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The subdivision of the current probability intervzd would ideally require a multiplication of the interval by the probability
estimate for the LPS. Because this subdivision is done approximately, it is possible for the LPS sub-interval to be larger
than the MPS sub-interval. When that happens a “conditional exchange” interchanges the assignment of the sub-intervals
such that the MP5 is given the larger sub-interval.

Since the encoding procedure involves addition of binary fractions rather than concatenation of integer code words, the
more probable binary decisions can sometimes be coded at a cost of much less than one bit per decision.

D.1.1.2 Conditioning of probability estimates

An adaptive binary arithmetic coder requires a statistical model — a model for selecting conditional probability estimates to
be used in the coding of each binary decision. When a given binary decision probability estimate is dependent on a
particular feature or features (the context) already coded, it is “conditioned” on that feature. The conditioning of
probability estimates on previously coded decisions must be identical in encoder and decoder, and therefore can use only
information known to both.

Each conditional probability estimate required by the statistical model is kept in a separate storage location or “bin”
identified by a unique context-index S. The arithmetic coder is adaptive, which means that the probability estimates at
each context-index are developed and maintained by the arithmetic coding system on the basis of prior coding decisions
for that context—index.

D.1.2 Encoding conventions and approximations

The encoding procedures use fixed precision integer arithmetic and an integer representation of fractional values in which
X’8000’ can be regarded as the decimal value 0.75. The probability interval, A, is kept in the integer
range X’8000’ SA<X’10000' by doubling it whenever its integer value falls below X’8000’. This is equivalent to
keeping A in the decimal range 0.75 S A < 1.5. This doubling procedure is called renormalization.

The code register, C, contains the trailing bits of the bit stream. C is also doubled each time A is doubled. Periodically
—to keep C from overflowing — a byte of data is removed from the high order bits of the C—register and placed in the
entropy-coded segment.

Carryvover into the entropy-coded segment is limited by delaying X’ FF’ output bytes until the carry-over is resolved. Zero
bytes are stuffed after each X’FF’ byte in the entropy—coded segment in order to avoid the accidental generation of
markers in the entropy-coded segment.

Keeping A in the range 0.75 S A < 1.5 allows a simple arithmetic approximation to be used in the probability interval
subdivision. Normally, if the current estimate of the LPS probability for context-index S is Qe(S), precise calculation of
the sub-intervals would require:

Qe(S) X A Probability sub-interval for the LPS;
A -— (Qe(S) x A) Probability sub—interval for the MPS.

Because the decimal value of A is of order unity, these can be approximated by

Qe(S) Probability sub-interval for the LPS;
A — Qe(S) Probability sub-interval for the MPS.

Whenever the LPS is coded, the value of A — Qe(S) is added to the code register and the probability interval is reduced to
Qe(S). Whenever the MP8 is coded, the code register is left unchanged and the interval is reduced to A — Qe(S). The
precision range required for A is then restored, if necessary, by renormalization of both A and C.

With the procedure described above, the approximations in the probability interval subdivision process can sometimes
make the LPS sub-interval larger than the MPS sub-interval. If, for example, the value of Qe(S) is 0.5 and A is at the
minimum allowed value of 0.75, the approximate scaling gives one-third of the probability interval to the MP8 and two-
thirds to the LPS. To avoid this size inversion, conditional exchange is used. The probability interval is subdivided using
the simple approximation, but the MP8 and LPS sub—interval assignments are exchanged whenever the LPS sub-interval is
larger than the MPS Sub—interval, This MPS/LPS conditional exchange can only occur when a renormalization will be
needed.

Each binary decision uses a context. A context is the set of prior coding decisions which determine the context-index, S,
identifying the probability estimate used in coding the decision.

Whenever a renormalization occurs, a probability estimation procedure is invoked which determines a new probability
estimate for the context currently being coded. No explicit symbol counts are needed for the estimation. The relative
probabilities of renormalization after coding of LPS and MP5 provide, by means of a table-based probability estimation
state machine, a direct estimate of the probabilities.
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D.1.3 Encoder code register conventions

The flow charts in this annex assume the register structures for the encoder as shown in Table D.2.

Table D2 — Encoder register connections

C-register OOOOCbbb, bbbbbsss, xxxxxxxx, xxxxxxxx

A-register 00000000, 00000000, anaaaaaa, aaaaaaaa

u a:

The “3.” bits are the fractional bits in the A-register (the current probability interval value) and the x bits are the
fractional bits in the code register. The “5” bits are optional spacer bits which provide useful constraints on carry-over. and
the “b” bits indicate the bit positions from which the completed bytes of data are removed from the C-register. The “c” bit
is a carry bit. Except at the time of initialization, bit 15 of the A-register is always set and bit 16 is always clear (the LSB
is bit 0).

These register conventions illustrate one possible implementation. However, any register conventions which allow
resolution of carry-over in the encoder and which produce the same entropy—coded segment may be used. The handling of
carry-over and the byte stuffing following X’FF’ will be described in a later part of this annex.

D.1.4 Code_l(S) and Code_O(S) procedures

When a given binary decision is coded, one of two possibilities occurs — either a l—decision or a 0—decision is coded.
Code_l(S) and Code_O(S) are shown in Figures DI and D2. The Code_l (S) and Code_O(S) procedures use probability
estimates with a context—index S. The context-index S is determined by the statistical model and is, in general, a function

of the previous coding decisions; each value of S identifies a particular conditional probability estimate which is used in
encoding the binary decision.

Code_l(S)

No Yes

I COde
11801800-93/d039

Figure D.1 — Code_l(S) procedure
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I cede
TlSDi DGD-SWdOISO

Figure D.2 — Code_0(S) procedure

The context-index S selects a storage location which contains Index(S), an index to the tables which make up the
probability estimation state machine. When coding a binary decision, the symbol being coded is either the more probable
symbol or the less probable symbol. Therefore, additional information is stored at each context—index identifying the sense
of the more probable symbol, MPS(S).

For simplicity, the flow charts in this subclause assume that the context storage for each context-index S has an additional
storage field for Qe(S) containing the value of Qe(lndex(S)). If only the value of Index(S) and MPS(S) are stored, all
references to Qe(S) should be replaced by Qe(Index(S)).

The Code_LPS(S) procedure normally consists of the addition of the MPS sub-interval A — Qe(S) tovthe bit stream and a
scaling of the interval to the sub-interval, Qe(S). It is always followed by the procedures for obtaining a new LPS
probability estimate (Estimate_Qe(S)_after_LPS) and renormalization (Renorm_e) (see Figure D3).

However, in the event that the LPS sub-interval is larger than the MPS sub-interval, the conditional MPS/LPS exchange
occurs and the MPS sub-interval is coded.

The Code__MPS(S) procedure normally reduces the size of the probability interval to the MPS sub—interval. However, if
the LPS sub-interval is larger than the MPS sub-interval, the conditional exchange occurs and the LPS sub-interval is
coded instead. Note that conditional exchange cannot occur unless the procedures for obtaining a new LPS probability
estimate (Estimate_Qe(S)__after_MPS) and renormalization (Renorrn_e) are required after the coding of the symbol (see
Figure D.4).
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Code_LPS(S)

Estimate_Qe(S)_after_LPS
Renorm_e

TISOi MOSS/d0“

Figure D.3 - Code_LPS(S) procedure with conditional MPS/LPS exchange
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Code_MPS(S)

Estimate_Qe(S)_afler_MPS
Renorm_e

T150105 0-93/d0 42

Figure D.4 - Code_MPS(S) procedure with conditional MPS/LPS exchange

D.1.5 Probability estimation in the encoder

D.].S.1 Probability estimation state machine

The probability estimation state machine consists of a number of sequences of probability estimates. These sequences are
interlinked in a manner which provides probability estimates based on approximate symbol counts derived from the
arithmetic coder renormalization. Some of these sequences are used during the initial “learning” stages of probability
estimation; the rest are used for “steady state” estimation.

Each entry in the probability estimation state machine is assigned an index, and each index has associated with it a
Qe value and two Next_Index values. The Next_Index_MPS gives the index to the new probability estimate after an MP8
renormalization; the Next_Index_LPS gives the index to the new probability estimate after an LPS renormalization. Note
that both the index to the estimation state machine and the sense of the MPS are kept for each context-index S. The sense
of the MP8 is changed whenever the entry in the Switch_MPS is one.

The probability estimation state machine is given in Table D.3. Initialization of the arithmetic coder is always with
an MP8 sense of zero and a Qe index of zero in Table D3.

The Qe values listed in Table D.3 are expressed as hexadecimal integers. To approximately convert the 15-bit integer
representation of Qe to a decimal probability, divide the Qe values by (4/3) X (X’SOOO’).
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Table D.3 — Qe values and probability estimation state machine

Next_ Index

X’01A4’
X'0160'
X’0125’
X'00F6’
X’OOCB’
X’OOAB’
X‘OOSF’
X’5B12’
X’4D04’
X’412C’
X’37D8’
X’ZFES’
X’293C’
X'2379’
X’ 1EDF’
X’IAA9’
X’ 174E’
X’ 1424'
X’ 1 19C’
X’0F6B'
X’ODSI’
X'OBB6’
X'OA40’
X'5832’
X’4D1C’
X’438E’
X’3BDD’
X’34EE’
X’ZEAE’
X’299A’
X’2516’
X’5570‘
X’4CA9'
X’44D9’
X'3E22’
X’3824’
X’32B4’
X’2E17’
X’56A8’
X’4F46’
X’47E5’
X’41CF’
X’3C3D'
X’375E’
X’5231’
X'4COF’
X’4639’
X'415E’
X'5627’
X’50E7’
X’4B85’
X’5597’
X'504F’
X’SAIO’
X’5522’
X’59EB’

X‘5A1D‘
X’2586'
X’1114’
X’OSOB’
X’03D8’
X’OlDA’
X‘OOES'
X’006F’
X’OO36'
X’OOIA'
X’OOOD’
X’0006’
X’0003’
X’OOOI’
X’5A7F’
X'3F25’
X’ZCFZ’
X’207C’
X‘ 17B9’ 40 19
X’1182’ 42 20
X’OCEF’ 43 21
X’09A1’ 45 22
X’072F’ 46 23
X'055C’ 48 24
X’0406’ 49 25
X’0303' 51 26
X’0240’ 52 27
X’DlBl’ 54 28
X’0144' 56 29
X’DOFS’ S7 30
X’00B7’ 59 31
X’008A’ 60 32
X’0068’ 62 33
X‘004E’ 63 34
X’003B’ 32 35
X’OOZC’ 33 9
X’SAEI’ 37 37
X’484C’ 64 38
X’EAOD’ 65 39
X’ZEFI’ 67 40
X'261F’ 68 41
X’ 11:33Y 69 42
X’ 19A8’ 70 43
X’ 1518’ 72 44
X’1177’ 73 4S
X’0E74' 74 46
X’OBFB’ 75 47
X'09F8’ 77 48
X’0861’ 78 49
X’07D6’ 79 50
X’OSCD' 48 51
X’O4DE’ 50 52
X’040F’ 50 53
X’0363’ 51 54
X’02D4' 52 55
X’025C’ 53 56
X’01F8’ 54 57
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D.1.5.2 Renormalization driven estimation

The change in state in Table D3 occurs only when the arithmetic coder interval register is renormalized. This must always
be done after coding an LPS, and whenever the probability interval register is less than X'8000' (0.75 in decimal notation)
after coding an MP8.

When the LPS renormalization is required, Next_Index_LPS gives the new index for the LPS probability estimate. When
the MPS renormalization is required, Next_Index_MPS gives the new index for the LPS probability estimate. If
Switch_MPS is 1 for the old index, the MPS symbol sense must be inverted after an LPS.

D.1.5.3 Estimation following renormalization after MP8

The procedure for estimating the probability on the MPS renormalization path is given in Figure D.5. Index(S) is part of
the information stored for context-index S. The new value of Index(S) is obtained from Table BS from the column labeled
Next_Index_MPS, as that is the next index after an MP8 renormalization. This next index is stored as the new value of
Index(S) in the context storage at context—index S, and the value of Qe at this new lndex(S) becomes the new Qe(S).
MPS(S) does not change.

Estimale_Qe(S)_
after_MPS

I = lndex(S)
I = Next_Index_MPSU)
lndex(S) = |
Qe(S) = Qe_Value(l)

7130106093160“!

Figure D.5 — Probability estimation on MP8 renormalization path
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D.1.S.4 Estimation following renormalization after LPS

The procedure for estimating the probability on the LPS renormalization path is shown in Figure D.6. The procedure is
similar to that of Figure D.5 except that when Switch_MPS(I) is l, the sense of MP8 (S) must be inverted.

Estimate_Qe( )_
afler_LPS

MPS(S) = 1— MPS(S)

l = Next_|ndex_LPS(I)
|ndex(S) = |
Qe(S) = Qe_Va|ue(l)

USOiO70-93/d044

Figure D.6 - Probability estimation on LPS renormalization path

D.1.6 Renormalization in the encoder

The Renorm_e procedure for the encoder renormalization is shown in Figure D.7. Both the probability interval register A
and the code register C are shifted, one bit at a time. The number of shifts is counted in the counter CT; when CT is zero,
a byte of compressed data is removed from C by the procedure Byte_out and CT is reset to 8. Renorrnalization continues
until A is no longer less than X’SOOO’.
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Flenon'n_e

A=SLLA1
C=SLL01
CT=CT—1

 
A < X’BOOO‘

?

TISOl 080-93Id045

Figure D.7 — Encoder renormalization procedure

The Byte_out procedure used in Renorm_e is shown in Figure D.8. This procedure uses byte-stuffing procedures which
prevent accidental generation of markers by the arithmetic encoding procedures. It also includes an example of a
procedure for resolving carry-over. For simplicity of exposition, the buffer holding the entropy-coded segment is assumed
to be large enough to contain the entire segment.

In Figure D.8 BP is the entropy—coded segment pointer and B is the compressed data byte pointed to by BP. T in Bytc_out
is a temporary variable which is used to hold the output byte and carry bit. ST is the stack counter which is used to count
X’ FF’ output bytes until any carry-over through the X’FF’ sequence has been resolved. The value of ST rarely exceeds 3.
However, since the upper limit for the value of ST is bounded only by the total entropy-coded segment size, a precision of
32 bits is recommended for ST.

Since large values of ST represent a latent output of compressed data, the following procedure may be needed in high
speed synchronous encoding systems for handling the burst of output data which occurs when the carry is resolved.
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T=SHLC19

Output~stacked_ _ Output_stacked_
zeros ST ~ ST + 1 X,FF,S

C = C AND X’7FFFF’

11501090-93/(1046

Figure D.8 — Byte_0ut procedure for encoder

When the stack count reaches an upper bound determined by output channel capacity, the stack is emptied and the stacked
X’FF’ bytes (and stuffed zero bytes) are added to the compressed data before the carry-over is resolved. If a carry-over
then occurs, the carry is added to the final stuffed zero, thereby converting the final X’FFOO’ sequence to the X’FFOl’
temporary private marker. The entropy-coded segment must then be post-processed to resolve the carry-over and remove
the temporary marker code. For any reasonable bound on ST this post processing is very unlikely.

Referring to Figure D.8, the shift of the code register by 19 bits aligns the output bits with the low order bits of T. The
first test then determines if a carry-over has occurred. If so, the carry must be added to the previous output byte before
advancing the segment pointer BP. The Stuff_0 procedure stuffs a zero byte whenever the addition of the carry to the data
already in the entropy-coded segments creates a X’FF’ byte. Any stacked output bytes — converted to zeros by the carry—
over —are then placed in the entropy-coded segment. Note that when the output byte is later transferred from T to the
entropy—coded segment (to byte B), the carry bit is ignored if it is set.
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If a carry has not occurred, the Output byte is tested to see if it is X’FF’. If so, the stack count ST is incremented, as the
output must be delayed until the carry-over is resolved. If not, the carry-over has been resolved, and any stacked X’FF’
bytes must then be placed in the entropy-coded segment. Note that a zero byte is stuffed following each X’FF’.

The proaedures used by Byte_out are defined in Figures D.9 through D.] 1.

Output_stacked_zeros

11501 310-93/d047

Figure D.9 —- Output_stacked_zeros procedure for encoder

Output_stacked_
X‘FF' s

TlSO1100-93/d048

Figure D.1l) — 0utput_stacked_X’FF’s procedure for encoder
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TISOi HOSE/c1049

Figure D.11 — Stuff_0 procedure for encoder

D.1.7 Initialization of the encoder

The Initenc procedure is used to start the arithmetic coder. The basic steps are shown in Figure D.12.

initenc

Initialize statistics areas
ST = 0
A = X’10000'

(see Note below)
C = 0
CT = 11
BP = BPST — 1

TISD1120-SE/d050

Figure D.12 — Initialization of the encoder
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The probability estimation tables are defined by Table D.3. The statistics areas are initialized to an MP5 sense of 0 and a
Qe index of zero as defined by Table D3. The stack count (ST) is cleared, the code register (C) is cleared, and the interval
register is set to X’lOOOO’. The counter (CT) is set to 11. reflecting the fact that when A is initialized to X’IOOOO’ three
spacer bits plus eight output bits in C must be filled before the first byte is removed. Note that HP is initialized to point to
the byte before the start of the entropy-coded segment (which is at BPST). Note also that the statistics areas are initialized
for all values of context—index S to MPS(S) = 0 and Index(S) = 0.

NOTE-Although the probability interval is initialized to X’10000’ in both Initenc and Initdec, the precision of
the probability interval register can still be limited to 16 bits. When the precision of the interval register is 16 bits, it is initialized tozero.

D.1.8 Termination of encoding

The Flush procedure is used to terminate the arithmetic encoding procedures and prepare the entropy-coded segment for
the addition of the X’FF’ prefix of the marker which follows the arithmetically coded data. Figure D.13 shows this flush
procedure. The first step in the procedure is to set as many low order bits of the code register to zero as possible without
pointing outside of the final interval. Then, the output byte is aligned by shifting it left by CT bits; Byte_out then removes
it from C. C is then shifted left by 8 bits to align the second output byte and Byte_out is used a second time. The
remaining low order bits in C are guaranteed to be zero, and these trailing zero bits shall not be written to the entropy-
coded segment.

Clear_final_bits

C=SLLCCT

C=SLLCB

Byte_out
Discard_tinaLzeros

TISO1 130-93/d051

Figure D.13 - Flush procedure
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Any trailing zero bytes already written to the entropy—coded segment and not preceded by a X’FF’ may, optionally, be
discarded. This is done in the Discard_final_zeros procedure. Stuffed zero bytes shall not be discarded.

Entropy coded segments are always followed by a marker. For this reason, the final zero bits needed to complete decoding
shall not be included in the entropy coded segment. Instead, when the decoder encounters a marker, zero bits shall be
supplied to the decoding procedure until decoding is complete. This convention guarantees that when aDNL marker is
used, the decoder will intercept it in time to correctly terminate the decoding procedure.

Clear_final_bits

T=C+A—1
T = T AND

X’FFFFOOOO’

T = T + X’BOOO'

11301140433/d052

Figure D.l4 — Clear_final_bits procedure in Flush
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Discard_final_zeros

BP<BPST
’7

T1501 150-93/d053

Figure D.15 — Discard_l'mal_zeros procedure in Flush

D.2 Arithmetic decoding procedures

Two arithmetic decoding procedures are used for arithmetic decoding (see Table D.4).

The “Decode(S)” procedure decodes the binary decision for a given context-index S and returns a value of either 0 or 1. It
is the inverse of the “Code_0(S)” and “Code_1(S)” procedures described in D.1. “Initdec” initializes the arithmetic
coding entropy decoder.

Table D.4 - Procedures for binary arithmetic decoding

Procedure

Decode a binary decision with context-index S

Initialize the decoder 
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D.2.1 Binary arithmetic decoding principles

The probability interval subdivision and sub—interval ordering defined for the arithmetic encoding procedures also apply to
the arithmetic decoding procedures.

Since the bit stream always points within the current probability interval, the decoding process is a matter of determining,
for each decision, which sub-interval is pointed to by the bit stream. This is done recursively, using the same probability
interval sub-division process as in the encoder. Each time a decision is decoded, the decoder subtracts from the bit stream
any interval the encoder added to the bit stream. Therefore, the code register in the decoder is a pointer into the current
probability interval relative to the base of the interval.

If the size of the sub-interval allocated to the LPS is larger than the sub-interval allocated to the MPS, the encoder invokes
the conditional exchange procedure. When the interval sizes are inverted in the decoder, the sense of the symbol decoded
must be inverted.

D.2.2 Decoding conventions and approximations

The approximations and integer arithmetic defined for the probability interval subdivision in the encoder must also be
used in the decoder. However, where the encoder would have added to the code register, the decoder subtracts from the
code register.

D.2.3 Decoder code register conventions

The flow charts given in this section assume the register structures for the decoder as shown in Table D.5:

Table D5 — Decoder register conventions

Cx register xxxxxxxx, xxxxxxxx

C—low bbbbbbbb, 00000000

A-register aaaaaaaa, aaaaaaaa

Cx and C—low can be regarded as one 32—bit C-register, in that renormalization of C shifts a bit of new data from bit 15 of
Glow to bit 0 of Cx. However, the decoding comparisons use Cx alone. New data are inserted into the “b” bits of C-low
one byte at a time.

NOTE —The comparisons shown in the various procedures use arithmetic comparisons, and therefore assume precisions
greater than 16 bits for the variables. Unsigned (logical) comparisons should be used in 16—bit precision implementations.

D.2.4 The decode procedure

The decoder decodes one binary decision at a time. After decoding the decision, the decoder subtracts any amount from
the code register that the encoder added. The amount left in the code register is the offset from the base of the current
probability interval to the sub-interval allocated to the binary decisions not yet decoded. In the first test in the decode
procedure shown in Figure D.16 the code register is compared to the size of the MPS sub-interval. Unless a conditional
exchange is needed, this test determines whether the MP3 or LPS for context—index S is decoded. Note that the LPS for
context-index S is given by 1 — MPS(S).
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When a renormalization is needed. the MPS/LPS conditional exchange may also be needed. For the LPS path, the
conditional exchange procedure is shown in Figure D.17. Note that the probability estimation in the decoder is identical
to the probability estimation in the encoder (Figures D.5 and D6).

A < X'BOOO'

D = Cond_M PS_exchange(S) D = MPS(S) D = Cond_LPS_exchange(S)
Renorm_d Flenorm_d

TISO11EO-93Id054

Figure D.16 - Decode(S) procedure

For the MPS path of the decoder the conditional exchange procedure is given in Figure D.18.
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Cond_LPS_
exchange(S)

D = MPS(S) D =1 — MPS(S)
Cx=Cx-A Cx=Cx—A
A = Qe(S) A = Qe(S)

Estimate_Qe(S)_ Estimale_Qe(S)_
after_MPS after_LPS

T501 170-93/d055

Figure D.17 — Decoder LPS path conditional exchange procedure

Cond_MPS_
exchange(S)

D=1—MPS(S) D=MPS(S)

Estimate__Qe(S)_ Estimate_Qe(S)_
afler_LPS afier_MPS

TISOI 180—93/d056

Figure D.18 — Decoder MPS path conditional exchange procedure
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D.2.5 Probability estimation in the decoder

The procedures defined for obtaining a new LPS probability estimate in the encoder are also used in the decoder.

D.2.6 Renormalization in the decoder

The Renorm_d procedure for the decoder renormalization is shown in Figure D.19. CT is a counter which keeps track of
the number of compressed bits in the C—low section of the C-register. When CT is zero, a new byte is inserted into C-low
by the procedure Byte_in and CT is reset to 8.

Both the probability'interval register A and the code register C are shifted, one bit at a time, until A is no longer less than
X’ 8000’.

A=SLLA1
C=SLLC1
CT=CT—1

TlSO1 190-93Id057

Figure D.19 — Decoder renormalization procedure
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The Byte_in procedure used in Renorm_d is shown in Figure D.20. This procedure fetches one byte of data,
compensating for the stuffed zero byte which follows any X’FF’ byte. It also detects the marker which must follow the
entropy-coded segment. The C-register in this procedure is the concatenation of the Cx and C-low registers. For simplicity
of exposition, the buffer holding the entropy-coded segment is assumed to be large enough to contain the entire segment.

B is the byte pointed to by the entropy-coded segment pointer BP. BP is first incremented. If the new value of B is not a
X'FF’, it is inserted into the high order 8 bits of C-low.

UnstuiLO C = C + SLL B 8

TlSO1200-93lt1058

Figure D.le — Byte_in procedure for decoder
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The Unstuff_0 procedure is shown in Figure D.21. Ifthe new value of B is X’FF’, BP is incremented to point to the next
byte and this next B is tested to see if it is zero. Ifso, B contains a stuffed byte which must be skipped. The zero B is
ignored, and the X’FF’ B value which preceded it is inserted in the C-register.

If the value of B after a X’FF‘ byte is not zero, then a marker has been detected. The marker is interpreted as required and
the entropy-coded segment pointer is adjusted (“Adjust BP” in Figure D21) so that 0-bytes will be fed to the decoder
until decoding is completc.,0ne way of accomplishing this is to point BP to the byte preceding the marker which follows
the entropy-coded segment.

_ t . |nterpret_marker
C — 0 OR X FFOO Adjust BP

1150121 0-93/d059

Figure D.21 — Unstuff_0 procedure for decoder
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D.2.7 Initialization of the decoder

The Initdec procedure is used to start the arithmetic decoder. The basic steps are shown in Figure D.22.

Initialize statistics areas
BF = BPST - 1
A = X'OOOO’

(see Note below)
C = O

C=SLLC8

C=SLLCB
GT=0

TlSOiZZD—SSMDGO

Figure D.22 — Initialization of the decoder

The estimation tables are defined by Table D3. The statistics areas are initialized to an MP3 sense of O and a Qe index of
zero as defined by Table D3. BP, the pointer to the entropyfeoded Segment, is then initialized topoint to the byte before
the start of the entropy-coded segment at BPST, and the interval register is set to the same starting value as in the encoder. _
The first byte of compressed data is fetched and shifted into Cx. The second byte is then fetched and shifted into Cx. The
count is set to zero, so that a new byte of data will be fetched by Renorm_d.

NOTE-Although the probability interval is initialized to X’IOOOO’ in both Initenc and Initdec, the precision of
the probability interval register can still be limited to 16 bits. When the precision of the interval register is 16 bits, it is initialized toZBl'Or

D.3 Bit ordering within bytes

The arithmetically encoded entropy-coded segment is an integer of variable length. Therefore, the ordering of bytes and
the bit ordering within bytes is the same as for parameters (see B.1.1.1). -
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Annex E

Encoder and decoder control procedures

(This annex forms an integral part of this Recommendation | International Standard)

This annex describes the encoder and decoder control procedures for the sequential, progressive, and lossless modes of
operation.

The encoding and decoding control procedures for the hierarchical processes are specified in Annex J.

NOTES

1 There. is no requirement in this Specification that any encoder or decoder shall implement the procedures in precisely
the manner specified by the flow charts in this annex. It is necessary only that an encoder or decoder implement the flmction specified
in this annex. The sole criterion for an encoder or decoder to be considered in compliance with this Specification is that it satisfy the
requirements given in clause 6 (for encoders) or clause 7 (for decoders), as determined by the compliance tests specified in Part 2.

2 Implementation-specific setup steps are not indicated in this annex and may be necessary.

E.1 Encoder control procedures

E.1.1 Control procedure for encoding an image

The encoder control procedure for encoding an image is shown in Figure E.1.

Encode_image

Append SOI marker

Encodejrarne

Append EOI marker

neo1230-ea/d061

Figure E.1 — Control procedure for encoding an image
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E.1.2 Control procedure for encoding a frame

In all cases where markers are appended to the compressed data, optional X'FF’ fill bytes may precede the marker.

The control procedure for encoding a frame is oriented around the scans in the frame. The frame header is first appended,
and then the scans are coded. Table specifications and other marker segments may precede the SOFn marker, as indicated
by [tables/miscellaneous] in Figure E2.

Figure E.2 shows the encoding process frame control procedure.

Encode_frame

[Append tables/miscellaneous]
Append 80Fn marker and rest

of frame header

Encode‘scan I
[Append DNL

segment]

More scans
?

TlSO1240-93/d062

Figure E.2 — Control procedure for encoding a frame

E.1.3 Control procedure for encoding a scan

A scan consists of a single pass through the data of each component in the scan. Table specifications and other marker
segments may precede the SOS marker. If more than one component is coded in the scan, the data are interleaved. If
restart is enabled, the data are segmented into restart intervals. Ifrestart is enabled, a RSTm marker is placed in the coded
data between restart intervals. If restart is disabled, the control procedure is the same, except that the entire scan contains a
single restart interval. The compressed image data generated by a scan is always followed by a marker, either the E01
marker or the marker of the next marker segment.
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Figure E.3 shows the encoding process scan control procedure. The loop is terminated when the encoding process has
coded the number of restart intervals which make up the scan. “m” is the restart interval modulo counter needed for the
RSTm marker. The modulo arithmetic for this counter is shown after the “Append RSTm marker” procedure.

Encode_scan

[Append tables/miscellaneous]
Append SOS marker and rest of

scan header
m = O

Encode_restarL
interval

More intervals
?

Append HST". marker
m = (m + 1) AND 7

11501 250-931d053

Figure E.3 — Control procedure for encoding a scan
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E.1.4 Control procedure for encoding a restart interval

Figure 13.4 shows the encoding process control procedure for a restart interval. The loop is terminated either when the
encoding process has coded the number of minimum coded units (MCU) in the restart interval or when it has completed
the image scan.

Encode_restart_
interval

HeseLencoder

Encode_M C U I
Prepare_for_marker

115012609de4

Figure E.4 — Control procedure for encoding a restart interval

The “Reset_encoder” procedure consists at least of the following:

a) if arithmetic coding is used, initialize the arithmetic encoder using the-“Initenc” procedure described
in D.1.7;

b) for DCT—based processes, set the DC prediction (FRED) to zero for all components in the scan
(seeF.1.1.5.1);

c) for lossless processes, reset the prediction to a default value for all components in the scan (see H.1.1);

d) do all other implementatiOn-dependent setups that may be necessary.

The procedure “Prepare_for._marker” terminates the entropy-coded segment by:

a) padding a Huffman entropy-coded segment with 1-bits to complete the final byte (and if needed stuffing a
zero byte) (see F.1.2.3); or

b) invoking the procedure “Flush” (see D.1.8) to terminate an arithmetic entropy-coded segment.

NOTE — The number of minimum coded units (MCU) in the final restart interval must be adjusted to match the number
of MCU in the scan. The number of MCU is calculated from the frante and scan parameters. (See Annex B.)
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E.1.5 Control procedure for encoding a minimum coded unit (MCU)

The minimum coded unit is defined in A.2. Within a given MCU the data units are coded in the order in which they occur
in the MCU. The control procedure for encoding a MCU is shown in Figure E.5.

Encode_MCU

N = N + 1
Encode data unit

11501270936055

Figure E.5 — Control procedure for encoding a minimum coded unit (MCU)

In Figure E.5, Nb refers to the number of data units in the MCU. The order in which data units occur in the MCU is
defined in A2. The data unit is an 8 x 8 block for DCT-based processes, and a single sample for lossless processes.

The procedures for encoding a data unit are specified in Annexes F, G, and H.

‘ E.2 Decoder control procedures

E.2.1 Control procedure for decoding compressed image data

Figure E.6 shows the decoding process control for compressed image data.

Decoding control centers around identification of various markers. The first marker must be the SOI (Start Of Image)
marker. The “Decoder_setup” procedure resets the restart interval (Ri = 0) and, if the decoder has arithmetic decoding
capabilities, sets the conditioning tables for the arithmetic coding to their default values. (See F.1.4.4.l.4 and F.1.4.4.2.1.)
The next marker is normally a SOFn (Start Of Frame) marker; if this is not found, one of the marker segments listed in
Table E] has been received.
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Yes

Interpret markers

DecodeJrame

11501280-93/d066

Figure E.6 — Control procedure for decoding compressed image data

Table E.l —,Markers recognized by “Interpret markers”

Define Huffman Tables ‘

Define Ariihmetic Conditioning

Define Quantization Tables
Define Restart Interval

Application defined marker
Comment

Note that optional X’FF’ fill bytes which may precede any marker shall be discarded before determining which marker is
present.
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The additional logic to interpret these various markets is contained in the box labeled “Interpret markers”. DHT markers
shall be interpreted by processes using Huffman coding. DAC markers shall beinterpreted by processes using arithmetic
coding. DQT markers shall be interpreted by DOT-based decoders. DRI markers shall be interpreted by all decoders.
APPn and COM markers shall be interpreted only to the extent that they do not interfere with the decoding.

By definition, the procedures in “Interpret markers" leave the system at the next marker. Note that if the expected SOI
marker is missing at the start of the compressed image data, an error condition has occurred. The techniques for detecting
and managing error conditions can be as elaborate'or as simple as desired.

E.2.2 Control procedure for decoding a frame

Figure E.7 shows the control procedure for the decoding of a frame.

Decode_frame

Interpret frame header

! Interpret markers
'Yes

Decode_scan I
E01 marker

7

TISOl 290-93/d067

Figure E.7 - Control procedure for decoding a frame

The loop is terminated if the E01 marker is found at the end of the scan.

The markers recognized by “Interpret markers” are listed in Table E.1. Subclause E.2.1 describes the extent to which the
various markers shall be interpreted.
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E.2.3 Control procedure for decoding a scan

Figure E.8 shows the decoding of a scan.

The loop is terminated when the expected number of restart intervals been decoded.

Decode_scan

interpret scan headerm = O

Decode_resiart_
intewal

More intervals
?

nso1aoa-sa/dosa

Figure E.8 - Control procedure for decoding a scan
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E.2.4 Control procedure for decoding a restart interval

The procedure for decoding a restart interval is shown in Figure E.9. The “Reset_decoder” procedure consists at least of
the following:

a) if arithmetic coding is used, initialize the arithmetic decoder using the “Initdec” procedure described
in D.2.7;

for DCT-based processes, set the DC prediction (PRED) to zero for all components in the scan
(see F.2.1.3.1);

for lossless process, reset the prediction to a default value for all components in the scan (see H.2.1);

do all other implementation-dependent setups that may be necessary.

Decode_restart_
interval

FleseLdecoder

Find marker

TlSOi 31 0-93/(1069

Figure E.9 — Control procedure for decoding a restart interval

At the end of the restart interval, the next marker is located. If a problem is detected in locating this marker, error handling
procedures may be invoked. While such procedures are optional, the decoder shall be able to correctly recognize restart
markers in- the compressed data and reset the decoder when they are encountered. The decoder shall also be able to
recognize the DNL marker, set the number of lines defined in the DNL segment, and end the “Decode_reStart_interval”
procedure.

NOTE —— The final restart interval may be smaller than the size specified by the DRI marker segment, as it includes only the
number of MCUs remaining in the scan.
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E.2.5 Control procedure for decoding a minimum coded unit (MCU)

The procedure for decoding a minimum coded unit (MCU) is shown in Figure E.10.

In Figure E.10 Nb is the number of data units in a MCU.

The procedures for decoding a data unit are specified in Annexes F, G, and H.

Decode_MCU

N = N + 1
Decode_data_unit

11801320-93/d070

Figure E.10 — Control procedure for decoding a minimum coded unit (MCU)
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Annex F

Sequential DCT-based mode of operation

(This annex forms an integral part of this Recommendation | International Standard)

This annex provides a functional specification of the following coding processes for the sequential DCT-based mode of
operation:

1) baseline sequential;

2) extended sequential. Huffman coding, 8-bit sample precision;

3) extended sequential, arithmetic coding, 8-bit sample precision;

4) extended sequential, Huffman coding, 12-bit sample precision;

5) extended sequential, arithmetic coding, 12-bit sample precision.

For each of these, the encoding process is specified in El, and the decoding process is specified in F2. The functional
specification is presented by means of specific flow charts for the various procedures which comprise these coding
processes.

NOTE — There is no requirement in this Specification that any encoder or decoder which embodies one ,of the above-named
processes shall implement the procedures in precisely the manner specified by the flow charts in this annex. It is necessary only that an
encoder or decoder implement the function specified in this annex. The Sole Criterion for an encoder or decoder to be considered in
compliance with this Specification is that it satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as
determined by the compliance tests specified in Part 2.

El Sequential DCT-based encoding processes

F.1.1 Sequential DCT-based control procedures and coding models

F.1.1.1 Control procedures for sequential DCT-based encoders

The control procedures for encoding an image and its constituent parts — the frame, scan, restart interval and
MCU —are given in Figures E.1‘ to ES. The procedure for encoding a MCU (see Figure E.5) rcpetitively calls the
procedure for encoding a data unit. For DCT-based encoders the data unit is an 8 X 8 block of samples.

F.1.1.2 Procedure for encoding an 8 X 8 block data unit

For the sequential DCT-based processes encoding an 8 x 8 block data unit consists of the following procedures:
a) level shift, calculate forward 8x8 DCT and quantize the resulting coefficients using table destination

specified in frame header;

b) encode DC coefficient for 8 X 8 block using DC: table destination specified in scan header;

c) encode AC coefficients for 8 x 8 block using AC table destination specified in scan header.

F.1.1.3 Level shift and forward DCT (FDCT)

The mathematical definition of the FDCT is given in A.3.3.

Prior to computing the FDCT the input data are level shifted to a signed two’s complement representation as described in
A.3.1. For 8-bit input precision the level shift is achieved by subtracting 128. For 12-bit input precision the level shift is
achieved by subtracting 2048.

F. 1.1.4 Quantization of the FDCT

The uniform quantization procedure described in Annex A is used to quantize the DCT coefficients. One of four
quantization tables may be used by the encoder. No default quantization tables are specified in this Specification.
However, some typical quantization tables are given in Annex K.

The quantized DCT coefficient values are signed, two’s complement integers with 11-bit precision for 8-bit input
precision and 15-bit precision for 12-bit input precision.
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F.1.1.5 Encoding models for the sequential DCT procedures

The two dimensional array of quantized DCT coefficients is rearranged in a zig—zag sequence order defined in A.3.6. The
zig-zag order coefficients are denoted ZZ (0) through ZZ(63) with: '

ZZ(O) = SqOO,ZZ(l) = Sq01,ZZ(2) = Sq10,.,.,.,ZZ(63) = Sq77

quu are defined in Figure A.6.

Two coding procedures are used, one for the DC coefficient 22(0) and the other for the AC coefficients ZZ(1)..ZZ(63).
The scefficients are encoded in the order in which they occur in zig—zag sequence order, starting with the DC coefficient.
The coefficients are represented as two’s complement integers.

F.1.1.5.1 Encoding model for DC coefficients

The DC coefficients are coded differentially, using a one—dimensional predictor, PRED, which is the quantized DC value
from the most recently coded 8 X 8 block from the same component. The difference, DIFF, is obtained from

DIFF = ZZ(0) — PRED

At the beginning of the scan and at the beginning of each restart interval, the prediction for the DC coefficient prediction
is initialized to 0. (Recall that the input data have been level shifted to two’s complement representation.)

F.1.1.5.2 Encoding model for AC coefficients

Since many coefficients are zero, runs of zeros are identified and coded efficiently. In addition, if the remaining
coefficients in the zig-zag sequence order are all zero, this is coded explicitly as an end—of-block (EOB).

F.1.2 Baseline Huffman encoding procedures

The baseline encoding procedure is for 8-bit sample precision. The encoder may employ up to two DC and two AC
Huffman tables within one scan.

F. 1.2.1 Huffman encoding of DC coefficients

F.1.2.1.1 Structure of DC code table

The DC code table consists of a set of Huffman codes (maximum length 16 bits) and appended additional bits (in most
cases) which can code any possible value of DIFF, the difference between the current DC coefficient and the prediction.
The Huffman codes for the difference categories are generated in such a way that no code consists entirely of 1-bits
(X’FF’ prefix marker code avoided).

The two’s complement difference magnitudes are grouped into 12 categories, 3555, and a Huffman code is created for
each of the 12 difference magnitude categories (see Table F.1).

For each category, except SSSS =0, an additional bits field is appended to the code word to uniquely identify which
difference in that category actually occurred. The number of extra bits is given by SSSS; the extra bits are appended to the
LSB of the preceding Huffman code, most significant bit first. When DIFF is positive, the $585 low order bits of DIFF
are appended. When DIFF is negative, the 8388 low order bits of (DlFF — l) are appended. Note that the most significant
bit of the appended bit sequence is 0 for negative differences and l for positive differences.

F.1.2.1.2 Defining Hufl'man tables for the DC coefficients

The syntax for specifying the Huffman tables is given in Annex B. The procedure for creating a code table from this
information is described in Annex C. No more than two Huffman tables may be defined for coding of DC coefficients.
Two examples of Huffman tables for coding of DC coefficients are provided in Annex K.
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Table F.1 — Difference magnitude categories for DC coding

DIFF values

0

—1,1

—3,—2,2,3

—7..—4,4..7

—15..—8,8..15

—31..—16,16..3l

—63..—32,32..63

—127..—64,64..127

—255..—128,128..255
\OOONOtUI-AMN

—511..—256,256..511

—l 023..—512,512..l 023.— O

  
l—l ,_. -2 047..—l 024,1 024.2 047

F.1.2.1.3 Hufl‘man encoding procedures for DC coefficients

The encoding procedure is defined in terms of a set of extended tables, XHUFCO and XHUFSI, which contain the .
complete set of Huffman codes and sizes for all possible difference values. For full 12-bit precision the tables are relatively
large. For the baseline system, however, the precision of the differences may be small enough to make this description
practical.

XHUFCO and XHUFSI are generated from the encoder tables EHUFCO and EHUFSI (see Annex C) by appending to the
Huffman codes for each difference categbry the additional bits that completely define the difference. By definition,
XHUFCO and XHUFSI have entries forth possible difference value. XHUFCO contains the concatenated bit pattern of
the Huffman code and the additional bits field; XHUFSI contains the total length in bits of this concatenated bit pattern.
Both are indexed by DIFF, the difference between the DC coefficient and the prediction.

The Huffman encoding procedure for the DC difference, DIFF. is:

SIZE = XHUFSI(DIFF)

CODE = XHUFCO(DIFF)

code SIZE bits of CODE

where DC is the quantized DC coefficient value and PRED .is the predicted quantized DC value. The Huffman code
(CODE) (including any additional bits) is obtained from XHUFCO and SIZE (length of the code including additional
bits) is obtained from XHUFSI, using DIFF as the index to the two tables.

F.1.2.2 Hufi'man encoding of AC coefficients

F.1.2.2.l Structure of AC code table

Each non-zero AC coefficient in 22 is described by a composite 8-bit value, RS, of the form

RS = binary ’RRRRSSSS’
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The 4 least significant bits, 'SSSS’, define a category for the amplitude of the next non-zero coefficient in 22, and the 4
most significant bits, ’RRRR’, give the position of the coefficient in 22 relative to the previous non—zero coefficient (i.e.
the run-length of zero coefficients between non-zero coefficients). Since the run length of zero coefficients may exceed
15, the value ’RRRRSSSS’ = X’FO’ is defined to represent a run length of 15 zero coefficients followed by a coefficient
of zero amplitude. (This can be interpreted as a run length of 16 zero coefficients.) In addition, a special value
'RRRRSSSS’ = ’00000000’ is used to code the end—of-block (EOB), when all remainingcoefficients in the block are
ZCI'O.

The general structure of the code table isillustrated in Figure F.1. The entries marked “N/A” are undefined for the
baseline procedure.

$838
2 .

COMPOSITE VALUES

llSOISSU-QS/dofl

Figure F.1 — Two-dimensional value array for Huffman coding

The magnitude ranges assigned to each value of 8555 are defined in Table F.2.

Table F.2 — Categories assigned to coefficient values

AC coefficients

—l,1

—3,—2,2,3

—7..—4,4..7

—15..—8,8..15

—31..—16,16..31

—63..—32,32..63

—127..—64,64..127  
—255..—‘128,128..255

VDOONIQUI‘PUIN
—511..—256,256..Sll

—l 023..—512,512..1023_. D

The composite value, RRRRSSSS, is Huffman coded-and each Huffman code is followed by additional bits which specify
the sign and exact amplitude of the coefficient.

The AC code table consists of one Huffman code (maximum length 16 bits, not including additional bits) for each
possible composite value. The Huffman codes for the 8-bit composite values are generated in such a way that no code
consists entirely of 1-bits.
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The format for the additional bits is the same as in the coding of the DC coefficients. The value of 5885 gives the number
of additional bits required to specify the sign and precise amplitude of the coefficient. The additional bits are either the
low-order SSSS bits of ZZ(K) when-ZZ(K) is positive or the low-order SSSS bits of ZZ(K) — 1 when ZZ(K) is negative.
ZZ(K) is the Kth coefficient in the zig—zag sequence of coefficients being coded.

F.1.2.2.2 Defining Huffman tables for the AC coefficients

The syntax for specifying the Huffman tables is given in Annex B. The procedure for creating a code table from this
information is described in Annex C.

In the baseline system no more than two Huffman tables may be defined for coding of AC coefficients. Two examples of
Huffman tables for coding of AC coefficients are provided in Annex K.

F.1.2.2.3 Huffman encoding procedures for AC coefficients

As defined in Annex C, the Huffman code table is assumed to be available as a pair of tables. EHUFCO (containing the
code bits) and EHUFSI (containing the length of each code in bits), both indexed by the composite value defined above.

The procedure for encoding the AC coefficients in a block is shown in Figures F2 and ES. In Figure F2, K is the index
to the zig-zag scan position and R is the run length of zero coefficients.

The procedure “Append EHUFSI(X’FO’) bits of EHUFCO(X’FO’)” codes a run of.16 zero coefficients (ZRL code of
Figure F.1). The procedure “Code EHUFSI(0) bits of EHUFCO(0)” codes the end-of—block (EOB code). If the last
coefficient (K = 63) is not zero, the EOB code is bypassed.

CSIZE is a procedure which maps an AC coefficient to the $883 value as defined in Table F.2.

F.1.2.3 Byte stuifing

In order to provide code space for marker codes which can be located in the compressed image data without decoding,
byte stuffing is used.

Whenever, in the course of normal encoding, the byte value X’FF’ is created in the code string, a X’OO’ byte is stuffed
into the code string.

If a X’OO’ byte is detected after a X’FF’ byte, the decoder must discard it. If the byte is not zero, a marker has been
detected, and shall be interpreted to the extent needed to complete the decoding of the scan.

Byte alignment of markers is achieved by padding incomplete bytes with 1-bits. If padding with l-bits creates a -X’FF’
value, a zero byte is stuffed before adding the marker.

F.1.3 Extended sequential DCT-based Huffman encoding process for 8-bit sample precision

This process is identical to the Baseline encoding process described in F.1.2, with the exdeption that the number of sets of
Huffman table destinations which may be used within the same scan is increased to four. Four DC and four AC Huffman
table destinations is the maximum allowed by this Specification.

F.1.4 Extended sequential DCT-based arithmetic encoding process for 8-bit sample precision

This snbclause describes the use of arithmetic coding procedures in the sequential DCT-based encodingiprocess.

NOTE - The arithmetic coding procedures in this Specification are defined for the maximum precision to encourage
interchangeability. .

The arithmetic coding extensions have the same DCT model as the Baseline DCT encoder. Therefore, Annex F.1.1 also
applies to arithmetic coding. As with the Huffman coding technique, the binary arithmetic coding technique is lossless. It
is possible to transcode'between the two systems without either FDCI‘ or IDCT computations, and without modification of
the reconstructed image.

The basic principles of adaptive binary arithmetic coding are described in Annex D. Up to four DC and four AC
canditioning table destinations and associated statisticsareas may be used within one scan.

The arithmetic encoding procedures for encoding binary decisions, initializing the statistics area, initializing the encoder,
terminating the code string, and adding restart markers are listed in Table D1 of Annex D.
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Encode_A0_
coefficients

Append EHUFSI(X'FO‘) bits , A d EHUFSI x’oo' ms

R gETgFCdX’FO’) WE? EHUFCO((X’00')) I

Encode_H.ZZ(K)

11$0134D-93Id072

Figure F.2 - Procedure for sequential encoding of AC coefficients with Huffman coding
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Encode_Fi,ZZ(K)

3333 = CSIZE(ZZ(K))
R5 = (16 x Ft) +ssss
Append EHUFSI(RS) bits

of EHUFCO(RS)

ZZ(K) = ZZ(K) — 1

Append 5555
low order bits of ZZ(K)

TISOISSO—QSIdOn

Figure F.3 — Sequential encoding of a non-zero AC coefficient

Some of the procedures in Table D] are used in the higher level control structure for scans and restart intervals described
in Annex E. At the beginning of scans and restart intervals, the probability estimates used in the arithmetic coder are reset
to the standard initial value as part of the Initenc procedure which' restarts the arithmetic coder. At the end of scans and
restart intervals, the Flush procedure is invoked to empty the code register before the next marker is appended.

F.1.4.1 Arithmetic encoding of DCcoefiicients

The basic structure of the decision sequence for encoding a DC difference value, DIFF, is shown in Figure F4.

The context-index SO and other context-indices used in the DC coding procedures are defined in Table F.4
(see F.1.4.4.l.3). A-O—decision is coded if the difference value is zero and a l-decision is coded if the difference is not
zero. If the difference'is notzero, the sign and magnitude are coded using the procedure Encode_V(SO), which is
described in F.1.4.3.1.

F.1.4.2 Arithmetic encoding of AC coefficients

The AC coefficients are coded in the order in which they occurin the zig—zag sequence ZZ(1,...,63). An end-of-block
(EOB) binary decision is coded before coding the first AC coefficient in Z2, and after each non—zero coefficient. If the
EOB occurs, all remaining coefficients in 22 are zero. Figure F5 illustrates the decision sequence. The equivalent
procedure for the Huffman coder is found in Figure F.2.
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Code_1(SO)
Encode_V(SO) Code_0(so)

TlSOl 360-93/d074

Figure F.4 — Coding model for arithmetic coding of DC difference

The context—indices SE and SO used in the AC coding procedures are defined in Table F.5 (see F.1.4.4.2). In Figure F.5,
K is the index to the zig—zag sequence position. For the sequential scan, Kmin is 1 and Se is 63. The V = 0 decision is part
of a loop which codes runs of zero coefficients. Whenever the coefficient is non-zero, “Encode_V(SO)” codes the sign and
magnitude of the coefficient. Each time a non-zero coefficient is coded, it is followed by an EOB decision. If the EOB
occurs, a 1—decision is coded to indicate that the coding of the block is complete. If the coefficient for K = Se is not zero,
the EOB decision is skipped.

F.1.4.3 Encoding the binary decision sequence for non-zero DC differences and AC coefficients

Both the DC difference and the AC coefficients are represented as signed two’s complement integer values. The
decomposition of these signed integer values into a binary decision tree is done in the same way for both the DC and AC
coding models.

Although the binary decision trees for this section of the DC and 'AC coding models are the same, the statistical models
for assigning statistics bins to the binary decisions in the tree are quite different.

F.l.4.3.l Structure of the encoding decision sequence

The encoding sequence can be separated into three procedures, a procedure which encodes the sign, a second procedure
which identifies the magnitude category, and a third procedure which identifies precisely which magnitude occurred
within the category identified in the second procedure.

At the point where the binary decision sequence in Encode_V(SO) starts, the coefficient or difference has already been
determined to be non-zero. That determination was made in the procedures in Figures E4 and F5.

Denoting either DC differences (DIFF) or AC coefficients as V. the non—zero signed integer value of V is encoded by the
sequence shoWn in Figure F.6. This sequence first codes the sign of V. It then (after converting V to a magnitude and
decrementing it by 1 to give 52) codes the magnitude category of Sz (code_log2_Sz),'_ and then codes the low order
magnitude bits (code_Sz_bits) to identify the exact magnitude value.
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There are two significant differences between this sequence and the similar set of operations described in F.1.2 for
Huffman coding. First, the sign is encoded before the magnitude category is identified, and second. the magnitude is
decremented by 1 before the magnitude category is identified.

Encode_AC_
Coefficients

I Code_1 (SE) I
Code_D(SE)

Code_0(SO)

Code_1 ($0)
Eneode_V(SO)

1150‘! 37093121075

Figure F5 — AC coding model for arithmetic coding
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Encode_V(S)

Encode_sign_of_V

Encode_log'2_Sz

Encode_Sz_bits

11501 350-93Id076

Figure F.6 — Sequence of procedures in encoding non-zero values of V

F.1.4.3.1.1 Encoding the sign

The sign is encoded by coding a 0-decision when the sign is positive and a l-decision when the sign is negative
(see Figure F.7). '

The context-indices SS, SN and SP are defined for DC coding in Table E4 and for AC coding in Table F5. After the sign
is coded, the context-index S is set to either SN or SP, establishing an initial value for Encode_log2_Sz.

F.1.4.3.1.2 Encoding the magnitude category

The magnitude category is determined by a sequence of binary decisions which compares 82 against an exponentially
increasing bound (which is a power of 2) in order to determine the position of the leading 1-bit. This establishes the
magnitude category in much the same way that the Huffman encoder generates a code for the value associated with the
difference category. The flow chart for this procedure is shown in Figure ES.

The starting value of the context-index S is determined in Encode_sign_of_V, and the context-index Values X1 and X2
are defined for DC coding in Table E4 and for AC coding in Table F.5. In Figure FLS, M is theexclusive upper bound for
the magnitude and the abbreviations “SLL” and “SRL” refer to the shift-left—logical and shift-right—logical operations — in
this case by one bit position. The SRL operation at the completion of the procedure aligns M with the most significant bit
of 32 (see Table F3).

The highest precision allowed for the DCT is 15 bits. Therefore, the highest precision required for the coding decision
tree is 16 bits for the DC coefficient difference and 15 bits for the AC coefficients, including the sign bit.
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Encode_sign_.of_V

I Code_1 (S S) Code;0(SS) I

TISO1 39093/11077

Figure F.7 — Encoding the sign ofV

Table F.3 - Categories for each maximum bound

Exclusive upper
bound (M)

\DOOQQUI-FUJN
.-»—-.—‘1—4.—‘ Amie—O
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Encode_logZ_Sz

Code_1(S)

M=SLLM1 _
5:3“ M-SFILM1

TISO’I 400-99/d073

Figure F.8 — Decision sequenceto establish the magnitude category
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F.1.4.3.1.3 Encoding the exact value of the magnitude

After the magnitude category is encoded, the low order magnitude bits are encoded. These bits are encoded in order of
decreasing bit significance. The procedure is shown in Figure F9. The abbreviation “SRL” indicates the shift-right-
logical operation, and M is the exclusive bound established in Figure F.8. Note that M has only one bit set — shifting M
right converts it into a bit mask for the logical “AND” operation.

The starting value of the context-index S is determined in Encode_log2_Sz. The increment of S by 14 at the beginning of
this procedure sets the context-index to the value required in Tables E4 and F5.

Encode_Sz—biis

 

M=SFlLM1

No

T=M AND 32

Code_0(S) V Code_1(S)

 
TlSOi 410-93/d079

Figure F3 — Decision sequence to code the magnitude bit pattern
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F.1.4.4 Statistical models

An adaptive binary arithmetic coder requires a statistical model. The statistical model defines the contexts which are used
to select the conditional probability estimates used in the encoding and decoding procedures.

Each decision in the binary decision trees is associated with one or more contexts. These contexts identify the sense of the
MP8 and the index in Table D.3 of the conditional probability estimate Qe which is used to encode and decode the binary
decisiOn.

The arithmetic coder is adaptive, which means that the probability estimates for each context are developed and
maintained by the arithmm'c coding system on the basis of prior coding decisions for that context.

F.1.4.4.1 Statistical model for coding DC prediction differences

The statistical model for coding the DC difference conditions some of the probability estimates for the binary decisions on

previous DC coding decisions. '

F.1.4.4.l.1 Statistical conditioning on sign

In coding the DC coefficients, four separate statistics bins (probability estimates) are used in coding the zero/not—zero (V =
0) decision, the sign decision and the'first magnitude category decision.‘Two of these bins are used to code the V = O
decision and the sign decision. The other two bins are used in coding the first magnitude decision, 52 <_ 1; one of these
bins is used whenthe sign is positive, and the other is used when the sign is negative. Thus, the first magnitude decision
probability estimate is conditioned on the sign of V.

F.1.4.4.1.2 Statistical conditioning on DC difl’er'ence in previous block

The probability estimates for these first three decisions are also conditioned on Da, the difference value coded for the
previous-DCT block of- the same component. The differences are classified into five groups: zero, small positive, small
negative, large positive and large negative. The relationship between the default classification and the quantization scale is
shown in Figure F.10.

+4 +5 DC difference

+ large Classification
11501 420-931d080

' Figure F.10 — Conditioning classification of difference values

The bounds for the “small” difference category determine the classification. Defining L and U as integers in the range 0 to
15 inclusive, the lower bound (exclusive) for difference magnitudes classified as “small” is zero for L = 0, and is ZL-l for
L>O.

The upper bound (inclusive) for difference magnitudes classified as “small” is 2U.

L shall be less than-or equal to U.

These bounds for the-conditioning category provide a segmentation which is identical to that listed in Table F.3.

F.1.4.4.1.3 Assignment of statistical bins to the DC binary decision tree

As shown in Table F.4, each statistics area for DC coding consists of a set of 49 statistics bins. In the following
explanation, it is assumed that the bins are contiguous. The first 20 bins consist of five sets of four bins selected by a
context-index ,SO. The value of SQ is given by DC'._Context(Da), which provides a value of O, 4, 8, 12 or 16, depending on
the difference classification of Da (see F.1.4.4.l.2). The remaining 29 bins, X1,...,X15,M2,...,M15, are used to code
magnitude category decisions and magnitude bits.
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Table F.4 — Statistical model for DC coefficient coding
 

Context-index Value ‘ Coding decision 

SO DC_Context(Da) V=0

55 so +1 v 3 Sign ofV
SP so+2 , Si<1ifV>0
SN so+3 Sz<1ifV<0'
x1 20 ' Sz<2
x2 x1+1 Sz<4
x3 x1+2 52<s

X1 + 14 52 < 215

X2 + 14 Magnitude bits if 52 < 4
X3 + 14 Magnitude bits if 82 < 8

x15 + 14 ‘ ' Magnitude bits if Sz < 215 

F.1.4.4.1.4 Default conditioning for DC statistical model

The bounds, L and U, for determining the conditioning category have the default values L = O and U = 1. Other bounds
may be set using the-DAC (Define Arithmetic coding Conditioning) marker segment, as described in Annex B.

F.1.4.4.1.5 Initial conditions for‘DC statistical model

At the start of a scan and at the beginning of each restart interval, the difference for the previous DC value is defined to be
zero in determining the conditioning state. ‘

F.1.4.4.2 Statistical model for coding the AC coeflicients

As shoWn in Table F5, each statistics area for AC coding consists of a contiguous set of 245 statistics bins. Three bins are
used. for each value of the zig-zag index K, and two sets of 28 additional bins X2,...,X15,M2,...,M15 are used for coding
the magnitude categoryand magnitude bits.

The value of SE (and also SO, SP and SN) is determined by the zig—zag index K. Since K is in the range 1 to 63, the
lowest value for SE is Ovand the largest value for SP is 188. SS is not assigned a'value in AC coefficient coding, as the
signs of the coefficients are coded with a fixed probability value ofapproximately 0.5 (Qe = X’5A1D’, MPS = 0).

The value of X2 is given by AC_Context(K). This gives X2 = 189 when K S Kx and X2 = 217 when K > Kx, where Kx is
defined using the DAC marker segment (see 8.2.4.3);

Note that a X1 statistics bin is notused in this sequence. Instead, the 63 x 1 array of statistics bins for the magnitude
category is used for two decisions. Once the magnitude bound has been determined — at statistics bin Xn, for example — a
single statistics bin, Mn, is used to code the magnitude bit sequence for that bound.

E.1.4.4.2.1 Default conditioning for AC coefficient coding

The default value of Kx is 5. This may bemodified using the DAC marker segment, as described in Annex B.

F.1.4.4.2.2 Initial conditions for AC statistical model

At the start of a scan and at each‘restart, all statistics bins are 're-initialized to the standard default value described in
Annex D. ‘
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Table F.5 — Statistical model for AC coefficient coding

Context-index Value Coding decision

3 x (K — 1)
SE + 1
Fixed estimate
SO + 1
SO + l»

AC_Context(K)
X2 + l

 

X2 + 13 Sz < 215

X2 + 14 Magnitude bits if 52 <
- X3 + 14 Magnitude bits if 52 < 8   

X15 + 14 Magnitude bits if 82 < 215

F.1.5 Extended sequential DCT-based Huffman encoding process for 12-bit sample precision

This process isidentical to the sequential DCT process for 8-bit precision extended to four Huffman table destinations as
documented F. 1 .3, with the following changes. ’

F.1.5.l Structure of DC code table for 12-bit sample precision

The two’s complement difference magnitudes are grouped into 16 categories, SSSS, and a Huffman code is created for
each of the '16 difference magnitude categories.

The Huffman table for DC coding (see Table ED is extended as shown in Table F.6.

Table F.6 — Difference magnitude categories for DC coding

Difference values

—4 095..—2 048,2 043..4 095

—8 191..-4 096,4 096.8 191

~16 383..—8 192,8 192..16 383

—32 767..—16 384,16 384.32 767

F.1.5.2 Structure of AC code. table for 12-bit sample precision

The general structure of the code table is extended'as illustrated in Figure F.11‘. The Huffman table for AC coding is
extended as shown in Table F.7. ' '
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COMPOSITE VALU ES

nso14ao-ea/d031

Figure F.11 — Two-dimensional value array for Huffman coding

Table F.7 - Values assigned to coefficient amplitude ranges

AC coefficients

—2 047..—1 024,1 024.2 047

—4 095..—2 048,2 o4s..4 095

—s 191..-4 096.4 096.8 191

~16 383..—8 192,8 192.16 333

Extended sequential DCT-based aiiithnietic encoding process for 12-bit sample precision

The process is identical to the sequential DCT process for 8-bit precision except for changes in the precision of the FDCT
computation. ~*

The structure of the encoding procedure is identical to that specified in F.1.4 whiCh was already defined for a 12-bit
sample precision. -

F.2 Sequential DCT-based decoding processes

F.2.1 Sequential DCT-based control'procedures and coding models

F.2.1.1 Control procedures forsequential‘DCT—based decoders

The control procedures for decoding compressed image data and its constituent parts — the frame, scan, restart interval and
_ MCU - are given in Figures E6 to E.1’0. The procedure for decoding a MCU (Figure E.10) repetitively calls the

procedure for decoding a data unit. For DCT-based decoders the data unit is an 8 x 8 block of samples.

F.2.1.2 Procedure for decoding an 8 x 8 block data unit

In the sequential DCT-based» decoding process, decoding an 8 X 8 block data unit consists of the following procedures:
a) decode DC coefficient for 8 x 8 block using the DC table destination specified in the scan header;
b) decode AC coefficients for 8 x 8 block using the AC table destination specified in the scan header;
c) dequantize using table destination specified in the frame header and calculate the inverse 8 x 8 DCT.

F.2.1.3 Decoding models for the sequential DCT procedures

Two decoding procedures are used, one for the DC coefficient 22(0) and the other for the AC Coefficients ZZ(1)...ZZ(63).
The coefficients are decoded in the order in which they occur in the zig-zag sequence order, starting with the DC
coefficient. The coefficients are represented as two‘s complement integers.
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F.2.1.3.1 Decoding model for DC coefficients

The decoded difference, DIFF, is added to the DC value from the most recently decoded 8 X 8 block from the
same component. This 22(0) = PRED + DIFF.

At the beginning of the scan and at the beginning of each restart interval, the prediction for the DC coefficient is
initialized to zero.

F.2.1.3.2 Decoding model for AC coefficients

The AC coefficients aredecoded in the order in which they occur in ZZ. When the EOB is decoded, all remaining
coefficients in ZZ are initialized to zero. v

F.2.1.4 Dequantization of the unantized DCT coefficients

The dequantization of the quantized DCT Coefficients as described in Annex A, is accomplished by multiplying each
quantized coefficient value by the quantization table value for that coefficient. The decoder shall be able to use up to four
quantization table destinations.

F.2.1.5 Inverse DCT (IDCT)

The mathematical definition of the lDCT is given in A.3.3.

After computation of the IDCT, the signed output samples are level-shifted, as described in Annex A, converting the
Output to an unsigned representation. For 8-bit‘precision the level shift is performed by'adding 128. For 12-bit precision
the level shift is performed by adding 2 048. If necessary, the output samples shall be clamped to stay within the range
appropriate for the precision (O to 255 for 8-bit precision and O to 4 095 for 12-bit precision).

F.2.2 Baseline Huffman Decoding procedures

The baseline decoding procedure is for 8-bit sample precision. The decoder shall be capable of using up to two DC and
two AC Huffman tables within one scan.

r.2.2.1 Huffman decodingvof DC coefficients

The decoding procedure for the DC difference, DIFF, is:

‘ T = DECODE

DIFF = RECEIVECI‘)

DIFF = EXTEND(DIFF,T)

where DECODE is a procedure which returns the 8—bit value associated with the next Huffman code in the compresseds the next T bits of the serial bit string into the low
image data (see F.2.2.3) and RECEIVECI‘) is a procedure which place ‘order bits of DIFF, MSB first. If T is zero, DIFF is set to zero. EXTEND is a procedure which converts the partially
decoded DIFF value of precision T to, the full precision difference. EXTEND is shown in Figure F.12.
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EXTEND(V,T)

T1501 440-93/(1082

Figure F.12 — Extending the sign bit of a decoded value in V

coefficients
F.2.2.2 Detoding procedure for AC

ents is shown in Figures EB and FM.
The decoding procedure for AC coeffici
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Decode_AC_
coefficients

RS = DECODE

8835 = R5 modulo 16
RRFIFI = SRL RS 4
R = HERE

|

TlSOMSO-BB/dDBS

' Figure F.13 — Huffman decoding procedure for AC coefficients
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. Decode_ZZ(K)

2(K) = RECEIVE(SSSS)
ZZ(K) = EXTEND(ZZ(K),SSSS)

TlSOMSO—QS/dom

Figure F.14 — Decoding a non-zero AC coefficient

The decoding of the amplitude and sign of the non-zero coefficient is done in the procedure “Decode_ZZ(K)”, shown in
Figure F.14. ' '

DECODE is a procedure which returns the value, RS, associated with the next Huffman code in the code stream
(see F.2.2.3). The values 5888 and R are derived from RS. Thejvalue of 8858 is the four low order bits of the composite
value and R contains the value of RRRR (the four high order bits of the composite value). The interpretation of these
values is described in F.1.2.2.‘EXTEND is shown in Figure F.12.

522.23 The DECODE procedure

The DECODE procedure decodes an 8-bit value which, for the DC coefficient, determines the difference magnitude
category. For the AC coefficient this 8-bit value determines the zero run length and non-zero coefficient category.

Three tables, HUFFVAL, HUFFCODE, and HUFFSIZE, have been defined in Annex C. This particular-implementation
of DECODE makes use of the ordering of the Huffman'codes in HUFFCODE according to both value and code size.
Many other implementations ofDECODE are possible.

NOTE— The values in HUFFVAL are assigned to each code in HUFFCODE and HUFFSIZE in sequence. There are no
ordering requirements for the values in HUFFVAL which have assigned codes of the same length.

The implementation of DECODE described. in this subclause uses three tables. MINCODE. MAXCODE and VALPTR,
to decode a pointer to the HUFFVAL table. MINCODE, MAXCODE and VALPTR each have 16 entries, one for each
possible code size. MINCODE(I) contains the smallest code value for a given length I, MAXCODE(I) contains the largest
code value for a given length I, and VALP’I‘R(I) contains the index to the start of the list of values in HUFFVAL which
are decoded by code words of length I. The values in MlNCODE and MAXCODE are signed 16-bit integers; therefore, a
value of —1 sets all of the bits.

The procedure for generating these tables is shown. in Figure F.15. The procedure for DECODE is shown in Figure F.16.
Note that the 8-bit “VALUE” is returned to the procedure which invokes DECODE. -
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Decoder_tables

MAXCODEU) = —1

VALPTR(I) = J
MINCODEU) = HUFFCODE(J)
J = J + BITS(I)— 1
MAXCODEU) =, HUFFCODE(J)
J=J+1v T1501470-93/d035

Figure F.15 - Decoder table generation
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DECODE

I = 1
CODE = NEXTBIT

|= l+1
CODE = (SLL CODE 1)+ NEXTBIT

CODE > MAXCODE(I)
‘ ?

J = VALPT'R(I)
J = J + coma — MINCODEU)
VALUE = HUFFVAL(J) ‘

Return VALUE

11501480-93/d056

Figure F.16 — Procedure for DECODE
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F.2.2.4 The RECEIVE procedure

RECEIVE(SSSS)' is a procedure which places the next 5588 bits ’of the entropy—coded segment into the low order bits of
DIFF, MSB first. It calls NEXTBIT and it returns the value of DIFF to the calling procedure (see Figure F.17).

RECEIVE(SSSS)

|=|+1
V=(SLLV1)+NEXTBIT

'I'ISOi 490-93/d087

Figure F.17 — Procedurefor RECEIVE(SSSS)

F.2.2.5 The NEXTBIT procedure

NEXTBIT reads the next bit of compressed data and passes it to higher level routines. It also intercepts and removes stuff
bytes and detects markers. NEXTBIT reads the bits ofa byte starting with the MSB (see Figure F.18).

Before starting the decoding of a scan, and after processing a RST marker, CNT is cleared. The compressed data are read
one byte at a time, using the procedure NEXTBYTE. Each time a byte, B, is read, CNT is set to 8. ’

The only valid marker which may occur within the Huffman coded data is the RSTm marker. Other than the E01 or
markers which may occur at or before the start of a scan, the only marker which can occur at the end .of the scan is the
DNL (define-number—of—lines).

Normally, the decoder-will terminate the decoding at the end‘ of the final restart interval before the terminating marker is
intercepted. If the DNL marker is encountered, the current line count is set to the value specified by that marker. Since the
DNL marker can only be used at we end of the first scan, the scan decode procedure must be terminated when it is
encountered.
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N EXTBIT

B = NEXTBYTE
CNT = 8

B2 = NiEXTBYTE

BIT = SRL B 7 .
CNT = CNT —- 1 Process DNL marker
B=SLLBA1

Return BIT Terminate scan

TISOi 500-93Id088

Figure F.18 - Procedure for fetching the next bit of compressed data

F.2.3 Sequential DCT decoding process With 87bit precision extended to four sets of Huffman tables

This process is identical to the Baseline decoding process described in F.2.2, with the exception that the decoder shall be
capable of using up to four DC and four AC Huffman tables within one scan. Four DC and four AC Huffman tables is the
maximum allowed by this Specification.

F.2.4 Sequential DCT decoding process with arithmetic coding

This subclause describes the sequential DCT decoding process with arithmetic decoding.

The arithmetic decoding procedures for decoding binary decisions, initializing the statistical model, initializing the
decoder, and resynchronizing the decoder are listed in Table 13.4 of Annex D.

Some of the procedures in Table D4 are used in the higher level control structure for scans and restart intervals described
in F.2. At the beginning of scans and restart intervals, the probability'estimates used in the arithmetic decoder are reset to
the standard initial value as part of the Initdec procedure which restarts the arithmetic coder.
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The statistical models defined in F.1.4.4 also apply to this decoding process.

The decoder shall be capable of using up to four DC and four AC conditioning tables and associated statistics areas within
one scan.

F.2.4.1 Arithmetic decoding of DC coefficients

The basic structure of the decision sequence for decoding a DC difference value, DIFF, is shown in Figure F.19. The
equivalent structure for the encoder is found in Figure F.4.

 
Decode_DC_Dl FF

D = Deoode(SO)

Decode_V(SO)

T180151 033M089

Figure F.19 — Arithmetic decoding of DC difi'erence

The context—indices used in the DC decoding procedures are defined in Table FA (see F.1.4.4.1.3).

The “Decode” procedure returns the value “D” of the binary decision. If the valueis not zero, the sign and magnitude of
the non-zero DIFF must be decoded by the procedure “Decode_V(SO)”.

F.2.4.2 Arithmetic Decoding of AC coefficients

The AC coefficients are decoded in the order that they occur in ZZ(1,...,63). The encoder procedure for the coding process
is found in Figure F5. Figure F.20 illustrates the decoding sequence. -
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Decode_AC_
coefficients

D = Decode(SE)

D = Decode(SD)

Decode_V(SO)

11301520-93/d090

Figure F.20 — Procedure for decoding the AC coefficients

The context-indices used in the AC decoding procedures are defined in Table F.5 (see F.l.4.4.2).
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In Figure F20, K is the index to the zigzag sequence position. For the sequential scan, Kmin = 1 and Se = 63. The
decision at the top of the loop is the E03 decision. If the EOB occurs (D i 1), the remaining coefficients in the block are
set to zero. The inner loop just below the EOB decoding decodes runs of zero coefficients. Whenever the coefficient is
non-zero, “Decode_V” decodes the sign and magnitude of the coefficient. After each non-zero coefficient is decoded, the
EOB decision is again decoded unless K = Se.

F.2.4.3 Decoding the binary decision sequence for non-zero DC differences and AC coefficients

Both the DC difference and the AC coefficients are represented as signed two’s complement 16-bit integer values. The
decoding decision tree for these signed integer values is the same for both the DC and AC coding models. Note, however,
that the statistical models are not the same.

F.2.4.3.1 Arithmetic decoding of non-zero values

Denoting either DC differences or AC coefficients as V, the non-zero signed integer value of 'V is decoded by the
sequence shown in Figure F.21. This sequence first decodes the sign of V. It then decodes the magnitude category of V
(Decode_log2_Sz), and then decodes the low order magnitude bits (Decode_Sz_bits). Note that the value decoded for 82
must be incremented by l to get the actual coefficient magnitude.

Decode,.V(S)

Decode_sign_of_v

Decode_logz_Sz

Decode_Sz_bits

TlSO1530-93/d091

Figure F.21 — Sequence of procedures in decoding non-zero values of V
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F.2.4.3.1.1‘ Decoding the sign

The sign is decoded by the procedure shown in Figure F22.

The context-indices are defined for DC decoding in Table R4 and AC decoding in Table F.5.

If SIGN = O, the sign of the coefficient is positive; if SIGN = 1, the sign of the coefficient is negative.

Decode_sign_oi_V

SIGN = Decode(SS)

TISOIMO-SSIdOQZ

Figure F.22 — Decoding the sign of V

F.2.4.3.1.2 Decoding the magnitude category

The context—index S is set in Decode_sign_of_V and the context-index values X1 and X2 are defined for DC coding in
Table R4 and for AC coding in Table F.5.

In Figure F23, M is set to the upper bound for the magnitude and shifted left until the decoded decision is zero. It is then
shifted right by 1 to become the leading bit of the magnitude of Sz.
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D = Deoode(5)  
D = Decode(S)

D = Decode(S)

M=SLLM1 M=SRLM1
S=S+1 Sz=M

TISO1 550‘93/(1093

Figure F.23 - Decoding procedure to establish the magnitude category
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F.2.4.3.1.3 Decoding the exact value of the magnitude

After the magnitude category is decoded, the low order magnitude bits are decoded. These bits are decoded in order of
decreasing bit significance. The procedure is shown in Figure F.24.

The context-index S is set in Decode_log2_Sz.

Decode_SzJ3its

D = Decode(S)

“501560-93/d094

Figure F.24 — Decision sequence to decode the magnitude bit pattern

F.2.4.4 Decoder restart

The RSTn1 markers which are added to the compressed data between each‘restart interval have a two byte value which
cannot be generated by the coding procedures. These two byte sequences can be located without decoding, and can
therefore be used to resynchronize the decoder. RSTm markers can therefore be used for error recovery.

CCITT Rec. T.81 (1992 E) 117

 



OLYMPUS EX. 1016 - 314/714

ISO/IEC 10918-1 : 1993(E)
Before error recovery procedures can be invoked, the error condition must first be detected. Errors during decoding can
show up in two places:

a) The decoder fails to find the expected marker at the point where it is expecting resynchronization.

b) Physically impossible data are decoded. For example, decoding a magnitude beyond the range of values
allowed by the model is quite likely when the compressed data are corrupted by errors. For arithmetic
decoders this error condition is extremely important to detect, as otherwise the decoder may reach a
condition where it uses the compressed data very slowly.

NOTE — Some errors will not cause the decoder to lose synchronization. In addition, recovery is not
possible for all errors; for example, errors in the headers are likely to be catastrophic. The two error
conditions listed above, however, almost always cause the decoder to lose synchronization in a way which
permits recovery.

In regaining synchronization, the decoder can make use of the modulo 8 coding restart interval number in the low order
‘bits of the RSTm marker. By comparing the expected restart interval number to the value in the next RSTrn marker in the
compressed image data, the‘decoder can usually recover synchronization. It then fills in missing lines in the output data by
replication or some other suitable procedure, and continues decoding. Of course, the reconstructed image will usually be
highly corrupted for at least a part of the restart interval where the error occurred.

F.2.5 Sequential DCT decoding process with Huffman coding and 12-bit precision

This process is identical to the sequential DCT process defined for 8-bit sample precision and extended to four Huffman
tables, as documented in F.2.3, but with the following changes.

F.2.5.1 Structure of DC Hufiman decode table

The general structure of the DC Huffman decode table is extended as described in E15.1.

F.2.5.2 Structure of AC Hufi‘man decode table

The general structure of the AC Huffman decode table is extended as described in F.l.5.2.

F.2.6 Sequential DCT decoding process with arithmetic coding and 12-bit precision

The process is. identical to the sequential DCT process for 8—bit precision except for changes in the precision of the [DCT
computation.

The structure of the decoding procedure in F.2.4 is already defined for a 12-bit input precision.
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Annex G

Progressive DCT-based mode of operation

(This annex forms an integral part of this Recommendation | International Standard)

This annex provides a functional specification of the following coding processes for the progressive DCT—based mode
of operation:

1) spectral selection only, Huffman coding, 8-bit sample precision;

2) spectral selection only, arithmetic coding, 8-bit sample precision;

3) full progression, Huffman coding, 8-bit sample precision; I

4) full progression, arithmetic coding, 8-bit sample precision;

5) spectral selection only, Huffman coding, 12-bit sample precision;

6) spectral selection-only, arithmetic coding, 12-bit sample precision;

7) full progression, Huffman coding, 12-bit sample precision;

8) full progression, arithmetic coding, 12-bit sample precision.

For each of these, the encoding process is specified in 6.1, and the decoding process is specified in G2. The functional
specification is presented by means of specific flow charts for the various procedures which comprise these coding
processes.

NOTE — There is no requirementin this Specification that any encoder or decoder which embodies one of the above-named
processes shall implement the procedures in precisely the manner-specified by the flow charts in this annex. It is necessary only that an
encoder or decoder implement the ftmctlon specifiedvin this annex. The sole criterion for an encoder or decoder to be considered in
compliance with this Specification is that it satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as
determined by the compliance tests specified in Part 2. '

The number of Huffman or arithmetic conditioning tables which may be used within the same scan is fOur.

Two complementary progressive procedures are defined, spectral selection and successive approximation.

In spectral selection the DCT coefficients of each block are segmented into frequency bands. The bands are coded in
separate scans. p -

In successive approximation the DCT coefficients are divided by a power of two before coding. In the decoder the
coefficients are multiplied by that same power of two before computing the DCT. In the succeeding scans the precision of
the coefficients is increased by one bit in each scan until full precision is reached.

An encoder or decoder implementing a full progression uses spectral selection within successive approximation. An
allowed subset is spectral selection alone.

Figure G.1 illustrates the spectral selection and successive approximation progressive processes.

G.1 Progressive DCT-based encoding processes

G.1.1 Control procedures and coding models for progressive DCT-based procedures

G.1.1.1 Control procedures for progressive DCT-based encoders

The control procedures for encoding an image and its constituent parts — the frame, scan, restart interval and MCU — are
given in Figures E.1 through E5.

The control structure for encoding a frame is the same as for the sequential procedures. However, it is convenient to
calculate the FDCT for the entire set of components in a frame before starting the scans. A buffer which is large enough to
store all of the DCT coefficients may beused for this progressive mode of operation.

The number of scans is determined by the progression defined; the number of scans may be much larger than the number
of components in the frame.
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63 II—II‘ DCT coefficients
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3rd scan

TlSOIS70-93/d095

6th scan

0) Progressive encoding — ' d) Progressive encoding —
Spectral selection Successive approximation

Figure G.1 — Spectral selection and successive approximation progressive processes
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The procedure for encoding a MCU (see Figure E5) repetitively invokes the procedure for coding a data unit. For
DCT-based encoders the data unit is an 8 X 8 block of samples.

Only a portion of each 8 x 8 block is coded in each scan, the portion being determined by the scan header parameters 85,
Se, Ah, and A1 (see B.2.3). The procedures used to code portions of each 8 x 8 block are described in this annex. Note,
however, that where these procedures are identical to those used in the sequential DCT-based mode of operation, the
sequential procedures are simply referenced.

G.1.1.1.1 Spectral selection control

In spectral selection the zigzag sequence of DCT coefficients is segmented into bands. A band is defined in the scan
header by specifying the starting and ending indices in the zig—zag sequence. One band is coded in a given scan of the
progression. DC coefficients are always coded separately from AC coefficients, and only scans which code DC
coefficients may have interleaved blocks from more than one component. All other scans shall have only one component.
With the exception of the first DC scans for the components, the sequence of bands defined in the scans need not follow
the zig-zag ordering. For each component, a first DC scan shall precede any AC scans.

G.1.1.1.2 Successive approximation control

If SUCCessive approximation is used, the DCT coefficients are reduced in precision by the point transform (see A.4)
defined in the scan header (see B.2.3). The successive approximation bit position parameter Al specifies the actual point
transform, and the high four bits (Ah) — if there are preceding scans for the band — contain the value of the point transform
used in those preceding scans. If there are no preceding scans for the band, Ah is zero.

Each scan which follows the first scan for a given band progressively improves the precision of the coefficients by one bit,
until full precision is reached.

G.1.1.2 Coding models for progressive DCT-based encoders

If successive approximation is used, the DCT coefficients are reduced in precision by the point transform (see A.4)
defined in the scan header (see B.2.3). These models also apply to the progressive DCT-based encoders, but with the
following changes.

G.1.1.2.1 Progressive encoding model for DC coefficients

If Al is not zero, the point transform for DC coefficients shall be used to reduce the precision of the DC coefficients. If Ah
is zero, the coefficient values (as modified by the point transform) shall be coded, using the proceduredescribed in Annex
F. If Ah is not zero, the least significant bit of the point transformed DC coefficients shall be coded, using the procedures
described in this annex.

G.1.1.2.2 Progressive encoding model for AC coefficients

If Al is not zero, the point transform for AC coefficients shall be used to reduce the precision of the ACcoefficients. If Ah
is zero, the coefficient values (as modified by the point transform) shall be coded using modifications of the procedures
described in Annex F. These modifications are described in this annex. IfAh is not zero, the precision of the coefficients
shall be improved using the procedures described in this annex.

G.1.2 Progressive encoding procedures with Huffman coding

G.1.2.1 Progressive encoding of DC coefficients with Huffman coding

The first scan for a given component shall encode the DC coefficient values using the procedures described in F.1.2.1. If
the successive approximation bit pesition parameter Al is not zero, the coefficient values shall be reduced in precision by
the point transform described in Annex A before coding.

In subsequent scans using successive approximation the least significant bits are appended to the compressed bit stream
without compression or modification (see G.1.2.3), except for byte stuffing.

G.1.2.2 Progressive encoding of AC coefficients with Huffman coding

In spectral selection and in the first scan of successive approximation for a component, the AC coefficient coding model is
similar to that used by the sequential procedures. However, the Huffman code tables are extended to include coding of
runs of End-Of—Bands (EOBs). see Table 6.1.
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Table (9.1 — EOBn code run length extensions

EOBn code

1

23
4-7

8"15

16-31

32-63

64-127

128u255

256-511

512-1023

1024-2047

204su4095

4096u819l
8192"16383

16384-32767

The end-of-band run structure allows efficient coding of blocks which have only zero coefficients. An EOB run of length
5 means that the current block and the next four blocks have an end-of-band with no intervening non-zero coefficients.
The EOB run length is limited only by the restart interval.

The extension of the code table is illustrated in Figure G.2.

COMPOSITE VALUES

TlSO1580—93/d096

Figure G.2 — Two-dimensional value array for Huffman coding

The EOBn code sequence is defined as follows. Each EOBn code is followed by an extension field similar to the
extension field for the coefficient amplitudes (but with positive numbers only). The number of bits appended to the EOBn
code is the minimum number required to specify the run length.

If an EOB run is greater than 32 767, it is coded as a sequence of EOB runs of length 32 767 followed by a final EOB run
sufficient to complete the run.

At the beginning of each restart interval the EOB run count, EOBRUN, is set to zero. At the end of each restart interval
any remaining EOB run is coded.

The Huffman encoding procedure for AC coefficients in spectral selection and in the first scan of successive
approximation is illustrated in Figures G3, 6.4, 6.5, and G.6.
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Encode_AC_
coefficients_SS

Encode_EOBRUN

EOBRUN =
EOBRUN + 1

Encoda_'ZRL

EOBFIUN = X’7FFF' ‘

Encode_Fl_ZZ(K)

' Encode_EOBRUN

TISO1590-93/d097

Figure (3.3 -— Procedure for progressive encoding of AC coefficients with Huffman coding
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In Figure G3, Ss is the start of spectral selection, .Se is the end of spectral selection, K is the index into the list of
coefficients stored in the zig—zag sequence 22, R is the run length of zero coefficients, and EOBRUN is the run length of
EOBs. EOBRUN is set to zero at the start of each restart interval.

If the scan header parameter Al (successive approximation bit position low) is not zero, the DCT coefficient values ZZ(K)
in Figure G3 and figures which follow in this annex, including those in the arithmetic coding section, shall be replaced
by the point transformed values ZZ’(K), where 22’ (K) is defined by:

, _ ZZ(K)x
ZZ (K) ' 2A!

EOBSIZE is a procedure which returns the size of the EOB extension field given the EOB run length as input. CSIZE is a
procedure which maps an AC coefficient to the 3888 value defined in the subclauses on sequential encoding (see F.1.l
and F.1.3).

Encode_EOBRUN

7

No

3885 = EOBSIZE(EOBRUN)
I = 8555 x 16
Append EHUFSIU)

bits of EHUFCO(I)
Append 8568 low order

bits of EOBFIUN
EOBRUN = 0

TlSO‘l SDDyQS/dDSH

Figure G.4 — Progressive encoding of a non-zero AC coefficient

Encode_ZFlL

Append EHUFS|(X’F0’)-
bits of EHUFCO(X’FO‘)

R = R — 16

TlSOiSlO-QBIUOSQ

Figure G.5 - Encoding of the run of zero coefficients
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Encode_R_ZZ(K)

3385 = CSIZE(ZZ(K))
I: (16 x R) +SSSS
Append EHUFSI(I)

bits of EHUFCO(I)

ZZ(K) = ZZ(K) — 1

Append 8858 low order
bits of ZZ(K)

R = 0

TlSO1620-93/d100

Figure G.6 — Encoding of the zero run and non-zero coefficient

G.1.2.3 Coding model for subsequent scans of successive approximation

The Huffman coding structure of the subsequent scans of successive approximation for a given component is similar to the
coding structure of the first scan of that component.

The structure of the AC code table is identical to the structure described in 0.1.2.2. Each non-zero point transformed

coefficient that has a zero history (i.e. that has a value i 1, and therefore has not been coded in a previous scan) is defined
by a composite 8-bit run length-magnitude value of the form:

RRRRSSSS

The four most significant bits, RRRR, give the number of zero coefficients that are between the current coefficient and the
previously'coded coefficient (or the start of band). Coefficients with non-zero history (a non-zero value coded in a
previous scan) are skipped over when counting the zero coefficients. The four least significant bits, 5838, provide the
magnitude category of the non-zero coefficient; for a given component the value of 8588 can only be one.

The run length-magnitude composite value is Huffman coded and each Huffman code is followed by additional bits:

a) One bit codes the sign of the newly non-zero coefficient. A 0-bit codes a negative sign; a 1-bit codes a
positive sign.

b) For each coefficient witha-non-zero history, one bit is used to code the correction. A 0-bit means no
correction and‘a 1-bit means that one shall be added to the (scaled) decoded magnitude of the coefficient.
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Non-zero coefficients with zero history are coded with a composite code of the form:

HUFFCO(RRRRSSSS) + additional bit (rule a) + correction bits (rule b)

In addition whenever zero runs are coded with ZRL or EOBn codes, correction bits for those coefficients with non-zero
history contained within the zero run are appended according to rule b above.

For the Huffman coding version of Encode_AC_Coefficients_SA the EOB is defined to be the position of the last point
transformed coefficient of magnitude 1 in the band. If there are no coefficients of magnitude 1, the EOB is defined to bezero.

NOTE — The definition of EOB is different for Huffman and arithmetic coding procedures.

In Figures 6.7 and 6.8 BB is the count of buffered correction bits at the start of coding of the block. BE is initialized to
zero at the start of each restart interval. At the end of each restart interval any remaining buffered bits are appended to the
bit stream following the last EOBn Huffman code and associated appended bits.

In Figures 6.7 and 0.9, BR is the count of buffered correction bits which are appended to the bit stream according to rule
b. BR is set to zero at the beginning of each Encode_AC_Coefficients_SA. At the end of each restart interval any
remaining buffered bits are appended to the bit stream following the last Huffman code and associated appended bits.

G.l.3 Progressive encoding procedures with arithmetic coding

G.l.3.1 Progressive encoding of DC coefficients with arithmetic coding

The first scan for a given component shall encode the DC coefficient values using the procedures described in F.1.4.l. If
the successive approximation bit position parameter is not zero, the coefficient values shall be reduced in precision by the
point transform described in Annex A before coding.

In subsequent scans using successive approximation the least significant bits shall be coded as binary decisions using a
fixed probability estimate of 0.5 (Qe = XTSAID’, MPS = 0).

G.1.3.2 Progressive encoding of AC coefficients with arithmetic coding

Except for the point transform scaling of the DCT coefficients and the grouping of the coefficients into bands, the first
scan(s) of successive approximation is identical to the sequential encoding procedure described in F.1.4. If Kmin is
equated to 58, the index of the first AC coefficient index in the band, the flow chart shown in Figure F5 applies. The
EOB decision in that figure refers to the “end-of-band” rather than the “end-of-block”. For the arithmetic coding version
of Encode_AC__Coefficients_SA (and all other AC coefficient coding procedures) the EOB is defined to be the position
following the last non—zero coafficient in the band.

NOTE — The definition of EOB is different for Huffman and arithmetic coding procedures.

The statistical model described in F.1.4 also holds. For this model the default value of Kx is 5. Other values of Kx may be

specified using the DAC marker code (Annex B). The following calculation for Kx has proven to give good results for 8-
bit precision samples:

Kx=Kmin+SRL (8+Sc—Kmin) 4

This expression reduces to the default of Kx = 5 when the band is from index 1 to index 63.
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Encode_AC_
coefficients_SA

Encode_EOBRUN
Append_B E_bils
Encode_ZFiL
Append_.B R__bits

Append LSB of ZZ(K)to buffered bits

Encode_EOBRUN BR = BR + 1
Append'_BE_bits
Encode_FLZZ(K)
Append__BR_bits

EOBRUN =
EOBRUN +1

BE = BE + BR

EOBRUN = X’7FFF’

Encode_EOBRUN
Append_BE_bits

TISO1 630-93/d1 01

Figure G.7 — Succe_ssiv_e approximation coding of AC-coefiicients using Huffman coding

CCITT Rec. T.81 (1992 E) 127

 



OLYMPUS EX. 1016 - 324/714

ISO/[EC 10918-1 : 1993(E)

Append BE buffered bitsto bit stream
BE = 0

T|SOiG40-93/d102

Figure G.8 — Transferring BE buffered bits from bufl'er to bit stream

Append_B FLbits

Append BR buffered bits
to bit stream

BR = 0

TlSOIfiSD-BS/MOS

Figure G.9 - Transferring BR buffered bits from buffer to bit stream
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6.1.3.3 Coding model for subsequent scans of successive approximation

The procedure "Encode_AC_Coefficient_SA" shown in Figure G.10 increases the precision of the AC coefficient values
in the band by one bit.

As in the first scan of successive approximation for a component, an EOB decision is coded at the start of the band and
after each non-zero coefficient.

However, since the end-of-band index of the previous successive approximation scan for a given component, EOBx, is
known from the data coded in the prior scan of that component, this decision is bypassed whenever the current index, K,
is less than EOBx. As in the first scan(s), the EOB decision is also bypassed whenever the last coefficient in the band is
not zero. The decision ZZ(K) = 0 decodes runs of zero coefficients. lfthe decoder is at this step of the procedure, at least
one non-zero coefficient remains in the band of the block being coded. If ZZ(K) is not zero, the procedure in Figure G.ll
is followed to code the value.

The context—indices'in Figures G.10 and G.ll are defined in Table G2 (see G.1.3.3.1). The signs of coefficients with
magnitude of one are coded with a fixed probability value of approximately 0.5 (Qe = X’SAID’, MPS = O).

G.1.3.3.1 Statistical model for subsequent successive approximation scans

As shown in Table G.2, each statistics area for subsequent successive approximation scans of AC coefficients consists of a
contiguous set of 189 statistics bins. The signs of coefficients with magnitude of one are coded with a fixed probability
value of approximately 0.5 (Qe = X’ 5A1D', MPS = 0).

G.2 Progressive decoding of the DCT

The description of the computation of the lDCT and the dequantization procedure contained in A.3.3 and A.3.4 apply to
the progressive operation.

Progressive decoding processes must be able to decompress compressed image data which requires up to four sets of
Huffman or arithmetic coder conditioning tables within a scan.

In order to avoid repetition, detailed flow diagrams of progressive decoder operation are not included. Decoder operation
is defined by reversing the function of each step described in the encoder flow charts, and performing the steps in reverse
order.
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Enco'de_Ac_
coefficients_SA

Code_1 (S E)

Code_0(s E)

Code_0(SO)

CodeSA_ZZ(K)

TlSOi SSD—QBIIH 04

Figure G.10 — Subsequent successive approximation scans for coding
of AC coefficients using arithmetic coding
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‘ CodeSA.ZZ(K)

T = LSB ZZ(K) Code_1(50)

Code_0('SC) Code_1 (SC) Code_1 (SS) Code_O(SS)

T1301 570-93/d1 05

Figure G.11 — Coding non-zero coefficients for subsequent successive approximation scans

Table G.2 — Statistical model for subsequent scans of successive
approximation coding of AC coefiicient

SE 3 x (K—I) K = EOB

50 SE + 1 > V = 0

SS Fixed estimate Sign

SC SO +1 LSB H(K) = l
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Annex H

Lossless mode of operation

(This annex forms an integral part of this Recommendation I International Standard)

This annex provides a functional specification of the following coding processes for the lossless mode of operation:

1) lossless processes with Huffman coding;

2) lossless processes with arithmetic coding.

For each of these, the encoding process is specified in HI, and the decoding process is specified in H.2. The functional
specification is presented by means of specific procedures which comprise these coding processes.

NOTE '— There is no requirement in this Specification that any encoder or decoder which embodies one of the above-named
processes shall implement-the procedures in precisely the manner specified in this annex. It is necessary only that an encoder or decoder
implement the function specified in this annex. The sole criterion for an encoder or decoder to be considered in compliance with this
Specification is that it satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as determined by the
compliance tests specified in Part 2.

The processes which provide for sequential lossless encoding and decoding are not based on the DCT. The processes used
are spatial processes based on the coding model developed for the DC coefficients of the DCT. However, the model is
extended by incorporating a set of selectable one- and two-dimensional predictors, and for interleaved data the ordering of
samples for the one—dirnensional predictor can be'different from that used in the DCT-based processes.

Either Huffman coding or arithmetic coding entropy coding may be employed for these lossless encoding and decoding
processes. The Huffman code table structure is extended to allow up to 16-bit precision for the input data. The arithmetic
coder statistical model is extended to a two-dimensional form.

H.1 Lossless encoder processes

H.1.1 Lossless encoder control procedures

Subclause E.1 contains the encoder control procedures. In applying these procedures to the lossless encoder, the data unit
is one sample.

Input data precision may be from 2 to 16 bits/sample. If the input data path has different precision from the input data, the
data shall be aligned with the least significant bits of the input data path. Input data is represented as unsigned integers
and is not level shifted prior to coding.

When the encoder is reset in the restart interval control procedure (see E.l.4), the prediction is reset to a default value. If
arithmetic coding is used, the statistics are also reset.

For the lossless processes the restart interval shall be an integer multiple of the number of MCU in an MCU-row.

H.l.2 Coding model for lossless encoding

The coding model developed for encoding the DC coefficients of the DCT is extended to allow a selection from a set of
seven one-dimensional and two-dimensional predictors. The predictor is selected in the scan header (see Annex B). The
same predictor is used for all components of the scan. Each component in the scan is modeled independently, using
predictions derived from neighbouring samples of that component.

H.I.2.1 Prediction

Figure H.1 shows the relationship between the positions (a, b, c) of the reconstructed neighboring samples used for
prediction and the position of x, the sample being coded.
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Figure H.l — Relationship between sample and prediction samples

Define Px to be the prediction and Ra, Rb, and Re to be the reconstructed samples immediately to the left, immediately
above, and diagonally to the left of the current sample. The allowed predictors, one of which is selected in the scan
header, are listed in Table H.l.

Table H.1 — Predictors for lossless coding

0 No prediction (See Annex J)
Px = Ra

Px = Rb

Px = Rc

‘Px=Ra+Rb—Rc

Px = Ra + ((Rb — Rc)/2)“)

Px = Rb + ((Ra — Rc)/2)“)

Px = (Ra + Rb)/2

‘9 Shift right arithmetic operation

Selection-value 0 shall only be used for differential coding in the hierarchical mode of operation. Selections ’1, 2 and 3 are
one-dimensional predictors and selections 4, 5, 6, and 7 are two-dimensional predictors.

The one-dimensional horizontal predictor (prediction sample Ra) is used for the first line of samples at the start of the scan
and at the beginning of each restart interval. The selected predictor is used for all other lines. The sample from the line
above (prediction sample Rb) is used at the start of each line, except for the first line. At the beginning of the first line and
at the beginning of each restart interval the prediction value of 21’ — 1 is used, where P is the input precision.

If the point transformation parameter (see AA) is non-zero, the prediction value at the beginning of the first lines and the
beginning of each restart interval is 21’ - Pt - 1, where Pt is the value of the point transformation parameter.

Each prediction is calculated with full integer arithmetic precision, and without clamping of either underflow or overflow
beyond the input precision bounds. For example, if Ra and Rb are both 16-bit integers, the sum is a 17—bit integer. After
dividing the sum by 2 (predictor 7), the prediction is a 16-bit integer.
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For simplicity of implementation, the divide by 2 in the prediction selections 5 and 6 of Table H] is done by an
arithmetic-right-shift of the integer values.

The difference between the prediction value and the input is calculated modulo 215. In the decoder the difference is
decoded and added, modulo 216, to the prediction.

H.1.2.2 Huffman coding of the modulo difference

The Huffman coding procedures defined in Annex for coding the DC coefficients are used to code the modulo 215
differences. The table for DC coding contained in Tables F.1 and F.6 is extended by one additional entry. No extra bits
are appended after 5885 = 16 is encoded. See Table H.2. ‘

Table H.2 — Difference categories for lossless Huffman coding

0

—-1,1

—3,—2,2,3

F7..—4,4..7

'—15..«8,8..15

—3l..—16,16..3l

—63..—32,32..63

—127..—64,64..127

—255..—128,128..255

—511..—25_6,256..511

—1023..—512,512..1023

—2 047..—1 024,1 024.2 047

—4 095..—2 048,2 048..4 095

—8 191..—4 096,4 096.8 19]

—16 383..—8192,8 192.16 383

—32 767..—16 384,16 384.32 767
32 768

\DOONOM-P-WNI-O
._.._-...._.._r.—._. QMAUN—Io
 

H.1.2.3 Arithmetic coding of the modulo difference

The statistical model defined for the DC coefficient arithmetic coding model (see F.1.4.4.1) is generalized to a two-
dimensional form in which differences coded for the sample to the left and for the line above are used for conditioning.

H.1.2.3.1 Two-dimensional statisticalmodel

The binary decisions are conditioned on the differences coded for the neighbouring samples immediately above and
immediately to the left from the same component. As in the coding of the DC coefficients, the differences are classified
into 5 categories: zero(0), small positive (+8), small negative (—S), large positive (+L),- and large negative (—L). The two
independent difference categories combine to give 25 different conditioning states. Figure H.2 shows the two-dimensional
array of conditioning indices. For each of the 25 conditioning 'states probability estimates for fonr binary decisions are
kept.

At the beginning of the scan and each restart interval the conditioning derived from the line above is set to zero for the
first line of each component. At the start of each line, the difference to the left is set to zero for the purposes of calculating
the conditioning.
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Difference to left
(position a)

TISD‘I 690-93ld1 D7

‘Figure H.2 - 5 x 5» Conditioning array for two-dimensional statistical model

H.1.2.3.2 Assignment of statistical bins to the DC binary decision tree

Each statistics area for lossless coding consists of a contiguous set of 158 statistics bins. The first 100 bins consist of
25 sets of four bins selected by a context-index SO. The value of SD is given by L_Context(Da,Db), which provides a
value of 0, 4,..., 92 or 96, depending on the difference classifications of Da and Db (see H.1.2.3.1). The value for SD

provided by L_Context(Da,Db) is from the array in Figure H.2.‘

The remaining 58 bins consist of two sets of 29 bins, X1, ..., X15, M2, ..., M15, which are used to code magnitude
category decisions and magnitude bits, The value of X1 is given by X1_Context(Db), which provides a value of 100 when
Db is in the zero, small positive or small negative categories and a value of 129 when Db is in the large positive or large
negative categories.

The assignment of statistical bins to the binary decision tree used for coding the difference is given in Table H.3.

Table H.3 — Statistical model for lossless coding

L_Context(Da,Db) V = 0

SO + 1 Sign
SO+2 Sz<lifV>O

SO+3 Sz<lifV<0
X1_Context(Db) 82 < 2

X1 + 1 ‘82 < 4
X1 + 2 Sz < 8

X1 + 14 V S: < 215

X2 + 14 Magnitude bits if 52 < 4
X3 + 14 Magnitude bits if 52 < 8

X15 + 14 Magnitude bits if 52 < 215 
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H.1.2.3.3 Default conditioning bounds

The bounds, L and U, for determining the conditioning category have the default values L = 0 and U = 1. Other bounds
may be set using the DAC (Define-ArithmeticConditioning) marker segment, as described in Annex B.

H.1.2.3.4 Initial conditions for statistical model

At the start of a scan and at each restart, all statistics bins are re-initialized to the stande default value described in
Annex D.

H.2 Lossless decoder processes

Lossless decoders may employ either Huffman decoding or arithmetic decoding. They shall be capable of. using up to four
tables in a scan. Lossless decoders shall be able to decode encoded image source data with any input precision from 2 to
16 bits per sample.

11.2.1 Lossless decoder control procedures

Subclause E.2 contains the decoder control procedures. In applying these procedures to the lossless decoder the data unit
is one sample.

When the decoder is reset in the restart interval control procedure (see E.2.4) the prediction is reset to the same value
used in the encoder (see H.l.2.1). If arithmetic coding is used, the statistics are also reset.

Restrictions on the restart interval are specified in H.1.1.

H.2.2 Coding model for lossless decoding

The predictor calculations defined in H.1.2 also apply to the lossless decoder processes.

The lossless decoders, decode the differences and add them, modulo‘215, to the predictions to create the output. The
lossless decoders shall be able to interpret the point transform parameter, and if non-zero, multiply the output of the
lossless decoder by ZPI.

In order to avoid repetition, detailed flow charts of the lossless decoding procedures are omitted.
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Annex J

Hierarchical mode of operation

(This annex forms an integral part of this Recommendation I International Standard)

This annex provides a functional specification of the coding processes for the hierarchical mode of operation.

In the hierarchical mode of operation each component is encoded or decoded in a non-differential frame. Such frames may
be followed by a sequence of differential A non-differential frame shall be encoded or decoded using the
procedures defined in Annexes F, G and H. Differential frame procedures are defined in this annex.

The coding process for a hierarchical encoding containing DCT-based processes is defined as the highest numbered
process listed in Table 1.1 which is used to code any non-differential DCT-based or'differential DCT-based frame in the
compressed image data format. The coding process for a hierarchical encoding containing only lossless processes is
defined to be the process used for the non-differential frames.

Table J.1 — Coding processes for hierarchical mode

Non-differential frame specification
Extended sequential DCT, Huffman, 8-bit Annex F, process 2
Extended sequential DCT, arithmetic, 8-bit Annex F, process 3
Extended sequential DCT, Huffman, 12-bit Annex F, process 4
Extended sequential DCT, arithmetic, 12-bit Annex F, process 5
Spectral selection only, Huffman, 8-bit Annex G, process 1
Spectral selection only, arithmetic. 8-bit Annex G, process 2
Full progression, Huffman, 8-bit ’ Annex G. process 3
Full progression, arithmetic, 8-bit Annex G, process 4
Spectral selection only, Huffman, 12-bit Annex G, process 5
Spectral selection only, arithmetic, 12-bit Annex G, process 6
Full progression, Huffman, 12-bit Annex G, process 7
Full progression, arithmetic, 12-bit Annex G, process 8
Lossless, Huffman, 2 through 16 bits Annex H, process 1
Lossless, arithmetic, 2 through 16 bits Annex H, process 2

\DmNChUI-th-n
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Hierarchical mode syntax requires a DHP marker segment that appears before the non—differential frame or frames. It may
include EXP marker segments and differential frames which shall follow the initial non-differential frame. The frame
structure in hierarchical mode is identical to the frame structure in non-hierarchical mode.

Either all non-differential frames within an image shall be coded with DCT-baSed processes, or all non-differential frames
shall be coded with lossless processes. All frames within an image must use the'same entropy coding procedure, either
Huffman or arithmetic, with the exception that non-differential frames coded with the baseline process may occur in the
same image with frames coded with arithmetic coding processes.

If the non-differential frames use DCT-based processes, all differential frames except the final frame for a component shall
use DCT—hased processes. The final differential frame for each component may use a differential'lossless process.

If the non-differential frames use lossless processes, all differential frames shall use differential lossless processes.

For each of the processes listed in Table 1.1, the encoding processes are specified in 1.1, and decoding processes are
specified in J.2. - ,

NOTE — There is no requirement in this Specification that any encoder or decoder which embodies one of the
above—named processes shall implement the procedures in precisely the manner specified by the flow charts in this annex. It is
necessary only that an encoder or decoder implement the function specified in this annex. The sole criterion for an encoder or decoder
to be considered in compliance with this Specification is that it satisfy the requirements given in clause 6 (for encoders) or clause 7 (for
decoders), as determined by the compliance tests specified in Part 2. '

CCITT Rec. T.81 (1992 E) 137

 
 



OLYMPUS EX. 1016 - 334/714

ISO/[EC 10918-1 : 1993(E)

In the hierarchical mode of operation each component is encoded or decoded in a non-differential frame followed by a
sequence of differential frames. A non-differential‘frame shall use the procedures defined in Annexes F, G, and H.
Differential frame procedures are defined in this annex.

J.1 Hierarchical encoding

J.1.1 Hierarchical control procedure for encoding an image

The control structure for encoding of an image using the hierarchical mode is given in Figure J.1.

Encode_image

[Generate down-sampled images]
Append SOI marker
[Append tables/miscellaneous]
Append DHP marker segment

Differential frame
7

[Upsample reference components and
Encode_frame append EXP marker segment]

‘ Generate differential components
Encode_differential_frame
Reconstmct difierential components
Reconstruct components

Reconstruct components
using matching

decoder process

More frames
?

Append E01 marker

TISO1700-53/d108

Figure J.1 — Hierarchical control procedure for encoding an image

In Figure 1.1 procedures in brackets shall be performed whenever the particular hierarchical encoding sequence being
followed requires them.
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In the hierarchical mode the define-hierarchical—progression (DHP) marker segment shall be placed in the compressed
image data before the first start-of—frame. The DHP. segment is used to signal the size of the image components of the
completed image. The syntax of the DHP segment is specified in Annex B.

The first frame for each component or group of components in a hierarchical process shall be encoded by a
non-differential frame. Differential frames shall then be used to encode the two’s complement differences between source

input components (possibly downsampled) and the reference components (possibly upsampled). The reference
components are reconstructed components created by previous frames in the hierarchical process. For either differential or
non-differential frames, reconstructions of the components shall be generated if needed as reference components for a
subsequent frame in the hierarchical process.

Resolution changes may occur between hierarchical frames in a hierarchical. process. These changes occur if
downsampling filters are used to reduce the spatial resolution of some or all of the components of the source image. When
the resolution of a reference component does not match the resolution of the component input to a differential frame, an
upsampling filter shall be used to increase the spatial resolution of the reference component. The EXP marker segment
shall be added to the compressed image data before the start—of-frame whenever upsampling of a reference component is
required. No more than one EXP marker segment shall precede a given frame.

Any of the marker segments aJIOWed before a start-of-frame for the encoding process selected may be used before either
non—differential or differential frames. '

For 16-bit input precision (lossless encoder), the differential components which are input to a differential frame are
calculated modulo 215. The reconstructed components calculated from the reconstructed differentialcomponents are also
calculated modulo 215.

If a hierarchical encoding process uses a DCT encoding process for the first frame, all frames in the hierarchical process
except for the final frame for each component shall use the DCT encoding processes defined in either Annex F or Annex
G, or the modified DCT encoding processes defined in this annex. The final frame may use a modified lossless process
defined in this annex.

If a hierarchical encoding process uses a lossless encoding process for the first frame, all frames in the hierarchical process
shall use a lossless encoding process defined in Annex H, or a modified lossless process defined in this annex.

J.1.l.1 Downsampling filter

The downsampled components are generated using a downsampling filter that is not specified in this Specification. This
filter should, however, be consistent with the upsampling filter. An example of a downsampling filter is provided in KS.

J.1.1.2 Upsampling filter

The upsarnpling filter increases the spatial resolution by a factor of two horizontally, vertically, or both. Bi—linear
interpolation is used for the upsampling filter, as illustrated in Figure I.2.

11501710-93Id109

Figure J.2 — Diagram of sample positions for upsampling rules
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The rule for calculating the interpolated value is:

PX = (Ra + Rb)/2

where Ra and Rb are sample values from adjacent positions a and b of the lower resolution image and Px is, the
interpolated value. The division indicates truncation, not rounding. The left-most column of the upsampled image matches
the left-most column of the lower resolution image. The top line of the upsampled'image matches the top line of the lower
resolution image. The right column and the bottom line of the lower resolution image are replicated to provide the values
required for the right column edge and bottom line interpolations. The upsampling process always doubles the line length
or the number of lines.

If both horizontal and vertical expansions are signalled, they are done in sequence — first the horizontal expansion and
then the vertical.

1.1.2 Control procedure for encoding a differential frame

The control procedures in Annex E for frames, scans, restart intervals, and MCU also apply to the encoding of differential
frames, and the scans, restart intervals, and MCU from which the differential frame is constructed. The differential frames
differ from the frames of Annexes F, G, and H only at the coding model level.

J.1.3 Encoder coding models for‘difi'erential frames

The coding models defined in Annexes F, G, and H are modified to allow them to be used for coding of two’s complement
differences.

J.1.3.1 Modifications to encoder DCT encoding models for differential frames

Two modifications are made to the DCT coding models to allow them to be used in differential frames. First, the FDCT of
the differential input is calculated without the level shift. Second, the DC coefficient of the DCT is coded directly —
without prediction. '

J.1.3.2 Modifications to lossless encoding models for differential frames

One modification is made to the lossless coding models. The difference is coded directly — without prediction. The
prediction selection parameter in the scan header shall beset to zero. The point transform which may be applied to the
differential inputs is defined in Annex A.

J.1.4 Modifications to the entropy encoders for differential frames

The coding of two’s complement differences requires one extra bit of precision for the Huffman coding of AC coefficients.
The extension to Tables El and E7 is given in Table J.2.

Table J.2 — Modifications to table

of AC coefficient amplitude ranges

—32 767..—16 384, 16 384.32 767

The arithmetic coding models are already defined for the precision needed in differential frames.

140 CCITT Rec. T.81 (1992 E)

 



OLYMPUS EX. 1016 - 337/714

‘ /IEC 10913-1 : 1993(E)
J.2 Hierarchical decoding

J.2.1 Hierarchical control procedure for decoding an image

The control structure for decoding an image using the hierarchical mode is given in Figure J.3.

Interpret markers

Non-Hierarchical mode

No

Hierarchical
?

Yes

Differential frame
?

[Upsample reference components]
Decode_irame Decode_differeniial_fmme

Reconstmct_components

T|SOI720~93Id110

Figure J.3 - Hierarchical control procedure for decoding an image
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The Interpret markers procedure shall decode the markers which may precede the SOF marker, continuing this decoding
until either a SOF or EOI marker is found. If the DHP marker is encountered before the first frame, a flag is set which
selects the hierarchical decoder at the “hierarchical?” decision point. In addition to the DHP marker (which shall precede
any SOF) and the EXP marker (which shall precede any differential SOF requiring resolution changes in the reference
components), any other markers which may precede a SOF shall be interpreted to the extent required for decoding of the
compressed image data.

If a differential SOF marker is found, the differential frame path is followed If the EXP was encountered in the Interpret
markers procedure, the reference components for the frame shall be upsampled as required by the parameters in the EXP
segment. The upsampling procedure described in 1.1.1.2 shall be followed.

The Decode_differential_frame procedure generates a set of differential components. These differential components shall
be added, modulo 215, to the upsampled reference components in the Reconstruct_components procedure. This creates a
new set of reference components which shall be used when requlred in subsequent frames of the hierarchical process.

J.2.2 Control procedure for decoding a differential frame

The control procedures in Annex E for frames, scans, restart intervals, and MCU also apply to the decoding of differential
frames and the scans, restart intervals, and MCU from Which the differential frame is constructed. The differential frame
differs from the frames of Annexes F, G, and H only at the decoder coding model level.

J.2.3 Decoder coding models for differential frames

The decoding models described in Annexes F, G, and H are modified to allow them to be used for decoding of two’s
complement differential components.

J2.3.1 Modifications to the difl‘erential frame decoder DCT coding model

Two modifications are made to the decoder DCT coding models to allow them to code differential frames. First, the IDCT
of the differential output is calculated without the level shift. Second, the DC coefficient of the DCT is decoded directly —
without prediction.

J.2.3.2 Modifications to the differential frame decoder lossless coding model

One modification is made to the lossless decoder coding model. The difference is decoded directly — without prediction. If
the point transformation parameter in the scan header is not zer , the point transform, defined in Annex A, shall be
applied to the differential output.

J.2.4 Modifications to the entropy decoders for differential frames

The decoding of two’s complement differences requires one extra bit of precision in the Huffman code table. This is
described in J.1.4. The arithmetic coding models are already defined for the precision needed in differential frames.
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Annex K

Examples and guidelines

(This annex does not form an integral part of this Recommendation I International Standard)

This annex provides examples of various tables, procedures, and other guidelines.

K.1 Quantization tables for luminance and chrominance components

Two examples of quantization tables are given in Tables KI and K.2. These are basedon psychovisual thresholding and
are derived empirically using luminance and chrominance and 2:1 horizontal subsampling. These tables are provided as
examples only and are not necessarily suitable for any particular application. These quantization values have been used
with good results on 8-bit per sample luminance and chrominance images of the format illustrated in Figure 13. Note that
these quantization values are appropriate for the DCT normalization defined in A.3.3.

If these quantization values are divided by 2, the resulting reconstructed image is usually nearly indistinguishable from the
source image.

Table K.1 - Luminance quantization table

 

  
   
Table K.2 - Chrominance quantization table
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K.2 A procedure for generating the lists which specify a Huffman code table

A Huffman table is generated from a collection of statistics in two steps. The first step is the generation of the list of
lengths and values which are in accord with the rules for generating the Huffman code tables. The second step is the
generation of the Huffman code table from the list of lengths and values.

The first step, the topic of this section, is needed only for custom Huffman table generation and is done only in the
encoder. In this step the statistics are used to create a table associating each value to be coded with the size (in bits) of the
corresponding Huffman code. This table is sorted by code size.

A procedure for creating a Huffman table for a set of up to 256 symbols is shown in Figure K.1. Three vectors are defined
for this procedure:

FREQ(V) Frequency of occurrence of symbol V
CODESIZE(V) Code size of symbol V

OTHERS(V) Index to next symbol in chain of all symbols in current branch of code tree

where V goes from 0 to 256.

Before starting the procedure, the values of FREQ are collected for V = 0 to 255 and the FREQ value‘for V = 256 is set to
l to reserve one code point. FREQ values for unused symbols are defined to be zero. In addition, the entries in
CODESIZE are all set to O, and the ‘indices in OTHERS are set to —1, the value which terminates a chain of indices.
Reserving one code point guarantees that no code word can ever be all “1” bits.

The search for the entry with the least value of FREQ(V) selects the largest value of V with the least value of FREQ(V)
greater than zero.

The procedure “Find V1 for least value of FREQ(Vl) > 0” always selects the value with the largest value of V1 when
more than one V1 with the same frequency occurs. The reserved code point is then guaranteed to be in the longest code
word category.
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Code__size

Find V1 {or least value of
FREQ(V1) > o

Flnd V2 for next least value
of FREQ(V2) > 0

FHEQ(V1) =
FREQ(V1) +
FREQ(V2)

FREQ(V2) = o

_ conesnzewn =
V1 ' OTHERS“) CODESIZE(V1) + 1

OTHERS(V1) = V2

_ CODESIZE(V2) =
V2 “ 0TH ERSM) COD ESIZE(V2) + 1

TlSO1730-93Id11 1

Figure K.1 — Procedure to find Huffman code sizes
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Once the code lengths for each symbol have been obtained, the number of codes of each length is obtained using the
procedure in Figure K.2. The count for each size is contained in the list, BITS. The counts in BITS are zero at the start of

the procedure. The procedure assumes that the probabilities are large enough that code lengths greater than 32 bits never
occur. Note that until the final Adjust_BITS procedure is complete, BITS may have more than the 16 entries required in
the table specification (see Annex C).

CounLBlTS

No BITS(CODESIZE(I))=

CODESQZE“) =0' BITS(CODESIZE(I)) + 1

Adjust_BITS

TISO1740—93/d1 12

Figure K.2 - Procedure to find the number of codes of each size
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Figure K.3 gives the procedure for adjusting the BITS list so that no code is longer than 16 bits. Since symbols are paired
for the longest Huffman code, the symbols are removed from this length category two at a time. The prefix for the pair
(which is one bit shorter) is allocated to one of the pair; then (skipping the BITS entry for that prefix length) a code word
from the next shortest non-zero BITS entry is converted into a prefix for two code words one bit longer. After the BITS
list is reduced to a maximum code length of 16 bits, the last step removes the reserved code point from the code length
count.

Adjust_B|TS

BITSU) = BITS“) — 2
BITS(I -— 1) = BlTS(l— 1) +1
BITS(J +1): BlTS(J + 1) + 2
BITS(J) = BITS (J) — 1

BITSU) = BlTS(l) — 1

TlSOI750-93/d113

Figure K.3 — Procedure for limiting code lengths to 16 bits
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The input values are sorted according to code size as shown in Figure K.4. HUFFVAL is the list containing the input
values associated with each code word, in order of increasing code length.

At this point, the list of code lengths (BITS) and the list of values (HUFFVAL) can be used to generate the code tables.
These procedures are described in Annex C.

11801760-93/11114

Figure K.4 — Sorting of input values according to code size

K.3 Typical Huffman tables for 8-bit precision luminance and chrominance

Huffman table-specification syntax is specified in 3.2.4.2.
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K.3.1 Typical Huffman tables for the DC coefficient differences

Tables K3 and K4 give Huffman tables for the DC coefficient differences which have been developed from the average
statistics of a large set of video images with 8-bit precision. Table K3 is appropriate for luminance components and Table
K4 is appropriate for chrominance components. Although there are no default tables, these tables may prove to be useful
for many applications.

Table K.3 — Table for luminance DC coefficient differences

2 00
010

011

100

101

110

1110

11110

111110
1111110

11111110

111111110

\omqmmgmm.‘
H D

\DOOQQLIIAU’UJLBUN
H 1—-

Table K.4 — Table for chrominance DC coefficient differences

00

01

10

110

1110

11110

111110

1111110

11111110

111111110

1111111110

11111111110

\DOOQOUI-DMND—‘O \DOOQQUIJBWNNN
D—‘H l—‘O ._.._. u—o

K.3.2 Typical Huffman tables for the AC coefficients

Tables KS and K6 give Huffman tables for the AC coefficients which have been developed from the average statistics of
a large set of images with 8-bit precision. Table K.5 is appropriate for luminance components and Table K.6 is appropriate
for chrominance components. Although there are no default tables, these tables may prove to be useful for many
applications.
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ISO/[EC 10918-1 : 1993(E)

Table K.5 -— Table for luminance AC coefficients (sheet 1 of 4)

0/0 (EOB)
0/1
0/2
0/3
CV4
0V5
CV6
0/7

01.8

00
01
100
1011
11010
1111000
11111000
1111110110

1111111110000010
1111111110000011
1100
11011
1111001
111110110
11111110110
1111111110000100

1111111110000101
1111111110000110
1111111110000111
1111111110001000
11100
11111001
1111110111
111111110100
1111111110001001
1111111110001010
1111111110001011
1111111110001100
1111111110001101
1111111110001110
111010
111110111
111111110101
1111111110001111

1111111110010000‘
1111111110010001
1111111110010010
1111111110010011

1111111110010100
1111111110010101

OOxIUI-bWNN-P
n—ap—Iv—A mooOAK

4;
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Table K.5 (sheet 2 of 4)

'IEC 10918-1 : 1993(E)

111011
1111111000
1111111110010110
1111111110010111
1111111110011000
1111111110011001
1111111110011010
1111111110011011
1111111110011100
1111111110011101
1111010
11111110111
1111111110011110

1111111110011111

 
1111111110100000
1111111110100001
1111111110100010
1111111110100011
1111111110100100
1111111110100101
1111011
111111110110
1111111110100110
1111111110100111
1111111110101000
1111111110101001
1111111110101010
1111111110101011

 
 

1111111110101100
1111111110101101
11111010
111111110111
1111111110101110
1111111110101111
1111111110110000
1111111110110001
1111111110110010
1111111110110011
1111111110110100
1111111110110101
111111000
111111111000000
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ISO/[EC 10918-1 : 1993(E)

Table K.5 (sheet 3 of 4)

1111111110110110_
1111111110110111
1111111110111000
1111111110111001

1111111110111010
1111111110111011
1111111110111100
1111111110111101
111111001
1111111110111110

1111111110111111
1111111111000000
1111111111000001

1111111111000010
1111111111000011

1111111111000100
1111111111000101
1111111111000110
111111010.,
1111111111000111

1111111111001000

1111111111001001
1111111111001010
1111111111001011

1 1111111111001100
1111111111001101
1111111111001110
1111111111001111
1111111001
1111111111010000

1111111111010001
1111111111010010
1111111111010011
1111111111010100
1111111111010101

' 1111111111010110

1111111111010111
1111111111011000
1111111010

1111111111011001
1111111111011010
1111111111011011
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Ell
EIZ
F13
E/4
FJS
E/6
13/7
[3/8
1-3/9
EA

F/O (ZRL)
Fl1
F/2
FIB
F/4
F/S
F/6
F/7
Fl8
Fl9
FIA

Code word

1111111111011100
1111111111011101
1111111111011110
1111111111011111
1111111111100000
1111111111100001
11111111000
1111111111100010
1111111111100011
1111111111100100
1111111111100101
1111111111100110
1111111111100111
1111111111101000
1111111111101001
1111111111101010
1111111111101011
1111111111101100
1111111111101101
1111111111101110
1111111111101111
1111111111110000
1111111111110001
1111111111110010
1111111111110011
1111111111110100
11111111001

1111111111110101
1111111111110110

1111111111110111
1111111111111000
1111111111111001
1111111111111010
1111111111111011
1111111111111100
1111111111111101
1111111111111110

4~_~m“\A‘.

IEC 10918-1 : 1993(E)
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Removal of subjective redundancy from DCT-coded
images

David L. McLaren. BE
D. Thong Nguyen. PhD

indexing terms: Discrete cosine transform coding, Image processing, Subjective redundancy

Abstract: The removal of subjective redundancy
from video images has recently become an import-
ant area of study. A suggested method of removin-
g thisredundancy from transform-coded images is
through the psychovisual thresholding and quan-
tisation of the image transform coctTicients. [n this
paper, the coefficient thresholding and quantisa-
tion levels are based on the combined effects of
spatial masking and the varying sensitivity of the
human visual system to different spatial fre-
quencies and levels of luminance. By combining
the Discrete Cosine Transform (DCT) method of
image coding with psychovisual thresholding and
quantisation schemes, subdistortion motion video
bit-rates as low as 2.5 Mbit/s (non-interlaced 25
frame-per-second video) have been obtained
without the need for interframe coding.

1 introduction

The increasing user demand for video as a communica-
tion medium over the last decade has greatly increased
the-need for efficient image coding and compression

methods. Although many data compression algorithms
have been proposed in the past. only recently have high-
compression algorithms been introduced. The first coding
schemes, involving simple Difi‘erential Pulse Code Modu-
lation (DPCM) and Adaptive Predictive Coding (AFC)
algorithms, were only able to obtain compression ratios
of up to 2.5 : l [l]. lnterpolative and extrapolativc
coding Went a step further and increased the compression
ratio to around 4: l [i] by transmitting only a subset of
the samples and interpolating or extrapolating to obtain
the full image. However, the most recent and most suc-
cessful methods of image compression to date have been
transform-coding-based [2,3]. By transforming spatial
data into another domain (usually frequency-related), sta-
tistical independence between pixels and high-energy
compaction can be obtained. In particular, the Discrete
Cosine Transform (DCT) algorithm has become widely
recognised as an almost optimum transform method
when compared with other transforms on the basis of
energy compaction and decorrelation between pixels [4,
5].

The general method of discrete cosine transform
coding [5] involves dividing the original spatial image 

Paper ttl75l (E4). first received 20th December liil‘) ttnd tr revtsed formlist March l99l
The authors are with the Department of Electrical and Electronic
Engineering. University of Tasmania. GPO Box 252C. Hobart. Tas-mania 7001. Australia
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into smaller N x N blocks of pels, and then transforming
the blocks to obtain equal-sized blocks of transform coef-
ficients in the frequency domain. These coefficients are
then thresholded, quantised and coded ready for trans-
mission. By combining thc discrete cosine transform with
a minimum redundancy coding scheme [5] much of the
statistical redundancy in an image can be removed in the
coding process. Recently, however. the removal of subjec-
tive redundancy, through the thresholding and quant-
ising of the transform coefficients, has also become an
important area of study as the quest continues to further
reduce the required bit rates to transmit still and moving
images. The problem has, however, not been dealt with
adequately. ~

It is the removal of these subjective redundanCtes from
DOT-coded images, through psychovisual thresholding
and quantisation, which is the subject of this paper.

The compression techniques described in this paper
are all general in nature and are therefore applicable to
the coding and compression of any image or video—based
service from low bit-rate video-telephony to High Defini-
tion Television (HDTV). The sub-distortion results pre-
sented in Section 5 are, however. more suitable for
intermediary services such as high-quality video con-
ferencing or low-quality entertainment television with
bit-rates in the region of l to 5 Mbit/s.

2 Subjective redundancy

Unlike statistical redundancy, the removal of subjective
redundancy is an irreversible process and involves dis-
carding information which the designer feels can be
removed without any change being noticed by the human
observer [6]. The sensitivity of the human visual system
to stimuli of varying levels of contrast, luminance and
different spatial and temporal frequencies varies greatly
[6], and these inconsistencies can be exploited to deter-
mine how information can be discarded without subjec-
tively degrading the final image. A number of methods
have already been proposed for including certain psycho-
visual properties of the human visual system (frequency
sensitivity [7, 8], luminance dependence [6] and masking
effects [9. 6]) into image coding and compression
schemes. However, no coding scheme has yet adequately
combined these effects to.produce a simple. efficient and
optimum method of removing subjectively—redundantinformation.

There are two areas in the standard transform-coding
process -- the thresholding and the quantising of the
DCT coefficients —— where the subjective redundancy in
an image, and hence the number of bits required for rep-rescntation. can be reduced.

Many of the DCT coefficients. obtained by trans»
forming the blocks of spatial image. are small enough net
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to be transmitted. By thresholding the blocks of coeffi-
cients, values below a given threshold level will be set to
zero leaving a reduced number of coefficients for coding.
Of course, as more coefficients are set to zero the quality
of the reconstructed image deteriorates. However, the
way in which the image quality is affected depends not
only on the number of non-zero coefficients retained but
also on which coefficients are discarded. Harsh thresh-
olding of low'frcquency coefficients causes blocking
effects (sub-block boundaries becoming visible), while
dropping too many high—frequency coefficients results in
a loss of resolution and blurring in areas of high activity.
For hi 350 an N x N thresholdin mat ' is used
which is made u of o timum thresholdin values for
each s atial f and which removes only
sub'ectiVel -redundant coefficients.

Once the blocks of coefficients have been thresholded,
the remaining non-zero coefficients are quantised to
reduce the number of levels and hence further reduce the
number of bits. Again, over-harsh quantisation of coeffi-
cients corresponding to different spatial frequencies
affects the reconstructed image in different ways. Over-
quantising low-frequency eoefiicients again causes block-
ing, while large quantisation steps at higher frequencies
lead to random noise becoming visible. The phenomenon
of spatial masking can also be taken into account to
allow for larger quantisation step sizes in certain areas.

In the past, these coefficient thresholding and quant-
ising stages have been combined into a single uniform
quantisation scheme where only those coefficients below
t low st uantis ton ste size are discarded [5].
However, because harshly thresholding and quanusing
different transform coefficients leads to different subjec‘
tive effects, these two areas should be treated separately.

3 Psychovisual thresholding

Because of the varied effects of harshly thresholding DCT
coefficients of different spatial frequencies, it is clear that
a constant threshold level for all coefficients is not effi-
cient. When a typical video image (3 : 4 aspect ratio) is
viewed from a standard'vicwing distance [6], the spatial
frequency, w”, in cycles per degree [cpd), of a coefficient,
cii, can be calculated from

w _ _32i_2+‘24j 2u N_[ N_l

itj=0,l,2,,_,‘N_1

where N is the sub«block size, and i and j are the matrix
row and column indices respectively. Psychovisual
studies have shown that the human visual system has a
general bandpass characteristic [10. 7] with peak sensi-
tivity between 3 and '4 cycles per degree and reduced
sensitivity at higher and lower spatial frequencies (Fig. 1).
This response curve has been the subject of much
research in the past and. as a result, a fairly standard
transfer function has evolved. One of the more common

forms of this sensitivity function, Si], proposed by Ngan
in [9], is given in cqn. l

5,, = 10.31 + 0.69wuyr'1-1M
i.j:0. t,2.. .,.y —1 {1)

By making the coefficient thresholding lcvcls inversely
proportional to the relative sensitivities of the corres-
ponding spatial frequencies, coefficients corresponding to
relatively insensitive frequencies will be more harshly
thresholded than those corresponding to frequencies of
340

higher sensitivity. However, the spatial frequency sensi-
tivity function of eqn 1 has been constructed from sub-
jective tests where the distribution of energy is uniform
over all frequencies [7]. As this is not true for the blocks
of DCT coefficients, the sensitivity curve must be nonmal-
ised by the average power at each frequency.

50

40

Nu oo
osensltivity,ca

0.5 1 5 10
spatial frequency. cycles/degrees

Fig. 1 Frequency sensitivity curve

To determine the coefficient energy distribution, the

power in each coefficient was averaged over each sub-
block in ten different 512 x 512 x 8-bit images (10240
blocks in all) to obtain the distribution in Fig. 2. This

50

p o

uC

N O

Lo
30D.
o>
.5
2
E

O

00 to frequency, cycleskiegfee

Fig. 2 Coefiicient power distribution

energy distribution can be adequately modelled by the
‘best-fit' function of cqn. 2 (shown by the solid line in
Fig.2)

P,j=34t10xw,-}°'9‘—l i,j=0,l.2,...,N'—l (2)
In addition to varying with spatial frequency content, the
sensitivity of the human visual system to small changes in
a single sub—block is directly proportional to the average
background luminance of the block. This relationship is
known as Weber‘s Law [1 l] and, although it is slightly
distorted by the non-linear relationship between the
applied voltage and the displayed luminance of a typical
television screen, it still holds at high luminance levels
[6]. As the DC transform coefficient, coo, is a measure of
the average luminance in an image [5], this effect is easily
incorporated into the coding process by simply scaling
each block thresholding matrix by cm.

The N x N matrix of sensitivity values, S”. is normal-
ised using the power distribution, P”, and each value is

IEE PROCEEDINGS-1. l-"al. [38, No. 5, OCTOBER 1991
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inverted to obtain a normalised sensitivity matrix 52,-. i,
j: 0, l, 2, ..., N — l. This matrix is given in Table 1 for
a sub-block size of l6 x 16 pels. Each value in the matrix
is then multiplied by cw, and uniformly scaled so that
Table 1 : Throsholding level matrix. Sb

0 2 2

wuméummugamm mmme-a-uwumuroa wdmauunnuuu commas-succulen-
11

8 8 11 13 13 15
11 11 11 11 11 13 13 15 17 17 19
15 15 15 15 17 17 17 19 19 22 25
19 19 19 19 22 22 22 25 25 27 30

Louvre-uran—u-un-n—a
1
1
1
1
l
1
t
2
2
3
4
6

1
1
1
1
1
1
2
2
3
4
6mthMM-l—A—JAAN

the thresholding, although as harsh as possible, still
causes only sub-threshold distortion (unseen by the
human observer). All subjective scaling and testing is per‘
formed as a recursive comparison procedure [12], where
the parameter in question is adjusted until no visible dif-
ference can be seen between the original and recon-
structed images when viewed from a standard viewing
distance of 6 to 8 times the image height [6]. Several
independent subjects were also used in each of these
viewing sessions. To avoid blocking effects. the low-
frequency coefficients (below 5 cycles per degree) are
further reduced to suitable values, 7:, (again determined
through subjective tests as described above). This final
matrix of thresholding values, (given by eqn. 3), is
then used to threshold the bloclrs of DCT coefficients
before quantisation.

S -l

) Coo ivy-95m
wu<5cpd

i,j=0,l,2,...,N—l (3)

mportant to note that although each image sub-
blo'at' is thresholded by the same basic matrix (1],), the
varying amount of activity in each block (reflected in the
relative magnitudes of the DCT coefficients), combined
with the changing luminance values (coo), makes this
thresholding scheme inherently adaptive to changing
image characteristics. Sub—blocks containing little or no
information (and hence very small non-DC transform
coeflicients) are thresholded relatively more harshly and
produce fewer bits for transmission.

4 Psychovisual quantization

Once thresholded, the remaining coefficients are quant-
ised to a number of discrete levels. To make the thresh-
olding and quantisation levels independent, the lowest
quantisation level. 111,”, is set half a step above the thresh-
old level. ‘IL. The overall quantisation scheme is then
uniform from that point. as shown in Fig. 3. The nonzero
transform coefficients, c”, are then quantised to EU- using

Cig ‘ 7i) + Q1/7-
er

("+7i"_ .“2
ML “<0

Qlj U

cU>0

i.j=0.l.2,....N—l
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where (X! refers to the integer value closest to x. The
optimum quantisation step sizes for each coefficient, Q5],
again depend on the spatial frequency sensxtivrty curve.

Fig. 3 Cnirflirienr quanrisnrion scheme

The effects of spatial masking, however. can also be
exploited to allow for larger quantisation step stzes in
DCT blocks containing areas of high activity [13].

Spatial masking is a well known phenomenon [6, l4]
and refers to the changing visibility of a single stimulus in
an area of varying spatial and temporal activity. In a still
image, this leads to a reduction in the visibility of pixel
errors in areas of high-detail luminance changes (high
activity). The relationship between the allowable quant-
isation step size for sub-threshold distortion and the
amount of activity in a block has been the subject of pre-
vious research [6]. For uniform quantisation. the
relationship is given by

oft/mm.) i,]=0. 1.2....,N—1 (4)

where TU is the threshold level corresponding to the
spatial frequency at matrix co-ordinates (1);) and A,- is
the block activity function‘ (a measure of the amount of
activity in a block).

In References 6 and [4 AF is defined as the sum of first
derivatives in the spatial domain. However, this defini-
tion produces a number of inconsistencies. For example,
a ramp and a sawtooth function would give the same
value for A,. In this paper, we propose a more accurate
measure of block activity i.e. the power contained in the
sum of second derivatives in the Spatial domain. The
Laplacian edge detector [15] achieves second-order dif-
ferentiation through the approximation

w2=(wf+w§)ztl—2cosval—12cc”)2

Converting to the (2,, zzydomain, this approximation
results in the well-known Laplacian mask, L, in eqn. 5.
To take into account the 3 :4 aspect ratio of most video
images, this mask is altered to obtain the mask. M, in
eqn6.

—l —1 —l

8 —1 (5)
—l —1

—2.777 —1

—l.5625 12.679 —l.5625 (6)
—1 —2.777 —1

M=

___________,____‘__—_—

' Also known as the masking function,
347

Reproduced with permission of copyright owner. Further reproduction prohibited.

 



OLYMPUS EX. 1016 - 353/714

The activity function, AF > 1, is then given by

A. = I + («for a . Xe) (7)
where M t t X denotes the 2-dimensional convolution
output of the edge operator, q is a normalisation factor
and N is the sub-block dimension. The square-root of the
summation has been applied to express the power in
linear units. However, when employing transform coding,
an ideal activity function should be calculated directly
from the blocks of transform coefficients By invoking
Parscval's theorem, the total pOWer contained in the
summation of second derivatives in the spatial domain
can be transformed into the frequency domain to obtain

d2x(m) 2 N-t
Z = (Witct'f

an” dml z . Jr.j=0

Taking the squareroot of the summation, again to revert
to linear units, an activity function in the transform
domain is given by

A; = l + q\/(Ih:;wflcfj) (8)
where w”. is the spatial frequency corresponding to
matrix position (i,j). The activity functions given by eqns.
7 and B are. however. computationally costly. In view of
the asymmetry of the mask M, A, as given in eqn. 7
requires (4N2 + l) multiplications per block while, by
using a pre-ealculatcd wfj matrix, A, as defined in eqn. 8
requires (2N2 + l) multiplications per block. If a sim-
plifying approximation to eqn. 8 is made, which includes
the square-root in the summation, the equation reducesto

N — l

AF=1+Q_ZOWI'ZjiCtji i9).. ,=

Eqn. 9 now produces results which are well correlated
with those produced by eqn. 7 (shown by the correlation
plot of Fig. 4) and at a much reduced computational cost '
(now only (N2 +1) multiplications per block and no
square-root operator). Eqn. 9, therefore, provides an
alternative definition for A,» which can be used in situ»
ations where the advantages of increased computational
efficiency outweigh the disadvantages of reduced accu-
racy.

By combining the subjective thresholding matrix. Ti].
with the activity function, as described by eqn. 4. the

lt
‘23

l00r

U) c: 1

r.)

..

"—r"—-‘i“minimum.ndlvllymurmur:-oqn.9
#4 s-..
EC BC- 1Ctt 120

.m2. meoacre eon "

J.._.‘

- 'flL'L-'.\ilrL' t'llrffllr‘llfflfl plut

coellicient quantisation step sizes are obtained. The nor—
malisation factor. 4, is again subjectively adjusted (using
the subjective testing criteria described in Section 3) so
that quantisation of the blocks of coefficients results in
only sub-threshold distortion.

5 Results

The psychovisual thresholding and quantisation schemes,
described in Sections 3 and 4 respectively, have been
combined with the standard DCT-coding algorithm and
applied to two 512 x 512 x 8-bit images (Figs. 50 and

Fig. 5 ‘Facc'imagt’
0 Original image
5 Reconstructed Image
r- Scaled difference Image
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6a). A sub—block size of 16 x 16 pels was used (N = 16)
and the images were thresholded and quantised as
harshly as possible while avoiding supra-threshold distor-

Fig. 6 ‘Church‘ image
a Original image
It Reconstructed image
r Scaled difference image

tion (no visible differences between the original and
reconstructed images when viewed from a standard
viewing distance [6]). The resulting blocks of transform
coefficients were scanned in order of increasing frequency.
and Huffman-coded using tables of optimum code-words
[5]. The compression results obtained (bits/pel ratios and
bit-rates for non-interlaced 25 frame-per-second video)
are summarised in Table 2 along with compression
results obtained without the use of subjective compres-

IEE PROCEEDINGS-I. Val. I33. NI). 5. OCTOBER I99!

sion techniques (transform coding without any thresh-
olding or quantising of the transform coefficients). Both
the reconstructed and difference (between original and
reconstructed) images and are displayed in Figs. 5b and

Table 2: Compression results
Standard DCT
compreSsion

Perceptually optimumImage
compression

Compression Bit-rare Compression Bit-rate_______________.__——————

Face 1.47 bit/Del 9.61 Mbit/s 0,38 bit/pet 2.51 Mbii/s
Church 2.39 bit/pal 15.65 Mbit/s 0.56 bit/pet 4.30Mbi1/s

6b and Figs. 5c and 6c, respectively. The difference
images have been scaled by a factor of five to make the
variations visible. A darker area indicates no change.

As expected, the higher complexity ‘church‘ image
requires a higher bit-rate for transmission than the
simpler head-and-shoulders image. By removing most of
the subjective redundancy from the two test images, com—
pression ratios up to 0.38 bits per pcl (21 : 1) have been
obtained without the need for interframe coding. This is
also an improvement by a factor of 3.8 when compared
to the standard DCT-coding algorithm without psycho-
visual compression.

6 Conclusions

The combination of standard transform coding tech-
niques and psychovisually optimum thresholding and
quantising schemes has resulted in an optimum. high-
compression. image-coding algorithm. Because of the
general nature of the psychovisual efi'ects exploited in the
compression scheme, the same techniques can be incor-
porated into almost any image communication system
involving still or moving images.

Although the results in Table 2 are optimum for sub-
threshold distortion, it should be remembered that the
bit-rates could be further reduced if a limited amount of
supralhreshoid distortion was allowed for a lower grade
of service during periods of network congestion. Also, the
thresholding and qitantisation levels in this case have
been optimised for still images. The sensitivity of the
human visual system to different spatial frequencies is
greatly reduced over the entire spectrum as the temporal
frequency approaches that of motion pictures [6], in
which case the images could be thresholded and quant-
ised more harshly. The result would be even lower bit-
rates while still retaining a high image quality.
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42.2: Color-Facsimile System for Mixed-Color Documents
I. Miyagawa, H. Mizumachi, M. Matsuki

NTT Human Interface Laboratories, Kanagawa, Japan

ABSTRACT

In order to transmit mixed color doouments such as a color
page of illustrated magazine, with high data efficiency, we proposed
to use ODA type document structure and developed the simulation
system. The result of coding simulation, automatic image area
separation and the simulation system are described.

.-

INTRODUCTION

Due to recent progress in color image technology, the demand
for color image communication such as color facsimile is rapidly
increasing. Color documents to be transmitted by color facsimile can
be roughly classified into the following types:

: color pie graphs, B&W(Black and White)
documents marked with red ink,

- full color color photogiaphs,
- mixed color : combinations of above documents

(ex. color page of illustrated magazine, color catalog)

— multi color

Standardization of a color extension for facsimile is being
discussed in ITU—T Study Group 8. The representation method for a
single full color image on a single page will be developed as the first
step; mixed colors will be the second step. As many color documents
can be classified as mixed color documents, a highly efficient but high

guality encoding method for mixed color documents is veryImportant.

We proposed to use an ODA(0pen Document Architectural”
type document structure such 35' page and block, and single content
type i.e. raster graphic content, for the encoding of mixed color
documentslml. We have developed a simulation system for this
encoding and communication system named the Mixed Color
Facsimile. This paper presents results gained from encoding
simulations, mixed color syntax, and automatic image area separation,
especially for photographic images and B&W documents.

MIXED COLOR FACSIMILE

In the past few years, remarkable advances have been made in
the development and standardization of image coding techniques. The
JPEG“ and JBIGIS} encoding schemes were developed by an [TU-T
and ISO/IEC joint group. The JPEG encoding scheme was
developed for full color images. The 1316 encoding scheme was
developed for B&W bi-level images and bit-plane images such as
multi-color images. Therefore, they are not suitable for other types of
images.

If only one encoding scheme. JPEG or JBlG, is used for
mixed color documents. we may not be able to achieve high efficiency
and high quality for all document components.

In order to solve this issue, we introduce the mixed color
communication mode, in which a page of mixed color components is
divided into few different image types such as full color, multi-color,
and B&W binary. Each type is encoded using the most suitable
encoding method. Full color areas are encoded using 1 PEG. Multi-
color areas and B&W binary images are encoded by .lBIG or MMR.
For example, if the test image containing a full color component
(1PEG gold hill) and a B&W document (CCl'lT Test document
NOA) in one page as shown in Figure l is encoded by JPEG, the

lSSNOOQ7—0966X/94/2501-0887-$1.00 + .00 © 1994 SID

mu- .~ I . Datum-n qu-nu mm IJmm a: mu vlnnmlml you. r 1

Figure 1. Test image for Mixed Color Facsimile simulation

Table 1. Simulation results of Mixed Color Facsimile compression

result is a compressed file of 500kbytes. If this image is divided into
a full-color area and a B&W bi-Ievel area and coded with JPEG and
MMR or 1310 respectively, the compressed file occupies only [25 to
129 kbytes. This is about one fourth that output by JPEG only. The
result is summarized in Table 1.

In order to apply this method to the scan and send type color
facsimile system which scans and sends almost simultaneously, the
following are required;

1) document syntax that can represent the structure of the area
separated color images.

2) automatic area separation method.
Therefore, we studied document syntax and developed these items. A
simulation system was constructed on a work-station for confirming
the efficiency and applicability of the proposed method, This paper
reports the structure of the document syntax, automatic area
separation method and simulation results.
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Figure 2. The structure of mixed color documents

DOCUMENT SYNTAX FOR MIXED COLOR FACSIMILE

For transmitting a mixed color facsimile document, a
document syntax that represents the document structure is necessary.
For this simulation system, we extended the Group 4 class I facsimile
syntax. The Group 4 class 1 syntax is a subset of ODA and can be
extended to support structured documents. In this syntax, only the
layout structure is used and root, page and block are specified. This
structure is shown in Figure 2. Contents used for this system are
limited to the raster graphic contents of ODA.

An ASN.1(Abstract Syntax Notation l) representation of this
syntax is shown in Figure 3. Color related attributes that are used in
this system are introduced from the ODA Colour extension and JPEG
related attributes are newly added. Image encoding schemes used in
the simulation system are 1PEG for full color images and MMR for
B&W images.

AUTOMATIC IMAGE AREA SEPARATION

For easy operation of the mixed color facsimile, an automatic
image area separation technique is necessary. In this system, spatial
frequency analysis using DCT(Discrete Cosine Transform) is used to
distinguish character and photographic image area. Spatial frequency
analysis is a well known method for this kind of process, but it is
difficult to apply this method to scanned images whose resolutions
range from 200 or 300 ppi(pel/inch) resolution because the
differences between the DCT coefficients of these images are not
clear. Therefore, we analyzed the spatial frequency property of these
images using several subsample ratios from 1/1 to 1/3.

Statistjga ghagcteristics of lle giggfirgjgms
We regard [ g] as an ( M x N ) two dimensional image data

matrix, and [ G ] as the two dimensional discrete cosine transformed
data matrix of[ g]. In this case. the element (u. v ) of [ G ] is given35;

888 - SID 94 DIGEST

--- Layout Object Descriptor ---
Layout-Object-Dcscriplor

object-type
descripto r-body

Layou l-Objcct-Type

::= SEQUENCE (
Layout-Objecl-Type.
Iayout-Objcct-Descriptor-Body OPTIONAL )

::= [NTEGER ( document-layouI-root (O),
Page (2),
block (4) }

Layout-ObjeCt-Descriplor-Body ::= SET (
position [3]]MPLlClT Measure-Pair OPTIONAL.
dimensions [4)lMPLIClT Dimension-Pair OPTIONAL.
presentatiomattributes [fillMFLICI'l' Presentation-Attributes OPTIONAL)

Measure-Pair ::=SEQUENCE (
x-position [0] [MPLICIT lNTEGER,
y-posilion [0] IMPLICIT INTEGER)

Dimension-Pair ::= SEQUENCE I
horizontal [0]IMPL[CIT INTEGER,
vertical CHOICE [

fixed [OIIMPLICIT INTEGER“
Presentation-Attributes ::= SEN

raster-graphics-attributes [l]lMPLlClT Rssler-Graphics—Attributes OPTIONAL}
Raster—Graphics—Attributes ::= SEN

pel-transmission-density [ZIIMPLICIT Pel-Transmission-Density OPTIONAL)
Pel-Transmission-Dcnsity ::= INTEGER ( p6 (200 dpi) (1),

p3 (400 ‘1W) (4)]
--- Text Unit ---
Text-Unit

content-portiun-attributescontent-information
::= SEQUENCE (

Content-Ponion-Aitributes OPTIONAL,
Content—Information

Content-Portion-Atu-ibutes ::= SEI‘ (
type-of-coding Type-of—Coding
coding»attributes G-IOICE (

raster-gr-coding-attribules [ZIIMPLICIT Raster-Gr-Coding~AttribuLes)
OPTIONAL]

OPTIONAL.

Raster-Gr-Coding—Auributes
number-of-pels-per-linenumber-of-lines
suhsampling
jpeg-coding-mode

Ty pe-of-Coding

::= SET (
[0] IMPLlCl'i‘lNTEGER
[l] IMPLICIT INTEGER OPTIONAL,
[lO]IMPLICIT Subsampling OPTIONAL
[1l]IMPLIClT INTEGER ( baseline (0)) OPTIONAL)

::= [OIIMPLICIT INTEGEN t-6 (MMR) (0).
1-81 (IPEG) (is).
1-82 (JBIG) (17))

OPTIONAL

::= SEQUENCE (
IMPLICIT Sub-Sample-Pair.
[MPLICIT Sub-Sample-Pair,
[M PLICIT Sub~Sample— Pair)

::= SEQUENCE (
INTEGER.
max)

::= OCI'ET STRINGS ( HS or (-81 or 1-82 )

Subsampling
first-component
second-component
third-component

Sub-SamplePairhorizontal
vertical

Content-Information
DID

Figure 3. ASN.1 definition for Mixed Color Facsimile simulation
system

(21:44)”)

This spatial frequency analysis applied to the luminance
component of the color image obtained by color scanner. The CCl‘I'T
test document No. 4 and photographic area of the Test chart No. 5 of
The Socrety of the Electrophotography of Japan were used as sample
images for character image and photographic image. Spatial
frequency characteristics were calculated as follows. Absolute values
of DCT coefficients G(u, v) were calculated for each 8 x 8 block of
each subsampled image and averaged for the entire image area. The
result was plotted for the order of (8*v + u). Figure 4 shows the
result of the character image and figure 5 shows the result of the
photographic image. 
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Figure 4. DCI‘ coefficient characteristics of character image for
different subsampling ratios.
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Spatial Frequency Order (Bv + u)

Figure 5. DCI‘ coefficient characteristics of photographic image for
different subsampling ratios.

These two figures show almost the same characteristics for
1/1 subsampling. There are. however, remarkable differences in high
frequencies u and v with 1/2 and [/3 subsampling. According to
these results. character image areas and photographic image areas can
be distinguish using 1/2 or 1/3 subsampling and DCT coefficient
analysis.

iscrimination of hoto hic ima e and character ima e
In order to determine the discrimination function, the DCI‘

coefficients matrix is divided to four groups: DC component, group
A, group B. and group C, as show in Figure 6.

The dominant DCI' coefficient groups for character images are
the DC component and group C. DC component is influenced by
background region of character documents which is generally white.
Group C components correspond to the edge structure of character
images. Group B components are also important for composing
charter shapes. but they also change with photographic images.

The dominant DCI‘ coefficient group for photographic images
is group A, which corresponds to gradually changing tone areas.
High frequency components such as group C have quite low levels.
DC component is also influenced by the background of photographic
image areas. Therefore. we selected the variables x. y fordiscrimination function as follows;

Spatial Frequency u

SpatialFrequencyv
Figure 6. Separated DCl‘ coefficient matrix

3000
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Figure 7. Distribution of (x, y) coordinate points

a 8
x=£ Z

G(u,v)|.u=0 v=8—u y = G (0.0)

The distribution of the x y coordinate of each block for

Itharactelr image areas and photograch image areas is shown inigure .

From.multi regression analysis, the discrimination function

goilcharacter image areas and photographic image areas became aso ows;

1

Moor-Mm) T vrxarwry.) C(xuakclxbybl x
Maw—my.) Gixayahctxbyb) lebbvlrn)

V(Xa)*V(yal

-I

‘ Mlxfl-Mlya) r C(xayaycubyb) M(rra)¢M(xb)M‘Xbl'MUbl C(xavyskclxbyb) Vtxbrvlyb) M(ys)*M(ybl

(3)
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,where.
M(xa), M(ya) : the mean of x, y ,
V(xa), V(ya) : the variance of x, y ,
V(xa), V(ya) : the covariance between x and y ,

from photographic image;
M(xb), M(yb) : the mean of x, y ,
V(xb), V(yb) : the variance of x, y ,
V(xb), V(yb) : the covariance between x and y ,

from character image.

SIMULATION SYSTEM

At first, an original image stored in the file system is displayed
as shown in figure 9. On the display, it is possible to chose either
automatic or manual image area separation mode. In the case of the
automatic separation mode, the image is processed by the method
described in Section 4. The discrimination function calculated in
Section 4 is used. The result of discriminated result is displayed on
the original image using rectangular area markers as shown in Figure
9. If the result is accurate. the image is divided into content blocks
and encoded by JPEG and MMR coders. The SUI (Session User
Information) that contains the structured image data for Mixed Color
Facsimile communication is then assembled by the SUI encoder using
the layout information and the coded image block data In the
receiving side, the transferred data is disassembled to yield the layout
information and the coded block data The full image is reconstructed
using these data and displayed. This system can also print out the
image through a digital color copying system (Canon CLC-SOO). The
compressed image shown in Figure 9, occupies about 247 kbytes.
This is about 60 % less than the JPEG only coded case (609kbyte).
The printed example exhibits some image quality degradation. such as
jerkiness in the character image area. This is because the character
image area was binarized as a 200 dpi image. Higher resolution may
be needed to avoid this degradation for binary images.

CONCLUSION

The mixed color facsimile and an automatic color image area
separation method using DCI‘ were proposed. The mixed color
facsimile can reduce the amount of coded data by 60 % to 70 % from
that needed by the JPEG only color facsimile. The automatic color
image area separation method was applied to the test image, and its
performance was confirmed.
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This figure is reproduced in color on page 996. 
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THE CONTRAST SENSITIVITY OF HUMAN COLOUR VISION TO

RED—GREEN AND BLUE—YELLOW CHROMATIC GRATINGS
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SUMMARY

1. A method of producing red—green and blue—yellow sinusoidal chromatic gratings
is used which permits the correction of all chromatic aberrations.

2. A quantitative criterion is adopted to choose the intensity match of the two
colours in the stimulus: this is the intensity ratio at which contrast sensitivity for
the chromatic grating differs most from the contrast sensitivity for a monochromatic
luminance grating. Results show that this intensity match varies with spatial
frequency and does not necessarily correspond to a luminance match between the
colours.

3. Contrast sensitivities to the chromatic gratings at the criterion intensity match
are measured as a function of spatial frequency. using field sizes ranging from 2 to
23 deg. Both blue—yellow and red-—grcen contrast sensitivity functions have similar
low-pass characteristics. with no low-frequency attenuation even at low frequencies
below 01 cycles/deg. These functions indicate that the limiting acuities based on
red—green and blue—yellow colour discriminations are similar at 11 or 12 cycles/deg.

4. Comparisons between contrast sensitivity functions for the chromatic and
monochromatic gratings are made at the same mean luminances. Results show that.
at low spatial frequencies below 05 cycles/deg. contrast sensitivity is greater to the
chromatic gratings. consisting of two monochromatic gratings added in antiphase.
than to either monochromatic grating alone. Above 0-5 cycles/deg, contrast
sensitivity is greater to monochromatic than to chromatic gratings.

INTRO DI'CTION

The aim of this paper is to examine the spatial characten‘stics of human colour
vision. For luminance vision this has been done by measuring a contrast sensitivity

function: the ability of the visual system to detect lumflflEWJj-Efirent
Whoex pcriments( cscribc ere afirTfo make comparable contrast
sensitivity measurements for colour vision. by using grating stimuli which var_v
sinusoidally in colour.

A few previous studies have attempted to determine spatial sensitivity to red~green
sinusoidal gratings. in which the two colours are matched in luminance to create an
isoluminant stimulus (tug. Schadv. 1958: Van dcr Horst & Bouman. 1969: Granger

8: Heurtlcy. 1973: Kelly. 1983). ()1in one of these reports measurements using 
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blue—yellow sinusoidal stimuli (Van (lcr Horst 8;. Bouinan. 1969). However. there are
many diflieulties associated with these investigations. First. the chromatic aberrations
of the eye are likely to produce luminance artifacts in colour gratings at medium and
high spatial frequencies. Transverse aberrations. or a chromatic difference of
magnification. have not been corrected in previous isoluminant experiments.
Corrections for longitudinal aberrations. or a chromatic difference of focus. have
sometimes been made (Van der Horst 8: Bournan. 1969: Kelly. 1983). Secondly. a
luminance match between the two colours in the stimulus has generally been made
by using flicker photometry at one temporal and spatial frequency (Van der Horst
& Bouman. 1969: Granger & Heurtley. 1973) and it has been assumed that this match
is appropriate for all the other spatial and temporal frequencies used. However.
red—green brightness matches may alter with temporal frequency (Ives. 1912:
Bornstein & Marks. 1972). and so temporal and possibly spatial—frequency-dependent
changes in brightness matches may have produced artifacts in previous isoluminant
studies.

Thirdly. previous measurements have not extended to very low spatial frequencies
and very few spatial cycles have been displayed at the lowest frequencies. A spatial
cycle number below four or five is known to reduce sensitivity to luminance gratings
(Findlay. 1969: Savoy & McCann. 1975). The lowest chromatic frequency that has
been used while displaying four cycles is 0-4 cycles/(leg (Granger & Heurtley. 1973)
although often the lowest frequency measured with this cycle number has been higher
at. for example. 1'4 cycles/deg (Van der Horst 8: Bouman. 1969). Furthermore. these
latter measurements only extended down to spatial frequencies of0'7 cycles/deg and
for luminance gratings at comparable cycle numbers. low-frequency attenuation does
not occur until below 0-5 cycles/deg (Howell & Hess. 1978). Thus. the previous studies
have not satisfactorily investigated colour sensitivity to low spatial frequencies and
the effects of reducing the spatial cycle number have not been distinguished from
possible low-frequency attenuation below 0'5 cycles/deg. Finally. in previous
investigations comparisons between colour and luminance sensitivities have not been
attempted. This is partly because there is no adequate definition of colour contrast
available which can be used for all colour combinations and does not depend on
theoretical assumptions about post-receptoral cone interactions. Previous measures
ofcolour sensitivity. such as purity (Van der Horst & Bouman. 1969) and wave-length
discrimination. are difficult to relate to luminance contrast sensitivities.

The experiments described in this paper aim to overcome these problems in the
following ways. (1) A different method of producing chromatic stimuli is used which
permits correction of all chromatic aberrations. (2) Quantitative criteria are used to
judge the most appropriate intensity match for creation of an optimum chromatic
stimulus. and this match is adjusted separately at all spatial frequencies. (3) A very
large field size is used which allows low spatial frequencies to be presented. without
thresholds being affected by a low number of spatial cycles. (4) The stimulus is
arranged so that. the same contrast scale is used to determine thresholds for both
chromatic and luminance gratings. This enables simple calculations to be made of
the contrasts of the chromatic and luminance stimuli to individual cone types. 

 



OLYMPUS EX. 1016 - 362/714

.CI‘C (‘11‘0

rations

rm and
nce of
ments.

3, have

ldly, a
I made
Horst
match
wever,

1912;
andent
ninant

tencies

spatial

'atings
at has

1973)

higher
. these

3g and
11 does
tudies
es and

i from
avious
I; been
ntrast

nd on
asures

ength

in the
which
sed to
matic

t very
thout
lus is

‘ both
tde of
i.

CONTRAST SENS/7'! l’l’I' )' 7’0 CHROMA T1(' (x’li’A TINGS

METHODS

The stimulus and procedure
A red—green chromatic grating was produced by displaying two gratings. each on Joyce display

screens with white (P4) phosphors. These gratings were viewed through narrow band interference
filters to produce their colour(|*‘ig. l). Interference filters with peak transmissions at 526 and 602 nm
were chosen as these wave-lengths are at the peaks of both the human opponent colour spectral

. 1

VW

N.d.

If. :3

'lllllll

2@

m7
Fig. l . A diagram oftheexperimental apparatus used tocreate the red—green and blue—yellow
chromatic gratings. B.s., beam splitter: d.s. I. d.s. 2. display screens Nos. 1 and 2: E. eye
of observer: n.d.. neutral density filter: Z. Zeiss telescope (x 3): i.f.. interference filter.
Interference filters with peak wave-length transmissions of 602 and 526 nm were used to
produce a red—green Chromatic grating and filters with peaks at 470 and 577 nm were used
for the blue—yellow grating.

sensitivity function (Sperling & Harwerth. 197!) and the chromatic response function of Hllrvich
& Jameson (1955). Thus. this red—green wave-length pair causes maximal modulation in the
red—green chromatic response function but modulates the blue-yellow response function by only
12 %. The two monochromatic gratings were combined optically 180 deg out of phase to form the
composite chromatic grating. The chromatic grating patch was circular and ranged from 92 to
103 cm in diameter, depending on the correction made for the chromatic difference of magnification
(described later). The remainder of the display screen was masked off with a difiuser: thus. at all
contrasts used. the grating patch was set in a uniform surround ofthe same mean colour and reduced
mean luminance. A fixation mark appeared at the centre of the chromatic grating. Viewing was
monocular with a natural pupil and at a distance of82 cm from each display screen. A Zeiss telescope
(x 3) could be placed directly in front ofthe eye. Viewing with the eye-piece close to the eye optically
enlarged the grating and the field size. whereas viewing with the objective lens close to the eye
optically reduces the image: it was thus equivalent to changing the viewing distance. and enabled
the field size to be varied from 2-2 to 235 deg, The stimulus was phase reversed sinusoidally at0'4 Hz.

The same method was used to produce a blue—yellow chromatic grating. but usng interference
filters with peak transmissions at 4'70 and 5'77 nm. 577 nm falls at the trough of the redegreen 
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opponent spectral sensitivity function. and 47” nm is close to the blue peak. A filter transmitting
light at the blue peak was not used because it severely reduced the mean luminance ofthe stimulus.
This blue—yellow wave-length pair causes 74",. modulation in the blue—yellow chromatic response
function. but only 5“., modulation in the red~green response l'unction. Thus. the choice ofthe two
wave-length pairs has been made on the basis of our knowledge of the post»receptoral colour
opponent responses to different wave-lengths. .\s in" as possible. chromatic gratings have been
created which maximally stimulate one opponent colour system. and as such cause little modulation
in the other opponent colour system.

("ontrast ofeither component gratin;r in the chromatic stimulus is defined by the usual formula:
A [max _I

I +[mini

where [max and [min are the peak and trough luminance values respectively of the monochromatic
grating. The contrasts ofthe two component gratings were yoked together electronically. although
their respective mean luminances may difi‘er. Thus. ('52,; = (’m and ('47., = ('577 at all luminance-s.
To find threshold. contrast is varied and at threshold the reciprocal contrast of either grating may
be taken as the contrast sensitivity. ('ontrast output on the display screen was measured for a range
of input contrasts using 21 CDT (L‘nited Detector 'l‘echnology. model 40X) light-meter. Output
contrast was linearly related to input contrast. and contrasts shown in the followng experiments
are. the true. calibrated values.

Contrast output was also measured as a function of the spatial frequency on the display screen.
using a psychophysical procedure which avoids the use oi'any additional optical apparatus with
unknown modulation transfer characteristics. The subject set contrast thresholds for a range of
gratings which consisted of pairs of stimuli identical in retinal spatial frequenc ' (in cycles/deg} and
retinal field size. but (interim.r only in their screen spatial frequency [in c} es/cm) and viewing
distance. Thus. any differences found between the thresholds for a pair of stimuli are likely to be
due to the loss of contrast on the display screen at higher spatial frequencies. The results. shown
in Fig. 2. reveal a non-linear relation between contrast output and screen spatial frequency: contrast
output declines markedly above (H cycles/cm and the loss is 40% at 2 cycles/cm. in the following
experiments. screen spatial frequencies above 1-8 cycles/cm were not used. All contrast values
quoted are ofcontrast output calibrated from the data of Fig. 2. The results ofthis psychophysical
procedure agree well with results obtained from optical measurements of contrast loss for the same
type of apparatus (Hess & Baker. 198-1). Natural pupil sizes for the red—green stimuli were around
4 mm. and 6 mm for the blue—yellow stimuli. All mean luminances were measured using a
Calibrated SE1 spot photometer.

Contrast thresholds were determined by a single staircase procedure ((‘ornsweet. 196:2). begun
at a randomly selected contrast above or below threshold. The grating was displayed continuously
to increase the speed of threshold setting and to reduce considerably temporal transients. A mean
of at least four thresholds was obtained for each plotted data point. The largest standard deviation
of the thresholds is marked on each data curve. A (3809 Motorola microprocessor was used on—line
to control the stimulus production and presentation. and data collection.

Three subjects were used in the experiments: KT. (the author). R.M.(‘. and At least
two subjects. and in some cases three. were used in each experiment. All subjects wore their normal
correcting lenses. and performed normally on the Farnsworths-Munsell 100 hue test and the lshihara
test for colour blindness.

min
max

(.‘orrcctinn of ch roman (thermlimm
This method oi'grating production has the advantage over the use of colour TV displays in that

it allows the chromatic difference of focus anti the chromatic difference of magnification of the eye
and other optics to be corrected. The difference oi” focus may be corrected by placing a negative
lens in the path of the shorter wavelength of the grating pair or a positive lens in the path of the
longer wave-length. before the two component gratings are combined by the beam splitter.
' it is also possible to measure the magnitude ofthis correction direcllv. The stimulus was arranged
such that in the top half'ol‘the test patch one monm-hromatic square-wave component g 'ating was
displayed. whereas in the bottom half the other one appeared. The subject fixated on the
longer-wavc-length member ol'the pair {6013 or 577 um) with the help ol'a fixation mark. -\ series
ofncgative correcting: lenses uas plarcd in front ol'the shorter-wa\‘e-lentzth stimulus HTllorfizlti nm) 
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until the subject saw this stimulus in sharpest focus simultaneously with the longer-wave-length
grating. 'l‘his method indicated that :1 correction of —l l) was required for the blue grating in the
blue—yellow pair and a correction of —t)-5 l) was required for the green grating in the red—green
puil'. These values are close to previous calculations (see \Vyszecki & Stiles. i967) and were used
in the present experiments.

0. toNormalizedoutputcontrast Normalizedoutput attenuation(dB)
20

0'3 1 3
Screen spatial frequency (cycles/cm)

Fig. :2. Output contrast tr) normalized to contrast threshold as a function of screen spatial
frequency (cycles/cm). A psychtuihysical method. described in the text. is used to calculate
output contrast. ()utput contrast declines after 0-4 cycles/cm. Real contrast may be
calculated from the curve by multiplying the uncalibrated input contrast by the
normalized output contrast. or by adding the normalized output attenuation to the
uncalibrated input attenuation. The smallest and largest standard deviations are shown.
Attenuation ((13) = 20 x log l/r.

C.’
9.. _.

This empirical method of measuring the chromatic difference of focus is convenient to use since
theoretical calculations become complex when the telescope is used to magnify or minify the
stimulus. and will depend on the design ofthe telescope. When the telescope was used to magnify.
very little correction was required for the shortwave-length gratings (—025 D for the 470 nm
grating only). When the telescope was used to minify. much larger correcting lenses were needed.
since for this reverse viewing condition a small difference offocus at the eye requires large correcting
lenses at the eye-piece. A +3 1) lens for the yellow grating in the blu&yellow stimulus. and a +2 D
lens for the red grating in the red—green stimulus were found to be the best corrections.

The chromatic difference of magnification of the eye. and any additional optics in use. can be
corrected by making independent adjustments to the spatial frequency of one of the component;
gratings. This was done by adjusting the X—gain on the appropriate display screen. Magnification
difi'erences are easily detected by displaying the two component gratings as square waves; overlap
of adjacent bars produces a bright strip ofa diFf‘erent colour which can be removed by adjusting
the magnification of one grating.

Wave~length-dependent ditt'raction effects did not need correction as high frequencies. greater
than 6 cycles/deg are not used (\‘an der Horst. de Weert & Bouman. 1967). While the chromatic
aberrations are being corrected the subject‘s head is held in place using a dental bite bar and this
line-up is maintained throughout the experiment. When the corrections have been made the
gratings are displayed sinusoidally in space to produce a sinusoidal red—green or blue—yellowchromatic grating.

RESULTS

The removal of achromatic ronlmsl

When creating stimuli which vary only in colour. an important problem is to
establish the basis on which the intensities of the colours in the stimulus should be

matched. Furthermore. it has frequently been assumed that a match made at one

I3 1'” r 3.1!)
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spatial or temporal frequency will apply to all other frequencies. However. there is inten
evidence to suggest that stimuli matched in luminance. for example by flicker chror
photometry. will appear equally bright only under high spatial or high temporal grati:
frequency conditions. whereas under other lmv-frequency conditions luminance the r.The ‘

lumi:

+ l

(Contrast = 1)

Fig. 3. A diagram of the luminance profiles across space of the red and green component
gratings which are added 180 deg out ofphase to produce a sinusoidal red—green chromatic
stimulus. The ratio of red (It) to green (0) mean luminances in the chromatic grating
is variable, and is expressed as the percentage of red light in the mixture. The mean
luminance of the whole stimulus (R+(r') is constant. The contrasts ofthe component red
and green gratings are always equal and are at a value of l in this Figure. Contrast is
varied to determine threshold. The same method is used to produce a blue—yellow
chromatic grating. and the blue to yellow ratio is expressed as the percentage of yellow
in the mixture.

matched stimuli will contain brightness differences (Ives. 1912; Bornstein & Marks.
1972: Myers. lngling & Drum. 1973). Thus. there is a need to devise an appropriate
criterion and a quantitative method for matching the intensity of the two colours
in the stimulus which may be used at all spatial and temporal frequencies.

In this experiment. the ratio ofthe mean luminanccs ofthe two component gratings
in the stimulus was varied over a wide range. and the subject's contrast sensitivity
to the stimulus was measured at selected points. The criterion for the choice of the 
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intensity match was the luminance ratio at which the contrast sensitivity to the
chromatic grating differs most from the contrast sensitivity to the monochromatic
gratings. The method is illustrated for the red-green grating in Fig. 3. In this case.
the ratio has been expressed as the percentage of red (R) in the red—green mixture.

The range begins and ends with a red or green monochromatic stimulus that has
luminance contrast but no colour contrast, and in the middle region the stimulus will

300,—

/[:]/D'D‘D\D 2‘3\ D \ ’x 53
6‘ / /”§yo/8 7-0
/ \X /x/O \ /

ID \ \x—x_x/X O /8_D
30 \8\ O/°/o

/

\050/0 o//
§-°’°

100

i

_. 0Contrastsensitivity
1 ;__I_._|___J__—l

0 25 50 75 100

(96)H + G

Fig. 4. Contrast sensitivity as a function of the red—green luminance ratio in the stimulus.
expressed as the percentage of red in the mixture. Four spatial frequencies are shown
(cycles/deg): x . 2'3; 0. 5'3; 0, 7'0 and D, 009. Vertical bars indicate :1 5.1).. The
subject is R.M.C.

have maximum colour contrast and minimal luminance contrast. Over-all there is

no net change in the mean luminance of the composite stimulus; although R/G varies,
[2+0 was arranged to be at a constant photopic luminance (15 cd/mz). The same
method is used to vary the colour ratio in the blue—yellow stimulus. The ratio is
expressed as the percentage of yellow in the mixture. The mean luminance of the
composite stimulus (13+ Y) remains constant at 2'1 cd/m2.

Contrast sensitivity for one spatial frequency was measured at eleven or twelve
percentages in the red—green or the blue—yellow range. The run was then repeated
but beginning with the opposite colour in the range to avoid any effects due to
chromatic adaptation. This was repeated for a range of spatial frequencies. Thus, the
experiment examines the effect on detection of a monochromatic grating when a
second grating of a different colour is added out of phase in various proportions.
Typical results for the red—green grating are shown in Fig. 4, and for the blucFyellow
grating in Fig. 5. The subject’s contrast sensitivity is plotted as a function of the
luminance ratio. The set of curves in each Figure represents a range of spatial
frequencies.

The spatial frequency of the stimulus has a profound influence on the results. For
low spatial frequencies (below lt'yclc/deg) the subject is less sensitive to the
monochromatic conditions at either end. but as luminance contrast is reduced

sensitivity increases reaching a maximum. However, for the higher spatial frequencies
lii-zl
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the reverse occurs: the subject is most sensitive to the two monochromatic conditions.
and in between sensitivity decreases reaching a minimum. Thus. under low spatial
frequencyconditions sensitivity is greatest when there are cghgiir difl'crenecs in the
stimulus. whereas at higher frequencies sensitivity is g1 atcst when the stiniulus__h2_l__s_
ONLY luminance contrast, r— » —., ..»_.,...._.. .. ._...

Contrastsensitivity
3 |___#__|_____L-———J

0 25 50 75 100
Y 0

Y+3Ml

Fig. 5. Contrast sensitivity as a function of the blue—yellow luminance ratio in the
stimulus. expressed as the percentage of yellow in the mixture. Four spatial frequencies
are shown (cycles/deg): x . H): [1. 2-9: 0. 3-4 and 0. 0-24. The subject is h T.

For the {blue—yellow contrast sensitivities (Fig. 5) the minimum at high spatial
frequencies shifted relative to the maximum at low spatial frequencies. The low
spatial frequency (0:24 cycles/deg) maximum occurs at 6000 yellow. or higher. At
[-9 cycles/deg a minimum occurs at 50 ".0 yellow. and the remaining curves at 2'9 and
3-4 cycles/deg both have minima at 45 04, yellow. All spatial frequencies in this Figure
were displayed with the same field size (6-5 deg). Thus. for this subject (K.T.) as for
others, there is a shift in the intensity match with spatial frequency of about fifteen
percentage points. Most of this change occurs below :2 cycles/deg. Less blue is
required at the low spatial frequency maxima than at the high spatial frequency
minima, indicating that the effective intensity ofthc 470 nm wave-length is relatively
lower at high frequencies. The red—green threshold data. shown in Fig. 4. are
suggestive of a similar but much smaller shift. The low spatial frequency maxima
occur at 55 9‘0 red. and the minima occur at 50 and 47 “0 red for 2 and 3 cycles/ng
respectively. For other subjects a similar pattern occurs. This effect is not more than
7%. but resembles the. blue—yellow results in that relatively more of the shorter—
wave-length (526 nm) light is required at the criterion match as spatial frequency
increases up to 2 cycles/deg. Thus. for both red—green and blue—yellow stimuli a
luminance match between colours. which occurs at 50 “0 red or 50 "0 yellow. does not
predict the maxima or minima of contrast sensitivity.

It can also be seen from these results that the minima at high spatial frequencies
become more sharply defined. making an accurate choice of intensity match more
critical. since small differences in the match have quite large effects on sensitivity.
These minima continue to increase in depth from :2 to T cycles/(leg.
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All subjects were asked to report any changes in the appearance of the. gratings
at threshold. at the different intensity ratios. The appearance varied from ‘ a
homochromatic condition. where the bars appeared to be of a uniform colour but

varying in brightness. to a heterochromatic condition where hue differences could be
distinguished at threshold. At low spatial frequencies, colour differences could be

Fieldsizeldegl: 23-5 { 5 51'9
300 ' I

118) (2'3)

100 Dflfiaflufianl

Contrastsensitivuy -uoo “1"—‘—n——‘r—
m

1
0-03 0-1 0-3 1

Spatial frequency (cycles/deg)

Fig. 6. (‘ontrast sensitivity as a function ofspatial frequency for a red—green grating (El;
526. (502 nm). Slightly different red—green ratios were used at different spatial frequencies
to obtain the criterion intensity match ofthe two colours. The lowest numbers of spatial
cycles displayed are indicated in parentheses. The continuous curve was fitted by eye. The
method of extrapolation (dashed line) is described in the text. The subject is R.M.C. See
also the upper curve of Fig. 7 for results of subject K.T.

detected at threshold for most of the intensity ratios. However, for the highest spatial

frequencies used. such heterochromatic colour thresholds occurred at only :2 0r 3
intensity ratios. and these always coincided with the minima of sensitivity. These
observations strongly suggest that colour differences are detected at threshold at the
intensity ratios which produce the maximal and minimal sensitivities. They also
emphasize the need for an accurate. quantitative method of determining the match
since. at high spatial frequencies. only a narrow range of intensity ratios produce
colour detection thresholds. Furthermore. at the intensity ratios which occur at and
around the maxima and minima ofcontrast scnsitivity. the two colours in the grating

appear as bars of equal brightness. Many subjects comment on the unusually vivid
or 'fluorescent‘ appearance of the colours at these points.

TIM chromatic con/ms! scusilirily function (cm/C)

Mcasurcincnts ol'thc sensitivity ofcolour vision to different spatial frequencies can
now be made usin;_r the criterion that the maxima and minima indicate the best
intensity ratio for the two colours in the chromatic grating. For a range of spatial
frequencies. results similar to those of Figs. 4 and 5 were obtained. and intensity ratios
at the maximu and miniina selected for dctcrmining thc contrast sensitivities which

are plotted in Figs. ti and 7. The largest field size 23-5 deg) used in the experiment
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Comparisons between colour and luminance c.s.f.s
The colour and luminance c.s.f.s differ in shape. but we do not know how their

relative sensitivities compare. Comparisons of sensitivity are difficult since there is
no adequate definition of colour contrast available which can be applied to all colour
combinations. and does not depend on theoretical assumptions about post—receptoral

Field size (degi: 236

Contrastsensitivity
1 .
003 0-1 0-3 1 10 30

Spatial frequency (cycles/deg)

Fig. 8. Contrast sensitivity as a function of spatial frequency for the red—green grating
(D; 526. 602 nm) and a green monochromatic grating (O; 526 nm). The data for the
chromatic grating are taken from Fig. 6. The subject is R.M.C.

cone interactions. None of the previous measures of chromatic sensitivity, such as
wave-length discrimination or purity, translate readily into the luminance domain.
Measures of purity have resulted in the two component luminance gratings being
presented at different contrasts, making comparisons with luminance sensitivity
difficult. In the present experiments, the contrasts of the two component gratings
are always held equal to each other, and at threshold the reciprocal contrast of either
grating is taken as contrast sensitivity. Thus, as a working measure, the same contrast
scale is used to determine detection thresholds for both the luminance and chromatic
gratings. More direct and quantitative comparisons of sensitivity can also be made
of the level of the cone responses since it is relatively simple to calculate the contrast
of the luminance and chromatic gratings to each cone type.

The results shown in Figs. 4 and 5 give an initial indication of how contrast
sensitivity changes as luminance contrast is removed and chromatic contrast is added
to the stimulus. The present experiment extends these comparisons over the complete
spatial range. The data for the chromatic gratings were‘ taken from Figs. 6 and 7.
Data for the luminance gratingswere obtained by either using the pure green grating
(0 % red condition) to make the red—green comparison, or using the pure yellow grating
(100 9/", yellow condition) to make the blue—yellow comparison. Luminance and
chromatic comparisons were each made at the same mean luminanccs. The choice
of monochromatic grating is not important since Van Nos & Bouman (1967) have
shown that the wave-length ofa monochromatic luminance grating does not afi’ci-t
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enabled frequencies as low as 017 cycles/deg to be displayed with over 4 cycles
present. Thus. low spatial frequency sensitivity could be assessed without being
affected by a reduced cycle number. since if more than four spatial cycles are present
contrast sensitivity is independent of the cycle number and the field size (Howell &
Hess. 1978).

0.) D

.- OContrastsensitivity
0-03 01 0-3 1

Spatial frequency (cycles/deg)

Fig. 7. Contrast sensitivities as a function of spatial frequency for a blue—yellmv grating
(O: 470, 577 nm) and a red—green grating (El: 602, 526 nm). both for subject K.T.
Different blue—yellow ratios were used at different spatial frequencies to obtain the
criterion intensity match of the two colours. Slightly different red—green ratios were also
required for the criterion match. The continuous curve was fitted by eye. The method ofextrapolation (dashed line) is described in the text.

The results obtained using red—green gratings are shown in Fig. 6 for R.M.C. and
in the upper curve of Fig. 7 for K.T.. the blue—yellow results for K.T. are shown in
Fig. 7. Sensitivities to both blue-yellow and red-green stimuli have low-pass
characteristics, with no decline in sensitivity for spatial frequencies below
0'1 cycles/deg. Previous declines found (e.g. Kelly. 1983) may have been due to the
low number of cycles displayed.

Sensitivity to the red~green and blue—yellow stimuli declines at spatial frequencies
above 0-8 cycles/deg. Sensitivity to the red—green medium and higher spatial
frequencies islower than has been previously reported and by extrapolation. red—green
chromatic resolution fails at 11—12 cycles/deg for R.M.C. and K.T. (The method of
extrapolation is described later.) Previously, resolutions above 25 cycles/deg have
been suggested. Resolution ofthe bluchyellow grating also fails at around 11 cycles/deg
for both subjects K. T. and S. C. S. (no Figure). This compares with an acuity ofabove
2O cycles/deg. obtained using blue—yellow sine-wave stimuli (Van der Horst &
Bouman. 1969). These chromatic acuity values are investigated more fully in a latersection.

Fig. 7 shows a comparison between the red—green and blue-yellow sensitivities
obtained from the same subject (K.T.). The two c.s.f.s are remarkably similar and
have much the same high spatial frequency decline. "he only significant difference
occurs in the low spatial frequency region where the blucfivcllow sensitivity is
consistently about 0-15—0'2 log units lower.
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contrast sensitivity provided the stimuli have the same mean luminance, The results
for the comparison between sensitivities to the red—green chromatic grating rind the
green monochromatic grating are shown in Fig. H. The blue—yellow chromatic and
yellow monochromatic comparisons are shown in Fig. 9.

Field size (deg): 23-5 i 6-5
300 r

I ’00. 0
l ,o'°°°(15) (2) 0

100 r- D_dlfio.gacb.%u

o/o‘?
(J O r,

.s O 1Contrastsensitivity
3 '_

1 s. u i - _u‘ ‘
0-03 0-1 0-3 ‘1 3 10 30 100

Spatial frequency (cycles/deg)

Fig. 9. Contrast sensitivity as a function of spatial frequency for the blue—yellow grating
([3; 470. 577 nm) and a yellow monochromatic grating (O: 577 nm). The data for the
chromatic grating are taken from Fig. 7. The subject is l\'.’l.

The results show that the contrast sensitivity to both red—green and blue—yellow
gratings is greatest below 1 cycle/deg. whereas luminance contrast sensitivity peaks
at 08-4 cycles/deg. For the low spatial frequencies. the combination of the red and
green monochromatic gratings in antiphase can be seen when neither grating can be
seen alone. This difference in contrast sensitivity reaches ()-6 log units and may
increase at even lower spatial frequencies. Results obtained on another subject (K. F.)
are very similar. The same effect occurs for the blue-yellow stimuli. For low spatial
frequencies, contrast sensitivity to the. combination of monochromatic gratings in
antiphase is greater than to the monochromatic grating alone. This difference reaches
05 log units at 0-1 cycles/deg. For another subject (S. (3.8.) the difference was slightly
less (0-4 log units). Above cross-over points at 03—05 cycles/deg for all subjects.
contrast sensitivity becomes greatest to the monochromatic stimuli. and it is
luminance vision which has the higher acuity.

Comparisons of chromatic and Iumi m1 nee acuity

Previous studies using isoluminant techniques have produced a wide range of
values for chromatic acuity. In most studies. extrapolations have to be made by eye
from threshold measurements obtained at lower spatial frequencies. Such procedures.
using purity asthc measure oi'chromatic sensitivity suggest acu ity values for red—green
gratings that range from 25—30eyeles/deg (Van (ler Horst & Bouman. 1969) to
50 cycles/deg and equal to luminance acuity (Schade. 1958). Two studies which
include measurements made rising blue—yellow sine or square-wave stimuli suggest 
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an acuity greater than :20 cycles/deg (Van dcr Horst cf 11!. 1967; Van der Horst &
Bournun. 1969). Studies which have attempted to measure acuity usingr isoluminant

sine- or square-wave gratings of variable wave-lengths have also reported a. similar
range of acuity values from 20 to 30 c_\'cles/deg (Hilz. Huppcrman 8: Cavonius, 1974).

100
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Fig. l0. (‘ontrast sensitivity as a function of spatial frequency. plotted on semilogarithmic.
coordinates. The data for red—green gratings (El: 602. 526 nm) and green monochromatic
gratings (O. 526 nm) are taken from Fig. 8. Linear regression lines are fitted to the data
and extrapolated to a contrast sensitivity of l (100°D contrast) to indicate acuity. Low
spatial frequency data have been omitth (see text for further details). The subject is
R. M.(‘.

and bar frequencies of46 cycles/deg reported to equal luminance acuity under similar
conditions (Cavonius & Schumacher. 1966). The purpose ofthe following calculations
is to make accurate predictions of colour and luminance acuity on the basis of the
new contrast sensitivity measurements obtained here.

The high spatial frequency data points for the luminance and chromatic gratings
were replotted on semilogarithmic coordinates. All the data points which occur after
the peak sensitivity of the colour or luminance contrast sensitivity functions are
included in the plot. In effect. the medium and high spatial frequency points that
occur at or below a contrast sensitivity of 100 were included. A linear regression line
was fitted to each function and extrapolated to a contrast of 100 % (contrast
sensitivity = l) to predict acuity.

Results for red—green stimuli are shown in Fig. 10 and the bluehyellow results in
Fig. 11. Visual inspection reveals that the regression lines fit the data. points well.
Red—green chromatic acuity is 1 1—12 cycles/deg, compared to the luminance acuity
of 34—36 cycles/deg at the same mean luminance for subjects R.M.C. and K.T.
Blue—yellow chromatic acuity is around 11 cycles/deg, closely resembling red—green
acuity. compared to the luminance acuity of 32—33 cycles/deg. for subjects K.T. and
S.(.‘.S.

Luminance acuity is lower than might be expect-ed. This is probably due to the 
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relatively low mean luminance of the stimuli which will reduce sensitivity to very
high spatial frequencies. However. comparisons with the results ofprevious chromatic
studies can be made since equivalent or higher luminances have been used in the
present experiments.

(j)

w 0 'fifi-«TJ
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llContrastsensitivity 5
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Spatial frequency (cycles/deg)

Fig. 1]. Contrast sensitivity as a function oi'spatial frequency. plotted on semilogaritlimie
coordinates, Thedata for blue—yellow gratingsflj : 471). 577 nm ) and yellow monochromatic
gratings (O. 577 nm) are taken from Fig. 9. Linear regression lines are fitted to the data
and extrapolated to a contrast sensitivity of 1 “00".] contrast) to indicate acuity. Low
spatial frequency data have been omitted (see text for further details). The subject is RT.

Thus, these results indicate that chromatic acuity. based on hue diseriminations

ofsinusoidal chromatic gratings. is lower than previously thought, at 11—1 2 cycles/deg
for both the red—green and blucfivellow stimuli. Possible explanations for the higher
sensitivities and acuities found in previous studies are considered in the Discussion.

Note on colour appearance

At suprathreshold levels these purely chromatic sine-wave gratings are square wave

in appearance. For example. no intermediary shades of yellow are seen between the
red and green peaks and little variation occurs in the appearance of these colours
within each bar. A similar effect occurs for the blue—yellow stimulus. where no

intermediary blutbwhites are seen. The unexpected absence ofyellow between regions
of red and green. and the absence of other such ‘transition' colours. has been
commented on before. both in the spectrum (von Helmholtz. 1909). and using

overlapping linear ramps of red and green (Campbell. 1983). Below about
0‘3 cycles/deg, this effect. disappears and the chromatic gratings become more
sinusoidal in appearance.

DISCI'HSION

These experiments have revealed a shift with spatial frequency in the intensity
match which produces the maximum change in contrast sensitivity. The shift is most
prominent for blue—yellow gratings and shows that the efl'wtiveness of blue light

l‘l‘elll
been 
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relative to yellow in the match. decreases as spatial frequency increases up to
:2 cycles/deg. There is also a suggestion ofa similar but smaller shift in the red—green
match. where the effectiveness of green light decreases relative to red at. the higher
spatial frequencies. The question arises as to what causes these changes in match
point. Wave-length—dcpendcnt diffraction effects are unlikely since the shift occurs
at relatively low spatial frequencies, below 6 cycles/deg. Also, diffraction would cause
a relative decrease in the contrast of the red or yellow grating. and so would produce
a shift in the opposite direction at higher spatial frequencies. Small differences in focus
between the two colours due to longitudinal chromatic aberrations might cause an
apparent shift in an intensity match, by reducing the contrast of one colour. However.
in the present experiments chromatic aberrations have been corrected, and a
considerable change in match still occurs for blue—yellow stimuli at very low spatial
frequencies below 1—2 cycles/deg. Any small residual differences in focus between the
two colours are unlikely to affect thresholds at these low spatial frequencies (Campbell
& Green, 1965).

Another possible explanation is that blue cones or rods contribute to the match
under low spatial frequency conditions, but not at higher spatial frequencies,
therefore decreasing the effectiveness of short wave-length light in the match at these
higher frequencies. It is known that the sensitivity of the ‘isolated’ blue system
decreases above 1-2 cycles/deg and is considerably reduced by 5—6 cycles/deg (Kelly,
1974 ; Green, 1972), which is broadly compatible with the shift occurring at low spatial
frequencies. The fact. that the shift is considerably greater for the blue—yellow match
than for the red—green one is compatible with a blue—sensitive mechanism being
involved. Rod sensitivity also declines above 1 cycle/deg (Green, 1972). However,
rods are unlikely to contribute to threshold since, at threshold. different colours can
be seen in the stimulus. These results suggest that spatial frequency influences
brightness perception: and are compatible with other evidence which shows that
brightness differences are not always predicted by the standard VA luminosity
function (Ives. 1912; Bornstein & Marks. 1972: Myers et al. 1973).

These results have shown that acuities for the red—green and blue—yellow gratings
are very similar. namely 10—12 cycles/deg. Although our knowledge ofpost-receptoral
colour processing is very limiting, the wavelength pairs for the two gratings were
chosen so as to optimally stimulate either the red—green or the blue—yellow opponent
colour system. and each causes very little response in the opposite opponent system

(see Methods). Thus. it is likely that the detection of the red—green and blue—yellow
gratings is by the red—green and blue—yellow opponent colour systems respectively.
It is interesting that the red—green colour acuity is so low in View of the dense
distribution of red and green cone types in the retina. The acuity for the blue—yellow
grating agrees well with recent- estimates of the acuity of the ‘isolated’ blue

mechanism. also at W—14 cycles/deg (Stromcyer, Kranda & Sternheim, 1978;
Williams. (‘ollicr & 'l‘hompson. 1983). Thus. the results may suggest that the sparse
distribution of blue cones in the retina is not the only factor limiting blue—yellow

grating acuity. l’rm'ious measurements have suggested much higher chromatic acuity
values ranging from 20 to 30 cycles/deg to normal luminance acuities. The methods
used here allow accurate measurements of sensitivity to chromatic high spatial
frcqucncics to he madc since a quantitative way of making an intensity match has
been adopted: thc accuracy of this match is shown to he most important at high
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spatial frequencies. Furthermore. corrections have been made for both types of
chromatic aberration. reducing or eliminating luminance artifacts in the stimulus.
In the experiments. the subjects could all detect the colour differences in the matched
stimulus at threshold. at all spatial frequencies measured. suggesting that these
thresholds are based on colour discriminations.

Reports by some other authors suggest that previous measurements of sensitivity
to medium and high spatial frequency chromatic gratings are not based on the
perception of colour differences. For example. Granger & Heurtley (1973) found that
colour differences in the stimulus at threshold disappear at spatial frequencies above
3 cycles/deg. and that the remaining brightness differences could not be nulled by
readjusting the colour match. Such effects might be explained if the medium and high
spatial frequency thresholds were based on luminance artifacts in the stimulus
produced by chromatic aberrations. Cavonius 8: Schumaeher (1966). who measured
acuities t0 chromatic gratings, did not look for colour differences in the stimulus but
reported a wave—length discrimination function at 30 cycles/deg which is very
unlikely to be based on hue discriminations. Another possibility which should be
considered in this case is that the spectral sensitivity of the achromatic detecting
mechanism changes at spatial frequencies greater than those used in the present
experiment introducing brightness differences into the stimulus. If two achromatic
detecting mechanisms were available then brightness differences could not be nulled
simply by readjusting the brightness match. Further experiments eliminating all
luminance artifacts at spatial frequencies above '7 cycles/deg are in progress to test
these possibilities.

In the experiments described here. comparisons have been made between contrast
sensitivities to luminance and chromatic gratings. Although contrast sensitivity to
monochromatic gratings does not change with the wave-length (colour) of the
stimulus. providing the mean luminance is constant (Van Nes & Bouman. 1967). the
over-all contrast sensitivity to the chromatic gratings will depend on the particular
colour pairs which they contain. Thus. any comparisons of sensitivity to luminance
and chromatic gratings will be influenced by the colours ofthe pairs in the chromatic
stimulus. For the comparisons made here. wave-lengths were chosen to coincide with
the peaks of the opponent colour spectral sensitivity function and the chromatic
response function (see Methods). and so the over—all contrast sensitivity to the
chromatic gratings is unlikely to be greatly increased. but may be decreased. by using
different wave-lengths. Also. measurements made of modulation sensitivities to
different wave-length combinations (Butler & Riggs. 1978) confirm that sensitivity is
relatively high to the colour pairs used here.

Both red and green gratings in the red—green stimulus will stimulate both medium-
and long~\\'avc-lcngtli cone types and even at isoluminancc the stimulus will contain
intensity ditterentcs to individual cone types. 'l‘hus. comparisons between the
luminance and colour c.s.f.s can also be made in terms of their cone contrasts.
Calculations have been made in the Appendix which show that. at thc red—green ratio
used for subject R. .\I.(‘. in the low spatial frequency chromatic grating. the contrast
ofthis grating to a mechanism with the spectral sensitivity oflong—wave-length cones
is 18"., ofthc contrast ol'cither component grating. For a mechanism with the spectral
sensitivityofmetlium-wuvc-lcngth concs. the contrast ofthe chromatic gratingis 39 “U
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of the ctmtrast of either component grating. These values at the criterion red—green
match for another subject (K.T.) are also given in the Appendix.

The comparisons of contrast sensitivities have revealed that at low spatial
frequencies the two monochromatic gratings combined in antiphase can be seen when
neither grating can be seen alone. For example. at the lowest spatial frequency
contrast sensitivity to the red—green grating is 3-8 times greater than to the green
grating presented alone (subject R.M.(_‘.. Fig. 8). However. when considered in terms
'of cone contrasts. this effect is considerably greater. The modulations of the

long»wave—length cones which can be detected in the chromatic condition are 21 times
smaller than those which can be detected for the monochromatic grating presented

alone. For medium—wave-length cones. modulations 10 times smaller can be detected
when the stimulus is in the chromatic (antiphase) condition than when either

monochromatic stimulus is presented alone. Thus, at low spatial frequencies a
chromatic grating can be detected on the basis of considerably smaller receptor
modulations than can a luminance grating. This interesting effect is presumably
mediated by the post-receptoral extraction of colour opponent signals, involving the
combination of different cone outputs.

Finally. the psychophysical results reported here are relevant to the neurophysiology
of primate colour vision. The evidence. has shown that the relative sensitivities of the
visual system to colour and luminance contrast change with spatial frequency. Since
colour opponent cells are likely to respond to both colour and luminance contrast
(lngling 8: Drum. 1973). it can be predicted that the relative sensitivity of these single
cells to colour and luminance contrast is spatial frequency dependent. Thus. these

psychophysical results emphasize the importance in future neurophysiological studies
of considering spatial variables when determining the colour and luminance contrast
sensitivities and the spectral sensitivities of single cells.

APPENDIX

The following calculations are of the effective contrast (Co) of a chromatic grating.
composed of two monochromatic gratings added in antiphase. for a single cone type.

The quantal intensity profile (10) of the chromatic grating is described by:

IC = .11,a,+;112a2+(a1a1—a2 a2) sin (or.
a) . . . , .

where )— Is its spatial frequencv and 1' is space. The contrast of the grating2.1r ‘

is; (u _ “ill—“212
1— Jllal+JIzatzi

where: l. :2 are subscripts denoting the wave-lengths of the component gratings: .111.

M.2 are the mean quanta] intensities of each component grating: (11. (12 are the
amplitudes ofcach component grating: a. [3 denote the spectral sensitivity weightings
for the wave-lengths of the two component gratings for long (a)- and medium
(/3)-wave-lcngth cone types.

If the contrasts ol'thc two component gratings are equal and at a value ('

.11! = (II/('.

.l/._, = (lg/W
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p _(1,oL,—-(123L2(.
__ X (i'. (1)

(1.1.21 +4121?

If the ratio of the luminance of component grating No. l to component grating
No. 2 is L, their quantal intensities are equated by:

01 ll = [.112 1'2,01'

01 = La2 V, (2)

where l' = V1; 1'2 are the standard I} luminous efficiency weightings of the
component wave-lengths.

Substituting eqn. (2) in eqn. (1):

_ L Val ——oc2(' x C'. (3)
° * L Val +352

For the red—green chromatic grating used in the present experiments wave-length
No. 1 is 526 nm and wave-length No. :2 is 60:2 nm

lg“ = 08012.

11m = 0-6054.

Therefore, V = 07556.

Cone spectral sensitivities may be taken from the Smith & Pokorny (1975) cone
sensitivity functions. based on colour matching data (see Boynton. 1979).

For long~wave-length cones (:2)

am = 04526.
0cm,2 = 04905.

For medium-wave-length cones (fl)

[3526 = 0-3484.

mm = 0-1149;

The data in Fig. 4 for subject R.M.C. show that the criterion intensity match at
low spatial frequencies is at 50 "/0 red. Thus the green to red luminance ratio (L) = 1.

Using these values in eqn. (3) gives:

d Cc = —-0'l784 x C' for longM'aVC-Icngth cones, or 1800 of F:an

CC = +0'3923 X F for medium-wavelength cones. or 39 0.0 of ('.

For subject K.T.. the intensity match at low spatial frequencies is at 55 “0 red.
Thus. the green to red luminance ratio ([4) = 0-8182.

Using these values in cqn. (3) gives:

CO = —(l-2735 X (' for long-wavelength cones. or :27 "n oH‘:
and

(.‘c = +ll'3043 >< (' for mmlium-wavc-lcngth com-s. or 3“ "fl ol'('.
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Abstract—To determine which spatial frequencies are most effective for letter identification. and whether
this is because letters are objectively more discriminable in these frequency bands or because can utilize
the information more efficiently, we studied the 26 upper-case letters of English. Six two-octave wide filters
were used to produce spatially filtered letters with 2D-mean frequencies ranging from 0.4 to 20 cycles per
letter height, Subjects attempted to identify filtered letters in the presence of identically filtered. added
Gaussian noise. The percent of correct letter identifications vs 5m (the root-mean-square ratio of signal
to noise power) was determined

nces ranging over 32:1. Object spatial

frequency band and s/n determine presence of information in the stimulus: viewing distance determines
retinal spatial frequency.
discriminability: object spatial frequency,

and afi'ects only ability to utilize.
not retinal spatial frequency. determined discriminability. To

Viewing distance had no efiect upon letter

determine discrimination efficiency. we compared human discrimination to an ideal discriminator. For our
two-octave wide bands. slrt performance of humans and of the ideal detector

improved with frequency

mainly because linear bandwidth increased as a function of frequency. Relative to the ideal detector.
human efficiency was 0 in the lowest frequency bands. reached a maximum of 0.42 at 1.5 cycles per object
and dropped to about 0.104 in the highest band. Thus.

our subjects best extract upper-case letter

information from spatial frequencies of 1.5 cycles per object height. and they can extract it with equal
efficiency over a 32:1 range of retinal frequencies. from 0.074 to more than 2.3 cycles per degree of visual
angle.

Spatial filtering Scale invariance

INTRODUCTION

Characterizing objects

When we View objects. what range of spatial
frequencies is critical for recognition. and how
is our visual system adapted to perceive these
frequencies? Ginsburg (1978, 1980) was among
the first to investigate this problem by means of
spatial bandpass filtered images of faces and
lOWpass filtered images of letters. He noted the
lowest frequency band for faces and the cutoff
frequency for letters at which the images seemed
to him to be clearly recognizable. The cutoff
frequency for letters was 1—2 cycles per letter
Width; faces were best recognized in a band
centered at 4 cycles per face width. He also
proposed that the perception of geometric visual
illusions. such as the Mu ler—Lyer and Poggen-
dorf, was mediated flow spatial frequencies
(Ginsberg. 1971. [078; Ginsberg & Evans.
1979).

'TO whom reprint requcSls should he addressed

Psychophysics Contrast sensitivity Acuity

An issue that is related to the lowest fre-
quency band that suffices for recognition is the
encoding economy of a band. For a filter with
a bandwidth that is proportional to frequency
(cg. a two-octavc-wide filter). the lower the
frequency. the smaller the number of frequency
components needed to encode the filtered image
of a constant object. Combining these two
notions. Ginsburg concluded that objects were
best, or most efficiently. characterized by the
lowest band of spatial frequencies that sufficed
to discriminate themi Ginsburg (1980) went on
to suggest that higher spatial frequencies were
redundant for certain tasks. such as face or
letter recognition.

Several investigators were quick to point out
that objects can be well discriminated in various
spatial frequency bands. Fiorentini. Mafiei and
Sandini (1983) observed that faces were well
recognized in either high or in lowpass filtered
bands. Norman and Erlich (1987) observed that
high spatial frequencies were essential for dis—
crimination between toy tanks in photographs.

LNU
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With respect to geometric illusions, both Janez
(1984) and Carlson, Moeller and Anderson

(1984) observed that the geometric illusions
could be perceived for images that had been
highpass filtered so that they contained no
low spatial frequencies. This suggests that low
and high spatial frequency bands may carry
equivalently useful information for higher visual
processes.

Characterizing the visual system

In the studies cited above, the discussion of

spatial filtering focuses on object spatial fre-
quencies, that is, frequencies that are defined in
terms of some dimension of the object they
describe (cycles per object). Most psychophysi-
cal research with spatial frequency bands has
focused on retinal spatial frequencies. that is,
frequencies defined in terms of retinal coordi-
nates. For example, the spatial contrast sensi-
tivity function (Davidson. 1968; Campbell &
Robson, 1968) describes the threshold sensi-

tivity of the visual system to sine wave gratings
as a function of their retinal spatial frequency.
Visual system sensitivity is greatest at 3—10
cycles per degree of visual angle (c/deg). How
does visual system sensitivity relate to object
spatial frequencies?

retinal spatialUnconfaunding and object
frequencies

Retinal spatial frequency and object spatial
frequency can be varied independently to deter-
mine whether certain object frequencies are best
perceived at particular retinal frequencies. Ob-
ject frequency is manipulated by varying the
frequency band of bandpass filtered images;
retinal frequency is manipulated by varying the
viewing distance.

The cutoff abject spatial frequency oflowpass
filters and the observer‘s viewing distance were
varied independently by Legge, Pelli, Rubin and
Schleske (1985) who studied reading rate of
filtered text at viewing distances over a 133:1
range. Over about a 6:1 middle range of dis-
tances. reading rate was perfectly constant. and
it was approximately constant over a 30:1
range. At the longest viewing distances. there
was a sharp performance decrease (as the
letters became indiscriminably small). At the
shortest viewing distance. performance de—
creased slightly. perhaps due to large eye move-
ments that the subjects would have to execute
to bring reletant material towards their lines of

sight, and to the impossibility of peripherally
previewing new text.

While viewing distance changed the overall ,
level of performance in Legge et al., the cutofi"
object frequency of their low-pass filters at
which performance asymptoted did not change.
From this study, we learn that reading rate can
be quite independent of retinal frequency over a
fairly wide range, and that dependence on criti-
cal object frequency does not depend on Viewing
distance. Because the authors measured reading
rate only in lowpass filtered images, we cannot
infer reading performance in higher spatial fre-
quency bands from their data.

Unconfounding object statistics and visual system
properties

Human visual performance is the result of the
combined effects of the objectively available
information in the stimulus, and the ability of
humans to utilize the information. In studying
visual performance with differently filtered im-
ages. it it critical to separate availability from
ability to utilize. For example, narrow-band
images can be completely described in terms
of a small number of parameters—Fourier
coefficients or any other independent descrip-
tors—than wide-band images. Poor human
performance with narrow—band images may
reflect the impoverished image rather than
an intrinsically human characteristic—~an ideal
observer would exhibit a similar loss.

The problem of assessing the utility of stimu-
lus information becomes acute in comparing

human performance in high and in low fre-
quency bandpass filtered images. Typically.
filters are constructed to have a bandwidth

proportional to frequency (constant bandwidth
in terms of octaves). For example, Ginsburg
(1980) used faces filtered into 2-octave-wide
bands; while Norman and Ehrlich (1987) also
used Z-octave bands for their filtered tank pic-
tures. With such filters, high spatial frequency

images contain more independent frequencies
than low frequency images.

Although linear bandwidth represents per-
haps the important difference between images
filtered in octave bands at different frequencies.
the informational content of the various bands

also depends critically on the nature of the
specific class of objects. such as faces or letter.
Obviously. determining the information content
of images is a difficult problem. When it is not
solved. the amount of stimulus information

ltHllllele within a frequency band is confounded
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Spatial frequencies and discrimination efficiency

wiih the ability of human observers to use the
information. Direct comparisons of perform-
ance between differently filtered objects are
inappropriate. This distinction between objec-
tively available stimulus information and the
human ability to use it has not been adequately
posed in the context of spatial bandpass
filtering.

Efiiciency

In the present context. physically available
information is best characterized by the per-
formance of an ideal observer. If there were no
noise in the stimulus, the ideal observer would
invariably respond perfectly. To compare the
performance of an observer. human or ideal,
noise of root-mean-square (r.m.s.) amplitude n

is progressively added to the signal of r.m.s.
amplitude 5 until the performance is reduced to
some criterion, such as 50% correct in a letter
identification task. This defines the signal to

noise ratio, (5/71)“ for a criterion r. Efficiency efl
of human performance is defined by:5 . -

S. - : 5 -

efl: ._' / J."i I»! "It A

where h and 1' indicate human and ideal observ-

ers, and r and n are r.m.s. signal and noise
amplitudes (Tanner & Birdsall. 1958). In a pure,
quantally limited system, efficiency actually
represents the fraction of quanta absorbed
(uttlization efficiency). In the context of signal
detection theory. efficiency is given by a a” ratio:

efi' = (611.de )2-

Overview

For an object that contains a broad spectrum
of spatial frequencies. object spatial frequency is
determined by the center frequency of a spatial
bandpass filtered image. Retinal spatial fre-
quency is determined by the viewing distance at
which the stimulus is viewed. Stimulus infor-

mation is determined jointly by the signal-to-
noise ratio. by the spatial filtering. and by the

characteristics of the set of signals: these three
informational components are combined in the
efficiency computation. Letters are a convenient
Stimulus to study because they are highly over-
learned so that human performance can be

eXpected to be reasonably efficient. and because
much is already known about the visibility of
letters in the presence of internal noise (letter
acuity) and about the visual processing of
letters.

l40l

Specifically, to determine the roles of object
and retinal spatial frequencies. letters are
filtered into various frequency bands. Noise is
added, and the psychometric function for cor-
rect identification is determined as a function
ofsl-n. Accuracyfiep‘ends only on 5/11 and not on
overall contrast, for a wide range of contrasts

(Pavel, Sperling, Riedl & Vanderbeck, 1987).
This determination is repeated for every combi-
nation of object frequency band and viewing
distance. Thereby, retinal spatial frequency

and object spatial frequency are unconfounded.
enabling us to determine whether a particular
object frequency band is better discriminated
in one visual channel (retinal frequency) than
any other (Parish & Sperling. 1987a, b). More-
over, by computing an ideal observer for the
identification task. we obtain an objective
measure of the information that is present in
each of the frequency bands. Finally, the com-

parison of human performance with the per-
formance of the ideal observer gives us a precise
measure of the ability of our subjects to utilize
the information in the stimulus. Having
untangled these factors, we can determine which
spatial frequencies most efiiciently characterize
letters for identification.

METHOD

Two experiments were conducted using simi-
lar stimuli and procedures.

Stimuli

Letters (signals) and noise. The original,
unfiltered letters were selected from a simple
5 x 7 upper-case font commonly used on CRT
terminals. Since this is an experiment in pattern

recognition, we felt that the simplest letter pat-
tern might be the most general: indeed, this font
has been widely used in letter discrimination
studies. For the purpose of subsequent spatial
filtering. the letters were redefined on a pixel
grid that measured 45 (vertical height)><35
(maximum horizontal extent of letters M and
W). The letters had value 1 (white): the back-
ground had value 0 (black). To avoid edge
effects in filtering. the background was extended
to 128 x 128 pixels for all computations. How-
ever. only the center 90 x 90 pixels of the stimu-
lus were displayed. as these contained effectively
all the usable stimulus information. even for
low spatial-frequency stimuli. Letters for pres-
entation were chosen pseudo—randomly from
the set of 26 upper-case English letters. Noise

.Idtelfliiaé-fiu,I
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Table l. Parameters of the bandpass filters: lower and upper
half-amplitude frequencies. peak. and ZD mean frequencies

in cycles/letter height
Peak

0 Lowpass
0.26 0.53
0.53 1.05
1.05 2.11
2.1 l 4.22
6.33 Highpass

aFrequencies are weighted according to their squared ampli-
tude (power) in computing the mean.

Meana

0.39
0.74 ‘
1.49
2.92
5.77

2025

Band ‘ Upper
0.53
1.05
2.”
4,22
8.44
22.5

Lower

fields were defined on a 128 x 128 array by
choosing independent Gaussian noise samples
for each pixel, with the mean equal to zero and
a variance 01 as required by the condition. (As
with the letters. only the central 90 x 90 pixels
were displayed.) Forty different noise fields were
created.

Filters. Each stimulus consisted of a filtered

letter added to an identically filtered noise field.
Six spatial filters were available, corresponding
to six successive levels of a Laplacian pyramid
(Burt & Adelson, 1983). The zero-frequency
component was added to the images so that they
could be viewed. The object-relative filter
characteristics, upper and lower half-amplitude
cutofi" and 2D mean frequency (cycles per
letter height), appear in Table 1. The 2D mean
frequencyffor a given band is:

l” IN

f= Z Z f..,.ai.,./.r-O_r-0

[IN [N
Z Z 0i...-x=0 y=0

where f“. is the 2D frequency and a“. is its
amplitude. Cycles per object height is used
rather than the more usual cycles per object
width because the height of our upper-case
letters remained constant across the entire set.
whereas the width varied between letters.

The transfer functions (spectra) of the filters
are displayed in Fig. 1. Approximately, filters
are separated in spatial frequency by an octave
(factor of 2) and have a bandwidth at half-
amplitude of two octaves. The small mound in
the lower right corner of Fig. l is a negligible
imperfection in filter 4. For convenience. the
limited range of spatial frequencies passed by
each of the filters will be referred to as the band

of that filter; a specific band is b, (i = 0. l. 2. 3.
4. 5). where b(, is the lowest set of frequencies
and b5 is the highest.

The filter spectra (shown in Fig. l) are
approximately symmetrical in log frequency
coordinates. a symmetrical spectrum in log co-
ordinates is highly skewed to the right in linear
frequency coordinates. resulting in a mean that

DAVID H. PARISH and GEORGE SPERLING

Cycles/field width16

5.6 _ . 22.4
Cycles/ Letter height

Fig. 1. Filter characteristics for the filters used in the
experiments. There are two abscissas, both on a log scale.
The top abscissa is the frequency in cycles per unwindowed
field width (128 pixels); the bottom abscissa is in cycles per
letter height (45 pixels). The ordinate is the normalized gain.
The parameter 1' indicates the filter designation [7, in the text.

is much greater than the mode. In a 2D (vs 1D)
filter, the rightward shift is accentuated. For
example. band 2 has a peak frequency of 1.05
c/object but a 2D mean frequency of 1.49
c/object. The single most informative character-
ization of such a skewed bandpass spectrum

depends somewhat on the context; usually use
the mean rather than the peak.

Figure 2 (top) shows the letter G, filtered in
bands 1—5 without noise; the bottom shows the

same signals plus noise, s/ri = 0.5. The full
128 x 128 array (extended by reflection beyond
its edges) was passed through the filter so that
the effect of the picture boundary did not
intrude into the critical part of the display.

Signal [0 noise ratio, sin. A filtered letter is a
signal. Let i, j index a particular pixel in the x, J'
coordinate space of the stimulus. The signal
contrast c,(i,j) of pixel i,j is:

C.(i.j) = I0

where 1.} is the luminance of pixel i,j and 10 is
the mean signal luminance over the 90 x90
array. Signal power per pixel. s. is defined as
mean contrast power averaged over the 90 x 9.0.
pixel array:

I J

5 = (“l—l 0.0le (2)

where c,_, is the contrast of pixel i, j and
l = J = 90.

Noise contrast <',,(i.j) is the value of the i.jlh
noise sample divided by the mean luminanCE-
Analogously to signal power (equation 2). noise
contrast power per pixel. n. is equal to (Ulla):-
The signal to noise ratio is simply s n.
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Quantization. Our display system produced
256 discrete luminance levels. Level 128 was
used as the mean luminance [0; 10 was
47.5 cd/mz. To produce a visual display of a
given letter. band. and s/n, signal power 5 and
noise power n were normalized so that the
luminance of every one of the 8100 displayed
pixels fell within the range of the display system;
there was no truncation of the tails of the
Gaussian noise. (Although the relationship be-
tween input gray-level and output luminance
was not quite linear at the extreme intensity
values, it was determined that more than 90%
of the pixels fell within the linear intensity
range.) Intensity normalization was applied sep-
arately to each stimulus (combination of signal
plus noise). By normalizing the total stimulus
s+n, the actual value of s displayed to the
subject diminished as n increased; i.e. the actual
value of: was not known by the subject. Indeed.
even stimuli with precisely the same letter in the
same band and with the same 3m might be
produced with slightly different 5 and n depend-
ing on the extreme values of the noise fields.

Seven values of sin were available for each
band, chosen in a pilot study to insure that the
data yielded the entire psychometric function
(chance to best performance). The same pilot
Study showed that subjects never performed
above chance when confronted with noise-free
letters from b0: this band was omitted from the
present study.

Procedure: experiment 1

Four of the experimental variables—letter
identity, noise field, frequency band. and sm~
were randomized within each session. A fifth
variable, viewing distance. was held constant
Within each session and was varied between
Sessions. Four viewing distances were used:
0.121, 0.38, 1.21 and 3.84 m. A chin rest was
Used to stabilize the subject’s head for viewing
at the shortest distance. At the four distances.
the 90 x 90 pixel stimulus subtended 31.6. 10.
3.16 and 1.0 deg ofvisual angle respectively. The

upper and lower half-amplitude cut-01f retinal
frequencies for the upper six filters. with respect
to the four viewing distances used in this exper-
iment. and for a fifth distance used in the second
experiment, appear in Table 2. Subjects partici-
pated in four l-hr sessions at each viewing
distance. Each session consisted of 315 trials.
nine trials at each of seven s/n’s for each of the
five frequency bands.

Prior to the first session, subjects were shown
noise-free examples of the unfiltered letters.
They were told that each stimulus presentation
consisted of a letter and a certain amount of
noise. and that the letter may appear degraded
in some way. They were informed that at no
time would a letter be shifted in orientation or
from its central location in the stimulus field.
Finally. they were instructed to view each stimu-
lus for as long as they desired before making
their best guess as to which letter had been
presented. A response (letter identity) was
required on every trial. Subjects typed the
response on a keyboard connected to the host
computer (Vax 11,:750); subsequently. typing a
carriage return erased the video screen and
initiated the next trial in a few seconds. The
room illumination was very dim: the response
keyboard was lighted by stray light from its
associated CRT terminal. No feedback was
offered to the subjects.

Observers

Three subjects, two male and one female.
between the ages of 20 and 27 participated in the
experiment. All subjects had normal or cor-
rected-to-normal vision. One ofthe subjects was
a paid participant in the study.

Procedure: experiment 2

This experiment was run before expt 1. It is
reported here because it ofiers additional data
with two new and one old subject at a fifth
viewing distance. Except as noted. the pro-
cedures are similar to expt 1. The screen was
viewed through a darkened hood at a distance

Table 2. Lower and upper half-power frequency and 2D mean frequency (in c deg ofvisual tingle) for all bands and viewingisnmces used in both experiments
yViewing distance (m)

0.12 0.38

0 (lowpass) 00070041003) 0000121009)
002-007 (0.05) 0.06 02310.16)
0.04~0.15 (0.10) 0120471033)
0.07-030(020) 0.23 09410.64)
0150591040) 0.47 18811.27)

5 (highpass) 0.30125 (1.41) 0.9-1 71314.45)

1.21 0.48
.1510871 0.00 01510.11)0.07 0.291021)

0.15 0.591041)

0.74 2.971104) 23479.4(11648) 0.29—1.18 (0.81)
1.43 5.941404) 4.71) lumith 0.59 13611.60)
2.97 215311419) 9411 71.171450”: 1,77 8.966.631

0.00 03710.27) '1
0.18 07410.52) .. 13411.65)
0.37 14311.04)
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of 0.48 m. At this distance, the 90 x 90 stimuli

subtended 7.15deg of visual angle. The half-

amplitude cut-ofl‘ frequencies and the mean
frequencies of the six spatial filters are given in
the rightmost column of Table 2. Three male
subjects between the ages of 20 and 27 par-
ticipated in the experiment. All subjects had
normal or corrected-to-norrnal vision. Two of

the subjects were paid for their participation.
and one, DHP, also participated in expt l. Five
sessions of 315 trials were run for each subject.

RESULTS

Psychometric functions: is us log“, s/n

The measure of performance is the observed

probability ii of a correct letter identification.

'5cu.._
oO
>s
'5m.o
oi.
D.

The complete psychometric functions are dis-

played in Figs 3 (expt l) and 4 (expt 2). A
separate psychometric function is shown for
each subject, viewing distance and frequency
band. In band b,, for all subjects, performance

asymptotes (for noiseless stimuli) at 13 z0.5. In
all other bands, performance improves from
near-chance (1/26) to near perfect as the value
of s/n increases.

Noise resistance as a function offrequency band

An obvious aspect of the data of both exper-
iments is that the data move to the left of the

figure panels as band spatial frequency in-
creases. This means that high spatial frequency
stimuli (bands b4, b5) are identifiable at smaller

Fig. 3. Psychometric functions from 12pr l, Each graph displays performance as a function of loglo 5 n.
within a frequency band. The parameter is viewing distance. Subjects are arranged in columns and
frequency band is arranged in rows. progressing from the highest frequency band at the top to the lowest
band at the bottom. The four viewing distances are 184(0). l.2| (A). 0.38 (Cl). and 0.l21 (0) m.
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Probabilitycorrect

Fig. 4. Psychometric functions for each subject and fre-
quency band in expt 2. Viewing distance was 0.48 m. The
live frequency bands, brbs. are indicated. respectively, by
3- E]. A. 0 and +. The probability of a correct response

is plotted as a function of loglo sln.

s in than stimuli in bands bl and b2; resistance to

noise increases with spatial frequency band. To
enable comparisons of noise sensitivity as a
function of band, the s/n at which 13 = 50% was
estimated for each subject and frequency band
from expt l by means of inverse interpolation

from the best fitting logistic function. As view-
lng distance had no effect, all estimates were

“fade using the data collected when viewing
distance was equal to 0.38 m. A graph of these
“Whey. points as a function of the mean object
freiluency of the band is plotted in Fig. 5 (O).
For comparison, the expected rate of improve-
ment in (s/n)50%, based on the increasing num-
ber of frequency components as one moves from

10"? to high frequency bands, is plotted as a
series of parallel lines in Fig. 5. Performance
lmProves [(s/n)50.,fl decreases] somewhat faster
than 1/f (the slope of the parallel lines). These
results, and Fig. 5. will be analyzed in detail in
“16 Discussion section.

3. “052 0.55 1.00 1.75 3.16 55210.0 17.3 31.5
20 Mean frequency (cycles/letter height)

Fig. 5. Performance of human subjects and various compu-
tational discriminators. The abscissa indicates loglo of the
mean frequency of each bandpass stimulus. The ordinate
indicates the (interpolated) s/n ratio at which a probability
of a correct response p =0.5 is achieved. Circles indicate
each of the three subjects in expt l at the intermediate
viewing distance of 1.21m. In band b,. 2 of 3 human
subjects fail to achieve 5 % correct (12,17r = 0); these points lie
outside the graph. (A) indicates sub-ideal and (0) indicates
super-ideal performances ofdiscriminators that brackets the
ideal discriminator. The shaded area below the super-ideal
discriminator indicates theoretically unachievable perform-
ance. Squares indicate performance of a spatial correlator-
discriminator. The oblique parallel lines have slope —l that
represents the improvement in expected performance
(decrease in s/n) as function of the number of frequency
components in each band when filter bandwidth is

proportional to frequency.

The non -eflect of viewing distance

Another property of the data is that, in most
conditions, viewing distance has no effect on
performance. Analysis of variance, carried out
individually for each subject, shows that there is
no significant effect of distance in any band for
subject dhp and a significant efiect of distance in
bands 13,, and b, for the other two subjects.
Further analysis by a Tukey test (Winer, 1971)
in bands b4 and b5 for these subjects shows that
the only significant effect of distance is that
visibility at the longest viewing distance is belief
than at the other three distances. For subject

CJD, the improvement is equivalent to a gain in
s/n of 0.19 and 0.28 logl0 (for bands b4 and b5.
respectively); for MAV. the corresponding gains
were 0.21 and 0.40.

Improved performance at long viewing dis-
tances is almost certainly due to the square

configuration of individual pixels, which pro-
duces a high frequency spatial pixel noise that is
attenuated by viewing from sufficiently far away
(Harmon & Julesz, 1973). In low frequency
bands, pixel-boundary noise is not a problem
because the spatial filtering insures that adjacent
pixels vary only slightly in intensity. We ex-
plored the hypothesis of pixel-boundary noise
with subject CJD, who showed a distance effect
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in band 5. At an intermediate viewing distance
of 1.21 m. CJD squinted her eyes while viewing
stimuli from band 5. By blurring the retinal
image of the display in this way, performance
improved approximately to the level of the
furthest viewing distance. ‘

To summarize, the only significant effect of
distance that we observed was a lowering of
performance at near viewing distances relative
to the furthest distance. This impairment
occurred primarily in bands 4 and 5. In these

bands, the spatial quantization of the display
(90 x 90 square-shaped pixels) produces arti-
factual high spatial frequencies that mask
the target. These artifactually produced spatial
frequencies can be attenuated by deliberate
blurring (squinting). or by producing displays
with higher spatial resolution, or by increasing
the viewing distance to the point where the pixel
boundaries are attenuated by the optics of the
eye and neural components of the visual modu-
lation transfer function. In all cases. blurring
improves performance and eliminates the

slightly deleterious effect of a too small viewing
distance. Thus. for correctly constructed stim-
uli. in the frequency ranges studied. there would
be no significant effect of viewing distance on
performance. This finding is in agreement with
the results of Legge et al. (1985), who examined
reading rate rather than letter recognition. It is
in stark disagreement with the results of
sinewave detection experiments in which retinal
frequency is critical—see Sperling (1989) for an
explanation.

DISCUSSION

A comparison of performance in different
frequency bands shows that subjects perform
better the higher the frequency band; and sub—
jects require the smallest signal-to-noise ratio
in the highest frequency band. To determine
whether performance in high frequency bands is
good because humans are more efficient in

utilizing high-frequency information. or because
there is objectively more information in the

high-frequency images. or both. requires an
investigation of the performance of an ideal
observer. The performance of the ideal observer

is the measure of the objective presence of
information. Human performance results from
the joint effect of the objective presence of
information and the ability of humans to utilize
that information. Human efficiency is the ratio
of human performance to ideal performance.

DAVID H. PARISH and GEORGE SPERLING

Ideal discriminator

fiefinition. An ideal discriminator makes the
best possible decision given the available data
and the interpretation of “best.” The perform-
ance of the ideal discriminator defines the objeC»
tive utility of the information in the stimulus.
We prefer the name ideal discriminator, rather
than ideal observer. because it indicates the

critical aspect of performance under consider-
ation. but we occasionally use ideal observer to
emphasize the relations to a large, relevant
literature on this subject. Our purposes in this
section are first, to derive an ideal discriminator
for the letter identification task, second, to

develop a practical working approximation to
this discriminator. and third, to compare the
performance of the human with the ideal dis-
criminator.

Although ideal observers have recently come
into greater use in vision research, the appli-
cations have focused primarily on determining
the limits of performance for relatively low-level
visual phenomena. For example, Barlow (1978.
1980), and Barlow and Reeves (1979) investi-
gated the perception of density and of mirror
symmetry; Geisler (1984) investigated the limits
of acuity and hyperacuity; Legge, Kersten and
Burgess (1987) examined the pedestal effect:
Kersten (1984) studied the detection of noise
patterns; and Pelli (1981) detailed the roles of
internal visual noise. Geisler ([989) provides an
overview of efficiency computations in early
vision. Our application differs from these in that
we expand the techniques and apply them to
a higher perceptual/cognitive function, letter
recognition.

For the letter identification task, the ideal
discriminator is conceptually easy to define. A
particular observed stimulus, x. representing an
unknown letter plus noise. consists of an inten-
sity value (one of 256 possible values) at each of
90 x 90 locations. The discriminator’s task is to

make the correct choice as frequently as possible
from among the 26 alternative letters.

The likelihood of observing stimulus x, given
each of the 26 possible signal alternatives, can
be computed when the probability density func-
tion of the added noise is known exactly. The
optimal decision chooses the letter that has the
highest likelihood of yielding x. The expected
performance of the ideal discriminator is com-
puted by summing its probability of a correct

response over the 256“”’“ possible stimuli (256
gray levels. 90 x 90 pixels). Unfortunateb-
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Noise No (my)

Latteri (x.y) Tamplata‘ (x.y) V“Mar

I file U ~69

Template]: (01.03,) T

0

Fig. 6. Flow chart of the experimental procedures t
Upper half indicates space-domain operations; lowe
frequency domain. Computations are carried out on
90 x 90 pixels. A random letter and a random noise
is amplified to provide the desired signal-to-noise ratio:
and quantized (represented by the addition of digitization noise), afilter selects an annulus, whereas the
In the frequency domain a)... a)“ the bandpass

Dlultlzatlonnolse

1

i l

hat are modelled by the ideal discriminator analysis.
r half indicates the corresponding operations in the

128 x 128 arrays; the subject sees only the center
field are each filtered by the same filter (b ); the noise

the letter and noise are added, the output is scaled
nd the result is shown to the subject.

quantization noise
is uniform over cur. (0‘.

when there is both bandpass filtered and inten~
sity quantization, the usual simplifications that
make this enormous computation tractable are
not applicable.

As an alternative to computing the expected

performance of the ideal discriminator. one can
Compute its performance with a particular sub-
Set of the possible stimuli—the stimuli that the
Subject actually viewed or, preferably, a larger
561 of stimuli for more reliable estimation. This
Monte Carlo simulation of the performance
of the ideal discriminator is a tractable com-
Dutation that yields an estimate of expected
Performance.

Derivation. Stimulus construction is dia-
grammed in Fig. 6 which shows the equivalent
Operations in the space and the frequency do-
mains. To derive an ideal discriminator. we need

I0 carefully review the processes of stimulus
Construction. We use uppercase letters to rep-

resent quantities in the frequency domain and
lowercase letters to represent quantities in the
Space domain. A letter is defined by a 90 x 90
array that takes the value 1 at the letter
locations and 0 at the background locations.
when this array is spatially filtered in band I). it
defines the letter temp/are !,_,.(.\‘._l'). where 1'

indicates the particular letter, I) the frequency
band, and x,y the pixel location. We write
115(0)“ coy) for the Fourier series coefficient of
t“. indexed by frequency.

An unknoWn stimulus u,‘,,(x, y) to be viewed
by a subject is produced by adding filtered
11,,(x, y) with post-filtering variance 0%,, to the
template ti‘b(x, y), where letter identity 1' is un-
known to the subject. The stimulus is scaled and
digitized (quantized) to 256 levels prior to pres-
entation, contributing an additional source of
noise qi.,,(x, y), called digitization noise. Finally,
a d.c. component (dc) is added to u“, to bring
the mean luminance level to 128. These steps are
diagrammed in Fig. 6 which shows both the
space«domain and the corresponding frequency-
domain operations. The space-domain compu-
tation is encapsulated in equations (3):

“mi—Vs P) = fii.b[li.b(xt J’) + "id-‘1 .")i (33)

ul.h(x7 Y) = Bt.h[ti.b(x‘ y) + "W‘- Ti]
+ qr.t(x. y) + dc. (3b)

The scaling constant [3“, limits the range of
real values for each pixel. prior to quantization,
to [—05, 255.5]. The degree of scaling is deter-
mined by the maximum and minimum values in

m,“

I.W'I.‘-.>:~tm-»w
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the function I“, + n,,. Note that the extreme
values in the image are determined by ax, which

is adjusted to yield the appropriate s/n for each
condition; the values of r“, are- fixed prior to

scaling. Specifically:
256

maXUm + ’71:) — minUU: 'l‘ "(v)-
fitb = (4)

As a result of bandpass filtering, the
noise samples in adjacent pixels are strongly
dependent on each other. Therefore. the dis-
criminator problem is best approached in the
Fourier domain. where the random variables

{Nh(ai‘.,wv,.)} are jointly independent because
the filtering operations simply scale the differ-
ent frequency components without intro-
ducing any correlations (van Tress. 1968). The
task of the ideal discriminator is to pick the
template r,_ b that maximizes the likelihood of u”.
with a priori knowledge of: (i) the fixed func-
tions 1,3,. and their probabilities; and (ii) the
densities of the jointly independent random

variables {Nb(a)x,wj.)}. As is clear. BM, 0i.
{Qi_,,(w‘\.,w_,.)}. and {Ni4h(wv, cuv,.)} are all jointly
distributed random variables characterized by

some densityf. To compute the likelihood of u“,
the ideal discriminator must integratefover all

possible values that may be assumed by the
set of jointly. distributed random variables.
whose values are constrained only in that they
result in a possible stimulus um. Unfortunately.
no closed-form solution to this problem is avail-
able, forcing us to look for an alternative
approach.

Bracketing. To estimate the performance of
the ideal discriminator. we look for a tractable

super-ideal discriminator that is better than the
ideal but which is solvable. Similarly, we look
for a tractable sub-ideal discriminator that is
worse than the ideal. The ideal discriminator
must lie between these two discriminators: that

is, we bracket its performance between that of
a “super—ideal" and a “sub-ideal" discriminator.
The more similar the performance of the super
and sub-ideal discriminators. the more con-

strained is the ideal performance which lies
between them.

Our super-ideal discriminator is told, a priori,

the extact values for B“, and (Ti for each stimu-
lus presentation. Therefore, it is expected to
perform slightly better than the ideal discrimi-
nator which must estimate these values from
the data. The sub-ideal discriminator estimates

these same parameters from the presented
stimulus in a simple but nonideal way. There-

fore, it is expected to perform slightly worse

than the ideal discriminator. The computational
forms used to compute fl” and 0%, for the
sub-ideal discriminator are presented in the

Appendix, along with the derivation of the
likelihood estimator used by both discrimin-
ators. A complete discussion of these deri-
vations and the problems associated with the
formulation of an ideal discriminator for such

complex stimuli is presented in Chubb. Sperling
and Parish (1987).

Performance of the bracketed discriminator.
The super- and sub-ideal discriminators were
tested in a Monte Carlo series of trials, in which

they each were confronted with 90 stimuli in
each of the frequency bands at each of seven 3.1:
values chosen to best estimate their 50% per-

formance point. The s/n necessary for 50%
correct discriminations was estimated by an

inverse interpolation of the best fitting logistic
function. The derived (5,7050...o is the measure

of performance of a discriminator. The mean
ratio. across frequency bands. of

(s /n)50n,u sub-ideal/(s :n )min super-ideal

is about 2 (approx. 0.3 loglo units). The
ratio does not depend on the criterion of
performance.

Efliciency of human discrimination

In all conditions. human subjects perform
worse than the sub-ideal discriminator. Notably.
with no added luminance noise. the subideal

(and, of course, the ideal) discriminator func-
tion perfectly. even in 170 where subject perform-
ance is at chance. and in b! where subjects
reached asymptote at about 50% correct.

Data from the subjects are plotted with the

(s/n)50% sub-ideal and (5.005090 super-ideal in
Fig. 5. For comparison. Fig. 5 also shows the
performance of a correlator discriminator which
chooses the letter template that correlates most

highly with the stimulus in the space domain. In
the coordinates of Fig. 5 (logIDs/n vs logmf
where f represents the mean 2D spatial fre-
quency of the band). the vertical distance dfrom
the human data log(s-‘n)50to, human down to the
bracketed discriminator log(s-n)50.,a, ideal rep-

resents the logm of the factor by which the
bracketed discriminator outperforms the human
observer at that value off. For the purpoSe

of specifying efficiency. we assume the ideal
discriminator lies at the mid-point of the sub

and super-ideal discriminators in Fig. 5. Th5
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Efficiency  
.3 l“ M It) _tl
2D Mean Spatial Frequency. Cycles/Object

Fig. 7. Discrimination efficiency as a function of the mean
frequency of a 2-octave band (in cycles per letter height)
indicated on a logarithmic scale. Data are shown for three
observers: A = SAW. D = RS. 0 = DHP. The viewing
distance is 2.21m. which is representative of all viewingdistances tested.

efficiency eff of human discrimination relative
to the bracketed discriminator is efl 2 l0‘“.
where:

d = 103(5/")50e..1mmuu - 10g(5 l" )50”"u. ideul'

The values of efl in each object frequency
band are shown in Fig. 7. In band 0. efl'is zero
because human performance never reaches
50%; indeed. it never rises significantly above
4% (chance). In band 1. human performance
asymptotically climbs close to 50% as 5/" ap-
proaches infinity: efl z 0. In band 2. eflreaches
its maximum of 35~47% (depending on the

subject), and it declines rapidly with increasing
frequency (b3—b5).

The 42% average efficiency in band 2 is
similar in magnitude to the highest efficiencies
observed in comparable studies. For example.
Efficiency has been determined for detecting
various kinds of patterns in arrays of random
dots (Barlow, 1978. 1980; van Meeteren &
Barlow, 1981). tasks which. like ours. may

require significantly cognitive processing. In a
wide range of conditions. the highest efficiencies
observed were about 50%, and frequently
lower. Van Meeteren and Barlow (1981) also

fOiund that efficiency was perfectly correlated
With object spatial frequency and was indepen-
dent of retinal spatial frequency.

'Spatial correlator discriminator. A correlator
discriminator cross-correlates the presented
stimulus with its memory templates and chooses

lhé template with the highest correlation. Corre-
lation can be carried out in the space or in the

fretluency domain. Correlation is an efficient
strategy When noise in adjacent pixels is inde-
Dendent and when members of the set of signals

have the same energy: both of these conditions

\R )1.) LL
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are violated by our stimuli. However. when
sufficient prior information is available to sub-
jects, they do appear to employ a cross-corre-
lation strategy (Burgess. 1985).

It is interesting to note that the performance
of the spatial correlator discriminator over the
middle range of spatial frequencies is quite close
to the performance of the sub-ideal discrimin-
ator. At high spatial frequencies, correlator
performance degenerates. due to its inability to
focus spatially on those pixel locations that
contain the most information. A spatial corre-
lator that optimally weighted spatial locations,
could overcome the spatial focusing problem at

high frequencies. (Spatial focusing is treated in
the next section.)

At all frequencies, the spatial correlator is
nonideal because noise at spatial adjacent pixels
is not independent. At low spatial frequencies,
the nonindependence of adjacent locations be-
comes extreme and the correlator fails miser-

ably. This points out that. for our stimuli,
correlation detection is better carried out in the

frequency domain because there the noise at
different frequencies is independent. The quali-
tative similarity between the correlator dis-
criminator and the subjects‘ data suggests that
the subjects might be employing a spatial
correlation strategy. augmented by location

weighting at high frequencies.
Lowest spatial frequencies sufficient for letter

discrimination. Band 2 corresponds to a 2-
octave band with a peak frequency of 1.05

cg'object (vertical height of letters) and a 2D
mean frequency of 1.49 cobject. At the four
viewing distances. 1.05 c object corresponds to
retinal frequencies of 0,074. 0.234, 0.739 and
2.34 c/deg of visual angle. We observe perfect
scale invariance: all of these retinal frequencies,
and hence the visual channels that process this
information, are equally effective in achieving

the high efficiency of discrimination.
The finding that [91 with a center frequency of

1.05 c/object and a amplitude cutoff at 2.1
c/object is critical for letter discrimination is in
good agreement with previous findings of both
Ginsburg (1978) for letter recognition and
Legge et al. (1985) for reading rate. Legge et al.
used low—pass filtered stimuli. which included
not only spatial frequencies within an octave of
l c’object (b1) but also included all lower fre-
quencies. From the present study. we expect
human performance with low-pass and with
band-pass spatial filtering to be quite similar up
to l c object because the lowest frequency

  



OLYMPUS EX. 1016 - 392/714

1412

bands, when presented in isolation, are percep-
tually useless (at least when presented alone).

It is an important fact that our subjects
actually performed better, in the sense of achiev-

ing criterion performance at a [diver 5/" ratio, at
higher frequency bands than b3. This is ex-
plained by the increase in stimulus information '
in higher frequency stimuli. Increased infor-
mation more than compensates for the subjects'
loss in efficiency as spatial frequency increases.

Components of discrimination performance

Though the performance of the bracketed

ideal discriminator is useful in quantifying the
informational utility of the various bands, it is

instructive to consider the changing physical
structure of the stimuli as well. What com-

ponents of the stimuli actually lead to a gain in
information with increasing frequency? Accord-
ing to Shannon’s theorem (Shannon & Weaver,

1949), an absolutely bandlimited l-D signal can
be represented by a number of samples In that
is proportional to 'its bandwidth. When the

signal-to-noise ratio in each sample s,,’n,- is the
same, the overall signal-to-noise ratio s,-'n grows
as In the space domain, our filters were
constructed (approximately) to differ only in
scale but not in the shape of their impulse
responses. Therefore. when the mean frequency
of a filter band increased by a factor of 2. the
bandwidth also increased by 2. Since the stimuli
are 2D. the effective number of samples in-
creases with the square of frequency. and the
increase in efl‘ective s/n ratio is proportional to
m. This expected improvement with frequency.
based simply on the increase in effective number

of samples, is indicated by the oblique parallel
lines of Fig. 5 with slope of —- l. The expected
improvement in threshold s/n due simply to the
linearly increasing bandwidth of the bands does
a reasonable job of accounting for the improve-
ment in performance for both human and

bracketed discriminators between b: and 17,.
Performance of all discriminators improves

faster with frequency between 0.39 and 1.5
c/object and between 5.8 and 22 c,object than is
predicted from the bandwidths of the images. A
slope steeper than — 1 means that there is more

information for discriminating letters in higher
frequency bands even when the number of

independent samples is kept the same in each
band. Once sampling density is controlled. just
how much information letters happen to con—
tain in each frequency band is an ecological
property of upper-case letters.

DAVlD H. PARISH and GEORGE SPERLING

Increasing spatial localization with increasing
frequency band. From the human observer's
point of view, the letter information in low-pass
filtEFed images is spread out over a large portion
of the total image array. In high spatial-fre-
quency images, the letter information is concen-
trated in a small proportion of the total number
of pixels. In high spatial-frequency images. a
human observer who knows which pixels to
attend will experience an effective s/n that is
higher than an observer who attends equally to
all pixels. In this respect, humans differ from an
ideal discriminator. The ideal discriminator has

unlimited memory and processing resources.
does not explicitly incorporate any selective
mechanism into its decision, and uses the same

algorithm ‘in all frequency bands. Information

from irrelevant pixels is enmeshed in the
cOmputation but cancels out perfectly in the
letter—decision process. To understand human
performance, however, it is useful to examine
how, with our size-scaled spatial filters, letter
information comes to be occupy a smaller and
smaller fraction of the image array as spatial
frequency increases.

Here we consider three formulations of the

change in the internal structure of the images
with increasing spatial frequency: (l) spatial
localization; (2) correlation between signals: and
(3) nearest neighbor analysis. We have already
noted that, in our images, the information-rich
pixels become a smaller fraction of the total
pixels as frequency band increases. Indeed, this
reduction can be estimated by computing the
information transmitted at any particular pixel
location or, more appropriately for estimating
noise resistance, by computing the variance of
intensity (at that pixel location) over the set of
26 alternative signals.

To demonstrate the degree of increasing
localization with increasing frequency, the vari-
ance (over the set of 26 letter templates) was
computed at each pixel location (my). Total
power, the total variance. is obtained by sum-
ming over pixel locations. The number of pixel
locations needed to achieve a specific fraction of
the total power is given in Fig. 8, with frequency
band as a parameter. These curves describe the
spatial distribution of information in the latter

templates. Ifall pixels were equally informative.
exactly half of the total number of pixels would
be needed to account for 50% of the total

power. The solid curves in Fig. 8 show that the
number ofpixels needed to convey any percent-

age of total signal power. decreases as the

.—
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Fractionatpower 9.5
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Number of plxels

Hg. 8. Fraction of total power contained in the n most
extreme-valued pixels as a function of u (out of 8100). Solid
lines indicate the power fractions for signals; the curve
parameter indicates the filter band. Dashed lines indicate
power fractions for filtered noise fields. Although power
fractions from successive bands of noise are too close to
label, they generally fall in the same left—right 5—0 order as

those for signal bands.

frequency band increases. These information
distribution curves are an ecological property of
our set of letter stimuli; different curves would
be needed describe other stimulus sets.

The dashed curves in Fig. 8 were derived from
random noise filtered in each of the six fre-

quency bands (bo—bs). The distribution of noise
power is very similar between the various bands,
enormously more so than the distribution of
signal power. For our letter stimuli, stimulus
information coalesccs to a smaller number of

spatial locations as spatial frequency increases.
Correlation between signals. A more abstract

may of describing the change of information
with bandwidth is to note that letters become
less confusible with each other in the higher

frequency bands. A good measure of confusibil-
Ity is the average pairwise correlation between
the 26 letter templates in each frequency band
(Table 3). The average correlation between
letter templates diminishes from 0.94 in band 0
lo 0.31 in band 5. In a band in which templates

have a pairwise correlation over 0.9, the over—
\vhelming amount of intensity variation (“infor-
mation”) is useless for discrimination. Small
wonder that subjects fail completely in this

band. Overall, performance of the ideal dis-
criminator and of observers improves as the
correlation decreases. but there is no obvious

way to use the pairwise correlation between
templates to predict performance.

Nearest neighbors. The analysis of nearest
nelghbors is a useful technique for predicting

accuracy by the analysis of the possible causes
0f errors. We can regarda filtered image I,- of
letter i as a vector in a space of dimensionality

8100 (90 x 90 pixels). When noise is added. the

Table 3. Average pairwise correlations and
nearest neighbors (Euclidean distance x 10")

Band Correlations Nearest neighbor
0.94 0.01
0.91 0.30
0.58 1.2
0.38 2.3

I“ 0.33 3.1
0.31 4.1____________’___——————

possible positions of t, are described by a cloud
whose dimensions are determined by the s/n
ratio. A neighboring letter k may be confused
with letter i when the cloud around l,‘ envelopes
tk. The closer the neighbor, the greater the
opportunity for error. Table 3 gives the average
normalized distance to the nearest neighbor in
each of the bands. The increase in distance to
the nearest neighbor reflects the improvement in
the representation of signals as spatial frequency
increases.

We consider possible causes of lower
efficiency of discrimination in bands below b2.
The letters in these bands have high pair-wise
correlations and the mean band frequency is
less than the object frequency. This means
that letters differ only in subtle differences of
shading, a feature that we usually do not think
of as shape. Observers would need to be able to
utilize small intensity differences to distinguish
between letters. To eliminate an alternative ex-
planation (the smaller number of frequency
components in the low—frequency bands), we
conducted an informal experiment with a lower
fundamental frequency. The fundamental fre-
quency, which is outside the band, nevertheless
determines the spacing of frequency com-

ponents within the band. Reducing the funda-
mental frequency of the letter by one-half
increases the number of frequency components
in the band by a factor of 4. (A 256 x 256
sampling grid was used rather than 128 x 128.)
These 4 x more highly sampled stimuli were not
more discriminable than the original stimuli.
This suggests that the internal letter represen-
tation (template) that subjects bring with them
to the experiment cannot utilize low-frequency
information, even when it is abundantly avail—
able. Whether, with sufiicient training, subjects
could learn to use low spatial frequencies to
make letter discriminations is an open question.

SUMMARY AND CONCLUSIONS

1. Visual discrimination of letters in noise,

spatially filtered in 2-octave wide bands, is

-l.

«mews,.‘t.
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independent of viewing distance (retinal fre-
quency) but improves as spatial frequency
increases. ‘

2. The improvement in performance with
increasing spatial frequency results mainly from
an increase in the objective amount of infor-
mation transmitted by the filters with increasing
frequency (because filter bandwidth was pro-
portional to center frequency) which is mani-
fested as objectively less confusible stimuli in the
higher bands.

3. The comparison of human performance
with that of an estimated ideal discriminator

demonstrates that humans achieve optimal
discrimination (a remarkable 42% efficiency)
when letters are defined by a 2—octave band of
spatial frequencies centered at 1 cycle per letter
height (mean frequency 1.5 c/letter). This high
efiiciency of discrimination is maintained over a
32:1 range of viewing distances.

4. Detection efficiency was invariant over a
range of retinal spatial frequencies in which the
contrast threshold for detection of sine gratings
(the modulation transfer function, MTF) varies
enormously. The independence of detection per-
formance and retinal size held for all frequency
bands.

5. A part of the loss of human efl‘iciency in
discrimination as spatial frequency exceeded 1
c/object height may have been due to the sub-
jects’ inability to identify, to selectively attend.
and to utilize the smaller fraction of information-

rich pixels in the higher frequency images.
6. Finally, it is important to note that

without the comparison to the ideal observer,
we would not have been able to understand the

components of human performance in the
different frequency bands.
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APPENDIX

Both sub-ideal and super-ideal discriminators must compute
estimates of the likelihood that the stimulus it” was pro-
duced with template t“, and noise nb. where k is the letter
used to generate the stimulus. i is an arbitrary letter. and b
indexes spatial frequency band. Let x be an index on the
pixels of the image: 1 s x s 8100. for the 90 x 90 images of
the experiments.

'For the Monte Carlo simulations of the super-ideal
discriminator. the unknown stimulus parameters. 1,. ,, and 0?.
are computed during stimulus construction. and their exact
Values are supplied to the discriminator a priori. The
sub-ideal diseriminator. however. must estimate these par-
ameters from the data as follows.

Sub -Ideal Parameter Estimation

Recall that stimulus contrast is modulated for any pixel
.r in the image:

Uk_;.[.l'] = fi,_,,[t,',(.\') + n,.(.\' )] + qmlx ). (A l)

The scaling constant ti”, limits range of real values for each
pixel. prior to quantization. to the open interval (—0.5.
~55-5): the addition of q,',[.\']. called quantization noise.
l'Ounds ofi' pixel values to integers.

For each bandpass filtered template I] ,,. we first compute
the correlation p. , of the template to the stimulus um:

Zu. .txii ,tx)
p“: _-,_..:, .. . (A2)

{Elm tit if}! i ,(x Hz? -\

To compute the likelihood estimates for each template t...
we must be able to reverse the effect of [3”. Thus we define
at” = 1/13... and choose at... so as to minimize the expression:

Elation-rill = Zipk..lt.ti(x )12- (A3)

Solving for I” gives us:

Emmi! “1
“ab = file:

2 ["k. b(-‘ )1:it

Finally we set:

I x s

‘73; = X, Z [1..tut.s(-‘)— flown" (A5)ir=l

where X = 8l00. the number of pixels in the image.

Likelihood Estimation

With estimates of 0%, and 1,, for the sub-ideal dis-
criminator. and the a priori values for the super-ideal
discriminator. we can formulate a maximum likelihood
estimator. By rearranging terms of equation (Al) and
dividing both sides by B yields:

“1. iii-V) gut-(x)
' ,—, . = . + . (A6
g ('50:) n,,(r) fl }

Substituting at“, for 1/5, and by transposing into the fre-
quency domain. denoted by upper-case letters and indexed
by to. we have:

“Lt: Ursa”) — Tau”) = N14“) + 11.le.b(w)' (A7)

Note that the left side of equation (A7) is simply a
difference image between the stimulus Una») and the
template 71,,(w). This difi‘erence is exactly equal to the sum
of the luminance and quantization noise only when the
correct template is chosen (i =k). When the incorrect
template is chosen (1' #k) the right hand side of equation
(A7) is equal to the sum of the noise sources plus some
residue that is equal to T.',,(cu)—T,r,,(w). Under the
assumption that quantization noise can be modeled as
independent additive noise in the frequency domain, the
density A of the joint realization of the right-hand side of
equation (A7) is given by:

A=n X
ntaézitwilrttwin:

“-‘~'|1thUk “all "’ Ti Kw”: A8x exp[ zfi.ag+a;|r.(w)|- ( )
where F,,(tu) is simply the kernel of filter 17. in the frequency
domain. Dropping the multiplicative ten-n in equation (A8).
which does not depend on the template T. and taking logs.
the ideal discriminator chooses the template that minimizes:

Xlzmumiwi— Tum”:
Z———-———.a 1 s 1 (A9)
n “inab'i'a’i'iFnhDii‘

Finally. it is more convenient to compute the power of
the quantization noise in the space domain (05) than in the
frequency domain (03): a: = ole. Spatial quantization noise.
q,_,.(.\‘). is uniformly distributed on the interval [—0.5. 0.5).
so that of, is computed as:as

I x: dx (MD)at

and is equal to I ll.
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Visual Factors in Letter Identification

Denis G. Pelli, Catherine W. Burns, Manoj Raghavan, and Bart Farell
Institutefor Sensory Research, Syracuse University, Syracuse, New York

We have been studying how people identify letters. Our re-
sults indicate that the process of letter identification is medi-
ated by a general visual object recognition process.

Task

We briefly present a low contrast letter with indepen-
dent Gaussian noise added to each pixel. Then the observer

is shown a complete high-contrast alphabet and asked to in-
dicate which letter was seen. An adaptive procedure adjusts
the letter contrast on successive trials (each with indepen-
dent noise) to estimate the "threshold" letter contrast at which
the observer attains 62% correct.

Efficiency
For comparison, we also implement the ideal Bayesian

classifier, using exactly the same task. "Efficiency" is the
ratio of contrast energies at threshold (which is the squared
ration of ideal to human threshold contrasts).

Alphabets
We have tested fluent readers of English. Devanagari

(the script used for Hindi and Sanskit), Hebrew, and Anne-
nian. The appearances of these alphabets are very different,
yet their efficiencies are all about 10%.

Learning
We have measured the learning of new alphabets by 0b

servers of all ages. Learning proceeds at a similar rate. per
trial, in all observers and alphabets, reaching expert perfor-
mance (indistinguishable from a fluent reader) after a mere

3,000 trials. This includes a previously illiterate 3-year old
leaming the English alphabet, and adult readers learning for-
eign alphabets.

Novel Alphabets
We have created novel alphabets: two series of 26 ran-

dom checkerboards. They are learned at similar rates as the
traditional alphabets, but the asymptotic efficiencies are dif-
ferent. For a 4x4 checkerboard the efficiency is about 6%.
For a 2x3 checkerboard the efficiency is about 24%. The
similar fast learning rate for traditional and novel alphabets
indicates that the process is not unique to reading, instead
reflecting the operation of a general visual object recogni-
tion process.

Critical Band

Solomon and Pelli (1994) measured the effects of vi-
sual noise at various spatial frequencies on the threshold for
letter identification. Their results reveal that letter identifi—
cation is mediated by an octave-wide bandpass filter cen—
tered at 3 cycles per letter. The insensitivity at low spatial-
frequencies confirms Parish and Sperling (1991).
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ABSTRACT

A detection model is developed to predict visibility thresholds for discrete cosine transform coefficient
quantization error, based on the luminance and chrominance of the error. The model is an extension of a
previously proposed luminance-based model, and is based on new experimental data. In addition to the
luminance-only predictions of the previous model, the new model predicts the detectability of quantization error
in color space directions in which chrominance error plays a major role. This more complete model allows
DCT coefficient quantization matrices to be designed for display conditions other than those of the experimental
measurements: other di5play luminances, other veiling luminances, other spatial frequencies (different pixel
sizes, viewing distances, and aspect ratios), and other color directions.

1. INTRODUCTION

1.1 Discrete cosine transform-basal image compression

The discrete cosine transform (DCT) has become a standard method of image compression.“3 Typically
the image is divided into 8x8—pixel blocks, which are each transformed into 64 transform coefficients. The DCT
transform coefficients In”, of an N xN block of image pixels ij_k, are given by

N-l N—l

I’m": 2 zijlk Cj'kaln, m,n=0,...,N-—l,j=0 k=0

where

um . «I 1/N . m =0
a... = amcofimmu) , and am= «TN , m>0

The block of image pixels is reconstructed by the inverse transform:
N—l N—l

I‘j'k = 2 Elm.“ Cj'ka‘", j,k=1,....N—1,m=0 n=0

which for this normalization is the same as the forward transform. Quantization of the DCT coefficients

achieves image compression, but also causes distortion in the decompressed image. Specifically, quantization of "‘
coefficient 1",." induces an error image which is simply the associated basis function, with amplitude equal to
the coefficient quantization error. (neglecting the DCT normalization).

1.2 The Quantization Matrix

The IPEG compression standardL2 requires that uniform quantizers be used for all the DCT coefficients.
The quantizer step size used for each coefficient is determined by the user. A matrix is used to specify the
quantization of the DCT coefficients, where the m,nth entry. Qm'n, in the matrix gives the quantizer step size
for coefficient 1min. Two example quantization matrices have been included in the JPEG standard. These
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matrices are given in Tables KI and K2 of reference(2) and in Table 5 of reference(4). One of these matrices
is commonly used for graylevel images, and for the luminance component image of color images; the other
matrix is used for chrominance images. These matrices were designed for a particular compression/viewing
scenario, and it is not clear how they should be changed when used under different viewing conditions, or
especially for compression in a different color space. In this paper we propose a quantization matrix design
technique that can be applied under a wide variety of conditions: different display luminances, veiling
luminances, spatial frequencies, and color spaces.

2. DETECTION MODELS

2.1 Luminance-only Detection Model

Peterson, Peng, Morgan, and Pennebalcer4 deveIOped quantization matrices for compressing images in the
RGB color space (a different matrix is used for each of the R, G, and B component images). The matrices were
derived from measured detection thresholds for small patches of replicated DCT basis functions, produced on a
monitor using an individual R, G, or B gun on a black background. With minor adjustments, the measured
thresholds were converted to quantization matrices which performed well in informal tests.

Ahumada and Peterson5 proposed that the threshold measurements of Peterson et a].4 could be predicted
by a luminance-only detection model. The theoretical basis of their model is the assumption that the
detectability of distortion in the decompressed RGB image can be predicted from the luminance contrast of the
error image caused in a color component image by quantization of an individual DCT coefficient for a single
block. That is, if the quantization error images associated with all the quantized DCT coefficients in all image
blocks in all three color component images have amplitudes below their respective visibility thresholds, then no
distortion will be visible in the decompressed image.

The Ahumada/Peterson luminance-only detection model approximates the log of the contrast sensitivity
function (the dependence of the inverse threshold contrast on spatial frequency) by a parabola in log spatial
frequency. The predicted log luminance threshold of the m,nth DCT basis function is

1 T 1 S bL k (1 f 1 f )2 o N 10 :0 + o —o , m,n=,..., —.
g L.m,n grL+(1_rL)cosgem'u L g m.n g L

The minimum luminance threshold, 3 hi, occurs at spatial frequency f L, and kL determines the steepness of the
parabola. The parameter 0.0 <5 < 1.0 is to account for visual system summation of quantization errors over a
spatial neighborhood. Such spatial summation causes a decrease in threshold. The spatial frequency, f,,,_,,,
associated with the m,nth basis function. is given by

1 ———z———~z
f... = Eden/W.) +(n/Wy) . (4)

where W,, is the horizontal and Wy the vertical size of a pixel in degrees of visual angle. The model includes a
factor ( rL-l-(l—rL)coszem',l ) which accounts for the imperfect summation of the two Fourier components
present in basis functions having two cosine components (m and n at 0), and also accounts for the reduced
sensitivity due to the obliqueness of these Fourier components. The magnitude of the summation/obliqueness
effect is determined by 0.0< rL<1.O, and the angular parameter 9",.” is given by

2 m u
. f .ofzo. ‘ (5)em.“ = arcs1n m.n

Based on a fourth power summation rule for the two Fourier componentss, rL is set to 0.6. The oblique effect
can be included by decreasing the value of rL.

Ahumada and Peterson5 fit this model to the Peterson et at.4 threshold data, and then used the grating
detection data of Van Nes and Bouman6 to derive luminance dependencies for bL, f L, and kL, thus enabling the
to model be used for a range of viewing conditions affecting luminance, contrast, and spatial frequency of the
quantization errors. Since the single gun measurements of Peterson et (11.4 mainly varied the intensity of the
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spatial modulation (chrominance remained relatively constant), the ability of the luminance-only model to
predict visibility thresholds for modulations in combined luminance and chrominance directions was not
adequately tested. Also, the replicated DCT basis functions used by Peterson et al.4 have Fourier transforms
possibly more like those of grating studies than those of single basis functions”. To address these issues,
Peterson9 made new threshold measurements of single basis function, single monitor-gun test images

superimposed on a white background (1931 CIE coordinates: X0 = 37.27, Y0 = 41.19, 20 = 29.65). This
configuration gives test stimuli having more significant chrominance modulation. Figure 1 shows the new
measured thresholds for basis functions where m or n =0.

A parabola representing a version of the luminance-only model is also shown in Figure 1. This model
does a fair job of predicting the measured thresholds independent of color direction. except for the DC (m and
n = 0) thresholds, which are obviously different for the three color guns. We propose that the lower thresholds
for the R and B gun DC basis functions are the result of chromatic detection mechanisms having greater
sensitivity than the luminance mechanism. Thus, even for quantization in the RGB color space, a luminance-
only model is not quite sufficient. Color mechanisms must be taken into account to determine appropriate
quantization levels for the DC coefficients. More importantly, for images compressed using isoluminant color
directions, a complete color space discrimination model for the DCT basis functions is clearly needed.

_I
\
I—

.94.:
mL-

32O
.C
U)
Q)L
.Cn‘u—l

frequency, cycles / deg

Figure l: Visibility threshold contrast ratio measurements from Peterson“9 of single basis function, single
monitor-gun test images superimposed on a white background, for basis functions where m or n =0.
Circles indicate R gun thresholds, diamonds indicate G gun thresholds, and squares indicate B gun
thresholds. The points plotted at the far left of the graph are DC basis function (m and n =0) thresholds.
The parabola-shaped curve represents a version of the luminance-only model of Equation (3).

2.2 The Luminance/Chrominance Detection Model

To account for the DC sensitivities in the data of Figure 1, we add two chromatic channels to the

luminance-only model. A large number of different color spaces have been proposed as appropriate bases for
chromatic discriminations. We have selected for our chrominance channels those favored by Boyntonw: a red—
green opponent channel and a blue channel. The relation between these chromatic channels and the CIE 1931
XYZ color space is straightforward. The blue channel is just Z, and the red-green opponent channel 0 is given
by O = 0.47X ~ 0.37 Y — 0.10 Z. This opponent channel is Boynton’slo (Red—cone)—2(Green-cone) channel,
with the Red and Green XYZ cone responses taken from MacLeod and Boyntonm. (We ignore the small
correction developed by Vos” for going from the 1931 standard CIE values to the scientifically favored 1951
Judd CIE values used by MacLeod and Boynton.) Expressed in matrix form, the transformation from XYZ t0
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our YOZ opponent color space is

0 0.47 0

I: ] = [ I XszYoz = [ l 1 0 .
0 —0.10 l

We model the frequency response of the Y channel with the luminance-only model described above. To

reflect this, we subsequently refer to threshold Tum." as Ty_,,,‘,,. The parameters in the luminance Channel
model will subsequently be referred to with a similar change of subscript (L —) Y). To complete our
luminance/chrominance model, we must also specify the shape of the frequency responses of the O and Z
channels. Measurements of the spatial frequency responses of isoluminant chromatic modulations have typically
found the chromatic sensitivity functions (the dependence of the inverse threshold contrasts on spatial frequency)
to be low-pass in the frequency range of our basis functions and to be less sensitive at high spatial frequencies
than the luminance channel.“12 We therefore model each of the O and Z log chromatic thresholds as a
parabola, modified by setting it equal to its minimum value for all spatial frequencies to the left of the

minimum. Since the data of Peterson9 are too sparse to estimate two separate chromatic channels in close
proximity. we make the simplifying assumption, supported by the results of Mullen”, that both 0 and Z have
the same shape spatial frequency response. The O and Z log chromatic thresholds for the m,nth DCT basis
function can then be written:

s b

log ° , iff... sfoz
roz + ( l—roz) coszem , ,,

S be .
log—‘3— + kOZ(logfm,n —10gfoz)2, lffm,n > foz

roz+(1"‘roz)COS em."

b
log 5 Z , iffm sfoz

roz+(l—roz) [30829,,,_,I

lOgsz'n s bz
be + kOZ(logfm,n ‘10gfoz)2: iffmm > foz

roz+(1—I‘oz)coszemln

Note that Equations (7a) and (7b) are identical. except for the parameters b0 and £72; Tom“, and T1,,“ share
the parameters s, koz, foz, and roz. To obtain the overall model threshold Tm," from the three channel
thresholds. we use the "minimum of" combination rule:

Tmm = TY.m.n! T0.m.n! Tan-t } - (8)

In order to estimate the parameters in the model described above, we fit the model to the data of Peterson9
shown in Figure 1. Recall that the Peterson9 thresholds were measured for single basis functions. To reflect the
absence of a spatial summation effect in this data, we fixed s = 1.0 during the fitting process. This fit resulted in
the parameter values shown in Table l for ky, f y, koz, and f 02. We chose roz=0.6. the same as Ty.

Boyntonlo claims that at moderately high intensities, the Z channel's minimum threshold (5 bz in _o_ur
model) is approximately proportional to the background activity of the Z channel, and the minimum thresholds
for the Y and 0 channels (s by and 5 b0 in our model) are approximately proportional to the background Y.
Based on the fit of our model to the Figure 1 data, we set the constants of proportionality to be: by = 0.0219 Yo,
b0 = 0.0080 Y0, and bl = 0.0647Zo, where Y0 and 20 are the CIE values of average white. To determine a
value for s. we compared the thresholds measured in Peterson9 to those measured by Van Nes and Bouman6 for
large test pattern sinusoidal gratings. The Peterson9 thresholds are consistently higher than the Van Nes and

'Boumané thresholds, a result attributable to spatial summation. Multiplication of the Peterson9 data by 0.25
brings them into approximate agreement with the Van Nes and Bouman6 data. We therefore chose S =0.25.
These results are summarized in Table 1.
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Table 1. Parameter values estimated for the model of Equation (8).

model parameter values
channel r f k

0.25 0.6 3.1 1.34 0.0219 Y0
0.25 0.6 1.0 3.00 0.0080 Y0
0.25 0.6 1.0 3.00 0.0647 20

 
As part of the model fitting, we also tried the Euclidean distance combination rule:

Tm.n‘2=TY,m,n-2+T0,m,n—2+Tz,m,n_1-

However, when the data of Figure 1 were fit using this rule, in order to prevent contributions from the chromatic
channels at low spatial frequencies, f 02 was forced to be unrealistically low, and/or koz was forced to be
unrealistically high. This led to our selection of the "minimum of“ rule for TM”.

3. QUANTIZATION MATRIX DESIGN

Quantization errors in an arbitrary color space are interpreted in the following way. Suppose we wish to
compress a color image whose pixels are computed as a linear combination of XYZ values,

[DEF] = [XYZ] XYZMDEF. (10)

That is, the DCT is to be performed on an image in color space DEF, and XYZMDEF is the transformation from
XYZ to DEF. The image in DEF space can be thought of as being transformed to XYZ space, and then
converted by the visual system to YOZ space for discrimination. We need to determine limits on the sizes of
errors in each of the D, E, and F color space dimensions, in order for the resulting errors in the Y, O, and Z
channels to all be below the thresholds established by our model. These DEF thresholds determine the
quantization matrices. For example, a unit error in the amplitude of a DCT coefficient in dimension D induces
errors whose amplitudes in the Y, O, and Z channels are given by the first row of DEFMYOZ:

MI, 1 M1. 2 M1, 3

DEFMYOZ = DEFMxsz XYZMYOZ = M2, 1 M2. 2 M2. 3 (11)
M3. 1 M3, 2 M3. 3

where DEFMXYZ IS the anCl'SC Of XszDEF.

We now describe in detail the procedure to calculate QDImm, QE'm'n, and QFIm'n, the quantization matrix
entries for DCT coefficient I,,,_,I in the D, E, and F component images. First, using Equations (3) and (7), the
display parameters WI and Wy. and the model parameters given in Table 1, the model channel thresholds,
Ty'mvn , Tom”, and Tz_,,,',,, for the m,nth DCT basis function are calculated. Now let YTD'mm, OTDIMW and
ZTD‘MJ, indicate the thresholds imposed on the quantization error in the D component by the model's thresholds
for the Y, O, and Z channels, respectively. Each of the Y, O, and Z model channel thresholds are converted to
a D threshold as follows: '

TO,m,n TZ,rn,n= T = . l2
OTD,m.n lMllzl ’ and Z D.m.n lMI'BI ( a)‘.

Similarly for E and F:

Ty_ ‘ _ . ' I

YTEmm " n OTE.m.n — , . =—'—_
TY m n

T = . . = . . _ - _ 12,;Y E“ 1M“! ’ OTF'M'" IMHI ’ ( )
Then the combination rule is used to determine the D, E, and F thresholds. We use the "minimum of“ rule:
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TD.m.n =min{ YTD.m.nv OTD.m,uv ZTD.m.n )v (133)

TE.m.n =min{ YTEm,rn OTE.nI.nv ZTE.m.n } I

TF.m.n =mjn{ YTF.m.nr OTF.m.nr ZTF.m,n (130)

Finally, the D, E, and F quantization matrix entries are obtained by dividing the thresholds above by the DCT
normalization constants ( am in Equation (1b) )2

TD m n TEm n TFm n
=2 ' ' , =2 ' ' , =2 ' ' . l4QDJPIJI am an QEJHJI am an QF,m.n am an ( )

The factor 2 results from the maximum quantization error being half the quantizer step size.

3.1 Quantization in RGB space

For quantization in monitor-RGB space, we require the matrix to transform from RGB to XYZ space.
RGBMXYZ. Assuming that R, G, and B take on values between 0 and l, RGBMXYZ is the monitor calibration
matrix giving the XYZ values for unit changes in each of the RGB signals. For our monitor,

26.1 13.3 2.3

RGBMXYZ = 25.2 48.9 10.2
9.3 4.7 35.7

This matrix is post-multiplied by XYZMYOZ to obtain RGBMYOZ:
13.3 7.1 2.3

[YOZ] =[RGB]RGBMYOZ=[RGB] 43.9 —7.3 10.2 . (16)
4.7 —o.9 35.7

The matrix RGBMYOZ gives the amplitude of the YOZ errors resulting from unit errors in RGB. These values
indicate the sensitivity of the discrimination model YOZ channels to RGB errors. For example, a unit error in
the R component leads to an error of 7.1 in the 0 channel of the model.

We can calculate the R, G, and B coordinate increments which induce a minimum threshold step in each
of the Y, O, and Z channels. These are the the entries of RGBMYOZ divided into the appropriate minimum
threshold: s by, 5 b0, or s bz, calculated using the expressions in Table l and the Y0 and 20 values of our
average white. For example, letting (RGBMYOflL 1, signify the upper left corner entry in RGBMYOZ, the increment
in R which results in a minimum threshold change in Y is (s by) / (RGBMYOQL ,. RGB minimum threshold
increments calculated in this way are given in Table 2 for YOZ. Note that the minimum threshold for G is

determined by the Y channel (0.0046 versus 0.0113 and 0.0469). That is, the Y channel imposes the strictest
limit on G in order for a G change to not induce "too large" a change in YOZ-space. Similarly, the minimum
threshold for R comes from the 0 channel (0.0116), and for B comes from the Z channel (0.0134). Following
the procedure described above, using RGBMYOZ, the model parameters in Table l, and the Y0 and 20 values for
our monitor, we obtain the quantization matrices shown in Table 3 for our RGB color space.

Table 2. Minimum thresholds imposed on R, G, and B quantization errors by the Y, O, and Z model
minimum thresholds. _.

' 0.0170 0.0116 0.2091
0.0046 001 13 0.0469
0.0483 -0.0881 0.0134
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Table 3. RGB quantization matrices. The values in these matrices are obtained following the procedure
described in Section 3. The QM value is located in the upper left corner of each quantizauon matrnt. AS
specified in the JPEG standard, the values have been rounded to the nearest integer. JPEG also reqmms
that values in the quantization matrix be £255.

47 52 53 69
52 57 53 60

R 53 53 77 89

quantization 69 60 89 1 19
matrix 94 75 103 142

127 98 124 166
170 128 154 197
224 167 192 236___________________

19 14 14 19 26 35 46 61
14 16 14 16 21 27 35 45

G 14 14 21 24 28 34 42 52

quantization 19 16 24 32 39 45 54 64
matrix 26 39 49 59 69 81

35 45 59 73 87 102
46 54 69 87 106 124
61 81 102 124 148

A‘lht‘h‘k'vaa-Wb'w9.444%:i-Vivuzwlrht'.7—V.
B

quantization
matrix

. 9

Figure 2 plots all the measured R. G. and B gun, single basis funct1on thresholds from Peterson
(including those for the dual frequency (n: and n q: 0) basis functions), after correction by the [d
summation/obliqueness factors of Equations t3} and (7). Figure 2 also shows the curves for the model thresho
predictions Ty_,,,’,,, Tom“, and Tz'nm. using the parameters in Table 1, except with-s = 1.0. This value for s
was used to reflect the absence of a spatial summation effect in the single basis function data. In addition, the
TOM." and TL,” threshold prediction curves have been converted to luminance units, stnce all the threshold
data plotted are in luminance units. This is accomplished by multiplying the Ta,” threshold predictions by
13.3 / 7.1 , and the Tz_,,,.,, threshold predictions by 4.7 / 35.7. These factors are obtamed from the RGBMYOZ
matrix. Figure 2 shows that for the B ccmtx‘nent. the DC and lowest spatial frequency thresholds are
determined by the 2 channel, and for the R component. the DC threshold is determined by the 0 channel. All
the G thresholds are assumed to be determined by the Y channel. Note that the DC threshold for the Y channel
(which we assume to be the DC thresho'; teasured for G) is not predicted on a theoretical bas1s. The dot- —-
dashed line in Figure 2 demonstrates [4.3: '3‘: measured DC threshold for G, and hence our DC threshold for Y,
was found to be approximately equal to in: :mimum threshold of the Y channel.

.,“canYFA‘Rzl-quuw-AQfimuvx-
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4. CONCLUSIONS

We have presented a model for predicting visibility thresholds for DCT coefficient quantization error, from
which quantization matrices for use in DCT-based compression can be designed. We estimated Values for the
parameters of our model based on experimentally measured visibility thresholds. The frequency parameters we
estimated, f y and foz, agree fairly well with results others have reported for similar parameters. The values we
have estimated for ky and koz are similar to those estimated by others, however we have found these parameters
to vary for the different experimentally measured thresholds. The value we have proposed for the
obliqueness/summation parameters, rY and r02, only reflects summation and does not reflect an effect due to
obliqueness. More data may be needed to more determine values for ky, koz, ry, and r02 more reliably; th0ugh
those we propose here are reasonable and result in quantization matrices which perform well in preliminary
tests. The value for s we have proposed is based on a limited amount of data. Further experiments are needed
to determine the spatial extent over which summation occurs among DCT quantization errors, in order to
estimate s more accurately.

'The quantization matrices computed by the techniques described above take no account of image content.
A promising extension of this model may be to optimize the quantization matrices for individual images or a
class of images. That is, use an image-dependent approach to quantization matrix design. Watson” has shown
how this may be done for grayscale images, by taking into account local light adaptation, local contrast
masking, and error pooling. Watson’s technique can be extended to the case of color images by adopting rules
governing masking and adaptation within the O and Z channels.
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Human visual sensitivity-weighted progressive

image transmission using the lapped orthogonal
transform
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Abstract. Progressive transmission of images based on the lapped
orthogonal transform (LOT), adaptive classification, and human vis-
ual sensitivity (HVS) weighting is proposed. HVS weighting for LOT
basis functions is developed. This technique is quite general and
can be applied to any orthogonal transform. The method is com—
pared with discrete cosine transform (DCT)-based progressive im-
age transmission (PlT). It is shown that LOT-based PIT yields sub-
jectively improved images compared to those based on DCT. This
is consistent with the reduction in block structure characteristic of
LOT image coding.

1 Introduction

While progressive image transmissionl (PIT) can be clas-
sified into two major categories, i.e., (1) spatial or pel do-
main and (2) transform or spectral domain, the latter has
gained wide acceptance.2“° This is not only due to various
adaptive features such as classification,”'l6 spectral selec-
tion,"7-8 and human visual system (HVS) weight-
ing,2'7'-3'”‘21 etc., which can be easily incorporated into
the transform coding scheme, but is also due to the VLSI
development of coding operations such as transform, quan-
tization, and variable length coding. In addition, PIT based
on the discrete cosine transform (DCT) has been extensively
investigated. For example, the JPEG (Joint Photographic
Experts Group) algorithm7'8 for the baseline system is DCT
based and various hardware/software systems have already
been developed for this algorithm. Also, the nonhierarchical
extended system of JPEG (both spectral selection and suc-

PaPCr 92-OI8 received April 7. I992; revised manuscript received July IS. 1992;
accepted for publication July I6. I992.
lOI7—9909/92/SZ.00. © I992 SPIE and IS&T.
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cessive approximation) is DCT based. At low bit rates,
however, DCT introduces block structure in the recon-
structed images.2 One technique used to reduce or eliminate
this artifact is to replace DCT by the lapped orthogonal
transform (LOT),22‘28 whose basis vectors overlap across
traditional block boundaries. Also because LOT has good

filtering properties, it has been applied to compatible cod-
ing,29'3° i.e., coding of the original image/sequence at dif-
ferent spatial resolutions. It has also been combined with
vector quantization (VQ) to achieve additional compres-
sion.31 It is intuitively felt that LOT-based PIT should yield
subjectively more pleasing pictures compared to the DCT—
even during the initial stages. This is the objective of this
paper: to develop a LOT-PIT incorporating various adaptive
features and to compare it with the DCT-dependent PIT.

In Sec. 2, we will address the Chen—Smith coder, giving
a brief summary of the algorithm steps and explaining the
incorporation of PIT techniques in this algorithm. Section
3 is reserved for a discussion about the HVS model in the
transform domain. Simulations and coder details .are pre-
sented in Sec. 4, with conclusions given in Sec. 5.

2 PIT with the Chen-Smith Coder

The Chen-Smith coder12 is based on the zonal sampling
strategy. First, the image undergoes an orthogonal trans-
form. The transform coefficients are stored in a buffer and
some statistics are computed prior to the decision-making
process of (1) which coefficients are transmitted, (2) how
these coefficients are quantized, and (3) the order of trans-
mission. We will assume the image has N XN picture ele—
ments (pixels or pels).

The encoding steps can be briefly described as follows:
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o Transform the image using blocks of M ><M pels. Let
N,9 =(N/M)2 be the total number of blocks in the im-
age. To simplify the presentation, we will use a lex-
icographic ordering that can obey row or column ar—
rangement. The blocks are then labeled from 1 to NH.
Each one contains M2 coefficients given as x,-(u,v) for
i=1, ..., N,9 and (u,v)E{(0,0),‘I’}, where ‘1' is defined
as the set of M1—1 block-index pairs, excluding the

pair (0,0), as ‘PE{(0,1), (0,2), ..., (0, M— 1), (1,0),
(1,1), (M—1, M—1)}.

Quantize and code separately the coefficients x,(0,0)
(the dc coefficients) using uniform quantizers.

Compute the ac energy of each block E, as

E.-= 2 xiz(m,n). (1)(mm) 6‘? .

Sort the energies, and classify the blocks (in sorted
order) into NC equally populated classes. ‘2 Thus, there
would be NBlNC blocks in each class. Construct the
class map C(i) with the classification of each block,
where C(i) indicates the class to which the i’th block
belongs and is ordered in the original nonsorted se-
quence. If the i’th block belongs to the class k (k= 1,
..., NC), then C(i)=k.

For all blocks belonging to the same class, compute
the variances of the transform coefficients and then
their standard deviations. Construct NC standard de-

viation maps with the standard deviations of the coef-
ficients, which are obtained from

NH

0%(m,n)=28[C(i)—k]x%(m,n) (m,n)E‘I’, (2)i=1

where 8 is the Kronecker delta function.

Merge all NC standard deviation maps and decide thebit allocation. Based on the rate-distortion theory, we

shall iteratively find a distortion value D and a set of
integers Bk(m,n) [for (m,n)E‘I’ and isksNC], so
that

Bantu): v2 logztaitmmn -10g2(D) (3)

is satisfied given the constraints
Nc-l

NC
Bk(m,n = RNz—B ,k=l (rages: ) ( 0")Na

(4)

OSBk(m,n)SBmax , (5)

where if?max is the maximum number of bits allowed,
B”, is the number of bits required for the transmission
of the overhead information, and R is the bit rate in

bits/pel for the whole image. Create NC bit-allocation
maps with a one—to-one correspondence with the ele-
ments of the standard deviation maps.

Reestimate the standard deviations using the bit-
allocation maps:

ek(m,n)=c23k('”-"l“ lskch (m.n)E\l’ , (6)

where c is a normalization factor. Reference 12 sug-

gested that c be chosen as the maximum o,(m.n) for
which Bk(m,n)= l to avoid excessive clipping.

Send class map c and the bit—allocation maps as side
information.

Quantize, encode, and send all the coefficients, using
the reestimated variances. A coefficient x,(m,n) (block
1'), which belongs to class k[C(i)=k], is scaled [di-
vided by d‘k(m,n)], applied to a quantizer with 25km“
levels, and encoded with B,(m,n) bits. If Bk(m,n) =0,
the particular coefficient is not transmitted.

The receiver may first decode the side information and
the dc coefficients. Given the class map, the bit—allocation

maps, and the normalization factor c, the decoder can re-
construct the standard deviations used to scale the quantizers

as in Eq. (6). With the maps reconstructed, and with the
knowledge of the transmission order, the decoder can ex-
actly determine the position of the incoming coefficient, the
class of its block, how many bits were assigned to it, and
the variance used for quantization. Therefore, the receiver
can decode the coefficients, apply an inverse transform, and
obtain the image.

The overhead is made by the class map, the bit—allocation
maps, and by c. Quantizing c with 16 bits, the total amount
of overhead is given by:

Bov=NB 10g2(Nc)+NC(M2— 1)

xlogz(Bmax+1)+ 16 . (7)

IfM= 8, N: 256, NC = 8, Bmax=7, then B0V =4552, which
is equivalent to an approximate rate of 0.07 bitjpel, requiring
about 2 s of transmission on a 2400 bits/s communication
rate.

To use PIT, we transmit data in the following order:
(1) dc coefficients in any predefined order, (2) class map 0
and bit-allocation maps, (3) ac coefficients. The transmis-
sion of the ac coefficients2 is made by spanning the blocks
and sending first the elements x,-(m,n), which would yield
a higher contribution to the reconstructed image. To min-
imize the reconstruction error, we send the coefficients with

higher variances. Alternatively, we can incorporate some
information about the spatial response of the visual system,
by using weighted standard deviations. If one assumes that
the estimated standard deviation is a good measure of the
real standard deviation of a particular coefficient (at least,
is the best information we have at hand), the priority can
be decided based on the weighting of the standard deviation
maps by a matrix H(m,n) containing spatial information
about the HVS. Let _

nk(M.n)=6k(m.n)H(m.n); lskSNc; (m.n)E‘I’ .(8)

The order for transmission of the coefficients is then defined
by sending first the coefficients [x.-(m,n)', C(i)=k], which
correspond to: (1) greater value of nk(m,n); (2) if two or
more 'nk(m,n) have the same value, take the one with smaller
value of m+n; or (3) if there is still any ambiguity, take
the smaller value of k.

The first item is the only one that follows any theoretical
explanation; the last two are included merely for eliminating
ambiguities, such as two equal values, and can be changed
without affecting the performance. Note that using Eq. (6),

Journal ol Electronic Imaging / July 79.92 / Vol. 1(3) / 32.9
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Fig. 1 Coder diagram for PIT using LOT.

we can take the log and sum log(2/c) on both sides of Eq.
(8) so that nk(m,n) can be redefined as

nk(m,n)=Bk(m,n)+log2[H(m,n)] . (9)

Although having a different value, this representation still
maintains the transmission order, addressing directly the bit-
allocation maps. As long as both encoder and decoder have
the same maps and use the same weighting matrix, there
will be no overhead for indicating the transmission order.

The coder has some limitations. First, the maximum
number of different variances used for scaling the quantizers
is Bmx. For high rates (>4 bits/pel), the performance de-
creases, since there will no longer be coefficients with only
a few bits allocated. Second, it is not possible to apply HVS
weighting to quantization without causing excessive mis-
match or amplification of distortion because of the reesti-
mation procedure in Eq. (6). It can be overcome by the
transmission of standard deviations in place of the bit-
allocation maps. We are interested in “small” pictures, such
as 256 X256 pel images. For these types of images, using
8 or 16 classes, the overhead for fully transmitting the var-
iance maps would be prohibitive. The performance of this
coder can be improved in several ways. For example, by
choosing the proper parameters (block size, number of classes,
and bit rate), the coder can achieve very good performance.
The great advantage of the Chen-Smith approach is that it
is quite insensitive to the transform used. One can inter-
changeably use DCT, LOT, extended lapped transforms,27
or any transform resulting in blocks of M XM coefficients

330 / Journal 0/ Electronic Imaging / July I 992 / Vol. 1(3)

without any alteration in the algorithm (except for the
weighting matrix and, possibly, coding details). This is the
main reason for choosing the Chen-Smith coder.

The coder and decoder block diagrams employing the

LOT are presented in Figs. 1 and 2, respectively.

3 The HVS Weighting Matrix

A complete study of the psychophysical properties of the
visual system is well beyond the scope of this paper. Our
intention is restricted to the determination of a spatial re-

sponse weighting matrix for use with the LOT coefficients.
We now present a procedure that allows us to find a HVS
weighting function for any transform.

Reference 2 discussed the application of a linear function

describing the HVS to spatial variations. Although the HVS
model reSponse is not linear, this principle was used with
good results and further discussion on the subject is left to
Ref. 2. Given a linear transfer function representi‘ri‘g the
unidimensional spatial HVS as H(f) (where f is given in

cycles per degree of the visual angle subtended), we will
assume this model to be reliable and it will serve as the
basis for the rest of this section. However, we will present
our results as a function of the model in order to allow one

to change HU’) if desired. Further, the usual assumptions
follow:

0 The screen has a 1:1 ratio and has uniform brightness
when displaying a uniform image.

0 The viewer is situated at a distance v from the screen.

right in front of its geometric center.
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o The screen has width w and each row (column) has N
pels.

o The viewer can observe approximately the same den-
sity of pels-per-degree (spatial) in any region of theScreen.

Let (1 be the ratio of viewer distance (v) by screen width
(w), i.e., or Ev/w. This factor is the relative distance of the
observer. The maximum visible frequency in cycles per

degree is obtained when the discrete signal displayed has
its maximum frequency component, which is half of the
sampling frequency. In other words, in N samples it is
possible to observe N/2 cycles. The maximum visible fre-
quency can be found as:

N/2___ N

T 29 14 t —-.. “(20)
where 0 in degrees is the viewing angle, from the center to
the extreme of the screen, and tan(e)=w/2v= l/2a. We,
therefore, can represent a discrete sensitivity function as

Hoteiw)=HD(efl“f)=Htf/fmx); |fl<fmx. v (11)

An orthogonal block transform is a special case of a
lapped transform in which there are as many basis functions
as elements in each basis function.26 Furthermore, lapped
transforms are equivalent to paraunitary filter banks.26
Therefore, we can always regard any discrete, real, and
orthogonal (lapped or block) transform as a filter bank.25-32'33
The analysis filters’ coefficients are the time-reversed baSis
functions elements.26-37- Suppose the M basis functions have
elements pk(n) (k=0, 1, ..., M-landn=0,1...., L— l).
The equivalent analysis filter bank is shown in Fig. 3, where
each filter [with coefficientfk(rt)] is equal to a basis function
of the LOT, i.e.,fk(n)=pk(L*1_") for n=0. 1,
L— 1. For the particular case of the LOT of M bands, L=2M,
but for the DCT we have L=M (as any bIOCk [“1mele-
ln Fig. 3, with x(rt) as the input signal to the filter bank,

cycles/degree , (10)

Fig. 3 Analysis section of a critically decimated M-band filter bank
where x(n) is the input signal and Vk(mM) are the subband signals
after filtering (0 Sks M—1). The subband signals are decimated
resulting in yk(m) =y7k(mM). The filters‘ impulse responses Mn) are
the time-reversed basis functions of the transform.

511,01) corresponds to each suhband (filtered signals)2 and
yk(n) is the subband signal after decimation. Let Ftie“) be
the frequency response of fk(n). Figure 4 shows the fre-
quency response of the first three filters (basis functions)
for a one-dimensional LOT with 8 bands (i.e. , a 16 X 8 LOT
matrix). Similar results for the DCT are found in Fig. 5.
The same procedure can also be applied to nonuniform filter
banks such as those resulting from the use of hierarchical
structures. If, in Fig. 3, the input x(n) has a power spectral
density (psd) given by 5,0»), and denoting the PSD of Mn)
and yk(n) as 59km) and Syk(o)), we have: "‘

Sik(w)=sx(w)iFk(ejm)|2 . (12)

After the decimator, yk(n) =yk(nM), and

M—1
(.0 — 2717‘

s = - _Mm) 2:0 Syk< M >
As

b 2-11—11

I Selim) dm=[ 5mm) do: ,211' I)

Journal of Electronic Imaging / July 7992 / Vol. 1(3) / 33!
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frequency - to

Fig. 4 Frequency response in decibels of the filters fm n) corre-
sponding to the first three basis functions of the LOT. i.e., Fm(e/“)[,m=0. 1. 2.

20

2
frequency - to

Fig. 5 Frequency response in decibels ot the filters f,,.(n) corre-
sponding to the first three basis tunctions of the DCT, i.e.. lFm(e/‘“)I.
m=0, 1. 2.

the variance of yk is given by

1 1' l "

§E=;Lsyk(m)dw=;1; Syk(w)d¢0 - (14)

Alternatively, this result could be shown using the fact that
if u(n) is a stationary process, then var[u(n)] = var[u(Mn)].
Therefore, var[yk(n)] =var[yk(n)] and the preceding equa-
tion is also true. ,

Roughly, if a signal is filtered by HD(e""), the signal
and its filtered version would be indistinguishable for the
observer to whom HD(e"") is a perfect sensitivity model.
If this signal has a flat PSD (white noise), the filtered signal
has the PSD shaped by the filter, letting one know the
relative importance of each frequency component for the
observer. If this colored signal is split into subbands, as
when using the LOT, how can we measure the importance
of each subband component? A sampling in the frequency
domain would be imprecise and very dependent on the phase
of the sampling train, since there would be only M bands
of width 'rr/M. This bandwidth can be large enough to allow

significant variations of the input PSD. Since we are mea—
suring up to the second-order statistics in the image, and
on those we may apply the weighting matrix, one possible

332 / Journal ofE/ectran/c Imagi'ng/ July 19.92 / Vol. 7(3)
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f (spatial frequency in cycles/degree)

Fig. 6 HVS model function used in this paper?

solution would be the measure of the variance of each band.
These variances can provide the relative significance of each
subband. Note that as M increases, L increases, and the
filters are becoming close to ideal filters and the bandwidth
is becoming narrower. In the limit, the approximations by
sampling and by variance computation would yield the same
results.

If a white noise with unit variance is input to the linear

system HD(ej°’), and its output is transformed using the
LOT, then Eq. (14) is given by:

ti=1f motes»! le(e’”)|2 dw (15)1T 0

The continuous HVS model function as used in Ref. 2

is plotted in Fig. 6. As previously stated, the frequency f
is given in cycles per degree of visual angle subtended. The
model is given by:

H(f)=2.46(0.1+0.25f)e‘°'25f . (16)

The corresponding weights £1, can be found using Eqs. (1 1)
and (15).

The two—dimensional case is just an extension of these
results, since the transform is separable. We are interested
in weights 9-}, (i, j) E‘I’, which can be derived from

1“'n’ 0 0

x|F.-,-(ei‘”1,ei‘”2)|2dm.dm2 , (17)

where

Hp (em. ej“2)=HD(e”"f1. efltf21=H<fplfmao (18)

and

JFW: |f1|<fmax« if2|<1rm..x

and

Fij(€jm1.ejm2)=F;(ej"’l)Fj(ej‘”2) . (19)

In our application, we are weighting standard deviation val—
ues and we use {{1- instead of the squared value. Figure 7

w
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0.9883 1.0000 0.9546 0.8703 0.7706 0.6793
0.9930 0.9821 0.9294 0.8457 0.7475 0.6598
0.9963 0.9606 0.8987 0.8154 0.7194 0.6362
0.9606 0.9114 0.8458 0.7659 0.6752 0.5984
0.8987 0.8458 0.7816 0.7073 0.6241 0.5543
0.8154 0.7659 0.7073 0.6409 0.5667 0.5047
0.7194 0.6752 0.6241 0.5667 0.5028 0.4493
0.6362 0.5984 0.5543 0.5047 0.4493 0.4024

(a) a = 4; In.” = 9 cycles/degree

0.9223 1.0000 0.9542 0.8566 0.7341 0.5101
0.9686 0.9836 0.9214 0.8222 0.7051 0.4911
0.9836 0.9515 0.8742 0.7749 0.6653 0.4655
0.9214 0.8742 0.7955 0.7032 0.6051 0.4265
0.8222 0.7749 0.7032 0.6222 0.5375 0.3824
0.7051 0.6653 0.6051 0.5375 0.4665 0.3356
0.5829 0.5503 0.5021 0.4483 0.3916 0.2854
0.4911 0.4655 0.4265 0.3824 0.3356 0.2468

(b) a = 5; fmu = 11.2 cycles/degree

0.9702 1.0000 0.8988 0.7576 0.6112 0.4710
0.9920 0.9627 0.8533 0.7171 0.5803 0.4476
0.9627 0.8966 0.7846 0.6583 0.5354 0.4145
0.8533 0.7846 0.6845 0.5759 0.4714 0.3676
0.7171 0.6583 0.5759 0.4877 0.4024 0.3169
0.5803 0.5354 0.4714 0.4024 0.3348 0.2664
0.4476 0.4145 0.3676 0.3169 0.2664 0.2146
0.3630 0.3379 0.3012 0.2610 0.2206 0.1789

(c) a = 6; fma, = 13.4 cycles/degree

1.0000 0.9750 0.8228 0.6487 0.4928 0.3515
0.9933 0.9177 0.7674 0.6051 0.4622 0.3305
0.9177 0.8206 0.6824 0.5402 0.4162 0.2998
0.7674 0.6824 0.5696 0.4549 0.3541 0.2582
0.6051 0.5402 0.4549 0.3678 0.2897 0.2144
0.4622 0.4162 0.3541 0.2897 0.2307 0.1733
0.3305 0.2998 0.2582 0.2144 0.1733 0.1326
0.2616 0.2384 0.2060 0.1717 0.1394 0.1073

((1) or = 7; f...“ = 15.7 cycles/degree

Fig. 7 Two-dimensional HVS weighting matrices for the LOT, as-
suming 256 pels in a line and blocks of 8x8 pels. The relative
distance a and maximum frequency fma, are indicated.

shows weighting matrices containing normalized L-j forfmax
as 9.0, 11.2, 13.4, and 15.7 cycles/degree. They represent
«=4, 5, 6, 7, respectively. for N =256. Values for ct of 6
or 7 are more representative for broadcast TV viewing.
Values of 4 or 5 fit modern PIT needs very well and ap—

proximate the situation in which a 256x256 pel image is
displayed on the 640x480 resolution mode on a regular
home PC monitor, with the observer in front of it, working
on the computer. The same procedure is repeated for the
matrices in Fig. 8, assuming N =512. For this value of N
and the same values of 01, the maximum frequencies are
18.0, 22.4, 26.8, and 31.4 cycles per degree.

4 Implementation and Results

A 256x256 pel monochrOme‘ image is divided into 8x8
nonoverlapping blocks (M =8) and the LOT is applied to
each block. Based on the ac energies. the 8 X 8 blocks are

0.8945 1.0000 0.9209 0.7295 0.5375 0.3865
1.0000 0.9644 0.8474 0.6684 0.4942 0.3581
0.9209 0.8474 0.7270 0.5746 0.4289 0.3143
0.7295 0.6684 0.5746 0.4589 0.3477 0.2581
0.5375 0.4942 0.4289 0.3477 0.2683 0.2022
0.3865 0.3581 0.3143 0.2581 0.2022 0.1543
0.2539 0.2362 0.2098 0.1754 0.1404 0.1092
0.2005 0.1872 0.1663 0.1387 0.1108 0.0862

(3) a = 4; fmn = 18 cycles/degree

0.9608 1.0000 0.8236 0.5781 0.3739 0.2485
1.0000 0.9107 0.7255 0.5121 0.3343 0.2242
0.8236 0.7255 0.5746 0.4122 0.2747 0.1863
0.5781 0.5121 0.4122 0.3025 0.2071 0.1423
0.3739 0.3343 0.2747 0.2071 0.1460 0.1021
0.2485 0.2242 0.1863 0.1423 0.1021 0.0723
0.1360 0.1239 0.1057 0.0835 0.0622 0.0452
0.1222 0.1104 0.0915 0.0698 0.0504 0.0361

‘ fmu = 22.4 cycles/degree

0.7115 0.4434 0.2512 0.1646 0.0707
0.6001 0.3796 0.2184 0.1433 0.0631
0.4384 0.2857 0.1699 0.1111 0.0516
0.2857 0.1928 0.1191 0.0779 0.0385
0.1699 0.1191 0.0767 0.0507 0.0266
0.1111 0.0779 0.0507 0.0338 0.0182
0.0516 0.0385 0.0266 0.0182 0.0106
0.0568 0.0387 0.0245 0.0164 0.0087

(c) or = 6; fmu = 26.8 cycles/degree

0.5850 0.3231 0.1591 0.1141 0.0347
0.4715 0.2669 0.1343 0.0943 0.0303
0.3165 0.1870 0.0985 0.0663 0.0236
0.1870 0.1157 0.0641 0.0418 0.0165
0.0985 0.0641 0.0375 0.0241 0.0106
0.0663 0.0418 0.0241 0.0159 0.0069
0.0236 0.0165 0.0106 0.0069 0.0035
0.0379 0.0227 0.0123 0.0083 0.0033

((1) a = 7; fun: = 31.4 cycles/degree

Fig. B Two-dimensional HVS weighting matrices for the LOT. as-
suming 512 pels in a line and blocks of 8x8 pels. The relative
distance a and maximum frequency {max are indicated.

grouped into eight different equally populated classes (NC 2 8).
Thus, there are 32x32 blocks in the image (NB= 1024).
The dc coefficients are quantized with a uniform 7-bit quan-
tizer, and Bum is set to 7. Therefore, the overhead in Eq.
(7) is, as previously computed, 4552 hits and the amount
of bits needed to code the dc coefficients is 7168. $his
yields a total of 11,720 bits sent prior to the transmission
of the ac coefficients (approximately 0.18 bits/pel). The
block classification map for the 256><256 monochrome
“Lena” image is shown in Fig. 9. Classes 1 through 8
represent increasing energies of 2-D LOT blocks. Figure 10
shows maps with standard deviations. Classes 1, 3, 6, and
8 are chosen as examples, and the dc coefficient is not
computed. The resulting bit-allocation map for the eight
classes is presented in Fig. 11. Using these maps and the
weighting matrix of Fig. 7 (for a = 6), by means of Eq. (9)
we get the order for the transmission of the ac coefficients
as shown in Fig. 12.
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2333554377426821572357
25264124612334643238725475842473
25264l27823466333224856887723841
15364128533554343442468737727421
15364128535545433334453268737311
25264128554445665555332578484l11
25265128754346676883153788572111
25264118754476778742586883651111
l4364126754756787534588623751111
14364134857656876442388525632331
14364136887556867773788838412233
24364487868668687856887848211134
35464788767477856546666855222364
35454677778788542447576873l13733
25456767668887433558587882114331
263557768788873324675568721272l1
3735676578885752568884584l137111
26357777678635633465645821148122
35456667686323474438455832258137
56468667778523365348874835664487
56558777668633543243686823565864
88558476668854752223368812375743
88646574678856751223328722658443
88647444678656731122327753478444
78757444677367711122335857876446
77766356677367311112232836885544
56765467767631111112233863554675

Fig. 9 Equally populated 32x32 classification map for the “Lena”
image. Classes 1 through 8 represent increasing energies of 8x8LOT blocks.

The ac coefficients are well modeled by a Laplacian

probability density function (pdf), but the blocks are clas-
sified according to their ac activities. If u is the amplitude
of an ac coefficient, the actual important function is no

longer its density function pu(u), but one conditional to the
estimated standard deviation pu(ult3'). If there is just one
class (NC =1), the Laplacian model fits well. At the other
extreme, suppose there are as many blocks as classes (the
overhead would be enormous). The variances would be

computed from one element and would determine its am-
plitude completely. Therefore, the density would be an im-
pulse. In this extreme case, all quantizers should only have
two levels to indicate the sign of the coefficient. As long
as we have few classes, these extreme cases do not apply.
However, the lowest frequency ac coefficients (which have
great influence in the classification process because they are
larger) are well apart from having a Laplacian conditional
density. As an example for a particular coefficient, suppose
its standard deviation is estimated to be very large. This
indicates that the coefficients on that coordinate (m,n)E‘I’
belonging to the same class are expected to have high am-
plitudes, not amplitudes close to zero as in the Laplacian
model. Generally, these large coefficients have low fre-
quencies and have large numbers of bits allocated. Coef-
ficients with one or two bits allocated generally do not have

a great influence on the ac energy and are very close to the
Laplacian model. In our constant distortion rule for bit a1-
location, we assumed that all the quantizers were optimized

334 / Journal 0/ Electronic Imaging / July 1992 / Vol. 7(3)

M

Class 1

0.0 8.1 3.9 4.0 2.6 2.9 2.2 2.3
7.7 4.5 3.3 3.0 2.1 2.3 2.1 2.0
3.9 2.6 2.6 2.4 2.1 1.8 1.7 1.8
2.7 2.1 2.3 2.0 2.1 1.7 1.3 1.8
2.1 2.0 1.7 1.7 1.7 1.6 1.7 1.6
2.1 2.0 1.8 1.7 1.9 1.7 1.5 1.6
1.8 1.8 1.7 1.5 1.6 1.6 1.4 1.6
1.9 1.8 1.7 1.6 1.6 1.7 1.5 1.7

Class 3

0.0 33.0 13.6 14.6 5.6 7.6 4.7 3.8
23.3 16.3 11.3 8.3 4.9 3.8 3.5 2.8
10.3 10.5 9.9 5.6 3.9 4.0 3.2 3.4
8.7 8.7 7.6 5.1 3.5 3.3 3.2 2.6
4.0 5.3 5.6 5.2 3.5 3.2 3.2 3.0
4.8 4.5 4.1 4.5 4.3 3.3 3.0 2.4
2.9 2.9 3.4 3.5 3.5 3.6 3.5 3.1
2.8 2.5 2.9 3.4 3.7 4.1 3.7 2.9

Class 6

0.0 121.1 54.8 39.1 22.9 24.1 13.8 12.3
67.3 51.8 42.1 27.4 20.4 17.8 14.0 12.3
29.7 31.1 29.8 25.8 21.4 15.7 15.0 12.1
22.5 20.7 22.1 19.7 16.8 11.3 10.0 7.8
12.9 13.9 12.3 14.0 11.4 12.4 9.8 8.2
12.1 11.4 11.6 8.2 9.4 9.6 6.5 6.6
5.6 5.8 5.8 6.2 5.8 6.2 5.1 5.9
6.2 5.7 5.5 5.3 6.4 5.1 4.4 4.9

Class 8

0.0 316.5 116.1 68.0 41.6 34.0 20.1 20.5
160.7 149.2 81.6 46.3 39.1 32.5 18.8 19.2
47.9 62.2 54.9 45.7 26.6 22.7 18.9 16.8
31.7 31.3 34.3 27.3 27.0 22.6 13.4 13.1
18.1 18.5 21.7 21.3 13.1 15.8 14.2 11.6
13.5 16.8 14.9 11.8 15.5 11.4 9.2 9.4
8.5 10.2 8.4 9.1 8.4 8.9 7.1 7.6
9.1 11.2 9.0 7.5 8.3 7.2 6.2 6.8

Fig. 10 Map with standard deviations of LOT coefficients in each
class. Classes 1, 3, 6. and 8 are chosen as examples. The standard
deviation for the dc coefficient is not shown.

using the same pdf. Therefore, we have chosen the Gaussian
density as the density model for our Lloyd—Max quantizers
due to its greater robustness against pdf mismatches. Tests
carried out (for 8 and 16 classes) using two sets of quantizers
(for Laplacian and Gaussian pdfs), showed better perfor-
mance for the Gaussian set of quantizers.

The reestimated standard deviations assume an integer
number of bits allocated to each coefficient; hence, if we
assume that all quantizer levels may be used, the quantizer
should be a midrise one. For one— and two-bit quantizers
optimized for a Gaussian input pdf, the inner reconstruction
levels (positive or negative) are 0.79801 and 0.45302, re-
spectively, where 01 = c and 02 = 2: represent the estimated
standard deviations for those coefficients that have been
allocated 1 and 2 bits, respectively. It is possible that some
null or insignificant coefficients would have to be quantized
using relatively high standard deviation values, and must
be reconstructed as a nonzero component with a magnitude
comparable to the standard deviation. In these cases, non-
existent frequency components emerge, resulting in annoy-
ing effects. For this reason, we decided to apply midtread
quantizers with three levels and variable length coding, in-
stead of quantizing with two or four levels. The standard
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Fig. 11 Bit-allocation maps for each class for the “Lena” image. The rate is l bit/pel includingoverhead. This is also the final stage of the PIT.

Class 2
70 114 119

139 124 -— —

Class 4

— 40 — 41 57 140
71 61 72 31 127 144
116 112 117 113 132 155
120 126 121 128 151 —

— 145 — -

Class 6
28 74

14 33 64 76
21 17 67 82
59 65 79 90
142 148 169 176
164 171 178 191

Class 7 Class 8
-— 4 9 29 43 107 149 10 11 44
15 12 6 34 45 109 153 7 35 46
22 18 25 37 83 I87 214 '23 8 26 38 85
60 66 69 80 91 136 '118 30 36 39 81 93
143 77 84 92 103 209 226 75 78 86 94 104
165 97 174 179 193 2'22 229 166 98 102 180 130
— 185 188 195 210 — — — 183 186 189 197 212

200 203 215 219 — — — — 201 204 216 221 228

Fig. 12 Transmission order of the LOT coefficients among all classes for the “Lena” image. This orner
is found using the bit—allocation maps in Fig. 11, weighted by the HVS matrix in Fig. 7(c), according
to Eq. (9). The transmission priority rules were defined in Sec. 2 based on these weighted matrices.
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(c)

Fig. 13 Partially reconstructed images: (a) DCT 0.2 bit/pal. (b) LOT 0.2 bit/pal, (c) DCT 0.3 bit/pel,
and (d) LOT 0.3 bit/pel.

deviations for quantization and reconstruction of these coef-
ficients would remain the same, but the distortion rule and
the average bit rate would be affected. However, the dis-
tortion increase, a result of going from four to three levels
in the 2-bit quantizer, is partially compensated by the dis-
tortion decrease in going from two to three levels for the
1-bit quantizer. The same occurs with the bit-rate changes.
In our simulations, both schemes yielded roughly the same
bit rates, with the three-level scheme leading to images with
higher signal-to-noise ratios (SNRs).

The HVS-weighted PIT described previously is extended
to the 2-D DCT. The weighting matrix was found using the
method described in Ref. 2 forfmax = 13.4 (ct =6). Recon-
structed images based on both LOT and DCT for several
stages are shown in Fig. 13. Critical observation of these

336 /Journal of Electronic Imaging / July 7992 / Vol. [(3)

images indicates the improved fidelity and absence of block
structure during the initial stages when LOT is used. In
Table 1, a comparison of both methods is carried out, Eyed-
uating the SNR of reconstructed images at several stages
for the “Lena” and “Girl” images. Since the HVS weight-
ing is used only for prioritizing the transmission of coeffi—
cients, the SNR measure did not incorporate subjective
weighting factors. If u(m,n) and fi(m,n) represent the orig-
inal and reconstructed image, then the SNR is given by

N—lN-l

Z 2 uz(m,n)m=0 n=0

SNR-=10 l0g10 N_IN_1

Z 2 [u(rrz.n)--[t(m,n)]2m=0 "=0
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Fig. 13 (continued) Partially reconstructed images: (e) DCT 0.4 bit/pet. (t) LOT 0.4 bit/pel, (9) DOT
1.0 blt/pel, and (h) LOT 1.0 bit/pal.

5 Conclusions

A PIT scheme that incorporates adaptive classification in
the transform domain and bit allocation based on the rate-

distortion theory is presented. A general technique for tie
veloping HVS weighting of the transform coefficients is
developed. Based on this, HVS weighting matrices appli«
cable to LOT are obtained. The order in which the transform
coefficients are transmitted is based on the estimated vari-
ances of these coefficients weighted by the human visual

system sensitivity, measured in the 2-D LOT domain. Be-
cause these variances can be estimated at the receiver, over-
head is limited to bit-allocation maps of the classes to which

the blocks are grouped and to the classification of the blocks.
The transform coefficients for all the classes during each

stage are transmitted progressively suoh that a specified bit
rate is reached for each stage. Visual comparison of the

Table 1 SNR (in decibels) resulting from intermediary reconstructed
images at several bit rates for the "Lena" and "Girl" images.

R.i|.t€(l)1)p)

 
25.2]
26.98
28.50

reconstructed images based on the LOT and DCT shows
that the former yields subjectively superior images com-
pared to the DCT in all stages.

Journal at Electronic Imaging / July [.992 / Vol. 7(3) / 337
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A Perceptually Tuned Sub-band Image Coder With
Image Dependent Quantization and Post-quantization

Data Compression

Robert J. Safranelr lame: D. Johnston
AT&T Bell Laboratories

Murray Hill. NJ

Abstract

Ln this paper we present a 16 band sub-band coder, arranged as
4 equal width sub-bands in each dimension. that uses an
empirically derived perceptual masking model to set noise-level
targets not only for each sub-band but also for each pixel in a
given sub-band. The noise-level target is used to set the
quantization levels in a DPCM quantizer. The output from the
DPCM quantizer is then encoded, using an entropy-based
coding scheme. in either 1x1. 1x2. or 2x2 pixel blocks. The
type of encoding depends the statistics in each 4x4 sub-block
of a panicqu sub-band. One set of codebooks, consisting of
less than 100.000 entries, is used for all images, while the
codebook subset used for any given image is dependent on the
distribution of the quantizer outputs for that image. A block
elimination algorittun takes advantage of the peaky spatial
energy distribution of sub-bands to avoid using bits for
quiescent parts of a given sub-band. Using this system, high
quality output is obtainable at bitrates 0.1 to 0.9 bits/pixel.
while nearly transparent quality requires 0.3 to 1.5 bits/pixel.

I . Introduction

In general, the current generation of low bin-ate
(< lbpp) Black and White image coders provide

a (finality level of good to very ood. Manyapp ications, such as remote slides ows, would
benefit from higher quality. To achieve this level
of performance, we believe that knowledge of

human visual perception should glay a strong partin the coder design process. ur goal in this

work, was to develrciip a visual perceptual qualitymetric which woul provide nearly transparent
quality to a coded image. In addition, this metric
should be image independent. That is, it should
perform equallywell overa wide range of image

'_ input, say flat field .to strong irregular texture,

'Wlti'l no image specific. tuning. This paper willpresenter system that Uses this perceptua metric
in. conjunction with‘ sub-band filtering, DPCM
coding of sub-bands and multidimensional

Huffman compression to provide nearly
transparent coding of a wide variety of images at
rates of less than 1 bit/pixel.

2, Sub-band Analysis

In order _to exploit the generally lowpass
Characteristic of images, each image is first
Passed through a separable Generalized
Quadrature Mirror Filter (GQMF) bank
[C0X,Woods], after the mean of the image is
calculated and removed. The mean is quantized
lo 8 bits (0-255) and retained for transmission to
[ht decoder. Each of the 1-dimensional GQMF
filters decompose the input image into 4 bandpass
sub-images with one stage of filtering. This
nontrasts With the 2 sta es required with
Conventional QMF filters. ince the filters are

applied in both the horizontal and vertical
dimensions, this results in 16 total sub-bands,
numbered as shown below.

Table 1 — The sub-bands are numbered using this
scheme.

The GQMF filter that was used has a first
sidelobe suppression of >48dB, which ensures
perfect reconstruction of an 8 bit/pixel image
(ignoring edge effects). A contrast enhanced
example of the sub-band images, where the range
in each sub-band is- stretched to full scale, is
shown here for a text image:

.Figure 1: Here'are'sub-band images of grayscale texn The —
right image is' contrast 'enhanced with each - sub-band '
stretched to use the full gray scale range.

The actual mean energy for this image is 123 and
the peak level in each sub-band is:

Table 2 - Presented here are the oak values in

each sub-band for the text image 0 Figure 1.

3. Perceptual Masking Model

in the perceptual masking model, we use the
local mean and variance to calculate a noise

tolerance relative to the observed noise sensitivity
of that sub—band given a uniform background
grey level of 127.

r‘u'm‘i'i 'Huummm nu: an im «mu. ..... ..
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3.1 Obtaining the Base Sensitivity

The base sensitivity for each sub-band was
‘established in an informal test using 3 trained

subjects. A set of 512x512 ima es With a
constant grey level of 127 (on a sea e of 0-255)
were created, and uniformly distributed random
noise of known energy was added to the center
64x64 piXels of each sub-band in turn. ‘Taldng
into account the 4:1 decrmanon ratio, the
reconstructed pictures have a 256x256 square of
noise in the center. For each_sub—band, the
energy level of the noise was adjusted unnl the
observers could not reliably determine 1f the
reconstructed image did or did not contain the
"noise square". The images were viewed in a
darkened room on a Sun 3/110 workstation
screen at 6 times the image height. The results
of this sensitivity test were:

regions would be greatly over-coded. Therefore,
a texture masking adjustment was lnCOrporated to
the perceptual model.

The texture masking adjustment is a function of
the “texture energy" at each image location. It
is com rised of the weighted sum of the local
(either x2 or 1x1 pixel, de nding on the target
quality) energy in each sub- and other than band
zero lus the variance of band zero over the same
locality (the variance is always taken over a 2x2
area with the target pixel in the u per left
comer). The weights for each sub- and are
determined empirically from the visual system’s
modulation transfer function [Comsweet]. Thatrs

15

TexEnergy (x,y) = 2 MTFweight(s)*Energy (s,x, y) +s=l

MTFweight (O)*variance ((x,y),(x+l,y),(x,y+l),(x+l,y +1))

Table 3 - RMS noise sensitivity threshold for
each sub-band. The order corresponds with
Figure 1.

3.2 Sensitivity Adjustment for Brightness

The next step in determining the perceptual
model was to vary the image grey scale
background, and determine the change in
sensitivity of band 0 for varied background grey
levels. This test was run in the same manner as ‘
the previous test, yielding a brightness correction
curve. For the specific conditions in this coder,

' the resulting adjustment curve is:

-6

Correction
Factor; 1 2

dB

0 32 64‘ 96 128:16Q192'224255
' - Mean Level

The brightness adjustment was spot-checked in
other low frequency bands and found to predict
the thresholds reasonably well. A better model
could be obtained by running this correction test
for each sub-band.

3.3 Texture Masking Adjustment

The'base sensitivity and brightness adjustment
provrde a perceptual threshold which attempts to
account for the human visual systems sensitivity
to fre uency content and image brightness for a
flat-fie d image. Since humans are more sensitive
to noise in flat-fields than in textured regions, this
model provides a conservative perceptual
threshold. Smooth image regions would be
coded to an appropriate quality level, but textured

Where TexEnergy is the measure of texture
energy, x and y horizontal and vertical pixel
indices, MTFweight is the empirical weight from
[Clarke, p. 271], and variance an operator that
returns the variance of the enclosed pixels. This
provrdes a crude measure of how much masking
energy is visible in each sub-band. his texture
energy is raised to the power 0.07, and the
energy threshold multipled (or added in the dB
domain) by the texture component. .

The final form of the perceptual threshold is
pt (s,x_,y) = Base (s) —.15*loge(Te:t-Energy (x,y))

— BrightWeighfiBrightCorr (x,y)

where x and y are pixel locations in a sub-band, s
is the sub-band number, Base() is the base noise
sensitivity from Table 3 (in dB), and pt is
expressed as a PSNR. Shown below is a
representation of the relative perceptual threshold
function for the text image. Portions of the
image that have large tolerance to coding errors
are represented by dark pixels, while sensitive
areas are indicated by light pixels.

4.. DPCM Coding of Sub-bands

' Each sub-band ’is coded using aIDPClt/‘I coder
' 'with a variable uniform mid—riser quantrzer. It '.

uses- a three point predictor "optimized for each
subaband. The predictor coefficrents are quantized
to 5 "bit accuracy aiid sent as.side information“.

. The quantizer step size is adjusted to ensure" that
the perceptual criterion rs Just met atmost critical.
point in the sub-band. This ensures that every

int in the sub-band receives. a sufficiently high
evel of coding without overcoding the most
sensitive position. Due to the wrde dynamlc
range of the perceptual threshold values,
adaptation of the quantizer step Size Wlll be
advantageous. However, we have Just begun
testing a modified step-size algorithm_ that
responds within each sub-band to the image
texture information.
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Figure 2: In the upper left is the zero sub-band. To its
right is the perceptual threshold function The perceptual
threshold function provides an measure of the sensmvrty
of each point to coding noise. Dark pixels indicate
insensitive portion of the image, while white areas are
very sensitive. *The bottom row shows the actiVity
measure. The number of sub—bands that are coded at
each point is a function of the local frequency content.
Black pixels denote that one sub-band was coded while
white denotes that 6 sub-bands were coded.

5. Noiseless Compression

After quantization, the codewords for each sub-
band are compressed using potentially
multidimensional Huffman coding. First, if an
entire subband consists of the zero codeword
(which implies the perceptual threshold is met if
every point in the sub-band is identical to zero), a
tag notes this, and the coder roceeds to the next
sub-band. If portions of a su -band are non-zero,

_.4x4 blocks .of 7zer0' codewords are" identified.
" : Depending on the percentage of eéra blocks, one -

of two schemes of'encoding this. is 'used. If there '
are less than 102 non-zero blocks; the block
number for each of these is sent, followed by the
block‘s codewords. If there are more than 960
non-Zero blocks, a bitmap is sent, followed by the
codewords for the non-zero blocks. Smooth

portions of an image require information from
one sub-band. But, textured areas and edges, due
to their broad spectrum, require information from
~several sub-bands. The perceptual threshold
function automatically determines the number of
sub-bands that must be coded. Shown below is a

representation of this activity measure for the text
“"uge. Black pixels indicate that one sub-band
was required at that point. Each successively
llghler shade of gray denotes another sub-band
was coded. For this image, a maximum of six
sub-bands were required at any one point, even
mough Portions of nine sub-bands were coded.

Table 3 - The coding algorithm encodes only the
perceptually relevant portions of a sub-band.
addition, multidimensmnal Huffman coding is
highly effective.

Each non-zero block is encoded using one, two,
or four dimensional Huffman codebooks. The

codebook with the highest dimensionality that
will fit the rate (i.e.' lowest potential rate) is used
for each block. The dimensionality of the
codebook for each block is combined with the
block activity information and transmitted for
each sub-band that is not all zeros. The 'four
dimensional codebook operates on 2x2 codeword
blocks, where each codeword has an absolute
value of less than 4. The two dimensional

codebook operates on 2x1 codeword blocks,
where each codeword has an absolute value of
less than 26. Likewise the one dimensional

codebook operates on individual codewords, of
any size required to meet the perceptual
threshold. Since the quantizer outputs are
entropy coded, and hence inherently of a variable
bit length, the high peak quantizer outputs do not
degrade the transmission cost of less active areas
of the same image by a factor of
log2(largest level mung-log; (mean level count)
as would happen in a standard DPCM coder.

6. Testing and Results

A wide selection of images, ranging from simple
(low-resolution scenery) to complex (strongly
contrasting textures, grey level text), have been
collected for both training purposes and test
purposes. No image is included in both the test
and training sets. The results reported in this
paper are for images that are in the test set,

_which consists of around 30 512x512 greyJevel ,
"irnages.- «All codebooks used in the compression- -
oalgorithmswere generated strictly ' from~'the . .'

training set, 'which consists of ‘107 images, that ‘
' are distinct from the test set. ' ' '
The results of this compression algorithm provide
an ima e quality, at a rate of .33 bit/pixel, for the
"Lena age" similar to or better titan that of the
.5 bit/pixel coder previously reported in ICASSP
’88 [Safranek]. The uality of the Lena image is
nearly transparent at x the image height at a rate
of .5 bit/pixel. Usin this algorithm, typical
images require from . bit/pixel to .6 bit/pixel.

and extremely complex textures require in therange of 0.9 bit/pixe for a high—quality encoding,
or 1.5 bits/pixel for near-transparent codin .
Grey scale text images that are not obviousfy

impaired also require roughly .9 bits/pixelnwhile
readable (for characters understandable in the
original at 6x the image height) grey scale images
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of text require about .5 bits/pixel Figures to 7 _ . . ‘I r V D p 2' I :
resent the output of this coder on a variety of “amalgam; ,: we“ “Mum‘s!-

ima‘ges at three different quality levels. For these ‘ 3- - _ ,
examples, the upper left image is the 8 bit/pixel
original, the upper right image [5 at the nearly
transparent uality level, the lower left offsets the
erceptual eshold function by 5dB, and the
ower right offsets the perceptual threshold

function by 10 dB.

" ‘ a

7. Conclusions

We have presented a variable bit rate coder
which prov1des a proximately constant quality for
a wide range 0 input image complexities. Its
compression gains are a result of a combination 1 r. K
of all of the compression methods (DPCM, "m,mm_.
entropy coding, perceptual-threshold calculation, .
and quiescent block rejection), which work co- 2.1%”..J...'.:...."‘“" ‘- :mm-flmmrrr.
operatively to automatically provrde . good ,mtww'“ . "thmTJ-ha... .....,_... . _ _ mm
compressron results and quality over a variety of amflrgzh
images without user intervention. “Mme-“mm ..___.§
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image is in the upper left. The upper right is coded at
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the lower right is coded at 0.23 bits/pixel.
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Abstract

Recently, the use of image compression algorithms in commercial products has been increasing
an extremely fast rate. This explosion has been fueled by two recent developments, the
availability of cheap signal processing [Cs and the completion of several international standards
for image compression. The [Cs make the products cost effective, and the standards provide for a
large degree of interoperability.

One of these standards, JPEG (Joint Photographics Experts Group), deals with the compression of
still images. As is typical of these newly evolving standards, it specifies the information
contained in the compressed bit stream, and a decoder architecture which can reconstruct an
image from the data in the bit stream. However, the exact implementation of the encoder is not
standardized. The only requirement on the encoder is that is generate a compliant bit stream.
This provides an opportunity to introduce new research result

The challenge in improving these standards based codecs is to generate a compliant bitstream
which produces a perceptually equivalent image as the baseline system that has a higher
compression ratio. This results in a lower encoded bit rate without perceptual loss in quality.
The proposed encoder uses the perceptual model developed by Johnston and Safranelc [JohnSafj
to determine, based on the input data, which coefficients are perceptually irrelevant This
information, is used to remove (zero out) some coefficients before they are input to the quantizer
block. This results in a larger percentage of zero codewords at the output of the quantizer which
reduces the entropy of the resulting codewords.

1. Introduction

Recently, the use of image compression algorithms in commercial products has been increasing
rapidly. This explosion has been fueled by two recent developments, the availability of cheap

signal processing ICs and the establishment of several international standards for image

compression. The ICs make the products cost effective, and the standards provide for a large
degree of interoperability. .—————

One Qfflthese standards, JPEG (Joint Photographics Experts Group), deals. .with the compression of
still images. Some applications in which it has been utilized are archival storage of images for

the publishing industry, reducing storage requirements for picture archiving systems, and ISDN

based image services. In addition, it has been used for intraframe only compression of motion
video.

As is typical of these newly evolving standards, it specifies the information contained in the

compressed bit stream, and a decoder architecture which can reconstruct an image from the data

in the bit stream. However, the exact implementation of the encoder is not standardized. The

only requirement on the encoder is that it generates a compliant bit stream. This provides an

opportunity for people to improve the compression efficiency and/or subjective image quality by

designing better encoders. This paper will present an such encoder for the Baseline Sequential

O-8l94—1474-3/94/$6.00 -'-' SPIE Vol. 2179/117
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As shown in Figure 1, the encoder consists of three major components, a Forward Transfbrm,
Quantization, and Entropy Coding. The Forward Transform is an 8x8 Discrete Cosine Transform

(DCT). Its purpose is to reduce number of samples that need to be transmitted by performing
energy compaction on the signal. Since most images have a low pass spectrum, transforming the
spatial domain data into the frequency domain results in 21 fewer significant samples. In addition
these samples tend to be clustered at the low frequencies.

The purpose of the quantization step is to take the raw output of the DCT and quantize the
coefficients. This step results in a loss of information, but provides for the majority of the data
rate reduction in the system. By adjusting parameters in this stage, it is possible to control the
compressed bitrate and output image quality.

Entropy coding takes the fixed length quantized DCT coefficients and produces a set of variable
length channel symbols. This operation attempts to produce a compressed data stream whose rate
is as close as possible to the entropy of the quantized DCT coefficients.

2.1 Quantization

We will now focus on how the quantization is performed since that step is vital in understanding
the improved encoder. The forward DCT produces 64 coefficients. These coefficients are then

uniformly quantized. The quantizer step size that is used for each coefficient is determined by a
Quantization Table which must be specified by the application as an input to the encoder.
Elements in the Quantization Table can take on integer values in the range of 1 to 255.

The quantization process is defined as a division of each DCT coefficient by its corresponding
entry from the quantization table, followed by rounding to the nearest integer.

F(u,v) JFQ(u,v) = IntegerRound QM”)

where F(u,v) the DCT coefficients for a given input block, FQ(u,v) are the quantized DCT

coefficients, and Q(u,v) is the Quantization Table.

In the decoder, the inverse operation is performed which provides the decoder with the values
appropriate for input to the inverse DCT.

FQ’ituw) = thu,v) * now)

where F sub QE (u,v) are the reconstructed DCT coefficients for a given block gr.

Fromthis discussion it is clear that the, Quantization Table is part of the‘i'nformation that must be

transmitted from the encoder to decoder. If an entry in the Quantization Table is greater than

unity, information loss occurs. The table is chosen to trade off compression efficiency and
subjective image quality.

3. Perceptual Model

In has long been known that the human visual system is not an ideal receiver, and that it is

possible to take advantage of this fact in the encoding process [Comsweet]. It has only been

recently however, that more systematic investigation of the use of visual masking in image

compression has occurred [JaJOSa]. These studies have attempted to derive a computational

SPIE Vol. 2179/ H9
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proposed by Watson do not have this restriction and provide more adaptability at the cost of
increased computational load.

Threshold
Elevation

standard Deviation of Input: Bloc):

Figure 2: Presented here is an example of a threshold elevation curve.

4. Perceptual Encoder

The previous section described a method for determining a set of masking thresholds for each

block of an input image which result in a unique perceptually optimal quantization table for each

block. Unfortunately, JPEG allows only one quantization table for each image. Therefore the
problem that must be solved is how to make use of this local information within the framework of

the JPEG standard. If you examine the forward quantization equation in section 2.1, it is clear

that all input coefficients that have a value less than their corresponding quantization table entry

will be quantized to a value of zero. This observation is the key to incorporating locally adaptive
quantization into JPEG.

Since a quantized coefficient with a value of zero is a valid member of the JPEG bitstream, the

perceptually based encoder will identify which coefficients can be set to zero while maintaining

the subjective quality of the encoded image. This will maintain complaince with the JPEG

bitstream specification while reducing the bitrate required to encode the image.

Figure 3 illustrates the structure of such an encoder. The forward transform is identical to the one

in baseline JPEG. At this point, the DCT coefficients are input to the perceptual model which
generates the data dependent quantization table for that block. This table and the raw DCT

coefficients are now input to a “pre-quantizer." The purpose of this module is to zero out the

coefficients that have a magnitude less than the corresponding entry in the quantization table for

that block, and pass the other coefficients through unchanged.

SPIE Vol. 2179/ 121
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I I in is (-

Bur-$0 Savings (in perms)

Figure 4: Bitrate savings over baseline J'PEG obtained from PxJPEG

Two objective evaluation methods were used. The first was a traditional A/B forced choice test.

The subject was simultaneously shown two images sided by side on a video monitor. One was the

original image and the other was the same image encoded using either IPEG or PxJPEG. The

order of presentation, that is which side the original image was located on, was randomized.
Given this stimulus, the task was to determine which image was the original. A test set of 10

images-that was used. This set was chosen to contain typical images, as well as test pattern? that
would stress the encoder. At present, this test has been taken by 7 times by a single subject, the

author, who was familiar'with the test data. The result of this test was that both JPEG and
PxJPEG using the perceptually optimal quantization matrices were statistically indistinguishable

from the original image.

In order to provide further insight into the subjective quality of the codecs, the output images

were evaluated using Scot Daly's Visual Difference Predictor (VDP) [Daly]. This algorithm

takes as input two images, a reference and a test. as well as viewing condition and a

characterization of the display. The input images are normalized to account for the viewing

conditions and display. and then passed thought a detailed model of the human visual system. It

SPIEVOV. 2179/123
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Figure 5: Bitrate savings by PxJPEG as a function of JPEG bitrate
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ABSTRACT

Several image compression standards (JPEG, MPEG, H.261) are based on the Discrete Cosine Transform
(DCT). Thesestandards do not specify the actual DCT quantization matrix. Ahumada 8: Peterson1 and Peterson,
Ahumada 8: Watson2 provide mathematical formulae to compute a perceptually lossless quantization matrix.
Here I show how to compute a matrix that is optimized for a particular image. The method treats each DCT
coefficient as an approximation to the local response of a visual "channel." For a given quantization matrix, the
DCT quantization errors are adjusted by contrast sensitivity, light adaptation, and contrast masking, and are
pooled non-linearly over the blocks of the image. This yields an 8x8 "perceptual error matrix." A second non-
linear pooling over the perceptual error matrix yields total perceptual error. With this model we may estimate the
quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or
minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement
over image—independent matrices. Custom matrices are compatible with the JPEG standard, which requires
transmission of the quantization matrix.

1. JPEG DCT QUANTIZATION

The JPEG image compression standard provides a mechanism by which images may be compressed and
shared among users 3' 4. Ibriefly review the quantization process within this standard. The image is first divided
into blocks of size {8,8}. Each block is transformed into its DCT, which we write cijk, where 1',j indexes the DCT
frequency (or basis function), and k indexes a block of the image. Though the blocks themselves form a two
dimensional array, for present purposes a one dimensional block index is sufficient. Each block is then quantized
by dividing it, coefficient by coefficient, by a qUantization matrix (QM) qii, and rounding to the nearest integer

ul-jk = Round[cijk/qij] . (1)

The quantization error eijk in the DCT domain is then

eijk = Cijk — uijk qt; - (2)

2. IMAGE-INDEPENDENT PERCEPTUAL QUANTIZATION

The JPEG QM is not defined by the standard, but is supplied by the user and stored or transmitted with the
compressed image. The principle that should guide the design of a IPEG QM is that it provide optimum visual
quality for a given bit rate. QM design thus depends upon the visibility of quantization errors at the various DCT
frequencies. In recent papers, Peterson et al. 5' have provided measurements of threshold amplitudes for DCT
basis functions. For each frequency if they measured psychophysically the smallest coefficient that yielded a
visible signal. Call this threshold ti}. From Eqn.s (1) and (2) it is clear that the maximum possible quantization
error gay, is qij /2. Thus to ensure that all errors are invisible (below threshold), we set

202 ISPIE Vol. I913
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I call this the Image-Independent Perceptual approach (IIP). It is perceptual because it depends explicitly

upon detection thresholds for DCT basis functions, but is image-independent because a single matrix is computed
independent of any image. Ahumada et a1. 1' 7 have extended the value of this approach by measuring til-under
various conditions and by providing a formula that allows extrapolation to other display luminances (L) and pixel
sizes (px,py), as WEll as other display properties. For future reference, we write this formula in symbolic form as

[if =aP[isj»L:Px’Py“"] (4)

3. LIMITATIONS OF THE IIP APPROACH

While a great advance over the ad hac matrices that preceded it, the HP approach has several shortcomings.
The fundamental drawback is that the matrix is computed independent of the image. This would not be a

problem if visual thresholds for artifacts were fixed and independent of the image upon which they are
superimposed, but this is not the case.

First, visual thresholds increase with background luminance. The formula of Ahumada & Peterson describes
the threshold for DCT basis functions as a function of a mean luminance. This would normally be taken as the
mean luminance of the display. But variations in local mean luminance within the image will in fact produce
substantial variations in DCT threshold. We call this luminance masking.

Second, threshold for a visual pattern is typically reduced in the presence of other patterns, particularly those
of similar spatial frequency and orientation, a phenomenon usually called contrast masking. This means that
threshold error in a particular DCT coefficient in a particular block of the image will be a function of the value of
that coefficient in the original image.

Third, the HP approach ensures that any single error is below threshold. But in a typical image there are
many errors, of varying magnitudes. The visibility of this error ensemble is not generally equal to the visibility of
the largest error, but reflects a pooling of errors, over both frequencies and blocks of the image. I call this error
pooling.

Fourth, when all errors are kept below a perceptual threshold a certain bit rate will result. The HP method
gives no guidance on what to do when a lower bit rate is desired. The ad hoc "quality factors" employed in some
IPEG implementations, which usually do no more than multiply the quantization matrix by a scalar, will allow an
arbitrary bit rate, but do not guarantee (or even suggest) optimum quality at that bit rate. I call this the problem of
selectable quality.

Here I present a general method of designing a custom quantization matrix tailored to a particular image.
This image-dependent perceptual (IDP) method incorporates solutions to each of the problems described above:
luminance masking, contrast masking, error pooling, and selectable quality. The strategy is to develop a very
simple model of perceptual error, based upon DCT coefficients, and to iteratively estimate the quantization
matrix which yields a designated perceptual error.

4. LUMINANCE MASKING

Detection threshold for a luminance pattern typically depends upon the mean luminance of the local image
region: the brighter the background, the higher the luminance threshold 8' 9. This is usually called "light
adaptation," but here we call it “luminance masking" to emphasize the similarity to contrast masking, discussed in
the next section.

To illustrate this effect, the solid lines in Fig. 1 plot values of the formula for ti) provided by Ahumada and
Peterson1 as a function of the mean luminance of the block, assuming that the maximum display luminance is 100

cd m'2 and that the greyscale resolution is 8 bits. The three curves are for five representative frequencies. These
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curves illustrate that variations by as much as 0.5 log unit in tijmight be expected to occur within an image, :_
variations in the mean luminance of the block.

60 80

L (cd/m"2)

Figure 1. Log of ti} as a function of luminance L of the block. From the top, the curves are for frequencies of {7
[0,7), {0,0}, [0,3], and {0,1}. The maximum display luminance is assumed to be 100 cd m'z. The dashed
curves are the power function approximation described in the text.

The effect of mean luminance upon the DCT thresholds is complex, involving both vertical and horizonta
shifts of the contrast sensitivity function. We can compute a luminance-masked threshold matrix for each bloc
either of two ways. The first is to make use of a formula such as that supplied by Ahumada and Peterson 1 ,

tijk = aplivjylo Cock/500]

where Cockis the DC coefficient of the DCT for block k., L0 is the mean luminance of the display, and 500 is the
coefficient corresponding to L0 (1024 for an 8 bit image). This solution is as complete and accurate as the
underlying formula, but may be rather expensive to compute. For example, in the Mathematica language, usin
compiled function, and running on a SUN Sparc 2, it takes about 1 second per block.

A second, simpler solution is to approximate the dependence of [yupon cock with a power function:

tijk = tijlcook /500)ar

The initial calculation of tijshould be made assuming a display luminance of L0 The parameter aT takes
name from the corresponding parameter in the formula of Ahumada and Peterson, wherein they suggest a va
of 0.649. Note that luminance masking may be suppressed by setting aT=O. More generally, arcontrols the
degree to which this masking occurs. Note also that the power function makes it easy to incorporate a non—un
display Gamma, by multiplying a, by the Gamma exponent (see Section 10.2).
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As illustrated by the dashed lines in Fig. 1, this power function approximation is accurate over an upper
range of luminances (for the parameters in Fig. 1, above about 10 cd [11" ). Except for very dark sections of an
image, this range should be adequate. The discrepancy is also greatest at the lowest frequencies, especially the DC
term. This could be corrected by adopting a matrix of exponents, one for each frequency. But note that the
discrepancy is a conservative one, that is the threshold changes less with block luminance than the model calls
for. This may not be a bad thing, especially at DC, where the validity of the model may be least.

5. CONTRAST MASKING

Contrast masking refers to the reduction in the visibility of one image component by the presence of another.
This masking is strongest when both components are of the same spatial frequency, orientation, and location.
Here we consider only masking within a block and a particular DCT coefficient (It is possible to extend these
ideas to masking between DCT coefficients, and across DCT blocks). We employ a model of visual masking that
has been widely used in vision models, based on seminal work by Legge and Foley 10' 11. Given a DCT coefficient
cm and a corresponding absolute threshold tijk our masking rule states that the masked threshold my, will be

(7)W" l-w

where wij is an exponent that lies between 0 and 1. Because the exponent may differ for each frequency, we
allow a matrix of exponents equal in size to the DCT. Note that when WU =0, no masking occurs, and the
threshold is constant at ti”. When w," = 1, we have what is usually called "Weber Law" behavior, and threshold
is constant in log or percentage terms (for Cijk> tfjk). The function is pictured for a typical empirical value of wij =
0.7 in Fig. 2.

my,
Cijk

Figure 2. Contrast masking function, describing the masked threshold my]: as a function of DCT coefficient Cw, ,
for parameters wij :07, rm, = 2. ‘-

Because the effect of the DC coefficient upon thresholds has already been expressed by luminance masking,
we specifically exclude the DC term from the contrast masking, by setting the value of w00 = 0. It is interesting
that while contrast masking is assumed to be independent from coefficient to coefficient (frequency to frequency),
in the case of luminance masking the DC frequency affects all other frequencies.

Figure 3 shows the masked sensitivity (mg-l) for the Lena image. Note that the dark strip in the upper right
results in generally higher sensitivity due to luminance masking (um-masking, perhaps we should say).
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'ty DCT (mg; ) for wii =o.7 and aT=0.649. If wij =0 and a,=0,identical and would look like the inset (2 to).

6. PERCEPTUAL ERROR AND JUST-NOTICEABLE—DIFFERENCES

In vision science, we often express the magnitude of a signal in multiples of the threshold for that siThese threshold units are often called Gust-noticeable differenc gnal.

my,” the error DCT may therefore be expressed in jnd ," or jnd's. Having computed a masked threshol's as

= eijk

particular frequency (1', '} over all blocks k as

W.

Pry: Eldv‘klfl‘

Different values of the exponent ,3; implement different types or degrees of pooling. When [3: =1, thepooling is linear summation of absolute values. When fis =2, the errors combine quadratically, in an RMS or
standard deviation type measure. When A; = °°(in practice, a large number such as 100 will do), the pooling rulebecomes a maximum-of operation: only the largest error matters. In psychophysical experiments that examine
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Summation among sinusoidal components of differing frequency, a BS of about 4 has been observed 15' 16' 17.
The exponent fls is given here as a scalar, but may be made a matrix equal in size to the QM to allow differing
Pooling behavior for different DCT frequencies. This matrix p," of "pooled jnds" is now a simple measure of the
visibility of artifacts within each of the frequency bands definedby the DCT basis functions. I call it the
"perceptual error matrix."

8. FREQUENCY ERROR POOLING

This perceptual error matrix pil- may itself be of value in revealing the frequencies that result in the greatest
pooled error for a particular image and quantization matrix. But to optimize the matrix we would like a single-
valued perceptual error metric. We obtain this by combining the elements in the perceptual error matrix, using a
Minkowski metric with a possibly different exponent, fif

1/3,

P = z Pijfi’ . (10)
‘7

It is now straightforward, at least conceptually, to optimize the quantization matrix to obtain minimum bit—
rate for a given P, or minimum P for a given bit rate. In practice, however, a solution may be difficult to compute.
But if fif= 0°, then P is given by the maximum of the pa. . Under this condition minimum bit-rate for a given
P: yr is achieved when all pi}. = W. Intuitively, if the maximum of the pi]. equals W, each of the others might as
well be increased to 1/1, since that will not increase P, but will decrease bit-rate. .

Recall that each entry in the matrix pi]. corresponds (at least monotonically) with the visibility of a particular
class of artifact: that of the corresponding frequency (basis function). This strategy of equating all pl). to l/lthus
also has the effect of equating the visibilities of each of these classes of error.

While it is likely that the true value of fif is nearer to fix (approximately 4), it also seems likely that this
more accurate value will not greatly alter the outcome of the optimization and will not be worth the substantial
increase in computational effort.

8. OPTIMIZATION METHOD

Under the assumption [if = 00, the joint optimization of the quantization matrix reduces to the vastly simpler
separate optimization of the individual elements of the matrix. Each entry of the perceptual error matrix p 0- may
be considered an independent function of the corresponding entry qi]. of the quantization matrix

Pa = fry-(qr) - (11)

This function is monotonically increasing and

fi,(1)=0 v :21.

We seek a particular @U such that

f.»,-(ci,-,-)= 1;! V L} . (13)

Of course, in some cases no amount of quantization will yield a value as large as the target W(for example, if
all coefficients are quantized to 0, but the error remains below V). For those cases we are content to set q 1.]. to an
arbitrary maximum, such as 255 (the largest quantization table entry permitted in the IPEG baseline standard).
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In a practical implementation, a rapid method of estimating is required. Here We have used a bisection
method that while s>low, is guaranteed to find a solution. A range is established for q ,3- between lower and upp
bounds of qij and qij (typically [1,255}). pijis evaluated at the midpoint of the range,

_ 1 < >-.= d — + .r11] Roun [2th.]. (1
If pil- < l/f, then (in = 31—0., otherwise, (in = 67 This procedure is repeated until if”. no longer changes. As

practical matter, since M's in baseline IPE are eight bit integers, this degree of accuracy is obtained in n=9
iterations from a starting range of 255 .

in the following examples, unless otherwise stated, the parameter values used were (1T = 0.649, ,3 = 4, wi,
0.7 , display mean luminance L0: 65 cd m‘2 , image greylevels = 256, (700 = 1024. The viewing distance was 4
assumed to yeild 32 pixels/degree. For a 256 by 256 pixel image, this corresponds to a viewing distance if 7.115
picture heights. The "JPEG bit rate" is calculated by computing the code size for AC and DC coefficients using t
default IPEG Huffman tables. It does not include the overhead composed of quantization tables, Huffman tabl:
marker codes, etc. because this overhead is not image dependent and depends on coding decisions made by th
application (e.g. use of restart intervals). If it had been included it would increase the bit rate for a 256 by 256
image by about 0.038 bits/pixel.

Several steps in the iterative estimation of @U are illustrated in Fig. 4. Successive steps show further
refinement in éij, and a progressiVely more uniform matrix pi]. . On step 1, qij = 255 , V i, On this step th
perceptual error matrix shows greatest error at low spatial frequencies.
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trial 1 bitfpix = 0.2168 Max[p—psi] = Hull

trial 2 bitfpix = 0.418 Max[p—psi] = 4.419

trial 3 bitfpix = 0.8398 Max[p—psi] = 1.941

trial 10 bitipix = 1.?03 HEMP-psi] = 0.122

Figure 4. Iterative estimation of the custom quantization matrix c} The three panels in each row show
quantization matrix qii, the reconstructed image using qif, and the perceptual error matrix p The
labels indicate the iteration trial, the current [PEG bit-rate, and the maximum difference between pi]- and
W (discounting those for which the maximum error is always less than IV). The image was {64,641, target
l/lwas 1. For qij and pij, the DC coefficient is at the lower left corner. '—

Figure 5 shows the Lena image 18 compressed to various values of perceptual error 1;! = {1, 2, 4, 8]. The
value of l/l=1'produces an essentially "perceptually lossless" compression 1 under the prescribed viewing
conditions (mean luminance = 65 cd m‘ 32 pixels/deg.
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Figure 5. The Lena image compressed using custom matrices designed for perceptual error levels ( 1/!) of 1, 2, 4,
and 8. Corresponding bit rates were 2.28, 1.47, 0.72, 0.24. The original image had dimensions of {256,256}.

It is interesting to compare the irnage-independent quantization matrix to the custom matrix for various
quality levels. This is shown in Table 1, where we give the ratio of image-dependent and independent matrices,
for two quality levels of 1 and 4. Elements that have been set to the maximum of 255 are indicated by zeros. Note
that image dependence does alter the structure of the matrix, and that changes in quality (as defined here) do not
yield a constant scaling of the basic matrix.
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0.615 1.41 1.24 1.46
1.1 1.11 1.28 1.38 3.28
1.07 1.1 1.11 1.55
1.04 1.1 1.26
1.55 1.39 1.69

Table 1. Ratio of image-dependent and independent fluantization matrices for the Lena image at quality levels of

1 (top) and 4 (bottom). This ratio is equal to qU/Ztij . Empty cells indicate that the image-dependent
matrix had a value of 255 (the maximum allowed).

9. OPTIMIZING QM FOR A GIVEN BIT-RATE

It is of interest to relate the JPEG bit-rate to the perceptual error level III. This is shown for the Lena and
Mandrill images in Fig. 6. This is a sort of inverse "rate-distortion" function. Note that useful bit-rates below 2
bits/pixel yield perceptual errors above about 2.

bits/pixel

Perceptual Error

Figure 6. JPEG bit-rate versus perceptual error W for the Lena (lower curve) and Mandrill (upper curve) images.
The lines are second order polynomial interpolations.
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The method described above yields a QM with a specified perceptual error rill. However, one may desire a
QM that yields a given bit rate ho with minimum perceptual error 1,1/ . This can be done iteratively by noting that
the bit rate is a decreasing function of Ill, as shown in Fig. 6. In our current implementation, we use a second
order interpolating polynomial fit to all previous estimated values of (h, [{1} to estimate the next candidate 1;],
terminating when [h — ho] < Ah, where Ah is the desired accuracy in bit-rate. On each iteration, a complete
estimation of éij is performed. There are no doubt more rapid methods.

The most meaningful contest between IDP and HP approaches is to compare images compressed by the two
methods to a constant bit rate. Furthermore, the bit rate must be low enough that the poorer method shows
visible artifacts, else both will appear perfect. Figures 7 and 8 provide such comparisons. The IDP method is
visibly superior, even in relatively low—quality printed renditions.

Figure 7. HP (left) and IDP (right) compressions at 0.25 bits/pixel (top row) and 0.5 bits/pixel (bottom row).
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Figure 8. HP (left) and IDP (right) compressions at 0.25 bits/pixel (top row) and 0.5 bits/pixel (bottom row).

10. EXTENSIONS AND FUTURE RESEARCH

10.1 Estimation of ti]. wij, fis tar

The method described here depends upon estimates of the matrices ti]. and wij, and the parameters fis and
ar. Estimates of tUmay be obtained directly from psychophysicai experiments that measure detection thresholds
for individual DCT basis functions 1' 5' 6. We are devising experiments, adapted from the methods of Legge and

Foley 10' 11 to directly estimate W”. In these experiments detection thresholds are measured for an increment (or
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decrement) in the amplitude of ' ' . ‘ ' [is is more difficult. Several values of [is in
the range of 1—100 could be evaluated for the degree to which they yield a plausible perceptual error metric p U . In
addition, a matrix of values of ‘33 might be warranted, with different degrees of spatial pooling at each DCT
frequency.

10.2 Gamma Functions

Remarkably, the JPEG specification makes no statement regarding the relation betWeen pixel values and
displayed luminance. While one can understand their reluctance to impose constraints upon JPEG applications, it
should be understood that ultimate visual quality depend on this relation. The "de facto" assumption appears to
be that pixel values will be applied directly to the display subsystem, which typically has a non-linear relation
between greylevel and luminance, often known as a "gamma function" that is approximately a power function
with an exponent (gamma) of about 2.3. The assumption presumably also is that variations in this function from
system to system are not so great as to seriously degrade visual quality.

In an ideal system, one would specify both the gamma function of image capture, and of the target display.
Image data would be transformed to luminance before compression, and after reconstruction, to values that
would result in luminance on the display. Unfortunately, we cannot add descriptors of these gamma functions to
the existing IPEG specification, so we must be content with the "de facto" assumption.

Since the preceding calculations have treated pixel values as proportional to luminance (gamma=1), under
the "de facto" assumption, we should subject the image data to inverse and forward gamma transformations
before coding and after decoding, respectively. The present approach, which does no such transformations, relies
on the approximate linearity of the gamma function near the middle of its range, and on the inclusion of the
display gamma into the luminance masking function as discussed in Section 4. This subject will be examined in
future research.

10.3 Color Images

The Image-Dependent Perceptual approach has been described here only with respect to coding of
monochrome images. The principles, however, are easily extended to color images. The simplest approach is to
measure or compute a unique ty for each of the three color channels7, and from them compute three custom
quantization matrices. The matter may be complicated by different masking and pooling properties in the
chromatic channels than in the luminance channel. But since color consumes so small a part of the total bit-rate,
these details are not likely to be critical in practical applications.

11. SUMMARY

irnal quantization matrix for a given image. These image-
dependent q ' ' ults than image independent matrices. The algorithm can be
easily incorporated into IPEG compliant applications.

In a practical sense, the ID? method proposed here solves two problems. The first is to provide maximum
visual quality for a given bit rate. The second problem it solves is to provide the user with a sensible and
meaningful quality scale for IPEG compression. Without such a scale, each image must be repeatedly compressed,
reconstructed, and evaluated by eye to find the desired level of visual quality.

However, at present, it is admittedly only a conjecture that this scale relates in a direct way to perceived
visual quality. While I am confident that it relates more directly to quality than does the ad hoc "quality factor" of
some IPEG implementations, to demonstrate a robust relation between computed perceptual error and perceived
quality will require subjective judgments, both over different bit rates and different images.
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From the standpoint of computational complexity, this algorithm adds only a modest amount to the cost of

IPEG image compression. All optimization takes place in the DCT domain, so no additional forward or inverse
DCT's are required, The DCT mask is computed only once, and consists of a few calculations on each DCT pixel.
The estimation of the quantization matrix requires a maximum of ten (and probably many fewer) iterations, each
of Which consists of a modest number of simple operations on each DCT pixel. It is certainly a smaller burden
than requiring the user to repeatedly compress, reconstruct, and visually assess the result.

12. NOTATION

Cijk DCT of an image
q U quantization matrix
ul-J-k quantized DCT
eijk DCT error

tij DCT threshold matrix (based on global mean luminance)
ap[l', J" Lv Px» Pys ---] threshold formula of Ahumada and Peterson1

tijk DCT threshold matrix (based on local mean luminance cock)
0;- luminance masking exponent

wij contrast masking exponent (Weber exponent)
mask DCT

jnd DCT

perceptual error matrix

spatial error-pooling exponent

total perceptual error

frequency error-pooling exponent
DC coefficient in block k

mean luminance of the display

Average DC coefficient, corresponding to [O (typically 1024)
target total perceptual error value

estimated quantization matrix yielding target perceptual error
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ABSTRACT

Several recent image compression standards rely upon the Discrete Cosine Transform (DCT). Models of DCT basis

function visibility can be used to design quantization matrices for arbitrary viewing conditions and images. Here we report new
results on the effects of viewing distance and contrast masking on basis function visibility. We measured contrast detection
thresholds for DCT basis functions at viewing distances yielding 16, 32, and 64 pixels/degree. Our detection model has been

elaborated to incorporate the observed effects. We have also measured detection thresholds for individual basis functions when
superimposed upon another basis function of the same or a different frequency. We find considerable masking between nearby
DCT frequencies. A model for these masking effects will also be presented.

1. INTRODUCTION

The JPEG, MPEG, and CCI'IT H.261 image compression standards, and several proposed HDTV schemes employ the

Discrete Cosine Transform (DCT) as a basic mechanism 1- 2. Typically the DCT is applied to 8 by 8 pixel blocks, followed by
uniform quantization of the DCT coefficient matrix. The quantization bin-widths for the various coefficients are specified by a

quantization matrix (QM). The QM is not defined by the standards, but is supplied by the user and stored or transmitted with
the compressed images.

The principle that should guide the design of a QM is that it provide optimum visual quality for a given bit rate. QM

design thus depends upon the visibility of quantization errors at the various DCT frequencies. In recent papers3' 4, Peterson at
al. have provided measurements of threshold amplitudes for DCT basis functions at one viewing distance and several mean
luminances. Ahumada and Peterson 5 have devised a model that generalizes these measurements to other luminances and

viewing distances, and Peterson er al. 6 have extended this model to deal with color images. From this model, a matrix cange
computed which will insure that all quantization errors are below threshold. Watson 7 has shown how this model may be used to
optimize the quantization matrix for an individual image.

2. EFFECTS OF DISPLAY RESOLUTION

Visual resolution of the display (in pixels/degree of visual angle) may be expected to have a strong effect upon the
visibility of DCT basis functions. and we therefore collected data to document this effect and to validate and enhance the mode].
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2.1 Practical Pixel Sizes

Visual resolution of the display (in pixels/degree of visual angle) is detemu'ned by display resolution (in pixels/cm) and
viewing distance (in cm), according to the formula

(pixels/degree) = (pixels/cm)/ c0t'1[distance]

In the viewing situations for which block-DCT compression is contemplated, there are limits to the practical range of
visual resolutions. At the high end, display resolution will be wasted on spatial frequencies which are not visible to the human
eye. The limit of human Spatial resolution is about 60 cycles/degree. Nyquist sampling of this frequency would require 120
pixels/degree. This corresponds to 300 dpi printing viewed at a distance of about 23 inches. At the low end, the pixel raster

becomes visible. In these experiments, we have examined three viewing distances, 16, 32, and 64 pixels/degree, that span a
large part of the range of useful viewing distances.

2.2 Methods

Detection thresholds for single basis functions were measured by a two-alternative, forced-choice method. Each trial

consisted of two time intervals, within one of which the stimulus appeared. The stimulus was a single DCT basis function,
added to the uniform gray background that remained throughout the experiment. Background luminance was 40 cd m‘z, and
frame rate was 60 Hz. ObserVers viewed the display screen from distances of 48.7, 97.4, 194.8 cm. Display resolution was

37.65 pixels/cm. Images were magnified by two in each dimension, by pixel replication, to reduce monitor bandwidth
limitations, resulting in magnified pixel sizes of 1/16, 1/32, and 1/64 of a degree, respectively at the three viewing distances
(basis functions were 1/2, 1/4, and 1/8 degree in width). We describe these three viewing distances as yielding effective visual

resolutions of 16, 32, and 64 (magnified) pixels/degree.

During presentation, the luminance contrast of the stimulus was a Gaussian function of time, with a duration of 32

frames (0.53 sec) betWeen e"c points. The peak contrast on each trial was determined by an adaptive QUEST procedure 8,
which converged to the contrast yielding 82% correct. After completion of 64 trials, thresholds were estimated by fitting a

Weibull psychometric function 9. Thresholds are expressed as contrast (peak luminance, less mean luminance, divided by mean
luminance), converted to decibel sensitivities (-20 log10[th.reshold])

To reduce the burden of data collection, we measured thresholds for only 30 of the possible 64 basis functions, as
indicated in Fig. 1. To the extent that thresholds change slowly as a function of DCT frequency, this sampling constrains our
model sufficiently.

cramminme
01234567

Figure 1. Subset of DCT frequencies used in the experiment.

To date, two data sets have been collected at the low resolution, five at the middle resolution, and one at the highest
resolution, as shown in Table l.
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resolution observer

abw m" ai s‘ 'as

32 7 30 60 3O 30
64 0 30 O 2 0

Table 1. Thresholds collected for each observer and viewing distance.

2.3 Model of DCT Contrast Sensitivity

The model of DCT contrast sensitivity that we consider here is essentially that described by Peterson et al. 6 In that
model, log sensitivity ver5us log frequency is a parabola, whose peak value, peak location, and width vary with mean
luminance. In addition, sensitivity at oblique frequencies ({ meO,v¢0}) is reduced by a factor that is attributed to the orientation

tuning of visual channels. The parameters of significance here are so (peak sensitivity), f0 (peak DCT frequency at high
luminances), and k0 (inverse of the latus rectum of the parabola), and r (the orientation effect).

2.4 Results

Figures 2, 3, and 4 show decibel contrast sensitivities for the three viewing distances, along with curves showing the

predictions of the best fitting version of the model. Within each figure, the three panels show data for horizontal frequencies (u,
0}, vertical frequencies degree orientations {11, v=u}, and the remaining obliques {u>0, O<v¢u}, all plotted against the

radial frequency f = Lt2 + V2 . In the case of the obliques, because there is no simple one-dimensional prediction to plot, we
plot instead the actual sensitivity minus that predicted by the model. These plots, and the fits. do not include the thresholds at
{0,0} (DC), which are reserved for a separate discussion. The data at 64 pixels/degree also omit 3 thresholds at very high

frequencies which we suspect to be artifactual.

Vertical Horizontal

4 6- 8 1D

Oblique Errors

Figure 2. DCT basis function sensitivities at 16 pixels/degree.
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Vertical Horizontal

2 4 ’ 6 8 10

Oblique Errors

Figure 3. DCT basis function sensitivities at 32 pixels/degree.

Vertical 4o Horizontal

30

20

10

2 4 6 810 0 6 810

45 Degree Oblique Errors

6 810

Figure 4. DCT basis function sensitivities at 64 pixels/degree.
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The fits are reasonable, though there appear to be some systematic departures from the model. For reference, the RMS
error of the raw data at the middle distance is 2.03 decibels. while the RMS error of the fit in Fig.5 2—4 is 2.94 decibels. The
estimated parameters are shown in Table 2.

16 32 64
29.84

Table 2. Estimated model parameters.

The parameters fl), k0, and r (related to peak frequency, bandwidth, and orientation effects) are equated for all
resolutions, while a separate value of s0 (peak contrast sensitivity) is estimated for each of the three resolutions. The behavior of

this parameter is worth considering. Between 64 and 32 pixels/degree, it increases by a factor of 1.88. Between these two

resolutions, the basis functions increase in size by a factor of two in each dimension. Thus if sensitivity increased linearly with

area (as it should for very small targets 10’ 11’ 12) We would expect an increase of a factor of 4. If sensitivity increased due only
to spatial probability summation 13‘ 14. we would expect a factor of about 41/4 = 1.414. Thus the obtained effect is nearer to that
expected of probability summation. At the closest viewing distance, despite a further magnification by 2, the parameter :0
actual declines. While we would expect a smaller effect of size at the largest sizes, this decline is unexpected and may be due to

l) the relatively poor fit at this resolution, and 2) aspects of visual sensitivity which are not yet captured by the model.

2.5 DC Sensitivities

Figure 5 shows the sensitivities for DC basis functions at the three visual resolutions.

Sensitivity(dB)
NMNNb1 NP01
M O

40

pixels / degree

Figure 5. DC basis function sensitivities as a function of display visual resolution. Error bars of plus and minus one standard

deviation are shown when multiple measurements were available. For clarity, points with error bars are labeled on the left. those
without, on the right. The line indicates the parameter 50 from Table 2.
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Ahumada et al. 5' 6proposed as a working hypothesis that DC sensitivity is given by the peak sensitivity s0. This
prediction is given by the linejdrawn in Fig. 5. It captures some of the variatiOn in the DC sensitivities. but further data will be
needed to adequately test this model. The points in Fig. 5 at a resolution of 16 pixels/degree and labeled with the suffix "-2"
were obtained by pixel-replication at'the middle‘viewing distance, rather than use of the near distance. Their enhanced
sensitivity suggests that viewing distance per se may have an effect;-,even when visual resolution isheld constant. The
substantial variability of DC thresholds at the highest resolution may be due to differences in accommodation between
observers.

2.6 Discussion

We have. examined the variation in visibility of single DCT basis'functions as a function of display visual resolution.

We have shownthat the existing model 5' 5 accommbdates resolutions of 16,32; and 64 pixels/degree, previded that one
parameter, the peak- sensitivity 50, is allbwed to vary. Variations in this parameter are to some extent consistent with spatial
summation, although sensitivity is lower at the lowest resolution than summation would predict.

Practical DCT quantization matrices must take into account both the visibility of single basis functionSLand the spatial

pooling of artifacts from block-to block. Elsewhere we have shown that to a first approximation this pooling is consistent with
probability summation”; If we consider two images of equivalent size in degrees, but visual resoliitions differing by a factor of
tWo, then the sensitivity to individual artifacts would be lower by 41/4 in the higher resolution image due to the smaller block
size in degrees, but higher by 41/4 in the same image due to the greater number of blocks. Thus the same matrix should be used
with both. The point of‘this example is that the overall gain of the best quantization matrix must take into account both display
resolution and image size. '

3. EFFECTS OF CONTRAST MASKING

3.1 Contrast masking

Watson7noted severalima‘g'e-dependent factors influencing the detectability of DCT basis functions and showed how
to compute custom QMs for givenimages. in accord With these factOrs. One image—dependent factor influencing the
detectability of DCT basis functions is contrast masking. ' Typically, Sensitivity to quantization error, in a particular DCT

coefficient; decreases with the magnitude of that coefficient. Watson's quantization scheme relies on the following model
(based on work by Legge and Foley “(17 ) for centrast masking: given a DCT coefficient CT and a corresponding absolute
threshold 25.1., the masked threshold mT Will be

mT = l|T MaxI: lulCT/lil- WT :ll ‘

where wT is an exponent that lies between 0 and 1. In the sequel, we will refer to this model as Model 1 In Modell,
sensitivity to a particular coefficient's quantization error is independent’of the magnitudes of all the other coefficients (except

the DC). Here we presentdata which indicate that sensitivity to a particular coefficient‘s quantization error is affected by the
magnitudes of other coefficients. We propose a revision of Model 1 to account for between-coefficient contrast masking.

3.2 Methods

General methods werethe same as in the earlier experiments (Section 2.2). Each stimulus was the sum of a test basis
function and a mask basis function,- added to the mean luminance of .the display. The contrast of the mask remained constant
throughout a block of 64 trials, while the contrast of the teSt was varied using the Quest procedure8 to determine the threshold
for the test in the presence of the mask. Effective visual resolution was 32 pixels/degree. so that each stimulus subtended 0.25
degrees by 0.25 degrees.
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Masked thresholds mTfor four test DCT frequencies were measured as a function ofmasking contrast for three
different mask frequencies. The tests frequencies T were {0,0}, [0,1], {0,3} and {0,7}. These last three also served as the
masks. Additionally. {L1} and {1,0} were used to mask {0,1}; and [2,2}'was used to mask {0,3}. Un-masked threshold
tTwas also determined for each test. Theoretically; DCT coefficieiits can assume any real value. In the current study we use
coefficients CU, such that S Cu 5 l; A coefficient with value I fully. utilizes the dynamic range of the display. For nearly
every test/mask CombinatiOn, six masking contrasts were used. Here we express these contrasts in decibels
(dB[cU] =20 'to"gm[cU D: as, -30, '—24, 418, -12 and —6. Because to. is so high, when this basis function served to mask
others, only the four greatest masking contrasts were used. Test and mask frequencies were fixed within a block of trials. and
frequency combinations were run in a randomized fashion. The second author Gas) was the Only observer in these experiments.
3.3 Results and Discussion,

The results are plotted in Figs. 6 and

T={O. 0}.M={0, 1} 12(0, 1),M={0, 1} O T={0, 3},Me[0, 1} T={O, 7},M={O.'1}. . v .

-40 -30 -20 -10 0 -4O -30 -20 -10 0 3-40 -30 -20 ~10 0 -40 -30 -20 :10 0

O ={o', o},M={o, 3} o- T='[o; 1},M={0,'3_}“ o T={0, 3},M={Q, a} T=[O, 7}.M={O. 3)

-40 ~30 20 -‘10 0 -40 -3O -20 -10 0 L40 -30',-20 -10 O i -40 -30 -20 -10 0

O T={0, 0}.M=[0. 7) 0 Tim, 1};M={0. 7} T={0, 3),M={0, 7}. 0 T={0, 7}.M=[0, 7}
-1O

-20

-30

-4o

-40 -3O -20.-1O 0 -40 -30 -20 ~10‘ 0 -40 -30 -20 -10 0 ~40 -30 -20 -1O 0

Fig. 6. Masked thresholds (dB[niT]) for four test basis functions are plotted as a function of masking contrast (dB[cM]) Er
three different masks. Unmasked thresholds (dB[tT]) for the test functions are plotted on the ordinates. The dashed and

solid lines are the predictions of Models 1 and 2, respectively, as described in the text.
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T=(0, 1}.M={1, 1} T={0, 1},M={1, O] T={O. 3}.M=(2. 2}
O 0 0

-40 -30 -20 -10 0 ~40 -30 -20 -10 0 -4O -30 -20 -10 0

Fig. 7. Masked thresholds for test {0,1} as a function of masking contrast for the masks { 1,1} and [1,0}, and for test {0.3} as a
function of masking contrast for the mask (2.2}.

3.3.1 The dipper effect

Data gathered with the [0,1 }/{ 0,1) test/mask combination at masking contrasts of -36 and -30 dB have been omitted

from further analysis. Similarly, we have omitted the {0,3}/{0,3} data at -36 and -30 dB. These data appear as short vertical

line segments in Fig. 6. Measured thresholds for these four viewing conditions fall well below their corresponding unmasked

thresholds. These data demonstrate the "dipper effect," a well-documented henomenon wherein a low contrast grating
increases the detectability of a grating of the same frequency and phasele' 1 ' 19. These data have been omitted because it is not
clear that the dipper effect comes into play for natural images. For images composed of more than one 8x8 pixel block, DCT

basis functions can appear as gratings (uniform values) or noise (random values; with a quantifiable variance) or anything in
between. The dipper effect would appear if both test and mask were gratings. However, there is no indication that it would

appear otherwise. The influence of a particular DCT coefficient on the detectability of quantization errors in natural images is
similar in concept to the influence of a grating on the detectability of random visual noise. No dipper effect is expected in such
a paradigm. Since we ultimately wish to model the detectability of quantization error in natural images, we believe that the
exclusion of the "dipper data" will benefit our initial approximations.

3.3.2 Model 1

Model 1 was fit to the data. Model 1 does not include between-coefficient contrast masking. Consequently, for any
given test basis function, its prediction for masked threshold is the same constant function of masking contrast for every mask

having a non-zero coefficient at a different DCT index than the test. By setting all of the wTs in Eq. 1. equal to a single
parameter w, the total variance (on a log scale) from the model increased by less than 0.3%. Hereafter. when we refer to Model

1, we mean specifically: .Given a test DCT basis function CT, its corresponding absolute threshold tT and a mask DCT basis
function CM the masked threshold mrwill be

zT Max[1.(cM/IT)W] for T=M
:1. otherwise

, (2)
"yr:

where 0 S w S 1 . Best fitting (method of least squares) values for w and tr, as determined for Model 1, are given in Table 3.

For comparison, we have also analyzed a Model 0 which predicts no contrast masking. i.e. 771.1» = tTVT. Best fitting values
for tT , as determined by Model 0 are also given in Table 3. Model 1 reflects the data for the viewing conditions in which the

mask and target were identical more accurately than Model 0 does. However, it cannot reflect the between-coefficientmasking
evident by the increase in measured threshold with masking contrast for the other test/mask combinations.

3.3.3 Model 2

In order to reflect the between-coefficient masking, we propose the following revision of Model I. referred to

hereafter as Model 2. Given a test'DCT basis function CT, its corresponding absolute threshold fir and a mask DCT basis
function CM the masked threshold mTwill be
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mT : tT-Max[l ,[f[T,M]-CMJW (3)‘r

where w is an exponent that lies between 0 and l and f[T, M] is a positive, frequency-dependent scaling factor, that assumes a

maximum value of 1 when T _= M. f[T,M] may be described as a family of tuning functions. That is, for any test basis

function CT, f[T, M] reflects the sensitivity of CT detection to masks at different frequencies. We have chosen to specify these
sensitivity functions with the following one-parameter rule:

flT,Mléexp[-IrllT-Mll2/c%], (4)

where 91. = g Max[ l,"T" This is a radially symmetric Gaussian sensitivity function with a bandwidth that increases in
proportion to frequency (except at DC). This is analogous to the spatial frequency channels that are believed to underlie the
early stages of human visual processing.

Best fitting (method of least squares) values for g. w and tr, as determined for Model 2, are also given in Table 3.
The average variance (squared rms error on a decibel scale) from Models 0, 1 and 2 is also provided in Table 3. The best fitting

predictions of Model 2 are also drawn as solid lines in Figs. 6 and 7.

‘ Parameter Model 1

Average variance from model

Table 3. Residual variance from Models 0, 1 and 2.

3.4 Conclusions

With the addition of a single parameter ( g), our Model 1 captures 46% more of the variance in our data than does
Model 0. Incorporating this modification into the current method for computing DCT quantization matrices will yield more

efficient image compression. The estimated value of g indicates a rather broad bandwidth for the masking effect. This may be
due in part to the rather broad bandwidth of the basis functions themselves.
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