickly review syntax and restrictions on variables; the less-
experienced user canrefer to the detailed discussion of the command andits uses,.

Section ['V, Programming Utilities, uses the same format as the User Commandssection to
presentthe Microsoft programmingaids, including the DEBUG, SYMDEB,and CodeView
debuggers. Although someofthese utilities are supplied only with Microsoft language
products and are not included on the MS-DOS system or supplementaldisks, their use is
intrinsic to programming for MS-DOS,and they are therefore includedto create a com-
prehensive reference.

Intrnductint x

OLYMPUS EX.1010 - 13/1582

OLYMPUS EX. 1010 - 14/1582

Updates to The MS-DOS Encyclopedia.
. Periodically, the staffof The MS-DOS Encyclopedia.will publish updates containing

clarifications or corrections tothe information presented in this current edition. To ‘ob-
> tain information aboutreceiving these updates, please check the appropriate boxonthe ~_

. business reply cardin the back ofthis book, or send your nameandaddressto: MS-DOS _
a Encyclopedia Update Information, c/o MicrosoftPress, 1OOLLNNE 36thvay,2Box97017,Redmond, WA 98073-9717. oo Do

Bulletin Board Service|
- Microsoft Press iis sponsoringabulletinboard on MCI Mail. for postingandrecéiving cor-

_ rections and comments for The MS-DOSEncyclopedia.”To use thissservice;logoson toMCT ,
vo “Mail and, after receiving the prompt, type wo
°* VIEW. " <Enter>|ms, poe - Ot

The Bulletin Board name:=rompwillbedeplaedhenpe.
MSPRESS “<Enter> ”

tO connect to the Mictosoft Press bulletin board. Alistof the. individual MicrosoftPress
_ bulletin boards will be displayed; simply ¢choose ‘MSPress DOSENCYtoentertheen. -

cyclopediaSbulletin board. i lk . a,
oe, | SpecialCompanion’DiskOfferee

Microsoft Presshas created a set of valuable, time saving companion disks10:TheMS.DOS
” Encyclopedia, Theycontain theroutinesand functiorial ‘programsthatarelisted through-.

outthis book—thousands ‘oflinesof executable code. ‘Conveniently. organized, these —
disks will'save you hours of typing time and allowyouto start usingthe,code immediately.
The companion disks are only available directly: fromMictosoft Press. ‘Toorder,use the
special bind-in card in the back ofthe bookor send:$49.95for.eachset ofdisks, plus sales -
tax if applicable and: $5.50--per diskfor domestic postage andhandling, $8.00 per disk for

"foreignorders, to; Microsoft Press;Attn: ‘Companion.DiskOffer,2191920th Ave. SE., Box
3011, Bothell, WA 98041-3011. Please specify 5.25-irich of3.5-inehforinat: Payment must be
in US. funds, You may pay by check or money order (payable to Microsoft Press), or by

_ American Express, VISA, or MasterCard; please include‘your credit card’numberand ex-
piration date. All domestic orders are shipped 2ndI day:air upon receipt of order by |“Microsoft. . oo,

moresidents 5% pius local option tax,cT 7.5%, FL 606bMA 5%, MN%, MO4,225%; NY4%plaslocal
option tax, WAState 7. 8%. . /

ut The MS-DOS Encvclobedia

OLYMPUSEX. 1010 - 14/1582

OLYMPUS EX. 1010 - 15/1582

Italic font indicates user-supplied variable names, procedure namesin text, parameters
whosevalues are to be supplied by the user, reserved wordsin the C programming lan-
guage, messages and return values in text, and, occasionally, emphasis.

A typographicdistinction is made between lowercase | and the numeral 1 in both text and
program listings.

Cross-references appear in the form SECTION NAME:Parr NaME, COMMAND-NAME,ORIN-
TERRUPT NUMBER: Article Name or Function Number.

Color indicates user input and program examples.

Terminology

Although not an official IBM name,the term PC-DOS in this book means the IBM imple-
mentation ofMS-DOS. If PC-DOSis referenced and the information differs from that for

the related MS-DOSversion, the PC-DOSversion numberis included. To avoid confusion,
the term DOS is never used without a modifier.

The namesof special function keys are spelled as they are shown on the IBM PC keyboard.
In particular, the execute keyis called Enter, not Return. When <Enter> is included ina
user-entry line, the useris to press the Enter key at the end oftheline.

The common key combinations, such as Ctrl-C and Ctrl-Z, appear in this form when the
actual key to be pressedis being discussedbut are written as Control-C, Control-Z, and so
forth whenthe resulting code is the true reference. Thus, an article might reference the
Control-C handler butstate thatit is activated when the user presses Ctrl-C.

Unless specifically indicated, hexadecimal numbers are used throughout. These numbers
are always followed by the designation H (h in the code portions of program listings).
Ranges of hexadecimal values are indicated with a dash —for example, 07-0AH.

The notation (more) appearsinitalic at the bottom of program listings and tables that are
continued on the next page. The complete caption ortable title appears on thefirst page
of a continued element and is designated Continued on subsequent pages.

Introduction XE.

OLYMPUS EX. 1010 - 15/1582

OLYMPUS EX. 1010 - 16/1582

Section V, System Calls, documents Interrupts 20H through 27H and Interrupt 2FH. The
Interrupt 21H functionsare listed in individual entries. This section, like the User Com-
mands and Programming Utilities sections, presents a quick review of usage for the ex-
perienced user and also provides extensive notes for the less-experienced programmer.

The 15 appendixes provide quick-reference materials, including a summary of MS-DOS
version 3.3, the segmented (new) .EXEfile header format, an object file dumputility, and

the Intel hexadecimal objectfile format. Muchofthis materialiis organized into tables or
bulleted lists for ease of use.
The book includes two indexes — one organized by subject and one organized by com-
mand nameor system-call number. The subject index provides comprehensive references
to the indexed topic; the command index references only the major entry for the com-
mandor system call.

Program Listings

The MS-DOSEncyclopedia contains numerous program listings in assembly language,C,
and QuickBASIC,all designed to run on the IBM PC family and compatibles. Mostof these

programs are completeutilities; some are routines that can be incorporated into function-
‘ing programs. Vertical ellipses are often used to. indicate whereadditional code would be
supplied by the user to create a more functional program.All programlistings are heavily
commented and are essentially self-documenting:

The programsweretested using the Microsoft Macro Assembler (MASM) version 4.0, the
Microsoft C Compiler version 4.0, or the Microsoft QuickBASIC Compiler version 2.0.
The functional programsandlarger routines are also available on disk. Instructions for
ordering are on the page preceding this introduction.and on the mail-in card boundinto
this volume.

Typography and Terminology
Because The MS-DOSEncyclopedia wasdesigned for an advanced audience,the reader

generally will be familiar with the notation andtypographic conventionsusedin this
volume. However,for ease of use, a few special conventions should be noted.

Typographic conventions

Capital letters are used for MS-DOSinternal and external commandsin text and syntax
’ lines. Capital letters are also used for filenamesin text.

thm ene OLYMPUSEX. 1010 - 16/1582

���������	�
�
����
��
��
OLYMPUS EX. 1010 - 17/1582

cn

ran

OLYMPUS EX. 1010 - 18/1582

f

OLYMPUSEX. 1010 - 18/1582

���������	�
�
����
��
��OLYMPUS EX. 1010 - 19/1582

1975
The Development ofMS-DOS

To many people who use personal computers, MS-DOSis the key that unlocks the power
of the machine.It is their most visible connection to the hardware hidden inside the

cabinet, and it is through MS-DOSthat they can run applications and manage disks and
disk files.

In the sense that it opens the door to doing work with a personal computer, MS-DOSis
indeed a key, and thelockitfits is the Intel 8086 family of microprocessors. MS-DOSand
the chipsit works with are, in fact, closely connected — so closely that the story of
MS-DOSis really part of a larger history that encompasses not only an operating system
but also a microprocessorand,in retrospect, part of the explosive growth of personal
computing itself.

Chronologically, the history of MS-DOS can be divided into three parts. First came the
formation of Microsoft and the events preceding Microsoft's decision to develop an
operating system. Then camethe creation ofthe first version of MS-DOS.Finally, there is
the continuing evolution of MS-DOSsinceits release in 1981.

Muchofthe story is based on technical developments, but dates and facts alone do not
provide an adequate look at the past. Many people have been involved in creating MS-DOS
and directing the lines along whichit continues to grow. To the extent that personal opin-
ions and memories are appropriate, they are included hereto provide a fuller picture of
the origin and development of MS-DOS.

Before MS-DOS

Therole of International Business Machines Corporation in Microsoft’s decision to create
MS-DOShas been well publicized. But events,like inventions, always build on prior ac-
complishments, and in this respect the roots of MS-DOSreach farther back,to four hard-
ware and software developmentsof the 1970s: Microsoft’s disk-based and stand-alone
versions of BASIC, Digital Research’s CP/M-80 operating system, the emergenceof the
8086 chip, and a disk operating system for the 8086 developed by Tim Paterson at a hard-
ware company called Seattle Computer Products.

Microsoft and BASIC

On the surface, BASIC and MS-DOSmight seem to have little in common,but in terms of
file management, MS-DOSis a direct descendantof a Microsoft version of BASIC called
Stand-alone Disk BASIC.

Before Microsoft even became a company,its founders, Paul Allen and Bill Gates, de-
veloped a version of BASICfor a revolutionary small computer namedthe Altair, which
was introduced inJanuary 1975 by Micro Instrumentation Telemetry Systems (MITS) of

Section I: The Development ofMS-DOS 3

OLYMPUSEX. 1010 - 19/1582

OLYMPUS EX. 1010 - 20/1582

1975 ; . Thejanuary 1975 cover of PopularHOW TO “READ” FM TUNER SPECIFICATIONS | Electronics magazine, featuring the
machine that caught the imaginations

PopularElectronics| 2es222ees:Drre
WORLDS LARGEST-SELLING ELECTRONICS MAGAZINE JANUARY 10757 75¢ Alien and Bill Gates.

PROJECT BREAKTHROUGH!

World's First Minicomputer Kit
to Rival Commercial Models...

“ALTAIR 8800” save over $1000

ALSO IM THIS ISSUE:

e An Under-$90 Scientific Calculator Project
cm © CCD's-TV Camera Tube Successor?

© Thyristor-Controlled Photoflashers
‘TEST REPORTS!
Technics 200 Speaker System
Pioneer RT-1011 Open-Reel Recorder
Tram Diamond-40 CB AM Transceiver
Edmund Scientific *Kirlian” Photo Kit
Hewlett Packard 5381 Frequency Counter

 rncrarmremea—_

4

Althoughit was too limited to serve as the central processor for a general-purpose compu-
ter, the 8008 was undeniably the ancestor of the 8080as far as its architecture and instruc-
tion set were concerned. Thus Traf-O-Data’s work with the 8068 gave Gates and Allen a
head start when they later developed their version of BASIC for the Altair.

Paul Aflen learned of the Altair from the cover story in the January 1975 issue of Popular
Electronics magazine. Allen, then an employee of Honeywell in Boston, convinced Gates,
a student at Harvard University, to develop a BASIC for the new computer. The two wrote
their version of BASIC for the 8080 in six weeks, and Allen flew to New Mexico to demon-
strate the language for MITS. The developers gave themselves the company name of
Microsoft and licensed their BASIC to MITS as Microsoft's first product.

Though nota direct forerunner of MS-DOS,Altair BASIC,like the machine for whichit was
developed, was a landmark product in the history of personal computing. On another
levei, Altair BASIC wasalso the first link in a chain that led, somewhat circuitously, to Tim
Paterson and the disk operating system he developed for Seattle Computer Products for
the 8086 chip.

OLYMPUSEX. 1010 - 20/1582

���������	�
�
�����
�
��OLYMPUS EX. 1010 - 21/1582

1976

Dteragg lagent & Besid

Bere Ch ayde

CorerTAB”| Pontes te ated ling Cabyrs)
Binary yng C2 bates}
cheractes on Tine Coen note 1
erp it éqte)

HBegel abe ee each Wy >
“Eee (by 5)

Simple vanadles .& by tes pe vorrable
DZ bytes give fl hae
YH bytes gut fhe yalne,
Repeat Far @ach var iadle >
Brenan parables
2 byte hans.
Zeyte teagth.
values —

eats far teach as
nt feeat igh ten nok
Frege paces {30 ea, be is bene’)
West pyedat shel tuteStace v

bottom of stack / foparch locate stems

[v recta|

(aeyte}

[sre ews|

CetKmP|

[reeroe)

fees. see oe
Carrot sterkg “$a
sTRinges 4 we

wiqlast dnachea locatugy,

{een)

Cmemsrz)

“his Sdhine allows tor simple
creed Le. Mar a Qemect. Ovi collectsts fsa atrings whic Fant in GE Baste,

—

COMPUTER NOTESTULY, 15975

Loading Software

. Softuare From MITS will be pro-vided in a checksummed Format.
There will be a bootstrap loader
that you key in manually (less thanT5 bytes}, This wiil read a check-
am loader (the ‘bin’ loades) which
WLLL be about 120 bytes.

For audio cassette loading thebootstrap and checksum loaders will
be longer, ALL of this will be ex-
plained in detail in a cover packagethat will go out with all gaftware.

For loading nan-chacksumted

paper tapes here is a short program:
STKLOC: 0M GETHEW

(2 bytea-41 low byte ofGETHEW addresg
#2 hign byte ofGETHEM address)

START:
TETNEW: Lat Ho

Le SP, StrLoc
Ta <flag-input chanmel>
RAL yget input ready Bit
RAZ jteady?
IN sdata-input channed>CPr «043 = IN¥ B>
RHE
IWR A
STA CROLOC
PET

CHCLON:

C27 byres)
Punch @ paper tape with leader,

4043 start byte, The byte to be
stored at loc 0, the byte to beatored at Ll, - - - ete. Start at
START, making sure the memory the
daader [a ka ig unprotected. dake
sure you don't wipe out the loader
by loading on top of it.

Ta Tun this again change CHGLOCback ta CPL = 376.

V4

On the left, Bill Gates's original handwritten notes describing memory configurationforAltair BASIC. Ont
the right, a short bootstrapprogram writen by GatesforAltair users; published in thefuly 1975 edition ofthe
MITS user newsletter, Computer Notes.

From papertape to disk

Gates and Allen's early BASIC for the Altair was loaded from paper tape after the bootstrap
to load the tape was entered into memoryby flipping switches on the front panel of the
computer. [n late 1975, however, METS decided to release a floppy-disk system for the
Altair — thefirst retail floppy-disk system on the market. As a result, in February 1976
Allen, by then Director of Software for MITS, asked Gatesto write a disk-based version of
Altair BASIC. The Altair had no operating system and hence no method of managingfiles,
so the disk BASIC would have to include somefile-management routines. It would, in
effect, have to function as a rudimentary operating system.

Section f The Development ofMS-DOS 7

OLYMPUS EX.1010-21/1582

OLYMPUS EX. 1010 - 22/1582

ef

1975
eetaa

The Altair. Christened one evening shortly before its abpearance on the cover of Popular Electronics
magazine, the computer twas namedfor the night's destination ofthestarship Enterprise. Thephotograph
Clearly shows the input switches on thefrontpanel ofthe cabinet.

Albuquerque, New Mexico, Though it has long been eclipsed by other, more powerful
makes and models, the Altair was the first “personal” computer to appear in an environ-
ment dominated by minicomputers and mainframes.It was, simply, a metal box with a
panel of switches andlights for input and output, a power supply, a motherboard with 18
slots, and two boards. One board was the central processing unit, with the 8-bit Intel 8080
microprocessor atits heart; the other board provided 256 bytes of random-access memory.
This miniature computer had no keyboard, ne monitor, and no device for permanent
storage, butit did possess one great advantage: a price tag of $397.

Now, given the hindsightofa little more than 2 decade of microcomputing history,it is
easy to see that the Altair's combination of small size and affordability was the thin edge
of a wedge that, in just a few years, would move everyday computing power away from
impersonal monoliths in climate-controlled rooms and onto the desks of millions of
people. In 1975, however, the computing environment wasstill primarily a matter of data
processing for specialists rather than personal computing for everyone. Thus when 4 KB

The MEDS Encucionestia

OLYMPUSEX. 1010 - 22/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 23/1582

 1975

Intel’s 4004, 8008, and 8080 chips. At the top left is the 4-bit 4004, which was namedfor the approximate
number ofold-fashioned transistors it replaced, Al the bottom left s the §-bit 8008, which addressed 16 KB of
memory; this was the chip used in the Traf-O-Data tape-reader buiit by Paul Gilbert. At the right is the 8080,
@faster 8-bit chip that could address 64 KE ofmemory. The brain oftheMITSAltair, the 8080 was, in many
respects, the chip on which thepersonal computing Industry was built. The 4004 and 8008 chips were
developed early in the 1970s; the 8080 appeared in 1974.

memory expansion boards became available for the Altair, the software needed mostby its
users was nota word processor or a spreadsheet, but a programming language —and the
languagefirst developed forit was a version of BASIC written by Bill Gates and Paul Allen.

Gates and Allen had becomefriendsin their teens, while attending Lakeside School in
Seattle. They shared an intense interest in computers, and by the time Gates was in the
tenth grade, they and anotherfriend named Paul Gilbert had formed a companycalled
Traf-O-Data to produce a machine that automated the reading of 16-channel, 4digit,
binary-coded decimal (BCD) tapes generated by traffic-monitoring recorders, This ma-
chine, built by Gilbert, was based on the Intel 8008 microprocessor, the predecessor
of the 8080in the Altair.

Section I: The Development afMS-DOS >

OLYMPUSEX.1010 -23/1582

OLYMPUS EX. 1010 - 24/1582

1975

TheJanuary 1975 cover of Popular

HOW TO “READ” FM TUNER SPECIFICATIONS Flectronics magazine, featuring themachine that caught the imaginations
ofthousands oflike-minded electron-Fop a ni S . ics enthusiasts — among them, Paul

WORLDS LARGEST. SELLING ELECTRONICS MAGAZINE JANUARY 1978/75 Allen and Bill Gates.

PROJECT BREAKTHROUGH!

World's First MinicomputerKit
to Rival Commercial Models...

“ALTAIR 8800” save over $1000

ALSO IN THIS ISSUE:
e An Unde -$90 Sclentific Calculator Project

a @ CCD's—TY Camera Tube Successor?

©@ Thyristar~Controlled Photoflashers
TEST REPORTS:
Technics 200 Speaker System
Pioneer RT-1011 Open-Reel Recorder
Tram Diamond-40 CB AM Transceiver
Edmund Scientific "Kirlian” Photo Kit
Hewlett-Packard 5381 Frequency Counter

Althoughit was too limited to serve as the central processor for a general-purpose compu-
ter, the 8008 was undeniably the ancestor of the 8080 asfar as its architecture and instruc-
tion set were concerned, Thus Traf-O-Data’s work with the 8008 gave Gates and Allen a
head start when they later developed their version of BASIC for the Altair.

Paul Ailen learned of the Altair from the cover story in the January 1975 issue of Popular
Electronics magazine. Allen, then an employee of Honeywell in Boston, convinced Gates,
a student at Harvard University, to develop a BASIC for the new computer. The two wrote
their version of BASIC for the 8080 in six weeks, and Allen flew to New Mexico to demon-

strate the language for MITS. The developers gave themselves the company name of
Microsoft and licensed their BASIC to MITS as Microsoft’s first product.

Though not a direct forerunner of MS-DOS,Altair BASIC,like the machine for which it was
developed, was a landmark productin the history of personal computing. On another
level, Altair BASIC was also thefirst link in a chain that led, somewhat circuitously, to Tim
Paterson andthe disk operating system he developed for Seattle Computer Products for
the 8086chip.

OLYMPUSEX. 1010 - 24/1582

���������	�
�
������
��OLYMPUS EX. 1010 - 25/1582

 1976

Oteragg lay arnt oe was <

Vout takes

(orertae’]

fv RreTas|

gZiva Cbyte

Pornter te next bet C2rayies}
binasy ap €% bi ies)
cheocactar oh ling Cee woke nv)
Btn C1 byte)

<Pepew\ above Be each Lg
Zire uly es

. Sra ple vanattes 6 ba tes ee varradte
A betes give flo nee.
4 by ts Phat Plas. yalne,

COMPUTER MOTES/IULY, 1975

Loading Software

Software From 4ITS will be pro-vided in a cheacksunmed Format.
Thera will be a bootstrap loader
That you key in mamdally (less then
25 bytes), This will read a check-
aum loader (tha ‘bin’ Loader) which
will be about 120 bytes.

For audio caanette loading thebootstrap and chacksum loaders will
be longer. ALL of thin will be ax-
plalned in detail in a cover packagethat will go cut with all software.

Par loading non-checksunmed
paper tapes hera is a short proprad:
STKLOC: [# GETHEW

(2 byted-#1 low byte ofGETNEW addressRe pe at! for Zach, Whe table *
(AtymE)—Beowg varrables

2 bate hams.
Zbute tengih. START: LAI 4,0RETHEMs GEL $F, sTeLdC

EN sflag-input channel>a, RAL get input dy bit
Repeats far #20 ace pid coe ready bi

AZ high byte ofGETNEY addreas}

valwes

[stTeewy lowest Teoat ren tap ste IN <data-inpat channel>CHOLOC: CPI <0} 2 [ax Be
. Freee Fp aces (of cay bee lene) RAZ ,

CstKop| fest recent shel ete oer cue
. Stade . RET
[raeref) bottom of stack / dopant (vetmt sees (72 ores)Punch 4 paper tape with leader,

a 043 atert byte, the byte to be

{ea 06) bees. Spe cae storpad at lec 0, the byte ta be= Can . stored at l, = = = ste, Start at
Chem Ste “4 4 Sage START, @aking sure tha memory thesTmin Gos loadre im in is unprotected. dakesure you don't wips our the loader

by loading an top of it.Cmimsre larg ha st nadya locations .
To tun this again change CHGLOCback to CPE = 3786,

“his Shwe allows fer simple
pebl, Tn a ct. ont cellectaris. fer cies yh eda Few Iw ae Pague. 3

On the left, Bill Gates’s original handwritten notes describing memory configurationforAltair BASIC. On
the right, a short bootstrapprogram written by GatesforAltair users;published in thefuly 1975 edition ofthe
MITS user newsletter, Computer Notes.

From paper tape to disk

Gates and Allen's early BASIC for the Altair was loaded from papertape after the bootstrap
to load the tape was entered into memory by flipping switches on the front panelofthe
computer. In late 1975, however, MITS decided to release a floppy-disk system for the
Altair —thefirst retail floppy-disk system on the market. As a result, in February 1976
Allen, by then Director of Software for MITS, asked Gates to write a disk-based version of
Altair BASIC. The Altair had no operating system and hence ne method of managingfiles,
so the disk BASIC would have to include some file-managementroutines, It would, in
effect, have to function as a rudimentary operating system.

Section £ The Development ofMS-DOS 7

OLYMPUSEX. 1010 - 25/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 26/1582

{oe™

AAegeReeaeeSgPR
1977-1978

Microsoft, 1978, Albuquerque,
NewMexico. Top row, left to right:
Steve Wood, Bob Wallace, Jim Lane.
AMiddie row, left to right: Bob O'Rear,
Bob Greenberg, Marc McDonald,
Gordon Letwin. Bottom row, left to
right: Bill Gates, Andrea Lewis,
Maria Wood, PaulAlien.

Gates, still at Harvard University, agreed to write this version of BASIC for MITS. He went
to Albuquerque and, as has often been recounted, checkedinto the Hilton Hotel with a
stack of yellow legal pads. Five days later he emerged, yellow padsfilled with the code for
the new version of BASIC. Arriving at MITS with the code and a request to beleft alone,
Gates began typing and debugging and, after another five days, had Disk BASIC running
on the Altair.

This disk-based BASIC marked Microsoft's entry into the business of languages for per-
sonal computers — not only forthe MITS Altair, but also for such companies as Data
Terminals Corporation and General Electric. Along the way, Microsoft BASIC took on
added features, such as enhanced mathematics capabilities, and, more to the pointin
terms of MS-DOS,evolved into Stand-alone Disk BASIC, produced for NCR in 1977.

Designed and coded by Marc McDonald,Stand-alone Disk BASIC includeda file-
Inanagement scheme called the FAT,or file allocation table that used a inkedlist for man-
aging disk files, The FAT, born during one of a series of discussions between McDonald
and Bill Gates, enabled disk-allocation information to be kept in one location, with
“chained” references pointing to the actual storage locations on disk. Fast and flexible,
this file-managementstrategy was later used in a stand-alone version of BASIC for the 8086
chip and eventually, through an operating system named M-DOS, becamethe basis for the
file-handling routines in MS-DOS,

M-DOS

During 1977 and 1978, Microsoft adapted both BASIC and Microsoft FORTRANfor an
increasingly popular 8-bit operating system called CP/M. At the end of 1978, Gates and
Allen moved Microsoft fromAlbuquerque to Bellevue, Washington. The company con-
tinued to concentrate on programminglanguages, producing versions of BASIC for the
6502 and the TI9900, ;

The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 26/1582

OLYMPUS EX. 1010 - 27/1582

1978

A Microsoft advertisementfrom the
January 1979 issue of Byte magazine
mentioning someproducts and the
machines they ran on. ft the lower
right corrier is an announcement of
the company's move to Bellevue,
Washington.

| sondac or
micocomouter

Sofware

 Onl one company sais Ina pane with

Software tor microprocessors,

THATS MICROSOFT
Whether ifs BASIC FOSTGAN, of

COSS. the lergertsetingy rie
Chocaneler sygterng use BOM

wage ty MeroscsT.Roche SracefoliarMR
Ago, Corsgog Ore

ke. Btmegs, Ealerys, irisuDdhoScertte, in
rains, AGS Zia.Mostok Maheonel

Fockwaail, atedracety cel ee

 MACRO-80 PACKAGEouencotcte owenWACO

‘Grote Reference Programm, se SEOCF-
ema terntciePerre)SeasSeer SSAGO Moral #5 TACO20.6 inc iuded in FORTRAN day
MBASIC — NEW RELEASE ing new unen $0 MBAS includes long woneb'2 name, wonobie lefighh recom, enor: sng
spec! clistoton WELLANDaretied tis, ond chgiwng with GottWA Vveveon 3 0 fully ANS] cornpontie Out MEAGddcumneation bed

Geepean comaPoa ARTE CAG SOnOCOMY TOME Sele copy SSR
KX

EDT-60 PACKAGE (CP/M version Only} the todas! to ectitorOn Ihe ehavee! Ni Shore seorchang Inpughes or oypic Sommonds Tag egncT
008s, bncagrded echigt a eeniod hoseued GoogeGoeroaiets tad oho ADP.

4) Ako Includes FOO, the tea compare wan (ath OF Oey COPDCROE OF Gur_ ged minemy Tes Seigte come. SEA sional 341]
ANSI 74 COBGL-80 a rovoncscnte nem llptednd BAM evened rreroctieACKAPT/DPLY OO ond TEND Seok copy SI Var HO

PREVIEW OF UPCOMING PRODUCTSan poery2-s0 wre: comes! pup:Rorhing she tore pote: oe cur ilecesses, ne lorgeamnnd aCeark leeteangio compete set io yslers setteeeggsfor OoTn the Be ane FACOG

And ctM.iccosctt,
new things oe
hongeryng oll

Ad qottergre: Gag ee St vicghre.ci pry pat its tr GEM
Beconcement pcos

During this same period, Mare McDonald also worked on developing an 8-bit operating
system called M-DOS (usually pronounced “Midas” or “My DOS"). Althoughit never
became a real part of the Microsoft product line, M-DOS wasatrue multitasking operating
system modeled after the DEC TOPS-10 operating system, M-DOS provided good perfor-
mance and, with a more flexible FAT than that built into BASIC, had a better file-handling
structure than the up-and-coming CE/M operating system. At about 30 KB, however,
M-DOS was unfortunately too big for an 8-bit environment and so ended up being rele-
gated to the back room. As Allen describesit, “Trying to do a large, full-blown operating
system on the 8080 wasalot of work, and it took a lot of memory. The 8080 addresses only
64 K, so with the success of CP/M, we finally concluded that it was best not to press on
with that.”

CP/M

In the volatile microcomputerera of 1976 through 1978, both users and developers of per-
sonal computers quickly came to recognize the limitations of running applications on top
of Microsoft's Stand-alone Disk BASIC or any other language. MITS, for example, scheduled

Section £ The Development ofMS-DOS 9

OLYMPUSEX. 1010 - 27/1582

OLYMPUS EX. 1010 - 28/1582

a

geenemethenee

1978

a July 1976release date for an independent operating system for its machinethat used the
code from the Altair’s Disk BASIC. In thesame year, Digital Research, headed by Gary

Kildall, released its Control Program/Monitor, or CP/M.

CP/M was a typical microcomputer software product of the 1970s in that it was written by
One person, not a group, in responseto a specific need that had notyet beenfilled. One of
the most interesting aspects of CP/M’s history is that the software was developed several
years before its release date — actually, several years before the hardware on whichit
would be a standard became commerciaily available.

In 1973,Kildall, a professor of computer science at the Naval Postgraduate School in
Monterey, California, was working with an 8080-based smal! computer given him byIntel
Corporation in return for some programming he had donefor the company. Kildall’s
machine, equipped with a monitor and paber-tape reader, was certainly advanced for the
time, but Kildall became convinced that magnetic-disk storage would make the machine
even more efficient than it was.

Trading some programmingfor a disk drive from Shugart, Kildall first attempted to build
a drive controller on his own. Lacking the necessary engineering ability, he contacted a
friend, John Torode, who agreed to handle the hardware aspectsof interfacing the compu-
ter and the disk drive while Kildal! worked on the software portion — the refinementof an
operating system he had written earlier that year. The result was CP/M.

The version of CP/M developedby Kildall in 1973 underwent several refinements. Kildall
enhanced the CP/M debugger and assembler, added a BASIC interpreter, and did some
work on an editor, eventually developing the product that, from about 1977 until the ap-
pearance of the IBM Personal Computer, set the standard for 8-bit microcomputer operat-
ing systems. —

Digital Research's CP/M included a commandinterpreter called CCP (Console Command
Processor), which acted as the interface between the user and the operating system itself,
and an operations handler called BDOS (Basic Disk Operating System), which was
responsibleforfile storage, directory maintenance, and other such housekeeping chores.
For actual input and output — disk I/O, sereen display, print requests, and so on — CP/M
included a BIOS (Basic Input/Output System) tailored to the requirements of the hardware
on which the operating system ran.

Forfile storage, CP/M used a system of eight-sector allocation units. For any given file, the
allocation units were listed in a directory entry that included the filename and a table giv-
ing the disk locations of 16 allocation units. If a long file required more than 16 allocation
units, CP/M created additional directory entries as required. Small files could be accessed
rapidiy underthis system,but large files with more than a single directory entry could re-
quire numerousrelatively time-consuming disk reads to find needed information.

At the time, however, CP/M was highly regarded and gained the support of a broad base of
hardware and software developers alike. Quite powerfulforits size (about 4KB), it was, in
all respects, the undisputed standard in the 8-bit world, and remained so until, and even
after, the appearanceof the 8086.

hon kee mee ote tt

OLYMPUSEX. 1010 - 28/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 29/1582

1978

The 16-bit intel 8086 chip, introduced in 1978,
Muchfaster andfar morepowerful than its 8-bit
predecessor the 8080, the 8086 had the ability to
address one megabyte ofmemory.

The 8086

WhenIntel released the 8-bit 8080 chip in 1974, the Altair was still a year in the future.
The 8080 was designed not to make computing a part of everydaylife but to make house-
hold appliances and industrial machines more intelligent. By 1978, whenIritel introduced
the 16-bit 8086, the microcomputer was a reality and the new chip represented a major
step ahead in performance and memory capacity. The 8086's full 16-bit buses madeit fast-
er than the 8080, andits ability to address one megabyte of random-access memory was a
giant step beyond the 8080's 64 KB limit, Although the 8086 was not compatible with the
8080, it was architecturally similar to its predecessor and 8080 source code could be me-
chanically translated to run on it. This translation capability, in fact, was a major influence
on the design of Tim Paterson’s operating system for the 8086 and, through Paterson's
work, on the first released version of MS-DOS.

When the 8086 arrived on the scene, Microsoft, like other developers, was confronted with
two choices: continue working in the familiar 8-bit world or turn to the broader horizons
offered by the new 16-bit technology. For a time, Microsoft did both. Acting on Paul Allen's
suggestion, the company developed the SoftCard for the popular Apple II, which was
based on the 8-bit 6502 microprocessor. The SoftCard included a Z80 microprocessor and
a copy of CP/M-80licensed from Digital Research. With the SoftCard, Apple I] users could
run any program or language designed to run on a CP/M machine,

It was 16-bit technology, however, that held the most interest for Gates and Allen, who
believed that this would soon become the standard for microcomputers. Their optimism
was not universal — more than one voice in the trade press warned that industry invest-
ment in 8-bit equipment and software was too greatto successfully introduce a new stan-
dard. Microsoft, however, disregarded these forecasts and entered the 16-bit arena asit
had with the Altair: by developing a stand-alone version of BASIC for the 8086.

Section I The Development ofMS-DOS il

OLYMPUSEX. 1010 - 29/1582

OLYMPUS EX. 1010 - 30/1582

1979-1980

Atthe same timeand, coincidentally, a few miles south in Tukwila, Washington, a major
contribution to MS-DOS wastaking place. Tim Paterson, working at SeattleComputer

"Products, a company that built memory boards, was developing an 8086 CPU card for use
in an $-100 bus machine.

86-DOS

17

Paterson was introducedto the 8086 chip at a seminar held by Intel in June 1978. He had
attended the seminarat the suggestion ofhis employer, Rod Brock ofSeattle Computer
Products. The new chip sparked his interest because, as herecalls, “all its instructions
worked on both 8 and 16 bits, and you didn’t have to do everything through the accumu-
lator. It was also real fast — it could do a 16-bit ADD in three clocks.”

After the seminar, Paterson — again with Brock’s support — began work with the 8086.
Hefinished the designof his first 8086 CPU board in January 1979 and by late spring had
developed a working CPU, as well as an assembler and an 8086 monitor. InJune, Paterson
took his system to Microsoftto try it with Stand-alone BASIC, and soonafter, Microsoft
BASIC was running onSeattle Computer's new board.

During this period, Paterson also received a call from Digital Research asking whether
they could borrow the new board for developing CP’M-86. Though Seattle Computer did
not have a board to Joan, Paterson asked when CP/M-86 would be ready. Digital’s represen-
tative said December 1979, which meant, according to Paterson's diary, “we'll have to live

with Stand-alone BASIC for a few months after westart shipping the CPU, but then we'll be
able to switch to a real operating system.”

Early in June, Microsoft and Tim Paterson attended the National Computer Conference
in New York. Microsoft had been invited to share Lifeboat Associates’ ten-by-ten foot
booth, and Paterson had been invited by Paul Allen to show BASIC running on an $-100
8086 system. At that meeting, Paterson was introduced to Microsoft's M-DOS, which he
found interesting becauseit sed a system for keeping track ofdisk files—the FAT devel-
opedfor Stand-alone BASIC — that was different from anything he had encountered.

After this meeting, Paterson continued working on the 8086 board, and by the end ofthe
year, Seattle Computer Products began shipping the CPU with a BASIC option.

When CP/M-86 had still not becomeavailable by April 1980, Seattle Computer Products
decided to develop a 16-bit operating system of its own. Originally, three operating sys-
tems were planned:a single-user system, a multiuser version, and a small interim product
soon informally christened QDOS(for Quick and Dirty Operating System) by Paterson.

Both Paterson (working on QDOS) and Rod Brock knew that a standard operating system
for the 8086 was mandatory if users were to be assured of a wide range of application soft-
ware and languages. CP/M had become the standard for 8-bit machines, so the ability to
mechanically translate existing CP/M applications to run on a 16-bit system became one of
Paterson’s major goals for the new operating system. To achieve this compatibility, the sys-
tem he developed mimicked CP/M-80’s functions and commandstructure, includingits
use of file control blocks (FCBs) and its approach to executablefiles.

The are men mei.bea

OLYMPUSEX. 1010 - 30/1582

OLYMPUS EX. 1010 - 31/1582

1980

8086
8 Mhz. 2-card CPU Set

ASSEMBLED, TESTED, GUARANTEED

With gut 2-card @066 CRU set you can upgrade your ZB0 8-
Eel S10 sistent La fun Unrga times as fash by swapping ine
CPs. you usa Out Lé-bi memory, 4 will cue ine times asfast. Updo BAR of your Stabe B-bit memory may be ged in ihe
BOSS'S t-mergabyte addressing range A switch aliowsailber 4OB Mh operation, Mamoty attess requirements al 4 Miz.ace. nsec.

The EPROM monitor allows you 19 display, alter, andsearch memory, do ‘ouls and cutpuls, and bool your disk,
Debugging ards inclida register cisplay and change, singleStEppNg, aed executa wath breakpoinis.

The 24 icles @ Sonal poo anh peegrammitld baud rile.
four adependenl programmable 16-be lars [two may be
combined for a bime-cf-day chock), & parallolin od parallel autBOIL, aod20 intarypl Gonleolker with 15 ingats External power
may 68 applied to la timers io manln thea cock dueng
AySlem pRrage-oH tina. Tolal power: 2 amps at + BY, less than400 ma. at + 164 and at 1B.

66-005". our £195 BGBS smgla user desk oporalmg
System, 1 prandéd wihoul addieonal charge Wl allows
furnichone such as comgede | D of charachts and sitiige. seedTanton Of SaQuental reading And wring ta namad dash Mes.
While has a diderent igemal ram CP BA performs similar
cally plus some edtensans (CP M5 aregislered vademaek of
Digital Research Corposapan) 1S cosgtrudhen allows relation -
ly magy contiguvation of 1 ig diderant mardware Doreetly
Suppored are the Tarbes and Gromemoo desk conirmlers.The B6-DOS™ package cides an BOBS resent 29-
semier, a 260 ic O86 source code translator. a veliy ig read
bldg wnntenn GP aed conwedt Ihem [othe B6-C0S lenmal. a
ing editor and digh maittenance yianes OF sgriftanca to
ZBO ysers 5 tha athlily of the Wanslio 1G Sctepl BD source

8/16 16-BIT MEMORY
Thess board was desgred for ihe 1980s. be coniguesd a4

GSK by @ bts when aetegsed by ao Orbprotestor and
cenkgured 86 by 16 fits when used wh & 16-4 drotessorThe cankguranen sidchng 1 automabe ands doe py the
Card sampling ing “deen Mgquasi” signal sant oy by all G+
(OO IEEE 16-1 CPU boards. The card hag althe high nose
Immiventy featwers of our well koqwn PLUS PLM cards ag well
as “extended addressing”. Extended addvessing 5 arepiace:erent for bank salect. tl makes use ofa telal el 24 address bnas
Ia Que a creciy addressable range of ower 1B megabytes.LFor older SySiams, & Seth will Cause the card 1ore the
top 8 address Imes) Thus card ensures that your memory
tard purehage veil pol coon bet obsotete.Ms quacaniged lodyn wthey | wail sates welh Gur BORE CPL Se] esinig an Ming
elotk Shipprdirom sleet. Poces 1-0. §280.5-9. $260. 19-up.sean

GO 16-BIT NOW — WE HAVE MADEITEASY

WITH 86-DOS@ $595 i

code wollan tor CP A. leanglale Uva ip BORG souece code,
assemite he source code, and Ihen tun the program on TheaO8 processor under @6- OAS Thus allows the coercion of
any 280 program,for which source Cote 15 aradabhy. Ig tutigndhe much Pugher performance BOSE.

BASIC-88 Dy Recrason is avdilatte for the S086 at $360
Severdl hrs ara working on applcabon programe fall forCurrent sohware sais.

40 sottware litenged for use on a single CompuonyAondisc sure agreements required. Snapping fiom sock bo
one Wegk Bank cards. partonal checks. CODsakay Theres
a 10-day reluen pevilege. Alt ooards are qualanieed one year
— both pans ang labor Shipped popad by au in US and
Canada. Feegn purchases must be prepasd in US dunsAQ Bf $70 pet boaed lor owerseas aw shane

; Seattle Computer Products, Inc.Lid Inguntey Ging, Seat, WA BERRS

(206) 575. 1Ba0

| An advertisementfor
the Seattle Computer
Products 8086 CPU.

with 86-DOS;published
in the December 1980

issue of Byte.

At the same time, however, Paterson was dissatisfied with certain elements of CP/M, one
of them beingits file-allocation system, which he considered inefficient in the use of disk
space andtoo slow in operation. So for fast, efficientfile handling, he useda file allocation
table, as Microsoft had done with Stand-alone Disk BASIC and M-DOS. He also wrote a
translator to translate 8080 code to 8086 code, and he then wrote an assembler in 280

assembly language and usedthetranslator to translateit.

Four months after beginning work, Paterson had a functioning 6 KB operating system,
officially renamed 86-DOS, and in September 1980 he contacted Microsoft again,this time
to ask the company to write a version of BASIC to run on his system.

Section I: The Development ofMS-DOS 13

OLYMPUSEX. 1010 - 31/1582

OLYMPUS EX. 1010 - 32/1582

1980

1BM

While Paterson was developing 86-DOS,the third major element leading to the creation of
MS-DOSwasgaining force at the opposite end of the country. IBM, until then seemingly
oblivious to most of the developments in the microcomputer world, had turnedits atten-
tion to the possibility of developing a low-end workstation for a marketit knew well: busi-
ness and business people.

On August 21, 1980, a study group of IBM representatives from Boca Raton, Florida, visited
Microsoft. This group, headed by a man named Jack Sams,told Microsoft of IBM’s interest
in developing a computer based on a microprocessor. IBM was, however, unsure of micro-
computing technology and the microcomputing market. Traditionally, [BM relied on long
developmentcycles — typically four or five years— and was aware that such lengthy
design periods did notfit the rapidly evolving microcomputer environment.

Oneof IBM's solutions— the one outlined by Sams’s group — was to base the new
machine on products from other manufacturers. All the necessary hardware wasavailable,
but the same could not besaid of the software. Hence the visit to Microsoft with the ques-
tion: Given the specifications for an 8-bit computer, could Microsoft write a ROM BASIC for
it by the following April?

Microsoft respondedpositively, but added questions ofits own: Why introduce an 8-bit
computer? Whynot release a 16-bit machine based on Intel's 8086 chip instead? At the end
of this meeting — the first of many — Sams and his group returned to Boca Raton with a
proposal for the developmentof a low-end, 16-bit business workstation. The venture was
named Project Chess.

One monthlater, Sams returned to Microsoft dsking whether Gates and Allen could,still
by April 1981, provide not only BASIC but also FORTRAN,Pascal, and COBOLfor the new
computer. This time the answer was no because, though Microsoft’s BASIC had been
designed to run as a stand-alone product, it was unique in that respect the otherlan-
guages would need an operating system. Gates suggested CP/M-86, which wasthenstill
under developmentatDigital Research, and in fact madetheinitial contactfor IBM.Digital
Research and [BM did not cometo any agreement, however.

Microsoft, meanwhile,still wanted to write all the languages for IBM— approximately 400
KB ofcode. But to do this within the allotted six-month schedule, the company needed
some assurances about the operating system IBM was going to use. Further, it needed
specific information on the internals of the operating system, because the ROM BASIC
would interact intimately with the BIOS.

The turning point -

That state of indecision, then, was Microsoft's situation on Sunday, September 28, 1980,
when Bill Gates, Paul Allen, and Kay Nishi, a Microsoft vice president and president of
ASCII Corporation inJapan, sat in Gates’s eighth-floor corner office in the Old National
Bank Building in Bellevue, Washington. Gates recalls, “Kay and I werejust sitting there at
night and Paul was on the couch. Kaysaid, ‘Got to doit, got to do it.” It was only 20 more K

Th. be WAG Teeanda

OLYMPUSEX. 1010 - 32/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 33/1582

1980

of code at most— actually,it turned out to be 12 more K ontop of the 400. It wasn’t that big
a deal, and once Kaysaid it, it was obvious. We’d always wanted to do a low-end operating
system, we had specs for low-end operating systems, and we knew we were going to do
one up on 16-bit.”

Atthat point, Gates and Allen began looking again at Microsoft's proposal to IBM. Their
estimated 400 KB of code included four languages, an assembler, and a linker. To add an
operating system would require only another 20 KB or so, and they already knew of a
working model for the 8086: Tim Paterson’s 86-DOS. The more Gates, Allen, and Nishi
talked that night about developing an operating system for IBM’s new computer, the more
possible — even preferable —the idea became.

Allen’s first step was to contact Rod Brock at Seattle Computer Productsto tell him that
Microsoft wanted to develop and market SCP’s operating system and that the company had
an OEM customerforit. Seattle Computer Products, which was not in the business of
marketing software, agreed and licensed 86-DOSto Microsoft. Eventually, SCP sold the
operating system to Microsoft for $50,000, favorable language licenses, and a license back
from Microsoft to use 86-DOSonits own machines.

In October 1980, with 86-DOSin hand, Microsoft submitted another proposal to IBM. This
time the plan included both an operating system and the languagesfor the new computer.
Time was short and the boundaries between the languages and the operating system were
unclear, so Microsoft explained thatit needed to control the developmentof the operating
system in order to guarantee delivery by spring of 1981. In November, IBM signed the
contract.

Creating MS-DOS

At Thanksgiving, a prototype of the IBM machinearrived at Microsoft and Bill Gates, Paul
Allen, and, primarily, Bob O’Rear began a schedule of long, sometimes hectic days and
total immersion in the project. As O’Rearrecalls, “If] was awake, I was thinking about
the project.”

Thefirst task handled by the team was bringing up 86-DOS on the new machine. This was
a challenge because the work had to be done in a constantly changing hardware environ-
ment while changes were also being madeto the specifications of the budding operating
system itself.

As part of the process, 86-DOShad to be compiled and integrated with the BIOS, which
Microsoft was helping IBM to write, and this task was complicated by the media. Paterson’s
86-DOS — not counting utilities such as EDLIN, CHKDSK, and INIT (later named
FORMAT) — arrived at Microsoft as one large assembly-language program on an 8-inch
floppy disk. The IBM machine, however, used 54-inch disks, so Microsoft neededto de-
termine the format of the new disk and then find a way to get the operating system from
the old formatto the new.

Section I: The Development ofMS-DOS 15

OLYMPUSEX. 1010 - 33/1582

OLYMPUS EX. 1010 - 34/1582

1980-1981

14

PauliAlien and

Bl Gates (1982).

This work, handled by O’Rear, fell into a series of steps. First, he moved a section of code
from the 8-inch disk and compiled it. Then, he converted the codeto Intel hexadecimal
format. Next, he uploadedit to a DEC-2020 and from there downloadeditto a large Intel
fixed-disk development system with an In-Circuit Emulator. The DEC-2020 usedfor this
task was also used in developing the BIOS,so there was additional work in downloading
the BIOSto the Intel machine, converting it to hexadecimal format, moving it to an IBM
development system, and then crossloading it to the IBM prototype.

Defining and implementing the MS-DOSdisk format— different from Paterson's 8-inch
format—- was an added challenge. Paterson’s ultimate goal for 86-DOS was logical device
independence, but during this first stage of development, the operating system simply had
to be converted to handle logical records that were independentof the physical record size,

Paterson, still with Seattle Computer Products, continued to work on 86-DOSand by the
end of 1980 had improvedits logical device independence by adding functionsthat
streamlined reading and writing multiple sectors and records, as well as recordsofvariable
size. In addition to making such refinements of his own, Paterson also worked on dozens
of changes requested by Microsoft, from modifications to the operating system's startup
messages to changes in EDLIN, the line editor he had written for his own use. Throughout
this process, IBM’s security restrictions meant that Paterson was nevertold the nameof the
OEM and never shown the prototype machines until he left Seattle Computer Products and
joined Microsoft in May 1981,

And of course, throughout the process the developers encountered the myriad loose ends,
momentary puzzles, bugs, and unforeseen details without which no project is complete.
There were, for example, the serial card interrupts that occurred when they should not
and, frustratingiy, a hardware constraint that the BIOS could not accommodate atfirst and
that resulted in sporadic crashes during early MS-DOS operations.

Thea aC Tue Bsaracinasedia

OLYMPUSEX. 1010 - 34/1582

OLYMPUS EX. 1010 - 35/1582

1980-1981

Bob O’Rear’s sketch of

Qelne Stas st addobeng the steps involved in
madaFDS Thawed Z8ms moving 86-DOSto the

IBMprototype.

3 oO << bles,
a bagseaster ns

oyDae
2 AaSsoSt Ores]

Cantina T. Tha Panalanmont ofMS-DOS 1

OLYMPUSEX.1

5

010 - 35/1582

OLYMPUS EX. 1010 - 36/1582

Tae

aee,

1980-1981

Dos Changes + frees
OW Big drive copper 32 Lom top He preg A, Soma hiskie

29 VR. MediG “Founat” te Baa prompt te aloe uw toof £8pete. Gish, f frumenbticg a dinate dries fy sfomn
4 sei DBs te bore at age(- 1Aoeeed tteay.

S.We | Boot, prye— to Louk th. BID8 + Dos

. Lorate
“fi ‘ dixie,

dine th

QO fe ih pt pfs O Changs ¢ Fixes
; : f. Mleve “dati! fo Pasnen Aeeitns we 0:2

td. ste so.
: | reir

fe poet
teatsedion, wee oF agitons Ug wilt wiedestue athe

ue Sats yyeeeed dddcage aig treks to BbbdS to temun athuce dele covnbly
SIE Ta Occ “if take ot $6005 Atgeadt fr. date ¢anea ie Cammaan)

“fe Lina $4ol ey 2 Sotaccra teschGr AUTORKE? BAT © | tne? o. oO danbemit om Tats le. Tf dutoecee , oh
weapcepa oe _ Fix DEBLK to Ro disnrsmnbly courfhy, Stf tah ternal ly oS the, AEhx¥ grotle.. Thos prods Cre. practi |O at. Wed,

Co AS | grMEG PRUE, Akeotpe® so thd AponfableOA % om batt Yoxas Ie goxae sergens: rie a fr piso Foamar te eflecefe deticked nd Tiackt& BAD TAK,

va (OK cm Lith Z380 eau $0 bobere a neal«YK seyretrahge, erm
y~ 9, thek ot 8$-932 duped i. 4 Srey
f= Wy”check ot SUB RET tunnand

febpore of Ferre) uit 4k fle bargta Ha. arebableon Hah

One Cee pheoFSocbon by deta wetink
fe i, Tdiestirn fmm CHEDSE 2 aaitatle, Arutns atties.

Part ofBob O 'Rear’s “laundry”list ofoberating-sysiem changes and correctionsfor earlyApril 1981. Around
fus time, interim beta copies were shipped to IBMfortesting.

Th ALCLBeanelanadia

OLYMPUSEX. 1010 - 36/1582

OLYMPUS EX. 1010 - 37/1582

“My own IBM computer
Imagine that”

Presenting the IBM of
Personal Computers.

1981

The 1981 debut ofthe
IBMPersonal

Computer.

“Dad, can I use
the IBM computer

of) tonight?”
wane

TOE Arar me cQuEL Sometimes you lec wire Cf
Jama ent, Bat alice they acl aphing 9G ust poe |DM
Bersanal Compauer 40s beter i my pe.Beciaie Tearing stut ccmngenees 4S dubeet a
Teds: can Sludhy anc onloy at borne

Ws 2g 4 (C0 chon he JBM Peesgral Gowapwaty can
Ibe ag useful int pour home abal on pour office. Th help
plan che Geumidy baxtges, for instance. i 1p conpuce
artthlng From dierent aid bo tokor kos cota Yu
saneven bp cuecthy inve che Do: Jones ca bane withyous telephone anil aa Meapendet adapser,

But as surely a3 an JBM Personal Compoiercat eth oma icepyee Ale
Becnsc jus by plying james ur drawing

Bruen

 SGhenGr

colorful praphits, pour son or daughier wel becover
Sahar makes 3 Conapume r Che—adA On it. Tho
tan take the suc ced pribcosing, Poe yd ueUn Creme Rennes Peps 16) SALE aM) eC EA,ep
and doar ew to lype Inde process) Your kde mighl‘ven gel sae Complete Sare” Uy sat eH
thek een prergramd 41 BASIC of Pascal

COpemauety, 91 FM Reranal Compuier ean be occofthe bese invesmnens you make o9 year famatys hature.
Apdeng of he eas capeosiet Farting w kon dha
$008theres aaystom chat wih ie adden clonesimple device, hanks upp pou henge TYar ark oe:saudie canicmte recueen,

To inueduce your famoly un the HM Peryconel
‘Cottier will any Compueriond® shure ag Scars
Doutnes System Ceolcr. Ov sec mn all ac ome ofour |BProduct Greeters (The IM Matin Anis Division
sll serve butincts customers who erant la purchase inquamnicy. }

And roincoiber, When your kids ak [dus your
TOM Berscead Compares bee dhe. Pht pepe nice

sue you can get le back Aller all pour son's
seb wranng tor He aS SeSartre

In spite of suchdifficulties, however, the new operating system ran on the prototypefor
the first time in February 1981. In the six months that followed, the system was continually
refined and expanded, and by the timeofits debut in August 1981, MS-DOS,like the IBM
Personal Computer on which it appeared, had become a functional product for home
and office use.

OLYMPUSEX.1010 - 37/1582

OLYMPUS EX. 1010 - 38/1582

1981

Version 1

Thefirst release of MS-DOS,version 1.0, was not the operating system Microsoft envi-
sioned as a final model for 16-bit computer systems. According to Bill Gates, “Basically,
what we wanted to do was one that was more like MS-DOS2, with the hierarchicalfile
system and everything...the key thing lin developing version 1.0] was my saying, ‘Look,
we can come out with a subset first and just go upward from that.’”

This first version — Gates’s subset of MS-DOS— was actually a good compromise be-
tween the present and the furure in two important respects: It enabled Microsoft to meet
the development schedule for IBM andit maintained program-ttranslation compatibility
with CP/M.

Available only for the IBM Personal Computer, MS-DOS1.0 consisted of 4000 lines of
assembly-language source code and ran in 8 KB of memory.In addition to utilities such
as DEBUG, EDLIN, and FORMAT,it was organized into three major files. Onefile,
IBMBIO.COM,interfaced with the ROM BIOSfor the IBM PC and contained the disk and

character input/output system. A secondfile, IBMDOS.COM,contained the DOS kernel, in-
cluding the application-program interface and the disk-file and memory managers. The
third file, COMMAND.COM,was the external command processor—the part of MS-DOS
mostvisible to the user.

To take advantage of the existing base of languages and such popular applications as
WordStar and dBASE IT, MS-DOS was designed to allow software developers to mechan-
ically translate source code for the 8080 to run on the 8086. And because of this link,
MS-DOSlooked and acted like CP/M-80,at that time still the standard among operating
systems for microcomputers.Like its 8-bit relative, MS-DOS used eight-character filenames
and three-character extensions, and it had the same conventionsfor identifying disk drives
in command prompts, For the most part, MS-DOSalso used the same command language,
offered the samefile services, and had the same general structure as CP/M. The resem-
blance was ¢ven morestriking at the programminglevel, with an almost one-to-one cor-
respondence between CP/M and MS-DOSin the system calls available to application
programs.

New Features

MS-DOS wasnot, however, a CP/M twin, nor had Microsoft designedit to be inextricably
bonded to the IBM PC. Hoping to create a product that would be successful over the long
term, Microsoft had taken steps to make M$-DOSflexibie enough to accommodate
changes and new directions in the hardware technology —disks, memory boards, even
microprocessors — on which it depended. Thefirst steps toward this independence from

|

|

OLYMPUSEX. 1010 - 38/1582

OLYMPUS EX. 1010 - 39/1582

1981

Retail SalesBig L.B.M.'s Little Computer
In US. Up

BUSINESS

Its Desk-Top Pe) 13% ii S 3% in Jul
Model Brings Uytt drmraatn Fe ‘au ev Saunt J ¥
A New Image Caen But Analysts

Are Dubious of
General Upturn

IBM’s New Line Likely to Shake Up
The Market for Personal ComputersBy CRUE ADaag) AST afMLLRTAgEAH YORInierrariemelFauna BAS
on Corp, Bad fieet fs Dok emir Lateee persemal-compler Mabe, Mad eepEH:Belipre ihe ober etet aunt could caper the
weed he Ur ached Unchitry alibi betan
for wie la Bamés,select undoefieed.Dhatesee

cuneleup. The (WM machines operate ou a3Viel Fem’ eB i a darter
(ed ore pewertl "eniy rea the eeeth Aah! mractihee [EMC Wo Mood obtained

iariunos Puch ceboler programa hn‘Vistas. a fnaacial forecagiing de murened by Pericaal Sotrwite tne.Dike pramare, dr soBware, toe chet
rat sore ete et Paritetictword pr Alm. Tree wecousting
PacuagessroPearaiesSaariy dad

faWorld
Netrs For Mixtoxornputer Users

Tar prealer. cpbralenc co more char, 1.400pAre. The new IBS computer
frie adhrcapaery. cul whaAE ADL eantie WAM Io ers evn lamerBrograeme, afd mere aula nan compermagMeachlees andl to dispiay tigre oe Eset

‘ideaseceer In ereies valaided meniory corurd nb pelo.
vouacencirdees halt lly pu contePeder Tl cor AAD or more, iu make

TBMAnnouncesNewMicrocomputerSystemit's Official, One surprise

Or TceHopes. iSeayPOEM AiedLU Me ngLara ae ILarSe Aeoie ee tana Api RRPitas epLeFlt irre ie mie apeiivak MULL Ledapel reeBaanARreirsore Sraebcel reine eA GUA PikeetPee ior od sham Mae Pore cedarPl UP Peeit
ngtlibeka dheri s Lew Sern theareaeaprcalaldtte!hd part elangA Cor aeee Kec dg mt mathNekoi kancomchLerman: reiare.Lieder of iar ummm any Tar pra Pega PMRt PctHey ATA he Dh MALRaah eS wha wi erro Madgeb+alec patie Feet antad) Hite, RARE:

PERSONAL COMPUTERS

PERSONAL
COMPUTER

The mainframer's lang-
awaited aniry into tha personel
computing market sins for
corporate ax wall as homeUsers.
With prckayagsrislic Dut reacuadang fan-fare. na ended We summer's trite! popular
leuuing qeme fer the industry by introduc-
ing its Perecan] Computer. Highly campa-rable i aTerings from arch contender Ap-ple end Radio Shack. the machine iepre-
ears several ogo dad for dhe Jeading cre-
pvlcr rmwuFbeter an in aLicempHs bo hareits
wagon bo ot oF tht Gasiese groweng sg
fethts of the bneiualny.

The comater, whieh tb designed to
wppeal lo home esers as well as coqporaie
profeamonnls, casges io price from $1565
for a bare-bones confipurmcion to Hb,Md for

Seers and Computeriand computer rceailsieres as well as directly in large corporate
end educational users, (oma ays, pooling
ove thay it hes se. up a special oatlonal mar-keding deam io handle Such wohanders.

Bonakd Eurkdee. dhe actleulite di-
ecko Of IBM'S entry syelems besihets Who
braved probes and movie Jighit a Ue ma-chine’. Wakden?. Astoria foiodutison, dt-
chines ig dary Row many perenael Tawe been
dedhemed ne che cational raurketing cffort,
but sigs iL wil] be selling in volumes of 20evcbinc of mote. Sewer weeks after tht
anvelling, ha taid response $0 fr had been
“ety. wcty good. “with orden being ukebel to deliveries wo be rede before chi
mceth_

Th eddition oo tke game Of Adven-
wore, wich Esaridge said fas been avor-
ouphly ceased by tu Boca Raton, Ala.,staf. vast has déccked oun dhe machine wich
an aay of pus laged applicadions progeams
CUR ane ehpeetedd bo mae aL ave Be theEorpOre Uset.

AMONE chest £fe the popular VIsI-
CxHc speedsheet parkage Crom Personal
Sofware. arcooring packages from Man:
agemen: Science America's Peaches Soh-
ware opetaion, and tnformakan Unlimi-
ed's Bucyricer word proceming systent.Although Hdl wed't say, nore Idepoo
Gently developed pawkegesate Sertin to be

IBM realy gets personcl.

the foll-Dlerern model, Wil be pol herough|offered for che Companeras well 2s pockapes
by aerial es Rena aferng Ln he

PesoComputer markeritt 16M Percnal
moduistor) forawispiy: (The machine os fully EOC
ceriiied for home opctapn as a cas

‘Carapurce The onit, perhaps surprisinghy, ply Somputing dewre.
mung and inctudes game sxktware 9 aay peat TEM bs cognizang of ube face cae chs enantmally
WW dhe acandard Rrycures avaiable. eonipured machine prcbably oon Lot a trio

 Ths cracking b nrigresiene. 0b Marling plce is &
Mere $7505, Poo nat pekte ett Deheor gti her B+key keyboard the ¢oMputer sci, baicd on an and will well chon) in difotctn configuréion. For
BABE microprocmsor, end [Gk of main epemary. segue, che firm bas 2 more ppp) configuration

This mintmal configuration can ude gape camene I Foe hoenepeschoo! ay Gof: afmain memary, pee ellakFor mass sorage and a telertion se Canih an ef hima! on pate J

computorist Keig before be warts ba ¢2parcd. Tire
company offtrs upgradedvorsvone of Uc machine.

LE PevsaabCormpalrgelboieer cttth

Asampling ofthe headlines and newspaperarticles that abounded when JBM announced tts Personal
Computer.

Section I: The Development ofMS-DOS 21

OLYMPUSEX. 1010 - 39/1582

OLYMPUS EX. 1010 - 40/1582

1981

39

A pagefrom Micrasoft’s third-quarter
reportfor 1987.

MICROSOFTQUARTERLY

saver:|Pau Aten

Theppraliry +bespaecabiy. Fink operat,suchas haat,

peora LbUPA oan and Gebers, MicrosoftBingen meaksinoeed wanga s2peana mach laster. The
mcrae unimomod:|PAR Bireaks the|acctaaetecspnmient COBOL
ae Beberangeeyes . . WI MOEASH BeakiRedeye Ps GSAPayment spied. 16-Bit Barrier Addy Ki corainatl a praahecs Ssesnor bs een|ValidationUEVe Tha meet uriporiam bear ca sercunce!r A
BayarnkPet cat braey Tha PeerdM Paper edtha Parson! Compesior, dAmiegotes oo

fore ns BGe CPU IMschowce|KOS
hue BODEpeteup bat ar‘01 ther nduestry Una Furaebien
 Carrputer, wping:

penning aha Webat tB-trt are stleperdeass fofeiges andeenuEer ottersigi at

 Bsa lw I
Manonlhe 194ANS Blane acdi COBOL

Weiyeg REGRN OrgaAboul Harrds, whe wiry Ohsaad Mecca CORALfor veletahin? hileOr. COBOL
Bethe! onariaae’, Fae EraJoasors"
(oPued onacy

specific hardware configurations appeared in MS-DOSversion 1,0 in the form of device-
independent input and output, variable record lengths, relocatable programfiles, anda
replaceable commandprocessor.

MS-DOS made input and output device-independentby treating peripheral devicesasif
they were files. To do this, it assigned a reserved filename to each of the three devicesit
recognized: CON for the console (keyboard and display), PRN for the printer, and AUX for
the auxiliary serial ports. Whenever one of these reserved names appeared in thefile con-
trol block of a file named in a command,all operations were directed to the device, rather
than to a disk file. CA file control block, or FCB, is a 37-byte housekeeping record located
in an application's portion of the memory space.It includes, among otherthings, thefile-
name, the extension, and information aboutthe size andstarting locationofthe file
on disk.)

Such device independence benefited both application developers and computer users.
On the developmentside, it meant that applications could use one set of read and write
calls, rather than a numberofdifferent calls for different devices, and it meant that an ap-
plication did not have to be modified if new devices were added to the system. From the

OLYMPUSEX. 1010 - 40/1582

���������	�
�
�����
�
��OLYMPUS EX. 1010 - 41/1582

1981

user's point of view, device independence meantgreater Flexibility. For example, even if a
program had been designedfor disk I/O only, the user could still use a file for input or
direct output to the printer.

Variable record lengths provided another step toward logical independence. In CP/M,logi-
cal and physica! record Jengths were identical; 128 bytes. Files could be accessed only in
units of 128 bytes and file sizes were always maintained in multiples of 128 bytes. With
MS-DOS, however, physical sector sizes were of no concern to the user. The operating sys-
tem maintainedfile lengths to the exact size in bytes and could be relied on to support logi-
cal records of any size desired,

Another new feature in MS-DOS wasthe relocatable program file. Unlike CP/M, MS-DOS
had the ability to load two different types of program files, identified by the extensions
.COM and .EXE. Program files ending with .COM mimicked the binary files in CP/M. They
were more compact than .EXE files and loaded somewhatfaster, but the combined pro-
gram code,stack, and data could be no larger than 64 KB, A EXE program, on the other
hand, could be much larger becausethefile could contain multiple segments, each of

- which could be up to 64KB. Once the segments were in memory, MS-DOSthen used part
of the file heacler, the relocation table, to automatically set the correct addresses for each
segmentreference.

I
i
iI

In addition to supporting .EXE files, MS-DOS made the external command processor,
COMMAND.COM,more adaptable by making it a separate relocatablefile just like any
other program, It could therefore be replaced by a custom command processor, as long
as the new file was also named COMMAND.COM.

Performance

Everyonefamiliar with the IBM PC knowsthat MS-DOSeventually became thedominant
operating system on 8086-based microcomputers, There were several reasonsforthis, not
least of which was acceptance of MS-DOSas the operating system for IBM’s phenomenally
successfulline of personal computers. But even though MS-DOSwasthe only operating
system available whenthe first IBM PCs were shipped, positioning alone would not neces-
sarily have guaranteed its ability to outstrio CP/M-86, which appeared six monthslater.
MS-DOSalso offered significant advantagesto the user in a numberofareas, including the
allocation and managementof storage space on disk.

Like CP/M, MS-DOS shared out disk space in allocation units, Unlike CP/M, however,
MS-DOS mapped the use of these allocation units in a central file allocation table — the
FAT —that was always in memory. Both operating systems used a directory entry for
recording information about each file, but whereas a CP/M directory entry included anal-
location map —a list of sixteen 1 KB allocation units where successive parts ofthe file
were stored — an MS-DOSdirectory entry pointed only to ihe first allocation unit in the
FAT and each entry in the table then pointedto the next unit associated with thefile. Thus,
CP/M might require several directory entries (and more than one disk access) to load a file

Section I: The Development ofMS-DOS 23

OLYMPUSEX. 1010 - 41/1582

OLYMPUS EX. 1010 - 42/1582

1981

larger than 16 KB, but MS-DOSretained a complete in-memory list of all file components
and all available disk space without having to access the disk at all. As a result, MS-DOS’s
ability to find and load even very longfiles was extremely rapid compared with CP/M'’s.

Two other important features — the ability to read and write multiple records with one
operating-system call and the transient use of memory by the MS-DOS command
processor -- provided furtherefficiency for both users and developers.

The independenceofthe logical record from the physical sectorlaid the foundation for the
ability to read and write multiple sectors. When reading multiple records in CP/M, an appli-
cation had to issue a read function call for each sector, one at a time. With MS-DOS,the ap-
plication could issue one read function call, giving the operating system the beginning
record and the numberof records to read, and MS-DOS would then load all of the corre-

sponding sectors automatically.

Another innovative feature of MS-DOSversion 1.0 was the division of the command pro-
cessor, COMMAND.COM,into a resident portion and a transient portion. (There is also a
third part, an initialization portion, which carries out the commands in an AUTOEXEC
batchfile at startup. This part of COMMAND.COMis discarded from memory whenits
work is finished.) The reason for creating resident and transient portions of the command
processor had to do with maximizing the efficiency of MS-DOSfor the user: On the one
hand, the programmers wanted COMMAND.COMto include commonly requested func-
tions, such as DIR and COPY, for speed and ease of use; on the other hand, adding these
commands meant increasing the size of the command processor, with a resulting decrease
in the memory available to application programs. The sohition to this trade-off of speed
versus utility was to include the extra functions in a transient portion of COMMAND.COM
that could be overwritten by any application requiring more memory. To maintain the in-
tegrity of the functions for the user, the resident part of COMMAND.COM wasgiven the
job of checking the transient portion for damage when an application terminated. If neces-
sary, this resident portion would then Joad a new copyofits transient partner into memory.

Ease of Use

In addition to its moves toward hardware independence and efficiency, MS-DOS included
several services and utilities designed to make life easier for users and application devel-
opers. Among these services were improved error handling, automatic logging of disks,
date and time stampingoffiles, and batch processing.

MS-DOSand the IBM PC weretargeted at a nontechnical group of users, and from the
beginning IBM hadstressed the importance of data integrity. Because data is most likely
to be lost when a user respondsincorrectly to an error message, an effort was madeto in-
clude concise yet unambiguous messages in MS-DOS. To further reduce the risks of misin-
terpretation, Microsoft used these messages consistently across all MS-DOSfunctions and
utilities and encouraged developers to use the same messages, where appropriate, in their
applications.

7 OLYMPUSEX. 1010 - 42/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 43/1582

 O Package Contents1 diskette, with the following files:COMMAND. COM

FYLCOM.COM
. Contents1 MS-DOS Disk Operating System Manual

Introduction

Using Thic ManualSyntax Notation

System Requirements Chapter

The MS-DOS Operating System requiras 8K bytes of memory. Disk Errors
Chapter ‘COMMAND .COM

1 Prompt2 Filenanes3 Commands33

oO Chapter EpLINCommandscommand

Chapter DEBUG
Commands1 conmand2 Command

FILCOM
oO Chapter Commands:

Examples

Chapter 6

Features and Benefits of MS-DOS

MS-DOS Structure and Characteristics
General MS-DOS Commands1 Control Function Characters

2 Special Editing commands3

al Internal Conmanda2 External Commands

Invoking EDLIN
12 Interline Commands

Error Messages

Invoking DERUS

Error Keasages

Invoking FILCOM
2 Filenames2 switches

Instructions for Single Disk Drive Users

1981

Parameters

Parameters
Descriptions

Twopagesfrom Microsoft's MS-DOSversion 1.0 manual. On the left, the system’s requirements — 8 KB of
memory, on the right, the 118-page manual’s complete table ofcontents.

In a further attempt to safeguard data, MS-DOSalso trapped hard errors — such ascritical

hardware errors-— that had previously beenleft to the hardware-dependentlogic. Now
the hardware logic could simply report the nature of the error and the operating system
would handle the problem in a consistent and systematic way. MS-DOScould also trap the
Control-C break sequenceso that an application could either protect against accidental
termination by the useror provide a graceful exit when appropriate.

To reduce errors and simplify use of the system, MS-DOSalso automatically updated mem-
ory information about the disk when it was changed. In CP/M,users had to log new disks
as they changed them — a cumbersome procedure on single-disk systems or when data
was stored on multiple disks. In MS-DOS, new disks were automatically logged as long as
no file was currently open.

Another new feature — onevisible with the DIR command — wasdate and time stamping
of disk files. Even in its earliest forms, MS-DOStracked the system date and displayed it at
every startup, and now, whenit turned out that only the first 16 bytes of a directory entry

Section I: The Development ofMS-DOS 25
PIP PAVAIFMTL mW ANNAN ANIALFOAN

OLYMPUSEX. 1010 - 43/1582

OLYMPUS EX. 1010 - 44/1582

1981-1982

were neededfor file-header information, the M5-DOS programmers decided to use some
of the remaining 16 bytes to record the date and time of creation or update (andthe size of
the file) as well.

Batch processing was originally added.to MS-DOSto help IBM. IBM wanted to run
scripts — sequences of commandsor other operations — oneafter the otherto test various
functions of the system. To do this, the testers needed an automated method ofcalling
routines sequentially. The result was the batch processor, whichlater also provided users
with the convenience of saving and running MS-DOS commandsas batchfiles.

Finally, MS-DOSincreased the options available to a program whenit terminated. For ex-
ampie, in less sophisticated operating systems, applications and other programs remained
in memory only as long as they were active; when terminated, they were removed from
memory. MS-DOS, however, added a terminate-and-stay-resident function that enabled a
program to be locked into memory and,in effect, becomepart of the operating-system
environment until the computer system itself was shut downor restarted.

The Marketplace

ores

When IBM announced the Persona] Computer,it said that the new machine would run
three operating systems: MS-DOS, CP/M-86,and SofTech Microsystem's p-System. Of the
three, only MS-DOS was available when the IBM PC shipped. Nevertheless, when MS-DOS
was released, nine out of ten programs on the InfoWorld bestsellerlist for 1981 ran under
CP/M-80, and CP/M-86, which becameavailable about six monthslater, was the operating
system of choice to most writers and reviewers in the trade press.

Understandably, MS-DOS was compared with CP/M-80 and,later, CP/M-86. The main con-
cern was compatibility: To what extent was Microsoft’s new operating system compatible
with the existing standard? No one could have foreseen that MS-DOS would not only catch
up wich but supersede CP/M. Even Bill Gates now recalis that “our most optimistic view of
the number of machines using MS-DOS wouldn't have matched whatreally ended up
happening.”

To begin with, the success of the IBM PCitself surprised many industry watchers. Within a
year, IBM wasselling 30,000 PCs per month, thanksin large part to a business community
that was already comfortable with IBM’s name and reputation and,at least in retrospect,
wasready for the leap to personal computing. MS-DOS,ofcourse, benefited enormously
from the success of the IBM PC — in large part because IBM supplied al] its languages and
applications in MS-DOSformat. .

But, at first, writers in the trade press still believed in CP/M and questioned the viability of
anew operating system in a world dominated by CP/M-80. Many assumed, incorrectly, that
a CP/M-86 machine could run CF/M-80 applications. Even before CP/M-86 was available,
Future Computing referred to the [BM PC as the “CP/M Record Player” — presumably in
anticipation of a vast inventory of CP/M applications for the new computer — andledits
readers to assume that the PC was actually a CP/M machine.

Tho MCMOS Raeuelahadia

OLYMPUSEX. 1010 - 44/1582

���������	�
�
������
��OLYMPUS EX. 1010 - 45/1582

1981-1982

Microsoft, meanwhile, held to the belief that the success of IBM’s machine or any other
16-bit microcomputer depended ultimately on the emergence of an industry standardfor a
16-bit operating system. Software developers could not afford to develop software for even
two or three different operating systems, and users could (or would) not pay the prices the
developers would haveto chargeif they did. Furthermore, users would almost certainly
rebel against the inconvenience of sharing data stored underdifferent operating-system
formats. There had to be one operating system, and Microsoft wanted MS-DOSto be
the one.

The company had already taken the first step toward a standard by choosing hardware
independent designs wherever possible, Machine independence meantportability, and
portability meant that Microsoft could sell one version of MS-DOSto different hardware
manufacturers who, in turn, could adaptit to their own equipment. Portability alone,
however, was no guarantee of industry-wide acceptance. To make M$-DOSthe standard,
Microsoft needed to convince software developers to write programs for MS-DOS. And in
1981, these developers were a little confused about IBM’s new operating system.

An operating system by any other name...

A tangle of names gave rise to one point of confusion about MS-DOS. Tim Paterson's
“Quick and Dirty Operating System”for the 8086 wasoriginally shipped by Seattle
Computer Products as 86-DOS. After Microsoft purchased 86-DOS, the name remained
for a while, but by the time the PC was readyfor release, the new system was known as
MS-DOS, Then, after the [BM PC reached the market, IBM beganto refer to the operating
system as the IBM Personal Computer DOS, whichthe trade press soon shortened to
PC-DOS, IBM’s version contained some utilities, such as DISKCOPY and DISKCOMP. that
were not included in MS-DOS,the generic version available for license by other manufac-
turers. By calling attention to these differences, publications addedto the confusion about
the distinction between the Microsoft and IBM releases of MS-DOS.

Further complications arose when Lifeboat Associates agreed to help promote MS-DOS but
decided to call the operating system Software Bus 86, MS-DOSthus became oneofa line
of trademarked Software Bus products, another of which was a productcalled SB-80,
Lifeboat’s version of CP/M-80.

Finally, someofthe first hardware companiesto license MS-DOSalso wantedto use their
own namesfor the operating system. Outofthis situation came such additional namesas
COMPAQ-DOSand Zenith’s 7-DOS.

Given this confusing host of names for a product it believed could becomethe industry
standard, Microsoft finally took the lead and, as developer,insisted that the operating sys-
tem was to be called MS-DOS. Eventually, everyone but IBM complied.

Developers and MS-DOS

Early in its career, MS-DOS represented just a small fraction of Microsoft’s business —
muchlarger revenues were generated by BASIC and other languages. In addition, in the
first two years after the introduction of the IBM PC, the growth of CP/M-86 and other

Section J: The Development ofMS-DOS a7
PLAtAIF™ 1 mw AVA APIAFOAN

OLYMPUS EX. 1010 -45/1582

OLYMPUS EX. 1010 - 46/1582

1981-1982

32

environments nearly paralleled that of MS-DOS. So Microsoft founditself in the unenviable
position of giving its support to MS-DOSwhile alsoselling languages to run on CP/M-86,
thereby contributing to the growth of software for MS-DOS’s biggest competitor.

Given the uncertain outcomeofthis two-horse race, some other software developers
chose to wait and see which way the hardware manufacturers would jump.Fortheir part,
the hardware manufacturers were confronting the issue of compatibility between operat-
ing systems. Specifically, they needed to be convinced that MS-DOS was not a maverick —
thatit could perform as well as CP/M-86 as a base for applications that had been ported
from the CP/M-80 environmentfor use on 16-bit computers.

Microsoft approachedtheproblem by emphasizing four related points in its discussions
with hardware manufacturers:

*=First, one of Microsoft's goals in developing thefirst version of MS-DOS had always
been translation compatibility from CP/M-86 to MS-DOSsoftware.

® Second, translation was possible only for software written in 8080 or Z80 assembly
language; thus, neither MS-DOS nor CP/M-86 could run programs written for other
8-bit processors, such as the 6800 or the 6502.

@ Third, many applications were written in a high-level language, rather than in assem-
bly language, ,

® Fourth, mostof those highevel languages were Microsoft products and ran on
MS-DOS,

Thus, even though some peapie had originally believed that only CP/M-86 would auto-
matically make the installed base of CP/M-80 software available to the IBM PC and other
16-bit computers, Microsoft convinced the hardware manufacturers that MS-DOS was,in
actuality, as flexible as CP/M-86in its compatibility with existing — and appropriate —
CP/M-80 software.

MS-DOSwasput at a disadvantage in one area, however, when Digital Research convinced
several manufacturers to include both 8080 and 8086 chips in their machines. With 8-bit
and 16-bit software used on the same machine,the user could rely on the same disk format
for both types of software. Because MS-DOSuseda different disk format, CP/M had the
edge in these dual-processor machines — although,in fact,it did not seem to have much
effect on the survival of CP/M-86after the first year or so.

Although making MS-DOSthe operating system of obvious preference was not as easy as
simply convincing hardware manufacturersto offerit, Microsoft’s list of MS-DOS custom-
ers grew steadily from the time the operating system wasintroduced. Many manufacturers
continuedto offer CP/M-86 along with MS-DOS,but by the end. of1983 the technical supe-
riority of MS-DOS (bolstered by the introduction of such products as Lotus 1-2-3) carried
the market. For example, when DEC,a longtime holdout, decided to make MS-DOSthepri-
mary operating system for its Rainbow computer, the company mentionedthericherset of
commands and “dramatically” better disk performance of MS-DOSas reasonsforits
choice over CP/M-86.

Tha AAC POO Den eaebad

OLYMPUSEX. 1010 - 46/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 47/1582

1981-1982

Addition M5-D05 Feslures end Genin
2 Wettien Eotieety WhdE Aasamity Lavgyuage

The pfowiden egnilicant apesd Improvnanit Over
petitng prea erin vert ede Far gpm mrad Yes theloMil coveteperta.

= Fite Eclond Feet Siestore
The Tova aileunaien he neg for axes,” etnies,
metea ve the aeciory (mck, anc prowvies tor GuplicaleSeeCIOeY iMoernation Ba aptly aller bei

+ No Mead te Log ta Gin
Agleng ming Gig B gyiraniny open UNM 120 reg tohag Maal naw ene bp Eeplng CaearohG,This grmallyImp rered etdty oe eogle did dso dare wad IbeParole wg Mie fialoBae Sate Oe resbe iE

© Me Prete Peeak Mie Liectation
Unika vierof ogsedalbng wyalams chat eta bmibed 108megabyue BS-CCS upare void nga ene Io break 24ming Paral tin Une stop Mange ie

EESENET

mS-DO5
Stondard Operating System tor G86 Micros
25.005 ua dk pailng beatae from Magrosel torSOMTODS mac lopmictedols, Inaenanniones Barnes MattonCorp chine ME-O0S Cemled IGM Pinsenal Cerne COS be
Sache OparMing eyaiem of phcare ior np Potannat Computer.Mereghar is il BRAmetaeatencompile mamutbe lures Inoscuse BN end ye

Whal Makes M3-G08 Important?
 A oft Mecroscrt langianged (BASIC imtatewolet, BABE‘Compller, FORTRAN, COPOL, Pescaaye invite

prengdinin yy unidigr MSDS Una od MDDSate eidutedtual Eetaet copa Lieag ays geen WT me ng Peng tg! Maveey a)SUpROrL wha ay EWEACATURCI SO TrLLjeo Paaaneourced. In mddition. the A-bel werghoru of Macs
Hargquegar are upward compaeibie with tha 1:ba vermeons,Tha, epithe IGA pregame serritenin Be aacrctcttTeeguaged cen ba rat bidet MS-OOE aa Lille ot noemepceheation Meccan abet Eo nCouaoe DOIN OhAranpeting eA AGH To WEBIgeimag, RAT Eo clientmend elnaw 18nd paler

ara bea the mayor halures (hat man S-D05 the oppTy Ham pbople manet AMES Machin

= Eney Carrera Mice AUP pe Ata
MS-DOS atowe ea much treveposablity EA mechinelanguage tetedd we H poekibls, WOKS rmtatiemem calla to GPOM8S, Bey amt tuntlng ateseguige Keita Cog theciygi orig Ine corner
BPO Iam, alaneat aN SOE preagneeny will wera wihcAAenodecathon 1 es) COM. db COTABah 1ASS
inane Than coetrargbon fa oat operLingaA.

© Derkcs independent WO
RESDO whmpafies WO 10 dltteten! eee or the LANConcept A mind eat Ori cote hawt wll daviced bk
hom ina vberb peripetes THate ig 0 Abed 10 AbertPorat wha rope Plaied fo Em ayerSlpy OP EM the aewlce 250 READ of WRITE, Alyg,eierlog indapatneter RC apcuarey thal caiterget egetfl

Shergeurs [apeciiheny KG] ang haerdied Bh eran oryhe ckittennt clevicgs.

The Future of 48-005
Microson plana tg anhance MS-DOS Tha additions!easing ppece of theS088 processed make. mulielaskeap ©PariCulerty alirecles enhancement. Aq upward mig rabon pathAo he AENEK opevelng eet Hietagh RENE compatibleTyHem calls. “pepe” ard ewhing” rh enathay plainedaohancathent,

hanrung MS. DQ8 wll bp -adety msbleele in Fb Ager duture,
Pepking MSA ECKS inp aedReedpaneBET LoeBOER micras Wine a MS-DOS Recgening Bop ularT IGOOSAPUMpO IEMA] OCF LAGE in MICTSRSOM ART ceaaySa

+ deere Ew Recorety Procedures
MOOS coteraphy ae eeoy wen ero eer Olweak ated cdcure a deny Lane during any piogram,DOS wileniry the cpetasan three ime, I ihe GbenbonSanbe COMMA euerihdsTeaty, MG Od mile rate(AT pF70r PORES, Thaam Ege One pater 1D ara
FeRSne. The Leal CaM ATIOMap! PA DOMprY MErebT Ha,Febeal te operating Seeker.

+ Complete Program Ariocieabiery
MOOS ba lrulp relogtable eperaaing nnwem Mac onty‘con Ine bherouatl ralocataide linking fader pecvie Tor
eparabe segmands. buf wind the COMPANY patgram anMS.O0 refneitaa (nb moduln dvring hedging Ahthen Ioeding thier Io peel adder. The, MS-DOSdoh. 00hed he BAK progeam podtca limunpion O1 ornparang aterm

= Power, Feaibie die Charectertaticn

Nes Grevhend Ine Moat i-Biyte Phonigel Section
One dines ool hee [oe erony oboe ditaven] physcel‘AeciOe As hen wnting 6 BIOS.

a TimaOa4e Suempe
Tht Bibviales, tor niece, tha react lo recompile ae Aene fits OF [hub EgeMlEbIe Mla [3s noes PeCOnT hem on whezvteg ble

+ LUebeat Aumoclites
Tra unlitlnrpest edaponaiend getLnbsylor atrigroce-Hpweel sotmare Aid ehgagn Mo kuppoe MS-DOS.at fie Ierartrad TED Senbtalang Eyal. Pdecegni ting theTeipOrland Pageatedin gaths regan hg Rete lea1p BERLDS. bilabial wll be oHetierg ewe raiol soPiedre detma MS-008 envfoemen

2 10 IECearatte
(Old is offering aatteate Dunning unpet MSO, 1M heannounced MaconBASIE anal Mietoghl Pascal, along
weaih ecCoWNing Uneplenting, afd weed pateranheare punweg uncel MS-DOS,

 Miepgort, Inve.
ADB INE Eighth. Sante #19Ballivug, WA SaPOSS BOR Tees TOMS

 MS-DOS hag na pewcucal bente an ip est die gue MAS

DOS une 4-byte XENIK OS compallde kogeal ponntereFor ed dish copecily up ki 4 gigthyte,
Wuhan kanghe ake, Ube raat of MS-085 can meeeTian of chftetnnd fogical iecard langtha, MS-O0S reMeagned ba block end debioch te oan plvya-cal seciot.CUE a fete eotied Amber iA MS-DOS,
MS.008 ramarebean the exact ond of fle mares, Thus,
should ane open aie wih loge! racoed egit albathen the pieced retitd engin, ME-GOS berberpubctty eben tha tile eredto Ine byte. eather chanonameped 0 17d trp. ThallaAes he are fos foreseeGommeah'y ov Ue tied Bh Ine ara oPala,

Plane hoe WES-COS mlrece Ue brain, g1ephiet ang
ENE PosEipng. ManySuppo, ullusher and eid gisHapp, pad nabadekitg,

A Microsoft original equipment manufacturer (OEM) marketing brochure describing the strengths ofMS-DOS.

Section £: The Development ofMS-DOS

OLYMPUSEX. 1010 - 47/1582

29

OLYMPUS EX. 1010 - 48/1582

1982-1983

Version 2

The

40

After the release of PC-specific version 1.0 of MS-DOS,Microsoft worked on an update
that contained somebugfixes, Version 1.1 was provided to IBM to run on the upgraded PC
released in 1982 and enabled MS-DOS to work with double-sided, 320 KB floppy disks.
This version, referred to as 1.25 by all but IBM, wasthefirst version of MS-DOS shipped by
other OEMs,including COMPAQ andZenith.

Even before these intermediate releases were available, however, Microsoft began plan-
ning for future versions of MS-DOS.In developing thefirst version, the programmers had
had two primary goals: running translated CP/M-80 software and keeping MS-DOS small.
They had neither the time nor the room to include more sophisticated features, such as
those typical of Microsoft’s UNIX-based multiuser, multitasking operating system, XENIX.
But when IBM informed Microsoft that the next major edition of the PC wouid be the
Personal Computer XT with a 10-megabyte fixed disk, a larger, more powerful version of
MS-DOS —- one closer to the operating system Microsoft had envisioned from the start —
became feasible.

There were three particular areas that interested Microsoft: a new, hierarchicalfile system,
installable device drivers, and some type of multitasking. Each of these features contrib-
uted to version 2.0, and together they represented a major change in MS-DOSwhilestill
maintaining compatibility with version 1.0.

File System

Primary responsibility for version 2.0 fell to Paw] Allen, Mark Zbikowski, and Aaron
Reynolds, who wrote (and rewrote) most of the version 2.0 code. The major design issue
confronting the developers, as well as the most visible exampleofits difference from ver-
sions 1.0, 1.1, and 1.25, was the introduction ofa hierarchicalfile system to handle thefile-
management needs of the XT’s fixed disk.

Version 1.0 had a single directory for all the files on a floppy disk. That system worked well
enough on a disk of limited capacity, but on a 10-megabytefixed disk a single directory
could easily become unmanageably large and cumbersome.

CP/M had approached the problem of high-capacity storage media by using a partitioning
schemethat divided the fixed disk into 10 user areas equivalent to 10 separate floppy-disk
drives. On the other hand, UNIX, which hadtraditionally dealt with larger systems, used
a branching, hierarchicalfile structure in which the user could create directories and
subdirectories to organize files and make them readily accessible. This was the file-
management system implemented in XENIX, and it was the MS-DOS team’s choice for
handling files on the XT’s fixed disk.

The MS-DOSFnevclobedia

OLYMPUSEX. 1010 - 48/1582

OLYMPUS EX. 1010 - 49/1582

1982-1983

TheMS-DOS dersion 1.O manual next to te version 2.0 manual.

Partitioning, IBM’s initial choice, had the advantages offamiliarity, size, and ease of imple-
mentation. Many small-system users — particularly software developers—were already
familiar with pactitioning, if not overly fondofit, from their experience with CP/M. Devel-
opment time was also a major concern, and the code needed to develop a partitioning
scheme would be minimal compared with the code required to managea hierarchical file
system. Such a scheme would also takeless time to implement.

However, partitioning had two inherent disadvantages. First, its functionality would
decrease as storage capacity increased, and even in 1982, Microsoft was anticipating sub-
stantial growth in the storage capacity of disk-based media. Second, partitioning de-
pended on the physical device. If the size of the disk changed, either the numberor the
size of the partitions must also be changed in the code for both the operating system and
the application programs. For Microsoft, with its commitment to hardware independence,
partitioning would have represented a step in the wrong direction.

A hierarchical file structure, on the other hand, could be independentof the physical
device. A disk could be partitioned logically, rather than physicaliy. And because these
partitions (directories) were controlled by the user, they were open-ended and enabled
the individual to determine the best way of organizing a disk.

Ultimately, it was a hierarchical file systemthat found its way into MS-DOS2.0 and even-
tually convinced everyonethat it was, indeed, the better and more flexible solution to the
problem of supporting a fixed disk. The file system was logically consistent with the
XENIX file structure, yet physically consistent with the file access incorporated in versions
Lx, and was based on a root, or main, directory under which the user could create a sys-
tem of subdirectories and sub-subdirectories to hold files. Eachfile in the system was iden-
tified by the directory path leading to it, and the numberof subdirectories was limited only
by the length of the pathname, which could not exceed 64 characters.

In this file structure, all the subdirectories and the filename in a path were separated
from one another by backslash characters, which represented the only anomaly in the
XENIX/MS-DOSsystem of hierarchical files. SENIX used a forward slash as a separator,
but versions 1.x of MS-DOS, borrowing from thetradition of DEC operating systems,
already used the forward slash for switches in the commandline, so Microsoft, at IBM's
request, decided to use the backslash as the separator instead. Although the backslash

Section £ The Development ofMS-DOS

OLYMPUSEX. 1010 - 49/1582

OLYMPUS EX. 1010 - 50/1582

1982-1983

character created no practical problems, except on keyboardsthat lacked a backslash, this
decision did introduce inconsistency between MS-DOSand existing UNIX-like operating
systems. And although Microsoft solved the keyboard problem by enabling the user to
change the switch character from a slash to a hyphen,the solutionitself created compati-

bility problems for people who wished to exchangebatchfiles. ,

Another major change in the file-managementsystem was related to the new directory
structure: In order to fully exploit a hierarchical file system, Microsoft had to add a new
wayOfcalling file services.

Versions 1.x of MS-DOS used CP/M-like structures called file control blocks, or FCBs, to
maintain compatibility wich older CP/M-80 programs. The FCBs contained al] pertinent
information aboutthe size and location of a file but did not allow the user to specifyafile
in a different directory. Therefore, version 2.0 of MS-DOS needed the addedability to ac-
cess files by meansof handles,or descriptors, that could operate across directorylines.

ff In this added step toward logical device independence, MS-DOSreturned a handle when-

ever an MS-DOS program openedafile. All further interaction with thefile involved only
this handle. MS-DOS madeall necessary adjustments to an internal structure — different
from an FCB -— so that the program never had to deal directly with information about the
file’s location in memory. Furthermore, even if future versions of MS-DOS were to change
the structure ofthe internal control units, program code would not need to be rewritten —
the file handle would be the only referent needed, and this would not change.

Putting the internal control units under the supervision of MS-DOS and substituting

| handles for PCBs also made it possible for MS-DOSto redirect a program’s input and out-
put. A system function was provided that enabled MS-DOSto divert the reads or writes —
directed to one handleto the file or device assigned to another handle. This capability was
used by COMMAND.COMto allow output fromafile to be redirected to a device, such asa
printer, or to be piped to another program. It also allowed system cleanup on program
terminations.

Installable Device Drivers

At the time Microsoft began developing version 2.0 of MS-DOS,the companyalso realized
that many third-party peripheral devices were not working well with one another. Each
manufacturerhad its own way of hooking its hardware into MS-DOSandiftwo third-party
devices were plugged into a computerat the same time, they would often conflictorfail.

One ofthe hallmarks of IBM’s approach to the PC was openarchitecture, meaning that
users could simply slide new cards into the computer whenever new input/output de-
vices, such as fixed disks or printers, were added to the system. Unfortunately, version
1.0 of MS-DOS did not have a corresponding open architecture built into ic—the BIOS

OLYMPUSEX. 1010 - 50/1582

���������	�
�
����
�
��OLYMPUS EX. 1010 - 51/1582

1982-1983

containedall the code that permitted the operating system to run the hardware.If inde-
pendent hardware manufacturers wanted to develop equipmentfor use with a computer
manufacturer’s operating system, they would haveto either completely rewrite the device
drivers or write a complicated utility to read the existing drivers, alter them, add the code
to support the new device, and produce a working set ofdrivers. If the user installed more
than onedevice, these patches would often conflict with one another. Furthermore, they
would have to be revised each time the computer manufacturer updatedits version
of MS-DOS.

By the time work began on version 2.0, the MS-DOS team knew thatthe ability to install
any device driver at run time wasvital. They implemented installable device drivers by
making the drivers more modular. Like the EAT, IO.SYS (IBMBIO.COMin PC-DOS)
became, in effect, a linked list— this time, of device drivers — that could be expanded
through commands in the CONFIG.SYSfile on the system boot disk. Manufacturers could
now write a device driver that the user could install at run time by includingit in the
CONFIG.SYSfile. MS-DOS could then add the device driverto the linkedlist.

By extension, this ability to install device drivers also added the ability to supersede a pre-
viously installed driver — for example, the ANSLSYS console driver that supports the ANSI
standard escape codesfor cursor positioning and screen control.

Print Spooling

At IBM’s request, version 2.0 of MS-DOSalso possessed the undocumentedability to per-
form rudimentary background processing— an interim solution to a growing awareness of
the potentials of multitasking.

Backgroundprint spooling wassufficient to meet the needs of most people in mostsitua-
tions, so the print spooler, PRINT.COM,was designed to run whenever MS-DOShad.
nothing else to do. When the parent application became active, PRINT.COM would be in-
terrupted until the nextlull. This type of background processing, though both limited and
extremely complex, was exploited by a numberof applications, such as SideKick.

Loose Ends and a New MS-DOS

Hierarchicalfiles, installable device drivers, and print spooling were the major design
decisions in version 2.0. But there were dozens of smaller changes, too.

For example, with the fixed disk it was necessary to modify the code for automatic logging
of disks. This modification meant that MS-DOShad to access the disk more often, andfile

access became muchsloweras a result. In trying to find a solution to this problem, Chris
Peters reasonedthat, if MS-DOShad just checked the disk, there was some minimum time

Section I: The Development ofMS-DOS 33

OLYMPUSEX. 1010 - 51/1582

OLYMPUS EX. 1010 - 52/1582

1982-1983

Two members ofthe
IBM line ofpersonal
computersfor which
versions fT and 2 of
MS-DOS were devel-

oped, Or theleft, the
original LBM PC (ver-
sion 7.0 ofMS-DOS),
on the right, the IBM
PO/XT(version 2.0).

‘auser would need to physically change disks. If that minimum time had not elapsed, the
current disk information in RAM— whetherfora fixed disk or a floppy — was probably
still good.

Peters found that the fastest anyone could physically change disks, even if the disks were
damaged in the process, was about two seconds. Reasoning from this observation, he had
MS-DOScheck to see how much time had gone by since the last disk access. If less than
two seconds had elapsed, he had MS-DOS assume that a new disk had not been inserted
and that the disk information in RAM wasstill valid. With this little trick, the speed offile
handling in MS-DOS version 2.0 increased considerably.

Version 2.0 was released in March 1983, the productofa surprisingly smal! team ofsix de-
velopers, including Peters, Mani Ulloa, and Nancy Panners in addition to Allen, Zbikowski,
and Reynolds, Despite its complex new features, version 2.0 was only 24 KB of code,
Though it maintained its compatibility with versions1.x, it was in reality a vastly different
operating system. Within six monthsofits release, version 2.0 gained widespread public
acceptance.In addition, popular application programs such as Lotus 1-2-3 took advantage
of the features of this new version of MS-DOS and thus helped secureits future as the
industry standard for 8036 processors.

Versions 2.1 and 2.25

34

a

The world into which version 2.0 of MS-DOS emerged was considerably different from the
one in which version 1.0 made its debut. When IBM released its original PC, the business
market for microcomputers was as yet undefined — if not in scope,at least in terms of who
and what would dominate the field, A year and a half later, when the PC/XT came on the
scene, the market was much better known.It had, in fact, been heavily influenced by IBM
itself. There were still many MS-DOS machines, such as the Tandy 2000 and the Hewlett
Packard HP150, that were hardware incompatible with the IBM, but manufacturers of new
computers knew that IBM wasa force to consider and many chose to compete with the
IBM PC by emulating it. Software developers, too, had gained an understanding of busi-
ness computing and were confident they could position their software accurately in the
enormous MS-DOS market.

The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 52/1582

���������	�
�
������
��OLYMPUS EX. 1010 - 53/1582

 1983

in such an environment, concerns aboutthe existing base of CP/M software faded as
developers focused their attention on the fast-growing business market and MS-DOS
quickly securedits position as an industry standard. Now, with the obstacles to MS-DOS
diminished, Microsoftfounditself with a new concern: maintaining the standard it had
created. Henceforth, MS-DOS had to be many things to many people. IBM had require-
ments; other OEMs had requirements. And sometimes these requirements conflicted,

Hardware Developers

When version 2.0 was released, IBM was already planning to introduceits PCjr. The PCjr
would have the ability to run programs from ROM cartridges and, in addition to using half-
height 5¥s-inch drives, would employa slightly different disk-controller architecture. Be-
cause of these differences from the standard PC line, IBM's immediate concern was for a
version 2.1 of MS-DOS modified for the new machine.

For the longer term, IBM was also planning a faster, more powerful PC with a 20-megabyte
fixed disk. This prospect meant Microsoft needed to look again atits file-managementsys-
tem, because the larger storage capacity of the 20-megabyte disk stretched the size limita-’
tionsfor the file allocation table as it worked in version 2.0.

However, IBM’s primary interest for the next major release of MS-DOS was networking.
Microsoft would have preferred to pursue multitasking as the next stage in the develop-
ment of MS-DOS, but IBM was already developing its IBM PC Network Adapter, a plug-in
card with an 80188 chip to handle communications. So as soon as version 2.0 was released,
the MS-DOS team, again headed by Zbikowski and Reynolds, began work on a networking
version (3.0) of the operating system.

Meanwhile...

The international market for MS-DOS was not significantin the first few years after the
release of the IBM PC and version 1.0 of MS-DOS. IBM did not, atfirst, ship its Personal
Computer to Europe, so Microsoft was on its own there in promoting MS-DOS.In 1982, the
companygained a significant advantage over CP/M-86 in Europe by concluding an agree-
mentwith Victor, a software company that was very successful in Europe and had already
licensed CP/M-86. Working closely with Victor, Microsoft provided special development
support for its graphics adaptors and eventually convinced the companyto offer its pro-
ducts only on MS-DOS.InJapan, the most popular computers were Z80 machines, and
given the country’s huge installed base of 8-bit machines, 16-bit computers were not taking
hold. Mitsubishi, however, offered a 16-bit computer. Although CP/M-86 was Mitsubishi's
original choice for an operating system, Microsoft helped get Multiplan and FORTRAN
running on the CP/M-86 system, and eventually won the manufacturer's support for
MS-DOS.

Section E The Development afMS-DOS 35

OLYMPUSEX. 1010 - 53/1582

OLYMPUS EX. 1010 - 54/1582

i
lLI
!
I
j
i
J

I
{I
i
J
IF
I

1983

a6

A sample ofthe reviews that appeared
with each new version ofMS-DOS.

© Hand: On: Operading Stems

MS-DOS2.00: A

Hands-On Tutorial

 yhee
 ti7 chow bev tani ofProms eraacreral, pacathy rmaAny rpms nndar Ea Fget,
 4

ove batedy Ler un a change, MYDDreel he ete Br fe id PG Fe PAG arte |e

the parkgt ccwibines berth,»ieborg re, Hl
ut
 i

senpy rma ihompiobad

Tha trad “matron che aor baad hanaadhe ooking dar ara ond incmraig pomtoaneona27 wapatehyrd rmite AG, Fn Be a Bepen ter tha ge
The Hern Filey(DOH, 2.2) wolica nctrt fvcrured lg tyme tn hd
WRererae ay, Phy Wee OAR PelcoaA Tetetwal beh totirin Lhe

In the software arena, by the time development was underway onthe 2.x releases of
MS-DOS, Microsoft's other customers were becoming more vocal about their own needs.
Several wanted a networking capability, adding weight to IBM’s request, but a more urgent
need for many—a need mot shared by IBM at the time — was supportfor international
products. Specifically, these manufacturers needed a version of MS-DOSthat could be sold
in other countries -—a version of MS-DOSthat could display messages in other languages
and adapt to country-specific conventions, such as date and time formats.

Microsoft, too, wanted to internationalize MS-DOS, so the MS-DOS team, while modifying
the operating system to support the PCjr, also added functions and a COUNTRY command
that allowed users to set the date and time formats and other country-dependentvariables
in the CONFIG.SYS file.

The MSO Fecucionedia

OLYMPUSEX. 1010 - 54/1582

���������	�
�
�����
��OLYMPUS EX. 1010 - 55/1582

1983

A Karyi screen with
NEC PC-9800 Sories Personal Computer the MS-DOS copyrightTHESSALE.
DFOv9b MB=-DOS wae ay 3,10 8Copyright 1981, 1985 Micraseft Core, ¢ NEC Corporation

PRECT
MBH. Beeb FSA FO wecpic ose Tt

i
i
|

i
i

COMMAND. Wf <i ay 3, 19

| ASDIR JW
Fear a: OF AP OEY SE SALE KARAT_RYYFake bE Aswan

. - ASSIGN COM ATIBIG. Exe=BACKUP EXEcHKDSK «EXE«=COPY?«=cM CORTA«=CMD SKCOPY Go|MOLISE=5¥8Fc EKE=FINO Eke FORMAT Exe KET Cis=LABEL ERE
COM SPEED = COM SWITCH«=CM STS EME SORT CoM0 oe pt veh ES,

aso4go ¢t- bAMRRARIKECT

aed Pay? hee

rt Etc] SEMs-DoOs <

At about the sametime, another international requirement appeared. The Japanese market
for MS-DOS was growing, and the question of supporting 7000 Kanji characters Gdeo-
grams) arose. The difficulty with Kanji is that it requires dual-byte characters. For English
and most European character sets, one byte corresponds to one character. Japanese char-
acters, however, sometimes use one byte, sometimes two. This variability creates prob-
lemsin parsing, and as a result MS-DOShad to be modified to parse a string from the
beginning, rather than back up one characterat a time.

This supportfor individual country formats and Kanji appeared in version 2.01 of M$-DOS§.
IBM did not want this version, 50 support for the PCjr, developed by Zbikowski, Reynolds,
Ulloa, and Eric Evans, appeared separately in version 2.1, which went only to IBM and did
not include the modifications for international MS-DOS.

Different customers, different versions

As early as version 1.25, Microsoft faced the problem oftrying to satisfy those OEM cus-
tomers that wanted to have the same version of MS-DOSas IBM. Some, such as COMPAQ,
werein the business ofselling 100-percent compatibility with IBM. For them, anydiffer-
ence betweentheir version of the operating system and [BM’s introducedthe possibility of
incompatibility. Satisfying these requests was difficult, however, and it was not until ver-
sion 3.1 that Microsoft was able to supply a system that other OEMs agreed wasidentical
with IBM’s.

Before then,to satisfy the OEM customers, Microsoft combined versions 2.1 and 2.01 to
create version 2.11. Although IBM did not accept this because of the internationalization
code, version 2.1] becamethe standard version for all non-IBM customers running any
form of MS-DOSin the 2.x series. Version 2.11 was sold worldwide and translated into
about10 different languages. Two other intermediate versions provided support for
Hangeul (the Korean character set) and Chinese Kanji.

Section £ The Development ofMS-DOS 37

OLYMPUSEX. 1010 - 55/1582

OLYMPUS EX. 1010 - 56/1582

1983

Software Concerns

38

Afterthe release of version 2.0, Microsoft also gained an appreciation of the importance —
and difficulty —of supporting the people who were developing software for MS-DOS.

Software developers worried about downward compatibility. They also worried about
upward compatibility. But despite these concerns, they sometimes used programming
practices that could guarantee neither. When this happened and the resulting programs
were successful, it was up to Microsoft to ensure compatibility.

For exampie, because the information about the internals of the BIOS and the ROM inter-
face had been published, software developers could, and often did, work directly with the
hardware in order to get more speed. This meant sidestepping the operating system for
some operations. However, by choosing to work atthe lowerlevels, these developerslost
the protection provided by the operating system against hardware changes, Thus, when
low-level changes were madein the hardware,their programseither did not work or did
not run cooperatively with other applications.

Another software problem was the continuing need for compatibility with CP/M. For
example, in CP/M, programmers would call a fixed address in low memoryin orderto re-
quest a function; in MS-DOS, they would request operating-system services by executing a
software interrupt. To support older software, the first version of MS-DOS allowed a pro-
gram to request functions by either method, One of the CP/M-based programs supported
in this fashion was the verypopular WordStar. Since Microsoft could not make changes in
MS-DOSthat would makeit impossible to run such a widely used program, each new ver-
sion of MS-DOS had to continue supporting CP/M-stylecalls.

A more pervasive CP/M-related issue was the use of FCB-style calls for file and record
management. Theversion Lx releases of MS-DOS had used FCB-style calls exclusively, as
had CP/M. Version 2.0 introduced the more efficient and flexible handle calls, but Microsoft
could not simply abolish the old FCB-style calls, because so many popular programs used
them. In fact, some of Microsoft's own languages used them. So, MS-DOShad to support
both types of calls in the version 2.x series. To encourage the use of the new handle calls,
however, Microsoft madeiteasy for MS-DOS users to upgradeto version 2.0. In addition,
the company convinced IBM to require version 2.0 for the PC/XT andalso encouraged
software developersto require 2.0 for their applications.

Atfirst, both software developers and OEM customers were reluctant to require 2.0
because they were concerned about probiems with the installed user base of 1.0
systems — requiring version 2.0 meant supporting both sets of calls. Applications also
needed to be able to detect which version of the operating system the user was running.
For versions 1.x, the programs would have to use FCB calls; for versions 2.x, they would
use the file handles to exploit the flexibility of MS-DOS morefully.

All told, it was an awkward period of transition, but by the time Microsoft began work on
version 3.0 and the support for IBM's upcoming 20-megabyte fixed disk, it had become
apparent that the change had been in everyone’s bestinterest.

The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 56/1582

OLYMPUS EX. 1010 - 57/1582

1983-1984

Version 3

The typesof issues that began to emerge as Microsoft worked toward version 3.0, MS-DOS
for networks, exaggerated the problems of compatibility that had been encountered
before.

First, networking, with or without a multitasking capability, requires a level of cooperation
and compatibility among programsthat had never been anissue in earlier versions of
MS-DOS. As described by Mark Zbikowski, one ofthe principals involved in the project,
“there was a very long period of time between 2.1 and 3.0 — almost a year and a haif. Dur-
ing that time, we believed we understoodall the problems involved in making DOS a net-
working product. [But] as time progressed, we realized that we didn’t fully understandit,
either from a compatibility standpcintor from an operating-system standpoint. We knew
very well how it [DOS] ran in a single-tasking environment, but we started going to this
new environment and found places where it came up short.”

In fact, the great variability in programs and programming approaches that MS-DOS
supported eventually proved to be one ofthe biggest obstacles to the development ofa
sophisticated networking system anc in the longer term, to the addition of true
multitasking.

Further, by the time Microsoft began work on version 3.0, the programming style of the
MS-DOSteam had changed considerably. The team was still small, with a core group of
just five people: Zbikowski, Reynolds, Peters, Evans, and Mark Bebic. But the concernsfor
maintainability that had dominated programmingin larger systems had percolated down
to the MS-DOS environment. Now,the desire to use tricks to optimize for speed had to be
tempered by the needfor clarity and maintainability, and the small package oftightly
written code that was the early MS-DOShad to besacrificed for the same reasons.

Version 3.0

Ali told, the work on version 3.0 of MS-DOSproved to be long and difficult. For a year and
a half, Microsoft grappled with problemsof software incompatibility, remote file manage-
ment, and logical device independenceat the network level. Even so, when IBM was ready
to announce its new Persona] Computer AT, the network software for MS-DOS was not
quite ready, so in August 1984, Microsoft released version 3,0 to IBM without network
software,

Version 3.0 supported the AT’s largerfixed disk, its new CMOS clock, andits high-capacity
1.2-megabyte floppy disks. It also provided the same international support included earlier
in versions 2.01 and 2.11. These features were made available to Microsoft's other OEM

customers 2s version 3.05.

Section £: The Development ofMS-DOS 39

OLYMPUSEX. 1010 - 57/1582

OLYMPUS EX. 1010 - 58/1582

1983-1984

WF GR

I

mise _DISK.RESETJ——]NORE" FAIL (K Aivaae? RENARAE, a
intsfset Sleante ——eralc|Reset Bawih ISEARGH [On

e fo
ee eooae 7)Rom (Etece) rach -PeLere®

te Nex EVRY TEboR) (NEXTEWR]

[Zt
4 LH

: ta

(ALBCATE 4Row [Release_]bayfrp~—3° RELBLEG oTpas (Pace|}marcus!@ ———|| evr
BuFURI

_ 5 FimftRows (Nexstar p+[ae
POLY

oe

é

FAT
BATA

{PISKWRITE|Row b—arecir|PINS READ LI... or CatOPTIMIZE Fy WRITE CARED DURITE
Aaron Reynolds's diagram ofversion 3.0's network support, sketched out to enable him to add thefatl option
to Interrupt 24 andfind ailplaces where existingparts ofMS-DOS were affected, Even after networking had
become a reality, Reynolds kept this diagrampinned to his office wall simply because “il was so much work
foput together.”

4n The MS-DOS Encurinnedin

OLYMPUSEX. 1010 - 58/1582

���������	�
�
������
��OLYMPUS EX. 1010 - 59/1582

1983-1984

——————

reas MK DIS —
Cin-GO Dos—CLosE

COED

PATH

[Teanspavi] °f= moore
pr ,aR

-! RetoT Ret
mise

Diu/Fo

Getser

Section I: The Development ofMS-DOS 41

OLYMPUSEX. 1010 - 59/1582

OLYMPUS EX. 1010 - 60/1582

1983-1984

42

The intel 80286 micra-

processor, the chip at
- the heart ofthe iBM

POAT, which is show
beside it. Version 3.0 of
MS-DOS, developedfor
this machine, offered
Supportfor networks
and the PCAT'S 1.2-

' megabytefloppy disk
drive and built-in
CMOS clock.

at

But version 3.0 was nota simple extension of version 2.0. In laying the foundation for net-
working, the MS-DOS team had completely redesigned and rewritten the DOS kernel.

Different as it was from version 1.0, version 2.0 had been built on top ofthe same structure.
For example, whereasfile requests in MS-DOS 1.0 used FCBs, requests in version 2.0 used
file handles. However, the version 2.0 handle calls would simply parse the pathname and
then use the underlying FCB calls in the same way as version 1.0. The redirected input and
output in version 2.0 further complicated the file-system requests. When a program used
one of the CP/M-compatiblecalls for character input cr output, MS-DOS2.0 first opened a
handle and then turnedit back into an FCB call at a lowerlevel, Version 3.0 eliminated this

redundancyby eliminating the old FCB input/output code of versions 1 and 2, replacing it
with a standardsetof I/O calls that could becalled directly by both FCB calls and handle
calls. The look-alike calls for CP/M-compatible character I/O were included as part of the
set of handle calls. As a result of this restructuring, these calls were distinctly faster in
version 3.0 than in version 2.0.

More important than the elimination of inefficiencies, however, was the fact that this new
structure madeit easier to handle network requests under the ISO Open System Intercon-
nect model Microsoft was using for networking. The ISO model describes a number of
protocol layers, ranging from the application-to-application interface at the top level down
to the physicallink —- plugging into the network — at the lowest level. In the middle is the
transport layer, which manages the actual transfer of data. The layers above the transport
layer belong to the realm of the operating system; the layers below the transport layer are
traditionally the domain of the network software or hardware.

On the IBM PC network,the transport layer and the server functions were handled by
IBM’s Network Adapter card and the task of MS-DOS was to support this hardware. Forits
other OEM customers, however, Microsoft needed to supply both the transport and the
server functions as software. Although version 3.0 did not provide this genera)-purpose
networking software,it did provide the basic support for IBM’s networking hardware.

The support for IBM consisted of redirector and sharer software. MS-DOS used an ap-
proach to networking in which remote requests were routed by a redirector that was able

The A{S-DOS Encyclopedia

OLYMPUSEX. 1010 - 60/1582

���������	�
�
�����
�
��OLYMPUS EX. 1010 - 61/1582

1984

to interact with the transport layer of the network. The transport layer was composed of
the device drivers that could reliably transfer data from one part of the network to another.
Just before a call was sent to the newly designed low-levelfile [/O cade, the operating sys-
tem determined whether the cail was local or remote. A tocal call would be allowed to fall

through to the lecal file 1/O code; a remote call would be passedto the redirector which,
working with the operating system, would make the resources on a remote machine
appearas if they were locai.

Version 3.1

Both the redirector and the sharer interfaces for IBM’s Network Adapter card were in place
in version 3.0 whenitwas delivered to IBM, but the redirectoritself wasn't ready. Version
3.1, completed by Zbikowski and Reynolds and released three monthslater, completed this
network support and made it available in the form of Microsoft Networksfor use on non-
IBM network cards.

Microsoft Networks was built on the conceptof “services” and “consumers.” Services
were provided byafile server, which was part of the Networks application and ran ona
computer dedicated to the task. Consumers were programs on various network machines.
Requestsfor information were passedat a high level to thefile server; it was then the
responsibility of the file server to determine whereto find the information on the disk.
The requesting programs—the consumers — did not need any knowledge of the remote
machine, not even whattype offile system it had.

This ability to pass a high-level requestto a remote server without having to know the
details of the server's file structure allowed anotherlevel of generalization of the system.
In MS-DOS3.1, different typesoffile systems could be accessed on the same network.It
was possible, for example, to access a KENEX machine across the network from an
MS-DOS machine and to read data from XENEX files.

¢ Microsoft Networks was designed to be hardware independent.Yetthe variability of the

classes of programsthat would be using its structures was a major problem in developing
a networking system that would be transparent to the user. In evaluating this variability,
Microsoft identified three types of programs:

@=First were the MS-DOS-compatible programs. These used only the documented
software-interrupt method of requesting services from the operating system and
would run on any MS-DOS machine without problems.

@ Second were the MS-DOS-based programs. These would run on IBM-compatible
computers but not necessarily on all MS-DOS machines.

@ Third were the programsthat used undocumented features of MS-DOSorthat
addressed the hardware directly. These programs tended to have the best perfor-
mance but were also the most difficult to support.

Of these, Microsoft officially encouraged the writing of MS-DOS-compatible programsfor
use on the network.

Section I: The Development ofM$-DOS 43

OLYMPUSEX.1010-61/1582

OLYMPUS EX. 1010 - 62/1582

1986

Network concerns

Thefile-access module was changedin version 3.0 to simplify file management on the
network, but this did not solve all the problems. For instance, MS-DOSstill needed to han-
die FCB requests from programs that used them, but many programs would open an FCB
and never close it. One of the functions of the server was to keep track of all openfiles
on the network, andit ran into difficulties when an FCB was opened 50 Gr 100 times and *
never closed. To solve this problem, Microsoft introduced an FCB cachein version 3.1 that
allowed only four FCBs to be open at any one time.Ifa fifth FCB was opened, theleast re-
cently used one was closed automatically and released. In addition, an FCBS command
was added in the CONFIG.5Y5file to allow the user or network manager to change the
maximum number of FCBs that could be open at any one time and to protect some ofthe
FCBs from automatic closure.

In general, the logical device independencethat had been a goal of MS-DOS acquired new
meaning —and generated new problems— with networking. One problem concerned
printers on the network. Gammonly, networks are used to allow several people to share a
printer. The network could easily accommodate a program that would opentheprinter,
write to it, and close it again. Some programs, however, would try to use the direct IBM
BIOSinterface to access the printer. To handle this situation, Microsoft’s designers had to
develop a way for MS-DOSto intercept these BIOS requests and filter out the ones the
server could not handle. Once this was accomplished, version 3.1 was able to handle most
types of printer output on the network in a transparent manner.

Version 3.2

In January 1986, Microsoft released anotherrevision of MS-DOS,version 3.2, which
supported 32-inch floppy disks. Version 3.2 also moved the formatting function for a
device out of the FORMATutility routine and into the device driver, eliminating the need
for a special hardware-dependent program in addition to the device driver, It included a
sampleinstallable-block-device driver and,finally, benefited the users and manufacturers
of IBM-compatible computers by including major rewrites of the MS-DOSutilities to
increase compatibility with those of IBM.

44 The MS-DOS Encvclobedia

OLYMPUSEX. 1010 - 62/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 63/1582

1987

The Future

Since its appearance in 1981, MS-DOShas taken and held an enviable position in the
microcomputer environment. Notonly hasit “taught” millions of personal computers
“how to think,”it has taught equal millions of people how to use computers. Many highly
sophisticated computer users can trace their first encounter with these machinesto the
original IBM PC andversion 1.0 of MS-DOS. The MS-DOS commandinterface is the one
with which they are comfortable andit is the MS-DOSfile structure that, in one way or
another, they wanderthrough with familiarity.

Microsoft has stated its commitment to ensuring that, for the foreseeable future, MS-DOS
will continue to evolve and grow, changingas it has done in the pastto satisfy the needs of
its millions of users. In the long term, MS-DOS,the productof a surprisingly small group of
gifted people, will undoubtedly remain the industry standard for as long as 8086-based
(and to some extent, 80286-based) microcomputers exist in the business world. The story

i of MS-DOSwill, of course, remain even longer. For this operating system has earnedits
place in microcomputing history.

JoAnne Woodcock

Section I: The Development ofMS-DOS 45

OLYMPUSEX. 1010 - 63/1582

OLYMPUS EX. 1010 - 64/1582

OLYMPUS EX. 1010 - 64/1582

OLYMPUS EX. 1010 - 65/1582

PartA

Structure of MS-DOS
!
|ii
i

OLYMPUSEX. 1010 - 65/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 66/1582

Article 1: An Introduction to MS-DOS

Article 1

An Introduction toMS-DOS

An operating system is a set of interrelated supervisory programs that manage and control
computer processing. In general, an operating system provides

® Storage management

@ Processing management
® Security
@ Humaninterface

Existing operating systems for microcomputersfall into three major categories: ROM
monitors, traditional operating systems, and operating environments. The general charac-
teristics of che three categories are listed in Table 1-1.

Table 1-1. Characteristics of the Three Major Types ofOperating Systems.

Traditional

ROM Operating Operating
Monitor System Environment

Complexity Low Medium High
Built on Hardware BIOS Operating system
Delivered on ROM Disk Disk

Programs on ROM Disk Disk
Peripheral support Physical Logical Logical
Disk access Sector File system File system
Example PC ROM BICS MS-DOS Microsoft Windows

A ROM monitoris the simplest type of operating system.It is designed for a particular
hardware configuration and provides a program with basic — and often direct access to
peripherals attached to the computer. Programs coupled with a ROM monitor are often
used for dedicated applications such as controlling a microwave oven or controlling the
engine ofa car.

A traditional microcomputer operating system is built on top of a ROM monitor, or BIOS
(basic input/output system), and provides additional features such as a file system and log-
ical access to peripherals. (Logical access to peripherals ajlows applications to runina
hardware-independent manner,} A traditional operating system also stores programsin
files on peripheral storage devices and, on request, loads them into memoryfor execution.
MS-DOSis a traditional operating system.

An operating environmentis built on top ofa traditional operating system. The operating
environment provides additional services, such as common menu and forms support, that

Section Il: Programming in the MS-DOS Environment 31

OLYMPUSEX.1010-66/1582

OLYMPUS EX. 1010 - 67/1582

Part A: Structure of MS-DOS

simplify program operation and makethe user interface more consistent. Microsoft
Windowsis an operating environment.

MS-DOSSystem Components
The Microsoft Disk Operating System, MS-DOS,is a traditional microcomputer operating
system that consists of five major components:

@ The operating-system loader
The MS-DOS BIOS

The MS-DOS kernel

The user interface (shell)

Support programs

Each of these is introduced briefly in the following pages. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT:STRUCTURE OF Ms-Dos: The Components of MS-DOS.

The operating-system loader

The operating-system loader brings the operating system from the startup disk into RAM.

The complete loading process, called bootstrapping, is often complex, and multiple
loaders may be involved. (The term bootstrapping came about because each level pulls up
the next part of the system, like pulling up on a pair of bootstraps.) For example, in most
standard MS-DOS-based microcomputer implementations, the ROM loader, whichis the
first program the microcomputer executes whenit is turned on or restarted, reads the disk
bootstrap loader from the first (boot) sector of the startup disk and executes it. The disk
bootstrap loader, in turn, reads the main portions of MS-DOS — MSDOS.SYSand [O.SYS
(IBMDOS.COM and IBMBIO.COM with PC-DOS) — from conventionaldisk files into mem-

t ory. The special module SYSINIT within MSDOS.SYS then initializes MS-DOS's tables and
buffers and discardsitself. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:Srauc-
TURE OF MS-DOS: MS-DOSStorage Devices.

(The term loaderis also used to refer to the portion of the operating system that brings
application programs into memory for execution. This loader is different from the ROM
loader and the operating-system loader.)

The MS-DOS BIOS

The MS-DOS BIOS,loaded from thefile IO.SYS during system initialization,is the layer of
the operating system thatsits between the operating-system kernel and the hardware. An
application performs input and output by making requeststo the operating-system kernel,
which,in turn, calls the MS-DOS BIOS routines that access the hardware directly. See
SYSTEM CALLS.This division of function allows application programsto be written ina
hardware-independent manner.

The MS-DOS BIOSconsists of someinitialization code and a collection of device drivers.

(A device driver is a specialized program that provides support for a specific device such as

OLYMPUSEX. 1010 - 67/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 68/1582

Article 1: An Introduction to MS-DOS

a displayorserial port.) The device drivers are responsible for hardware access andfor the
interrupt support that allows the associated devicesto signal the microprocessorthat they
needservice.

The device drivers containedin the file IO.SYS, which are always loaded during system
initialization, are sometimesreferred to as the resident drivers. With MS-DOSversions 2.0

andlater, additional device drivers, called installable drivers, can optionally be loaded dur-
ing system initialization as a result of DEVICE directives in the system’s configurationfile.
See PROGRAMMINGIN THE MS-DOS ENVIRONMENT: Customizinc Ms-pos:Installable

Device Drivers; USER COMMANDS:ConFIG.sSYS:DEVICE.

The MS-DOSkernel

Theservices provided to application programs by the MS-DOSkernel include

@=Processcontrol

@ Memory management
@ Peripheral support
@ A file system

The MS-DOSkernelis loaded from the file MSDOS.SYS during system initialization.

Process control

Process,or task, control includes program loading, task execution, task termination, task
scheduling, and intertask communication.

Although MS-DOSis not a multitasking operating system,it can have multiple programs
residing in memoryat the same time. One program can invoke another, which then
becomesthe active (foreground) task. When the invoked task terminates, the invoking

| program again becomesthe foreground task. Because these tasks never execute simulta-
neously, this stack-like operationis still considered to be a single-tasking operating

i system.

MS-DOSdoeshave a few “hooks”that allow certain programs to do some multitasking
on their own. For example, terminate-and-stay-resident (TSR) programs such as PRINT
use these hooks to perform limited concurrent processing by taking control of system
resources while MS-DOSis “idle,” and the Microsoft Windows operating environment
adds support for nonpreemptive task switching.

Thetraditional intertask communication methods include semaphores, queues, shared
memory, and pipes. Of these, MS-DOS formally supports only pipes. (A pipeis a logical,
unidirectional, sequential stream of data that is written by one program and read by
another.) The data in a pipe resides in memory or in a disk file, depending on the imple-
mentation; MS-DOSusesdisk files for intermediate storage of data in pipes becauseit
is a single-tasking operating system.

Memory management

Because the amount of memory a program needsvaries from program to program, the
traditional operating system ordinarily provides memory-management functions. Memory

Section II: Programming in the MS-DOS Environment 53 RA EAN

OLYMPUSEX.1010-68/1582

OLYMPUS EX. 1010 - 69/1582

Part A: Structure of MS-DOS

requirements can also vary during program execution, and memory managementis
especially necessary when two or more programs are present in memory at the same time.

MS-DOS memory managementis based on a poolofvariable-size memory blocks, The
two basic memory-management actions are to allocate a block from the pool and to return
an allocated block to the pool. MS-DOSallocates program space from the pool when the
program is loaded; programs themseives can allocate additional memory from the pool.
Many programsperform their own memory managementby using a local memory pool, or
heap — an additional memory block allocated from the operating system that the applica-
tion program itself divides into blocksfor use by its various routines. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: ProGRAMMING FOR MS-DOs: Memory Management.

Peripheral support

The operating system provides peripheral support to programs throughaset of operating-
system calls that are translated by the operating system into calls to the appropriate device
driver.

Peripheral support can be a directlogical-to-physical-device translation or the operating
system can interject additional featuresor translations. Keyboards, displays, and printers
usually require only logical-to-physical-device translations; that is, the data is transferred
between the application program and the physical device with minimalalterations,if any,
by the operating system. The data provided by clock devices, on the other hand, must be
transformed to operating-system-dependent time and date formats. Disk devices — and
block devices in general — have the greatest numberof features added by the operating
system. See The File System below.

As stated earlier, an application need not be concerned with the details of peripheral
devices or with any special features the devices might have. Because the operating system
takes care ofall the logical-to-physical-device translations, the application program need
only make requests of the operating system.

Thefile system

The file system is one of the largest portions of an operating system.A file system is built
on the storage medium of a block device (usually a floppy disk or a fixed disk) by mapping
a directory structure and Files onto the physical unit of storage. A file system on a disk
contains, at a minimum,allocation information, a directory, and space forfiles. See
PROGRAMMING IN THE MS-DOS ENVIRONMENT:Structure OF Ms-bos: MS-DOS

Storage Devices.

Thefile allocation information can take various forms, depending on the operating sys-
tem, butall forms basically track the space used byfiles and the space available for new
data. The directory contains a list of the files stored on the device, their sizes, and informa-
tion about where the data for each file is located.

Several different approachesto file allocation and directory entries exist. MS-DOS uses a
particular allocation methodcalled a file allocation table (FAT) and a hierarchical directory

OLYMPUSEX. 1010 - 69/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 70/1582

Article 1. An Introduction to MS-DOS

structure. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:STRUCTURE OF MS-DOS:

MS-DOSStorage Devices; PROGRAMMING FOR MS5-nos: Disk Directories and Volume Labels.

Thefile granularity available through the operating system also varies depending on the
implementation. Some systems, such as MS-DOS,have files that are accessible to the byte
level; others are restricted to a fixed record size,

File systems are sometimes extended to map character devices as if they were files. These
device “files” can be opened, closed, read from, and written to like normal disk files, but
all transactions occur directly with the specified character device. Device files provide a
useful consistency to the environmentfor application programs, MS-DOS supports such
files by assigning a reserved logical name (such as CON or PRN} to each character device,

The user interface

The user interface for an operating system, also called a shell or commandprocessor, is
generally a conventional program that allows the user to interact with the operating sys-
tem itself. The default MS-DOS user interface is a replaceable shel! program called
COMMAND.COM.

One of the fundamental tasks of a shell is to load a program into memory on request and
pass control of the system to the program so that the program can execute. When the pro-
gram terminates, control returnsto the shell, which prompts the user for another com-
mand. In addition, the shell usually includes functionsforfile and directory maintenance
and display. In theory, most of these functions could be provided as programs, but making
them resident in the shell allows them to be accessed more quickly. The tradeoff is mem-
ory space versus speed andflexibility. Early microcomputer-based operating systems pro-
vided a minimal numberof resident shel! commands because of limited memory space;
modern operating systems such as MS-DOSinclude a wide variety of these functions as
internal commands.

Support programs

The MS-DOSsoftware includes support programs that provide access to operating-system
facilities not supplied as resident shell commandsbuilt into COMMAND.COM.Because
these programsare stored as executable files on disk, they are essentially the same as ap-
plication programs and MS-DOSloads and executes them as it would any other program.

The support programs provided with MS-DOS,often referred to as external cormmands,
includedisk utilities such as FORMAT and CHKDSK and more general support programs
such as EDLIN (a line-oriented text editor) and PRINT (a TSRutility that allowsfiles to be
printed while another program is running). See USER COMMANDS.

MS-DOSreleases

MS-DOS and PC-DOShave been released in a numberofforms, starting in 198]. See THE
DEVELOPMENTOF MS-DOS. The major MS-DOS and PC-DOS implementations are sum-
marized in the following table.

Section Hl. Programming in the MS-DOS Environment 55

OLYMPUSEX.1010-70/1582

OLYMPUS EX. 1010 - 71/1582

Part A: Structure ofMS-DOS

 Version Date Special Characteristics

PC-DOS 1.0 1981 First operating system for the IBM PC
Record-oriented files

PC-DOS 1.1 1982 ° Double-sided-disk support
MS-DOS 1.25 1982 First OEM release of MS-DOS

MS-DOS/PC-DOS2.0 1983 Operating system for the IBM PC/XT
UNIX/XENIX-like file system
Installable device drivers

Byte-orientedfiles
Support for fixed disks

PC-DOS 2.1 Operating system for the IBM PCjr
MS-DOS 2.11 Internationalization support

2.0x bug fixes
MS-DOS/PC-DOS 3.0 1984 Operating system for the IBM PC/AT

Support for 1.2 MB floppy disks
Supportforlarge fixed disks
Supportforfile and record locking
Application control of print spooler

MS-DOS/PC-DOS3.1 1984 Support for MS Networks
MS-DOS/PC-DOS 3.2 1986 3,5-inch Floppy-disk support

Disk track formatting support added to
device drivers

MS-DOS/PC-DOS 3.3 1987 Supportfor the IBM P§/2
Enhanced internationalization support
Improved file-system performance
Partitioning support for disks with capacity
above 32 MB

PC-DOSversion 1.0 was the first commercial version of MS-DOS.It was developed for the
original IBM PC, which was typically shipped with 64 KB of memoryor less. MS-DOS and
PC-DOSversions 1.x were similar in many ways to CP/M, the popular operating system for
8-bit microcomputers based on theIntel 8080 (the predecessor of the 8086). These ver-
sions of MS-DOS used a single-level file system with no subdirectory support and did not
supportinstallable device drivers or networks. Programs accessedfiles using file control
blocks CFCBs) similar to those found in CP/M programs.File operations were record
oriented, again like CP/M,although record sizes could be varied in MS-DOS,

Although they retained compatibility with versions 1.x, M8-DOS and PC-DOSversions 2.x
represented a major change. In addition to providing supportfor fixed disks, the new ver-
sions switched to a hierarchical file system like that found in UNIX/XENEX andto file-
handle access instead of FCBs. (A file handle is a 16-bit numberused to reference an inter-

nal table that MS-DOSusesto keep track of currently open files; an application program
in has no access to this internal table.) The UNIX/XENTIX-style file functions allow files to be
I created as a byte stream instead ofas a collection of records. Applications can read or write

1 to 65535 bytes in a single operation,starting at any byte offset within thefile. Filenames

oe wel aan ea

OLYMPUSEX. 1010 - 71/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 72/1582

Article 1. An Introduction to M§-DOS

used for opening a file are passed as textstrings instead of being parsed into an FCB.
Installable device drivers were another major enhancement.

MS-DOSand PC-DOSversions3.x added a number of valuable features, including support
for the added capabilities of the IBM PC/AT,for larger-capacity disks, and forfilelocking
and record-locking functions. Network support was added by providing hooksfora redi-
rector (an additional operating-system module that has the ability to redirect local system
service requests to a remote system by meansofa local area network).

With all these changes, MS-DOS remains a traditional single-tasking operating system.It
provides a large number of system services in a transparent fashion so that, as long as they
use only the M$-DO$-supplied services and refrain from using hardware-specific opera-
tions, applications developed for one M$-DO$ machine can usually run on another.

Basic MS-DOS Requirements

Foremost among the requirements for MS-DOSis an Intel 8086-compatible micraproces-
sor. See Specific Hardware Requirements below.

The next requirementis the ROM bootstrap loader and enough RAMto contain the
MS-DOSBIOS, kernel, and shell and an application program, The RAM must start at ad-
dress 0000:0600H and, to be managed by MS-DOS, must be contiguous. The upper limit
for RAMis the limit placed upon the system by the 8086 family -—1 MB.

Thefinal requirement for MS-DOSis a set of devices supported by device drivers, includ-
ing at least one block device, one character device, and a clock device. The block deviceis
usually the boot disk device (the disk device from which MS-DOSis loaded); the character
device is usually a keyboard/display combinationfor interaction with the user; the clock
device, required for timne-of-day and date support,is a hardware counter driven in a sub-
multiple of one second.

Specific hardware requirements

MS-DOSusesseveral hardware components and has specific requirementsfor each, These
components include

@ An38086-family microprocessor
® Memory

® Peripheral devices
® AROMBIOS (PC-DOSonly)

The microprocessor

MS-DOS runs on any machine that uses a microprocessorthat executes the 8086/8088
instruction set, includingthe Intel 8086, 80C86, 8088, 80186, 80188, 80286, and 80386 and
the NEC V20, V30, and V40.

Section Li: Programming in the MS-DOS Environment a7

OLYMPUSEX.1010-72/1582

OLYMPUS EX. 1010 - 73/1582

Part A: Structure ofMS-DOS

The 80186 and 80188 are versionsof the 8086 and 8088,integrated in a single chip with
direct memory access, timer, and interrupt support functions. PC-DOS cannotusually run
on the 80186 or 80188 because these chips have internal interrupt and interface register
addresses that conflict with addresses used by the PC ROM BIOS. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: CustomizIne Ms-pos: Hardware Interrupt Handlers.
MS-DOS, however, does not have address requirements that conflict with those interrupt
and interface areas,

The 80286 has an extendedinstruction set and two operating modes:real and protected.
Real mode is compatible with the 8086/8088 and runs MS-DOS.Protected mode, used by
operating systems like UNEX/XENIX and M$ 03/2,is partially compatible with real mode
in termsofinstructions but provides access to 16 MB of memory versus only 1 MB in real
mode(the limit of the 8086/8088). .

The 80386 adds further instructions and a third modecalled virtual 86 mode. The 80386
instructions operate in either a 16-bit or a 32-bit environment. MS-DOS can run on the
80386 in real or virtual 86 mode, althoughthelatter requires additional] support in the form
of a virtual machine monitor such as Windows/386.

Memory requirements

Ata minimum, MS-DOSversions 1.x require 64 KB of contiguous RAM from the base of
memory to do useful work; versions 2.x and 3.x need at least 128 KB. The maximum is
1 MB,although most MS-DOS machines have a 640 KB limit for IBM PC compatibility.
MS-DOScan use additional noncontiguous RAM for a RAMdisk if the proper device driver
is included, (Other uses for noncontiguous RAM include buffers for video displays, fixed
disks, and network adapters.)

PC-DOS has the same minimum memory requirements but has an upperlimit of 640 KB
on the initial contiguous RAM, which is generaliy referred to as conventional memory.
This limit was imposed by the architecture of the original IBM PC, with the remaining
area above 640 KB reserved for video display buffers, fixed disk adapters, and the ROM
BIOS. Some of the reserved areas include
Base Address Size (bytes) Description

A0O0:0000H 10000H (64 KB EGA video buffer
BOod-0000H 1000H (4 KB} Monochrome video buffer

B800:00G0H 4000H (16 KB) Color/graphics video buffer
C8G0:0000H 400C0H (16 KB) Fixed-disk ROM
FOOO:0000H — 10000H (64 KB) PC ROM BIOS and ROM BASIC

The bottom 1024 bytes of system RAM (locations 00000-003FFH)are used by the micro-
processorfor an interrupt vector table — thatis, a list of addresses for interrupt handler
routines, MS-DOS uses someof the entries in this table, such as the vectors for interrupts
20H through 2FH,to store addresses of its own tables and routines and to provide linkage
to its services for application programs. The IBM PC ROM BIOSand IBM PC BASIC use
many additional vectors for the same purposes.

OLYMPUSEX. 1010 - 73/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 74/1582

Article 1: An introduction ta MS-DOS

Peripheral devices

MS-DOScan support a wide variety of devices, including floppy disks,fixed disks, CD
ROMs, RAMdisks, and digital tape drives. The required peripheral support for MS-DOSis
provided by the MS-DOS BIOSorby installable device drivers.

Five logical devices are provided in 2 basic MS-DOS system:

 Device Name Description

CON Console input and output
PRN Printer output
AUX Auxiliary input and output
CLOCKS Date and time support
Varies (A—E) One block device

These five logical devices can be implemented with a BIOS supporting a minimum of
three physical devices: a keyboard and display, a timer or clock/calendar chip that can
provide a hardware interruptat regularintervals, and a block storage device. In such a
minimum case, the printer and auxiliary device are simply aliases for the console device.
However, most MS-DOSsystems support several additional logical and physical devices.
See PROGRAMMINGIN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS:

Character Device Input and Output.

The MS-DOS kernel provides one additional device: the NUL device. NUL is a “bit
bucket" — thatis, anything written to NULis simply discarded. Reading from NUL always
returns an end-of-file marker. One commonuse for the NUL device is as the redirected

5 output device of a command or application that is being run in a batchfile; this redirection
i prevents screen clutter and disruption of the batchfile's menus and displays.aa

7: The ROM BIOS: |

MS-DOSrequires no ROM support (except that most bootstrap leaders reside in ROM)
and does not care whether device-driver support resides in ROM oris part of the MS-DOS
10.SY5file loadedat initialization. PC-DOS,on the other hand, uses a very specific ROM
BIOS. The PC ROM BIOS does not provide device drivers; rather, it provides support rou-
tines used by the device drivers found in IBMBEIO.COM (the PC-DOSversion of IO.SYS).
The support provided by a PC ROM BIOS includes

Power-on self test (POST)

Bootstrap loader
Keyboard
Displays (monochrome and color/graphics adapters)
Serial ports land 2
Parallel printer ports 1, 2, and 3
Clock
Print screen

Section LL Programming in the MS-DOS Environment 5D

OLYMPUSEX.1010-74/1582

OLYMPUS EX. 1010 - 75/1582

Part A: Structure of MS-DOS

The PC ROM BIOSloader routine searches the ROM space above the PC-DOS 640 KBlimit
for additional ROMs. The IBM fixed-disk adapter and enhanced graphics adapter (EGA)
contain such ROMs.(The fixed-disk ROM also includes an additional loader routine that

allows the system to start From the fixed disk.)

Summary

MS-DOSis a widely accepted traditional operating system. Its consistent and wel]-defined
interface makesit one of the easier operating systems to adapt and program.

MS-DOSis also a growing operating system— each version has added more features yet
made the system easier to use for both end-users and programmers. In addition, each ver-
sion has included more support for different devices, from 5.25-inch floppy disks to high-
density 3.5-inch floppy disks. As the hardware continues to evolve and user needs become
more sophisticated, MS-DOStoo will continue to evolve.

William Wong

OLYMPUSEX. 1010 - 75/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 76/1582

Article 2: The Components of MS-DOS

Article 2

The Components ofMS-DOS

MS-DOSis a modular operating system consisting of multiple components with special-
ized functions. When MS-DOSis copied into memory during the loading process, many of
its components are moved, adjusted, or discarded. However, whenit is running, MS-DOS
is a relatively static entity and its components are predictable and easy to study. Therefore,
this article deals first with MS-DOSin its running state and later with its loading behavior.

The Major Elements

MS-DOSconsists of three major modules:

Module MS-DOSFilename PC-DOSFilename

MS-DOS BIOS IO.SYS IBMBIO.COM
MS-DOSkernel MSDOS.SYS IBMDOS.COM

MS-DOSshell COMMAND.COM COMMAND.COM

During system initialization, these modules are loaded into memory, in the order given,
just abovethe interrupt vectortable located at the beginning of memory.All three modules
remain in memory until the computeris reset or turned off. (The loader and system initial-
ization modules are omitted from this list because they are discarded as soon as MS-DOS
is running. See Loading MS-DOSbelow.)

The MS-DOSBIOSis supplied by the original equipment manufacturer (OEM)that
distributes MS-DOS,usually for a particular computer. See PROGRAMMINGIN THE
MS-DOS ENVIRONMENT:Structure oF ms-Dos: An Introduction to MS-DOS.The kernel

is supplied by Microsoft and is the same acrossall OEMsfor a particular version of
MS-DOS — thatis, no modifications are made by the OEM.Theshell is a replaceable
module that can be supplied by the OEM or replaced bythe user; the default shell,
COMMAND.COM,is supplied by Microsoft.

The MS-DOSBIOS

Thefile 1O.SYS contains the MS-DOS BIOS andthe MS-DOSinitialization module,
SYSINIT. The MS-DOSBIOSis customized for a particular machine by an OEM. SYSINIT
is supplied by Microsoft andis put into 1O.SYS by the OEM whenthefile is created. See
Loading MS-DOSbelow.

Section I: Programming in the MS-DOS Environment 61

OLYMPUSEX. 1010 - 76/1582

OLYMPUS EX. 1010 - 77/1582

Part'A: Structure of MS-DOS

The MS-DOS BIOS consists ofa list of resident device drivers and an additional initializa-

tion module created by the OEM. The device drivers appear first in IO.SYS because they
remain residentafter IO.SYSis initialized; the MS-DOSBIOSinitialization routine and
SYSINITare usually discarded afterinitialization.

The minimum set of resident device drivers is CON, PRN, AUX, CLOCK$,and the driver
for one block device. The resident character-device drivers appearin the driver list before
the resident block-device drivers; installable character-device drivers are placed ahead of
the resident device drivers in the list; installable block-device drivers are placed after the
resident device drivers in the list. This sequenceallowsinstallable character-device drivers
to supersederesident drivers. The NUL device driver, which mustbethe first driver in the
chain, is contained in the MS-DOSkernel.

Device driver code can be split between IO.SYS and ROM. For example, most MS-DOSsys-
tems and al} PC-DOS-compatible systems have a ROM BIOSthat contains primitive device
support routines. These routines are generally used by resident and installable device
drivers to augment routines contained in RAM. (Placing the entire driver in RAM makes
the driver dependent on a particular hardware configuration; placing part of the driverin
ROM allows the MS-DOS BIOSto be paired with a particular ROM interface that remains
constant for many different hardware configurations.)

The IO.SYSfile is an absolute program image and does not contain relocation information.
The routines in IO.SYS assumethat the CS register contains the segmentat which thefile is
loaded. Thus, IO.SYS has the same 64 KB restriction as a .COM file. See PROGRAMMING

IN THE MS-DOS ENVIRONMENT: ProGRAMMING FOR MS-DOS: Structure Of an Application
Program. Larger IO,SYSfiles are possible, butall device driver headers mustlie in thefirst
64 KB andthe code mustrely on its own segmentarithmetic to access routines outside
the first 64 KB.

The MS-DOSkernel

a?

The MS-DOS kernelis the heart of MS-DOS and provides the functions foundin a tradi-
tional operating system.It is contained in a single proprietary file, MSDOS.SYS, supplied
by Microsoft Corporation. The kernel provides its support functions (referred to as system
functions) to application programsin a hardware-independent mannerand,in turn,is iso-
lated from hardware characteristics by relying on the driver routines in the MS-DOS BIOS
to perform physical input and output operations.

The MS-DOSkernel provides the following services through the use of device drivers:

@ §6File and directory management
® Character device input and output
® Time and date support

It also provides the following non-device-related functions:

® Memory management
@ Task and environment management
® Country-specific configuration

Tha Are Poe Baouetonnsdtin

OLYMPUSEX. 1010 - 77/1582

���������	�
�
�������
��
OLYMPUS EX. 1010 - 78/1582

Article 2: The Components of MS-DOS

Programs access system functions using software interrupt (INT) instructions. MS-DOS
reserves Interrupts 20H through 3FHfor this purpose. The MS-DOSinterrupts are

Interrupt Name

20H Terminate Program
21H MS-DOS Function Calls

22H Terminate Routine Address

23H Control-C Handler Address
24H Critica! Error Handler Address

25H Absolute Disk Read
26H Absolute Disk Write

27H Terminate and Stay Resident
28H -2EH Reserved

2FH Multiplex
30H-—3FH Reserved

Interrupt 2TH is the main source of MS-DOSservices. The Interrupt 21H functions are
implemented by placing a function numberin the AH register, placing any necessary
parameters in other registers, and issuing an INT 21H instruction. (MS-DOSalso supports
a call instruction interface for CP/M compatibility. The function and parameter registers
differ from the interrupt interface. The CP/M interface was provided in MS-DOSversion LO
solely to assist in movement of CP/M-based applications to MS-DOS. New applications
should use Interrupt 21H functions exclusively.)

MS-DOSversion 2.0 introduced a mechanism to modify the operation of the MS-DOS BIOS
and kernel: the CONFIG.SYSfile. CONFIG.SYSis a textfile containing command options
that modify the size or configuration of internal MS-DOStables and cause additionalde-
vice drivers to be loaded. Thefile is read when MS-DOSis first loaded into memory. See
USER COMMANDS: conric.sys.

The MS-DOSshell

The shell, or commandinterpreter, is the first program started by MS-DOSafter the
MS-DOS BIOS and kernel have been loaded andinitialized. It provides the interface
between the kernel and the user. The default MS-DOSshell, COMMAND.COM,is a
command-oriented interface; other shells may be menu-driven or screen-oriented.

COMMAND.COMis a replaceable shell. A number of commercial products can be used
as COMMAND.COM replacements, or a programmer can develop a customized shell. The
new shell program is installed by renaming the program to COMMAND.COM orby using
the SHELL command in CONFIG.SYS. Thelatter method is preferred becauseit allows
initialization parameters to be passed to the shell program.

Section I: Programming in the MS-DOS Envtronment 63

HUAWFI FX_ 1010 - 78/1587

OLYMPUSEX. 1010 - 78/1582

OLYMPUS EX. 1010 - 79/1582

Part A: Structure of M3-DOS cegetesofelanecate
COMMAND,COMcan execute a set of internal (built-in) commands, load and execute

programs, or interpret batch files. Most of the internal commands support file and direc-
tory operations and manipulate the program environment segment maintained by
COMMAND.COM.The programs executed by COMMAND.COMare .COM or .EXEfiles
loaded from a block device. The batch (BAT)files supported by COMMAND.COMpro-
vide a limited programming language and are therefore useful for performing smali,
frequently used series of MS-DOS commands.In particular, when itis first loaded by
MS-DOS, COMMAND.COMsearchesfor the batch file AUTOEXEC.BAT andinterpretsit, if
found, before taking any other action. COMMAND.COMalso provides default terminate,
Control-C andcritical error handlers whose addresses are stored in the vectors for Inter-

rupts 22H, 23H, and 24H. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:
CUSTOMIZING mMs-DOs: Exception Handlers.

COMMAND.COM’ssplit personality

COMMAND.COMis a conventional .COM application with a slight twist. Ordinarily, a
.COM program isloaded into a single memory segment. COMMAND.COMstarts this way
but then copies the nonresident portion ofitself into high memory and keeps the resident
portion in low memory. The memory above the resident portion is released to MS-DOS.

Theeffect of this split is not apparent until after an executed program has terminated
and the resident portion of COMMAND.COMregainscontrolof the system. Theresident
portion then computes a checksum on the area in high memory where the nonresident
portion should be, to determine whetherit has been overwritten. If the checksum matches
a stored value, the nonresident portion is assumed to be intact; otherwise, a copy of the
nonresident portion is reloaded from disk and COMMAND.COM continuesits normal
operation.

This “split personality” exists because MS-DOS wasoriginally designed for systems with a
i limited amount of RAM. The nonresident portion of COMMAND.COM,which contains the
i built-in commands and batch-file-processing routines that are not essential to regaining

control and reloading itself, is much larger than the resident portion, which is responsible
i for these tasks. Thus, permitting the nonresident portion to be overwritten frees additional

RAMand allowslarger application programsto be run,

Command execution

COMMAND.COMinterprets commandsbyfirst checkingto see if the specified command
matches the nameof an internal command.If so,it executes the command; otherwise,it
searches for a .COM, .EXE,or .BAT file Gin that order) with the specified name.If a .COM
or .EXE program is found, COMMAND.COMuses the MS-DOS EXECfunction Ginterrupt
21H Function 4BH)to load and execute it; COMMAND.COMitself interprets .BATfiles.
If nofile is found, the message Bad command orfile name is displayed.

Although a command is usually simply a filename without the extension, MS-DOS versions
3.0 andlater allow a command nameto be preceded by a full pathname.Ifa path is not
explicitly specified, the COMMAND.COM search mechanism uses the contents of the

Le fet lore raLl

OLYMPUSEX. 1010 - 79/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 80/1582

Article 2: The Components of MS-DOS

PATH environment variable, which can contain a list of paths to be searched for com-
mands. The search starts with the current directory and proceeds throughthe directories
specified by PATH until a file is found orthe list is exhausted. For example, the PATH
specification

PATH C:\BIN;D:\BINJE:\

causes COMMAND.COMto search the currentdirectory, then C:\BIN, then D:\BIN, and
finally the root directory of drive E. COMMAND.COMsearches each directory for a match-
ing .COM,.EXE,or .BATfile, in that order, before moving to the next directory.

MS-DOSenvironments

Version 2.0 introduced the concept of environments to MS-DOS. An environmentis a
paragraph-aligned memory segment containing a concatenated set of zero-terminated
(ASCIIZ) variable-length strings of the form

variable= value

that provide such information as the current search path used by COMMAND.COMto find
executable files, the focation of COMMAND.COMitself, and the format of the user prompt.
The end of the set of strings is marked by a null string — thatis, a single zero byte. A
specific environmentis associated with each program in memory through a pointer con-
tained at offset 2CH in the 256-byte program segmentprefix (PSP). The maximumsize of
an environmentis 32 KB; the default size is 160 bytes.

Ifa program uses the EXEC function to load and execute another program, the contents of
the new program’s environment are provided to MS-DOSbythe initiating program -~ one
of the parameters passed to the MS-DOS EXEC functionis a pointer to the new program’s
environment. The default environment provided to the new program is a copy of the
initiating program’s environment.

A program that uses the EXEC function to load and execute another program will not
itself have access to the new program's environment, because MS-DOS provides a pointer
to this environment only to the new program. Any changes made to the new program's en-
vironment during program execution are invisible to the initiating program because a
child program's environmentis always discarded when the child program terminates.

The system's master environmentis normally associated with the shell COMMAND.COM.
COMMAND.COMcreatesthis set of environment strings within itself from the contents
of the CONFIG.SYS and AUTOEXEC.BATfiles, using the SET, PATH, and PROMPT com-
mands. See USER COMMANDS: auTOEXec. BAT; CONFIG.SY5. In MS-DOS version 3.2, the
initial size of COMMAND.COM's environmentcan be controlled by loading
COMMAND.COMwith the /E parameter, using ihe SHELL directive in CONFIG.SYS.
For example, placing the line
SHELL=COMMAND .COM /E;2048 /P

Section IL Programming in the MS-DOS Environment 65
LUIDTA\AITI EV ANAN ONIALOAN

OLYMPUSEX. 1010 - 80/1582

OLYMPUS EX. 1010 - 81/1582

Part A: Structure of MS-DOS

in CONFIG.SYSsets the initial size of COMMAND.COM’s environmentto 2 KB. (The /P

option prevents COMMAND.COMfrom terminating, thus causingit to remain in memory
until the system is turned off or restarted.)

The SET command is used to display or change the COMMAND.COM environment con-
tents. SET with no parameters displays thelist of all the environmentstrings in the envi-
ronment. A typical listing might show the following settings:

COMSPEC=A; \COMMAND. COM
PATH=C:\7At\7B:\
PROMPT=Sp $d t_nq
TMP=C : \TEMP

Thefollowing is a dump of the environment segment containing the previous environment
example:

oO 12 3 4 5 6 7 8B 9 A B C Db E F
0060 43 4F 4D 53 50 45 43 30-41 3A 5C 43 4F 4D 4D 41 COMSPEC=A! \COMMA
0010 486 44 2E 43 4F 4D 06 SG-41 54 48 3D 43 3A 5c 3B ND.COM,PATH=C!\}
0020 41 38 SC 3B 42 3A 5C 00-50 52 4F 4D 50 54 3D 24 A:\;B:\. PROMPT=6

0030 70 20 20 24 64 20 20 24-74 24 5F 24 6E 24 67 00 p Sd t_nq.
0040 54 40 50 30D 43 3A 5¢ 54-45 4D 50 00 00 00 OO O06 TMP=C:\TEMP.....

ASET commandthat specifies a variable but does not specify a value for it deletes the vari-
able from the environment.

A program can ignore the contents ofits environment; however, use of the environment
can add a great dealto the flexibility and configurability of batch files and application
programs,

Batch files

Batchfiles are text files with a .,BAT extension that contain MS-DOSuser and batch com-

mands. Eachline in thefile is limited to 128 bytes. See USER COMMANDS: natcn.Batch
files can be created using most text editors, including EDLIN, and short batch files can
even be created using the COPY command:

CeCOPY CON SAMPLE.BAT <Enter>

The CONdevice is the system console; text entered from the keyboard is echoed on the
screen as it is typed. The copy operation is terminated by pressing Ctrl-Z (or the F6 key on
IBM-compatible machines), followed by the Enter key.

Batchfiles are interpreted by COMMAND.COM oneline at a time. In addition to the stan-
dard MS-DOS commands, COMMAND.COM's batch-file interpreter supports a numberof
special batch commands:

Command Meaning

ECHO * Display a message.
FOR* Execute a command fora list offiles.

(more)

The MOS Fucuctninedia

OLYMPUSEX. 1010 - 81/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 82/1582

Article 2: The Components of MS-DOS

Command Meaning

GOTO* Transfer control to ancther point.
IF* Conditionally execute a command,
PAUSE Wait for any key to be pressed.
REM Insert commentline.

SHIFT * Access more than 10 parameters.

* MS-DOS versions 2.0 and later

Execution of a batchfile can be terminated before completion by pressing Ctrl-C or
Ctrl-Break, causing COMMAND.COMto display the prompt

Terminate Patch job? (¥/N}

1/O redirection

1/O redirection was introduced with MS-DOSversion 2.0, The redirection facility is imple-
mented within COMMAND.COMusing the Interrupt 21H system functions Duplicate File
Handle (45H) and Force Duplicate File Handle (46H). COMMAND.COMusesthese func-
tions to provide both redirection at the command level and a UNIX/XEND¢like pipe
facility.

Redirection is transparent to application programs, but to take advantage of redirection, an
application program must make use of the standard input and outputfile handles. The in-
put and output of application programsthat directly access the screen or keyboard or use
ROM BIOS functions cannot be redirected.

Redirection is specified in the commandline by prefixing file or device names with the
special characters >, >>, and <. Standard output (default = CON)is redirected using > and
>> followed by the name of a file or character device. The former character creates a new
file Cor overwrites an existing file with the same name); the latter appendstext to an exist-
ing file Cor creates the file if it does not exist). Standard input (default = CON) is redirected
with the < character followed by the name ofa file or character device. See aiso PRO-
GRAMMINGIN THE M3-DOS ENVIRONMENT: CusTomiziNnG mMs-Dos: Writing M$-DOS
Filters,

The redirection facility can also be used to pass information from one program to an-

| other through a “pipe.” A pipe in MS-DOSis a special file created by COMMAND.COM.
; COMMAND.COMredirects the output of one program into this File and then redirects this

file as the input to the next program. The pipe symbol,a vertical bar (.), separates the pro-
gram names. Multiple program names can be piped together in the same commandline:

C>DIR #,4 | SORT | MORE <Enter>

This commandis equivalent to

C>DIR 4.4 > PIPEO <Enter>
C>SORT < PIPED > PIPE! <Enter>
CoMORE < PIPE] <Enter>

Section Ii: Programming in the MS-DOS Environment 67
PIP PAVAIFMTL mW ANNAN OATALrAN

OLYMPUSEX. 1010 - 82/1582

OLYMPUS EX. 1010 - 83/1582

Part A: Structure of MS-DOS

The conceptof pipes came from UNIX/XENIX, but UNIX/XENIX is a multitasking oper-
aling system that actually runs the programs simultaneously. UNIX/XENIX uses memory
buffers to connect the programs, whereas MS-DOSloads one program at a time and passes
information throughadisk file.

Loading MS-DOS

Getting MS-DOSup to the standard A> promptis a complex process with a numberof
variations. This section discusses the complete process normally associated with MS-DOS
versions 2.0 andlater. (MS-DOS versions Lx use the same general steps but lack supportfor
various system tables and installable device drivers.)

MS-DOSis loaded as a result of either a “cold boot”or a “warm boot.” On IBM-compatible
machines, a cold boot is performed when the computeris first turned on or when a hard-
ware reset occurs. A cold boot usually performs a power-on self test (POST) and deter-
mines the amount of memoryavailable, as well as which peripheral adapters are installed.
The POSTis ordinarily reserved for a cold boot becauseit takes a noticeable amount of
time, For example, an IBM-compatible ROM BIOStests alt conventional and extended
RAM (RAM above | MB on an 80286-based or 80386-based machine), a procedure that
can take tens of seconds. A warm boot, initiated by simultaneously pressing the Ctrl, Alt,
and Del keys, bypasses these hardware checks and begins by checking for a bootable disk.

A bootable disk normally contains a smal! loader program that loads MS-DOSfrom the
same disk. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:STRUCTURE OF MS-DOS:

MS-DOSStorage Devices. The body of MS-DOSis contained in twofiles: IO.SYS and
MSDOS,SYS CIBMBIO.COM and IBMDOS.COM with PC-DOS). IO.SYS contains the

Microsoft system initialization module, SYSINIT, which configures MS-DOSusing either
default values or the specifications in the CONFIG.SYSfile, if one exists, and then starts up
the shell program Cusualiy COMMAND.COM,the default). COMMAND.COMchecksfor an
AUTOEXEC.BATfile and interpretsthefile if found. (Other shells might not support such
batchfiles.) Finally, COMMAND.COM prompts the user for a command. (The standard
MS-DOS promptis A> if the system was booted from a floppy disk and C> if the system
was booted from a fixed disk.) Each of these steps is discussed in detail below.

The ROM BIOS, POST, and bootstrapping

All 8086/8088-compatible microprocessors begin execution with the CS:IP set to
FFFF:0006H, which typically contains a jump instruction to 4 destination in the ROM BIOS
that contains the initialization code for the machine. (This has nothing to do with MS-DOS,
it is a feature of the Intel microprocessors.) On IBM-compatible machines, the ROM BIOS
occupies the address space from F000-0000H to this jump instruction. Figure 2-1 shows the
location of the ROM BIOS within the 1 MB address space. Supplementary ROM support
can be placed before (at lower addresses than) the ROM BIOS.

All interrupts are disabled when the microprocessorstarts execution andit is up to the
initialization routineto set up the interrupt vectors at the base of memory.

TARO Pye m2. te

OLYMPUSEX. 1010 - 83/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 84/1582

Article 2: The Components of MS-DOS

<@— FFFF-O00FH(] MB)
~€— FFFF0000H

“= F000:0000H

Other ROM and RAM —- Top cf RAM
(4000-:0000H for IBM PC}

~& 0000:0000H

Figure 2-1. Memory layout at startup.

Theinitialization routine in the ROM BIOS —the POST procedure — typically deter-
mines what devices are installed and operational and checks conventional memory (the
first 1 MB) and,for 80286-based or 80386-based machines, extended memory (above 1
MB), The devices are tested, where possible, and any problems are reported using a series
of beeps and display messages on the screen.

When the machine is found to be operational, the ROM BIOSsets it up for normal opera-
tion,First,it initializes the interrupt vector table at the beginning of memory and any inter-
Tupt controllers that reference the table. The interrupt vector table area is located from
0000:0000H to 0000:03FFH. On IBM-compatible machines, some of the subsequent mem-
ory (starting at address 0000:0400H)is used for table storage by various ROM BIOSrou-
tines (Figure 2-2). The beginning load address for the MS-DOS system files is usually in
the range 0000:0600H to 0000;0800H.

Next, the ROM BIOSsets up any necessary hardwareinterfaces, such as direct memory
access (DMA) controllers, serial ports, and the like. Some hardware setup may be done
before the interrupt vector table area is set up. For example, the IBM PC DMA controller
also provides refresh for the dynamic RAM chips and RAM cannot be used until the
refresh DMAis running; therefore, the DMA must besetupfirst.

Some ROM BIOS implementations also check to see if additional ROM BIOSsare instailed
by scanning the memory from A000:0000H to F000:0000H for a particular sequence ofsig-
nature bytes. If additional ROM BIOSs are found, their initialization routines are called to
initialize the associated devices. Examples of additional ROMsfor the IBM PC family are
the PC/XT’s fixed-disk ROM BIOS and the EGA ROM BIOS.

The ROM BIOS now starts the bootstrap procedure by executing the ROM loaderroutine.
On the IBM PC,this routine checksthefirst floppy-disk drive to see if there is a bootable

Section If Programming tn the MS-DOS Environment 69

LITPTANVAIF I TW ANNAN QOAIALCON

OLYMPUSEX. 1010 - 84/1582

���������	�
�
������
��OLYMPUS EX. 1010 - 85/1582

Part A: Structure of MS-DOS

«€— FFFF:000FH(1 MB) ROM BIOS ~&- FFFF:0000H

~t— F000:0000H

Other ROM and RAM

4 «— Top of RAM :
oe (A000:0000H for IBM PC}

Free RAM

! 0000:i | ROM BIOS tables|~_ S000:0600H
' ~&— 0000:0400H

Interrupt vectors

—- 0000:0000H

Figure 2-2. The interrupt vector table and the ROM BIOS table.

f disk in it. If there is not, the routine then invokes the ROM associated with another boot-
able device to see if chat device contains a bootable disk. This procedure is repeated until
a bootable disk is found or until all bootable devices have been checked without success,

in which case ROM BASICis enabled.

Bootable devices can be detected by a numberof proprietary means. The IBM PC ROM
BIOSreads the first sector on the disk into RAM (Figure 2-3} and checks for an 8086-family
short or long jump at the beginning of the sector and for AA55H in the last word of the sec-

te tor. This signature indicates that the sector contains the operating-system loader. Data
[disks — those disks not set up with the MS-DOS system files — usually cause the ROM

loader routine to display a message indicating thatthe disk: is not a bootable system disk.
The customary recovery procedureis to display a message asking the userto insert
another disk (with the operating system files on it) and press a key to try the load opera-
tion again. The ROM loaderroutine is then typically reexecuted from the beginning so

| : that it can repeatits normal search procedure.

a When it finds a bootable device, the ROM loader routine loads the operating-system loader

and transfers control to it. The operating-system loader then uses the ROM BIOSservices

| : throughthe interrupt table to load the nextpart of the operating system into low memory.
Before it can proceed, the operating-system loader must know something about the con-
figuration of the system boot disk (Figure 2-4}, MS-DOS-compatible disks contain a data

fo structure that contains this information. This structure, known as the BIOS parameter

ii! block (BPB), is located in the same sector as the operating-system loader. From the con-
| tents of the BPB, the operating-system loader calculates the location of the root directory

70 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 85/1582

OLYMPUS EX. 1010 - 86/1582

Article 2: The Components of MS-DOS

«— FFFF:000FH(i MB)

ROM BIOS «<— FFFF:0000H
<— ¥F000:0000H

Other ROM and RAM

Possible free RAM

— Arbitrary location

<— 0000:0600H

ROMBIOStables < 0000:0400H

<— 0000:0000H

Figure 2-3. A loaded boot sector.

(optional)

[oe
poem|

oo
Figure 2-4. Boot-disk configuration.

<— Top of RAM

(A000:0000H for IBM PC)

«<— First sector on the disk

Section IL Programming in the MS-DOS Environment 71
OLYMPUSEX. 1010 - 86/1582

OLYMPUS EX. 1010 - 87/1582

Part-A:Structure ofMS-DOS

for the boot disk so thatit can verify thatthe first two entries in the root directory are
10.SYS and MSDOS.SYS.For versions of MS-DOSthrough3.2, these files must also be the
first two files in the file data area, and they must be contiguous. (The operating-system
loader usually does not check thefile allocation table [FAT] to see if IO.SY8 and
MSDOS.SYSare actually stored in contiguous sectors.) See PROGRAMMING IN THE
MS-DOS ENVIRONMENT;Srructure oF Ms-pos: MS-DO8Storage Devices.

Next, the operating-system loader reads the sectors containing IO.SYS and MSDOS.SYS
into contiguous areas of memoryjust above the ROM BiO$tables (Figure 2-5). (An alterna-
tive methodis to take advantage of the operating-system Joader’s final jump to the entry
point in 1O.SY8 and include routines in 1O.SY5that allow it to load MSDOS.SY5.)

Finally, assuming thefile was loaded without any errors, the operating-system loader
transfers control to IO.SY5, passing the identity of the boot device. The operating-system
loader is no longer needed and its RAM is made available for other purpases.

ROM BIOS

Other ROM and RAM

Possible free RAM

Free RAM

MSDOS.SYS

IO.SY$

ROM BIOStabies

Figure 2-5. IO.SYS andMSDOSSYS loaded,

«— FFFF:000FH(1 MB}

~— F000:0000H

&— Top of RAM
{A0C0:0000H for IBM PC)

<@— Arbitrary location

“<< SYSINIT

~<— MS-DOS BIOS (resident device drivers)
~&— 0000:0600H

= 0000:0400H
 <= 0000;0000H

ll ™ mone ae

OLYMPUSEX. 1010 - 87/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 88/1582

Article 2: The Components of MS-DOS

MS-DOSsystem initialization (SYSINIT)

MS-DOSsystem initialization begins after the operating-systern loader has loaded IO.SYS
and MSDO8&.SY5 and transferred control to the beginning of IO.SYS. To this point, there
has been no standard ioading procedure imposed by MS-DOS,although the IBM PCload-
ing procedure outlined here has becomethe de facto standard for most M$-DOS machines.
When control is transferred to IO.SYS, however, MS-DOS imposesits standards,

The [O.SY°5file is divided into three modules:

® The resident device drivers

® The basic MS-DOS BIOSinitialization module

® The MS-DOSsystem initialization module, SYSINIT

The two initialization modules are usually discarded as soon as MS-DOSis completely
initialized and the shell program is running; the resident device drivers remain in memory
while MS-DOSis running and are therefore placed in thefirst part of the 1G.SY5file,
before the initialization modules.

The MS-DOSBIOSinitialization module ordinarily displays a sign-on message and the
copyright notice for the OEM that created IO.SYS. On IBM-compatible machines,it then

- examines entries in the interrupt table to determine what devices were found by the ROM
BIOS at POSTtime and adjusts the list of resident device drivers accordingly. This adjust-
ment usually entails removing those drivers that have no corresponding installed hard-
ware. The initialization routine may also modify internal tables within the device drivers,
The device driver initialization routines wil] be called later by SYSINIT, so the MS-DOS
BIOSinitialization routine is now essentially finished and controlis transferred to the
SYSINIT module.

SYSINIT locates the top of RAM and copiesitself there. It then transfers control to the copy
and the copy proceeds with system initialization. Thefirst step is to move MSDOS.SYS,
which contains the MS-DOS kernel, to a position immediately following the end of the
resident portion of 10,SYS, which contains the resident device drivers, This move over-
writes the original copy of SYSINIT and usually all of the MS-DOSBIOSinitialization rou-
tine, which are no longer needed. The resulting memory iayout is shown in Figure 2-6.

SYSINTT then calls the initialization routine in the newly relocated MS-DOSkernel. This
routine performs the internal setup for the kernel, including putting the appropriate values
into the vectors for Interrupts 20H through 3FH.

The MS-DOSkernelinitialization routine then calls the initialization function of each

resident device driver to set up vectors for any external hardware interrupts used by the
device. Each biock-device driver returns a pointer to a BPB for each drive that it supports;
these BPBsare inspected by SYSINITtefind the largest sector size used by any of the
drivers. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:STRUCTURE OF MS-DOS:

MS-DOSStorage Devices. The kernelinitialization routine then allocates a sector buffer the
size of the largest sector found and places the NUL device driverat the head of the device
driverlist.

Section LL Programmring in the MS-DOSEnvtronment 73

iSkin. LUIDTA\AITI EV ANAN O0OlMran

OLYMPUSEX. 1010 - 88/1582

OLYMPUS EX. 1010 - 89/1582

Part A: Structure of MS-DOS

74

«(— FFFF.OGOFH(1 MB)

 ROM BIOS

Other ROM and RAM

MS-DOS kermei

(MSBOS.SY5)

“<— F000;0000H

~«&— Top of RAM
(A000:0000H for IBM PC)

 MS-DOS BIOS

dO.SY3)

ROM BIOStables

Interrupt vectors

Figure 2-6. SYSINITandMSPOS.SYS relocated.

“— Resident device drivers

~— 0000:0600H

“<— 0000:0400H
 = 0000:0000H

The kernelinitialization routine's final operation before returning to SYSINITis to display
the MS-DOS copyright message. The loading of the system portion of M5-DO5 is now com-
plete and SYSINIT can use any MS-DOSfunction in conjunction with the resident set of
device drivers.

SYSINIT next attempts to open the CONFIG.SYSfile in the root directory of the boot
drive. If the fie does not exist, SYSINIT uses the default system parameters; if thefile is
opened, SYSINIT readsthe entire file into high memory and converts all characters to
uppercase. The file contents are then processed to determine such settings as the number
of disk buffers, the number of entries in the file tables, and the numberofentries in the
drive translation table (depending on the specific commandsin the file), and these struc-
tures are allocated following the MS-DOSkernel (Figure 2-7).

Then SYSINIT processes the CONFIG.SYStext sequentially to determine what installable
device drivers are to be implemented andloads the installable device driverfiles into
memoryafter the system disk buffers and the file and drive tables. Instaliable device driver
files can be located in any directory on any drive whose driver has already been loaded.
Each installable device driverinitialization function is called after the device driverfile is

loaded into memory. Theinitialization procedure is the sameas for resident device drivers,
except that SYSINIT uses an address returned by the device driveritself to determine
where the next device driver is to be placed. See PROGRAMMING IN THE MS-DOS ENVI-
RONMENT:Customizinc Ms-pos: Installable Device Drivers.

— OLYMPUSEX.1010 - 89/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 90/1582

Article 2: The Components of MS-DOS

“¢- FEFF-000FH(i MB)

SYSINIT

Tnstallable
device drivers

“€— F000:0000H

 ~&— Top of RAM

(AG00:0000H for IBM PC)

Fite control blocks

Disk buffers

MS-DOStables

MS-DOS kemel
(MSDOS.SYS)

 MS-DOS BIOS

(10.S¥S)

ROM BIOStables

Interrupt vectors

Figure 2-7. Tables allocated and installable device drivers loaded.

“€— Resident device drivers

“€— 0000:0600H
€— 0000:0400H

 ~&— 0000:0000H

Like resident device drivers, installable device drivers can be discarded by SYSINITif the
device driverinitialization routine determines that a device is inoperative or nonexistent.
A discarded device driver is not includedin the hist of device drivers. Instaliable character-

device drivers supersede resident character-device drivers with the same name;installable
block-device drivers cannot supersederesident block-drivers and are assigned driveletters
Jollwing those of the resident block-device drivers.

Section I: Programming in the MS-DOS Environment 75

LITPTANVAIF I TW ANNAN ANIALEAN

OLYMPUSEX. 1010 - 90/1582

&

OLYMPUS EX. 1010 - 91/1582

PattA: Structtife ofMS-DOS

SYSINIT now closesall open files and then opens the three character devices CON, PRN,
and AUX. The console (CON) is used as standard input, standard output, and standard
error; the standard printer port is PRN Gwhich defaults to LPTD); the standard auxiliary port
is AUX Gwhich defaults to COMD.Installable device drivers with these names will replace
any residentversions. .

Starting the shell

SYSINIT'slast function is to load and execute the shell program by using the MS-DOS
EXEC function, See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING

FOR MS-Dos: The MS-DOS EXEC Function. The SHELLstatement in CONFIG.SY5specifies
both the name of the shell program andits initial parameters; the default MS-DOSshellis
COMMAND.COM.The shel] program is loaded at the start of free memory after the
installable device drivers or after the last internal MS-DOSfile control block if there are

no installable device drivers (Figure 2-8).

COMMAND.COM

Wh

COMMAND.COMconsists of three parts:

@ Aresident portion
@==An initialization module

® Atransient portion

Theresident portion contains supportfor termination of programsstarted by
COMMAND.COMandpresentscritical-error messages.It is also responsiblefor re-
loading the transient portion when necessary.

Theinitialization module is called once by the resident portion. First, it moves the tran-
sient portion to high memory. (Compare Figures 2-8 and 2-9.) Then it processes the
parameters specified in the SHELL command in the CONFIG.SYSfile, if any. See USER
COMMANDS: coMMAND.Next,it processes the AUTOEXEC.BATfile, if one exists, and
finally, it transfers control back to the resident portion, which frees the space used by the
initialization module and transient portion. The relocated transient portion then displays
the MS-DOSuser prompt andis reacly to accept commands.

The transient portion gets a command from either the console or a batchfile and executes
it. Commandsare divided into three categories:

® Internal commands

®=Batchfiles

® External commands

Internal commandsare routines contained within COMMAND.COMandinclude opera-
tions like COPY or ERASE. Execution of an internal command does not overwrite the tran-

sient portion. Internal commandsconsist of a keyword, sometimesfollowed byalist of -
command-specific parameters.

Tine LAC OWE Geteetadadis

OLYMPUSEX. 1010 - 91/1582

���������	�
�
�������
��
OLYMPUS EX. 1010 - 92/1582

Article 2: The Components of MS-DOS

~€— FFFF:000FHi1] MB)

ROM BIOs

~@— F000:0000H

Other ROM and RAM

 <— Top of RAM

(4000-00008 for IBM PC)

COMMAND.COM

(tansient}
COMMAND.COM

initialization)

COMMAND.COM

(resident)

 Installable
device drivers

File contro} blocks

MS-DOS kerne|

(MSDOS.SYS)

MS-DOS BIOS
GO.SYS)

ROM BIOStables

Interrupt vectors

Figure 2-8. COMMAND.COM loaded.

@— Resident device drivers

“€— 9000;0600H
“€— 0000:0400H

 “&—— 0000:0000H

Section IT: Programminy tn the MS-DOSEnvironment T?

HUAWEI EX. 1010 - 92/1582

OLYMPUSEX.1010 - 92/1582

OLYMPUS EX. 1010 - 93/1582

Part A: Structure ofMS-DOS

“&~ FFFF,O00FH(1 MB)

“@ F000:0000H

Other ROM and RAM

<— Top of RAM
COMMAND.COM (A000:0000H for IBM PC)

(transient)

COMMAND.COM

(resident)

Installable
device drivers

File control blocks

Disk buffers

MS-DOStables

MS-DOS kernel

(MSDOS.SYS)}

MS-DOS BIOS

{IO.8YS8)

Interrupt vectors

Figure 2-9. COMMAND.COM after relocation.

 “— Resident device drivers

~— 0000:0600H

~<— 0000:0400H

~€— 0000:0000H

Batch files are text files chat contain internal commands, external commands,batch-file
directives, and nonexecutable comments. See USER COMMANDS: Baten.

External commands, which are actually executable programs, are stored in separate
files with .COM and .EXE extensions and are included on the MS-DOSdistribution disks.

See PROGRAMMING IN THE MS-DOS ENVIRONMENT: ProGrRaMMING FOR MS-bos: Struc-

ture of an Application Program. These programs are invoked with the nameofthefile
without the extension. (MS-DOSversions 3.x allow the complete pathnameof the external
command to be specified.)

OLYMPUSEX. 1010 - 93/1582

���������	�
�
�������
��
OLYMPUS EX. 1010 - 94/1582

Article 2: The Components of MS-DOS

External commandsare loaded by COMMAND.COM by means of the MS-DOS EXEC func-
tion. The EXEC function loads a program into the free memory area, also called the tran-
sient program area CTPA), and then passes it control, Control returns to COMMAND.COM
when the new progrant terminates. Memory used by the program is released unlessit is a
terminate-and-stay-resident CTSR) program, in which case some of the memoryis retained
for the resident portion of the program, See PROGRAMMINGIN THE MS-DOS ENVIRON-
MENT: CustomizinG Ms-pos: Terminate-and-Stay-Resident Utilities.

After a program terminates, the resident portion of COMMAND.COM checksto see if the
transient portionis still valid, because if the program waslarge, it may have overwritten
the transient portion’s memory space. The validity check is done by computing a check-
sum on the transient portion and comparing it with a stored value. If the checksums do
not match, the resident portion Joads a new copyof the transient portion from the
COMMAND.COMfile.

Just as COMMAND.COMuses the EXEC function to load and execute a program, pro-
grams can load and execute other programs until the system runs out of memory. Figure
2-10 shows a typical memory configuration for multiple applications loaded at the same
time. The active task — the last one executed — ordinarily has complete control over the
system, with the exception of the hardware interrupt handlers, which gain contro}
whenever a hardware interrupt needs to be serviced,

MS-DOSis not a multitasking operating system, so although several programs can beresi-
dent in memory, only one program can be active at a time. The stack-like nature of the
system is apparent in Figure 2-10. The top program is the active one; the next program
down will continue to run when the top program exits, and so on until control returns to
COMMAND.COM.RAM-resident programsthat remain in memory after they have termi-
nated are the exception. in this case, a program lower in memory than another program
can becomethe active program,although the one-active-processlimitis still in effect.

A custom shell program

The SHELLdirective in the CONFIG.SYSfile can be used to replace the system's default
shell, COMMAND.COM,with a custom shell. Nearly any program can be used as a system
shell as long asit supplies default handlers for the Control-C andcritical error exceptions.
For example, the program in Figure 2-1] can be used to make any application program
appear to be a shell program — if the application program terminates, SHELL.COM
restarts it, giving the appearancethat the application program is the shell program.

SHELL.COMsets up the segment registers for operation as a .COM file and reduces the
program segmentsize to less than 1 KB.It then initializes the segment values in the param-
eter table for the EXEC function, because .COMfiles cannot set up segmentvalues within a
program. The Control-C ane critical error interrupt handler vectors are set to the address of
the main program loop, whichtries to toad the new shell program. SHELL.COM prints a
message if the EXEC operation fails. The loop continues forever and SHELL.COM will

: never return to the now-discarded SYSINIT that started it,

Section I; Programming in the MS-DOSEnvironment 79

é HUAWEI EX. 1010 - 94/1582
OLYMPUSEX.1010 - 94/1582

OLYMPUS EX. 1010 - 95/1582

Part A: Structure of MS-DOS

«€— FEFF:000FH(1 MB)
ROM BIOS

“€— F000:0000H

Other ROM and RAM

<— Top of RAM
COMMAND.COM (A000:0000H for IBM PC)

(transient)

Program #3
factive)

COMMAND.COM

(resident)

Installable
device drivers

File control blocks

Disk buffers

MS-DOStables

MS-DOS kemel

(MSDOS8.SYS)

weTosYs) “— Resident device drivers
ROM BIOStabi “<= 0000:0600H

SS1e— 0000:0400H
Interrupt vectors

~€— 0000:0000H

Figure 2-10. Multipleprograms loaded.

OLYMPUSEX. 1010 - 95/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 96/1582

Article 2: The Components of MS-DOSEEEEIE

; SHELL.ASM A simple program to run an application as an
MS-DOS shell program. The program name and
Startup parameters must be adjusted befare

? SHELL is assembled.

; Written by William Wong

7 To create SHELL.COM:

: CoMASM SHELL;
? C>LINK SHELL;

C>EXEZBIN SHELL.EXE SHELL.COM

stderr equ 2 ¢ standard error
cr equ Odh } ASCII carriage return
lf équ Sah > ASCII linefeed
eseg segment para public ‘CODE'

; ocr Set up DS, ES, and S§:5P to run as .COM ——?

assume csitseg
Start proc far

mov axX,cs 7 S@t up seqment registers
add ax, 10h } AX = segment after PSP
mov ds,ax
mov S8,ax } Set up Stack pointer
mov sp,offset stk
may ax,ocffset shell
push cs ? push original cs
Push ds ; Push segment of shell
push ax } Push offset of shell
ret : jamp to shell

start endp

7 7-06 6OMain program running as .COM --

7 cS, DS, SS = cseg
; Original CS value on top of stack

assume csieseq, dgiagseg, s3:eseq

seg.size equ ({({offset last) - (offset start)} + 10fh)/14
shell proc near

pop es ? ES = segment to shrink
mov bx, segusize i BX = new segment size
may ah, 4ah i; AW = modify memory block
int 21h ; free @éucéss memory
mov omd_seg,ds ; Setup segments in
mov fcbl_seg,ds i parameter block for EXEC
mov fcbé_seg,ds
may dx,offset main_loop
mow ax,2523n ; AX = set Control-C handler

Figure 2-U. A simpleprogram to run an application as an MS-DOSsheil. (more)

Section II: Programming in the MS-DOS Environment 81
LIDTANAITIT EV ANNAN NOIACON

OLYMPUSEX. 1010 - 96/1582

OLYMPUS EX. 1010 - 97/1582

Part A: Structure ofMS-DOS

int 21h ; set handler to DS:DX
mov dx,oaffset main_loop
mow ax, 2524h : AX = set critical error handler
int 2th ; set handler ta DS:DXxX

3; Nate: DOS is equal to CS

tainwloop: . ,
push das 7; Save segment registers
push es
mov cststk_seg,ss ; Save atack pointer
mov es ;stk_off, sp

mov dx, offset pqm_name
mov bx, ofiset par—blk

: may ax, 4b00h 7 AX = EXEC/run program
: int 2ih j carry = EXEC failed

mov $8,ca:stkseq ; restore stack pointer
mov Sp,cs:stkoff

, pop es ; restore segment registers
pop ds

ot jnc main_ioop ‘ } loop if program run
a mov dx,gffset load.msg
wk mov cx, load_msg_ilength
ne call print ; display error message

; mow ah, 08h i BH = read without eche
| int 2th i wait for any character

jmp main_loop } @xecute forever
shell endp

3 --6Print string --

; DS:DX = address of string

: 7 OX = size

4 print prot near
: mov ah, 40h ; BH = write to File
. mov bu, stderr ; BX = file handle

int 21h ; print string
: ret

- print endp

yl j —— Message strings -~

4 lead_msg db cr,1f

: db 'Cannet load program.',cr,1lf
' db "Press any key to try again.',«r,1lf

loadimsg_length equ §-load.msg
Po: ,

7 -- Program data area ~+-
to: ,
i stkiseg dw 0 ? stack segment pointer

7 stkuoff dw 0 ; Save area during EXEC
i pormname db "\NEWSHELL.COM',@ ; any program will doa
ae

a Figure 2-11. Continued. (more)

aon ei ten

OLYMPUSEX. 1010 - 97/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 98/1582

par_blk dw

dw

cmd_seg dw
dw

fcbi_seg dw
dw

fcb2_seg dw
cmd_line db
fcb1 db

db
db

fcb2 db
db
db
dw

stk dw

last equ
cseg ends

end

0
offset
0
offset
0
offset
0

0,cr
0

11 dup
25 dup
0

11 dup
25 dup
200 dup
0
$

start

Figure 2-11. Continued.

emd_line

fcb1

Ecb2

?

?

?

Article 2: The Components of MS-DOS

use current environment
command-line address
Fill in at initialization
default FCB #1
fill in at initialization
default FCB #2
fill in at initialization
actual command line

program stack area

last address used

SHELL.COMisvery short and not too smart. It needs to be changed and rebuilt if the name _
of the application program changes. A simple extension to SHELL—call it XSHELL—
would beto place the nameof the application program and any parameters in the com-
mand line. XSHELL would then have to parse the program nameandthe contentsof the
two FCBs neededfor the EXEC function. The CONFIG.SYSline for starting this shell
would be

SHELL=XSHELL \SHELL\DEMO.EXE PARAM] PARAM2 PARAM3

SHELL.COM doesnotset up a new environmentbut simply uses the one passedtoit.

William Wong

Section IT- Programming in the MS-DOS Environment 83
LIIAVAIEL OV ANNAN AQAA

OLYMPUSEX. 1010 - 98/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 99/1582

Article 3: MS-DOS Storage Devices

Article 3

MS-DOSStorage Devices

Application programs access data on MS-DO8storage devices through the MS-DOSfile-
system support that is part of the MS-DOS kernel. The MS-DOS kernel accesses these
storage devices, also called block devices, through two typesof device drivers: resident
block-device drivers contained in IO.SYS andinstallable biock-device drivers loaded

from individualfiles when MS-DOSis loaded. See PROGRAMMINGIN THE MS-DOS

ENVIRONMENT:STRUCTURE OF Ms-Dos: The Components of MS-DOS; Customizinc
ms-bos: Installable Device Drivers.

MS-DOS can handle almost any medium, recording method, or other variation for a storage
device as long as there is a device driver for it. MS-DOS needs to know only the sectorsize
and the maximum numberofsectors for the device; the appropriate translation between
logical sector number and physical location is made by the device driver. Information
about the numberof heads, tracks, and so on is required only for those partitioning pro-
gramsthat allocate logical devices along these boundaries. See Layout of a Partition below..

The floppy-disk drive is perhaps the best-known block device, followed by its faster
cousin, the fixed-disk drive. Other MS-DOS media include RAMdisks, nonvolatile
RAMdisks, removable hard disks, tape drives, and CD ROM drives. With the proper device
driver, MS-DOS can placea file system on any of these devices Cexcept read-only media
such as CD ROM).

This article discusses the structure of the file system on floppy and fixed disks, starting
with the physical layout of a disk and then moving onto the logical layout ofthe file sys-
tem. The scheme examinedis for the IBM PC fixed disk.

Structure of an MS-DOS Disk

The structure of an MS-DOS disk can be viewed in a number of ways:

®=Physical device layout
®=Logical device layout
®=Logical block layout
® MS-DOSfile system

The physical layout of a disk is expressed in terms of sectors, tracks, and heads. Thelogical
device layout, also expressed in termsofsectors, tracks, and heads, indicates how a logical
device maps onto a physical device. A partitioned physical device contains multipie logical
devices; a physical device that cannot be partitioned contains only one. Each logical device

Section I: Programming in iheMS-DOS Environment 85
LUIDTANAITIL EV ANNAN NOMACON

OLYMPUSEX. 1010 - 99/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 100/1582

Part A: Structure ofMS-DOS

has a logical block layout used by MS-DOSto implementa file system. These various
views of an MS-DOSdisk are discussed below, See afso PROGRAMMINGIN THE MS-DOS

ENVIRONMENT: ProGRAMMING FoR Ms-bos: File and Record Management, Disk Directo-
ries and Volume Labels,

Layoutofa physical block device
The two major block-device implementations are solid-state RAMdisks and rotating mag-
netic media such as floppyor fixed disks. Both implementations provide a fixed amount of
storage in a fixed number of randomly accessible same-size sectors.

RAMdisks

A RAMdisk is a block device that has sectors mapped sequentially into RAM. Thus, the
RAMdiskis viewed as a large set of sequentially numbered sectors whose addresses are
computed by simply multiplying the sector number by thesector size and adding the base
address of the RAMdisk sector buffer. Access is fast and efficient and the access time to any
sectoris fixed, making the RAMdisk the fastest block device available. However, there are
significant drawbacks to RAMdisks.First, they are volatile; their contents are irretrievably
lost when the computer's poweris turned off (although a special implementation of the
RAMdisk known as a nonvolatile RAMdisk includes a battery backup system that ensures
thatits contents are not lost when the computer's poweris turned off). Second, they are
usually not portable.

Physical disks

Floppy-disk and fixed-disk systems, on the other hand, store information on revolving
platters coated with a special magnetic material. The disk is rotated in the drive at high
speeds — approximately 300 revolutions per minute (rpm)for floppy disks and 3600 rpm
for fixed disks, (The term “fixed” refers to the fact that the medium is built permanently
into the drive, not to the motion of the medium.) Fixed disks are also referred to as “hard”

disks, because the disk itself is usually made from a rigid material such as metalor glass;
floppy disks are usually made from a flexible material such as plastic.

A transducer elementcalled the read/write head is used to read and write tiny magnetic
regions on the rotating magnetic medium, Theregionsactlike small bar magnets with
north and south poles, Fhe magnetic regions of the medium can be logically oriented
toward one or the other of these poles — orientation toward one pole is interpreted as a
specific binary state (1 or 0} and orientation toward the other pole is interpreted as the
opposite binary state. A change in the direction of orientation Cand hence a changein the
binary value) between two adjacent regionsis called a flux reversal, and the density of a
particular disk.implementation can be measured by the numberof regionsperinchreli-
ably capable of flux reversal, Higher densities of these regions yield higher-capacity disks.
Theflux density of a particular system depends on the drive mechanics, the characteris-
tics of the read/write head, and the magnetic properties of the medium.

The read/write head can encodedigital information on a disk using a numberof recording
techniques, including frequency modulation (FM), modified frequency modulation (MFM),

The MS-DOS Fnevlonedia

OLYMPUSEX.1010 - 100/1582

OLYMPUS EX. 1010 - 101/1582

2MeeayoneEY:
eTcL

vary?

Article 3: MS-DOS Storage Devices

run Jength limited (RLL) encoding, and advanced run length limited (ARLL) encoding.
Each technique offers double the data encoding density of the previous one. The associ-
ated control logic is more complex for the denser techniques.

Tracks

A read/write head reads data from or writes data to a thin section of the disk called a

track, which is laid out in a circular fashion around the disk (Figure 3-1). Standard 5.25-
inch floppy disks contain either 40 (0-39) or 80 (0-79) tracks perside. Like-numbered
tracks on either side of a double-sided disk are distinguished by the numberof the read/
write head used to access the track. For example, track 1 on the top ofthe diskis identified
as head 0, track 1; track 1 on the bottom of the disk is identified as head 1, track 1.

Tracks can be either spirals, as on a phonograph record, or concentric rings. Computer
media usually use one of two types of concentric rings. The first type keeps the same num-
ber of sectors on each track (see Sectors below) and is rotated at a constant angular veloc-
ity (CAV), The second type maintains the same recording density across the entire surface
of the disk, so a track near the center of a disk contains fewer sectors than a track near the

perimeter, This latter type of disk is rotated at different speeds to keep the medium under
the magnetic head moving at a constant linear velocity (CLV).

Sector

 7PIGSZS LS—~ aaA\\©oF=
Figure 3-1. Thephysical layout ofa CAV 9-sector, 5.25-inchfloppy disk.

Most MS-DOS computers use CAV disks, although a CLV disk can store more sectors using
the same type of medium. This difference in storage capacity occurs because the limiting
factor is the fhax density of the medium and a CAV disk must maintain the same number
of magnetic flux regions per sector on the interior of the disk as at the perimeter. Thus,
the sectors on or near the perimeter do notuse thefull capability of the medium and the
heads, because the space reserved for each magnetic flux region on the perimeteris larger
than that available near the center of the disk. In spite of their greater storage capacity,
however, CLV disks (such as CD ROMs) usually have slower access times than CAV disks
because of the constant need to fine-tune the motor speed as the head movesfrom track to
track. Thus, CAV disks are preferred for MS-DOSsystems.

Section IL Proorammine in theMS-DOS Environment 87

OLYMPUSEX.1010 - 101/1582

OLYMPUS EX. 1010 - 102/1582

Part A: Structure ofMS-DOS

Heads

Simple disk systems use a single disk, or platter, and use one or two sides of the platter,
more complex systems, such as fixed disks, use multiple platters. Disk systems that use
both sides of a disk have one read/write head per side; the heads are positioned over the
track to be read from or written to by meansof a positioning mechanism such as a solenoid
or servomotor. The headsare ordinarily moved in unison, using a single head-movement
mechanism, thus, heads on opposite sides of a platter in a double-sided disk system
typically access the samelogical track on their associated sidesof the platter. (Performance
can be increased by increasing the numberof headsto as many as one head pertrack,
eliminating the positioning mechanism. However, because they are quite expensive, such
multiple-head systems are generally found only on high-performance minicomputers and
mainframes.)

Thesetof like-numbered tracks on the twosides of a platter Cor on all sides of all platters
in a multiplatter system) is called a cylinder. Disks are usually particioned along cylinders.
Tracks and cylinders may appearto have the same meaning; however, the term track is
used to define a concentric ring containing a specific number of sectors on a single side of
a single platter, whereas the term cylinderrefers to the numberof like-numbered tracks on
a device (Figure 3-2).

Side 0, track ?

Side 1,
track 7

1

cylinder

Side 2, wack 7
Side 3, track 7

Figure 3-2. Tracks and cylinders on afixed-disk system.

Sectors

Eachtrack is divided into equal-size portions called sectors. The size of a sector is a power
i of 2 andis usually greater than 128 bytes — typically, 512 bytes.

Floppy disks are either hard-sectored or soft-sectored, depending on the disk drive and
the medium. Hard-sectored disks are implemented using a series of smal] holes near the

RR Tho MEDOG Bueurinhostia

OLYMPUSEX.1010 - 102/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 103/1582

Article 3: MS-DOSStorage Devices

center of the disk that indicate the beginning of each sector, these holes are read by a
photosensor/LED pair built into the disk drive. Soft-sectored disks are implemented by
magnetically marking the beginning of each sector when the disk is formatted. A soft-
sectored disk has a single hole near the center of the disk (see Figure 3-1) that marks the
location of sector 0 for reference when the disk is formatted or when error detection is per-
formed; this hole is also read by a photosensor/LED pair. Fixed disks use a special imple-
mentation of soft sectors (see below). A hard-sectored floppy disk cannot be used ina
disk drive built for use with soft-sectored floppy disks Cand vice versa).

In addition to a fixed numberof data bytes, both sector types include a certain amount of
overhead information, such as error correction and sector identification, in each sector.

The structure of each sector is implemented during the formatting process.

Standard fixed disks and 5.25-inch Floppy disks generaliy have from 8 to 17 physical sec-
tors per track. Sectors are numbered beginning at 1. Each sector is uniquely identified by a
complete specification of the read/write head, cylinder number, and sector number. To
access a particular sector, the disk drive controller hardware movesall heac’sto the speci-
fied cylinder and then activates the appropriate head for the read or write operation.

The read/write heads are mechanically positioned using one of two hardware implemen-
tations. Thefirst methad, used with floppy disks, employs an “open-loop” servomecha-
nism in which the software computes where the heads should be and the hardware moves
them there. (A servomechanism is a device that can move a solenoid orholdit in a fixed

position.) An open-loop system employs no feedback mechanism to determine whether
the heads were positioned correctly — the hardware simply moves the heads to the
requested position and returns an errorif the information read there is not what was
expected. The positioning mechanism in floppy-disk drives is made with close tolerances
because if the positioning of the heads on two drives differs, disks written on one might
not be usable on the other.

Mostfixed disk systems use the second method —a “closed-loop”servomechanism that
reserves one side of one platter for positioning information. This information, which indi-
cates where the tracks and sectors are located, is written on the disk at the factory when
the drive is assembled. Positioning the read/write heads in a closed-loop system is actually
a two-step process: First, the head assembly is moved to the approximate location of the
read or write operation; then the disk controller reads the closed-loop servo information,
comparesit to the desired location, and fine-tunes the head position accordingly. This
fine-tuning approachyields faster access times and also allows for higher-capacity disks
because the positioning can be more accurate and the distances between tracks can
therefore be smaller, Because the “servo platter” usually has positioning information on
one side and data on the other, many systems have an odd numberof read/write heads
for data.

Interleaving
CAV MS-DOSdisks are described in terms of bytes per sector, sectors per track, numberof
cylinders, and numberof read/write heads. Overall access time is based on how fast the
disk rotates (rotational latency) and how fast the heads can movefrom track to track
(track-to-track latency).

Section H- Programming in the MS-DOS Environment 89
LUDIAVAITI EV ANNAN ANOMACON

OLYMPUSEX.1010 - 103/1582

OLYMPUS EX. 1010 - 104/1582

Part A:-Structure of MS-DOS

On most fixed disks, the sectors on the disk are logically or physically numbered so that
logically sequential sectors are not physically adjacent (Figure 3-3). The underlying princi
ple is that, because the controller cannotfinish processing one sector before the next
sequential sector arrives under the read/write head,the logically numbered sectors must -
be staggered around the track. This staggering of sectors is called skewing or, more com
monly, interleaving. A 2-to-1 (2:1 interleave places sequentially accessed sectors so that
there is one additional sector between them; a 3:1 interleave places two additional sectors
between them. A slower disk controller needs a larger interleave factor. A 3:1 interleave
meanis that three revolutions are required to read all sectors on a track in numeric order.

Rotation directionOo
Figure 3-3. A 3:1 interleave.

One approach to improving fixed-disk performance is to decrease the interleaveratio.
This generally requires a specialized utility program and also requires that the disk be
reformatted to adjust to the new layout. Obviously, a 1:1 interleave is the mostefficient,
provided the disk controller can process at that speed. The normalinterleave for an IBM 3
PC/AT and its standard fixed disk and disk controller is 3:1, but disk controllers are avail- 4
able for the PC/ATthat are capable of handling a 1:1 interleave. Floppy disks on MS-DOS-
based computers all have a 1:1 interleaveratio.

Layout of a partition

For several reasons, large physical block devices such as fixed disks are often logically par-
titioned into smaller logical block devices (Figure 3-4). For instance, such partitions allow
a device to be shared among different operating systems. Partitions can also be used to
keep the size of each logical device within the PC-DOS 32 MBrestriction Cimportantfor
large fixed disks). MS-DOS permits a maximum of four partitions.

A partitioned block device has a partition table located in one sector at the beginning of
the disk. This table indicates where the logical block devices are physically located, (Even
a partitioned device with only one partition usually has such a table.)

OLYMPUSEX.1010 - 104/1582

���������	�
�
����
��
��
OLYMPUS EX. 1010 - 105/1582

Article 3: MS-DOSStorage Devices

Partition 1
Partition 2

Partition 3

| Partition 4

Figure 3-4. Apartitioned disk.

Under the MS-DOSpartitioning standard, the first physical sector on the fixed disk con-
tains the partition table and a bootstrap program capable of checking the partition table
for a bootable partition, loading the bootable partition’s boot sector, and transferring con-
trol to it. The partition table, located at the end of the first physical sector of the disk, can
contain a maximum of fourentries:

Offset From

Start ofSector Size (bytes) Description

01BEH 16 Partition #4

O1CEH 16 Partition #3
01DEH 16 Partition #2

Q1EEH 16 Partition #1

O1FEH 2 Signature: AASSH

Thepartitions are allocated in reverse order. Each 16-byte entry contains the following
information:

Offset From

Start ofEntry Size (bytes) Description

00H 1 Bootindicator

01H 1 Beginning head

(more)

Section Il: Programming in the MS-DOS Environment 91

HIIAWWEL EX 1N1N~ 1NAR/18a9

OLYMPUSEX.1010 - 105/1582

OLYMPUS EX. 1010 - 106/1582

Part A: Structure of MS-DOS

Offset From

Start ofEntry Size (bytes) Description

02H 1 Beginning sector
03H 1 Beginning cylinder —
O47 1 System indicator
05H 1 Ending head
06H 1 Ending sector
07H i Ending cylinder
08H 4 Starting sector(relative to beginning

ofdisk)

OCH 4 Numberofsectors in partition

The boot indicator is zero for a nonbootable partition and 80H for a bootable (active? parti-
tion. A fixed disk can have only one bootable partition. When setting a bootable partition,
partition programs such as FDISK reset the bootindicators for all other partitions to zero.)
see USER COMMANDS: FbIsK.

The system indicators are

Code Meaning

00H Unknown

01H MS-DOS,72-bit FAT
04H MS-DOS, 16-bit FAT

Each partition’s boot sectoris located at the start of the partition, which is specified in
terms of beginning head, beginning sector, and beginning cylinder numbers. This infor-
mation, stored in the partition table in this order, is loaded into the DX and CX registers by
the PC ROM BIOSloader routine when the machineis turned on or restarted. The starting
sector of the partition relative to the beginningofthe disk is also indicated. The ending
head, sector, and cylinder numbers, also included in the partition table, specify the last ac-
cessible sector for the partition, The total numberofsectors in a partition is the difference
between the starting and ending head and cylinder numbers times the numberof sectors
per cylinder.

MS-DOSversions 2.0 through 3.2 allow only one MS-DOSpartition per partitioned device.
Various device drivers have been implementedthat use a different partition table that
allows more than one MS-DOSpartition to be installed, but che secondary MS-DOSparti-
tions are usually accessible only by meansof an installable device driver that knows about
this change. (Even with additional MS-DOSpartitions, a fixed disk can have only one boot-
able partition.)

OLYMPUSEX. 1010 - 106/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 107/1582

Article 3: MS-DOS Storage Devices

Layout ofa file system

Block devices are accessed ona sector basis. The MS-DOSkernel, through the device
driver, sees a block device as a logical fixed-size array of sectors and assumesthat the array
contains a valid MS-DOSfile system, The device driver, in turn, translates the logical sector
requests from MS-DOSinto physica! locations on the block device.

Theinitial MS-DOSfile system is written to the storage medium by the MS-DOS FORMAT
program. See USER COMMANDS: rormar.The generaliayoutfor the file system is shown
in Figure 3-5.

OEMidentification, BIOS parameter block, Loader routine
Reserved area

File allocation table (FAT) #1

Possible additional copies of FAT

Root disk directory
Files area

Figure 3-5. The MS-DOSfile system.

The boot sector is always at the beginning of a partition. It contains the OEM identifica-
tion, a loader routine, and a BIOS parameter block (BPB) with information about the
device, and it is followed by an optional area of reserved sectors. See The Boot Sector
below. The reserved area has no specific use, but an OEM might require a more complex
loader routine and place it in this area, The file allocation tables (FATs) indicate how the
file data area is allocated; the root directory contains a fixed numberof directory entries;
and the file data area contains datafiles, subdirectory files, and free data sectors.

Section H: Programming in theMS-DOS Environment 93

: LID TANVAIT! PW ANMNAN ANTIACON

OLYMPUSEX.1010 - 107/1582

OLYMPUS EX. 1010 - 108/1582

Part A: Structure of MS-DOS
All the areas just described — the bootsector, the FAT, the root directory, and the file data
area — are offixed size; thatis, they do not change after FORMATsets up the medium.
The size of each of these areas depends on variousfactors. For instance, the size of the FAT
is proportionalto thefile data area. The root directory size ordinarily depends on the type
of device; a single-sided floppy disk can hold 64 entries, a double-sided floppy disk can
hold 112, and a fixed disk can hold 256. (RAMdisk drivers such as RAMDRIVE.SYS and
some implementations of FORMATallow the numberofdirectory entries to be specified.)

#

i
aint

The file data area is allocated in terms of clusters. A cluster is a fixed number of con-

tiguoussectors. Sectorsize and cluster size must be a powerof2. Thesectorsize is usually
512 bytes and the cluster size is usually 1, 2, or 4 KB, butlarger sector and chister sizes are
possible. Commonly used MS-DOScluster sizes are

Disk Type Sectors/Cluster Bytes/Cluster*

Single-sided floppy disk 1 512
Double-sided floppy disk 2 1024
PCAATFixed disk 4 2048

| PC/XTfixed disk 8 4096
4 Otherfixed disks 16 8192

Otherfixed disks 32 16384

“Assumes 512 bytes per sector.

In general, larger clustersizes are used to supportlargerfixed disks. Although smaller clus-
; ter sizes make allocation more space-efficient,larger clusters are usually moreefficient for
| random and sequential access, especially if the clustersfora single file are not sequentially

iE allocated.

Thefile allocation table contains one entry perclusterin the file data area, Doubling the
sectors per cluster will also halve the numberof FAT entries for a given partition. See The
File Allocation Table below.

The boot sector

The bootsector (Figure 3-6) contains a BIOS parameter block,a loader routine, and some
otherfields useful to device drivers. The BPB describes a numberofphysical parameters

i ofthe device, as well as the location and size of the other areas on the device, The device
: driver returns the BPB information to MS-DOS when requested, so that MS-DOS can deter-

mine how the disk is configured.

Figure 3-7 is a hexadecimal dumpofan actual boot sector. Thefirst 3 bytes of the boot sec-
tor shownin Figure 3-7 would be E9H 2CH 00Hif a tong jump were used instead of a short
one (as in early versions of MS-DOS). Thelast 2 bytes in the sector, 55H and AAH,are 4
fixed signature used by the ioader routine to verify that the sector is a valid boot sector.

OLYMPUSEX. 1010 - 108/1582

���������	�
�
����
���
��
OLYMPUS EX. 1010 - 109/1582

Article 3: MS-DOSStorage Devices

00H
E9 XX XX or EB XX 90

03H

OEM nameand version (8 bytes)

i
Bytes per sector (2 bytesODH ee

Sectors per allocation unit (1 byte)OEH

10H Reservedsectors, starting at 0 (2 bytes)
Number of FATs(1 byte)

11H BPB

BH Numberof root-directory entries (2 bytes)
ISH Total sectors in logical volume (2 bytes)
16H Media descriptor byte

Numberof sectors per FAT (2 bytes)18H
Sectors per track (2 bytes)1AH
Number of heads (2 bytes)1CH

1BH Numberof hidden sectors (2 bytes)

Loaderroutine

Figure 3-6. Map ofthe bootsector ofan MS-DOSdisk. Bytes OBH through 17Hare the BIOSparameter block
(BPB).

The BPB information contained in bytes OBH through 17H indicates that there are

512 bytes per sector
2 sectors per cluster
1 reserved sector (for the boot sector)
2 FATs

112 root directory entries
1440 sectors on the disk

FOH media descriptor
3 sectors per FAT

Section I: Programming in theMS-DOSEnvironment 95

HUAWFI FX_ 1010 - 109/158?

OLYMPUS EX. 1010 - 109/1582

OLYMPUS EX. 1010 - 110/1582

Part A: Structure of MS-DOS

 0000 kee ae
0010 ePe ce ceeceeeee
0020 tee SPY,
0030 BG. .x<.'3G.P.01)

OT8O G8 44 69 73 6B 20 $2 6F-6F 74 20 46 61 69 6C 75 -Disk Boot Failu

q190 #72 65 OD OA OD OA 4E 6F-6E 2D 53 79 73 74 65 6D re....Won-System
O1A0 20 64 69 73 6B 20 6F 72-20 64 69 73 6B 206 65 72 disk or disk er

O1BO 72 6F 72 OD OA 52 65 70-6¢ 61 63 65 20 61 6E 64 ror, Replace and
o1co 20 70 72 65 74 73 20 G1-GE 79 20 6B 65 79 20 77 Press any key w
01bD0 468 65 6E 20 72 65 61 64-79 OD OA OO OO OO OO DA hen ready.......

GIED OG OD 00 00 BO OO 00 00-00 00 00 O0 00 00 00 ON «twee ee eee eee
O1FO Of 00 00 00 00 OO OO G0-00 00 06 O06 OD OO 55 AA pete e eae *

1 Figure 3-7. Hexadecimal dump ofan MS-DOS boot sector, The BPB is highlighted.

Additional information immediately after the BPB indicates that there are 9 sectors per
track, 2 read/write heads, and 0 hidden sectors.

| : The media descriptor, which appears in the BPB andin thefirst byte of each FAT, is used to
: indicate the type of medium currently in a drive. IBM-compatible media have the follow-

ing descriptors:

Descriptor Media Type MS-DOSVersions

OF8H Fixed disk 2,3
OFOH 35-inch, 2-sided, 18 sector 4.2
OFOH 3.5-inch, 2-sided, 9 sector 3.2

|: OF9OH 5.25-inch, 2-sided, 15 sector ax
f OFCH §.25-inch, l-sided, 9 sector 2.X, 3.X

| 0FDH 5.25-inch, 2-sided, 9 sector 2.X, 3.x
OFEH §.25-inch, 1-sided, 8 sector Lx, 2.x, 3.x
OFFH 5.25-inch, 2-sided, 8 sector Lx (except 1.0), 2,3
OFEH 8-inch, 1-sided, single-density

1: OFDH 8-inch, 2-sided, single-density
I OFEH 8-inch, 1-sided, double-density
i OFDH 8-inch, 2-sided, double-density

OLYMPUSEX.1010 - 110/1582

���������	�
�
����

�
��OLYMPUS EX. 1010 - 111/1582

Article 3: MS-DOSStorage Devices

The file allocation table

Thefile allocation table provides a map to the storage locationsof files on a disk by indi-
cating which clusters are allocated to eachfile and in what order. To enable MS-DOSto
locateafile, the file’s directory entry contains its beginning FAT entry number. This FAT
entry, in turn, contains the entry numberof the next clusterifthe file is larger than one
clusterora last-cluster numberif there is only one cluster associated withthefile. A file
whosesize implies that it occupies 10 clusters will have 10 FAT entries and 9 FATlinks.
(Theset of links for a particularfile is called a chain.)

Additional copies of the FAT are used to provide backup in case of damageto thefirst,
or primary, FAT; the typical floppy disk or fixed disk contains two FATs. The FATs are
arranged sequentially after the boot sector, with some possible intervening reserved area.
MS-DOSordinarily uses the primary FAT but updates all FATs when a change occurs.
It also comparesall FATs whena diskis first accessed, to make sure they match.

MS-DOSsupports two types of FAT: Oneuses12-bit links; the other, introduced with
version 3.0 to accommodate large fixed disks with more than 4087 clusters, uses 16-bit
links,

Thefirst two entries of a FAT are always reserved and arefilled with a copy of the media
descriptor byte and two (for a 12-bit FAT) or three (for a 16-bit FAT) OFFH bytes, as shown
in the following dumpsofthe first 16 bytes of the FAT:

12-bit FAT:

FO FF FF 03 40 00 FF 6F-00 07 FO FF 00 00 00 00

16-bit FAT:

F8 EF FF FF 03 00 04 00-FF FF 06 00 07 00 FF FF

The remaining FAT entries have a one-to-one relationship with the clusters in the file data
area. Each clustet’s use status is indicated by its corresponding FAT value. (FORMATin-
itially marks the FAT entry for each cluster as free.) The use status is one of the following:

&

12-bit 16-bit Meaning

000H. 0000H Free cluster
001H 0001H Unused code

FFO-FF6H FFFO-—FFF6H Reserved

FF7H FFF7H Bad cluster, cannot be used
FF8—FFFH FFF8—FFFFH Last clusteroffile

All other values All other values Link to nextclusterin file

Section II: Programming in the MS-DOS Environment, »—, uv, anan fArAN

OLYMPUSEX. 1010 - 111/1582

OLYMPUS EX. 1010 - 112/1582

Part A: Structure of MS-DOS

If a FAT entry is nonzero, the corresponding cluster has been allocated. A free cluster is
found by scanning the FAT from the beginning to find thefirst zero value. Bad clusters are
ordinarily identified during formatting. Figure 3-8 shows a typical FAT chain.

FAT entry: 0 i 2. 3 #4 5 6 1 8 9

FFDH|FFFH|003H|oosH|FE7H|coon|FFFH|coon|oc0H|o0OH

(4093)|(4095)| 3)|G)|(4087)! «@|@o95)| o|@|@

Unused; available cluster

COMUNUES...
 Unusable

Unused: not available

Disk is double-sided, double-density

ribs | Figure 3-8. Space allocation in the FATfor a typical MS-DOS disk.

Free FAT entries contain a link value of zero; a link value of 1 is never used. Thus, the first
i allocatable link number, associated with the first available cluster in the file data area, is 2,

it which is the numberassignedto thefirst physical cluster in the file data area. Figure 3-9
po showsthe relationship of files, FAT entries, and clusters in the file data area,

ao Thereis no /ogical difference between the operation of the 12-bit and 16-bit FAT entries;
the differenceis simply in the storage and access methods. Because the 8086 is specifically

| ve designed to manipulate 8- or 16-bit values efficiently, the access procedure for the 12-bit
, FAT is more complex than that for the 16-bit FAT (see Figures 3-10 and 3-11.

Special considerations
The FATis a highly efficient bookkeeping system, but various tradeoffs and problems can
occur. Onetradeoff is having a partiallyfilled cluster at the end ofa file. This situation
leacls to an efficiency problem when a large cluster size is used, because an entire cluster is
allocated, regardless of the numberof bytesit contains. For example, ten 100-byte files on a
disk with 16 KB clusters use 160 KB of disk space, the samefiles on a disk with 1 KB clus-
ters use only 10 KB—adifference of 150 KB,or 15 times less storage used by the smaller
cluster size. On the other hand, the 12-bit FAT routine in Figure 3-10 showsthe difficulty
(and therefore slowness} of moving througha largefile that has a long linked list of many
small clusters. Therefore, the nature of the data must be considered: Large database appli-
cations work best with a larger cluster size; a smaller cluster size allows many small text
files to fit on a disk. (The programmerwriting the device driver for a disk device ordinarily
sets the clustersize.)

OLYMPUSEX.1010 - 112/1582

���������	�
�
����

��
��OLYMPUS EX. 1010 - 113/1582

i
t
|!i
i

Article 3: MS-DOS Storage Devices

12-bit FAT:

Reserved 003H FFFH 007H 000H

FO FF FF 03 40 00 FF 6F 00, 07 FO (FF, 00 00

0048 006H FFFH

16 bit FAT:

Reserved

0003H 0004H FEFFH 0006H 0007H FREFFH O0000H

F8 FF FP FF O03 00 04 OO FF FF O06 O00 O7 OO FF FF 00 00

FATentry: 0 1 2 3 4 5 6 7 8

12-bit FAT: OO3H|004H|FFFH|006H|007H |.FFFH|000H
Reserved continues...

16-bit FAT: 0003H |O004H/FFFFH|0006H|0007H|FFFFH|0000H

Directory entry | | a a
FILE1. TXT

(points to FAT entry 2)

FILE2. TXT
points to FATentry 5

File data area Corresponding FAT entry

2

.

!

)

.

.

!

Figure 3-9. Correspondence between the FATandthefile data area.

Section Il: Programming in the MS-DOS Environment 99

OLYMPUSEX.1010 - 113/1582

OLYMPUS EX. 1010 - 114/1582

Part A: Structure of MS-DOShl

}o---- Obtain the next link number from a t@-bit FAT ----7

; Parameters:

3 ax = current entry number
; dsibx = address of FAT. (must be contiguous]

; Returns:
i ax = next link number
?

3; Uses: au, bx, cx

nextl2 proc near

add bx, ax ; ds:bx = partial index
: shr ax,] ; ax = offset/2

fo. j carry = no shift needed
pusht ij Save carry

: add bx, ax ; ds:bx = next cluster number index
{ mov ax, [bx] 7 ax = next cluster number

popt ; carry = pa shift needed
jc shift i; skip if using top 12 bits
and ax, Offfh 7 ax = lower 12 bits
ret

shift: mov cx, 4 } cx = shift count
shr ax,cl ; ax = bop t2 bies in lower 12 bits
ret

1 nextt2 endp

Figure 3-10. Assembly-language routine fo access a 12-bit FAT.

i } o---- Obtain the next link number from a 14-bit FAT ----~-
i

i 7 Parameters:
; ax
; da:bx

current entry number
address of FAT (must be contiguous)

?

3} Returns:
; ax = next link number

1 Uses: ax, bx, Cx

nextl6 proc near
add ax, ax } ax = word offset
add bx, ax ; dg:bx = next link number index
mov ax, [bx) } ax = next Link number
ret

nextlé endp

Figure 3-11. Assembly-language routine to access a 16-bit FAT.

OLYMPUSEX. 1010 - 114/1582

���������	�
�
����

�
��OLYMPUS EX. 1010 - 115/1582

Article 3: MS-DOS Storape Devices

Problems with corrupted directories or FATs, induced by such events as powerfailures
and programs running wild, can lead to greater problems if not corrected. The MS-DOS
CHKDSK program can cletect and fix some of these problems. See USER COMMANDS:
cCHKDss. For example, one common problem is dangling allocationlists caused by the
absence of a directory entry pointing to the start of the list. This situation often results
whenthe directory entry was not updated becausea file was not closed before the com-
puter was turned off or restarted. The effectis relatively benign: The datais inaccessible,
but this limitation does notaffect otherfile allocation operations. CHKDSK canfix this
problem by making a new directory entry and linking it to the list.

Another difficuity occurs when thefile size in a directory entry does not matchthe file
fength as computed by traversing the linked list in the FAT. This problem canresult in
improper operation of a program and in error responses from MS-DOS.

Amore complex (and rarer) problem occurs when the directory entry is properly set up
but all or some portion ofthe linkedlist is also referenced by anotherdirectory entry. The
problem is grave, because writing or appending to onefile changes the contents of the
otherfile. This error usually causes severe data and/or directory corruption or causes the
system to crash.

A similardifficulty occurs whena linked list terminates with a free cluster instead of a
last-chuster number.If the free cluster is allocated before the error is corrected, the
problem eventually reverts to the preceding problem. An associated difficulty occurs if a
link value of 1 or a link value that exceeds the size of the FAT is encountered.

In addition to CHKDSK, a number of commercially available utility programs can be used
to assist in FAT maintenance.For instance, disk reorganizers can be used to essentially
rearrange the FAT and adjust the directory so thatali files on a disk are laid out sequentially
in the file data area and, of course, in the FAT.

The root directory

Directory eniries, which are 32 bytes long, are found in both the root directory and the
subdirectories. Each entry includes a filename and extension,thefile's size, the starting
FAT entry, the time and date the file was created or last revised, and thefile’s attributes.
This structure resembles the format of the CP/M-style file control blocks (FCBs} used by
the MS-DOSversion 1.x file functions. See PROGRAMMING IN THE MS-DOS

ENVIRONMENT: PRoGRAMMING FOR MS-Dos: Disk Directories and Volume Labels.

The MS-DOSfile-naming convention is also derived from CP/M: an eight-characterfile-
name followed by a three-characterfile type, eachleft aligned and padded with spacesif
necessary. Within the limitations of the character set, the name and type are completely
arbitrary. The time and date stampsare in the same format used by other MS-DOS func-
tions and reflect the timethefile was last writtento.

Figure 3-12 shows a dump of a $12-byte directory sector containing 16 directory entries.
(Each entry occupies twolines in this example, The byte at offset GABH, containing a
10H,signifies that the entry starting at OAGH is for a subdirectory. The byte at offset 160H,
containing OESH, meansthat the file has been deleted. The byte at offset 8BH, containing

: Section ft Programming in the MS-DOS Environment 101
t HIIAWEL EY 1N1N_118/18a29

OLYMPUSEX.1010 - 115/1582

OLYMPUS EX. 1010 - 116/1582

Part A: Structure of M§8-DOS

the value 08H, indicates that the directory entry beginning at offset 80H is a volumelabel.
Finally the zero byte at offset IEOH marks the end of the directory, indicating that the sub-
sequent entries in the directory have never been used and therefore need not be searched
(versions 2.0 and later).

go +24 3 4 5 6 7 8 9 A BC Bb E F Oooo 49 4F 20 20 26 20 20 20-53 59 53 27 00 60 GO OA Id SYS‘. we.
0010 60 00 0O 00 00 00 59 53-89 OB 02 00 D1 12 oo 00 ~,..... Yo..0-Q.0-
Q020 4F 53 44 4F 53 20 20 20-53 59 53 27 00 GO O0 00 MSDOS sYS'....
0030 00 00 G0 00 09 O0 41 49-527 OA OF OF c¥9 43 00 OO AIR...1C..
0040 41 JE 53 49 20 20 20 20-53 59 53 20 06 OG 00 00 ANSI SYS
0050 O00 69 O06 00 00 00 41 49-52 0A 18 00 76 07 OO GOAIR...v...
0060 S58 54 41 4C 4B 20 26 20-45 58 45 20 O0 00 00 60 XTALK EXE

oo7d OO BO 0G 00 00 GO FV 7D-38 039 23 02 84 0B 0100 wWtO.#e. ewe.
oo80 «4C 4t 42 45 4C 20 20 20-20 20 20 08 OO 00 00 Od LABEL wae
oo90 «660 00 GO 00 06 OG BC 20-2a 09 00 00 NO OO GO OO... #.D. Re.

OOAQ 4C 4F 54 55 53 20 20 20-20 20 20 10 00 Go 00 40 LOTUS wae
OOBO 60 00 00 OO 00 00 EQ QA-E1 06 AG 01 00 00 00 00 Ve... "Arb aaee
60co 4¢ $4 53 40 4F 41 44 20-43 4F 4B 20 00 00 O00 00 LTSLOAD COM

oy Q0bO0 df 00 00 00 00 OO EO QA-Ei 96 Ay 01 AD 27 00 DG "wa.t. Ty,
| OOBO 4b 43 49 2D 53 46 26 20-58 54 4B 20 00 00 00 0G MCI-SF XTK

an OOFO O08 GO 00 OO OO 00 46 19-32 OD BI O1 79 O04 OO OO... F.2.1.y..
i i 0100 58 54 41 4C 4B 20 20 20-48 4¢ 50 20 00 00 00 Od XTALK. HLP

. [0110 00 90 00 00 00 006 CS GD-73 07 AS 02 AF 86 O00 00 4.Ems.#./...
, | 6120 54 58 20 20 20 20 20 20-43 4F 4D 20 00 00 OD OO TX COM

' 0130 00 00 00 60 00 00.05 61-65 GC 39 07 E&@ 20 00 00 ae.9.n ..
6140 43 4F 4D 4D 41 4& d4 20-43 4F 4b 20 00 60 OO 00 COMMAND COM

: | 0150 O60 00 00 00 00 00 41 49-52 O04 27 00 55 3F OO OO AIR.'.U?..
i 0160 ES 32 33 20 20 20 20 20-45 58 45 20 00 46 O0 OO e23 EXE
i g170 OO 0G 00 04 00 00 9c B2-85 OB 42 01 80 SF O1 OO wo uae 2..0..o.,

: o18g 47 44 20 20 20 20 20 20-44 52 56 20 O00 O0 OO OO GD DRY

V 0190 O00 00 00 O00 00 00 EO ODA-Et 06 9A 01 5B 08 00 OO Lowa ".a.eetee.
O1a0 4B 42 20 20 20 20 20 20-44 52 56 20 06 O0 00 06 KB DRV
O1BO «460 00 0O 00 OG 00 EO OA-E1 06 9p 01 60 01 00 GO .,.... Tra. aa ten,
Q1co 80 $2 20 20 20 20 20 20-44 52 56 20 00 08 60 Od PR DRY
Gino @6 00 00 00 00 00 EQ OA-E1 06 9E 01 49 61:00 OO ‘va...1...
O1E0 OO F6 F6 F6 F6 Fé F6 F6-F6 F6 FG FG FG FG FE FE|wee eee eee ee
O1FO FG F& F6 F6 F6 F6 FO F6-FG6 FO FG FO FG FG FG FE wee eee eee eee

Figure 3-12. Hexadecimal dump ofa 512-byle directory sector.

{

|

|
|

|
|

| The sector shown in Figure 3-12 is actually an example ofthe first directory sector in the
| reot directory of a bootable disk. Notice that IO.SYS and MSDOS.SY%Sarethefirst two files

in the directory andthatthe file attribute byte (offset OBH in a directory entry) has a
binary value of 00100111, indicating that both files have hidden (bit 7 = 1), system (bit 0 = 1,
and read-only (bit 2 = 1) attributes. The archive bit (bit 5) is also set, marking thefiles for
possible backup.

|

OLYMPUSEX. 1010 - 116/1582

���������	�
�
����

��
��OLYMPUS EX. 1010 - 117/1582

Article 3: MS-DOSStorage Devices

The root directory can optionally have a special type of entry called a volumelabel, iden-
tified by an attribute type of 08H, that is used to identify disks by name. A rootdirectory
can contain only one volumelabel. The root directory can also contain entries that pointto
subdirectories, such entries are identified by an attribute type of 10H andafile size of zero.
Programs that manipulate subdirectories must do so by tracing through their chains of
clusters in the FAT.

Two other special types of directory entries are found only within subdirectories. These
entries have the filenames . and... and correspondto the current directory and the parent
directory of the current directory. These special entries, sometimes called directory
aliases, can be used to move quickly through the directory structure.

The maximum pathname length supported by MS-DOS,excluding a drive specifier but
including any filename and extension and subdirectory name separators,is 64 characters.
Thesize of the directory structureitself is limited only by the numberof root directory
entries and the available disk space.

Thefile area

Thefile area contains subdirectories, file data, and unallocated clusters. The area is
divided into fixed-size clusters and the use for a particular clusteris specified by the corre-
sponding FAT entry.

Other MS-DOSStorage Devices

As mentioned earlier, MS-DOS supports other types of storage devices, such as magnetic-
tape drives and CD ROMdrives. Tape drives are most often used for archiving and for
sequential transaction processing and therefore are not discussed here.

CD ROMsare compactlaser discs that hold a massive amountof information —a single
side of aCD)ROM canhold almost 500 MB of data. However, there are some drawbacksto
current CD ROM technology. For instance, data cannot be written to them —the informa-
tion is placed on the compact disk at the factory when the disk is made andis available on
a read-only basis. In addition, the access time for a CD ROM is muchslowerthan for most
magnetic-disk systems. Even with these limitations, however, the ability to hold so much
information makes CD ROM a good methodfor storing large amountsofstatic information.

William Wong

| Section I: Programming in the MS-DOS Environment 103

OLYMPUSEX. 1010 -117/1582

OLYMPUS EX. 1010 - 118/1582

Part B

Programming for MS-DOS

OLYMPUSEX. 1010 - 118/1582

���������	�
�
����

��
��OLYMPUS EX. 1010 - 119/1582

Atticle 4; Structure of an Application Program

Article 4

Structure ofan Application Program

Planning an MS-DOSapplication program requires serious analysis of the program'ssize.
This analysis can help the programmerdetermine whick of the two program styles sup-
ported by MS-DOSbestsuits the application. The .EXE program structure providesa large
program with benefits resulting from the extra 512 bytes (or more) of header that preface
all EXEfiles. On the other hand,at the cost of losing the extra benefits, theCOM program
structure does not burden a small program with the overhead of these extra header bytes.

Because .COM programsstarttheir lives asEXE programs (before being converted by
EXE2BIN) and because several aspects of application prograrmming under MS-DOS
remain similar regardless of the program structure used, a solid understanding of .EXE
structures is beneficial even to the programmer who plans on writing only COM pro-
grams. Therefore, we'll begin our discussion with the structure and behavior of .EXE
programs and then iook at differences between .COM programs and .EXE programs,
including restrictions on the structure and content of .COM programs,

The .EXE Program

The .EXE program has several advantages over the .COM program for application design.
Considerations that could lead to the choice of the .EXE format include

Extremely large programs
Multiple segments
Overlays
Segment and far address constants
Long calis
Possibility of upgrading programs to MS O8/2 protected mode

The principal advantages of the .EXE format are provided by the file header. Most
important, the header contains information that permits a program to make direct seg-
ment address references —a requirementif the program is to grow beyond 64 KB.

Thefile headeralso tells MS-DOS how much memorythe program requires. This informa-
tion keeps memory not required by the program from being allocated to the program —-
an important considerationif the program is to be upgraded in the future to runefficiently
under MS ©8/2 protected mode.

Before discussing the .EXE program structure in detail, we'll look at how .EXE programs
behave.

Section Hi: Programming in the MS-DOS Environment 107
i HIIAWEL EY 1N1N _110/148a9

OLYMPUSEX. 1010 - 119/1582

OLYMPUS EX. 1010 - 120/1582

Part B: Programming for MS-DOS

Giving control to the .EXE program

Figure 4-1 gives an example of how a .EXE program might appear in memory when
MS-DOSfirst gives the program control. The diagram shows Microsoft's preferred pro-
gram segment arrangement.

<4SP
Any segments with class

STACK
45s

All segments Mysemenwihlas|segments with classdeclaredMysemenwihlas|
as part of group StyDGROUEcementsDGROUPsegmentsDGROUP notStyDGROUEcementselsewhere
|Anyseamenhlssegments with classJAnyseamenswitnessanessegmentsOiclass names dipStart segmentJAnyseamenswitnessaneswith CODEand start of

program image Progtam segmentprefix (PSP)
(load moduie) —!

wane(oe eee + ~~ ba DE

Figure 4-1. TheEXEprogram: memory map diagram with registerpointers.

Before transferring control to the EXE program, MS-DOSinitializes various areas of
memory and several of the microprocessor's registers. The following discussionexplains
what to expect from M8-DQSbeforeit gives the EXE program control.

The program segment prefix

The program segmentprefix (PSP) is not a direct result of any program code. Rather, this
special 256-byte (16-paragraph) page of memoryis built by MS-DOSin frontofall .EXE
and .COM programs whentheyare loaded into memory, Although the PSP does contain
several fields of use to newer programis,it exists primarily as a remnant of CP/M—
Microsoft adopted the PSP for ease in porting the vast number of programsavailable under
CP/M to the MS-DOS environment. Figure 4-2 shows the fields that make up the PSP.

PSP:Q000H (Terminate fold Warm Boot/ Vector) The PSP begins with an 8086-family
INT 20H instruction, which the program can usete transfer control back to MS-DOS. The
PSP includes this instruction at offset OOH because this address was the WBOOT (Warm

Boot/Terminate) vector under CP/M and CP/M programs usually terminated by jumping
to this vector. This method of termination should not be used in newer programs. See
Terminating the .EXE Program below.

PSP-0002H CAddress ofLast Segment AHocated to Program) MS-DOSintroduced the word
at offset 02H into the PSP. It contains the segment address of the paragraph following the
block of memoryallocated to the program. This address should be used only to determine
the size or the end of the memory block allocated to the program;it must not be con-
sidered a pointer to free memorythat the program can appropriate. In most cases this ad-
dress will not point to free memory, because any free memory will already have been

OLYMPUSEX.1010 - 120/1582

���������	�
�
����
�
�
��OLYMPUS EX. 1010 - 121/1582

Article 4: Structure of an Application Program

xOH xlH x2H x3H x4H x5H x6H x7H x8H x9H xAH xBH xCH xDH xEH xFH

INT 20H|End alloc [Resv.| Farcallto MS-DOS fn handler|Prev terminate address|Prev Ctrl C...

address|Prevcritical error address Reserved...

seg lo|seg hi|ofslo|ofshi |seglo|seg hi

Environ seg Reserved...
seg lo |seg hi

OxH

ixH

 ox ...Reserved

3xH .Reserved... coMS-DOS 2.0
andlater only

AxH ..Reserved

5xq_ [INT 21H and RETF Reserved Primary FCB...
OCDH| 21H JOCBH d{| Fi 1

..Primary file control block (FCB) Secondary FCB...6xH
e}lniat|lm e}|E} x t |O0H|OOH]0OH| OOH] d|F|i 1

"aH ..secondary file control block (FCB) Reserved
e{[njfatm e;E |x t {00H {00H {00H |00H

8xH Commandtail and default disk transfer area (DTA) (continues through OFFH)...
: Len |

Figure 4-2. Theprogram segmentprefix (PSP).

allocated to the program unless the program waslinked using the /CPARMAXALLOC
switch. Even when /CPARMAXALLOCis used, MS-DOS mayfit the program into a block
of memory only as big as the program requires. Well-behaved programsshould acquire
additional memory only through the MS-DOSfunctioncalls provided for that purpose.

PSP:0005H (MS-DOS Function Call [oldBDOS/ Vecior) Offset 05H is also a hand-me-

down from CP/M.This location contains an 8086-family far Gintersegment) call instruction
to MS-DOS’s function request handler. (Under CP/M, this address was the Basic Disk Oper-
ating System [BDOS] vector, which served a similar purpose.) This vector should not be
used to call MS-DOSin newer programs. The System Calls section of this book explains
the newer, approved methodfor calling MS-DOS. MS-DOSprovidesthis vector only to sup-
port CP/M-style programsand therefore honors only the CP/M-style functions (00-24H)
throughit.

PSP:O00AH-O015H (Parent’s 22H, 23H, and 24HInterrupt Vector Save) MS-DOSuses
offsets 0AH through 15H to save the contents of three program-specific interrupt vectors.
MS-DOS mustsave these vectors because it permits any program to execute anotherpro-
gram (called a child process) through an MS-DOSfunction call that returns control to the
original program whenthecalled program terminates. Because the original program
resumes executing when the child program terminates, MS-DOS mustrestore these three

Section I: Programming in the MS-DOS Environment 109

OLYMPUSEX.1010 - 121/1582

OLYMPUS EX. 1010 - 122/1582

Part B: Programming for MS-DOS

interrupt vectors for the original program in case the called program changed them. The
three vectors involved include the program termination handler vector Interrupt 22H),
the Control-C/Control-Break handler vector (Interrupt 23H), and the critical error handler
vector (Interrupt 24H). MS-DOS saves the original preexecution contents of these vectors
in the child program's PSP as doubleword fields beginning at offsets OAH for the program
termination handler vector, OEH for the Control-C/Control-Break handler vector, and 12H
for the critical error handler vector.

PSP:002CH (Segment Address ofEnvironment) Under MS-DOSversions 2.0 and later, the
word at offset 2CH contains one of the mest useful pieces of information a program can
find in the PSP —the segmentaddress ofthe First paragraph of the MS-DOSenvironment.
This pointer enables the program to search through the environmentfor any configuration
or directory search path strings placed there by users with the SET command.

PSP:0050H (NewMS-DOS Call Vector) Mary programmers disregard the contents of offset
50H. Thelocation consists simply of an INT 21H instruction followed bya RETF. A.EXE
program can cali this location using a far calf as a meansofaccessing the MS-DOSfunction
handler. Ofcourse, the program can also simply do an INT 21H directly, which is smailer
and faster than calling SOH. Unlikecalls to offset 05H,calls to offset 50H can request the
full range of MS-DOSfunctions.

PSP-O05CH (Default File ControlBlock D and PSP:006CH (Default File Control Block 2)
MS-DOSparses thefirst two parameters the user enters in the commandfine following the
program's name.If the first parameter qualifies as a valid Cimited) MS-DOSfilename
(the namecan be preceded by a driveletter but not a directory path), MS-DOSinitializes
offsets 5CH through 6BH with thefirst 16 bytes of an unopenedfile control block (FCB)for
the specified file. If the second parameteralso qualifies as a valid MS-DOSfilename,
MS-DOSinitializes offsets 6CH through 7BH with thefirst 16 bytes of an unopened FCB for
the second specifiedfile. If the user specifies a directory path as part of either filename,
MS-DOSinitializes only the drive code in the associated FCB. Many programmers no
longer use this feature, because file access using FCBs does not support directory paths
and other newer MS-DOSfeatures.

Because FCRBs expand to 37 bytes when thefile is opened, openingthe first FCB at offset
5CH causesit to grow from 16 bytes to 37 bytes and to overwrite the second FCB.Similarly,
opening the second FCBat offset GCH causes it to expand and to overwrite the first part of
the commandtail and default disk transfer area (DTA). (The commandtail and default

DTA are described below.) To use the contents of both default FCBs, the program should
copy the FCBsto a pair of 37-byte fields located in the program's data area. The program
can use thefirst FCB without movingit only after relocating the second FCB Cif necessary)
and only by performing sequential reads or writes when using the first FCB. To perform
random reads and writes using the first FCB, the programmer must either movethefirst
FCBor change the default DTA address. Otherwise, the first FCB’s random record field will
overlap the start of the default DTA. See PROGRAMMING IN THE MS-DOS ENVIRON-
MENT: PROGRAMMING FOR MS-DOS:File and Record Management.

ee OLYMPUSEX.1010 - 122/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 123/1582

Article 4: Structure ofan Application Program

PSP:0080H (CommandTail and Default DTA) The default DTA residesin the entire sec-
ond half (128 bytes) of the PSP. MS-DOSusesthis area of memoryas the default record
bufferif the program uses the FCB-stylefile access functions. Again, MS-DOSinherited
this location from CP/M. (MS-DOSprovides a function the program can call to change the
address MS-DOSwill use as the current DTA. See SYSTEM CALLS: Interrupt 21H: Func-

tion 1AH.) Because the default DTA serves no purpose until the program performs some
file activity that requires it, MS-DOSplaces the commandtail in this area for the program
to examine. The commandtail consists of any text the user types following the program
name when executing the program. Normally, an ASCII space (20H)is thefirst character
in the commandtail, but any character MS-DOS recognizes as a separator can occupythis
position. MS-DOSstores the command-tail text starting at offset 81H and always places an
ASCII carriage return (ODH)at the end of the text. As an additionalaid,it places the length
of the commandtailat offset 80H. This length includesall characters exceptthe final ODH.
For example, the commandline
C>DOIT WITH CLASS <Enter>

will result in the program DOIT being executed with PSP:0080H containing
OB 20 57 49 54 48 20 43 4C 41 53 53 OD

len spW I T H spc L A S&S S$ er

The stack

Because .EXE-style programs did not exist under CP/M, MS-DOS expects .EXE programs
to operate in strictly MS-DOSfashion. For example, MS-DOSexpects the .EXE program to
supply its ownstack. (Figure 4-1 shows the program’sstack as the top box in the diagram.)

Microsoft's high-level-language compilers create a stack themselves, but when writing in
assembly language the programmermust specifically declare one or more segments with
the STACK combinetype.If the programmerdeclares multiple stack segments, possibly in
different source modules, the linker combines them into one large segment. See Control-
ling the .EXE Program’s Structure below.

Many programmers declare their stack segmentsas preinitialized with some recognizable
repeating string such as *STACK. This makesit possible to examine the program’s stack in
memory Cusing a debugger such as DEBUG)to determine how muchstack space the pro-
gram actually used. On the otherhand,if the stackis left as uninitialized memory and
linked at the end of the EXE program,it will not require space within the .EXEfile. (The
reasonfor this will become more apparent when we examinethe structure of a .EXEfile.)

Note: When multiple stack segments have been declared in different .ASM files, the
Microsoft Object Linker (LINK)correctly allocates the total amountof stack space speci-
fied in all the source modules, but the initialization data from all modules is overlapped
module by module at the high end of the combined segment.

An importantdifference between .COM and .EXE programsis that MS-DOSpreinitializes
a .COM program’s stack with a termination address before transferring control to the pro-
gram. MS-DOSdoesnotdo this for EXE programs, soa .EXE program cannot simply
execute an 8086-family RET instruction as a meansofterminating.

Section II: Programming in the MS-DOS Environment 111PP ADAIR EAs 4Aasn AARPAN

OLYMPUSEX.1010 - 123/1582

OLYMPUS EX. 1010 - 124/1582

Part B: Programming for MS-DOS

Note: Inthe assembly-languagefiles generated for a Microsoft C program or for programs
in most other high-level-languages, the compiler’s placement of a RET instruction at the
end of the main function/subroutine/procedure might seem confusing. After all, MS-DOS
does not place any return address on the stack, The compiler places the RET at the end of
main because matin does not receive control directly from MS-DOS.A library initializa-
tion routine receives control from MS-DOS;this routine then calls main. When main per-
forms the RET,it returns control to a library termination routine, which then terminates
back to MS-DOS in an approved manne.

Preallocated memory

While loading a .EXE program, MS-DOSperformsseveral steps to determinetheinitial
amount of memory to be allocated to the program. First, MS-DOS reads the two values the
linker places near the start of theEXE header: Thefirst value, MINALLOC,indicates the
minimum amount of extra memory the program requiresto start executing; the second
value, MAXALLOC,indicates the maximum amountof extra memory the program would
like allocated beforeit starts executing. Next, MS-DOSlocates the largest free block of
memoryavailable.If the size of the program's image within the .EXEfile combined with
the value specified for MINALLOC exceeds the memory blockit found, MS-DOS returns

a an error to the process trying to load the program.If that process is COMMAND,COM,
a COMMAND.COMthendisplays a Program too big tofit in memory error message and
I. terminates the user's execution request. If the block exceeds the program’s MINALLOC
- requirement, MS-DOS then compares the memory block against the program's image

combined with the MAXALLOC request. If the free block exceeds the maximum memory
requested by the program, MS-DOSallocates only the maximum request; otherwise,it
allocates the entire block. MS-DOS then builds a PSP at thestart of this block and loads

the program’s image from the -EXEfile into memory following the PSP.

This process ensures that the extra memory allocated to the program will immediately
follow the program's image. The same will not necessarily be true for any memory

us MS-DOSallocates to the program as a result of MS-DOS function calls the program per-
4 forms during its execution. Only function calls requesting MS-DOSto increase theinitial

allocation can guarantee additional contiguous memory. (Of course, the granting of such
increase requests dependson the availability of free memory followingthe initial

rid allocation.)

Programmers writing EXE programs sometimesfind the lack of keywords or compiler/
| assembler switches that deal with MINALLOC(and possibly MAXALLOC) confusing. The

programmer never explicitly specifies a MINALLOC value because LINK sets MINALLOC
to the total size ofall uninitialized data and/or stack segments linked at the very end of the

| program. The MINALLOCfield allows the compilerto indicate the size ofthe initialized
data fields in the load module without actually including the fields themselves,resulting in

| asmailer .EXE programfile. For LINK to minimizethe size of the .EXEfile, the programmust be coded and linked in such a wayas to place all uninitialized data fields at the end
of the program. Microsoft high-level-language compilers handle this automatically;
assembly-language programmers must give LINKa little help.

OLYMPUSEX.1010 - 124/1582

���������	�
�
����
��
��
OLYMPUS EX. 1010 - 125/1582

Article 4: Structure of an Application Program

Note; Beginning and even advanced assembly-language programmers can easily fall into
an argument with the assembler overfield addressing when attempting to place data fields
after the code in the sourcefile. This argument can be avoidedifprogrammers use the
SEGMENTand GROUPassembler directives, See Controtling the EXE Program's Struc-
ture below.

Noreliable method exists for the linker to determine the correct MAXALLOC value

required by the .EXE program. Therefore, LINK uses a “safe” value of FFFFH, which
causes MS-DOStoallocateall of the largest block of free memory —- whichis usually aff
free memory — to the program. Unless a program specifically releases the memory for
whichit has no use,it denies multitasking supervisor programs, such as IBM's TopView,
any memory in which to execute additional! programs — hencethe rule that a well-
behaved program releases unneeded memory duringits initialization. Unfortunately, this
memory conservation approach provides no help if a multitasking supervisor supports the
ability to load several programs into memory without executing them. Therefore, pro-
grams that have correctly established MAKALLOC values actually are well-behaved
programs.

To this end, newer versions of Microsoft LINK include the /CPARMAXALLOC switch
to permit specification of the maximum amount of memory required by the program. The
/CPARMAXALLOC switch can also be used to set MAXALLOCto a value that is known to

be less than MINALLOC.For example, specifying a MAXALLOC value of 1 (/CP:Dforces
MS-DOSto allocate only MINALLOCextra paragraphs to the program.In addition,
Microsoft supplies a program called EXEMOD with mostofits languages. This program
permits modification of the MAXALLOCfield in the headers of existing EXE programs.
See Modifying the .EXE File Header below.

The registers

Figure 4-1 gives a general indication of how MS-DOSsets the 8086-family registers
before transferring control to a EXE program. MS-DOS determines mostof the original
register values from information the linker places in the .EXE file headerat the start of the
EXEfile.

MS-DOSsets the 55 register to the segment (paragraph) address ofthe start of any seg-
ments declared with the STACK combine type and sets the SP register to the offset from S$
of the byte immediately after the combined stack segments. (if no stack segmentis
declared, MS-DOSsets SS:SP to CS:0000.) Because in the 8086-family architecture a stack
grows from high to low memory addresses, this effectively sets SS:SP to point to the base of
the stack. Therefore,if the programmer declares stack segments when writing an assem-
bly-language program,the program will not need to initialize the SS and SP registers.
Microsoft's high-level-language compilers handle the creation of stack segments automati-
cally. In both cases, the linker determinesthe initial $S and SP values and places them in
the headerat the start of the EXE programfile.

Unlike its handling of the 8S and SP registers, MS-DOS does not initialize the DS and ES
registers to any data areas of the EXE program. Instead, it points DS and ES tothe start of

Section LE Programming in the MS-DOS Environment 113

HUAWEI EX. 1010 - 125/1582

OLYMPUSEX.1010 - 125/1582

OLYMPUS EX. 1010 - 126/1582

Part B: Programming for MS-DOS

the PSP. It does this for two primary reasons: First, MS-DOS uses the DS and ESregisters to
tell the program the address of the PSP; second, most programsstart by examining the
commandtail within the PSP. Because the program starts without DS pointing to the data
segments, the program mustinitialize DS and Coptionally) ES to point to the data segments
before it starts trying to access any fields in those segments. Unlike .COM programs, .EXE
programs can dothis easily because they can make direct references to segments, as
follows:

Moy AX,5EG DATA_SEGMENT_OR_GROUP_NAME
Mov DS,AK
MOV ES, AX

High-level-language programs need not initialize and maintain DS and ES; the compiler
and library support routines do this.

In addition te pointing DS and ES to the PSP, MS-DOSalso sets AH and ALto reflect the
validity of the drive identifiers it placed in the two FCBs contained in the PSP. MS-DOSsets
AL to OFFHifthe first FCB at PSP:005CH wasinitialized with a nonexistent drive identifier;
otherwise, it sets AL to zero, Similarly, MS-DOS sets AH to reflect the drive identifier
placed in-the second FCB at PSP:006CH.

When MS-DOSanalyzesthe first two command-line parameters following the program
name in order to build the first and second FCBs,it treats any character followed by a
colon as a drive prefix. [f the drive prefix consists of a lowercase letter (ASCII 4 through
z), MS-DOSstarts by converting the character to uppercase CASCII_A through 2). Then it
subtracts 40H from the character, regardiess ofits original value. This converts the drive
prefix letters A through Z to the drive codes 01H through 14H,as required by the two
FCBs. Finally, MS-DOSplaces the drive code in the appropriate FCB.

This process does not actually preclude invalid drive specifications from being placed in

i the FCBs. For instance, MS-DOS will accept the drive prefix !: and place a drive code of
I. OEIH in the FCB (! = 21H; 21H-40H = 0E1H). However, MS-DOS wil} then check the drive
1 codeto see if it represents an existing drive attached to the computer and will pass a value

of OFFH to the program in the appropriate register (AL or AH)if it does not.

Asa side effect of this process, MS-DOSaccepts @;as a valid drive prefix because the
subtraction of 40H converts the @ character (40H) to 00H. MS-DOS accepts the 00H value
as valid because a OOH drive code represents the current default drive. MS-DOS will leave
the FCB’s drive code set to OOH rather than translating it to the code for the default drive
because the MS-DOSfunction calls that use PCBs accept the OOH code.

Finally, MS-DOSinitializes the CS and IP registers, transferring control to the program’s
tS entry point. Programs developed using high-levelanguage compilers usually receive con-

tro] at a library initialization routine. A programmer writing an assembly-language pro-
gram using the Microsoft Macro Assembler (MASM) can declare any label within the

OLYMPUSEX.1010 - 126/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 127/1582

Article 4: Structure of an Application Program

program as the entry pointby placing the labelafter the END statementas thelast line of the
program:

END ENTRY_POINT_LABEL

With multiple sourcefiles, only oneof the files should have a label following the END
statement. If more than one sourcefile has such a label, LINK usesthefirst one it encoun-

ters as the entry point.

Theother processor registers (BX, CX, DX, BP, SI, and DID contain unknown values when
the program receives control from MS-DOS. Onceagain, high-level-language program-
mers can ignore this fact — the compiler andlibrary support routines deal with the situa-
tion. However, assembly-language programmers should keep this fact in mind. It may give
neededinsight sometime in the future when a program functionsat certain times and
notat others.

In many cases, debuggers such as DEBUG and SYMDEBinitialize uninitialized registers to
some predictable but undocumentedstate. For instance, some debuggers may predictably
set BP to zero before starting program execution. However, a program mustnot rely on
such debuggeractions, because MS-DOS makes no such promises.Situations like this
could account for a program thatfails when executed directly under MS-DOSbut works
fine when executed using a debugger. .

Terminating the .EXE program

After MS-DOShasgiven the .EXE program control and it has completed whatevertask
it set out to perform, the program needsto give control back to MS-DOS. Because of
MS-DOS’s evolution, five methods of program termination have accumulated— not
including the several ways MS-DOSallows programsto terminate but remain resident
in memory.

Before using any of the termination methods supported by MS-DOS,the program should
always close anyfiles it had open, especially those to which data has been written or
whose lengths were changed. Underversions 2.0 and later, MS-DOSclosesanyfiles
opened using handles. However, good programming practice dictates that the program
not rely on the operating system to close the program’sfiles. In addition, programs written
to use sharedfiles under MS-DOSversions 3.0 andlater should release any file locks before
closing thefiles and terminating.

The Terminate Process withReturn Code function

Ofthe five ways a program can terminate, only the Interrupt 21H Terminate Process with
Return Code function (4CH)is recommendedfor programs running under MS-DOSver-
sion 2.0 or later. This method is one of the easiest approaches to terminating any pro-
gram, regardless ofits structure or segmentregister settings. The Terminate Process with
Return Code function call simply consists ofthe following:

MOV AH, 4CH zload the MS-DOS function code
MOV AL, RETURN_CODE jload the termination code
INT 21H ;call MS-DOS to terminate program

: Section If: Programming in the MS-DOS Environment 115b 2am RAN

OLYMPUSEX.1010 -127/1582

OLYMPUS EX. 1010 - 128/1582

Part B: Programming for M3-DOS.

The example loads the AH register with the Terminate Process with Return Code function
code. Thenit loads the AL register with a return code. Normally, the return code repre-
sents the reason the program terminated or the result of any operation the program
performed.

A program that executes another program as a child process can recover and analyze the
child program's return codeif the child process used this termination method. Likewise,
the child process can recover the RETURN_CODEreturned by any program it executes as
a child process. When a program is terminated using this method and control returns to
MS-DOS,a batch (BAT)file can be used to test the terminated program’s return code
using the [FERRORLEVEL statement.

Only two general conventions have been adopted for the value of RETURN_CODE:
First, a RETURN_CODEvalue of 00H indicates a normal no-error termination of the

program; second, increasing RETURN_CODEvaluesindicate increasing severity of con-
ditions under which the program terminated. For instance, a compiler could use the
RETURN__CODE 00Hif it found no errors in the sourcefile, O1H if it found only warning
errors, or 02H if it found severe errors.

If a program has no need to return any special RETURN_CODEvalues, then the following
instructions will suffice to terminate the program with a RETURN_CODEof 00H:

MoV . AX, 4CQ0H
INT 218

Apart from being the approved termination method, Terminate Process with Return Code
is easier to use with .EXE programs than any other termination method because ali other
methods require that the CS register point to the start of the PSP when the program termi-
nates. This restriction causes problems for .EXE programs because they have code seg-
ments with segment addresses different from thatof the PSP.

The only problem with Terminate Process with Return Codeis thatit is not available under
MS-DOSversionsearlier than 2.0, so it cannot be used if a program must be compatible
with early MS-DOS versions. However, Figure 4-3 shows how a program can use the
approved termination method when available butstill remain pre-2.0 compatible. See The

po Warm Boot/Terminate Vector below.

TEAT SEGMENT PARA PUBLIC 'CODE"

ASSUME €5:TEXT,DS: NOTHING, ES :NOTHING, SS: NOTHING

TERMVECTOR DD ?

?Save pointer to termination vector in PSP

i Mov WORD PTR CS:TERMVECTOR+O,0000h :;save offset of Warm Boot vector
i Mov WORD PTR CS; TERMVECTOR+2, DS 7Save segment address of PSP
. t

Figure 9-3. Terminating properly under any MS-DOS version. (more)

: ENTRY_PROC PROC FAR

\

l
|i

OLYMPUSEX.1010 - 128/1582

���������	�
�
����
���
��
OLYMPUS EX. 1010 - 129/1582

Article 4; Structure of an Application Program

peeeee Place main task here #949"

ideterming which MS-DOS version ig active, take jump if 2.0 or later

Moy BH, 40h jload Get MS-DOS Version Number function code
INT 21h 7call MS-DOS to get version number
OR AL, AL 7gee 1f pre-2.0 MS-DOS
Jz TERMLO200 Fjump if 2,0 or Later

;terminate under pre-2.0 MS-DOS

JMP CS:TERM_VECTOR ;dump to Warm Boot vector in PSP

fterminate under MS-DOS 2.0 or later

TERWM_O200; : .
MOV AX, 4c00h jload MS-DOS termination function code

rand return cede
INT 21h iCall MS-DOS te terminate

ENTRY_PROC ENDE

TEAT ENDS

END ENTRY _PROC pdefine entry point

Figure 4-3. Continued.

The Terminate Program interrupt

Before MS-DOS version 2.0, terminating with an approved method meant executing
an INT 20H instruction, the Terminate Program interrupt. The INT 20H instruction was
teplaced as the approved termination methad for two primary reasons: First, it did not
provide a means whereby programs could return a termination code; second, C$ had
to point to the PSP before the INT 20H instruction was executed.

Therestriction placed on the value of CS at termination did not pose a problem for COM
programs because they execute with CS pointing to the beginning of the PSP. A EXE pro-
grarn, on the other hand, executes with CS pointing to various code segments ofthe pro-
gram, and the value of CS cannot be changed arbitrarily when the program is ready to
terminate, Because ofthis, few .EXE programs attempt simply to execute a Terminate Pro-
gram interrupt from directly within their own code segments. Instead, they usually use
the termination method discussed next.

The Warm Boot/Terminate vector

The earlier discussion of the structure of the PSP briefly covered one older method a .EXE
program can use to terminate: Offset OOH within the PSP contains an INT 20H instruction
to which the program can jumpin order to terminate, MS-DOS adopted this technique to
support the many CP/M programs ported to MS-DOS. Under CP/M,this PSP location was
referred to as the Warm Boot vector because the CP/M operating system was always
teloaded from disk Gebooted) whenever a program terminated,

Section I: Programming in the MS-DOS Environment 117

HIUIAWEFIFX 1910 - 1990/1489

OLYMPUSEX.1010 - 129/1582

OLYMPUS EX. 1010 - 130/1582

Part B: Programming for MS-DOS

Because offset OOH in the PSP contains an INT 20H instruction, jumping to that location
terminates a program in the same manner as an INT 20H included directly within the pro-
gram, but with one important difference: By jumping to PSP:0000H,the program sets the
CS register to point to the beginning of the PSP, therebysatisfying the only restriction
imposed on executing the Terminate Program interrupt. The discussion of MS-DOS Func-
tion 4CH gave an example of how a .EXE program can terminate via PSP:0Q00H. The ex-
ample first asks MS-DOSforits version number and then terminates via PSP:0000H only
under versions of MS-DOSearlier than 2.0. Programs can also use PSP:0000H under
MS-DOSversions 2.0 and later; the example uses Function 4CH simply becauseit is
preferred underthe later MS-DOSversions.

The RET instruction

The other popular method used by CP/M programsto terminate involved simply execut-
ing a RET instruction. This worked because CP/M pushed the address of the Warm Boot
vector onto the stack before giving the program control. MS-DOSprovidesthis support
only for COM-style programs; it does not push a termination address onto the stack
before giving .EXE programs control.

The programmer who wants to use the RET instruction to return to MS-DOScan use the
variation of the Figure 4-3 listing shown in Figure 4-4.

TEXT SEGMENT PARA PUBLIC ‘CODE’

|"! ASSUME CS:TEXT,DS:NOTHING, ES;:NOTHING, S$: NOTHING
i: .

In ENTRY_PROC PROC FAR imake proc FAR so RET will be FAR
1

?Push pointer to termination vector in PSP
PUSH DS ?push PSP’s segment address

Ly xOR AX, AX jax = 0 = offset of Warm Boot vector in PSP

1 PUSH AR ppush Warm Book veetor offset

;4#2%4* Place main task here ##+*#+#

iDetermine which MS-DOS version is active, take jump if 2.0 or later

1 MOV AH, 30h jload Get MS-DOS Version Number function code
i: INT 2th 7Call MS-DOS te get version number

OR AL, AL isee if pre-2.0 MS-Dos
JNZ TERM_6200 jjump if 2.0 or later

f: ;Terminate under pre-2.0 MS-DOS (this is a FAR proc, so RET will be FAR}
[RET ~ jpop PSP:00H into CS:IP to terminate

Figure 4-4. Using RETto return control to MS-DOS. (more)

OLYMPUSEX.1010 - 130/1582

���������	�
�
����
�
�
��OLYMPUS EX. 1010 - 131/1582

Article 4: Structure of an Application ProgramAtr

;Terminate under MS-DOS 2.0 or later
TERM_.0200:

MOV AX, 4C00h ;AH = MS-DOS Terminate Process with Return Code
;function code, AL = return code of 00H

INT 21h scall MS-DOS to terminate

ENTRY_PROC ENDP

TEXT ENDS

END ENTRY_PROC 7declare the program’s entry point

Figure 4-4. Continued.

The Terminate Process function

The final methodfor terminating a .EXE programis Interrupt 21H Function 00H (Termi-
nate Process). This method maintains the samerestriction as all other older termination

methods: CS must point to the PSP. Because ofthis restriction,EXE programstypically
avoid this methodin favor of terminating via PSP:0000H,as discussed above for programs
executing underversions of MS-DOSearlier than 2.0.

Terminating and staying resident

A .EXE program can use anyofseveral additional termination methodsto return con-
trol to MS-DOSbutstill remain resident within memoryto service a special event. See
PROGRAMMINGIN THE MS-DOS ENVIRONMENT: CusToMIZING Ms-Dos: Terminate-and-

Stay-Resident Utilities. .

Structure ofthe .EXE files

So far we've examined how the .EXE program looks in memory, how MS-DOSgives the
program control of the computer, and how the program should return control to MS-DOS.
Next we'll investigate what the program lookslike as a disk file, before MS-DOSloadsit
into memory. Figure 4-5 shows the general structure of a EXEfile.

Thefile header

Unlike .COM program files, EXE program files contain information that permits the
EXE program and MS-DOStousethefull capabilities of the 8086 family of microproces-
sors. The linker placesall this extra information in a headerat the start of the .EXEfile,
Although the .EXEfile structure could easily accommodate a header as small as 32 bytes,
the linker never creates a header smaller than 512 bytes. (This minimum headersize corre-
spondsto the standard record size preferred by MS-DOS.) The .EXEfile header contains
the following information, which MS-DOSreadsinto a temporary work area in memory
for use while loading the .EXE program:

00-01(EXE Signature) MS-DOSdoesnotrely on the extension EXE or .COM) to
determine whethera file’contains a .COM ora .EXE program. Instead, MS-DOSrecognizes
the file as a EXE programifthe first 2 bytes in the header contain the signature 4DH 5AH

Section II: Programming in the MS-DOS Environment 119
LIIA\AICIL OV A4N1AnN AQ4/14RQ9

OLYMPUSEX.1010 - 131/1582

OLYMPUS EX. 1010 - 132/1582

Part B: Programming for M3-DOS

XOH xIH x2H x3H x4H x5H=x6H x7H x8H xSH xAH XxBH xCH xDH xEH xFH

Signature |Last Page Sizq File Pages /Reloc Items) Header Paras|MINALLOC |MAXALLOC| PreReloc $5
DE |5AHflo bythi bytflo byt [hi bytilo byt {hi byt{lo byt[hi bytflo byt[hi byt|lo byt|hi bytlo byt [hi byt

Initial SP|Neg Chksum| Initial IP Pre Reloc C5 (Reloc Thi Ofs| Overlay Num
ofs lo[ofs hillo byt/hi byt|ofs lolofs hilseg lofseg hijlo byt(hi byt|lo bytfhi byt

OxH

1xH

Use Reloc

Tol Ofs at 18H > Seg Relocation Pir#1|Seg Relocation Ptr #2|Seg Relocation Pur #3|Seg Relocation Pt #4(offset is fram ofs lojofs hijseg larsee hijofs lo jofs hijsep loyseg hilafs loyofs hijseg lojseg hijofs lojofs hi|seg lojseg hil

start of file}

ener Use Reloc
ie

ofs loyofs hijseg loysep hijots lo jofs hijseg lojseg hilofs Iojofs hi/seg loseg hijofs lo jofs hijsep lojseg hil at O6H
Wieteer [edParas at 08H

(load module »

! always starts on Pro Amage
: paragraph boundary)|~ — — 7 gram Image R77 7uccrcTT acc
: (load module) Use Last Page Size at 02H Final 512-byte page as
: Endof file pe ¥: I

indicated by Ae Pages at 04HPo ee La ee ee ee ee ee ee

1 Figure 4-5. Structure ofa EXEfile.

io (ASCII characters M and Z). If either or both of the signature bytes contain other values,
a MS-DOS assumesthe file contains a .COM program,regardless of the extension. The
nop reverse is not necessarily true — that is, MS-DOS does not accept the File as a .EXE pro-

gram simply because the fie begins with aEXE signature. Thefile must also pass several
othertests.

02—03H (Last Page Size) The word atthis location indicates the actual numberof bytes

if in the fal $12-byte page of the file. This word combines with the following word to deter-
: minethe actualsize ofthefile. 1

04—O5H (File Pages) This word contains a countofthe total numberof $12-byte pages
requiredto hold thefile. If the file contains 1024 bytes, this word contains the value 0002H;
if the file contains 1025 bytes, this word contains the value 0003H. The previous word (Last
Page Size, 02—03H)is used to determine the numberofvalid bytes in the final 512-byte
page. Thus,if the file contains 1024 bytes, the Last Page Size word contains 0000H because
no bytes overflow into a final partly used page;if the file contains 1025 bytes, the Last Page
Size word contains 0001H because the final page contains only a single valid byte (the
1025th byte).:

06—07H (Relocation tems) This word gives the numberofentries that exist in the reloca-
tion pointer table. See Relocation Pointer Table below.

OLYMPUSEX.1010 - 132/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 133/1582

Article 4: Structure ofan Application Program

08—O9H (HeaderParagraphs) This word gives the size of the .EXE file header in 16-byte
paragraphs.It indicates the offset of the program’s compiled/assembled and linked image
(the load module) within the .EXEfile. Subtracting this word from the two file-size words
starting at 02H and 04H reveals the size of the program's image. The header always spans
an even multiple of 16-byte paragraphs. For example,if thefile consists of a $12-byte
header and a 513-byte program image, thenthefile's total size is 1025 bytes. As discussed
before, the Last Page Size word (02—03H) will contain 0001H and the File Pages word
(04—05H) will contain 0003H. Because the header is 512 bytes, the Header Paragraphs
word (08-09H) will contain 32 (0020HD. (Thatis, 32 paragraphs times 46 bytes per para-
graphtotals 512 bytes.) By subtracting the 512 bytes of the header from the 1025-byte total
file size, the size of the program's image canbe determined—inthis case, 513 bytes.

04—OBH (MINAELOC) This word indicates the minimum numberof36-byte paragraphs
the program requires to begin execution in addition to the memory required to hold
the program's image. MINALLOC normally represents the total size of any uninitialized
data and/or stack segments linked at the end of the program. LINK excludes the
space reserved by these fields from the end ofthe -EXEfile to avoid wasting disk space.
If not enough memory remains to satisfy MINALLOC whenloading the program, MS-
DOSreturns an errorto the process trying to load the program.If the process is
COMMAND.COM, COMMAND.COMthendisplays a Program too big tofit in memory
error message. The EXEMODutility can alter this field if desired. See Modifying the EXE
File Header below.

OC-ODH (MAXALLOC) This word indicates the maximum numberof 16-byte paragraphs
the program would like allocated to it before it begins execution. MAXALLOC indicates
additional memory desired beyond that required to hold the program’s image. MS-DOS
uses this value to allocate MAXALLOC extra paragraphs,if available. If MAXALLOC para-
graphsare not available, the program receives the largest memory block available — at
least MINALLOC additional paragraphs. The programmercould use the MAXALLOCfield
to request that MS-DOSallocate space for use as a print buffer or as a program-maintained
heap, for example.

Unless otherwise specified with the /CPARMAXALLOC switch atlink time,the linker sets
MAXALLOC to FFFFH.This causes MS-DO$to allocate all of the largest block of memory
it has available to the program. To make the program compatible with multitasking super-
visor programs, the programmer should use /CPARMAXALLOCto setthe true maximum
numberof extra paragraphs the program desires. The EXEMODutility can also be used
to alter thisfield.

Note: If both MINALLOC and MAXALLOC have beenset to 0O00H, MS-DOSloads the
program as high in memoryas possible. LINK sets these fields to OOOOH if the /HIGH
switch was used; the EXEMOD utility can also be used to modify these fields.

O£-OFH Cnitial SS Value) This word contains the paragraph address of the stack segment
relative to the start of the load module. At load time, MS-DOSrelocates this value by adding
the program’s start segment addressto it, and the resulting value is placed in the $5 regis-
ter before giving the program control. (The start segment correspondsto the first segment
boundary in memory following the PSP.)

Section If: Programming in the MS-DOS Environment 121

OLYMPUSEX. 1010 -133/1582

OLYMPUS EX. 1010 - 134/1582

Part B: Programming for M3-DOS8

10-114 (initial SP Value} This word contains the absolute value that MS-DOSloads

into the SP register before giving the program control. Because MS-DOSalways loads pro-
grams starting on a segment address boundary, and becausethe linker knows the size of
the stack segment, the linker is able to determinethe correct SP offset at link time; there-
fore, MS-DOS does not need to adjust this value at load time. The EXEMODutility can be
used to alter this fieid.

12-13H (Complemented Checksum) This word contains the one’s complement of the
summation ofall words in the EXEfile. Current versions of MS-DOSbasically ignore this
word when they load a .EXE program; however, future versions might not. When LINK
generates a EXEfile, it adds togetherall the contents of the .EXEfile (including the EXE
header) by treating the entire file as a long sequenceof16-bit words. During this addition,
LINK gives the Complemented Checksum word (12—13H) a temporary value of OOOOH.If
the file consists of an odd numberofbytes, then thefinal byte is treated as a word with a
high byte of OGH. Once LINK has totaled all words in the .EXE file, it performs a one’s
complement operation on the total and records the answerin the .EXEfile header at

| offsets 12-13H. Thevalidity of a .EXEfile can then be checked by performing the same
hob word-totaling process as LINK performed. Thetotal should be FFFFH, because the total

will include LINK’s calculated complemented checksum, which is designed to give thefile
oe the FFFFHtotal.

An example 7-byte -EXEfile illustrates how .EXE file checksumsare calculated. (This
is a totally fictitious file, because .EXE headers are never smaller than 512 bytes.) If this fic-
titious file contained the bytes 8CH C8H 8EH D8H BAH 10H B4H,then thefile’s total
would be calculated using C88CH+ D88EH + 10BAH+00B4H=1B288H. (Overflow past 16
bits is ignored, so the value is interpreted as B288H.) If this were a valid .EXE file, then
the B288Htotal would have been FFFFH instead.

44—-15H Cnitial [P Value) This word contains the absolute value that MS-DOSleads into

the IP register in order to transfer control to the program. Because MS-DOSalways loads
i programsstarting on a segment address boundary,the linker can calculate the correct IP

offset from theinitial CS register vatue at link time; therefore, MS-DOS does not need.
to adjust this valueat load time.

16—17H (Pre-Relocated Initial CS Value) This word contains the initial value, relative to
the start of the load module, that MS-DOS places in the CS register to give the .EXE pro-
gram control. MS-DOSadjusts this value in the same manneras theinitial $$ value before

Py ioading it into the CS register,

18--19H (Relocation Table Offset) This word givesthe offset from thestart ofthe file to
the relocation pointer table. This word must be used to locate the relocation pointertable,
because variable-length information pertaining to program overlays can occur before the
table, thus causing the position of the table to vary.

Lys 14—1BH (Overlay Number) This word is normally set to OOOOH,indicating that the EXE
file consists of the resident, or primary, part of the program. This number changes only in
files containing programsthat use overlays, which are sections of a program that remain

|

OLYMPUSEX.1010 - 134/1582

���������	�
�
����
��
��OLYMPUS EX. 1010 - 135/1582

[4

L
ti
t

Article 4: Structure of an Applicatian Program

on disk until the program actually requires them. These programm sections are loaded into
memory by special overlay managing routines included in the run-time libraries supplied
with some Microsoft high-level-language compilers.

The preceding section of the header (00-1BH) is knownas the formatted area. Optional
information used by high-level-language overlay managers canfollow this formatted area.
Unless the program in the EXE file incorporates such information, the relocation pointer
table immediately follows the formatted headerarea.

Relocation Pointer Table The relocation pointer table consists ofa list of pointers to words
within the EXE program image that MS-DOS mustadjust before giving the program con-
trol. These words consist of references made by the program to the segments that make up
the program. MS-DOS must adjust these segment address references whenit loads the pro-
gtam, because it can load the program into memory starting at any segment address
boundary.

Each pointer in the table consists of a doubleword. The first word contains an offset from
the segment address given in the second word, which in turn indicates a segment address
relative to the start of the load module, Together, these two words pointto a third word
within the load module that must have the start segment address addedto it. (Thestart seg-
ment correspondsto the segment address at which MS-DOSstarted loading the program's .

EXE File
End of file

 Rel Seg Ref=003CH
Abs Seg Ref=25D1H

Load medule

Memory

Relocation pointer

0002H:0005H Rel Sez Ref=003CH
Abs Seg Ref=25D1H

 Load module

Frogiam segment prefix

Relocation pointer table 0002H:0005H+2595H
2597H:0005H

Formatied header area

Start of file

Figure 4-6, The EXEfile relocationprocedure.

Section I]: Programming in the MS-DOS Environment 123SP ADAIR As s2nan AAU rAN

OLYMPUSEX.1010 - 135/1582

OLYMPUS EX. 1010 - 136/1582

Part B: Programming for MS-DOS

image, immediately following the PSP.) Figure 4-6 shows the entire procedure MS-DOS
performsfor each relocation table entry.

The load module

The load module starts where thé EXE header ends and consists of the fully linked image
of the program. The load module appears within the .EXE file exactly as it would appearin
memoryif MS-DOS wereto load it at segment address O000H. The only changes MS-DOS
makes to the load module involve relocating any direct segment references,

Although the .EXEfile contains distinct segment images within the load module,it pro-
vides no information for separating those individual segments from one anather. Existing
versions of MS-DOS ignore how the program is segmented; they simply copy the load
module into memory, relocate any direct segment references, and give the program
control,

Loading the .EXE program

So far we’ve covered all the characteristics of the .EXE program asit resides in memory
and on disk. We've also touched onall the steps MS-DOS performs while loading the .EXE
program from disk and executingit. The following list recaps the .EXE program loading
process in the order in which MS-DOSperformsit:

1. MS-DOSreads the formatted area of the header (the first 1BH bytes) from theEXE
file into a work area.

2. MS-DOS determinesthesize of the largest available block of memory.
3. MS-DOSdeterminesthe size of the load module using the Last Page Size (offset

02H), File Pages (offset 04H), and Header Paragraphs(offset 08H)fields from the

| header. An example of this process is in the discussion of the Header Paragraphs
: Field.

4. MS5-DOS adds the MINALLOCfield (offset OAH) in the header to the calculated lead-
module size and the size of the PSP (100H bytes). if this total exceedsthesize of the
largest available block, MS-DOSterminates the load process and returnsan error to
the calling process. If the calling process was COMMAND.COM, COMMAND.COM
then displays a Program ioo big iofit in memory error message.

5. MS-DOS adds the MAXALLOCfield (offset OCH) in the headerto the calculated

load-module size and the size of the PSP. If the memory block foundearlier exceeds
this calculated total, MS-DOSallocates the calculated memorysize to the program
from the memoryblock;if the calculated total exceeds the block’s size, MS-DOS
allocates the entire block. ;

6. Ifthe MINALLOC and MAXALLOCfields beth contain 0CG0H, MS-DOS uses the
calculated load-modulesize to determinea start segment. MS-DOScaiculates the
start segmentso that the load module will load into the high end efthe allocated
block.If either MINALLOC or MAXALLOCcontains nonzero values (the normal

case), MS-DOSestablishes the start segment as the segmentfollowing the PSP.
7. MS-DOSloads the load module into memorystarting at the start segment.

| 4 194 Tha MORAG Reourlanadia

OLYMPUSEX.1010 - 136/1582

���������	�
�
����
���
��
OLYMPUS EX. 1010 - 137/1582

Article 4: Structure of an Application Program

8. MS-DOSreads the relocation pointers into a work area and relocates the load mod-
ule’s direct segment references, as shown in Figure 4-6.

9, MS-DOSbuilds a PSP in the first 1O0H bytes of the allocated memory block. While
building the two FCBs within the PSP, MS-DOS determinestheinitia! values for the
ALand AH registers.

18. MS-DOSsets the SS and SP registers to the values in the headerafter the start seg-
mentis added to the $5value.

11. MS-DOSsets the DS and ES registers to point to the beginning of the PSP.
12. MS-DOStransfers contral to the EXE program by setting C5 and IP to the values in

the headerafter adding the start segmentto the CS value.

Controlling the .EXE program’s structure

We've now covered almost every aspect of a completed .EXE program. Next, we'll discuss
how to control the structure of the final EXE program from the source level. We'll start by
covering the statements provided by MASM that permit the programmnerto define the
structure of the program when programming in assembly language. Then we'll cover the
five standard memory models provided by Microsoft's C and FORTRAN compilers (both
version 4.0), which provide predefined structuring over which the programmerhas
limited control.

The MASM SEGMENT directive

MASM's SEGMENTdirective andits associated ENDS directive mark the beginning and
end of a program segment. Program segments contain collections of code or data that have
offset addressesrelative to the same common segmentaddress.

In addition to the required segment name, the SEGMENTdirective has three optional
parameters:

segname SEGMENT[align] [combine] ['class']

With MASM,the contents of a segment can be defined at one point in the sourcefile and
the definition can be resumed as many times as necessary throughout the remainderof
the file. When MASM encounters a SEGMENTdirective with a segname it has previously
encountered,it simpiy resumes the segmentdefinition whereit left off. This occurs regard-
less of the combine type specified in the SEGMENTdirective — the combine type influ-
ences only the actions of the linker. See The combine Type Parameter below.

The align type parameter
The optional align parameter lets the programmer send thelinker an instruction on how
to align a segment within memory. In reality, the tinker can align the segment only in rela-
tion ta the start of the program’s load module, but the result remains the same because
MS-DOS always loads the module aligned on a paragraph (16-byte} boundary. (The PAGE
align type creates a special exception, as discussed below.)

The following alignment types are permitted:

; BYTE This align type instructs the Jinkerto start the segment on the byte immediarely
following the previous segment. BYTE alignment prevents any wasted memory between
the previous segment and the BYTE-aligned segment.

Section H- Programming in the MS-DOS Environment 125

HUAWEI EX. 1010 - 137/1582

OLYMPUSEX.1010 - 137/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 138/1582

 eeerrrenRPM!tienetenenooe

Part B: Programming for MS-DOS

126

A minor disadvantage to BYTEalignmentis that the 8086-family segmentregisters might
not be able to directly address the start of the segmentin all cases, Because they can
address only on paragraph boundaries, the segment registers may have to point as many
as 15 bytes behind the start of the segment. This means that the segment size should not
be more than 15 bytes short of 64 KB. The linker adjusts offset and segment address refer-
ences to compensate for differences between the physical segmentstart and the paragraph
addressing boundary.

Another possible concern is execution speed on true 16-bit 8086-family microprocessors.
When using non-8088 microprocessors, a program can actually run fasterif the instruc-
tions and word datafields within segmentsare aligned on word boundaries. This permits
the 16-bit processors to fetch full words in a single memory read, rather than having to per-
form two single-byte reads, The EVENdirective tells MASM to align instructions and data
fields on word boundaries; however, MASM can establish this alignmentonly in relation to
the start of the segment, so the entire segment must start aligned on a word or larger
boundary to guarantee alignment ofthe items within the segment.

WORD This align type instructs the linker to start the segment on the next word bound-
ary. Word boundaries occur evéry 2 bytes and consist of ali even addresses (addresses in
which the least significant bit contains a zero). WORD alignment permits alignmentof data
fields and instructions within the segment on word boundaries, as discussed for the BYTE
alignment type. However, the linker may have to waste 1 byte of memory between the pre-
vious segment and the word-aligned segmentin order to position the new segment ona
word boundary.

Another minor disadvantage to WORDalignmentis that the 8086-family segmentregisters
might not be able to directly address the start of the segmentin all cases. Because they can
address only on paragraph boundaries, the segment registers may have to point as many as
14 bytes behindthestart of the segment. This meansthat the segment size should not be
more than 14 bytes short of 64 KB. The linker adjusts offset and segment address refer-
ences to compensate for differences between the physical segmentstart and the paragraph
addressing boundary.

PARA This afign type instructs the linker to start the segment on the next paragraph
boundary. The segments default to PARAifno alignmenttype is specified. Paragraph
boundaries occur every 16 bytes and consistofall addresses with hexadecimal values end-
ing in zero (0000H, 0010H, 0020H,and so forth). Paragraph alignment ensuresthat the
segment begins on a segment register addressing boundary, thus making it possible to ad-
dress a fuil 64 KB segment. Also, because paragraph addresses are even addresses, PARA
alignment has the same advantages as WORD alignment. The only real disadvantage to
PARA alignmentis that the linker may have to waste as many as 15 bytes of memory
between the previous segment and the paragraph-aligned segrnent.

PAGE This align type instructs the linker to start the segment on the next page boundary.
Page boundaries occur every 256 bytes and consist of al] addresses in which the low
address byte equals zero (O000H, 0100H, 0200H,and so forth). PAGE alignment ensures

The MS-DOS Encyclopedia

OLYMPUSEX. 1010 -138/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 139/1582

Articte 4: Structure of an Application Program

only that the linker positions the segment on a page boundaryrelative to the start of the
load module. Unfortunately, this does not also ensure alignmentof the segment on an
absolute page within memory, because MS-DOS only guarantees alignmentof the entire
load module on a paragraph boundary.

When a programmer declares pieces of a segmemt with the same namein different source
modules, the align type specified for each segmentpiece influences the alignnientof that
specific piece of the segment. For example, assumethe following two segment declara-
tions appearin different source modules:
DATA SEGMENT PARA PUBLIC 'DATA'

DB "123°
~DATA ENGS

—DATA SEGMENT PARA PUBLIC 'DATA'
DB "45a"

DATA ENDS

Thelinker starts by aligning the first segment piece located in the first object module on a
paragraph boundary, as requested. Whenthe linker encounters the second segmentpiece
in the second object module,it aligns that piece onthe first paragraph boundaryfollowing
the first segment piece. This results in a 13-byte gap betweenthefirst segment piece and
the second, The segment pieces mustexist in separate source modulesfor this ta occur. If
the segment pieces exist in the same source module, MASM assumesthat the second seg-
ment declaration is simply a resumption of the first and creates an object module with
segment declarations equivalent to che following:
DATA SEGMENT PARA PUBLIC "DATA'

DB "123"
DB *a56!

DATA ENDS

Thecombine type parameter
The optional combine parameter allows the programmerto send directionsto the linker
on how to combine segments with the same segrame occurring in different object mod-
ules, If no combine type is specified, the linker treats such segments as if each had a dif-
ferent segname. The combine type has no effect on therelationship of segments with
different segnames. MASM and LINK both support the following combine types:

PUBLIC This combine type instructs the linker to concatenate multiple segments having
the same segname into a single contiguous segment. The linker adjusts any address refer-
encesto labels within the concatenated segments to reflect the new position of those
labels relative to the start of the combined segment. This combine type is useful for ac-
cessing code or data in different source modules using a common segment register value.

STACK This combine type operates similarly to the PUBLIC combine type, except for
two additional effects: The STACK typetells the linker that this segment comprises part of
the program’s stack and initialization data contained within STACK segmentsis handied
differently than in PUBLIC segments. Declaring segments with the STACK combine type
permits the linker to determine theinitial SS and SP register valuesit places in the EXE

Section Iz Programming in the MS-DOS Environment 12?
HIIAWEL EY 1N1N _ 120/14889

OLYMPUSEX.1010 - 139/1582

OLYMPUS EX. 1010 - 140/1582

Part B: Programming for M3-DOS

file header. Normally, a programmer would declare only one STACK segmentin one of the
source modules. If pieces of the stack are declared in different source modules, the linker
will concatenate them in the sdme fashion as PUBLIC segments. However,initialization
data declared within any STACK segmentis placed at the high end of the combined STACK
segments on a module-by-module basis. Thus, each successive module's initialization data
overlays the previous module’s data. At least one segment must be declared with the
STACK combine type; otherwise, the linker will issue a warning message because it can-
not determine the program's initial SS and SP values. (The warning can be ignored if the
program itself initializes SS and SP.)

COMMON This combine type instructs the linker to overlap multiple segments having
the same segname. The length of the resulting segmentreflects the length of the longest
segment declared. If any code or data is declared in the overlapping segments, the data
contained in the fina] segments linked replaces any data in previously loaded segments.
This combine type is useful when a data area is to be shared by codein different source
modules.

MEMORY Microsoft’s LINKtreats this combine type the sameasit treats the PUBLIC
type. MASM, however, supports the MEMORY typefor compatibility with otherlinkers
that use Intel’s definition of a MEMORY combine type.

ATaddress This combine type instructs LINK to pretend that the segmentwill reside at
the absolute segment address. LINK then adjusts all address references to the segmentin
accordance with the masquerade. LINK will sot create an image of the segmentin the
load module, and it will ignore any data defined within the segment. This behavior is con-
sistent with the fact that MS-DOS does not support the loading of program segmentsinto
absolute memory segments. All programs must be able to execute from any segment ad-
dress at which MS-DOScanfind available memory. The SEGMENTAT address combine
type is useful for creating templates of various areas in memory outside the program. For
instance, SEGMENTATOOOOH could be used to create a template of the 8086-family inter-
rupt vectors. Because data contained within SEGMENTAT address segments is suppressed
by LINKand not by MASM (which places the data in the object module),it is possible to
use .OBJ files generated by MASM with anotherlinker that supports ROM orother absolute
code generation should the programmer require this specialized capability.

Theclass type parameter
The class parameter provides the meansto organize different segments into classifications.
For instance, here are three source modules, each with its own separate code and data
segments:

;Module "A'™
ALDATA SEGMENT PARA PUBLIC 'DATA'
jModule "A" data fields
ALLDATA ENDS .
A_CODE SEGMENT PARA PUBLIC ‘CODE"
7Module "A" code
A_CODE ENDS

END

(more)

OLYMPUSEX.1010 - 140/1582

���������	�
�
����
�
�
��OLYMPUS EX. 1010 - 141/1582

Article 4: Structure of an Application Program

iModule "BY
B.PATR SEGMENT PARA PUBLIC 'DATA'
iModule “B" data fields
B_DATA ENDS
BBCODE SEGMENT PARA POBLIC 'Cobpet
FModule “B" code
BBCODE ENDS

END

7Module "Cc"
CLPATA SEGMENT PARA PUBLIC '‘DATA'
#Module "C" data fields
C_DATHR ENDS
CCODE SEGMENT PARA PUBLIC 'CODE*
tModule "C" code
C_CODE ENDS

END

If the "CODEand 'DATA! class types are removed from the SEGMENTdirectives shown
above,the linker organizes the segmentsas it encounters them.If the programmerspeci-
fies the modules to the linker in alphabetic order, the linker produces the following
segment ordering:

A_DATA
A_fODE
B_DATA
B_CODE
C_DATA
C_LODE

However, ifthe programmer specifies the class types shown in the sample source mod-
ules, the linker organizes the segments by classification as follows;

"DATA' class: ALDATA
B.DATA
C_DATA

‘CODE' class: AL.CODE
B..COUE
CODE

Notice that the linker still organizes the classifications in the order in which it encounters
the segments belonging to the various classifications. To completely control the order in
which the linker organizes the segments, the programmernust use one of three basic
approaches, The preferred method involves using the /DOSSEG switch with the linker.
This produces the segment ordering shownin Figure 4-1. The second method involves
creating a special source module that contains empty SEGMENT-ENDSblocksforall the
segments declared in the various other source modules. The programmercreatesthelist
in the order the segmentsare to be arranged in memory and thenspecifies the .OBJ File for
this module as the first file for the linker to process. This procedure establishes the order
of ali the segments before LINK begins processing the other program modules, so the

Section Ib Programming in the MS-DOS Enutronment 129
HIIAWELEY AN1N~ 1A1/18a29

OLYMPUSEX. 1010 - 141/1582

OLYMPUS EX. 1010 - 142/1582

Part B: Programming for M3-DO5

12

programmer can declare segments in these other modules in any convenient order. For
instance, the following source module rearranges the result of the previous example so
that the linker places the 'CODE' class before the 'DATA' class:

A_CODE SEGMENT PARA PUBLIC ‘CODE’
A_CODE ENDS
B_CODE SEGMENT PARA PUBLIC 'CODE'
BLCODE ENDS
C_CODE SEGMENT PARA PUBLIC "CODE'
C_CODE ENDS

ALLDATA SEGMENT PARA PUBLIC 'DATA’
ADATA ENDS
B_DATA SEGMENT PARA PUBLIC 'DATA™
BDATA ENDS
C_DATA SEGMENT FARA PUBLIC "DATA™
CUDATA ENDS

EWD

Rather than creating a new module, the third method places the same segmentordering
list shown aboveat thestartof the first module containing actual code or data that the
programmerwill be specifying for the linker. This duplicates the approach used by
Microsoft's newer compilers, such as C version 4.0.

The ordering of segments within the load module has no direct effect on the linker's
adjustment of address references to locations within the various segments. Only the
GROUPdirective and the SEGMENTdirective’s combine parameteraffect address
adjustments performed by the linker. See The MASM GROUPDirective below.

Note: Certain older versions of the IBM Macro Assembler wrote segments to the object

file in alphabetic order regardless of their order in the sourcefile. These older versions can
limit efforts to control segment ordering. Upgrading to a new version of the assembleris
‘the best solution to this problem.

Ordering segments to shrinkthe .EXEfile
Correct segment ordering can significantly decrease the size of a .EXE program as it
resides on disk. This size-reduction ordering is achieved by placingall uninitialized data
fields in theic own segments and then controlling the linkers ordering of the program's
segments so chat the uninitialized data field segmentsail reside at the end of the program.
When the program modules are assembled, MASM places information in the object mod-
ules to tel] the linker about initialized and uninitialized areas of all segments. The linker
then uses this information to prevent the writing of uninitialized data areas that occur at
the end of the program imageas part of the resulting .EXE file. To account for the memory
space required by thesefields, the linker also sets the MINALLOCfield in the .EXEfile
header to represent the data area not written to the file. MS-DOS then uses the MINALLOC
field to realtocate this missing space when loading the program.

Fh. at Pe Donted

OLYMPUSEX.1010 - 142/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 143/1582

Article 4: Structure of an Application Program

The MASM GROUP directive

The MASM GROUPdirective can also have a strong impact on a .EXE program. However,
the GROUPdirective has no effect on the arrangement of program segments within mem-
ory. Rather, GROUPassociates program segments for addressing purposes. ,

The GROUPdirective has the following syntax:

grpname GROUP segname,segname,segname,...

This directive causes the linker to adjust all address referencesto labels within any speci-
fied segnameto berelative to the start of the declared group. Thestart of the groupis de-
termined at link time. The group starts with whicheverof the segments in the GROUPlist
the linker places lowest in memory.

That the GROUPdirective neither causes nor requires contiguous arrangementof the
grouped segmentscreates someinteresting, although not necessarily desirable, possi-
bilities. For instance, it permits the programmerto locate segments not belonging to the
declared group between segments that do belong to the group. The only restriction im-
posed on the declared groupis that the last byte ofthe last segment in the group must
occur within 64 KBofthe start of the group.Figure 4-7 illustrates this type of segment

arrangement:

SEGMENT_C
Gisted with GROUPdirective)

LABEL_C >»

=— LABEL_B >

64 KB Offset to . SEGMENT_B oo,
maximum LABEL_B (not listed with GROUPdirective)

Offsetto

LABEL_C LABEL_A >
SEGMENT_A

Offset to (listed with GROUPdirective)
LABEL_A

Figure 4-7. Noncontiguous segments in the same GROUP.

Warning: One of the most confusing aspects of the GROUPdirective relates to MASM’s
OFFSEToperator. The GROUPdirective affects only the offset addresses generated by
such direct addressing instructions as

MOV AX, FIELD_LABEL

butit has no effect on immediate address values generated by such instructions as

MOV AX, OFFSET FIELD_LABEL

Section Il Programming in the MS-DOS Environment 131

OLYMPUSEX.1010 - 143/1582

OLYMPUS EX. 1010 - 144/1582

Part B: Programming for MS-DOS

Using the OFFSEToperator on labels contained within grouped segments requires the
following approach:

MOV AX, OFFSET GROUP_WAME:FIELD_LABEL

The programmer must explicitly request the offset from the group base, because MASM
defines the result of the OFFSET operatorto be the offset of the label from thestart ofits
segment, not its group.

Structuring a small program with SEGMENT and GROUP

Now that we have analyzed the functions performed by the SEGMENT and GROUPdirec-
tives, we'll put both directives to work structuring a skeleton program. The program,
shown in Figures 4-8, 4-9, and 4-10, consists of three source modules (MODULE_A,
MODULE_B, and MODULE_C), each using the following four program segments:

Segment Definition
—TEXT The code or program text segment
—DATA The standard data segment containing preinitialized data fields the pro-

gram might change
CONST The constant data segment containing constantdata fields the program

will not change
—BSS The “block storage segment/space” segment containing uninitialized data

fields’

* Programmers familiar with the IBM 1620/1630 or CDC 6000 and Cyber assemblers may recognize BSS as
“block started at symbol,” which reflects an equally appropriate, although somewhat more elaborate, defini-
tion of the abbreviation. Other commontranslations of BSS, such as “blank static storage,” misrepresent the
segment name, because blanking of BSS segments does not occur —the memory contains undetermined
values when the program begins execution.

Source Module MODULE_A

;Predeclare all segments to force the Linker's seqment ordering *#*#**enesae kee

—TEXT SEGMENT SYTE PUBLIC '"CODE'‘
—TEXT ENDS

DATA SEGMENT WORD PUBLIC 'DATA'
DATA ENDS

CONST SEGMENT WORD PUBLIC 'CONST'
CONST EWDS

B35 ENDS

'
L
r
|
|
|
|
|
|I
I
||
|

I

|I
i
i
I

I

{ -BSS §SEGMENT WORD PUBLIC 'BSS'
{
f

Figure 4-8. Structuring a .ENEprogram: MODULE_A. (more)|
|
i

|

OLYMPUSEX.1010 - 144/1582

���������	�
�
����
��
��
OLYMPUS EX. 1010 - 145/1582

Article 4: Structure of an Application Program

STACK SEGMENT PARA STACK ‘STACK’
STACK ENDS

DGROUP GROUP —DATA, CONST, _BSS, STACK

FConstant Peclaratioms A Ha He Ae ok oe Hee oe He oe He He oe oe Me ae oe oft oe Ae ae eC A oe os he a a kee ae eae he eof fe oe ae ae de oe ote ae ok

CONST SEGMENT WORD PUBLIC ‘CONST’

CONST._FIELD_A DB ‘Constant A' ;declare a MODULE_A constant

CONST ENDS

pPreinitialized data Fields te i xe ae ok ae se a ok ok ok Ae A oe a ea ok oe AR a oAok Re ok ook oie oko ako ke kok

—DATA SEGMENT WORD PUBLIC 'DATA'

DATA_FIELD_A DB "Data At ;declare a MODULE_A preinitialized field

—DATA ENDS

PUNUNTCAaALLZ|ed Gata LLSLAS FeaA oe OR AaROR 2RERRRSRROK

—BSS SEGMENT WORD PUBLIC 'BSS'

BSS_FIELD_A DB 5 DUP (?) ;declare a MODULE_A uninitialized field

—BSS ENDS

PRLOGKAM Cet FAAIA AR aC IR IC CR CCa CA CA ROR RC SCC EO ekAaeok A ae oe

—TEXT SEGMENT BYTE PUBLIC 'CODB'

ASSUME CS:_TEXT,DS:DGROUP, ES: NOTHING, SS: NOTHING

EXTRN PROC_B: NEAR jlabel is in TEXT segment (NEAR)
EXTRN PROC_C:NEAR ;lapel is in TEXT segment (NEAR)

PROC_A PROC NEAR

CALL PROC_B jcall into MODULE_B
CALL PROC_C 7Ccall into MODULE_C

MOV AX, 4COOH ;terminate (MS-DOS 2.0 or later only)
INT 21H

PROC_A ENDP

—TEXT ENDS

Figure 4-8. Continued. (more)

Section II: Programming in theMS-DOS Environment 133
HIIAWWEL EX 1N1N ~ 1448/1889

OLYMPUSEX.1010 - 145/1582

OLYMPUS EX. 1010 - 146/1582

Part B: Programming for MS-DOS

pStack Wk ic va eceeeeeeee aeeeaA

STACK SEGMENT PARA STACK 'STACK'

ow 128 DUP{?) . ideclare some space to use as stack
STACKBASE LABEL WORD

.

STACK ENDS

END PROC_A jdeclare PROC_A as entry point

Figure 4-8. Continued.

7;Source Module MODULE_B

TConstant declarations 6+ +R EERE RR EEE EER ICRC RI EIR AGI AGGINOE

CONST SEGMENT WORD PUBLIC 'CONST'

CONST_FIELD_B DB ‘Constant B! jdeclare a MODULE_# constant

CONST EWDS

pPreinitialized data Fields # ik a 4k ai eR HH RIOR RR RR RIOR ROK ER Kk EE a EE

wDATA SEGMENT WORD PUBLIC 'DATA'

DATA_FIELD_& DB ‘Data B' ideclare a MODULE_B preinitialized field

—DATA ENDS

Uninitialized data fields © * #8 8% + tu ee Hee dee te eR Bok KR RRR Aeaee

—B58 SEGMENT WORD PUBLIC 'BSS'

BS5_FIELD_B DB 5 DUP (7?) ideclare a MODULE_B uninitialized field

ESS ENDS

PRLOGTAM CEML BAAR RA TORR RRA EEA EEE RARER EERE REE EE EERE EEE REE EEE EEE EE EE EY

DGROUP GROUP —DATA, CONST, _B35

—TEXT SEGMENT BYTE PUBLIC ‘CODE’

ASSUME C5:_TEXT, DS: DGROUP, ES: NOTHING, 53: NOTHING

Figure 4-9. Structuring a EXEprogram: MODULE_B. (more)

OLYMPUSEX.1010 - 146/1582

���������	�
�
����
���
��
OLYMPUS EX. 1010 - 147/1582

Article 4: Structure of an Application Program

PUBLIC PROCS jrefereénce in MODULE_A
FROC_B PROC NEAR

RET

PROCB ENDP

—TEXT ENDS

END

Figure 4-9. Continued.

iSource Module MODULE_C

Constant declarations Se ee eRWeiSSeeSao

const SEGMENT WORD PUBLIC "CONST"

CONST_PIELD_¢ 0B ‘Constant Cc! ideclare a MODULE_C constant

CONST ENDS

PPreinitialized data fields Fee sete ee eREEE EEReee EE EE EEERE EE

—DATA SEGMENT WORD PUBLIC 'DATA'

DATALFIELDLUC DB *Data C’ Pdeclare a MODULE_C preinitialized field

DATA ENDS

pUpinitialized data fields fee eRRKEE RRR CK RR EE ERE On ROE EK

—BSS SEGMENT WORD FUBLIC 'BSs°

BSS.FLELDC DB 5 DUP {?) ideclare a MODULE_LC uninitialized fieid

BSS ENDS

PPYOQTAM TEKT 88agee ee RAEeReEeeRRAA

DGROUP GROUP W-DATA, CONST, .2S5

—-TEXT SEGMENT BYTE PUBLIC 'CODE'

ASSUME CS:_TEXT, 0S: 0GROUP, ES: NOTHING, SS: NOTHING

Figure 4-10. Structuring a EXEprogram: MODULE_C. (more)

Section If: Programming in the MS-DOS Environment 135

HUAWEI EX. 1010 - 147/1582

OLYMPUSEX. 1010 - 147/1582

OLYMPUS EX. 1010 - 148/1582

weesEITPart B: Programming for MS-DOS

PUBLIC PROC_C jreferenced in MODULE_A
PROC_C PROC NEAR

RET

PROC_C ENDP

TEXT ENDS

END

’ Figure 4-10. Continued.

This example creates a small memory mode] program image, so the linked program can
have only a single code segment and a single data segment — the simplest standard form
ofa .EXE program. See Using Microsoft's Contemporary Memory Models below.

In addition to declaring the four segments already discussed, MODULE_ A declares a
STACK segment in which to define a block of memoryfor use as the program's stack and
also defines the linking orderof the five segments. Defining the linking order leaves the
programmerfree to declare the segments in any order when defining the segment con-

[os tents — a necessity because the assemblerhas difficulty assembling programsthat use
"forward references,

With Microsoft's MASM and LINK on the same disk with the .ASMfiles, the following com-
mands can be madeinto a batchfile:

MASM STRUCA;

bi MASM STRUCE;MASM STRUCC;
LINK STRUCA+STRUCBE+STRUCC/M;

These commands wil] assemble and link al] the .ASM files listed, producing the memory
map report file STRUCA.MAP shown in Figure 4-11.

Start Stop Length Name Class
OOON0H QOOOCH COOGDH _TEXT CODE
OOOQEHR QOO1FH 06012H _DATA DATA

: O0020H OO03DH f001EH CONST CONST

a QO03EH OOO4EH GO011H BSS BSSft : OOOSOH OOFH d0100H STACK STACK

Origin Group
1: o000:0 DGROUP

\ Address Publics by NameIqd

o080:0008 PROC_B

| 0000: 000c PROC.C
[:
! Figure 4-11. Structuring a EXEprogram: memory map report. (more)

OLYMPUSEX. 1010 - 148/1582

���������	�
�
����
���
��
OLYMPUS EX. 1010 - 149/1582

Article 4: Structure of an Application Program

Address Publics by Value

0060: 006B PROC_B
0000:000C PROC_C

Frogram entry point at OO00:0000

Figure 4-11. Continued.

The above memory map report represents the memory diagram shownin Figure 4-12.

Absolute

address Size in bytes

OO15S0H »

STACK STACK (A) 256Class

00050H bh» - —_—
soot

004A b BSS (C) 5 t
OCoM49H 5 15

COO44H —_ |00043 321

O003EH > const - 4
OOO34H 30

ODD2AH pe CONST(B} 10 |00020H p> CONST (A) 10
cOOLAH pat|Te
oo01sH Darcy 6 4
cOcOEH » °
soO0DH i
one loo. . cope 4

DGROUP GOOOBH pw] - - - - Class _ {addressing OOOOOH =p» tow
base

Figure 4-12. Structure ofthe sampie EXprogram.

Using Microsoft’s contemporary memory models

Now that we've analyzed the various aspects of designing assembly-language .EXE pro-
grams, we can look at how Microsoft's high-level-language compilers create .EXE pro-
grams from high-level-language sourcefiles. Even assembly-language programmers will
find this discussion of interest and should seriously consider using the five standard
memory models outlined here.

This discussion is based on the Microsoft C Compiler version 4.0, which, along with the
Microsoft FORTRAN Compiler version 4.0, incorporates the most contemporary cade
generator currently available. These newer compilers generate code based on threeto five

I Section It: Programming tn the MS-DOS Environment 147

L HUAWEI EX. 1010 - 149/1582
OLYMPUSEX. 1010 - 149/1582

OLYMPUS EX. 1010 - 150/1582

Part B: Programming for MS-DOS

TAR

of the following standard programmer-selectable program structures, referred to as mem-
ory models. The discussion of each of these memory models will center on the model’s
use with the Microsoft C Compiler and will close with comments regarding any differences
for the Microsoft FORTRAN Compiler.

Small (C compilerswitch AS) This model, the default, includes only a single code seg-
ment and a single data segment. All code mustfit within 64 KB, and al] data mustfit within
an additional 64 KB, Most C program designsfall into this category. Data can exceed the
64 KB limit only if the far and hugeattributes are used, forcing the compiler to use far
addressing, and the linker to place far and huge data items into separate segments. The
data-size-threshold switch described for the compact modelis ignored by the Microsoft C
Compiler when used with a small model. The C compiler uses the default segment name
—TEXT for all code and the default segment name _ DATAforall non-far/huge data.
Microsoft FORTRAN programs can generate a semblance of this model only by using the
/NM Cname module) and /AM (medium model} compiler switches in combination with the
near attribute on all subprogram declarations.

Medium €C and FORTRANcompiler switch /AM) This model includes only a single data
segment but breaks the code into multiple code segments. All data mustfit within 64 KB,
but the 64 KB restriction on code size applies only on a module-by-module basis, Data can
exceed the 64 KB limit only if the far and hugeattributes are used, forcing the compiler to
use far addressing, and the linker to place far and huge data items into separate segments.
The data-size-threshold switch described for the compact modelis ignored by the
Microsoft C Compiler when used with a medium model. The compileruses the default seg-
ment name _.DATA for all non-far/huge data and the template moduleTEXTto create
names for all code segments. The module element of moduleTEXTindicates where the
compiler is to substitute the name of the source module. For example,if the source module
HELPFUNC.C is compiled using the medium model, the compiler creates the code seg-
ment HELPFUNC_TEXT. The Microsoft FORTRAN Compiler version 4.0 directly supports
the medium model. ‘

Compact (C compilerswitch /AC) This model includes only a single code segmentbut
breaks the dara into multiple data segments, All code must fit within 64 KB, but the data is
allowed to consumeall the remaining available memory. The Microsoft C Compiler’s op-
tional data-size-threshold switch (/G1) controls the placementof the larger data items into
additional data segments, teaving the smaller items in the default segmentfor faster access.
Individualdata items within the program cannot exceed 64 KB under the compact model
without being explicitly declared huge. The compiler uses the default segment name
—TEXTfor all code segments and the template modi/e#_DATAto create namesforall data
segments. Fhe module element indicates where the compiler{s to substitute the source
module’s name; the # element represents a digit that the compiler changesfor each addi-
tional data segment required to hold the module’s data. The compiler starts with the digit 5
and counts up. For example,if the name of the source module is HELPFUNC.C, the com-
piler names thefirst data segment HELPFUNC5_DATA. FORTRANprogramscan generate
a semblance of this model only by using the /NM (name module) and /AL (large madel)
compiler switches in combination with the near attribute on all subprogram declarations.

Tha AC WOBeiclannedina

OLYMPUSEX. 1010 - 150/1582

���������	�
�
����

�
��OLYMPUS EX. 1010 - 151/1582

Article 4, Structure of an Application Program

Large (C and FORTRANcompilerswitch /AL) This model creates multiple code and data
segments, The compiler treats data in the same manneras it does for the compact model
and treats code in the same manner as it does for the medium model. The Microsoft

FORTRAN Compiler version 4.0 directly supports the large model.

Huge (C and FORTRAN compiler switch /AH) Allocation of segments under the huge
model follows the same rules as for the large model. The difference is that individual data
items can exceed 64 KB. Under the huge model, the compiler generates the necessary
codeto index arrays or adjusi pointers across segment boundaries, effectively transforming
the microprocessor's segment-addressed memory into linear-addressed memory. This
makes the huge modelespecially useful for porting a program originally written for a pro-
cessor that used linear addressing. The speed penalties the program pays in exchange for
this addressing freedom require serious consideration.If the program actually contains
any data structures exceeding 64 KB,it probably contains only a few. In that case,it is best
to avoid using the huge model by explicitly declaring those few data items as huge using
the huge keyword within the source module. This prevents penalizing all the non-huge
items with extra addressing math. The Microsoft FORTRAN Compiler version 4.0 directly
supports the huge model.

Figure 4-13 shows an example of the segment arrangement created by a large/huge model
program, The example assumes two source modules: MSCA.C and MSCB.C. Each source
module specifies enough data to cause the compilerto create two extra data segments for
that module. The diagram does not show all the various segments that occuras a result of
linking with the run-time library or asa result of compiling with the intention of using the
CodeView debugger.

Groups Classes Segments
4 SMCLH:Program stack

“4.SM:All uninitialized globalitems, CLH: Empty
DGROUP 4 SMCLH:All uninitialized non-far/hugeitems

44 SMCLH:Constants (floating point constraints, segment addresses, etc.)

DATA <4 SMCLH:All items that don't end up anywhereelse

FAR_BSS 4@SM: Nonexistent, CLH: All uninitialized globalitems

4 From MSCB only: SM: Far/huge items, CLH: [tems larger than threshold

“4 From MSCB only: $M: Far/huge items, CLH: Items larger than threshold
4 From MSCAonly: $M: Farfhuge items, CLH: items larger than threshold

44 From MSCA only: SM: Far/huge items, CLH: Items Jarger than threshold

4 5C: All code, MLH: Run-timelibrary code only
MSCB_TEXT|@ SC: Nonexistent, MLH: MSCB.C Cade

MSCA_TEXT| 4 SC: Nonexistent, MLH: MSCA.C CadeI

§ =5mall model L= Large model
M=Medium model©-H= Huge model
C = Compact model

FAR_DATA
Figure 4-13. General structure ofa Microsoft Cprogram.

| Section Ii: Programming in the MS-DOS Environment 139

OLYMPUSEX. 1010 - 1514/1582

OLYMPUS EX. 1010 - 152/1582

Part B: Programming for MS-DOS

Note thatif the program declares an extremely large numberofsmall data items,it can
exceed the 64 KB size limit on the default data segment (_DATA) regardless of the memory
model specified. This occurs because the data itemsall fall below the data-size-threshold
limit (compiler /Gt switch), causing the compiler to place them in the _DATA segment.
Lowering the data size threshold or explicitly using the far attribute within the source
modules eliminates this problem.

Modifying the -EXEfile header

With most of its language compilers, Microsoft supplies a utility program called EXEMCD,
See PROGRAMMING UTILITIES: Exemon. This utility allows the programmerto display
and modify certain fields contained within the .EXE file header. Following are the header
fields EXEMOD can modify (based on EXEMODversion 4.0):

MAXALLOC Thisfield can be modified by using EXEMOD’s /MAX switch. Because
EXEMODoperates on .EXE files that have already been linked, the /MAX switch can be
used to modify the MAXALLOCfield in existingEXE programs that contain the default
MAXALLOCvalue of FFFFH, provided the programs do not rely on MS-DO&'s allocating
all free memory to them. EXEMOD's /MAX switch functions in an identical mannerto
LINK’s /CPARMAXALLOCswitch.

MINALLOC This field can be modified by using EXEMOD’s /MIN switch. Unlike the case
with the MAXALLOCfield, most programs do not have an arbitrary value for MINALLOC.
MINALLOC normally represents uninitialized memory and stack space the linker has com-
pressed out of the .EXEfile, so a programmershould never redisce the MINALLOCvalue
within a .EXE program written by someoneelse. if a program requires some minimum
amount of extra dynamic memory in addition to any static fields, MINALLOC can bein-
creased to ensure that the program will have this extra memory before receiving control. If
this is done, the program will not have to verify that MS-DOS allocated enough memory to
meet program needs. Of course, the same result can be achieved without EXEMOD by

| , declaring this minimum extra memory as an uninitialized field at the end of the program.|
|

Initial SP Value This field can be modified by using the /STACK switch to increase or
decrease the size of a program's stack. However, modifying the initia! SP value for pro-
grams developed using Microsoft language compiler versions earlier than the following
may cause the programstofail: C version 3.0, Pascal version 3.3, and FORTRANversion
3.3, Other language compilers may have the samerestriction. The /STACK switch can also
be used with programs developed using MASM,provided the stack spaceis linked at the

1: end of the program, butit would probably be wise to change the size of the STACK seg-
| ment declaration within the program instead. The linker also provides a /STACK switch
t that performs the same purpose.

Note; With the /H switch set, EXEMODdisplays the current values of the fields within
the .EXE header. This switch should not be used with the other switches. EXEMODalso

displays field values if no switches are used.
OLYMPUSEX.1010 - 152/1582

���������	�
�
����
��
��OLYMPUS EX. 1010 - 153/1582

Asticle 4: Structure of an Application Program

‘Warning: EXEMCDalso functions correctly when used with packed .EXE files created
using EXEPACKor the /EXEPACKlinker switch. However,it is important to use the
EXEMODversion shipped with the linker or EXEPACKutility. Possible future changesin
the packing method mayresult in incompatibilities between EXEMODand nonassociated
linker/EXEPACKversions.

Patching the .EXE program using DEBUG

Every experienced programmerknowsthat programsalways seem to haveat least one
unspotted error. Ifa program has been distributed to other users, the programmerwill
probably need te provide those users with corrections when such bugs cometo light. One
inexpensive updating approach used by many large companies consists of mailing out
single-page instructions explaining how the user can patch the program to correct the
problem.

Program patching usually involves loading the program file into the DEBUGutility sup-
plied with MS-DOS, storing new bytes into the program image, and then saving the pro-
gram file back to disk. Unfortunately, DEBUG cannot load a EXE program into memory
and thensave it back to disk in EXE format. The programmermust trick DEBUGinto
patching .EXE program files, using the procedure outlined below. See PROGRAMMING
UTILITIES: peeuc.

Note: Users should be reminded to make backup copies of their program before attempt-
ing the patching procedure.

1. Rename the .EXE file using a filename extension that does not have special meaning
for DEBUG. (Avoid .EXE, .COM, and HEX.) For instance, MYPROG.BIN serves well as

a temporary new name for MYPROG.EXE because DEBUG does not recognize a file
with a .BIN extension as anything special, DEBUG will load the entire image of
MYPROG.BIN, including the .EXE header and relocation table, into memory starting
at offset 100H within a .COM-style program segment(as discussed previously).

2. Locate the area within the load module section of the .EXE file image that requires
patching. The previous discussion of the .EXEfile image, together with compiler/
assemblerlistings and linker memory map reports, provides the information neces-
sary to locate the error within the .EXEfile image. DEBUG loadsthefile imagestart-
ing at offset 100H within a .COM-style program segment, so the pragrammer must
compensate for this offset when calculating addresses within the file image. Also, the
compiler listings and linker memory map reports provide addressesrelative to the
start of the program image within the .EXEfile, not relative to the start of thefile
itself. Therefore, the programmer mustfirst check the information contained in the
.EXEfile header to determine where the load module (the program's image) starts
within the file.

3. Use DEBUG’s E (Enter Data) or A (Assemble Machine Instructions) commandto

insert the corrections. (Normally, patch instructions to users would simply give an
address at which the user should apply the patch. The user need not know how to
determine the address.)

4, After the patch has been applied, simply issue the DEBUG W (Write File or Sectors)
commandto write the corrected image back to disk under the samefilename, pro-
vided the patch has not increased the size of the program. If program size has

Section If: Programming in the MS-DOS Enutronment 141

OLYMPUSEX. 1010 -153/1582

OLYMPUS EX. 1010 - 154/1582

Part B: Programming for MS-DOS

increased,first change the appropriate size fields in the .EXE headerat the start of the
file and use the DEBUG R (Display or Modify Registers) command to modify the BX
and CX registers so that they contain the file image’s new size. Then use the W com-
mand to write the image back to disk under the same name.

5. Use the DEBUG Q (Quit} commandto return to MS-DO$ commandlevel, and then
renamethefile to the original .EXE filename extension.

-EXE summary

To summarize, the .EXE program andfile structures provide considerable flexibility in the
design of programs, providing the programmer with the necessary freedom to produce
large-scale applications. Programs written using Microsoft's high-level-language compilers
have access to five standardized program structure models (small, medium, compact,
large, and huge). These standardized models are excellent examples of ways to structure
assembly-language programs.

The .COM Program

The majority of differences between .COM and .EXE programs exist because .COM
program files are not prefaced by header information. Therefore, .COM programs do not
benefit from the features the .EXE header provides.

The absence of a header leaves MS-DOS with no way of knowing how much memory the
.COM program requires in addition to the size of the program’s image. Therefore, MS-DOS
mustalways allocate the largest free block of memory to the .COM program,regardless of
the program’s true memory requirements. As was discussed for EXE programs,this allo-
cation ofthe largest block of free memory usually results in MS-DO8&'s allocating all
remaining free memory — an action that can cause problemsfor multitasking supervisor
programs.

The .EXE program headeralso includes the direct segment address relocation pointer
table. Because theylack this table, .COM programs cannot make address referencesto the
labels specified in SEGMENTdirectives, with the exception of SEGMENTAT address
directives. If a .COM program did make these references, MS-DOS would have no way of
adjusting the addresses to correspond to the actual segment address into which MS-DOS
loaded the program. See Creating the ,COM Program below,

The .COM program structure exists primarily to support the vast number of CP/M pro-
grams ported to M$-DOS. Currently, .COM programs are most often used to avoid adding
the 512 bytes or more of .EXE header information onto small, simple programsthat often
do not exceed 512 bytes by themselves.

The .COM program structure has another advantage: Its memory organization places the
PSP within the same address segmentas the rest of the program. Thus,it is easier to access
fields within the PSP in .COM programs.

OLYMPUSEX. 1010 - 154/1582

���������	�
�
����
�
��
OLYMPUS EX. 1010 - 155/1582

Article 4; Structure of an Application Program

Giving control to the .COM program

After allocating the largest block of free memory to the COM program, MS-DOSbuilds
a PSP in the lowest 100H bytesof the block. No difference exists between the PSP MS-DOS
builds for .COM programsand the PSP it builds for EXE programs. Also with EXE pro-
grams, MS-DOS determines the initial values for the AL and AH registers at this time and
then loadsthe entire .COM-file image into memory immediately following the PSP.
Because .COM files have nofile-size header fields, MS-DOSrelies on the size recorded in
the disk directory to determine the size of the program image.It Joads the program exactly
as it appears in the file, without checking the file’s contents.

MS-DOSthensets ihe DS, ES, and $S segmentregisters to point to the start of the PSP. If
able to allocate at least 64 KB to the program, MS-DOSsets the SP register to offset FFFFH
+ 1(0000H)to establish an initial stack; if less than 64 KB are available forallocation to the

program, MS-DOSsets the SP to 1 byte past the highest offset owned by the program. In
either case, MS-DOS then pushes a single word of 0000H onto the program's stack for
use in terminating the program,

Finally, MS-DOStransfers control to the program by setting the CS register to the PSP’s
segment address and the IP register ta 0100H. This meansthat the program’s entry point
must exist at the very start of the program's image, as shown in later examples.

Figure 4-14 shows the overali structure of a .COM program asit receives control from
MS-DOS,

COM program memory image

SP-FFFEH*

 Remaining free memory
within first 64 KB allocated

to .COM program
{provided a full 64 KB wasavailable)

64 KB*

COM program image from fite

4 CS,DS,E5,55

*The SP and 64 KB valuesare dependent upon
MS-DOS having 64 KB or more of memory
available to allocate to the .COM program
at load time.

.COM program image 4 IP=0100H

Figure 4-14. The .COMprogram: memory map diagram with registerpointers.

Section If Programming in the MS-DOS Environment 143

HUAWEI EX. 1010 - 155/1582

OLYMPUSEX. 1010 - 155/1582

���������	�
�
����
��
��OLYMPUS EX. 1010 - 156/1582

Part B: Programming for MS-DOS

Terminating the .COM program

A.COM program can use all the termination methods described forEXE programs but
should still use the MS-DOSInterrupt 21H Terminate Process with Return Code function
(4CH) asthe preferred method.If the .COM program must remain compatible with ver-
sions of MS-DOSearlier than 2.0, it can easily use any of the older termination methods,
including those described asdifficult to use from .EXE programs, because .COM programs
execute with the CS register pointing to the PSP as required by these metheds.

Creating the .COM program

144

A COM program is created in the same manner as a .EXE program and then converted
using the MS-DOS EXE2BINutility. See PROGRAMMING UTILITIES: exe2pin.

Certain restrictions do apply to .COM programs, however. First, .COM programs cannot
exceed 64 KB minus 100H bytes for the PSP minus2 bytes for the zero wordinitially
pushed on the stack,

Next, only a single segment — or at least a single addressing group — should exist within
the program. Thefollowing two examples show ways to structure a COM program to sat-
isfy both this restriction and MASM’s need co have datafields precede program codein the
sourcefile, _

COMPROG1ASM (Figure 4-15) declares only a single segment (COMSEG), so no special
considerations apply when using the MASM OFFSET operator. See The MASM GROUP
Directive above. COMPROG2.ASM (Figure 4-16) declares separate code (CSEG) and data
(DSEG) segments, which the GROUPdirective ties into a common addressing block.
Thus, the programmer can declare data fields at the start of the source file and have the
linker place the data fields segment (DSEG)after the code segment (CS#G) whenit links
the program,as discussed for theEXE program structure. This second example simulates
the program structuring provided under CP/M by Microsoft's old Macro-80 (M&80} macro
assembier and Link-80 (L80) linker. The design also expands easily to accommodate
COMMONorother additional segments.
COMSEG SEGMENT BYTE PUBLIC ‘CODE’

ASSUME C5: COMSEG,D5:COMSEG,ES:COMSEG, $8: COMSEG
ORG O100H

BEGIN:

JME START iskip over data fields
iPlace your data fields here.

START:

;Place your program text here.
MOY AX, 4CO0H tterminate (MS-DOS 2.0 or later only)
INT 21H

COMSEG ENDS
END BEGIN

Figure 4-15. .COMprogram with data atstart.

The MiDOS Bacuclonhetia

OLYMPUSEX.1010 - 156/1582

���������	�
�
����
��
��OLYMPUS EX. 1010 - 157/1582

Article 4: Structure of an Application Program

CSEG SEGMENT BYTE PUBLIC ‘CODE' restablish segment order
CSEG ENDS ‘
DSEG SEGMENT BYTE PUBLIC 'DATA'
DSEG ENDS

COMGRP GROUP CSEG, DSEG restablish joint address base
DSEG SEGMENT

7;Place your data fields here.
DSEG ENDS
CSEG SEGMENT

ASSUME CS:COMGRP,DS:COMGRP, ES: COMGRP, SS:COMGRP
ORG 0100H

BEGIN:

+Place your program text here. Remember to use
; OFFSET COMGRP:LABEL whenever you use OFFSET.

MOV AX, 4CO0H ;terminate (MS-DOS 2.0 or later only)
INT 21H

CSEG ENDS
END BEGIN

Figure 4-16. .COMprogram with data at end.

These examples demonstrate other significant requirements for producing a functioning
.COM program. For instance, the ORG 0100H statement in both examplestells MASM to
start assembling the codeatoffset 100H within the encompassing segment. This corre-
sponds to MS-DOS’stransferring control to the program at IP = 0100H.In addition, the
entry-point label (BEGIN) immediately follows the ORG statement and appears again as a
parameter to the END statement. Together, these factors satisfy the requirement that .COM
programs declare their entry pointat offset 100H.If any factor is missing, the MS-DOS
EXE2BINutility will not properly convert the .EXE file produced bythe linker into a .COM
file. Specifically, ifa .COM program declares an entry point (as a parameter to the END
statement) that is at neither offset 0100H nor offset OOOOH, EXE2BIN rejects the -EXEfile
whenthe programmerattemptsto convertit. If the program fails to declare an entry point
or declares an entry point at offset O000H, EXE2BIN assumesthat the .EXEfile is to be
converted to a binary image rather than to a .COM image. When EXE2BIN converts a .EXE
file to a non-.COMbinaryfile, it does not strip the extra 100H bytes the linker places in
frontof the code as a result of the ORG 0100H instruction. Thus, the program actually
beginsat offset 200H when MS-DOSloadsit into memory, butall the program’s address
references will have been assembled and linked based on the 100Hoffset. As a result, the
program — and probably the rest of the system as well —is likely to crash.

A.COM program also must not contain direct segment address references to any segments
that make up the program. Thus, the .COM program cannot reference any segmentlabels
or reference any labels as long (FAR) pointers. (This rule does not prevent the program
from referencing segmentlabels declared using the SEGMENTATaddressdirective.)
Following are various examplesof direct segment address references that are ot per-
mitted as part of .COM programs:

Section I Prosrammine in the MS-DOS Environment 145

OLYMPUSEX.1010 - 157/1582

OLYMPUS EX. 1010 - 158/1582

Part B: Programing for MS-DOS

PROC_A PROC FAR
PROC_A ENDP CALL PROCLA fintersegment call

JMP PROC_A tintersegment jump

or

EXTRN PROC_A:FAR

CALL PROC_A jinterseqment call
JMP PROCLA jintersegment jump

or

4g Moy AX, SEG SEGA 7zegqment address
hti DD LABEL_A fsegment:offset pointer

Finally, .COM programs must not declare any segments with the STACK combine type.If
a program declares a segment with the STACK combine type,the linker will insert initial
SS and SP valuesinto the .EXEfile header, causing EXE2BINto reject the .EXEfile. A .COM
program does not have explicitly declared stacks, although it can reserve space in a non-
STACK combine type segment to whichit caninitialize the SP register after it receives
contro). The absence of a stack segment will cause the linker to issue a harmless warning
message.

When the program is assembled and linked into a .EXEfile,it must be converted into a
binary file with a .COM extension by using the EXE2BIN utility as shownin the following
example for the file YOURPROG.EXE:

i C>EXE2BIN YOURPROG YOURPROG.COM <Enter>

It is not necessary to delete or rename a .EXEfile with the same filename as the .COM
; file before trying to execute the .COMfile as long as both remain in the samedirectory,

io, because MS-DOS's order of execution is .COMfilesfirst, then .EXE files, and finally BAT
rt files. However, the safest practiceis to delete a EXEfile immediately after convertingit to
1: a .COMfile in case the .COM file is later renamed or movedto a different directory. Ifa

.EXEfile designed for conversion to a .COMfile is executed by accident,it is likely to crash
the system,

yi Patching the .COM program using DEBUG

Po As discussed for .EXEfiles, a programmer whodistributes software to users will probably
ry want to send instructions on how to patch in error corrections. This approach to software

updateslends itself even better to .COMfiles than it does to .EXEfiles.|

|. For example, because .COMfiles contain only the code image, they need not be renamed
in order to read and write them using DEBUG.The user need only be instructed on how to
load the .COM File into DEBUG, how to patch the program, and how to write the patched

7 image back to disk. Calculating the addresses and patch values is even easier, because no
headerexists in the .COM file image to cause complications. With the preceding excep-
tions, the details for patching .COM programs remain the same as previously outlined for
-EXE programs.

OLYMPUSEX. 1010 - 158/1582

���������	�
�
����
��
��
OLYMPUS EX. 1010 - 159/1582

-COM summary

Maximum size

Entry point

CS at entry

IP at entry

DS at entry

ES at entry
55 at entry

SP at entry

Stack at entry

Stack size

Subroutine calls
Exit method

Size offile

Article 4: Structure of an Application Program

Summary of Differences

-COM program

65536 bytes minus 256 bytes
for PSP and 2 bytes for stack

PSP:010GH
PSP

0100H

PSP
PSP

PSP

FFFEHor top wordin available
memory, whicheveris lower

Zero word ,

65536 bytes minus 256 bytes
for PSP and size of executable

cade and data
NEAR

Interrupt 21H Function 4CH
preferred, NEAR RETif
MS-DOSversions 1.x

Exact size of program

To summarize, the COM program andfile structures are a simpler but more restricted
approach to writing programs than the .EXE structure because the programmerhas only a
single memory model from which to choose (the .COM program segment model). Alsa,
.COM program files do not contain the 512-byte Cor more> header inherent to EXE files, so
the .COM program structure is well suited to small programs for which adding 512 bytes
of header would probably at least double thefile'ssize.

The following table summarizes the differences between .COM and .EXE programs.

-EXE program

Nolimit

Defined by END statement
Segment containing program's

entry point
Offset of entry point within its

segment
PSP

PSP

Segment with STACKattribute
End of segment defined with

STACKattribute

Initialized or uninitialized,

depending on source
Defined in segment with

STACKattribute

NEAR or FAR

Interrupt 21H Function 4CH
preferred, indirect jump
to PSP:0000H if MS-DOS
versions 1.%

Size of programplus header Cat
least $12 extra bytes}

Section It: Programming in the MS-DOS Environment—147

HUAWEI EX. 1010 - 159/1582

OLYMPUSEX. 1010 - 159/1582

OLYMPUS EX. 1010 - 160/1582

Part B: Programming for M3-DOS

Which format the programmerusesfor an application usually depends on the program's
intended size, but the decision can also be influenced by a program’s need to address mul-
tiple memory segments. Normally, small utility programs (such as CHKDSK and FOR-
MAT) are designed as .COM programs;large programs(such as the Microsoft C Compiler)
are designed as .EXE programs. The ultimate decision is, of course, the programmer's.

Keith Burgoyne

OLYMPUSEX. 1010 - 160/1582

���������	�
�
����
�
�
��OLYMPUS EX. 1010 - 161/1582

ii
j
t
i
i

Filereenoiee

Article 5: Character Device Input and Output

Article 5:

Character Device Input and Output

All functional computer systems are composed ofa central processing unit (CPU), some
memory, and peripheral devices that the CPU can use to store data or communicate with
the outside worid. In MS-DOS systems, the essential peripheral devices are the keyboard
(for input), the display (for output), and one or more disk drives (for nonvolatile storage).
Additional devices such as printers, modems, and pointing devices extend the function-
ality of the computeror offer alternative methodsof using the system.

MS-DOSrecognizes two types of devices: block devices, which are usually floppy-disk or
fixed-disk drives, and character devices, such as the keyboard, display, printer, and com-
munications ports,

Thedistinction between block and character devices is not always readily apparent, but
in general, block devices transfer information in chunks, or blocks, and character devices
move data one character Cusually 1 byte) ata time. MS-DOSidentifies each block device by
a drive letter assigned when the device's controlling software, the device driver, is loaded. -
A character device, on the other hand,is identified by a logical name(similar to a filename .
and subject to many of the samerestrictions) built into its device driver. See PROGRAM-
MING IN THE MS-DOS ENVIRONMENT: Customizinc ms-pos:Installable Device Drivers.

Background Information

Versions 1.x of MS-DO8,first released for the IBM PC in 1981, supported peripheral devices
with a fixed set of device drivers loaded during system initialization from the hidden file
IO.SYS (or IBMBIO.COM with PC-DOS). These versions of MS-DOSoffered application
programs a high degree of input/output device independence by allowing character
devices to be treated like files, but they did not provide an easy way to augmentthe built-in
set of drivers ifthe user wished to add a third-party peripheral device to the system.

With the release of MS-DOSversion 2.0, the hardwareflexibility of the system was tremen-
dously enhanced. Versions 2.0 andlater support installable device drivers that can reside in
separatefiles on the disk and can be linked into the operating system simply by adding a
DEVICE directive to the CONFIG.SYSfile on the startup disk. See USER COMMANDS:
CONFIG.SYs: DEVICE. A well-defined interface between installable drivers and the MS-DOS

kernel allows such drivers to be writien for most types of peripheral devices without the
need for modification to the operating system itself,

The CONFIG.SY5file can contain a numberof different DEVICE commandsto load sepa-
rate drivers for pointing devices, magnetic-tape drives, network interfaces, and so on. Each
driver, in turn, is specialized for the hardware characteristics of the deviceit supports.

Section I: Programming in the MS-DOS Enutronmentt 149
LIIA\A/CIL OV A4n1n ARAIMFAQO

OLYMPUSEX. 1010 - 161/1582

OLYMPUS EX. 1010 - 162/1582

Part B: Programming for MS-DOS

Whenthe system is turned on or restarted, the installable device drivers are added to the
chain, or inked list, of default device drivers loaded from IO.SYS during MS-DOSinitializa-
tion. Thus, the need for the system's default set of device drivers to support a wide range of
optional device types and features at an excessive cost of system memoryis avoided.

One important distinction between block and character devices is that MS-DOS always
adds new block-device drivers to the tail of the driver chain but adds new character-device

drivers to the head of the chain. Thus, because MS-DOSsearches the chain sequentially
and uses thefirst driver it finds that satisfies its search conditions, any existing character-
device driver can be superseded by simplyinstalling another driver with an identical] logi-
cal device name.

This article covers some of the details of working with MS-DOScharacter devices: display-
ing text, keyboard input, and other basic character[/O functions; the definition and use of
standard input and output; redirection of the default character devices; and the use of the
IOCTL function (Interrupt 21H Function 44H) to communicate directly with a character-
device driver. Much of the information presented in this article is applicable only to
MS-DOSversions 2.0 andlater.

Accessing Character Devices

Application programs can use either of two basic techniques to access character devices in
a portable manner under MS-DOS.First, a program can use the handle-type function calls
that were added to MS-DOSin version 2.0, Alternatively, a program can use the so-called
“traditional” character-device functions that were present in versions 1.x and have been
retained in the operating system for compatibility, Because the handle functions are more
powerful and flexible, they are discussed first.

| A handle is a 16-bit number returned by the operating system whenevera file or deviceis
opened or created by passing a name to MS-DOS[nterrupt 21H Function 3CH (Create File
with Handle}, 3DH (Open File with Handle), 5AH (Create TemporaryFile), or 5BH (Create
New File). After a handle is obtained,it can be used with Interrupt 21H Function 3FH
(Read File or Device) or Function 40H (Write File or Device) to transfer data between the

computer's memory and thefile or device.

pid During an open or create function call, MS-DOS searches the device-driver chain sequen-
t tially for a character device with the specified name (the extension is ignored) before

searching the disk directory. Thus, a file with the same name as any character device in the
driver chain — for example, the file NUL.TXT — cannotbe created, nor can an existing file
be accessed if a device in the chain has the same name.

The second methodfor accessing character devices is through the traditional MS-DOS
character input and outputfunctions, Interrupt 21H Functions 01H through OCH. These
functions are designed to communicate directly with the keyboard, display, printer, and
serial port. Each of these devices has its own function or group of functions, so neither

OLYMPUSEX. 1010 - 162/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 163/1582

Article 5: Character Device Input and Output

names nor handles need be used. However, in MS-DOSversions2.0 and later, these func-
tion calls are translated within MS-DOSto makeuseof the sameroutines that are used by
the handle functions,so the traditional keyboard and display functionsare affected by I/O
redirection and piping.

Use ofeither the traditional or the handle-based methodfor character device I/O results

in highly portable programsthat can be used on any computer that runs MS-DOS.A third,
less portable access methodis to use the hardware-specific routines resident in the read-
only memory (ROM) of a specific computer (such as the IBM PC ROM BIOSdriver func-
tions), and a fourth, definitely nonportable approach is to manipulate the peripheral
device’s adapter directly, bypassing the system software altogether. Although theselatter
hardware-dependent methods cannot be recommended, they are admittedly sometimes
necessary for performance reasons.

The Basic MS-DOS Character Devices

Every MS-DOSsystem supportsat least the followingset of logical character devices
without the need for any additional installable drivers:

Device Meaning

CON Keyboard and display
PRN System list device, usually a parallel port
AUX Auxiliary device, usually a serial port
CLOCK$ System real-time clock
NUL “Bit-bucket” device

These devices can be opened by nameor they can be addressed throughthe“traditional”
function calls; strings can be read from or written to the devices according to their capabili-
ties on any MS-DOSsystem. Data written to the NUL device is discarded; reads from the
NULdevice always return an end-of-file condition.

PC-DOSand compatible implementations of MS-DOStypically also support the following
logical character-device names:

Device Meaning

COM1 First serial communications port
COM2 Second serial communications port
LPT1 First parallel printer port
LPT2 Secondparallel printer port
LPT3 Third parallel printer port

Section IL Programming in the MS-DOS Environment 151

OLYMPUSEX. 1010 -163/1582

OLYMPUS EX. 1010 - 164/1582

Part B; Programming for MS-DOS

In such systems, PRN is an alias for LPT] and AUX is an alias for COM1. The MODE com-
mand can be used to redirect an LPT device to another device. See USER COMMANDS:
MODE.

As previously mentioned, any of these default character-device drivers can be superseded
by a user-installed device driver — for example, one that offers enhanced functionality or
changes the device’s apparent characteristics. One frequently used alternative character-
device driver is ANSLSYS, which replaces the standard MS-DOS CON device driver and
allows ANSI escape sequencesto be used to perform tasks such as clearing the screen,
controlling the cursor position, and selecting character attributes. See USER COMMANDS:
ANSLSYS.

The standard devices

152

Under MS-DOSversions 2.0 and later, each program ownsfive previously opened handles
for character devices (referred to as the standard devices) when it begins executing. These
handles can be used for input and output operations withoutfurther preliminaries. The
five standard devices and their associated handles are

 Standard Device Name Handle Default Assignment

Standard input (stdin) 0 CON
Standard ourput (stdout) 1 CON
Standard error (stderr) 2 CON

Standard auxiliary (st@aux) 3 AUX
Standard printer (stdprn) 4 PRN

The standard input and standard output handles are especially important because they are
subject to [’O redirection. Although these handles are associated by defauit with the CON
device so that read and write operations are implemented using the keyboard and video
display, the user can associate the handles with other character devices or withfiles by
using redirection parameters in a program’s commandline:

Redirection Result

< file Causes read operations from standard input to obtain data from file.
> file Causes data written to standard outputto be placed in fiz.
>> file Causes data written to standard output to be appendedta file.
pit p2 Causes data written to standard output by programpf to appear as the

standard input of program p2

This ability to redirect [/O adds great flexibility and powerto the system. For example,
programs ordinarily controlled by keyboard entries can be run with “scripts” from files,
the output of a program can be capturedin a file or on a printer for later inspection, and
general-purpose programs(filters) can be written that process text streams without regard
to the text’s origin or destination. See PROGRAMMING EN THE MS-DOS ENVIRONMENT:
CusTOMIZING M8s-Dos: Writing MS-DOSFilters.

The MS-DOS Encvclopedia

OLYMPUSEX. 1010 - 164/1582

���������	�
�
����
��
��
OLYMPUS EX. 1010 - 165/1582

Article $: Character Device [nput and Output

Ordinarily, an application program is not aware that its input or output has been redi-
rected, although a write operation to standard output will fail unexpectedly if standard
output was redirected to a disk file and the disk is full. An application can check for the
existence of 1/0 redirection with an IOCTL (interrupt 21H Function 44H) call, butit can-
not obtain any information about the destination of the redirected bandle except whether
itis associated with a character device or with a File.

Raw versus cooked mode

MS-DOSassociates each handle for a character device with a mode thai determines how

1/0 requests directed to that handle are treated. When a handleis in raw mode, characters
are passed hetween the application program and the device driver without any filtering or
buffering by MS-DOS. When a handle is in cooked mode, MS-DOS buffers any data thatis
read from or written to the device and takes special actions when certain characters are
detected,

During cooked mode input, MS-DOS obtains characters from the device driver one at a
time, checking each character for a Control-C. The characters are assembled into a string
within an internal MS-DOSbuffer. The input operation is terminated when a carriage
return (ODH) or an end-of-file mark (LAH)is received or when the numberofcharacters

requested by the application have been accumulated.If the sourceis standard input, lone
linefeed characters are translated to carriage-return/Jinefeed pairs. The string is then
copied from the internal MS-DOS buffer to the application program’s buffer, and control
returnsto the application program.

During cooked mode output, MS-DOStransfers the characters in the application pro-
gram’s output buffer to the device driver one at a time, checking after each character for
a Control-C pending at the keyboard.If the destination is standard output and standard
output has not been redirected, tabs are expanded to spaces using eight-columntab stops.
Outputis terminated when the requested numberofcharacters have been written or when
an end-of-file mark (1A) is encountered in the outputstring.

In contrast, during raw mode input or output, data is transferred directly berween the
application program's buffer and the device driver. Special characters such as carriage
return and the end-of-file mark are ignored, and the exact number of characters in the ap-
plication program's request are alwaysread or written. MS-DOS does not break the strings
into single-character calls to the device driver and does not check the keyboard buffer for
Control-C entries during the 1/O operation.Finally, characters read from standard input
in raw mode are not echoed to standard output.

As might be expected from the preceding description, raw mode input or output is usu-
ally much faster than cooked mode input or output, because each character is not being
individually processed by the MS-DOS kernel. Raw modealso allows programsto read
characters from the keyboard buffer that would otherwise be trapped by MS-DOS(for
example, Control-C, Control-P, and Control-S). (if BREAK is on, MS-DOS will still check for
Control-C entries during other function calls, such as disk operations, and transfer control

Section LE Programming in the MS-DOS Environment 153

HIIAWWEL EX 1N1N~ 1AA/14a89

OLYMPUSEX.1010 - 165/1582

OLYMPUS EX. 1010 - 166/1582

Part B: Programming for MS-DOS

to the Control-C exception handler if a Control-C is detected.) A program can use the
MS-DOS IOCTLGet and Set Device Data services (interrupt 21H Function 44H Subfunc-
tions OOH and 01H)to set the modefor a character-device handle. See IOCTL below.

Ordinarily, raw or cooked modeis strictly an attribute of a specific handle that was
obtained from a previous open operation and affects only the 1/0 operations requested
by the program that owns the handle. However, when a program uses IOCTLto select raw
or cooked modefor one of the standard device handles, the selection has a globaleffect
on the behavior of the system because those handles are never closed. Thus, some of the
“traditional” keyboard input functions might behave in unexpected ways. Consequently,
programs that change the mode on a standard device handle should save the handle's
mode at entry and restore it before performingafinal exit to MS-DOS, so that the opera-
tion of COMMAND.COMandother applications will not be disturbed. Such programs
should also incorporate custom critical error and Control-C exception handlers so that the
programs cannotbe terminated unexpectedly. See PROGRAMMINGIN THE MS-DOS
ENVIRONMENT: CusTomizinc ms-bos: Exception Handlers,

The keyboard

Among the MS-DOSInterrupt 21H functions are two methods of checking for and receiv-
ing input from the keyboard:the traditional method, which uses MS-DOScharacter input
Functions 01H, 06H, 07H, 08H, JAH, OBH, and OCH (Table 5-1), and the handle method,
which uses Function 3FH. Each of these methodshasits own advantages and disadvan-
tapes. See SYSTEM CALLS,

Table 5-1. Traditional MS-DOS Character Input Functions.

Read Multiple CtrL-c

Function Name Characters Echo Check

01H Character Input with Echo No Yes Yes
06H Direct Console YO No No No

07H Unfiltered Character [Input
Without Echo No No No

08H Character Input Without Echo No - No Yes
OAH Buffered Keyboard Input Yes Yes Yes
0BH Check Keyboard Status No No Yes
OCH Flush Buffer, Read Keyboard * * *

* Varies depending on function (from above) called in the AL register.

Thefirst four traditional keyboard inputcalls are really very similar, They all return a char-
acter in the AL register, they differ mainly in whether they echo that characterto the dis-
play and whetherthey are sensitive to interruption by the user's entry of a Control-C. Both
Functions 06H and OBH can be usedto test keyboard status (that is, whether a key has
been pressed and is waiting to be read by the program); Function OBHis simpler to use,
but Function 06H is immuneto Control-C entries.

Wha dC TWO Basen laanatin

OLYMPUSEX. 1010 - 166/1582

OLYMPUS EX. 1010 - 167/1582

Article 5: Character Device Input and Output

Function OAH is used to read a “buffered line” from the user, meaning that an entire line is
accepted by MS-DOS before control returns to the program. Theline is terminated when
the user presses the Enter key or when the maximum numberofcharacters (to 255) speci-
fied by the program have been received. While entry of the line is in progress, the usual
editing keys (such as the left and right arrow keys and the function keys on IBM PCs and
compatibles) are active; only the final, edited line is delivered to the requesting program.

Function OCH allows a program to flush the type-ahead buffer before accepting input.
This capability is important for occasions when a prompt must be displayed unexpectedly
(such as whena critical error occurs) and the user could not have typed aheada valid
response. This function should also be used when the user is being promptedfora critical
decision (such as whether to erase a file), to prevent a character that was previously
pressed by accidentfrom triggering an irrecoverable operation. Function 0CH is unusual
in thatit is called with the numberof one of the other keyboard input functions in register
AL. After any pending input has been discarded, Function 0CH simply transfers to the
other specified input function;thus, its other parameters Gif any) depend on the function
that ultimately will be executed.

The primary disadvantage of the traditional function calls is that they handle redirected
input poorly. If standard input has been redirected toafile, no way exists for a program
calling the traditional input functionsto detect that the end ofthe file has been reached —
the input function will simply wait forever, and the system will appear to hang.

A program that wishes to use handle-based I/O to get input from the keyboard must use
the MS-DOS Read File or Device service, Interrupt 21H Function 3FH. Ordinarily, the pro-
gram can employ the predefined handle for standard input (0), which does not need to be
opened and which allows the program's input to be redirected by the user to anotherfile
or device. If the program needs to circumvent redirection and ensure thatits input is from
the keyboard,it can open the CON device with Interrupt 21H Function 3DH and use the
handie obtained from that open operation instead of the standard input handle.

A program using the handle functionsto read the keyboard can control the echoing of
characters and sensitivity to Control-C entries by selecting raw or cooked mode with the
IOCTL Get and Set Device Data services (default = cooked mode). To test the keyboard
status, the program can either issue an IOCTL Check Input Status call (interrupt 21H Func-
tion 44H Subfunction 06H)or use the traditional Check KeyboardStatuscall (Interrupt
21H Function 0BH).

The primary advantages of the handle method for keyboard inputare its symmetry with
file operations and its graceful handling of redirected input. The handle function also
allows strings as long as 65535 bytes to be requested; the traditiona! Buffered Keyboard
Input function allows a maximum of 255 characters to be read at a time. This considera-
tion is important for programsthat are frequently used with redirected input and output
(such asfilters), because reading and writing larger blocks of data from files results in
more efficient operation. The only real disadvantage to the handle methodis thatit is
limited to MS-DOS versions 2.0 and later (although this is no longera significant
restriction).

Section LE Programmting in ihe MS-DOS Environment 155

OLYMPUSEX. 1010 - 167/1582

OLYMPUS EX. 1010 - 168/1582

Part B: Programming for MS-DOS

Role of the ROM BIOS

When a key is pressed on the keyboard of an IBM PC or compatible, it generates a hard-
ware interrupt (09H} that is serviced by a routine in the ROM BIOS, The ROM BIOSinter-
rupt handier reads I/O ports assigned to the keyboard controller and translates the key's
scan code into an ASCII character code. The result of this translation depends on the cur-
rent state of the NumLock and CapsLock toggles, as well as on whetherthe Shift, Control,
or Alt key is being held down. (The ROM BIOS maintains a keyboard flags byte at address
0000:0417H that gives the current status of each of these modifier keys.)

After translation, both the scan code and the ASCII code are placed in the ROM BIOS’s
32-byte (16-character) keyboard input buffer. In the case of “extended” keys such as the
function keys or arrow keys, the ASCII codeis a zero byte and the scan code carriesall the
information. The keyboard buffer is arranged asa circular, or ring, buffer and is managed
as a first-in/first-out queue. Because of the method used to determine when the bufferis
empty, one position in the buffer is always wasted; the maximum numberof characters
that can be held in the bufferis therefore 15. Keys pressed when the bufferis full are
discarded and a warning beepis sounded.

The ROM BIOSprovides an additional module, invoked by software Interrupt 16H,that
allows programsto test keyboard status, determine whether characters are waiting in the
type-ahead buffer, and remove characters ftom the buffer. See Appendix O: IBM PC BIOS
Calls. Its use by application programs should ordinarily be avoided, however, to prevent
introducing unnecessary hardware dependence.

On IBM PCs and compatibles, the keyboard input portion of the CON driverin the
BIOSis a simple sequence of code that calls ROM BIOS Interrupt 16H to do the hardware-
dependent work. Thus, calls to MS-DOS for keyboard input by an application program are
subject to two layers of translation: The Interrupt 21H function call is converted by the
MS-DOSkernel to calls to the CON driver, which in turn remaps the request onto a ROM
BIOScall that cbtains the character.

Keyboard programming examples

156

Example: Use the ROM BIOS keyboard driverto read a character from the keyboard. The
character is not echoed to-the dispiay.

mov ah, 00h i subfunction 0H = read character
int t6h 7 transfer toe ROM BIOS

; Tow AH = scan code, AL = character

Example: Use the MS-DO$traditional keyboard input function to read a character from
the keyboard. The character is not echoed to the display. The input can be interrupted.
with a Ctrl-C keystroke.

mov ah, oan ? function Q8H = character input
without echo

int zih ? transfer to MS-DOS
? mow AL = character

The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 168/1582

���������	�
�
����
���
��
OLYMPUS EX. 1010 - 169/1582

Acticle 5: Character Device Input and Output

Example: Use the MS-DOStraditional Buffered Keyboard Input function to read an entire
line from the keyboard, specifying a maximum line length of 80 characters. All editing
keys are active during entry, and the input is echoed to the display.

kbuft db 50 7 maximum length of read
dis O 7 actual length of read
db BO dup (a) ; keyboard input goes here

mow dx,seq kbuf ; S@t DS:DX = address of
mov ds,dx . 3 keyboard input buffer
mov dx,affset kbuf
mov an, Qah 7; function OAH = read buffered line
int 2th i transfer te MS-00s

i terminated by a carriage return,
Fo and khuf+1 = length of input,
7 not including the carriage return

Example: Use the MS-DOS handle-based ReadFile or Device function and the standard
input handle to read an entire line from the keyboard, specifying a maximum line iength
of 80 characters. All editing keys are active during entry, and the input is echoed to the dis-
play. (The input will not terminate on a carriage return as expectedif standard input is in
raw mode.) .

kbuf db 80 dup (0} 7 buffer for keybaard input

mov dx,seg kbuf 7 Set DS:DxX = address of
mov ds, dx :} keyboard input buffer
mov dx,offset kbuf
mov ex, 8d y CX = maximum length of input
mov bx, O } Standard input handle = 9
mov ah, 3fh + function 3FH = read file/device
int 2th ; ttansfer to MS-Dos
jc errox 3; jump if function failed

; otherwise AX = actual

7? length of keyboard input,
} including carriage-return and
; linefeed, and the data is
; in the buffer 'kbuf'

The display

The output half of the MS-DOSlogical character device CON is the video display. On IBM
PCs and compatibles, the video display is an “option” of sorts that comes in several forms.
IBM has introducedfive video subsystems that supportdifferent types of displays: the
Monochrome Display Adapter (MDA), the Color/Graphics Adapter (CGA), the Enhanced
Graphies Adapter (EGA), the Video Graphics Array (VGA), and the Multi-Color Graphics
Array (MCGA). Other, non-IBM-compatible video subsystems in common use include the
Hercules Graphics Card andits variants that support downloadablefonts.

Section IT; Programming in the MS-DOS Environment 157

HIIAWWELEYXY 1N1N ~ 1h0/14a9

OLYMPUSEX. 1010 - 169/1582

OLYMPUS EX. 1010 - 170/1582

Part B: Programming for M8-DOS

Two portable techniques exist for writing text to the video display with MS-DOS function
calls. The traditional method is supported by Interrupt 21H Functions 02H (Character Out-
put), 06H (Direct Console 1/0), and 09H (Display String). The handie method is supported
by Function 40H (Write File or Device) andis available only in MS-DOSversions 2.0 and
later. See SYSTEM CALLS: Inreraupt 21H: Functions 02H, 06H, 09H, 40H.All these calls
treat the display essentially as a “glass teletype” and de not support bit-mapped graphics.

Traditional Functions 02H and 06H are similar. Both are called with the character to be

displayed in the DLregister, they differ in that Function 02His sensitive to interruption by
the user's entry of a Control-C, whereas Function 06H is immune to Control-C but cannot
be used to output the character OFFH (ASCII rubout). Both calls check specifically for car-
riage return CODH), linefeed (OAH), and backspace (08H) characters and take the appro-
priate action if these characters are detected.

Because making individual] calls to MS-DOSfor each character to be displayed is inefficient
and slow, the traditional Display String function (09H)is generally used in preference to
Functions 02H and OGH. Function 09H is called with the address of a string that is termi-
nated with a dollar-sign character($),it displays the entire string in one operation, regard-
less of its length. The string can contain embedded control characters such as carriage
return and linefeed.

- To use the handle method for screen display, programs mustcall the MS-DOS Write File
or Device service, Interrupt 21H Function 40H. Ordinarily, a program should usethe pre-
defined handle for standard output (1) to send text to the screen, so that any redirection
requested by the user on the program’s commandline wil] be honored.If the program
needs to circumvent redirection and ensurethat its output goes to the screen,it can either
use the predefined handle for standard error (2) or explicitly open the CON device with
Interrupt 21H Function 3DH and use the resulting handle for its write operations.

The handle technique for displaying text has several advantages overthe traditional
calls. First, the length of the string to be displayed is passed as an explicit parameter, so
the string need not contain a special terminating character and the $ character can be dis-
played aspartof the string. Second, the traditional calls are translated to handle calis
inside MS-DOS,so the handie calls have less internal overhead and are generally faster.
Finally, use of the handle Write File or Device functionto display textis symmetric with
the methods the program must use to accessits files. In short, the traditional functions
should be avoided unless the program must be capable of running under MS-DOSver-
sions 1.x.

Controlling the screen

158

One of the deficiencies of the standard MS-DOS CON device driveris the lack of screen-

control capabilities. The default CON driver has no built-in routines to support cursor
placement, screen clearing, display mode selection, and so on.

In MS-DOSversions 2.0 andlater, an optional replacement CON driveris supplied in the
file ANSLSYS. This driver contains most of the screen-control capabilities needed by text-
oriented application programs. The driveris installed by adding a DEVICE directive to the

The MS-DOS Encyctopedia

OLYMPUSEX.1010 - 170/1582

���������	�
�
����
�
�
��OLYMPUS EX. 1010 - 171/1582

Article 5: Character Device Input and Output

CONFIG.SYSfile and restarting the system. When ANSISYSis active, a program can
position the cursor, inquire about the current cursor position, select foreground and
backgroundcolors, and clear the currentline or the entire screen by sending an escape
sequence consisting of the ASCH] Esc character (1BH) followed by various function-
specific parameters to the standard output device. See USER COMMANDS: ansLsys.

Programs that use the ANSL.SY'5capabilities for screen control are portable to any MS-DOS
implementation that contains the ANSLSYS driver, Programs that seek improved perfor-
mance by calling the ROM BIOSvideo driver or by assuming direct control of the hard-
ware are necessarily less portable and usually require madification when new PC models
or video subsystemsare released,

Role ofthe ROM BIOS

The video subsystems in IBM PCs and compatibles use a hybrid of memory-mapped and
port-addressed I/O. A range of the machine's memory addressesis typically reserved for a
video refresh buffer that holds the character codes and attributes to be displayed on the

‘ screen; the cursor position, display mode, palettes, and similar global display char-
acteristics are governed by writing control values to specific 1/O ports.

The ROM BIOSof IBM PCs and compatibles contains a primitive driver for the MDA, CGA,
EGA, VGA, and MCGAvideo subsystems. This driver supports the following functions:

®=Read or write characters with attributes at any screen position.
Query or set the cursor position.
Clear or scroll an arbitrary portion of the screen.
Select palette, background, foreground, and bordercolors.
Queryorset the display made (40-columntext, 80-columntext, all-points-addressable
graphics, and so on).

@ Read of write a pixel at any screen coordinate.

These functions are invoked by a program through software Interrupt 10H. See Appendix
O: IBM PC BIOS Calls. in PC-DOS-compatible implementations of MS-DOS,the display
portions of the MS-DOS CON and ANSLSYS drivers use these ROM BIOS routines. Video
subsystemsthat are not ISM compatible either must contain their own ROM BIOS or must
be used with an installable device driver that captures Interrupt 10H and provides appro-
priate support functions.

Text-only application programs should avoid use of the ROM BIOSfunctionsor direct
! access to the hardware whenever possible, to ensure maximum portability between
| MS-DOSsystems. However, because the MS-DOS CONdriver contains no supportfor bit-
| mapped graphics, graphically oriented applications usually must resortto direct control

| of the video adapter andits refresh buffer for speed and precision.
|
[

k

Section H: Programming in the MS-DOS Environment 159

HIIAWELEY AN1N~_ 171/18a9

OLYMPUSEX. 1010 - 171/1582

OLYMPUS EX. 1010 - 172/1582

Part B:Programming for MS-DOS

Display programming examples
Example: Use the ROM BIOSInterrupt 10H function to write an asterisk character to Ms
display in text mode. Gin graphics mode, BL must also be set to the desired foreground
color.)

mov ah, Oeh 7 subfunction OFH = write character
3 oin teletype mode

mov al,'#' ; AL = character to display
mow bh, 0 7 select display page 0
int 10h ; transfer to ROM BIOS video driver

Example: Use the MS-DOS traditional function to write an asterisk character to the dis-
play. if the user's entry of a Control-C is detected during the output and standard outputis
in cooked mode, MS-DOScatls the Control-C exception handler whose address is found
in the vector for Interrupt 23H.

mov ah,O2h 3 function 02H = display character
may di,'#' ; DL = character to display
int 21h ; transfer to MS-DOS

Example; Use the MS-DOStraditional function to write a string to the display. The output
: is terminated by the $ character and can be interrupted when the user enters a Control-C if

oe standard outputis in cooked mode.

4
;

msg db ‘This is a test message','$'

"1 mov dx, seq msq ; DS:DX = address of text
mov ds, dx ; to display

hy mov dx,oaffset mag
i mov ah, 09h ; function 03H = display string

int 2th 7} transfer to MS-DOS

Example: Use the MS-DOShandle-based Write File or Device function and the predefined
handle for standard outputto write a string to the display. Output can be interrupted by the
user's entry of a Control-C if standard outputis in cooked mode.

i: msg db 'This is a test message’
bye msq_len equ S-msg

al
f: .
i mov dx, seg msg 7 DS:0X = address of text
1; moy - ds,dx “7 to display

: mov dx,offset msg

M mov cx,msg_len 7 CX = length of text
|i mov bx,1 ; BX = handle for standard output
| mov ah, 40h : Function 408 = write file/device

int 20h ; transfer to MS-DOS
i
| L

I
I
I
|
i,
I:
|

|
i! 14 The MEMOS Fneucinhadia

OLYMPUSEX.1010 - 172/1582

���������	�
�
����
���
��
OLYMPUS EX. 1010 - 173/1582

Article 5: Character Device Input and Output

The serial communications ports

Through version 3.2, MS-DOShas built-in support for two serial communications ports,
identified as COM1 and COM2, by meansofthree drivers named AUX, COM1, and COM2.
(AUX is ordinarily an alias for COM.)

Thetraditional MS-DOS method of reading from and writing ta the serial ports is through
Interrupt 21H Function 03H for AUX input and Function 04H for AUX output. In MS-DOS
versions 2.0 andlater, the handle-based Read File or Device and Write File or Device func-
tions (Interrupt 27H Functions 43FH and 40H) can be usedto read from or write to the aux-
iliary device. A program can use the predefined handle for the standard auxiliary device
(43) with Functions 3FH and 40H,or it can explicitly open the COMI or COM2 devices with
Interrupt 21H Function 3DH and use the handle obtained from that open operation to
perform read and write operations,

MS-DOSsupport for the serial communications port is inadequate in several respects for
high-performanceserial I/O applications. First, MS-DOS provides no portable wayto test
for the existence or the status of a particularserial port in a system,if a program “opens”
COM2 and writes data to it and the physical COM2 adapieris not present in the system, the
program may simply hang. Similarly,if the seria! port exists but no character has been
received and the program attempts to read a character, the program will hang until oneis
available; there is no traditional function call to check if a character is waiting as there is
for the keyboard.

MS-DOS also provides no portable method to initialize the communications adapterto a
particular baud rate, word length, and parity. An application must resort to ROM BIOS
calls, manipulate the hardware directly, or rely on the user to configure the pert properly
with che MODE command before running the application that uses it. The default settings
for the serial port on PC-DOS-compatible systems are 2400 band, no parity, 1 stop bit, and
8 databits. See USER COMMANDS:move.

Amore serious problem with the default MS-DOSauxiliary device driver in IBM PCs and
compatibles, however, is that itis not interrupt driven, Accordingly, when baud rates above
1200 are selected, characters can be Jost during time-consuming operations performed by
the drivers for other devices, such as clearing the screen or reading or writing a floppy-disk
sector. Because the MS-DOS AUX device driver typically relies on the ROM BIOSserial port
driver (accessed through software Interrupt 14H) and because the ROM BIOSdriveris not
interrupt driven either, bypassing MS-DOSandcailing the ROM BIOS functions does not
usually improve matters.

Becauseofall the problemsjust described, telecommunications application programs
commonly take over complete control of the serial port and supply their own interrupt
handler and internal buffering for character read and write operations. See PROGRAM-
MING IN THE MS-DOS ENVIRONMENT; PROGRAMMING FOR MS-DOS: Interrupt-Driven
Communications.

Section H- Programming in the MS-DOS Environment 161

HIIAWWELEYXY 1N1N ~ 172/18a9

OLYMPUSEX.1010 - 173/1582

OLYMPUS EX. 1010 - 174/1582

ua

eae
Part B: Programming for MS-DOS

Serial port programming examples eeeLettecaycertateel!
Example: Use the ROM BIOSserial port driver to write a string to COMI,

msg db 'This is a test message’
msq_len equ $-msg

mov bx, seg msg ¢ DS:BX = address of message
mov ds,bx
mov bx, offset msg
mov ox,msqllen 7 CX = length of message
mov dx, ; DK = 0 for COMI

Lit may al, {bx} } get next character into AL
mov ah,O1h ; subfunction 01H = output
int i4h 3} transfer to ROM BIOS

inc bx i bump pointer to output string
loop L1 ? and loop until all chars. sent

Example: Use the MS-DOStraditional function for auxiliary device output to write a string to COM1.

msg db 'This is a test messaqet .
msg_len equ o-msg

mov bx, seq msq ; set DS:BX = address af message
mov ds,bx

| Z mov bx, offset msg
! i mov cx, meg—len 7 set CX = length of message

t Ht Li: mow dal, [bx] + get next character into DL
py maw ah, 04h ; function 04H = auxiliary output
to int 21h 7 transfer to MS-DOS

, ine bx } bump pointer to output string

| loop 1 7 and loop until all ¢dhars. sent
: Example: Use the MS-DOS handle-based Write File or Device function and the predefined
4 handle for the standard auxiliary device to write a string to COM1.|

‘| msg db ‘This is a test messaqe'
| msqa_len equ 5-msqI
|
! .

1

he Tac dx, seg msg 7 DS:DX = address of message
mov ds,.dx

| mov dx,offset msg
I. mov cx,msg_len 7 CX = length of message
| mov bx, 3 +; BX = handle for standard aux.

mov ah, 40h 7 function 40H = write file/device
I int 2th 7 transfer to MS-DOS

! je error + jump if write operation failed

|i,
t
i

i
|! bd 147 ho a0 mntt

OLYMPUSEX.1010 - 174/1582

���������	�
�
����
��
��OLYMPUS EX. 1010 - 175/1582

Article 5: Character Device [nput and Output

The parallel port and printer

Most MS-DOSimplementations contain device drivers for four printer devices: LPT1, LPT2,
LPT3, and PRN. PRN is ordinarily an alias for LPT1 and refers to the first parallel output
port in the system. To providefor list devices that do not have a parallel interface, the LPT
devices can be individually redirected with the MODE commandto oneofthe serial corm-
munications ports. See USER COMMANDS: move.

As with the keyboard, the display, and the serial port, MS-DOSallowsthe printer to be
accessed with either traditionat or handle-based function calls. The traditional function

call is Interrupt 22H Function 05H, which accepts a character in DL and sendsit to the
physical device currently assigned io logical device name LPT1.

A program can perform handie-based outputto the printer with Interrupt 27H Function
40H (Write File or Device). The predefined handlefor the standard printer (43 can be used
to send strings to logical device LPT1. Alternatively, the program can issue an open oper-
ation for a specific printer device with Interrupt 21H Function 3DHand use the handle
obtained from that open operation with Function 40H. This latter methodalso allows
more than one printer to be used at a time from the same program.

Because the parallel ports are assumed io be output only, no traditionalcall exists for
input from the parallel port. In addition, no portable method exists to test printer port
status under MS-DOS; programsthat wish to avoid sending a character to the printer
adapter whenit is not ready or not physically present in the system musttest the adapter's
status by making a call ta the ROM BIOS printer driver (by means of software Interrupt
T7H; see Appendix O; IBM PC BIOS Calls) or by accessing the hardware directly,

Parallel port programming examples

Example: Use the ROM BIOSprinterdriver io send a string to the first parallel printer port.

msg db ‘This is a test message'
msg_len equ $-mag

mo bx, seg msg + DS:BK = address cf message
mov ds, bx
mav bx,offset msg
mov cx,msglen 7; CX = length of message
mov dx, o : BEX = 0 for LPT!

Li: mov al, (bj ? get next character into AL
may ah, 00h 7 subfunction OOH = output
int 17h ; transfar to ROM Bios
inc bx 7; bump pointer to output string
Loop ut ? and loop until all chars. sent

Section ii: Programming in the MS-DOS Environment—163
LIIA\AICL OV ANAN 4A7R/ARaA9

OLYMPUSEX.1010 - 175/1582

OLYMPUS EX. 1010 - 176/1582

Part B: Programming for MS-DOS
oisaiarine

Example: Use the traditional MS-DOS functioncall to send a string to the first parallel
printer port.

msq db ‘This is a test message‘
msg_len equ o-msg

mh bu, 8€g msg 7; DS:BX = address of message
mov ds, bx
may bx, offset msg
mov cx,msg—len 7; CX = length of message

Li: mov dl, [bx] i} get next character into DL
mov ah, 05h ; function 05H = printer output
int 2th ? transfer to MS-DOS

ine bx : bump pointer to output string
loop L1 - and loop until all chars. sent

Example: Use the handle-based MS-DOS Write File or Device call and the predefined
handle for the standard printer to sendastring to the system list device,

msg db ‘This is a test message'
msqlen equ S-msg

mov dx,seq msq ; DS:0X% = address of message
mov ds,dx
mov dx,offset msq
mow ex, msg_len 7; CX = length of message
mov bx, 4 7 BX = handle for standard printer
mov ah, 40h i function 40H = write file/device
int 2th ; transfer toa MS-DOS

je error ; jump if write operation failed

IOCTL

ThA

In versions 2.0 and later, MS-DOS has provided applications with the ability to communi-
cate directly with device drivers througha set of subfunctions grouped under Interrupt
21H Function 44H (IOCTL). See SYSTEM CALLS: InTERrupT 21H: Function 44H. The

IOCTL subfunctions thatare particularly applicable to the character I/O needsof appli-
cation programsare

Subfunction Name

OOH Get Device Data
01H Set Device Data

02H Receive Control Data from Character Device

fmore)

OLYMPUSEX.1010 - 176/1582

���������	�
�
����
���
��
OLYMPUS EX. 1010 - 177/1582

Article 5: Character Device Input and Output

 Subfunction Name

03H Send Control Data to Character Device

06H Check Input Status
O7H Check Output Status
0AH Check if Handle is Remote (version 3.1 or later}

ocH Generic /O Control for Handles: Get/Set OutputIteration Count

Various bits in the device information word returned by Subfunction OOH can be tested
by an application to determine whether a specific handle is associated with a character
device or a file and whether the driver for the device can process contro!strings passed by
Subfunctions 02H and 03H. The device information word also allows the program to test
whether a character device is the CLOCKS, standard input, standard output, or NUL device
and whetherthe deviceis in raw or cooked mode. The program can then use Subfunction
01H to select raw mode or cooked mode for subsequent 1/O performed with the handle.

Subfunctions 02H and 03H allow controlstrings to be passed between the device driver
and an application, they do not usually result in any physical I/O to the device. For exam-
ple, a custom device driver might allow an application program to configure the serial port
by writing a specific set of contro] parameters to the driver with Subfunction 03H. Simi-
larly, the custom driver might respond to Subfunction 02H by passing the application a
series of bytes that defines the current configuration and status of the seria! port.

Subfunctions OGH and 07H can be used by application programs to test whether a deviceis
ready to accept an output character or has a character ready for input. These subfunctions
are particularly applicable to the serial communications ports and parallel printer ports
because MS-DOS does not supply traditional function calls to test their status.

Subfunction 0AH can be used to determine whetherthe character device associated

with a handle is local or remote — thatis, attached to the computer the program is running
on or attached to another computer on a local area network. A program should not or-
dinarily attempt to distinguish between local and remote devices during normal input and
output, but the information can be useful in attempts to recover from error conditions.
This subfunction is available only if Microsoft Networks is running.

Finally, Subfunction OCH allows a program to query or set the numberof times a device
driver tries to send outputto the printer before assuming the deviceis not available.

JOCTL programming examples

Example: Use iOCTE Subfunction 00H to obtain the device information wordfor the stan-
dard input handle and save it, and then use Subfunction 61H to place standard input into
raw mode,

info dw ? ; Save device information word here

Gnore)

Section It: Programming in the MS-DOS Environment—165

HUAWEI EX, 1010 - 177/1582

OLYMPUSEX. 1010 - 177/1582

OLYMPUS EX. 1010 - 178/1582

Part B: Programming for MS-DOS

mov

mov
int
mov

or
maw
mov

int

mov

mov
ant

ax, 4400h

bx, 0
21h

info,dax

dl,20h
dn, 0
ax,4401h

21h

ax, 4406H

bx, 3
21h

al,al
ready

‘
:
i

Example: Use IOCTL Subfunction 06H to test whethera characteris ready for input on the
first serial port. The function returns AL = OFFH if a characteris ready and AL = 00Hif not.

‘

i

AH = function 444, LOCcTL
AL = subfunction OOH, get device
information word

BX = handie fer standard input
transfer to MS-DOS
save device information word
fassumes DS = data segment)
set raw mode bit

and clear DH as MS-DOS requires
AL = subfunction O1H, set device
information word
(BX stall contains handle)
transfer to MS-BOS

AH = function 44H, IOCTL
AL = subfunction 06H, get
input status
BX = handle far standard aux
transfer to MS-DOS
test status of AUX driver

jump if input character ready
else no character is waiting

: Jim Kyle
Chip Rabinowitz

OLYMPUSEX.1010 - 178/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 179/1582

Article 6; Interrupt-Driven Communications

Article 6

Iinterrupt-Driven Communications

In the earliest days of personal-computer communications, when speeds were nofaster
than 300 bits per second, primitive programs that moved characters to and from the
remote system were adequate. The PC had time between characters to determine whatit
ought to do next and could spendthat time keeping track of the status of the remote
system.

Modern data-transfer rates, however, are four to eighttimes faster and leave tittle or no
time to spare between characters. At 1200 bits per second, as many as three characters can
belost in the time required to scroll the display up oneline. At such speeds, a technique to
permit characters to be received and simultaneously displayed becomes necessary.

Mainframe systems have long made use of hardware interrupts to coordinate such
activities. The processor goes about its normalactivity; when a peripheral device needs
attention, it sends an interrupt request to the processor. The processorinterrupts its activ-
ity, services the request, and then goes back to whatit was doing. Because the responseis
driven by the request, this type of processing is knownas interrupt-driven. It gives the
effect of doing two things at the same time without requiring two separate processors.

Successful telecommunication with PCs at modern data rates demands an interrupt-driven
routine for data reception. This article discusses in detail the techniques for interrupt-
driven communications and culminates in two sample program packages.

Thearticle begins by establishing the purpose of communications programs and then
discusses the capability of the simple functions provided by MS-DOSto achieve this goal.
To see what must be done to supplement MS-DO$functions, the hardware (both the
modem andthe serial port) is examined. This leads to a discussion of the method MS-DOS
has provided since version 2.0 for solving the problems of special hardware interfacing:
the installable device driver.

With the backgroundestablished, alternate pathsto interrupt-driven communications are
discussed — one following recommended MS-DOS techniques, the other following stan-
dard industry practice — and programs are developedfor each.

Throughout this article, the discussion is restricted to the architecture and BIOSofthe IBM
PC family. MS-DOSsystemsnot totally compatible with this architecture may require sub-
stantially different approachesat the detailed level, but the same general principles apply.

if|
Purpose of Communications Programs

The primary purpose of any communications program is communicating — thatis, trans-
mitting information entered as keystrokes (or bytes read fromafije) in a form suitable for

Section Il Programming in the MS-DOS Envtronment 167LUIEIANAIFI EV ANNAN A7NIACON

OLYMPUSEX.1010 - 179/1582

OLYMPUS EX. 1010 - 180/1582

Part B: Programming for M$-DO3

transmission 10 a remote computer via phone lines and, conversely, converting informa-
tion received from the remote computer into a display on the video screen (or data ina
file).

Some years ago, the most abstract form of all communications programs was dubbed a
modem engine, by analogy to Babbage’s analytical engine or the inference-engine model
used in artificial-intelligence development. The functions of the modem engine are com-
mon to all kinds of communications programs, from the simplest to the mast complex,
and can be described in a type of pseudo-C as follows:

The Modem Engine Pseudocode

DO { IF {input character is available)
send_it_to_remote;

IF (remote character is available)

usewit_locally;
} UNTIL [told_towstop);

The essence of this modem-engine codeis that the absence of an.input character, or of a
character from the remote computer, does not hang the loop in a wait state. Rather, the
engine continuesto cycle:Ifit finds work to do,it doesit; if not, the engine keeps looking.

Of course, at times it is desirable to halt the continuous action of the modem engine. For
example, when receiving a long message,it is nice to be able to pause and read the mes-
sage before the lines scrol] into oblivion. On the other hand,taking too Jong to study the

m screen means that incoming characters are lost. The answeris a technique called flow con-
trol, in which a special control characteris sent to shut down transmission and some other
characteris later sentto start it up again.

pi Several conventions for flow control exist, One of the most widespread is known as

i i a XON/XOFF, from the old Teletype-33 keycap legends for the two control codesinvolved.
In the original use, XOFF halted the paper tape reader and XONstarted it going again. In
mid-1967, the General Electric Company began using these signals in its time-sharing com-

a. puter services tc control the flow of data, and the practice rapidly spread throughoutthe
| industry.

The sample program named ENGINE, shown laterin this article, is an almostLiteral imple-
bo mentation of the modem-engine approach. This sample represents one extreme of sim-

plicity in communications programs. The other sample program, CTERM.C, is much more
complex, but the modem engineisstil] at its heart.

7 Using Simple MS-DOSFunctions

Because MS-DOSprovides, amongits standard service functions, the capability of sending
outputto or reading input from the device named AUX (which defaults to COML, thefirst

OLYMPUSEX. 1010 - 180/1582

���������	�
�
����
�
�
��OLYMPUS EX. 1010 - 181/1582

Article 6: Interrupt-Driven Communications

serial port on most machines), a first attemptat implementing the modem engine using
MS-DOSfunctions might look something like the following incomplete fragmentof
Microsoft Macro Assembler (MASM) cade:

sIncomplete [and Unworkable) Implementation

LOO: MOV AB, O&h ; read keyboard, no echa
INT 21h

MoV OL,AL ; set up to send
MoV aH, 04h 7 send to AUX device
INT 21h
MoV 4H, O3h 3 read from AUX device
Int 21h

Moy DL, AL ; set up to send
Moy AH, O2h 7 send to screen
INT 21h

JME LOOP 7 keep doing it

The problem with this codeis thatit violates the keepooking principle bothat the key-
beard and at the AUX port: Interrupt 21H Function 08H does not return until a keyboard
characteris available, so no data from the AUX port can be read until a key is pressed
locally. Similarly, Function 03H waits for a character to become available from AUX, so no.
more keys can be recognized locally until the remote system.sends a character. If nothing
is received, the loop waits forever.

To.overcome the problem at the keyboard end, Function OBH can be used to determineif
a key has been pressed before an attempt is made to read one, as shown in the following
modification of the fragment:

fImpreved, (but Still Unworkable) Implementation

LOOP: MOV AH, OBb } test keyboard for char
INT 21h

OR AL, AL } test for zero
JZ RMT 7 mo char avail, skip
MOV AH, 08h } have char, read it in
INT 2th

MOV DL, AL 7; Set up te send
MOV AH, Odn , send to AUX device
InT 2th

RMT:
Mov AH, 03h ; read from AUX device
INT 21h

Mov DL,AL ; s@t up to send
MOV AH, O2h ; Bend to screen
INT 2th

JME LOGP ; keep doing it

This code permits any input from AUX to be received without waiting for a local key to
be pressed, butif AUX is slow about providing input, the program waits indefinitely before
checking the keyboard again. Thus, the problem is only partially solved.

Section If Programming in the MS-DOS Environment 169

OLYMPUSEX. 1010 -181/1582

OLYMPUS EX. 1010 - 182/1582

Part B: Programming for MS-DOS

MS-DOS, however, simply does not provide any direct method of making the required
tests for AUX or, for that matter, any of the serial port devices. That is why communications
programs must be treated differently from most other types of programs under MS-DOS
and why such programs must beintimately involved with machine details despite al]
accepted principles of portable program design.

The Hardware Involved

Personal-computer communications require at least two distinct pieces of hardware (sepa-
rate devices, even thoughthey are often combined ona single board), These hardware 1
items are the serial port, which converts data from the computer's internal businto a bit
stream for transmission over a single external line, and the modem, which converts the bit 1
stream into a form suitable for telephone-line (or, sometimes, radio) transmission. .

The modem

The modem (a word coined from MOdulator-DEModulator) is a device that converts a
stream ofbits, represented as sequential changes of voltage level, into audio frequency sig-

oe nals suitable for transmission over voice-grade telephone circuits (modulation) and con-
Me verts these signals back into a stream of bits that duplicates the original input (demedu-

lation).

fi | Specific characteristics of the audio signals involved were established by AT&T when that
Gh company monopolized the modem industry, and those characteristics then evolved into

7 de facto standards when the monopoly vanished. They take several forms, depending on
the data rate in use; these forms are normally identified by the original Bell specification
number, such as 103 (for 600 bps and below) or 212A (for the 1200 bps standard).

The data rate is measured in bits per second (bps), often mistermed baud or even “baud
per second,” A baucl measures the numberof signals per second; as with knot (nautical
miles per hour), the time reference is built in. If one signal change marks one bit, as is true
for the Bell 103 standard, then baud and bps have equal values. However, they are not
equivalent for more complex signals. For example, the Bell 212A diphase standard for 1200

7 bps uses two tone streams, each operating at G00 baud, to transmit data at 1200 bits per
i second,

Jl For accuracy,this article uses bps, rather than baud, except where widespread industry
misuse of baud has becomestandardized (as in “baud rate generator’).

D Originally, the modemitselfwas a box connected to the computer's serial port via a cable.
1: Characteristics of this cable, its connectors, and its signals were standardized in the 1960s
i: by the Electronic Industries Association (ELA), in Standard RS232C.Like the Bell standards

for modems, R$232C has survived almost unchanged. Its characteristics are listed in
Table 6-1.

OLYMPUSEX.1010 - 182/1582

���������	�
�
����
���
��
OLYMPUS EX. 1010 - 183/1582

Article 6: Interrupt-Driven Communications

Table 6-1. R5232C Signals.

 DB25 Pin 232 Name Description

1 Safety Ground
2 BA TAD Transmit Data

3 BB RXD Receive Data

4 CA RTS Request To Send
5 CB CTs Clears To Send

6 cc DSR Data Set Ready
7 AB GND Signal Ground
8 CF bcp Data Carrier Detected

20 cD DTR Data Terminal Ready
22 CE RI Ring Indicator

Wath the increasing popularity of persona! computers, internal modemsthat plug into the
PC's motherboard and combine the modem and a seria! port became available.

Theficst such units were manufactured by Hayes Corporation, andlike Bell and the EIA,
they created a standard. Functionally, the internal modem is identical to the combination
ofa serial port, a connecting cable, and an external modem.

Theserial port

Eachserial port of a standard IBM PC connects the rest of the system to a type INS8250
Universal Asynchronous Receiver Transmitter (UART)integrated circuit (IC) chip devel-
oped by National Semiconductor Corporation. This chip, along with associated circuits in
the port,

1. Converts data supplied via the system data bus into a sequence of voltage levels on
the single TXD output line that represent binary digits.

2. Converts data received as a sequence of binary levels on the single RXD inputtine
into bytes for the data bus.

3, Controls the modem's actions through the DTR and RTS outputlines.
4. Provides status information to the processor; this information comes from the

modem,via the DSR, DCD, CTS, and RI input lines, and from within the UARTitself,
which signals data available, data needed, or error detected. .

The word asynchronous in the name of the IC comes from the Bell specifications. When
computerdata is transmitted, each bit's relationship to its neighbors must be preserved;
this can be donein either of twa ways. The most obvious methodis to keep the bit stream
strictly synchronized with a clock signal of known frequency and count the cycles to iden-
tify the bits. Such a transmission is known as synchronous, often abbreviated to synch or
sometimes bisyne for binary synchronous. The second method,first used with mechanical
teleprinters, marks the start of each bit group with a defined start bit and the end with one
or more defined stopbits, andit defines a duration for each bit time. Detection of a stact bit

Section LE Programming in the MS-DOSEnvironment 471

HUAWEI EX. 1010 - 183/1582

OLYMPUSEX.1010 - 183/1582

OLYMPUS EX. 1010 - 184/1582

Part B: Programming for MS-DOS

 marks the beginning of a received group;the signal is then sampled at each bit time until
the stop bit is encountered. This method is known as asynchronousCorjust asynch) and is
the one used by the standard IBM PC.

Thestart bit is, by definition, exactly the sameas that used to indicate binary zero, and the
stop bit is the same as that indicating binary one. A zero signal is often called SPACE, and a
one signalis called MARK, from terms used in the teleprinter industry.

During transmission, the least significant bit of the data is sentfirst, after the stact bit. A
parity bit, if used, appears as the mostsignificant bit in the data group, before the stopbit
or bits; it cannot be distinguished from a databit exceptby its position. Once the first stap
bit is sent, the line remains in MARK (sometimescalled idling) condition until a new start
bit indicates the beginning of another group.

In most PC uses, the serial port transfers one §-bit byte at a came, and the term word speci-
fies a 16-bit quantity. In the UART world, however, a word is the unit of information sent by
the chip in each chunk. The word length is part of the control information set into the chip
during setup operations and can be5,6, 7, or 8 bits. This discussion follows UART conven-
tions and refers to words, rather than to bytes.

One special type of signal, not often used in PC-to-PC communications but sometimes
necessary in communicating with mainframe systems, is a BREAK. The BREAKis an all
SPACE condition that extends for more than one word time, including the stop-bit time.
(Many systems require the BREAKto lastat least 150 milliseconds regardless of data rate.)
Because it cannot be generated by any normal data character transmission, the BREAKis
used to interrupt, or break into, normal operation. The IBM PC’s 8250 UARTcan generate
the BREAK signal, but its duration must be determined by a program,rather than by the
chip.

The 8250 UARTarchitecture
DERtptee

wer

sapere

The 8250 UART contains four major functional areas: receiver, transmitter, control circuits,
and status circuits. Because these areas are closely related, some terms used in the follow-
ing descriptions are, of necessity, forward references to subsequent paragraphs.

The major parts of the receiver are a shift register and a data register called the Received
Data Register. The shift register assembles sequentially received data into word-parallel
form by shifting the level of the RXD line intoits front end at each bit time and,at the same
time, shifting previous bits over. When the shift registeris full, all bits in it are moved over
to the data register, the shift register is cleared to all zeros, and thebit in the status circuits
that indicates data readyis set. If an error is detected during receipt of that word, other bits
in the status circuits are alsoset.

Similarly, che major parts of the transmitter are a holding register called the Transmit
Holding Register and a shift register. Each word to be transmitted is transferred from the

OLYMPUSEX.1010 - 184/1582

OLYMPUS EX. 1010 - 185/1582

Article 6: Interrupt-Driven Cormmunications

data busto the holding register. If the holding register is not empty whenthis is done, the
previous contents are lost. The transmitter’s shift register converts word-parallel data into
bit-serial form for transmission by shifting the most significant bit out to the TXD line once
eachbit time, at the same time shifting lower bits over and shifting in an idling bit at the
low end of the register. When the last databit has been shifted out, any data in the holding
register is moved to the shift register, the holding registeris filled with idling bits in case
no more data is forthcoming, and the bit in the status circuits that indicates the Transmit
Holding Register is empty is set to indicate that another word can be transferred. The
parity bit, if any, and stop bits are addedto the transmitted stream after the last databit
of each wordis shifted out.

The control circuits establish three communications features:first, line control values,

such as word length, whether or not (and how) parity is checked, and the numberof stop
bits; second, modem control values, such as the state of the DTR and RTS outputlines; and
third, the cate at which data is sent and received. These control values are established by
two 8-bit registers and one 16-bit register, which are addressed as four 8-bit registers. They
are the Line Control Register (LCR), the Modem Control Register (MCR), and the 16-bit
BRG Divisor Latch, addressed as Baudand Baud1.

The BRG Divisor Latch sets the data rate by defining the bit time produced by the Pro-
grammable Baud Rate Generator (PBRG), a major part of the control circuits. The PBRG
can provide any data speed from a few bits per second to 38400 bps; in the BIOS of the
IBM PC, PC/XT, and PCAT,though, only the range 110 through 9600 bpsis supported.
How the LCR and the MCRestablish their control values, how the PBRG is programmed,
and how interrupts are enabled are discussedlater,

The fourth major area in the 8250 UART,the statuscircuits, records Cin a pair of status
registers} the conditions in the receive and transmit circuits, any errors that are detected,
and any changein state of the R5232C inputlines from the modem. When any status regis-
ter's content changes, an interrupt request, if enabled, is generated to notify the rest of the
PC system. This approach lets the PC attend to other matters without having to continually
monitor the status of the serial port, yet it assures immediate action when something does
occur,

The 8250 programming interface

Notall the registers mentioned in the preceding section are accessible to programmers.
The shift registers, for example, can be read from or written to only by the 8250's internal
circuits. There are 10 registers available to the programmer, and they are accessed by only
seven distinct addresses (shown in Table 6-2). The Received Data Register and the
Transmit Holding Register share a single address (a read gets the received data; a write
goes to the holding register). In addition, both this address and that of the Interrupt Enable
Register (JER) are shared with the PBRG Divisor Latch. A bit in the Line Control Register
called the Divisor Latch Access Bit (DLAB) determines whichregister is addressed at any
specific time,

Sectina IProcrammina in theMS-DOS Fnvironment 173

OLYMPUSEX.1010 - 185/1582

OLYMPUS EX. 1010 - 186/1582

Part B: Programming for MS-DOS

in the IBM PC,the seven addresses used by the 8250 are selected bythe low 3 bitsof
port number(the higherbits select the specific port). Thus, each serial port occupies 4
positions in the address space. However, only the lowest address used—— the one in wha
the low 3 bits are all 0-— need be remembered in order to access all eight addresses, §

Because of this, any serial portin the PC is referred to by an address that, in hexadeci x
notation, ends with either 0 or 8: The COMEport normally uses address O3F8H, and C
uses 02F8H, This lowest port address is usual ly called the base port address, and each

addressable register is then referenced as an offset from this base value, as shown inTable 6-2. ,

Table 6-2. 8250 Port Offsets from Base Address.

Offset Name Description

If DLAB bit in LCR = 0:

wl OOH DATA Received Data Registerif
to read from, Transmit Holding
a Registerif written to

| 01H IER Interrupt Enable Register 4

| If DLABbit in LCR = 1: 4
7 C0H Baud0 BRG Divisor Latch, low byte 1

01H Baud1 BRG Divisor Latch, high byte
: | i
bo Notaffected by DLAB bit: |

02K IID Interrupt Identifier Register
03H LCR Line Control Register

po 04H MCR Modem Control Register
to 05H LSR Line Status Register

06H “ MSR Modem Status Register

The control circuits

The control circuits of the 8250 include the Programmable Baud Rate Generator (PBRG),
the Line Control Register (LCR), the Modem Control Register (MCR), and the Interrupt En-
able Register (IER).

The PBRG establishesthe bit time usedfor both transmitting and receiving data by divid-
ing an external clock signal. To select a desired bit rate, the appropriate divisoris loaded
into the PBRG's 16-bit Divisor Latch by setting the Divisor Latch Access Bit (DLAB) in the
Line Control Register to 1 Cwhich changesthe functions of addresses 0 and 1) and then
writing the divisor into Baud@ and Baud. After the bit rate is selected, DLAB is changed
back to 0, to permit normal operation of the DATA registers and the IER.

174 The MSPOS Encuctohedia

OLYMPUSEX. 1010 - 186/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 187/1582

Article 6: Interrupt-Driven Communications

With the 1.8432 MHz external UARTclock frequency used in standard IBM systems,
divisor values Cin decimal notation)for bit rates between 45.5 and 38400 bpsarelisted in
Table 6-3. These speedsare established by a crystal contained in theserial port (or internal
modem) andare totally unrelated to the speed of the processor’s clock.

Table 6-3. Bit Rate Divisor Table for 8250/IBM.

BPS Divisor

45.5 2532
50 2304

75 1536
110 1047

134.5 857
150 768
300 384

600 192

1200 96
1800 64

2000 58
2400 48

4800 24

9600 12
19200 6
38400 3

The remaining control circuits are the Line Control Register, the Modem Control Register,
and the Interrupt Enable Register. Bits in the LCR control the assignmentofoffsets 0 and 1,
transmission of the BREAKsignal, parity generation, the numberof stop bits, and the word
length sent and received, as shown in Table 6-4.

Table 6-4. 8250 Line ControlRegister Bit Values.

Bit Name Binary Meaning

Address Control:

7 DLAB OXXXXXXX Offset 0 refers to DATA;
offset 1 refers to IER

1XXXXXxXKX Offsets 0 and 1 refer to

BRG Divisor Latch

BREAKControl:

6 SETBRK XOXXXXKK Normal UART operation
X1XxXxXxXXX ~ Send BREAKsignal

(more)

Section Il: Programming in the MS-DOSEnvironment © 175

IP TACAIF@ 1 Pw ANTFIALFOAN

OLYMPUSEX. 1010-187/1582

OLYMPUS EX. 1010 - 188/1582

 aPE

Part B: Programming for MS-DOS

Table 6-4. Continued.

Bit Name Binary Meaning

Parity Checking:
5,4,3 GENPAR XXXXOKKX Noparity bit

xx001xxx Parity bit is ODD
xx01 Lxxx Parity bit is EVEN
xx1O1lxxx Parity bit is 1
xx11ixxx Parity bit is 0

Stop Bits:
2 XSTOP XXXXXOKX Only 1 stop bit

XXEXKIXE 2 stop bits
(1.5 if WL = 5)

Word Length:
1,0 WD5 Xxxxxx00 Word length = 5

WD6 so0ocxx01 Word length = 6
WD? XXXXKK1O Word length = 7
WD8 soooaxl1 Word length = 8

Twobits in the MCR (Table 6-5) control output lines DTR and RTS; two other MCRbits
(OUT and OUTZ2)are left free by the UARTto be assigned by the user, a fifth bit C(TEST}
puts the UARTinto a self-test mode of operation. The upper3 bits have no effect on the
UART. The MCR can be both read from and written to.

Both of the user-assignable bits are defined in the IBM PC. OUT] is used by Hayesinternal
modems to cause a power-on reset of their circuits; OUT2 controls the passage of UART-
generated interrupt requestsignals to the rest of the PC. Unless OUT2is set to 1, interrupt.
signals from the DART cannotreach the rest of the PC, even though all other controls are
properly set. This feature is documented, but obscurely, in the IBM Technical Reference
manuals and the asynchronous-adapter schematic; it is easy to overlook when writing an
interrupt-driven program for chese machines.

Table 6-5. 8250 Modem Control Register Bit Values.

Name Binary Description

TEST xxxxxx Turns on UARTself-test configuration.
OUT2 xXxEX]xx Controls 8250 interrupt signals (User2 Output).
OUT1 XXXXKIXxx Resets Hayes 1200b internal modem (User1 Output).
RTS XKLX Sets RTS output to RS232C connector.
DIR XEXKKXX] Sets DTR output to RS232C connector.

OLYMPUSEX. 1010 - 188/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 189/1582

Article & Interrupt-Driven Communications

The 8250 can generate any or all of four classes of interrupts, each individually enabled or
disabled by setting the appropriate controbit in the Interrupt Enable Register (Table 6-6).
Thus,setting the IER to 00H disablesall the UARTinterrupts within the 8250 without
regard to any othersettings, such as OUT2, system interrupt masking, or the CLI/STI com-
mands. The IER can be both read from and written to, Only the low 4 bits have any effect
on the UART.

Table 6-6, 8250 Interrupt Enable Register Constants.

 Binary Action

xolxx Enable Modem Status Interrupt.
XXXKXLXK Enable Line Status Interrupt.
soc1x Enable Transmit Register Interrupt.
SOOO1 Enable Received Data Ready Interrupt.

The status circuits

The status circuits of the 8250 include the Line Status Register (LSR), the Modem Status
Register (MSR), the Interrupt Identifier (IID) Register, and the interrupt-recuest generation
system.

The 8250 includescircuitry that detects a received BREAKsignal and also detects three
classes of data+reception errors. Separate bits in the LSR (Table 6-7) aresetto indicate that
a BREAK has been received and to indicate any of the following: a parity error (if lateral
parity is in use), a framing error incoming bit = 0 at stop-bit time), or an overrun error
Gword not yet read from receive buffer by the time the next word must be movedinto iv).

The remaining bits of the LSR indicate the status of the Transmit Shift Register, the
Transmit Holding Register, and the Received Data Register; the most significant bit of the
LSR is not used and is always 0. The LSR is a read-only register; writing to it has no effect.

Table 6-7. $250 Line Status Register Bit Values,

 Bit Binary Meaning

7 (sonocox Always zero
6 XEXXKK Transmit Shift Register empty
3 3X1XXXXK Transmit Holding Register empty
4 eXX1xOKX BREAKreceived

3 2onxDo Framing error
2 XXXXXLXX Parity error
1 xooooaLK Overrun error

0 xx] Received data ready

Section IL: Programming in the MS-DOS Environment=177

OLYMPUSEX. 1010 -189/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 190/1582

Part B: Programming for M3-DOS

CLRGS:

MoV Dx, OSFDh : clear LSE
IN AL,DX
MOV D¥,03F8h ; clear RX reg
IN AL, DX
MOV Dx,03FEh , ? Clear MSR
IN AL, BX
Mov DX, O3Fhh : IIB reg
in AL,OX

IN AL, OX ; Fepeat to be sure
TEST AL, 1 i; int pending?
a2 CLREGS / ¥es, repeat

Note; This code does not completely set up the IBM serial port. Althoughit fuliy programs
the 8250itself, additional work remains to be done. The system interrupt vectors must be
changedto provide linkage to the interrupt service routine (ISR) code, and the 8259
Priority Interrupt Controller (PIC) chip must also be programmedto respond to interrupt
requests from the UART channels. See PROGRAMMING IN THE MS-DOS ENVIRON-
MENT; CusToMizinG Ms-pos: Hardware Interrupt Handlers.

Device Drivers

180

All versions of MS-DOSsince 2.0 have permitted the installation of user-provided device
drivers. From the standpoint of operating-system theory, using such drivers is the proper
wayto handie generic communicationsinterfacing. The following paragraphs are intended
as a refresher and to explain this article's departure from standard device-driver terminal-
ogy. S¢e PROGRAMMINGIN THE MS-DOS ENVIRONMENT: CusToMIzinG MS-DOS:
Installabie Device Drivers.

Aninstallable device driver consists of (1) a driver header that links the driver to

others in the chain maintained by MS-DOS,tells the system the characteristics of this spe-
cific driver, provides pointers to the two major routines contained in the driver, and (fora
character-device driver) identifies the driver by name; (2) any data and storage space the
driver may require; and (3) the two major code routines.

The code routines are called the Strategy routine and the Interrupt routine in normal
device-driver descriptions. Neither has any connection with the hardware interrupts dealt
with by the drivers presented in this article. Because ofthis, the term Request routineis
used instead of Interrupt routine, so that hardware interrupt code can be called an

interrupt service routine (ISR) with minimal chancesfor confusion.

MS-DOS communicates with a device driver by reserving space for a command packet
of as many as 22 bytes and by passing this packet's address to the driver with a call to the
Strategy routine. All data transfer between MS-DOSandthe driver, in both directions,
occurs via this command packet and the Request routine. The operating system places a
coromand code and, optionally, a byte count and a buffer address into the packet at the
specified lacations, then calls the Request routine. The driver performs the command
and returns the status (and sometimes a byte count) in the packet.

The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 190/1582

���������	�
�
����
�
�
��OLYMPUS EX. 1010 - 191/1582

Article &Interrupt-Driven Communications

Two Alternative Approaches

Now that the factors involved in creating interrupt-driven communications programs have
been discussed, they can be put together into practical program packages. Doing so brings
out net only general principles but also minor details that make the difference between
success and failure of program design in this hardware-dependent and time-critical area.

The traditional way: Going it alone

Because MS-DOS provides no generic functions suitable for communicationsuse, virtually
all popular communications programs provide andinstall theic own port driver code, and
then removeit before returning to MS-DOS. This approach entails the creation of a com-
munications handler for each program and requires the “uninstallation” of the handler on
exit from the program that usesit. Despite the extra requirements, most communications
programs use this method.

The alternative: Creating a communications device driver

Instead of providing temporary interface code that must be removed from the system
before returning to the commandlevel, an installable device driver can be built as. a
replacement for COMso that every program can have all features. However, this
approachis not compatible with existing terminalprograms becauseit has never been a
part of MS-DOS.

Comparison of the two methods

Thetraditional approach has several advantages, the most obvious being that the driver
code can be fully tailored to the needs of the program. Because only one program will
ever use the driver, no general cases need be considered.

However, if a user wants to keep communications capability available in a terminate-and-
stay-resident CTSR) module for background use and also wants a different type of commu-
nications program running in the foreground (not, of course, while the backgroundtask is
using the port}, the background program and the foreground job must each have its own
separate driver code. And, because such code usually includes buffer areas, the duplicated
drivers represent wasted resources.

A single communications device driver that is installed when the system powers up and
that remains active until shutdown avoids wasting resources by allowing both the back-
ground and foregroundtasks to share the driver code. Until such drivers are common,
however, it is unlikely that commercial software will be able to make use of them. In addi-
tion, such a driver must either provide totally general capabilities or it must include control
interfaces so each user program can dynamically alter the driver to suit its needs,

At this time, the use of a single driver is an interesting exercise rather than a practical
application, although a possible exception is a dedicated system in which all softwareis
either custom designed or specially modified. In such a system, the generalized driver
can provide significant improvement in the efficiency of resource allocation.

Section If; Programming in the MS-DOS Environment 181PP ADAIR EAs 4Aasn AACA AN

OLYMPUSEX. 1010 - 191/1582

OLYMPUS EX. 1010 - 192/1582

Part B: Programming for MS-DOS

A Device-Driver Program Package

Despite the limitations mentioned in the precedingsection,thefirst of the two complete
packages in this article uses the concept of a separate device driver. The driver handlesall
hardware-dependentinterlacing and thus permits extreme simplicity in ali other modules
of the package. This approachis presented first becauseit is especially well suited for in-
troducing the concepts of communications programs. However,the packageis not merely
a tutorial device:It includes some features that are not available in most commercial

programs.

The packageitself consists of three separate programs.First is the device driver, which
becomes a part of MS-DOSvia the CONFIG.SYSfile. Second is the modem engine, which
is the actual terminal program.CA functionally similar component forms the heart of every
communications program, whetherit is written in assembly language or a high-levet lan-
guage and regardless of the machine or operating system in use.) Third is a separately exe-
cuted support program that permits changing such driver characteristics as word length,
parity, and baudrate.

In most programsthat use the traditional approach,the driver and the support program
are combined with the modem engine in a single unit and the resulting massofdetail
obscures the essential simplicity of each part. Here, the parts are presented as separate
modules to emphasize that simplicity.

The device driver: COMDVR.ASM

The device driver is written to augment the default COM1 and COM2 devices with other
devices named ASY1 and ASY2that use the same physical hardware butare logically sepa-
rate. The driver (COMDVR.ASM)is implemented in MASM andis shownin the listing in
Figure 6-1. Although the driver is written basically as a skeleton,it is designed to permit
extensive expansion and can be used as a general-purpose sample of device-driver

' source cade.

The code

: Title COMDVR Oriver for IBM COM Ports

1

2: Jim Kyle, 1987
4 Bs; Based on ideas from many sources......

43; including Mike Higgins, CLM March 1985:

| Sof public-domain INTBIOS program from BBS's;
I 60; COMBIOS.cCOM from CIS Programmers’ SIG; and
; Ta; ADVANCED MS-DOS by Ray Duncan.

8 : Subttl MS-DOS Driver Definitions
| 3:

10 Comment * This comments out the Dbg macro.....

| 11: Dbg Macre Ltrl,Ltré,Ltc3 ; used only to debug driver...
| 120: Local XKK2: Push Es } gave all regs used

I

: 7 Figure 6-1. COMDVR.4ASM. (more)
HW

q

I

if 199 The ACOE Poeuciinedia

OLYMPUSEX.1010 - 192/1582

OLYMPUS EX. 1010 - 193/1582

Article &: Interrupt-Driven Communications

‘

14: Push Bi
13 5 Push Ax

16: Les Di,Cs:Dbgptr ? Get pointer to CRT
17: Mov Ax, Es: [di]
1B: Mov Al, Ler 3 Move in letters
9: Stosw

20: Mov Al, Ltrz
213 Stosw
223 Mov Al, Ltr3
23: Stosw

24: cmp Di, i600 ; top 10 lines only
25% Jb Xxx
26: Ror Di, DL
270: Kxx: Mow Word Ptr Cs:Dbgptr,Di
2aor Pop Ax
29; Pop Di
30; Pap Es
at : Endm

320: * } asterisk ends commented-out region
430: ;
345; Device Type Codes
35 : DevChr Equ g000h 7; this is a character device
34 : DevBlk Equ o000h 7; this is a bleck {disk} device
370: DevIae Equ 4000h ; this device accepts IQCTL requests
38 3: DevNon Equ 2000h 7 non-IBM disk driver {block only)
39 : DevOTB Equ 2000h 7; MS-DOS 3.x out until busy supperted (char}
40; DevocR Equ O800h } MS-DOS 3.x open/close/rm supperted
419: DevxX32 Equ o040h }; MS-DOS 3.2 functions supported
42: DevSpe Equ 0070h 7; accepts special interrupt 29H
43: DevClk Equ O008h 7 this is the CLOCK device
44 : Deviul Equ oo04h ; this is the NUL device
45 : DevSto Equ d002h : this is standard output

46 : DevSti Equ o00i1h 7 this is standard input
AT ri
4h: ; Error Status BITS
49 : StsErr Equ 8000h i general error
$0 : StsBsy Equ 0200h i device busy
$1 : StsOne Equ O100h 7 request completed
52 : ;
53:3 Error Reason values for lLower-order bits

54. ErrW#p Equ 0 ; Write protect error
$5 : Errtlu Equ 1 7 unknown unit
56 : ErrDnr Equ 2 ; drive not ready
S73 Errle Equ 3 7 unknown command
58 : ErrCrc Equ 4 7; cyelical redundancy check error
59 : ErrBsl Equ 5 ; bad drive request structure length
60 + ErrSi Equ 6 ¥ seek arror
6103: ErrUm Equ 7 ; unknown media
62 : ErxSnf Equ 4 ; Sector not found
63: ErrPop equ 9 ;} Printer cut of paper
64 + Brraf Equ to # write fault

Figure 6-1, Continued. Onore)

Section IL Programming in the MS-DOS Environment 184

OLYMPUSEX.1010 - 193/1582

OLYMPUS EX. 1010 - 194/1582

Part B: Programming for MS-DOS

65 : ErrcRé£ Equ 11 ; cead fault
660: ErrcGf Equ 12 ; general failure
oF i:

68:3 Structure of an I/O request packet header.
ego:r:. 7
70° : Pack Struc ,
71: Len Db ? length of record
72: Prtno bb ? unit code

~73 0: Code Db command code
740: Stat Dw ? # return status
73°: Desg od {unused MS-DOS queue link pointer)

nd

a 76°: Devg Od ? 7; (unused driver queue link pointer}
77 oo: Media Db ? ; media code on read/write
78 : Xfer Dw ? ; xfer address offset

79 5 Xseq Dw ? + xfer address segment
80 : Count Bw ? : transfer byte count
O10: Sector Dw 2 # starting sector value (ileck only}
82 : Pack Ends
43;
84 : Subttl IBM-PC Hardware Driver Definitions

85 >: page
a6: ;

avo: ; 8259 data .
88 : Pic.b Equ 020h ; port for EOI
69 : pice equ O21h ? port for Int enabling
$0 ; EOI Equ 020h 7 EOI control word
915%

920: ¢ 8250 port offsets
93 +: RxBut Equ OF8h ; base address
94°: Baudl Equ RxBuft+i ; baud diviser high byte
95 : IntEn Equ RxBuf+] ; interrupt enable register
96 : IntId Equ RaBufe? ; interrupt identification register
S7 : Letrl Equ ReBuf+3 ; line cantrol register
98 > Metcl Equ RxBuf+4d ; modem control register
99): Lestat Equ RxBuf+5 ; line status register

100 : Mstat Equ RxBuf+6 ; modem status register
1:7
102: ; $250 LCR constants

104 : Dlab equ 10000000b ; divisor latch access bit
104 ; SetBrk Equ 010000005 ; send break control bit
105 : StkPar Equ Og100000b ; stick parity centrol bit
106 : EvnPar Equ OOGTOOOOb ; éeven parity bit
107 : GenPaz Equ g0g01000b ; generate parity bit
108 : Xstop Equ qgecgo100b ; extra stop bit
109 :; Woe Equ Oodgool1b ; word length = 8
110 : Wd? Equ g0egnd1ab ; word length = 7
1110: Wdé Equ Oo00C001b ; word length = 6
wW25 ;
W3 i+ @250 LSR constants
114: xsre Equ O1o000o0b ; xmt SR empty
115°: xhre Equ 001000005 : «mt HR empty

Figure G-1, Continued. . (more)I

104 rete ae unml

OLYMPUSEX. 1010 - 194/1582

���������	�
�
����
��
��
OLYMPUS EX. 1010 - 195/1582

Article 6: Interrupt-Driven Communicationsa

116 : BrkRevy Equ 00619000b ; break received
117 : FrmErr Equ oooe1000b ; framing error
118 : ParErr Equ O0G00100b ; parity error
119°: GveRun Equ Oocgob10b ; overrun error
120 3; rdta Equ OOb0GGGIb ; received data ready
121 +: AnyErr Equ BrkRev+FrmirrtParErr+Overun
122 3 3 .
Van; @250 MCR constants
124 5 LpBk Equ Gd0TO000b ; UART out loops to in (test)
125 ; Usr2 Equ O0001000b ; Gates 8250 interrupts
126 0: Usrl Equ GO000100b ; avx user! output
127 +: SetRTS Equ goodd0i0h ; sets RTS output
128 ; SetDTR Equ QoooogdIb ; sets DTR output
129 : 3
130 3 3 6250 MSR constants
131°: cDlvl Equ 1VOG00000b ; carrier detect ievel
132 : RIlvl Equ Q1gd0000n ; ring indicator level
1330 : DSRlvl Equ oo10g0000b ; DSR level
134°: CTSlvl Equ 00010000b ; €Ts level
138 2: codchg Equ oo001000n ; Carrier Oetect change
136 7; Richg Equ o0000100n ; Ring Indicator change
437): DSReha Equ OO000010h ; DSR change
138 0: CTSchg Equ Go0doGOib ; CTS change
139 3;
140 : ; 8250 TER constants
1410: S_int Equ A000 both ; enable status interrupt
142 3; E_tnt Equ O0000100b ; enable error interrupt
143 1 4tnt Equ OOO00010b ; enable transmit interrupt
144 : Rint Equ OO0GOS01b ; enable receive interrupt
145 : Allint Equ 00001111b ; enable all interrupts
146 :
147): Subttl Definitions for THIS Driver
148 : page
149 5;

150 : ;7 Bit definitions for the output status byte
TS: + (this driver only }
182 : Linidi Equ Gffth ; aif all bits off, xmitter is idle
1530: Linkef Equ 1 ; outpuL is suspended by XOFE
154 : LinDSR Equ 2 7 autput is suspended until DSR comes on again
155 : LinctsS Equ 4 f GULput is suspended until CTS comes on again
156 : ;

ws? os ; Git definitions for the input statue byte
168 +; { this driver only }
159 : BadInp Equ 1 ; input line errors have been detected
160 : LestDbc Equ 2 } receiver buffer overflowed, data lost
161 9: OffLin Equ 4 ; device is off line now
162 : ;

163: ; Bit definitions for the special characteristics words
164: ; { this driver only 3
165 2; InSpec controls now input from the UART is treated
166 : 3

Figure 6-1. Continued. {more}

Section I: Programming in the MS-DOS Environment=185

HUAWEI EX. 1010 - 195/1582

OLYMPUSEX. 1010 - 195/1582

OLYMPUS EX. 1010 - 196/1582

Part B: Programming for M$-DO8

vwDoewyoO

o001h

OutSpec

000Th
o002h
O004dh
bo10h
oo20h

?
?
?
wdg

Usr2+$et

InEpc
Outxen
96
0

} errors translate toa codes with parity bit on

controls how output to the UART is treated

DSR is used to throttle output data
CTS is used to throttle output data

} XON/MOFF is used to throttle output data
; carrier detect is off-line signal
} DSR is off-line signal

} each unit has @ Structure defining its state:
i I/6 port address

interrupt vector offget (MOT interrupt number!}
offset to interrupt service routine
default LOR bit settings during INIT,

; Output status bits after
RTS+SetOTR ; MCR bit settings during INIT,
¢ input status bits after
: Special mode bits for INPUT
7 Special mode bits for OOTPUT
current baud rate divisor value (1200 b)

3 offset of first character in input buffer
offset of next available byte
pointer te input buffer
offset of first character in output buffer
offset of next avail byte in output buffer
pointer to output buffer

weONEeos

Beginning of driver code and data

Cs:driver, dsidriver, es:driver
0

Asynce, —
DevChr +
Strtegy
Request!
"ASY1

-1,7-1
Devchr +
Strteqy
Requestd
"ASY?

Obogcooo

3; drivers start at 0

1 ; pointer to next device
Deviloc ; character device with IOCTL

+ offset of Strategy routine
7; offset of interrupt entry point 1

' ; device 1 name

pointer to next device: MS-DOS fills in
Devioc ; character device with IOCTL

7 offset of Strategy reutine
; offset of interrupt entry point 2

. ; device 2 name

Oh

Following is the storage area for the request packet pointer

167 + InEpe Equ
168 : 3
169 37
170 a

1710 : QutoOSR Equ
172 : GutcTs Equ
1730; GutXen Equ
174 >: Outed£ Equ
i75 + OQutOrf Equ
17623
177 +: Unit Struc
178 ; Port Dw
179 : YVect Ow
180 : Isradr Dw
181 : OtStat Bb
182 :
143 : InStat Db
184 =:

185 : Inspec Dw
186 : GutSpec Dw
187 : Baud Dw
the : Ificst Dw
199 Tavail Dw

190 ; Ebuf pw
191 : Ofixrest Dw
142 ; Gavail Dw
193 : Obuf Dw
194 : Unit Ends
1450:
196 2:3
197 2:7
198 3:3
199 : Driver Segment
200 : Assume
201 Org
202

203 : Dw
204: Ow
205 : Dw
2o6 Bw
2q7 : bh
208 + Asyne2:
209 ; Bw
270 : Dw
211: Dw
212: Dw
213 : tb
2t4 i
215 idogptr Da
216 :
217 17

Figure 6-1. Continued. (more)

OLYMPUSEX.1010 - 196/1582

OLYMPUS EX. 1010 - 197/1582

Article 6; Interrupt-Driven Communications

218 ;

219 PackHd Dd 0
220 ;

221 ; baud rate conversion table
222 : Asybaudt Dw 50,2304 ; first value is desired baud rate
223 Dw 75,1536 ; second is divisor register value
224 : Dw 110,1047
225: Dw 134, 857
226 Dw 150, 786
227 : Dw 300, 384
228 Dw 600, 192
229 Dw 1200, 96
230 Dw 1800, 64
231 Dw 2000, 58
232 Dw 2400, 48
233 Dw 3600, 32
234: Dw 4800, 24
235 Dw 7200, 16
236 Dw 9600, 12
237

238 ; table of structures
239 ; ASY1 defaults to the COM port, INT OCH vector, XON,
240 ; no parity, 8 databits, 1 stop bit, and 1200 baud
241 Asy—tab1:
242 : Unit <3£8h, 30h, asytist,rryy re, inibut,,,out tbuft>
243

244 ; ASY2 defaults to the COM2 port, INT OBH vector, XON,
245 r no parity, 8 databits, 1 stop bit, and 1200 baud
246 Asytab2:
247 Unit <2£8h, 2h, asy2istysrerereindbuf,,,out2buf>
248

249 ; Bufsiz Equ 256 ; input buffer size
250 : Bufmsk = Bufsiz-1 ; mask for calculating offsets modulo bufsiz
251 ; Inlbuf Db Bufsiz DUP (?)
252 Outibuf Db Bufsiz DUP (?
253 In2buf Db Bufsiz DUP (?)
254 ; Out2buf Db Bufsiz DUP (?
255 3: 3

256: i Following is a table of offsets to all the driver functions
257

258 Asy_—funcs:
259 Dw Init ; © initialize driver
260 : Dw Mchek ; 1 media check (block only)
261 Dw BIdBPB ; 2 build BPB (block only)
262 : Dw Ioctlin ; 3 IOCTL read
263 Dw Read ; 4 read
264 Dw Ndread : 5 nondestructive read
265 Dw Rxstat ; 6 input status
266 Dw Inflush ; 7 flush input buffer
267 Dw Write ; 8 write
268 Dw Write ; 9 write with verify

Figure 6-1. Continued. (more)

Cantina TF Draorammingin the MS-DOS Environment 187

OLYMPUSEX.1010 - 197/1582

OLYMPUS EX. 1010 - 198/1582

Part B: Programming for MS-DOS

2649: Ow Txstat i 10 output status
270 : Dw Txflush 7°11 flush output buffer
271: ow Ioctlavt 7 12 IOCTL write

272 . ; Pollewing are nor used in this driver.....
273: Dw Zexit 30613 open (3.8 only, not used)
274: Dw Zexit ; 6174 close {3.x only, not used)
275: Dw Zexit 7; 15 rem med (3.x only, not used)
276 : Dew Zexit xy) 16 out until bsy (3.4 only, not used}
277 : Dw Zexit 7 17
278; Dw Zexit 7748
27a; Dw Zexit i 19 generic IOCTL request (3.2 only}
280 : Dw Zexit 7 20
2810: Ow Zexit 7 21
282 ; ow Zexit 3 22

283: Dw Zexit 7 23 get logical drive map [3.2 only)
284: Dw Zexit } #4 set logical drive map (3.2 only)
285 :

2B6 : Subttl Driver Code

287 : Page
286 : i
249: ; The Strategy routine itself:
290: ;

291 >: Strtegy Proc Far
292 5 ; dbq 'gt,’RI,t &
233 Mov Word Per CS:PackHd, BX 7; Store the offset
294 Mov fYord Ptr CS:PackHd+2,ES ; store the segment
295 Ret
296 : Stxrtegy Endp
297:;

298 : Request: 7; asyncl has been requested
299: Push Si i; gave SI

300 ; Lea 5i,Asy_tab1 3} get the device unit table address
“301: Jmmp Short Gen_request

302 :

303 : Request?: ; asyne? has been requested
304; Push Si i Save SI

305: Lea $i,Asy_tab2 3 get unit table two's address
306 :

307 + Gen_request:
FOB : ; dba 'RIJ’RE,'
3049 3 Pushf ? Save all regs
319°: cld
311 =: Push Ax
312 Push Bx
313: Push cx
314 : Push Dx
315 : Push Di

316: Push Ep
si? ;: Push Ds
318: Push Es
319: Push cs ; set DS = cs

Fiaure 6-3. Continued,

188 The MS-DOS Rnevctobedia

(more}

OLYMPUSEX.1010 - 198/1582

OLYMPUS EX. 1010 - 199/1582

Article 6: Interrupt-Driven Communications
I

320 : Pop Ds
321 : Les Bx, PackHd ; get packet pointer
322 : Lea Di,Asy_funcs ; point DI to jump table
323 : Mov Al,es:code[bx] ; command code
324 : Cbw

325 : Add Ax, Ax ; double to word
326 : Add Di,ax

327 : Jmp [di] 3 go do it
328: ;

329 : ; Exit from driver request
330 ;
331 ExitP Proc Far

332 Bsyexit:
333 Mov Ax, StsBsy

334 Jmp Short Exit
335
336 : Mchek:
337 : BIdBPB:
338 zexit: Xor Ax, Ax

339 : Exit: Les Bx, PackHd ; get packet pointer
340 : or Ax, StsDne

341: Mov Es:Stat(Bx],Ax ; set return status
342 Pop Es : restore registers
343 Pop Ds
344 : Pop Bp
345 : Pop Di
346 : Pop Dx
347 : Pop Cx
348 : Pop Bx
349 : Pop Ax
350 Popf
351 Pop Si
352 Ret
353 ExitP Endp
354

355 : Subttl Driver Service Routines
356 : Page
357 :

358 : ; Read data from device
359 :
360 : Read:

361: ; dbg Rr, tat,' !
362 : Mov Cx,Es:Count [bx] ; get requested nbr
363 : Mov Di,Es:Xfer[bx} ; get target pointer
364 : Mov Dx,Es:Xseg(bx]
365: Push Bx ; save for count fixup
366 : Push Es
367 : Mov Es,Dx

368 : Test InStat(si],BadInp Or LostDt
369 : Je No_lerr ; no error so far...
370 Ada sp,4 ; error, flush SP

Figure 6-1. Continued. (more)

foci1t Mannenmeina in the MS-DOS Environment 189

OLYMPUSEX. 1010 - 199/1582

OLYMPUS EX. 1010 - 200/1582

YEONei

CaneAeanettere

Part B: Programming for MS-DOS

371
372
373
374
375
376
377
378
4379
380
381
382
383
384
385
386
387
388
369
390
391
392
393
394
395
396
397
398
39%
400
401
402
403
404
405

406
407
408
409
410
ai
412
413
ata
415
416
4ai7
418
a9
420

Figure 6-1. Continued.

And inStat[si],Not (BadInp Or LestcDr }
Mov Ax, ErrRet 7 @rror, report it
dp Exit

No_lerr:

Call Get_in # go for one
Or Ah, Ah
dng Got_all i none to get now
Stosh j; store it
Loop No_lerr i go for more

Gotwall:

Pop Es
Pop Bx
Sub Di,Es:Xfer[bx] ; calc number stored
Mov Es:Count[bx],bi 7; return as count
Jimp Zexit

? Nondestructive read from device

Ndread:
Mov Di, ifirst{si]
cmp Bi,iavail [si]
Jne Ndget
Jmp Bsyesit ; buffer empty

Ndget :
Push Bx

Mov Bx, ibuf [si]
Mov Al, [bxtdi]
Pop BE
Mov Es:media(bx),al ; return char
amp Zexit

f Input status request

Rxustat:

Mov Di,ifirst (sil
cmp Di,iavail[si]
Jne Reful

Jmp Bsyexit : buffer empty
Rxful:

omp exit ; have data

rt Input flush request

Inflush:
Mov Ax, lavailfsi]

” Mov Tfirstisi],ax
Jmp Zexit

: Output data to device

(more)

OLYMPUSEX.1010 - 200/1582

OLYMPUS EX. 1010 - 201/1582

421
422
423
424
425
426

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

‘454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469 :
470
471

Write:

i dbg
Mov
Mov
Mov
Mov

: Wlup:
Mov
Inc

: Wwait:
Call
Cmp
gne
call
Loop

Jmp

Article 6; Interrupt-Driven Communications

‘wi,trt,' v
cx,es:count [bx]
Di,es:xfer [bx]
Ax,es:xseg [bx]
Bs, ax

Al,es: [di] 7
Di

get the byte

Put_out ;

Ah, 90
Wwait ;
Start_output :
Wilup

put away

get it going

zexit

; Output status request

1 Txstat:

: Txroom:
Jmp

; JOCTL read request,

Toctlin:
Mov
Mov
Mov
Mov

cmp
Je
Mov

omp
: Doiocin:

Mov
Mov
Mov

Getport:
In
Stos
Inc

Loop

Figure 6-1. Continued.

Ax,ofirst [si]
AX

Ax, bufmsk
Ax, oavail[si}
Txroom

Bsyexit ; buffer full

Zexit ; room exists

Cx,es:count [bx]
Di,es: xfer [bx]
Dx,es:xseg [bx]
Es,dx
cx,10
Doiocin

Ax,errbsl
Exit

base port
line status

Dx,port [si] ;
D1l,Letrl ;
cx,4 i

Al,dax

Byte Ptr [DT]
Dx

Getport

Sortian IT Prnoramminein the MS-DOS Environment

wait for room!

LCR, MCR, LSR,

return line parameters

MSR

(more)

191

OLYMPUSEX. 1010 - 201/1582

OLYMPUS EX. 1010 - 202/1582

Part B: Programming for MS-DOS

472
473
ata
474
até
477
478
479
480
481
492
4g3
484
4385
406
aaT
48
489
440
494
492
493
494
495
496
497
49g
49
5090
$01
502
503
564
505
506
507
508
50%
510
511
g12
513
514
515
516
S17
518
519
520
521

$22

Mov Ax, Inspec(si} ; spec in flags
Stes Word Prr [D1]
Mov Ax,OutSpec([si} ¢ out flags
Stes Word Ptr [DI]
Mov Ax, bpaud(si] ; band rate
Mov Bx, di

Mov Di,offset Asy_baudtt+2
Mov Cx, 15

Baudein:

cmp fdil,ax
de Yesinb

Add bird
Loop Baudcin

Yesinb:
Mov Ax, -2[di}
Mov Di, bx
$tas Werd Ptr [DT]
Jmp Zexit

i Flush output buffer request

Txflush:
Mov Ax, oavail[si]
Mov ofirst[s$i],ax
JInp gexit

; IOCTL request: change line parameters for this driver
Teecrleut:

Mov cCx,es;count [bx]
Mov Di,es:ixfer [bx]
Mov Dx, esixseg [bz]
Mov Es,dx

cmp cx, 10
Je Doiocout

Mov Ax,errbsl
Jnp Exit

Deioseaut:
Mov px, port {sil} ; base port
Mov D1, Letrl : line ctrl
Mov Al,as; (di)
Inc D4
or Al,Olab ; set baud
out Bpx,al
ele
Jnc S+2
Ine Dx : mim etrl
Moy Al,eas: [di]
or AL,Usréd ; Int Gate
out px,al

Figure 6-1, Continued.
(mm

OLYMPUSEX.1010 - 202/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 203/1582

Article 6: Interrupt-Driven Communicationsa

523: Add Di,3 ; skip LSR,MSR
524 : Mov Ax,es: [di]
525: Add Di,2
526 : Mov InSpec[si],ax
527 : Mov Ax,es: [di]
528 : Add Di,2
529 : Mov OutSpec[si],ax

' 530 : Mov Ax,es: [di] 7; set baud
531: Mov Bx, di
532 : Mov Di,offset Asybaudt
533 : Mov cx,15
534 : Baudcout:

535 : Cmp [di],ax
536 : Je Yesoutb
537 : Add Di,4
538 : Loop Baudcout
539 :

540 : Mov D1,Letrl ;} line ctrl
541: In Al,dx + get LCR data
542 : And Al,not Dlab ; strip
543 : Cle
544; June $+2
545 : Out Dx,al ; put back
546 : Mov Ax, ErrUm ; “unknown media”
547 : Jmp Exit
548 :
549 : Yesoutb:

550 : Mov Ax,2{[di] 3} get divisor
551: Mov Baud(si],ax } save to report later
552 : Mov Dx, port [si] ; set divisor
553 : Out Dx, al
554: Cle
555 : Jne $+2
556: Inc Dx
557 : Mov Al,ah
558 : out Dx,al
559 ; Cle
560 : Jne $+2

561: . Mov D1,Letri ; line ctrl
562 : In Al,dx + get LCR data
563 : And Al,not Dlab ; strip
564 : Cle
565 : gne $+2
566 : out Dx,al 3; put back
567 3 Jmp Zexit
568 :

569 : Subttl Ring Buffer Routines
570 : Page
571 3: of

572 : Putout Proc Near ; puts AL into output ring buffer
573. : Push cx ,

Figure 6-1. Continued. os (more)

Section I: Programming in the MS-DOS Environment 193 :i

OLYMPUSEX.1010 - 203/1582

OLYMPUS EX. 1010 - 204/1582

Part B: Programming for MS-DOS

 574 : Push Di
575 : Pushf
576 : Cli
577: Mov Cx, oavail[sil ; put ptr
578 : Mov Di, cx
579 : Inc Cx 7 bump
580 : And Cx, bufmsk

581: Cmp Cx, ofirst[si] ; overflow?
§82 : Je Poerr ; yes, don’t
583 : Add Di, obuf [si] 7; no
584 : Mov {diJ,al ; put in buffer
585 : Mov Oavail(si],cx ,
586 :; dbg ‘pt, tot," !
587 : Mov Ah, 0

588 : Jmp Short Poret
589 : Poerr:.
§90 : : Mov Ah, -1
591: Poret:

592 : Popf
§93 : Pop Di
594 : Pop Cx
595: Ret

596 : Put_out Endp
597

598 : Get_out Proc Near } gets next character from output ring buffer
599 : Push’ Cx |
600 : Push Di . : |
601 : Pushf |
602 : cli |
603 : Mov Di,ofirst[si] # get ptr

604 : Cmp Di,oavail[si] 7 put ptr

605 : JSne Ngoerr :)
606 : Mov Ah, -1 7 empty

607 : Jmp Short Goret |
608 : Ngoerr: |

- 609 3 |; dbg 'gt,'o',' ' |
610 : Mov Cx, di \ |
611 : Add Di, obuf[si]
612 : Mov Al, {di} 7 get char
613: Mov Ah, 0
614°: Ine Cx ? bump ptr
615: And Cx, bufmsk 7 wrap

- 616 : Mov Ofirst[si],cx
617 : Goret:

618 : Popf
619 : Pop Di
620 : Pop Cx
621: Ret

622 : Get_out Endp
623 :

624 : Putin Proc Near ; puts the char from AL into input ring buffer

Figure 6-1. Continued. (more)

194 The MS-DOS Encyclopedia |

OLYMPUSEX. 1010 - 204/1582

OLYMPUS EX. 1010 - 205/1582

Article 6; Interrupt-Driven Communications

|
625 2 Push cx
626 : Push Di
627 : Pusht
628 : cli
629 : Mow Di,iavail([si]
630 ; Mow Cx, di
631: Inc Cx
632 : And cx, butmsk

63a: cmp Cx,ifixst(si]
G44: Jne Npierr
635 : Mov Ahy,~1

636 ; Jmp Shert Piret
637 : Npierr:
638 : Add Di,ibuf(si)
639 : Mov (di],al
640 : Hov Tavail(si),cx

641 :; dba ‘pt,tit,' !
642 ;: Mov Ah, 0
643 : Piret:

édu i: Popf
645 3 Pap Di
646 : Pop cx
647: Ret

646 : Putin Endp
649:

650 : Get_in Froc Near } gets one from input ring buffer into AL
651: Push Cx
652 : Push Di
653: Pushf
654: eli

655 : Mov Di, ifirst [sil
656 : Cnp Di,iavail[si]
657 : ve Gierr
65a : Mow Cx, di
659 + Add Di, ibuf (sil
6od : Mov Al, [di]
661 : Mov Ah,o

662 33 dba tat, tit,' f
663 : Inc Cx
664 : And Cx, bufmsk
665 3 Mav Ifirst[si],cx

666 : Jmp Short Giret
667 : Gierr:
668 ¢ Mov Ah,-1
669 1 Giret:
670 3 Pope
6T1 4: Fop Bi
672; Pop Cx
6730: Ret

674 : Gat_in Endp
675 :

Figure 6-1. Continued. (more)

OLYMPUSEX.1010 - 205/1582

OLYMPUS EX. 1010 - 206/1582

Part B: Programming for MS-DOS

676 : Subttl Interrupt Dispatcher Routine
677 : Page
678 :

679 : Asylisr:
680 : Sti
681 : Push Si
682 : Lea Si,asy—tab1
683 : Jmp Short Intuserve
684 :

685 : Asy2isr:

686 : sti
687 : Push si
688 : Lea Si,asy_tab2
689
690 : Int_serve:

691 : Push AX ; save all regs
692 : Push Bx
693 : Push Cx
694 : Push Dx
635 : Push Di
696 : Push Ds

697 3 Push Cs ; set DS = CS
698 : Pop Ds
699 : Int_exit:
700 : 3 dbg 'tt,'x',' !
701 : Mov Dx, Port [si] ;} base address
702 : Mov Dl, IntiId 3; check Int ID
703 : In Al, Dx

704 : cmp Al, 00h ; dispatch filter
705 : Je Int_modem
706 : Jmp Int_mo_no
707 : Int_modem:

708 : + dbg ™,'st,' ! ,
709 : Mov D1,Mstat

710 ¢: In Al,dx ; read MSR content
7110: Test Al, CDivl .; Carrier present?
712°: donz Msdsr ; yes, test for DSR
713: Test OutSpec[si],Outcdt ; no, is CD off line?
714 : Jz Msdsx
715°: Or InStat (si] ,OffLin
716 : Msdsr:

W17~=: Test Al,DSRlvl ; DSR present?
718 : Jnz Dsron ; yes, handle it
W193 Test OutSpec[si],OutDSR ; no, is DSR throttle?
720: dz Dsroff
7210: or OtStat [si], LinDSR ; yes, throttle down
722 : Dsroff:

723: Test OutSpec(si] ,OutDrf ;} is DSR off line?
724 3: Jz Mscts

725 3 Or InStat[si],OffLin ; yes, set flag
726 : Jmp Short Mscts

Figure 6-1. Continued. (more)

196 The MS-DOS Encyclopedia

OLYMPUSEX. 1010 - 206/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 207/1582

Article 6: Interrupt-Driven Communications

727 ; Dseran:

728: Test OtStat[si],Linbse 3} throttled for DSR?
729 3 Jz Mscts
Tao: Xor OtStat[si],LinbSr } yes, clear it out
74310: Call Start_outpet
732 =: Mscts:

T33 : Test Al,cTSlvi 7; CTS present?
3d: . Jnz Ctsan ; yes, handle it
735: Tese OutSpec(si],OutcTs - 7 ono, is CTS throttle?
736 =: Jz Intlexit2
737: Or orSrat[si], LinctTs ; Yes, shut it down
738 : Jinp Short Int_exit2é
729 : Cteon:

740 =: Test otStat[si],LincTs 7 throttled for CTS?
741: Jz Intlexite

742 3 Kor OcStatisi],LaincTs } yes, clear it out
743: Jmp Short Int_exit1
24402 Intomo_ne:

745 cmp Al, 02h
746: Jne Int_txwno
747 os Inmt_txmit:

748 5; dhg 'Tt,'xt,' !
749 : Intrwexiti:

750 : Call Start_output i try to send another
75% + Intlexita:

752: Jmp Int_exit
753 7 Int tune:

754: cmp Al, 04h
755: Jne Int_rec_na
756 : Intreceive:

FSR: ¢ dhg "Ri, fut," '
758 : Mow Dx, port [si]
759 3 in Al,dx ;} take char from 8250
760 =: Test OutSpec[si] ,Qutx%o 7 is XON/XOFF enabled?
761: Jz Stufflin one

762 : Cmp Al,'S' And O1FH ; yes, is this XOFE?
7es : Jne Isq 7 ono, chéck for XON
764; Or OucStat[si],Linxof ; yes, disable output
765 : mp Int_exit2 ; don't Store this ane
766 : Isq:
767 3 Cmp Al,‘Q' And O1FH ; is this XON?
768 : Jne Stuff_in 7 ono, save it

769 ; fest OrStat[si],Linxof ; yes, waiting?
TIG : JZ Int_exit2 * no, ignore it
TH os xXar OorStat[si],Linxef ; yes, clear the XOFF bit
TI2 dmp Intexitl ? and try to resume xmit
Figo: Intwrecuna;

Tia: cmp Al, G6h
778: Jne Intudone
776 2 Inturxstat:

7 2 dbg ‘Ee’, 'R',' !

Figure 6-1, Continued. Gnore)

 ppreegeergpnncetots

OLYMPUSEX. 1010 -207/1582

OLYMPUS EX. 1010 - 208/1582

Part B: Programming for MS-DOS

778 =: Mow D1, Lstat
774: In Al, dx
TeO : Test InSpec(sil,Infpc ; return them as codes?
Talo: Jz Nocode # ho, just set error alarm
782 ; And Al, AnyErr ; yes, mask off all but error bits
78a: Or AL, O80h
784=: Stuff_in:

765 : Call Put_in ; put input char in buffer
786: cmp an, 9 . 3 did it Fit?
787: Je Intrexit3 7; yes, all OK
788: Or InStat[si],LostDt ; no, set DataLost bit
789 : Intexit3:

790 =: Imp Int_exit
791 =; Mocode:

T42 : Or Instat [sij,BadInp
793 4 Jmp Int_exit3
794 + Int_done:
FOS €le
796°; Jnc S42
797: Mov Al, EOI 7 all done now
793 : Out Pic_b,Al
799 3: Pop Ds i restore regs
Goo : Pop Oi
BO1 : Pop Dx
802 : Pop cx
$03 : Pop Bx
eo4 : Pop Ax
805: Pop Si
806 : Tret
BO7 :

808 ; Startoutput Proc Near
809 3 Test Oorstat(si},LinIdl ; Blocked?
610 : Jnz Dont—start i yes, no output
alls Mov Dx, port [si] 3 ono, check UART
$i2: Mav D1, Lstat
§i3: Tn Al,Dx
B14 : Test Ai, xbre 7 empty?
S15 : dz Dant—start 7 ne
816 =: Call Getcout i yes, anything waiting?
g17 : Or Ah, Ah
G18: onz Dent—start 7 ono
819 ; Mav D1, RxBut : yes, send it out
820 : Out Ox, al

B2to: dbg ‘gt, tot,' ¢
822 ; Dontostart:
823: ret

B24 . Start_output Endp
B25 :

826 ; Subttl Initialization Request Routine
$27 +: Page
B28

Figure 6-1. Continued. (more)

198 The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 208/1582

OLYMPUS EX. 1010 - 209/1582

B29
830
831
832
a33
a4
835
836
837
438
839
840
a41
ga2
843
644
845
846
847
B49
a4g
850
$51
asz
653

asd
ass
856
as7
ase

859
860
561
B62

863

464
865
866

467
' 868

869
“870
ant
a72

:“B73
S74

O75
876

re APT:

Init:

ClRgs:

Lea
Mov
May

Mov
Mov
Mov
Our
Clic
one
Mov
Mov
Cut
ele
dnc
Inc
Mov
Out
Cle
Jne

Mov
Mov
Sut

Cle
dnc
Mov
Moy
Out
Cic
Jne
Mov
Mov
Sut
Mov

Moy
In
Mav
In-
Mov
In
Mov
In
In

Test
Jz

Cli
xor

Bi,$

Esixfer(bx}),Di
Es: Xseg(bx},Cs

Dx, Port [si]
Dl, Letrl
Al,Dlab
Dx, Al

$+2
D1, ReBuf
Ax, Raud[si]
Dx, Al

$+2
Dx

Al, A
Dx, Al

$42

Ql, Letri

Al, OtsStat[(si}
Dx, AL

OtStatfsi],o

$42
DL, IntEn
AL, AllInt
Dx, AL

$+2

Dl,Metrl

Al, InStat {si]
Dx, Al

Instat [si],

01, Lstat
Al, Bx
Hl, RxBut
AL, Dx
O1,Mstat
4l,Dx
D1, IntId
Al, Dx
Al, Ox
Al, i

Clakgs

Ax, Ax

Section If Programming in theM§-DOSEnvironment

'

‘

‘

‘

release rest...

base port

enable divisor

set baud

set LOR

from table

clear status

TER

enable ints in 8250

set MCR

from table

clear status

clear LSR

clear RX reg

Clear MSR

Trio reg

int pending?
ves, repeat

set int vec

OLYMPUSEX. 1010 - 209/1582

: Article 6; [nterrupt-Driven Communications

(more)

OLYMPUS EX. 1010 - 210/1582

Part B: Programming for MS-DOS

aaa: Mov Es,A“
Bal: Mov Di, Vect [si}
882 =: Mov Ax, IsrAdr[si} ; from table
883 : Stosw

aa4 ; Moy Es:[diJ,cs
ess : :
B86 : tn Al,PIC_e ? get 8253
SB7 : And Al, OVA 7 coml/2 mask
gag : Clic
ao9 : dnb $+2
agao: Out Pic_e,Al
ea1: Sti
892 ;

893: Mov Al, EOI 7 Tow send EOT just in case
aga: Out PIc_b,Al
Baa :

g96 : ; dbg 'oe,tr',! t ; driver installed
ao7 : Jip 2exit
a8 :
§99 : Driver Ends
S00 + End

Figure 6-1, Continued.

Thefirst part of the driver source code (after the necessary MASM housekeeping details
in lines 1 through 8) is a commented-out macro definition (lines 10 through 32), This
macro is used only during debugging and is part of a debugging technique that requires
no sophisticated hardware and no more complex debugging program than the venerable
DEBUG.COM. (Debugging techniques are discussed after the presentation of the driver
program itself.)

Definitions

The actual driver source program consists of three sets of EQU definitions (ines 34
through 194), followed by the modular code and data areas (lines 197 through 900). The
first set of definitions ines 34 through 82} gives symbolic names to the permissible values
for MS-DOS device-driver control bits and the device-driver structures.

The secondset of definitions Jines 84 through 145) assigns namesto the ports and bit
values that are associated with the IBM hardware — both the 8259 PIC and the 8250 UART.

Thethird set of definitions (lines 147 through 194) assigns namesto the control values and
structures associated with this driver.

The definition method used here is recommendedfor al] drivers. To move this driver from

the IBM architecture to some other hardware, the major change required to the program
would be reassignmentof the port addresses and bit values in lines 84 through 145.

The control values and structures for this specific driver (defined in the third EQUset)
provide the means by which the separate support program can modify the actions of each
of the two logical drivers. They also permit the driver to return status information to both

hea aa oe Fe weedDe

OLYMPUSEX.1010 - 210/1582

OLYMPUS EX. 1010 - 211/1582

Article 6: Interrupt-Driven Communications

the support program and the using program as necessary. Only a few features are imple-
mented, but adequate space for expansion is provided. The addition of a few more defini-
tions in this area and one or two extra procedures in the code section would doall that is
necessary to extend the driver’s capabilities to such features as automatic expansion of
tab characters, case conversion, and so forth, should they be desired.

Headers and structuretables

The driver code itself starts with a linked pair of device-driver header blocks, one for
ASY1 (lines 201 through 207) and the other for ASY2 (lines 208 through 213). Following
the headers, in lines 215 through 236, are a commented-outspace reservation used by the
debugging procedure (line 215), the pointer to the command packet(line 219), and the
baud-rate conversion table (ines 221 through 236).

The conversion table is followed by structure tables containingall data unique to ASY7
dines 239 through 242) and ASY2 (lines 244 through 247). After the structure tables,
buffer areas are reserved in lines 249 through 254. One input buffer and one output buffer
are reserved for each port. All buffers are the samesize; for simplicity, buffer size is givena
namie(at line 249) so that it can be changed by editing a single line of the program.

Thesize is arbitrary in this case, butif file transfers are anticipated, the buffer should be
able to hold at feast 2 seconds’ worth of data (240 bytes at 1200 bps) to avoid data loss dur-
ing writes to disk. Whateversize is chosen should be a power of2 for simple pointer arith-
metic and,ifvideo display is intended, should not beless than 8 bytes, to prevent losing
characters when the screen scrolls.

If additional ports are desired, more headers can be added after line 213; corresponding
structure tablesfor each driver, plus matching pairs of buffers, would also be necessary.
Thefinal part of this area is the dispatch table (lines 256 through 284), whichlistsoffsets
of all request routines in the driver, its use is discussed below.

Strategy and Requestroutines
Withall data taken care of, the program code beginsat the Strategy routine (lines 289
through 296), which is used by both ports, This code saves the command packet address
passedto it by MS-DOSfor use by the Request routine and returns to MS-DOS.

The Request routines (lines 298 through 567) are also shared by both ports, but the two
drivers are distinguished by the address placed into the SI register. This address pointsto
the structure table that is unique to each port and contains such data as the port’s base
address, the associated hardware interrupt vector, the interrupt service routine offset
within the driver's segment, the base offsets of the input and output buffers for that part,
two pointers for each of the buffers, and the input and outputstatus conditions (including

_ baud rate) for the port. The onlydifference between oneport's driver and the other's is
the data pointed to by SI; all Request routine code is shared by both ports.

Each driver’s Request routine has a unique entry point (at line 298 for ASY7 and at line 303
for ASY2) that saves the original content of the SI register and then loadsit with the ad-
dress of the structure table for that driver. The routines then join as a commonstream at
line 307 (Gen_ request).

factina Th Benacesssandea fa the aft CWt Per

OLYMPUSEX.1010 - 211/1582

OLYMPUS EX. 1010 - 212/1582

Part B: Programming for MS-DOS

202

" This commoncodepreservesall other registers used (lines 309 through 318), sets DS
equalto CS (ines 319 and 320), retrieves the command-packet pointer saved by the Strat-
egy routine (line 321), uses the pointer to get the command code (line 323), uses the code
to calculate an offsetinto a table of addresses (lines 324 through 326), and performsan in-
dexed jump (lines 322 and 327) by wayof the dispatch table (ines 256 through 284)to the
routine that executes the requested command(at line 336, 360, 389, 404, 414, 421, 441, 453,
500, or 829).

Although the device-driver specifications for MS-DOSversion 3.2 list command request * .
codes ranging from 0 to 24, notall are used. Earlier versions of MS-DOSpermitted only 0
‘to 12 (versions 2.x) or 0 to 16 (versions 3.0 and 3.1) codes. In this driver, all 24 codes are
accounted for; those not implementedinthis driver return a DONE and NO ERRORstatus
to the caller. Because the Request routineis called only by MS-DOSitself, there is no check
for invalid codes. Actually, because the headerattribute bits are not set to specify that
codes 13 through 24 are valid, the 24 bytes occupied by their table entries (ines 273

through 284) could be saved by omitting the entries. They are included only to show
how nonexistent commands can be accommodated.

Immediately following the dispatch indexed jump,at lines 329 through 353 within the
same PROC declaration, is the common code used by all Request routines to store status
information in the commandpacket,restore the registers, and return to thecaller. The
alternative entry points for BUSY status Cine 332), NO ERRORstatus Cline 338), or an error
code Cin the AX register at entry to Exit, line 339) not only save several bytes of redundant

code butalso improve readability of the code by providing unique single labels for BUSY,
NO ERROR,and ERRORreturn conditions.

All of the Request routines, exceptfor the Init codeatline 829, immediately follow the
dispatchingshell in lines 358 through 568. Eachis simplified to perform just one task, such
as read data in or write data out. The Read routine (lines 360 through 385) is typical: First,
the requested byte count and user's buffer address are obtained from the command
packet. Next, the pointer to the commandpacketis saved with a PUSH instruction, so that
the ES and BX registers can be used for a pointer to the port’s input buffer.

Before the Get_in routine that actually accesses the input buffer is called, the input status
byte is checked(line 368). If an error condition is flagged,lines 370 through 373 clear the
status flag, flush the saved pointers from the stack, and jumpto the error-return exit from
the driver. If no error exists, line 375 calls Get_in to access the input buffer and lines 376
and 377 determine whether a byte was obtained.If a byte is found,it is stored in the user's
buffer by line 378, and line 379 loops back to get another byte until the requested count
has been obtainedor until no more bytesare available. In practice, the countis an upper
limit and the loop is normally broken when data runs out.

No matter howit happens, control eventually reaches the Got_all routine and lines 381
and 382, wherethe saved pointers to the commandpacketare restored from thestack.
Lines 383 and 384 adjust the countvalue in the packetto reflect the actual numberof bytes
obtained.Finally, line 385 jumpsto the normal, no-errorexit from the driver.

TheMS-DOS Encyclopedia

i

i

OLYMPUSEX.1010 - 212/1582

OLYMPUS EX. 1010 - 213/1582

Article 6: Interrupt-Driven Communications

Buffering
’ Both buffers for each driver are of the type knownascircular, or ring, buffers. Effectively,

such a buffer is endless,it is accessed via pointers, and when a pointer increments past the
endofthe buffer, the pointer returnsto the buffer’s beginning. Twopointers are used here
for each buffer, oneto put datainto it and one to get data out. The get pointer always
points to the next byte to be read; the put pointer points to wherethe next byte will be
written, just past the last byte written to the buffer.

If both pointers point to the same byte, the buffer is empty; the next byte to be read has
not yet been written. The full-buffer condition is more difficult to test for: The put pointer
is incremented and comparedwith the get pointer,if they are equal, doing a write would
force a false buffer-empty condition, so the buffer must befull.

All buffer manipulation is done via four procedures (lines 569 through 674). Put_out
(ines 572 through 596)writes a byte to the driver’s output buffer or returns a buffer-full
indication by setting AH to OFFH. Get_out (lines 598 through 622)gets a byte from the
output buffer or returns OFFH in AH to indicate that no byte is available. Put_in (lines 624

‘through 648) and Get_in (lines 650 through 674) do exactly the same as Put_out and
Get_out, but for the input buffer. These procedures are used both by the Request routines
and by the hardware interrupt service routine (ISR).

Interrupt service routines
The most complexpartof this driver is the ISR (lines 676 through 806), which decides
whichof the four possible services for a port is to be performed and where.Like the
Requestroutines, the ISR provides unique entry points for each port (line 679 for ASYZ and
line 685 for ASY2);these entry points first preserve the SI register and thenloadit with the
address of the port’s structure table. With SI indicating where the actions are to be per-
formed,the two entries then merge at line 690 into commoncodethatfirst preservesall
registers to be used by the ISR (lines 690 through 698) and thentests for each of the four
possible types of service and performs each requestedaction.

Muchofthe complexity of the ISR is in the decoding of modem-status conditions. Because
the resulting information is not used bythis driver (although it could be used to prevent

. attempts to transmit while off line), these ISR options can be removedso that only the
_ Transmit and Receive interrupts are serviced. To do this, Al/Int (at line 145) should be
changed from the ORofall four bits to include only the transmit and receive bits (03H,

of 000000118). -

The transmit and receive portions of the ISR incorporate XON/XOFFflow control(for
transmitted data only) by default. This control is doneat the ISRlevel, rather than in the
using program, to minimize the time required to respondto an incoming XOFFsignal. :
Presenceof the flow-control decisions adds complexity to what would otherwise be
extremely simple actions.

Flow control is enabled or disabled by setting the OutSpec wordin the structure table
with the Driver Statusutility (presented later) via the IOCTL function (interrupt 21H Func-
tion 44H). When flow control is enabled, any XOFF character (11H)thatis received halts
all outgoing data until XON (13H)is received. No XOFFor XONis retained in the input

Section I: Programming in theMS-DOS Environment 203

OLYMPUSEX.1010 - 213/1582

OLYMPUS EX. 1010 - 214/1582

Part B: Programming for MS-DOS

buffer to be sent on to any program, althoughall patterns other than XOFF and XON are
passed through by the driver. When flow control is disabled, the driver passes all patterns
in both directions. For binary file transfer, flow control must be disabled.

The transmit action is simple: The code merely calls the Start_output procedureatline
750. Start_output is described in detail below.

Thereceive action is almost as simple as transmit, exceptfor the flow-control testing. First,
the ISR takes the received byte from the UART (ines 758 and 759) toavoid any chance of
an overrunerror. The ISR thentests the input specifier(at line 760) to determine whether
flow controlis in effect. If it is not, processing jumps directly to line 784 to store the
received byte in the input buffer with Put_in Cline 785).

If flow control is active, however, the received byte is compared with the XOFF character
(lines 762 through 765). If the byte matches, output is disabled andthe byteis ignored.If
the byte is not XOFF,it is compared with XON (lines 766 through 768).If it is not XON
either, control jumpsto line 784. If the byte is XON, outputis re-enabled if it was disabled.
Regardless, the XONbyte itself is ignored.

Whencontrol reaches Stuff_in at line 784, Put_in is called to store the received bytein
the inputbuffer. If there is no roomforit, a lost-databit is set in the input status flags Cline
788); otherwise, the receive routineis finished.

If the interrupt was a line-status action, the LSRis read (lines 776 through 779). If the input
specifier so directs, the content is converted to an IBM PC extended graphics character by
setting bit 7 to 1 and the characteris stored in the input bufferasif it were a received byte. .
Otherwise, the LineStatus interrupt merely sets the generic BadInp errorbit in the input
status flags, which can be read with the IOCTL Read functionofthe driver.

Whenall ISR action is complete, lines 794 through 806 restore machine conditionsto those
existing at the time of the interrupt and return to the interrupted procedure.

The Start_output routine
Start_output (lines 808 through 824)is a routinethat, like the four buffer procedures,is
used by both the Request routines and the ISR. Its purposeis to initiate transmission of a
byte, provided that outputis not blocked by flow control, the UART Transmit Holding
Register is empty, and a byte to be transmitted exists in the output ring buffer. This routine
uses the Get_out buffer routine to access the buffer and determine whethera byte is avail-
able. If all conditions are met, the byte is sent to the UART holding register by lines 819
and 820.

TheInitialization Request routine
TheInitialization Request routine (lines 829 through 897)is critical to successful operation
of the driver. This routine is placedlast in the packageso thatit can be discarded as soon.
as it has served its purpose by installing the driver. It is essential to clear each register of
the 8250 by reading its contents before enabling the interrupts and to loop throughthis

204 The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 214/1582

OLYMPUS EX. 1010 - 215/1582

Asticle 6: Interrupt-Driven Communications

action until the 8250 finally shows no requests pending. Thestrange Clcjnc $+2
sequencethat appears repeatedly in this routineis a time delay required by high-speed
machines (6 MHz and up) so that the 8250 hastime to settle before anotheraccessis
attempted; the delay does no harm on slower machines.

Using COMDVR

Thefirst step in using this device driver is assembling it with the Microsoft Macro Assem-
bler (MASM). Next, use the Microsoft Object Linker (LINK)to create a .EXE file. Convert
the .EXE file into a binary imagefile with the EXE2BIN utility. Finally, include the line
DEVICE=COMDVR:SYSin the CONFIG.SYSfile so that COMDVR will be installed when
the system is restarted.

Note: The numberand colon at the beginning of each line in the program listings in this
article are for reference only and should not be includedin the sourcefile.

Figure 6-2 shows the sequenceof actions required, assuming that EDLINis used for
modifying (or creating) the CONFIG.SYSfile andthat all commandsare issued from the
root directory of the bootdrive.

Creating the driver:

C>MASM COMDVR; <Enter>
C>LINK COMDVR; <Enter>
C>EXE2BIN COMDVR.EXE COMDVR.SYS <Enter>

Modifying CONFIG.SYS (4Z = press Ctrl-Z):
C>EDLIN CONFIG.SYS <Enter>
*#I <Enter>
*DEVICE=COMDVR.-SYS <Enter>
*°2Z <Enter>
*E <Enter>

Figure 6-2. Assembling, linking, and installing COMDVR.

Because the devicesinstalled by COMDVR donotuse the standard MS-DOSdevice names,
no conflict occurs with any program that uses conventional port references. Such a pro-
gram will not use the driver, and no problemsshould result if the program is well behaved
andrestores all interrupt vectors before returning to MS-DOS.

Device-driver debugging techniques

The debugging of device drivers, like debugging for any part of MS-DOSitself, is more
difficult than normal program checking because the debugging program, DEBUG.COM or
DEBUG.EXE,itself uses MS-DOSfunctionsto display output. When these functions are
being checked, their use by DEBUG destroys the data being examined. And because
MS-DOSalways saves its return address in the samelocation,anycall to a function from
inside the operating system usually causes a system lockup that can be cured only by
shutting the system down and powering up again. :

Section II: Programming in the MS-DOS Environment 205

OLYMPUSEX.1010 - 215/1582

OLYMPUS EX. 1010 - 216/1582

Part B: Programming for MS-DOS

One way to overcomethis difficulty is to purchase costly debugging tools. An easier
way is to bypass the problem:Instead ofusing MS-DOSfunctionsto track program opera-
tion, write data directly to video RAM,as in the macro DBG (lines 10 through 32 of
COMDVR.ASM).

This macro is invoked with a three-character parameterstring at each point in the pro-
gram a progress report is desired. Each invocation has its own unique three-character
string so that the sequenceofactions can be read from the screen. When invoked, DBG
expandsinto codethat saves all registers and then writes the three-characterstring to
video RAM.Only the top 10 lines of the screen (800 characters, or 1600 bytes) are used:
The macro usesa single far pointer to the area and treats the video RAMlike a ring buffer.

The pointer, Dbgptr Cline 215), is set up for use with the monochromeadapterand points
to location B000:0000H;to use a CGA or EGA Gin CGA mode),the location should be
changed to B800:0000H.

Mostofthe frequently used Request routines, such as Read and Write, have calls to DBG
as their first lines (for example,lines 361 and 422), As shown,these calls are commented
out, but for debugging, the sourcefile should be edited so that all the calls and the macro
itself are enabled.

With DBGactive, the top 10 lines of the display are overwritten with a continual sequence |
of reports, such as RR Tx, put directly into video RAM. Because MS-DOSfunctionsare not ©
used, no interference with the driveritself can occur.

Although this technique prevents normaluse of the system during debugging,it greatly
simplifies the problem of knowing what is happening in time-critical areas, such as hard-
ware interrupt service. In addition,all invocations of DBG in the critical areas are in con-
ditional code that is executed only whenthe driver is working asit should.

Failure to display the pi message, for instance, indicates that the received-data hardware
interrupt is not being serviced, and absenceofgo after an Ix report showsthatdata is not
being sent out as it should.

Of course, once debugging is complete, the calls to DBG should be deleted or commented
out. Such calls are usually edited outof the source code beforerelease. In this case, they
remain to demonstrate the technique and, mostparticularly, to show placementofthecalls
to provide maximum information with minimalclutter on the screen.

A simple modem engine

206

The secondpartof this package is the modem engineitself ENGINE.ASM), shownin the
listing in Figure 6-3. The main loopofthis program consists of only a dozen lines of code
(lines 9 through 20). Of these, five dines 9 through 13) are devoted to establishinginitial
contact between the program andtheserial-port driver and two ines 19 and 20) are for
returning to commandlevelat the program’s end.

Thus, onlyfive lines of code (lines 14 through 18) actually carry out the bulk of the pro-
gram asfar as the main loop is concerned.Fourof theselinesare calls to subroutines that

The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 216/1582

OLYMPUS EX. 1010 - 217/1582

Article 6: Interrupt-Driven Communications

get and putdata from andto the console andtheserial port; thefifth is theJMP that closes
the loop. This structure underscoresthe fact that a basic modem engineis simply a data-
transfer loop.

1 TITLE engine
2:

3 ; CODE SEGMENT PUBLIC 'CODE'
4:

5 ASSUME CS:CODE,DS:CODE,ES:CODE,SS:CODE
6

7: ORG 0100h
8:

9 ; START: mov dx,offset devnm ; open named device {ASY1)
10: mov ax, 3d02h
11: int 21h
12 mov handle,ax ; save the handle
13: je quit
14 : alltim: call getmdm j; Main engine loop”
15 call putcrt
16: call getkbd
17: call putmdm
18: jmp alltim
19 : quit: mov ah, 4ch 7; come here to quit
20 int 21h
21: .

22 : getmdm proc ; get input from modem
23: mov cx, 256
24: mov bx, handle
25°: mov dx,offset mbufr
26: mov ax, 3F00h
27: int 21h
28 : je quit
29 : mov mdlen, ax
30 : ret

31 : getmdm endp
32 :

33: getkbd proc iy get input from keyboard
34: mov kblen,0 ; first zero the count
35: mov ah, 11 ; key pressed?
36: int 21h
37: inc al
38: jnz nogk 7 no
39: mov ah,7 ; yes, get it
40: int 2th

41: / cmp al,3 ; was it Ctrl-C?
42: je quit 7 yes, get out

43; mov kbufr,al 3; no, save it
44: inc kblen

45: cmp al,13 + was it Enter?
46: jne nogk 7 no

Figure 6-3. ENGINE.ASM. (more)

Section II: Programming in theMS-DOS Environment 207

OLYMPUSEX.1010 - 217/1582

OLYMPUS EX. 1010 - 218/1582

Part B: Programming for MS-DOS

208

47: mov byte ptr kbufr+1,10 7; yes, add LF
48: - inc kblen :
49 : nogk: ret
50 : getkbd endp
Sto:

52 : putmdm proc ; put output to modem
53: mov cx,kblen
54: jexz nopm
55: mov bx, handle
56: mov dx,offset kbufr
57: mov ax, 4000h
58 : int 2th

59 : jc quit
60 ; nopm: ret
61 : putmdm endp
62:

63 : putcrt proc 7 put output to CRT
64 : mov cx,mdlen

65 : jexz nope
66 : mov bx, 1
67 : mov dx,offset mbufr
68 : mov ah, 40h
69: int 2th

70: jc quit
71 =: nope: ret
72 : putcrt endp
73°:

74 :; devnm db ‘asyi',0 ; miscellaneous data and buffers
75: handle dw 0
76. : kblen dw 0
77>: mdlen dw 0

78 =: mbufr db 256 dup (0)
79 : kbufr db 80 dup (0)
80 :
81 : CODE ENDS
82: END START

Figure 6-3. Continued.

Becausethe details of timing and data conversion are handled by the driver code,each
of the four subroutines is— to show just how simple the whole process is— essentially a
buffered interface to the MS-DOSRead File or Device or Write File or Device routine.

For example, the getmdm procedure (lines 22 through 31) asks MS-DOSto read a max- —
imum of 256 bytes from theserial device and then stores the numberactually read in a
word named mdlen. The driver returns immediately, without waiting for data, so the nor-
mal numberofbytes returnedis either 0 or 1. If screen scrolling causes the loop to be
delayed, the count might be higher, but it should never exceed about a dozen characters.

Whencalled, the putcrt procedure (lines 63 through 72) checksthe value in mdlen. If
the value is zero, puicrt does nothing; otherwise, it asks MS-DOSto write that number of
bytes from mbufr (where getmdm put them)to the display, and thenit returns.

The MS-DOS Encyclopedia

OLYMPUSEX.1010 - 218/1582

OLYMPUS EX. 1010 - 219/1582

Article 6; Interrupt-Driven Communications

Similarly, getkbd gets keystrokes from the keyboard, stores them in kbujr, and posts a
count in kblen; putmdm checks kblen and,if the countis not zero, sends the required
numberof bytes from kbu/rto the serial device.

Note that getkbd does not use the Read File or Device function, because that would wait
for a keystroke and the loop must never wait for reception. Instead,it uses the MS-DOS
functions that test keyboard status (OBH) and read a key without echo (07H). In addition,
special treatment is given to the Enter key (lines 45 through 48): A linefeed is inserted in
kbufr immediately behind Enter and kblen is set to 2.

A Ctrl-C keystroke ends program operation;it is detected in getkbd (line 41) and causes
immediate transfer to the guit label (line 19) at the end of the main loop. Because ENGINE
uses only permanently resident routines, there is no need for any uninstallation before
returning to the MS-DOS command prompt.

ENGINE.ASMis written to be used as a .COM file. Assemble andlink it the same as

COMDVR.SYS(Figure 6-2) but use the extension COM instead of SYS; no changeto
CONFIG.SYSis needed.

The driver-status utility: CDVUTL.C
The driver-status utility program CDVUTL.C, presented in Figure 6-4, permits either of
the two drivers (ASY1 andASY2) to be reconfigured after being installed, to suit different
needs. After one of the drivers has been specified (port 1 or port 2), the baud rate, word
length, parity, and numberof stop bits can be changed; each change is made indepen-
dently, with no effect on anyof the other characteristics. Additionally, flow control can be
switched between two types of hardware handshaking— the software XON/XOFFcontrol
or disabled — and error reporting can be switched between character-oriented and
message-oriented operation.

1°: /* cdvutl.c - COMDVR Utility
2: * Jim Kyle - 1987
3 * for use with COMDVR.SYS Device Driver
4: */
5:

6 : #include <stdio.h> /* i/o definitions */
7°: #include <conio.h> /* special console i/o */
8 : #include <stdlib.h> /* misc definitions af
9 : #include <dos.h> /* defines intdos() ¥/

10:

110: /* the following define the driver status bits */
12 3

13: #define HWINT 0x0800 /* MCR, first word, HW Ints gated */
14 : #define o_DTR 0x0200 /* MCR, first word, output DTR */
15 : #define o_RTS 0x0100 /* MCR, first word, output RTS */
16:

17: #define mPG 0x0010 /* LCR, first word, parity ON ¥/
18 : #define m_PE 0x0008 /* LCR, first word, parity EVEN ¥*f

Figure 6-4. CDVUTL.C (more)

Section I: Programming in the MS-DOS Environment 209

OLYMPUSEX.1010 - 219/1582

OLYMPUS EX. 1010 - 220/1582

Part B: Programming for MS-DOS

210

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
4S
46
Al
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68
69

: #define mXS 0x0004 /* LCR, first word, 2 stop bits
: #define m_WL 0x0003 /* LCR, first word, wordlen mask

: #define i_cD 0x8000_ /* MSR, 2nd word, Carrier Detect
: #define i_RI 0x4000 /* MSR, 2nd word, Ring Indicator
: #define i_DSR 0x2000 /* MSR, 2nd word, Data Set Ready
: #define i_CTS 0x1000 /* MSR, 2nd word, Clear to Send

: #define 1_SRE 0x0040 /* LSR, 2nd word, Xmtr SR Empty
: #define 1_HRE 0x0020 /* LSR, 2nd word, Xmtr HR Empty

#define 1_BRK 0x0010 /* LSR, 2nd word, Break Received
#define 1L.ER1 0x0008 /* LSR, 2nd word, FrmErr
#define 1_ER2 0x0004 7* LSR, 2nd word, ParErr
#define 1_ER3 0x0002 /* LSR, 2nd word, OveRun
#define 1_RRF 0x0001 7* LSR, 2nd word, Revr DR Full

: /* now define CLS string for ANSI.SYS ¥/
: #define CLS "\033(20"

3 PILE * dvp;
: union REGS rvs;

int iobf (5];

: main ()

{ cputs ("\nCDVUTL - COMDVR Utility Version 1.0 - 1987\n");
: disp (); /* do dispatch loop

}

: disp () /* dispatcher; infinite loop
: { int c,

uz

> us;
: while (1)

{ cputs ("\r\n\tCommand (? for help): ");
switch (tolower (¢ = getche ())) /* dispatch

{
case '1' ; /* select port 1

fclose (dvp); :
dvp = fopen ("ASY1", "rb+");

uz; ,
break;

case '2' : . /* select port 2
felose (dvp);

: dvp = fopen ("ASY¥2", "rb+");
u = 2;
break;

case 'b' : /* set baud rate
if (iobf [4] == 300

iob— [4] = 1200;

Figure 6-4. Continued.

The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 220/1582

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

«/

*/

*/

*/

*/

*/

(more)

OLYMPUS EX. 1010 - 221/1582

Article 6; Interrupt-Driven Communications

70: else
“V1: if (iobf [4] == 1200)
72: dobf [4] = 2400;
73: else

74°: Af (iobf [4] == 2400)
75°: iobf [4] = 9600;
76 3 else
77: jobf [4] = 300;
78: locwr ()7
79°: break;
80

81: case 'e' : /* set parity even */
82: jobf (0] i= (mPG + MPE);
83 : iocwr ()7
84: break;
85:

86: case 'f' : /* toggle flow control af
87 : if (tobf [3] == 1)
88: iobf [3] = 2;
89 : else
90 : if (iobf [3] == 2)
91: jobf [3] = 4;
92 : else
93: if (iobf [3] == 4)

94; _iobf [3] = 0;
95°: else
96: iobf [3] = 1;
97: locwr ()7
98 : break;
99: ,

100 : case ‘it : /* initialize MCR/LCR to 8N1 : */
101 : dobf (0] = (HWINT + oLDTR + o_RTS + mMWL);
102 : iocwr ();
103 : break;
104 :

105 : case '?' : /* this help list */
106 : cputs (CLS); /* clear the display */
107 : center (."COMMAND LIST \n");
108 : center ("1 = select port 1 L = toggle word LENGTH ");
109 : center ("2 = select port 2 N = set parity to NONE ");
410 : center ("B = set BAUD rate O = set parity to ODD” ");
111 : center ("E = set parity to EVEN R = toggle error REPORTS");
112 : center ("F = toggle FLOW control S$ = toggle STOP bits " Y;
113 : center ({ "I = INITIALIZE ints, etc. Q = QUIT "oy3
114 : continue;
115 :

116: case 'l' : /* toggle word length */
117: iobf [0] *= 17
118 3 iocwr ();
119: break;
120

Figure 6-4. Continued. (more)

Section Il: Programmingin the MS-DOS Environment 211

OLYMPUSEX.1010 - 221/1582

OLYMPUS EX. 1010 - 222/1582

Part B: Programming for MS-DOS

121 3 case 'n': /* set parity off */
122 : iobf [0] &=- (mPG + mPE);
123 : jocwr ();
124 : break;
125 :

126: case ‘o' : /* set parity odd */
127: iobf [0] i= mPG;
128 : iobf [0] &=~ m_PE;
129 ; iocwr (); ,
130 ; break;

131: . . \
4132 3: case 'r': /* toggle error reports ¥/
133: iobf [2] %=1;
134 : iocwr ();
135: break;
136 :

137: case 's' : /* toggle stop bits */ i
138 : iobf [0] *= mS;
139 : iocwr ();
140 : break;
144: .

142 ; case 'g' :
143 : fclose (dvp); ,

144; exit (0); /* break the loop, get out */ , |
145 : } ;

146 : eputs (CLS); /* clear the display */
147 : center ("CURRENT COMDVR STATUS");

148 : report (u, dvp); /* report current status */
149 : }
150 : }
151 :

152 : center (s) char * s; /* centers a string on CRT */
153: { inti;
154 : for (i= 80 ~ strlen (s); i> 0; i -= 2)
155: putch (' ');
156: cputs (5s);
157 : cputs ("\r\n");
158 : }
159 :

160 : iocwr () /* IOCTL Write to COMDVR */
161 3: { rvs x ax = 04403;

162 3 rvs x bx = fileno (dvp);
163°: rvs x cx = 10;
164 : rvs . x. ax = (int) iobf;
165 : intdos (& rvs, & rvs);
166 : }
167 :
168 : char * onoff (x) int x ;

169 : { return (x ? " ON" : " OFE"); °
170 3 }
171

Figure 6-4. Continued. (more)

212 The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 222/1582

OLYMPUS EX. 1010 - 223/1582

Article 6: Interrupt-Driven Communications

4720: report (unit } int unit ;
‘173 2 { char temp [80];
174 : rvs . x . ax = Ox4402;
175 3 rvs . x. bx = Eileno (dvp };
176: rvs . x .,ox = 142
VR? og rvs . x . dx = (int }) iobf;

174 : intdeos { & rvs, & rvs J; /* use IOCTL Read to get data +#/
179: sprintf (temp, "\nDevice ASY3d\t%d BPS, ad-e-tc\r\a\n",
140 : unit, debt [4], /* baud rate #/
1813; 5 + (iobf (0] & mwL}, /* word length af
182 : { iobf [0] & mPG ? :
183: (iobf [0 1] & MPE ? TE" =: 'O' Por TM ?Y,
184: (iebf [0) & mXS 7 '2' : '1' J); /* stop bits af
785: cputs (temp);
186 =:

"Hardware Interrupts are“ };
oneff ({ iebf { O] & HWINT });

189 : cputs “| Data Terminal Rdy" }3

187 : cputs [
(

190 ; eputs (oneff (iebr [0] & OLDTR J];
(
{
(

188 3 eputs

191: cputs ", Rast To Send" J;
192 ; eputs{onofrf { iobF [0) & G_RTS)):
193: cputs " Nr\n" 17 .
1945

195: eputs “Carrier Detece™ };
196: cputs oneff (iobf [1] & i-CD jp}?

{
t

197 : “ eputs (", Data Set Rdy"]-

198: cputs { onoff (iobf [i] & i_DSR });
199 : cputs (", Clear to Send” };

{
{
t
f 200 ;: eputs{oneff ({ iobf [1 & iCTS)};

201 : cputs{", Ring Indicator");
202 : cputs onoff { iobf { 1] & G-RT YA;
203: cputs “ \r\n")3
204: .

205 : cputs (1SRE 4 iobf [1 ? “Xmtr SR Empty, “oo: "" Ja
206 ; cpots (LYRE 4 iobf (1] ? "Xmtr HR Empty, "> "")?
207 : cputs (1_BRK & iobEé [1 ? "Break Received, " : "" di
208 3 eputs { 1ER1 & iobf (1] ? “Framing Error, " = "" J+
209 ; cputs (1ER2 & iobf [1 ? "Parity Error, "3 "");
210: eputs (1ER3 4 iobf [1 ? "Qverrun Error, " : "" d+
2113 cputa (LRRE & iobf [1 ? "Reve DR Full, "i°"" $3
212 : eputs { "\b\b.\r\n" J:
21a:

214: cputs ("Reception errors " };
215 : if { dobf [2] == 1 }

216 : eputs ("are encoded as graphics in buffer" };
ai? i: else-

218 : eputs ("set failure flag" J;
219: cputs { “.\rkn" }e
220 : /

227: eputs ("Outgoing Flow Control “);
202: aif (iebf [3) & 4)

Figure 6-4. Continued. (more)

Section If: Programming in theMS-DOSEnvironment 213'

OLYMPUSEX.1010 - 223/1582

OLYMPUS EX. 1010 - 224/1582

Part B: Programming for MS-DOS

223: cputs ("by XON and XOFF");
224 : else

225 : if (iobf [3] & 2
226 : cputs ("by RTS and CTS"');
227 : else

228 : if (iobf [3] & 1)
229 : cputs ("by DTR and DSR");
230 : else .

231: cputs ("disabled");
232 : cputs (".\r\n");
233: }
234 :

235 : /*end of cdvutl.c */

Figure 6-4. Continued.

Although CDVUTLappears complicated, most of the complexity is concentrated in the
routines that map driverbit settings into on-screen display text. Each such mapping
requires several lines of source code to generate only a few wordsof the display report. °
Table 6-10 summarizes the functions found in this program.

Table 6-10. CDVUTL Program Functions. !

Lines Name Description

42-45 mainQ Conventional entry point.
47-150 dispO Main dispatching loop.

152-158 centerO—_Centers text on CRT.

160-166 iocwrQ Writes controlstring to driver with IOCTL Write.
168-170 onoffO Returns pointer to ON or OFF.
172-233 reportQ) Readsdriver status andreports it on display.

Thelong list of #define operationsat the start of the listing (lines 11 through 33) helps.
make the bitmapping comprehensible by assigning a symbolic nameto each significantbit
in the four UARTregisters.

The mainO procedure of CDVUTLIdisplays a bannerline and then calls the dispatcher
- routine, dispQ, to start operation. CDVUTL makesnouseofeither command-line parame-
ters or the environment, so the usual argument declarations are omitted.

Uponentry.to dispQ,thefirst action is to establish the default driver as ASY1 bysetting
u=1 and opening ASY7 (line 50); the program then enters an apparentinfinite loop
(lines 51 through 149).

With each repetition, the loopfirst prompts for a command(line 52) and then gets the
next keystroke andusesit to control a huge switchQ statement (lines 53 through 145). If
no case matchesthe key pressed,the switchQ statement does nothing; the program sim-
ply displays a report of all current conditionsat the selected driver (ines 146 through 148)
and then closes the loop back to issue a new prompt and get another keystroke.

214 TheMS-DOS Encyclopedia

OLYMPUSEX.1010 - 224/1582

OLYMPUS EX. 1010 - 225/1582

Article 6: Interrupt-Driven Communications

However, if the key pressed matches oneof the cases in the switch) statement, the corre-
sponding commandis executed. The digits 7 (line 55) and 2 (line 6Dselect the driver to
be affected. The ? key (line 105) causesthe list of valid commandkeysto be displayed.
The q key (ine 142) causes the program to terminate by calling exit(0) andis the only
exit from the infinite loop. The othervalid keys all change one or morebits in the IOCTL

controlstring to modify corresponding attributes of the driver and then sendthestring to
the driver by using the MS-DOS IOCTL Write function (interrupt 21H Function 44H Sub-
function 03H)via function iocwrO (lines 160 through 166).

After the commandis executed (exceptfor the g command, which terminates operation
of CDVUTLandreturns to MS-DOS commandlevel, and the ? command, which displays
the commandlist), the reporiO function (lines 172 through 233) is called (at line 148) to
display all of the driver's attributes, including those just changed. This function issues an
IOCTL Read command (interrupt 21H Function 44H Subfunction 02H,in lines 174 through
178) to get new status information into the control string and then uses a sequenceofbit
filtering Cines 179 through 232) to translate the obtained status information into words for
display.

The special console I/O routines provided in Microsoft C libraries have been used exten-
sively in this routine. Other compilers may require changes in the namesof such library
routines as getch or dosint as well as in the namesof #include files (lines 6 through 9).

Each of the actual command sequences changesonly a few bits in oneofthe 10 bytes of
the commandstring and then writes the string to the driver. A full-featured communica-
tions program might make several changes at one time —for example, switching from
7-bit, even parity, XON/XOFFflow control to 8-bit, no parity, without flow control to pre-
vent losing any bytes with values of 11H or 13H while performing a binaryfile transfer with
error-correcting protocol. In such a case, the program could makeall required changesto
the controlstring before issuing a single IOCTL Write to put them into effect.

The Traditional Approach
Because the necessary device driver has never been a part of MS-DOS, most communica-
tions programsare written to provide andinstall their own port driver code and removeit
before returning to MS-DOS. The second sample program packagein this article illustrates
this approach. Although the majorpart of the package is written in Microsoft C, three
assembly-language modules are required to provide the hardware interrupt service rou-
tines, the exception handler, and faster video display. They are discussedfirst.

The hardware ISR module

Thefirst module is a handler to service UARTinterrupts. Code for this handler, including
routinesto install it at entry and removeit on exit, appears in CH1.ASM, shownin Figure
6-5.

Section II: Programming in the MS-DOS Environment—215

OLYMPUSEX.1010 - 225/1582

OLYMPUS EX. 1010 - 226/1582

 Part B: Programming for MS-DOS

1 TITLE CH1.ASM
23:

3: ; CH1.ASM -~ support file for CTERM.C terminal emulator
4a; set up to work with COM2
5 ; for use with Microsoft C and SMALL model only...
63

7°: TEXT segment byte public 'CODE'
8 : TEXT ends

9 : _DATA segment byte public 'DATA'
10°: _DATA ends

11: CONST segment byte public 'CONST'
12 : CONST ends

13: BSS segment byte public 'BSS'
14: _Bss ends
15

16 : DGROUP GROUP CONST, BSS, —DATA
17: assume cs:_TEXT, DS:DGROUP, ES:DGROUP, SS:DGROUP
18

19 : _TEXT segment
20

21; public _i_im,_rdmdm,_SendByte, _wrtmdm, —set—mdm,—u—m
22:

23 : bport EQU O2F8h 3 COM2 base address, use O3F8H for COM1 !
24 : getiv EQU 350Bh ; COM2 vectors, use OCH for COM1
25 : putiv EQU 250Bh
26 : imrmsk EQU 00001000b ; COM2 mask, use 00000100b for COM]
27 : oivio DW 0 i old int vector save space
28 : oivis DW 0
29:

30 : bf_pp DW in_bf 7; put pointer (last used)
31 : bf_gp DW in_bf ? get pointer (next to use)
32 : bf_bg DW inbf ; start of buffer
33 : bf_fi DW b_last ; end of buffer
34:

35 : inbf DB 512 DUP (?) 7; input buffer
36 :

37.2: blast EQU $ 7 address just past buffer end
38: ,
39 : bddv DW 0417h 7 baud rate divisors (0=110 bps)
40 :. DW 0300h 7 code 1 = 150 bps
41: DW 0180h ; code 2 = 300 bps
42 : DW o0Cc0h 7; code 3 = 600 bps
43: DW 0060h 7 code 4 = 1200 bps
44: DW 0030h + code 5 = 2400 bps

45: DW 0018h + code 6 = 4800 bps
46: DW 000Ch 7 code 7 = 9600 bps
47:

48 : _set_mdm proc near 7; replaces BIOS ‘init! function
49: PUSH BP °
50: MOV BP,SP } establish stackframe pointer
51: PUSH ES ?} save registers

Figure 6-5. CH1.ASM (more)

216 The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 226/1582

OLYMPUS EX. 1010 - 227/1582

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
9o7
98
99

100
101
102

PUSH
MOV
MOV
MOV

MOV
MOV
MOV
out
MOV
MOV
ROL
AND
MOV
ADD
MOV
MOV
OUT
MOV
MOV
out
MOV
AND
MOV
our
MOV
MOV
out
POP
POP
MOV
POP
RET

: _setmdm endp

: wrtmdm proc
: _Send_Byte:

PUSH
MOV
PUSH
PUSH
MOV
MOV
MOV
MOV
MOV
OUT
MOV
MOV
CALL
JNZ
MOV

Figure 6-5. Continued.

DS

AX, CS
DS, AX
ES, AX
AH, [BP+4]
DX, BPORT+3
AL, 80h
DxX,AL
DL, AH
CL, 4
DL,CL
Dx,00001110b

,

DI,OFFSET bd_dv
DI,DX
DX,BPORT+1
AL, [DI+1]
DX,AL
DX, BPORT
AL, [DI]
DX,AL
AL, AH
AL,00011111b
DX, BPORT+3
DX, AL
DX, BPORT+2
AL,1
DX, AL
DS
ES

SP, BP
BP

near

BP

BP, SP
ES
Ds

AX,CS
DS, AX
ES, AX
DX, BPORT+4
AL, OBh
DX, AL
DX, BPORT+6
BH, 30h
witmr
w_out

DX, BPORT+5

a

Article 6; Interrupt-Driven Communications

point them to CODE segment

get parameter passed by C
point to Line Control Reg
set DLAB bit (see text)

shift param to BAUD field

; mask out all other bits

make pointer to true divisor
set to high byte first

put high byte into UART
then to low byte

now use rest of parameter
to set Line Control Reg

Interrupt Enable Register
Receive type only

restore saved registers

write char to modem
name used by main program

set up pointer and save regs

establish DTR, RTS, and OUT2

check for on line, CTS

timed out
check for UART ready

(more)

Section I: Programming in the MS-DOS Environment 217

OLYMPUSEX.1010 - 227/1582

OLYMPUS EX. 1010 - 228/1582

 Part B: Programming for MS-DOS

103 : MOV BH, 20h
104 : CALL w_tmr
105 : JNZ weout 7 timed out

106 : MOV DX, BPORT # send out to UART port
107 : MOV AL, (BP+4] 3; get char passed from C
108 : OUT DX, AL
109 : wlout: POP DS ; restore saved regs
110: POP ES

111i: MOV SP, BP
1420: POP BP
113: RET

114 : _wrtmdm endp
115:

116 : _rdmdm proc near ; reads byte from buffer
117 3 PUSH BP

118 : MOV BP, SP ; set up ptr, save regs
119 : , PUSH ES
120 : PUSH DS

121: MOV AX, CS
122 : MOV DS, AX
123: MOV ES, AX
124 : . MOV AX, OFFFFh ; set for EOF flag
125 : MOV BX, bf_gp 7 use "get" ptr !
126 : CMP BX, bf_pp ; compare to "put" .
127: 2 nochr ; same, empty
128 : INC BX ; else char available
129 : CMP BX, bf£f_fi ; at end of bfr?
130 : JNZ noend 7 no

131: MOV BX, bf_bg 7; yes, set to beg
132: noend: MOV AL, [BX] ; get the char
133 : MOV bf_gp, BX 7 update "get" ptr
134 : INC AH ; zero AH as flag
135 : nochr: POP Ds 7; restore regs
136: POP ES

137: MOV SP, BP
138 : POP BP
139 : RET

140 : _rdmdm endp
141:

142 : witmr proc near
143: MOV BL, 1 ; wait timer, double loop
144 : witml: SUB CX,CX 7; set up inner loop
145 : witm2: IN AL, DX ; check for requested response
146 : MOV AH,AL 3} save what came in
147 : AND AL, BH ; mask with desired bits

148 : CMP AL, BH 7; then compare
149 : JZ wtm3 7 got it, return with ZF set
150 : LOOP w—tm2 ; else keep trying
151: DEC BL ? until double loop expires
152 : INZ w_tm1

153: OR BH, BH ; timed out, return NZ

Figure 6-5. Continued. (more)

218 The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 228/1582

OLYMPUS EX. 1010 - 229/1582

154

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

“174
/ 175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

wtm3:
w—tmr

RET

endp

Article 6; Interrupt-Driven Communications

; hardware interrupt service routine
rts_m:

nofix:

imi:

CLI
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
POP
Mov
IN
MOV
INC
CMP
INZ
MOV
MOV
MOV
MOV
OUT
POP
POP
POP
POP
POP
IRET

proc
PUSH
MOV

’ PUSH
PUSH
MOV
MOV
MOV
MOV
MOV
OUT

MOV
IN
MOV
TEST
INZ
CMP
JNZ
MOV
IN

Figure 6-5. Continued.

DS
AX
BX
CX
DX
cs
DS

DX, BPORT
AL,DX
BX,bf_pp
BX

BX, bf_fi
nofix

BX, bf_bg
[BX],AL
bf_pp, BX
AL,20h
20h, AL
DX
CX
BX
AX
DS

near
BP

BP,SP
ES
DS

AX,CS
DS,AX
ES, AX
DX, BPORT+1
AL, OFh
DX, AL

DX, BPORT+2
AL,DX
AH, AL
AL, 1
im5

AH,O
im2

DX, BPORT+6
AL, DX

save all regs

set DS same as CS

grab the char from UART

use "put" ptr
step to next slot
past end yet?
no

yes, set to begin
put char in buffer
update "put" ptr
send EOI to 8259 chip

restore regs

install modem service

save all regs used

set DS, ES=CS

Interrupt Enable Reg
enable all ints now

clear junk from UART
read IID reg of UART
save what came in

anything pending?
no, all clear now
yes, Modem Status?
no

; yes, read MSR to clear

Section II: Programming in the MS-DOS Environment

(more)

219

OLYMPUSEX.1010 - 229/1582

OLYMPUS EX. 1010 - 230/1582

Part B: Programming for MS-DOS

205 : im2: CMP AH,2 3; Transmit HR empty?
206 : JNZ im3 # no (no action needed)
207 : im3: CMP AH, 4 ; Received Data Ready?
208 : JNZ im4 7 no
209 ; MOV DX, BPFORT 7 yes, read it to clear
210 : IN AL,DX
217 >: im4: CMP AH, 6 ; Line Status?
212: JNZ im1 7; no, check for more
213: MOV DX, BPORT+5 ; yes, read LSR to clear
214: IN AL, DX
215 : JMP im1 ; then check for more
216 .

217 3; ims: MOV DX, BPORT+4 7 set up working conditions
218 : MOV AL, OBh ; DTR, RTS, OUT2 bits
219 ; OUT DX, AL
220 : MOV AL,1 7 enable RCV interrupt only
221: MOV DX, BPORT+1
222 : OUT DX, AL
223 : MOV AX, GETIV 7 get old int vector
224 : INT 27h

225: MOV oiv_o, BX ; save for restoring later
226 : MOV oiv_s,ES

227 : MOV DX,OFFSET rts_m; set in new one 1
228 : MOV AX, PUTIV
229 : INT 21h

230: IN AL,21h 7 now enable 8259 PIC
231 : : AND AL,NOT IMRMSK
232 : : ouT 21h,AL
233: MOV AL, 20h 7; then send out an EOI
234 : our 20h, AL
235: POP DS 7; vestore regs
236 : POP ES

237: MOV SP,BP
238 : POP BP
239 : RET

240 : ~i_m endp
241

242 : um proc near 7 uninstall modem service
243: PUSH BP

244; MOV BP,SP_ ; save registers
245 : IN AL,21h ; disable COM int in 8259
246 : OR AL, IMRMSK - :
247 : OUT 27h,AL
248 : PUSH ES
249 : PUSH DS

250 ;: MOV AX,CS 7 set same as CS
251: : MOV DS, AX
252 : MOV ES,AX

253: MOV © AL,0 ; disable UART ints “
254 : MOV DX, BPORT+1
255 : OUT DX, AL

Figure 6-5. Continued. (more)

220 The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 230/1582

OLYMPUS EX. 1010 - 231/1582

Article 6: Interrupt-Driven Communications

256 : MOV DX, oiv_o 7’ restore original vector
“257 : MOV DS, oiv_s

258 : MOV AX, PUTIV
259 : INT 2th

260 : POP DS 7 xvestore registers
261-3: POP ES :
262 : MOV SP, BP
263 : POP BP
264 : RET

265 : —u_m endp
266 :
267 : _TEXT ends
268 :
269 : END

Figure 6-5. Continued.

The routines in CH1 are set up to work only with port COM2;to use them with COMI, the
three symbolic constants BPORT (base address), GETIV, and PUTIV must be changed to
match the COM1values.Also, as presented, this codeis for use with the Microsoft C small
memory model only; for use with other memory models, the C compiler manuals should
be consulted for making the necessary changes. See also PROGRAMMING IN THE
MS-DOS ENVIRONMENT:ProGRAMMINGFOR MS-DOS:Structure of an Application Program.

Theparts of CH1arelisted in Table 6-11, as they occurin the listing. The leading under-
score that is part of the name for each of the six functions is supplied by the C compiler;
within the C program thatcalls the function, the underscore is omitted.

Table 6-11. CH1 Module Functions.

Lines Name Description

1-26 Administrative details.

27-46 Data areas, .

48-84. _set_mdm Initializes UARTas specified by parameter passed
from C.

86-114 _writmdm Outputs character to UART.
87 _Send_Byte Entry point for useif flow control is added to system.

116~140 _rdmdm Gets character from buffer where ISR putit, or signals
that no characteravailable.

142-155 u_imr Wait timer; internal routine used to preventinfinite
wait in case of problems.

157-182 ris_m Hardware ISR;installed by _i_m and removed by
—u_m.

184-240 _im Installs ISR, saving old interrupt vector.
‘242-265 _uU_m Uninstalls ISR, restoring saved interrupt vector.

Section Il Programming in the MS-DOS Environment 221

OLYMPUSEX.1010 - 231/1582

OLYMPUS EX. 1010 - 232/1582

Part B: Programming for MS-DOS

For simplest operation, the ISR used in this example (unlike the device driver) services
only the received-data interrupt; the other three types of IRQ are disabled at the UART.
Each time a byte is received by the UART,the ISR putsit into the buffer. The_rdmdm
code, whencalled by the C program, gets a byte from the bufferif one is available.If not,
_rdmdm returns the C EOF code (-)) to indicate that no byte can be obtained.

To senda byte, the C program can call either_Send_Byte or _.wrtmdm; in the package
as shown,these are alternative namesfor the same routine. In the more complex program
from which this package was adapted, _Send_Byte is called when flow control is desired
and the flow-control routine calls _wrtmdm. To implement flow control, line 87 should be
deleted from CH1.ASM and a control function named Send_ByteO should be addedto the
main C program. Flow-control tests must occur in Send_ByteO; _wrtmdm performs the
actual port interfacing.

To set the modem baudrate, word length, and parity, _set_mdm is called from the C
program, with a setup parameter passed as an argument. The formatof this parameteris
shownin Table 6-12 andis identical to the IBM BIOSInterrupt 14H Function 00H
(Initialization).

Table 6-12. set_mdm() Parameter Coding. -

Binary Meaning

OO00xxxxx Set to 110 bps
0O1xxxxx Set to 150 bps
010xxxxx Set to 300 bps
011xxxxx Set to 600 bps
JOOxxxxx Set to 1200 bps
101xxxxx Set to 2400 bps
110xxxxx Set to 4800 bps
11 1xxxxx Set to 9600 bps
XXxXxXOXXK Noparity
xxx01xxx ODDParity
xxxllxxx — EVENParity
XXxXxxOXK 1 stop bit
XXXxx]xx 2 stop bits (1.5 if WL = 5)
XXxxxx00 Word length = 5
XXXKXXO1 Word length = 6
XXXxxx10 Word length = 7
XXXKKK11 Word length = 8

The CH1 code provides a 512-byte ring buffer for incoming data; the buffer size should be
adequate for reception at speeds up to 2400 bps withoutloss of data duringscrolling.

222 The MS-DOS Encyclopedia

OLYMPUSEX.1010 - 232/1582

OLYMPUS EX. 1010 - 233/1582

Article 6; Interrupt-Driven Communications

The exception-handler module

For the ISR handlerof CH1to be usable, an exception handler is needed to prevent return
of control to MS-DOSbefore _u_m restores the ISR vectorto its originalvalue.If a pro-
gram using this code returns to MS-DOSwithoutcalling_u_m, the system is virtually cer-
tain to crash whenline noise causes a received-data interrupt andthe ISR codeis no longer
in memory.

A replacement exception handler (CH1A.ASM), including routines for installation, access,
and removal, is shown in Figure 6-6. Like the ISR, this module is designed to work with
Microsoft C (again, the small memory model only). _

Note: This module does notprovideforfatal disk errors; if one occurs, immediaterestart-
ing is necessary. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CustomizinG
Ms-bos: Exception Handlers.

1: TITLE CH1A.ASM
2:

3 : ; CHIA.ASM -- support file for CTERM.C terminal emulator
4: ; this set of routines replaces Ctrl-C/Ctrl~BREAK
5S i; usage: void set_int(), rst—int();
6: ; int broke (); /* boolean if BREAK */
Tt; for use with Microsoft C and SMALL model only...
8:

9 : TEXT segment byte public 'CODE'
10 : _TEXT ends

11°: _DATA segment byte public 'DATA'
12 : _DATA ends

13: CONST segment byte public 'CONST'
14 : CONST ends

15 : _BSS segment byte public ‘BSS'
16 : _BSS ends
170:

18 : DGROUP GROUP CONST, —BSS, _DATA
19: ASSUME CS:_TEXT, DS:DGROUP, ES:DGROUP, SS:DGROUP
20 :
21 >: _DATA SEGMENT BYTE PUBLIC 'DATA'

22:
23 : OLDINT1B DD 0 , ; storage for original INT 1BH vector
24:
25 : _DATA ENDS
26 3:
27 >: TEXT SEGMENT
28

29 > PUBLIC _setint, —rst—int, broke
30:

31 >: myinttb:
32: mov word ptr cs:brkflg,1Bh ; make it nonzero
33: iret

Figure 6-6. CH1A.ASM. (more)

Section IL Programming in the MS-DOS Environment 223

OLYMPUSEX.1010 - 233/1582

OLYMPUS EX. 1010 - 234/1582

224

Part B: Programming for MS-DOS

34:

35 : myint23:
36: mov word ptr cs:brkflg,23h } Make it nonzero
37: iret
38:

39 : brkflg dw 0 ; flag that BREAK occurred
40 :

41 : _broke proc near 7 veturns 0 if no break
42: xor ax, ax } prepare to reset flag -
43: xchg ax,cs:brkflg ; ‘return current flag value
44: ret

45 : _broke endp
46:

47 : _set_int proc near
48 : mov ax,351bh + get interrupt vector for 1BH
49: int 21h 7 (don’t need to save for 23H)
50: mov word ptr oldintib, bx _¢ Save offset in first word
51: mov word ptr oldintlbt+2,es } Save segment in second word
52:

53: push ds # save our data segment
54: mov ax,cs 3; set DS to CS for now
55 : mov ds,ax
56.: lea ax, myintib ; DS:DX points to new routine
S7 : mov ax,251bh 7 set interrupt vector
58 : int 21h

59 : mov ax,cs ; set DS to CS for now
60 : mov ds,ax
61: lea dx, myint23 + DS:DX points to new routine

62°: mov ax,2523h 7 set interrupt vector
63: int 2ih

64: pop ds 7 restore data segment
65 : ret

66 : _setint endp
67 :

68 : _rst_int proc near
69 : push ds 7 Save our data segment
70 ; lds dx,oldintib ; DS:DX points to original

71: mov ax, 251bh ; set interrupt vector
72: int 21h

730: pop ds 7 restore data segment
74: ret

75 : —rst_int endp
76:
77>: TEXT ends
718 :
719°: END

Figure 6-6. Continued.

The three functions in CH1A are _set_int, which saves the old vectorvalue for Interrupt
1BH (ROM BIOS Control-Break) and then resets both that vector and the onefor Interrupt
23H (Control-C Handler Address) to internal ISR code; _rst_int, which restores the -

TheMS-DOS Encyclopedia

OLYMPUSEX.1010 - 234/1582

OLYMPUS EX. 1010 - 235/1582

Article 6; Interrupt-Driven Communications

original valuefor the Interrupt 1BH vector; and_ broke, which returns the presentvalue of
an internalflag (and alwaysclearstheflag,just in case it had been set). The internalflag is
set to a nonzero value in responseto either of the revectored interrupts and is tested from
the main C program via the _broke function.

The video display module

Thefinal assembly-language module (CH2.ASM)used by the second package is shown
in Figure 6-7. This module provides convenient screen clearing and cursor positioning via
direct calls to the IBM BIOS,butthis can be eliminated with minor rewriting of the rou-
tines thatcall its functions. In the original, more complex program (DT115.EXE,available
from DL6 in the CLMFORUM of CompuServe) from which CTERM wasderived,this mod-
ule provided windowing capability in addition to improved display speed.

DMwHONNNNYH=|||=SB|eooooa >AnDUPWNHHCHDADOHBKWNY|OW
29
30:
31
32
33
34
35

OarKHOU®SWD

28 :

Figure 6-7. CH2.ASM.

TITLE CH2.ASM

;} CH2.ASM -- support file for CTERM.C terminal emulator
; for use with Microsoft C and SMALL model only...

—TEXT segment byte public 'CODB'
—TEXT ends

—DATA segment byte public 'DATA'
—DATA ends

CONST segment byte public ‘'CONST'
CONST - ends

—BSS segment byte public 'BSS'
: BSS ends

: DGROUP GROUP CONST, —BSS, —DATA
assume CS:_TEXT, DS:DGROUP, ES:DGROUP, SS:DGROUP

> TEXT segment

public cls, _color,__deol,__i_v,—key,_—_wrchr,—_wrpos

atrib DB 0 7; attribute
: ucolr DB 0 + color

v_bas DW 0 7 video segment
viulc DW 0 ; upper left corner cursor
viire DW 184Fh + lower right corner cursor
vicol DW 0 7; current col/row

: key proc near ; get keystroke
PUSH BP

MOV AH, 1 ; check status via BIOS
INT 16h

MOV AX, OFFFFh
JZ key00 7 none ready, return EOF
MOV AH,0 ; have one, read via BIOS

(more)

Section LI: Programming in the MS-DOS Environment 225

OLYMPUSEX.1010 - 235/1582

OLYMPUS EX. 1010 - 236/1582

Part B: Programming for MS-DOS

36: INT

37°: key0O: POP
38 : RET

39 : key endp
40 :

41 3 v_wrehr proc
42: PUSH
43: MOV
44; MOV
45: CMP
46: JINB
47 3: CMP
48 : JNZ
49: DEC
50: MOV
51: CMP
52: JB
53: JMP
54:
55 : notbs: CMP
56: INZ
57: MOV
58 ; ADD
59 : AND
60 : MOV
61: CMP
62 : . JA
63: JMP
64 :

65 : notht: CMP
66 : INZ
67 : MOV
68 : INC
69 : CMP
70: JBE
71: CALL

72°: _ MOV
73>: nohtl: MOV
74 3: JMP
75:
76 : notlf: CMP
V7: INZ
78: CALL
719 3 JMP
80 :
81: ckicr: CMP
82 : JINZ
83: MOV
84; MOV
85: JMP
86

Figure 6-7, Continued,

226 TheMS-DOS Encyclopedia

16h
‘BP

near
BP

BP, SP
AL, (BP+4]
AL,' '
prehr ;
AL, 8
notbs

BYTE PTR vicol ;

AL,byte ptr v—col
AL, byte ptr v_ulc
nxt_c ;
norml

7 get char passed by C

printing char, go do it

process backspace

step to next column

AL,9
notht

AL, byte ptr vicol ;
AL, 8
AL, OF8h
byte ptr v_col,AL
AL, byte ptr vilire
nxt_e
SHORT

process HTAB

norml

AL, OAh
notlf

AL, byte ptr v_colt+l
AL

AL, byte ptx v_lirct1
noht1
scrol

AL, byte ptr v_lrcti
byte ptr v_col+1,AL
SHORT

7 process linefeed

norml

AL,0Ch
ckcr
—cls
SHORT

+ process formfeed
ignor

AL, ODh
ignor i
AL, byte ptr v_ulc ;
byte ptr v_col,AL
SHORT norml

ignore all other CTL chars
process CR

(more)

OLYMPUSEX.1010 - 236/1582

OLYMPUS EX. 1010 - 237/1582

87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

prehr:

nxt—c:

norml:

ignor:

—-i_v

—-Wrpos

MOV.
PUSH
XOR
MOV
PUSH
MOV
PUSH
CALL
MOV
INC
MOV
CMP
JLE
MOV
PUSH
CALL
POP
MOV
PUSH
CALL
POP
CALL
MOV
POP
RET

endp

proc
PUSH
MOV
MOV
MOV
MOV
POP
RET

endp

proc
PUSH
MOV
MOV
MOV
MOV
MOV
MOV
PUSH
INT
POP
MOV
MOV
POP

Figure 6-7. Continued.

AH,—colr ;
AX
AH, AH

Article 6; Interrupt-Driven Communications

process printing char

AL,byte ptr v_col+1
AX

AL,;byte ptr v_col
AX
wrtvr

SP,BP
BYTE PTR vicol ;

AL, byte ptr vicol
AL,byte ptr v_ire
norml

AL, 0Dh ;
AX
—_wrehnr
AX

AL, OAh
AX
—wrehr
AX
set_cur
SP,BP
BP

near ;
BP

BP, SP
AX, 0B000h
v_bas, AX ;
SP,BP
BP

near ;
BP

BP, SP
DH, [BP+4] ;
DL, [BP+6] - ¢
vcol, DX ;
BH,atrib i
AH,2
BP
10h
BP

AX,v—col i
SP,BP
BP

advance to next column

went off end, do CR/LF

establish video base segment

mono, B800 for CGA
could be made automatic

set cursor position

row from C program
col from C program
cursor position
attribute

return cursor position

(more)

Section I: Programming in the MS-DOSEnvironment 227

OLYMPUSEX.1010 - 237/1582

OLYMPUS EX. 1010 - 238/1582

Part B: Programming for MS-DOS

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
453
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

—_wrpos

seticur

set_cur

—color

—color

serol

serol

—cls

RET.
endp

proc
PUSH
MOV
MOV
MOV
MOV
PUSH
INT
POP
MOV
MOV
POP
RET

endp

proc
PUSH
MOV
MOV
MOV
MOV
SHL
AND
OR
MOV
XOR
MOV
POP
RET

endp

proc
PUSH
MOV
MOV
MOV
MOV
MOV
MOV
PUSH
INT
POP
MOV
POP
RET

endp

proc

Figure 6-7. Continued.

228 The MS-DOS Encyclopedia

near
BP

BP,SP
DX,v—col
BH,atrib
AH,2
BP
10h
BP

AX,v_col
SP,BP
BP

near
BP

BP, SP
AH, [BP+6]
AL, [BP+4]
CX, 4
AH,CL
AL, OFh
AL, AH
—colr,AL
AH, AH
SP,BP
BP

near
BP

BP, SP
AL, 1
CX,v_ule
DX,v_lre
BH,—colr
AH, 6
BP
10h
BP

SP,BP
-BP

near

7 set cursor to vicol

7 use where v_col says

7; ~color(fg, bg)

; background from C
; foreground from C !

7 pack up into 1 byte
; store for handler's use

scroll CRT up by one line

7 count of lines to scroll

7 use BIOS

7 clear CRT

(more)

OLYMPUSEX.1010 - 238/1582

OLYMPUS EX. 1010 - 239/1582

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

deoll:

deol2:

: —deol,

wrtvr

PUSH
MOV
MOV
MOV

MOV.
MOV
MOV
MOV
PUSH
INT
POP
CALL
MOV
POP
RET

endp

proc
PUSH
MOV
MOV
MOV
PUSH
MOV
XOR
PUSH
MOV

CMP
JA
PUSH
CALL
POP
INC
JMP

MOV
MOV
POP
RET

endp

proc
PUSH
MOV
MOV
MOV
MOV
MOV
MUL
XOR

Figure 6-7. Continued.

BP

BP, SP
AL,O
CX,v_ule
v_col, Cx
DX,v_ire
BH,—colr
AH,6
BP
10h
BP
set_cur

SP,BP
BP

near
BP

BP, SP
AL,' '
AH, —colr
AX

Article 6: Interrupt-Driven Communications

flags CLS to BIOS

set to HOME

use BIOS scroll up

cursor to HOME

delete to end of line

set up blanks

AL,byte ptr v_col+1
AH, AH
AX

?

AL, byte ptr vicol

AL,byte ptr v_lre
deol2
AX
wrtve
AX
AL
deol!

AX,v—col
SP,BP
BP

near
BP

BP, SP
DL, [BP+4]
DH, [BP+6]
BX, [BP+8]
AL, 80
DH

DH, DH

,
;

i

set up row value

at RH edge
current location
write a blank

next column

do it again

return cursor position

write video RAM (col, row,

set up arg ptr
column
row

char/atr
calc offset

char/atr)

(more)

Section II: Programming in the MS-DOS Environment 229

OLYMPUSEX.1010 - 239/1582

OLYMPUS EX. 1010 - 240/1582

Part B: Programming for MS-DOS

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

ADD
ADD
PUSH
MOV
MOV
MOV
MOV
STOSW
POP
MOV
POP
RET

: wrtvr endp

: TEXT ends

END

Figure 6-7. Continued.

The sample smarter terminal emulator: CTERM.C

Giventhe interrupt handler (CH1), exception handler (CH1A), and video handler (CH2), a ;
simple terminal emulation program (CTERM.C) can be presented. The majorfunctions of _
the program are written in Microsoft C;the listing is shown in Figure 6-8.

oAKnOM&WH=
©

10
1
12
13
14
15
16
V7
18
19
20
21
22
23
24

AX,DX
AX, AX
ES

DI,AX
AX,v_bas
ES,AX
AX,BX

ES

SP,BP
BP

7* Terminal Emulator

* Jim Kyle, 1987*

* Uses files CH1, CH1A, and CH2 for MASM support...
*/

#include <stdio.h>
#include <conio.h>
#include <stdlib. h>

: #include <dos.h>

#include <string.h>
#define BRK
#define ESC
#define XON
#define XOFF

#define True
#define False

#define Is_Function_Key(C) ((C) == ESC)

static char capbfr [4096 J; 7* capture buffer */
static int wh,

ws;

Figure 6-8. CTERM.C.

230 The MS-DOS Encyclopedia

-'@!

ter-'@r
ror—t@t
tot_tret

0

7 adjust bytes to words
7 save seg reg

7 set up segment

7 get the data
7 put on screen
; restore regs

(cterm.c)

/* special console i/o *f
/* mise definitions */
/* defines intdos() */

/* control characters ¥/

(more)

OLYMPUSEX.1010 - 240/1582

OLYMPUS EX. 1010 - 241/1582

Article 6; Interrupt-Driven Communications

25: /
26 +: static int I,
27: waitchr = 0,
28 : vflag = False,

29: capbp, |
30 : capbe,
31: Ch,
32: Want_7_Bit = True,
33: ESC_Seq_State = 0; /* escape sequence state variable */
34:
35 +: int'’_cx ,
36: —Cy,
37: —atr = 0x07, /* white on black */
38 : —pag = 0,
39: oldtop = 0,
40: oldbot = 0x184f;
41:

42 : FILE * in_file = NULL; /* start with keyboard input #/
43 ; FILE * cap_file = NULL;
44

45 : #include "cterm.h" /* external declarations, etc. */
46:

47 : int Wants_To_Abort () /* checks for interrupt of script ¥/
48 : { return broke ();
49: }
50 : void
51

52 : main (argc, argv) int argc ; /* main routine af
53 : char * argv [];
54 : { char * cp,
55 : * addext ();
56: if (arge > 1) /* check for script filename * /
57: in_file = fopen (addext (argv [1], ".SCR"), "r");
58: if (argc > 2 } /* check for capture filename */
59: cap_file = fopen (addext (argv [2], ".CAP"), "w");
60 : set_int ();7 ' /* install: CH1 module *f
61: Set_vid (); /* get video setup */
62 : cls ()7 /* clear the screen */

63: cputs ("Terminal Emulator"); /* tell who's working */
64; cputs (-"\r\n< ESC for local commands >\r\n\n");
65°: Want_7_Bit = True;
66 : ESC_Seq_State = 0;
67: Init_Comm (); /* set up drivers,. etc. «f°
68: while (1) /* main loop */
69 : { if ((Ch = kb_file ()) > 0) /* check local */
70: { if (Is_Function_Key (Ch))
WO: { if (docmd () < 0) /* command */
72°: break;
73: }
W4: ~~”. . else

15: Send_Byte (Ch & OXx7F); /* else send it ¥/

Figure 6-8. Continued. (more)

Section I: Programming in theMS-DOS Environment 231

OLYMPUSEX.1010 - 241/1582

OLYMPUS EX. 1010 - 242/1582

 Part B: Programming for MS-DOS ‘

76: }
7: if ({(Ch = ReadModem ()) >= 0) /* check remote */
78: { if (.Want_7_Bit }

79°: Ch &= Ox7E; /* trim off high bit */
80: switch (ESC_SeqState) /* state machine a/
81: {

82 : case 0: /* no Esc sequence */
83: switch (Ch }
84; {
85: case ESC : . /* Esc char received a/
86: ESC_Seq_State = 1;
87: break;
88 :
89 : default

90: if (Ch == waitchr) /* wait if required af
91: waitchr = 0;
92: if (Ch == 12) /* clear screen on FF */
93: cls (); ,

94: else
95: if (Ch != 127) /* ignore rubouts #/
96: { putchx ((char) Ch }); /* handle all others */
97 : put—cap ((char) Ch);

98 : } . ;
99 : }

100 : break; -
101 :

402 : case 1 : /* ESC -- process any escape sequences here */
103 : switch (Ch)
104: , {
105 : case 'A' : /* VT52 up */
106 : ; /* nothing but stubs here */
107 : ESC_Seq_State = 0;
108 : break;
109 :
110 : case 'B' : /* VT52 down */
11: ;

112 : ESC_Seq_State = 0;
113: break;
114 :

115: case 'C': /* VT52 left */
116: i

117: ESC_Seq_State = 0;
118: break;
119:

120 : case 'D' ; /* VT52 right */
121 3: ;

122: ESC_Seg_State = 0;
123: break;
124: °
125 : case 'E' ; /* VT52 Erase CRT */

126 : cls (); /* actually do this one ¥/

Figure 6-8. Continued. (more)

232 The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 242/1582

OLYMPUS EX. 1010 - 243/1582

Article 6; Interrupt-Driven Communications

127 3:) ESC_Seqg_State = 0;
“428 : break;

129

130 : case 'H' ;: /* VT52 home cursor */
131: . locate (0, 0);
132: ESC_Seq_State = 0;
133 : break;
134 :

135: case 'j': /* VT52 Erase to EOS */
136 : deos ();7
137 3 ESC_Seq_State = 0;
138 : break;
139 :

140 ; case '[' : /* ANSI.SYS - VT100 sequence */
147: ESC_Seq_State = 2;
142 : break;
143 :
144 : default
145 : putchx (ESC); /* pass thru all others af
146: putchx ((char) Ch);
147: ESC_Seq_State = 0;
148 : }
149 : break;
150 : .

151: case 2: 7* ANSI 3.64 decoder */
152 : ESc_Seq_State = 0; . /* not implemented */
153 : }
154: } .
155°: if (broke ()) /* check CHIA handlers /
156 : { cputs ("\r\n***BREAK###\r\n");
157: break;
158 : }

159 : } /7* end of main loop */
160 : if (cap_file) /* save any capture */
161: cap_flush ();
162 : Term_Comm (); /* restore when done */
163: rstuint (); /* restore break handlers */
164 : exit (0); /* pe nice to MS-DOS */
165 : }
166 :

167 : doemd () /* local command shell */
168 : { FILE * getfil ();
169 : int wp;
170 : wp = True;
171 3 if (! in_file {; vflag)

172 : cputs ("\r\n\tCommand: "); /* ask for command */
173: else

4174 : wp = False;

175 : Ch = toupper (kbd_wait ()); /* get response : */
176 3 if (wp)
177 : putchx ((char) Ch);

Figure 6-8. Continued. (more)

Section I: Programming in the MS-DOSEnvironment 233

OLYMPUSEX.1010 - 243/1582

OLYMPUS EX. 1010 - 244/1582

Part B: Programming for MS-DOS

234

178
179
180
181
182
183
184
185
186
187
188
189
190
191

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

192°

switch (Ch) /* and act on it */
{
case 'S'

if (wp)
cputs ("low speed\r\n");

Set_Baud (300);
break;

case 'D'

if (wp) :
cputs ("elay (1-9 sec): ");

Ch = kbdwait ();7
if (wp)

putchx ((char) Ch);
Delay { 1000 * (Ch - 'O'));
if (wp)

putchx (‘'\n');
break;

case 'E'

if (wp.)
cputs ("ven Parity\r\n");

Set_Parity (2); ,
break;

case 'F

if (wp)
eputs ("ast speed\r\n");

Set_Baud (1200);

break; |

case 'H'

if (wp) i
{ cputs ("\r\n\tVALID COMMANDS:\r\n");

eputs ("\tD = delay 0-9 seconds.\r\n");
eputs ("\tE = even parity.\r\n");
cputs ("\tF = (fast) 1200-baud.\r\n");
cputs ("\tN-= no parity.\r\n");
eputs ("\tO = odd parity.\r\n");
eputs ("\tOQ = quit, return to DOS.\r\n");

cputs ("\tR = reset modem.\r\n"); :
cputs ("\tS = (slow) 300-baud.\r\n");
eputs ("\tU = use script file.\r\n");

cputs ("\tV = verify file input.\r\n"); i
cputs ("\tW = wait for char.");

}
break;

case 'N'

if (wp)

(more)Figure 6-8. Continued.

TheMS-DOSEncyclopedia

OLYMPUSEX.1010 - 244/1582

OLYMPUS EX. 1010 - 245/1582

Article 6: Interrupt-Driven Communications\

228 ;: cputs ("o Parity\r\n");
229 : Set_Parity (1);
230 : break;
231 :

232 : case '0' :
233 : if (wp)
234: cputs ("dd Parity\r\n");
235 : Set_Parity (3 }3
236 : break;
237 :
238 : case 'R'
239 : if (wp)

240 : cputs ("ESET Comm Port\r\n");
241: Init_Comm ();
242 : break;
243 :
244 : case 'Q'
245 : if (wp)
246: cputs (" = QUIT Command\r\n");
247 : Ch=(- 1);
248 : break;
249
250 : case 'U'
251 : if (in_file && ! vflag)

252 3: .: putchx ('U');
253: cputs ("se file: ");
254 : getfil ();
255 : cputs ("File ");
256: cputs (in_file ? "Open\r\n" : "Bad\r\n");
257 : waitchr = 0;
258: break;
259 :
260 : case 'V':

261 : if (wp) ‘
262 : { cputs (“erify flag toggled ");
263: cputs (vflag ? "OFF\r\n" ; "ON\r\n");
264: }
265 : vflag = vflag ? False : True;
266 : break;
267 :
268 : case 'W':

269: if (wp)
270 : cputs ("ait for: <");
271: waitchr = kbd.wait ();
272 : if (waitchr == ''')
273: . waitchr = Q;
274 : if (wp)
275 : { if (waitchr)
276 : putchx ((char) waitchr);
277 : else
278 : : cputs ("no wait");

Figure 6-8. Continued. (more)

Section I: Programming in the MS-DOS Environment 235

OLYMPUSEX.1010 - 245/1582

OLYMPUS EX. 1010 - 246/1582

Part B: Programming for MS-DOS

236

279 :
280 : }
281: break;
282 :
283 :
284
285
286
287 :
288 : }
289 ; Ch = '?';
290 : }
291 : if

292 : { cputs
293 : while
294 : i
295 : }
296 :
297 : }
298
299

cputs (">\r\n");

default

if (wp)
{ cputs ("Don’t know ");

putchx ((char) Ch);
eputs ("\r\nUse 'H' command for

(wp) /*
("\r\nfany key] \r");
{ ReadKeyboard () == EOF) /*

return Ch ;

: kbd_wait () /*
300 { int c;
301 while ((c = kb_file ()) == (- 1)
302 : ;
303 : return c & 255;
304 : }
305 :
306 : kb_file () /*
307 : { intc;
308 : if (infile) /*
309 : { c = Wants_To_Abort (); /*
310 if (waitchr && !c)
311: (- 103 /*
312 :
313 :
314 :
315 :
316:
317:
318 : c=
319 ; }
320 : else

321: if (c == '\n') /*
322 : c= (- 1)7
323 : if (c= '\\') /*

°324 : c = esc ();
325: if (vflag &é& ¢ !=
326 : { putchx ('{');
327 : putchx ((char) c };
328 : putchx ('}');
329 : }

c=

else

if (ett
{ fclose (

cputs (
in_file NULL;
waitchr = 0;

(- 1);

(cc = getc (in_file))
in_file);

i

(- 1)) /*

Figure 6-8. Continued.

The MS-DOSEncyclopedia

Help.\r\n");

if window open....

wait for response

wait for input

input from kb or file

USING SCRIPT

use first as flag

then for char

== EOF |! ¢c == 26)

"\r\nScript File Closed\r\n");

ignore LFs in file

process Esc sequence

verify file char

OLYMPUSEX.1010 - 246/1582

*/

a]

*/

*/
*/

*/

*/

*/

*/

(more)

OLYMPUS EX. 1010 - 247/1582

Article 6: Interrupt-Driven Communications

330 : }

331: else . /* USING CONSOLE */
332 : c = ReadKeyboard (); /* if not using file */
333 : return (c);
334 }
335 :

336 : esc () /* script translator */
337: { int c; .

338 : c = getc (in_file); /* control chars in file */
339 : switch (toupper (c))
340 : {
341: case 'E!'

342 : c = ESC;
343 : break;
344 : ~
345 : case 'N’
346 : c= -'\n';
347 : break;
348 :
349 : case 'R'
350 : e= '\r';
351 : break;
352 :
353 : case 'T"'
354 : c= '\t';
355 : break;
356
357 : case '*!

358 : ¢ = getc (in_file) & 31;
359 : break;

360 : }
361: return (c);
362 : }
363 :

364 : FILE * getfil ()
365 : { char fnm [20];
366 § getnam (fnm, 15); /7/* get the name */
367 : if (! (strehr (fnm, '.')))
368 : strcat (fnm, ™.SCR");
369 : return (in_file = fopen (fnm, "r"));
370 : }
371:

372 : void getnam (b, s) char * b; /* take input to buffer ¥/
373: ints ;
374 : { while (s -- > 0)
375 : _{ af ((* b = (char) kbd_wait ()) != '\r'
376 : putchx (* b ++);
377 : else

378 : break ;
379 : }

380 : putchx ('"\n');

Figure 6-8. Continued. (more)

Section II: Programming in theMS-DOSEnvironment 237

OLYMPUSEX.1010 - 247/1582

OLYMPUS EX. 1010 - 248/1582

Part B: Programming for MS-DOS .

381 : *b = 0;
382 : }
383 :

384 : char * addext (b, /* add default EXTension */
385 : e) char * b,
386 : * 8;
387 : { static char bfr [20];
388 : if (strehr (b, '.'))
389 : return (b);

390 : strcepy (bfr, b);
391: streat (bfr, e);
392 : return (bfx);
393 : }
394

395 : void put_cap (¢) char c;
396 : { if-(cap_file && c != 13) /* strip out CRs */
397 : fpute (c, cap_file); /* use MS-DOS buffering */
398 : 3}
399 :

400 : void cap_flush () /* end Capture mode xf
401 : { if (cap_file)
402 ; { fclose (cap_file);

403 : cap_file = NULL; ,
404; eputs ("\r\nCapture file closed\r\n");
405 : }
406 : }
407 :

408 : /* TIMER SUPPORT STUFF (IBMPC/MSDOS) ¥*/

409 : static long timr; /* timeout register */
410 ,

411 : static union REGS rgv ;
412

413: long getmr ()
414 : { long now ; /* msec since midnite #/
415 3 rgv.x.ax = 0x2c00;
416: intdos (& rgv, & rgv);
417: now = rgv.h.ch; /* hours */
418 : now *= 60L; /* to minutes «/

419 : now += rgv.h.cl; /* plus min */
420 : now *= 60L; /* to seconds */

421: now += rgv.h.dh; /* plus sec */
422 : now *= 100L; /* to 1/100 */
423: now += rgv.h.dl; /* plus’ 1/100 */
424 : return (10L * now); /* msec value «/

425 : 3} ,
426 :

427 : void Delay (nn) int nn; /* sleep for n msec «/
428 :°{ long wakeup ;
429 : ° wakeup = getmr () + (long) n; /* wakeup time */ .
430 : while (getmr () < wakeup)
431: ; /* now sleep */

Figure 6-8. Continued. (more)

238 The MS-DOS Encyclopedia

OLYMPUSEX.1010 - 248/1582

OLYMPUS EX. 1010 - 249/1582

432
433
434

436
437
438
439
440
441
442
443
444

445
446:
447
448
449 :
450
451
452
453
454
455
456
457

458
459 :
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

435 :
void Start_Timer (nn) int nj;

{ timr = getmr () + (long) n * 1000L;
}

Article 6: Interrupt-Driven Communications

/* set timeout for n sec

Timer_Expired () /* if timeout return 1 else return 0
{ return (getmr () > timr);
}

Set_Vid ()
{ -i-v ();

return 0;

void locate (row, col) int row ,
col;

{ ~cy = row % 25;
cx = col % 80;

—wrpos (row, col);

void deol ()
{ -deol ();
—

void deos ()
{ deol ();.

if (~cy < 24)
{ rgv.x.ax = 0x0600;

rgv.x.bx = (_atr << 8);
rgv.x.cx = (cy + 1) << 8;
rgv.x.dx = 0x184F;
int86 (0x10, & rgv, & rgv);

}

locate (—cy, —cx });

void cls ()}
{ cls ();
}

void cursor (yn) int yn ;
{ rgv.x.cx = yn ? 0x0607 : 0x2607;

rgv.x.ax = 0x0100;
int86 (0x10, & rgv, & rgv);

void revvid (yn) int yn ;
{ if (yn)

atx = _color (8, 7)7

Figure 6-8. Continued.

7* initialize video

/* use ML from CH2.ASM

/7* use ML from CH2.ASM

7* if not last, clear

/* use ML

/* ON/OFF

/* black on white

*/

*/

*/

*/

*/

*/

*/

*/

(more)

Section IL Programming in the MS-DOSEnvironment 239

OLYMPUSEX.1010 - 249/1582

OLYMPUS EX. 1010 - 250/1582

 Part B: Programming for MS-DOS

483 else

484 —atr = color (15, 0); /* white on black */
485 : }
486

487 : putchx (c) charc; /* put char to CRT */
488 { if (c¢ == '\n')
489 putch ('\r');
490 putch (c);
491 : return cj;
492 : }
493:

494 ; Read_Keyboard () /* get keyboard character
495 returns -1 if none present */
496 { int c};
497 if (kbhit ()) /* no char at all */
498 return (getch ());
499 : return (EOF);
500 : }
501 :

502 /* MODEM SUPPORT */
503 static char mparm,
504 wrk [80 J;
505

506 : void Init_Comm ()} /7* initialize comm port stuff */
507 : { static int ft = 0; /* firstime flag */
508 if (ft ++ == 0)

509 “4m OG
510 Set_Parity (1); /* 8,N,1 */
$11 : Set_Baud (1200); /* 1200 baud *f
512: } ,
513

514 #define B1200 0x80 /* baudrate codes ¥/
515 #define B300 0x40
516

517 Set.Baud (nn) int nn; /* n is baud rate */
518 { if (n == 300) ‘
519 mparm = (mparm & Ox1F }) + B300;
$20 else

$21 if (n == 1200)

522 mparm = (mparm & Ox1F) + B1200;
523 else

524 return 0; /* invalid speed ¥/
525 sprintf (wrk, "Baud rate Sd\xr\n", n);
526 eputs (wrk);
527 set_mdm (mparm);
528 : return n ;
529 : }
530 :

531 #define PAREVN 0x18 /* MCR bits for commands */ -
532 #define PARODD 0x10
533 #define PAROFF 0x00

Figure 6-8. Continued. (more)

240 The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 250/1582

OLYMPUS EX. 1010 - 251/1582

534
535
536
537

539

541
542
543 3
544
545 :
546 :
547
548

551
$52 :
553
554
555 :
556 :
557
558 :
559
560
561

562
563 :
564
565 :
566 :
567
568
569 :
570 :
571
572

549 :
550 :

#define STOP2 0x40
: #define WORD8 0x03
: #define WORD? 0x02
: #define WORD6 0x01

538 :

: Set_Parity (n) intn;
540 :

{ um ();
}

/* end of cterm.c */

Figure 6-8. Continued.

Article 6; Interrupt-Driven Communications

/* n is parity code */
{ static int mmode; :

if (ns)

mmode = { WORD8 | PAROFF); _ (* off * |
else

if (n= 2)

mmode = (WORD? | PAREVN); /7* on and even */
else

if (n==3) .
mmode = (WORD? | PARODD); /* on and odd */

else

return 0; /* invalid code */
mparm = (mparm & OxEO) + mmode;

sprintf (wrk, "Parity is %s\r\n", (n == 1 ? "OFF"
(n == 2 ? "EVEN" : "ODD")));

cputs (wrk);
set_mdm (mparm);
return n ;

}

: Write_Modem (c) char cj; /* return 1 if ok, else 0 */
{ wrtmdm {(c);

return (1); /* never any error */
}

> Read.Modem ()
{ return (rdmdm ()); /* from int bfr */
} . .

: void TermComm () /* uninstall comm port drivers — /

CTERMfeaturesfile-capture capabilities, a simple yet effective script language, anda
numberofstub (that is, incompletely implemented) actions, such as emulation of the VT52
and VT100 series terminals, indicating various directions in which it can be developed.

The namesofa scriptfile and a capturefile can be passed to CTERM in the commandline.
If no filename extensionsare included,the default for thescriptfile is SCR and thatfor the
capturefile is .CAP. If extensions are given, they override the default values. The capture
feature can be invoked onlyif a filename is supplied in the commandline,buta scriptfile
can be called at any time via the Esc command sequence,and onescriptfile can call for
another with the same feature.

Section U: Programming in the MS-DOSEnvironment 241

OLYMPUSEX.1010 - 251/1582

OLYMPUS EX. 1010 - 252/1582

Part B: Programming for MS-DOS

242

The functions included in CTERM.Carelisted and summarized in Table 6-13.

Table 6-13. CTERM.C Functions.

Lines Name

1-5
7-11

12-20

22~43

45

47-49 Wants_To_Abort)
52-165 mainQO

167-297 docmdO

299-304 kbd_waitO

306-334 kb_fileO

336-362 esc)
364-370 getfilO
372-382 getnamO

384-393 addextO

395-398 put_capO
400-406 cap_flushO

408-411

413-425 getmrO
427-432 DelayO
434-436 Start_TimerO

438-440 Timer_ExpiredO
442-445 Set_VidO

447-452 locateO—
454-456 deolQ
458-468 deosO
470-472 clsO

474-478 cursorO)

480-485 revvidO

487-492 putchxO

TheMS-DOSEncyclopedia

Description

Program documentation.
Includefiles.

Definitions.

Global data areas.

External prototype declaration.
Checksfor Ctrl-Break or Ctrl-C being pressed.
Main program loop; includes modem engine and

sequential state machine to decode remote
commands.

Gets, interprets, and performslocal (console or
script) command.

Waits for input from consoleorscriptfile.
Gets keystroke from console or script; returns EOF

if no character available.

Translates script escape sequence.
Gets nameofscriptfile and opensthefile.
Gets string from console orscript into designated

buffer.

Checksbuffer for extension; adds oneifnone
given.

Writes character to capturefile if capture in effect.
Closes capture file and terminates capture modeif

capture in effect. .
Timerdata locations.
Returns time since midnight, in milliseconds.
Sleeps 7 milliseconds.
Sets timer for 7 seconds.

Checks timer versus clock.

Initializes video data.

Positions cursor on display.
Deletes to endofline.

Deletes to end of screen.

Clears screen.

Turns cursor on or off.

Toggles inverse/normalvideo display attributes.
Writes charto display usingputchO (Microsoft C

library).

(more)

OLYMPUSEX.1010 - 252/1582

OLYMPUS EX. 1010 - 253/1582

Article 6: Interrupt-Driven Communications

Table 6-13. Continued.

 Lines Name Description

494-500 Read_KeyboardQ) Gets keystroke from keyboard.
502-504 Modem data areas.

506-512 Init_CommO Installs ISR and so forth andinitializes modem.
514-515 Baud-rate definitions.

517-529 Set_BaudO Changesbpsrate of UART.
531-537 Parity, WL definitions.
539-557 Set_ParityO Establishes UART parity mode.
559-562 Write_ModemO Sends character to UART.
564-566 Read_Modem() Gets character from ISR’s buffer.

568-570 Term_CommQ Uninstalls ISR and so forth and restores original
vectors.

‘For communication with the console, CTERM usesthe special Microsoft C library func-
tions defined by CONIO.H, augmented with the functions in the CH2.ASM handler. Much
of the code mayrequire editing if used with other compilers. CTERM also uses the func-
tion prototype file CTERM.H,listed in Figure 6-9, to optimize function calling within the
program. ,

/* CTERM.H -. function prototypes for CTERM.C */
int Wants_To_Abort(void);
void main(int ,char * *);
int docmd (void);
int kbd_wait (void);
int kb_file (void);
int esc(void);
FILE *getfil (void);
void getnam(char *,int);°
char *addext (char *,char *);
void put_cap(char);
void cap_flush (void);
long getmr (void);
void Delay (int);
void Start_Timer (int);
int Timer_Expired (void);
int Set_Vid (void);
void locate(int ,int);
void deol (void);
void deos (void);
void cls(void);
void cursor(int);
void revvid(int);
int putchx(char);

Figure 6-9. CTERM.H. . (more)

Section II: Programming in the MS-DOS Environment 243

OLYMPUSEX.1010 - 253/1582

OLYMPUS EX. 1010 - 254/1582

Part B: Programming for MS-DOS

int ReadKeyboard (void);
void Init_Comm(void);
int Set_Baud(int);
int Set_Parity(int);
int Write_Modem(char);
int ReadModem (void);
void Term_Comm(void);

/* CH1.ASM functions - modem interfacing */
void i-m(void);
void set_mdm(int);
void wrtmdm(int);

void Send_Byte (int);
int rdmdm(void);

~ void u_m(void);

7* CHIA.ASM functions - exception handlers */
void set_int (void);
void rstiint (void);
int broke (void);

/* CH2.ASM functions - video interfacing */

void _i_v(void); 1
int cwwrpos(int, int);
void deol (void);
void —cls (void);
int _color(int, int);

Figure 6-9. Continued.

Program execution begins at the entry to mainQO,line 52, CTERMfirst checks (lines 56
through 59) whether any filenames were passed in the commandline;ifthey were,
CTERM opensthe correspondingfiles. Next, the program installs the exception handler
Cline 60), initializes the video handler(line 61), clears the display (line 62), and announces
its presence (lines 63 and 64). The serial driver is installed and initialized to 1200 bps and
no parity (lines 65 through 67), and the program enters its main modem-engine loop
Clines 68 through 159). j

This loop is functionally the same as that used in ENGINE,butit has been extended to
detect an Esc from the keyboard as signalling the start of a local command sequence (lines
70 through 73) and to include a state-machine technique (lines 80 through 153) to recog-
nize incoming escape sequences, such as the VT'52 or VT100 codes. To specify a local com-
mand from the keyboard, press the Escape (Esc) key, then thefirst letter of the local
command desired. After the local command has beenselected, press any key (such as |
Enter or the spacebar) to continue.Toget a listing ofall the commandsavailable, press
Esc-H. “|

The kb_fileO routine of CTERM (called in the main loopatline 69) can getits input from
either a script file or the keyboard. If a script file is open (lines 308 through 330),it is used
until EOF is reached or until the operator presses Ctrl-C to stop script-file input. Otherwise,

244 The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 254/1582

OLYMPUS EX. 1010 - 255/1582

Article 6: Interrupt-Driven Communications

input is taken from the keyboard (ines 331 and 332).If a scriptfile is in use,its inputis
echoedto the display (lines 325 through 329) if the V commandhasbeengiven.

To permit the Esc characteritself to be placedin scriptfiles, the backslash (\) character
serves as a secondary escape signal. When a backslashis detected (lines 323 and 324) in
the inputstream,the next character inputis translated according to the following rules:

Character Interpretation
Eore Translates to Esc.

Norn Translates to Linefeed.

Rorr Translates to Enter (CR).
Tort Translates to Tab.

A Causes the next character input to be converted into a control character.

Any other character, including another\, is not translatedatall.

When the Esc character is detected from either the console or a script file, the docmdQ
function (lines 167 through 297) is called to promptfor and decode the next input charac-
ter as a command and to perform appropriate actions. Valid commandcharacters, and the
actionsthey invoke,are as follows:

Command
Character Action

D Delay 0-9 seconds, then proceed. Must be followed by a decimal
digit that indicates how longto delay.

E Set EVENparity.
F Set (fast) 1200 baud.

H Display list of valid commands.
N Set noparity. ,
O Set ODDparity.
Q Quit; return to MS-DOS command prompt.
R Reset modem.

S Set (slow) 300 baud.

U Usescript file (CTERM prompts for filename).
Vv Verify file input. Echoes eachscript-file byte.
Ww Wait for character; the next input character is the one that must be

matched.

Any other characterinput after an Esc and the resulting Command prompt generates the
message Don’t knowX Gwhere X standsfor the actual input character) followed by the
prompt Use ‘H’ commandforHelp.

Section Il: Programming in the MS-DOS Environment 245

OLYMPUSEX.1010 - 255/1582

OLYMPUS EX. 1010 - 256/1582

Part B: Programming for MS-DOS

If input is taken from a script and the V flagis off, docmd(Q performsits task quietly, with
no outputto the screen.If input is received from the console, however, the command let-
ter, followed by a descriptive phrase, is echoed to the screen. Input, detection, and execu-
tion of the local commandsare accomplished much as in CDVUTL, by wayof a large
switchO statement(lines 178 through 290).

Althoughthe listed commandsare only a subsetofthe features available in CDVUTLfor
the device-driver program, they are more than adequate for creating usefulscripts. The
predecessor of CTERM (DT115.EXE), which included the CompuServe B-Protocolfile-
transfer capability but had no additional commands, has beenin usesinceearly 1986 to
handle automatic uploading and downloadingoffiles from the CompuServe Information
Service by meansofscript files. In conjunction with an auto-dialing modem, DT115.EXE
handles the entire transaction, from login through logout, without human intervention.

Ali the bits and pieces of CTERM areput together by assembling the three handlers
with MASM,compiling CTERM with Microsoft C, and linking all four object modules into
an executablefile. Figure 6-10 shows the complete sequence andalso the three ways of
using the finished program.

Compiling:

C>MASM CH1; <Enter>
C>MASM CH1A; <Enter>
C>MASM CH2; <Enter>
C>MSC CTERM; <Enter>

Linking:

C>LINK CTERM+CH1+CH1A+CH2; <Enter>

Use:

(no files)

CoCTERM <Enter>

or

(script only) .

C>CTERM scriptfile <Enter>

or

C>CTERM scriptfile capturefile <Enter>

Figure 6-10. Putting CTERM together and usingit.

Jim Kyle
Chip Rabinowitz

246 The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 256/1582

OLYMPUS EX. 1010 - 257/1582

Article 7: File and Record Management

Article 7

File and Record Management

The core of most application programsis the reading, processing, and writing of data
stored on magnetic disks. This data is organizedinto files, which are identified by name;
the files, in turn, can be organized by grouping them into directories. Operating systems
provide application programs with services that allow them to manipulate thesefiles and
directories without regard to the hardware characteristics of the disk device. Thus, applica-
tions can concern themselvessolely with the form and content ofthe data, leaving the
details of the data’s location on the disk and ofits retrieval to the operating system.

The disk storage services provided by an operating system can be categorizedintofile
functions and record functions. Thefile functions operate onentire files as named
entities, whereas the record functions provide access to the data contained withinfiles.
(In some systems, an additional class of directory functions allows applications to deal
with collections offiles as well.) This article discusses the MS-DOSfunctioncalls that

allow an application program to create, open, close, rename, and delete disk files; read
data from and write data to disk files, and inspect or change the information (such as
attributes and date and time stamps) associated with disk filenamesin disk directories.
See also PROGRAMMINGIN THE MS-DOS ENVIRONMENT:STRUCTURE OF MS-DOS:
MS-DOSStorage Devices; PROGRAMMING FOR MS-DOS: Disk Directories and VolumeLabels.

Historical Perspective

Current versions of MS-DOSprovide two overlapping setsoffile and record management
services to support application programs:the handle functions and thefile control block
(FCB) functions. Both sets are available through Interrupt 21H (Table 7-1). See SYSTEM
CALLS: INTERRUPT 21H. The reasonsfor this surprising duplication arestrictly historical.

The earliest versions of MS-DOSused FCBsfor all file and record access because CP/M,
which was the dominant operating system on 8-bit microcomputers, used FCBs. Microsoft
chose to maintain compatibility with CP/M to aid programmers in converting the many
existing CP/M application programsto the 16-bit MS-DOSenvironment; consequently,
MS-DOSversions1.x included a set of FCB functions that were a functional superset of
those present in CP/M. As personal computers evolved, however, the FCB access method
did not lend itselfwell to the demandsoflarger, faster disk drives.

Accordingly, MS-DOSversion 2.0 introduced the handle functions to provide a file and
record access method similar to that found in UNIX/XENIX. These functions are easier to
use and more flexible than their FCB counterparts andfully support a hierarchical (tree-
like) directory structure. The handle functions also allow character devices, such as the

Section Il: Programming in the MS-DOS Environment 247

OLYMPUSEX.1010 - 257/1582

OLYMPUS EX. 1010 - 258/1582

Part B: Programming for MS-DOS

consoleor printer, to be treated for some purposesas though they were files. MS-DOSver-
sion 3.0 introduced additional handle functions, enhanced some ofthe existing handle
functions for use in network environments, and provided improved error reporting for
all functions.

The handle functions, which offer far more capability and performance than the FCB
functions, should be used forall new applications. Therefore, they are discussedfirst in
this article.

Table 7-1. Interrupt 21H Function Calls for File and Record Management.

Handle FCB

Operation Function Function

Createfile. 3CH 16H
Create newfile. 5BH

Create temporaryfile. 5AH
Openfile. 3DH OFH
Closefile. ‘3EH 10H

Deletefile. 41H 13H
Renamefile. 56H 17H

Perform sequential read. 3FH 14H
Perform sequential write. 40H 15H
Perform random record read. 3FH 21H
Perform random record write. 40H 22H

Perform random block read. 27H
Perform random block write. 28H

Set disk transfer area address. 1AH .

Get disk transfer area address. 2FH

Parse filename. 29H

Position read/write pointer. 42H
Set random record number. 24H

Getfile size. 42H 23H

Get/Setfile attributes. 43H

Get/Set date and time stamp. 57H
Duplicate file handle. 45H
Redirectfile handle. 46H

248 The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 258/1582

OLYMPUS EX. 1010 - 259/1582

Article 7: File and Record Management

Using the Handle Functions

Theinitial link between an application program andthe data stored on disk is the name of
a disk file in the form

drive:path\ filename.ext

where drive designates the disk on whichthefile resides, path specifies the directory
on that disk in whichthefile is located, and filename.ext identifies thefile itself. If drive
and/orpath is omitted, MS-DOS assumesthe default disk drive and currentdirectory.
Examples of acceptable pathnames include

C:\PAYROLL\ TAXES.DAT

LETTERS\MEMO.TXT

BUDGET.DAT

Pathnames can be hard-codedinto a program as part of its data. More commonly, how-
ever, they are entered by the user at the keyboard,either as a command-line parameteror
in response to a prompt from the program.If the pathnameis provided as a command-
line parameter, the application program must extract it from the other information in the
commandline: Therefore,to allow a program to distinguish between pathnames and
other parameters when the two are combined in a commandline, the other parameters,
such as switches, usually begin with a slash (/) or dash (-) character.

All handle functions that use a pathname require the nameto be in the form of an ASCIIZ
"string — that is, the name must be terminated by a null (zero) byte. If the pathnameis

hard-codedinto a program, the nul] byte must be part of the ASCIIZ string. If the path-
nameis obtained from keyboard input or from a command-line parameter, the null byte
must be appended by the program. See Opening an Existing File below.

To use a disk file, a program opensorcreatesthe file by calling the appropriate MS-DOS
function with the ASCIIZ pathname. MS-DOSchecksthe pathnamefor invalid characters
and,if the open or create operation is successful, returns a 16-bit handle,or identification
code, for the file. The program uses this handle for subsequent operations on the file, such
as record reads and writes.

Thetotal numberofhandlesfor simultaneously openfiles is limited in two ways. First, the
per-process limit is 20 file handles. The process’s first five handles are always assigned to
the standard devices, which default to the CON, AUX, and PRN character devices:

Handle Service Default

0 Standard input Keyboard (CON)
1 Standard output Video display (CON)
2 Standard error Video display (CON)
3 Standard auxiliary First communications port (AUX)
4 Standardlist First parallel printer port (PRN)

Section I: Programming in theMS-DOSEnvironment 249

OLYMPUSEX.1010 - 259/1582

OLYMPUS EX. 1010 - 260/1582

Part B: Programming for MS-DOS

Ordinarily, then, a process has only 15 handlesleft fromits initial allotment of 20; however,
whennecessary, the 5 standard device handles can beredirected to otherfiles and devices
or closed and reused.

In addition to the per-processlimit of 20 file handles, there is a system-widelimit.
MS-DOS maintains an internal table that keeps track ofall the files and devices opened
with file handles for all currently active processes. The table contains such information as
the currentfile pointer for read and write operations and the time and date ofthe last write
to the file. The size of this table, which is setwhen MS-DOSis initially loaded into memory,
determines the system-wide limit on how manyfiles and devices can be open simulta-
neously. The default limitis 8 files and devices; thus, this system-wide limit usually
overrides the per-processlimit.

To increasethe size of MS-DOS’s internal handletable, the statement F7ZES=nnn can be
included in the CONFIG.SYSfile. CCONFIG.SYSsettings take effect the next time the sys-
tem is turned on or restarted.) The maximum value for FILES is 99 in MS-DOSversions 2.x
and 255 in versions 3.x. See USER COMMANDS:conrFiG.sys: FILES.

Error handling and the handle functions

250

When a handle-basedfile function succeeds, MS-DOSreturnsto the calling program with
the carry flag clear. If a handle function fails, MS-DOSsets the carry flag and returns an
error code in the AX register. The program should checkthe carry flag after each opera-
tion and take whatever action is appropriate when an error is encountered. Table 7-2 lists
the most frequently encountered error codesforfile and record I/O (exclusive of network
operations).

Table 7-2. Frequently Encountered Error Diagnostics for File and Record
Management.

Code Error

02 File not found

03 Path not found

04 Too many openfiles (no handlesleft)
05 Access denied

06 - Invalid handle
11 Invalid format

12 Invalid access code

13 Invalid data

15 Invalid disk drive letter

17 . Not same device

18 No morefiles

Theerror codes used by MS-DOSin versions 3.0 andlater are a superset of the MS-DOS
version 2.0 error codes, See APPENDIX B: Criticat Error Copes; APPENDIX C: ExTENDED
Error Copes. Most MS-DOSversion 3 error diagnostics relate to network operations,
which provide the program with a greater chancefor error than does a single-user system.

TheMS-DOS Encyclopedia

OLYMPUSEX.1010 - 260/1582

OLYMPUS EX. 1010 - 261/1582

i Article 7: File and Record Management

' Programsthatare to run in a network environmentneedto anticipate network problems.
For example, the server can go down while the program is using sharedfiles,

Under MS-DOSversions 3.x, a program can also use Interrupt 21H Function 59H (Get
Extended Error Information) to obtain more details about the cause of an errorafter a
failed handle function. The information returned by Function 59H includesthe type of
device that caused the error and a recommendedrecovery action.

Warning: Manyfile and record I/O operations discussedin this article can result in or be
affected by a hardware(critical) error. Such errors can be intercepted by the programifit
contains a custom critical error exception handler (Interrupt 24H). See PROGRAMMING
IN THE MS-DOS ENVIRONMENT:CustoMIzinG Ms-bos: Exception Handlers.

Creating a file

MS-DOSprovides three Interrupt 21H handle functionsfor creatingfiles:

Function Name

3CH Create File with Handle (versions 2.0 andlater)

5AH Create TemporaryFile versions 3.0 andlater)
5BH Create New File (versions 3.0 and later)

Each function is called with the segment andoffset of an ASCIIZ pathnamein the DS:DX
; registers and the attribute to be assigned to the newfile in the CX register. The possible

attribute values are

Code Attribute

00H Normalfile

01H Read-only file
02H Hiddenfile

04H System file

Files with more than one attribute can be created by combining the valueslisted above.
| For example,to create a file that has both the read-only and system attributes, the value

05H is placed in the CX register.

If thefile is successfully created, MS-DOSreturnsafile handle in AX that must be used for
subsequentaccessto the newfile andsetsthe file read/write pointerto the beginning of
thefile; if the file is not created, MS-DOSsetsthe carry flag (CF) and returns an error code
in AX.

Function 3CHis the only file-creation function available under MS-DOSversions 2.x.It
must be used with caution, however, becauseif a file with the specified name already
exists, Function 3CH will open it and truncateit to zero length, eradicating the previous
contents ofthe file. This complication can be avoidedbytesting for the previous existence
ofthe file with an open operationbefore issuing the createcall.

Section Il Programming in the MS-DOS Environment 251

OLYMPUSEX.1010 - 261/1582

OLYMPUS EX. 1010 - 262/1582

Part B: Programming for MS-DOS

Under MS-DOSversions 3.0 and later, Function 5BHis the preferred function in most cases
becauseit will fail if a file with the same namealready exists. In networking environments,
this function can be used to implement semaphores, allowing the synchronization of pro-
gramsrunningin different network nodes.

Function 5AH is used to create a temporary workfile that is guaranteed to have a unique
name. This capability is important in networking environments, where several copies of
the same program, running in different nodes, may be accessing the same logical disk
volumeonaserver. The function is passed the address of a buffer that can contain a drive
and/or path specifying the location for the created file. MS-DOS generates a namefor the
createdfile that is a sequence of alphanumeric characters derived from the current time
and returns the entire ASCIIZ pathnameto the program in the same buffer, along with the
file’s handle in AX. The program mustsave the filenameso thatit can delete thefile later, if
necessary;thefile created with Function 5AH is not destroyed when the program exits.

Example: Create a file named MEMO.TXTin the \LETTERSdirectory on drive C using
Function 3CH.Any existing file with the same nameis truncated to zero length and ~
opened.

fname db 'C:\LETTERS\MEMO.TXT', 0
fhandle dw ?

mov dx,seg fname 7 DS:DX = address of

mov ds,dx ; pathname for file |
mov dx,offset fname

xOLr cx,;cx ; CX = normal attribute \
mov ah, 3ch ; Function 3CH = create
int 21h 7 transfer to MS-DOS

je error ; jump if create failed
mov fhandle, ax 7 else save file handle

Example: Create a temporaryfile using Function 5AH andplace it in the \TEMPdirectory
on drive C. MS-DOS appendsthefilename it generates to the original path in the buffer
named fname. Theresulting file specification can be usedlater to deletethefile.

fname db 'C:\TEMP\' * generated ASCIIZ filename
db. 13 dup (0) 7 is appended by MS-DOS

’ fhandle dw ?

(more)

252 The MS-DOS Encyclopedia

OLYMPUSEX.1010 - 262/1582

OLYMPUS EX. 1010 - 263/1582

Article 7: File and Record Management

mov dx,seg fname 7 DS:DX = address of
mov ds,dx ; path for temporary file
mov dx,offset fname
xor cx,cx 7; CX = normal attribute
mov ah, Sah 7 Function 5AH = create

7 temporary file
int 21h 7 transfer to MS-DOS

je error ; jump if create failed
mov fhandle, ax ; else save file handle

Opening an existingfile

Function 3DH (Open File with Handle) opensan existing normal, system, orhiddenfile
in the currentor specified directory. When calling Function 3DH, the program supplies a
pointer to the ASCIIZ pathnamein the DS:DX registers and a 1-byte access code in the AL
register. This access code includes theread/write permissions,the file-sharing mode, and
an inheritance flag. The bits of the access code are assigned as follows:

Bit(s) Description

0-2 Read/write permissions (versions 2.0 andlater)
3° Reserved
4-6 File-sharing mode (versions 3.0 andlater)
7 Inheritance flag (versions 3.0 andlater)

The read/write permissions field of the access code specifies how thefile will be used and
can take the following values:

Bits 0-2 Description

000 _ Read permission desired
001 Write permission desired
010 Read and write permission desired

For the open to succeed, the permissionsfield must be compatible with the file’s attribute
byte in the disk directory. For example, if the program attempts to open an existingfile
that has the read-only attribute when the permissionsfield of the access code byteis set to
write or read/write, the open function will fail and an error code will be returned in AX.

The sharing-modefield of the access code byte is important in a networking environment.
It determines whether other programswill also be allowedto openthefile and,if so,
what operations they will be allowed to perform. Following are the possible values of the
file-sharing modefield:

Section I: Programming in the MS-DOS Environment 253

OLYMPUSEX.1010 - 263/1582

OLYMPUS EX. 1010 - 264/1582

Part B: Programming for MS-DOS

Bits 4-6 Description

000 Compatibility mode. Other programscan openthefile and perform read or
write operationsas long as no process specifies any sharing mode other than
compatibility mode.

001 Denyall. Other programs cannot openthefile.
010 Deny write. Other programs cannot openthefile in compatibility mode or

with write permission.
011 Deny read. Other programs cannotopenthefile in compatibility mode or with

read permission.
100 Deny none. Other programs can openthefile and perform both read and

write operations but cannot openthe file in compatibility mode.

Whenfile-sharing supportis active (that is, SHARE.EXE has previously been loaded),
the result of any open operation depends on both the contents of the permissions andfile-
sharing fields of the access code byte and the permissions andfile-sharing requested by
other processesthat have already successfully openedthefile.

The inheritance bit of the access code byte controls whether a child process will inherit
that file handle. If the inheritancebit is cleared, the child can use the inherited handle to
access the file without performing its own open operation. Subsequent operations per-
formed by the child process on inheritedfile handles also affect the file pointer associated
with the parent's file handle.If the inheritancebit is set, the child process does not inherit
the handle.

If thefile is opened successfully, MS-DOS returnsits handle in AX andsetsthefile read/
write pointer to the beginning ofthefile;if the file is not opened, MS-DOSsets the carry
flag and returnsan error code in AX.

Example: Copythe first parameter from the program’s commandtail in the program
segmentprefix (PSP) into the array frame and append a null character to form an ASCIIZ
filename. Attempt to openthefile with compatibility sharing mode and read/write access.
If the file does not already exist, create it and assign it a normalattribute.

emdtail equ 80h + PSP offset of command tail
fname db 64 dup (?)
fhandle dw ?

; assume that DS already
+ contains segment of PSP

(more)

254 The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 264/1582

OLYMPUS EX. 1010 - 265/1582

mov
mov
Mov
mov
cld

Lodsb
or

jz

labeli:
lodsb
cmp
jz

label2:
cmp
jz
cmp
jz
stosb
lodsb

jmp

label3:
Xor

stosb

mov
mov
mov
mov
int

jnc

cmp
jnz

XOr
mov
int

je

label4:
mov

Closing a file

si,cmdtail
di,seg fname
es,di
di,offset fname

al,al
error

al,20h
label

al,Odh
label3

al,20h
label3

label2

al,al

dx,seg fname
ds, dx
dx,offset fname
ax, 3d02h
21h
label4

ax,2
error

CX, CX

ah,3ch
21h
error

fhandle, ax

Article 7: File and Record Management

prepare to copy filename...
DS:SI ,
ES:DI = buffer to receive
filename from command tail

command tail

safety first!

check length of command tail

jump, command tail empty

scan off leading spaces
get next character
is it a space?
yes, skip it

look for terminator

quit if return found

quit if space found
else copy this character
get next character

store final NULL to

create ASCIIZ string

now open the file...
DS:DX = address of

pathname for file

Function 3DH = open r/w
transfer to MS-DOS

jump if file found

error 2 = file not found

jump if other error
else make the file...
CX = normal attribute
Function 3CH = create
transfer to MS-DOS

jump if create failed

save handle for file

Function 3EH (CloseFile) closesa file created or openedwith a file handle function. The
program mustplace the handle ofthefile to be closed in BX. If a write operation was per-
formedonthefile, MS-DOS updates the date, time, and size in thefile’s directory entry.

Section II: Programming in the MS-DOS Environment—255

OLYMPUSEX.1010 - 265/1582

OLYMPUS EX. 1010 - 266/1582

Part B: Programming for MS-DOS

Closingthefile also flushes the internal MS-DOSbuffers associated with thefile to disk
and causesthe disk’s file allocation table (FAT) to be updatedif necessary.

Good programming practice dictates that a program close files as soon asit finishes
using them. This practice is particularly important whenthefile size has been changed,to
ensure that data will not be lostif the system crashesor is turned off unexpectedly by the
user. A method of updating the FAT without closing the file is outlined below under
Duplicating and Redirecting Handles.

Reading and writing with handles

Function 3FH (Read File or Device) enables a program to read data from a file or device
that has been opened with a handle. Before calling Function 3FH, the program mustset
the DS:DXregisters to point to the beginning of a data buffer large enoughto hold the
requested transfer, put the file handle in BX, and put the numberofbytesto be read in CX.
The length requested can be a maximum of65535 bytes. The program requesting the
read operation is responsible for providing the data buffer.

If the read operation succeeds, the data is read, beginning at the currentposition ofthe -
file read/write pointer, to the specified location in memory. MS-DOS then incrementsits
internal read/write pointer for the file by the length of the data transferred and returns
the length to the calling program in AX with the carry flag cleared. The only indication
that the end of the file has been reachedis that the length returnedis less than the length
requested.In contrast, when Function 3FH is used to read from a character device thatis
not in raw mode, the read will terminate at the requested length or at the receipt of a car-
riage return character, whichever comesfirst. See PROGRAMMINGINTHE MS-DOS
ENVIRONMENT: PROGRAMMINGFOR MS-Dos: Character Device Input and Output.If the
read operation fails, MS-DOS returns with the carry flag set and an error code in AX.

Function 40H (Write File or Device) writes from a buffertoafile (or device) using a handle
previously obtained from an openor create operation. Before calling Function 40H, the _

' program must set DS:DXto point to the beginning of the buffer containing the source data,
put the file handle in BX, and put the numberof bytes to write in CX. The numberof bytes
to write can be a maximum of 65535.

If the write operation is successful, MS-DOS puts the numberof bytes written in AX and
increments the read/write pointer by this value;if the write operation fails, MS-DOSsets
the carry flag and returns an error code in AX.

Records smaller than one sector (512 bytes) are not written directly to disk. Instead,
MS-DOSstores the record in an internal buffer and writesit to disk when the internal

bufferis full, when the file is closed, or whena call to Interrupt 21H Function ODH (Disk
Reset) is issued.

Note: If the destination of the write operation is a disk file and the disk is full, the only
indication to the calling program is that the length returned in AX is not the sameas the
length requested in CX. Diskfull is not returned as an error with the carry flag set.

A special use of the Write functionis to truncate or extenda file. If Function 40H is called
with a record length of zero in CX,thefile size will be adjusted to the currentlocation of |
the file read/write pointer.

256 The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 266/1582

OLYMPUS EX. 1010 - 267/1582

Article 7: File and Record Management

Example: Openthe file MYFILE.DAT,create the file MYFILE.BAK,copy the contentsof
the .DATfile into the BAKfile using 512-byte reads and writes, and then close bothfiles.
filel db
file2 db

handlel dw
handle2 dw

buff db

mov
mov
mov
mov
int

je
mov

mov
mov
mov
int

je
mov

loop:
mov
mov
mov
mov

Jint
je
or

jz

mov
MOV
mov
mov

int

jc
emp
jne
jmp

'MYFILE.DAT',0
'MYPILE.BAK', 0

512 dup (?)

dx,seg filei
ds, dx
dx,offset filel
ax, 3d00h
21h
error

nhandlel,ax

dx,offset file2
cx,0
ah,3ch
21h
error

handle2, ax

dx,offset buff
ex,512
bx, handle
ah,3fh
21h
error

ax,ax
. done

dax,offset buff
CX,ax
bx, handle2
ah,40h
21h
error

ax,CxX
error

loop

,

:

handle for MYFILE.DAT
handle for MYFILE.BAK

buffer’ for file I/o

open MYFILE.DAT...
DS:DX = address of filename

Function 3DH = open (read-only)
‘transfer to MS-DOS

jump if open failed
save handle for file

create MYFILE.BAK...
DS:DX = address of filename
CX = normal attribute
Function 3CH = create
transfer to MS-DOS

jump if create failed
save handle for file

read MYFILE.DAT
DS:DX = buffer address

CX = length to read
BX = handle for MYFILE.DAT

Function 3FH = read
transfer to MS~DOS

jump if read failed
were any bytes read?
no, end of file reached

write MYFILE.BAK
DS:DX = buffer address

CX = length to write
BX = handle for MYFILE.BAK
Function 40H = write
transfer to MS~DOS

jump if write failed
was write complete?
jump if disk full
continue to end of file

(more)

Section I: Programming in the MS-DOS Environment 257

OLYMPUSEX.1010 - 267/1582

OLYMPUS EX. 1010 - 268/1582

Part B: Programming for MS-DOS

done: ; now close files...
mov bx, handle ; handle for MYFILE.DAT
mov ah, 3eh + Function 3EH = close file
int 21h ; transfer to MS-DOS

je error + jump if close failed

mov bx, handle2 ; handle for MYFILE.BAK
mov ah, 3eh + Function 3EH = close file
int 2th ; transfer to MS-DOS

je - error + jump if close failed

Positioning the read/write pointer

258

Function 42H (MoveFile Pointer) sets the position of the read/write pointer associated
with a given handle. The functionis called with a signed 32-bit offset in the CX and DX
registers (the most significant half in CX), the file handle in BX, and the positioning mode
in AL:

Mode Significance

00 ‘Supplied offsetis relative to beginning offile.
01 Supplied offset is relative to current position of read/write pointer.
02 Supplied offset is relative to endoffile.

If Function 42H succeeds, MS-DOSreturnsthe resulting absolute offset (in bytes) of the
file pointer relative to the beginningofthe file in the DX and AXregisters, with the most
significant half in DX;if the functionfails, MS-DOSsets the carry flag and returns an error
code in AX.

Thus, a program can obtain the size ofa file by calling Function 42H with an offset of zero
and a positioning mode of 2. The function returns a value in DX:AX that represents the
offset of the end-of-file position relative to the beginning ofthefile.

Example: Assumethat the file MYFILE.DAT waspreviously opened andits handle is
saved in the variable handle. Position the file pointer 32768 bytes from thebeginning of
the file and then read 512 bytesof data startingat that file position.

fhandle dw ? + handle from previous open
buff db 512 dup (7?) + buffer for data from file

(more)

TheMS-DOS Encyclopedia

OLYMPUSEX.1010 - 268/1582

OLYMPUS EX. 1010 - 269/1582

mov cx,0
mov ax, 32768
mov bx, fhandle
mov al,0
mov ah, 42h
aint 21h

je error

mov dx,offset buff
mov ex,512
mov bx, fhandle
mov ah, 3fh
int 21h

je error
cmp ax,512
jne error

Article 7: File and Record Management

position the file pointer...
CX = high part of file offset
DX = low part of file offset
BX handle for file

AL = positioning mode
Function 42H = position
transfer to MS-DOS

jump if function call failed

U

now read 512 bytes from file
DS:DX = address of buffer
Cx length of 512 bytes
BX =. handle for file
Function 3FH = read
transfer to MS-DOS

jump if read failed
was 512 bytes read?
jump if partial rec. or EOF

Example: Assumethat the file MYFILE.DAT was previously opened andits handle is saved
in the variable fhandle. Findthesizeofthefile in bytes by positioningthefile pointerto
zero bytes relative to the end ofthefile. The returned offset, which is relative to the begin-
ningofthefile, is the file’s size.
fhandle dw ?

mov cx, 0
mov ax, 0
mov bx, fhandle
mov al,2
mov ah, 42h
int = 2th-

je error

Other handle operations

,
handle from previous open

position the file pointer
to the end of file...

CX = high part of offset

DX = low part of offset
BX = handle for file

AL = positioning mode
Function 42H = position
transfer to MS-DOS

jump if function call failed

if call succeeded, DX:AX”
now contains the file size

MS-DOSprovides other handle-oriented functions to rename(or move)a file, deletea file,
read or changea file’s attributes, read or changea file’s date and time stamp, and duplicate
or redirect a file handle. Thefirst three of these are “file-handle-like” because they use an

ASCIIZ string to specify the file; however, they do notreturn a file handle.

Section II: Programming in the MS-DOS Environment 259

OLYMPUSEX. 1010 - 269/1582

OLYMPUS EX. 1010 - 270/1582

Part B: Programming for MS-DOS

Renamingafile

Function 56H (RenameFile) renames an existing file and/or movesthefile from oneloca-.
tion in the hierarchicalfile structure to another. The file to be renamed cannot be a hidden

or system file or a subdirectory and must not be currently open by any process; attempting
to renamean openfile can corrupt the disk. MS-DOS renamesa file by simply changingits
directory entry; it moves a file by removing its current directory entry and creating a new
entry in the target directory that refers to the samefile. The location of the file’s actual
data on the disk is not changed.

Both the current and the new filenames must be ASCIIZ strings and can include a drive
and path specification; wildcard characters (* and ?) are not permittedin the filenames.
The program calls Function 56H with the addressof the current pathname in the DS:DX
registers and the address of the new pathnamein ES:DI.If the path elementsof the two
strings are not the same and both pathsarevalid, the file “moves” from the source direc-
tory to the target directory. If the paths match butthe filenames differ, MS-DOS simply
modifies the directory entry to reflect the new filename.-

If the function succeeds, MS-DOSreturnsto the calling program with the carry flag clear.
The functionfails if the new filenameis already in the target directory; in that case,
MS-DOSsetsthe carry flag and returns an error code in AX.

Example: Change the nameof the file MYFILE.DAT to MYFILE.OLD.In the same opera-
tion, movethe file from the \WORKdirectory to the \BACKUPdirectory.

filei db ‘\WORK\MYFILE.DAT', 0
file2 db- '\BACKUP\MYFILE.OLD', 0

mov dx,seg filel ; DS:DX = old filename
mov ds,dx
mov es,dx
mov dx,offset filel
mov di,offset file2 ; ES:DI = new filename
mov ah,56h ; Function 56H = rename
int 21h 7; transfer to MS-DOS

je error : 7 jump if rename failed

Deleting a file

Function 41H (Delete File) effectively deletesa file from a disk. Before calling the function,
a program must set the DS:DX registers to point to the ASCIIZ pathnameofthefile to be
deleted. The supplied pathname cannot specify a subdirectory or a read-only file, and the
file must not be currently open by any process,

260 The MS-DOS Encyclopedia

OLYMPUSEX.1010 - 270/1582

OLYMPUS EX. 1010 - 271/1582

Article 7: File and Record Management

If the function is successful, MS-DOSdeletesthe file by simply marking thefirst byte ofits
‘directory entry with a special character (OE5H), making the entry subsequently unrecog-
nizable. MS-DOSthen updatesthe disk’s FAT so thatthe clusters that previously belonged
to the file are “free” and returns to the program with the carryflag clear. If the delete
functionfails, MS-DOSsetsthe carry flag and returns anerror code in AX.

' The actual contentsof the clusters assignedto thefile are not changed by a delete opera-
tion, so for security reasons sensitive information should be overwritten with spaces or
some other constant character before the file is deleted with Function 41H.

Example: Delete the file MYFILE.DAT, located in the \WORK directory on drive C.

fname db 'C: \WORK\MYFILE.DAT',0

mov ax,seg fname ; DS:DX = address of filename
mov ds, ax
mov dx,offset fname
mov ah, 41h ; Function 41H = delete
int 21h ; transfer to MS-DOS

je error ; jump if delete failed

Getting/setting file attributes

Function 43H (Get/SetFile Attributes) obtains or modifies the attributes of an existingfile.
Before calling Function 43H, the program mustset the DS:DX registers to point to the
ASCIIZ pathnameforthefile. To read the attributes, the program must set AL to zero;to set
the attributes, it must set AL to 1 and place an attribute code in CX. See Creating a File
above.

If the function is successful, MS-DOSreadsor sets the attribute byte in the file’s directory
entry and returns with the carry flag clear and thefile’s attribute in CX. If the function
fails, MS-DOSsets the carry flag and returns an error code in AX.

Function 43H cannot be usedto set the volume-labelbit (bit 3) or the subdirectory bit (bit
4) of a file. It also should not be used ona file that is currently open by any process.

Example: Changethe attributes of the file MYFILE.DATin the \BACKUP directory on
drive C to read-only. This prevents the file from being accidentally deleted from the disk.

fname db 'C:\BACKUP\MYFILE.DAT',0

mov . @x,seg fname ; DS:DX = address of filename
mov ds, dx
mov dx,offset fname
mov cx,1 ; CX = attribute (read-only)
mov ‘al,1 ; AL = mode (0 = get, 1 = set)

(more)

Section II: Programming in the MS-DOS Environment 261

OLYMPUSEX.1010 - 271/1582

OLYMPUS EX. 1010 - 272/1582

Part B: Programming for MS-DOS

mov ah,43h ; Function 43H = get/set attr
int 21h ; transfer to MS-DOS

je error ; jump if set attrib. failed

Getting/setting file date and time

Function 57H (Get/Set Date/TimeofFile) reads or sets the directory time and date stamp
of an openfile. To set the time and date to a particular value, the program mustcall Func-
tion 57H with the desired time in CX, the desired date in DX, the handle for the file Cob-

tained from a previous open or create operation) in BX, and the value 1 in AL. To read the
time anddate, the function is called with AL containing 0 and the file handle in BX; the
time is returned in the CX register and the date is returned in the DX register. As with
other handle-orientedfile functions, if the function succeeds, the carry flag is returned
cleared; if the function fails, MS-DOSreturnsthe carry flag set and an error code in AX.

The formats usedforthefile time and date are the same as those used in disk directory
entries and FCBs. See Structure of the File-Control Block below.

The main uses of Function 57H are to force the time and date entryfora file to be updated
whenthefile has mot been changed andto circumvent MS-DOS’s modification ofa file
date and time whenthefile has been changed.In thelatter case, a program can usethis
function with AL = 0 to obtain the file’s previous date and time stamp, modify thefile, and
then restore the original file date and time by re-calling the function with AL = 1 before
closingthefile.

Duplicating and redirecting handles

Ordinarily, the disk FAT and directory are not updateduntil a file is closed, even when
the file has been modified. Thus, until the file is closed, any new data added tothe file can
belost if the system crashesor is turned off unexpectedly. The obvious defense against
suchloss is simply to close and reopenthefile every time the file is changed. However,
this is a relatively slow procedure and in a network environmentcan cause the program
to lose controlof the file to another process.

Use of a secondfile handle, created by using Function 45H (Duplicate File Handle) to
duplicate the original handle ofthefile to be updated, can protect data addedto a diskfile
before the file is closed. To use Function 45H, the program must put the handle to be
duplicated in BX. If the operation is successful, MS-DOSclears the carry flag and returns
the new handle in AX;if the operation fails, MS-DOSsets the carry flag and returns an
error code in AX.

If the function succeeds, the duplicate handle can simply be closed in the usual manner
with Function 3EH. This forces the desired update of the disk directory and FAT. Theorig-
inal handle remains open and the program can continue to useit for file read and write
operations.

Note: While the second handle is open, moving the read/write pointer associated with
either handle movesthe pointer associated with the other.

262 The MS-DOS Encyclopedia

OLYMPUSEX.1010 - 272/1582

OLYMPUS EX. 1010 - 273/1582

Article 7: File and Record Management

Example: Assumethat the file MYFILE.DAT waspreviously opened andthe handle for
that file has been savedin the variable handle. Duplicate the handle and then close the

duplicate to ensure that any data recently written to thefile is saved on the disk andthat
the directory entry for the file is updated accordingly.
fhandle dw ? ; handle from previous open

7 duplicate the handle...
mov bx, fhandle 7 BX = handle for file
mov ah, 45h ; Function 45H = dup handle

int 21h 7 transfer to MS-DOS |
je error + jump if function call failed

+ now close the new handle...

mov bx,ax 7 BX = duplicated handle
mov ah, 3eh 7 Function 3EH = close
int 21h ; transfer to MS-DOS

jc error 7 jump if close failed
mov bx, fhandle 3 replace closed handle with active handle

Function 45H is sometimes also used in conjunction with Function 46H (Force Duplicate
File Handle). Function 46H forces a handle to be a duplicate for another open handle — in
other words,to refer to the samefile or device at the samefile read/write pointer location.
The handle is then said to be redirected.

The most commonuseof Function 46His to change the meaningof the standard input
and standard output handles before loading a child process with the EXECfunction.In this
manner,the inputfor the child program can be redirected to come fromafile orits output
can beredirectedintoafile, without any special knowledge on the partof the child pro-
gram. In such cases, Function 45H is usedto also create duplicates of the standard input
and standard output handles before they are redirected, so that their original meanings can
be restoredafter the child exits. See PROGRAMMINGIN THE MS-DOS ENVIRONMENT:

CUSTOMIZING Ms-Dos: Writing MS-DOSFilters.

Using the FCB Functions

A file control block is a data structure, located in the application program’s memory space,
that contains relevant information about an opendisk file: the disk drive, the filename and
extension, a pointerto a position within thefile, and so on. Each open file must haveits
own FCB.Theinformation in an FCB is maintained cooperatively by both MS-DOSand the
application program,

Section I: Programming in the MS-DOS Environment 263

OLYMPUSEX.1010 - 273/1582

OLYMPUS EX. 1010 - 274/1582

Part B: Programming for MS-DOS

MS-DOSmovesdata to and from a disk file associated with an FCB by meansof a data
buffer called the disk transfer area (DTA). The current address of the DTA is under the

control of the application program, although each program has a 128-byte default DTA at
offset 80H in its program segment prefix (PSP). See PROGRAMMINGIN THE MS-DOS
ENVIRONMENT:ProGRAMMING FOR MS-DOs:Structure of an Application Program.

Underearly versions of MS-DOS,the only limit on the numberoffiles that can be open
simultaneously with FCBs is the amount of memory available to the application to hold the
FCBsandtheir associated disk buffers. However, under MS-DOSversions 3,0 andlater,
whenfile-sharing support (SHARE.EXE)is loaded, MS-DOSplaces somerestrictions on
the use of FCBsto simplify the job of maintaining network connectionsforfiles. If the

application attempts to open too many FCBs, MS-DOSsimply closes the least recently used
FCBsto keep the total numberwithin a limit.

The CONFIG.SYSfile directive FCBS allows the user to control the allowed maximum

numberof FCBs and to specify a certain number ofFCBs to be protected against automatic
closure by the system. The default values are a maximum offour files open simultaneously
using FCBs and zero FCBs protected from automatic closure by the system. See USER
COMMANDS:conrFiG.sys: FCBS.

Because the FCB operations predate MS-DOSversion 2.0 and because FCBs have a fixed
structure with no room to contain a path, the FCBfile and record services do not support
the hierarchical directory structure. Many FCB operations can be performedonlyonfiles
in the current directory of a disk. For this reason, the use of FCBfile and record operations
should be avoided in new programs.

Structure of the file control block
Each FCBis a 37-byte array allocated from its own memory space by the application pro-
gram that will use it. The FCB containsall the information neededto identify a disk file
and access the data withinit: drive identifier, filename, extension,file size, record size,
variousfile pointers, and date and time stamps. The FCB structure is shown in Table 7-3.

Table 7-3. Structure ofa Normal File ControlBlock.

Offset Size

Maintained by (bytes) (bytes) Description

Program 00H 1 Drive identifier
Program 01H 8 Filename
Program 09H 3 File extension
MS-DOS 0CH 2 Current block number

Program OEH 2 Record size (bytes)
MS-DOS 10H 4 File size (bytes)
MS-DOS 14H 2 Date stamp
MS-DOS 16H 2 Time stamp
MS-DOS 18H 8 Reserved

MS-DOS 20H 1 Current record number

Program 21H 4 Random record number

264 The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 274/1582

OLYMPUS EX. 1010 - 275/1582

Article 7: File and Record Management

Drive identifier: Initialized by the application to designate the drive on whichthefile to
‘be openedor created resides. 0 = default drive, 1 = drive A, 2 = drive B, and so on. If the
application supplies a zero in this byte (to use the default drive), MS-DOSalters the byte
during the open or create operation to reflect the actual drive used; thatis, after an open
or create operation, this drive will always contain a value of1 or greater.

Filename: Standard eight-characterfilename;initialized by the application; mustbeleft _
justified and padded with blanksif the name has fewer than eight characters. A device
name (for example, PRN) can be used; note that there is no colon after a device name.

File extension: Three-characterfile extension; initialized by the application; mustbeleft
justified and padded with blanksif the extension has fewer than three characters.

Current block number, initialized to zero by MS-DOS whenthefile is opened. The block
number and the record numbertogether make up the record pointer during sequentialfile
access.

Recordsize: Thesize of a record (in bytes) as used by the program. MS-DOSsets this field
to 128 whenthefile is openedor created; the program can modify the field afterward to
any desired record size. If the record size is larger than 128 bytes, the default DTA in the
PSP cannot be used becauseitwill collide with the program’s own codeordata.

File size: Thesizeofthe file in bytes. MS-DOSinitializes this field from the file’s directory
entry whenthe file is opened. Thefirst 2 bytes ofthis 4-bytefield are the least significant
bytesofthefile size.

Date stamp: Thedate of the last write operation on thefile. MS-DOSinitializesthisfield
from thefile’s directory entry whenthefile is opened. This field uses the same format
usedbyfile handle Function 57H (Get/Set/Date/TimeofFile):

Date Format

‘Bit 15 14 13° 12 g8|7 6 5 4 3 2 1 0

come PDP Tebebe[oo[oT]

Bits Contents

- 0-4 Day of month (1-31)
5-8 Month (1-12)

9-15 Year (relative to 1980)

Time stamp: Thetimeofthe last write operation onthefile. MS-DOSinitializes this field
from thefile’s directory entry whenthefile is opened. This field uses the same format
used by file handle Function 57H (Get/Set/Date/TimeofFile):

Section II: Programming in the MS-DOS Environment 265

OLYMPUSEX.1010 - 275/1582

OLYMPUS EX. 1010 - 276/1582

Part B; Programming for MS-DOS

Time Format

Bit: 15 14 13 12 11 0 9 8/7 6 5 4° 3 2 1 «9

 Content:

Bits Contents

0-4 Numberof 2-second increments (0-29)
5-10 Minutes (0-59)

11-15 Hours (0-23)

Current record number: Together with the block number, constitutes the record pointer
used during sequential read and write operations. MS-DOSdoesnotinitialize this field
whena file is opened. The record numberis limited to the range 0 through 127; thus, there
are 128 records per block. The beginningofa file is record 0 of block 0.

Random recordpointer: A 4-byte field that identifies the record to be transferred by the
random record functions 21H, 22H, 27H, and 28H.If the record size is 64 bytesorlarger,
onlythe first 3 bytes of this field are used. MS-DOSupdatesthis field after random block |
reads and writes (Functions27H and 28H)but not after random record reads and writes

(Functions 21H and 22H).

An extended FCB, whichis 7 bytes longer than a normal FCB, can be used to accessfiles
with special attributes such as hidden, system, and read-only. The extra 7 bytes of an ex-
tended FCBare simply prefixed to the normal FCB format (Table 7-4). The first byte of
an extended FCB always contains OFFH, which could neverbe a legal drive code and
therefore servesas a signal to MS-DOSthat the extended format is being used. The next 5
bytes are reserved and must bezero, and the last byte of the prefix specifies the attributes
ofthe file being manipulated. The remainder of an extended FCB has exactly the same
layout as a normal FCB.In general, an extended FCB can be used with any MS-DOSfunc-
tion call that accepts a normal FCB.

Table 7-4. Structure ofan Extended File Control Block.

Offset Size

Maintained by (bytes) (bytes) Description

Program 00H 1 Extended FCB flag = OFFH
MS-DOS 01H 5 Reserved

‘Program 06H 1 File attribute byte
Program 07H 1 Drive identifier -
Program 08H 8 Filename

Gmore)

266 ‘The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 276/1582

OLYMPUS EX. 1010 - 277/1582

Article 7: File and Record Management

Table 7-4. Continued.

Offset _ Size
Maintained by (bytes) (bytes) Description

Program 10H 3 File extension
MS-DOS 13H 2 Current block number
Program 15H 2 Record size (bytes)
MS-DOS 17H 4 File size (bytes)
MS-DOS 1BH 2 Date stamp
MS-DOS 1DH 2 Time stamp
MS-DOS 1FH 8 Reserved

MS-DOS 27H 1 Current record number

Program 28H 4 Random record number

Extended FCBflag: When OFFHis presentin the first byte of an FCB,it is a signal to
MS-DOSthat an extended FCB (44 bytes) is being used instead of a normal FCB (37 bytes).

File attribute byte: Must beinitialized-by the application when an extended FCBis used to
open orcreate a file. Thebits of this field have the following significance:

&- Meaning

Read-only
Hidden

System
Volumelabel

Directory
Archive

Reserved

Reserved

SNOWRONFO
FCB functions and the PSP

The PSP contains severalitems that are of interest when using the FCBfile and record
operations: two FCBscalled the default FCBs, the default DTA, and the commandtail for
the program. The following table showsthe size andlocation of these elements:

PSP Offset

(bytes) Size (bytes) Description

5CH 16 Default FCB #1 °
6CH 20 Default FCB #2

80H 1 Length of commandtail
81H 127 Command-tail text

80H 128 Default disk transfer area (DTA)

Section IZ: Programming in the MS-DOSEnvironment 267

OLYMPUSEX.1010 - 277/1582

OLYMPUS EX. 1010 - 278/1582

Part B: Programming for MS-DOS

When MS-DOSloads a program into memory for execution, it copies the commandtail
into the PSP at offset 81H, places the length of the commandtail in the byte at offset 80H,
andparsesthefirst two parameters in the commandtail into the default FCBs at PSP
offsets SCH and 6CH. (The commandtail consists of the commandline used to invoke the

program minus the program nameitself and any redirection or piping characters and their
associated filenames or device names.) MS-DOSthensets the initial DTA address for the

program to PSP:0080H. ,

For several reasons, the default FCBs and the DTA are often movedto anotherlocation
within the program’s memoryarea. First, the default DTA allows processing of only very
smallrecords. In addition, the default FCBs overlap substantially, and thefirst byte of the
default DTA andthelast byte ofthe first FCB conflict. Finally, unless either the command
tail or the DTA is moved beforehand,the first FCB-relatedfile or record operation will
destroythe commandtail.

Function 1AH (Set DTA Address) is usedto alter the DTA address.It is called with the

segmentand offset of the new buffer to be used as the DTA in DS:DX. The DTA address
remains the sameuntil anothercall to Function 1AH,regardless of otherfile and record
managementcalls; it does not need to be reset before each read or write.

Note: A program can use Function 2FH (Get DTA Address) to obtain the current DTA —
address before changingit, so that the original address can berestoredlater.

Parsing the filename

Before a file can be opened or created with the FCB functioncalls, its drive, filename, and
extension must be placed within the properfields of the FCB. The filename can be coded
into the programitself, or the program can obtain it from the commandtail in the PSP or
by prompting the user andreadingit inwith one ofthe several function calls for character
device input.

MS-DOSautomatically parses the first two parameters in the program’s commandtail into
the default FCBs at PSP:005CH and PSP:006CH.It does not, however, attemptto differenti-

- ate between switches andfilenames, so the pre-parsed FCBsare not necessarily useful to
the application program.If the filenames were preceded by any switches, the program
itself has to extract the filenames directly from the commandtail. The program is then
responsible for determining which parameters are switches and which are filenames, as
well as where each parameter begins and ends. .

After a filename has been located, Function 29H (Parse Filename) can be usedto testit
for invalid characters and separators andto insertits various componentsinto the proper
fields in an FCB. The filename must be a string in the standard form drive;filename.ext.
Wildcard characters are permitted in the filename and/or extension;asterisk (+) wildcards
are expandedto question mark (?) wildcards. .

To call Function 29H, the DS:SI registers must point to the candidate filename, ES:DI
must point to the 37-byte buffer that will become the FCB for the file, and AL must hold
the parsing control code. See SYSTEM CALLS: INTERRUPT 21H: Function 29H.

268 The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 278/1582

OLYMPUS EX. 1010 - 279/1582

Article 7: File and Record Management

Ifa drive codeis not included in the filename, MS-DOSinserts the drive numberofthe
‘current drive into the FCB. Parsing stopsatthe first terminator character encountered in
the filename. Terminators includethe following:

5,=+ /"{] 1 <>! space tab?

If a colon character(:) is not in the proper position to delimit the disk drive identifier or if
a period (.) is not in the proper position to delimit the extension, the character will also be
treated as a terminator. For example, the filename C:MEMO.TXTwill be parsed correctly;
however, ABC:DEF.DAY will be parsed as ABC.

If an invalid drive is specified in the filename, Function 29H returns OFFHin AL;if the
filename contains any wildcard characters,it returns 1. Otherwise, AL contains zero upon
return, indicating a valid, unambiguousfilename.|

‘Note that this function simply parsesthe filenameinto the FCB.It doesnotinitialize any
otherfields of the FCB (although it does zero the current block and record size fields), and
it does not test whether the specifiedfile actually exists.

Error handling and FCB functions

The FCB-related file and record functions do not return muchin the wayof error infor-
mation whena function fails. Typically, an FCB function returns a zero in AL if the func-
tion succeeded and OFFHif the function failed. Under MS-DOSversions 2.x, the program
is left to its own devices to determine the cause of the error. Under MS-DOSversions3.x,

however, a failed FCB function call can be followed bya call to Interrupt 21H Function
59H (Get ExtendedError Information). Function 59H will return the same descriptive
codesfor the error, including the error locus and a suggested recovery strategy, as would
be returned for the counterpart handle-oriented file or record function.

Creating a file

Function 16H (Create File with FCB) creates a new file and opensit for subsequent read/
write operations. The functionis called with DS:DX pointingto a valid, unopened FCB.
MS-DOSsearchesthe current directory for the specifed filename.If the filename is found,
MS-DOSsets thefile length to zero and opensthefile, effectively truncating it to a zero-
lengthfile; if the filename is not found, MS-DOScreates a new file and opens it. Other
fields of the FCB arefilled in by MS-DOSas described below under Openinga File.

If the create operation succeeds, MS-DOSreturnszero in AL; if the operationfails, it
returns OFFH in AL. This function will not ordinarily fail unless thefile is being created in
the root directoryand the directory is full.

Warning:To avoidloss of existing data, the FCB open function should beusedtotestfor
file existence before creatingafile.

Section I: Programming in theMS-DOSEnvironment 269

OLYMPUSEX.1010 - 279/1582

OLYMPUS EX. 1010 - 280/1582

Part B: Programming for MS-DOS

Openinga file

270

Function OFH opensanexisting file. DS:DX must point to a valid, unopened FCB contain-
ing the nameofthe file to be opened.If the specifiedfile is found in the current directory,
MS-DOSopensthefile,fills in the FCB as shownin thelist below, and returns with AL set
to OOH;if the file is not found, MS-DOSreturns with AL set to OFFH,indicating an error.

Whenthefile is opened, MS-DOS

' @- Sets the drive identifier (offset 00H) to the actual drive (01 = A, 02 = B, and so on).
Sets the current block number(offset OCH)to zero.

Sets the file size (offset 10H) to the value found in the directory entry for thefile.
Sets the record size (offset OEH) to 128.
Sets the date and time stamp (offsets 14H and 16H)to the values found in the direc-
tory entry for thefile.

The program may need to adjust the FCB — changethe record size and the random record
pointer, for example — before proceeding with record operations.

Example: Display a prompt and accepta filename from the user. Parse the filename into
-an FCB, checking for an illegal drive identifier or the presence of wildcards.If a valid,
unambiguousfilename has been entered, attempt to open thefile. Create the file if it does
not already exist.

kbuf db 64,0,64.dup (0)
prompt db Odh,Oah, 'Enter filename: $'
myfcb db 37 dup (0)

; display the prompt...
mov dx,seg prompt + DS:DX = prompt address
mov ds,dx
mov es,dx

mov dx,offset prompt .
mov ah, 09h ; Function 09H = print string
int 21h ; transfer to MS-DOS

+ now input filename...
mov dx,offset kbuf ; DS:DX = buffer address

mov ah, Oah ; Function OAH = enter string
int 21h 7; transfer to MS-DOS

; parse filename into FCB...
mov si,offset kbuf+2 ; DS:SI = address of filename
mov di,offset myfcb ; ES:DI = address of fcb
mov ax,2900h 7 Function 29H = parse name
int 2th 7 transfer to MS-DOS
or al,al ; jump if bad drive or

jnz error ; wildcard characters in name |

(more)

The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 280/1582

OLYMPUS EX. 1010 - 281/1582

Article 7: File and Record Management

. 7; try to open file...
mov dx,offset myfcb ; DS:DX = FCB address
mov ah,O0fh 7; Function OFH = open file
int 21h 7 transfer to MS-DOS

or al,al ; check status
jz proceed ; jump if open successful

7 else create file...
mov dx,offset myfcb ; DS:DX = FCB address
mov ah,16h ; Function 16H = create
int 21h ; transfer to MS-DOS

or al,al 7; did create succeed?
jnz error 7 jump if create failed

proceed:
7; file has been opened or
3; Created, and FCB is valid

. ; for read/write operations...

Closing a file

Function 10H (Close File with FCB) closesa file previously opened with an FCB.As usual,
the function is called with DS:DX pointing to the FCB ofthefile to be closed. MS-DOS
updatesthe directory, if necessary, to reflect any changesin thefile’s size and the date and
time last written.

If the operation succeeds, MS-DOSreturns 00H in AL,;if the operation fails, MS-DOS
returns OFFH.

Reading and writing files with FCBs
MS-DOSoffers a choice of three FCB access methods for data withinfiles: sequential,
random record, and random block.

Sequential operations step throughthefile one record at a time. MS-DOSincrements the
current record and current block numbers after each file access so that they point to the
beginning of the next record. This methodis particularly useful for copying orlistingfiles.

Random record access allows the program to read or write a record from any location in
the file, without sequentially reading all records upto that point in the file. The program
must set the random record numberfield of the FCB appropriately before the read or write
is requested. This methodis useful in database. applications, in which a program must
manipulate fixed-length records.

Random block operations combine the features of sequential and random record. access
methods. The program canset the record numberto point to any record withinafile, and
MS-DOSupdates the record numberafter a read or write operation. Thus, sequential
operationscan easily beinitiated at any file location. Random block operations with a
record length of 1 byte simulate file-handle access methods.

All three methods require that the FCB forthe file be open, that DS:DX point to the FCB,
that the DTA belarge enoughfor the specified record size, and that the DTA address be
previously set with Function 1AHifthe default DTA in the program’s PSPis not being
used.

Section II: Programming in theMS-DOS Environment 271

OLYMPUSEX.1010 - 281/1582

OLYMPUS EX. 1010 - 282/1582

Part B: Programming for MS-DOS

MS-DOSreports the successorfailure of any FCB-related read operation (sequential,
random record, or random block) with oneof four return codes in register AL:

Code Meaning

00H Successful read

01H Endoffile reached; no data read into DTA
02H Segment wrap (DTAtooclose to end of segment); no data read into DTA
03H Endoffile reached, partial record read into DTA

MS-DOSreports the successor failure of an FCB-related write operation as one of three
return codesin register AL:

Code Meaning —

00H Successful write

01H _~~—_sCéDisk full; partial or no write
02H Segment wrap (DTAtoo close to end of segment); write failed

For FCB write operations, records smaller than one sector (512 bytes) are not written
directly to disk. Instead, MS-DOSstores the record in an internal buffer and writes the data
to disk only whenthe internal buffer is full, when thefile is closed, or when a call to Inter-
rupt 21H Function 0DH (Disk Reset) is issued.

Sequential access: reading

Function 14H (Sequential Read) reads records sequentially from thefile to the current
DTA address, which must point to an area at least as large as the record size specified in
the file’s FCB. After each read operation, MS-DOS updates the FCB block and record num-
bers (offsets OCH and 20H)to pointto the next record.

Sequential access: writing

Function 15H(Sequential Write) writes records sequentially from memory into thefile.
Thelength written is specified by the recordsizefield (offset OEH) in the FCB; the memory
address of the record to be written is determined by the current DTA address. After each
sequential write operation, MS-DOSupdates the FCB block and record numbers (offsets
OCH and 20H)to point to the next record.

Random record access: reading

Function 21H (Random Read) reads a specific record from a file. Before requesting the
read operation, the program specifies the record to be transferred by setting the record
size and random record numberfields of the FCB (offsets OEH and 21H). The current DTA

address must also have been previously set with Function 1AH to point to a buffer of
adequatesizeif the default DTA is not large enough.

272 The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 282/1582

OLYMPUS EX. 1010 - 283/1582

Article 7: File and Record Management

After the read, MS-DOSsets the current block and current record numberfields (offsets
OCH and 20H)to pointto the samerecord. Thus, the program is set up to change to
sequential reads or writes. However, if the program wants to continue with random record
access, it must continue to update the random recordfield of the FCB before each random
record read or write operation. ,

Random recordaccess: writing

Function 22H (Random Write) writes a specific record from memoryto a file. Before
issuing the functioncall, the program must ensurethat the record size and random record
pointer fields at FCB offsets OEH and 21H are set appropriately and that the current DTA
address points to the buffer containing the data to be written.

After the write, MS-DOSsets the current block and current record numberfields (offsets
OCH and 20H)to point to the same record. Thus, the program is set up to change to
sequential readsor writes. If the program wants to continue with random record access,it
must continue to update the random record field of the FCB before each random record
read or write operation.

Random block access: reading

Function 27H (Random Block Read) reads a block of consecutive records. Before issuing
the read request, the program mustspecify thefile location ofthe first record by setting
the record size and random record numberfields of the FCB (offsets OEH and 21H) and

must put the numberof records to be read in CX. The DTA address must have already been
set with Function 1AH to point to a buffer large enoughto contain the group of records to
be readif the default DTA was not large enough. The program can then issue the Function
27H call with DS:DX pointing to the FCB forthefile.

After the random block read operation, MS-DOSresets the FCB random record pointer
(offset 21H) and the current block and current record numberfields (offsets OCH and 20H)

to point to the beginning of the next record not read and returns the numberof records
actually read in CX.

If the recordsize is set to 1 byte, Function 27H reads the numberofbytes specified in CX,
beginning with the byte position specified in the random record pointer. This simulates
(to some extent) the handle type of read operation (Function 3FH).

Random block access:writing

Function 28H (Random Block Write) writes a block of consecutive records from memory
to disk. The program specifies thefile location of the first record to be written by setting
the record size and random record pointer fields in the FCB (offsets OEH and 21H). If the
default DTA is not being used, the program mustalso ensure that the current DTA address
is set appropriately by a previouscall to Function AH. When Function 28H is called,
DS:DX mustpointto the FCBforthefile and CX must contain the numberof records to
be written.

After the random block write operation, MS-DOSresets the FCB random record pointer
(offset 21H) and the currentblock and current record numberfields (offsets OCH and 20H)
to point to the beginning of the next block of data and returns the numberof records
actually written in CX.

Section I: Programming in the MS-DOSEnvironment 273

OLYMPUSEX.1010 - 283/1582

OLYMPUS EX. 1010 - 284/1582

Part B: Programming for MS-DOS

274

If the record sizeis set to 1 byte, Function 28H writes the numberof bytes specified in CX,
beginning with the byte position specified in the random record pointer. This simulates
(to some extent) the handle type of write operation (Function 40H).

Calling Function 28H with a record count of zero in register CX causesthe file length to be
extended or truncated to the current value in the FCB random record pointerfield (offset
21H) multiplied by the contents of the recordsize field (offset OEH).

Example: Openthe file MYFILE.DATandcreate the file MYFILE.BAK onthe currentdisk
drive, copy the contentsof the .DATfile into the .BAK file using 512-byte reads and writes,
and then close bothfiles.

fcb1 db 0 ;
db 'MYFILE ' ;
db ‘DAT’ ;

/ db 25 dup (0) i
fcb2 db 0 ;

db ‘MYFILE ' 3
db ‘BAKt 3
db 25 dup (0) ;

buff db 512 dup (?) ;

mov dx,seg fcb1 ;
mov ds, dx
mov dx,offset fcb1
mov ah, Ofh ;
int 2th i
or al,al 7
jnz error ;

mov dx,offset fcb2 ;
mov ah, 16h ;
int 21h i
or - al,al ;
jnz error ;

mov word ptr fcb1+0eh,
mov word ptr fcb2+0eh,

mov dx,offset buff ;
mov ah, lah ;
int 21h ;

loop: ;
mov dx,offset fcb1 ;
mov ah, 14h ?
int 21h ;
or al,al ;
jnz done ;

The MS-DOSEncyclopedia

drive = default
8 character filename
3 character extension
remainder of fcb1
drive = default
8 character filename
3 character extension
remainder of feb2
buffer for file I/O

open MYFILE.DAT...
DS:DX = address of FCB

Function OFH = open
transfer to MS-DOS

did open succeed?
jump if open failed
create MYFILE.BAK...
DS:DX = address of FCB
Function 16H = create
transfer to MS-DOS
did create succeed?

jump if create failed
set record length to 512
512
512
set DTA to our buffer...
DS:DX = buffer address
Function 1AH = set DTA
transfer to MS-DOS
read MYFILE.DAT
DS:DX = FCB address

Function 14H = seq.
transfer to MS-DOS

was read successful?

read

no, quit
write MYFILE.BAK...

(more)

OLYMPUSEX.1010 - 284/1582

OLYMPUS EX. 1010 - 285/1582

Article 7: File and Record Management

mov dx,offset fcb2 ; DS:DxX = FCB address
mov ah, 15h ; Function 15H = seq. write
int 21h ; transfer to MS-DOS
or al,al } was write successful?
jnz error 7; jump if write failed
jmp loop ; continue to end of file

done: 7 now close files...
mov ax,offset fcb1 ; DS:DX = FCB for MYFILE.DAT
mov ah, 10h ; Function 10H = close file
int 21h ; transfer to MS-DOS

or al,al ; did close succeed?
jnz error ; jump if close failed
mov dx,offset fcb2 ; DS:DX = FCB for MYFILE.BAK
mov ah,10h ; Function 10H = close file
int 21h ; transfer to MS-DOS
or al,al ; did close succeed?
jnz error 7 jump if close failed

Other FCBfile operations

As it does with file handles, MS-DOS provides FCB-oriented functions to renameordelete
a file. Unlike the other FCB functions and their handle counterparts, these two functions
accept wildcard characters. An additional FCB function allowsthe size or existence ofa
file to be determined without actually opening thefile.

Renaminga file

Function 17H (RenameFile) renamesa file (orfiles) in the current directory. The file to be
renamed cannot have the hidden or system attribute. Before calling Function 17H,the pro-
gram must create a special FCB that contains the drive codeat offset 00H,the old filename
at offset O1H, and the new filenameat offset 11H. Both the current and the new filenames
can contain the ? wildcard character. ‘

Whenthe functioncall is made, DS:DX mustpoint to the special FCB structure. MS-DOS
searches the currentdirectory for the old filename.Ifit finds the old filename, MS-DOS
then searchesfor the new filenameand,if it finds no matching filename, changes the
directory entry for the old filenameto reflect the new filename.If the old filenamefield of
the special FCB contains any wildcard characters, MS-DOS renames every matchingfile.
Duplicate filenames are.not permitted; the process will fail at the first duplicate name.

If the operation is successful, MS-DOSreturnszero in AL;if the operationfails, it returns
OFFH.Theerror condition mayindicate either that no files were renamedor thatat least
one file was renamed but the operation was then terminated because of a duplicate
filename.

Example: Renameall thefiles with the extension .ASMin the current directory of the
default disk drive to have the extension .COD.

Section II: Programming in the MS-DOS Environment 275

OLYMPUSEX.1010 - 285/1582

OLYMPUS EX. 1010 - 286/1582

Part B: Programming for MS-DOS

renfcb db. 0 ; default drive
* db 5222227222° ; wildcard filename

db *ASM* ; Old extension)
db 5 dup (0) 7 reserved area’
db "2222222?" ; wildcard filename
db ‘CoD! 7 new extension

db 15 dup (0) 7 xemainder of FCB

mov dx,seg renfcb 7 DS:DX = address of
mov ds,dx — 7 "special" FCB
mov dx,offset renfcb
mov ah,i7h ; Function 17H = rename
int 21h ; transfer to MS-DOS
or al,al ; did function succeed?
jnz error 7 jump if rename failed

Deleting a file

276

Function 13H (Delete File) deletesa file from the current directory. Thefile should not be
currently open by any process.If the file to be deleted has specialattributes, such as read-
only, the program must use an extended FCB to removethefile. Directories cannot be
deleted with this function, even with an extended FCB.

Function 13H is called with DS:DX pointing to an unopened,valid FCB containing the
nameofthefile to be deleted. The filename can contain the ? wildcard character;if it does,
MS-DOSdeletesall files matchingthe specified name.If at least one file matches the FCB
and is deleted, MS-DOSreturns 00H in AL; if no matchingfilenameis found,it returns
OFFH.

Note: This function,if it succeeds, does not return any information about which and
how manyfiles were deleted. When multiple files must be deleted, closer control can be
exercised by using the Find File functions (Functions 11H and 12H)to inspect candidate
filenames. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:ProGRAMMING FOR

ms-bos: Disk Directories and Volume Labels. Thefiles can then be deleted individually.

Example: Deleteall the files in the current directory of the current disk drive that have
the extension .BAK and whosefilenames have A as the first character.

delfcb db 0 ; default drive
db "A2?22222! ; wildcard filename
db ‘BAK! ; extension

db 25 dup (0) ; remainder of FCB

(more)

The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 286/1582

OLYMPUS EX. 1010 - 287/1582

Article 7: File and Record Management

mov dx,seg delfcb ; DS:DX = FCB address
mov ds,dax
mov dx,offset delfcb
mov ah,13h ; Function 13H = delete
int 21h ; transfer to MS-DOS
or al,al ; did function succeed?
jnz error ; jump if delete failed

Findingfile size and testing for existence

Function 23H (Get File Size) is used primarily to find the size of a disk file without opening
it, but it may also be used instead of Function 11H (FindFirstFile) to simply test for the
existence ofa file. Before calling Function 23H, the program mustparse the filename into
an unopened FCB,initialize the record size field of the FCB (offset OEH), andset the
DS:DX registers to point to the FCB.

When Function 23H returns, AL contains 00H if the file was foundin the current directory
of the specified drive and OFFHif the file was not found.

If the file was found, the random record field at FCB offset 21H contains the numberof
records (rounded upward)in the targetfile, in terms of the value in the record size field
(offset OEH) ofthe FCB.If the record sizeis at least 64 bytes, only the first 3 bytes of the
random recordfield are used;if the record size is less than 64 bytes, all 4 bytes are used. To
obtain the sizeof the file in bytes, the program mustset the record sizefield to 1 before the
call. This method is not any faster than simply openingthe file, but it does avoid the over-
head of closing thefile afterward (which is necessary in a networking environment).

Summary

MS-DOSsupports two distinct but overlappingsets of file and record management
services, The handle-oriented functions operate in terms of null-terminated (ASCIIZ)
filenames and 16-bit file identifiers, called handles, that are returned by MS-DOSaftera file
is openedor created. The filenamescan include a full path specifying the file’s location in
the hierarchical directory structure. The information associated with a file handle, such as
the current read/write pointerfor thefile, the date and time ofthe last write to thefile, and
the file’s read/write permissions, sharing mode, and attributes, is maintained in a table
internal to MS-DOS.

Section II: Programming in the MS-DOSEnvironment 277

OLYMPUSEX.1010 - 287/1582

OLYMPUS EX. 1010 - 288/1582

Part B: Programming for MS-DOS

In contrast, the FCB-oriented functions use a 37-byte structure called a file control block,
located in the application program’s memoryspace, to specify the name andlocation of
thefile. After a file is opened or created, the FCB is used by both MS-DOSandthe applica-
tion to hold other information aboutthe file, such as the current read/write file pointer,
while thatfile is in use. Because FCBs predate the hierarchical directory structure that was
introduced in MS-DOSversion 2.0 and do not have room to hold the path fora file, the FCB
functions cannot be usedto accessfiles that are not in the current directory of the speci-
fied drive. ,

In addition to their lack of support for pathnames, the FCB functions have much poorer
error reporting capabilities than handle functions and are nearly useless in networking
environments because they do not supportfile sharing and locking. Consequently,it is
strongly recommendedthat the handle-relatedfile and record functions be used ex-
clusively in all new applications. .

Robert Byers
Code by Ray Duncan

278 The MS-DOS Encyclopedia

OLYMPUSEX.1010 - 288/1582

OLYMPUS EX. 1010 - 289/1582

Article 8: Disk Directories and Volume Labels

Article 8.
Disk Directories and Volume Labels

MS-DOS,being a disk operating system, providesfacilities for cataloging disk files. The
data structure used by MS-DOSfor this purposeis the directory, a linearlist of names in
which each nameis associated with a physical location on the disk. Directories are ac-
cessed and updated implicitly wheneverfiles are manipulated, but both directories and
their contents can also be manipulated explicitly using several of the MS-DOSInterrupt
21H service functions.

MS-DOSversions 1.x support only one directory on each disk. Versions 2.0 andlater,
however, support multiple directories linked in a two-way, hierarchical tree structure
(Figure 8-1), and the complete specification of the nameofa file or directory thus must
describe the location in the directory hierarchy in which the name appears. This specifica-
tion, or path, is created by concatenating a disk drive specifier (for example,A: or C:), the

C\ (xoot directory)

subdirectory ALPHA
subdirectory BETA
file FILE1.COM
file FILE2.COM

CAALPHA C\BETA

subdirectory «
subdirectory +
subdirectory|EPSILON
file FILE4.COM

 subdirectory .
subdirectory ..
subdirectory GAMMA
subdirectory DELTA
file FILE3.COM

CAALPHA\GAMMA CAALPHANDELTA CNBETA\EPSILON

subdirectory subdirectory . subdirectory «
subdirectory «« subdirectory «. subdirectory °°
file FILES.COM file FILE1.COM

Figure 8-1. Typical hierarchical directory structure (MS-DOSversions 2.0 and later),

Section I: Programming in the MS-DOSEnvironment 279

OLYMPUSEX.1010 - 289/1582

OLYMPUS EX. 1010 - 290/1582

Part B: Programming for MS-DOS

namesofthe directories in hierarchical orderstarting with the root directory, and finally
the nameofthefile or directory. For example, in Figure 8-1, the complete pathnamefor
FILE5.COM is C:\ALPHA\ GAMMA\FILE5.COM.Thetwoinstances of FILE1.COM,in the
root directory and in the directory EPSILON,are distinguished by their pathnames:
C:\ FILE1.COMinthefirst instance and C:\BETA\ EPSILON\ FILE1COMin the second.

Note: If no drive is specified, the current drive is assumed. Also,if the first name inthe
specification is not preceded by a backslash,the specification is assumedto berelative to
the current directory. For example, if the current directory is C:\BETA\ EPSILON,the
specification \FILE1.COM indicates the file FILE1.COM in the root directory and the
specification FILE1.COMindicatesthe file FILE1.COM in the directory C:\BETA\EPSILON.
See Figure 8-1.

Althoughthe casual user of MS-DOSneed not be concerned with howthis hierarchical
directory structure is implemented, MS-DOS programmersshould be familiar with the
internal structure of directories and with the Interrupt 21H functions available for manip-
ulating directory contents and maintaining the links between directories. This article
providesthat information.

Logical Structure ofMS-DOSDirectories

An MS-DOSdirectory consists of a list of 32-byte directory entries, each of which con-
tains a name and descriptive information. In MS-DOSversions 1.x, each name must be a
filename; in versions 2.0 andlater, volumelabels and directory names can also appear
in directory entries.

Directory searches

Directory entries are not sorted, nor are they maintained as a linked list. Thus, when
MS-DOSsearchesa directory for a name, the search must proceed linearly from the first
namein the directory. In MS-DOSversions 1.x, a directory search continues until the spec-
ified nameis found or until every entry in the directory has been examined. In versions 2.0
andlater, the search continuesuntil the specified nameis foundoruntil a null directory
entry (that is, one whosefirst byte is zero) is encountered. This null entry indicates the
logical end of the directory.

Adding and deleting directory entries

MS-DOSdeletes a directory entry by marking it with OE5H in thefirst byte rather than by
erasing it or excising it from the directory. New names are addedto the directory by reus-
ing the first deleted entry in thelist. If no deleted entries are available, MS-DOS appends
the new entry to thelist.

280 The MS-DOS Encyclopedia

OLYMPUSEX.1010 - 290/1582

OLYMPUS EX. 1010 - 291/1582

| Article 8: Disk Directories and Volume Labels

The current directory

When more than one directory exists on a disk, MS-DOS keepstrack of a default search
directory knownas the current directory. The current directoryis the directory usedforall
implicit directory searches, such as those occasioned by a request to opena file,if no alter-
native pathis specified. At startup, MS-DOS makesthe rootdirectory the currentdirectory,
but any other directory can be designatedlater, either interactively by using the CHDIR
commandorfrom within an application by using Interrupt 21H Function 3BH (Change
Current Directory).

Directory Format

; The root directory is created by the MS-DOS FORMATprogram. See USER COMMANDS:
| FORMAT. The FORMATprogram placesthe root directory immediately after the disk’s file

allocation tables (FATs). FORMATalso determines thesize of the root directory. The size
dependson the capacity of the storage medium: FORMATplaceslarger root directories on
high-capacity fixed disks and smallerroot directories on floppy disks. In contrast, the size

i of subdirectoriesis limited only by the storage capacity of the disk because disk space for
subdirectories is allocated dynamically,as it is for any MS-DOSfile. The size and physical
location of the root directory can be derived from data in the BIOS parameter block (BPB)
in the disk boot sector. See PROGRAMMINGIN THE MS-DOS ENVIRONMENT:Struc-

TURE OF MS-Dos: MS-DOSStorage Devices.

Because spacefor the root directory is allocated only whenthedisk is formatted, the
root directory cannot be deleted or moved. Subdirectories, whose disk space is allocated

| dynamically, can be added or deleted as needed.

Directory entry format

Each 32-byte directory entry consists of sevenfields, including a name,an attribute byte,
date and time.stamps, and information that describes the file’s size and physical location
on the disk (Figure 8-2). The fields are formatted as described in the following paragraphs.

0 OBH OCH

Reserved)

Figure 8-2. Format ofa directory entry.

Byte 16H 18H 1AH 1CH 1FH

File sizeTine|due|series

The namefield (bytes O-OAH) contains an 11-byte nameunlessthe first byte of the field
indicates that the directory entry is deleted or null. The name can be an 11-byte filename
(8-byte namefollowed by a 3-byte extension), an 11-byte subdirectory name (8-byte name

Section II: Programming in the MS-DOS Environment 281

OLYMPUSEX.1010 - 291/1582

OLYMPUS EX. 1010 - 292/1582

Part B: Programming for MS-DOS

followed by a 3-byte extension), or an 11-byte volume label. Namesless than 8 bytes and
extensions less than 3 bytes are paddedto the right with blanks so that the extensional-
ways appears in bytes 08-0AHof the namefield. The first byte of the namefield can con-
tain certain reserved values that affect the way MS-DOSprocesses the directory entry:

Value Meaning

0 Null directory entry Cogical end of directory in MS-DOSversions 2.0 andlater)

5 First character of name to be displayed as the character represented by 0E5H
(MS-DOSversion 3.2)

0E5H Deleted directory entry

When MS-DOScreates a subdirectory, it always includes twoaliases asthefirst two entries
in the newly created directory. The name. (an ASCII period) is an alias for the name of
the currentdirectory; the name .. (two ASCII periods) is an alias for the directory’s parent
directory— thatis, the directory in which the entry containing the nameof the current
directory is found.

The attribute field (byte OBH)is an 8-bit field that describes the way MS-DOSprocesses
the directory entry (Figure 8-3). Eachbitin the attribute field designates a particularattri-
bute of that directory entry; more than oneof the bits can beset at a time.

Bit

Figure 8-3. Format ofthe attributefield in a directory entry.

The read-onlybit (bit 0) is set to 1 to mark a file read-only. Interrupt 21H Function 3DH
(OpenFile with Handle) willfailif it is used in an attempt to openthis file for writing. The
hiddenbit (bit 1) is set to 1 to indicate that the entry is to be skipped in normaldirectory
searches — thatis, in directory searches that do not specifically request that hidden entries
be includedin the search. The system bit (bit 2) is set to 1 to indicate that the entry refers to
a file used by the operating system.Like the hiddenbit, the system bit excludes a directory

_ entry from normal directory searches. The volumelabelbit (bit 3) is set to 1 to indicate that
the directory entry represents a volumelabel. The subdirectory bit (bit 4) is set to 1 when
the directory entry contains the nameandlocation of anotherdirectory. This bit is always
set for the directory entries that correspondto the currentdirectory (.) and the parent
directory (..). The archivebit (bit 5) is set to 1 by MS-DOSfunctionsthatcloseafile that

has been written to. Simply opening andclosinga file iss not sufficient to update the
archivebit in the file’s directory entry.

The time and datefields (bytes 16-17H and 18-19H)are initialized by MS-DOS when
the directory entry is created. These fields are updated whenevera file is written to. The
formatsof these fields are shownin Figures 8-4 and 8-5.

282 The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 292/1582

OLYMPUS EX. 1010 - 293/1582

Article 8: Disk Directories and Volume Labels

10 4

Hours (0-23) Minutes (0-59) increments(0-29)

Figure 8-4. Formatofthe timefield in a directory entry.

oBit ron a

Bir 15 8 4 0

Year (relative to 1980) Month (1-12) Day (1-31)

Figure 8-5. Formatofthe datefield in a directory entry.

Thestarting clusterfield (bytes 1A—1BH)indicates the disk locationof the first cluster
assigned to the file. This cluster number can be used as an entry point to the file allocation

- table (FAT) for the disk. (Cluster numbers can be convertedto logical sector numbers with
the aid of the information in the disk’s BPB.)

For the . entry (the alias for the directory that contains the entry), the starting cluster field
contains the starting cluster numberof the directoryitself. For the .. entry (the alias for the
‘parent directory), the value in the starting chisterfield refers to the parent directory unless
the parentdirectory is the root directory, in which case the starting cluster numberis zero.

Thefile size field (bytes 1C—1FH)is a 32-bit integer that indicatesthefile size in bytes.

VolumeLabels The generic term volumerefers to a unit of auxiliary storage such as a floppy disk, a fixed
disk, or a reel of magnetic tape. In computer environments where many different volumes
mightbe used, the operating system can uniquely identify each volumeby initializing it
with a volumelabel.

Volumelabels are implemented in MS-DOSversions 2.0 andlater as a specific type of
’ directory entry specified by setting bit 3 in the attribute field to 1. In a volumelabel direc-

tory entry, the namefield contains an 11-byte string specifying a namefor the disk volume.
A volumelabel can appearonly in the root directory of a disk, and only one volumelabel
can be present on any given disk.

In MS-DOSversions2.0 andlater, the FORMAT command can be used with the /V switch
to initialize a disk with a volumelabel. In versions3.0 andlater, the LABEL command can
be usedto create, update, or delete a volumelabel. Several commands can display a disk’s
volumelabel, including VOL, DIR, LABEL, TREE, and CHKDSK. See USER COMMANDS.

Section I: Programming in the MS-DOS Environment 283

OLYMPUSEX.1010 - 293/1582

OLYMPUS EX. 1010 - 294/1582

Part B: Programming for MS-DOS

In MS-DOSversions2.x, volumelabels are simply a conveniencefor the user; no MS-DOS
routine uses a volumelabel for any other purpose. In MS-DOSversions 3.x, however, the
SHARE command examines a disk’s volume label whenit attempts to verify whether a
disk volume has been inadvertently replaced in the midstof a file read or write operation.
Removable disk volumes should therefore be assigned unique volume namesif they are
to contain sharedfiles.

Functional Support for MS-DOSDirectories

Several Interrupt 21H service routines can be useful to programmers who need to manipu-
late directories and their contents (Table 8-1). The routines can be broadly grouped into
two categories: those that use a modifiedfile control block (FCB)to pass filenames to and
from the Interrupt 21H service routines (Functions 11H, 12H, 17H, and 23H) and those that
use hierarchical path specifications (Functions 39H, 3AH, 3BH, 43H, 47H, 4EH, 4FH, 56H,
and 57H). See PROGRAMMINGIN THE MS-DOS ENVIRONMENT: ProGRAMMING FOR

ms-bDos: File and Record Management; SYSTEM CALLS: INTERRUPT 21H.

The functionsthat use an FCB require that the calling program reserve enough memory
for an extended FCB before the Interrupt 21H function is called. The calling program ini-
tializes the filename and extension fields of the FCB and passes the address of the FCB to
the MS-DOSservice routine in DS:DX. The functions that use pathnames expectall path-
namesto be in ASCIIZ format — thatis, the last character of the name mustbefollowed
by a zero byte.

Namesin pathnamespassedto Interrupt 21H functions can be separated by either a back-
slash (\) or a forward slash (/). (The forward slash is the separator character used in path-
names in UNIX/XENIX systems.) For example, the pathnames C:/MSP/SOURCE/ROSE.PAS
and C:\ MSP\SOURCE\ROSE.PASare equivalent when passed to an Interrupt 21H function.
The forward slash can thus be used in a pathname in a program that must run on both MS-
DOS and UNIX/XENIX. However, the MS-DOS comand processor (COMMAND.COM)
recognizes only the backslash as a pathnameseparator character, so forward slashes can-
not be used as separators in the commandline.

Table 8-1. MS-DOS Functions for Accessing Directories.

Function Call With Returns Comment

FindFirst File AH = 11H AL = 0 (directory entry If default not satisfac-
DS:DX = pointerto found) or OFFH (not found) tory, DTA must be

unopened FCB DTA updated (if directory set before using
INT 21H entry found) this function.

Find Next File AH = 12H AL = 0 Girectory entry Use the same FCB
DS:DX = pointer to found) or OFFH (not found) for Function 11H and

unopened FCB DTA updated (if directory Function 12H.
INT 21H entry found)

(more)

284 The MS-DOS Encyclopedia

OLYMPUSEX.1010 - 294/1582

OLYMPUS EX. 1010 - 295/1582

Table 8-1. Continued.

Article 8: Disk Directories and Volume Labels

Function

RenameFile

GetFile Size

Create Directory

Remove Directory

ChangeCurrent
Directory

Get/SetFile
Attributes

Get Current

Directory

FindFirst File

Find Next File

Call With

AH =17H

DS:DX = pointer to
modified FCB

INT 21H

AH = 23H

DS:DX = pointerto
unopened FCB

INT 21H

AH = 39H

DS:DX = pointer to
ASCIIZ pathname

INT 21H

AH = 3AH

DS:DX = pointer to
ASCIIZ pathname

INT 21H

AH = 3BH

DS:DX = pointer to
ASCIIZ pathname

INT 21H

AH = 43H

AL = 0 (getattributes)
1 (set attributes)

CX = attributes Gif AL = 1)
DS:DX = pointer to

ASCIIZ pathname
INT 21H

AH = 47H

DS:SI = pointer to
64-byte buffer

DL = drive number
INT 21H

AH = 4EH

DS:DX = pointer to
ASCIIZ pathname

CX = file attributes to
match

INT 21H

AH = 4FH
INT 21H

Returns Comment

AL = 0 (file renamed) or

OFFH (no directory entry
or duplicate filename)

AL = 0 Girectory entry
found) or OFFH (not found)

FCB updated with number
of recordsin file

Carry flag set (if error)
AX=error code (iferror)

Carry flag set(if error)
AX = error code (if error)

Carry flag set(if error)
AX = error code (iferror)

Carry flag set Giferror) Cannotbe used to
AX = error code Cif error) modify the volume
CX = attribute field from label or subdirectory

directory entry Cif called bits.
with AL = 0)

Carry flag set Gif error)
AX=error code Cif error)

Buffer updated with
pathnameofcurrent
directory

Carry flag set(if error) If default not satisfac-
AX = error codeCif error) tory, DTA must be
DTA updated set before using

this function.

Carryflag set Gf error)
AX = error code Gif error)

DTA updated
Gnore)

Section I: Programming in the MS-DOSEnvironment—285

OLYMPUSEX.1010 - 295/1582

OLYMPUS EX. 1010 - 296/1582

Part B: Programming for MS-DOS , ,

Table 8-1. Continued.

 Function Call With Returns Comment

RenameFile AH = 56H Carry flag set Gf error)
- DS:DX=pointerto — AX = error code Cif error)

ASCIIZ pathname
ES:DI = pointer to

new ASCIIZ pathname
INT 21H

Get/Set Date/Time AH =57H Carry flag set Gif error)
ofFile AL = 0 (get date/time) AX = error codeCif error)

1 (set date/time) CX = time Cif AL = 0)
BX = handle DX = date Cif AL = 0)
CX = time Gif AL = 1)
DX = date (if AL = 1)
INT 210

Searching a directory

Twopairs of Interrupt 21H functionsare available for directory searches, Functions 11H
and 12H use FCBsto transfer filenames to MS-DOS;these functions are available in all ver- !
sions of MS-DOS,but they cannot be used with pathnames. Functions 4EH and 4FH sup-
port pathnames,butthese functionsare unavailable in MS-DOSversionsLx.All four
functions require the address of the disk transfer area (DTA)to be initialized appropriately
before the function is invoked. When Function 12H or 4FH is used, the current DTA must
be the sameas the DTA for the preceding call to Function 11H or 4EH.

The Interrupt 21H directory search functions are designed to be used in pairs. The Find
First File functions return the first matching directory entry in the current directory (Func-
tion 1/H)orin the specified directory (Function 4EH). The Find Next File functions
(Functions 12H and 4FH) can becalled repeatedly after a successful call to the corre-
sponding Find First File function. Each call to one of the Find Next File functions returns
the next directory entry that matches the nameoriginally specified to the Find First File
function. A directory search can thus be summarized as follows:
call "find first file" function

while (matching directory entry returned)
call "find next file” function

Wildcard characters

This search strategy is used because name specifications can include the wildcard charac-
ters ?, which matches any single character, and + (see below). When one or more wildcard
characters appear in the name specified to one ofthe FindFirst File functions, only the
nonwildcard characters in the name participate in the directory search. Thus,for example,
the specification FOO? matchesthe filenames FOO1, FOO2, and so on; the specification
FOO?????,??? matches FOO4,COM, FOOBAR.EXE, and FOONEW.BAK,as well as FOO] and
FOO2; the specification ????????.TXT matchesall files whose extension is .TXT; the speci-
fication ????????.2?? matchesall files in the directory.

286 The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 296/1582

OLYMPUS EX. 1010 - 297/1582

Article 8: Disk Directories and Volume Labels

Function 4EH also recognizes the wildcard character *, which matches any remaining
characters in a filename or extension. MS-DOS expandsthe + wildcard character inter-
nally to question marks. Thus, for example, the specification FOO + is the same as
FOO?????; the specification FOO +.* is the same as FOO?????.???; and, of course, the spec-
ification *.* is the same as ???????2, 292.

Examining a directory entry

All four Interrupt 21H directory search functions return the name,attribute,file size, time,
and date fields for each directory entry found during a directory search. The current DTA
is usedto return this data, although the formatis different for the two pairs of functions:
Functions 11H and 12H return a copy of the 32-byte directory entry — including the cluster
number— in the DTA; Functions 4EH and 4FH return a 43-byte data structure that does
not include the starting cluster number. See SYSTEM CALLS: Interrupt 21: Function
4EH.

Theattribute field of a directory entry can be examined using Function 43H (Get/SetFile
Attributes). Also, Function 57H (Get/Set Date/TimeofFile) can be used to examinea file’s
time or date. However, unlike the other functions discussed here, Function 57His in-
tended only for files that are being actively used within an application — thatis, Function
57H can be called to examinethefile’s time or date stamp onlyafterthe file has been
opened or created using an Interrupt 21H function that returns a handle (Function 3CH,
3DH,5AH,or 5BH).

Modifying a directory entry
FourInterrupt 21H functions can modify the contents of a directory entry. Function 17H
(RenameFile) can be used to change the namefield in any directory entry, including hid-
denor system files, subdirectories, and the volume label. Related Function 56H (Rename
File) also changes the namefield of a filename but cannot rename a volumelabel or a hid-
den or system file. However,it can be used to move a directory entry from one directory to
another. (This capability is restricted to filenames only; subdirectory entries cannot be
moved with Function 56H.)

Functions 43H (Get/SetFile Attributes) and 57H (Get/Set Date/TimeofFile) can be used

to modify specific fields in a directory entry. Function 43H can mark a directory entry as a
hiddenor system file, although it cannot modify the volumelabel or subdirectory bits.
Function 57H,as noted above, can be used only with a previously openedfile; it provides
a wayto read or updateafile’s time and date stamps without writing to thefile itself.

Creating anddeleting directories

Function 39H (Create Directory) exists only to create directories — that is, directory
entries with the subdirectory bit set to 1: (Interrupt 21H functionsthatcreate files, such as
Function 3CH,cannotassign the subdirectory attribute to a directory entry.) The converse
function, 3AH (RemoveDirectory), deletes a subdirectory entry from a directory. (The
subdirectory must be completely empty.) Again, Interrupt 21H functionsthat deletefiles
from directories, such as Function 41H, cannot be usedto delete subdirectories.

Section I: Programming in the MS-DOS Environment 287

OLYMPUSEX.1010 - 297/1582

OLYMPUS EX. 1010 - 298/1582

Part B: Programming for MS-DOS

Specifying the current directory

A call to Interrupt 21H Function 47H (Get Current Directory) returns the pathnameofthe
current directory in use by MS-DOSto a user-supplied buffer. The converse operation,in
which a new current directory can be specified to MS-DOS,is performed by Function 3BH
(Change Current Directory).

Programming examples: Searchingfor files

The subroutines in Figure 8-6 below illustrate Functions 4EH and 4FH, which use path
specifications passed as ASCIIZ strings to search forfiles. Figure 8-7 applies these assem-
bly-language subroutines in a simple C program thatlists the attributes associated with
each entry in the current directory. Note how the directory search is performed in the
WHILEloopin Figure 8-7 by using a global wildcard file specification .*) and by repeat-
edly executing FindNextFileQ until no further matching filenames are found. (See Pro-
gramming Example: Updating a Volume Label for examples of the FCB-related search
functions, 11H and 21H.)

TITLE 'DIRS.ASM'

i
; Subroutines for DIRDUMP.C
,

ARG1 EQU {bp + 4] i stack frame addressing for C arguments
ARG2 EQU [bp + 6]

—TEXT SEGMENT byte public 'CODE’
ASSUME cs:_TEXT

void SetDTA(DTA);
char *DTA;

PUBLIC _SetDTA
—SetDTA PROC near

push bp
mov bp, sp

mov dx, ARG1 ; DS:DX -> DTA

mov ah, 1Ah ; AH = INT 21H function number
“int 21h ; pass DTA to MS-DOS

Figure 8-6. Subroutines illustrating Interrupt 21HFunctions 4EH and 4FH. (more)

The MS-DOSEncyclopedia

OLYMPUSEX. 1010 - 298/1582

OLYMPUS EX. 1010 - 299/1582

—SetDTA

; int GetCurrentDir(*path);
; . char *path;

Article 8: Disk Directories and Volume Labels

/* returns error code */

/* pointer to buffer to contain path */

—GetCurrentDir

LO1:

—GetCurrentDir

PUBLIC
PROC

push
mov

push

mov
xor
mov

int

je

xor

pop
pop
ret

ENDP

—GetCurrentDir
near

bp
bp, sp
si

si,ARG1
dl,dl
ah, 47h
21h
L014

ax,ax

si

bp

DS:SI -> buffer
DL 0 (default drive number)
AH INT 21H function number

call MS-DOS; AX = error code
jump if error

M

no error, return AX = 0

,

; char
; int

*path;
attribute;

; int FindFirstFile(path, attribute); /* returns’error code */

—FindFirstFile
PUBLIC
PROC

push
mov

mov
mov
mov

int

je

Figure 8-G. Continued.

_FindFirstFile
near

bp
bp, sp

dx, ARG!
cx, ARG2
ah, 4Eh

2th
LO2

DS:DX -> path
CX = attribute

; AH = INT 21H function number

call MS-DOS; AX = error code
jump if error

(more)

Section I: Programming in the MS-DOS Environment 289

OLYMPUSEX.1010 - 299/1582

OLYMPUS EX. 1010 - 300/1582

Part B: Programming for MS-DOS

290

LO2:

—FindFirstFile

Porenrnrerneeenrnnenneee eneneneee

xOr

Pop
ret

; int FindNextFile()};

—FindNextFile

LO3:

—FindNextFile

—TEXT

DATA

CurrentDir
.DTA

—DATA

PUBLIC
PROC

push
mov

mov

int

je

xor

pop
ret

ENDP

ENDS

SEGMENT word public

DB
DB

ENDS

END

Figure 8-6. Continued.

TheMS-DOS Encyclopedia

ax,ax

bp

:

/* returns error code */

—~FindNextFile
near

bp
bp, sp

ah, 4Fh
2th
L03

ax,ax

bp

64 dup (?)
64 dup (?)

'DATA'

no error, return AX = 0

AH = INT 21H function number
call MS-DOS; AX = error code

jump if exror

if no error, set AX = 0
OLYMPUSEX. 1010 - 300/1582

OLYMPUS EX. 1010 - 301/1582

Article 8: Disk Directories and Volume Labels

/* DIRDUMP.C */

#define AllAttributes Ox3F /* pits set for all attributes */

main ()
{

static char CurrentDir[64];
int ErrorCode;
int FileCount = 0;

struct

{
char reserved [21];
char attrib;
int time;
int date;

long size;
char name [13];

} DTA;

/* display current directory name */

ErrorCode = GetCurrentDir(CurrentDir);
if (ErrorCode)
{

printf("\nError %d: GetCurrentDir", ErrorCode);
exit(1);

printf("\nCurrent directory is \\%s", CurrentDir);

/* display files and attributes */

SetDTA(&DTA); /* pass DTA to MS-DOS */

ErrorCode = FindFirstFile("*.*", AllAttributes);

while(!ErrorCode)
{

printf("\n%12s -- ", DTA.name);
ShowAttributes(DTA.attrib);
++FileCount;

ErrorCode = FindNextFile();

/* display file count and exit */

printf("\nCurrent directory contains %d files\n", FileCount);
return(0);

}

Figure 8-7. The complete DIRDUMP.Cprogram. (more)

Section Il: Programming in the MS-DOS Environment 291

OLYMPUSEX.1010 - 301/1582

OLYMPUS EX. 1010 - 302/1582

Part B: Programming for MS-DOS

ShowAttributes(a)
int

{

}

a;

int i;
int mask = 1;

static char *AttribName[]
{

"read-only ",
“hidden ",
"system ",
"volume ",
"subdirectory ",
“archive "

for(i=0; i<6; i++)
{

if{ a & mask)

printf (AttribName [i]
mask = mask << 1;

Figure 8-7. Continued.

Programming example: Updating a volumelabel

To create, modify, or delete a volume-label directory entry, the Interrupt 21H functions
that work with FCBs should be used. Figure 8-8 contains four subroutines that show how to
search for, rename, create, or delete a volume label in MS-DOSversions 2.0 andlater.

ARG1 EQU {bp + 4]

DGROUP GROUP —DATA

—TEXT SEGMENT byte public 'CODE'

Figure 8-8.

TITLE ‘VOLS .ASM'

ASSUME cs:_TEXT,ds:DGROUP .

292 The MS-DOSEncyclopedia

Me

C-callable routines for manipulating MS-DOS volume labels.
Note: These routines modify the current DTA address.

. Subroutinesfor manipulating volumelabels. (more)

/* test each attribute bit */

/* display a message if bit is set */

7 stack frame addressing
OLYMPUSEX.1010 - 302/1582

OLYMPUS EX. 1010 - 303/1582

Article 8: Disk Directories and Volume Labels

char *GetVolLabel (); /* returns pointer to volume label name */’

pococc cco eeeoneeeeeeeee

PUBLIC W_GetVolLabel
—GetVolLabel PROC near

push bp
mov bp, sp
push si
push di

call SetDTA 7; pass DTA address to MS-DOS
mov dx,offset DGROUP:ExtendedFCB
mov ah,1th ; AH = INT 21H function number
int 21h ; Search for First Entry
test al,al

jnz L01
; label found so make a copy

mov si,offset DGROUP:DTA + 8 _
mov di,offset DGROUP:VolLabel
call CopyName
Mov ax,offset DGROUP:VolLabel ; return the copy’s address
jmp short L02

LO: xor ax,ax 7 no label, return 0 (null pointer)

L02: pop di
pop si
pop bp
ret +

—GetVolLabel ENDP

int RenameVolLabel(label); /* xveturns error code */
; char *label; /* pointer to new volume label name */

PUBLIC -—RenameVolLabel
—RenameVollabeli PROC near

push bp
mov bp, sp
push si
push di

Figure 8-8. Continued. (more)

Section Il: Programming in the MS-DOS Environment 293

OLYMPUSEX.1010 - 303/1582

OLYMPUS EX. 1010 - 304/1582

Part B: Programming for MS-DOS

294

mov
mov
call

mov
mov

call

mov
mov

int
xor

pop
pop
pop
ret

—RenameVolLabel ENDP

; int NewVolLabel(label);
; char *label;

PUBLIC
_NewVolLabel PROC

push
mov

push
push

mov
mov

call

mov
mov

int
xor

pop
pop
pop
ret

—NewVolLabel ENDP

Figure 8-8. Continued.

The MS-DOSEncyclopedia

si,offset DGROUP:VolLabel ; DS:SI -> old volume name
di,offset DGROUP:Name1
CopyName 7 copy old name to FCB

si,ARG1

di,offset DGROUP:Name2
CopyName ; copy new name into FCB

ax,offset DGROUP: ExtendedFCB : DS:DX -> FCB
ah, 17h ; AH = INT 21H function number

21h ; rename /
ah, ah ; AX = OOH (success) or OFFH (failure)

di ; restore registers and return
si

bp

/* returns error code */

/* pointer to new volume label name */

_NewVolLabel
near

bp
bp, sp
si
di

si,ARG1
di,offset DGROUP:Name1
CopyName 7 copy new name to FCB .

dx,offset DGROUP:ExtendedFCB
ah, 16h ; AH = INT 21H function number
21h + create directory entry
ah,ah + AX = OOH (success) or OFFH (failure)

di 7 restore registers and return
si

bp

OLYMPUSEX.1010 - 304/1582

(more)

OLYMPUS EX. 1010 - 305/1582

Article 8: Disk Directories and Volume LabelsSee eenamenerenceEEEnec

7 int DeleteVolLabel ();

prc oocree

PUBLIC
_DeleteVolLabel PROC

push
mov

push
push

mov
mov

call

mov
mov

int
xOr

pop
pop
pop
ret

—DeleteVolLabel ENDP

/* returns error code */

—DeleteVolLabel
near

bp
bp, sp
si
di

si,offset DGROUP:VolLabel
di,offset DGROUP:Name1
CopyName 7 copy current volume name to FCB

dx,offset DGROUP:ExtendedFCB
ah, 13h ; AH = INT 21H function number
21h + delete directory entry

ah,ah ; AX = 00H (success) or OFFH (failure)

di ; restore registers and return
si

bp

; miscellaneous subroutines

pocccen-------------

SetDTA PROC

push
push

mov
mov
int

POP
POP
ret

SetDTA ENDP

Figure 8-8. Continued.

near

ax } preserve registers used
dx

dx,offset DGROUP:DTA 7 DS:DX -> DTA
ah, 1Ah } AH = INT 21H function number
2th + set DTA

dx } xestore registers and return
ax

(more)

Section II: Programming in theMS-DOS Environment 295

OLYMPUSEX. 1010 - 305/1582

OLYMPUS EX. 1010 - 306/1582

Part B: Programming for MS-DOSeee

296

CopyName

Lits

L12:

CopyName

TEXT

—_DATA

VolLabel

ExtendedFCB

Name1

Name2

DTA

—DATA

PROC

push
pop
mov

lodsb
test

jz
stosb

loop

mov

rep
ret

ENDP

ENDS

SEGMENT

DB

DB
DB
DB
DB
DB
DB
DB
DB

DB

ENDS

END

Figure 8-8. Continued.

The MS-DOS Encyclopedia

near

ds
es

cx,11

al,al
_ “12

L11

al,''!

stosb

word public ‘DATA’

11 dup(0),0

OFFh

5 dup (0)
1000b
0

11 dup('?')
5 dup (0)
11 dup (0)
9 dup (0)

64 dup (0)

i

i

i

r

;
;
;
;
;
;
é

; pad new name with blanks

; must be OFFH for extended FCB

Caller: SI -> ASCIIZ source

DI ~> destination

ES = DGROUP

length of name field

copy new name into FCB

.. until null character is reached

(reserved)
attribute byte (bit 3 = 1)
default drive ID

global wildcard name
(unused)
second name (for renaming entry)
(unused)

Richard Wilton
OLYMPUSEX. 1010 - 306/1582

OLYMPUS EX. 1010 - 307/1582

Article 9: Memory Management

Article 9

Memory Management

Personal computers that are MS-DOS compatible can be outfitted with as many as three
kinds of random-access memory (RAM): conventional memory, expanded memory, and
extended memory.

All MS-DOS machines haveat least some conventional memory, but the presence of ex-
pandedor extended memory depends onthe installed hardware options and the model of
microprocessor on which the computeris based. Each storage class has its own capabil-
ities, characteristics, and limitations. Each also has its own managementtechniques, which
are the subjectof this chapter.

Conventional Memory

Conventional memoryis the term for the up to 1 MB of memorythatis directly addressable
by an Intel 8086/8088 microprocessor or by an 80286 or 80386 microprocessor running in
real mode (8086-emulation mode). Physical addressesfor references to conventional
memory are generated by a 16-bit segmentregister, which acts as a base register and holds
a paragraph address, combined with a 16-bit offset containedin an index register or in the
instruction being executed.

On IBM PCs and compatibles, MS-DOS and the programsthat run underits control occupy
the bottom 640 KB orless of the conventional memory space. The memory space above
the 640 KB markis partitioned among ROM (read-only memory) chips on the system
board that contain various primitive device handlers and test programs and among RAM
and ROM chips on expansion boardsthat are used for input and output buffers and for ad-
ditional device-dependentroutines.

The bottom 640 KB of memory administered by MS-DOSis divided into three zones
(Figure 9-1):

@ The interrupt vector table
@ The operating system area
© The transient program area

The interrupt vector table occupies the lowest 1024 bytes of memory (locations 00000—
003FFH); its address and length are hard-wired into the processor and cannot be changed.
Each doubleword positionin the table is called an interrupt vector and contains the seg-
mentand offset of an interrupt handlerroutinefor the associated hardware or software in-
terrupt number. Interrupt handler routines are usually built into the operating system,

Section I: Programming in the MS-DOS Environment—297

OLYMPUSEX.1010 - 307/1582

OLYMPUS EX. 1010 - 308/1582

Part B: Programming for MS-DOS

100000H (1 MB)
ROM BIOSadditional ROM code

on expansion boards,
memory-mappedI/O

buffers

A0000H (640 KB)

Transient
program area

Boundary varies
MS-DOSand

its buffers, tables,
and device drivers

00400H (1 KB)
00000HInterrupt vectortable

Figure 9-1. A diagram showing conventional memory in an IBMPC-compatible MS-DOSsystem, The bottom
1024 bytes ofmemory are usedfor the interrupt vector table. The memory abovethe vectortable, up to the 640
KB boundary, is availablefor use by MS-DOSandtheprogramsthat run undertis control. The top 384 KB are
usedfor the ROM BIOS, other device-control and diagnostic routines, and memory-mapped input and output.

but in special cases application programs can contain handler routines of their own.
Vectors for interrupt numbersthat are not used for software linkages or by some hardware
device are usually initialized by the operating system to point to a simple interrupt return
(IRET) instruction or to a routine that displays an error message.

The operating-system area begins immediately above the interrupt vector table and
holds the operating system proper, its tables and buffers, any additional installable device ©
drivers specified in the CONFIG.SYSfile, and the resident portion of the COMMAND.COM
commandinterpreter. The amount of memory occupied by the operating-system area
varies with the version of MS-DOSbeing used, the numberofdisk buffers, and the number
andsize ofinstalled device drivers.

The transient program area (TPA)is the remainder of RAM above the operating-system
area, extending to the 640 KB limit or to the end of installed RAM (whicheveris smaller).
External MS-DOS commands(such as CHKDSK) and other programsare loaded into the
TPA for execution. The transient portion of COMMAND.COMalso runsin this area.

The TPA is organized into a structure called the memory arena, whichis divided into por-
tions called arena entries (or memory blocks). These entries are allocated in paragraph
(16-byte) multiples and can be as small as one paragraphoraslarge as the entire TPA.
Each arena entry is preceded by a control structure called an arena entry header, which
contains information indicating the size and status of the arena entry.

298 The MS-DOS Encyclopedia

OLYMPUSEX.1010 - 308/1582

OLYMPUS EX. 1010 - 309/1582

Article 9: Memory Management

MS-DOS inspects the arena entry headers whenevera function requesting a memory-
block allocation, modification, or release is issued; when a program is loaded and exe-
cuted with the EXEC function (interrupt 21H Function 4BH); or when a program is termi-
nated. If any of the arena entry headers appear to be damaged, MS-DOSreturnsanerror to
the calling process.If that process is COMMAND.COM, COMMAND.COMthendisplays
the message Memory allocation error and halts the system.

MS-DOSsupport for conventional memory management

The MS-DOSkernel supports three memory-managementfunctions, invoked with Inter-
rupt 21H, that operate on the TPA:

@ Function 48H (Allocate Memory Block)
@ Function 49H (Free Memory Block)
@ Function 4AH (Resize Memory Block)

These three functions (Table 9-1) can be called by application programs, by the command
processor, and by MS-DOSitself to dynamically allocate, resize, and release arena entries
as they are needed. See SYSTEM CALLS: InTerrurt 21H: Functions 48H; 49H; 4AH.

Table 9-1. MS-DOS Memory-ManagementFunctions.

Function Name Call With Returns

Allocate Memory Block AH = 48H AX = segmentofallocated
BX = paragraphs needed block

If failed:

BX = size of largest available
block in paragraphs

Free Memory Block AH = 49H nothing
ES = segmentof block to

release

Resize (Allocated) AH = 4AH If failed:

Memory Block BX = newsize of block in BX = maximum size
paragraphs for block in paragraphs

ES = segmentof block to
resize

Get/Set Allocation AH = 58H If getting:
Strategy* - AL= OOH (getstrategy) AX = strategy code

01H (setstrategy)
If setting:
BX=strategy:

OOH=firstfit

01H = bestfit

02H=lastfit

* MS-DOSversions 3.x only.

Section IT: Programming in the MS-DOS Environment 299

OLYMPUSEX. 1010 - 309/1582

OLYMPUS EX. 1010 - 310/1582

Part B: Programming for MS-DOS

When the MS-DOSkernel receives a memory-allocation request, it inspects the chain of
arena entry headers to find a free arena entry that can satisfy the request. The memory
managercan use anyofthree allocation strategies:

® First fit-the arena entry at the lowest address that is large enoughto satisfy the
request ;

® Best fit—the smallest available arena entry that satisfies the request, regardless ofits
position

® Last fit-the arena entry at the highest address that is large enough tosatisfy the
request

If the arena entry selected is larger than the size neededto fulfill the request, the arena
entryis divided andthe program is given an arena entry exactly the size it requires. Anew
arena entry headeris then created for the remaining portion of the original arena entry;it
is marked “unowned” and can be usedto satisfy subsequentallocation calls.

Research .on allocation strategies has demonstratedthatthefirst-fit approach is most
efficient, and this is the default strategy used by MS-DOS. However, in MS-DOSversions
3.0 andlater, an application program canselect a different strategy for the memory man-
ager with Interrupt 21H Function 58H (Get/Set Allocation Strategy). See SYSTEM CALLS:
INTERRUPT 21H: Function 58H.

Using the memory-managementfunctions

When a program begins executing, it already owns two arenaentries allocated on its
behalf by the MS-DOS EXEC function (Interrupt 21H Function 4BH). Thefirst entry holds
the program’s environmentandis just large enough to contain this information; the second
entry (called the program block in this article) contains the program’s PSP, code, data, and
stack.

The amount of memory MS-DOSallocates to the program block for a newly loaded tran-
sient program dependsonits type (COM or .EXE). Undertypical conditions, a .COM pro-
gram is allocatedall of the first arena entry that is large enoughto hold the contents ofits
file, plus 256 bytes for the PSP andatleast 2 bytes for the stack. Because the TPA is seldom
fragmented into more than one arena entry before a program is loaded, a .COM program
usually ends up owningall the memoryin the system that does not belong:to the operat-
ing system itself— memory divided betweena relatively small environment and a com-
paratively immense program block.

The amount of memoryallocated to a .EXE program,on the other hand, is controlled _
by twofields called MINALLOC and MAXALLOCin the .EXE program file header. The
MINALLOCfield telis the MS-DOS loader how many paragraphs of memory, in addition to
the memory required to hold the initialized code and the data present in the file, must be
available for the program to executeat all. The MAXALLOCfield contains the maximum
numberof excess paragraphs, ifavailable, to allocate to the program.

300 TheMS-DOS Encyclopedia

OLYMPUSEX.1010 - 310/1582

OLYMPUS EX. 1010 - 311/1582

Article 9: Memory Management

The default value placed in MAXALLOCbythe Microsoft Object Linker is FFFFH para-
graphs, corresponding to 1 MB. Consequently, a EXE program is typically allocated all of
available memory whenit is loaded, as is a .COMfile. Althoughit is possible to set the
MAXALLOCfield to other, smaller values with the linker’s /CPARMAXALLOCswitch or
with the EXEMODutility supplied with Microsoft language compilers, few programmers

. botherto do so.

In short, when a program begins executing,it usually ownsall of available memory —
frequently much more memorythan it needs. If the program wants to be well behaved in
its use of memoryand,possibly, load child programsas well, it should immediately release
any extra memory. In assembly-language programs, the extra memoryis released by call-
ing Interrupt 21H Function 4AH (Resize MemoryBlock) with the segmentof the program’s
PSP in the ES register and the numberof paragraphs of memory to retain for the program’s
use in the BX register. (See Figures 9-2 and 9-3.) In most high-level languages, such as
Microsoft C, excess memoryis released by the run-time library's startup module.

—TEXT segment para public 'CODE'

org 100h

assume cS:_TEXT,ds:_TEXT,es:_TEXT,ss:—TEXT

main proc near ; entry point from MS-DOS
7; CS = DS = ES = SS = PSP

; first move our stack

mov sp,offset stk 7 to a safe place...

7 now release extra memory...
mov bx,offset stk 7 calculate paragraphs to keep

mov c1,4 ; (divide offset of end of
shr -bx,cl + program by 16 and round up}
inc Dx

mov ah,4ah ; Fxn 4AH = resize mem block
int 2th 7 transfer to MS-DOS

je error ; jump if resize failed

7, otherwise go on with work...

main endp

(more)

Figure 9-2. An example ofa .COMprogram releasing excess memory afterit receives controlfrom MS-DOS.
Interrupt 21HFunction 4AH is called with the segment address oftheprogram's PSP in registerES andthe
numberofparagraphs ofmemory to retain in registerBX.

Section I: Programming in the MS-DOS Environment 301

OLYMPUSEX.1010 - 311/1582

OLYMPUS EX. 1010 - 312/1582

Part B: Programming for MS-DOS

302

dw - 64 dup (?)
stk equ $; base of

TEXT ends

end main ; defines

Figure 9-2. Continued.

—TEXT segment word public 'CODE' ;

assume cs:_TEXT,ds:_DATA,ss:STACK

main proc far ; entry po
; CS = _TE
; DS = ES

mov ax,—DATA 7; set DS =
mov ds,ax

+ give bac
mov ax,es 7; let AX =
mov bx,ss ; and BX =
sub bx, ax 7 reserve

add bx, stksize/16 7 plus par
inc bx 7 round up
mov ah, 4ah 7; Fxn 4AH
int 21h ; transfer

je error 7 jump if

main endp

—TEXT ends

—DATA segment word public 'DATA' ;

—DATA ends

Figure 9-3. An example ofa .EXEprogram releasing excess memory after it receives controlfrom MS-DOS.
Thisparticular code sequence depends on the segment ordershown. When a .EXEprogram is linkedfrom
many different object modules, other techniques may be needed to determine the amount ofmemory occupied
by theprogram at run time.

The MS-DOSEncyclopedia

new stack area

program entry point

executable code segment

int from MS-DOS

XT segment,
= PSP

our data segment

k extra memory...
segment of PSP base
segment of stack base

seg stack - seg psp
agraphs of stack

= resize memory block
to MS-DOS

resize failed

static & variable data

CQnore)

OLYMPUSEX.1010 - 312/1582

OLYMPUS EX. 1010 - 313/1582

a

Article 9: Memory Management

STACK segment para stack 'STACK'

db stksize dup (?)

STACK ends

end main ; defines program entry point

Figure 9-3. Continued.

Later, if the transient program needs additional memoryfor a buffer, table, or other work
area, it can call Interrupt 21H Function 48H (Allocate Memory Block) with the desired
numberof paragraphs.If a sufficiently large block of memoryis available, MS-DOScreates
anew arena entry of the requested size and returnsa pointerto its base in the form of a
segment address in the AX register. If an arena entry of the requested size cannot be cre-
ated, MS-DOSreturns an error code in the AX register and the size in paragraphsof the
largest available block of memoryin the BX register. The application program can inspect
this value to determine whetherit can continue in a degraded fashion with a smaller
amount of memory.

When a program finishes using an allocated arena entry, it should promptly call Interrupt
21H Function 49Htorelease it. This allows MS-DOSto collect small blocks of freed mem-

ory into contiguous arena entries and reduces the chancethat future allocation requests by
the same program will fail because of memory fragmentation. In any case, all arena entries
ownedby a program are released when the program terminates with Interrupt 20H or
with Interrupt 27H Function 00H or 4CH.

A program skeleton demonstrating the.use of dynamic memoryallocation servicesis
shownin Figure 9-4.

mov bx, 800h ; 800H paragraphs = 32 KB
mov ah, 48h 7; Fxn 48H = allocate block -
int 21h ; transfer to MS-DOS
je error i jump if allocation failed
mov bufseg, ax 7 Save segment of block

; open working file...
mov dx,offset filet ; DS:DX = filename address
mov ax, 3d00h ; Fxn 3DH = open, read only
int 2th ; transfer to MS-DOS

jc error + jump if open failed
mov handlei,ax ; save handle for work file \

(more)

Figure 9-4. A skeleton example ofdynamic memory allocation. Theprogram requests a 32 KB memory block,
uses it to copy its workingfile to a backupfile, and then releases the memory block. Note the use ofASSUME
directives toforce the assemblerto generatepropersegment overrides on references to variables containingfile
handles.

Section IL: Programming in the MS-DOSEnvironment 303

OLYMPUSEX.1010 - 313/1582

OLYMPUS EX. 1010 - 314/1582

Part B: Programming for MS-DOS

we create backup file...
mov dx,offset file2 ; DS:DX = filename address
mov cx,0 7; CX = attribute (normal)
mov ah, 3ch ; Fxn 3CH = create file
int 21th ; transfer to MS-DOS

je error 7 jump if create failed
mov handle2, ax ; save handle for backup file

push ds 7; set ES = our data segment
pop es
mov ds, bufseg 7 set DS:DX = allocated block
xox dx, dx

assume ds:NOTHING,es:_DATA ? tell assembler

next: ; read working file...
mov bx, handle ; handle for work file
mov cx, 8000h ; try to read 32 KB
mov ah, 3fh ; Fxn 3FH = read
int 21h ; transfer to MS-DOS
je error 7 jump if read failed
or ax,ax 7 was end of file reached?
jz done 7; yes, exit this loop

7; now write backup file...
mov cx,ax ; set write length = read length
mov bx, handle2 ; handle for backup file
mov ah, 40h ; Fxn 40H = write
int 21h ; transfer to MS-DOS .
je error 7 jump if write failed
cmp ax,cx ; was write complete?
jne error ; no, disk must be full
jmp next ; transfer another record

done: push es + restore DS = data segment
pop ds

assume ds:_DATA,es:NOTHING ; tell assembler

; release allocated block...

mov es,bufseg ; segment base of block
mov ah, 49h ; Fxn 49H = release block
int 2th ; transfer to MS-DOS
je error ; (should never fail)

7 now close backup file...
mov bx, handle2 ; handle for backup file

_ mov ah, 3eh ; Fxn 3EH = close
int 21h ; txansfer to MS-DOS
je error 7; jump if close failed

Figure 9-4. Continued.

304 The MS-DOS Encyclopedia

(more)

OLYMPUSEX.1010 - 314/1582

OLYMPUS EX. 1010 - 315/1582

Article 9: Memory Management

file1 db 'MYFILE.DAT',O ; name of working file
file2 db "MYFILE.BAK',O ; name of backup file

handlel dw ? ; handle for working file
handle2 dw ? + handle for backup file
bufseg dw ? ; segment of allocated block

Figure 9-4, Continued.

Expanded Memory

Theoriginal Expanded MemorySpecification (EMS) version 3.0 was developedasa joint
effort of Lotus Development Corporation and Intel Corporation and was announcedatthe
Spring COMDEXin 1985. The EMS was designedto provide a uniform meansfor applica-
tions running on 8086/8088-based personal computers, or on 80286/80386-based com-
puters in real mode, to circumventthe 1 MB limit on conventional memory, thus providing
such programs with muchlarger amountsof fast random-access storage. The EMSversion
3.2, modified from 3.0 to add support for multitasking operating systems, was released
shortly afterward as a joint effort of Lotus, Intel, and Microsoft.

The EMSis a functional definition of a bank-switched memory subsystem;it consists of
user-installable boards that plug into the IBM PC’s expansion busanda residentdriver pro-
gram called the Expanded Memory Manager (EMM)thatis provided by the board manu-
facturer. As much as 8 MB of expanded memorycan beinstalled in a single machine.
Expanded memoryis madeavailable to application software in 16 KB pages, which are
mappedby the EMMinto a contiguous 64 KB area called the page frame somewhere
above the conventional memory area used by MS-DOS (0-640 KB). An application pro-
gram can thus access as many as four 16 KB expanded memorypagessimultaneously. The
location of the page frame is user configurable so that it will not conflict with other hard-
ware options (Figure 9-5).

The Expanded Memory Manager

The Expanded Memory Managerprovides a hardware-independentinterface between
application programs and the expanded memory board(s). The EMMis supplied by the.
board manufacturer in the form ofan installable character-device driver andis linked into

MS-DOSby a DEVICEdirective added to the CONFIG.SYSfile on. the system startup disk.

Internally, the EMMis divided into twodistinct componentsthat can bereferredto as the
driver and the manager. The driver portion mimics someofthe actions of a genuine in-
stallable device driver, in thatit includesInitialization and Output Status subfunctions and
a valid device header. See PROGRAMMINGIN THE MS-DOS ENVIRONMENT: CusTomiz-

ING Ms-Dos:Installable Device Drivers.

Section I: Programming in the MS-DOS Environment 305

OLYMPUSEX.1010 - 315/1582

OLYMPUS EX. 1010 - 316/1582

Part B: Programming for MS-DOS

Expanded memory

Conventional memory

ROMBIOSetc.

_—
EMSpage frameJ

(four 16 KB pages)|
640 KB

Transient program area

MS-DOS

Interruptvectortable

Figure 9-5. A sketch ofthe relationship ofexpanded memory to conventional memory; 16 KBpages of
expanded memory are mapped into a 64 KB area, called thepageframe, above the G40 KB boundary. The
location ofthepageframe can be configured by the user to eliminate conflicts with ROMsorY/O buffers on
expansion boards. ,

 00400H

0 0

The second, and major, elementof the EMMis the true interface between application soft-
ware and the expanded memory hardware. Several classes of services provide

Status of the expanded memory subsystem
Allocation of expanded memory pages
Mappingoflogical pages into physical memory
Deallocation of expanded memory pages
Supportfor multitasking operating systems
Diagnostic routines

Application programs communicate with the EMM directly by meansof a software inter-
rupt (Interrupt 67H). The MS-DOSkerneldoesnottake part in expanded memory
manipulations and does not use expanded memoryforits own purposes.

306=TheMS-DOSEncyclopedia

OLYMPUSEX.1010 - 316/1582

OLYMPUS EX. 1010 - 317/1582

Article 9: Memory Management

Checking for expanded memory

Beforeit attempts to use expanded memoryfor storage, an application program must
establish that the EMMis present and functional, and then it must use the managerportion
of the EMM to checkthe status of the memory boards themselves. There are two methods
a program can use to test for the existence of the EMM.

Thefirst methodis to issue an OpenFile or Device request (Interrupt 21H Function 3DH)
using the guaranteed device name of the EMM driver: EMMXXXxXO.If the open operation
succeeds, one of two conditions is indicated — either the driver is presentor a file with the
same name exists in the current directory of the default disk drive. To rule outthe latter
possibility, the application can issue IOCTL Get Device Information (interrupt 21H Func-
tion 44H Subfunction 00H) and Check OutputStatus (Interrupt 21H Function 44H Subfunc-
tion 07H) requests to determine whetherthe handle returned by the open operationis
associated with a file or with a device. In either case, the handle that was obtained from
the open function should then be closed (interrupt 21H Function 3EH) so thatit can be
reused for anotherfile or device.

The second methodoftesting for the driver is to use the addressthat is found in the vector
for Interrupt 67H to inspect the device header of the presumed EMM.(The contents of
the vector can be obtained conveniently with Interrupt 21H Function 35H.) If the EMM is
present, the namefield at offset OAH of the device header contains the string EMMXXXX0.
This methodis nearly foolproof, andit avoids the relatively high overhead of an MS-DOS
open function. However,it is somewhatless well behaved becauseit involves inspection
of memory that does not belong to the application.

The two methodsoftesting for the existence of the EMM areillustrated in Figures 9-6 and
9-7.

7 attempt to "open" EMM...
mov dx,seg emm_name ; DS:DX.= address of name
mov ds, dx ; of EMM
mov dx,offset emm_name
mov ax, 3d00h ; Fxn 3DH, Mode = OOH

: 7 = open, read-only
int 21h : 7 transfer to MS-DOS
je error 7 jump if open failed

} open succeeded, make sure
; it was not a file...

(more)

Figure 9-6. Testingfor thepresence ofthe ExpandedMemoryManager with the MS-DOS OpenFile orDevice
Cnterrupt 21HFunction 3DH) and IOCTL (interrupt 21HFunction 44H)functions.

Section Il: Programming in the MS-DOS Environment 307,

OLYMPUSEX.1010 - 317/1582

OLYMPUS EX. 1010 - 318/1582

Part B: Programming for MS-DOS

308

mov bx, ax
mov ax, 4400h

int 21h

je error
and dx,80h
jz error

mov ax,4407h

int 21h

je error
or al,al
jz error

mov ah, 3eh
int 21h

je error

emm_name db ‘EMMXXXX0', 0

Figure 9-6. Continued.

emmint equ 67h

mov al,emm_int
mov ah, 35h
int 21h

BX = handle from open
Fxn 44H Subfxn 00H
= IOCTL Get Device Information
transfer to MS-DOS

jump if IOCTL call failed
Bit 7 = 1 if character device
jump if it was a file

EMM is present, make sure
it is available...
(BX Still contains handle)
Fxn 44H Subfxn 07H

= IOCTL Get Output Status
transfer to MS-DOS

jump if IOCTL call failed
test device status
if AL = 0 EMM is not available

now close handle

(BX still contains handle)
Fxn 3EH = Close
transfer to MS-DOS

jump if close failed

guaranteed device name for EMM

EMM software interrupt

first fetch contents of

EMM interrupt vector...
AL = EMM int number

Fxn 35H = get vector
transfer to MS~DOS
now ES:BX = handler address

assume ES:0000 points
to base of the EMM...

(more)

Figure 9-7. Testingfor thepresenceofthe ExpandedMemoryManagerby inspecting the namefield in the
device driver header.

The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 318/1582

OLYMPUS EX. 1010 - 319/1582

Article 9: Memory Managementtice9:MemoryManagement

mov di, 10 ; ES:DI = address of name
; field in device header

mov si,;seg emm_name ; DS:SI = address of

mov ds,si ¢ expected EMM driver name
mov si,offset emm_name
mov cx,8 7 length of name field
cld

repz cmpsb ; compare names...
jnz error 7 Jump if driver absent

emm_name db 'EMMXXXX0' # guaranteed device name for EMM

Figure 9-7. Continued.

Using expanded memory

After establishing that the EMMis present, the application program can bypass MS-DOS
and communicate with the EMM directly by meansof software Interrupt 67H. Thecalling
sequenceis as follows:

mov ah, function ; AH selects EMM function

; Load other registers with
; values specific to the
; requested service

int 67h 7 Transfer to EMM

In general, the ES:DI registers are used to pass the address of a buffer or an array, and the
DX register is used to hold an expanded memory“handle.” Some EMM functionsalso use
otherregisters (chiefly AL and BX) to pass such information as logical and physical page
numbers. Table 9-2 summarizes the services available from the EMM.

Uponreturn from an EMM function call, the AH register containszeroif the function was
successful; otherwise, AH contains an error code with the mostsignificantbit set (Table
9-3). Other values are typically returned in the AL and BX registers or in a user-specified
buffer.

Section Il: Programming in theMS-DOS Environment 309

OLYMPUSEX.1010 - 319/1582

OLYMPUS EX. 1010 - 320/1582

Part B: Programming for MS-DOS

‘HIFuonouny

 URIpouTeigoaquvyoryas‘ouesyaedsWWouSuejoJuaUIZasay]spaouOsTeUONeorTddeay‘adedpeoisAydorpuedWW=Xdo8edsnWaou)UTA20}paddewusaqseyiJoyeAIOWIOWSY]ssoDIeOLCa)soded[eorsdydsnagased[eo18oj=Xday]JOsuoOOs[pueY"HCPvOROUNYYIMa[puRYWIAou)0)payeooTye(€-0)¥0}pousisseAlowaUAjsnotAaidsaSedyes1ZoyJoJaquinuaystuvajayasedjeosdyd=Typopurdxajosaded‘[-u—0a8uesoy)UTaqIsnuTJaquinuadedyeI3o]Sy,snieys=HYHbb=HV[eoISo]at]joouodeyyAlowlay]dew‘2]qeTFeaesavedJoJaquinu[enixay)suTUNIA}Op0]uoeaddeayyAqpayyesoquedYZUOTUN“polsneyxaUsedsavysasedWAOt)JOsojpueyWING2192[leakot}Jayeasnvdeq[I¥jURSUOTDUNYSIU‘peysrurystuoneoyddeaysuayMuoneladoasoj)&AqpaseayasaqsnrpueArouraurdew0)sanbasjuanbasqnsAraA9UMpasnaqisnut‘opueyyeua]pueyayy,‘sasedwajoJaquinuureyis.&sumopueHooayes0T]e0}Aqpajjonuosaq01sadedAIOWaAya[puLyoJ@0)snogoyeuestpousnjola[puLYULL‘WIA=HVJI‘ajpuey=xasasedjeoiso]=Xdeorsoysyed0][2puepepuedxgay}Joyuorounyuado-ayiy&0}UaTeAINbaSTUOTOUNYsty,seis=HVHer=HVo[pueyWINUeUreIqOareo0T[V“paswooyyeApeouyejouwraisAs/ aye1ey}so8edJoJaquinuulsa8edJW[210)=Xdatipuewoysdsoy}UTHOO=HVJi‘sadedquasoidsa8edAsowrour‘UOT}IUNJSTU]asn0}s[pueYy,WIperecorfeun=xqpepuedxeyeo1so]josasegAIOWsyW,WIuvpasinbseApearyeaavyjoupasuuoreoyddeayy,snjvis=HVH7p=HVJaquunuay}UIEIGOpapurdxy195‘Jossa201d3808/98082}JoaoedsAsowew[eojshydHOO=HVfi‘our‘ouIBIyay]ou!sasedArowsuspapuedxajeojso]deur01pasn.a8edJojuauides=xqagedWINayJossoippe—-uauagourelyaleyey)sodedgyiOFIno]oyUTpaplatpstsueyaBedSULsnivis=HYHy=HV’JUauIBasaU]UTEIGOaseg12D
‘yeuonounyae

‘quosoudstWINoy}ey)aJEMPILYPUPoIEMAYJOS‘L°6pure9-6seInsIyulpeyuesaidsanbrayze)ay]JoauoAsowlaupapurdxesnyeisWs‘paystjqeisoseywesdoldayyJoyepasnst[feostyLsnes=HYHoy=HVdU]JOYIOYsl,Joseury19Dsyuaurure)SUIN}OYTHEAuonDyowenTrowonsung

 «WW24)Aqpopraosgsures303gUOTEIdy0}dd"z3ID}U]DIVMIJOS9q)JOAJeuNUINS°Z7-6IIqeL
The MS-DOS Encyclopedia310

OLYMPUSEX.1010 - 320/1582

OLYMPUS EX. 1010 - 321/1582

—

(a40UL)

"¥.0)payeooyyeAJoulauyJosaBedoJezseyJOAOUa]pUeYWAUY‘ZIS—TosuesayUlshemsyeST[Ny~ssa0onss}UOTOUNyay]JIpouIMjassavedJoJaquinuau],‘saTpuEYWING[BJaA3sUMOaJoJasy]pusjsanbolUONEOT][e[LIOAISayeUUeDWWeIsOida[SUISY
Article 9: Memory Management

"SZSp920X9JOAoUSo|puEYWW2anoeJoJoqumuat]‘asnurstArowawpopuedxsaU]JOsuOU‘OJazstpoUINalsa[pueyJoJoquinu3uJI‘uondn.oyujoqwiodayIeayeissy0}XXa}UODSuIddeuratialojsaz0)AJoWwowpapuedxapasney]JoalpwapIsosBJOJoppuey1dnjJ9UTUESMOTIEI“H/LPUONOUNWIN0}[reosnojaaideAqpaourjeaqisnuzUOFIOUTYsit]Joas)
‘poidn.uoyut

Semyey}wesdolday)0110U‘aouanbasUoNezITEMIUrstsurmpJappuvyjdn.uayuroy}0}poudisseseasyeua|pueyau]SFUOTOUNYay]0}parjddnsarpuryayy,‘Arouaurpopuedxessa00eISNULJEUS3TI[INJOSIOAUIPJUapIsaspuresso[pueyidnssaqurAqasnJoypausisaps]uornounysry,:‘sIqFJOMOTdy)UIWedJeuOorORLyamppuesuqFpJaddnoy]urwedJasaquray]yi‘GogS¥papoouaS}JaquINUUOISIIASUL‘Sat[dwiooJAUIpayYOIYAATAAWINOU]JOUOTSIOAaU]S|ONTeApouINjasayy,‘sa8edAroweaupopuedxaUYpasosaavyABULYIeJEpay]JoasnJOYSuryeuraq100[IMUONesyddeayieMWIASU)Se—HOUIT‘OTL&uouoNEJadoasojo&JoJUayeaInboay}SIUONOUTYsIt.T,
HOO=HVJ‘sased[ergo]=Kgsnqeys=HYHoo

=HVJ‘soppueyWIJOJoquinu=xqsnyeys=LTVsnqeis=HYsnieis=HVHOO=HVFE‘UOISIDAWIG=TVsnqeis=HVsnqeis=LY

a[pueyWA=XdHo?=HVHa?-HVeTpueyWINE=XdH8p=HVo[pueyWW=XdHZp=HVHo}=HVoypueyWW=XdHS=HV

‘a[puvyoytoads¥oO}payesoyyesadedArousurpapuedxeyeorsoyJoJaquinuatuna‘soppueyWINSAnoejoJaquinuayyuINIaYy‘o|pueyUDATSSU)TIMpayelsossesan]BAat}0}sIaIsIsarSuiddew-o8edarempreyArouIauEpapurdxa|eJO$]Ua1U02oy]aJOIsAYy‘a[pueyWWaipioads&YMsquaTUODasouy8uNeIoosse‘spreoqArousalpopuedxeay}uosiaysta1Burddeur-a8edAsoulourpapuedxadY]JOSIUAIUODSY]BAKES‘aTBMOSWINeq}JoJaquinuUOISIOASY]UINIDY‘asnadJoyj[asita[pueyay]SseajasUa]puea[pueye0}pousisseAjyoasnoAJourourpapuedxajosased[eo18o]ay}oyedqT}eaq “‘SUOISIOASINGJae]UL,PaAsasal,arePULO'¢UOISISASIUlPauTJapa49Mm(PaisT]10U)HV}PueH6ysuOHoUNYWH.
a[pueHAqpouKgsade195so[pueHWWEjoJaquinyy135rxa]u0DsuiddewIONSyxaqU09SuiddewaarsUOISIOA,WN9DAJOWIypuea[puryyoseajoy

311Section Il: Programming in the MS-DOS Environment

OLYMPUSEX.1010 - 321/1582

OLYMPUS EX. 1010 - 322/1582

Part B; Programming for MS-DOS

‘97815SNOLADIC$70}wayshsqnsAroulsurpapuedxaay]aloysas0}Aress3oaustyeY}UOPEWIOJUIJoyoUTeWODAUTy‘ssays{801Buddeur-a8eday1Josyua]U0d3Y}0}UOTIppeUT‘Wapuadop
(Ho‘HOOsuon-ounqns)von-BuJOsul@ATOOO1oyAve=1ST aremayosWWpurarempseystAetreay}JoU3}U0day,(Hz0‘HI0‘sureisoiduopeorddeAqpasnaqHZOpurHoosuonounysuonApizeulp3o10upynoys3“BuLysemynyoddnsojpausisop-qngJo}uonEUIOyUI“unyqns)SIpurZ’¢UOISI9AWIUlpoppesemUOT}OUNysy,Suiddewsoaiooel[G:SH junddeusexeSuiddew-a8edJoazispapoouuinjal=HEAq.o1potutodKeaySuIpjoy“sprzoquoleladoauoutsiays18a1Suiddeusjaspu198=HZ0CHEOUoRoUNsqns)Avue=1S'SdAlouiowpapurdxaAvieWoysiajsida1duiddewljas=HTAeuesuiddeuwJequinuay]UOsiaisigalSurddeusAueoyuysJaistgor1Buiddeuwyo8=HOO-a8edutsaldq=TVuorounqns=TY-adedWINatJodepadegssuonounyqnssnqeis=HYHap=HV$WayU0Day]JasJOaARSjwss/weyH

“sovdqOZOLUeU)JaBrE]oqjoup2euAvieou}‘soppueyWINjoJoquinuumnurtxeway]st¢¢zasneoagUUINZOSsyUSUTUIOD
UypaqysosapseUEParTy“oIpurdHoveHaspow‘Aire3]UrsalnueplomalqnopstAe100=HVIIquourdesABLE=Sy-possesadedAlousoulplyeaJoJaquinuatsaadXqUlpouINielonjeaSL, .UOTeULIOJUTpopuedxejeordo]Jo‘aTpURYJey)YApayerossesasedJoIaquinuaysureqUODsapueyWIN9A190030}Jaquinuay)purso[puryPIOMpuoozasay]‘oppueyeBsuTEJUOSAUDYo"aJOpiomdalejoJaqumu=XqABEJOJBS]JO=1GBateJU[[eSUTEJUODsa|pueHITVISISUL‘SalapromalqnopWWMutpaystAveayy,snieis=HYHay=HVyeupAveueUINI|YJoysodegiegsyuourU0DsusnqoyTHAwoRnDyauTeNwedvopouny

ponuyuod*Z-6MqeL,
TheMS-DOSEncyclopedia312

OLYMPUSEX.1010 - 322/1582

OLYMPUS EX. 1010 - 323/1582

Article 9: Memory Management

Table 9-3. The Expanded Memory Manager (EMM) Error Codes.

Error Code Significance

00H Function was successful. .

80H Internal error in the EMM software. Possible causes include an error in the

driveritself or damage to its memory image.
81H Malfunction in the expanded memory hardware.
82H EMMis busy.
83H Invalid expanded memory handle.
84H Function requested by the application is not supported by the EMM.
85H No more expanded memory handlesavailable.
86H Error in save or restore of mapping context.
87H Allocation request specified more logical pages than are available in the

system; no pages wereallocated.
88H Allocation request specified more logical pages than are currently avail-

able in the system (the request does not exceed the physical pages that

exist, but somearee already allocated to other handles); no pages were
allocated.

89H Zero pages cannotbe allocated.

8AH Logical page requested for mapping is outside the range of pages assigned
to the handle.

8BH Illegal physical page number‘in mapping request(notin the range 0-3).
8CH Save area for mapping contextsis full.
8DH Save of mapping contextfailed because save area alreadycontains a con-

text associated with the requested handle.
8EH Restore of mapping context failed because save area does not contain a

context for the requested handle.
8FH Subfunction parameter notdefined.

An application program that uses expanded memory should regard that memoryas a
system resource, such asa file or a device, and use only the documented EMMservices to
allocate, access, and release expanded memory pages. Here is the generalstrategy that
can be used by such a program:

1. Establish the presence of the EMM byoneof the two methods demonstrated in
Figures 9-6 and 9-7.

2. After the driver is knownto be present, check its operational status with EMM
Function 40H.

3. Check the version numberof the EMM with EMM Function 46Hto ensure thatall ser-

vices the application will request are available.
4, Obtain the segmentof the page frame used by the EMM with EMMFunction 41H.
5. Allocate the desired number of expanded memory pages with EMM Function 43H.If

the allocation is successful, the EMM returns a handle in DXthat is used by the appli-
cation to refer to the expanded memory pagesit owns. This step is exactly analogous

Section II: Programming in theMS-DOS Environment 313

OLYMPUSEX.1010 - 323/1582

OLYMPUS EX. 1010 - 324/1582

Part B: Programming for MS-DOS

314

to opening a file and using the handle obtained from the open function for subse-
quent read/write operationsonthefile.
If the requested numberof pages is not available, query the EMM for the actual num-
ber of pages available (EMM Function 42H) and determine whetherthe program can
continue.

After successfully allocating the number of expanded memory pages needed, use
EMMFunction 44H to maplogical pages in and outof the physical page,frame,to store
andretrieve data in expanded memory.

8. Whenfinished using the expanded memorypages, release them bycalling EMM
Function 45H. Otherwise, the pages will not be available for use by other programs
until the system is restarted,

A program skeleton thatillustrates this general approach to the use of expanded memory
is shownin Figure 9-8.

mov ah, 40h ; test EMM status
int 67h ,
or ah, ah
jnz error jump if bad status from EMM

mov ah, 46h check EMM version
int 67h

or ah,ah
jnz error jump if couldn’t get version
cmp al,30h ; make sure at least ver. 3.0
jb error jump if wrong EMM version

mov ah,41h ; get page frame segment
int 67h

or | ah,ah
jnz error jump if failed to get frame
mov. page—frame, bx ; save segment of page frame

mov ah, 42h ; get no. of available pages
int 67h

or ah,ah
jnz error jump if get pages error
mov total_pages, dx save total EMM pages
mov avail_pages, bx save available EMM pages
or bx, bx

jz error ; abort if no pages available

mov ah, 43h ; try to allocate EMM pages

(more)

Figure 9-8. Aprogram skeletonfor the use ofexpanded memory. This code assumes thatthepresenceofthe
ExpandedMemory Managerhas already been verified with one ofthe techniques shown in Figures 9-6
and 9-7.

The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 324/1582

OLYMPUS EX. 1010 - 325/1582

Article 9: Memory Management

mov bx, needed_pages
int 67h 7 if allocation is successful
or ah,ah

jnz error 7 jump if allocation failed

- mov emm_handle, dx 7 save handle for allocated pages

7; now we are ready for other
+ processing using EMM pages

7 map in EMM memory page...
mov bx, log_page + BX <- EMM logical page number
mov al, phys_page + AL <- EMM physical page (0-3)
mov dx, emm_handle + EMM handle for our pages
mov ah, 44h ; Fxn 44H = map EMM page
int 67h

or ah,ah
jnz error + jump if mapping error

+ program ready to terminate,
7 give up allocated EMM pages...

mov dx,emm_handle 7 handle for our pages
mov ah, 45h + EMM Fxn 45H = release pages
int 67h

or ah,ah .
jnz error + jump if release failed

Figure 9-8. Continued.

Aninterrupt handleror resident driver that uses the EMM follows the same general
procedure outlined in steps 1 through 8, with a few minorvariations. It may need to
acquire an EMM handle andallocate pages before the operating system is fully functional;
in particular, the MS-DOSservices Open File or Device (Interrupt 21H Function 3DH),
IOCTL (interrupt 21H Function 44H), and Get Interrupt Vector (interrupt 21H Function
35H) cannotbe assumedto be available. Thus, such a handleror driver must use a mod-
ifiedversion of the “get interrupt vector” techniqueto test for the existence of the EMM,
fetching the contents of the Interrupt 67H vectordirectly instead of using MS-DOSInter-
rupt 21H Function 35H. :

A device driver or interrupt handlertypically ownsits expanded memory pages on a
permanentbasis (until the system is restarted) and never deallocates them. Such a pro-
gram mustalso take care to save (EMM Function 47H) and restore (EMM Function 48H)
the EMM’s page-mapping context (the EMM pages mappedinto the page frame at the
time the devicedriver or interrupt handler takes control of the system) so that use of the
expanded memorybya foreground program will not be disturbed.

Section Il: Programming in the MS-DOS Environment 315

OLYMPUSEX.1010 - 325/1582

OLYMPUS EX. 1010 - 326/1582

Part B: Programming for MS-DOS

The EMMrelies heavily on the good behavior of application software to avoid the corrup-
tion of expanded memory.If several applications that use expanded memory are running
under a multitasking manager, such as Microsoft Windows, and one or more of those appli-
cations does not abidestrictly by the EMM’s conventions, the data stored in expanded
memory can be corrupted.

Extended Memory

Extended memoryis that storage at addresses above 1 MB (100000H)that can be accessed
by an 80286 or 80386 microprocessor running in protected mode. IBM PC/AT-compatible
machinescan (theoretically) have as much as 15 MB of extended memoryinstalled, in
addition to the usual 1 MB of conventional memory address space. Unlike expanded mem-
ory, extended memoryis linearly addressable: The address of each memorycell is fixed,
so no special manager program is required.

Protected-modeoperating systems, such as Microsoft XENIX and MS OS/2, can use ex-
tended memory for execution of programs. MS-DOS,on the other hand, runs in real mode
on an 80286 or 80386, and programs running underits control cannot ordinarily execute
from extended memory or even address that memoryfor storage of data.

To provide some access to extended memoryfor real-mode programs, IBM PC/AT-
compatible machines contain two routines in their ROM BIOS (Tables 9-4 and 9-5)
that allow the amount of extended memory present to be determined (Interrupt 15H Func-
tion 88H) and that transfer blocks of data between conventional memory and extended

Table 9-4. IBM PC/AT ROM BIOSInterrupt 15H Functionsfor
Access to Extended Memory.

Interrupt 15H Function Call With Returns

Move Extended Memory Block AH = 87H* Carry flag = 0 if successful
CX = length Gwords) 1 if error
ES:SI = address ofblock AH=status:

movedescriptor 00H no error
table 01H RAM parity error

02H exceptioninter-
rupt error

03H gate addressline
: . 20 failed

Obtain Size of Extended AH = 88H AX = kilobytes of memory
Memory installed above 1 MB

*Table 9-5 shows the descriptor table format used by Function 87H.

316=The MS-DOS Encyclopedia

OLYMPUSEX.1010 - 326/1582

OLYMPUS EX. 1010 - 327/1582

Article 9: Memory Management

memory (Interrupt 15H Function 87H). These routines can beusedbyelectronic disks
‘(RAMdisks) and by other programs that wish to use extended memoryforfast storage and
retrieval of information that would otherwise have to be written to a slower physical disk
drive.

Table 9-5. Block Move Descriptor Table Format for IBM PC/AT ROM BIOS
Interrupt 15H Function 87H (Move Extended MemoryBlock).

‘Bytes Contents

00-OFH Zero

10-11H Segment length in bytes (2*CX-1 or greater)
12-14H 24-bit source address

15H Access rights byte (93H)
16-17H Zero
18-19H Segment length in bytes (2«CX—1 or greater)
1A-1CH 24-bit destination address

1DH Accessrights byte (93H)
1E-1FH Zero

20-2FH Zero

Note: This data structure actually constitutes a global descriptor table (GDT) to be used
by the CPU whileit is running in protected mode; the zero bytes at offsets O—OFH and
20-2FHarefilled in by the ROM BIOScode before the modetransition. The supplied 24-
bit addressis a linear address in the range 000000-—FFFFFFH (not a segment andoffset),
with the least significant byte first and the mostsignificant byte last.

Programmers should use these ROM BIOSroutines with caution. Data stored in extended
memory is volatile;it is lost if the machine is turned off. The transferof data to or from
extended memory involves a switch from real mode to protected mode and backagain.
This is a relatively slow process on 80286-based machines; in somecasesit is only margin-
ally faster than actually reading the data from a fixed disk. In addition, programsthat use
the ROM BIOS extended memory functions are not compatible with the MS-DOS3.x Com-
patibility Box of MS OS/2, nor are they reliable if used for communications or networking.

Finally, a major deficit in these ROM BIOSfunctionsis that they do not make any attempt
to arbitrate between two or more programsor device drivers that are using extended
memory for temporary storage. For example, if an application program andan installed
RAMdisk driver attempt to put data in the same area of extended memory,noerroris
returnedto either program,but the data belonging to one or both may be destroyed.

Figure 9-9 demonstrates the use of the ROM BIOSroutines to transfer a block of data from
extended memory to conventional memory.

Section I: Programming in the MS-DOSEnvironment 317

OLYMPUSEX.1010 - 327/1582

OLYMPUS EX. 1010 - 328/1582

Part B: Programming for MS-DOS

318

bmdt db
db
db
db
db
db

buff dio

mov
mov
mov
mov
mov
mov
mov
mov
mov
call
or

jnz

getblk proc

mov
mov

mov
mov

8 dup (0)
8 dup (0)
8 dup (0)
8 dup (0)
8 dup (0)
8 dup (0)

80h dup (0)

dx, 10h
ax, 0
bx, seg buff
ds, bx
bx,offset buff

’ ox, 80h
si,seg bmdt
es,si
si,offset bmdt
getblk
ah,ah
error

near

es: (siti0h}),cx
es: (siti8h],cx

MeNeote
’

block move descriptor table
dummy descriptor
GDT descriptor
source segment descriptor
destination segment descriptor

BIOS CS segment descriptor
BIOS SS segment descriptor

buffer to receive data

DX:AX = source extended memory
address 100000H (1 MB)
DS:BX = destination conventional

memory address

CX = length to move (bytes)
ES:SI = block move descriptor table

get block from extended memory
test status

jump if block move failed

transfer block from extended

memory to real memory
call with

DX:AX extended memory address
DS:BX = destination buffer

CX = length (bytes)
ES:SI block move descriptor table
returns

AH = 0 if transfer OK

store length in descriptors

Il
H{

store access rights bytes
byte ptr es:{sit+15h],93h
byte ptr es: [sitidh],93h

(more)

Figure 9-9. Demonstration ofa block movefrom extended memory to conventional memory using the ROM
BIOSroutine. Theprocedure getblk accepts a source address in extended memory, a destination address in
conventional memory, a length in bytes, and the segment and offset ofa block move descriptor table. The
extended-memory addressis a linear32-bit address, ofwhich only the lower 24 bits are significant; the
conventional-memory addressis a segment and offset. The getblk routine converts the destination segment
and offset to a linear address, builds the appropriatefields in the block move descriptortable, invokes the ROM
BIOS routine toperform the transfer, and returnsthe status in theAH register.

The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 328/1582

OLYMPUS EX. 1010 - 329/1582

Article 9: Memory Management

} source (extended memory) address
mov es:[sitt2h],ax
mov es:{sit+14h],dl

; destination (conv memory) address
mov ax,ds 7 segment * 16

mov dx, 16
mul dx

add ax,bx : ; + offset -> linear address
adc dx,0
mov es:[sitlah],ax
mov es:[sitich],dl

- shr cx, 1 ; convert length to words
mov ah, 87h ; Fxn 87H = block move
int 15h 'j transfer to ROM BIOS

ret ; back to caller

Figure 9-9. Continued.

Summary

Personal computers that run MS-DOScan support as manyas three different typesof fast,
random-access memory (RAM). Each type hasspecific characteristics and requires differ-
ent techniquesfor its management.

Conventional memoryis the term used for the 1 MB of linear address space that can be ac-
cessed by an 8086 or 8088 microprocessor or by an 80286 or 80386 microprocessor run-
ning in real mode. MS-DOSand the programsthat execute underits control run in this
address space. MS-DOSprovides application programs with services to dynamically allo-'
cate and release blocks of conventional memory.

As much as 8 MB of expanded memory can beinstalled in a PC and usedfor electronic
disks, disk caching, and storage of application program data. The memory is made avail-
able in 16 KB pages andis administered by a driver program called the Expanded Memory
Manager, which provides allocation, mapping, deallocation, and multitasking support.

Extended memoryrefers to the memory at addresses above 1 MB that can be accessed by
an 80286-based or 80386-based microprocessor running in protected mode;it is not avail-
able in PCs based on the 8086 or 8088 microprocessors. As much as 15 MB of extended
memory can be installed; however, the ROM BIOSservices to access the memory are
primitive and slow, and no manageris provided to arbitrate between multiple programs
that attempt to use the same extended memory addressesfor storage.

Ray Duncan

t

Section II: Programming in the MS-DOSEnvironment 319

OLYMPUSEX.1010 - 329/1582

OLYMPUS EX. 1010 - 330/1582

OLYMPUSEX.1010 - 330/1582

OLYMPUS EX. 1010 - 331/1582

Article 10: The MS-DOS EXEC Function

Article 10

The MS-DOS EXEC Function

The MS-DOSsystem loader, which brings .COM or .EXEfiles from disk into memory and
executes them, can be invoked by any program with the MS-DOS EXECfunction (Inter-
rupt 21H Function 4BH). The default MS-DOS commandinterpreter,COMMAND.COM,

- uses the EXEC function to load and run its external commands, such as CHKDSK,as well
as other application programs. Many popular commercial programs, such as databases and
word processors, use EXEC to load and run subsidiary programs(spelling checkers,for
example) or to load and run a second copy of COMMAND.COM.Thisallowsa user to run
subsidiary programs or enter MS-DOS commandswithoutlosing his or her current
working context.

When EXECis used by one program (called the parent) to load and run another(called
the child), the parent can pass certain information to the child in the form ofa setof strings
called the environment, a commandline, and twofile control blocks. The child program
also inherits the parent program’s handles for the MS-DOSstandard devices andfor any
otherfiles or character devices the parent has opened (unless the open operation wasper-
formed with the “noninheritance” option). Any operations performed by the child on
inherited handles, such as seeksorfile I/O,also affect the file pointers associated with the
parent’s handles. A child program can,in turn, load another program,and the cycle can be
repeated until the system’s memoryarea is exhausted.

Because MS-DOSis not a multitasking operating system, a child program has complete
control of the system until it has finished its work; the parent program is suspended. This
type of processing is sometimescalled synchronous execution. When the child termi-
nates, the parent regains control and can use another system function call Gnterrupt 21H
Function 4DH)to obtain the child’s return code and determine whetherthe program ter-
minated normally, because of a critical hardware error, or because the user entered a
Control-C.

In addition to loading a child program, EXEC can also be usedto load subprograms and
overlays for application programs written in assembly languageor in a high-level language
that does not include an overlay managerin its run-time library. Such overlays typically
cannotbe run as self-contained programs; most require “helper” routines or data in the
application’s root segment.

The EXEC function is available only with MS-DOSversions 2.0 and later. With MS-DOS
versions1.x, a parent program can use Interrupt 21H Function 26H to create a program
segmentprefix for a child but must carry out the loading, relocation, and execution of the
child’s code and data itself, without any assistance from the operating system.

Section II: Programming in theMS-DOSEnvironment 321

OLYMPUSEX. 1010 - 331/1582

OLYMPUS EX. 1010 - 332/1582

Part B: Programming for MS-DOS

How EXEC Works

When the EXEC function receives a request to execute a program,it first attempts to locate
and openthe specified program file.If the file cannot be found, EXECfails immediately
and returns an error codeto the caller.

If the file exists, EXEC opensthe file, determinesits size, and inspects the first block of the
file. If the first 2 bytes of the block are the ASCII characters MZ, the file is assumed to con-
tain a .EXE load module, and the sizes of the program’s code, data, and stack segments are
obtainedfrom the .EXE file header. Otherwise, theentire file is assumed to be an absolute
load image (a .COM program). The actual filename extension (COM or .EXE) is ignored
in this determination.

At this point, the amount of memory needed to load the program is known, so EXEC
attemptsto allocate two blocks of memory: oneto hold the new program’s environment
and oneto contain the program’s code, data, and stack segments. Assuming that enough
memoryis available to hold the programitself, the amountactually allocated to the pro-
gram varies with its type. Programsof the .COMtype are usually given all the free mem-
ory in the system (unless the memory area has previously become fragmented), whereas
the amountassigned to a .EXE program is controlled by twofields in thefile header,
MINALLOC and MAXALLOC,thatare set by the Microsoft Object Linker (LINK). See
PROGRAMMINGIN THE MS-DOS ENVIRONMENT:PROGRAMMING FOR MS-Dos:Structure

of an Application Program; PROGRAMMING Toots: The Microsoft Object Linker, PROGRAM-
MING UTILITIES: Linx.

EXECthen copies the environment from the parent into the memoryallocated for child’s
environment, builds a program segment prefix (PSP) at the base of the child’s program
memory block, and copiesinto the child’s PSP the commandtail and the two defaultfile
control blocks passed by the parent. The previous contents of the terminate (interrupt
22H), Control-C (interrupt 23H), andcritical error (Interrupt 24H) vectors are saved in the
new PSP, and the terminate vectoris updated so that control will return to the parent
program whenthe child terminates or is aborted.

The actual code and data portions of the child program are then read from the disk file
into the program memory block above the newly constructed PSP. If the child isa EXE
program,a relocation tablein the file headeris used to fix up segment references within
the program to reflect its actual load address.

Finally, the EXEC function sets up the CPU registers and stack according to the program
type and transfers control to the program. Theentry point for a .COMfile is always offset
100H within the program memoryblock(the first byte following the PSP). The entry point
for a .EXE file is specified in the file header and can be anywhere within the program. See
also PROGRAMMINGINTHE MS-DOS ENVIRONMENT: PRoGRAMMING FOR MS-DOS:

Structure of an Application Program.

When EXECis used to load and execute an overlay rather than a child program,its opera-
tion is much simpler than described above.For an overlay, EXEC does not attemptto allo-
cate memory or build a PSP or environment. It simply loads the contentsof thefile at the

322 The MS-DOS Encyclopedia

OLYMPUSEX.1010 - 332/1582

OLYMPUS EX. 1010 - 333/1582

Article 10: The MS-DOS EXEC Function

address specified by the calling program and performsany necessary relocationsCif the
overlay file has a .EXE header), using a segmentvaluethatis also supplied bythecaller.

EXECthenreturnsto the program thatinvokedit, rather than transferring controlto the
code in the newly loadedfile. The requesting program is responsiblefor calling the
overlay at the appropriate location.

‘Using EXECto Load a Program

When one program loads and executes another, it must follow thesesteps:

i. Ensure that enough free memoryis available to hold the code, data, and stack of the
child program.

2. Set up the information to be passed to EXEC andthe child program.
3. Call the MS-DOS EXECfunctionto run the child program.
4. Recover and examinethe child program’s termination and return codes.

Making memoryavailable

MS-DOStypically allocates all available memory to a .COM or .EXE program whenit is
loaded. (The infrequent exceptions to this rule occur whenthe transient program area
is fragmented by the presenceof resident data or programs or when a .EXE program is
loaded that was linked with the /CPARMAXALLOCswitch or modified with EXEMOD.)

Therefore, before a program can load another program,it must free any memoryit does
not need for its own code, data, and stack.

The extra memoryis released with a cali to the MS-DOS Resize Memory Block function
(Interrupt 21H Function 4AH). In this case, the segment address of the parent’s PSPis
passedin the ES register, and the BX register holds the numberof paragraphs of memory
the program mustretain for its own use. If the prospective parent is a .COM program,it
must be certain to moveits stack to a safe areaif it is reducing its memoryallocationto less
than 64 KB.

Preparing parameters for EXEC

When usedto load and execute a program, the EXEC function must be supplied with two
principal parameters:

@ The address of the child program’s pathname
@ The address of a parameter block

The parameterblock,in turn, contains the addresses of information to be passedto the
child program. ! ,

The program name

The pathnamefor the child program must be an unambiguous,null-terminated (ASCIIZ)
file specification (no wildcard characters). If a path is not included, the current directory is
searched for the program;ifa drive-specifier is not present, the default drive is used.

Section I: Programming in theMS-DOS Environment 323

OLYMPUSEX.1010 - 333/1582

OLYMPUS EX. 1010 - 334/1582

Part B: Programming for MS-DOS

The parameter block

The parameter block contains the addressesof four data items (Figure 10-1):

@ The environment block

® The commandtail

@ The twodefault file control blocks (FCBs)

The position reserved in the parameter block for the pointer to an environmentis only
2 bytes and contains a segment address, because an environment is always paragraph
aligned (its address is always evenly divisible by 16); a value of 0000Hindicates the parent
program’s environment should be inherited unchanged. The remaining three addresses
are all doubleword addresses in the standard Intel format, with an offset value in the lower
word and a segmentvalue in the upper word.

= 4BH

AL = 00H load and execute child process
03H load overlay

Ds:DX = segment:offset of ASCIIZ pathnamefor an executable programfile
ES:BX = segment:offset of parameter block

Returns

If function is successful:

Carryflag is clear.
Otherregisters are preserved if MS-DOSversion 3.0 orlater, destroyed if MS-DOS
versions 2.x.

If functionis not successful:
Carryflagis set.
AX = error code

Parameter Block Format

Offset Contents

If AL = 00H (load and execute program):

00H Segmentpointerof the environmentto be passed
02H Offset of command-linetail for the new PSP
04H Segment of command-inetail for the new PSP
06H Offsetoffirst file control,block, to be copied into new PSP at offset 5CH
08H Segmentoffirst file control block
OAH Offset of secondfile control block, to be copied into new PSP at offset 6CH
OCH Segmentof secondfile control block

If AL = 03H (load overlay):

00H Segment address whereoverlay is to be loaded
02H Relocation factor to apply to loaded image

Figure 10-1. Synopsis ofcalling conventionsfor theMS-DOS EXECfunction Unterrupt 21HFunction 4BH),
which can be used to load and execute childprocesses or overlays.

324 The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 334/1582

OLYMPUS EX. 1010 - 335/1582

Article 10: The MS-DOS EXEC Function

The environment
An environmentalways begins on a paragraph boundaryandis composedofa series of
null-terminated (ASCIIZ) strings of the form:

name=variable

The endofthe entire set of strings is indicated by an additional null byte. \

If the environmentpointer in the parameter block supplied to an EXEC call containszero,
the child simply acquires a copy of the parent’s environment. The parent can, however,
provide a segmentpointerto a different or expanded setofstrings. In either case, under
MS-DOSversions 3.0 and later, EXEC appendsthe child program’s fully qualified path-
nameto its environment block. The maximum size of an environmentis 32 KB, so very
large amounts of information can be passed between programs by this mechanism.

The original, or master, environmentfor the system is owned by the commandprocessor
that is loaded when the system is turned on or restarted (usually COMMAND.COM).
Strings are placed in the system’s master environment by COMMAND.COMasa result of
PATH, SHELL, PROMPT,and SET commands, with default values always presentfor the
first two. For example,if an MS-DOSversion 3.2 system is started from drive C and a PATH
commandis not present in the AUTOEXEC.BATfile nor a SHELL command in the
CONFIG.SYSfile, the master environment will contain the two strings:

PATH=

COMSPEC=C:\ COMMAND.COM

These specifications are used by COMMAND.COMto search for executable “external”
commandsandto find its own executable file on the disk so thatit can reload its transient

portion when necessary. When the PROMPTstring is present(as a result of a previous
PROMPTor SET PROMPT command), COMMAND.COMusesit to tailor the promptdis-
played to the user.

0 1 23 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
0000 43 4F 4D 53 50 45 43 3D 43 3A 5C 43 4F 4D 4D 41 COMSPEC=C: \COMMA

0010 4E 44 2E 43 4F 4D 00 50 52 4F 4D 50 54 3D 24 70 ND.COM.PROMPT=Sp
0020 24 SF 24 64 20 20 20 24 74 24 68 24 68 24 68 24 S$_$d thhh$
0030 68 24 68 24 68 20 24 71 24 71 24 67 00 50 41 54 hShh qq$q.PAT
0040 48 3D 43 3A 5C 53.59 °53 54 45 4D 3B 43 3A 5C 41 H=C:\SYSTEM;C:\A
0050 53 4D 3B 43 3A 5C 57 53 3B 43 3A 5C 45 54 48 45.SM;C:\WS;C:\ETHE
0060 52 4E 45 54 3B 43 3A 5C 46 4F 52 54 48 5C 50 43 RNET;C:\FORTH\PC
0070 33 31 3B 00 00 01 00 43 3A 5C 46 4F 52 54 48 5C 31;....C:\FORTH\
0080 50 43 33 37 5C 46 4F 52 54 48 2B 43 4F 4D 00 PC31\FORTH.COM.

Figure 10-2. Dump ofa typical environment underMS-DOSversion 3.2. Thisparticular example contains
the default COMSPECparameter and two relatively complex PATHand PROMPTcontrolstrings that were set
up by entries in the user’s AUTOEXECfile. Note the two null bytes at offset 73H, which indicate the end ofthe
environment. These bytes arefollowed by thepathnameoftheprogram that owns the environment.

Section II: Programming in the MS-DOS Environment 325

OLYMPUSEX.1010 - 335/1582

OLYMPUS EX. 1010 - 336/1582

Part B; Programming for MS-DOS

Otherstrings in the environmentare used only for informational purposes by transient
programs anddo notaffect the operation of the operating system proper. For example,
the Microsoft C Compiler and the Microsoft Object Linker look in the environmentfor
INCLUDE,LIB, and TMPstrings that specify the location of include files, library files, and
temporary working files. Figure 10-2 contains a hex dumpofa typical environmentblock.

The commandtail

The commandtail to be passedto the child program takes the form of a byte indicating
the length of the remainder of the commandtail, followed by a string ofASCII characters
terminated with an ASCII carriage return (ODH);the carriage return is not included in the
length byte. The commandtail can includeswitches, filenames, and other parameters that

can be inspected by the child program and usedto influenceits operation.It is copied
into the child program’s PSP at offset 80H.

When COMMAND.COMuses EXECto run a program,it passes a commandtail that
includes everything the user typed in the commandline except the nameof the program
and any redirection parameters. I/O redirection is processed within COMMAND.COM
itself and is manifest in the behavior of the standard device handlesthat are inherited

by the child program. Any other program that uses EXEC to runa child program musttry
to perform any necessary redirection on its own andmust supply an appropriate com-
mandtail so that the child program will behave as thoughit had been loaded by
COMMAND.COM.

The default file control blocks

The two default FCBs pointed to by the EXEC parameter block are copied into the child
program’s PSPat offsets SCH and 6CH.See also PROGRAMMINGIN THE MS-DOS
ENVIRONMENT: PROGRAMMING FOR Ms-DOs:File and Record Management.

Few ofthe currently popular application programs use FCBsfor file and record I/O
because FCBsdo not support the hierarchical directory structure. But some programs do
inspect the default FCBs as a quick wayto isolate thefirst two switches or other parame-
ters from the commandtail. Therefore, to make its own identity transparentto the child
program,the parent should emulate the action of COMMAND.COMbyparsingthe first
two parameters of the commandtail into the default FCBs. This can be conveniently ac-
complished with the MS-DOSfunction Parse Filename (Interrupt 21H Function 29H).

If the child program does not require one or both ofthe default FCBs, the corresponding
address in the parameter block can beinitialized to point to two dummy FCBsin the appli-
cation’s memory space. These dummy FCBsshould consist of 1 zero byte followed by 11
bytes containing ASCII blank characters (20H).

326 The MS-DOS Encyclopedia

OLYMPUSEX.1010 - 336/1582

OLYMPUS EX. 1010 - 337/1582

Article 10: The MS-DOS EXEC Function

Running the child program

After the parent program has constructed the necessary parameters,it can invoke the

EXEC function by issuing Interrupt 21H with the registers set as follows:
AH ' = 4BH

AL = 00H (EXEC subfunction to load and execute program)
DS:DX = segment:offset of program pathname
ES:BX = segment:offset of parameter block

Uponreturn from the software interrupt, the parent musttest the carry flag to determine
whetherthe child program did, in fact, run. If the carry flag is clear, the child program was
successfully loaded and given control. If the carry flag is set, the EXEC function failed, and
the error code returned in AX can be examined to determine why. The usual reasons are

@ The specified file could not be found.
@ Thefile was found, but not enough memory wasfreeto load it.

Othercauses are uncommonand can be symptomsofmore severe problemsin the
system as a whole (such as damageto disk files or to the memory image of MS-DOS). With
MS-DOSversions 3.0 andlater, additional details about the cause of an EXECfailure can
be obtained by subsequently calling Interrupt 21H Function 59H (Get Extended Error
Information).

In general, supplying either an invalid address for an EXEC parameter block or invalid

addresses within the parameterblockitself does not cause a failure of the EXEC function,
but may result in the child program behaving in unexpected ways.

Special considerations

With MS-DOSversions 2.x, the previous contents ofall the parent registers except for CS:IP
can be destroyed after an EXECcall, including the stack pointer in SS:SP. Consequently,
before issuing the EXECcall, the parent must push onto the stack the contents of any regis-
ters that it needs to preserve, and then it must save the stack segment and offset in a loca-
tion that is addressable with the CS segmentregister. Upon return, the stack segment and
offset can be loaded into SS:SP with code segment overrides, and then the otherregisters
can be restored by popping them off the stack. With MS-DOSversions 3.0 and later, regis-
ters are preserved across an EXECcall in the usual fashion.

Note: ‘The code segments of Windowsapplications that use this technique should be
given the IMPUREattribute.

In addition, a bug in MS-DOSversion 2.0 and in PC-DOSversions 2.0 and 2.1 causes an
arbitrary doublewordin the parent’s stack segment to be destroyed during an EXECcall.
Whenthe parent is a .COM program andSS = PSP, the damagedlocationfalls within the
PSP and does no harm; however, in the case of a .EXE parent where DS=SS, the affected
location may overlap the data segment and cause aberrant behavior or even a crash after
the return from EXEC. This.bug wasfixed in MS-DOSversions 2.11 andlater and in
PC-DOSversions3.0 andlater.

Section II: Programming in the MS-DOS Environment 327

OLYMPUSEX.1010 - 337/1582

OLYMPUS EX. 1010 - 338/1582

Part B: Programming for MS-DOS

Examining the child program’s return codes

If the EXEC function succeeds, the parent program cancall Interrupt 21H Function 4DH
(Get Return Code of Child Process) to learn whetherthe child executed normally to com-
pletion and passed back a return code or was terminated by the operating system because
of an external event. Function 4DH returns

AH = termination type:
00H Child terminated normally (thatis, exited via Interrupt 20H or Interrupt

21H Function 00H or Function 4CH).

01H Child was terminated by user’s entry of a Ctrl-C.
02H Child was terminated bycritical error handler(either the user responded

with A tothe Abort, Retry, Ignore prompt from the system’s default Inter-
rupt 24H handler, or a custom Interrupt 24H handler returned to MS-DOS
with action code = 02H in register AL).

03H Child terminated normally and stayed resident(that is, exited via Interrupt
21H Function 31H or Interrupt 27H).

AL =return code:

Value passed by the child program in register AL whenit terminated with Interrupt
21H Function 4CH or 31H.

00Hifthe child terminated using Interrupt 20H,Interrupt 27H,or Interrupt 21H
Function 00H.

These values are only guaranteed to be returned once by Function 4DH. Thus, a subse-
quentcall to Function 4DH, without an intervening EXECcall, does not necessarily return
any usefulinformation. Additionally, if Function 4DHis called without a preceding suc-
cessful EXECcall, the returned values are meaningless.

Using COMMAND.COMwith EXEC

An application program can “shell” to MS-DOS — thatis, provide the user with an MS-DOS
prompt without terminating— by using EXEC to load and execute a secondary copy of
COMMAND.COMwith an empty commandtail. The application can obtain the location of
the COMMAND.COMdiskfile by inspecting its own environmentfor the COMSPECstring.
Theuser returnsto the application from the secondary commandprocessorby typing exit
at the COMMAND.COMprompt.

Batch-file interpretation is carried out by COMMAND.COM,and a batch BAT)file can-
not be called using the EXEC function directly. Similarly, the sequential search for .COM,
.EXE,and .BATfiles in all the locations specified in the environment’s PATH variable is a
function of COMMAND.COM,rather than of EXEC. To execute a batch file or search the
system path for a program, an application program can use EXECto load and execute a
secondary copy of COMMAND.COMto useas an intermediary. The application finds the
location of COMMAND.COMasdescribedin the preceding paragraph, but it passes a
commandtail in the form: ,

/C program parameter! parameter2 ...

328 TheMS-DOSEncyclopedia

OLYMPUSEX.1010 - 338/1582

OLYMPUS EX. 1010 - 339/1582

Article 10: The MS-DOS EXECFunction °

where program is the EXE, .COM,or.BATfile to be executed. When program termi-
nates, the secondary copy of COMMAND.COMexits and returns control to the parent.

A parent and child example

The source programs PARENT.ASMin Figure 10-3 and CHILD.ASM in Figure 10-4 illustrate
how one program uses EXECto load another.

name parent
title "PARENT --- demonstrate EXEC call'

: i
i ; PARENT.EXE -~- demonstration of EXEC to run process

stdin equ
stdout equ
stderr equ

stksize equ

cr equ
. lf equ

DGROUP group

—TEXT segment

assume

stk_seg dw

pengp

; Ray Duncan, June 1987

128

Odh
Oah

DATA, _ENVIR, STACK

byte public ‘CODE’
,

; Uses MS-DOS EXEC (Int 21H Function 4BH Subfunction 00H)
: to load and execute a child process named CHILD.EXE,
; then displays CHILD’s return code.

standard input
standard output
standard error

size of stack

; ASCII carriage return
; ASCII linefeed

executable code segment

cs:_TEXT,ds:—DATA,ss:_STACK

? i original$8 contents
stk_ptr dw ? 7 original SP contents

main proc far ; entry point from MS-DOS

mov ax,_DATA ; set DS = our data segment
mov ds,ax

; now give back extra memory
7 so child has somewhere to run...

Figure 10-3. PARENT.ASM, source codeforPARENT.EXE. (more)

Section IT: Programming in the MS-DOS Environment 329

OLYMPUSEX.1010 - 339/1582

OLYMPUS EX. 1010 - 340/1582

Part B: Programming for MS-DOS

mov ax,es

mov bx, ss
sub bx, ax
adda bx, stksize/16
mov ah, 4ah
int 2th

jc maint

mov dx,offset DGROUP:msg1
mov cx,msgi_len
call pmsg .

push ds
mov stk_seg,ss
mov stk_ptr,sp

mov ax, ds
mov es, ax

mov dx, offset DGROUP: cname
mov bx, offset DGROUP: pars
mov ax, 4D00h
int 21h

cli

mov ss, stk_seg
mov sp,stk_ptr
sti

pop ds

jc main2

mov ah, 4dh
int 21h

xchg al,ah
mov bx,offset DGROUP:msg4a
call b2hex

mov al,ah
mov bx, offset DGROUP:msg4b
call b2hex

mov dx,offset DGROUP:msg4
mov cx,msg4_len
call pmsg

mov ax, 4c00h
int 21h

Figure 10-3. Continued.

The MS-DOS Encyclopedia

let AX segment of PSP base
and BX segment of stack base
reserve seg stack - seg psp
plus paragraphs of stack
fxn 4AH = modify memory block

display parent message
DS:DX = address of message
CX = length of message

save parent’s data segment
save parent’s stack pointer

now EXEC the child process...
set ES = DS

DS:DX = child pathname
ES:BX = parameter block
function 4BH subfunction 00H
transfer to MS-DOS

(for bug in some early 8088s)
restore parent’s stack pointer

{for bug in some early 8088s)
restore DS = our data segment

jump if EXEC failed

otherwise EXEC succeeded,
convert and display child’s
termination and return codes...

fxn 4DH = get return code
transfer to MS-DOS
convert termination code

get back return code
and convert it

DS:DX = address of message
CX = length of message
display it

no error, terminate program
with return code = 0

(more)

OLYMPUSEX.1010 - 340/1582

OLYMPUS EX. 1010 - 341/1582

Article 10: The MS-DOS EXEC FunctionaRLRRA

maint:

main2:

main3:

main

b2hex

b2hex

ascii

ascii2:
ascii

pmsg

mov
call
mov
mov

call

jmp

mov
call
mov
mov

call

mov

int

endp

proc

push
shxr
shr
shr
shr
call
mov

pop
and
call
mov

ret

endp

proc
add
cmp

jle
add

ret

endp

proc

bx, offset DGROUP:msg2a
b2hex

dx,offset DGROUP:msg2
cx,msg2_len
pmsg

main3

bx,offset DGROUP:msg3a
b2hex

dx,offset DGROUP:msg3
ex,msg3_len
pmsg

ax, 4cOth
21h

near

ax

al,1
al,1
al,1
al,1
ascii

{bx),al
ax

al,Ofh
ascii

[bx+1],al

near

al,'0o'
al, '9'
ascii2
al, 'A'-'9'-1

near

Figure 10-3, Continued.

~

we

convert error code

display message 'Memory
resize failed...'

convert error code

display message "EXECcall failed...'

error, terminate program
with return code = 1

end of main procedure

convert byte to hex ASCII
call with AL = binary value

, BX = addr to store string

become first ASCII character
store it

isolate lower 4 bits, which
become the second ASCII character
store it

convert value 00-0FH in AL
into a "hex ASCII" character

jump if in range 00~-09H,
offset it to range OA-OFH,

return ASCII char. in AL

displays message on standard output
call with DS:DX = address,

CX = length

(more)

Section II: Programming in theMS-DOSEnvironment—331

OLYMPUSEX.1010 - 341/1582

OLYMPUS EX. 1010 - 342/1582

Part B: Programming for MS-DOS

332

mov bx, stdout
" mov ah, 40h

int 21h
ret

pmsg endp

—TEXT ends

—DATA segment para public 'DATA'

cname db 'CHILD.EXE',0

i BX = standard output handle
i; function 40H = write file/device
i; transfer to MS~DOS
+ back to caller

; static & variable data segment

; pathname of child process

pars dw —ENVIR 7 segment of environment block
dd tail 7 long address, command tail
dd fcb1 + long address, default FCB #1
dd ficb2 7 long address, default FCB #2

tail db fcb1-tail~2 } command tail for child
db ‘dummy command tail',cr

feb1 db 0 ; copied into default FCB #1 in

db 11 dup (' ') ; child’s program segment prefix
db 25 dup (0)

fch2 db 0 ; copied into default FCB #2 in
db 11 dup (' ') ; child’s program segment prefix
db 25 dup (0)

msg1 db cr,1f,'Parent executing!',cr,lf
msgi_len equ

msg2 db
msg2a db
msg2_len equ

msg3 db
msg3a db
msg3_len equ

$-msg1

cr,1f,'Memory resize failed, error code='
"xxh.',cr,1£

$-msg2

cr,1f,'EXEC call failed, error code='
'xxh.',cr,1f
$-msg3

msg4 db cr,1f,'Parent regained control!'
db er,lf,'Child termination type='

msgq4a dab 'xxh, return code='
msg4b db ‘*xxh.',cr,1f
msg4_len equ $-msg4

—DATA ends

-ENVIR segment para public 'DATA' 7 @xample environment block
7 to be passed to child

Figure 10-3. Continued.

The MS-DOSEncyclopedia

OLYMPUSEX.1010 - 342/1582

(more)

OLYMPUS EX. 1010 - 343/1582

db ‘PATH=',0 ;

db "PROMPT=p_Sn$qg',0 ;
db ‘COMSPEC=C : \COMMAND.COM',
db 0 ?

ENVIR ends

—STACK segment para stack 'STACK'

db stksize dup (7?)

—STACK ends

end main

Figure 10-3. Continued.

:

Article 10: The MS-DOS EXEC Function

+ basic PATH, PROMPT,
and COMSPEC strings

extra null terminates block

defines program entry point

name child

title "CHILD process’
;

7 CHILD.EXE --- a simple process loaded by PARENT.EXE
; to demonstrate the MS-DOS EXEC call,

Ray Duncan, June 1987Neewe
stdin equ 0
stdout equ 4
stderr equ 2

cx equ Odh
lf equ Oah

DGROUP group —DATA, STACK

—TEXT segment byte public 'CODE'
,

Subfunction 00H.

standard input
standard output
standard error

ASCII carriage return
ASCII linefeed

executable code segment

assume cs:_TEXT,ds:_DATA,ss:STACK

main proc far

mov . ax,—DATA
mov ds,ax

Figure 10-4. CHILD.ASM, source codefor CHILD.EXE.

,

’

.

entry point from MS-DOS

set DS = our data segment

display child message ...

(more)

Section Il: Programming in the MS-DOSEnvironment—333

OLYMPUSEX.1010 - 343/1582

OLYMPUS EX. 1010 - 344/1582

Part B: Programming for MS-DOS

mov ax,offset msg + DS:DX = address of message

mov cx,msg_len 7 CX = length of message
mov bx, stdout 7 BX = standard output handle
mov ah, 40h 7 AH = fxn 40H, write file/device
int 2th ; transfer to MS-DOS

je .- Main2 7 jump if any error

mov ax,4c00h 7 no error, terminate child
int 21h + with return code = 0

main2: mov ax,4cOth ; @rxror, terminate child
int 21h 7 with return code = 1

main endp . 7 end of main procedure

—TEXT ends

DATA segment para public 'DATA' ; Static & variable data segment

msg db exr,1lf,'Child executing!',cr,1f
msg_len equ $-msg

—DATA ends

STACK segment para stack 'STACK'

dw 64 dup (?)

STACK ends

end main ; defines program entry point

Figure 10-4. Continued.

PARENT.ASM can be assembled andlinked into the executable program PARENT.EXE
with the following commands:
C>MASM PARENT; <Enter>
C>LINK PARENT; <Enter>

Similarly, CHILD.ASM can be assembled andlinked into the file CHILD.EXEas follows:
C>MASM CHILD; <Enter>
C>LINK CHILD; <Enter>

When PARENT.EXEis executed with the command -

C>PARENT <Enter>

334 The MS-DOS Encyclopedia

OLYMPUSEX.1010 - 344/1582

OLYMPUS EX. 1010 - 345/1582

Article 10: The MS-DOS EXEC Function

PARENTreducesthesize of its main memory block with a callto Interrupt 21H Function
4AH,to maximize the amountof free memory in the system, and thencalls the EXEC func-
tion to load and execute CHILD.EXE.

CHILD.EXErunsexactly as thoughit had been loaded directly by COMMAND.COM.
CHILDresets the DS segmentregister to point to its own data segment, uses Interrupt 21H

' Function 40H to display a message on standard output, and then terminates using Interrupt
21H Function 4CH,passing a return code ofzero.

When PARENT.EXEregains control,it first checks the carry flag to determine whether
the EXECcail succeeded. If the EXECcall failed, PARENT displays an error message and
terminates with Interrupt 21H Function 4CH,itself passing a nonzero return codeto
COMMAND.COMtoindicate an error.

Otherwise, PARENTusesInterrupt 21H Function 4DH to obtain CHILD.EXE’s termination
type and return code, which it converts to ASCII and displays. PARENTthen terminates
using Interrupt 21H Function 4CH andpasses a return code of zero to COMMAND.COM
to indicate success. COMMAND.COMin turn receives control and displays a new user
prompt.

Using EXEC to Load Overlays |

Loading overlays with the EXEC function is much less complex than using EXEC to run
another program. The main program,called the root segment, mustcarry out the follow-
ing steps to load and execute an overlay:

1. Makea memoryblockavailableto receive the overlay.
2. Setup the overlay parameter blockto be passed to the EXEC function.
3. Call the EXEC functionto load the overlay.
4. Execute the code within the overlay by transferringto it with a far call.

Theoverlay itselfcan be constructed as either a memory image (.COM)or a relocatable
(EXE)file and need not be the same type as the root program.In either case, the overlay
should be designed so that the entry point (or a pointer to the entry point) is at the begin-
ning of the moduleafterit is loaded. This allows the root and overlay modules to be main-
tained separately and avoids.a needfor the root to have “magical” knowledge of addresses
within the overlay.

To prevent users from inadvertently running an overlay directly from the commandline,
overlayfiles should be assigned an extension other than .COM or .EXE. The most conve-
nient method relates overlays to their root segmentby assigning them the samefilename
but an extension such as .OVL or .OV1, .OV2, and so on.

Making memoryavailable

If EXECis to load a child program successfully, the parent must release memory.In
contrast, EXEC loadsan overlay into memory that belongs to the calling program.If the

Section II: Programming in the MS-DOS Environment 335

OLYMPUSEX.1010 - 345/1582

OLYMPUS EX. 1010 - 346/1582

Past B: Programming for MS-DOS

root segmentis a .COM program and has not explicitly released extra memory, the root
segment program need only ensurethat the system contains enough memoryto load the
overlay and that the overlay load address does not conflict with its own code, data, or
stackareas. oo

If the root segment program wasloaded from a .EXEfile, no straightforward way exists
for it to determine unequivocally how much memory it already owns. The simplest course
is for the program to release all extra memory, as discussed earlier in the section on load-
ing a child program, and then use the MS-DOS memoryallocation function (Interrupt 21H
Function 48H)to obtain a new block of memorythatis large enough to hold the overlay.

Preparing overlay parameters

Whenit is used to load an overlay, the EXEC function requires two major parameters:

@ The address of the pathnamefor the overlay file
@® The address of an overlay parameter block

Asfor a child program,the pathnamefor the overlayfile must be an unambiguous ASCIIZ
file specification (again, no wildcard characters), and it must include an explicit extension.
As before,if a path and/or drive are not included in the pathname, the current directory
and default drive are used,

The overlay parameter block contains the segment address at which the overlay should be
loaded and a fixup value to be applied to any relocatable items within the overlayfile. If
the overlayfile is in .EXE format, the fixup value is typically the same as the load address;if
the overlay is in memory-image (.COM)format, the fixup value should be zero. The EXEC
function does not attemptto validate the load addressor the fixup value or to ensure that
the load address actually belongsto the calling program.

Loading and executing the overlay

After the root segment program has preparedthe filenameof the overlayfile and the
overlay parameterblock,it can invoke the EXEC function to load the overlay by issuing an
Interrupt 21H with the registers set as follows:

AH = 4BH

AL = 03H (EXEC subfunctionto load overlay) :
DS:DX = segment:offset of overlay file pathname
ES:BX = segment:offset of overlay parameter block

Upon return from Interrupt 21H, the root segment musttest the carry flag to determine
whetherthe overlay wasloaded.If the carry flag is clear, the overlay file was located and
brought into memoryat the requested address. The overlay can then be entered by a far
call and should exit back to the root segment with a far return.

If the carry flag is set, the overlay file was not found or some other (probably severe) sys-
tem problem was encountered, and the AX register contains an error code. With MS-DOS

336 TheMS-DOSEncyclopedia

OLYMPUSEX.1010 - 346/1582

OLYMPUS EX. 1010 - 347/1582

Article 10: The MS-DOS EXEC Function

versions3.0 andlater, Interrupt 21H Function 59H can be usedto get moreinformation
about the EXECfailure. An invalid load addresssupplied in the overlay parameterblock
doesnot (usually) cause the EXECfunctionitself to fail but mayresult in the disconcerting
message Memory Allocation Error, System Halted when the root program terminates.

An overlay example

The source programs ROOT.ASM in Figure 10-5 and OVERLAY.ASM in Figure 10-6 demon-
strate the use of EXECto load a program overlay. The program ROOT.EXEis executable
from the MS-DOS prompt;it represents the root segmentof an application. OVERLAYis
constructed as a .EXEfile (althoughit is named OVERLAY.OVL becauseit cannot be run
alone) and represents a subprogram that can be loaded by the root segment when and
if it is needed.

name root

title "ROOT --- demonstrate EXEC overlay'

; ROOT.EXE --- demonstration of EXEC for overlays

7 Uses MS-DOS EXEC (Int 21H Function 4BH Subfunction 03H)

7 to load an overlay named OVERLAY.OVL, calls a routine
within the OVERLAY, then recovers control and terminates.

; Ray Duncan, June 1987.

stdin equ 0 ; Standard input
stdout equ 1 7 standard output

stderr equ 2 / + standard error

stksize equ 128 + size of stack

cr equ Odh ; ASCII carriage return

lf equ Oah 7 ASCII linefeed

DGROUP group ~DATA, STACK

—TEXT segment byte public 'CODE' 7 executable code segment

assume cs:_TEXT,ds:_DATA,ss:_STACK

stk_seg dw ? 7 original SS contents
stk_ptr dw ? 7 original SP contents

Figure 10-5. ROOT.ASM, source codeforROOTEXE. _ (more)

Section II: Programming in the MS-DOS Environment 337 |

OLYMPUSEX.1010 - 347/1582

OLYMPUS EX. 1010 - 348/1582

Part B: Programming for MS-DOS

main proc

mov
mov

mov
mov
sub
add
mov

int

je

mov
mov

call

mov
mov

int

je

mov
mov
mov

push
mov
mov

mov
mov

mov
mov
mov
int

cli
mov
mov
sti

pop

jc

far

ax, DATA
ds,ax

ax,es
bx,ss
bx,ax
bx, stksize/16
ah, 4ah
20h
maini

dx,offset DGROUP:msg1
ex,;msgi_len
pmsg

bx, 1000h
ah, 48h
21h
main2

pars,ax
parst+2,ax
word ptr entryt2,ax

ds

stk_seg,ss
stk_ptr,sp

ax,das
es,ax

dx,offset DGROUP: oname
bx,offset DGROUP: pars
ax, 4b03h
21h

ss,stk_seg
sp,stk_ptr

ds

main3

Figure 10-5. Continued.

338 The MS-DOS Encyclopedia

Mee

“
“

entry point from MS-DOS

set DS = our data segment

now give back extra memory
AX segment of PSP base
BX segment of stack base
reserve seg stack - seg psp
plus paragraphs of stack
fxn 4AH = modify memory block
transfer to MS-DOS

jump if resize failed

display message ‘Root
segment executing...'
DS:DX = address of message
CX = length of message

allocate memory for overlay
get 64 KB (4096 paragraphs)
fxn 48H, allocate mem block
transfer to MS-DOS

jump if allocation failed

set load address for overlay
set relocation segment for overlay
set segment of entry point

Save root’s data segment
Save root’s stack pointer

now use EXEC to load overlay
set ES = DS

DS:DX
u

overlay pathname
ES :BX parameter block
function 4BH, subfunction 03H
transfer to MS-DOS

(for bug in some early 8088s)
restore root’s stack pointer

(for bug in some early 8088s)
restore DS = our data segment

jump if EXEC failed

otherwise EXEC succeeded...

(more)

OLYMPUSEX.1010 - 348/1582

OLYMPUS EX. 1010 - 349/1582

push ds
call dword ptr entry
pop ds

mov dx,offset DGROUP:msg5
mov cx,msg5_len
call pmsg

mov ax,4c00h
int 21h

maini: mov bx,offset DGROUP:msg2a
call b2hex

mov dx,offset DGROUP:msg2
. mov ex,msg2_len

call pmsg
jmp main4

main2:; mov bx, offset DGROUP:msg3a
~ call b2hex /

mov dx,offset DGROUP:msg3
mov cx,msg3_len
call pmsg
jmp main4

main3: mov bx,offset DGROUP:msg4a
call b2hex

mov dx, offset DGROUP:msg4
mov cx,msg4_len
call pmsg

‘main4: mov ax, 4cOth
int 2th

main endp

b2hex proc near

push ax
shr al,1
shxr al,1
shr al,1
shr al,i
call ascii

mov {bx],al
pop ax

Figure 10-5. Continued.

Article 10: TheMS-DOS EXEC Function

Save our data segment
now call the overlay
restore our data segment

display message that root
segment regained control...
DS:DX = address of message
CX = length of message
display it

no error, terminate program
; with return code = 0

convert error code

display message ‘Memory
resize failed...'

convert error code

display message 'Memory
allocation failed...'

convert error code

display message 'EXEC
call failed...'

error, terminate program
with return code = 1

end of main procedure

convert byte to hex ASCII
call with AL = binary value
BX = addr to store string

; become first ASCII character
store it

(more)

Section I: Programming in the MS-DOS Environment 339

OLYMPUSEX. 1010 - 349/1582

OLYMPUS EX. 1010 - 350/1582

Part B: Programming for MS-DOS

and al,0fh
call ascii
mov [bx+1],al
ret

b2hex endp

ascii proc near
add al,'0'

cmp al,'9'
jie ascii2
add al, 'A'-'9'-1

ascii2: ret.
ascii endp

pmsg proc near

mov bx, stdout
mov ah, 40h
int 21h
ret

pmsg endp

—TEXT ends

—DATA segment para public 'DATA'

oname db "OVERLAY .OVL',0

Met

MeeNe

isolate lower 4 bits, which
become the second ASCII character
store it

convert value 00-OFH in AL
into a "hex ASCII" character

jump if in range 00-09H,
offset it to range OA-OFH,
return ASCII char. in AL.

displays message on standard output
call with DS:DX = address,

CX = length

BX = standard output handle
function 40H = write file/device
transfer to MS-DOS
back to caller

static & variable data segment

pathname of overlay file

load address (segment) for file
relocation (segment) for file

entry point for overlay

pars dw 0 ;
dw 0 ;

entry dd 0 ;

msg1 db cr,1f, ‘Root segment executing!',cr,1lf
msgi_len equ $-msg1

msg2 db
msg2a db
msg2_len equ

'xxh.',cr,1ft
$-msg2

cr, lf, "Memory resize failed, error code='

msg3
msg3a

db
db

msg3_len equ

Figure 10-5. Continued.

340—TheMS-DOS Encyclopedia

cr,lf,'Memory allocation failed, error code=
"xxh.',cr,1f
$-msg3

(more)

OLYMPUSEX.1010 - 350/1582

OLYMPUS EX. 1010 - 351/1582

Article 10: The MS-DOS EXEC Function

msg4 db er,if,'EXEC call failed, error code='
“msg4a=db 'xxh.',cr,1f£
msg4_len equ $-msg4

msg5 dab or,1f, ‘Root segment regained control!',cr,1lf
msg5_len equ $-msq5

DATA ends

STACK segment para stack 'STACK'

db stksize dup (?)

—STACK ends

end main ; defines program entry point

Figure 10-5. Continued.

name overlay
title "OVERLAY segment‘

7

7 OVERLAY.OVL --- a simple overlay segment
+ loaded by ROOT.EXE to demonstrate use of
; the MS-DOS EXEC call Subfunction 03H.

; The overlay does not contain a STACK segment
; because it uses the ROOT segment’s stack.

7 Ray Duncan, June 1987

stdin equ a 7 standard input
stdout equ 1 ; standard output
stderr equ 2 ; standard error

er equ Odh ; ASCII carriage return
lf equ Oah + ASCII linefeed

—TEXT segment byte public 'CODB’ ; executable code segment

assume cs:_TEXT,ds:_DATA

ovlay proc far 3; entry point from root. segment

mov ax,—DATA 7 set DS = local data segment
mov ds,ax

Figure 10-6. OVERLAY.ASM, source codefor OVERLAY.OVL. (more)

Section II: Programming in the MS-DOS Environment 341

OLYMPUSEX. 1010 - 351/1582

OLYMPUS EX. 1010 - 352/1582

OLYMPUS EX. 1010 - 353/1582

OLYMPUS EX. 1010 - 354/1582

OLYMPUS EX. 1010 - 355/1582

OLYMPUS EX. 1010 - 356/1582

OLYMPUS EX. 1010 - 357/1582

OLYMPUS EX. 1010 - 358/1582

OLYMPUS EX. 1010 - 359/1582

OLYMPUS EX. 1010 - 360/1582

OLYMPUS EX. 1010 - 361/1582

OLYMPUS EX. 1010 - 362/1582

OLYMPUS EX. 1010 - 363/1582

OLYMPUS EX. 1010 - 364/1582

OLYMPUS EX. 1010 - 365/1582

OLYMPUS EX. 1010 - 366/1582

OLYMPUS EX. 1010 - 367/1582

OLYMPUS EX. 1010 - 368/1582

OLYMPUS EX. 1010 - 369/1582

OLYMPUS EX. 1010 - 370/1582

OLYMPUS EX. 1010 - 371/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 372/1582

OLYMPUS EX. 1010 - 373/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 374/1582

OLYMPUS EX. 1010 - 375/1582

OLYMPUS EX. 1010 - 376/1582

OLYMPUS EX. 1010 - 377/1582

OLYMPUS EX. 1010 - 378/1582

OLYMPUS EX. 1010 - 379/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 380/1582

OLYMPUS EX. 1010 - 381/1582

OLYMPUS EX. 1010 - 382/1582

OLYMPUS EX. 1010 - 383/1582

OLYMPUS EX. 1010 - 384/1582

OLYMPUS EX. 1010 - 385/1582

OLYMPUS EX. 1010 - 386/1582

OLYMPUS EX. 1010 - 387/1582

OLYMPUS EX. 1010 - 388/1582

OLYMPUS EX. 1010 - 389/1582

OLYMPUS EX. 1010 - 390/1582

OLYMPUS EX. 1010 - 391/1582

OLYMPUS EX. 1010 - 392/1582

OLYMPUS EX. 1010 - 393/1582

OLYMPUS EX. 1010 - 394/1582

OLYMPUS EX. 1010 - 395/1582

OLYMPUS EX. 1010 - 396/1582

OLYMPUS EX. 1010 - 397/1582

OLYMPUS EX. 1010 - 398/1582

OLYMPUS EX. 1010 - 399/1582

OLYMPUS EX. 1010 - 400/1582

OLYMPUS EX. 1010 - 401/1582

OLYMPUS EX. 1010 - 402/1582

OLYMPUS EX. 1010 - 403/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 404/1582

OLYMPUS EX. 1010 - 405/1582

OLYMPUS EX. 1010 - 406/1582

OLYMPUS EX. 1010 - 407/1582

OLYMPUS EX. 1010 - 408/1582

OLYMPUS EX. 1010 - 409/1582

OLYMPUS EX. 1010 - 410/1582

OLYMPUS EX. 1010 - 411/1582

OLYMPUS EX. 1010 - 412/1582

OLYMPUS EX. 1010 - 413/1582

OLYMPUS EX. 1010 - 414/1582

OLYMPUS EX. 1010 - 415/1582

OLYMPUS EX. 1010 - 416/1582

OLYMPUS EX. 1010 - 417/1582

OLYMPUS EX. 1010 - 418/1582

OLYMPUS EX. 1010 - 419/1582

OLYMPUS EX. 1010 - 420/1582

OLYMPUS EX. 1010 - 421/1582

OLYMPUS EX. 1010 - 422/1582

OLYMPUS EX. 1010 - 423/1582

OLYMPUS EX. 1010 - 424/1582

OLYMPUS EX. 1010 - 425/1582

OLYMPUS EX. 1010 - 426/1582

OLYMPUS EX. 1010 - 427/1582

OLYMPUS EX. 1010 - 428/1582

OLYMPUS EX. 1010 - 429/1582

OLYMPUS EX. 1010 - 430/1582

OLYMPUS EX. 1010 - 431/1582

OLYMPUS EX. 1010 - 432/1582

OLYMPUS EX. 1010 - 433/1582

OLYMPUS EX. 1010 - 434/1582

OLYMPUS EX. 1010 - 435/1582

OLYMPUS EX. 1010 - 436/1582

OLYMPUS EX. 1010 - 437/1582

OLYMPUS EX. 1010 - 438/1582

OLYMPUS EX. 1010 - 439/1582

OLYMPUS EX. 1010 - 440/1582

OLYMPUS EX. 1010 - 441/1582

OLYMPUS EX. 1010 - 442/1582

OLYMPUS EX. 1010 - 443/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 444/1582

OLYMPUS EX. 1010 - 445/1582

OLYMPUS EX. 1010 - 446/1582

OLYMPUS EX. 1010 - 447/1582

OLYMPUS EX. 1010 - 448/1582

OLYMPUS EX. 1010 - 449/1582

OLYMPUS EX. 1010 - 450/1582

OLYMPUS EX. 1010 - 451/1582

OLYMPUS EX. 1010 - 452/1582

OLYMPUS EX. 1010 - 453/1582

OLYMPUS EX. 1010 - 454/1582

OLYMPUS EX. 1010 - 455/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 456/1582

OLYMPUS EX. 1010 - 457/1582

OLYMPUS EX. 1010 - 458/1582

OLYMPUS EX. 1010 - 459/1582

OLYMPUS EX. 1010 - 460/1582

OLYMPUS EX. 1010 - 461/1582

OLYMPUS EX. 1010 - 462/1582

OLYMPUS EX. 1010 - 463/1582

OLYMPUS EX. 1010 - 464/1582

OLYMPUS EX. 1010 - 465/1582

OLYMPUS EX. 1010 - 466/1582

OLYMPUS EX. 1010 - 467/1582

OLYMPUS EX. 1010 - 468/1582

OLYMPUS EX. 1010 - 469/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 470/1582

OLYMPUS EX. 1010 - 471/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 472/1582

OLYMPUS EX. 1010 - 473/1582

OLYMPUS EX. 1010 - 474/1582

OLYMPUS EX. 1010 - 475/1582

OLYMPUS EX. 1010 - 476/1582

OLYMPUS EX. 1010 - 477/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 478/1582

OLYMPUS EX. 1010 - 479/1582

OLYMPUS EX. 1010 - 480/1582

OLYMPUS EX. 1010 - 481/1582

OLYMPUS EX. 1010 - 482/1582

OLYMPUS EX. 1010 - 483/1582

OLYMPUS EX. 1010 - 484/1582

OLYMPUS EX. 1010 - 485/1582

OLYMPUS EX. 1010 - 486/1582

OLYMPUS EX. 1010 - 487/1582

OLYMPUS EX. 1010 - 488/1582

OLYMPUS EX. 1010 - 489/1582

OLYMPUS EX. 1010 - 490/1582

OLYMPUS EX. 1010 - 491/1582

OLYMPUS EX. 1010 - 492/1582

OLYMPUS EX. 1010 - 493/1582

OLYMPUS EX. 1010 - 494/1582

OLYMPUS EX. 1010 - 495/1582

OLYMPUS EX. 1010 - 496/1582

OLYMPUS EX. 1010 - 497/1582

OLYMPUS EX. 1010 - 498/1582

OLYMPUS EX. 1010 - 499/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 500/1582

OLYMPUS EX. 1010 - 501/1582

OLYMPUS EX. 1010 - 502/1582

OLYMPUS EX. 1010 - 503/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 504/1582

OLYMPUS EX. 1010 - 505/1582

OLYMPUS EX. 1010 - 506/1582

OLYMPUS EX. 1010 - 507/1582

OLYMPUS EX. 1010 - 508/1582

OLYMPUS EX. 1010 - 509/1582

OLYMPUS EX. 1010 - 510/1582

OLYMPUS EX. 1010 - 511/1582

OLYMPUS EX. 1010 - 512/1582

OLYMPUS EX. 1010 - 513/1582

OLYMPUS EX. 1010 - 514/1582

OLYMPUS EX. 1010 - 515/1582

OLYMPUS EX. 1010 - 516/1582

OLYMPUS EX. 1010 - 517/1582

OLYMPUS EX. 1010 - 518/1582

OLYMPUS EX. 1010 - 519/1582

OLYMPUS EX. 1010 - 520/1582

OLYMPUS EX. 1010 - 521/1582

OLYMPUS EX. 1010 - 522/1582

OLYMPUS EX. 1010 - 523/1582

OLYMPUS EX. 1010 - 524/1582

OLYMPUS EX. 1010 - 525/1582

