OLYMPUS EX. 1010 - 1/1582

OLYMPUS EX. 1010 - 2/1582

OLYMPUS EX. 1010 - 3/1582

Encyclopedia Staff

Editor-in-Chief: Susan Lammers

Editorial Director: Patricia Pratt

Senior Editor: Dorothy L. Shattuck

Senior Technical Editor: David L. Rygmyr
Special Projects Editor: Sally A. Brunsman
Editorial Coordinator: Sarah Hersack

Associate Editors and Technical Editors:
Pamela Beason, Ann Becherer, Bob Combs,
Michael Halvorson, Jeff Hinsch, Dean Holmes,
Chris Kinata, Gary Masters, Claudette Moore,
Steve Ross, Roger Shanafelt, Eric Stroo,

Lee, Thomas, JoAnne Woodcock

Copy Chief: Brianna Morgan. Proofreaders:
Kathleen Atkins, Julie Carter, Elizabeth
Eisenhood, Matthew Eliot, Patrick Forgette,
Alex Hancock, Richard Isomaki, Shawn Peck,
Alice Copp Smith

Editorial Assistants: Wallis Bolz, Charles Brod,
Stephen Brown, Pat Erickson, Debbie Kem, Susanne
McRhoton, Vihn Nguyen, Cheryl VanGeystel

Index: Shane-Armstrong Information Services

Production: Larry Anderson, Jane Bennett, Rick
Bourgoin, Darcie S. Furlan, Nick Gregoric, Peggy
Herman, Lisa Iversen, Rebecca Johnson, Ruth Pettis,
Russell Steele, Jean Trenary, Joy Ulskey

Marketing and Sales Director: James Brown
Director of Production: Christopher D. Banks

Publisher: Min S. Yee

OLYMPUS EX

. 1010 - 4/1582

OLYMPUS EX. 1010 - 5/1582

Jim Tomlin Tomlin holds a B.S. and an M.S. in Mathematics. He has programmed at Boeing,
Microsoft, and Opcon and has taught at Seattle Pacific University. He now heads his own company in
Seattle, which specializes in PC systems programming and industrial machine vision applications.

Richard Wilkon Wilton has programmed extensively in PL/1, FORTRAN, FORTH, C, and several
assembly languages. He is the author of Programmer’s Guzde to PC & PS/2 Video Systems, published
by Microsoft Press.

Van Wolverton A professional writer since 1963, Wolverton has had bylines as a newspaper reporter,
editorial writer, political columnist, and technical writer. He is the author of Running MS-DOS and
Supercharging MS-DOS, both published by Microsoft Press.

William Wong Wong holds engineering and computer science degrees from Georgia Tech and
Rutgers University. He is director of PC Labs and president of Logic Fusion, Inc. His interests include
operating systems, computer languages, and artificial intelligence. He has written numerous magazine
articles and a book on MS-DOS.

JoAnne Woodcock Woodcock, a former senior editor at Microsoft Press, has been a writer for
Encyclopaedia Britannica and a freelance and project editor on marine biological studies at the
University of Southern California. She is co-editor (with Michael Halvorson) of XENIX at Work and
co-author (with Peter Rinearson) of Microsoft Word Style Sheets, both published by Microsoft Press.

Special Technical Advisor

Mark Zbikowski
Technical Advisors
Paul Allen Michael Geary David Melin John Pollock
Steve Ballmer Bob Griffin Charles Mergentime Aaron Reynolds
Reuben Borman Doug Hogarth Randy Nevin Darryl Rubin
Rob Bowman James W. Johnson Dan Newell Ralph Ryan)
John Butler Kaamel Kermaani Tani Newell Karl Schulmeisters
Chuck Carroll Adrian King David Norris Rajen Shah
Mark Chamberlain Reed Koch Mike O’Leary Barry Shaw
David Chell James Landowski Bob O'Rear Anthony Short
Mike Colee Chris Larson Mike Olsson Ben Slivka
Mike Courtney Thomas Lennon Larry Osterman Jon Smirl
Mike Dryfoos Dan Lipkie Ridge Ostling Betty Stillmaker
Rachel Duncan Marc McDonald Sunil Pai John Stoddard
Kurt Eckhardt Bruce McKinney Tim Paterson Dennis Tillman
Eric Evans Pascal Martin Gary Perez - Greg Whitten
Rick Farmer Estelle Mathers Chris Peters Natalie Yount
Bill Gates Bob Matthews Charles Petzold Steve Zeck

e Tl AAC TNNO Tamae ¥ s ¥o

OLYMPUS EX. 1010 - 6/1582

Contents

Foreword by Bill Gates

Preface by Ray Duncan

Introduction

Section I: The Development of MS-DOS

Section II: Programming in the MS-DOS Environment
Part A: Structure of MS-DOS

Article1: An Introduction to MS-DOS 51
Article 2: The Components of MS-DOS 61
Article 3: MS-DOS Storage Devices 85

PartB: Programming for MS-DOS

Article 4: Structure of an Application Program 107
Article 5: Character Device Input and Output 149
Article 6: Interrupt-Driven Communications 167
Article 7: File and Record Management 247
Article 8: Disk Directories and Volume Labels 279
Article9: Memory Management 297

Article 10: The MS-DOS EXEC Function 321

PartC: Customizing MS-DOS

Article 11: Terminate-and-Stay-Resident Utilities 347
Article 12: Exception Handlers 385

Article 13: Hardware Interrupt Handlers 409

Article 14: Writing MS-DOS Filters 429

Article 15: Installable Device Drivers 447

PartD: Directions of MS-DOS

Article 16: Writing Applications for Upward Compatibility 489
Article 17: Windows 499

Part E: Programming Tools

i

Article 18: Debugging in the MS-DOS Environment 541
Article 19: Object Modules 643
Article 20: The Microsoft Object Linker 701

xvii

47

Contents i

OLYMPUS EX. 1010 - 7/1582

Section III: User Commands 723
Introduction 725
User commands are listed in alphabetic order. This section includes ANSLSYS,
BATCH, CONFIG.SYS, DRIVER.SYS, EDLIN, RAMDRIVE.SYS, and VDISK.SYS.
Section IV: Programming Utilities 961
Introduction 963
CREF 967
EXE2BIN 971
EXEMOD 974
EXEPACK 977
LIB 980
LINK 987
MAKE 999
MAPSYM 1004
MASM 1007
Microsoft Debuggers:
DEBUG 1020
SYMDEB 1054
CodeView 1157
Section V: System Calls 1175
Introduction 1177
System calls are listed in numeric order.
Appendixes 1431
Appendix A: MS-DOS Version 3.3 1433
Appendix B: Critical Error Codes 1459
Appendix C: Extended Error Codes 1461
AppendixD: ASCII and IBM Extended ASCII Character Sets 1465
AppendixE: EBCDIC Character Set 1469
AppendixF: ANSLSYS Key and Extended Key Codes 1471
Appendix G: File Control Block (FCB) Structure 1473
Appendix H: Program Segment Prefix (PSP) Structure 1477
AppendixI: 80867/8088/80286/80386 Instruction Sets 1479
Appendix]: Common MS-DOS Filename Extensions 1485
AppendixK: Segmented (New) .EXE File Header Format 1487
Appendix L: Intel Hexadecimal Object File Format 1499
Appendix M: 8086/8088 Software Compatibility Issues 1507
Appendix N: An Object Module Dump Utility 1509
Appendix O: IBM PC BIOS Calls 1513

Tho MS-NNC Fnrurlnhodin

OLYMPUS EX. 1010 - 8/1582

Indexes 1531

Subject 1533
Commands and System Calls 1565

Tnutonte

OLYMPUS EX. 1010 - 9/1582

\AITTIL F\/ ANAN ANIAronNn

OLYMPUS EX. 1010 - 1071582

OLYMPUS EX. 1010 - 11/1582

OLYMPUS EX. 1010 - 12/1582

OLYMPUS EX. 1010 - 13/1582

OLYMPUS EX. 1010 - 14/1582

Italic font indicates user-supplied variable names, procedure names in text, parameters
whose values are to be supplied by the user, reserved words in the C programming lan-
guage, messages and return values in text, and, occasionally, emphasis.

A typographic distinction is made between lowercase | and the numeral} in both text and
program listings.

Cross-references appear in the form SECTION NAME: Part NaAME, COMMAND NAME, OR IN-
TERRUPT NUMBER: Article Name or Function Number.

Color indicates user input and program examples.

Terminology

Although not an official IBM name, the term PC-DOS in this book means the IBM imple-
mentation of MS-DOS. If PC-DOS is referenced and the information differs from that for
the related MS-DOS version, the PC-DOS version number is included. To avoid confusion,
the term DOS is never used without a modifier.

The names of special function keys are spelled as they are shown on the IBM PC keyboard.
In particular, the execute key is called Enter, not Return. When <Enter>is included ina
user-entry line, the user is to press the Enter key at the end of the line.

The common key combinations, such as Ctrl-C and Ctrl-Z, appear in this form when the
actual key to be pressed is being discussed but are written as Control-C, Control-Z, and so
forth when the resulting code is the true reference. Thus, an article might reference the
Control-C handler but state that it is activated when the user presses Cirl-C.

Unless specifically indicated, hexadecimal numbers are used throughouf. These numbers
are always followed by the designation H (% in the code portions of program listings).
Ranges of hexadecimal values are indicated with a dash — for example, 07—-0AH.

The notation (more) appears in italic at the bottom of program listings and tables that are
continued on the next page. The complete caption or table title appears on the first page
of a continued element and is designated Continued on subsequent pages.

Introduction xix

OLYMPUS EX. 1010 - 15/1582

Section V, System Calls, documents Interrupts 20H through 27H and Interrupt 2FH. The
Interrupt 21H functions are listed in individual entries. This section, like the User Com-

mands and Programming Utilities sections, presents a quick review of usage for the ex-
perienced user and also provides extensxve notes for the less-experlenced programmer.

The 15 appendixes provide quick- reference materials, including a summary of MS-DOS
version 3.3, the segmented (new) .EXE file header format, an object file dump utility, and
the Intel hexadecimal object file format. Much of this material is organized into tables or
bulleted lists for ease of use.

The book includes two indexes — one orgamzed by subject and one organized by com-
mand name or system-call number. The subject index provides comprehensive references
to the indexed topic; the command index references only the major entry for the com-
mand or system call.

Program Listings

The MS-DOS Encyclopedia contains numerous program listings in assembly language, C,
and QuickBASIC, all designed to run on the IBM PC family and compatibles. Most of these
programs are complete utilities; some are routines that can be mcorporated into function-
ing programs. Vertical ellipses are often used to 1nd1cate where additional code would be
supplied by the user to create a more functional program. All program listings are heavily
commented and are essentially self-documenting: :

The programs were tested using the Microsoft Macro Assembler (MASM) version 4.0, the
Microsoft C Compiler version 4.0, or the throsoft quckBASIC Compiler version 2.0.

The functional programs and larger routines are also available on disk. Instructions for
ordering are on the page preceding this 1ntroduct1on and on the mail-in card bound into

thlS volume.

Typography and Terminology

Because The MS-DOS Encyclopedia was'designed for an advanced audience, the reader
_generally will be familiar with the notation and typographic conventions used in this
volume. However, for ease of use, a few special conventions should be noted.

Typographic conventions

Capital letters are used for MS-DOS internal and external commands in text and syntax
" lines. Capital letters are also used for filenames in text.

OLYMPUS EX. 1010 - 16/1582

HUAWEI EX. 1010 - 17/1582
OLYMPUS EX. 1010 - 17/1582

OLYMPUS EX. 1010 - 18/1582

1975

The Development of MS-DOS

To many people who use personal computers, MS-DOS is the key that unlocks the power
of the machine. It is their most visible connection to the hardware hidden inside the
cabinet, and it is through MS-DOS that they can run applications and manage disks and

5 disk files.

In the sense that it opens the door to doing work with a personal computer, MS-DOS is
indeed a key, and the lock it fits is the Intel 8086 family of microprocessors. MS-DOS and
the chips it works with are, in fact, closely connected — so closely that the story of
MS-DOS is really part of a larger history that encompasses not only an operating system
but also a microprocessor and, in retrospect, part of the explosive growth of personal
computing itself.

Chronologically, the history of MS-DOS can be divided into three parts. First came the
formation of Microsoft and the events preceding Microsoft’s decision to develop an
operating system. Then came the creation of the first version of MS-DOS. Finally, there is
the continuing evolution of MS-DOS since its release in 1981.

Much of the story is based on technical developments, but dates and facts alone do not
provide an adequate look at the past. Many people have been involved in creating MS-DOS
and directing the lines along which it continues to grow. To the extent that personal opin-
ions and memories are appropriate, they are included here to provide a fuller picture of
the origin and development of MS-DOS.

Before MS-DOS

The role of International Business Machines Corporation in Microsoft’s decision to create
MS-DOS has been well publicized. But events, like inventions, always build on prior ac-
complishments; and in this respect the roots of MS-DOS reach farther back, to four hard-
ware and software developments of the 1970s: Microsoft’s disk-based and stand-alone
versions of BASIC, Digital Research’s CP/M-80 operating system, the emergence of the
8086 chip, and a disk operating system for the 8086 developed by Tim Paterson at a hard-
ware company called Seattle Computer Products.

Microsoft and BASIC

On the surface, BASIC and MS-DOS might seem to have little in common, but in terms of
file management, MS-DOS is a direct descendant of a Microsoft version of BASIC called
Stand-alone Disk BASIC.

Before Microsoft even became a company, its founders, Paul Allen and Bill Gates, de-
veloped a version of BASIC for a revolutionary small computer named the Altair, which
was introduced in January 1975 by Micro Instrumentation Telemetry Systems (MITS) of

Section I: The Development of MS-DOS 3

OLYMPUS EX. 1010 - 19/1582

OLYMPUS EX. 1010 - 20/1582

OLYMPUS EX. 1010 - 21/1582

OLYMPUS EX. 1010 - 22/1582

OLYMPUS EX. 1010 - 24/1582

OLYMPUS EX. 1010 - 25/1582

OLYMPUS EX. 1010 - 26/1582

OLYMPUS EX. 1010 - 27/1582

OLYMPUS EX. 1010 - 28/1582

OLYMPUS EX. 1010 - 29/1582

OLYMPUS EX. 1010 - 30/1582

OLYMPUS EX. 1010 - 31/1582

OLYMPUS EX. 1010 - 32/1582

1980

of code at most— actually, it turned out to be 12 more K on top of the 400. It wasn't that big
4 deal, and once Kay said it, it was obvious. We’d always wanted to do a low-end operating
system, we had specs for low-end operating systems, and we knew we were going to do
one up on 16-bit.”

At that point, Gates and Allen began looking again at Microsoft’s proposal to IBM. Their
estimated 400 KB of code included four languages, an assembler, and a linker. To add an
operating system would require only another 20 KB or so, and they already knew of a
working model for the 8086: Tim Paterson’s 86-DOS. The more Gates, Allen, and Nishi
talked that night about developing an operating system for IBM’s new computer, the more
possible — even preferable —the idea became.

Allen’s first step was to contact Rod Brock at Seattle Computer Products to tell him that
Microsoft wanted to develop and market SCP’s operating system and that the company had
an OEM customer for it. Seattle Computer Products, which was not in the business of
marketing software, agreed and licensed 86-DOS to Microsoft. Eventually, SCP sold the
operating system to Microsoft for $50,000, favorable language licenses, and a license back
from Microsoft to use 86-DOS on its own machines.

In October 1980, with 86-DOS in hand, Microsoft submitted another proposal to IBM. This
time the plan included both an operating system and the languages for the new computer.
Time was short and the boundaries between the languages and the operating system were
unclear, so Microsoft explained that it needed to control the development of the operating
system in order to guarantee delivery by spring of 1981. In November, IBM signed the
contract.

Creating MS-DOS

At Thanksgiving, a prototype of the IBM machine arrived at Microsoft and Bill Gates, Paul
Allen, and, primarily, Bob O'Rear began a schedule of long, sometimes hectic days and
total immersion in the project. As O’'Rear recalls, “If I was awake, I was thinking about
the project.”

The first task handled by the team was bringing up 86-DOS on the new machine. This was
a challenge because the work had to be done in a constantly changing hardware environ-
ment while changes were also being made to the specifications of the budding operating
system itself.

As part of the process, 86-DOS had to be compiled and integrated with the BIOS, which
Microsoft was helping IBM to write, and this task was complicated by the media. Paterson’s
86-DOS — not counting utilities such as EDLIN, CHKDSK, and INIT (later named
FORMAT) — arrived at Microsoft as one large assembly-language program on an 8-inch
floppy disk. The IBM machine, however, used 5%-inch disks, so Microsoft needed to de-
termine the format of the new disk and then find a way to get the operating system from
the old format to the new.

Section I The Development of MS-DOS 15

OLYMPUS EX. 1010 - 33/1582

OLYMPUS EX. 1010 - 34/1582

1980-1981

Bob O’Rear’s sketch of
malolre s + addotins the steps involved in
W“’“‘“{* e G6205 B st Soms moving 86-DOS to the
’ IBM prototype.
i
Comtinan T. Tlon Trrnnlanmont af MS-DOS 1

.
OLYMPUS EX. 1010 - 35/1582

OLYMPUS EX. 1010 - 36/1582

OLYMPUS EX. 1010 - 37/1582

OLYMPUS EX. 1010 - 38/1582

OLYMPUS EX. 1010 - 39/1582

OLYMPUS EX. 1010 - 40/1582

OLYMPUS EX. 1010 - 41/1582

OLYMPUS EX. 1010 - 42/1582

1981

O Fackage Contents

1 diskette, with the following files:
COMMAND, COM

MSDOS . COM
EDLIN.COM
DEBUG.COM
FILCOM.COM
Contents
1 MS-DOS Disk Operating System Manual O
Introduction
Features and Benefits of MS-DOS
Using This Manual
Syntax Notation
MS-DOS Structure and Characteristics
System Requirements Chapter General MS-DOS Commands

1 Control Function Characters
.2 special Editing Commands
3

The MS-DOS Operating System requires 9K bytes of memory. Disk Errors

O Chapter 2 COMMAND ,COM
2.1 prompt
2.2 Filenames
2.3 Commands
2.3.1 Internal Commands
2.3.2 External Commands

O Chapter 3 EDLIN
3.1 1nvoking EDLIN
3.2 Commands
3.2.1 Command Parameters
3.2.2 Interline Commands
3.3 Error Messages
Chapter 4 DEBUG

4.1 Invoking DEBUG
4.2 Commands
4.2.1 Command Parameters
4.2.2 command Descriptions
4.3 Error Messages

O Chapter 5 FILCOM
5.1 Invoking FILCOM
5.2 Commands
5.2.1 Filenames
5.2.2 switches
5.3 Examples

O Chapter 6 Instructions for Single Disk Drive Users

Two pages from Microsoft’s MS-DOS version 1.0 manual. On the left, the system’s requirements — 8 KB of
memory; on the right, the 118-page manual’s complete table of contents.

In a further attempt to safeguard data, MS-DOS also trapped hard errors — such as critical
hardware errors-—that had previously been left to the hardware-dependent logic. Now
the hardware logic could simply report the nature of the error and the operating system
would handle the problem in a consistent and systematic way. MS-DOS could also trap the
Control-C break sequence so that an application could either protect against accidental
termination by the user or provide a graceful exit when appropriate.

To reduce errors and simplify use of the system, MS-DOS also automatically updated mem-
ory information about the disk when it was changed. In CP/M, users had to log new disks
as they changed them —a cumbersome procedure on single-disk systems or when data
was stored on multiple disks. In MS-DOS, new disks were automatically logged as long as
no file was currently open.

Another new feature — one visible with the DIR command — was date and time stamping
of disk files. Even in its earliest forms, MS-DOS tracked the system date and displayed it at
every startup, and now, when it turned out that only the first 16 bytes of a directory entry

Section I: The Development of MS-DOS 25

LILTAYAITTI F\/ ANAN ANIAronNn

OLYMPUS EX. 1010 - 43/1582

OLYMPUS EX. 1010 - 44/1582

\AITTIL F\/ ANAN ArFriAaAr-non

OLYMPUS EX. 1010 - 45/1582

OLYMPUS EX. 1010 - 46/1582

OLYMPUS EX. 1010 - 47/1582

OLYMPUS EX. 1010 - 48/1582

OLYMPUS EX. 1010 - 49/1582

OLYMPUS EX. 1010 - 50/1582

1982-1983

contained all the code that permitted the operating system to run the hardware. If inde-
pendent hardware manufacturers wanted to develop equipment for use with a computer
manufacturer’s operating system, they would have to either completely rewrite the device
drivers or write a complicated utility to read the existing drivers, alter them, add the code
to support the new device, and produce a working set of drivers. If the user installed more
than one device, these patches would often conflict with one another. Furthermore, they
would have to be revised each time the computer manufacturer updated its version

of MS-DOS.

By the time work began on version 2.0, the MS-DOS team knew that the ability to install
any device driver at run time was vital. They implemented installable device drivers by
making the drivers more modular. Like the FAT, 10.SYS (IBMBIO.COM in PC-DOS)
became, in effect, a linked list—this time, of device drivers— that could be expanded
through commands in the CONFIG.SYS file on the system boot disk. Manufacturers could
now write a device driver that the user could install at run time by including it in the
CONFIG.SYS file. MS-DOS could then add the device driver to the linked list.

By extension, this ability to install device drivers also added the ability to supersede a pre-
viously installed driver — for example, the ANSIL.SYS console driver that supports the ANSI
standard escape codes for cursor positioning and screen control.

Print Spooling

AtIBM'’s request, version 2.0 of MS-DOS also possessed the undocumented ability to per-
form rudimentary background processing— an interim solution to a growing awareness of
the potentials of multitasking.

Background print spooling was sufficient to meet the needs of most people in most situa-
tions, so the print spooler, PRINT.COM, was designed to run whenever MS-DOS had
nothing else to do. When the parent application became active, PRINT.COM would be in-
terrupted until the next lull. This type of background processing, though both limited and
extremely complex, was exploited by a number of applications, such as SideKick.

Loose Ends and a New MS-DOS

Hierarchical files, installable device drivers, and print spooling were the major design
decisions in version 2.0. But there were dozens of smaller changes, too.

For example, with the fixed disk it was necessary to modify the code for automatic logging
of disks. This modification meant that MS-DOS had to access the disk more often, and file
access became much slower as a result. In trying to find a solution to this problem, Chris
Peters reasoned that, if MS-DOS had just checked the disk, there was some minimum time

Section I: The Development of MS-DOS 33

OLYMPUS EX. 1010 - 51/1582

OLYMPUS EX. 1010 - 52/1582

OLYMPUS EX. 1010 - 53/1582

OLYMPUS EX. 1010 - 54/1582

OLYMPUS EX. 1010 - 55/1582

OLYMPUS EX. 1010 - 56/1582

OLYMPUS EX. 1010 - 57/1582

OLYMPUS EX. 1010 - 58/1582

1983-1984

BUFR D } Rown

. th'-blMR: Ao pale | 2
s JeBE ol) | P fesse)

A4

15 2

9 <

pay D

"f ' = MKDIR < J DiResLL
) : Dos _CLosE = CLoSE
VIRY) P FINDPATH | *% DIR

FATREAD-CD S
LFATREAD - SFT |

D)
L OPERATION
] BK_CHNG_ ERR AT
BuF
Disi<
<
> | insteod Lock
cony ':\f&i‘e NoRE SHARE
oY ofNkLS Ca)
H CHAR T Jo
: R - iRl

3]
} ¢ wanml sk of AH
9-

TRANSPATH

VALIDATECDS

SGET.DRIVE . FREESPACE

PATH

<
< waero
PR

=1 Ret

~[Ret
e

DiSk - ivFo | pwFo

Getser

Section I: The Development of MS-DOS 41

OLYMPUS EX. 1010 - 59/1582

OLYMPUS EX. 1010 - 60/1582

OLYMPUS EX. 1010 - 61/1582

OLYMPUS EX. 1010 - 62/1582

1987

The Future

Since its appearance in 1981, MS-DOS has taken and held an enviable position in the
microcomputer environment. Not only has it “taught” millions of personal computers
“how to think,” it has taught equal millions of people how to use computers. Many highly
sophisticated computer users can trace their first encounter with these machines to the
original IBM PC and version 1.0 of MS-DOS. The MS-DOS command interface is the one
with which they are comfortable and it is the MS-DOS file structure that, in one way or
another, they wander through with familiarity.

Microsoft has stated its commitment to ensuring that, for the foreseeable future, MS-DOS
will continue to evolve and grow, changing as it has done in the past to satisfy the needs of
its millions of users. In the long term, MS-DOS, the product of a surprisingly small group of
gifted people, will undoubtedly remain the industry standard for as long as 8086-based
(and to some extent, 80286-based) microcomputers exist in the business world. The story
of MS-DOS will, of course, remain even longer. For this operating system has earned its
place in microcomputing history.

JoAnne Woodcock

Section I: The Development of MS-DOS 45

OLYMPUS EX. 1010 - 63/1582

OLYMPUS EX. 1010 - 64/1582

PartA
Structure of MS-DOS

OLYMPUS EX. 1010 - 65/1582

OLYMPUS EX. 1010 - 66/1582

OLYMPUS EX. 1010 - 67/1582

Article 1: An Introduction to MS-DOS

a display or serial port.) The device drivers are responsible for hardware access and for the
interrupt support that allows the associated devices to signal the microprocessor that they
need service.

The device drivers contained in the file I0.SYS, which are always loaded during system
initialization, are sometimes referred to as the resident drivers. With MS-DOS versions 2.0
and later, additional device drivers, called installable drivers, can optionally be loaded dur-
ing system initialization as a result of DEVICE directives in the system’s configuration file.
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusToMIZING Ms-DOS: Installable
Device Drivers; USER COMMANDS: CONFIG.SYS:DEVICE.

The MS-DOS kernel
The services provided to application programs by the MS-DOS kernel include

® Process control
Memory management
Peripheral support

A file system

The MS-DOS kernel is loaded from the file MSDOS.SYS during system initialization.

Process control

Process, or task, control includes program loading, task execution, task termination, task
scheduling, and intertask communication.

Although MS-DOS is not a multitasking operating system, it can have multiple programs
residing in memory at the same time. One program can invoke another, which then
becomes the active (foreground) task. When the invoked task terminates, the invoking
program again becomes the foreground task. Because these tasks never execute simulta-
neously, this stack-like operation is still considered to be a single-tasking operating
system.

MS-DOS does have a few “hooks” that allow certain programs to do some multitasking
on their own. For example, terminate-and-stay-resident (TSR) programs such as PRINT
use these hooks to perform limited concurrent processing by taking control of system
resources while MS-DOS is “idle,” and the Microsoft Windows operating environment
adds support for nonpreemptive task switching.

The traditional intertask communication methods include semaphores, queues, shared
memory, and pipes. Of these, MS-DOS formally supports only pipes. (A pipe is a logical,
unidirectional, sequential stream of data that is written by one program and read by
another.) The data in a pipe resides in memory or in a disk file, depending on the imple-
mentation; MS-DOS uses disk files for intermediate storage of data in pipes because it

is a single-tasking operating system.

Memory management

Because the amount of memory a program needs varies from program to program, the
traditional operating system ordinarily provides memory-management functions. Memory

Section II: Programming in the MS-DOS Environment 53

AA A ——~—~

OLYMPUS EX. 1010 - 69/1582

OLYMPUS EX. 1010 - 70/1582

OLYMPUS EX. 1010 - 71/1582

OLYMPUS EX. 1010 - 72/1582

OLYMPUS EX. 1010 - 73/1582

OLYMPUS EX. 1010 - 74/1582

OLYMPUS EX. 1010 - 75/1582

Article 2: The Components of MS-DOS

Article 2
The Components of MS-DOS

MS-DOS is a modular operating system consisting of multiple components with special-
ized functions. When MS-DOS is copied into memory during the loading process, many of
its components are moved, adjusted, or discarded. However, when it is running, MS-DOS
is a relatively static entity and its components are predictable and easy to study. Therefore,
this article deals first with MS-DOS in its running state and later with its loading behavior.

The Major Elements

MS-DOS consists of three major modules:

Module MS-DOS Filename PC-DOS Filename
MS-DOS BIOS 10.SYS IBMBIO.COM
MS-DOS kernel MSDOS.SYS IBMDOS.COM
MS-DOS shell COMMAND.COM COMMAND.COM

During system initialization, these modules are loaded into memory, in the order given,
just above the interrupt vector table located at the beginning of memory. All three modules
remain in memory until the computer is reset or turned off. (The loader and system initiai-
ization modules are omitted from this list because they are discarded as soon as MS-DOS
is running. See Loading MS-DOS below.)

The MS-DOS BIOS is supplied by the original equipment manufacturer (OEM) that
distributes MS-DOS, usually for a particular computer. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: STRUCTURE OF Ms-DOs: An Introduction to MS-DOS. The kernel
is supplied by Microsoft and is the same across all OEMs for a particular version of
MS-DOS — that is, no modifications are made by the OEM. The shell is a replaceable
module that can be supplied by the OEM or replaced by the user; the default shell,
COMMAND.COM, is supplied by Microsoft.

The MS-DOS BIOS

The file 10.SYS contains the MS-DOS BIOS and the MS-DOS initialization module,
SYSINIT. The MS-DOS BIOS is customized for a particular machine by an OEM. SYSINIT
is supplied by Microsoft and is put into 10.SYS by the OEM when the file is created. See
Loading MS-DOS below.

Section II: Programming in the MS-DOS Environment 61

OLYMPUS EX. 1010 - 76/1582

OLYMPUS EX. 1010 - 77/1582

HUAWFI FX_1010 - 78/1582
OLYMPUS EX. 1010 - 78/1582

OLYMPUS EX. 1010 - 79/1582

LILIAWICI CV 1Nn1nNn oNni1E09

OLYMPUS EX. 1010 - 80/1582

OLYMPUS EX. 1010 - 81/1582

\AITTIL F\/ ANAN NAIArFNON

OLYMPUS EX. 1010 - 82/1582

OLYMPUS EX. 1010 - 83/1582

LILIAAITTI T\ ANAN OAlIACON

OLYMPUS EX. 1010 - 84/1582

OLYMPUS EX. 1010 - 85/1582

Article 2: The Components of MS-DOS

«— FFFF:000FH(1 MB)

ROM BIOS «— FFFF:0000H
<— F000:0000H
Other ROM and RAM
«— Top of RAM
(A000:0000H for IBM PC)
Possible free RAM
Boot sector ' «— Arbitrary location
Free RAM
ROMBIOS whies | 0000:0600H
<«— 0000:0400H
Interrupt vectors

<«— 0000:0000H

Figure 2-3. A loaded boot sector.

Boot sector <«— First sector on the disk

Reserved
(optional)

FAT#1

FAT#2

Root directory

JIO.SYS

MSDOS.SYS

File data area

——

Figure 2-4. Boot-disk configuration.

Section II: Programming in the MS-DOS Environment 71

OLYMPUS EX. 1010 - 86/1582

OLYMPUS EX. 1010 - 87/1582

LILIAWICI CV 1Nn1nNn 00/1AE0N

OLYMPUS EX. 1010 - 88/1582

OLYMPUS EX. 1010 - 89/1582

LILIAAITTI T\ ANAN NnNNIACON

OLYMPUS EX. 1010 - 90/1582

OLYMPUS EX. 1010 - 91/1582

HUAWEI EX. 1010 - 92/1582
OLYMPUS EX. 1010 - 92/1582

OLYMPUS EX. 1010 - 93/1582

HUAWEI EX. 1010 - 94/1582
OLYMPUS EX. 1010 - 94/1582

OLYMPUS EX. 1010 - 95/1582

LILIAWICI CV 1Nn1nNn NnR /A0

OLYMPUS EX. 1010 - 96/1582

OLYMPUS EX. 1010 - 97/1582

Article 2: The Components of MS-DOS

par-blk dw
dw
cnd_seg dw
dw
fcbl_seg dw
dw
fcb2_seg dw
cmd_line db
fcbi db
db
db
fcb2 db
db
db
dw
stk dw
last equ
cseg ends
end

0
offset
0
offset
0
offset
0

O,cr

0

11 dup
25 dup
0

11 dup
25 dup
200 dup
0

$

start

Figure 2-11. Continued.

cmd_line ;

fcbi

fcb2

(0

‘

H

use current environment
command-line address

£ill in at initialization
default FCB #1

£ill in at initialization
default FCB #2

fill in at initialization
actual command line

program stack area

last address used

SHELL.COM is very short and not too smart. It needs to be changed and rebuilt if the name
of the application program changes. A simple extension to SHELL—call it XSHELL —
would be to place the name of the application program and any parameters in the com-
mand line. XSHELL would then have to parse the program name and the contents of the
two FCBs needed for the EXEC function. The CONFIG.SYS line for starting this shell

would be

SHELL=XSHELL \SHELL\DEMO.EXE PARAM1 PARAM2 PARAM3

SHELL.COM does not set up a new environment but simply uses the one passed to it.

William Wong

Section II: Programming in the MS-DOS Environment 83

HITAWIEI EY 1Nn1N QQ/1REQ9

OLYMPUS EX. 1010 - 98/1582

LILIAWICI CV 1Nn1nNn nNni/i1Az0n

OLYMPUS EX. 1010 - 99/1582

OLYMPUS EX. 1010 - 100/1582

OLYMPUS EX. 1010 - 101/1582

OLYMPUS EX. 1010 - 102/1582

LIILIAWAICI CV 1Nn41N AND/AE0N

OLYMPUS EX. 1010 - 103/1582

OLYMPUS EX. 1010 - 104/1582

Article 3: MS-DOS Storage Devices

Partition 1
Partition 2

Partition 3
' I— Partition 4

>

\
A

KZ%

>

Figure 3-4. Apartitioned disk.

Under the MS-DOS partitioning standard, the first physical sector on the fixed disk con-
tains the partition table and a bootstrap program capable of checking the partition table
for a bootable partition, loading the bootable partition’s boot sector, and transferring con-
trol to it. The partition table, located at the end of the first physical sector of the disk, can
contain a maximum of four entries:

Offset From

Start of Sector Size (bytes) Description
01BEH 16 Partition #4
01CEH 16 Partition #3
01DEH 16 Partition #2
01EEH 16) Partition #1
01FEH 2 Signature: AASSH

The partitions are allocated in reverse order. Each 16-byte entry contains the following

é information:
Offset From
Start of Entry Size (bytes) Description
00H 1 Boot indicator
01H 1 Beginning head
(more)
Section II: Programming in the MS-DOS Environment 91

HITAWFI FX 101N - 1NR/15R2

OLYMPUS EX. 1010 - 105/1582

OLYMPUS EX. 1010 - 106/1582

LILIAWAITI TV ANAN AN7IACON

OLYMPUS EX. 1010 - 107/1582

OLYMPUS EX. 1010 - 108/1582

Article 3: MS-DOS Storage Devices

00H
E9 XX XX or EB XX 90
03H
OEM name and version (8 bytes)
OBH > byies) <
Bytes per sector (tes,
ODH ytes p o4
Sectors per allocation unit (1 byte)
OEH
10K Reserved sectors, starting at 0 (2 bytes)
Number of FATSs (1 byte)
11H BPB
\3H Number of root-directory entries (2 bytes)
1sH Total sectors in logical volume (2 bytes)
16H Media descriptor byte
Number of sectors per FAT (2 bytes)
18H <
Sectors per track (2 bytes)
1AH
Number of heads (2 bytes)
1CH
Number of hidden sectors (2 bytes)
1EH
Loader routine

Figure 3-6. Map of the boot sector of an MS-DOS disk. Bytes OBH through 17H are the BIOS parameter block
(BPB).

The BPB information contained in bytes OBH through 17H indicates that there are

512 bytes per sector
2 sectors per cluster
1 reserved sector (for the boot sector)
2 FATs
112 root directory entries
1440 sectors on the disk
F9H media descriptor
3 sectors per FAT

Section 1I: Programming in the MS-DOS Environment 95

{ HUAWFI FX_ 1010 - 109/1582
OLYMPUS EX. 1010 - 109/1582

OLYMPUS EX. 1010 - 110/1582

Article 3: MS-DOS Storage Devices

The file allocation table

The file allocation table provides a map to the storage locations of files on a disk by indi-
cating which clusters are allocated to each file and in what order. To enable MS-DOS to
locate a file, the file’s directory entry contains its beginning FAT entry number. This FAT
entry, in turn, contains the entry number of the next cluster if the file is larger than one
cluster or a last-cluster number if there is only one cluster associated with the file. A file
whose size implies that it occupies 10 clusters will have 10 FAT entries and 9 FAT links.
(The set of links for a particular file is called a chain.)

Additional copies of the FAT are used to provide backup in case of damage to the first,

or primary, FAT; the typical floppy disk or fixed disk contains two FATs. The FATs are
arranged sequentially after the boot sector, with some possible intervening reserved area.
MS-DOS ordinarily uses the primary FAT but updates all FATs when a change occurs.

It also compares all FATs when a disk is first accessed, to make sure they match.

MS-DOS supports two types of FAT: One uses 12-bit links; the other, introduced with
version 3.0 to accommodate large fixed disks with more than 4087 clusters, uses 16-bit
links.

The first two entries of a FAT are always reserved and are filled with a copy of the media
descriptor byte and two (for a 12-bit FAT) or three (for a 16-bit FAT) OFFH bytes, as shown
in the following dumps of the first 16 bytes of the FAT:

12-bit FAT:

F9 FF FF 03 40 00 FF 6F-00 07 FO FF 00 00 00 00
16-bit FAT:
F8 FF FF FF 03 00 04 00-FF FF 06 00 07 00 FF FF

The remaining FAT entries have a one-to-one relationship with the clusters in the file data
area. Each cluster’s use status is indicated by its corresponding FAT value. (FORMAT in-
itially marks the FAT entry for each cluster as free.) The use status is one of the following:

BT

12-bit 16-bit Meaning

000H 0000H Free cluster

001H 0001H Unused code

FFO—-FF6H FFFO—-FFF6H Reserved

FF7H FFF7H Bad cluster; cannot be used
FF8—-FFFH FFF3-FFFFH Last cluster of file ’
All other values All other values Link to next cluster in file

Section II: Programming in the MS-DOS Envigopmigrty 1— &, s man a4 aiaren

OLYMPUS EX. 1010 - 111/1582

OLYMPUS EX. 1010 - 112/1582

Article 3: MS-DOS Storage Devices

12-bit FAT:
Reserved 003H FFFH 007H 000H
F9 FF FF 03 40 00 FF 6F 00, 07 FO FF, 00 00
004H 006H FFFH
16 bit FAT:
Reserved
J 0003H. 0004H FFFFH 0006H 0007H FFFFH 0000H
| N 1 ! | T |1 [N | |
F8 FF FF FF 03 00 04 00 FF FF 06 00 07 00 FF FF 00 00
FAT entry: 0 1 2 3 4 5 6 7 8
12-bit FAT: I 003H | 004H | FFFH | 006H | 007H | FFFH | 000H
Reserved continues...
16-bit FAT: | 0003H|0004H |[FFFFH [0006H [0007H |FFFFH | 0000H
UL Ty
Directory entry
FILEl. TXT
(points to FAT entry 2)
FILE2. TXT
(points to FAT entry 5)
File data area Corresponding FAT entry
FILE1l. TXT 2
FILE1. TXT 3
FILELl. TXT 4
FILE2. TXT 5
FILE2. TXT 6
FILE2. TXT 7
Unused (available) 8

Figure 3-9. Correspondence between the FAT and the file data area.

Section II: Programming in the MS-DOS Environment

99
OLYMPUS EX. 1010 - 113/1582

OLYMPUS EX. 1010 - 114/1582

HITAWEI EY 1N1N - 11R/1RQ2

OLYMPUS EX. 1010 - 115/1582

OLYMPUS EX. 1010 - 116/1582

Article 3: MS-DOS Storage Devices

The root directory can optionally have a special type of entry called a volume label, iden-
tified by an attribute type of 08H, that is used to identify disks by name. A root directory
can contain only one volume label. The root directory can also contain entries that point to
subdirectories; such entries are identified by an attribute type of 10H and a file size of zero.
Programs that manipulate subdirectories must do so by tracing through their chains of
clusters in the FAT.

Two other special types of directory entries are found only within subdirectories. These
entries have the filenames . and .. and correspond to the current directory and the parent
directory of the current directory. These special entries, sometimes called directory
aliases, can be used to move quickly through the directory structure.

The maximum pathname length supported by MS-DOS, excluding a drive specifier but
including any filename and extension and subdirectory name separators, is 64 characters.
The size of the directory structure itself is limited only by the number of root directory
entries and the available disk space.

The file area

The file area contains subdirectories, file data, and unallocated clusters. The area is
divided into fixed-size clusters and the use for a particular cluster is specified by the corre-
sponding FAT entry.

Other MS-DOS Storage Devices

As mentioned earlier, MS-DOS supports other types of storage devices, such as magnetic-
tape drives and CD ROM drives. Tape drives are most often used for archiving and for
sequential transaction processing and therefore are not discussed here.

CD ROMs are compact laser discs that hold a massive amount of information — a single
side of a CD ROM can hold almost 500 MB of data. However, there are some drawbacks to
current CD ROM technology. For instance, data cannot be written to them —the informa-
tion is placed on the compact disk at the factory when the disk is made and is available on
a read-only basis. In addition, the access time for a CD ROM is much slower than for most
magnetic-disk systems. Even with these limitations, however, the ability to hold so much
information makes CD ROM a good method for storing large amounts of static information.

William Wong

Section II: Programming in the MS-DOS Environment 103

OLYMPUS EX. 1010 - 117/1582

PartB
Programming for MS-DOS

OLYMPUS EX. 1010 - 118/1582

HITAWEI EY 1N1N - 110/1R8R2

OLYMPUS EX. 1010 - 119/1582

OLYMPUS EX. 1010 - 120/1582

Article 4: Structure of an Application Program

8xH

x0H x1H x2H x3H x4H x5H x6H x7H x8H x9H xAH xBH xCH xDH xEH xFH

OxH INT 20H | End alloc (Resv.{ Farcall to MS-DOS fn handler Prev terminate address | Prev Ctrl C...
OCDH(20H (seg loEeghi 9AH [ofs o] ofs hi | seg 1olig hil ofs lofofs i |seg 1o g hi | ofs o] ofs i |
IxH ..address | Prev critical error address Reserved...
l seglo Iseg hi { ofslo l ofs hi ‘sag lo |seghi l l | [I ' ' J
oxH ..Reserved Environ seg [Reserved...
R Y O T e
axH ..Reserved... —_— Mi-llztOS 2.;.')
I T O T O T T
4xH ...Reserved
[| S O I 1 1]
5xH |INT2iH and RETF Reserved Primary FCB...
ocon| 2mfocel | | | | | | [| d|Fli]1]
6xH ...Primary file control block (FCB) Secondary FCB...
| elnla]m]|e|E|x |t Joor|oon|oor|oon| d | F[i |1
7%H ...Secondary file control block (FCB) Reserved
elnlafm|e]B|x |t |oonjoonjoorjoon] | | |

Command tail and default disk transfer area (DTA) (continues through OFFH)...

LY I S O o

Figure 4-2. The program segment prefix (PSP).

allocated to the program unless the program was linked using the /CPARMAXALLOC
switch. Even when /CPARMAXALLOC is used, MS-DOS may fit the program into a block
of memory only as big as the program requires. Well-behaved programs should acquire
additional memory only through the MS-DOS function calls provided for that purpose.

PSP:0005H (MS-DOS Function Call [old BDOS] Vector) Offset 05H is also a hand-me-
down from CP/M. This location contains an 8086-family far (intersegment) call instruction
to MS-DOS’s function request handler. (Under CP/M, this address was the Basic Disk Oper-
ating System {BDOS] vector, which served a similar purpose.) This vector should not be
used to call MS-DOS in newer programs. The System Calls section of this book explains
the newer, approved method for calling MS-DOS. MS-DOS provides this vector only to sup-
port CF/M-style programs and therefore honors only the CP/M-style functions (00-24H)
through it.

PSP:000AH-0015H (Parent’s 22H, 23H, and 24H Interrupt Vector Save) MS-DOS uses
offsets 0AH through 15H to save the contents of three program-specific interrupt vectors.
MS-DOS must save these vectors because it permits any program to execute another pro-
gram (called a child process) through an MS-DOS function call that returns control to the
original program when the called program terminates. Because the original program
resumes executing when the child program terminates, MS-DOS must restore these three

Section II: Programming in the MS-DOS Environment 109

OLYMPUS EX. 1010 - 121/1582

OLYMPUS EX. 1010 - 122/1582

Article 4: Structure of an Application Program

PSP:0080H (Command Tail and Default DTA) The default DTA resides in the entire sec-
ond half (128 bytes) of the PSP. MS-DOS uses this area of memory as the default record
buffer if the program uses the FCB-style file access functions. Again, MS-DOS inherited
this location from CP/M. (MS-DOS provides a function the program can call to change the
address MS-DOS will use as the current DTA. See SYSTEM CALLS: InTErrRUPT 21H: Func-
tion 1AH.) Because the default DTA serves no purpose until the program performs some
file activity that requires it, MS-DOS places the command tail in this area for the program
to examine. The command tail consists of any text the user types following the program
name when executing the program. Normally, an ASCII space (20H) is the first character
in the command tail, but any character MS-DOS recognizes as a separator can occupy this
position. MS-DOS stores the command-tail text starting at offset 81H and always places an
ASCII carriage return (ODH) at the end of the text. As an additional aid, it places the length
of the command tail at offset 80H. This length includes all characters except the final 0DH.
For example, the command line

C>DOIT WITH CLASS <Enter>
will result in the program DOIT being executed with PSP:0080H containing

0B 20 57 49 54 48 20 43 4C 41 53 53 0D
lenspWw I T H spC L A S S8 cr

The stack

Because .EXE-style programs did not exist under CP/M, MS-DOS expects .EXE programs
to operate in strictly MS-DOS fashion. For example, MS-DOS expects the .EXE program to
supply its own stack. (Figure 4-1 shows the program’s stack as the top box in the diagram.)

Microsoft’s high-level-language compilers create a stack themselves, but when writing in
assembly language the programmer must specifically declare one or more segments with
the STACK combine type. If the programmer declares multiple stack segments, possibly in
different source modules, the linker combines them into one large segment. See Control-
ling the .EXE Program’s Structure below.

Many programmers declare their stack segments as preinitialized with some recognizable
repeating string such as *STACK. This makes it possible to examine the program’s stack in
memory (using a debugger such as DEBUG) to determine how much stack space the pro-
gram actually used. On the other hand, if the stack is left as uninitialized memory and
linked at the end of the .EXE program, it will not require space within the .EXE file. (The
reason for this will become more apparent when we examine the structure of a .EXE file.)

Note: When multiple stack segments have been declared in different .ASM files, the
Microsoft Object Linker (LINK) correctly allocates the total amount of stack space speci-
fied in all the source modules, but the initialization data from all modules is overlapped
module by module at the high end of the combined segment.

An important difference between .COM and .EXE programs is that MS-DOS preinitializes
a .COM program’s stack with a termination address before transferring control to the pro-
gram. MS-DOS does not do this for .EXE programs, so a .EXE program cannot simply
execute an 8086-family RET instruction as a means of terminating.

Section II: Programming in the MS-DOS Environment 111

LILIAVAIMT FM\/ 4A4Nn4an ANnAnlAarAan

OLYMPUS EX. 1010 - 123/1582

OLYMPUS EX. 1010 - 124/1582

HUAWEI EX. 1010 - 125/1582
OLYMPUS EX. 1010 - 125/1582

OLYMPUS EX. 1010 - 126/1582

Article 4: Structure of an Application Program

program as the entry point by placing the label after the END statement as the last line of the
program:

END ENTRY__POINT_LABEL

With multiple source files, only one of the files should have a label following the END
statement. If more than one source file has such a label, LINK uses the first one it encoun-
ters as the entry point.

The other processor registers (BX, CX, DX, BP, SI, and DI) contain unknown values when
the program receives control from MS-DOS. Once again, high-level-language program-
mers can ignore this fact—the compiler and library support routines deal with the situa-
tion. However, assembly-language programmers should keep this fact in mind. It may give
needed insight sometime in the future when a program functions at certain times and

not at others.

In many cases, debuggers such as DEBUG and SYMDEB initialize uninitialized registers to
some predictable but undocumented state. For instance, some debuggers may predictably
set BP to zero before starting program execution. However, a program must not rely on
such debugger actions, because MS-DOS makes no such promises. Situations like this
could account for a program that fails when executed directly under MS-DOS but works
fine when executed using a debugger. .

Terminating the .EXE program

After MS-DOS has given the .EXE program control and it has completed whatever task
it set out to perform, the program needs to give control back to MS-DOS. Because of
MS-DOS’s evolution, five methods of program termination have accumulated — not
including the several ways MS-DOS allows programs to terminate but remain resident
in memory.

Before using any of the termination methods supported by MS-DOS, the program should
always close any files it had open, especially those to which data has been written or
whose lengths were changed. Under versions 2.0 and later, MS-DOS closes any files
opened using handles. However, good programming practice dictates that the program
not rely on the operating system to close the program’s files. In addition, programs written
to use shared files under MS-DOS versions 3.0 and later should release any file locks before
closing the files and terminating.

The Terminate Process with Return Code function

Of the five ways a program can terminate, only the Interrupt 21H Terminate Process with
Return Code function (4CH) is recommended for programs running under MS-DOS ver-
sion 2.0 or later. This method is one of the easiest approaches to terminating any pro-

i gram, regardless of its structure or segment register settings. The Terminate Process with
‘ Return Code function call simply consists of the following:

MOV AH, 4CH ;load the MS-DOS function code
MOV AL, RETURN_CODE ;load the termination code
INT 21H ;call MS-DOS to terminate program

; Section II: Programming in the MS-DOS Environment 115

OLYMPUS EX. 1010 - 128/1582

HITAWFI FX 1010 - 199/15R2

OLYMPUS EX. 1010 - 129/1582

OLYMPUS EX. 1010 - 130/1582

Article 4: Structure of an Application Program

;Terminate under MS-DOS 2.0 or later

TERM_.0200:
MOV AX, 4C00h ;AH = MS-DOS Terminate Process with Return Code
; function code, AL = return code of 00H
INT 21h ;call MS-DOS to terminate
ENTRY_PROC ENDP
TEXT ENDS
END ENTRY_PROC ;declare the program’s entry point

Figure 4-4. Continued.

The Terminate Process function

The final method for terminating a .EXE program is Interrupt 21H Function 00H (Termi-
nate Process). This method maintains the same restriction as all other older termination
methods: CS must point to the PSP. Because of this restriction, .EXE programs typically
avoid this method in favor of terminating via PSP:0000H, as discussed above for programs
executing under versions of MS-DOS earlier than 2.0.

Terminating and staying resident

A EXE program can use any of several additional termination methods to return con-

trol to MS-DOS but still remain resident within memory to service a special event. See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: CUSTOMIZING Ms-DOs: Terminate-and-
Stay-Resident Utilities. .

Structure of the .EXE files

So far we've examined how the .EXE program looks in memory, how MS-DOS gives the
program control of the computer, and how the program should return control to MS-DOS.
Next we’ll investigate what the program looks like as a disk file, before MS-DOS loads it
into memory. Figure 4-5 shows the general structure of a .EXE file.

The file header

Unlike .COM program files, .EXE program files contain information that permits the

.EXE program and MS-DOS to use the full capabilities of the 8086 family of microproces-
sors. The linker places all this extra information in a header at the start of the .EXE file.
Although the .EXE file structure could easily accommodate a header as small as 32 bytes,
the linker never creates a header smaller than 512 bytes. (This minimum header size corre-
sponds to the standard record size preferred by MS-DOS.) The .EXE file header contains
the following information, which MS-DOS reads into a temporary work area in memory
for use while loading the .EXE program:

00—01H (.EXE Signature) MS-DOS does not rely on the extension (EXE or .COM) to
determine whether a file contains a .COM or a .EXE program. Instead, MS-DOS recognizes
the file as a .EXE program if the first 2 bytes in the header contain the signature 4DH SAH

Section II: Programming in the MS-DOS Environment 119
HIIAWEI EY 1010 1241/1E99

OLYMPUS EX. 1010 - 131/1582

OLYMPUS EX. 1010 - 132/1582

A~ am——A~

OLYMPUS EX. 1010 - 134/1582

7 AaNnan AnriAarAan

OLYMPUS EX. 1010 - 135/1582

OLYMPUS EX. 1010 - 136/1582

HUAWEI EX. 1010 - 137/1582
OLYMPUS EX. 1010 - 137/1582

HITAWEI EY 1N1N - 120/1R5R2

OLYMPUS EX. 1010 - 139/1582

OLYMPUS EX. 1010 - 140/1582

HITAWEI EY 1N1N - 1141/1RQ9

OLYMPUS EX. 1010 - 141/1582

OLYMPUS EX. 1010 - 142/1582

Article 4: Structure of an Application Program

The MASM GROUP directive

The MASM GROUP directive can also have a strong impact on a .EXE program. However,
the GROUP directive has 7o effect on the arrangement of program segments within mem-
ory. Rather, GROUP associates program segments for addressing purposes. '

The GROUP directive has the following syntax:
grpname GROUP segname,segname,segname, . ..

This directive causes the linker to adjust all address references to labels within any speci-
fied segname to be relative to the start of the declared group. The start of the group is de-
termined at link time. The group starts with whichever of the segments in the GROUP list
the linker places lowest in memory.

That the GROUP directive neither causes nor requires contiguous arrangement of the
grouped segments creates some interesting, although not necessarily desirable, possi-
bilities. For instance, it permits the programmer to locate segments not belonging to the
declared group between segments that do belong to the group. The only restriction im-
posed on the declared group is that the last byte of the last segment in the group must
occur within 64 KB of the start of the group. Figure 4-7 illustrates this type of segment
arrangement:

A
SEGMENT_C
(listed with GROUP directive)
LABEL_C »
—— LABEL_B b
64 KB SEGMENT_B
Offset to . . .
maximum LABEL_B (not listed with GROUP directive)
© Offset to
LABELC LABEL_A »
SEGMENT_A
Offset to (listed with GROUP directive)
LABEL_A
v

Figure 4-7. Noncontiguous segments in the same GROUP.

Warning: One of the most confusing aspects of the GROUP directive relates to MASM’s
OFFSET operator. The GROUP directive affects only the offset addresses generated by
such direct addressing instructions as

MOV AX,FIELD_LABEL

but it has no effect on immediate address values generated by such instructions as

MOV AX,OFFSET FIELD.LABEL

Section II: Programming in the MS-DOS Environment 131

OLYMPUS EX. 1010 - 143/1582

OLYMPUS EX. 1010 - 144/1582

Article 4: Structure of an Application Program

STACK SEGMENT PARA STACK 'STACK'
STACK ENDS

DGROUP GROUP —DATA, CONST, _BSS, STACK

;Constant declaratbions sk ok ok dokok s ok ko oo ook sk s ook R sk koo ok ok ook ok skolok Aok dokok R R kok
CONST SEGMENT WORD PUBLIC 'CONST'
CONST_FIELD_A DB 'Constant A' ;declare a MODULE_A constant

CONST ENDS

;Preinitialized data £ields %k sk %k k ks ok ko ks ok b ok ook ok ok ook ook ok o ko o ook o okosk ook ok o ok kR ok R ok ok R
~DATA SEGMENT WORD PUBLIC 'DATA'
DATA _FIELD.A DB 'Data A' ;declare a MODULE_A preinitialized field

_DATA ENDS

;Uninitialized data fields ##kskskdkkoksdhsokkdkkskdokhrkhmbhfk bbbk b kbR vk onk ke
_BSS SEGMENT WORD PUBLIC 'BSS'
BSS_FIELD..A DB 5 DUP (?) ;declare a MODULE_A uninitialized field

-BSS ENDS

FPTOGLAM L) HH ook s of ook 3ok ok oo ok o sk o ok o oo o oo o S o o ok o Kk o
~TEXT SEGMENT BYTE PUBLIC 'CODE’
ASSUME CS:_TEXT,DS:DGROUP,ES:NOTHING, SS:NOTHING

EXTRN PROC_B:NEAR ;label is in _TEXT segment (NEAR)
EXTRN PROC_C:NEAR ;label is in _TEXT segment (NEAR)

PROC_A PROC NEAR

CALL PROC_B ;jcall into MODULE.R

CALL PROC_C ;call into MODULE_C

MOV AX,4CQ0H jterminate (MS-DOS 2.0 or later only)
INT 21H

PROC._A ENDP
—TEXT ENDS

Figure 4-8. Continued. (more)

Section II: Programming in the MS-DOS Environment 133
HITAWFI FX 101N - 14K/1K5R92

OLYMPUS EX. 1010 - 145/1582

OLYMPUS EX. 1010 - 146/1582

HUAWEI EX. 1010 - 147/1582
OLYMPUS EX. 1010 - 147/1582

OLYMPUS EX. 1010 - 148/1582

HUAWEI EX. 1010 - 149/1582
OLYMPUS EX. 1010 - 149/1582

OLYMPUS EX. 1010 - 150/1582

OLYMPUS EX. 1010 - 151/1582

OLYMPUS EX. 1010 - 152/1582

OLYMPUS EX. 1010 - 153/1582

OLYMPUS EX. 1010 - 154/1582

HUAWEI EX. 1010 - 155/1582
OLYMPUS EX. 1010 - 155/1582

OLYMPUS EX. 1010 - 156/1582

Article 4: Structure of an Application Program

CSEG SEGMENT BYTE PUBLIC 'CODE' ;establish segment order

CSEG ENDS)

DSEG SEGMENT BYTE PUBLIC 'DATA'

DSEG ENDS

COMGRP GROUP CSEG, DSEG ;establish joint address base
DSEG SEGMENT

;Place your data fields here.

DSEG ENDS

CSEG SEGMENT

ASSUME CS:COMGRP, DS :COMGRP, ES:COMGRP, S5 : COMGRP
ORG 0100H

BEGIN:
;Place your program text here. Remember to use
;OFFSET COMGRP:LABEL whenever you use OFFSET.

MOV AX, 4CO0H ;terminate (MS-DOS 2.0 or later only)
INT 21H

CSEG ENDS
END BEGIN

Figure 4-16. .COM program with data at end.

These examples demonstrate other significant requirements for producing a functioning
.COM program. For instance, the ORG 0100H statement in both examples tells MASM to
start assembling the code at offset 100H within the encompassing segment. This corre-
sponds to MS-DOS’s transferring control to the program at IP = 0100H. In addition, the
entry-point label (BEGIN) immediately follows the ORG statement and appears again as a
parameter to the END statement. Together, these factors satisfy the requirement that COM
programs declare their entry point at offset 100H. If any factor is missing, the MS-DOS
EXE2BIN utility will not properly convert the .EXE file produced by the linker into a .COM
file. Specifically, if a .COM program declares an entry point (as a parameter to the END
statement) that is at neither offset 0100H nor offset 0000H, EXE2BIN rejects the .EXE file
when the programmer attempts to convert it. If the program fails to declare an entry point
or declares an entry point at offset 0000H, EXE2BIN assumes that the .EXE file is to be
converted to a binary image rather than to a .COM image. When EXE2BIN converts a .EXE
file to a non-.COM binary file, it does not strip the extra 100H bytes the linker places in
front of the code as a result of the ORG 0100H instruction. Thus, the program actually
begins at offset 200H when MS-DOS loads it into memory, but all the program’s address
references will have been assembled and linked based on the 100H offset. As a result, the
program — and probably the rest of the system as well—is likely to crash.

A .COM program also must not contain direct segment address references to any segments
that make up the program. Thus, the .COM program cannot reference any segment labels
or reference any labels as long (FAR) pointers. (This rule does not prevent the program
from referencing segment labels declared using the SEGMENT AT address directive.)
Following are various examples of direct segment address references that are not per-
mitted as part of .COM programs:

Section II: Programming in the MS-DOS Environment 145

OLYMPUS EX. 1010 - 157/1582

OLYMPUS EX. 1010 - 158/1582

HUAWEI EX. 1010 - 159/1582
OLYMPUS EX. 1010 - 159/1582

OLYMPUS EX. 1010 - 160/1582

HITAWNETIEY 101N 1R_R1/1E99

OLYMPUS EX. 1010 - 161/1582

OLYMPUS EX. 1010 - 162/1582

Article 5: Character Device Input and Qutput

names nor handles need be used. However, in MS-DOS versions 2.0 and later, these func-
tion calls are translated within MS-DOS to make use of the same routines that are used by
the handle functions, so'the traditional keyboard and display functions are affected by 1/O
redirection and piping.

Use of either the traditional or the handle-based method for character device I/O results
in highly portable programs that can be used on any computer that runs MS-DOS. A third,
less portable access method is to use the hardware-specific routines resident in the read-
only memory (ROM) of a specific computer (such as the IBM PC ROM BIOS driver func-
tions), and a fourth, definitely nonportable approach is to manipulate the peripheral
device’s adapter directly, bypassing the system software altogether. Although these latter
hardware-dependent methods cannot be recommended, they are admittedly sometimes
necessary for performance reasons.

The Basic MS-DOS Character Devices

Every MS-DOS system supports at least the following set of logical character devices
without the need for any additional installable drivers:

Device Meaning

CON Keyboard and display

PRN System list device, usually a parallel port
AUX Augxiliary device, usually a serial port
CLOCK$ System real-time clock

NUL “Bit-bucket” device

These devices can be opened by name or they can be addressed through the “traditional”
function calls; strings can be read from or written to the devices according to their capabili-
ties on any MS-DOS system. Data written to the NUL device is discarded; reads from the
NUL device always return an end-of-file condition.

PC-DOS and compatible implementations of MS-DOS typically also support the following
logical character-device names:

Device Meaning

coMml First serial communications port
COM2 Second serial communications port
LPT1 First parallel printer port

LPT2 Second parallel printer port

LPT3 Third paralle] printer port

Section II: Programming in the MS-DOS Environment 151

OLYMPUS EX. 1010 - 163/1582

OLYMPUS EX. 1010 - 164/1582

HITAWFI FX 101N - 1RR/1RKR2

OLYMPUS EX. 1010 - 165/1582

OLYMPUS EX. 1010 - 166/1582

OLYMPUS EX. 1010 - 167/1582

OLYMPUS EX. 1010 - 168/1582

HITAWFI FX 101N - 1RA/1RKR2

OLYMPUS EX. 1010 - 169/1582

OLYMPUS EX. 1010 - 170/1582

HITAWEI EY 1N1N - 171/1RR2

OLYMPUS EX. 1010 - 171/1582

OLYMPUS EX. 1010 - 172/1582

HITAWFI FX 101N - 17182

OLYMPUS EX. 1010 - 173/1582

OLYMPUS EX. 1010 - 174/1582

HIITAWEIEY 101N 1A7R/1EQ9

OLYMPUS EX. 1010 - 175/1582

OLYMPUS EX. 1010 - 176/1582

HUAWEI EX. 1010 - 177/1582
OLYMPUS EX. 1010 - 177/1582

OLYMPUS EX. 1010 - 178/1582

LIILIAWAICI CV 1Nn41N A70/4AE£09

OLYMPUS EX. 1010 - 179/1582

OLYMPUS EX. 1010 - 180/1582

OLYMPUS EX. 1010 - 181/1582

OLYMPUS EX. 1010 - 182/1582

HUAWEI EX. 1010 - 183/1582
OLYMPUS EX. 1010 - 183/1582

OLYMPUS EX. 1010 - 184/1582

OLYMPUS EX. 1010 - 185/1582

OLYMPUS EX. 1010 - 186/1582

Article 6: Interrupt-Driven Communications

With the 1.8432 MHz external UART clock frequency used in standard IBM systems,
divisor values (in decimal notation) for bit rates between 45.5 and 38400 bps are listed in
Table 6-3. These speeds are established by a crystal contained in the serial port (or internal
modem) and are totally unrelated to the speed of the processor’s clock.

Table 6-3. Bit Rate Divisor Table for 8250/IBM.

BPS Divisor
45.5 2532
50 2304
75 1536
110 1047
134.5 857
150 768
300 384
600 192
1200 96
1800 64
2000 58
2400 48
4800 24
9600 12
19200 6
38400 3

The remaining control circuits are the Line Control Register, the Modem Control Register,
and the Interrupt Enable Register. Bits in the LCR control the assignment of offsets 0 and 1,
transmission of the BREAK signal, parity generation, the number of stop bits, and the word
length sent and received, as shown in Table 6-4.

Table 6-4. 8250 Line Control Register Bit Values.

Bit _ Name Binary Meaning
Address Control:
7 DLAB (b o's 0000 Offset 0 refers to DATA;
offset 1 refers to IER
IXEXRXXX Offsets 0 and 1 refer to
BRG Divisor Latch
BREAK Control:
6 SETBRK XOXKHXKK Normal UART operation
KIXXXXXK " Send BREAK signal

(more)

Section II Programming in the MS-DOS Environment 175

1LILITAZAITTL T\ ANAN ANTZ7IAronNn

OLYMPUS EX. 1010 - 187/1582

OLYMPUS EX. 1010 - 188/1582

OLYMPUS EX. 1010 - 189/1582

OLYMPUS EX. 1010 - 190/1582

7 AaNnan ANnAlarAan

OLYMPUS EX. 1010 - 191/1582

OLYMPUS EX. 1010 - 192/1582

OLYMPUS EX. 1010 - 193/1582

OLYMPUS EX. 1010 - 194/1582

HUAWEI EX. 1010 - 195/1582
OLYMPUS EX. 1010 - 195/1582

OLYMPUS EX. 1010 - 196/1582

Article 6: Interrupt-Driven Communications

218 ;
219 packHd Dd 0
220 : ;
221 2} paud rate conversion table
222 : Asy-baudt Dw 50,2304 s first value is desired baud rate
223 Dw 75,1536 ; second is divisor register value
224 : Dw 110,1047
225 Dw 134, 857
226 : Dw 150, 786
227 Dw 300, 384
228 : Dw 600, 192
229 Dw 1200, 96
230 : Dw 1800, 64
231 : Dw 2000, 58
232 : Dw 2400, 48
233 : Dw 3600, 32
234 : Dw 4800, 24
235 : Dw 7200, 16
236 : Dw 9600, 12
237 =
238 : ; table of structures
239 : 7 ASY1 defaults to the COM1 port, INT OCH vector, XON,
240 : 7 no parity, 8 databits, 1 stop bit, and 1200 baud
241 : Asy_tabl:
242 Unit <3f8h,30h,asy1isr,,,,,,,,in1buf,,,out1buf>
243 :
244 : ; ASY2 defaults to the COM2 port, INT OBH vector, XON,
245 ; no parity, 8 databits, 1 stop ‘bit, and 1200 baud
246 Asy.-tab2:
247 Unit <2f8h,20h,asy2isr,,,,,,,,in2buf,,,out2buf>
248 :
249 ; Bufsiz Equ 256 ; input buffer size
250 : Bufmsk = Bufsiz-1 ; mask for calculating offsets modulo bufsiz
251 : Inlbuf Db Bufsiz DUP (?)
252 Outibuf Db Bufsiz DUP (?)
253 ; In2buf Db Bufsiz DUP (?)
254 : Out2buf Db Bufsiz DUP (?
255 : 7
256 : i Following is a table of offsets to all the driver functions
257
258 : Asy_funcs:
259 Dw Init ; 0 initialize driver
260 Dw Mchek ; 1 media check (block only)
261 : Dw B1dBPB ; 2 build BPB (block only)
262 Dw Ioctlin : 3 IOCTL read
263 : Dw Read ; 4 read
264 Dw Ndread : 5 nondestructive read
265 : Dw Rxstat ; 6 input status
266 : Dw Inflush ; 7 flush input buffer
267 : Dw Write ;8 write
268 : Dw Write ;9 write with verify
Figure G-1. Continued. (more)
Cnntines IT. Draaramming in the MS-DOS Environment 187

OLYMPUS EX. 1010 - 197/1582

OLYMPUS EX. 1010 - 198/1582

Article 6: Interrupt-Driven Communications

320 : POp Ds

321 Les Bx,PackHd ; get packet pointer
322 : Lea Di,Asy_funcs ; point DI to jump table
323 : Mov Al,es:code[bx] ; command code

324 : Cbw

325 : Add Ax,Ax ; double to word

326 : add Di,ax

327 : Jmp [di] ; go do it

328 : ;

329 : ; Exit from driver regquest

330 : H

331 : ExitP Proc Far

332 : Bsyexit:

333 : Mov Ax,StsBsy

334 : Jmp Short Exit

335 :

336 : Mchek:

337 : B1dBPB:

338 : Zexit: Xor Ax,Ax

339 : Exit: Les Bx,PackHd ; get packet pointer
340 : Or Ax,StsDne

341 : Mov Es:Stat [Bx],Ax ; set return status
342 pop Es ; restore registers
343 : Pop Ds

344 : pop Bp

345 : Pop Di

346 : Pop Dx

347 : Pop Cx

348 PoOp Bx

349 : Pop Ax

350 : popf

351 : Pop Si

352 : Ret

353 : ExitP Endp

354

355 : Subttl Driver Service Routines

356 : Page

357

358 : ; Read data from device

359 :

360 : Read:

361 1 ; dbg 'RY, A,

362 : Mov Cx,Es:Count [bx] ; get requested nbr
363 : Mov Di,Es:Xfer[bx] ; get target pointer
364 : Mov Dx,Es:Xseg(bx)

365 : Push Bx ; save for count fixup
366 : Push Es

367 :) Mov Es,Dx

368 Test InStat [si],BadInp Or LostDt

369 : Je No.lerr ; no error so far...
370 : Add Sp,4 ; error, flush SP
Figure 6-1. Continued. ! (more)

et AT Tommmimanamianes i tho MS-DOS Environment 189

OLYMPUS EX. 1010 - 199/1582

OLYMPUS EX. 1010 - 200/1582

Article 6: Interrupt-Driven Communications

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

‘454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

469 :

470
471

Write:

H dbg
Mov
Mov
Mov
Mov

¢ Wlup:

Mov
Inc

: Wwait:

Call
Cmp
Jne
call
Loop

Jmp

: Txstat:

Mov
Dec
And
cmp
Jne
Jnp

: Txroom:

Jmp

; I0CTL read request,

: Ioctlin:

Mov
Mov
Mov
Mov
Cmp
Je

Mov
Jmp

: Doiocin:

Mov
Mov
Mov

Getport:

In
Stos
Inc
Loop

Figure 6-1. Continued.

le'lrlll L}
Ccx,es:count [bx]
Di,es:xfer[bx]
Ax,es:xseg [bx]
Es,ax

Al,es: [di] ;
Di

Put_out ;
Ah, 0
Wwait H
Start_output H
Wlup

Zexit

HEH Output status request

Ax,ofirst[si]

Ax

Ax,bufmsk
Ax,oavail[si]
Txroom

Bsyexit ;

Zexit ;

Cx,es:count [bx]
Di,es:xfer[bx]
Dx,es:xseg{bx]
Es,dx

Ccx,10

Doiocin
Ax,errbsl

Exit

Dx,port{si] H
pl,Lctrl ;
Ccx,4 ;

Al,dx

Byte Ptr (DT}
Dx

Getport

Cartinm IT. Prooramming in the MS-DOS Environment

OLYMPUS EX. 1010 - 201/1582

get the byte

put away

wait for room!

get it going

pbuffer full

room exists

return line parameters

base port
line status

LCR, MCR, LSR,

(more)

191

OLYMPUS EX. 1010 - 202/1582

Article 6: Interrupt-Driven Communications

523 : Add Di,3 ; skip LSR,MSR
524 : Mov Ax,es: [di]
525 : Add Di,2
526 : Mov InSpec(sil], ax
527 : Mov Ax,es: [di]
528 : Add Di,2
529 : Mov OutSpec(si),ax
. 530 : Mov Ax,es: [di] ; set baud
531 : Mov Bx,di
532 : Mov Di,offset Asy.baudt
533 : Mov Cx,15
534 : Baudcout:
535 : Cmp [di], ax
536 : Je Yesoutb
537 : Add Di,4
538 : Loop Baudcout
539 :
540 : Mov Dl,Lctrl ; line ctrl
541 : In Al,dx ; get LCR data
542 : And Al,not Dlab ; strip
543 : Clc
544 : Jnc $+2
545 : Qut Dx,al ; put back
546 : Mov Ax,ErrUm ; "unknown media"
547 : Jmp Exit
548 :
549 : Yesoutb: :
550 : Mov Ax,2({di] ; get divisor i
551 : Mov Baud([si],ax ; save to report later
552 : Mov Dx,port(si] ; set divisor
553 : Out Dx,al
554 : Clc
555 : Jne $+2
556 : Inc Dx
557 : Mov Al, ah
558 Out Dx,al
559 : Clc
560 : Jnc $+2
561 : . Mov D1l,Letrl ; line ctrl
562 : In Al,dx ; get LCR data
563 : And Al,not Dlab ; strip
564 : Cle
565 : Jnc $+2
566 : Out Dx,al ; put back
567 : Jmp Zexit
568 :
569 : Subttl Ring Buffer Routines
570 : Page
571 : BN
572 : Put—out Proc Near ; puts AL into output ring buffer
573, : Push Cx : ’
Figure G6-1. Continued. S (more)
Section II: Programming in the MS-DOS Environment 193
;
i

OLYMPUS EX. 1010 - 203/1582

Part B; Programming for MS-DOS

194

574
575
576
577
578
579
580
581
582
583
584
585

586

587
588
589
590
591
592
593
594
595
596

Push
Pushf
Cli
Mov
Mov
Inc
And
Cmp
Je
Add
Mov
Mov
; dbg
Mov
Jmp

: Poerr:,

. Mov

: Poret:

597 :
: Get_out Proc

598
599
600
601
602
603
604
605
606
607
608

- 609

610
611
612
613
614
615

. 616

617
618
619
620
621
622
623
624

: Goret:

: Put_in

Popf
Pop
Pop
Ret
Put_out Endp

Push’
Push
Pushf
Cli
Mov
Cmp
Jne
Mov
Jmp
Ngoerr:
; dbg
Mov
Add
Mov
Mov
Inc
And
Mov

Popf
Pop
Pop
Ret
Get_out Endp

Proc

Figure 6-1. Continued.

The MS-DOS Encyclopedia

Cx,oavail([si]
Di,cx

Cx

Cx,bufmsk
Cx,ofirst[si]
Poerr
Di,obuf[si)
{di],al
Oavail(si),cx
lplllcl'l L}
Ah, 0
Short Poret

Ah, -1

Near i

Di,ofirst({si])
Di,ocavail[sil
Ngoerr
Ah, -1
Short Goret
'g','ol,l '
Cx,di
Di,obuf(si]
Al, (di)

Ah, 0

Cx

Cx,bufmsk
Ofirst([si],cx

Near

~ N

put ptr
bump

overflow?
yes, don’t

no

put in buffer

gets next character from output ring buffer

get ptr
put ptr

empty

get char

bump ptr
wrap

; puts the char from AL into input ring buffer

(more)

OLYMPUS EX. 1010 - 204/1582

OLYMPUS EX. 1010 - 205/1582

Part B: Programming for MS-DOS

676 : Subttl Interrupt Dispatcher Routine

677 : Page

678 :

679 : Asylisr:

680 : Sti

681 : Push si

682 : Lea Si,asy-tabl

683 : Jmp Short Int_serve

684 :

685 : Asy2isr:

686 : Sti

687 : Push si

688 : Lea Si,asy_tab2

689

690 : Int_serve:

691 Push AX ; save all regs

692 : Push Bx

693 : Push Cx

694 : Push Dx

695 : Push Di

696 : Push Ds

697 : Push Cs ; set DS = CS

698 : Pop Ds

699 : Int_exit:

700 : dbg I, 'k, !

701 : Mov Dx,Port[si]) ; base address

702 : Mov D1, IntId ; check Int ID

703 : In Al,Dx

704 : Cmp Al,00h ; dispatch filter

705 : Je Int_modem

706 : Jmp Int_mo..no

707 : Int_modem: '
708 : ; dbg ‘MY, 'S, ’

709 : Mov D1l,Mstat

710 : In Al,dx ; read MSR content

711 = Test Al,CDlvl .; carrier present?

712 Jnz Msdsr ; yes, test for DSR

713 : Test OutSpec[si],OutCdf ; no, is CD off line?
714 : Jz Msdsr

715 : Or InStat [si),OffLin

716 : Msdsr:

717 Test Al,DSRlvl ; DSR present?

718 Jnz Dsron ; yes, handle it

719 Test OutSpec(si],OutDSR ; no, is DSR throttle?
720 : Jz Dsroff

721 Or OtStat [si], LinDSR ; yes, throttle down
722 : Dsroff:

723 Test OutSpec(si],OutDrf ; is DSR off line?
724 : Jz Mscts

725 : Oor InStat[si],OffLin ; yes, set flag
726 : Jmp Short Mscts
Figure 6-1. Continued. (more)

196 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 206/1582

OLYMPUS EX. 1010 - 207/1582

OLYMPUS EX. 1010 - 208/1582

OLYMPUS EX. 1010 - 209/1582

OLYMPUS EX. 1010 - 210/1582

OLYMPUS EX. 1010 - 211/1582

Part B: Programming for MS-DOS

202

" This common code preserves all other registers used (lines 309 through 318), sets DS

equal to CS (lines 319 and 320), retrieves the command-packet pointer saved by the Strat-
egy routine (line 321), uses the pointer to get the command code (line 323), uses the code
to calculate an offset into a table of addresses (lines 324 through 326), and performs an in-
dexed jump (lines 322 and 327) by way of the dispatch table (lines 256 through 284) to the
routine that executes the requested command (at line 336, 360, 389, 404, 414, 421, 441, 453,
500, or 829).

Although the device-driver specifications for MS-DOS version 3.2 list command request - '

codes ranging from 0 to 24, not all are used. Earlier versions of MS-DOS permitted only 0

'to 12 (versions 2.x) or 0 to 16 (versions 3.0 and 3.1) codes. In this driver, all 24 codes are

accounted for; those not implemented in this driver return a DONE and NO ERROR status
to the caller. Because the Request routine is called only by MS-DOS itself, there is no check
for invalid codes. Actually, because the header attribute bits are not set to specify that
codes 13 through 24 are valid, the 24 bytes occupied by their table entries (lines 273
through 284) could be saved by omitting the entries. They are mcluded only to show

how nonexistent commands can be accommodated.

Immediately following the dispatch indexed jump, at lines 329 through 353 within the
same PROC declaration, is the common code used by all Request routines to store status
information in the command packet, restore the registers, and return to the caller. The
alternative entry points for BUSY status (line 332), NO ERROR status (line 338), or an error
code (in the AX register at entry to Exit, line 339) not only save several bytes of redundant
code but also improve readability of the code by prov1d1ng unique single labels for BUSY,
NO ERROR, and ERROR return conditions.

All of the Request routines, except for the Init code at line 829, immediately follow the
dispatching shell in lines 358 through 568. Each is simplified to perform just one task, such
as read data in or write data out. The Read routine (lines 360 through 385) is typical: First,
the requested byte count and user’s buffer address are obtained from the command -
packet. Next, the pointer to the command packet is saved with a PUSH instruction, so that
the ES and BX registers can be used for a pointer to the port’s input buffer.

Before the Ger_in routine that actually accesses the input buffer is called, the input status
byte is checked (line 368). If an error condition is flagged, lines 370 through 373 clear the
status flag, flush the saved pointers from the stack, and jump to the error-return exit from
the driver. If no error exists, line 375 calls Get_in to access the input buffer and lines 376
and 377 determine whether a byte was obtained. If a byte is found, it is ‘storec'l in the user’s
buffer by line 378, and line 379 loops back to get another byte until the requested count
has been obtained or until no more bytes are available. In practice, the count is an upper
limit and the loop is normally broken when data runs out.

No matter how it happens, control eventually reaches the Got_all routine and lines 381
and 382, where the saved pointers to the command packet are restored from the stack.
Lines 383 and 384 adjust the count value in the packet to reflect the actual umber of bytes
obtained. Finally, line 385 jumps to the normal, no-error exit from the driver.

The MS-DOS Encyclopedia

i
i
i
]

OLYMPUS EX. 1010 - 212/1582

Article 6: Interrupt-Driven Communications

Buffering

" Both buffers for each driver are of the type known as circular, or ring, buffers. Effectively,
such a buffer is endless; it is accessed via pointers, and when a pointer increments past the
end of the buffer, the pointer returns to the buffer’s beginning. Two pointers are used here
for each buffer, one to put data into it and one to get data out. The get pointer always
points to the next byte to be read; the put pointer points to where the next byte will be
written, just past the last byte written to the buffer.

If both pointers point to the same byte, the buffer is empty; the next byte to be read has
not yet been written. The full-buffer condition is more difficult to test for: The put pointer
is incremented and compared with the get pointer; if they are equal, doing a write would
force a false buffer-empty condition, so the buffer must be full.

All buffer manipulation is done via four procedures (lines 569 through 674). Put_out
(lines 572 through 596) writes a byte to the driver’s output buffer or returns a buffer-full
indication by setting AH to OFFH. Ger_out (lines 598 through 622) gets a byte from the
output buffer or returns OFFH in AH to indicate that no byte is available. Put_in (lines 624
‘through 648) and Get_in (lines 650 through 674) do exactly the same as Put_out and
Get__out; but for the input buffer. These procedures are used both by the Request routines
and by the hardware interrupt service routine (ISR).

Interrupt service routines

The most complex part of this driver is the ISR (lines 676 through 806), which decides
which of the four possible services for a port is to be performed and where. Like the
Request routines, the ISR provides unique entry points for each port (line 679 for ASY? and
line 685 for ASY2); these entry points first preserve the SI register and then load it with the
address of the port’s structure table. With SI indicating where the actions are to be per-
formed, the two entries then merge at line 690 into common code that first preserves all
registers to be used by the ISR (lines 690 through 698) and then tests for each of the four
possible types of service and performs each requested action.

Much of the complexity of the ISR is in the decoding of modem-status conditions. Because
the resulting information is not used by this driver (although it could be used to prevent
. attempts to transmit while off line), these ISR options can be removed so that only the
_ Transmit and Receive interrupts are serviced. To do this, AllInt (at line 145) should be
changed from the OR of all four bits to include only the transmit and receive bits (03H,
~ or 00000011B). ~

The transmit and receive portions of the ISR incorporate XON/XOFF flow control (for
transmitted data only) by default. This control is done at the ISR level, rather than in the
using program, to minimize the time required to respond to an incoming XOFF signal. -
Presence of the flow-control decisions adds complexity to what would otherwise be
extremely simple actions.

Flow control is enabled or disabled by setting the OutSpec word in the structure table
with the Driver Status utility (presented later) via the IOCTL function (Interrupt 21H Func-
tion 44H). When flow control is enabled, any XOFF character (11H) that is received halts
all outgoing data until XON (13H) is received. No XOFF or XON is retained in the input

Section II: Programming in the MS-DOS Environment 203

OLYMPUS EX. 1010 - 213/1582

Part B: Programming for MS-DOS

buffer to be sent on to any program, although all patterns other than XOFF and XON are
passed through by the driver. When flow control is disabled, the driver passes all patterns
in both directions. For binary file transfer, flow control must be disabled.

The transmit action is simple: The code merely calls the Start_output procedure at line
750. Start_output is described in detail below.

The receive action is almost as simple as transmit, except for the flow-control testing. First,
the ISR takes the received byte from the UART (lines 758 and 759) to avoid any chance of
an overrun error. The ISR then tests the input specifier (at line 760) to determine whether
flow control is in effect. If it is not, processing jumps directly to line 784 to store the
received byté in the input buffer with Puz_in (line 785).

If flow control is active, however, the received byte is compared with the XOFF character
(lines 762 through 765). If the byte matches, output is disabled and the byte is ignored. If
the byte is not XOFF, it is compared with XON (lines 766 through 768). If it is not XON
either, control jumps to line 784. If the byte is XON, output is re-enabled if it was disabled.
Regardless, the XON byte itself is ignored.

When control reaches Stuff_in at line 784, Put_in is called to store the received byte in
the input buffer. If there is no room for it, a lost-databit is set in the input status flags (line
788); otherwise, the receive routine is finished.

If the interrupt was a line-status action, the LSR is read (lines 776 through 779). If the input
specifier so directs, the content is converted to an IBM PC extended graphics character by
setting bit 7 to 1 and the character is stored in the input buffer as if it were a received byte.
Otherwise, the Line Status interrupt merely sets the generic BadInp error bit in the input
status flags, which can be read with the IOCTL Read function of the driver.

When all ISR action is complete, lines 794 through 806 restore machine conditions to those
existing at the time of the interrupt and return to the interrupted procedure.

The Start_output routine

Start_output (lines 808 through 824) is a routine that, like the four buffer procedures, is
used by both the Request routines and the ISR. Its purpose is to initiate transmission of a
byte, provided that output is not blocked by flow control, the UART Transmit Holding
Register is empty, and a byte to be transmitted exists in the output ring buffer. This routine
uses the Get_out buffer routine to access the buffer and determine whether a byte is avail-
able. If all conditions are met, the byte is sent to the UART holding register by lines 819
and 820. .

The Initialization Request routine

The Initialization Request routine (lines 829 through 897) is critical to successful operation
of the driver. This routine is placed last in the package so that it can be discarded as soon
as it has served its purpose by installing the driver. It is essential to clear each register of
the 8250 by reading its contents before enabling the interrupts and to loop through this

204 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 214/1582

Article 6: Interrupt-Driven Communications

action until the 8250 finally shows no requests pending. The strange Clc jnc $+2
sequence that appears repeatedly in this routine is a time delay required by high-speed
machines (6 MHz and up) so that the 8250 has time to settle before another access is
attempted; the delay does no harm on slower machines.

Using COMDVR

The first step in using this device driver is assembling it with the Microsoft Macro Assem-
bler (MASM). Next, use the Microsoft Object Linker (LINK) to create a .EXE file. Convert
the .EXE file into a binary image file with the EXE2BIN utility. Finally, include the line
DEVICE=COMDVR.SYS in the CONFIG.SYS file so that COMDVR will be installed when
the system is restarted.

Note: The number and colon at the beginning of each line in the program listings in this
article are for reference only and should not be included in the source file.

Figure 6-2 shows the sequence of actions required, assuming that EDLIN is used for
modifying (or creating) the CONFIG.SYS file and that all commands are issued from the
root directory of the boot drive.

Creating the driver:

C>MASM COMDVR; <Enter>
C>LINK COMDVR; <Enter>
C>EXE2BIN COMDVR.EXE COMDVR.SYS <Enter>

Modifying CONFIG.SYS (\Z = press Ctrl-Z):

C>EDLIN CONFIG.SYS <Enter>
#*#I <Enter>
*DEVICE=COMDVR.SYS <Enter>
#772 <Enter>

*E <Enter>

Figure 6-2. Assembling, linking, and installing COMDVR.

Because the devices installed by COMDVR do not use the standard MS-DOS device names,
no conflict occurs with any program that uses conventional port references. Such a pro-
gram will not use the driver, and no problems should result if the program is well behaved
and restores all interrupt vectors before returning to MS-DOS.

Device-driver debugging techniques

The debugging of device drivers, like debugging for any part of MS-DOS itself, is more
difficult than normal program checking because the debugging program, DEBUG.COM or
DEBUG.EXE, itself uses MS-DOS functions to display output. When these functions are
being checked, their use by DEBUG destroys the data being examined. And because
MS-DOS always saves its return address in the same location, any call to a function from
inside the operating system usually causes a system lockup that can be cured only by
shutting the system down and powering up again. ’

Section II: Programming in the MS-DOS Environment 205

OLYMPUS EX. 1010 - 215/1582

Part B: Programming for MS-DOS

One way to overcome this difficulty is to purchase costly debugging tools. An easier

way is to bypass the problem: Instead of using MS-DOS functions to track program opera-
tion, write data directly to video RAM, as in the macro DBG (lines 10 through 32 of
COMDVR.ASM).

This macro is invoked with a three-character parameter string at each point in the pro-
gram a progress report is desired. Each invocation has its own unique three-character
string so that the sequence of actions can be read from the screen. When invoked, DBG
expands into code that saves all registers and then writes the three-character string to
video RAM. Only the top 10 lines of the screen (800 characters, or 1600 bytes) are used:
The macro uses a single far pointer to the area and treats the video RAM like a ring buffer.

The pointer, Dbgptr (line 215), is set up for use with the monochrome adapter and points
to location B000:0000H; to use a CGA or EGA (in CGA mode), the location should be
changed to B800:0000H.

Most of the frequently used Request routines, such as Read and Write, have calls to DBG
as their first lines (for example, lines 361 and 422). As shown, these calls are commented
out, but for debugging, the source file should be edited so that all the calls and the macro
itself are enabled.

With DBG active, the top 10 lines of the display are overwritten with a continual sequence
of reports, such as RR T, put directly into video RAM. Because MS-DOS functions are not -
used, no interference with the driver itself can occur.

Although this technique prevents normal use of the system during debugging, it greatly
simplifies the problem of knowing what is happening in time-critical areas, such as hard-
ware interrupt service. In addition, all invocations of DBG in the critical areas are in con-
ditional code that is executed only when the driver is working as it should.

Failure to display the pi message, for instance, indicates that the received-data hardware
interrupt is not being serviced, and absence of go after an Ix report shows that data is not
being sent out as it should.

Of course, once debugging is complete, the calls to DBG should be deleted or commented
out. Such calls are usually edited out of the source code before release. In this case, they
remain to demonstrate the technique and, most particularly, to show placement of the calls
to provide maximum information with minimal clutter on the screen.

A simple modem engine

206

The second part of this package is the modem engine itself (ENGINE.ASM), shown in the
listing in Figure 6-3. The main loop of this program consists of only a dozen lines of code
(lines 9 through 20). Of these, five (lines 9 through 13) are devoted to establishing initial
contact between the program and the serial-port driver and two (lines 19 and 20) are for
returning to command level at the program’s end.

Thus, only five lines of code (lines 14 through 18) ac'tually carry out the bulk of the pro- ,
gram as far as the main loop is concerned. Four of these lines are calls to subroutines that

The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 216/1582

Article 6: Interrupt-Driven Communications

getand put data from and to the console and the serial port; the fifth is the JMP that closes
the loop. This structure underscores the fact that a basic modem engine is simply a data-
transfer loop.

W NN NDRNDNDNONS 2 = 2o 2o oo
O W O JdO WU & WN =0 WVWww - W= O v

31
32
33
34
35

37
38

40
41
42
43
44
45
46

W~ W N =

36 :

39 :

: CODE

: START:

: alltim:

: quit:

: getmdm

: getmdm

: getkbd

TITLE

SEGMENT

ASSUME

ORG

mov
mov
int
mov
jc
call
call
call
call
jmp
mov
int

proc
mov
mov
mov
mov
int
jc
mov
ret
endp

proc
mov
mov
int
inc
jnz
mov
int
cmp
je
mov
inc
cmp
jne

Figure 6-3. ENGINE.ASM.

engine

PUBLIC 'CODE'
CS:CODE,DS:CODE,ES:CODE, SS: CODE
0100h

dx,offset devnm ; open named device (ASY1)

ax, 3d02h
27h
handle, ax ; save the handle
quit
getmdm ; main engine loop’
putcrt
getkbd
putmdm
alltim
ah, 4ch ; come here to quit
21h
; get input from modem
cx,256
bx,handle
dx,offset mbufr
ax, 3F00h
21h
quit
mdlen, ax
; get input from keyboard
kblen, 0 ' ; first zero the count
ah, 11 ; key pressed?
21h
al
nogk ; no
ah,7 ; yes, get it
2th
al,3 ; was it Ctrl-C?
quit ; yes, get out
kbufr,al ; no, save it
kblen
al,13 ; was it Enter?
nogk ; no

(more)

Section 1I: Programming in the MS-DOS Environment 207

OLYMPUS EX. 1010 - 217/1582

Part B: Programming for MS-DOS

208

47 : mov byte ptr kbufr+1,10 ; yes, add LF
48 : - inc kblen

49 : nogk: ret

50 : getkbd endp

51 :

52 : putmdm proc ; put output to modem
53 : mov cx, kblen

54 jexz nopm

55 : mov bx,handle

56 : mov dx,offset kbufr
57 : mov ax,4000h

58 : int 21h

59 : jc quit

60 : nopm: ret

61 : putmdm endp

62

63 : putcrt proc ; put output to CRT
64 : mov cx,mdlen

65 : jexz nopc

66 mov bx, 1

67 : mov dx,offset mbufr
68 : mov ah, 40h

69 : int 21h

70 : jc quit

71 : nopc: ret

72 : putcrt endp

73 =

74 : devnm db 'ASY1',0 ; miscellaneous data and buffers
75 : handle dw 0

76. : kblen dw 0

77 : mdlen dw 0

78 : mbufr db 256 dup (0)

79 : kbufr db 80 dup (0)

80 :

81 : CODE ENDS

82 : END START

Figure 6-3. Continued.

Because the details of timing and data conversion are handled by the driver code, each
of the four subroutines is—to show just how simple the whole process is— essentially a
buffered interface to the MS-DOS Read File or Device or Write File or Device routine.

For example, the getmdm procedure (lines 22 through 31) asks MS-DOS to read a max-
imum of 256 bytes from the serial device and then stores the number actually read in a
word named mdlen. The driver returns immediately, without waiting for data, so the nor-
mal number of bytes returned is either 0 or 1. If screen scrolling causes the loop to be
delayed, the count might be higher, but it should never exceed about a dozen characters.

When called, the putcrt procedure (lines 63 through 72) checks the value in mdlen. If
the value is zero, putcrt does nothing; otherwise, it asks MS-DOS to write that number of
bytes from mbufr (where getmdm put them) to the display, and then it returns.

The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 218/1582

Article 6: Interrupt-Driven Communications

Similarly, getkbd gets keystrokes from the keyboard, stores them in kbuf#, and posts a
count in kblen; putmdm checks kblen and, if the count is not zero, sends the required
number of bytes from kbufr to the serial device.

Note that getkbd does not use the Read File or Device function, because that would wait
for a keystroke and the loop must never wait for reception. Instead, it uses the MS-DOS
functions that test keyboard status (0BH) and read a key without echo (07H). In addition,
special treatment is given to the Enter key (lines 45 through 48): A linefeed is inserted in
kbufr immediately behind Enter and kblen is set to 2.

A Ctrl-C keystroke ends program operation; it is detected in getkbd (line 41) and causes
immediate transfer to the quit label (line 19) at the end of the main loop. Because ENGINE
uses only permanently resident routines, there is no need for any uninstallation before
returning to the MS-DOS command prompt.

ENGINE.ASM is written to be used as a .COM file. Assemble and link it the same as
COMDVR.SYS (Figure 6-2) but use the extension COM instead of SYS; no change to
CONFIG.SYS is needed.

The driver-status utility: CDVUTL.C

The driver-status utility program CDVUTL.C, preéented in Figure 6-4, permits either of
the two drivers (ASYI and ASY2) to be reconfigured after being installed, to suit different
needs. After one of the drivers has been specified (port 1 or port 2), the baud rate, word
length, parity, and number of stop bits can be changed; each change is made indepen-
dently, with no effect on any of the other characteristics. Additionally, flow control can be
switched between two types of hardware handshaking — the software XON/XOFF control
or disabled — and error reporting can be switched between character-oriented and
message-oriented operation.

1 : /% cdvutl.c - COMDVR Utility

2 1 % Jim Kyle - 1987

3 * for use with COMDVR.SYS Device Driver

4 . */

5 .

6 : #include <stdio.h> /* i/o definitions */

7 : #include <conio.h> /* special console i/o */

8 : #include <stdlib.h> /* misc definitions */

9 : #include <dos.h> /% defines intdos () */

10 :
11 ¢ /% the following define the driver status bits */
12 @
13 : #define HWINT 0x0800 /% MCR, first word, HW Ints gated */
14 : #define o_DTR 0x0200 /% MCR, first word, output DTR */
15 : #define o_RTS 0x0100 /* MCR, first word, output RTS */
16 :
17 : #define m PG 0x0010 /% LCR, first word, parity ON */
18 : #define m_PE 0x0008 /% LCR, first word, parity EVEN */

Figure 6-4. CDVUTL.C (more)

Section II: Programming in the MS-DOS Environment 209

OLYMPUS EX. 1010 - 219/1582

Part B: Programming for MS-DOS

19 : #define m XS 0x0004 /*¥ LCR, first word, 2 stop bits */
20 : #define m_WL 0x0003 /* LCR, first word, wordlen mask */
21 ¢

22 : #define i_CD OxBOOOA /* MSR, 2nd word, Carrier Detect */
23 : #define i_RI 0x4000 /* MSR, 2nd word, Ring Indicator */
24 : #define i_DSR 0x2000 /* MSR, 2nd word, Data Set Ready */
25 : #define i_CTS 0x1000 /* MSR, 2nd word, Clear to Send */
26

27 : #define 1_SRE 0x0040 /* LSR, 2nd word, Xmtr SR Empty */
28 : #define 1_HRE 0x0020 /* LSR, 2nd word, Xmtr HR Empty */
29 : #define 1_BRK 0x0010 /* LSR, 2nd word, Break Received */
30 : #define 1_ER1 0x0008 /* LSR, 2nd word, FrmErr */
31 : #define 1_ER2 0x0004 /* LSR, 2nd word, ParErr */
32 : #define 1_ER3 0x0002 /* LSR, 2nd word, OveRun */
33 : #define 1_RRF 0x0001 /*%* LSR, 2nd word, Rcvr DR Full */
34 : -

35 ¢ /* now define CLS string for ANSI.SYS */

36 : #define CLS "\033([2J"

37

38 : FILE * dvp;
39 : union REGS rvs;
40 : int iobf [5 1:

41 ,
42 : main ()

43 : { cputs ("\nCDVUTL - COMDVR Utility Version 1.0 - 1987\n");

44 disp (); /* do dispatch loop */
45 : }

46 : i
47 : disp () /* dispatcher; infinite loop #*/
48 : { int ¢,

49 u;

50 : u=1;

51 while (1)

52 { cputs ("\r\n\tCommand (? for help): ");

53 : switch (tolower (¢ = getche ())) /* dispatch */
54 : {

55 case '1' : /* select port 1 */
56 : fclose (dvp); :

57 : ’ dvp = fopen ("ASY1", "rb+");

58 : u=1; ’

59 : break;

60 :

61 case '2'" : /% select port 2 */
62 : fclose (dvp);

63 : dvp = fopén ("ASY2", "rb+");

64 : u = 2;

65 break;

66

67 : case 'b' : /* set baud rate */
68 : if (iobf [4] == 300)

69 : iobf [4] = 1200;

Figure 6-4. Continued.

210 The MS-DOS Encyclopedia

(more)

OLYMPUS EX. 1010 - 220/1582

Article 6: Interrupt-Driven Communications

70
A
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
N
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
12
13
114
115
116
17
118
119
120

: center
: center
: center
: center
. center
: center

else

if (iobf [4]

iobf [4] = 2400;

else

Aif

(iobf [4]

iobf [4] = 9600;

else

iocwr

iobf [41 =

300;
)i

break;

case

iocwr

lel
iobf [0] i= (

m_PG
0

break;

case
if

iobf [3] =

TE

(iobf [3] == 1))
2;

else

if

(iobf
iobf [

[31==2)
31 =

else

if (iobf [3]
iobf [3] =

else

ilocwr

iobf [3] =

1;
(s

break;

case

Ii'
iobf [0] =
iocwr

0z

break;

case

cputs
center

"
"2
"B
"E
"F
"I

ror

(CLS);

select port 1
select port 2
set BAUD rate
set parity to EVEN
toggle FLOW control

INITIALIZE ints, etc.

continue;

case

iobf [0] "=
iocwr

B

1;
0);

break;

Figure G-4. Continued.

Section II: Programming in the MS-DOS Environment

/* initialize MCR/LCR to 8N1
(HWINT + o_DTR + o_RTS + m_WL);

1200)

== 2400)

/* set parity even */

+ M_PE);

/* toggle flow control */

*/

*/
*/

/* this help list
/* clear the display

(. "COMMAND LIST \n");

= toggle word LENGTH ");
= set parity to NONE ");
"y
)i
)i
)i

= set parity to ODD ~
toggle error REPORTS"
= toggle STOP bits "
= QUIT "

0 n X O =zt
I

/* toggle word length */

(more)

211

OLYMPUS EX. 1010 - 221/1582

Part B: Programming for MS-DOS

212

121 case 'n' : /* set parity off
122 iobf [0} &=~ (m_PG + m_PE);

123 iocwr ();

124 break;

125

126 case 'o' : /* set parity odd
127 iobf [0] {= m_PG;

128 : iobf [0] &=~ m _PE;

129 : iocwr (); ’

130 break;

131 . .

132 case 'r' : /¥ toggle error reports
133 iobf [2 1 *= 1;

134 iocwr ();

135 break;

136

137 case 's' : /* toggle stop bits
138 iobf [0] "= m_XS;

139 iocwr ();

140 break;

141

142 case 'q' :

143 fclose (dvp):

144 : exit (0); /* break the loop, get out
145 : }

146 cputs (CLS); /* clear the display
147 center ("CURRENT COMDVR STATUS");

148 report (u, dvp }; /* report current status
149 }

150 }

151 =

152 : center (s) char * s; /* centers a string on CRT
153 { int i ;

154 for (1 =80 - strlen (s); 1 >0; i-=2)

155 putch (' ');

156 cputs (s);

157 cputs ("\r\n");

158 }

159

160 : iocwr () /* IOCTL Write to COMDVR
161 { rvs X ax = 0x4403;

162 rvs b d bx = fileno (dvp):

163 rvs X cx = 10;

164 rvs . x . dx = (int) iobf;

165 intdos (& rvs, & rvs);

166 }

167 :

168 : char * onoff (x) int x ;

169 { return (x 2 " ON" : " OFF");

170 }

1M

Figure 6-4. Continued.

The MS-DOS Encyclopedia

OLYMPUS EX

*/

*/

*/

*/

*/

*/

x/

*/

(more)

. 1010 - 222/1582

OLYMPUS EX. 1010 - 223/1582

Part B: Programming for MS-DOS

223 : cputs ("by XON and XOFF");
224 else

225 if (iobf [3} & 2

226 : cputs ("by RTS and CTS" ');
227 : else

228 : if (dobf [3] & 1)

229 : cputs ("by DTR and DSR");
230 : else :

231 cputs ("disabled" };

232 : cputs (".\r\n");

233 :)

234 :

235 : /%end of cdvutl.c */

Figure 6-4. Continued.

Although CDVUTL appears complicated, most of the complexity is concentrated in the
routines that map driver bit settings into on-screen display text. Each such mapping

requires several lines of source code to generate only a few words of the display report. -
Table 6-10 summarizes the functions found in this program.

Table 6-10. CDVUTL Program Functions. '

Lines Name Description
4245 main() Conventional entry point.
47-150 dispO Main dispatching loop.
152-158 center() Centers text on CRT.
160-166 iocwr() Writes control string to driver with IOCTL Write.
168-170 onoff). Returns pointer to ON or OFF.
172-233 report() Reads driver status and reports it on display.

The long list of #define operations at the start of the listing (lines 11 through 33) helps.
make the bitmapping comprehensible by assigning a symbolic name to each significant bit
in the four UART registers. '

The main() procedure of CDVUTL displays a banner line and then calls the dispatcher
- routine, disp(), to start operation. CDVUTL makes no use of either command-line parame-
ters or the environment, so the usual argument declarations are omitted.

Upon entry-to disp(), the first action is to establish the default driver as ASY1 by setting
u = 1 and opening ASY1 (line 50); the program then enters an apparent infinite loop
(lines 51 through 149).

With each repetition, the loop first prompts for a command (line 52) and then gets the
next keystroke and uses it to control a huge switch() statement (lines 53 through 145). If
no case matches the key pressed, the switch() statement does nothing; the program sim-
ply displays a report of all current conditions at the selected driver (lines 146 through 148)
and then closes the loop back to issue a new prompt and get another keystroke.

214 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 224/1582

Article 6: Interrupt-Driven Communications

However, if the key pressed matches one of the cases in the switch() statement, the corre-
sponding command is executed. The digits 7 (line 55) and 2 (line 61) select the driver to
be affected. The ? key (line 105) causes the list of valid command keys to be displayed.
The g key (line 142) causes the program to terminate by calling exit(0) and is the only
exit from the infinite loop. The other valid keys all change one or more bits in the IOCTL
control string to modify corresponding attributes of the driver and then send the string to
the driver by using the MS-DOS IOCTL Write function (Interrupt 21H Function 44H Sub-
function 03H) via function iocwr() (lines 160 through 166).

After the command is executed (except for the g command, which terminates operation
of CDVUTL and returns to MS-DOS command level, and the ? command, which displays
the command list), the report() function (lines 172 through 233) is called (at line 148) to
display all of the driver's attributes, including those just changed. This function issues an
IOCTL Read command (Interrupt 21H Function 44H Subfunction 02H, in lines 174 through
178) to get new status information into the control string and then uses a sequence of bit
filtering (lines 179 through 232) to translate the obtained status information into words for
display.

The special console /0 routines provided in Microsoft C libraries have been used exten-
sively in this routine. Other compilers may require changes in the names of such library
routines as getch or dosint as well as in the names of #include files (lines 6 through 9).

Each of the actual command sequences changes only a few bits in one of the 10 bytes of
the command string and then writes the string to the driver. A full-featured communica-
tions program might make several changes at one time — for example, switching from
7-bit, even parity, XON/XOFF flow control to 8-bit, no parity, without flow control to pre-
vent losing any bytes with values of 11H or 13H while performing a binary file transfer with
error-correcting protocol. In such a case, the program could make all required changes to
the control string before issuing a single IOCTL Write to put them into effect.

The Traditional Approach

Because the necessary device driver has never been a part of MS-DOS, most communica-
tions programs are written to provide and install their own port driver code and remove it
before returning to MS-DOS. The second sample program package in this article illustrates
this approach. Although the major part of the package is written in Microsoft C, three
assembly-language modules are required to provide the hardware interrupt service rou-
tines, the exception handler, and faster video display. They are discussed first.

The hardware ISR module

The first module is a handler to service UART interrupts. Code for this handler, including
routines to install it at entry and remove it on exit, appears in CH1.ASM, shown in Figure

6-5.

Section II: Programming in the MS-DOS Environment 215

OLYMPUS EX. 1010 - 225/1582

Part B: Programming for MS-DOS

O 20w N =

vl

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

38
39
40
41
42
43
44
v 45
46
47
48
49
50
51

37

; CH1.ASM -~ support file for CTERM.C terminal emulator
set up to work with COM2
for use with Microsoft C and SMALL model only...

;

;

_TEXT
~TEXT
_DATA
_DATA
CONST
CONST
-BS8S

_BSS

DGROUP

—TEXT

bport
getiv
putiv
imrmsk
oiv_o
oiv_s

bf_pp
bf_gp
bf_bg
bf_fi
in_bf

b_last

bd _dv

TITLE

segment
ends
segment
ends
segment
ends
segment
ends

GROUP
assume

segment

public

EQU
EQU
EQU
EQU
DW
DW

DW
DW
DW
DW

DB

EQU

DW
DW
DW
DW
DW
DW
DW
DW

_set_mdm proc

PUSH
MOV
PUSH

Figure 6-5. CH1.ASM

216 The MS-DOS Encyclopedia

CH1.ASM

byte public
byte public
byte public

byte public

CONST, _BSS, _DATA
cs:_TEXT, DS:DGROUP, ES:DGROUP, SS:DGROUP

_i_m,_rdmdm,_Send Byte,_wrtmdm,_set_mdm,_u.m

02F8h
350Bh
250Bh
00001000b
0

0

in_bf
in_bf
in_bf
b_last

512 DUP (?)

0417h
0300h
0180h
00COh
0060h
0030h
0018h
000Ch

near
BP
BP, SP
ES

'CODE'
'DATA'
'CONST'

'BSS'

; COM2 base address, use 03F8H for COMt ;
; COM2 vectors, use OCH for COM1

; COM2 mask, use 00000100b for COMI

; old int vector save space

; put pointer (last used)

; get pointer (next to use)
; start of buffer

; end of buffer

; input buffer

; address just past buffer end

; baud rate divisors (0=110 bps)

; code 1 = 150 bps
; code 2 = 300 bps
; code 3 = 600 bps
; code 4 = 1200 bps
; code 5 = 2400 bps
; code 6 = 4800 bps
; code 7 = 9600 bps

; replaces BIOS 'init' function

; establish stackframe pointer
; save registers

(more)

OLYMPUS EX. 1010 - 226/1582

Asticle 6: Interrupt-Driven Communications

52 : PUSH DS)

53 : MOV AX,CS ; point them to CODE segment

54 : MOV DS, AX

55 : MOV ES,AX

56 : MOV AH, [BP+4] ; get parameter passed by C

57 : MOV DX, BPORT+3 ; point to Line Control Reg

58 : MOV AL, 80h ; set DLAB bit (see text)

59 : ouT DX,AL

60 : MOV DL, AH ; shift param to BAUD field

61 : MOV CL,4

62 : ROL DL,CL

63 : AND DX, 00001110b ; mask out all other bits

64 : MOV DI,OFFSET bd_dv

65 : ADD DI,DX ; make pointer to true divisor

66 : MOV DX, BPORT+1 ; set to high byte first

67 : MOV AL, [DI+1]

68 : ouT DX,AL ; put high byte into UART

69 : MOV DX, BPORT ; then to low byte

70 MoV AL, [DI)

71 ouT DX,AL

72 » MOV AL, AH ; now use rest of parameter

73 : AND AL,00011111b ; to set Line Control Reg

74 ¢ MoV DX, BPORT+3)

75 ouT DX, AL

76 : MOV DX, BPORT+2 ; Interrupt Enable Register

77 : MOV AL, ; Receive type only

78 : ouT DX, AL '

79 : POP DS ; restore saved registers

80 : POP ES

81 : MOV SP, BP

82 : . POP BP

83 : RET

84 : _set_mdm endp

85 :

86 : _wrtmdm proc near ; write char to modem

87 : _Send Byte: ; name used by main program

88 : PUSH BP

89 : MOV BP, SP ; set up pointer and save regs

90 : PUSH ES

91 : PUSH DS

92 MOV AX,Cs

93 : MOV DS, AX

94 : MOV ES,AX

95 MOV DX,BPORT+4 ; establish DTR, RTS, and OUT2

96 : MOV AL, 0Bh

97 : ouT DX, AL

98 : MOV DX, BPORT+6 ; check for on line, CTS

99 : MOV BH, 30h

100 : CALL w_tmx

101 = JNZ w_out ; timed out

102 : MOV DX, BPORT+5 ; check for UART ready
Figure G-5. Continued. (more)

Section II: Programming in the MS-DOS Environment 217

OLYMPUS EX. 1010 - 227/1582

Part B: Programming for MS-DOS

103 : MOV BH, 20h

104 : CALL w_tmr

105 : JINZ w_out ; timed out

106 : MOV DX, BPORT ; send out to UART port

107 : MOV AL, [BP+4] ; get char passed from C
108 : ouT DX, AL .

109 : w_out: POP DS ; restore saved regs

110 : POP ES

111 ¢ MOV SP,BP

112 : POP BP

113 : RET

114 : _wrtmdm endp

115 @

116 : _rdmdm proc near ; reads byte from buffer
117 = PUSH BP

118 : MOV BP, SP ; set up ptr, save regs

119 : ’ PUSH ES

120 : PUSH DS

121 : MOV AX,CS

122 MOV DS, AX

123 : MOV ES, AX

124 : . MOV AX, OFFFFh ; set for EOF flag

125 MOV BX,bf_gp ; use "get" ptr /
126 : CMP BX,bf_pp ; compare to "put" :
127 Jz nochr ; same, empty

128 : INC BX ; else char available

129 : CMP BX,bf_fi ; at end of bfr?

130 : JNZ noend ; no

131 MOV BX,bf_bg ; yes, set to beg

132 : noend: MOV AL, [BX] ; get the char

133 : MOV bf_gp,BX ; update "get" ptr

134 : INC AH ; zero AH as flag

135 : nochr: POP DS ; restore regs

136 : POP ES

137 : MOV SP, BP

138 : POP BP

139 : RET

140 : _rdmdm endp

141 :

142 : w_tmr proc near

143 : MOV BL, 1 ; wait timer, double loop
144 : w_tml: SUB CX,CX ; set up inner loop

145 : w_tm2: 1IN AL, DX ; check for requested response
146 : MOV AH,AL ; save what came in

147 = AND AL,BH ; mask with desired bits
148 : CMP AL,BH ; then compare

149 : JzZ w_tm3 ; got it, return with 2F set
150 : LOOP w_tm2 ; else keep trying

151 : DEC BL ; until double loop expires
152 : JNZ w_tm1 ‘

153 : OR BH, BH ; timed out, return Nz
Figure 6-5. Continued.) (more)

218 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 228/1582

Article 6: Interrupt-Driven Communications

154 : w_tm3: RET
©155 : w_tmr endp

156
157 : ; hardware interrupt service routine
158 : rts.m: CLI
159 : PUSH DS ; save all regs
160 : PUSH AX
161 : PUSH BX
- 162 ¢ PUSH CcX
163 : PUSH DX
164 : PUSH cs ; set DS same as CS
165 POP DS
166 : MOV DX, BPORT ; grab the char from UART
167 : IN AL,DX
168 : : MOV BX,bf_pp ; use "put" ptr
169 : INC BX ; step to next slot
170 : CMP BX,bf_fi ; past end yet?
171 ¢ JINZ nofix . ;i no
172 MOV BX,bf_bg ; yes, set to begin
173 : nofix: MOV [BX],AL " ; put char in buffer
174 MOV bf.pp,BX ; update "put" ptr
S175 MOV AL,20h ; send EOI to 8259 chip
176 : our 20h, AL
177 = POP DX ; restore regs
178 : POP CcX
179 ' POP BX
180 : . POP AX
181 : POP DS
182 : IRET
183 :)
184 ¢ _im proc near ; install modem service
185 : PUSH BP
186 : MOV BP, SP ; save all regs used
187 : - PUSH ES
188 : PUSH DS .
189 : MOV AX,CS ; set DS,ES=CS
190 : MOV DS,AX
191 = MOV ES,AX
192 : MOV DX, BPORT+1 ; Interrupt Enable Reg
193 : MOV AL, OFh ; enable all ints now
194 : out DX, AL
195 :
196 : iml: MOV DX, BPORT+2 ; clear junk from UART
197 IN AL,DX ; read I1IID reg of UART
198 : MOV AH,AL ; save what came in
199 : TEST AL, ; anything pending?
200 : JNZ im5 . ; no, all clear now
201 : CMP AH, 0 ; yes, Modem Status?
202 : JINZ im2 ; no
203 : MOV DX, BPORT+6 ; yes, read MSR to clear
204 : N AL, DX '
Figure 6-5. Continued. (more)

Section II: Programming in the MS-DOS Environment 219

OLYMPUS EX. 1010 - 229/1582

Part B: Programming for MS-DOS

205 : im2: CMpP AH, 2 ; Transmit HR empty?

206 : JINZ im3 ; no (no action needed)
207 : im3: CMP AH, 4 ; Received Data Ready?

208 JINZ imd ; no

209 : MOV DX, BPORT ; yes, read it to clear
210 : IN AL,DX

211 : im4: CMP AH, 6 ; Line Status?

212 : JNZ im1 ; no, check for more

213 : MOV DX, BPORT+5 ; yes, read LSR to clear
214 : IN AL, DX

215 : JMP im1 ; then check for more

216 ’

217 ¢ im5: MOV DX, BPORT+4 ; set up working conditions
218 : MOV AL, OBh ; DTR, RTS, OUT2 bits

219 : ouT DX, AL

220 : MOV AL, ; enable RCV interrupt only
221 : MOV DX, BPORT+1

222 : our DX,AL

223 : MOV AX,GETIV ; get old int vector

224 : INT 21h

225 : MOV oiv_o,BX ; save for restoring later
226 : MOV oiv_s,ES

227 : MOV DX,OFFSET rts_m ; set in new one ,
228 : MOV AX,PUTIV

229 : INT 21h

230 : IN AL,21h ; now enable 8259 PIC

231 : ' AND AL,NOT IMRMSK

232 . ouT 21h,AL

233 : MOV AL, 20h ; then send out an EOI

234 : ouT 20h,AL

235 : POP DS ; restore regs

236 : POP ES

237 : MOV SP,BP

238 : POP BP

239 : RET

240 : _im endp

241

242 : _u.m proc near ; uninstall modem service
243 : PUSH BP

244 MOV BP, SP ; save registers

245 : IN AL,21h ; disable COM int in 8259
246 OR AL, IMRMSK . '

247 ouT 21h,AL

248 : PUSH ES

249 : PUSH DS

250 MOV AX,CS ; set same as CS

251 : . MOV DS, AX

252 MOV ES,RX

253 : MOV - AL,0 ; disable UART ints i
254 : MOV DX, BPORT+1

255 : ouT DX, AL
Figure 6-5. Continued. (more)

220 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 230/1582

Article 6: Interrupt-Driven Communications

256 :
" 257
258 :
259 :
260 :
261 :
262 :
263 :
264 :
265 : _u_m
266 :
267 : _TEXT
268
269 :

MOV DX, 0iv_0
MOV DS,o0iv_s
MOV AX,PUTIV
INT 21h

POP DS

POP ES

MOV SP, BP
POP BP

RET

endp

ends

END

Figure 6-5. Continued.

;- restore original vector

; restore registers

The routines in CHI are set up to work only with port COM2; to use them with COM1, the
three symbolic constants BPORT (base address), GETIV, and PUTIV must be changed to
match the COM1 values. Also, as presented, this code is for use with the Microsoft C small
memory model only; for use with other memory models, the C compiler manuals should
be consulted for making the necessary changes. See also PROGRAMMING IN THE
MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-DOs: Structure of an Application Program.

The parts of CH1 are listed in Table 6-11, as they occur in the listing. The leading under-
score that is part of the name for each of the six functions is supplied by the C compiler;
within the C program that calls the function, the underscore is omitted.

Table 6-11. CH1Module Functions.

Lines Name Description
1-26 Administrative details.
27-46 Data areas. '
48-84 . _set_mdm Initializes UART as specified by parameter passed
from C.
86-114 _wrtmdm Outputs character to UART. ,
87 _Send_Byte Entry point for use if flow control is added to system.
116-140 _rdmdm Gets character from buffer where ISR put it, or signals
that no character available.
142-155 w_tmr Wait timer; internal routine used to prevent infinite
wait in case of problems.
157-182 rits_m Hardware ISR,; installed by _i_m and removed by
—u_m.
184-240 _i_m Installs ISR, saving old interrupt vector.
242265 _u_m Uninstalls ISR, restoring saved interrupt vector.

Section II: Programming in the MS-DOS Environment 221

OLYMPUS EX. 1010 - 231/1582

Part B: Programming for MS-DOS

For simplest operation, the ISR used in this example (unlike the device driver) services
only the received-data interrupt; the other three types of IRQ are disabled at the UART.
Each time a byte is received by the UART, the ISR puts it into the buffer. The _rdmdm
code, when called by the C program, gets a byte from the buffer if one is available. If not,
—rdmdm returns the C EOF code (-1) to indicate that no byte can be obtained.

To send a byte, the C program can call either _Send_Byte or _wrtmdm; in the package

as shown, these are alternative names for the same routine. In the more complex program
from which this package was adapted, _Sernd_Byte is called when flow control is desired
and the flow-control routine calls _wrtmdm. To implement flow control, line 87 should be
deleted from CH1.ASM and a control function named Send_Byte() should be added to the
main C program. Flow-control tests must occur in Send_Byte(); _wrtmdm performs the
actual port interfacing. '

To set the modem baud rate, word length, and parity, _set_mdm is called from the C
program, with a setup parameter passed as an argument. The format of this parameter is
shown in Table 6-12 and is identical to the IBM BIOS Interrupt 14H Function 00H
(Initialization).

Table 6-12. set_mdm() Parameter Coding. a ,

Binary Meaning

000xxcoxx Set to 110 bps
001xxxxx Set to 150 bps
010xxxx%x Set to 300 bps
011xxxxx Set to 600 bps
1003xxxx Set to 1200 bps
101x0xx Set to 2400 bps
110xc0xx Set to 4800 bps

11 1xxxxx Set to 9600 bps
xxxx0xxx No parity
xxx01xxx ODD Parity
xxx1lxxx - EVEN Parity

xxxxx0xx 1 stop bit
XXXXXIXX 2 stop bits (1.5 if WL =5)

xxxxxx00 Word length = 5
xxxxxx01 Word length = 6
xxxxxx10 Word length = 7
xxxxxx11 Word length = 8

The CH1 code provides a 512-byte ring buffer for incoming data; the buffer size should be
adequate for reception at speeds up to 2400 bps without loss of data during scrolling,

222 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 232/1582

Article 6: Interrupt-Driven Communications

The exception-handler module

For the ISR handler of CH1 to be usable, an exception handler is needed to prevent return
of control to MS-DOS before _u_m restores the ISR vector to its original value. If a pro-
gram using this code returns to MS-DOS without calling __2._m, the system is virtually cer-
tain to crash when line noise causes a received-data interrupt and the ISR code is no longer
in memory.

A replacement exception handler (CH1A.ASM), including routines for installation, access,
and removal, is shown in Figure 6-6. Like the ISR, this module is designed to work with
Microsoft C (again, the small memory model only).

Note: This module does not provide for fatal disk errors; if one occurs, immediate restart-
ing is necessary. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusToMIZING
ms-Dos: Exception Handlers.

1o TITLE CH1A.ASM

2 :

3 : ; CH1A.ASM -- support file for CTERM.C terminal emulator
4 = this set of routines replaces Ctrl-C/Ctrl~BREAK
5 ; usage: void set_int (), rst_int();

6 : ; int broke(); /* boolean if BREAK */
7T for use with Microsoft C and SMALL model only...
8 :

9 : _TEXT segment byte public 'CODE'
10 : _TEXT ends
11 : _DATA segment byte public 'DATA'
12 : _DATA ends

13 : CONST segment byte public 'CONST'
14 : CONST ends

15 : _BSS segment byte public 'BSS'
16 : _BSS ends

17

18 : DGROUP GROUP CONST, -BSS, _DATA

19 @ ASSUME CS:_TEXT, DS:DGROUP, ES:DGROUP, SS:DGROUP
20 :
21 : _DATA SEGMENT BYTE PUBLIC 'DATA'
22
23 : OLDINT1B DD 0 ’ ; storage for original INT 1BH vector
24
25 : _DATA ENDS
26 :
27 : _TEXT SEGMENT
28
29 = PUBLIC _set_int,_rst_int,_broke
30
31 : myintib:
32 mov word ptr cs:brkflg,1Bh ; make it nonzero
33 : iret
Figure 6-6, CHIA.ASM. ‘ (more)

Section II: Programming in the MS-DOS Environment 223

OLYMPUS EX. 1010 - 233/1582

Part B: Programming for MS-DOS
34 :
35 : myint23:
36 : mov word ptr cs:brkflg,23h ; make it nonzero
37 : iret
38 :
39 : brkflg dw 0 ; flag that BREAK occurred
40 :
41 : _broke proc near ; returns 0 if no break
42 : Xor ax,ax ; prepare to reset flag -
43 : xchg ax,cs:brkflg ; 'return current flag value
44 : ret
45 : _broke endp
46 :
47 : _set_int proc near .
48 : mov ax,351bh ; get interrupt vector for 1BH
49 int 21h ; (don’t need to save for 23H)
50 : mov word ptr oldintlb,bx . i save offset in first word
51 ¢ mov word ptr oldintib+2,es ; save segment in second word
52
53 : push ds ; save our data segment
54 : mov ax,cs ; set DS to CS for now
55 : mov ds, ax
56 : lea dx,myint1ib ; DS:DX points to new routine
57 : mov ax,251bh ; set interrupt vector
58 : int 21h
59 : mov ax, cs ; set DS to CS for now
60 : mov ds, ax
61 : lea dx, myint23 ; DS:DX points to new routine
62 mov ax,2523h ; set interrupt vector
63 : int 21h
64 : pop ds ; restore data segment
65 : ret
66 : _set_int endp
67 :
68 : _rst_int proc near
69 : push ds ; save our data segment
70 : lds dx,o0ldint1b ; DS:DX points to original
A mov ax, 251bh ; set interrupt vector
72 : int 21h
73 : pop ds ; restore data segment
74 ret
75 : _rst_int endp
76 :
77 : _TEXT ends
78 :
79 : END
Figure 6-6. Continued.
The three functions in CHIA are _set__int, which saves the old vector value for Interrupt
1BH (ROM BIOS Control-Break) and then resets both that vector and the one for Interrupt
23H (Control-C Handler Address) to internal ISR code; __rst_int, which restores the -
224 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 234/1582

Article 6: Interrupt-Driven Communications

original value for the Interrupt 1BH vector; and _broke, which returns the present value of
an internal flag (and always clears the flag, just in case it had been set). The internal flag is
set to a nonzero value in response to either of the revectored interrupts and is tested from
the main C program via the _broke function.

The video display module

The final assembly-language module (CH2.ASM) used by the second package is shown

in Figure 6-7. This module provides convenient screen clearing and cursor positioning via
direct calls to the IBM BIOS, but this can be eliminated with minor rewriting of the rou-
tines that call its functions. In the original, more complex program (DT115.EXE, available
from DL6 in the CLMFORUM of CompuServe) from which CTERM was derived, this mod-
ule provided windowing capability in addition to improved display speed.

1 TITLE CH2.ASM

2

3 ; CH2.ASM -- support file for CTERM.C terminal emulator

4 : ; for use with Microsoft C and SMALL model only...

5 : '

6 : _TEXT segment byte public 'CODE'

7 : _TEXT ends

8 : _DATA ' segment byte public 'DATA'

9 : _DATA ends

10 : CONST segment byte public 'CONST'

11 CONST - ends

12 _BSS segment byte public 'BSS'

13 : _BSS ends

14

15 : DGROUP GROUP CONST, _BSS, _DATA

16 : assume CS:_TEXT, DS:DGROUP, ES:DGROUP, SS:DGROUP

17

18 : _TEXT segment

19 ¢

20 public __cls,._color,__deol,__i_v,_key,_wrchr, _wrpos

21 o

22 atrib DB 0 ; attribute

23 : _colr DB 0 ; coloxr

24 v_bas DW 0 ; video segment

25 v_ulc DW 0 ; upper left corner cursor

26 v_lrc DW 184Fh : ; lower right corner cursor

27 : v_col DW 0 ; current col/row

28 :

29 : _key proc near ; get keystroke

30 : PUSH BP

31 MOV AH,1 ; check status via BIOS

32 INT 16h

33 MOV AX, OFFFFh

34 Jz key00 ; none ready, return EOF

35 MOV AH, 0 ; have one, read via BIOS
Figure 6-7. CH2.ASM. (more)

Section II: Programming in the MS-DOS Environment 225

OLYMPUS EX. 1010 - 235/1582

Part B: Programming for MS-DOS

36 : INT
37 : key00: POP
38 : RET
39 : _key endp
40 :

41 : __wrchr proc
42 PUSH
43 : MOV
44 : MOV
45 : CMP
46 : JNB
47 CMP
48 : JNZ
49 : DEC
50 : MOV
51 ¢ CMP
52 : JB
53 : JMP
54 :

55 : notbs: CMP
56 : JINZ
57 : MOV
58 : ADD
59 : AND
60 : MOV
61 : CMP
62 : : JA
63 : JMP
64 :

65 : notht: CMP
66 : JNZ
67 : MOV
68 : INC
69 : CMP
70 : JBE
71 CALL
72 : MoV
73 : nohtl: MOV
74 : JMP
75 :

76 : notlf: CMP
77 : JINZ
78 : CALL
79 : JMP
80 :

81 : ck—_cr: CMP
82 : JNZ
83 : MOV
84 : MOV
85 : JMP
86 :

Figure 6-7. Continued.

226 The MS-DOS Encyclopedia

16h

"BP

near
BP

BP, SP

AL, [BP+4]
AL, !
prchr ; printing char, go do it
AL, 8

notbs

BYTE PTR v_col ; process backspace
AL,byte ptr v_col

AL,byte ptr v_ulc

nxt_c ; step to next column
norml

; get char passed by C

AL, 9

notht

AL,byte ptr v_col ; process HTAB
AL, 8

AL, OF8h

byte ptr v_col,AL

AL,byte ptr v_lrc

nxt_c

SHORT norml

AL, 0Ah

notlf

AL,byte ptr v_col+1
AL

AL,byte ptr v_lrc+1
noht1

scrol

AL,byte ptr v_lrc+i
byte ptr v_col+1,AL
SHORT norml

; process linefeed

AL, OCh

ck_cr

—cls ; process formfeed
SHORT ignor ‘

AL, ODh
ignor ; ignore all other CTL chars
AL,byte ptr v_ulc ; process CR

byte ptr v_col,AL
SHORT norml

OLYMPUS EX. 1010 - 236/1582

(more)

Article 6: Interrupt-Driven Communications

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
M
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

prchr:

nxt_c:

noxml:
ignor:

—i-v

—_WIPOS

MOV.
PUSH
XOR
MOV
PUSH
MOV
PUSH
CALL
MOV
INC
MOV
CMP
JLE
MOV
PUSH
CALL
POP
MOV
PUSH
CALL
POP
CALL
MOV
POP
RET
endp

proc
PUSH
MOV
MOV
MOV
MOV
POP
RET
endp

proc
PUSH
MOV
MOV
MOV
MOV
MOV
MOV
PUSH
INT
POP
MOV
MOV
POP

Figure 6-7. Continued.

AH, _colr ;
AX
AH, AH

process printing char

AL,byte ptr v_col+]

AX

AL,byte ptr v_col
AX

wrtvr

SP,BP

BYTE PTR v_col ;
AL,byte ptr v_col
AL,byte ptr v_lrc
norml

AL, 0Dh i
AX

——wrchr

AX

AL, OAh

AX

__wrchr

AX

set_cur

SP,BP

BP

near ;
BP

BP, SP
AX,0B00Oh
v_bas,AX ;
SP,BP

BP

near ;
BP

BP, SP

DH, [BP+4] H
DL, [BP+6] o
v_col,DX ;
BH,atrib ;
AH, 2

BP

10h

BP

AX,v_col H
SP,BP

BP

advance to next column

went off end, do CR/LF

establish video base segment

mono, B800 for CGA
could be made automatic

set cursor position

row from C program
col from C program
cursor position
attribute

return cursor position

(more)

Section II: Programming in the MS-DOS Environment 227

OLYMPUS EX. 1010 - 237/1582

Part B: Programming for MS-DOS

138
139
140
141

142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188

__wrpos

set_cur

set_cur

—color

—-color

scrol

scrol

—cls

RET
endp

proc
PUSH
MOV
MOV
MOV
MOV
PUSH
INT
POP
MOV
MOV
POP
RET
endp

proc
PUSH
MOV
MOV
MOV
MOV
SHL
AND
OR
MOV
XOR
MOV
POP
RET
endp

proc
PUSH
MOV
MOV
MoV
MOV
MOV
MOV
PUSH
INT
POP
MOV
POP
RET
endp

proc

Figure 6-7. Continued.

228 The MS-DOS Encyclopedia

near
BP

BP, SP
DX,v.col
BH,atrib
AH, 2

BP

10h

BP
AX,v_col
SP, BP

BP

near
BP

BP, SP

AH, [BP+6]
AL, [BP+4])
CX,4
AH,CL
AL, OFh
AL,AH
_colr,AL
AH,AH
Sp, BP

BP

near
BP

BP, SP
AL, 1
CX,v_ulc
DX,v_lrc
BH, _colr
AH, 6

BP

10h

BP

sp,BP

.BP

near

;

7

set cursor to v_col

use where v_col says

—color (fg, bg)

background from C
foreground from C /

pack up into 1 byte

store for handler's use

scroll CRT up by one line

count of lines to scroll

use BIOS

clear CRT

(more)

OLYMPUS EX. 1010 - 238/1582

Article 6: Interrupt-Driven Communications

189 : PUSH BP
190 : MOV BP, SP
191 : MOV AL, 0 ; flags CLS to BIOS
{ 192 : MOV CX,v_ulc
i 193 : MOV, v_col,CX ; set to HOME
{ 194 : MOV DX, v_lrc
{ 195 : MOV BH, _colr
i 196 : MOV AH, 6
197 : PUSH BP
. 198 INT 10h ; use BIOS scroll up
; 199 : POP BP
| 200 : CALL set_cur ; cursor to HOME
! 201 : MOV SP,BP
' 202 : POP BP
203 : RET
204 : —cls endp
205 :
206 : ——deol proc near ; delete to end of line
207 : PUSH BP
208 : MOV BP, SP
209 : MOV AL,'
210 : MOV AH, _colr ; set up blanks
f 211 : PUSH - AX
: 212 MOV AL,byte ptr v_col+1
| 213 : XOR AH, AH ; set up row value
214 : PUSH AX
215 : MOV AL,byte ptr v_col
216 :
217 : deoll: CMP AL,byte ptr v_lrc
218 JA deol2 ; at RH edge
219 : PUSH AX ; current location
220 : CALL wrtvr ; write a blank
221 POP AX
222 : INC AL ; next column
223 JMP deol? ; do it again
224 : ’
225 : deol2: MOV AX,v.col ; return cursor position
226 : MOV SP,BP
227 = POP BP
228 : RET
229 : —deol endp
230 :
231 ; wrtvr proc near ; write video RAM (col, row, char/atr)
232 : PUSH BP
233 : MOV BP, SP ; set up arg ptr
234 : MOV DL, {BP+4] ; column
235 : MOV DH, [BP+6) ; row
236 : MOV BX, [BP+8] ; char/atr
237 : MOV AL, 80 ; calc offset
238 : MUL DH
239 : XOR DH,DH
Figure 6-7. Continued. : (more)
Section II: Programming in the MS-DOS Environment 229

OLYMPUS EX. 1010 - 239/1582

Part B: Programming for MS-DOS

240 : ADD
2471 ADD
242 : PUSH
243 : MoV
244 : MOV
245 : MOV
246 : MOV
247 : STOSW
248 : POP
249 : MOV
250 : POP
251 : RET
252 : wrtvr endp
253 :

254 : _TEXT ends
255 :

256 : END

Figure 6-7. Continued.

The sample smarter terminal emulator: CTERM.C

Given the interrupt handler (CH1), exception handler (CH1A), and video handler (CH2), a ,
simple terminal emulation program (CTERM.C) can be presented. The major functions of
the program are written in Microsoft C; the listing is shown in Figure 6-8. :

AX,DX
AX,AX
ES
DI,AX
AX,v_bas
ES,AX
AX,BX

ES
SP,BP
BP

adjust bytes to words

save seg

set up segment

; get the data
; put on screen
restore regs

reg

1 : /* Terminal Emulator

2 * Jim Kyle, 1987

3 *

4 ¢ ok Uses files CH1, CH'A, and CH2 for MASM support...

S : */ ’ '

6 .

7 : #include <stdio.h>

8 : #include <conio.h> /* special console i/o */
9 : #include <stdlib.h> /* misc definitions */
10 : #include <dos.h> /* defines intdos () */
11 : #include <string.h>

12 : #define BRK 'C'-'@' /* control characters */
13 : #define ESC '['~'@'

14 : #define XON 'Q'~'@'

15 : #define XOFF 'S'-'@!

16 '

17 : #define True 1

18 : #define False -0

19
20 : #define Is_Function_Key (C) == ESC)
21
22 : static char capbfr [4096]; /* capture buffer */ .

23 : static int wh,
24 wS;

Figure 6-8. CTERM.C.

230 The MS-DOS Encyclopedia

(more)

OLYMPUS EX. 1010 - 240/1582

Article 6; Interrupt-Driven Communications

25 :)
26 : static int I,

27 : waitchr = 0,

28 : vflag = False,

29 : capbp,

30 : capbc,

31 : Chr

32 : Want_7_Bit = True,

33 : ESC_Seg_State = 0; /* escape sequence state variable */
34

35 : int _ex ,

36 : ~CYr

37 : _atr = 0x07, /* white on black */
38 : —pag = 0,

39 oldtop = 0,

40 : oldbot = 0x184f;

41 :

42 : FILE * in_file = NULL; /* start with keyboard input */
43 : FILE * cap-.file = NULL;

44 :

45 : #include "cterm.h" /* external declarations, etc. */
46

47 : int Wants_To_Abort () /* checks for interrupt of script */
48 : { return broke {():

49 : }

50 : void

51

52 : main (argc, argv) int argc ; /* main routine */

53 : char * argv [];
54 : { char * cp,

55 * addext ();

56 if (argc > 1) /* check for script filename */
57 in_file = fopen (addext (argv [1], ".SCR"), "r");

58 : if (- argc > 2) /* check for capture filename */
59 : cap_file = fopen (addext (argv [2 1, ".CAP"), "w");

60 : set_int (); " /* install CH1 module */
61 Set_vid (); ’ /* get video setup */
62 : cls (O; /* clear the screen */
63 : cputs ("Terminal Emulator™); /# tell who's working */
64 : cputs (-"\r\n< ESC for local commands >\r\n\n");

65 : Want_7_Bit = True;

66 : ESC_Seg_State = 0;

67 Init_Comm (); ' /* set up drivers,.etc. #/"
68 : while (1) /* main loop */
69 : { if ((Ch = kb_file ()) > 0) /* check local */
70 : { if (Is_Function_Key (Ch))

7 { if (docmd () < 0) /* command */
72 : break;

73 }

74 = . else

75 Send_Byte (Ch & Ox7F); /* else send it */

Figure 6-8. Continued. (more)

Section II: Programming in the MS-DOS Environment 231

OLYMPUS EX. 1010 - 241/1582

Part B: Programming for MS-DOS '
76 }
77 if ((Ch = Read Modem ()) >= 0) /* check remote */
78 { if (Want_7_Bit)
79 Ch &= 0x7F; /* trim off high bit */
80 : switch (ESC_Seqg_State) /* state machine */
81 : {
82 : case 0 : /* no Esc sequence */
83 : switch (Ch)
84 : {
85 : case ESC : . /* Esc char received */
86 : ESC_Seq._State = 1;
87 : break;
88 :
89 : - default
90 : if (Ch == waitchr) /* wait if required */
91 : waitchr = 0;
92 : if (Ch == 12) /% clear screen on FF */
93 : cls (O; '
94 else)
95 if (Ch != 127) /% ignore rubouts */
96 : { putchx ((char) Ch); /* handle all others */
97 put_cap ((char) Ch);
98 : }
99 : }
100 : break; -
101
102 : case 1 : /* ESC -- process any escape sequences here * /
103 : switch (Ch)
104 : ' {
105 : case 'A' : /* VT52 up */
106 : H /* nothing but stubs here */
107 : ESC_Seq_State = 0;
108 : break;
109 :
110 : case 'B' : /* VT52 down */
111 ;
112 : ESC_Seqg._State = 0;
113 break;
114 :
115 : case 'C' : /% VT52 left */
116 ;
117 ESC_Seq_State = 0;
118 : break;
119 :
120 : case 'D' : /* VT52 right */
121 ;
122 ESC_Seqg_State = 0;
123 : break;
124 -
125 = case 'E' : /* VT52 Erase CRT */
126 : cls (); /* actually do this one */
Figure 6-8. Continued. (more)
232 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 242/1582

Article 6: Interrupt-Driven Communications

127 = ; ESC_Seq-State = 0;
© 128 ¢ break;

129

130 : case 'H' : /* VT52 home cursor %/
131 @ . locate (0, 0);

132 : ESC_Seq_State = .0;

133 : break;

134 :

135 : case 'j' : /* VI52 Erase to EOS */
136 : deos ():

137 : ESC_Seg_State = 0;

138 : break;

139 :

140 : case "[' : /* ANSI.SYS - VI100 sequence */
141 : ESC_Seg_State = 2;

142 : break;

143 :

144 : default

145 : putchx (ESC); /* pass thru all others */
146 : putchx ((char) Ch);

147 ESC_Seq-State = 0;

148 : }

149 : break;

150 : .

151 : case 2 : /* BNSI 3.64 decoder */
152 : ESC_Seq_State = 0; : /* not implemented */
153 : }

154 : } .

155 : if (broke ()) /* check CH1A handlers */
156 : { cputs ("\r\n***BREAK***\r\n");

157 : break;

158 : }

159 : } /* end of main loop */
160 : if (cap_file) /* save any capture */
161 cap_flush ();

162 Term_Comm (); ’ /* restore when done */
163 : rst_int (); /* restore break handlers */
164 : exit (0); /* be nice to MS-DOS */
165 : }

166 :

167 : doecmd () /* local command shell */

168 : { FILE * getfil ();

169 : int wp;

170 : wp = True;

171 @ if (! in_file |} vflag)

172 cputs ("\r\n\tCommand: "); /* ask for command */

173 else

174 : wp = False;

175 : Ch = toupper (kbd_wait ()); /* get response : */

176 = if (wp)

177 putchx ((char) Ch };

Figure 6-8. Continued. (more)

Section IT: Programming in the MS-DOS Environment 233

OLYMPUS EX. 1010 - 243/1582

Part B: Programming for MS-DOS

234

178 switch (Ch) /* and act on it
179 : {

180 : case 'S’

181 @ if (wp)

182 : cputs ("low speed\r\n");

183 : Set_Baud (300);

184 : break;

185 :

186 : case 'D'

187 : if (wp) :

188 : cputs ("elay (1-9 sec): "):

189 : ‘Ch = kbd_wait ();

190 : if (wp)

191 : putchx ((char) Ch);

192 : Delay (1000 * (Ch - '0'));

193 : if (wp)

194 : putchx ('\n');

195 break; -

196 :

197 : case 'E’

198 ¢ if (wp)

199 : cputs ("ven Parity\r\n");

200 : Set_Parity (2):

201 : break;

202

203 : case 'F'

204 : if (wp)

205 : cputs ("ast speed\r\n");

206 : Set.Baud (1200);

207 : break;

208 :

209 : case 'H'

210 : if (wp)

211 { cputs ("\r\n\tVALID COMMANDS:\r\n");
212 : cputs { "\tD = delay 0-9 seconds.\r\n" };
213 cputs ("\tE = even parity.\r\n");

214 cputs ("\tF = (fast) 1200-baud.\r\n");
215 : cputs ("\tN = no parity.\r\n");

216 : . cputs ("\tO = odd parity.\r\n" };

217 cputs ("\tQ = quit, return to DOS.\r\n");
218 cputs ("\tR = reset modem.\r\n");

219 : cputs ("\tS = (slow) 300-baud.\r\n");
220 : cputs ("\tU = use script file.\r\n"):
221 : cputs ("\tV = verify file input.\r\n");
222 cputs ("\tW = wait for char.");

223 : }

224 : break;

225 :

226 : case 'N'

227 - if (wp)

Figure 6-8. Continued.

The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 244/1582

*/

(more)

Article 6: Interrupt-Driven Communications

\

228 cputs ("o Parity\r\n");

229 Set_Parity (1);

230 break;

231

232 case '0'

233 if (wp)

234 cputs ("dd Parity\r\n");

235 Set_Parity (3);

236 break;

237

238 case 'R'

239 if (wp)

240 cputs ("ESET Comm Port\r\n");
241 Init_Comm ();

242 break;

243

244 case 'Q'

245 if (wp)

246 cputs { " = QUIT Command\r\n");
247 Ch=(-1);

248 break;

249

250 case 'U'

251 if (in_file && ! vflag)

252 putchx ('U'):

253 cputs ("se file: ");

254 getfil ();

255 cputs ("File ");

256 cputs (in_file ? "Open\r\n" : "Bad\r\n");
257 waitchr = 0;

258 break;

259

260 case 'V’

261 if (wp) ‘
262 { cputs ("erify flag toggled "):
263 cputs (vflag ? "OFF\r\n" : "ON\r\n");
264 }

265 vflag = vflag ? False : True;

266 break;

267

268 case 'W'

269 if (wp)

270 cputs ("ait for: <");

271 waitchr = kbd_wait ();

272 if (waitchxr == '"")

273 waitchr = 0;

274 if (wp)

275 { if (waitchr

276 putchx ((char) waitchr);
277 else

278 cputs ("no wait");
Figure 6-8. Continued. (more)

Section II: Programming in the MS-DOS Environment 235

OLYMPUS EX. 1010 - 245/1582

Part B: Programming for MS-DOS

236

279 : cputs (">\r\n");

280 : }

281 : break;

282 :

283 : default

284 : if (wp)

285 : { cputs ("Don’t know ");

286 putchx ((char) Ch);

287 cputs ("\r\nUse 'H' command for Help.\r\n");

288 : : }

289 : Ch = "'2";

290 : }

291 : if (wp) /* if window open....
292 : { cputs ("\r\n[any keyl\r");

293 : while (Read Keyboard () == EOF) /* wait for response
294 ;

295 : }

296 : return Ch ;

297 : 1}

298 :

299 : kbd.wait () /* wait for input
300 : { int c ;

301 : while ((¢ = kb_file ()) == (= 1))

302 : ;

303 : return ¢ & 255;

304 : }

305 :

306 : kb_file () /* input from kb or file
307 : { int c ;

308 : if (in_file) /% USING SCRIPT

309 : { ¢ = Wants_To_Abort (); /% use first as flag
310 : if (waitchr && ! c)

311 c=(=-1); /* then for char

312 else '

313 : if (¢ it (c =getc (in_file)) == EOF || ¢ == 26)
314 : { fclose (in_file);

315 cputs ("\r\nScript File Closed\r\n");

316 : in_file = NULL;

317 : waitchr = 0;

318 : c=(-1);

319 : }

320 : else

321 if (¢ == "\n') /* ignore LFs in file
322 : c={(-1);

323 : if (== "\\") /* process Esc sequence
*324 : c =esc ();

325 : if (vflag && ¢ != (- 1)) /* verify file char
326 : { putchx ("{');

327 : putchx ((char) c);

328 : putchx ("}');

329 : }

Figure 6-8. Continued.

The MS-DOS Encyclopedia

OLYMPUS EX.

*/

*/

*/

*/
*/

*/

*/

*/

(more)

1010 - 246/1582

Article 6: Interrupt-Driven Communications

330
331

333
334
335
336
337
338
339
340
341

359

360

361
362
363
364
365
366
367
368

369 :

370
371
372
373
374
375
376
377
378

379 :

380

}

else

¢ = Read _Keyboard ();

return (c);

: esc ()

{ int c ; .
c = getc (in_file);
switch (toupper (¢))
{

case 'E'
¢ = ESC;
break;
case 'N'
c=-"\n';
break;
case 'R’
c = "\r';
break;
case 'T'
c = "\t';
break;
case '™!
c = getc (in_file
break;

}

return (¢);

: FILE * getfil ()
: { char fnm [20];

getnam (fnm, 15);
if (! (strchr (fnm,
strcat (fnm, ".SCR"

/* USING CONSOLE */

/* if not using file */

/* script translator */

/* control chars in file */
) & 31;

/* get the name */

L))
)

return (in_file = fopen (fnm, "r"));

: void getnam (b, s } char * b;

int s ;
{ while (s -- > 0)
. { if ((* b = (char)
putchx (* b ++)
else
break ;
}
putchx ('\n');

Figure 6-8. Continued.

/* take input to buffer #/

kbdwait ()) != "\r')

I

(more)

Section I: Programming in the MS-DOS Environment 237

OLYMPUS EX. 1010 - 247/1582

Part B: Programming for MS-DOS

238

381
382
383
384
385
386
387
388
389
390
391
392

393 :

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

char * addext (b,
e) char * b,

* e;
{ static char bfr [20];
if (strchr (b, '.'))

return (b):
strcpy (bfr, b);
strcat (bfr, e);
return (bfr);

void put_cap (¢) char c ;
{ if (cap_file && c != 13)
fputc (¢, cap_file):

void cap-—flush ()
{ if (cap-file)
{ fclose (cap_file);
cap—file = NULL;

cputs ("\r\nCapture file closed\r\n");

/* TIMER SUPPORT STUFF (IBMPC/MSDOS) */

static long timx;
static union REGS rgv ;

long getmr ()
{ long now ;
rgv.x.ax = 0x2c00;
intdos (& rgv, & rgv);
now = rgv.h.ch;
now *= 60L;
now += rgv.h.cl;
now *= 60L;
now += rgv.h.dh;
now *= 100L;
now += rgv.h.dl;
return (10L * now);

void Delay (n) int n ;
¢ { long wakeup ;
wakeup = getmr () + (long)
while (getmr () < wakeup)

’

Figure 6-8. Continued.

The MS-DOS Encyclopedia

n;

/* timeout register */
/* msec since midnite */
/* hours */
/* to minutes */
/% plus min */
/* to seconds */
/% plus sec */
/* to 1/100 */
/* plus 1/100 */
/* msec value */
/* sleep for n msec */
/* wakeup time */ i
/* now sleep */

/* add default EXTension */
/* strip out CRs */
/* use MS-DOS buffering */
/* end Capture mode x/

(more)

OLYMPUS EX. 1010 - 248/1582

Article 6: Interrupt-Driven Communications

432
433
434

436
437
438
439
440
441
442
443
444

445
446 :

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

435 :

void Start_Timer (n) int n ;

{ timr = getmr () + (long) n * 1000L;

}

/* set timeout for n sec */

Timer_Expired () /* if timeout return 1 else return 0 */

{ return (getmr () > timr);

}

Set_vid ()

{ —iv (); /* initialize video */
return 0;

void locate (row, col) int row ,
col;
{ —cy = row % 25;
_cx = col % 80;
. —wrpos (row, col);

void deol ()
{ —deol ();
y

void deos ()
{ deol (); .
if (—cy < 24)
{ rgv.x.ax 0x0600;
rgv.x.bx = (_atr << 8);
rgv.x.cx = (_cy + 1) << 8;
rgv.x.dx = 0x184F;
int86 (0x10, & rgv, & rgv);
}

locate (_cy, —cx };

void cls ()
{ —els O;
}

void cursor (yn) int yn ;

{ rgv.x.cx = yn ? 0x0607 : 0x2607;
rgv.x.ax = 0x0100;
int86 (0x10, & rgv, & rgv);

void revvid (yn) int yn ;
{ if (yn)
—atr = _color (8, 7);

Figure 6-8. Continued.

/* use ML from CH2.ASM */
/* use ML from CH2.ASM */
/* if not last, clear */
/% use ML %/
/* ON/OFF) */
/* black on white */

(more)

Section II: Programming in the MS-DOS Environment 239

OLYMPUS EX. 1010 - 249/1582

240

Part B: Programming for MS-DOS !
483 : else
484 : —atr = _color (15, 0); /* white on black */
485 :)
486
487 : putchx (¢) char ¢ ; /* put char to CRT */
488 : { if (¢ == '\n')
489 : putch ("\xr');
490 : putch (¢);
491 : return ¢ ;
492 :)
493 :
494 : Read_Keyboard () /* get keyboard character
495 : . returns -1 if none present */
496 : { int ¢ ;
497 : if (kbhit ()) /* no char at all */
498 : return (getch ());
499 : return (EOF);
500 : }
501 :
502 : /=% MODEM SUPPORT */
503 : static char mparm,
504 : wrk [80);
505
506 : void Init_Comm () /* initialize comm port stuff */
507 : { static int ft = 0; /* firstime flag */
508 : if (ft ++ == 0)
509 @ im ();
510 : Set_Parity (1); /* 8,N,1 */
511 ¢ Set_Baud (1200): /* 1200 baud */
512 : } '
513 :
514 : #define B1200 0x80 /* baudrate codes */
515 : #define B300 0x40
516
517 : Set.Baud (n) int n ; /* n is baud rate */
518 : { if {(n == 300) ’
519 : mparm = (mparm & O0x1F) + B300;
520 : else
521 : if (n == 1200)
522 : mparm = (mparm & Ox1F) + B1200;
523 : else
524 : return 0; /* invalid speed . */
525 : sprintf (wrk, "Baud rate %d\r\n", n);
526 ¢ cputs (wrk);
527 : set_mdm (mparm);
-528 : return n ;
529 :)
530 :
531 : #define PAREVN 0x18 /* MCR bits for commands */ :
532 : #define PARODD 0x10
533 : #define PAROFF 0x00
Figure 6-8. Continued. (more)
The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 250/1582

Article 6: Interrupt-Driven Communications

534
535
536
537

539

541
542

543 :

544

545 :
546 :

547

548 :
549 :
550 :

551

552 :
553 :

554

555 :
556 :

557

558 :

559
560
561
562

563 :

564

565 :
566 :

567
568

571
572

: #define STOP2 0x40

#define WORD8 0x03

: #define WORD7 0x02
: #define WORD6 0x01
538 : .
: Set_Parity (n) int n ;
540 :

{ static int mmode;

if (n==1)
mmode = {(WORD8 | PAROFF);
else
if ((n == 2)
mmode = (WORD7 | PAREVN);
else
if ((n == 3)
mmode = { WORD7 , PARODD);
else
return 0;
mparm = (mparm & OxEQ) + mmode;

sprintf (wrk, "Parity is %s\r\n"

cputs (wrk);
set_mdm { mparm);
return n ;

: Write_Modem (¢) char c ;

{ wretmdm (¢);

{ um ();

}

/* end of cterm.c */

Figure 6-8. Continued.

/* n is parity code */
/* off */
/* on and even */
/* on and odd */
/* invalid code */
== 1 2 "OFF"
== 2 ? "EVEN" : "ODD")));

/* return 1 if ok, else 0 */

return (1); /* never any error */
}
: Read_Modem ()
{ return (rdmdm ()); /* from int bfr %/
} : .

: void Term_Comm () /* uninstall comm port drivers o/
569 : ’
570 :

CTERM features file-capture capabilities, a simple yet effective script language, and a
number of stub (that is, incompletely implemented) actions, such as emulation of the VT52
and VT100 series terminals, indicating various directions in which it can be developed.

The names of a script file and a capture file can be passed to CTERM in the command line.
If no filename extensions are included, the default for the script file is .SCR and that for the
capture file is .CAP. If extensions are given, they override the default values. The capture
feature can be invoked only if a filename is supplied in the command line, but a script file
can be called at any time via the Esc command sequence, and one script file can call for
another with the same feature.

Section 1I: Programming in the MS-DOS Environment 241

OLYMPUS EX. 1010 - 251/1582

Part B: Programming for MS-DOS

242

The functions included in CTERM.C are listed and summarized in Table 6-13.

Table 6-13. CTERM.C Functions.

Lines Name Description

1-5 Program documentation.

7-11 Include files.

12-20 Definitions.

22-43 Global data areas.

45 External prototype declaration.

47-49 Wants_To_Abort() Checks for Ctrl-Break or Ctrl-C being pressed.

52-165 main() Main program loop; includes modem engine and
sequential state machine to decode remote
commands.

167-297 docmd() Gets, interprets, and performs local (console or
script) command.

299-304 kbd_wait(O) Wiaits for input from console or script file.

306—334 kb_file()

336-362 esc()
364-370 getfilO)

372-382 getnam()
384-393 addext()
395-398 put_cap()
400-406 cap_ flush()
408-411

413-425 getmr()
427432 Delay()
434-436 Start_Timer()
438-440 Timer_ Expired()
442445 Set_Vid()
447-452 locate()
454-456 deol()
458-468 deos()
470472 clsO

474478 cursor()
480-485 rewid()

487-492 putchx()

The MS-DOS Encyclopedia

Gets keystroke from console or script; returns EOF
if no character available.

Translates script escape sequence.

Gets name of script file and opens the file.

Gets string from console or script into designated
buffer. :

Checks buffer for extension; adds one if none
given.

Writes character to capture file if capture in effect.

Closes capture file and terminates capture mode if
capture in effect. '

Timer data locations.

Returns time since midnight, in milliseconds.

Sleeps 7 milliseconds.

Sets timer for # seconds.

Checks timer versus clock.

Initializes video data.

Positions cursor on display.

Deletes to end of line.

Deletes to end of screen.

Clears screen.

Turns cursor on or off.

Toggles inverse/normal video display attributes.

Writes char to display using putch() (Microsoft C
library).

(more)

OLYMPUS EX. 1010 - 252/1582

Article 6: Interrupt-Driven Communications

Table 6-13. Continued.

Lines Name Description

494-500 Read_Keyboard() Gets keystroke from keyboard.

502-504 Modem data areas.

506-512 Init_Comm(Q) Installs ISR and so forth and initializes modem.
514-515 Baud-rate definitions.

517-529 Set_ Baud() Changes bps rate of UART.

531-537 Parity, WL definitions.

539-557 Set__ Parity() Establishes UART parity mode.

559-562 Write_Modem() Sends character to UART.

564—566 Read_ Modem() Gets character from ISR’s buffer.

568-570 Term_Comm() Uninstalls ISR and so forth and restores original

vectors.

"For communication with the console, CTERM uses the special Microsoft C library func-
tions defined by CONIO.H, augmented with the functions in the CH2.ASM handler. Much
of the code may require editing if used with other compilers. CTERM also uses the func-
tion prototype file CTERM.H, listed in Figure 6-9, to optimize function calling within the

program.

/* CTERM.H - function prototypes for CTERM.C */
int Wants_To_Abort (veid);

void main(int ,
int docmd(void)

char #* *);

i

int kbd-wait (void):
int kb_file(void);

int esc(void);

FILE #*getfil (void);

void getnam{char *,int);-
char #*addext (char #*,char ¥*);
void put_cap(char);

void cap._flush(void);

long getmr (void);

void Delay (int

)i

void Start_Timer (int);

int Timer_Expired(void);
int Set.Vvid(void);

void locate(int ,int);

void deol (void)
void deos (void)
void cls(void);

’

’

void cursor(int);
void revvid{int);
int putchx(char);

Figure 6-9. CTERM.H.

(more)

Section II: Programming in the MS-DOS Environment 243

OLYMPUS EX. 1010 - 253/1582

Part B: Programming for MS-DOS

244

© void u_m(void);

int Read Keyboard(void);
void Init_Comm(void);
int Set_Baud(int);

int Set_Parity(int);
int Write_Modem(char };
int Read Modem(void);
void Term_Comm(void);

/% CH1.ASM functions - modem interfacing */
void i_m(void)};

void set_mdm(int);

void wrtmdm{int);

void Send Byte(int);

int rdmdm(void);

/* CH1A.ASM functions - exception handlers #*/
void set—_int (void);

void rst_int (void):

int broke (void);

/% CH2.ASM functions - video interfacing */

void _i_v(void); .
int _wrpos(int, int); ‘
void _deol (void);

void _cls(void);

int _color{int, int);

Figure 6-9. Continued.

Program execution begins at the entry to main(), line 52. CTERM first checks (lines 56
through 59) whether any filenames were passed in the command line; if they were,
CTERM opens the corresponding files. Next, the program installs the exception handler
(line 60), initializes the video handler (line 61), clears the display (line 62), and announces
its presence (lines 63 and 64). The serial driver is installed and initialized to 1200 bps and
no parity (lines 65 through 67), and the program enters its main modem-engine loop
(lines 68 through 159).

This loop is functionally the same as that used in ENGINE, but it has been extended to

detect an Esc from the keyboard as signalling the start of a local command sequence (lines
70 through 73) and to include a state-machine technique (lines 80 through 153) to recog-
nize incoming escape sequences, such as the VI'52 or VT100 codes. To specify a local com- l
mand from the keyboard, press the Escape (Esc) key, then the first letter of the local
command desired. After the local command has been selected, press any key (such as l
Enter or the spacebar) to continue. To get a listing of all the commands available, press |
Esc-H. -

The kb_file() routine of CTERM (called in the main loop at line 69) can get its input from
either a script file or the keyboard. If a script file is open (lines 308 through 330), it is used
until EOF is reached or until the operator presses Ctrl-C to stop script-file input. Otherwise,

The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 254/1582

Article 6: Interrupt-Driven Communications

input is taken from the keyboard (lines 331 and 332). If a script file is in use, its input is
echoed to the display (lines 325 through 329) if the V. command has been given.

To permit the Esc character itself to be placed in script files, the backslash (\) character
serves as a secondary escape signal. When a backslash is detected (lines 323 and 324) in
the input stream, the next character input is translated according to the following rules:

Character Interpretation

Eore Translates to Esc.

Norn Translates to Linefeed.

Rorr Translates to Enter (CR).

Tort Translates to Tab.

A Causes the next character input to be converted into a control character.

Any other character, including another \, is not translated at all.

When the Esc character is detected from either the console or a script file, the docmd()
function (lines 167 through 297) is called to prompt for and decode the next input charac-
ter as a command and to perform appropriate actions. Valid command characters, and the
actions they invoke, are as follows:

Command
Character Action

D Delay 0—9 seconds, then proceed. Must be followed by a decimal
digit that indicates how long to delay.

Set EVEN parity.

Set (fast) 1200 baud.

Display list of valid commands.

Set no parity. '

Set ODD parity.

Quit; return to MS-DOS command prompt.

Reset modem.

Set (slow) 300 baud.

Use script file (CTERM prompts for filename).

Verify file input. Echoes each script-file byte.

Wait for character; the next input character is the one that must be
matched.

d<cvemOo0ozITTH

Any other character input after an Esc and the resulting Command prompt generates the
message Don’t know X (where X stands for the actual input character) followed by the
prompt Use ‘H’ command for Help.

Section II: Programming in the MS-DOS Environment 245

OLYMPUS EX. 1010 - 255/1582

Part B: Programming for MS-DOS

If input is taken from a script and the V flag is off, docmd() performs its task quietly, with
no output to the screen. If input is received from the console, however, the command let-
ter, followed by a descriptive phrase, is echoed to the screen. Input, detection, and execu-
tion of the local commands are accomplished much as in CDVUTL, by way of a large
switch() statement (lines 178 through 290).

Although the listed commands are only a subset of the features available in COVUTL for
the device-driver program, they are more than adequate for creating useful scripts. The
predecessor of CTERM (DT115.EXE), which included the CompuServe B-Protocol file-
transfer capability but had no additional commands, has been in use since early 1986 to
handle automatic uploading and downloading of files from the CompuServe Information
Service by means of script files. In conjunction with an auto-dialing modem, DT115.EXE
handles the entire transaction, from login through logout, without human intervention.

All the bits and pieces of CTERM are put together by assembling the three handlers

with MASM, compiling CTERM with Microsoft C, and linking all four object modules into
an executable file. Figure 6-10 shows the complete sequence and also the three ways of
using the finished program.

Compiling:

C>MASM CH1; <Enter>
C>MASM CH1A; <Enter>
C>MASM CH2; <Enter>
C>MSC CTERM; <Enter>

Linking:
C>LINK CTERM+CH1+CH1A+CH2; <Enter>

Use:
(no files)

C>CTERM <Enter>

or
(script only)

C>CTERM scriptfile <Enter>
or
C>CTERM scriptfile capturefile <Enter>

Figure 6-10. Putting CTERM together and using it.

' Jim Kyle
Chip Rabinowitz

246 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 256/1582

Article 7: File and Record Management

Article 7
File and Record Management

The core of most application programs is the reading, processing, and writing of data
stored on magnetic disks. This data is organized into files, which are identified by name,
the files, in turn, can be organized by grouping them into directories. Operating systems
provide application programs with services that allow them to manipulate these files and
directories without regard to the hardware characteristics of the disk device. Thus, applica-
tions can concern themselves solely with the form and content of the data, leaving the
details of the data’s location on the disk and of its retrieval to the operating system.

The disk storage services provided by an operating system can be categorized into file
functions and record functions. The file functions operate on entire files as named
entities, whereas the record functions provide access to the data contained within files.
(In some systems, an additional class of directory functions allows applications to deal
with collections of files as well.) This article discusses the MS-DOS function calls that
allow an application program to create, open, close, rename, and delete disk files; read
data from and write data to disk files; and inspect or change the information (such as
attributes and date and time stamps) associated with disk filenames in disk directories.
See also PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS:
MS-DOS Storage Devices; PROGRAMMING FOR Ms-DOs: Disk Directories and Volume Labels.

Historical Perspective

Current versions of MS-DOS provide two overlapping sets of file and record management
services to support application programs: the handle functions and the file control block
(FCB) functions. Both sets are available through Interrupt 21H (Table 7-1). See SYSTEM
CALLS: InTerRRUPT 21H. The reasons for this surprising duplication are strictly historical.

The earliest versions of MS-DOS used FCBs for all file and record access because CP/M,
which was the dominant operating system on 8-bit microcomputers, used FCBs. Microsoft
chose to maintain compatibility with CP/M to aid programmers in converting the many
existing CP/M application programs to the 16-bit MS-DOS environment; consequently,
MS-DOS versions 1.x included a set of FCB functions that were a functional superset of
those present in CP/M. As personal computers evolved, however, the FCB access method
did not lend itself well to the demands of larger, faster disk drives.

Accordingly, MS-DOS version 2.0 introduced the handle functions to provide a file and
record access method similar to that found in UNIX/XENIX. These functions are easier to
use and more flexible than their FCB counterparts and fully support a hierarchical (tree-
like) directory structure. The handle functions also allow character devices, such as the

Section II: Programiiing in the MS-DOS Environment 247

OLYMPUS EX. 1010 - 257/1582

Part B: Programming for MS-DOS

console or printer, to be treated for some purposes as though they were files. MS-DOS ver-
sion 3.0 introduced additional handle functions, enhanced some of the existing handle
functions for use in network environments, and provided improved error reporting for

all functions.

The handle functions, which offer far more capability and performance than the FCB
functions, should be used for all new applications. Therefore, they are discussed first in
this article.

Table 7-1. Interrupt 21H Function Calls for File and Record Management.

Handle FCB
Operation Function Function
Create file. 3CH 16H
Create new file. 5BH
Create temporary file. 5AH
Open file. 3DH OFH
Close file. "3EH 10H
Delete file. 41H 13H
Rename file. S56H 17H
Perform sequential read. 3FH 14H
Perform sequential write. 40H 15H
Perform random record read. 3FH 21H
Perform random record write. 40H 22H
Perform random block read. 27H
Perform random block write. 28H
Set disk transfer area address. 1AH
Get disk transfer area address. 2FH
Parse filename. 29H
Position read/write pointer. 42H
Set random record number. 24H
Get file size. 42H 23H
Get/Set file attributes. 43H
Get/Set date and time stamp. 57H
Duplicate file handle. 45H
Redirect file handle. 46H

248 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 258/1582

Article 7: File and Record Management

Using the Handle Functions

The initial link between an application program and the data stored on disk is the name of
a disk file in the form

drive:path\ filename.ext

where drive designates the disk on which the file resides, path specifies the directory
on that disk in which the file is located, and filename.ext identifies the file itself, If drive
and/or path is omitted, MS-DOS assumes the default disk drive and current directory.
Examples of acceptable pathnames include

C:\PAYROLL\TAXES.DAT
LETTERS\MEMO.TXT
BUDGET.DAT

Pathnames can be hard-coded into a program as part of its data. More commonly, how-
ever, they are entered by the user at the keyboard, either as a command-line parameter or
in response to a prompt from the program. If the pathname is provided as a command-
line parameter, the application program must extract it from the other information in the
command line. Therefore, to allow a program to distinguish between pathnames and
other parameters when the two are combined in a command line, the other parameters,
such as switches, usually begin with a slash (/) or dash (-) character.

All handle functions that use a pathname require the name to be in the form of an ASCIIZ

" string — that is, the name must be terminated by a null (zero) byte. If the pathname is

hard-coded into a program, the null byte must be part of the ASCIIZ string. If the path-
name is obtained from keyboard input or from a command-line parameter, the null byte
must be appended by the program. See Opening an Existing File below.

To use a disk file, a program opens or creates the file by calling the appropriate MS-DOS
function with the ASCIIZ pathname. MS-DOS checks the pathname for invalid characters
and, if the open or create operation is successful, returns a 16-bit handle, or identification
code, for the file. The program uses this handle for subsequent operations on the file, such
as record reads and writes.

The total number of handles for simultaneously open files is limited in two ways. First, the
per-process limit is 20 file handles. The process’s first five handles are always assigned to
the standard devices, which default to the CON, AUX, and PRN character devices:

Handle Service Default

0 Standard input Keyboard (CON)

1 Standard output Video display (CON)

2 Standard error Video display (CON)

3 Standard auxiliary First communications port (AUX)
4 Standard list First parallel printer port (PRN)

Section II: Programming in the MS-DOS Environment 249

OLYMPUS EX. 1010 - 259/1582

Part B: Programming for MS-DOS

Ordinarily, then, a process has only 15 handles left from its initial allotment of 20; however,
when necessary, the 5 standard device handles can be redirected to other files and devices
or closed and reused.

In addition to the per-process limit of 20 file handles, there is a system-wide limit.

“MS-DOS maintains an internal table that keeps track of all the files and devices opened

with file handles for all currently active processes. The table contains such information as
the current file pointer for read and write operations and the time and date of the last write
to the file. The size of this table, which is set when MS-DOS is initially loaded into memory,
determines the system-wide limit on how many files and devices can be open simulta-
neously. The default limit is 8 files and devices; thus, this system-wide limit usually
overrides the per-process limit.

To increase the size of MS-DOS’s internal handle table, the statement FILES=nnn can be
included in the CONFIG.SYS file. (CONFIG.SYS settings take effect the next time the sys-
tem is turned on or restarted.) The maximum value for FILES is 99 in MS-DOS versions 2.x
and 255 in versions 3.X. See USER COMMANDS: CONFIG.SYS: FILES.

Error handling and the handle functions

250

When a handle-based file function succeeds, MS-DOS returns to the calling program with
the carry flag clear. If a handle function fails, MS-DOS sets the carry flag and returns an
error code in the AX register. The program should check the carry flag after each opera-
tion and take whatever action is appropriate when an error is encountered. Table 7-2 lists
the most frequently encountered error codes for file and record 1/0 (exclusive of network
operations).

Table 7-2. Frequently Encountered Error Diagnostics for File and Record
Management.

Code Error

02 File not found

03 Path not found

04 Too many open files (no handles left)
05 Access denied

06 Invalid handle

11 Invalid format

12 Invalid access code

13 Invalid data

15 Invalid disk drive letter
17 . Not same device

18 No more files

The error codes used by MS-DOS in versions 3.0 and later are a superset of the MS-DOS
version 2.0 error codes. See APPENDIX B: CriTicaL ERROR CoDes; APPENDIX C: EXTENDED
Error Copgs. Most MS-DOS version 3 error diagnostics relate to network operations,
which provide the program with a greater chance for error than does a single-user system.,

The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 260/1582

Article 7: File and Record Management

- Programs that are to run in a network environment need to anticipate network problems.
For example, the server can go down while the program is using shared files.

Under MS-DOS versions 3.%, a program can also use Interrupt 21H Function 59H (Get
Extended Error Information) to obtain more details about the cause of an error after a4
failed handle function. The information returned by Function 59H includes the type of
device that caused the error and a recommended recovery action.

Warning: Many file and record I/O operations discussed in this article can result in or be
affected by a hardware (critical) error. Such errors can be intercepted by the program if it
contains a custom critical error exception handler (Interrupt 24H). See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: CusToMIZING Ms-DOs: Exception Handlers.

Creating a file
MS-DOS provides three Interrupt 21H handle functions for creating files:

Function Name

3CH Create File with Handle (versions 2.0 and later)
5AH Create Temporary File (versions 3.0 and later)
SBH Create New File (versions 3.0 and later)

Each function is called with the segment and offset of an ASCIIZ pathname in the DS:DX
registers and the attribute to be assigned to the new file in the CX register. The possible
attribute values are

Code Attribute

00H Normal file
01H Read-only file
02H Hidden file
04H System file

Files with more than one attribute can be created by combining the values listed above.
For example, to create a file that has both the read-only and system attributes, the value
05H is placed in the CX register.

If the file is successfully created, MS-DOS returns a file handle in AX that must be used for
subsequent access to the new file and sets the file read/write pointer to the beginning of
the file; if the file is not created, MS-DOS sets the carry flag (CF) and returns an error code
in AX,

Function 3CH is the only file-creation function available under MS-DOS versions 2.x. It
must be used with caution, however, because if a file with the specified name already
exists, Function 3CH will open it and truncate it to zero length, eradicating the previous
contents of the file. This complication can be avoided by testing for the previous existence
of the file with an open operation before issuing the create call.

Section II: Programming in the MS-DOS Environment 251

OLYMPUS EX. 1010 - 261/1582

Part B: Programming for MS-DOS

Under MS-DOS versions 3.0 and later, Function 5BH is the preferred function in most cases
because it will fail if a file with the same name already exists. In networking environments,
this function can be used to implement semaphores, allowing the synchronization of pro-
grams running in different network nodes.

Function 5AH is used to create a temporary work file that is guaranteed to have a unique
name. This capability is important in networking environments, where several copies of
the same program, running in different nodes, may be accessing the same logical disk
volume on a server. The function is passed the address of a buffer that can contain a drive
and/or path specifying the location for the created file. MS-DOS generates a name for the
created file that is a sequence of alphanumeric characters derived from the current time
and returns the entire ASCIIZ pathname to the program in the same buffer, along with the
file’s handle in AX. The program must save the filename so that it can delete the file later, if
necessary; the file created with Function 5AH is not destroyed when the program exits.

Example: Create a file named MEMO.TXT in the \LETTERS directory on drive C using
Function 3CH. Any existing file with the same name is truncated to zero length and -

opened.
fname db 'C:\LETTERS\MEMO.TXT"', 0
fhandle dw ?
mov dx, seg fname ; DS:DX = address of
mov ds, dx ; pathname for file !
mov dx,offset fname
xor CcX,Cx ; CX = normal attribute !
mov ah, 3ch ; Function 3CH = create
int 21h ; transfer to MS-DOS
jc error ; jump if create failed
nov fhandle, ax ; else save file handle

Example: Create a temporary file using Function 5AH and place it in the \TEMP directory
on drive C. MS-DOS appends the filename it generates to the original path in the buffer
named frame. The resulting file specification can be used later to delete the file.

fname db 'C:\TEMP\"' ; generated ASCIIZ filename
db. 13 dup (0) ; 1s appended by MS-DOS
" fhandle dw ?

(more)

252 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 262/1582

Article 7: File and Record Management

mov dx, seg fname ; DS:DX = address of
mov ds,dx ; path for temporary file
mov dx,offset fname
Xor CcX,CX ; CX = normal attribute
mov ah, S5ah ; Function 5AH = create

; temporary file
int 21h ; transfer to MS-DOS
jc error ; jump if create failed
mov fhandle, ax ; else save file handle

Opening an existing file

Function 3DH (Open File with Handle) opens an existing normal, system, or hidden file
in the current or specified directory. When calling Function 3DH, the program supplies a
pointer to the ASCIIZ pathname in the DS:DX registers and a 1-byte access code in the AL
register. This access code includes the read/write permissions, the file-sharing mode, and
an inheritance flag. The bits of the access code are assigned as follows:

Bit(s) Description

0-2 Read/write permissions (versions 2.0 and later)
3 Reserved

4-6 File-sharing mode (versions 3.0 and later)

7 Inheritance flag (versions 3.0 and later)

The read/write permissions field of the access code specifies how the file will be used and
can take the following values:

Bits 0-2 Description

000 ~ Read permission desired
001 Write permission desired
010 Read and write permission desired

For the open to succeed, the permissions field must be compatible with the file’s attribute
byte in the disk directory. For example, if the program attempts to open an existing file
that has the read-only attribute when the permissions field of the access code byte is set to
write or read/write, the open function will fail and an error code will be returned in AX.

The sharing-mode field of the access code byte is important in a networking environment.
It determines whether other programs will also be allowed to open the file and, if so,
what operations they will be allowed to perform. Following are the possible values of the
file-sharing mode field:

Section IT: Programming in the MS-DOS Environment 253

OLYMPUS EX. 1010 - 263/1582

Part B: Programming for MS-DOS

Bits 4-6 Description

000 Compatibility mode. Other programs can open the file and perform read or
write operations as long as no process specifies any sharing mode other than
compatibility mode.

001 Deny all. Other programs cannot open the file.

010 Deny write. Other programs cannot open the file in compatibility mode or
with write permission. _ '

011 Deny read. Other programs cannot open the file in compatibility mode or with
read permission.

100 Deny none. Other programs can open the file and perform both read and

write operations but cannot open the file in compatibility mode.

When file-sharing support is active (that is, SHARE.EXE has previously been loaded),

the result of any open operation depends on both the contents of the permissions and file-
sharing fields of the access code byte and the permissions and file-sharing requested by
other processes that have already successfully opened the file.

The inheritance bit of the access code byte controls whether a child process will inherit
that file handle. If the inheritance bit is cleared, the child can use the inherited handle to
access the file without performing its own open operation. Subsequent operations per-
formed by the child process on inherited file handles also affect the file pointer associated
with the parent’s file handle. If the inheritance bit is set, the child process does not inherit
the handle.

If the file is opened successfully, MS-DOS returns its handle in AX and sets the file read/
write pointer to the beginning of the file; if the file is not opened, MS-DOS sets the carry
flag and returns an error code in AX.

Example: Copy the first parameter from the program’s command tail in the program
segment prefix (PSP) into the array frame and append a null character to form an ASCIIZ
filename. Attempt to open the file with compatibility sharing mode and read/write access.
If the file does not already exist, create it and assign it a normal attribute.

cmdtail equ 80h ; PSP offset of command tail
fname db 64 dup (?)
fhandle dw ?

; assume that DS already
; contains segment of PSP

(more)

254 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 264/1582

Article 7: File and Record Management

; prepare to copy filename...

mov si,cmdtail ; DS:SI = command tail
mov di, seg fname ; ES:DI = buffer to receive
mov es,di ; filename from command tail
mov di,offset fname
cld ; safety first!
lodsb ; check length of command tail
or al,al
jz error ; jump, command tail empty
label1l: ; scan off leading spaces
lodsb ; get next character
cmp al,20h ; is it a space?
jz labell ; yes, skip it
label?2:
cmp al,0dh ; look for terminator
jz label3 ; quit if return found
cmp al,20h
jz label3 ; quit if space found
stosb ; else copy this character
lodsb ; get next character
jmp label?2
label3:
xor al,al ; store final NULL to
stosb ; create ASCIIZ string
; now open the file...
mov dx,seg fname ; DS:DX = address of
mov ds,dx ; pathname for file
mov dx,offset fname
mov ax,3d02h ; Function 3DH = open r/w
int 21h ; transfer to MS-DOS
jnc labeld ; Jjump if file found
cmp ax, 2 ; error 2 = file not found
inz error ; jump if other error
; else make the file...
Xor cx,cx ; CX = normal attribute
mov ah, 3ch ; Function 3CH = create
int 21h ; transfer to MS-DOS
jc error ; jump if create failed
labeld:
mov fhandle, ax ; save handle for file
Closing a file

Function 3EH (Close File) closes a file created or opened with a file handle function. The
program must place the handle of the file to be closed in BX. If a write operation was per-
formed on the file, MS-DOS updates the date, time, and size in the file’s directory entry.

Section II: Programming in the MS-DOS Environment 255

OLYMPUS EX. 1010 - 265/1582

Part B: Programming for MS-DOS

Closing the file also flushes the internal MS-DOS buffers associated with the file to disk
and causes the disk’s file allocation table (FAT) to be updated if necessary.

Good programming practice dictates that a program close files as soon as it finishes
using them. This practice is particularly important when the file size has been changed, to
ensure that data will not be lost if the system crashes or is turned off unexpectedly by the
user. A method of updating the FAT without closing the file is outlined below under
Duplicating and Redirecting Handles.

Reading and writing with handles

Function 3FH (Read File or Device) enables a program to read data from a file or device
that has been opened with a handle. Before calling Function 3FH, the program must set
the DS:DX registers to point to the beginning of a data buffer large enough to hold the
requested transfer, put the file handle in BX, and put the number of bytes to be read in CX.
The length requested can be a maximum of 65535 bytes. The program requesting the
read operation is responsible for providing the data buffer.

If the read operation succeeds, the data is read, beginning at the current position of the -
file read/write pointer, to the specified location in memory. MS-DOS then increments its
internal read/write pointer for the file by the length of the data transferred and returns
the length to the calling program in AX with the carry flag cleared. The only indication
that the end of the file has been reached is that the length returned is less than the length
requested. In contrast, when Function 3FH is used to read from a character device that is
not in raw mode, the read will terminate at the requested length or at the receipt of a car-
riage return character, whichever comes first. See PROGRAMMING IN THE MS-DOS
ENVIRONMENT: PROGRAMMING FOR Ms-DOs: Character Device Input and Output. If the
read operation fails, MS-DOS returns with the carry flag set and an error code in AX.

Function 40H (Write File or Device) writes from a buffer to a file (or device) using a handle
previously obtained from an open or create operation. Before calling Function 40H, the

- program must set DS:DX to point to the beginning of the buffer containing the source data,
put the file handle in BX, and put the number of bytes to write in CX. The number of bytes
to write can be a maximum of 65535.

If the write operation is successful, MS-DOS puts the number of bytes written in AX and
increments the read/write pointer by this value; if the write operation fails, MS-DOS sets
the carry flag and returns an error code in AX.

Records smaller than one sector (512 bytes) are not written directly to disk. Instead,
MS-DOS stores the record in an internal buffer and writes it to disk when the internal
buffer is full, when the file is closed, or when a call to Interrupt 21H Function O0DH (Disk
Reset) is issued.

Note: If the destination of the write operation is a disk file and the disk is full, the only
indication to the calling program is that the length returned in AX is not the same as the
length requested in CX. Disk full is not returned as an error with the carry flag set.

A special use of the Write function is to truncate or extend a file. If Function 40H is called
with a record length of zero in CX, the file size will be adjusted to the current location of
the file read/write pointer.

256 TheMS-DOS Encyclopedia

OLYMPUS EX. 1010 - 266/1582

Article 7: File and Record Management

Example: Open the file MYFILE.DAT, create the file MYFILE.BAK, copy the contents of

the .DAT file into the .BAK file using 512-byte reads and writes, and then close both files.

filel db
file2 db

handlel dw
handle2 dw

buff db

mov
mov
mov
mov
int
jc

mov

mov
mov
mov
int
jc

mov

loop:
mov
mov
mov
mov
int
jc
or
jz

mov
mov
mov
mov
int
jc

cmp
jne
jmp

'MYFILE.DAT', 0
'MYFILE.BAK', 0

512 dup (?)

dx,seg filel
ds,dx
dx,offset filel
ax, 3d00h

21h

error
handlel, ax

dx,offset file2
cx, 0

ah,3ch

21h

error

handle2, ax

dx,offset buff
cx,512
bx,handlel
ah,3fh

21h

error

ax,ax

. done

dx,offset buff
cxX,ax
bx,handle2

ah, 40h

21h

error

ax,cx

error

loop

7

i

handle for MYFILE.DAT
handle for MYFILE.BAK

buffer for file I/0

open MYFILE.DAT...
DS:DX = address of filename

Function 3DH = open (read-only)

" transfer to MS-DOS

jump if open failed
save handle for file

create MYFILE.BAK...

DS:DX = address of filename
CX = normal attribute
Function 3CH = create
transfer to MS-DOS

Jjump if create failed

save handle for file

read MYFILE,DAT

DS:DX = buffer address

CX = length to read

BX = handle for MYFILE.DAT
Function 3FH = read
transfer to MS-DOS

jump if read failed

were any bytes read?

no, end of file reached

write MYFILE.BAK

DS:DX = buffer address

CX = length to write

BX = handle for MYFILE.BAK
Function 40H = write
transfer to MS-DOS

jump if write failed

was write complete?

Jump if disk full

continue to end of file

(more)

Section II: Programming in the MS-DOS Environment 257

OLYMPUS EX. 1010 - 267/1582

Part B: Programming for MS-DOS

done: ; now close files...
mov bx,handlel ; handle for MYFILE.DAT
mov ah, 3eh ; Function 3EH = close file
int 21h ; transfer to MS-DOS
je error ; jump if close failed
mov bx,handle2 ; handle for MYFILE.BAK
mov ah, 3eh ; Function 3EH = close file
int 2th ; transfer to MS-DOS
jc - error ; jump if close failed

Positioning the read/write pointer

258

Function 42H (Move File Pointer) sets the position of the read/write pointer associated
with a given handle. The function is called with a signed 32-bit offset in the CX and DX
registers (the most significant half in CX), the file handle in BX, and the positioning mode
in AL:

Mode Significance

00 “Supplied offset is relative to beginning of file.
01 Supplied offset is relative to current position of read/write pointer.
02 Supplied offset is relative to end of file.

If Function 42H succeeds, MS-DOS returns the resulting absolute offset (in bytes) of the
file pointer relative to the beginning of the file in the DX and AX registers, with the most
significant half in DX; if the function fails, MS-DOS sets the carry flag and returns an error
code in AX.

Thus, a program can obtain the size of a file by calling Function 42H with an offset of zero
and a positioning mode of 2. The function returns a value in DX:AX that represents the
offset of the end-of-file position relative to the beginning of the file.

Example: Assume that the file MYFILE.DAT was previously opened and its handle is
saved in the variable fhandle. Position the file pointer 32768 bytes from the beginning of
the file and then read 512 bytes of data starting at that file position.

fhandle dw ? ; handle from previous open
buff db 512 dup (?) ; buffer for data from file

(more)
The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 268/1582

Article 7; File and Record Management

mov cx,0

mov dx, 32768
mov bx, fhandle
mov al,0

mov ah,42h

int 21h

jc error

mov dx,offset buff
mov cx,512

mov bx, fhandle
mov ah,3fh

int 21h

je error

cmp ax, 512

jne error

; position. the file pointer...

CX = high part of file offset
DX = low part of file offset
BX handle for file

i

; AL = positioning mode

Function 42H = position
transfer to MS-DOS
jump if function call failed

now read 512 bytes from file
DS:DX = address of buffer
CX length of 512 bytes

; BX = handle for file

Function 3FH = read
transfer to MS-DOS

jump if read failed

was 512 bytes read?

jump if partial rec. or EOF

Example: Assume that the file MYFILE.DAT was previously opened and its handle is saved
in the variable fhandle. Find the size of the file in bytes by positioning the file pointer to
zero bytes relative to the end of the file. The returned offset, which is relative to the begin-

ning of the file, is the file’s size.

fhandle dw ?

mov cx, 0

mov dx, 0

mov bx, fhandle
mov al,2

mov ah, 42h

int 21h-

jc error

Other handle operations

handle from previous open

position the file pointer

to the end of file...

CX = high part of offset

DX = low part of offset

BX handle for file

AL = positioning mode
Function 42H = position
transfer to MS-DOS

jump if function call failed

if call succeeded, DX:BAX '
now contains the file size

MS-DOS provides other handle-oriented functions to rename (or move) a file, delete afile,
read or change a file’s attributes, read or change a file’s date and time stamp, and duplicate
or redirect a file handle. The first three of these are “file-handle-like” because they use an
ASCIIZ string to specify the file; however, they do not return a file handle.

Section II: Programming in the MS-DOS Environment 259

OLYMPUS EX. 1010 - 269/1582

Part B: Programming for MS-DOS

Renaming a file

Function 56H (Rename File) renames an existing file and/or moves the file from one loca- .
tion in the hierarchical file structure to another. The file to be renamed cannot be a hidden
or system file or a subdirectory and must not be currently open by any process; attempting
to rename an open file can corrupt the disk. MS-DOS renames a file by simply changing its
directory entry; it moves a file by removing its current directory entry and creating a new
entry in the target directory that refers to the same file. The location of the file’s actual

data on the disk is not changed. :

Both the current and the new filenames must be ASCIIZ strings and can include a drive
and path specification; wildcard characters (+ and ?) are not permitted in the filenames.
The program calls Function 56H with the address of the current pathname in the DS:DX
registers and the address of the new pathname in ES:DI. If the path elements of the two
strings are not the same and both paths are valid, the file “moves” from the source direc-
tory to the target directory. If the paths match but the filenames differ, MS-DOS simply
modifies the directory entry to reflect the new filename.

If the function succeeds, MS-DOS returns to the calling program with the carry flag clear.
The function fails if the new filename is already in the target directory; in that case,
MS-DOS sets the carry flag and returns an error code in AX.

Example: Change the name of the file MYFILE.DAT to MYFILE.OLD. In the same opera-
tion, move the file from the \WORK directory to the \BACKUP directory.

filel db ' \WORK\MYFILE.DAT', 0

file2 db’ '\BACKUP\MYFILE.OLD', 0
mov dx,seg filel ; DS:DX = old filename
mov ds,dx
mov es,dx
mov dx,offset filel
mov di,offset file2 ; ES:DI = new filename
mov ah, 56h ; Function 56H = rename
int 21h ; transfer to MS-DOS
je error . ; Jjump if rename failed

Deleting a file

Function 41H (Delete File) effectively deletes a file from a disk. Before calling the function,

a program must set the DS:DX registers to point to the ASCIIZ pathname of the file to be 3
deleted. The supplied pathname cannot specify a subdirectory or a read-only file, and the

file must not be currently open by any process.

260 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 270/1582

Article 7: File and Record Management

If the function is successful, MS-DOS deletes the file by simply marking the first byte of its

directory entry with a special character (OE5H), making the entry subsequently unrecog-

nizable. MS-DOS then updates the disk’s FAT so that the clusters that previously belonged
to the file are “freg” and returns to the program with the carry flag clear. If the delete
function fails, MS-DOS sets the carry flag and returns an error code in AX.

* The actual contents of the clusters assigned to the file are not changed by a delete opera-

tion, so for security reasons sensitive information should be overwritten with spaces or
some other constant character before the file is deleted with Function 41H.

Example: Delete the file MYFILE.DAT, located in the \WORK directory on drive C,

fname db 'C: \WORK\MYFILE.DAT',0
mov dx, seg fname ; DS:DX = address of filename
mov ds,dx
mov dx,offset fname
mov ah,41h ; Function 41H = delete
int 21h ; transfer to MS-DOS
jec error ; Jjump if delete failed

Getting/setting file attributes

Function 43H (Get/Set File Attributes) obtains or modifies the attributes of an existing file.
Before calling Function 43H, the program must set the DS:DX registers to point to the
ASCIIZ pathname for the file. To read the attributes, the program must set AL to zero; to set
the attributes, it must set AL to 1 and place an attribute code in CX. See Creating a File
above.

If the function is successful, MS-DOS reads or sets the attribute byte in the file’s directory
entry and returns with the carry flag clear and the file’s attribute in CX. If the function
fails, MS-DOS sets the carry flag and returns an error code in AX.

Function 43H cannot be used to set the volume-label bit (bit 3) or the subdirectory bit (bit
4) of a file. Tt also should not be used on a file that is currently open by any process.

Example: Change the attributes of the file MYFILE.DAT in the \BACKUP directory on
drive C to read-only. This prevents the file from being accidentally deleted from the disk.

fname db 'C:\BACKUP\MYFILE.DAT',0
mov . dx,seg fname ; DS:DX = address of filename
mov ds,dx
mov dx,offset fname
mov cx, 1 ; CX = attribute (read-only)

mode (0 = get, 1 = set)

1

mov al, ; AL

(more)

Section IT: Programming in the MS-DOS Environment 261

OLYMPUS EX. 1010 - 271/1582

Part B: Programming for MS-DOS

mov ah,43h ; Function 43H = get/set attr
int 21h ; transfer to MS-DOS
Jjc error ; Jump if set attrib. failed

Getting/setting file date and time

Function 57H (Get/Set Date/ Time of File) reads or sets the directory time and date stamp
of an open file. To set the time and date to a particular value, the program must call Func-
tion 57H with the desired time in CX, the desired date in DX, the handle for the file (ob-
tained from a previous open or create operation) in BX, and the value 1 in AL. To read the
time and date, the function is called with AL containing 0 and the file handle in BX; the
time is returned in the CX register and the date is returned in the DX register. As with
other handle-oriented file functions, if the function succeeds, the carry flag is returned
cleared, if the function fails, MS-DOS returns the carry flag set and an error code in AX.

The formats used for the file time and date are the same as those used in disk directory
entries and FCBs. See Structure of the File-Control Block below.

The main uses of Function 57H are to force the time and date entry for a file to be updated
when the file has not been changed and to circumvent MS-DOS’s modification of a file
date and time when the file sas been changed. In the latter case, a program can use this
function with AL = 0 to obtain the file’s previous date and time stamp, modify the file, and
then restore the original file date and time by re-calling the function with AL = 1 before
closing the file.

Duplicating and redirecting handles

Ordinarily, the disk FAT and directory are not updated until a file is closed, even when

the file has been modified. Thus, until the file is closed, any new data added to the file can
be lost if the system crashes or is turned off unexpectedly. The obvious defense against
such loss is simply to close and reopen the file every time the file is changed. However,
this is a relatively slow procedure and in a network environment can cause the program
to lose control of the file to another process.

Use of a second file handle, created by using Function 45H (Duplicate File Handle) to
duplicate the original handle of the file to be updated, can protect data added to a disk file
before the file is closed. To use Function 45H, the program must put the handle to be
duplicated in BX. If the operation is successful, MS-DOS clears the carry flag and returns
the new handle in AX; if the operation fails, MS-DOS sets the carry flag and returns an
érror code in AX.

If the function succeeds, the duplicate handle can simply be closed in the usual manner
with Function 3EH. This forces the desired update of the disk directory and FAT. The orig-
inal handle remains open and the program can continue to use it for file read and write
operations.

Note: While the second handle is open, moving the read/write pointer associated with
either handle moves the pointer associated with the other.

262 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 272/1582

Article 7: File and Record Management

Example: Assume that the file MYFILE.DAT was previously opened and the handle for
that file has been saved in the variable fhandle. Duplicate the handle and then close the
duplicate to ensure that any data recently written to the file is saved on the disk and that
the directory entry for the file is updated accordingly.

fhandle dw ? ; handle from previous open

; duplicate the handle...

mov bx, fhandle ; BX = handle for file

mov ah, 45h ; Function 45H = dup handle
int 21h ; transfer to MS-DOS

jc error ; jump if function call failed

; now close the new handle...

mov bx, ax ; BX = duplicated handle

mov ah, 3eh ; Function 3EH = close

int 21h ; transfer to MS-DOS

jc error ; jump if close failed

mov bx, fhandle ; replaceclosed handle with active handle

Function 45H is sometimes also used in conjunction with Function 46H (Force Duplicate
File Handle). Function 46H forces a handle to be a duplicate for another open handle —in
other words, to refer to the same file or device at the same file read/write pointer location.
The handle is then said to be redirected.

The most common use of Function 46H is to change the meaning of the standard input
and standard output handles before loading a child process with the EXEC function. In this
manner, the input for the child program can be redirected to come from a file or its output
can be redirected into a file, without any special knowledge on the part of the child pro-
gram. In such cases, Function 45H is used to also create duplicates of the standard input
and standard output handles before they are redirected, so that their original meanings can
be restored after the child exits. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:
CusTOMIZING Ms-DOs: Writing MS-DOS Filters.

Using the FCB Functions

A file control block is a data structure, located in the application program’s memory space,
that contains relevant information about an open disk file: the disk drive, the filename and
extension, a pointer to a position within the file, and so on. Each open file must have its
own FCB. The information in an FCB is maintained cooperatively by both MS-DOS and the
application program.

Section II: Programming in the MS-DOS Environment 263

OLYMPUS EX. 1010 - 273/1582

Part B: Programming for MS-DOS

MS-DOS moves data to and from a disk file associated with an FCB by means of a data
buffer called the disk transfer area (DTA). The current address of the DTA is under the
control of the application program, although each program has a 128-byte default DTA at
offset 80H in its program segment prefix (PSP). See PROGRAMMING IN THE MS-DOS
ENVIRONMENT: PROGRAMMING FOR Ms-DOs: Structure of an Application Program.

Under early versions of MS-DOS, the only limit on the number of files that can be open
simultaneously with FCBs is the amount of memory available to the application to hold the
FCBs and their associated disk buffers. However, under MS-DOS versions 3.0 and later,
when file-sharing support (SHARE.EXE) is loaded, MS-DOS places some restrictions on
the use of FCBs to simplify the job of maintaining network connections for files. If the
application attempts to open too many FCBs, MS-DOS simply closes the least recerxtly used
FCBs to keep the total number within a limit.

The CONFIG.SYS file directive FCBS allows the user to control the allowed maximum
number of FCBs and to specify a certain number of FCBs to be protected against automatic
closure by the system. The default values are a maximum of four files open simultaneously
using FCBs and zero FCBs protected from automatic closure by the system. See USER
COMMANDS: CONFIG.SYS: FCBS.

Because the FCB operations predate MS-DOS version 2.0 and because FCBs have a fixed
structure with no room to contain a path, the FCB file and record services do not support
the hierarchical directory structure. Many FCB operations can be performed only on files
in the current directory of a disk. For this reason, the use of FCB file and record operations
should be avoided in new programs.

Structure of the file control block

Each FCB is a 37-byte array allocated from its own memory space by the application pro-
gram that will use it. The FCB contains all the information needed to identify a disk file
and access the data within it: drive identifier, filename, extension, file size, record size,
various file pointers, and date and time stamps. The FCB structure is shown in Table 7-3.

Table 7-3. Structure of a Normal File Control Block.

Offset Size
Maintained by (bytes) (bytes) Description
Program 00H 1 Drive identifier
Program 01H 8 Filename
Program 09H 3 File extension
MS-DOS OCH 2 Current block number
Program OEH 2 Record size (bytes)
MS-DOS 10H 4 File size (bytes)
MS-DOS 14H 2 Date stamp
MS-DOS 16H 2 Time stamp
MS-DOS 18H 8 Reserved
MS-DOS 20H 1 Current record number
Program 21H 4 Random record number

264 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 274/1582

Article 7: File and Record Management

Drive identifier: Initialized by the application to designate the drive on which the file to
‘be opened or created resides. 0 = default drive, 1= drive A, 2 = drive B, and so on. If the
application supplies a zero in this byte (to use the default drive), MS-DOS alters the byte
during the open or create operation to reflect the actual drive used; that is, after an open
or create operation, this drive will always contain a value of 1 or greater.

Filename: Standard eight-character filename; initialized by the application; must be left
justified and padded with blanks if the name has fewer than eight characters. A device
name (for example, PRN) can be used; note that there is no colon after a device name.

File extension: Three-character file extension; initialized by the application; must be left
justified and padded with blanks if the extension has fewer than three characters.

Current block number: Initialized to zero by MS-DOS when the file is opened. The block
number and the record number together make up the record pointer during sequential file
access.

Record size: The size of a record (in bytes) as used by the program. MS-DOS sets this field
to 128 when the file is opened or created; the program can modify the field afterward to
any desired record size. If the record size is larger than 128 bytes, the default DTA in the
PSP cannot be used because it will collide with the program’s own code or data.

File size: The size of the file in bytes. MS-DOS initializes this field from the file’s directory
entry when the file is opened. The first 2 bytes of this 4-byte field are the least significant
bytes of the file size.

Date stamp: The date of the last write operation on the file. MS-DOS initializes this field
from the file’s directory entry when the file is opened. This field uses the same format
used by file handle Function 57H (Get/Set/Date/Time of File):

Date Format

Bit: 15 14 13 12 11 100 9 87 6 S 4 3 2 1 0

Content: | Y |Y|{Y|Y|Y|]Y| Y M| M(M{M|D|D|D|D|D

Bits Contents
- 0-4 Day of month (1-31)
. 5-8 Month (1-12)
9-15 Year (relative to 1980)

Time stamp: The time of the last write operation on the file. MS-DOS initializes this field
from the file’s directory entry when the file is opened. This field uses the same format
used by file handle Function 57H (Get/Set/Date/Time of File):

Section II: Programming in the MS-DOS Environment 265

OLYMPUS EX. 1010 - 275/1582

Part B: Programming for MS-DOS

Time Format

Bit: 15 14 13 12 11 10 9 8|7 6 S 4 3 2 1 O

Content: (H{H{H/H{H/{ MMM M|IM/IM|/S|[S|S]|S]}S

Bits Contents
0-4 Number of 2-second increments (0—29)

5-10 Minutes (0—59)
11-15 Hours (0-23)

Current record number: Together with the block number, constitutes the record pointer
used during sequential read and write operations. MS-DOS does not initialize this field
when a file is opened. The record number is limited to the range 0 through 127; thus, there
are 128 records per block. The beginning of a file is record 0 of block 0.

Random record pointer: A 4-byte field that identifies the record to be transferred by the
random record functions 21H, 22H, 27H, and 28H. If the record size is 64 bytés or larger,
only the first 3 bytes of this field are used. MS-DOS updates this field after random block
reads and writes (Functions27H and 28H) but not after random record reads and writes
(Functions 21H and 22H).

An extended FCB, which is 7 bytes longer than a normal FCB, can be used to access files
with special attributes such as hidden, system, and read-only. The extra 7 bytes of an ex-
tended FCB are simply prefixed to the normal FCB format (Table 7-4). The first byte of

an extended FCB always contains OFFH, which could never be a legal drive code and
therefore serves as a signal to MS-DOS that the extended format is being used. The next 5
bytes are reserved and must be zero, and the last byte of the prefix specifies the attributes
of the file being manipulated. The remainder of an extended FCB has exactly the same
layout as a normal FCB. In general, an extended FCB can be used with any MS-DOS func-
tion call that accepts a normal FCB.

Table 7-4. Structure of an Extended File Control Block.

Offset Size
Maintained by (bytes) (bytes) Description
Program 00H 1 Extended FCB flag = OFFH
MS-DOS 01H 5 Reserved
‘Program 06H 1 File attribute byte
Program 07H 1 Drive identifier -
Program 08H 8 Filename

¢ mdre)

266 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 276/1582

Article 7: File and Record Management

Table 7-4. Continued.

Offset _ Size
Maintained by (bytes) (bytes) Description
Program 10H 3 File extension
MS-DOS 13H 2 Current block number
Program 15H 2 Record size (bytes)
MS-DOS 17H 4 File size (bytes)
MS-DOS 1BH 2 Date stamp
MS-DOS 1DH 2 Time stamp
MS-DOS 1FH 8 Reserved
MS-DOS 27H 1 Current record number
Program 28H 4 Random record number

Extended FCB flag: When OFFH is present in the first byte of an FCB, it is a signal to
MS-DOS that an extended FCB (44 bytes) is being used instead of a normal FCB (37 bytes).

File attribute byte: Must be initialized by the application when an extended FCB is used to
open or create a file. The bits of this field have the following significance:

Bit Meaning
0 Read-only
1 Hidden
2 System
3 Volume label
4 Directory
5 Archive
6 Reserved
7 Reserved
FCB functions and the PSP

The PSP contains several items that are of interest when using the FCB file and record
operations: two FCBs called the default FCBs, the default DTA, and the command tail for
the program. The following table shows the size and location of these elements:

PSP Offset

(bytes) Size (bytes) Description

5CH 16 Default FCB #1 -

6CH 20 Default FCB #2

80H 1 Length of command tail
81H 127 Command-tail text

80H 128 Default disk transfer area (DTA)

Section II: Programming in the MS-DOS Environment 267

OLYMPUS EX. 1010 - 277/1582

Part B: Programming for MS-DOS

When MS-DOS loads a program into memory for execution, it copies the command tail
into the PSP at offset 81H, places the length of the command tail in the byte at offset 80H,
and parses the first two parameters in the command tail into the default FCBs at PSP
offsets SCH and 6CH. (The command tail consists of the command line used to invoke the
program minus the program name itself and any redirection or piping characters and their
associated filenames or device names.) MS-DOS then sets the initial DTA address for the
program to PSP:0080H. ‘

For several reasons, the default FCBs and the DTA are often moved to another location
within the program’s memory area. First, the default DTA allows processing of only very
small records. In addition, the default FCBs overlap substantially, and the first byte of the
default DTA and the last byte of the first FCB conflict. Finally, unless either the command
tail or the DTA is moved beforehand, the first FCB-related file or record operation will
destroy the command tail.

Function 1AH (Set DTA Address) is used to alter the DTA address. It is called with the
segment and offset of the new buffer to be used as the DTA in DS:DX. The DTA address
remains the same until another call to Function 1AH, regardless of other file and record
management calls; it does not need to be reset before each read or write.

Note: A program can use Function 2FH (Get DTA Address) to obtain the current DTA
address before changing it, so that the original address can be restored later.

Parsing the filename

Before a file can be opened or created with the FCB function calls, its drive, filename, and
extension must be placed within the proper fields of the FCB. The filename can be coded
into the program itself, or the program can obtain it from the command tail in the PSP or
by prompting the user and reading it in with one of the several functjon calls for character
device input.

MS-DOS automatically parses the first two parameters in the program’s command tail into
the default FCBs at PSP:005CH and PSP:006CH. It does not, however, attempt to differenti-

- ate between switches and filenames, so the pre-parsed FCBs are not necessarily useful to
the application program. If the filenames were preceded by any switches, the program
itself has to extract the filenames directly from the command tail. The program is then
responsible for determining which parameters are switches and which are filenames, as
well as where each parameter begins and ends. '

After a filename has been located, Function 29H (Parse Filename) can be used to test it

for invalid characters and separators and to insert its various components into the proper

fields in an FCB. The filename must be a string in the standard form drive;filename.ext.

Wildcard characters are permitted in the filename and/or extension; asterisk (+) wildcards

are expanded to question mark (?) wildcards. ;

To call Function 29H, the DS:SI registers must point to the candidate filename, ES:DI
must point to the 37-byte buffer that will become the FCB for the file, and AL must hold
the parsing control code. See SYSTEM CALLS: INnTerRrRUPT 211: Function 29H.

268 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 278/1582

Article 7: File and Record Management

If a drive code is not included in the filename, MS-DOS inserts the drive number of the
‘current drive into the FCB. Parsing stops at the first terminator character encountered in
the filename. Terminators include the following:

s,=+ /"[]!<>>!spacetab

If a colon character () is not in the proper position to delimit the disk drive identifier or if
a period (.) is not in the proper position to delimit the extension, the character will also be
treated as a terminator. For example, the filename C:MEMO.TXT will be parsed correctly;
however, ABC:DEF.DAY will be parsed as ABC. '

If an invalid drive is specified in the filename, Function 29H returns OFFH in AL; if the
filename contains any wildcard characters, it returns 1. Otherwise, AL contains zero upon
return, indicating a valid, unambiguous filename.

“Note that this function simply parses the filename into the FCB. It does not initialize any
other fields of the FCB (although it does zero the current block and record size fields), and
it does not test whether the specified file actually exists.

Error handling and FCB functions

The FCB-related file and record functions do not return much in the way of error infor-
mation when a function fails. Typically, an FCB function returns a zero in AL if the func-
tion succeeded and OFFH if the function failed. Under MS-DOS versions 2.x, the program
is left to its own devices to determine the cause of the error. Under MS-DOS versions 3.x,
however, a failed FCB function call can be followed by a call to Interrupt 21H Function
59H (Get Extended Error Information). Function 59H will return the same descriptive
codes for the error, including the error locus and a suggested recovery strategy, as would
be returned for the counterpart handle-oriented file or record function.

Creating a file

Function 16H (Create File with FCB) creates a new file and opens it for subsequent read/
write operations. The function is called with DS:DX pointing to a valid, unopened FCB.
MS-DOS searches the current directory for the specifed filename. If the filename is found,
MS-DOS sets the file length to zero and opens the file, effectively truncating it to a zero-
length file; if the filename is not found, MS-DOS creates a new file and opens it. Other
fields of the FCB are filled in by MS-DOS as described below under Opening a File.

If the create operation succeeds, MS-DOS returns zero in AL; if the operation fails, it
returns OFFH in AL. This function will not ordinarily fail unless the file is being created in
the root directory and the directory is full.

Warning: To avoid loss of existing data, the FCB open function should be used to test for
file existence before creating a file.

Section II: Programming in the MS-DOS Environment 269

OLYMPUS EX. 1010 - 279/1582

Part B: Programming for MS-DOS

Opening a file

Function OFH opens an existing file. DS:DX must point to a valid, unopened FCB contain-
ing the name of the file to be opened. If the specified file is found in the current directory,
MS-DOS opens the file, fills in the FCB as shown in the list below, and returns with AL set
to 00H; if the file is not found, MS-DOS returns with AL set to OFFH, indicating an error.

When the file is opened, MS-DOS

"~ ® - Sets the drive identifier (offset 00H) to the actual drive (01 = A, 02 = B, and so on).
Sets the current block number (offset 0CH) to zero.

Sets the file size (offset 10H) to the value found in the directory entry for the file.
Sets the record size (offset OEH) to 128. _

Sets the date and time stamp (offsets 14H and 16H) to the values found in the direc-
tory entry for the file.

The program may need to adjust the FCB— change the record size and the random record
pointer, for example — before proceeding with record operations.

Example: Display a prompt and accept a filename from the user. Parse the filename into
-an FCB, checking for an illegal drive identifier or the presence of wildcards. If a valid,
unambiguous filename has been entered, attempt to open the file. Create the file if it does
not already exist.

kbuf db 64,0,64 dup (0)
prompt db 0dh, Oah, '"Enter filename: §$'
myfcb db 37 dup (0)

; display the prompt...

mov dx, seg prompt ; DS:DX = prompt address

mov ds,dx

mov es,dx

mov dx,offset prompt .

mov ah, 0%h ; Function 09H = print string
_int 21h ; transfer to MS-DOS

; now input filename...

mov dx,offset kbuf ; DS:DX = buffer address
mov ah,0ah ; Function OAH = enter string
int 21h ; transfer to MS-DOS

; parse filename into FCB...

mov si,offset kbuf+2 ; DS:SI = address of filename

mov di,offset myfcb ; ES:DI = address of fcb

mov ax, 2900h ; Function 29H = parse name

int 21h ; transfer to MS-DOS

or al,al ; jump if bad drive or

jnz error ; wildcard characters in name

(more)

The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 280/1582

Article 7: File and Record Management

. ; try to open file...
mov dx,offset myfcb ; DS:DX = FCB address

mov ah,0fh ; Function OFH = open file
int 27h ; transfer to MS-DOS

or al,al ; check status

Jjz proceed ; Jump if open successful

; else create file...

mov dx,offset myfcb ; DS:DX = FCB address
mov ah,16h ; Function 16H = create
int 21h ; transfer to MS-DOS
or al,al ; did create succeed?
jnz error ; jump if create failed
proceed:
; file has been opened or
; created, and FCB is valid
. ; for read/write operations...
Closing a file

Function 10H (Close File with FCB) closes a file previously opened with an FCB. As usual,
the function is called with DS:DX pointing to the FCB of the file to be closed. MS-DOS
updates the directory, if necessary, to reflect any changes in the file’s size and the date and
time last written.

If the operation succeeds, MS-DOS returns 00H in AL; if the operation fails, MS-DOS
returns OFFH.

Reading and writing files with FCBs

MS-DOS offers a choice of three FCB access methods for data within files: sequential,
random record, and random block.

Sequential operations step through the file one record at a time. MS-DOS increments the
current record and current block numbers after each file access so that they point to the
beginning of the next record. This method is particularly useful for copying or listing files.

Random record access allows the program to read or write a record from any location in
the file, without sequentially reading all records up to that point in the file. The program
must set the random record number field of the FCB appropriately before the read or write
is requested. This method is useful in database applications, in which a program must
manipulate fixed-length records. '

Random block operations combine the features of sequential and random record access
methods. The program can set the record number to point to any record within a file, and
MS-DOS updates the record number after a read or write operation. Thus, sequential
operations can easily be initiated at any file location. Random block operations with a
record length of 1 byte simulate file-handle access methods.

All three methods require that the FCB for the file be open, that DS:DX point to the FCB,
that the DTA be large enough for the specified record size, and that the DTA address be
previously set with Function 1AH if the default DTA in the program’s PSP is not being
used.

Section II: Programming in the MS-DOS Environment 271

OLYMPUS EX. 1010 - 281/1582

Part B: Programming for MS-DOS

MS-DOS reports the success or failure of any FCB-related read operation (sequential,
random record, or random block) with one of four return codes in register AL:

Code Meaning

00H Successful read

01H End of file reached; no data read into DTA

02H Segment wrap (DTA too close to end of segment); no data read into DTA
03H End of file reached; partial record read into DTA

MS-DOS reports the success or failure of an FCB-related write operation as one of three
return codes in register AL:

Code Meaning -

00H Successful write
01H = Disk full; partial or no write
02H Segment wrap (DTA too close to end of segment); write failed

For FCB write operations, records smaller than one sector (512 bytes) are not written
directly to disk. Instead, MS-DOS stores the record in an internal buffer and writes the data
to disk only when the internal buffer is full, when the file is closed, or when a call to Inter-
rupt 21H Function ODH (Disk Reset) is issued.

Sequential access: reading

Function 14H (Sequential Read) reads records sequentially from the file to the current
DTA address, which must point to an area at least as large as the record size specified in
the file’s FCB. After each read operation, MS-DOS updates the FCB block and record num-
bers (offsets 0CH and 20H) to point to the next record.

Sequential access: writing

Function 15H (Sequential Write) writes records sequentially from memory into the file.

The length written is specified by the record size field (offset OEH) in the FCB; the memory
address of the record to be written is determined by the current DTA address. After each
sequential write operation, MS-DOS updates the FCB block and record numbers (offsets
OCH and 20H) to point to the next record.

Random record access: reading

Function 21H (Random Read) reads a specific record from a file. Before requesting the
read operation, the program specifies the record to be transferred by setting the record
size and random record number fields of the FCB (offsets OEH and 21H). The current DTA
address must also have been previously set with Function 1AH to point to a buffer of
adequate size if the default DTA is not large enough. '

272 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 282/1582

Article 7: File and Record Management

After the read, MS-DOS sets the current block and current record number fields (offsets
0CH and 20H) to point to the same record. Thus, the program is set up to change to
sequential reads or writes. However, if the program wants to continue with random record
access, it must continue to update the random record field of the FCB before each random
record read or write operation. ‘

Random record access: writing

Function 22H (Random Write) writes a specific record from memory to a file. Before
issuing the function call, the program must ensure that the record size and random record
pointer fields at FCB offsets OEH and 21H are set appropriately and that the current DTA
address points to the buffer containing the data to be written.

After the write, MS-DOS sets the current block and current record number fields (offsets
OCH and 20H) to point to the same record. Thus, the program is set up to change to
sequential reads or writes. If the program wants to continue with random record access, it
must continue to update the random record field of the FCB before each random record
read or write operation.

Random block access: reading

Function 27H (Random Block Read) reads a block of consecutive records. Before issuing
the read request, the program must specify the file location of the first record by setting
the record size and random record number fields of the FCB (offsets OEH and 21H) and
must put the number of records to be read in CX. The DTA address must have already been
set with Function 1AH to point to a buffer large enough-to contain the group of records to
be read if the default DTA was not large enough. The program can then issue the Function
27H call with DS:DX peinting to the FCB for the file. i

After the random block read operation, MS-DOS resets the FCB random record pointer
(offset 21H) and the current block and current record number fields (offsets 0OCH and 20H)
to point to the beginning of the next record not read and returns the number of records
actually read in CX. ’ :

If the record size is set to 1 byte, Function 27H reads the number of bytes specified in CX,
beginning with the byte position specified in the random record pointer. This simulates
(to some extent) the handle type of read operation (Function 3FH).

Random block access: writing

Function 28H (Random Block Write) writes a block of consecutive records from memory
to disk. The program specifies the file location of the first record to be written by setting
the record size and random record pointer fields in the FCB (offsets OEH and 21H). If the
default DTA is not being used, the program must also ensure that the current DTA address
is set appropriately by a previous call to Function 1AH. When Function 28H is called,
DS:DX must point to the FCB for the file and CX must contain the number of records to

be written.

After the random block write operation, MS-DOS resets the FCB random record pointer
(offset 21H) and the current block and current record number fields (offsets 0CH and 20H)
to point to the beginning of the next block of data and returns the number of records
actually written in CX.

Section II: Programming in the MS-DOS Environment 273

OLYMPUS EX. 1010 - 283/1582

Part B: Programming for MS-DOS

If the record size is set to 1 byte, Function 28H writes the number of bytes specified in CX,
beginning with the byte position specified in the random record pointer. This simulates

(to some extent) the handle type of write operation (Function 40H).

Calling Function 28H with a record count of zero in register CX causes the file length to be
extended or truncated to the current value in the FCB random record pointer field (offset

21H) multiplied by the contents of the record size field (offset OEH).

Example: Open the file MYFILE.DAT and create the file MYFILE.BAK on the current disk
drive, copy the contents of the .DAT file into the .BAK file using 512-byte reads and writes,

and then close both files.

fcbi db 0 ;
db 'MYFILE ! ;
db 'DAT' ;
. db 25 dup (0) H
fcb2 db 0 :
db 'MYFILE ' H
db 'BAK' H
db 25 dup (0) ;
buff db 512 dup (?) H
mov dx, seg fcbi1 ;
mov ds,dx
mov dx,offset fcbil
mov ah, 0fh ;
int 21h ;
or al,al ;
jnz error ;
mov dx,offset fcb2 ;
mov ah, 16h H
int 21h ;
or - al,al ;
jnz - errox H
mov word ptr fcbi1+0eh,
mov word ptr fcb2+0eh,
mov dx,offset buff ;
mov ah, 1ah ;
int 21h ;
loop: ;
mov dx,offset fcbl ;
nov ah, 14h ;
int 21h ;
or al,al ;
jnz done ;
274 The MS-DOS Encyclopedia

drive = default

8 character filename
3 character extension
remainder of fcb1
drive = default

8 character filename
3 character extension
remainder of fcb2
buffer for file I/O

open MYFILE.DAT...
DS:DX = address of FCB

Function OFH = open
transfer to MS-DOS

did open succeed?

jump if open failed
create MYFILE.BAK...
DS:DX = address of FCB
Function 16H = create
transfer to MS-DOS

did create succeed?

jump if create failed
set record length to 512
512

512

set DTA to our buffer...
DS:DX = buffer address
Function 1AH = set DTA
transfer to MS-DOS
read MYFILE.DAT
DS:DX = FCB address
Function 14H = seq.
transfer to MS-DOS
was read successful?

read

no, quit
write MYFILE.BAK...

OLYMPUS EX

(more)

. 1010 - 284/1582

Article 7: File and Record Management

mov dx,offset fcb2 ; DS:DX = FCB address

mov ah, 15h ; Function 15H = seq. write

int 21h ; transfer to MS-DOS

or al,al ; was write successful?

jnz error ; jump if write failed

jmp loop ; continue to end of file
done: ; now close files...

mov dx,offset fcbl ; DS:DX = FCB for MYFILE.DAT

mov ah,10h ; Function 10H = close file

int 21h ; transfer to MS-DOS

or al,al ; did close succeed?

jnz error ; jump if close failed

mov dx,offset fcb2 ; DS:DX = FCB for MYFILE.BAK

mov ah,10h ; Function 10H = close file

int 21h ; transfer to MS-DOS

or al,al ; did close succeed?

jnz error ; jump if close failed

Other FCB file operations

As it does with file handles, MS-DOS provides FCB-oriented functions to rename or delete
a file. Unlike the other FCB functions and their handle counterparts, these two functions
accept wildcard characters. An additional FCB function allows the size or existence of a
file to be determined without actually opening the file.

Renaming a file

- Function 17H (Rename File) renames a file (or files) in the current directory. The file to be

renamed cannot have the hidden or system attribute. Before calling Function 17H, the pro-
gram must create a special FCB that contains the drive code at offset 00H, the old filename
at offset 01H, and the new filename at offset 11H. Both the current and the new filenames

can contain the ? wildcard character.

?

When the function call is made, DS:DX must point to the special FCB structure. MS-DOS
searches the current directory for the old filename. If it finds the old filename, MS-DOS
then searches for the new filename and, if it finds no matching filename, changes the
directory entry for the old filename to reflect the new filename. If the old filename field of
the special FCB contains any wildcard characters, MS-DOS renames every matching file.
Duplicate filenames are not permitted; the process will fail at the first duplicate name.

If the operation is successful, MS-DOS returns zero in AL; if the operation fails, it returns
OFFH. The error condition may indicate either that no files were renamed or that at least
one file was renamed but the operation was then terminated because of a duplicate
filename.

Example: Rename all the files with the extension .ASM in the current directory of the
default disk drive to have the extension .COD.

Section II: Programming in the MS-DOS Environment 275

OLYMPUS EX. 1010 - 285/1582

Part B: Programming for MS-DOS

renfcb db | 0 ; default drive
+ db 1222222272 ; wildcard filename
db 'ASM’ ; old extension .
db 5 dup (0) ; reserved area
db 127222222 ; wildcard filename
db 'copn’ ; new extension
db 15 dup (0) ; remainder of FCB
mov dx, seg renfcb ; DS:DX = address of
mov ds,dx ; "special" FCB
mov dx,offset renfcb
mov ah,17h ; Function 17H = rename
int 21h ; transfer to MS-DOS
or al,al ; did function succeed?
jnz error ; Jjump if rename failed
Deleting a file

276

Function 13H (Delete File) deletes a file from the current directory. The file should not be
currently open by any process. If the file to be deleted has special attributes, such as read-
only, the program must use an extended FCB to remove the file. Directories cannot be
deleted with this function, even with an extended FCB.

Function 13H is called with DS:DX pointing to an unopened, valid FCB containing the
name of the file to be deleted. The filename can contain the ? wildcard character; if it does,
MS-DOS deletes all files matching the specified name. If at least one file matches the FCB
and is deleted, MS-DOS returns 00H in AL; if no matching filename is found, it returns
OFFH.

Note: This function, if it succeeds, does not return any information about which and
how many files were deleted. When multiple files must be deleted, closer control can be
exercised by using the Find File functions (Functions 11H and 12H) to inspect candidate
filenames. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR
Mms-pos: Disk Directories and Volume Labels. The files can then be deleted individually.

Example: Delete all the files in the current directory of the current disk drive that have
the extension .BAK and whose filenames have A as the first character.

delfcbhb db 0 ; default drive
db TA?2?22227?" ; wildcard filename
db 'BAK' ; extension
db 25 dup (0) ; remainder of FCB
(more)
The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 286/1582

Article 7: File and Record Management

mov dx, seg delfcb ; DS:DX = FCB address

mov ds,dx

mov dx,offset delfcb

mov ah, 13h ; Function 13H = delete
int 21h ; transfer to MS-DOS

or al,al ; did function succeed?
jnz error ; Jjump if delete failed

Finding file size and testing for existence

Function 23H (Get File Size) is used primarily to find the size of a disk file without opening
it, but it may also be used instead of Function 11H (Find First File) to simply test for the
existence of a file. Before calling Function 23H, the program must parse the filename into
an unopened FCB, initialize the record size field of the FCB (offset 0EH), and set the
DS:DX registers to point to the FCB.

When Function 23H returns, AL contains 00H if the file was found in the current directory
of the specified drive and OFFH if the file was not found.

If the file was found, the random record field at FCB offset 21H contains the number of
records (rounded upward) in the target file, in terms of the value in the record size field
(offset OEH) of the FCB. If the record size is at least 64 bytes, only the first 3 bytes of the
random record field are used; if the record size is less than 64 bytes, all 4 bytes are used. To
obtain the size of the file in bytes, the program must set the record size field to 1 before the
call. This method is not any faster than simply opening the file, but it does avoid the over-
head of closing the file afterward (which is necessary in a networking environment).

Summary

MS-DOS supports two distinct but overlapping sets of file and record management
services. The handle-oriented functions operate in terms of null-terminated (ASCIIZ)
filenames and 16-bit file identifiers, called handles, that are returned by MS-DOS after a file
is opened or created. The filenames can include a full path specifying the file’s location in
the hierarchical directory structure. The information associated with a file handle, such as
the current read/write pointer for the file, the date and time of the last write to the file, and
the file’s read/write permissions, sharing mode, and attributes, is maintained in a table
internal to MS-DOS.

Section IT: Programming in the MS-DOS Environment 277

OLYMPUS EX. 1010 - 287/1582

Part B: Programming for MS-DOS

In contrast, the FCB-oriented functions use a 37-byte structure called a file control block,
located in the application program’s memory space, to specify the name and location of
the file. After a file is opened or created, the FCB is used by both MS-DOS and the applica-
tion to hold other information about the file, such as the current read/write file pointer,
while that file is in use. Because FCBs predate the hierarchical directory structure that was
introduced in MS-DOS version 2.0 and do not have room to hold the path for a file, the FCB
functions cannot be used to access files that are not in the current directory of the speci-
fied drive. ‘

In addition to their lack of support for pathnames, the FCB functions have much poorer
error reporting capabilities than handle functions and are nearly useless in networking
environments because they do not support file sharing and locking. Consequently, it is
strongly recommended that the handle-related file and record functions be used ex-
clusively in all new applications. ' ‘

Robert Byers
Code by Ray Duncan

278 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 288/1582

Article 8: Disk Directories and Volume Labels

Article 8
Disk Directories and Volume Labels

MS-DOS, being a disk operating system, provides facilities for cataloging disk files. The
data structure used by MS-DOS for this purpose is the directory, a linear list of names in
which each name is associated with a physical location on the disk. Directories are ac-
i cessed and updated implicitly whenever files are manipulated, but both directories and
their contents can also be manipulated explicitly using several of the MS-DOS Interrupt
21H service functions.

MS-DOS versions 1.x support only one directory on each disk. Versions 2.0 and later,
however, support multiple directories linked in a two-way, hierarchical tree structure
(Figure 8-1), and the complete specification of the name of a file or directory thus must
describe the location in the directory hierarchy in which the name appears. This specifica-
tion, or path, is created by concatenating a disk drive specifier (for example, A: or C:), the

C\ (root directory)

subdirectory ALPHA
subdirectory BETA
file FILE1.COM
file FILE2.COM
:]

CMNLPHA C\BETA
subdirectory . . : : subdirectory
subdirectory . . subdirectory o .
subdirectory GAMMA subdirectory EPSILON
subdirectory DELTA . file FILE4.COM
file FILE3.COM

!

CMLPHA\GAMMA CNALPHA\DELTA CA\BETA\EPSILON
subdirectory . subdirectory . subdirectory
subdirectory < » subdirectory o o subdirectory o ¢
file FILE5.COM file FILE1.COM

Figure 8-1. Typical hierarchical directory structure (MS-DOS versions 2.0 and later).

Section IT: Programming in the MS-DOS Environment 279

OLYMPUS EX. 1010 - 289/1582

Part B: Programming for MS-DOS

names of the directories in hierarchical order starting with the root directory, and finally

the name of the file or directory. For example, in Figure 8-1, the complete pathname for
FILE5.COM is C:\ALPHA\ GAMMA\FILES5.COM. The two instances of FILEL.COM, inthe
root directory and in the directory EPSILON, are distinguished by their pathnames:
C:\FILE1.COM in the first instance and C:\BETA\EPSILON\FILE1.COM in the second.

Note: If no drive is specified, the current drive is assumed. Also, if the first name in the
specification is not preceded by a backslash, the specification is assumed to be relative to
the current directory. For example, if the current directory is C:\BETA\EPSILON, the
specification \FILE1.COM indicates the file FILE1.COM in the root directory and the
specification FILE1.COM indicates the file FILE1.COM in the directory C:\BETA\EPSILON.

See Figure 8-1.

Although the casual user of MS-DOS need not be concerned with how this hierarchical
directory structure is implemented, MS-DOS programmers should be familiar with the
internal structure of directories and with the Interrupt 21H functions available for manip-
ulating directory contents and maintaining the links between directories. This article
provides that information.

Logical Structure of MS-DOS Directories

An MS-DOS directory consists of a list of 32-byte directory entries, each of which con-
tains a name and descriptive information. In MS-DOS versions 1.x, each name must be a
filename; in versions 2.0 and later, volume labels and directory names can also appear
in directory entries.

Directory searches

Directory entries are not sorted, nor are they maintained as a linked list. Thus, when
MS-DOS searches a directory for a name, the search must proceed linearly from the first
name in the directory. In MS-DOS versions 1.x, a directory search continues until the spec-
ified name is found or until every entry in the directory has been examined. In versions 2.0
and later, the search continues until the specified name is found or until a null directory
entry (that is, one whose first byte is zero) is encountered. This null entry indicates the
logical end of the directory.

Adding and deleting directory entries

MS-DOS deletes a directory entry by marking it with OESH in the first byte rather than by
erasing it or excising it from the directory. New names are added to the directory by reus-
ing the first deleted entry in the list. If no deleted entries are available, MS-DOS appends
the new entry to the list. :

280 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 290/1582

Article 8: Disk Directories and Volume Labels

The current directory

When more than one directory exists on a disk, MS-DOS keeps track of a default search
directory known as the current directory. The current directory is the directory used for all
implicit directory searches, such as those occasioned by a request to open a file, if no alter-
native path is specified. At startup, MS-DOS makes the root directory the current directory,
but any other directory can be designated later, either interactively by using the CHDIR
command or from within an application by using Interrupt 21H Function 3BH (Change
Current Directory). ’

Directory Format

The root directory is created by the MS-DOS FORMAT program. See USER COMMANDS:
FORMAT. The FORMAT program places the root directory immediately after the disk’s file
allocation tables (FATs). FORMAT also determines the size of the root directory. The size
depends on the capacity of the storage medium: FORMAT places larger root directories on
high-capacity fixed disks and smaller root directories on floppy disks. In contrast, the size
of subdirectories is limited only by the storage capacity of the disk because disk space for
subdirectories is allocated dynamically, as it is for any MS-DOS file. The size and physical
location of the root directory can be derived from data in the BIOS parameter block (BPB)
in the disk boot sector. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Struc-
TURE OF M$-Dos: MS-DOS Storage Devices.

Because space for the root directory is allocated only when the disk is formatted, the
root directory cannot be deleted or moved. Subdirectories, whose disk space is allocated
dynamically, can be added or deleted as needed.

Directory entry format

Each 32-byte directory entry consists of seven fields, including a name, an attribute byte,
date and time stamps, and information that describes the file’s size and physical location
on the disk (Figure 8-2). The fields are formatted as described in the following paragraphs.

Byte 0 OBH 0CH 16H 18H 1AH 1ICH 1FH

Name Attribute (Reserved) Time | Date | Starting cluster File size

Figure 8-2. Format of a directory entry.

The name field (bytes 0—0AH) contains an 11-byte name unless the first byte of the field
indicates that the directory entry is deleted or null. The name can be an 11-byte filename
(8-byte name followed by a 3-byte extension), an 11-byte subdirectory name (8-byte name

Section II: Programmiing in the MS-DOS Environment 281

OLYMPUS EX. 1010 - 291/1582

Part B: Programming for MS-DOS

followed by a 3-byte extension), or an 11-byte volume label. Names less than 8 bytes and
extensions less than 3 bytes are padded to the right with blanks so that the extension al-
ways appears in bytes 08-0AH of the name field. The first byte of the name field can con-
tain certain reserved values that affect the way MS-DOS processes the directory entry:

Value Meaning

0 Null directory entry (logical end of directory in MS-DOS versions 2.0 and later)

5 First character of name to be dlsplayed as the character represented by OESH
(MS-DOS version 3.2)

OESH Deleted directory entry

When MS-DOS creates a subdirectory, it always includes two aliases as the first two entries
in the newly created directory. The name . (an ASCII period) is an alias for the name of
the current directory; the name .. (two ASCII periods) is an alias for the directory’s parent
directory —that is, the directory in which the entry containing the name of the current
directory is found.

The attribute field (byte 0BH) is an 8-bit field that describes the way MS-DOS processes
the directory entry (Figure 8-3). Each bit in the attribute field designates a particular attri-
bute of that directory entry; more than one of the bits can be set at a time.

Bit 7 6 5 4 3 2 1 0
- Sub- Volume : - Read-only
(Reserved) | (Reserved) | Archive directory label System file | Hidden file file

Figure 8-3. Format of the attribute field in a directory entry.

The read-only bit (bit 0) is set to 1 to mark a file read-only. Interrupt 21H Function 3DH
(Open File with Handle) will fail if it is used in an attempt to open this file for writing. The
hidden bit (bit 1) is set to 1 to indicate that the entry is to be skipped in normal directory
searches —that is, in directory searches that do not specifically request that hidden entries
be included in the search. The system bit (bit 2) is set to 1 to indicate that the entry refers to
a file used by the operating system. Like the hidden bit, the system bit excludes a directory

_ entry from normal directory searches. The volume label bit (bit 3) is set to 1 to indicate that
the directory entry represents a volume label. The subdirectory bit (bit 4) is set to 1 when
the directory entry contains the name and location of another directory. This bit is always
set for the directory entries that correspond to the current directory (.) and the parent
directory (..). The archive bit (bit 5) is set to 1 by MS-DOS functions that close a file that
has been written to. Simply opening and closing a file is not sufficient to update the
archive bit in the file’s directory entry.

The time and date fields (bytes 16-17H and 18-19H) are initialized by MS-DOS when
the directory entry is created. These fields are updated whenever a file is written to. The
formats of these fields are shown in Figures 8-4 and 8-5.

282 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 292/1582

Article 8: Disk Directories and Volume Labels

Bit 15 10 4 0

2-second
increments (0-29)

Hours (0-23) Minutes (0-59)

Figure 8-4. Format of the time field in a directory entry.

Bit 15 8 4 0

Year (relative to 1980) Month (1-12) Day (1-31)

Figure 8-5. Format of the date field in a directory entry.

The starting cluster field (bytes 1A—1BH) indicates the disk location of the first cluster
assigned to the file. This cluster number can be used as an entry point to the file allocation

- table (FAT) for the disk. (Cluster numbers can be converted to logical sector numbers with
the aid of the information in the disk’s BPB.)

For the . entry (the alias for the directory that contains the entry), the starting cluster field

contains the starting cluster number of the directory itself. For the .. entry (the alias for the
‘parent directory), the value in the starting cluster field refers to the parent directory unless
the parent directory is the root directory, in which case the starting cluster number is zero.

The file size field (bytes 1C~1FH) is a 32-bit integer that indicates the file size in bytes.

Volume Labels

The generic term volume refers to a unit of auxiliary storage such as a floppy disk, a fixed
disk, or a reel of magnetic tape. In computer environments where many different volumes
might be used, the operating system can uniquely identify each volume by initializing it
with a volume label.

Volume labels are implemented in MS-DOS versions 2.0 and later as a specific type of

" directory entry specified by setting bit 3 in the attribute field to 1. In a volume label direc-
tory entry, the name field contains an 11-byte string specifying a name for the disk volume.
A volume label can appear only in the root directory of a disk, and only one volume label
can be present on any given disk.

In MS-DOS versions 2.0 and later, the FORMAT command can be used with the /V switch
to initialize a disk with a volume label. In versions 3.0 and later, the LABEL command can
be used to create, update, or delete a volume label. Several commands can display a disk’s
volume label, including VOL, DIR, LABEL, TREE, and CHKDSK. See USER COMMANDS.

Section II: Programming in the MS-DOS Environment 283

OLYMPUS EX. 1010 - 293/1582

Part B: Programming for MS-DOS

In MS-DOS versions 2.x, volume labels are simply a convenience for the user; no MS-DOS
routine uses a volume label for any other purpose. In MS-DOS versions 3.x, however, the
SHARE command examines a disk’s volume label when it attempts to verify whethera
disk volume has been inadvertently replaced in the midst of a file read or write operation.
Removable disk volumes should therefore be assigned unique volume names if they are
to contain shared files.

Functional Support for MS-DOS Directories

Several Interrupt 21H service routines can be useful to programmers who need to manipu-
late directories and their contents (Table 8-1). The routines can be broadly grouped into
two categories: those that use a modified file control block (FCB) to pass filenames to and
from the Interrupt 21H service routines (Functions 11H, 12H, 17H, and 23H) and those that
use hierarchical path specifications (Functions 39H, 3AH, 3BH, 43H, 47H, 4EH, 4FH, 56H,
and 57H). See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR
Ms-Dos: File and Record Management; SYSTEM CALLS: INTERRUPT 21H.

The functions that use an FCB require that the calling program reserve enough memory
for an extended FCB before the Interrupt 21H function is called. The calling program ini-
tializes the filename and extension fields of the FCB and passes the address of the FCB to
the MS-DOS service routine in DS:DX. The functions that use pathnames expect all path-
names to be in ASCIIZ format — that is, the last character of the name must be followed
by a zero byte.

Names in pathnames passed to Interrupt 21H functions can be separated by either a back-
slash (\) or a forward slash (/). (The forward slash is the separator character used in path-
names in UNIX/XENIX systems.) For example, the pathnames C:/MSP/SOURCE/ROSE.PAS
and C:\MSP\SOURCE\ROSE.PAS are equivalent when passed to an Interrupt 21H function.
The forward slash can thus be used in a pathname in a program that must run on both MS-
DOS and UNIX/XENIX. However, the MS-DOS comand processor (COMMAND.COM)
recognizes only the backslash as a pathname separator character, so forward slashes can-
not be used as separators in the command line.

Table 8-1. MS-DOS Functions for Accessing Directories.

Function Call With Returns Comment
Find First File AH=11H AL = 0 (directory entry 1f default not satisfac-
DS:DX = pointer to found) or OFFH (not found) tory, DTA must be
unopened FCB DTA updated (if directory set before using
INT 21H entry found) this function.
Find Next File AH = 12H AL = 0 (directory entry Use the same FCB
DS:DX = pointer to found) or OFFH (not found) for Function 11H and
unopened FCB DTA updated Gf directory Function 12H.
INT 21H entry found)

(more)

284 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 294/1582

Article 8: Disk Directories and Volume Labels

Table 8-1. Continued.
Function Call With Returns Comment
Rename File AH=17H AL = 0 (file renamed) or
DS:DX = pointer to OFFH (no directory entry
modified FCB or duplicate filename)
INT 21H
Get File Size AH=23H AL = 0 (directory entry
DS:DX = pointer to found) or OFFH (not found)
unopened FCB FCB updated with number
INT 21H of records in file
Create Directory AH =39H Carry flag set (if error)
DS:DX = pointer to AX = error code (if error)
ASCIIZ pathname
INT 21H
Remove Directory AH =3AH Carry flag set (if error)
DS:DX = pointer to AX = error code (if error)
ASCIIZ pathname :
INT 21H
Change Current AH = 3BH Carry flag set (if error)
Directory DS:DX = pointer to AX = error code (if error)
ASCIIZ pathname
INT 21H
Get/Set File AH = 43H Carry flag set (if error) Cannot be used to
Attributes AL =0 (get attributes) AX = error code (if error) modify the volume
1 (set attributes) CX = attribute field from label or subdirectory
CX = attributes Gf AL = 1) directory entry (f called bits.
DS:DX = pointer to with AL = 0)
ASCIIZ pathname
INT 21H
Get Current AH =47H Carry flag set (if error)
Directory DS:SI = pointer to AX = error code (f error)
64-byte buffer Buffer updated with
DL = drive number pathname of current
INT 21H directory
Find First File AH =4EH Carry flag set (if error) If default not satisfac-
DS:DX = pointer to AX = error code (if error) tory, DTA must be
ASCIIZ pathname DTA updated set before using
CX = file attributes to this function.
match
INT 21H
Find Next File AH = 4FH Carry flag set (if error)
INT 21H AX = error code (if error)
DTA updated

(more)

Section II: Programming in the MS-DOS Environment 285

OLYMPUS EX. 1010 - 295/1582

Part B: Programming for MS-DOS ' ,

Table 8-1. Continued.

Function Call With Returns Comment
Rename File AH = 56H Carry flag set (if error)
- DS:DX = pointerto AX = error code (if error)
ASCIIZ pathname
ES:DI = pointer to
new ASCIIZ pathname
INT 21H
Get/Set Date/Time AH=57H Carry flag set (if error)
of File AL = 0 (get date/time) AX = error code (f error)
1 (set date/time) CX =time (if AL=0)
BX = handle DX = date (if AL=0)

CX =time (if AL=1)
DX = date (if AL= 1)
INT 21H

Searching a directory

Two pairs of Interrupt 21H functions are available for directory searches. Functions 11H

and 12H use FCBs to transfer filenames to MS-DOS; these functions are available in all ver- :
sions of MS-DOS, but they cannot be used with pathnames. Functions 4EH and 4FH sup- '
port pathnames, but these functions are unavailable in MS-DOS versions 1.x. All four

functions require the address of the disk transfer area (DTA) to be initialized appropriately
before the function is invoked. When Function 12H or 4FH is used, the current DTA must

be the same as the DTA for the preceding call to Function 11H or 4EH.

The Interrupt 21H directory search functions are designed to be used in pairs. The Find
First File functions return the first matching directory entry in the current directory (Func-
tion 11H) or in the specified directory (Function 4EH). The Find Next File functions
(Functions 12H and 4FH) can be called repeatedly after a successful call to the corre-
sponding Find First File function. Each call to one of the Find Next File functions returns
the next directory entry that matches the name originally specified to the Find First File
function. A directory search can thus be summarized as follows:

call "find first file" function

while (matching directory entry returned)
call "find next file" function

Wildcard characters

This search strategy is used because name specifications can include the wildcard charac-
. ters ?, which matches any single character, and * (see below). When one or more wildcard
characters appear in the name specified to one of the Find First File functions, only the
nonwildcard characters in the name participate in the directory search. Thus, for example,
the specification FOO? matches the filenames FOO1, FOOZ2, and so on; the specification

286 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 296/1582

Article 8: Disk Directories and Volume Labels

Function 4EH also recognizes the wildcard character , Which matches any remaining
characters in a filename or extension. MS-DOS expands the * wildcard character inter-
nally to questxon marks Thus, for exarnple the spec1f1catlon FOO = is the same as

Examining a directory entry

All four Interrupt 21H directory search functions return the name, attribute, file size, time,
and date fields for each directory entry found during a directory search. The current DTA
is used to return this data, although the format is different for the two pairs of functions:
Functions 11H and 12H return a copy of the 32-byte directory entry — including the cluster
number— in the DTA; Functions 4EH and 4FH return a 43-byte data structure that does
not include the starting cluster number. See SYSTEM CALLS: INnTerrUPT 21H: Function
4EH.

The attribute field of a directory entry can be examined using Function 43H (Get/Set File
Attributes). Also, Function 57H (Get/Set Date/Time of File) can be used to examine a file’s
time or date. However, unlike the other functions discussed here, Function 57H is in-
tended only for files that are being actively used within an application—that is, Function
57H can be called to examine the file’s time or date stamp only after the file has been
opened or created using an Interrupt 21H function that returns a handle (Function 3CH,
3DH, 5AH, or 5BH).

Modifying a directory enti'y

Four Interrupt 21H functions can modify the contents of a directory entry. Function 17H
(Rename File) can be used to change the name field in any directory entry, including hid-
den or system files, subdirectories, and the volume label. Related Function S6H (Rename
File) also changes the name field of a filename but cannot rename a volume label or a hid-
den or system file. However, it can be used to move a directory entry from one directory to
another. (This capability is restricted to filenames only; subdirectory entries cannot be
“moved with Function 56H.)

Functions 43H (Get/Set File Attributes) and 57H (Get/Set Date/Time of File) can be used
to modify specific fields in a directory entry. Function 43H can mark a directory entry as a
hidden or system file, although it cannot modify the volume label or subdirectory bits.
Function 57H, as noted above, can be used only with a previously opened file; it provides
a way to read or update a file’s time and date stamps without writing to the file itself.

Creating and deleting directories

Function 39H (Create Directory) exists only to create directories — that is, directory
entries with the subdirectory bit set to 1. (Interrupt 21H functions that create files, such as
Function 3CH, cannot assign the subdirectory attribute to a directory entry.) The converse
function, 3AH (Remove Directory), deletes a subdirectory entry from a directory. (The
subdirectory must be completely empty.) Again, Interrupt 21H functions that delete files
from directories, such as Function 41H, cannot be used to delete subdirectories.

Section II: Programming in the MS-DOS Environment 287

OLYMPUS EX. 1010 - 297/1582

Part B: Programming for MS-DOS

Specifying the current directory

A call to Interrupt 21H Function 47H (Get Current Directory) returns the pathname of the
current directory in use by MS-DOS to a user-supplied buffer. The converse operation, in
which a new current directory can be specified to MS-DOS, is performed by Functjon 3BH

(Change Current Directory).

Programming examples: Searching for files

The subroutines in Figure 8-6 below illustrate Functions 4EH and 4FH, which use path
specifications passed as ASCIIZ strings to search for files. Figure 8-7 applies these assem-
bly-language subroutines in a simple C program that lists the attributes associated with
each entry in the current directory. Note how the directory search is performed in the
WHILE loop in Figure 8-7 by using a global wildcard file specification (+.#) and by repeat-
edly executing FindNextFile() until no further matching filenames are found. (See Pro-
gramming Example: Updating a Volume Label for examples of the FCB-related search

functions, 11H and 21H.)

TITLE 'DIRS.ASM'
;
; Subroutines for DIRDUMP.C

;

ARG1 EQU [bp + 4]
ARG2 EQU [bp + 6]
_TEXT SEGMENT byte public 'CODE'

ASSUME cs:_TEXT

; void SetDTA(DTA);
H char *DTA;

PUBLIC _SetDTA

—SetDTA PROC near
push bp
mov bp, sp
mov dx, ARG1
mov ah, 1Ah ; AH
" int 21th

; stack frame addressing for C arguments

; DS:DX -> DTA
INT 21H function number
; pass DTA to MS-DOS

Figure 8-6. Subroutines illustrating Interrupt 21H Functions 4EH and 4FH.

288 The MS-DOS Encyclopedia

OLYMPUS EX

(more)

. 1010 - 298/1582

Article 8: Disk Directories and Volume Labels

pop bp
ret
_SetDTA ENDP
; int GetCurrentDir(*path); /* returns error code */
H . char *path; /* pointer to buffer to contain path */

PUBLIC _GetCurrentDir

—GetCurrentDir PROC near
push bp
mov bp, sp
push si
mov si, ARG1 ; DS:SI -> buffer
Xor dl,dl ; DL = 0 (default drive number)
mov ah,47h ; AH = INT 21H function number
int 21h ; call MS-DOS; AX = error code
jc L01 ; jump if error
Xor ax,ax ; no error, return AX = 0
LO1: pop si
pop bp
ret

_GetCurrentDir ENDP

; .
; int FindFirstFile(path, attribute); /* returns error code */
H char #*path;

H int attribute;

PUBLIC _FindFirstFile
_FindFirstFile PROC near

push bp
mov bp, sp
mov dx, ARG1 ; DS:DX -> path
mov cx,ARG2 ; CX = attribute
mov ah, 4Eh ; AH = INT 21H function number
int 21h ; call MS-DOS; AX = error code
jc L02 ; jump if error
Figure 8-6. Continued. (more)

Section II: Programming in the MS-DOS Environment 289

OLYMPUS EX. 1010 - 299/1582

Part B: Programming for MS-DOS

xor ax,ax
L02: pop bp
ret
_FindFirstFile ENDP
;
;
; int FindNextFile();
i
PUBLIC _FindNextFile
_FindNextFile PROC near
push bp
mov bp, sp
mov ah, 4Fh
int 21h
je L03
xor ax,ax
L03: pop bp
ret
_FindNextFile ENDP
_TEXT ENDS
_DATA SEGMENT word public
CurrentDir DB 64 dup(?)
.DTA DB 64 dup(?)
_DATA ENDS
END

Figure 8-6. Continued.

290 The MS-DOS Encyclopedia

7

'DATA'

no error, return AX = 0

AH = INT 21H function number
call MS-DOS; AX =
jump if error

error code

if no error, set AX = 0

OLYMPUS EX. 1010 - 300/1582

Article 8: Disk Directories and Volume Labels

/% DIRDUMP.C */
#define AllAttributes 0x3F /* bits set for all attributes */
main ()

{

static char CurrentDir([64};

int ErrorCode;
int FileCount = 0;
struct
{
char reserved([21];
char attrib;
int time;
int date;
long size;
char name [13];
} DTA;

/% display current directory name */
ErrorCode = GetCurrentDir (CurrentDir);
if(ErxorCode)
{

printf{ "\nError %d: GetCurrentDir", ErrorCode);
exit(1);

printf("\nCurrent directory is \\%s", CurrentDir);

/#* display files and attributes */
SetDTA(&DTA); /* pass DTA to MS-DOS */
ErrorCode = FindFirstFile("*.*", AllAttributes);

while(!'ErrorCode)
{

printf("\n%12s -- ", DTA.name);
ShowAttributes(DTA.attrib);
++FileCount;

ErrorCode = FindNextFile();
/* display file count and exit */
printf("\nCurrent directory contains %d files\n",‘FileCount);

return(0);

}

Figure 8-7. The complete DIRDUMP.C program. (more)

Section II: Programming in the MS-DOS Environment 2901

OLYMPUS EX. 1010 - 301/1582

Part B: Programming for MS-DOS

ShowAttributes(a)

int

{

}

a;
int i;
int mask = 1;

static char *AttribName[] =

{
"read-only ",

"hidden ",
"system ",
"volume ",
"subdirectory ",
"archive "
}i
for(i=0; i<6; i++) /* test each

{
if(a & mask)
printf(AttribName[i])
mask << 1;

/* display a
mask =

Figure 8-7. Continued.

Programming example: Updating a volume label

To create, modify, or delete a volume-label directory entry, the Interrupt 21H functions
that work with FCBs should be used. Figure 8-8 contains four subroutines that show how to
search for, rename, create, or delete a volume label in MS-DOS versions 2.0 and later.

ARG1

DGROUP

_TEXT

TITLE 'VOLS . ASM'

C-callable routines for manipulating MS-DOS volume labels.
Note: These routines modify the current DTA address.

EQU {bp + 41 ;

GROUP —DATA

SEGMENT byte public 'CODE’
ASSUME cs:_TEXT,ds:DGROUP

Figure 8-8. Subroutines for manipulating volume labels.

292

The MS-DOS Encyclopedia

stack frame addressing

attribute bit */

message if bit is set */

(more)

OLYMPUS EX. 1010 - 302/1582

Article 8: Disk Directories and Volume Labels

; char *GetVolLabel();

PUBLIC
—GetVolLabel PROC

push
mov

push
push

call
mov
mov
int
test
jnz

mov
mov
call
mov
jmp
LO%: Xor
L02: pop
pop
pop

ret

—GetVolLabel ENDP

; int RenameVolLabel(label);

; char *label;

PUBLIC
_RenameVolLabel PROC

push
mov

push
push

Figure 8-8. Continued.

—~GetVolLabel
near

bp
bp, sp
si
di

SetDTA ; pass DTA address to MS-DOS
dx,offset DGROUP:ExtendedFCB
ah,11h ; AH = INT 21H function number
21h ; Search for First Entry
al,al
LO1

; label found so make a copy
si,offset DGROUP:DTA + 8
di,offset DGROUP:VolLabel
CopyName
ax,offset DGROUP:Vollabel ; return the copy’s address
short L02

ax,ax ; no label, return 0 (null pointer)
di

si
bp

/* returns error code */
/* pointer to new volume label name */

—RenameVolLabel
near

bp
bp, sp
si
di

(more)

Section II: Programming in the MS-DOS Environment 203

OLYMPUS EX. 1010 - 303/1582

Part B: Programming for MS-DOS

294

mov
mov
call

mov
mov
call

mov
mov
int
xor
pop
pop

pop
ret

_RenameVolLabel ENDP

si,offset DGROUP:VolLabel ; DS:SI -> old volume name
di,offset DGROUP:Namel
copy old name to FCB

CopyName

si,ARG1

di,offset DGROUP:Name2 .
copy new name into FCB

; int NewVolLabel(label);

; char *label;

PUBLIC
_NewVolLabel PROC

push
mov

push
push

CopyName ;
dx,offset DGROUP:ExtendedFCB ; DS:DX -> FCB
ah,17h ; AH = INT 21H function number
21h ; rename)
ah,ah ; AX = Q0H (success) or OFFH (failure)
di ; restore registers and return
si
bp
/* returns error code */
/* pointer to new volume label name */
_NewVolLabel
near
bp
bp, sp
si
di
si,ARG1

mov
mov
call

mov
nov
int
xor

pop
pop
pop
ret

_NewVolLabel ENDP

Figure 8-8. Continued.

The MS-DOS Encyclopedia

di,offset DGROUP:Namel
copy new name to FCB

CopyName

dx,offset DGROUP:ExtendedFCB

ah,16h
21h
ah, ah

di
si
bp

’

7

;

; create directory entry

;

7

AH

AX

restore registers and return

= INT 21H function number

= 00H (success) or OFFH (failure)

(more)

OLYMPUS EX. 1010 - 304/1582

Article 8: Disk Directories and Volume Labels

PUBLIC _DeleteVolLabel
_DeleteVolLabel PROC near
push bp
. mov bp, sp
L : push si
! push di
mov si,offset DGROUP:VolLabel
mov di,offset DGROUP:Namel
call CopyName ; copy current volume name to FCB
mov dx, offset DGROUP:ExtendedFCB
mov ah, 13h ; AH = INT 21H function number
: int 21h ; delete directory entry
xXor ah, ah ; AX = 0O0H (success) or OFFH (failure)
pop di ; restore registers and return
pop si
pop bp
ret
_DeleteVollabel ENDP
o e
; miscellaneous subroutines
H
U O
SetDTA PROC near
push ax ; preserve registers used
push dx
mov dx,offset DGROUP:DTA ; DS:DX -> DTA
mov ah, 1Ah ; AH = INT 21H function number
int 21h ; set DTA
pop dx ; restore registers and return
pop ax
ret
SetDTA ENDP
Figure 8-8. Continued. (more)
Section IT: Programming in the MS-DOS Environment 295

OLYMPUS EX. 1010 - 305/1582

Part B: Programming for MS-DOS

CopyName PROC near ; Caller: SI -> ASCIIZ source
;) DI ~> destination
push ds
pop es ; ES = DGROUP
mov cx, 11 ; length of name field
L11: ‘ lodsb) ; copy new name into FCB
test al,al
jz . L2 ; .. until null character is reached
stosb
loop L1
L12: mov al,' ' ; pad new name with blanks
rep stosb
ret
CopyName ENDP
_TEXT . ENDS
_DATA SEGMENT word public 'DATA’
VolLabel DB 11 dup(0),0
ExtendedFCB DB OFFh ; must be OFFH for extended FCB
DB 5 dup (0) ; (reserved)
DB 1000b ; attribute byte (bit 3 = 1)
DB 0 ; default drive ID
Name1 DB 11 dup('?2") ; global wildcard name
DB 5 dup{(0) ; (unused)
Name2 DB 11 dup(0) ; second name (for renaming entry)
DB 9 dup (0) ; (unused)
DTA DB 64 dup(0)
_DATA ENDS
END

Figure 8-8. Continued.

Richard Wilton

296 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 306/1582

Article 9: Memory Management

Article 9
Memory Management

Personal computers that are MS-DOS compatible can be outfitted with as many as three
kinds of random-access memory (RAM): conventional memory, expanded memory, and
extended memory.

All MS-DOS machines have at least some conventional memory, but the presence of ex-
panded or extended memory depends on the installed hardware options and the model of
microprocessor on which the computer is based. Each storage class has its own capabil-
ities, characteristics, and limitations. Each also has its own management techniques, which
are the subject of this chapter.

Conventional Memory

Conventional memory is the term for the up to 1 MB of memory that is directly addressable
by an Intel 8086/8088 microprocessor or by an 80286 or 80386 microprocessor running in
real mode (8086-emulation mode). Physical addresses for references to conventional
memory are generated by a 16-bit segment register, which acts as a base register and holds
a paragraph address, combined with a 16-bit offset contained in an index register or in the
instruction being executed.

On IBM PCs and compatibles, MS-DOS and the programs that run under its control occupy
the bottom 640 KB or less of the conventional memory space. The memory space above
the 640 KB mark is partitioned among ROM (read-only memory) chips on the system
board that contain various primitive device handlers and test programs and among RAM
and ROM chips on expansion boards that are used for input and output buffers and for ad-
ditional device-dependent routines.

The bottom 640 KB of memory administered by MS-DOS is divided into three zones
(Figure 9-1:

e The interrupt vector table
® The operating system area
® The transient program area

The interrupt vector table occupies the lowest 1024 bytes of memory (locations 00000~
003FFH); its address and length are hard-wired into the processor and cannot be changed.
Each doubleword position in the table is called an interrupt vector and contains the seg-
ment and offset of an interrupt handler routine for the associated hardware or software in-
terrupt number. Interrupt handler routines are usually built into the operating system,

Section IT: Programming in the MS-DOS Environment 297

OLYMPUS EX. 1010 - 307/1582

Part B: Programming for MS-DOS

100000H (1 MB)
ROM BIOS _

additional ROM code

on expansion boards,

memory-mapped I/O
buffers

%

AOO0OH (640 KB)

Transient
program area

Boundary varies
MS-DOS and
its buffers, tables,
and device drivers

00400H (1 XB)

Interrupt vector table
00000H

Figure 9-1. A diagram showing conventional memory in an IBM PC-compatible MS-DOS system. The bottom
1024 bytes of memory are used for the interrupt vector table. The memory above the vector table, up to the 640
KB boundary, is available for use by MS-DOS and the programs that run under its control. The top 384 KB are
used for the ROM BIOS, other device-control and diagnostic routines, and memory-mapped input and output.

but in special cases application programs can contain handler routines of their own.
Vectors for interrupt numbers that are not used for software linkages or by some hardware
device are usually initialized by the operating system to point to a simple interrupt return
(IRET) instruction or to a routine that displays an error message.

The operating-system area begins immediately above the interrupt vector table and

holds the operating system proper, its tables and buffers, any additional installable device -
drivers specified in the CONFIG.SYS file, and the resident portion of the COMMAND.COM
command interpreter. The amount of memory occupied by the operating-system area
varies with the version of MS-DOS being used, the number of disk buffers, and the number
and size of installed device drivers.

The transient program area (TPA) is the remainder of RAM above the operating-system
area, extending to the 640 KB limit or to the end of installed RAM (whichever is smaller).
External MS-DOS commands (such as CHKDSK) and other programs are loaded into the
TPA for execution. The transient portion of COMMAND.COM also runs in this area.

The TPA is organized into a structure called the memory arena, which is divided into por-
tions called arena entries (or memory blocks). These entries are allocated in paragraph
(16-byte) multiples and can be as small as one paragraph or as large as the entire TPA.
Each arena entry is preceded by a control structure called an arena entry header, which
contains information indicating the size and status of the arena entry.

298 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 308/1582

Article 9: Memory Management

MS-DOS inspects the arena entry headers whenever a function requesting a memory-
block allocation, modification, or release is issued; when a program is loaded and exe-
cuted with the EXEC function (Interrupt 21H Function 4BH); or when a program is termi-
nated. If any of the arena entry headers appear to be damaged, MS-DOS returns an error to
the calling process. If that process is COMMAND.COM, COMMAND.COM then displays
the message Memory allocation error and halts the system.

MS-DOS support for conventional memory management

The MS-DOS kernel supports three memory-management functions, invoked with Inter-
rupt 21H, that operate on the TPA:

® Function 48H (Allocate Memory Block)
® Function 49H (Free Memory Block)
® Function 4AH (Resize Memory Block)

These three functions (Table 9-1) can be called by application programs, by the command
processor, and by MS-DOS itself to dynamically allocate, resize, and release arena entries

as they are needed. See SYSTEM CALLS: INTERRUPT 21H: Functions 48H; 49H; 4AH.

Table 9-1. MS-DOS Memory-Management Functions.

Function Name Call With Returns
‘Allocate Memory Block ~ AH =48H AX = segment of allocated
' BX = paragraphs needed block
If failed:
BX = size of largest available
block in paragraphs
Free Memory Block AH = 49H nothing
ES = segment of block to
release
Resize (Allocated) AH = 4AH If failed:
Memory Block BX = new size of block in BX = maximum size
paragraphs for block in paragraphs
ES = segment of block to
resize
Get/Set Allocation AH =58H If getting:
Strategy* - AL = O0H (get strategy) AX = strategy code
01H (set strategy)
If setting:
BX = strategy:

00H = first fit
01H = best fit
02H = last fit

*MS-DOS versions 3.x only.

Section II Programming in the MS-DOS Environment

OLYMPUS EX. 1010 - 309/1582

299

Part B: Programming for MS-DOS

When the MS-DOS kernel receives a memory-allocation request, it inspects the chain of
arena entry headers to find a free arena entry that can satisfy the request. The memory
manager can use any of three allocation strategies:

® First fit—the arena entry at the lowest address that is large enough to satisfy the

request .
® Best fit—the smallest available arena entry that satisfies the request, regardless of its
position
® Last fit—the arena entry at the highest address that is large enough to satisfy the
request

If the arena entry selected is larger than the size needed to fulfill the request, the arena
entry is divided and the program is given an arena entry exactly the size it requires. A new
arena entry header is then created for the remaining portion of the original arena entry; it
is marked “unowned” and can be used to satisfy subsequent allocation calls.

Research on allocation strategies has demonstrated that the first-fit approach is most
efficient, and this is the default strategy used by MS-DOS. However, in MS-DOS versions
3.0 and later, an application program can select a different strategy for the memory man-
ager with Interrupt 21H Function 58H (Get/Set Allocation Strategy). See SYSTEM CALLS:
INTERRUPT 218: Function 58H.

Using the memory-management functions

When a program begins executing; it already owns two arena entries allocated on its
behalf by the MS-DOS EXEC function (Interrupt 21H Function 4BH). The first entry holds
the program’s environment and is just large enough to contain this information; the second
entry (called the program block in this article) contains the program’s PSP, code, data, and
stack. '

The amount of memory MS-DOS allocates to the program block for a newly loaded tran-
sient program depends on its type (COM or .EXE). Under typical conditions, a .COM pro-
gram is allocated all of the first arena entry that is large enough to hold the contents of its
file, plus 256 bytes for the PSP and at least 2 bytes for the stack. Because the TPA is seldom
fragmented into more than one arena entry before a program is loaded, a .COM program
usually ends up owning all the memory in the system that does not belong:to the operat-
ing system itself — memory divided between a relatively small environment and a com-
paratively immense program block.

The amount of memory allocated to a .EXE program, on the other hand, is controlled
by two fields called MINALLOC and MAXALLOC in the .EXE program file header. The
MINALLOC field tells the MS-DOS loader how many paragraphs of memory, in addition to
the memory required to hold the initialized code and the data present in the file, must be
available for the program to execute at all. The MAXALLOC field contains the maximum
number of excess paragraphs, if available, to allocate to the program.

300 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 310/1582

Article 9: Memory Management

The default value placed in MAXALLOC by the Microsoft Object Linker is FFFFH para-

graphs, corresponding to 1 MB. Consequently, a .EXE program is typically allocated all of

available memory when it is loaded, as is a .COM file. Although it is possible to set the

MAXALLOC field to other, smaller values with the linker's /CPARMAXALLOC switch or

with the EXEMOD utility supplied with Microsoft language compilers, few programmers
- bother to do so.

In short, when a program begins executing, it usually owns all of available memory —
frequently much more memory than it needs. If the program wants to be well behaved in
its use of memory and, possibly, load child programs as well, it should immediately release
any extra memory. In assembly-language programs, the extra memory is released by call-
ing Interrupt 21H Function 4AH (Resize Memory Block) with the segment of the program’s
PSP in the ES register and the number of paragraphs of memory to retain for the program’s
use in the BX register. (See Figures 9-2 and 9-3.) In most high-level languages, such as
Microsoft C, excess memory is released by the run-time library’s startup module.

_TEXT segment para public 'CODE'
org 100h
assume cs:_TEXT,ds:_TEXT,es:_TEXT, ss:_TEXT

main proc near ; entry point from MS-DOS
; CS = DS = ES = SS = PSP

; first move our stack
mov sp,offset stk ; to a safe place...

; now release extra memory...

mov bx,offset stk ; calculate paragraphs to keep
mov cl,4 ; (divide offset of end of

shr bx,cl ; program by 16 and round up)
inc bx

mov ah, 4ah ; Fxn 4AH = resize mem block
int 21h ; transfer to MS-DOS

jc error ; jump if resize failed

; otherwise go on with work...

main endp

(more)

Figure 9-2. An example of a .COM program releasing excess memory after it receives control from MS-DOS.
Interrupt 21H Function 4AH is called with the segment address of the program’s PSP in register ES and the
number of paragraphs of memory to retain in register BX.

Section II: Programming in the MS-DOS Environment 301

OLYMPUS EX. 1010 - 311/1582

Part B: Programming for MS-DOS

dw - 64 dup (?)
stk equ $; base of new stack area

_.TEXT ends
end main ; defines program entry point

Figure 9-2. Continued.

_TEXT segment word public 'CODE' ; executable code segment
assume cs:_TEXT,ds:_DATA,ss:STACK
main proc far ; entry point from MS-DOS
; CS = _TEXT segment,

; DS = ES = PSP

mov ax,_DATA ; set DS = our data segment
mov ds, ax

; give back extra memory...

mov ax,es ; let AX = segment of PSP base
mov bx, ss ; and BX = segment of stack base
sub bx,ax ; reserve seg stack - seg psp
add bx,stksize/16 ; plus paragraphs of stack
inc bx ; round up
mov ah,4ah ; Fxn 4AH = resize memory block
int 21h ; transfer to MS-DOS
je error ; jump if resize failed

main endp

_TEXT ends

_DATA seément word public 'DATA' ; static & variable data

_DATA ends

(more)

Figure 9-3. An example of a .EXE program releasing excess memory after it receives control from MS-DOS.
This particular code sequence depends on the segment order shown. When a .EXE program is linked from
many different object modules, other techniques may be needed to determine the amount of memory occupied
by the program at run time.

302 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 312/1582

Article 9: Memory Management

STACK segment para stack 'STACK'

db stksize dup (?)
STACK ends
end main ; defines program entry point

Figure 9-3. Continued.

Later, if the transient program needs additional memory for a buffer, table, or other work
area, it can call Interrupt 21H Function 48H (Allocate Memory Block) with the desired
number of paragraphs. If a sufficiently large block of memory is available, MS-DOS creates
a new arena entry of the requested size and returns a pointer to its base in the form of a
segment address in the AX register. If an arena entry of the requested size cannot be cre-
ated, MS-DOS returns an error code in the AX register and the size in paragraphs of the
largest available block of memory in the BX register. The application program can inspect
this value to determine whether it can continue in a degraded fashion with a smaller
amount of memory. :

When a program finishes using an allocated arena entry, it should promptly call Interrupt
21H Function 49H to release it. This allows MS-DOS to collect small blocks of freed mem-
ory into contiguous arena entries and reduces the chance that future allocation requests by
the same program will fail because of memory fragmentation. In any case, all arena entries
owned by a program are released when the program terminates with Interrupt 20H or
with Interrupt 21H Function 00H or 4CH.

A program skeleton demonstrating the use of dynamic memory allocation services is
shown in Figure 9-4. : '

mov bx,800h ; 800H paragraphs = 32 KB

mov ah, 48h ; Fxn 48H = allocate block -
int 21h ; transfer to MS-DOS

jc error ; jump if allocation failed

mov bufseg, ax ; save segment of block

; open working file...

mov dx,offset filel ; DS:DX = filename address
mov ax, 3d00h ; Fxn 3DH = open, read only
int 21h ; transfer to MS-DOS

jc error ; jump if open failed

mov handleil, ax ; save handle for work file

(more)

Figure 9-4. A skeleton example of dynamic memory allocation. The program requests a 32 KB memory block,
uses it to copy its working file to a backup file, and then releases the memory block. Note the use of ASSUME
directives to force the assembler to generate proper segment overrides on references to variables containing file
handles.

Section IT: Programming in the MS-DOS Environment 303

OLYMPUS EX. 1010 - 313/1582

Part B: Programming for MS-DOS

~

create backup file...

mov dx,offset file2 ; DS:DX = filename address
mov cx,0 ; CX = attribute (normal)
mov ah, 3ch ; Fxn 3CH = create file
int 21h ; transfer to MS-DOS
jc erroxr ; jump if create failed
mov handle2, ax ; save handle for backup file
push ds ; set ES = our data segment
pop es
mov ds,bufseg ; set DS:DX = allocated block
Xor dx, dx
assume ds:NOTHING, es:_DATA ; tell assembler
next: ; read working file...
mov bx,handlel ; handle for work file
mov cx,8000h ; try to read 32 KB
mov ah, 3fh ; Fxn 3FH = read
int 21h ; transfer to MS-DOS
jc error ; jump if read failed
or ax,ax ; was end of file reached?
jz done ; yes, exit this loop
; now write backup file...
mov cx, ax ; set write length = read length
mov bx,handle2 ; handle for backup file
mov ah, 40h ; Fxn 40H = write
int 21h ; transfer to MS-DOS
jc error ; Jjump if write failed
cmp ax,cx ; was write complete?
jne error ; no, disk must be full
jmp next ; transfer another record
done: push es ; restore DS = data segment
pop ds
assume ds:_DATA,es:NOTHING ; tell assembler
; release allocated block...
mov es,bufseg ; segment base of block
mov ah, 4S%h ; Fxn 49H = release block
int 21h ; transfer to MS-DOS
jc error ; (should never fail)
; now close backup file...
mov bx,handle2 ; handle for backup file
. mov ah, 3eh ; Fxn 3EH = close
int 21h ; transfer to MS-DOS
je error ; jump if close failed

Figure 9-4. Continued.

304 The MS-DOS Encyclopedia

OLYMPUS EX.

(more)

1010 - 314/1582

Article 9: Memory Management

filel db 'MYFILE.DAT',0 ; name of working file

file2 db 'MYFILE.BAK',0 ; name of backup file
handlel dw ? ; handle for working file
handle2 dw ? ; handle for backup file
bufseg dw ? ; segment of allocated block

Figure 9-4. Continued.

Expanded Memory

The original Expanded Memory Specification (EMS) version 3.0 was developed as a joint
effort of Lotus Development Corporation and Intel Corporation and was announced at the
Spring COMDEX in 1985. The EMS was designed to provide a uniform means for applica-
tions running on 8086/8088-based personal computers, or on 80286/80386-based com-
puters in real mode, to circumvent the 1 MB limit on conventional memory, thus providing
such programs with much larger amounts of fast random-access storage. The EMS version
3.2, modified from 3.0 to add support for multitasking operating systems, was released
shortly afterward as a joint effort of Lotus, Intel, and Microsoft.

The EMS is a functional definition of a bank-switched memory subsystem; it consists of
user-installable boards that plug into the IBM PC'’s expansion bus and a resident driver pro-
gram called the Expanded Memory Manager (EMM) that is provided by the board manu-
facturer. As much as 8 MB of expanded memory can be installed in a single machine.
Expanded memory is made available to application software in 16 KB pages, which are
mapped by the EMM into a contiguous 64 KB area called the page frame somewhere
above the conventional memory area used by MS-DOS (0-640 KB). An application pro-
gram can thus access as many as four 16 KB expanded memory pages simultaneously. The
location of the page frame is user configurable so that it will not conflict with other hard-
ware options (Figure 9-5).

The Expanded Memory Manager

The Expanded Memory Manager provides a hardware-independent interface between
application programs and the expanded memory board(s). The EMM is supplied by the.
board manufacturer in the form of an installable character-device driver and is linked into
MS-DOS by a DEVICE directive added to the CONFIG.SYS file on the system startup disk.

Internally, the EMM is divided into two distinct components that can be referred to as the
driver and the manager. The driver portion mimics some of the actions of a genuine in-
stallable device driver, in that it includes Initialization and Output Status subfunctions and
a valid device header. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusTomiz-

ING Ms-Dos: Installable Device Drivers.

Section II: Programming in the MS-DOS Environment 305’

OLYMPUS EX. 1010 - 315/1582

Part B: Programming for MS-DOS

Expanded memory

8 MB

Conventional memory

1 MB
ROM BIOS etc.
EMS page frame
(four 16 KB pages) |

640 KB

Transient program area

MS-DOS
00400H
0 Interrupt vector table 0

Figure 9-5. A sketch of the relationship of expanded memory to conventional memory; 16 KB pages of
expanded memory are mapped into a 64 KB area, called the page frame, above the 640 KB boundary. The
location of the page frame can be configured by the user to eliminate conflicts with ROMs or I/O buffers on
expansion boards. :

The second, and major, element of the EMM is the true interface between application soft-
ware and the expanded memory hardware. Several classes of services provide

Status of the expanded memory subsystem
Allocation of expanded memory pages
Mapping of logical pages into physical memory
Deallocation of expanded memory pages
Support for multitasking operating systems
Diagnostic routines

Application programs communicate with the EMM directly by means of a software inter-
rupt (Interrupt 67H). The MS-DOS kernel does not take part in expanded memory
manipulations and does not use expanded memory for its own purposes.

306 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 316/1582

Article 9: Memory Management

Checking for expanded memory

Before it attempts to use expanded memory for storage, an application program must
establish that the EMM is present and functional, and then it must use the manager portion
of the EMM to check the status of the memory boards themselves. There are two methods
a program can use to test for the existence of the EMM.

The first method is to issue an Open File or Device request (Interrupt 21H Function 3DH)
using the guaranteed device name of the EMM driver: EMMXXXXO. If the open operation
succeeds, one of two conditions is indicated — either the driver is present or a file with the
same name exists in the current directory of the default disk drive. To rule out the latter
possibility, the application can issue IOCTL Get Device Information (Interrupt 21H Func-
tion 44H Subfunction 00H) and Check Output Status (Interrupt 21H Function 44H Subfunc-
tion 07H) requests to determine whether the handle returned by the open operation is
associated with a file or with a device. In either case, the handle that was obtained from
the open function should then be closed (Interrupt 21H Function 3EH) so that it can be
reused for another file or device.

The second method of testing for the driver is to use the address that is found in the vector
for Interrupt 67H to inspect the device header of the presumed EMM. (The contents of

the vector can be obtained conveniently with Interrupt 21H Function 35H.) If the EMM is
present, the name field at offset 0AH of the device header contains the string EMMXXXXO.
This method is nearly foolproof, and it avoids the relatively high overhead of an MS-DOS
open function. However, it is somewhat less well behaved because it involves inspection
of memory that does not belong to the application.

The two methods of testing for the existence of the EMM are illustrated in Figures 9-6 and
9-7.

; attempt to "open"‘ EMM. ..

mov dx, seg emm_name ; DS:DX.= address of name
mov ds, dx ; of EMM
mov dx, offset emm_name
mov ax, 3d00h ; Fxn 3DH, Mode = 00H
) ; = open, read-only
int 21h ' ; transfer to MS-DOS

je error ; jump if open failed

; open succeeded, make sure
; it was not a file...

(more)

Figure 9-6. Testing for the presence of the Expanded Memory Manager with the MS-DOS Open File or Device
(Ihterrupt 21H Function 3DH) and IOCTL (Interrupt 21H Function 44H) functions.

Section II: Programming in the MS-DOS Environment 307,

OLYMPUS EX. 1010 - 317/1582

Part B: Programming for MS-DOS

mov bx,ax
mov ax,4400h
int 21h

jc error
and dx, 80h
jz error
mov ax,4407h
int 21h

je erxor

or al,al

jz error
mov ah, 3eh
int 21h

je error

emm_name db 'EMMXXXX0',0

Figure 9-6. Continued.

emm_int equ 67h
mov al,emm_int
mov ah,35h
int 21h

BX = handle from open

Fxn 44H Subfxn 00H

= IOCTL Get Device Information
transfer to MS-DOS

jump if IOCTL call failed

Bit 7 = 1 if character device
jump if it was a file

EMM is present, make sure

it is available...

(BX $till contains handle)

Fxn 44H Subfxn 07H

= IOCTL Get Output Status
transfer to MS-DOS

jump i1f IOCTL call failed

test device status

if AL = 0 EMM is not available

now close handle

(BX still contains handle)
Fxn 3EH = Close

transfer to MS-DOS

jump if close failed

guaranteed device name for EMM

EMM software interrupt

first fetch contents of
EMM interrupt vector...

AL = EMM int number

Fxn 35H = get vector
transfer to MS~DOS

now ES:BX = handler address

assume ES:0000 points
to base of the EMM...

(more)

Figure 9-7. Testing for the presence of the Expanded Memory Manager by inspecting the name field in the

device driver header.

308 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 318/1582

Article 9: Memory Management

mov di, 10 ; ES:DI = address of name
; field in device header

mov si,seg emm_name ; DS:SI = address of

mov ds, si ; expected EMM driver name

mov si,offset emm_name

mov cx,8 ; length of name field

cld

repz cmpsb ; compare names...

jnz error ; jump if driver absent

emm_name db 'EMMXXXX0"'

Figure 9-7. Continued.

Using expanded memory

’

guaranteed device name for EMM

After establishing that the EMM is present, the application program can bypass MS-DOS
and communicate with the EMM directly by means of software Interrupt 67H. The calling

sequence is as follows:

mov ah, function

int 67h

‘

AH selects EMM function
Load other registers with
values specific to the

requested service

Transfer to EMM

In general, the ES:DI registers are used to pass the address of a buffer or an array, and the
DX register is used to hold an expanded memory “handle.” Some EMM functions also use
other registers (chiefly AL and BX) to pass such information as logical and physical page
numbers. Table 9-2 summarizes the services available from the EMM.

Upon return from an EMM function call, the AH register contains zero if the function was
successful; otherwise, AH contains an error code with the most significant bit set (Table
9-3). Other values are typically returned in the AL and BX registers or in a user-specified

buffer.

Section I Programming in the MS-DOS Environment 309

OLYMPUS EX. 1010 - 319/1582

Part B: Programming for MS-DOS

‘HI¥ uomoung

IIM PaUTEIGO 3q UEd Yoty ‘Sures) 98ed s NN oy ey
Jo uswas oY) spaau ose uonedridde sy ‘a8ed [eosAyd SIPUEq WING = XA 28ed sJNNE au urpIA
& 0} paddews u2aq sey I 1916 AI0WSW Y] SSOOE O, T4 0) so8ed [earsAyd Inoy
23ed eoi8o] = xg 311 JO U0 OUO J[puey
"HEY uonouny yiim S[puey WAL Y1 01 PIedo[je €-0) € 01 paudisse A1owaw
Ajsnotaaid saBed [eo180] Jo Jaquunu I3 ST % 213YM o8ed feoisdyd = Tv popuedxs jo saded
‘[-u—0 28ues 2y ut aq Isnwr Jaquunu 33ed [ed130] 2y 1, SNieIs = HV By =HV Teo18o] a3 jo auo depy Asowap dey
"9|qereae saded Jo Jaquinu [ENIDE) SUTWISNSP
o1 uonedrdde ay1 Aq paj[ed 2q Ued Hz§ uoroung
"PaISNEYXD Uaaq a4ey safed WINH 91 JO so[puey
WINE S]qEB[IEAE 31 JaUNID 9SNEIDq [1ej UBD UOHOUN) SIY],
“paystuyy st uoneordde ays
uaym uoneIado as0]d & AQ Pasea|al aq 1SN puE AJowsw
dewr o) 1sonbar juanbasqns 41942 yam pasn aq 1snx "o[puey 1ey}
o[puey ay 1, ‘soSed WIAH JO JoqUINU UTELI3D € SUMO pUe HO0 31e00[]E 0} Aq pajjonuod 2q 01 sa8ed A3oUIS
S[pueY 3[1J € 0} SNOSO[EUE ST PAUINIAI S[pULy Y I, ‘WINT =HV J1 ‘o[puey = Xd sa8ed [eoi8o] = Xg 1e2180] a1€00] € pUE papuedxyg
oy 10§ uonpuny uado-ajiy & 0 Jusfearnba st uoroUNy SIY I, sniels = HY HSy = HY S[puey WNF UE Urelqo 31e20[[V
*P2JES0[[E ApEaIE JoU
wISAS are Jeys saded jo Joquunu
ur sa8ed WAF 18101 = Xd oY1 pue wa)sAs a3 ur
HO0 = HV J1 ‘sa8ed 1uasa1d safed Asowowr
"uorIouUNnJ SIY1 3sn 0) S[puey WIWH pa1e00[[BUn = Xgq papuedxe 183130 Jo so8ed AIowaW
WINA ue paxmboe Apeaife aAey jou pasu uonedyjdde oy, Snjels = Y HZy =HY IDquinu 3Y) urelqO papuedxy 139
J0ss2001d 8808/9808 a3 Jo aoeds Atowaw [edisAyd HO0 = HV J1 ‘oweyy "Suresj
a1 oyut sa8ed Asowawr papuedxo jesidof dew o) pasn o8ed jo juowidas = xgq o8ed IWINE 243 JO ssaIppe JuowBag swely
are 1ey) saed g1 91 Inoj ojuT papialp st surely a8ed oy, SnIBIs = HY HI¥ =HV - Juow8as a3 urelIqO 28eg190
‘FeUonOUNy o€
“Juasaxd st WNT oY1 38y} 9IeMpIEl PUE 918M1JOS
‘L6 PUE 9-6 s2In31y ur pajuasald sonbruyoa) oy jo auo Asowsw papuedxd snieig
Y ‘paystiqelsa sey werSoid oy I101Je pasn ST [[ed SIYL snIels = HY HO¥ =HV 91 J9YI9YM 1S9], IoBeuep 190
S;uuIwe) SuISy ™M uonody aweN
ned uonduny

< WIWH 93 Aq papraoid swerSosq uonedddy 01 9oejIoju] 5I2M1JOS) JO AJewrwing *Z-6 el

The MS-DOS Encyclopedia

310

OLYMPUS EX. 1010 - 320/1582

Article 9: Memory Management

o

(aa0ur)

‘SUOISIOA SINH I91B] UT [POAISSII,, SIE PUE ('¢ UOISISA SIWH Ul PAULJSp 319M (PaIsT] 10U) HVE PUE HGH SUOHOUN] INWH «

"I 0) pajeooyfe Asowaw Jo sa8ed 019z seyy

I2A5U J]puey WL UV "Z1$—T 99ues oy ul skeme ST [nJ
~-85300N0S S§ UOKIdUNY Y3 JT pauIngax safed Jo Jaquinu Sy,

"SS[pUEY WINH [BISASS UMO 3I0J219Y) pue
sisanba uonedofe [e1sass axewr ued wexdoid o[Surs v

"GGZ SPI9DX I9ADU SIpURY
WINA 2A1DE JO Joquunu Y [, *asn uf sy Ajowaw papuedxa
3Y) JO SUOU ‘0I3Z ST PIUINIDI SI[PUEY JO ISqUInU 33 JI

‘uondnuoyur jo jurod sy3 1 33e3s s31 03 1xyuod Surddew
911 2101521 0} AJOWSW Papuedxa Pasn 1By} JOALIP JUSPISaT
© IO Io[puey 1dnIIaIUT U SMO[[E 1] "H.P Uonoun,y WINH O
[1eo snoiaaxd e Aq paduefeq 2q Isnw UOLIOUNY STYI JO 9S(]

‘pordnuiajut

sem yey wexdod ay) 01 30U ‘aduanbas vonezijeniur sir
Suunp 1o[puey 1dniisyur 3Y1 01 pSUSSSe seam Jeys dpuey
3y3 st uopouny 3yt o3 payyddns s[puey sy, "Arowsux
papuedxa ssa00€ 3N 1EY) SANITHIN JO SISALIP JUIPISAI pue
s1o[puey 31dnJIa1ur 4q 9sn 10j pauSisap ST uonouNng STy 1,

. "S11q & Jomo[93 Ut 1red Jeuornoelj
ay1 pue siq ¥ Jaddn oy ur 1red 1a8a3ut o Y ‘aDg

SE PapOdUD ST I2QUINU UOISIDA 3 I, *SAFdWIOD I9ALIP 31
UYOIYM I WINF Y31 JO UOISISA 33 S OMN[EA PIUINIDI DY,

‘saBed Atowaw popuedxs

UIYIM PI0IS dAEY AU 1T BIED 9Y) JO 3SN IoY1InJ Sursews
3q 10U [[14 uopedydde ot JeY) IWINF S SSITIOU I “I[1j B
uo uonesado aso[d e Jo JudeAmnba oy ST UoKOUNy STY L,

HOO=HV}l
‘saBed [eor8o] = xg
snes = gy

HO00

= HV JI ‘o[puey

N JO 19qUInU = Xg
snIess = Y

snyes = Hy

snIels = v

HOO=HVJ!
‘uoIsIoA WINA =TV
snels = gV

SnIeIs = vV

Spuey WAHE = XA
HO% =HV

HIy =HV

puey WINE = Xd
H8Y =HV

S[puey WINA = XA
HLy=HV

HO9% =HV

Spuey AWA = XA
HSy =HV

‘a]puey oyads e 0}
pajeooy[e saded Aowaw
papuedxs jesi3o] Jo
I2qUINU Y3 WInioy

‘So|puey WINH 2ANOE
JO JPqUINU 5Y) UINIDY

‘o[puey
UDAIZ U1 YlIm PITEIOOSSE
sanfea ay) 0} s121s13a1
Buiddewr-o3ed a1emprey
Azourowr papuedxa [[e Jo
SJUSIUOD Y1 2I0ISAY

“S[puey WINE
o1102ds B ylim SJUSJUOD
asot3 Suneosse ‘spreoq
AJowawr papuedxa ay)
uo s12351321 Surddeur
-o8ed Llowaw papuedxa
3Y] JO SIUIUOD 3] IAES

"9IeM1Jos
WINF 91 JO Jaquunu
UOISISA 3 UINIDY

*2$N31 JOJ J[3S1 Spury
21 9B} U1 pue
J[puey e 0} pauSisse

Apuauno Lxowaw
papuedxo Jo safed
Te2130] a3 a18d0[[B

spuey
Aq paum
sa8ed 190

SS[pueH WINA
JO IaquIny] 130

1X9U0D
Suiddel
210189y

X2UCD

Suiddeyy aaes

UOISIOA
WA 19D

Aowdp pue
o[puey 9ses[ey

311

Section IT: Programming in the MS-DOS Environment

OLYMPUS EX. 1010 - 321/1582

Part B: Programming for MS-DOS

*218)s snotadd 11 0}
wajsAsgns Arowaw papuedxa oY1 210)sa1 O) ATESSI03U ST

(Hz0 ‘HO00 suon

-ounyqng) uon
ey} UONBUXIOJUI J9YI0 Urejuod Aewr 3 ‘s103s1801 Surddews ~BULIOJUT 9A19021
-o8ed a1 Jo sjUSUOD 3y} O) UOHIPPE U JuSpuadop o1 Aelie = I:ST
S1eMIJOS WINE PUE 2IeMPIEY ST AELIE S JO JUSJUOD Y], (HZ0 ‘HI0
'swerdoxd uoneoydde Aq pasn aq HZ0 pue HQQ suonouny suon
Apireuipio 1ou pinoys Iy *Supjsenjnus yoddns o1 paudisop -gng JOJ UOIBWIOJul -oungqng)
ST PUE Z°¢ UOISISA WINA UT POPPE Sea Uonouny siyy, Surddewr soA19091 [q:SH :owwml%m”w
Aexre Buiddew-o8ed Jo 22is papaou uINISI = HEQ 4q o pawnod Aznry Suipjoy ‘spreoq
uorrerado suo uy s12)s1821 Surddeur 1as pue 198 = HZQ (HE0 uondunyqgng) Aenre = [$:6q Kiowowr papuedxa
Aere woij s12)s1891 Jurddewr 19s = HIQ AKexre 3uiddewr Jaquinu oy} uo s13351321 Surddews
Aexxe oyt s10151301 Surddewr 198 = HOO -o8ed ursa14q =TV uonounNyqns = Ty -o8ed Wwg 21 jo depy a8eg
suondunyqng snels = HY HAy = HV SJUIIUOD Y] 135 1O DABS 198/129
'$314q 0z01 uey) 1o81e] 2q J0U padu Ae1Ie 3y}
‘so[puey ININE JO JOqUINU WINWIIXBU Y] S GG Isneddg ULINJOD SIUSWIOD
U1 PaquDsap SE UY PaTY PAPUE HoEs Hl pate
‘AB1IE 341 UT S2INUS PI0M3[qNOp st LI ‘H00 = HV JT juow3as Aene = 6 -1oosse safed Liowow
Pl{eA JO JoqUInU 31} SIAIZ X UI pauInial anfea oy, ’ UOJeULIOJul popuedxa [ed18o] Jo
‘a[puey 18Y) YA pajeroosse saed Jo Iaquinu oY) SUrEIUod so[puey WINI 2A1031 01 I2qUINU 3Y) pue SA[puey
PIOM PUOD3s 3 ‘S]pUEBY B SUIBIUOD A1UD OB JO pIom sAmpejoqUNU =Xg AeleJo1ospo = Id ATIOE DY} [[€ SUFEIUOD sa|puey [V
1SI1J YL, "SSHUD PIOMI[QNOP YIIM UT Pa[1j St AeLre oY], snieis = Hy HQJ¥ = HV e} Aelie ue Uy 10§ $98ed 199
SJUWWOo) suInoy oIm UONOY JureN
med uopoung

ponuuD -6 qeL

The MS-DOS Encyclopedia

312

OLYMPUS EX. 1010 - 322/1582

Article 9: Memory Management

Table 9-3. The Expanded Memory Manager (EMM) Error Codes.

Error Code Significance

00H Function was successful. .

80H Internal error in the EMM software. Possible causes include an error in the
driver itself or damage to its memory image.

81H Malfunction in the expanded memory hardware.

82H EMM is busy.

83H Invalid expanded memory handle.

84H Function requested by the application is not supported by the EMM.

85H No more expanded memory handles available.

86H Error in save or restore of mapping context.

87H Allocation request specified more logical pages than are available in the
system; no pages were allocated.

88H Allocation request specified more logical pages than are currently avail-

able in the system (the request does not exceed the physical pages that
exist, but some are already allocated to other handles); no pages were

allocated.

89H Zero pages cannot be allocated.

8AH Logical page requested for mapping is outside the range of pages assigned
to the handle.

8BH Illegal physical page number in mapping request (not in the range 0-3).

8CH Save area for mapping contexts is full.

8DH Save of mapping context failed because save area already contains a con-
text associated with the requested handle.

8EH Restore of mapping context failed because save area does not contain a
context for the requested handle. :

8FH Subfunction parameter not defined.

An application program that uses expanded memory should regard that memory as a
system resource, such as a file or a device, and use only the documented EMM services to
allocate, access, and release expanded memory pages. Here is the general strategy that
can be used by such a program: :

1. Establish the presence of the EMM by one of the two methods demonstrated in
Figures 9-6 and 9-7.

2. After the driver is known to be present, check its operational status with EMM
Function 40H.

3. Check the version number of the EMM with EMM Function 46H to ensure that all ser-
vices the application will request are available.

4. Obtain the segment of the page frame used by the EMM with EMM Function 41H.

5. Allocate the desired number of expanded memory pages with EMM Function 43H. If
the allocation is successful, the EMM returns a handle in DX that is used by the appli-
cation to refer to the expanded memory pages it owns. This step is exactly analogous

Section II: Programming in the MS-DOS Environment 313

OLYMPUS EX. 1010 - 323/1582

Part B: Programming for MS-DOS

314

to opening a file and using the handle obtained from the open function for subse-
quent read/write operations on the file.

If the requested number of pages is not available, query the EMM for the actual num-
ber of pages available (EMM Function 42H) and determine whether the program can
continue. '

After successfully allocating the number of expanded memory pages needed, use
EMM Function 44H to map logical pages in and out of the physical page frame, to store
and retrieve data in expanded memory.

8. When finished using the expanded memory pages, release them by calling EMM
Function 45H. Otherwise, the pages will not be available for use by other programs

until the system is restarted.

A program skeleton that illustrates this general approach to the use of expanded memory
is shown in Figure 9-8.

mov ah, 40h ; test EMM status

int 67h '

or ah, ah

jnz error jump if bad status from EMM
mov ah, 46h check EMM version

int 67h

or ah,ah

inz error jump if couldn’t get version
cmp al,30h ; make sure at least ver. 3.0
jb error jump if wrong EMM version
mov ah,47h ; get page frame segment

int 67h

or ah,ah

jnz error Jjump if failed to get frame
mov . page_frame, bx ; save segment of page frame
mov ah, 42h ; get no. of available pages
int 67h

or ah,ah

jnz error jump if get pages error

mov total_pages, dx save total EMM pages

mov avail_pages, bx save available EMM pages

or bx, bx

jz error ; abort if no pages available
mov ah,43h ; try to allocate EMM pages

(more)

Figure 9-8. A program skeleton for the use of expanded memory. This code assumes that the presence of the
Expanded Memory Manager has already been verified with one of the techniques shown in Figures 9-6

and 9-7.

The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 324/1582

Article 9: Memory Management

mov

bx, needed _pages

int 67h ; if allocation is successful
or ah, ah
jnz error ; Jjump if allocation failed
mov emm_handle, dx ; save handle for allocated pages
; now we are ready for other
; processing using EMM pages
; map in EMM memory page. ..
mov bx, log-page ; BX <- EMM logical page number
mov al,phys_page ; AL <- EMM physical page (0-3)
mov dx, emm_handle ; EMM handle for our pages
mov ah, 44h ; Fxn 44H = map EMM page
int 67h
or ah,ah
jnz error ; jump if mapping error
; program ready to terminate,
; give up allocated EMM pages. ..
mov dx, emm_handle ; handle for our pages
mov ah, 45h ; EMM Fxn 45R = release pages
int 67h
or ah,ah)
jnz error ; jump if release failed

Figure 9-8. Continued.

An interrupt handler or resident driver that uses the EMM follows the same general
procedure outlined in steps 1 through 8, with a few minor variations. It may need to
acquire an EMM handle and allocate pages before the operating system is fully functional;
in particular, the MS-DOS services Open File or Dévice (Interrupt 21H Function 3DH),
IOCTL (Interrupt 21H Function 44H), and Get Interrupt Vector (Interrupt 21H Function
35H) cannot be assumed to be available. Thus, such a handler or driver must use a mod-
ified version of the “get interrupt vector” technique to test for the existence of the EMM,
fetching the contents of the Interrupt 67H vector directly instead of using MS-DOS Inter-
rupt 21H Function 35H. -

A device driver or interrupt handler typically owns its expanded memory pages on a
permanent basis (until the system is restarted) and never deallocates them. Such a pro-
gram must also take care to save (EMM Function 47H) and restore (EMM Function 48H)
the EMM'’s page-mapping context (the EMM pages mapped into the page frame at the
time the device driver or interrupt handler takes control of the system) so that use of the
expanded memory by a foreground program will not be disturbed.

Section II: Programming in the MS-DOS Environment 315

OLYMPUS EX. 1010 - 325/1582

Part B: Programming for MS-DOS

The EMM relies heavily on the good behavior of application software to avoid the corrup-
tion of expanded memory. If several applications that use expanded memory are running
under a multitasking manager, such as Microsoft Windows, and one or more of those appli-
cations does not abide strictly by the EMM’s conventions, the data stored in expanded
memory can be corrupted.

Extended Memory

Extended memory is that storage at addresses above 1 MB (100000H) that can be accessed
by an 80286 or 80386 microprocessor running in protected mode. IBM PC/AT-compatible
machines can (theoretically) have as much as 15 MB of extended memory installed, in
addition to the usual 1 MB of conventional memory address space. Unlike expanded mem-
ory, extended memory is linearly addressable: The address of each memory cell is fixed,
SO no special manager program is required.

Protected-mode operating systems, such as Microsoft XENIX and MS OS/2, can use ex-
tended memory for execution of programs. MS-DOS, on the other hand, runs in real mode
on an 80286 or 80386, and programs running under its control cannot ordinarily execute
from extended memory or even address that memory for storage of data.

To provide some access to extended memory for real-mode programs, IBM PC/AT-
compatible machines contain two routines in their ROM BIOS (Tables 9-4 and 9-5)

that allow the amount of extended memory present to be determined (Interrupt 15H Func-
tion 88H) and that transfer blocks of data between conventional memory and extended

Table 9-4. IBM PC/AT ROM BIOS Interrupt 15H Functions for
Access to Extended Memory.

Interrupt 15H Function Call With Returns .
Move Extended Memory Block AH = 87H* Carry flag = 0 if successful
CX = length (words) 1if error
ES:SI = address of block AH = status:
move descriptor 00H no error
table 01H RAM parity error
02H exception inter-
rupt error
03H gate address line
. 20 failed
Obtain Size of Extended AH =88H AX = kilobytes of memory
Memory installed above 1 MB

*Table 9-5 shows the descriptor table format used by Function 87H.

316 TheMs-DOS Encyclopedia

OLYMPUS EX. 1010 - 326/1582

Article 9: Memory Management

memory (Interrupt 15H Function 87H). These routines can be used by electronic disks
'(RAMdisks) and by other programs that wish to use extended memory for fast storage and
retrieval of information that would otherwise have to be written to a slower physical disk
drive.

Table 9-5. Block Move Descriptor Table Format for IBM PC/AT ROM BIOS
Interrupt 15H Function 8 7H (Move Extended Memory Block).

‘Bytes Contents

00-O0FH Zero

10-11H Segment length in bytes (2+ CX—1 or greater)
12-14H 24-bit source address

15H Access rights byte (93H)

16-17H Zero

18-19H Segment length in bytes (2+CX—1 or greater)
1A-1CH 24-bit destination address

1DH Access rights byte (93H)

1E-1FH Zero

20-2FH Zero

Note: This data structure actually constitutes a global descriptor table (GDT) to be used
by the CPU while it is running in protected mode; the zero bytes at offsets 0~0FH and
20-2FH are filled in by the ROM BIOS code before the mode transition. The supplied 24-
bit address is a linear address in the range 000000—-FFFFFFH (not a segment and offset),
with the least significant byte first and the most significant byte last.

Programmers should use these ROM BIOS routines with caution. Data stored in extended
memory is volatile; it is lost if the machine is turned off. The transfer of data to or from
extended memory involves a switch from real mode to protected mode and back again.
This is a relatively slow process on 80286-based machines; in some cases it is only margin-
ally faster than actually reading the data from a fixed disk. In addition, programs that use
the ROM BIOS extended memory functions are not compatible with the MS-DOS 3.x Com-
patibility Box of MS OS/2, nor are they reliable if used for communications or networking.

Finally, a major deficit in these ROM BIOS functions is that they do not make any attempt
to arbitrate between two or more programs or device drivers that are using extended
memory for temporary storage. For example, if an application program and an installed
RAMdisk driver attempt to put data in the same area of extended memory, no error is
returned to either program, but the data belonging to one or both may be destroyed.

Figure 9-9 demonstrates the use of the ROM BIOS routines to transfer a block of data from
extended memory to conventional memory.

Section II: Programming in the MS-DOS Environment 317

OLYMPUS EX. 1010 - 327/1582

Part B: Programming for MS-DOS

bmdt db 8 dup (0)
db 8 dup (0)
db 8 dup (0)
db 8 dup (0)
db 8 dup (0)
db 8 dup (0)
buff db 80h dup (0)
mov dx, 10h
mov ax, 0
mov bx,seg buff
mov ds, bx
mov bx,offset buff
mov " ¢x,80h
mov si, seg bmdt
mov es,si
mov si,offset bmdt
call getblk
or ah,ah
jnz error

getblk proc near

~e S e

block move descriptor table
dummy -descriptor

GDT descriptor

source segment descriptor
destination segment descriptor
BIOS CS segment descriptor
BIOS SS segment descriptor

buffer to receive data

DX:AX = source extended memory
address 100000H (1 MB)

DS:BX = destination conventional
memory address

CX = length to move (bytes)
ES:SI = block move descriptor table

get block from extended memory
test status
jump if block move failed

transfer block from extended
memory to real memory
call with
DX:AX extended memory address
DS:BX = destination buffer
CX = length (bytes)
ES:SI block move descriptor table
returns
AH = 0 if transfer OK

]

mov es: [si+10h],cx store length in descriptors
mov es:[si+18h],cx

; store access rights bytes
mov byte ptr es:[si+15h], 93h
mov byte ptr es:[si+1dh],93h

(more)

Figure 9-9. Demonstration of a block move from extended memory to conventional memory using the ROM
BIOS routine. The procedure getblk accepts a source address in extended memory, a destination address in
conventional memory, a length in bytes, and the segment and offset of a block move descriptor table. The
extended-memory address is a linear 32-bit address, of which only the lower 24 bits are significant; the
conventional-memory address is a segment and offset. The getblk routine converts the destination segment
and offset to a linear address, builds the appropriate fields in the block move descriptor table, invokes the ROM
BIOS routine to perform the transfer, and returns the status in the AH register.

318 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 328/1582

Article 9: Memory Management

; source (extended memory) address

mov es:[si+12h],ax
mov es:{si+14h],dl
; destination (conv memory) address

mov ax,ds ; segment * 16

mov dx)16

mul dx

add ax, bx . ; + offset -> linear address
adc dx, 0

mov es:[si+1ah], ax

mov es:{si+1ch],dl
- shr cx, 1 ; convert length to words
mov ah,87h ; Fxn 87H = block move

int 15h ©; transfer to ROM BIOS

ret ; back to caller

Figure 9-9. Continued.

Summary

Personal computers that run MS-DOS can support as many as three different types of fast,
random-access memory (RAM). Each type has specific characteristics and requires differ-
ent techniques for its management.

Conventional memory is the term used for the 1 MB of linear address space that can be ac-
cessed by an 8086 or 8088 microprocessor or by an 80286 or 80386 microprocessor run-
ning in real mode. MS-DOS and the programs that execute under its control run in this
address space. MS-DOS provides application programs with services to dynamically allo- -
cate and release blocks of conventional memory.

As much as 8 MB of expanded memory can be installed in a PC and used for electronic
disks, disk caching, and storage of application program data. The memory is made avail-
able in 16 KB pages and is administered by a driver program called the Expanded Memory
Manager, which provides allocation, mapping, deallocation, and multitasking support.

Extended memory refers to the memory at addresses above 1 MB that can be accessed by
an 80286-based or 80386-based microprocessor running in protected mode; it is not avail-
able in PCs based on the 8086 or 8088 microprocessors. As much as 15 MB of extended
memory can be installed; however, the ROM BIOS services to access the memory are
primitive and slow, and no manager is provided to arbitrate between multiple programs
that attempt to use the same extended memory addresses for storage.

Ray Duncan

’

Section II: Programming in the MS-DOS Environment 319

OLYMPUS EX. 1010 - 329/1582

OLYMPUS EX. 1010 - 330/1582

Article 10: The MS-DOS EXEC Function

Article 10
The MS-DOS EXEC Function

The MS-DOS system loader, which brings .COM or .EXE files from disk into memory and
executes them, can be invoked by any program with the MS-DOS EXEC function (Inter-
rupt 21H Function 4BH). The default MS-DOS command interpreter, COMMAND.COM,
uses the EXEC function to load and run its external commands, such as CHKDSK, as well
as other application programs. Many popular commercial programs, such as databases and
word processors, use EXEC to load and run subsidiary programs (spelling checkers, for
example) or to load and run a second copy of COMMAND.COM. This allows a user to run
subsidiary programs or enter MS-DOS commands without losing his or her current
working context.

When EXEC is used by one program (called the parent) to load and run another (called
the child), the parent can pass certain information to the child in the form of a set of strings
called the environment, 2 command line, and two file control blocks. The child program
also inherits the parent program’s handles for the MS-DOS standard devices and for any
other files or character devices the parent has opened (unless the open operation was per-
formed with the “noninheritance” option). Any operations performed by the child on
inherited handles, such as seeks or file I/O, also affect the file pointers associated with the
parent’s handles. A child program can, in turn, load another program, and the cycle can be
repeated until the system’s memory area is exhausted.

Because MS-DOS is not a multitasking operating system, a child program has complete
control of the system until it has finished its work; the parent program is suspended. This
type of processing is sometimes called synchronous execution. When the child termi-
nates, the parent regains control and can use another system function call (Interrupt 21H
Function 4DH) to obtain the child’s return code and determine whether the program ter-
minated normally, because of a critical hardware error, or because the user entered a
Control-C.

In addition to loading a child program, EXEC can also be used to load subprograms and
overlays for application programs written in assembly language or in a high-level language
that does not include an overlay manager in its run-time library. Such overlays typically
cannot be run as self-contained programs; most require “helper” routines or data in the
application’s root segment.

The EXEC function is available only with MS-DOS versions 2.0 and later. With MS-DOS
versions 1.x, a parent program can use Interrupt 21H Function 26H to create a program
segment prefix for a child but must carry out the loading, relocation, and execution of the
child’s code and data itself, without any assistance from the operating system.

Section II: Programming in the MS-DOS Environment 321

OLYMPUS EX. 1010 - 331/1582

Part B: Programming for MS-DOS

How EXEC Works

When the EXEC function receives a request to execute a program, it first attempts to locate
and open the specified program file. If the file cannot be found, EXEC fails immediately
and returns an error code to the caller.

If the file exists, EXEC opens the file, determines its size, and inspects the first block of the
file. If the first 2 bytes of the block are the ASCII characters MZ, the file is assumed to con-
tain a .EXE load module, and the sizes of the program’s code, data, and stack segments are
obtained from the .EXE file header. Otherwise, the entire file is assumed to be an absolute
load image (a .COM program). The actual filename extension (COM or .EXE) is ignored

in this determination.

At this point, the amount of memory needed to load the program is known, so EXEC
attempts to allocate two blocks of memory: one to hold the new program’s environment
and one to contain the program’s code, data, and stack segments. Assuming that enough
memory is available to hold the program itself, the amount actually allocated to the pro-
gram varies with its type. Programs of the .COM type are usually given all the free mem-
ory in the system (unless the memory area has previously become fragmented), whereas
the amount assigned to a .EXE program is controlled by two fields in the file header,
MINALLOC and MAXALLOC, that are set by the Microsoft Object Linker (LINK). See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-DOS: Structure
of an Application Program; PRoGrRaMMING TooLs: The Microsoft Object Linker; PROGRAM-
MING UTILITIES: LINK.

EXEC then copies the environment from the parent into the memory allocated for child’s
environment, builds a program segment prefix (PSP) at the base of the child’s program
memory block, and copies into the child’s PSP the command tail and the two default file
control blocks passed by the parent. The previous contents of the terminate (Interrupt
22H), Control-C (Interrupt 23H), and critical error (Interrupt 24H) vectors are saved in the
new PSP, and the terminate vector is updated so that control will return to the parent
program when the child terminates or is aborted.

The actual code and data portions of the child program are then read from the disk file
into the program memory block above the newly constructed PSP. If the child is a .EXE
program, a relocation table in the file header is used to fix up segment references within
the program to reflect its actual load address.

Finally, the EXEC function sets up the CPU registers and stack according to the program
type and transfers control to the program. The entry point for a .COM file is always offset
100H within the program memory block (the first byte following the PSP). The entry point
for a .EXE file is specified in the file header and can be anywhere within the program. See
also PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS:
Structure of an Application Program.

When EXEC is used to load and execute an overlay rather than a child program, its opera-
tion is much simpler than described above. For an overlay, EXEC does not attempt to allo-
cate memory or build a PSP or environment. It simply loads the contents of the file at the

322 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 332/1582

Article 10: The MS-DOS EXEC Function

address specified by the calling program and performs any necessary relocations (if the

“overlay file has a .EXE header), using a segment value that is also supplied by the caller.
EXEC then returns to the program that invoked it, rather than transferring control to the
code in the newly loaded file. The requesting program is responsible for calling the
overlay at the appropriate location.

Using EXEC to Load a Program

When one program loads and executes another, it must follow these steps:

1. Ensure that enough free memory is available to hold the code, data, and stack of the
child program.

2. Setup the information to be passed to EXEC and the child program.

3. Call the MS-DOS EXEC function to run the child program.

4. Recover and examine the child program’s termination and return codes.

Making memory available

MS-DOS typically allocates all available memory to a .COM or .EXE program when it is
loaded. (The infrequent exceptions to this rule occur when the transient program area
is fragmented by the presence of resident data or programs or when a .EXE program is
loaded that was linked with the /CPARMAXALLOC switch or modified with EXEMOD.)
Therefore, before a program can load another program, it must free any memory it does
not need for its own code, data, and stack.

The extra memory is released with a call to the MS-DOS Resize Memory Block function
(Interrupt 21H Function 4AH). In this case, the segment address of the parent’s PSP is
passed in the ES register, and the BX register holds the number of paragraphs of memory
the program must retain for its own use. If the prospective parent is a .COM program, it
must be certain to move its stack to a safe area if it is reducing its memory allocation to less
than 64 KB.

Preparing parameters for EXEC

When used to load and execute a program, the EXEC function must be supplied with two
principal parameters:

@ The address of the child program’s pathname
® The address of a parameter block

The parameter block, in turn, contains the addresses of information to be passed to the
child program. . '

The program name

The pathname for the child program must be an unambiguous, null-terminated (ASCIIZ)
file specification (no wildcard characters). If a path is not included, the current directory is
searched for the program; if a drive specifier is not present, the default drive is used.

Section II: Programming in the MS-DOS Environment 323

OLYMPUS EX. 1010 - 333/1582

Part B: Programming for MS-DOS

The parameter block
The parameter block contains the addresses of four data items (Figure 10-D:

® The environment block
® The command tail
® The two default file control blocks (FCBs)

The position reserved in the parameter block for the pointer to an environment is only

2 bytes and contains a segment address, because an environment is always paragraph
aligned (its address is always evenly divisible by 16); a value of 0000H indicates the parent
program’s environment should be inherited unchanged. The remaining three addresses
are all doubleword addresses in the standard Intel format, with an offset value in the lower
word and a segment value in the upper word.

To Call
AH =4BH
AL = 00H load and execute child process
03H load overlay
DS:DX = segment:offset of ASCIIZ pathname for an executable program file
ES:BX = segment:offset of parameter block
Returns

If function is successful:

Carry flag is clear. o

Other registers are preserved if MS-DOS version 3.0 or later, destroyed if MS-DOS
versions 2.x.

If function is not successful:
Carry flag is set.

AX = error code

Parameter Block Format

Offset Contents

If AL = 00H (load and execute program):

00H Segment pointer of the environment to be passed

02H Offset of command-line tajl for the new PSP

04H Segment of command-line tail for the new PSP

06H Offset of first file control block, to be copied into new PSP at offset 5SCH
08H Segment of first file control block

0AH Offset of second file control block, to be copied into new PSP at offset 6CH
0CH Segment of second file control block

1f AL = 03H (load overlay):

00H Segment address where overlay is to be loaded
02H Relocation factor to apply to loaded image

Figure 10-1. Synopsis of calling conventions for the MS-DOS EXEC function (Interrupt 21H Function 4BH),
which can be used to load and execute child processes or overlays.

324 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 334/1582

Article 10: The MS-DOS EXEC Function

The environment
An environment always begins on a paragraph boundary and is composed of a series of
null-terminated (ASCIIZ) strings of the form:

name=variable

The end of the entire set of strings is indicated by an additional null byte.

\

If the environment pointer in the parameter block supplied to an EXEC call contains zero,
the child simply acquires a copy of the parent’s environment. The parent can, however,
provide a segment pointer to a different or expanded set of strings. In either case, under
MS-DOS versions 3.0 and later, EXEC appends the child program’s fully qualified path-
name to its environment block. The maximum size of an environment is 32 KB, so very
large amounts of information can be passed between programs by this mechanism,

The original, or master, environment for the system is owned by the command processor
that is loaded when the system is turned on or restarted (usually COMMAND.COM).
Strings are placed in the system’s master environment by COMMAND.COM as a result of
PATH, SHELL, PROMPT, and SET commands, with default values always present for the
first two. For example, if an MS-DOS version 3.2 system is started from drive C and a PATH
command is not present in the AUTOEXEC.BAT file nor a SHELL command in the
CONFIG.SYS file, the master environment will contain the two strings:

PATH=
COMSPEC=C:\COMMAND.COM

These specifications dre used by COMMAND.COM to search for executable “external”
commands and to find its own executable file on the disk so that it can reload its transient
portion when necessary. When the PROMPT string is present (as a result of a previous
PROMPT or SET PROMPT command), COMMAND.COM uses it to tailor the prompt dis-
played to the user.

001 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
0000 43 4F 4D 53 50 45 43 3D 43 3A 5C 43 4F 4D 4D 41 COMSPEC=C:\COMMA
0010 4E 44 2E 43 4F 4D 00 50 52 4F 4D 50 54 3D 24 70 ND.COM.PROMPT=$p
0020 24 SF 24 64 20 20 20 24 74 24 68 24 68 24 68 24 $_8d thhshs$
0030 68 24 68 24 68 20 24 71 24 71 24 67 00 50 41 54 hhh qqSg.PAT
0040 48 3D 43 3A 5C 53 59'53 54 45 4D 3B 43 3A 5C 41 H=C:\SYSTEM;C:\A
0050 53 4D 3B 43 3A 5C 57 53 3B 43 3A 5C 45 54 48 45 SM;C:\WS;C:\ETHE
0060 52 4E 45 54 3B 43 3A 5C 46 4F 52 54 48 5C 50 43 RNET;C:\FORTH\PC
0070 33 31 3B 00 00 01 00 43 3A 5C 46 4F 52 54 48 5C 31;....C:\FORTH\
0080 50 43 33 31 5C 46 4F 52 54 48 2E 43 4F 4D 00 PC31\FORTH.COM.

Figure 10-2. Dump of a typical environment under MS-DOS version 3.2. This particular example contains
the default COMSPEC parameter and two relatively complex PATH and PROMPT control strings that were set
up by entries in the user’s AUTOEXEC file. Note the two null bytes at offset 73H, which indicate the end of the
environment. These bytes are followed by the pathname of the program that owns the environment.

Section II: Programming in the MS-DOS Environment 325

OLYMPUS EX. 1010 - 335/1582

Part B: Programming for MS-DOS

Other strings in the environment are used only for informational purposes by transient
programs and do not affect the operation of the operating system proper. For example,
the Microsoft C Compiler and the Microsoft Object Linker look in the environment for
INCLUDE, LIB, and TMP strings that specify the location of include files, library files, and
temporary working files. Figure 10-2 contains a hex dump of a typical environment block.

The command tail

The command tail to be passed to the child program takes the form of a byte indicating
the length of the remainder of the command tail, followed by a string of ASCII characters
terminated with an ASCII carriage return (ODH); the carriage return is not included in the
length byte. The command tail can include switches, filenames, and other parameters that
can be inspected by the child program and used to influence its operation. It is copled
into the child program’s PSP at offset 80H.

When COMMAND.COM uses EXEC to run a program, it passes a command tail that
includes everything the user typed in the command line except the name of the program
and any redirection parameters. I/O redirection is processed within COMMAND.COM
itself and is manifest in the behavior of the standard device handles that are inherited

by the child program. Any other program that uses EXEC to run a child program must try
to perform any necessary redirection on its own and must supply an appropriate com-
mand tail so that the child program will behave as though it had been loaded by
COMMAND.COM.

The default file control blocks

The two default FCBs pointed to by the EXEC parameter block are copied into the child
program’s PSP at offsets SCH and 6CH. See also PROGRAMMING IN THE MS-DOS
ENVIRONMENT: PROGRAMMING FOR Ms-DOs: File and Record Management.

Few of the currently popular application programs use FCBs for file and record I/O
because FCBs do not support the hierarchical directory structure. But some programs do
inspect the default FCBs as a quick way to isolate the first two switches or other parame-
ters from the command tail. Therefore, to make its own identity transparent to the child
program, the parent should emulate the action of COMMAND.COM by parsing the first
two parameters of the command tail into the default FCBs. This can be conveniently ac-
complished with the MS-DOS function Parse Filename (Interrupt 21H Function 29H).

If the child program does not require one or both of the default FCBs, the corresponding
address in the parameter block can be initialized to point to two dummy FCBs in the appli-
cation’s memory space. These dummy FCBs should consist of 1 zero byte followed by 11
bytes containing ASCII blank characters (20H).

326 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 336/1582

Article 10: The MS-DOS EXEC Function

Running the child program

After the parent program has constructed the necessary parameters, it can invoke the
EXEC function by issuing Interrupt 21H with the registers set as follows:

AH " =4BH

AL = 00H (EXEC subfunction to load and execute program)
DS:DX = segment:offset of program pathname

ES:BX = segment:offset of parameter block

Upon return from the software interrupt, the parent must test the carry flag to determine
whether the child program did, in fact, run. If the carry flag is clear, the child program was
successfully loaded and given control. If the carry flag is set, the EXEC function failed, and
the error code returned in AX can be examined to determine why. The usual reasons are

® The specified file could not be found.
® The file was found, but not enough memory was free to load it.

Other causes are uncommon and can be symptoms of more severe problems in the
system as a whole (such as damage to disk files or to the memory image of MS-DOS). With
MS-DOS versions 3.0 and later, additional details about the cause of an EXEC failure can
be obtained by subsequently calling Interrupt 21H Function 59H (Get Extended Error
Information).

In general, supplying either an invalid address for an EXEC parameter block or invalid
addresses within the parameter block itself does #ot cause a failure of the EXEC functlon
but may result in the child program behaving in unexpected ways.

Special considerations

With MS-DOS versions 2.x, the previous contents of all the parent registers except for CS:IP
can be destroyed after an EXEC call, including the stack pointer in SS:SP. Consequently,
before issuing the EXEC call, the parent must push onto the stack the contents of any regis-
ters that it needs to preserve, and then it must save the stack segment and offset in a loca-
tion that is addressable with the CS segment register. Upon return, the stack segment and
offset can be loaded into SS:SP with code segment overrides, and then the other registers
can be restored by popping them off the stack. With MS-DOS versions 3.0 and later, regis-
ters are preserved across an EXEC call in the usual fashion.

Note: The code segments of Windows applications that use this technique should be
given the IMPURE attribute.

In addition, a bug in MS-DOS version 2.0 and in PC-DOS versions 2.0 and 2.1 causes an
arbitrary doubleword in the parent’s stack segment to be destroyed during an EXEC call.
When the parent is a .COM program and SS = PSP, the damaged location falls within the
PSP and does no harm; however, in the case of a .EXE parent where DS = SS, the affected
location may overlap the data segment and cause aberrant behavior or even a crash after
the return from EXEC. This bug was fixed in MS-DOS versions 2.11 and later and in
PC-DOS versions 3.0 and later.

Section II: Programming in the MS-DOS Environment 327

OLYMPUS EX. 1010 - 337/1582

Part B: Programming for MS-DOS

Examining the child program’s return codes

If the EXEC function succeeds, the parent program can call Interrupt 21H Function 4DH
(Get Return Code of Child Process) to learn whether the child executed normally to com-
pletion and passed back a return code or was terminated by the operating system because
of an external event. Function 4DH returns’

AH = termination type:
00H Child terminated normally (that is, exited via Interrupt 20H or Interrupt
21H Function 00H or Function 4CH).
01H Child was terminated by user’s entry of a Ctrl-C.
02H Child was terminated by critical error handler (either the user responded
with 4 to the Abort, Retry, Ignore prompt from the system’s default Inter-
rupt 24H handler, or a custom Interrupt 24H handler returned to MS-DOS
with action code = 02H in register AL).
03H Child terminated normally and stayed resident (that is, exited via Interrupt
21H Function 31H or Interrupt 27H).
AL = return code:
Value passed by the child program in register AL when it terminated with Interrupt
21H Function 4CH or 31H.
00H if the child terminated using Interrupt 20H, Interrupt 27H, or Interrupt 21H
Function 00H.

These values are only guaranteed to be returned once by Function 4DH. Thus, a subse-
quent call to Function 4DH, without an intervening EXEC call, does not necessarily return
any useful information. Additionally, if Function 4DH is called without a preceding suc-
cessful EXEC call, the returned values are meaningless.

Using COMMAND.COM with EXEC

An application program can “shell” to MS-DOS — that is, provide the user with an MS-DOS
prompt without terminating — by using EXEC to load and execute a secondary copy of
COMMAND.COM with an empty command tail. The application can obtain the location of
the COMMAND.COM disk file by inspecting its own environment for the COMSPEC string.
The user returns to the application from the secondary command processor by typing exit
at the COMMAND.COM prompt.

Batch-file interpretation is carried out by COMMAND.COM, and a batch (BAT) file can-
not be called using the EXEC function directly. Similarly, the sequential search for .COM,
.EXE, and .BAT files in all the locations specified in the environment’s PATH variable is a
function of COMMAND,COM, rather than of EXEC. To execute a batch file or search the
system path for a program, an application program can use EXEC to load and execute a
secondary copy of COMMAND.COM to use as an intermediary. The application finds the
location of COMMAND.COM as described in the preceding paragraph, but it passes a
command tail in the form: '

/C program parameter] parameter2 ...

328 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 338/1582

Article 10: The MS-DOS EXEC Function

where program is the .EXE, .COM, or .BAT file to be executed. When program termi-
nates, the secondary copy of COMMAND.COM exits and returns control to the parent.

A parent and child example

The source programs PARENT.ASM in Figure 10-3 and CHILD.ASM in Figure 10-4 illustrate
how one program uses EXEC to load another.

name parent

title "PARENT --- demonstrate EXEC call'
;
; PARENT.EXE -~- demonstration of EXEC to run process

; Uses MS-DOS EXEC (Int 21H Function 4BH Subfunction O00H)
; to load and execute a child process named CHILD.EXE,
; then displays CHILD’s return code.

; Ray Duncan, June 1987

stdin equ 0 ; standard input

stdout equ 1 ; standard output
stderr equ 2 ; standard error
stksize equ 128 ; size of stack

cr equ 0dh ; ASCII carriage return
1f equ Oah ; ASCII linefeed

DGROUP group _DATA, _ENVIR, _STACK

~TEXT segment byte public 'CODE' ; executable code segment

assume cs:_TEXT,ds:_DATA,ss:_STACK

stk_seqg dw ? ; originalvss contents

stk_ptr dw ? ; original SP contents

main proc far ; entry point from MS-DOS
mov ax,_DATA ; set DS = our data segment
mov ds,ax

; now give back extra memory
; so child has somewhere to run...

Figure 10-3. PARENT.ASM, source code for PARENT.EXE. (more)

Section II: Programming in the MS-DOS Environment 329

OLYMPUS EX. 1010 - 339/1582

Part B: Programming for MS-DOS

mov
mov
sub
add
mov
int
jc

mov
mov
call

push
mov
mov

mov
mov
mov
mov
mov
int

cli
mov
mov
sti
pop

jc

mov
int
xchg
mov
call
mov
mov
call
mov
mov
call

mov
int

ax,es

bx, ss

bx, ax
bx,stksize/16
ah, 4ah

21h

maini

dx, of fset DGROUP:msgl
cx,msgl_len
pmsg .

ds
stk_seg, ss
stk_ptr, sp

ax,ds

es,ax

dx,offset DGROUP : cname
bx,offset DGROUP:pars
ax, 4b00h

21h

ss,stk_seg
sp,stk_ptr

ds

main2

ah, 4dh

21h

al,ah

bx,offset DGROUP:msgéa
b2hex

al,ah

bx, offset DGROUP:msg4b
b2hex

dx,offset DGROUP:msg4
cx,msg4_len

pmsg

ax,4c00h
21h

Figure 10-3. Continued.

330

The MS-DOS Encyclopedia

let AX = segment of PSP base
and BX = segment of stack base
reserve seg stack - seg psp
plus paragraphs of stack

fxn 4AH = modify memory block

display parent message
DS:DX = address of message
CX = length of message

save parent’s data segment
save parent’s stack pointer

now EXEC the child process...
set ES = DS

1]

DS:DX child pathname

ES:BX = parameter block
function 4BH subfunction 00H
transfer to MS-DOS

(for bug in some early 8088s)
restore parent’s stack pointer

{for bug in some early 8088s)
restore DS = our data segment

jump if EXEC failed

otherwise EXEC succeeded,
convert and display child’s
termination and return codes...
fxn 4DH = get return code
transfer to MS-DOS

convert termination code

get back return code
and convert it

DS:DX = address of message
CX = length of message
display it

no error, terminate program
with return code = 0

OLYMPUS EX. 1010 - 340/1582

(more)

Article 10: The MS-DOS EXEC Function

mainl: mov bx, offset DGROUP:msg2a ; convert error code
call b2hex
mov dx,offset DGROUP:msg2 ; display message 'Memory
mov cx,msg2_len ; resize failed...'
call pmsg
jmp main3
main2: mov bx,offset DGROUP:msg3a ; convert error code
call b2hex
mov dx,offset DGROUP:msg3 ; display message 'EXEC
mov cx,msg3_len ; call failed..."

call pmsg

main3: mov ax,4c01h ; error, terminate program

int 21h ; with return code = 1
main endp ; end of main procedure
b2hex proc near ; convert byte to hex ASCII

; call with AL = binary value
H ’ BX = addr to store string

push ax

shr al,1

shr al,1

shr al,1

shr al,1

call ascii ; become first ASCII character
mov [bx],al ; store it

pop ax

and al,0fh ; isolate lower 4 bits, which
call ascii ; become the second ASCII character
mov [bx+1],al ; store it

ret

b2hex endp

ascii proc near ; convert value 00-0FH in AL
add al,'o’ - ; into a "hex ASCII" character
cmp al,'9"’)
jle ascii2 ; jump if in range 00-09H,
add al,'a'-'9'-1 ; offset it to range OA-OFH,
ascii2: ret ; return ASCII char. in AL

ascii endp

displays message on standard output

pmsg proc near ;
; call with DS:DX = address,
; CX = length
Figure 10-3. Continued. . (more)

Section II: Programming in the MS-DOS Environment 331

OLYMPUS EX. 1010 - 341/1582

Part B: Programming for MS-DOS

332

mov
© mov
int
ret

pmsg endp

bx, stdout ; BX = standard output handle
ah, 40h ; function 40H = write file/device
21h ; transfer to MS~DOS

; back to caller

_TEXT ends

_DATA segment para public 'DATA’' ; static & variable data segment

cname db '"CHILD.EXE',O0 ; éathname of child process

pars dw ~ENVIR ; segment of environment block
dd tail ; long address, command tail
dd fecbi ; long address, default FCB #1
dd fcb2 ; long address, default FCB #2

tail db fcb1-tail-~2 ; command tail for child
db 'dummy command tail',cr

febi db 0 ; copied into default FCB #1 in
db 11 dup (" ") i child’s program segment prefix
db 25 dup (0)

fcb2 db 0 ; copied into default FCB #2 in
db 11 dup (* ") ; child’s program segment prefix
db 25 dup (0)

msgl db cr,1f, 'Parent executing!',cr,lf

msgl_len equ

msg2 db
msg2a db
msg2_len equ

msg3 db
msg3a db
msg3_len equ

$-msgl

cr,1lf, '"Memory resize failed, error code='
'xxh.',cr,1f
$-msg2

cr,1f,'EXEC call failed, error code='
'xxh.',cr,1f
$-msg3

msgéd db cr,lf, 'Parent regained control!’
db cr,1f,'Child termination type='
msgda db 'xxh, return code='
msgdb db 'xxh.’',cr,1f
msgd4_len equ $-msg4
_DATA ends
_ENVIR segment para public 'DATA' ; example environment block

; to be passed to child

Figure 10-3. Continued.

The MS-DOS Encyclopedia

OLYMPUS EX.

(more)

1010 - 342/1582

Article 10: The MS-DOS EXEC Function

db 'PATH=',0 ; basic PATH, PROMPT,

db 'PROMPT=p_5n$g’', 0 ; and COMSPEC strings

db 'COMSPEC=C: \COMMAND.COM', 0

db 0 ; extra null terminates block

_ENVIR ends

_STACK segment para stack 'STACK'
db stksize dup (?)

_STACK ends

end main ; defines program entry point
Figure 10-3. Continued.

name child
title 'CHILD process'
;
; CHILD.EXE --- a simple process loaded by PARENT.EXE

to demonstrate the MS-DOS EXEC call, Subfunction 00H.

Ray Duncan, June 1987

N~ e s

stdin equ 0 ; standard input
stdout equ 1 ; standaxrd output
stderr equ 2 ; standard error
cr equ 0dh ; ASCII carriage return
1f equ O0ah ; ASCII linefeed

DGROUP group _DATA, STACK

_TEXT segment byte public 'CODE' ; executable code segment

assume cs:_TEXT,ds:_DATA,ss:STACK

main proc far © ; entry point from MS-DOS
mov . ax,_DATA ; set DS = our data segment
mov ds, ax

; display child message ...

Figure 10-4. CHILD.ASM, source code for CHILD.EXE. (more)

Section II: Programming in the MS-DOS Environment 333

OLYMPUS EX. 1010 - 343/1582

Part B: Programming for MS-DOS

mov dx,offset msg ; DS:DX = address of message
mov cx,msg-_len ; CX = length of message
mov bx, stdout i BX = standard output handle
mov ah, 40h ; AH = fxn 40H, write file/device
int 21h ; transfer to MS-DOS
jec . -main2 ; Jump if any error
mov ax,4c00h ; no error, terminate child
int 21h ; with return code = 0

main2: mov ax,4c01h ; error, terminate child
int 21h ; with return code = 1

main endp) ; end of main procedure

—TEXT ends

_DATA segment para public 'DATA' ; static & variable data segment
msg db cr,1f,'Child executing!’',cr, 1£f
msg_len equ $-msg

_DATA ends

STACK segment para stack 'STACK'
dw 64 dup (?)

STACK ends

end main ; defines program entry point
Figure 10-4. Continued.
PARENT.ASM can be assembled and linked into the executable program PARENT.EXE
with the following commands:

C>MASM PARENT; <Enter>
C>LINK PARENT; <Enter>

Similarly, CHILD.ASM can be assembled and linked into the file CHILD.EXE as follows:

C>MASM CHILD; <Enter>
C>LINK CHILD; <Enter>

When PARENT.EXE is executed with the command

C>PARENT <Enter>

The MS-DOS Encyclopedia '

OLYMPUS EX. 1010 - 344/1582

Article 10; The MS-DOS EXEC Function

PARENT reduces the size of its main memory block with a call to Interrupt 21H Function
4AH, to maximize the amount of free memory in the system, and then calls the EXEC func-
tion to load and execute CHILD.EXE.

CHILD.EXE runs exactly as though it had been loaded directly by COMMAND.COM.
CHILD resets the DS segment register to point to its own data segment, uses Interrupt 21H

* Function 40H to display a message on standard output, and then terminates using Interrupt
21H Function 4CH, passing a return code of zero.

When PARENT.EXE regains control, it first checks the carry flag to determine whether
the EXEC call succeeded. If the EXEC call failed, PARENT displays an error message and
terminates with Interrupt 21H Function 4CH, itself passing a nonzero return code to
COMMAND.COM to indicate an error.

Otherwise, PARENT uses Interrupt 21H Function 4DH to obtain CHILD.EXE'’s termination
type and return code, which it converts to ASCII and displays. PARENT then terminates
using Interrupt 21H Function 4CH and passes a return code of zero to COMMAND.COM
to indicate success. COMMAND.COM in turn receives control and displays a new user
prompt.

Using EXEC to Load Overlays

Loading overlays with the EXEC function is much less complex than using EXEC to run
another program. The main program, called the root segment, must carry out the follow-
ing steps to load and execute an overlay:

1. Make a memory block available to receive the overlay.

2. Setup the overlay parameter block to be passed to the EXEC function.
3. Call the EXEC function to load the overlay.

4. Execute the code within the overlay by transferring to it with a far call.

The overlay itself can be constructed as either a memory image (.COM) or a relocatable
(.EXE) file and need not be the same type as the root program. In either case, the overlay
should be designed so that the entry point (or a pointer to the entry point) is at the begin-
ning of the module after it is loaded. This allows the root and overlay modules to be main-
tained separately and avoids a need for the root to have “magical” knowledge of addresses
within the overlay.

To prevent users from inadvertently running an overlay directly from the command line,
overlay files should be assigned an extension other than .COM or .EXE. The most conve-
nient method relates overlays to their root segment by assigning them the same filename
but an extension such as .OVL or .OV1, .OV2, and so on.

Making memory available

If EXEC is to load a child program successfully, the parent must release memory. In
contrast, EXEC loads an overlay into memory that belongs to the calling program. If the

Section II: Programming in the MS-DOS Environment 335

OLYMPUS EX. 1010 - 345/1582

Part B: Programming for MS-DOS

root segment is a .COM program and has not explicitly released extra memory, the root
segment program need only ensure that the system contains enough memory to load the
overlay and that the overlay load address does not conflict with its own code, data, or
stack areas. o

If the root segment program was loaded from a .EXE file, no straightforward way exists
for it to determine unequivocally how much memory it already owns. The simplest course
is for the program to release all extra memory, as discussed earlier in the section on load-
ing a child program, and then use the MS-DOS memory allocation function (Interrupt 21H
Function 48H) to obtain a new block of memory that is large enough to hold the overlay.

Preparing overlay parameters
When it is used to load an overlay, the EXEC function requires two major parameters:
® The address of the pathname for the overlay file

® The address of an overlay parameter block

As for a child program, the pathname for the overlay file must be an unambiguous ASCIIZ
file specification (again, no wildcard characters), and it must include an explicit extension.
As before, if a path and/or drive are not included in the pathname, the current directory
and default drive are used.

The overlay parameter block contains the segment address at which the overlay should be
loaded and a fixup value to be applied to any relocatable items within the overlay file. If
the overlay file is in .EXE format, the fixup value is typically the same as the load address; if
the overlay is in memory-image (.COM) format, the fixup value should be zero. The EXEC
function does not attempt to validate the load address or the fixup value or to ensure that
the load address actually belongs to the calling program.

Loading and executing the overlay

After the root segment program has prepared the filename of the overlay file and the
overlay parameter block, it can invoke the EXEC function to load the overlay by issuing an
Interrupt 21H with the registers set as follows:

AH = 4BH

AL = 03H (EXEC subfunction to load overlay) !
DS:DX = segment:offset of overlay file pathname

ES:BX = segment:offset of overlay parameter block

Upon return from Interrupt 21H, the root segment must test the carry flag to determine
whether the overlay was loaded. If the carry flag is clear, the overlay file was located and
brought into memory at the requested address. The overlay can then be entered by a far
call and should exit back to the root segment with a far return. J

If the carry flag is set, the overlay file was not found or some other (probably severe) sys-
tem problem was encountered, and the AX register contains an error code. With MS-DOS

336 TheMS-DOS Encyclopedia

OLYMPUS EX. 1010 - 346/1582

Article 10: The MS-DOS EXEC Function

versions 3.0 and later, Interrupt 21H Function 59H can be used to get more information
about the EXEC failure. An invalid load address supplied in the overlay parameter block
does not (usually) cause the EXEC function itself to fail but may result in the disconcerting
message Memory Allocation Error, System Halted when the root program terminates.

An overlay example

The source programs ROOT.ASM in Figure 10-5 and OVERLAY.ASM in Figure 10-6 demon-
strate the use of EXEC to load a program overlay. The program ROOT.EXE is executable
from the MS-DOS prompt; it represents the root segment of an application. OVERLAY is
constructed as a .EXE file (although’it is named OVERLAY.OVL because it cannot be run
alone) and represents a subprogram that can be loaded by the root segment when and

if it is needed.

name root

title 'ROOT —--- demonstrate EXEC overlay'
; ROOT.EXE --- demonstration of EXEC for overlays

; Uses MS-DOS EXEC (Int 21H Function 4BH Subfunction 03H)
; to load an overlay named OVERLAY.OVL, calls a routine
; within the OVERLAY, then recovers control and terminates.

; Ray Duncan, June 1987.

stdin equ 0 ; standard input

stdout equ 1 ; standard output
stderr equ 2) ; standard error
stksize equ 128 ; size of stack

cr equ 0dh ; ASCII carriage return
1f equ Oah i ASCII linefeed

DGROUP group -DATA, _STACK

_TEXT segment byte public 'CODE' ; executable code segment

assume c¢s:_TEXT,ds:_DATA, ss:..STACK

stk_seg dw ? ; original SS contents
stk_ptr dw ? ; original SP contents
Figure 10-5. ROOT.ASM, source code for ROOT EXE. (more)

Section II: Programming in the MS-DOS Environment 337

OLYMPUS EX. 1010 - 347/1582

Part B: Programming for MS-DOS

main proc
mov
mov

mov
mov
sub
add
mov
int
jc

mov
mov
call

mov
mov
int
jc

mov
mov
mov

push
mov
mov

mov
mov
mov
mov
mov
int

cli
mov
mov
sti
pop

jc

far

ax,_DATA
ds, ax

ax,es
bx, ss

bx,ax
bx,stksize/16
ah, 4ah

21h

maini

dx,offset DGROUP:msg1
cx,msgl_len
pmsg

bx, 1000h
ah,48h
21h
main2

pars,ax
pars+2,ax
word ptr entry+2,ax

ds
stk_seq, ss
stk_ptr, sp

ax,ds

es,ax

dx,offset DGROUP:oname
bx,offset DGROUP:pars
ax, 4b03h

21h

ss,stk_seg
sp,stk_ptr

ds

main3

~

entry point from MS-DOS

set DS = our data segment

now give back extra memory

AX segment of PSP base

BX = segment of stack base
reserve seg stack - seg psp
plus paragraphs of stack

fxn 4AH = modify memory block
transfer to MS-DOS

jump if resize failed

display message 'Root
segment executing...'
DS:DX = address of message
CX = length of message

allocate memory for overlay
get 64 KB (4096 paragraphs)
fxn 48H, allocate mem block
transfer to MS-DOS

jump if allocation failed

set load address for overlay
set relocation segment for overlay
set segment of entry point

save root’s data segment

save root’s stack pointer

now use EXEC to load overlay
set ES = DS

DS:DX overlay pathname
ES:BX = parameter block
function 4BH, subfunction 03H
transfer to MS-DOS

(for bug in some early 8088s)
restore root’s stack pointer

(for bug in some early 8088s)
restore DS = our data segment

jump if EXEC failed

otherwise EXEC succeeded...

Figure 10-5. Continued. (more)

338 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 348/1582

Article 10: The MS-DOS EXEC Function

push ds
call dword ptr entry
pop ds
mov dx, offset DGROUP:msg5
mov cx,msg5_len
call pmsg
mov ax,4c00h
int 21h
maini: mov bx,offset DGROUP:msg2a
call b2hex
mov dx,offset DGROUP:msg2
. mov cx,msg2_len
call pmsg
Jmp maind
main2: mov bx,offset DGROUP:msg3a
- call b2hex)
mov dx,offset DGROUP:msg3
mov cx,msg3_len
call pmsg
jmp maind
main3: mov bx,offset DGROUP:msgda
call b2hex
mov dx, offset DGROUP:msg4
mov cx,msgd_len
call pmsg
‘maind: mov ax,4c01h
int 21h
main endp
b2hex proc near
push ax
shr al,1
shr al, 1l
shr al,1
shr al,1
call ascii
mov {bx],al
pop ax

Figure 10-5. Continued.

Section II: Programming in the MS-DOS Environment

save our data segment
now call the overlay
restore our data segment

display message that root
segment regained control...
DS:DX = address of message
CX = length of message
display it

no error, terminate program
with return code = 0

convert error code

display message 'Memory
resize failed...'

convert error code

display message 'Memory
allocation failed...'

convert error code
display message 'EXEC
call failed...'

error, terminate program
with return code = 1

end of main procedure
convert byte to hex ASCII

call with AL =
BX = addr to store string

binary value

become first ASCII character

store it

(more)

339

OLYMPUS EX. 1010 - 349/1582

Part B: Programming for MS-DOS

and
call
mov
ret
b2hex endp

ascii proc
add
cmp
jle
add

ascii2: ret

ascii endp

pmsg proc

mov
mov
int
ret

pmsg endp

_TEXT ends

_DATA segment

oname db

pars dw

dw
entry dd
msgl db

msgl_len equ

msg2 db
msg2a db
msg2_len equ

msg3 db
msg3a db
msg3_len equ

al,0fh
ascii
[bx+1],al

near
al,'o’
al,'9s’
ascii2
al,'A'-'9'-1

near

bx, stdout
ah, 40h
21h

para public 'DATA'

'OVERLAY.OVL', 0

cr,1lf, '"Root segment executing!',cr,lf

$-msg1

cr,lf, "Memory resize failed, error code='

‘xxh.',cr,1£f
$-msg2

cr,lf, '"Memory allocation failed, error code='

'xxh.',cr,1f
$-msg3

Figure 10-5. Continued.

The MS-DOS Encyclopedia

SN

S s s

isolate lower 4 bits, which
become the second ASCII character
store it

convert value 00-0FH in AL
into a "hex ASCII" character

jump if in range 00-0%H,

offset it to range OA-OFH,
return ASCII char. in AL.

displays message on standard output
call with DS:DX = address,

CX = length
BX = standard output handle
function 40H = write file/device

transfer to MS-DOS
back to caller

static & variable data segment
pathname of overlay file

load address (segment) for file
relocation (segment) for file

entry point for overlay

(more)

OLYMPUS EX. 1010 - 350/1582

Article 10: The MS-DOS EXEC Function

msg4 db

‘msgda db

msgd4_len equ

msg5 db
msg5_len equ

_DATA ends

_STACK segment

db

_STACK ends

end

cr,1f,'EXEC call failed, error code='
'xxh.',cr,1f
$-msg4d

cr,1lf, "Root segment regained control!’',cr,1lf
$-msg5

para stack 'STACK'

stksize dup (?)

main ; defines program entry point

Figure 10-5. Continued.

name overlay
title 'OVERLAY segment'
H
; OVERLAY.OVL --- a simple overlay segment

SN N

loaded by ROOT.EXE to demonstrate use of
the MS-DOS EXEC call Subfunction 03H.

; The overlay does not contain a STACK segment
; because it uses the ROOT segment’s stack.

; Ray Duncan, June 1987

stdin equ
stdout equ
stderr equ

cr equ
1f equ

_TEXT segment

) ; standard input
1 ; standard output
;

2 standard error

Ocdh ; ASCII carriage return
Oah ; ASCII linefeed

byte public 'CODE' ; executable code segment

assume cs:_TEXT,ds:_DATA
ovlay proc far ; entry point from root segment
mov ax,-DATA ; set DS = local data segment
mov ds, ax
Figure 10-6. OVERLAY.ASM, source code for OVERLAY.OVL, (more)

Section II: Programming in the MS-DOS Environment 341

OLYMPUS EX. 1010 - 351/1582

Part B: Programming for MS-DOS

; display overlay message ...

mov dx,offset msg ; DS:DX = address of message
mov cx,msg_len ; CX = length of message
mov bx, stdout ; BX = standard output handle
mov ah,40h ; AH = fxn 40H, write file/device
int 21h ; transfer to MS-DOS
ret ; return to root segment

ovlay endp ; end of ovlay procedure

_TEXT ends

~DATA segment para public 'DATA' ; static & variable data segment
msg db cr,1lf,'Overlay executing!',cr,1lf
msg—len equ $-msg

_DATA ends

end

Figure 10-6. Continued.

ROOT.ASM can be assembled and linked into the executable program ROOT.EXE with the
following commands:

C>MASM ROOT; <Enter>

C>LINK ROOT; <Enter>

OVERLAY.ASM can be assembled and linked into the file OVERLAY.OVL by typing
C>MASM OVERLAY; <Enter>

C>LINK OVERLAY,OVERLAY.OVL; <Enter>

The Microsoft Object Linker will display the message
Warning: no stack segment
but this message can be ignored.

When ROOT.EXE is executed with the command

C>ROOT <Enter>

it first shrinks its main memory block with a call to Interrupt 21H Function 4AH and then
allocates a separate block for the overlay with Interrupt 21H Function 48H. Next, ROOT
calls the EXEC function to load the file OVERLAY.OVL into the newly allocated memory
block. If the EXEC function fails, ROOT displays an error message and terminates with
Interrupt 21H Function 4CH, passing a nonzero return code to COMMAND.COM to indi-
cate an error. If the EXEC function succeeds, ROOT saves the contents of its DS segment
register and then enters the overlay through an indirect far call.

342 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 352/1582

Article 10: The MS-DOS EXEC Function

The overlay resets the DS segment register to point to its own data segment, displays a
message using Interrupt 21H Function 40H, and then returns. Note that the main pro-
cedure of the overlay is declared with the far attribute to force the assembler to generate
the opcode for a far return.

When ROOT regains control, it restores the DS segment register to point to its own data
segment again and displays an additional message, also using Interrupt 21H Function 40H,
to indicate that the overlay executed successfully. ROOT then terminates using Interrupt
21H Function 4CH, passing a return code of zero to indicate success, and control returns
to COMMAND.COM.

Ray Duncan

Section II: Programming in the MS-DOS Environment 343

OLYMPUS EX. 1010 - 353/1582

OLYMPUS EX. 1010 - 354/1582

Part C
Customizing MS-DOS

OLYMPUS EX. 1010 - 355/1582

OLYMPUS EX. 1010 - 356/1582

Article 11: Terminate-and-Stay-Resident Utilities

Article 11
Terminate-and-Stay-Resident Utilities

The MS-DOS Terminate and Stay Resident system calls (Interrupt 21H Function 31H and
Interrupt 27H) allow the programmer to install executable code or program data in a
reserved block of RAM, where it resides while other programs execute. Global data, inter-
rupt handlers, and entire applications can be made RAM-resident in this way. Programs
that use the MS-DOS terminate-and-stay-resident capability are commonly known as

TSR programs or TSRs.

This article describes how to install a TSR in RAM, how to communicate with the resident
program, and how the resident program can interact with MS-DOS. The discussion pro-
ceeds from a general description of the MS-DOS functions useful to TSR programmers to
specific details about certain MS-DOS structural elements necessary to proper functioning
of a TSR utility and concludes with two programming examples.

Note: Microsoft cannot guarantee that the information in this article will be valid for fu-
ture versions of MS-DOS.

Structure of a Terminate-and-Stay-Resident Utility

The executable code and data in TSRs can be separated into RAM-resident and transient
portions (Figure 11-1). The RAM-resident portion of a TSR contains executable code and
data for an application that performs some useful function on demand. The transient por-
tion installs the TSR; that is, it initializes data and interrupt handlers contained in the RAM-
resident portion of the program and executes an MS-DOS Terminate and Stay Resident
function call that leaves the RAM-resident portion in memory and frees the memory used
by the transient portion. The code in the transient portion of a TSR runs when the .EXE or
.COM file containing the program is executed; the code in the RAM-resident portion runs
only when it is explicitly invoked by a foreground program or by execution of a hardware
or software interrupt.

TSRs can be broadly classified as passive or active, depending on the method by which
conirol is transferred to the RAM-resident program. A passive TSR executes only when
another program explicitly transfers control to it, either through a software interrupt or by
means of a long JMP or CALL. The calling program is not interrupted by the TSR, so the
status of MS-DOS, the system BIOS, and the hardware is well defined when the TSR pro-
gram starts to execute.

In contrast, an active TSR is invoked by the occurrence of some event external to the
currently running (foreground) program, such as a sequence of user keystrokes or a pre-
defined hardware interrupt. Therefore, when it is invoked, an active TSR almost always

Section II: Programming in the MS-DOS Environment 347

OLYMPUS EX. 1010 - 357/1582

Part C: Customizing MS-DOS

Higher addresses
e e Transient portion
Initialization code and data (executed when .EXE file runs)
Application code and data
RAM:-resident portion
Monitor routines
Program segment prefix

Lower addresses a g P

Figure 11-1. Organization of a TSR program in memory.

interrupts some other program and suspends.its execution. To avoid disrupting the inter-
rupted program, an active TSR must monitor the status of MS-DOS, the ROM BIOS, and
the hardware and take control of the system only when it is safe to do so.

Passive TSRs are generally simpler in their construction than active TSRs because a passive
TSR runs in the context of the calling program,; that is, when the TSR executes, it assumes |
that it can use the calling program’s.program segment prefix (PSP), open files, current
directory, and so on. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAM-
MING FOR Ms-DOs: Structure of an Application Program. It is the calling program’s respon-
sibility to ensure that the hardware and MS-DOS are in a stable state before it transfers
control to a passive TSR.

An active TSR, on the other hand, is invoked asynchronously; that is, the status of the
hardware, MS-DOS, and the executing foreground program is indeterminate when the
event that invokes the TSR occurs. Therefore, active TSRs require more complex code. The
RAM-resident portion of an active TSR must contain modules that monitor the operating
system to determine when control can safely be transferred to the application portion of
the TSR. The monitor routines typically test the status of keyboard input, ROM BIOS inter-
rupt processing, hardware interrupt processing, and MS-DOS function processing. The
TSR activates the application (the part of the RAM-resident portion that performs the TSR’s
main task) only when it detects the appropriate keyboard input and determines that the
application will not interfere with interrupt and MS-DOS function processing.

Keyboard input

An active TSR usually contains a RAM:-resident module that examines keyboard input
for a predetermined keystroke sequence called a “hot-key” sequence. A user executes the
RAM-resident application by entering this hot-key sequence at the keyboard.

The technique used in the TSR to monitor keyboard input depends on the keyboard
hardware implementation. On computers in the IBM PC and PS/2 families, the keyboard
coprocessor generates an Interrupt 09H for each keypress. Therefore, a TSR can monitor
user keystrokes by installing an interrupt handler (interrupt service routine, or ISR) for
Interrupt 09H. This handler can thus detect a specified hot-key sequence.

348 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 358/1582

Article 11: Terminate-and-Stay-Resident Utilities

ROM BIOS interrupt processing

The ROM BIOS routines in IBM PCs and PS/2s are not reentrant. An active TSR that calls
the ROM BIOS must ensure that its code does not attempt to execute a ROM BIOS function
that was already being executed by the foreground process when the TSR program took
control of the system.

The IBM ROM BIOS routines are invoked through software interrupts, so an active TSR
can monitor the status of the ROM BIOS by replacing the default interrupt handlers with
custom interrupt handlers that intercept the appropriate BIOS interrupts. Each of these in-
terrupt handlers can maintain a status flag, which it increments before transferring control
to the corresponding ROM BIOS routine and decrements when the ROM BIOS routine has
finished executing. Thus, the TSR monitor routines can test these flags to determine when
non-reentrant BIOS routines are executing.

Hardware interrupt processing

The monitor routines of an active TSR, which may themselves be executed as the result of
a hardware interrupt, should not activate the application portion of the TSR if any other
hardware interrupt is being processed. On IBM PCs, for example, hardware interrupts are
processed in a prioritized sequence determined by an Intel 8259A Programmable Inter-
rupt Controller. The 8259A does not allow a hardware interrupt to execute if a previous
interrupt with the same or higher priority is being serviced. All hardware interrupt
handlers include code that signals the 8259A when interrupt processing is completed.
(The programming interface to the 8259A is described in IBM’s Technical Reference
manuals and in Intel’s technical literature.)

If a TSR were to interrupt the execution of another hardware interrupt handler before the
handler signaled the 8259A that it had completed its interrupt servicing, subsequent hard-
ware interrupts could be inhibited indefinitely. Inhibition of high-priority hardware inter-
rupts such as the timer tick (Interrupt 08H) or keyboard interrupt (Interrupt 09H) could
cause a system crash. For this reason, an active TSR must monitor the status of all hardware
interrupt processing by interrogating the 8259A to ensure that control is transferred to the
RAM-resident application only when no other hardware interrupts are being serviced.

MS-DOS function processing

‘Unlike the IBM ROM BIOS routines, MS-DOS is reentrant to a limited extent. That is, there
are certain times when MS-DOS’s servicing of an Interrupt 21H function call invoked by a
foreground process can be suspended so that the RAM-resident application can make an
Interrupt 21H function call of its own. For this reason, an active TSR must monitor operat-
ing system activity to determine when it is safe for the TSR application to make its calls
to MS-DOS.

Section II: Programming in the MS-DOS Environment 349

OLYMPUS EX. 1010 - 359/1582

Part C: Customizing MS-DOS
- *
MS-DOS Support for Terminate-and-Stay-Resident
Programs
Several MS-DOS system calls are useful for supporting terminate-and-stay-resident
utilities. These are listed in Table 11-1. See SYSTEM CALLS.
Table 11-1. MS-DOS Functions Useful in TSR Programs.
Function Name Call With Returns Comment
Terminate and AH=31H Nothing Preferred over Interrupt
Stay Resident AL = return code 27H with MS-DOS
DX = size of resident program versions 2.x and later
(in 16-byte paragraphs)
INT 21H
Terminate and CS =PSP Nothing Provided for com-
Stay Resident DX = size of resident program patibility with
(bytes) MS-DOS versions 1.x
INT 27H
Set Interrupt AH =25H Nothing
Vector AL = interrupt number
DS:DX = address of interrupt
handler
INT 21H
Get Interrupt AH = 35H ES:BX = address of
Vector AL = interrupt number interrupt handler
INT 21H
Set PSP Address AH = 50H Nothing
BX = PSP segment
INT 21H
Get PSP Address AH=51H BX'= PSP segment
INT 21H
Set Extended AX =5DOAH Nothing MS-DOS versions 3.1
Error Information DS:DX = address of 11-word data structure: and later
word 0: register AX
as returned by Function 59H
word 1: register BX
word 2: register CX
word 3: register DX
word 4: register SI
word 5: register DI i
word 6: register DS
word 7: register ES
words 8—0AH: reserved; should be 0
INT 21H
(more)
The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 360/1582

Article 11: Terminate-and-Stay-Resident Utilities

Table 11-1. Continued.

Function Name Call With - Returns Comment
Get Extended AH = 59H AX = extended error
Error Information BX=0 code
INT 21H BH = error class
BL = suggested action
CH = error locus
Set Disk AH = 1AH Nothing
Transfer Area DS:DX = address of DTA
Address INT 21H
Get Disk AH=2FH ES:BX = address of
Transfer Area INT 21H current DTA
Address
Get InDOS Flag AH = 34H ES:BX = address of
Address INT 21H InDOS flag

Terminate-and-stay-resident functions

MS-DOS provides two mechanisms for terminating the execution of a program while leav-
ing a portion of it resident in RAM. The preferred method is to execute Interrupt 21H Func-
tion 31H. '

Interrupt 21H Function 31H

When this Interrupt 21H function is called, the value in DX specifies the amount of RAM
(in paragraphs) that is to remain allocated after the program terminates, starting at the
program segment prefix (PSP). The function is similar to Function 4CH (Terminate

" Process with Return Code) in that it passes a return code in AL, but it differs in that open
files are not automatically closed by Function 31H.

Interrupt 27H

When Interrupt 27H is executed, the value passed in DX specifies the number of bytes of
memory required for the RAM-resident program. MS-DOS converts the value passed in DX
from bytes to paragraphs, sets AL to zero, and jumps to the same code that would be exe-
cuted for Interrupt 21H Function 31H. Interrupt 27H is less flexible than Interrupt 21H
Function 31H because it limits the size of the program that can remain resident in RAM to
64 KB, it requires that CS point to the base of the PSP, and it does not pass a return code.
Later versions of MS-DOS support Interrupt 27H primarily for compatibility with versions
1x.

TSR RAM management

In addition to the RAM explicitly allocated to the TSR by means of the value in DX, the
RAM allocated to the TSR’s environment remains resident when the installation portion
of the TSR program terminates. (The paragraph address of the environment is found at

Section II: Programming in the MS-DOS Environment 351

OLYMPUS EX. 1010 - 361/1582

Part C: Customizing MS-DOS

offset 2CH in the TSR’s PSP.) Moreover, if the installation portion of a TSR program has
used Interrupt 21H Function 48H (Allocate Memory Block) to allocate additional RAM, this
memory also remains allocated when the program terminates. If the RAM-resident pro-
gram does not need this additional RAM, the installation portion of the TSR program

* should free it exphc1tly by using Interrupt 21H Function 49H (Free Memory Block) before
executing Interrupt 21H Function 31H.

Set and Get Interrupt Vector functions

Two Interrupt 21H function calls are available to inspect or update the contents of a
specified 8086-family interrupt vector. Function 25H (Set Interrupt Vector) updates the
vector of the interrupt number specified in the AL register with the segment and offset
values specified in DS:DX. Function 35H (Get Interrupt Vector) performs the inverse
operation: It copies the current vector of the interrupt number specified in AL 1nto the
ES:BX register pair.

Although it is possible to manipulate interrupt vectors directly, the use of Interrupt 21H
Functions 25H and 35H is generally more convenient and allows for upward compatibility
with future versions of MS-DOS.

Set and Get PSP Address functions

MS-DOS uses a program’s PSP to keep track of certain data unique to the program, includ-
ing command-line parameters and the segment address of the program’s environment. See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-DOs; Structure
of an Application Program. To access this information, MS-DOS maintains an internal vari-
able that always contains the location of the PSP associated with the foreground process.
When a RAM-resident application is activated, it should use Interrupt 21H Functions 50H
(Set Program Segment Prefix Address) and 51H (Get Program Segment Prefix Address) to
preserve the current contents of this variable and to update the variable with the location
of its own PSP. Function 50H (Set Program Segment Prefix Address) updates an internal
MS-DOS variable that locates the PSP currently in use by the foreground process. Function
51H (Get Program Segment Prefix Address) returns the contents of the internal MS-DOS
variable to the caller.

Set and Get Extended Error Information functions

In MS-DOS versions 3.1 and later, the RAM-resident program should preserve the fore-
ground process’s extended error information so that, if the RAM-resident application
encounters an MS-DOS error, the extended error information pertaining to the foreground
process will still be available and can be restored. Interrupt 21H Functions 59H and
SDOAH provide a mechanism for the RAM-resident program to save and restore this
information during execution of a TSR application.

Function 59H (Get Extended Error Information), which became available in version 3.0,
returns detailed information on the most recently detected MS-DOS error. The inverse
operation is performed by Function SDOAH (Set Extended Error Information), which can
be used only in MS-DOS versions 3.1 and later. This function copies extended error
information to MS-DOS from a data structure defined in the calling program.

352 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 362/1582

Article 11: Terminate-and-Stay-Resident Utilities

Set and Get Disk Transfer Area Address functions

‘Several MS-DOS data transfer functions, notably Interrupt 21H Functions 21H, 22H, 27H,
and 28H (the Random Read and Write functions) and Interrupt 21H Functions 14H and 15H
(the Sequential Read and Write functions), require a program to specify a disk transfer area
(DTA). By default, a program’s DTA is located at offset 80H in its program segment prefix.
If a RAM-resident application calls an MS-DOS function that uses a DTA, the TSR should
save the DTA address belonging to the interrupted program by using Interrupt 21H Func-
tion 2FH (Get Disk Transfer Area Address), supply its own DTA address to MS-DOS using
Interrupt 21H Function 1AH (Set Disk Transfer Area Address), and then, before terminat-
ing, restore the interrupted program’s DTA.

The MS-DOS idle interrupt (Interrupt 28H)

Several of the first 12 MS-DOS functions (01H through 0CH) must wait for the occurrence
of an expected event such as a user keypress. These functions contain an “idle loop” in
which looping continues until the event occurs. To provide a mechanism for other system
activity to take place while the idle loop is executing, these MS-DOS functions execute an
Interrupt 28H from within the loop.

The default MS-DOS handler for Interrupt 28H is only an IRET instruction. By supplying
its own handler for Interrupt 28H, a TSR can perform some useful action at times when
MS-DOS is otherwise idle. Specifically, a custom Interrupt 28H handler can be used to
examine the current status of the system to determine whether or not it is safe to activate
the RAM-resident application.

Determining MS-DOS Status

A TSR can infer the current status of MS-DOS from knowledge of its internal use of stacks
and from a-pair of internal status flags. This status information is essential to the proper
execution of an active TSR because a RAM-resident application can make calls to MS-DOS
only when those calls will not disrupt an earlier call made by the foreground process.

MS-DOS internal stacks

MS-DOS versions 2.0 and later may use any of three internal stacks: the I/O stack
(IOStack), the disk stack (DiskStack), and the auxiliary stack (AuxStack). In general,
IOStack is used for Interrupt 21H Functions 01H through OCH and DiskStack is used for
the remaining Interrupt 21H functions; AuxStack is normally used only when MS-DOS has
detected a critical error and subsequently executed an Interrupt 24H. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: CustoM1ZING Ms-DOs: Exception Handlers. Specifically,
MS-DOS’s internal stack use depends on which MS-DOS function is being executed and
on the value of the critical error flag.

The critical error flag

The critical error flag (ErrorMode) is a 1-byte flag that MS-DOS uses to indicate whether
or not a critical error has occurred. During normal, errorless execution, the value of the

Section II: Programming in the MS-DOS Environment 353

OLYMPUS EX. 1010 - 363/1582

Part C: Customizing MS-DOS

critical error flag is zero. Whenever MS-DOS detects a critical error, it sets this flag to a
nonzero value before it executes Interrupt 24H. If an Interrupt 24H handler subsequently
invokes an MS-DOS function by using Interrupt 21H, the nonzero value of the critical error
flag tells MS-DOS to use its auxiliary stack for Interrupt 21H Functions 01H through OCH
instead of using the 1/O stack as it normally would.

In other words, when contro} is transferred to MS-DOS through Interrupt 21H, the function
number and the critical error flag together determine MS-DOS stack use for the function.
Figure 11-2 outlines the internal logic used on entry to an MS-DOS function to select which
stack is to be used during processing of the function. As stated above, for Functions 01H
through OCH, MS-DOS uses IOStack if the critical error flag is zero and AuxStack if the
flag is nonzero. For function numbers greater than 0CH, MS-DOS usually uses DiskStack,
but Functions 50H, 51H, and 59H are important exceptions. Functions 50H and 51H use
either IOStack (in versions 2.x) or the stack supplied by the calling program (in versions
3.x). In version 3.0, Function 59H uses either IOStack or AuxStack, depending on the
value of the critical error flag, but in versions 3.1 and later, Function 59H always uses
AuxStack.

MS-DOS versions 2.x

if (FunctionNumber >= 01H and FunctionNumber <= OCH)
or
FunctionNumber = 50H
or
FunctionNumber = 51H

then if ErrorMode = 0
then use IOStack
else use AuxStack

else ErrorMode = 0
use DiskStack

MS-DOS version 3.0

if FunctionNumber = 50H
or
FunctionNumber
or
FunctionNumber

It
wn
==

I
o
N
=]

then use caller’s stack

else if (FunctionNumber >= 01H and FunctionNumber <= QCH)
or :
Function Number = 59H

then if ErrorMode = 0
then use IOStack

else use AuxStack

else ErrorMode = 0
use DiskStack

Figure 11-2. Strategy for use of MS-DOS internal stacks. (more)

354 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 364/1582

Article 11: Terminate-and-Stay-Resident Utilities

MS-DOS versions 3.1 and later

if FunctionNumber = 33H
or
FunctionNumber = 50H
or '
FunctionNumber = 51H
or-
FunctionNumber = 62H

then use caller’s stack
else if (FunctionNumber >= 01H and FunctionNumber <= 0OCH)

then if ExrorMode = 0
then use IOStack
else use AuxStack

else if FunctionNumber = 59H
then use AuxStack
" else ErrorMode = 0
use DiskStack

Figure 11-2. Continued.

This scheme makes Functions 01H through OCH reentrant in a limited sense, in that a
substitute critical error (Interrupt 24H) handler invoked while the critical error flag

is nonzero can still use these Interrupt 21H functions. In this situation, because the
flag is nonzero, AuxStack is used for Functions 01H through OCH instead of JOStack.
Thus, if JOStack is in use when the critical error is detected, its contents are preserved
during the handler’s subsequent calls to these functions.

The stack-selection logic differs slightly between MS-DOS versions 2 and 3. In versions
3.x, a few functions — notably 50H and 51H — avoid using any of the MS-DOS stacks.
These functions perform uncomplicated tasks that make minimal demands for stack
space, so the calling program’s stack is assumed to be adequate for them.

The InDOS flag

InDOS is a 1-byte flag that is incremented each time an Interrupt 21H functijon is invoked
and decremented when the function terminates. The flag’s value remains nonzero as long
as code within MS-DOS is being executed. The value of InDOS does not indicate which
internal stack MS-DOS is using.

Whenever MS-DOS detects a critical error, it zeros InDOS before it executes Interrupt 24H.
This action is taken to accommodate substitute Interrupt 24H handlers that do not return
control to MS-DOS. If InDOS were not zeroed before such a handler gained control, its

. value would never be decremented and would therefore be incorrect during subsequent
calls to MS-DOS.

The address of the 1-byte InDOS flag can be obtained from MS-DOS by using Interrupt
21H Function 34H (Return Address of InDOS Flag). In versions 3.1 and later, the 1-byte crit-
ical error flag is located in the byte preceding InDOS, so, in effect, the address of both

Section IT: Programming in the MS-DOS Environment 355

OLYMPUS EX. 1010 - 365/1582

Part C: Customizing MS-DOS

flags can be found using Function 34H. Unfortunately, there is no easy way to find the
critical error flag in other versions. The recommended technique is to scan the MS-DOS
segment, which is returned in the ES register by Function 34H, for one of the following
sequences of instructions:

test ss: [CriticalErrorFlag), OFFH ; (versions 3.1 and later)
jne NearLabel
push ss: [NearWord]
int 28H
or
cmp ss: {CriticalExrrorFlag},00 . ; (versions earlier than 3.1)
jne NearLabel
int 28H

When the TEST or CMP instruction has been identified, the offset of the critical error flag
can be obtained from the instruction’s operand field.

The Multiplex Interrupt

The MS-DOS multiplex interrupt (Interrupt 2FH) provides a general mechanism fora
program to verify the presence of a TSR and communicate with it. A program communi-
cates with a TSR by placing an identification value in AH and a function number in AL and
issuing an Interrupt 2FH. The TSR’s Interrupt 2FH handler compares the value in AH to its
own predetermined ID value. If they match, the TSR’s handler keeps control and performs
the function specified in the AL register. If they do not match, the TSR’s handler relin-
quishes control to the previously installed Interrupt 2FH handler. (Multiplex ID values 00H
through 7FH are reserved for use by MS-DOS,; therefore, user multiplex numbers should be
in the range 80H through OFFH.)

The handler in the following example recognizes only one function, corresponding to

AL = 00H. In this case, the handler returns the value OFFH in AL, signifying that the han-
dler is indeed resident in RAM. Thus, a program can detect the presence of the handler by
executing Interrupt 2FH with the handler’s ID value in AH and O0H in AL.

mov ah,MultiplexID
mov al, 00H

int 2FR

cnp al, OFFH

je AlreadyInstalled

To ensure that the identification byte is unique, its value should be determined at the

time the TSR is installed. One way to do this is to pass the value to the TSR program as a
command-line parameter when the TSR program is installed. Another approach is to place
the identification value in an environment variable. In this way, the value can be found in
the environment of both the TSR and any other program that calls Interrupt 2FH to verify
the TSR’s presence.

356 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 366/1582

Article 11: Terminate-and-Stay-Resident Utilities

In practice, the multiplex interrupt can also be used to pass information to and from 2
RAM-resident program in the CPU registers, thus providing a mechanism for a program to
share control or status information with a TSR.

TSR Programming Examples

_ One effective way to become familiar with TSRs is to examine functional programs.
Therefore, the subsequent pages present two examples: a simple passive TSR and a more
" complex active TSR. '

HELLO.ASM

The “bare-bones” TSR in Figure 11-3 is a passive TSR. The RAM-resident application, which
simply displays the message Hello, World, is invoked by executing a software interrupt.
This example illustrates the fundamental interactions among a RAM-resident program,
MS-DOS, and programs that execute after the installation of the RAM-resident utility.

; Name: hello

H .

| ; Description: This RAM-resident (terminate-and-stay-resident) utility
; displays the message "Hello, World" in response to a

; software interrupt.

; Comments: Assemble and link to create HELLO.EXE.
; Execute HELLO.EXE to make resident.

; Execute INT 64h to display the message.

TSRInt EQU 64h
STDOUT EQU 1

RESIDENT_TEXT SEGMENT byte public 'CODE'
ASSUME cs:RESIDENT_TEXT, ds:RESIDENT_DATA

TSRAction PROC far
sti ; enable interrupts
\ ' push ds ; preserve registers
push ax
push bx
push cx
push dx
Figure 11-3. HELLO.ASM, a passive TSR. (more)

Section II: Programming in the MS-DOS Environment 357

OLYMPUS EX. 1010 - 367/1582

Part C: Customizing MS-DOS

mov dx,seg RESIDENT_DATA
mov ds, dx
mov dx,offset Message ; DS:DX —> message
mov cx,16 ; CX = length
mov bx, STDOUT ; BX = file handle
mov) ah, 40h ; AH = INT 21H function 40H
; (Write File)
int 21h ; display the message
pop dx : ; restore registers and exit
pop cx
pop bx
pop ax
pop ds
iret
TSRAction ENDP
RESIDENT_TEXT ENDS
- RESIDENT_DATA SEGMENT word public 'DATA'
Message DB 0Dh, OAh, 'Hello, World',ODh,0Ah

RESIDENT..DATA ENDS

TRANSIENT_TEXT SEGMENT para public 'TCODE’
ASSUME cs:TRANSIENT_TEXT, ss:TRANSIENT_STACK

HelloTSR PROC far ; At entry: CS:IP -> SnapTSR
; SS:SP -> stack
H DS,ES -> PSP
; Install this TSR’s interrupt handler
mov ax,seg RESIDENT_TEXT
mov ds, ax
mov dx,offset RESIDENT_TEXT:TSRAction
mov al, TSRInt
mov ah,25h
int 21h
; Terminate and stay resident
mov dx,cs ; DX = paragraph address of start of
; transient portion (end of resident
; portion)
mov ax,es ; ES = PSP segment .
sub dx, ax ; DX = size of resident portion
Figure 11-3. Continued. (more)

358 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 368/1582

Article 11: Terminate-and-Stay-Resident Utilities

mov ax,3100h ; AH = INT 21H function number (TSR)
; AL = 00H (return code)
int 2th
HelloTSR ENDP

TRANSIENT_TEXT ENDS

TRANSIENT_STACK SEGMENT word stack 'TSTACK'
DB 80h dup (?)

TRANSIENT..STACK ENDS

END HelloTSR

Figure 11-3. Continued.

The transient portion of the program (in the segments TRANSIENT_TEXT and
TRANSIENT_STACK) runs only when the file HELLO.EXE is executed. This installation
code updates an interrupt vector to point to the resident application (the procedure

TSR Action) and then calls Interrupt 21H Function 31H to terminate execution, leaving the
segments RESIDENT_TEXT and RESIDENT._DATA in RAM.

The order in which the code and data segments appear in the listing is important. It
ensures that when the program is executed as a .EXE file, the resident code and data are
placed in memory at lower addresses than the transient code and data. Thus, when Inter-
rupt 21H Function 31H is called, the memory occupied by the transient portion of the pro-
gram is freed without disrupting the code and data in the resident portion.

The RAM containing the resident portion of the utility is left intact by MS-DOS during
subsequent execution of other programs. Thus, after the TSR has been installed, any pro-
gram that issues the software interrupt recognized by the TSR (in this example, Interrupt
64H) will transfer control to the routine TSRAction, which uses Interrupt 21H Function
40H to display a simple message on standard output.

Part of the reason this example is so short is that it performs no error checking. A truly reli-
able version of the program would check the version of MS-DOS in use, verify that the pro-
gram was not already installed in memory, and chain to any previously installed interrupt
handlers that use the same interrupt vector. (The next program, SNAP.ASM, illustrates
these techniques.) However, the primary reason the program is small is that it makes the
basic assumption that MS-DOS, the ROM BIOS, and the hardware interrupts are all stable
at the time the resident utility is executed.

SNAP.ASM

The preceding assumption is a reliable one in the case of the passive TSR in Figure 11-3,
which executes only when it is explicitly invoked by a software interrupt. However, the
situation is much more complicated in the case of the active TSR in Figure 11-4. This

Section II: Programming in the MS-DOS Environment 359)

OLYMPUS EX. 1010 - 369/1582

Part C: Customizing MS-DOS

360

program is relatively long because it makes no assumptions about the stability of the
operating environment. Instead, it monitors the status of MS-DOS, the ROM BIOS, and the
hardware interrupts to decide when the RAM-resident application can safely execute.

;

; Name: snap
; Description: This RAM-resident (terminate-and-stay-resident) utility

H produces a video "snapshot" by copying the contents of the
H video regeneration buffer to a disk file. It may be used

; in 80-column alphanumeric video modes on IBM PCs and PS/2s.
; Comments: Assemble and Link to create SNAP.EXE.

; Execute SNAP.EXE to make resident.

H Press Alt-Enter to dump current contents of video buffer
H to a disk file.

MultiplexID EQU 0CAh ; unique INT 2FH ID value
TSRStackSize EQU 100h ; resident stack size in bytes
KB_FLAG EQU 17h ; offset of shift-key status flag in

; ROM BIOS keyboard data area

KBIns EQU 80h ; bit masks for KB_FLAG
KBCaps EQU 40h
KBNum EQU 20h
KBScroll EQU 10h
KBAlt EQU 8
KBCt1l EQU 4
KBLeft EQU 2
" KBRight EQU 1
SCEnter EQU iCh
CR EQU 0Dh
LF EQU OAh
TRUE EQU -1
FALSE EQU 0
PAGE

RESIDENT_GROUP GROUP RESIDENT_TEXT, RESIDENT_DATA, RESIDENT_STACK

Figure 11-4. SNAP.ASM, a video snapshot TSR.) (more)

The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 370/1582

* Article 11: Terminate-and-Stay-Resident Utilities

RESIDENT_TEXT SEGMENT byte public 'CODE'
ASSUME cs:RESIDENT_GROUP, ds:RESIDENT_GROUP

VerifyDOSState PROC near ; Returns: carry flag set if MS-DOS

; is busy

push ds ; preserve these registers

push bx

push ax

1lds bx,cs:ErrorModeAddr)

mov ah, [bx] ; AH = ErrorMode flag

lds bx, cs:InDOSAddr o

mov al, [bx] ; AL = InDOS flag

xor bx, bx ; BH = 00H, BL = 00H

cmp bl,cs:InISR28 ; carry flag set if INT 28H handler
; is running

rcl bl,01h ; BL = 01H if INT 28H handler is running

cmp bx, ax carry flag zero if AH = 00H

and AL <= BL

NN s

pop ax restore registers
pop bx

pop ds

ret

VerifyDOSState ENDP

VerifyIntState PROC near ; Returns: carry flag set if hardware
; " or ROM BIOS unstable
push ax ; preserve AX

; Verify hardware interrupt status by interrogating Intel 8259A Programmable
; Interrupt Controller

mov ax,00001011b ; AH = 0
; AL = OCW3 for Intel 8259A (RR = 1,
; RIS = 1)
out 20h,al ; request B8259A’s in-service register
jmp short L10 ; wait a few cycles
L10: in al,20h ; AL = hardware interrupts currently

; being serviced (bit = 1 if in-service)

Figure 11-4. Continued. v (more)

Section II: Programming in the MS-DOS Environment 361

OLYMPUS EX. 1010 - 371/1582

Part C: Customizing MS-DOS

362

; Verify status

L11:

VerifyIntState

VerifyTSRState

L20:

VerifyTSRState

cmp
je

of ROM BIOS interrupt handlers

XOor

cmp
jec

cmp
je

cmp
jc

cmp

pop
ret

ENDP

PROC

rol
cme
jc

ror
jc

call
jec

call

ret

ENDP

PAGE

ah,al
L11

al,al

al,cs:InISRS
L11

al,cs:InISRY
L11

al,cs:InISR10
L1

al,cs:InISR13

ax

near

cs:HotFlag, 1

L20

cs:ActiveTSR, 1
L20

VerifyDOSState
L20

VerifyIntState

; System monitor routines

inc

Figure 11-4. Continued.

The MS-DOS Encyclopedia

far

cs:InISRS

; exit if any hardware interrupts still
i being serviced

; AL = Q0H

;v exit if currently in INT O5H handler

; exit if currently in INT 09H handler

; exit if currently in INT 10H handler

; set carry flag if currently in
; INT 13H handler
; restore AX and return

; Returns: carry flag set if TSR
i inactive

; carry flag set if (HotFlag
; carry flag set if (HotFlag
; exit if no hot key

TRUE)
FALSE)

; carry flag set if (ActiveTSR = TRUE)
; exit if already active

; exit if MS-DOS unstable

; set carry flag if hardware or BIOS
; unstable

INT 05H handler
(ROM BIOS print screen)
; increment status flag

;
;

[€ more’)

OLYMPUS EX. 1010 - 372/1582

Article 11: Terminate-and-Stay-Resident Utilities

pushf
cli
call cs:PrevISRS ; chain to previous INT 05H handler
dec cs:InISRS - ; decrement status flag
iret
ISRS ENDP
ISR8 PROC far - ; INT 08H handler (timer tick, IRQO)
pushf
cli .
call cs:PrevISR8 ; chain to previous handler
cmp cs:InISRS,0
jne L31 ; exit if already in this handler
inc cs:InISRS ; increment status flag
sti ; interrupts are ok
call VerifyTSRState
jec L30 ; Jump if TSR is inactive
mov byte ptr cs:ActiveTSR, TRUE
call TSRapp
mov byte ptr cs:ActiveTSR,FALSE
L30: dec cs:InISR8
L31: iret
ISR8 ENDP
ISRY PROC far ; INT 09K handler
; (keyboard interrupt IRQ1)
push ds ; preserve these registers
push ax
push bx
push cs .
pop ds ; DS -> RESIDENT_GROUP
in al, 60h ; AL = current scan code
pushf ; simulate an INT
cli N
call ds:PrevISRY ; let previous handler execute
Figure 11-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 363 .

OLYMPUS EX. 1010 - 373/1582

Part C: Customizing MS-DOS

mov
or
jnz’

inc
sti

ah,ds:InISR9
ah,ds:HotFlag
143

ds:InISRY

; Check scan code sequence

cmp
je

mov
cmp
jne
inc
cmp
jb
; Check shift-key state
L40: push
mov
mov

mov
pop

and
cmp
jne
; Set flag when hot key
mov

L41: ' Xor

L42: mov
dec

L43: pop
pop
pop
iret

ISRY ENDP

Figure 11-4. Continued.

364 The MS-DOS Encyclopedia

ds:HotSeqLen, 0
L40

bx,ds:HotIndex

al, [bx+HotSequence]) ; test scan code sequence

L4

bx
bx,ds:HotSeqgLen
L42

ds

ax,40h

ds,ax

al,ds: [KB_FLAG]
ds

al, ds:HotKBMask
al,ds:HotKBFlag
L42

is found

byte ptr ds:HotFlag, TRUE

bx,bx

ds:HotIndex, bx

- ds:InISRS

bx
ax
ds

H
;

;

;

i

;

i

’

;

7

;

;

;

if already in this handler ..
.. or currently processing hot key
jump to exit

increment status flag
now interrupts are ok

jump if no hot sequence to match

jump if no match

jump if not last scan code to match

DS -> ROM BIOS data area
AH = ROM BIOS shift-key flags
AL = flags AND "don’t care" mask

jump if shift state does not match

reinitialize index

update ‘index into sequence
decrement status flag

restore registers and exit

(more)

OLYMPUS EX. 1010 - 374/1582

Article 11: Terminate-and-Stay-Resident Utilities

ISR10 PROC far ; INT 10H handler (ROM BIOS video I/0)
inc ¢cs:InISR10 ; increment status flag
pushf
cli
call cs:PrevISR10 ; chain to previous INT 10H handler
dec cs:InISR10 ; decrement status flag
iret
ISR10 ENDP
ISR13 PROC far ; INT 13H handler
; (ROM BIOS fixed disk I/0)
inc cs:InISR13 ; increment status flag
pushf
cli
call cs:PrevISR13 ; chain to previous INT 13H handler
pushf ; preserve returned flags
dec cs:InISR13 ; decrement status flag
popf ; restore flags register
sti ; enable interrupts
ret 2 ; simulate IRET without popping flags
ISR13 ENDP
ISR1B PROC far ; INT 1BH trap (ROM BIOS Ctrl-Break)
mov byte ptr cs:Trapi1B, TRUE
iret
ISR1B ENDP
ISR23 PROC far ; INT 23H trap (MS-DOS Ctrl-C)
mov byte ptr cs:Trap23, TRUE
iret
ISR23 ENDP
ISR24 PROC far ; INT 24H trap (MS-DOS critical error)
mov byte ptr cs:Trap24, TRUE
Figure 11-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 365

OLYMPUS EX. 1010 - 375/1582

Part C: Customizing MS-DOS
Xxor al,al ; AL = Q00H (MS-DOS 2.X):
cmp cs:MajorVersion,2 ; ignore the error
je L50
mov al,3 ; AL = 03H (MS-DOS 3.Xx):
; fail the MS-DOS call in which
; the critical error occurred
L50: iret
ISR24 ENDP
ISR28 PROC far ; INT 28H handler
; {(MS-DOS idle interrupt)
pushf
cli
call cs:PrevISR28 ; chain to previous INT 28H handler
cmp cs:InISR28,0
jne L61 ; exit if already inside this handler
inc cs:InISR28 ; increment status flag
call VerifyTSRState
jc L60 ; jump if TSR is inactive
mov byte ptr cs:ActiveTSR, TRUE
call TSRapp
mov byte ptr cs;ActiveTSR,FALSE
L60: dec cs:InISR28 ; decrement status flag
L61: iret
ISR28 ENDP
ISR2F PROC far ; INT 2FH handler
; (MS-DOS multiplex interrupt)
; Caller: AH = handler ID
; AL = function number
; Returns for function 0: AL = OFFH
; for all other functions: nothing
cmp ah,MultiplexID
je L70 ; jump if this handler is requested
jmp cs:PrevISR2F ; chain to previous INT 2FH handler -
Figure 11-4. Continued. (more)
366 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 376/1582

Article 11: Terminate-and-Stay-Resident Utilities

L70:

; Function 0:

MultiplexIRET:

ISR2F

N N s

AuxInt21

AuxInt21

Int21v

test
jnz

get installed state

mov
iret
ENDP

PAGE

PROC

push
push
1ds
inc
pop
pop

int

push
push
lds
dec
pop
pop
ret

ENDP
PROC

cmp
jb

int
ret

Figure 11-4. Continued.

al,al

MultiplexIRET ; jump if reserved or undefined function

al, OFFh

near

ds
bx

; AL = OFFH (this handler is installed)

; return from interrupt

AuxInt21--sets ErrorMode while executing INT 21H to force use of the
AuxStack instead of the IOStack.

; Caller: registers for INT 21H
; Returns: registers from INT 21H

bx, ExrorModeAddr
byte ptr [bx] ; ErrorMode is now nonzero

bx
ds

21h

ds
bx

; perform MS-DOS function

bx,ErrorModeAddr
byte ptr [bx] ; ‘restore ErrorMode

bx
ds

near

; perform INT 21H or AuxInt21,
; depending on MS-DOS version

DOSVersion, 302Ah

180

21h

; jump if earlier than 3.1

; versions 3.1 and later

(more)

Section II: Programming in the MS-DOS Environment 367 _

OLYMPUS EX. 1010 - 377/1582

Part C: Customizing MS-DOS

L80: call
ret

Int21v ENDP
PAGE

TSRapp PROC
; Set up a safe stack
push

push
pop

mov
mov

mov
mov

push
push
push
push
push
push
push
push

cld

; Set break and critical error traps

mov
mov

L90: lodsb

mov

push
mov

int
mov

mov

Figure 11-4. Continued.

368 The MS-DOS Encyclopedia

AuxInt21

near

PrevSP, sp
PrevSS, ss

ss, TSRSS
sp, TSRSP

es
ax
bx
cx
dx
si
di
bp

cx,NTrap

si,offset RESIDENT_GROUP:StartTrapList

byte ptr [si),FALSE ; zero the trap flag
ax ; preserve AX
ah, 35h ; INT 21H function 35H
; (get interrupt vector) .
21h ; ES:BX = previous interrupt vector
[si+1],bx ; save offset and segment

[si+3],es

;

;

r

;

; versions earlier than 3.1

save previous DS on previous stack

DS —-> RESIDENT..GROUP

save previous SS:SP

SS:SP -> RESIDENT_STACK

preserve remaining registers

clear direction flag

AL = interrupt number
DS:SI -> byte past interrupt number

.. of previous handler

(more)

OLYMPUS EX. 1010 - 378/1582

Article 11: Terminate-and-Stay-Resident Utilities

pop
mov
mov
int
add

loop

; Disable MS-DOS bre
mov

int
mov

Xor

mov
int

; Preserve previous

cmp
Jjb

push
Xor
mov
call

mov
pop
mov
mov
mov
mov
mov
mov
mov

ax ; AL = interrupt number
dx, [si+5] ; DS:DX -> this TSR's trap
ah,25h ; INT 21H function 25H

21h ; (set interrupt vector)
si,?7 ; DS:SI —> next in list
L90

ak checking during disk I/0

ax,3300h ; AH = INT 21H function number
; AL = 00H (request current break state)
21h ; DL = current break state
PrevBreak,dl ; preserve current state
dl,dl- ; DL = 00H (disable disk I/O break
; checking)
ax,3301h ; AL = 01H (set break state)
21h

extended error information

DOSVersion, 30Ah

L9 ; Jjump if MS-DOS version earlier
; than 3.1
ds ; preserve DS
bx,bx ; BX = 00H (required for function 59H)
ah, 5% ; INT 21H function 59H
Int2iv ; (get extended error info)

cs:PrevExtErxDS,ds

ds

PrevExtErrAX,ax ; preserve error information
PrevExtErrBX,bx ; in data structure
PrevExtErrCX, cx

PrevExXtErrDX, dx

PrevExtErrSI, si

PrevExtErrDI,di

PrevExtErrES, es

; Inform MS-DOS about current PSP

L91: mov
call

mov
mov
mov

call

Figure 11-4. Continued.

ah,51h ; INT 21H function 51H (get PSP address)
Int21v ; BX = foreground PSP

PrevPSP, bx ; preserve previous PSP

bx, TSRPSP ; BX = resident PSP

ah,50h ; INT 21H function 50H (set PSP address)
Int21v

(more)

Section II: Programming in the MS-DOS Environment 369 '

OLYMPUS EX. 1010 - 379/1582

Part C: Customizing MS-DOS

370

; Inform MS-DOS about current DTA (not really necessary in this application
; .because DTA is not used)

mov
int
mov
mov

push
mov
mov
mov
int
pop

; Open a file, write to

mov

int

mov
mov

mov
int
jc
push

mov
int

pop
cmp
jne

mov
cmp
jbe

cmp
jne
mov

L92: push
mov
Xor
mov
mov

Figure 11-4. Continued.

The MS-DOS Encyclopedia

ah, 2Fh

21h
PrevDTAoffs,bx
PrevDTAseg, es

ds

ds, TSRPSP
dx, 80h
ah, 1Ah
21h

ds

it, and close it

ax,0EQ7h

10h

~

INT 27H function 2FH

(get

DTA address) into ES:BX

preserve DS

DS:DX -> default DTA at PSP:0080H
INT 21H function 1AH

(set

DTA address)

restore DS

AH =

INT 10H function number

(write teletype)

AL =
emit

07H (bell character)
a beep

dx,offset RESIDENT_GROUP:SnapFile
INT 21H function 3CH
(create file handle)

ah, 3Ch

cx,0
21h
L94

ax
ah, OFh
10h

bx

ah, 80
L93

dx, 0B800Oh
al,3
L92

al,?
L93

dx, 0BOOOh

ds

ds,dx

dx, dx

cx, 80%25%2
ah, 40h

;
;

;

file

Jump

; push

attribute
if file not opened

file handle

INT 10H function OFH (get video status)

AL =

; AH =

BX =

Jump
DX =

Jump

Jump

DX =

video mode number

number of character columns
file handle

if not 80-column mode

color video buffer segment

if color alphanumeric mode

if not monochrome mode

monochrome video buffer segment

DS:DX -> start of video buffer

CX =

number of bytes to write

INT 21H function 40H (write file)

(more)

Article 11: Terminate-and-Stay-Resident Utilities

int 21h
pop ds
L93: mov ah, 3Eh ; INT 21H function 3EH (close file)
int 21h
mov ax,0EQ7h ; emit another beep
int 10h

; Restore previous DTA

L94: push ds ; preserve DS
1ds dx, PrevDTA ; DS:DX -> previous DTA
mov ah, 1Ah ; INT 21H function 1AH (set DTA address)
int 21h
pop ds

; Restore previous PSP

mov bx,PrevPSP ; BX = previous PSP
mov ah, 50h ; INT 21H function 50H
call Int21v ; (set PSP address)

; Restore previous extended error information

mov ax,DOSVersion

cmp ax,30ah

ib L95 ; Jjump if MS-DOS version earlier than 3.1
cmp ax, 0AQ0Oh

jae L95 ; jump if MS 0S/2-DOS 3.x box

mov dx,offset RESIDENT_GROUP:PrevExtErrInfo

mov ax, 5D0Ah '

int 21h ; (restore. extended error information)

; Restore previous MS-DOS break checking

L95: mov dl,PrevBreak ; DL = previous state
mov ax,3301h
int 21h

; Restore previous break and critical error traps

mov cx,NTrap
mov si,offset RESIDENT_GROUP:StartTrapList
push ds ; preserve DS
L96: lods byte ptr cs:[si] ; AL = interrupt number
; ES:SI -> byte past interrupt number
lds dx,cs: {si+l1] ; DS:DX -> previous handler
mov ah,25h ; INT 21H function 25H
int 21h ; (set interrupt vector)
Figure 11-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 371

OLYMPUS EX. 1010 - 381/1582

Part C: Customizing MS-DOS

372

add si,7 ; DS:SI -> next in list
loop L96
pop ds ; restore DS

; Restore all registers

pop bp

pop di

pop si

pop dx

pop cx

pop bx

pop ax

pop es

mov ss,PrevSS ; S8:8P -> previous stack
mov sp,Prevsp

pop ds ; restore previous DS

; Finally, reset status flag and return

T mov byte ptr cs:HotFlag,FALSE
ret !

TSRapp ENDP
RESIDENT_TEXT ENDS

RESIDENT_DATA SEGMENT word public 'DATA'

ErrorModeAddr DD ? : ; address of MS-DOS ErrorMode flag
InDOSAddr DD ? ; address of MS-DOS InDOS flag
NISR DW (EndISRList-StartISRList)/8 ; number of installed ISRs
StartISRList DB 05h ; INT number
InISRS DB FALSE ; flag
PrevISR5 DD ? ; address of previous handler e
1 DW offset RESIDENT_GROUP:ISRS5
DB 08h
InISR8 DB FALSE
PrevISR8 DD ? .
DW offset RESIDENT_GROUP:ISR8
DB 09n
InISRY DB FALSE
PrevISRY DD ?
DW offset RESIDENT_GROUP:ISR9
DB 10h
InISR10 DB FALSE
Figure 11-4. Continued. (more)
The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 382/1582

Article 11: Terminate-and-Stay-Resident Utilities

PrevISR10 DD
' DW
DB
InISR13 DB
PrevISR13 DD
DW
DB
InISR28 DB
PrevISR28 DD
DW
DB
InISR2F DB
PrevISR2F DD
DW
EndISRList LABEL
TSRPSP DW
TSRSP DW
TSRSS DW
PrevPSP DW
PrevSP DW
PrevsSSs DW
HotIndex DW
HotSeqLen DW
HotSequence DB
EndHotSeq LABEL
HotKBFlag DB
HotKBMask DB
HotFlag DB
ActiveTSR DB
DOSVersion LABEL
DB
MajorVersion DB

; The following data is

NTrap DW
StartTrapList DB
TrapiB DB
PrevISR1B DD
DW
DB

Figure 11-4. Continued.

?
offset RESIDENT_GROUP:ISR10

13h

FALSE
? .
offset RESIDENT_GROUP:ISR13

28h

FALSE

?

offset RESIDENT_GROUP:ISR28

2Fh

FALSE

?

offset RESIDENT._GROUP:ISR2F

BYTE

? ; resident PSP

TSRStackSize ; resident SS:SP

seg RESIDENT_STACK

? ; previous PSP

? ; previous SS:SP

2

0 ; index of next scan code in sequence
EndHot Seg-HotSequence ; length of hot-key sequence
SCEnter ; hot sequence of scan codes

BYTE

KBAlt ; hot value of ROM BIOS KB_FLAG

(KBIns OR KBCaps OR KBNum OR KBScroll) XOR 0FFh
FALSE :

FALSE
WORD
?) ; minor version number
? ' ; major version number

used by the TSR application:
{EndTraplist-StartTrapList) /8 ; number of traps

1Bh

FALSE
2

offset RESIDENT_GROUP:ISR1B

23h

(more)

Section II: Programming in the MS-DOS Environment 373 -

OLYMPUS EX. 1010 - 383/1582

Part C: Customizing MS-DOS

374

Trap23 DB
PrevISR23 DD

DW

DB
Trap24 DB
PrevISR24 DD

DW
EndTraplist LABEL
PrevBreak DB
PrevDTA LABEL
PrevDTAoffs DW
PrevDTAseg DW

PrevExtErrInfo LABEL
PrevExXtErrAX DW
PrevExtErrBX DW
PrevEXtErrCX DW

PrevEXtErrDX DW
PrevExXtErrSI DW
PrevExtErrDI DW
PrevExXtErrDS DW
PrevExtErrES DW

DW
SnapFile . DB

RESIDENT_DATA ENDS

RESIDENT_STACK ' SEGMENT

RESIDENT_STACK ENDS

TRANSIENT_TEXT SEGMENT para public 'TCODE'

ASSUME

InstallSnapTSR PROC

Figure 11-4. Continued.

The MS-DOS Encyclopedia

"TSRStackSize dup(?)

FALSE
?

offset RESIDENT_GROUP:ISR23

24h

FALSE

?

offset RESIDENT_GROUP:ISR24

BYTE

? ; previous break-checking flag
DWORD ; previous DTA address

2

?

BYTE ; previous extended error information
2

?

?

?

?

?

?

?

3 dup(0)

'\snap.img’ ; output filename in root directory

word stack 'STACK'

cs:TRANSIENT_TEXT,ds:RESIDENT_DATA, ss:RESIDENT_STACK

far ; At entry: CS:IP ~> InstallSnapTSR
; SS:SP -> stack
; DS,ES -> PSP
(more)

OLYMPUS EX. 1010 - 384/1582

Article 11: Terminate-and-Stay-Resident Utilities

; Save PSP segment

mov
mov

mov

ax,seg RESIDENT_DATA

ds,ax

TSRPSP, es

; Check the MS-DOS version

call

’

7

GetDOSVersion :

DS -

save

AH
AL =

; Verify that this TSR is not already installed

L100:

Figure 11-4. Continued.

> RESIDENT_DATA

PSP segment

major version number
minor version number

Before executing INT 2FH in MS-DOS versions 2.x, test whether INT 2FH

vector is in use.

If so, abort if PRINT.CCM is using it.

(Thus, in MS-DOS 2.x, if both this program and PRINT.COM are used,
this program should be made resident before PRINT.COM.)

. cmp
ja

nov
int

mov
or
jnz

push
mov

mov
mov
mov

int
pop
Jrp

mov
int

cmp

je

mov
call

ah,2
L101

ax,352Fh
21h
ax,es
ax,bx

L100

ds
ax,252Fh

7

’

Jump,
AH =
AL =
ES:BX

Jump
is

AH
AL =

dx,seg RESIDENT_GROUP

ds,dx

if version 3.0 or later

INT 21H function number
interrupt number
= INT 2FH vector

if current INT 2FH vector
nonzero

INT 21H function number
interrupt number

dx,offset RESIDENT_GROUP:MultiplexIRET'

21h
ds
short L103

ax, OFF00h
2Fh
ah, OFFh

L101

al,1
FatalError

2

point

jump

look

INT 2FH vector to IRET
to install this TSR

for PRINT.COM:

if resident, AH = print queue length;
otherwise, AH is unchanged

if PRINT.COM is not resident ..

us

abort

e multiplex interrupt

if PRINT.COM already installed

(more)

Section II: Programming in the MS-DOS Environment 375

OLYMPUS EX. 1010 - 385/1582

Part C: Customizing MS-DOS

L101: mov
Xor

int

test
jz
cmp
jne
mov

call

L102: mov

call
; Get addresses

L103: call

; Install this TSR’s interrupt handlers

push

mov

mov
L104: lodsb
push
mov
int
mov
mov

pop
push
mov
mov
mov
mov
int
pPop
add
loop

; Free the environment

pop
push
mov

Figure 11-4. Continued.

376 TheMS-DOS Encyclopedia

ah,MultiplexID
al,al
2Fh

al,al
L103

al,OFFh
L102

al,2
FatalError

al,3
FatalError

GetDOSFlags

es

cx,NISR

si,offset StartISRList

ax

ah, 35h
21h
[si+1],bx
[si+3],es

ax
ds
dx, [si+5]

bx,seg RESIDENT_GROUP

ds, bx
ah, 25h
21h

ds
si,7
L104

es
es
es,es: [2Ch]

;

of InDOS and ErrorMode flags

;

’

’

7
’

i

AH = multiplex interrupt ID value
AL = 00H
multiplex interrupt

jump if ok to install
jump if not already installed
already installed

can’t install

preserve PSP segment

AL =

DS:SI -> byte past interrupt number

preserve AX

INT 21H function 35H

ES:BX =

save offset and segment
of previous handler

interrupt number

previous interrupt vector

AL = interrupt number
preserve DS

DS:DX -> this TSR’s handler
INT 21H function 25H

(set interrupt vector)
restore DS

DS:SI -> next in list

ES = PSP segment
preserve PSP segment
ES = segment of environment

(more)

OLYMPUS EX. 1010 - 386/1582

Article 11: Terminate-and-Stay-Resident Utilities

; Terminate and

InstallSnapTSR

GetDOSVersion

L110:

GetDOSVersion
GetDOSFlags

mov
int

ah, 4%h ;
21h ;

stay resident

PdP
mov
sub
mov
int
ENDP

PROC

ASSUME
mov
int
cmp

jb
xchg
mov

ret

mov
call

ENDP

PROC

ASSUME

ax ;

dx,cs ;
H
H

dx, ax H

ax,3100h ;

21h

near ;

ds:RESIDENT_DATA
ah, 30h ;
21h
al,2
L110 H

ah,al H

DOSVersion, ax ;
al, 00h
FatalError ;

near ;

ds :RESIDENT. DATA

; Get InDOS address from MS-DOS

push

mov
int

Figure 11-4. Continued.

ah, 34h i
21h H

Section II: Programming in the MS-DOS Environment

INT 21H function 49H
(free memory block)

AX = PSP segment
DX = paragraph address of start of
transient portion (end of resident
portion)
DX = size of resident portion
AH = INT 21H function number
AL = 00H (return.code)
Caller: DS = seg RESIDENT_DATA
ES = PSP
Returns: BAH = major version
AL = minor version

INT 21H function 30H:
(get MS-DOS version)

jump if versions 1.x

major version

AL = minor version

save with major version in
high-order byte

AH =

abort if versions 1.x

Caller: DS = seg RESIDENT._DATA
Returns: InDOSAddr -> InDOS

ErrorModeAddr -> ErrorMode
Destroys: AX,BX,CX,DI

INT 21H function number
ES:BX -> InDOS

(more)

377

OLYMPUS EX. 1010 - 387/1582

Part C: Customizing MS-DOS

378

mov
mov

word ptr InDOSAddr,bx
word ptr InDOSAddr+2,es

; Determine ErrorMode address

L120:

Li21:

L122:

L123:

L124:

L125:

mov

mov
cmp
jb

cmp
jae

dec
mov
Jmp

mov
XOor

mov

repne
jne

cmp
jne

mov
cmp
jne
jmp
mov
cmp
jne
mov

mov

pop
ret

Figure 11-4. Continued.

The MS-DOS Encyclopedia

word ptr ErrorModeAddr+2,es ; assume ErrorMode is

ax,D0OSVersion

ax, 30Ah
L120 ; jump if MS-DOS version earlier

; than 3.1
ax, 0A0Oh
120 ; .. or MS 0S/2-DOS 3.x box
bx ; in MS-DOS 3.1 and later, ErrorMode
word ptr ErrorModeAddr,bx ; is just before InDOS
short L125

; scan MS-DOS segment for ErrorMode
cx, OFFFFh ; CX = maximum number of bytes to scan
di,di ; ES:DI -> start of MS-DOS segment

ax,word ptr

scasb
L126

ah,es: [di]
1122

ax,word ptxr

ax,es: [di) [LF1-LF2]

L123

ax,es: [di) ((LF1-LF2)+2) ; AX = offset of ErrorMode

short L124

ax,word ptr

ax,es: [di] [LF3-LF4]

L121

ax,es: (di] [(LF3-LF4)+2] ; AX = offset of ErrorMode

word ptr ErrorModeAddr,ax

es

; in the same segment
; as InDOS

cs:LF2 ; AX = opcode for INT 28H

; scan for first byte of fragment
; jump if not found

inspect second byte of opcode
jump if not INT 28H

~

cs:LF1 + 1 ; AX = opcode for CMP

; jump if opcode not CMP

; in DOS segment
cs:LF3 + 1 ; AX = opcode for TEST

; jump if opcode not TEST

(more)

OLYMPUS EX. 1010 - 388/1582

Article 11: Terminate-and-Stay-Resident Utilities

; Come here if address of ErrorMode not found

L126: mov al, 04h
call FatalError

; Code fragments for scanning for ErrorMode flag

LFnear LABEL npear ; dummy labels for addressing
LFbyte LABEL byte
LFword LABEL . word
; MS-DOS versions earlier than 3.1
LF1: cmp ss:LFbyte, 0 ; CMP ErrorMode, 0
jne LFnear
LF2: int 28h
7 MS-DOS versions 3.1 and later
LF3: : test ss:LFbyte, 0OFFh ; TEST ExrorMode, OFFH
jne LFnear
push ss:LFword
LF4: int 28h
GetDOSFlags ENDP
= message number

_FatalError PROC near ; Caller: AL
’ ; ES = PSP
ASSUME ds:TRANSIENT._DATA

push ax ; save message number on stack
mov bx,seg TRANSIENT _DATA
mov ds, bx

; Display the requested message

mov bx,offset MessageTable

Xor ah, ah ; AX = message number

shl ax, 1 ; BX = offset into MessageTable

add bx, ax ; DS:BX -> address of message

mov dx, [bx] ; DS:DX -> message

mov ah, 0%h ; INT 21H function 09H (display string)
int 21h ; display error message

pop ax ; AL = message number

or al,al

jz L130 ; Jjump if message number is zero

; (MS-DOS versions 1.x)

; Terminate (MS~DOS 2.x and later)

mov ah, 4Ch ; INT 21H function 4CH
int 21h ; (terminate process with return code)
Figure 11-4. Continued. (more)

Section II: Programming in the MS-DOS Environment 379‘

OLYMPUS EX. 1010 - 389/1582

Part C: Customizing MS-DOS

; Terminate (MS-DOS 1.x)

L130

L130

FatalError

TRANSIENT_TEXT

; Transient data segment

TRANSIENT_DATA

MessageTable

Message(
Messagel
Message2
Message3
Message4

TRANSIENT.DATA

PROC
push
xor
push
ret

ENDP

ENDP

ENDS

PAGE

SEGMENT word public 'DATA'

DW
DW
DW
DW
DW

DB
DB
DB
DB
DB

ENDS

END

Figure 11-4. Continued.

When installed, the SNAP program monitors keyboard input until the user types the
hot-key sequence Alt-Enter. When the hot-key sequence is detected, the monitoring rou-
tine waits until the operating environment is stable and then activates the RAM-resident
application, which dumps the current contents of the computer’s video buffer into the file
SNAP.IMG. Figure 11-5 is a block diagram of the RAM-resident and transient components

of this TSR.

380 The MS-DOS Encyclopedia

far

es ; push PSP:0000H
ax, ax
ax
; far return (jump to PSP:0000H)

Message0 ; MS-DOS version error

Messagel ; PRINT.COM found in MS-DOS 2.x
Message?2 ; already installed

Message3 ; can’t install

Messaged ; can’t find flag

CR,LF, 'TSR requires.MS—DdS 2.0 or later version',CR,LF,'$’
CR,LF,'Can''t install TSR: PRINT.COM active',CR,LF,'$’'
CR,LF,'This TSR is already installed',CR,LF,'$’
CR,LF,'Can''t install this TSR',CR,LF,'$’

CR,LF, 'Unable to locate MS-DOS ErrorMode flag',CR,LF,'$’

InstallSnapTSR

OLYMPUS EX. 1010 - 390/1582

Article 11: Terminate-and-Stay-Resident Utilities

Higher addresses
. € Transient data TRANSIENT DATA segment

InstallSnapTSR
Initialization code and data
RAM-resident stack RESIDENT_STACK segment
RAM-resident data RESIDENT '_DATA segment
TSRapp)
RAM:-resident application

ISR2F
INT 2FH (multiplex interrupt) handler

ISR28
INT 28H (DOS idle interrupt) handler
ISR24
INT 24H (critical error) handler
ISR23
INT 23H (Control-C) handler
ISRIB
INT 1BH (Control-Break) handler

ISRI3
INT 13H (BIOS fixed-disk I/O) handler

ISRI0
INT 10H (BIOS video I/O) handler

ISR9)
INT 09H (keyboard interrupt) handler
ISR8
INT O8H (timer interrupt) handler

ISRS
INT 05H (BIOS print screen) handler

TRANSIENT TEXT segment

?RESIDEN T_TEXT segment

Lower addresses

Figure 11-5. Block structure of the TSR program SNAP.EXE when loaded into memory. (Compare with
Figure 11-1.) .

Installing the program

When SNAP.EXE is run, only the code in the transient portion of the program is executed.
The transient code performs several operations before it finally executes Interrupt 21H
Function 31H (Terminate and Stay Resident). First it determines which MS-DOS version is
in use. Then it executes the multiplex interrupt (Interrupt 2FH) to discover whether the
resident portion has already been installed. If an MS-DOS version earlier than 2.0 is in use
or if the resident portion has already been installed, the program aborts with an error
message.

Otherwise, installation continues. The addresses of the InDOS and critical error flags are
saved in the resident data segment. The interrupt service routines in the RAM-resident por-
tion of the program are installed by updating all relevant interrupt vectors. The transient
code then frees the RAM occupied by the program’s environment, because the resident

Section II: Programming in the MS-DOS Environment 381

OLYMPUS EX. 1010 - 391/1582

Part C: Customizing MS-DOS

portion of this program never uses the information contained there. Finally, the transient
portion of the program, which includes the TRANSIENT_TEXT and TRANSIENT_DATA
segments, is discarded and the program is terminated using Interrupt 21H Function 31H.

Detecting ahotkey

The SNAP program detects the hot-key sequence (Alt-Enter) by monitoring each keypress.
On IBM PCs and PS/2s, each keystroke generates a hardware interrupt on IRQ1 (Interrupt
09H). The TSR’s Interrupt 09H handler compares the keyboard scan code corresponding to
each keypress with a predefined sequence. The TSR’s handler also inspects the shift-key
status flags maintained by the ROM BIOS Interrupt 09H handler. When the predetermined
sequence of keypresses is detected at the same time as the proper shift keys are pressed,
the handler sets a global status flag (HotFlag). '

Note how the TSR’s handler transfers control to the previous Interrupt 09H ISR before it
performs its own work. If the TSR’s Interrupt 09H handler did not chain to the previous
handler(s), essential system processing of keystrokes (particularly in the ROM BIOS
Interrupt 09H handler) might not be performed.

Activating the application

The TSR monitors the status of HotFlag by regularly testing its value within a timer-tick
handler. On IBM PCs and PS/2s, the timer-tick interrupt occurs on IRQO (Interrupt 08H)
roughly 18.2 times per second. This hardware interrupt occurs regardless of what else the
system is doing, so an Interrupt 08H ISR a convenient place to check whether HotFlag has
been set.

As in the case of the Interrupt 09H handler, the TSR’s Interrupt 08H handler passes control
to previous Interrupt 08H handlers before it proceeds with its own work. This procedure is
particularly important with Interrupt 08H because the ROM BIOS Interrupt 08H handler,
which maintains the system’s time-of-day clock and resets the system’s Intel 8259A Pro-
grammable Interrupt Controller, must execute before the next timer tick can occur. The
TSR’s handler therefore defers its own work until control has returned after previous
Interrupt 08H handlers have executed.

The only function of the TSR’s Interrupt 08H handler is to attempt to transfer control to the
RAM-resident application. The routine VerifyTSRState performs this task. It first examines
the contents of HotFlag to determine whether a hot-key sequence has been detected. If
so, it examines the state of the MS-DOS InDOS and critical error flags, the current status of
hardware interrupts, and the current status of any non-reentrant ROM BIOS routines that
might be executing.

If HotFlag is nonzero, the InDOS and critical error flags are both zero, no hardware inter-
rupts are currently being serviced, and no non-reentrant ROM BIOS code has been inter-
rupted, the Interrupt 08H handler activates the RAM-resident utility. Otherwise, nothing
happens until the next timer tick, when the handler executes again.

While HotFlag is nonzero, the Interrupt 08H handler continues to monitor system status
until MS-DOS, the ROM BIOS, and the hardware interrupts are all in a stable state. Often

382 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 392/1582

Article 11: Terminate-and-Stay-Resident Utilities

the system status is stable at the time the hot-key sequence is detected, so the RAM-

‘resident application runs immediately. Sometimes, however, system activities such as
prolonged disk reads or writes can preclude the activation of the RAM-resident utility for
several seconds after the hot-key sequence has been detected. The handler could be
designed to detect this situation (for example, by decrementing HotFlag on each timer
tick) and return an error status or display a message to the user.

A more serious difficulty arises when the MS-DOS default command processor
(COMMAND.COM) is waiting for keyboard input. In this situation, Interrupt 21H Function
01H (Character Input with Echo) is executing, so InDOS is nonzero and the Interrupt 08H
handler can never detect a state in which it can activate the RAM-resident utility. This
problem is solved by providing a custom handler for Interrupt 28H (the MS-DOS idle inter-
rupt), which is executed by Interrupt 21H Functijon 01H each time it loops as it waits for a
keypress. The only difference between the Interrupt 28H handler and the Interrupt 08H
handler is that the Interrupt 28H handler can activate the RAM-resident application when
the value of InDOS is 1, which is reasonable because InDOS must have been incremented
when Interrupt 21H Function O1H started to execute.

The interrupt service routines for ROM BIOS Interrupts 05H, 10H, and 13H do nothing
more than increment and decrement flags that indicate whether these interrupts are being
processed by ROM BIOS routines. These flags are inspected by the TSR’s Interrupt 08H
and 28H handlers.

Executing the RAM-resident application

When the RAM-resident application is first activated, it runs in the context of the program
that was interrupted; that is, the contents of the registers, the video display mode, the cur-
rent PSP, and the current DTA all belong to the interrupted program. The resident applica-
tion is responsible for preserving the registers and updating MS-DOS with its PSP and DTA
values.

The RAM-resident application preserves the previous contents of the CPU registers on

its own stack to avoid overflowing the interrupted program’s stack. It then installs its own
handlers for Control-Break (Interrupt 1BH), Control-C (Interrupt 23H), and critical error
(Interrupt 24H). (Otherwise, the interrupted program’s handlers would take control if the
user pressed Ctrl-Break or Ctrl-C or if an MS-DOS critical error occurred.) These handlers
perform no action other than setting flags that can be inspected later by the RAM-resident
application, which could then take appropriate action.

The application uses Interrupt 21H Functions 50H and 51H to update MS-DOS with the
address of its PSP. If the application is running under MS-DOS versions 2.x, the critical
error flag is set before Functions 50H and 51H are executed so that AuxStack is used for
the call instead of IOStack, to avoid corrupting JOStack in the event that InDOS is 1.

The application preserves the current extended error information with a call to Interrupt
21H Function 59H. Otherwise, the RAM-resident application might be activated immedi-
ately after a critical error occurred in the interrupted program but before the interrupted

Section II: Programming in the MS-DOS Environment 383

OLYMPUS EX. 1010 - 393/1582

Part C: Customizing MS-DOS

program had executed Function 59H and, if a critical error occurred in the TSR applica-
tion, the interrupted program’s extended error informatjon would inadvertently be
destroyed.

This example also shows how to update the MS-DOS default DTA using Interrupt 21H
Functions 1AH and 2FH, although in this case this step is not necessary because the DTA
is never used within the application. In practice, the DTA should be updated only if the
RAM-resident application includes calls to Interrupt 21H functions that use a DTA
(Functions 11H, 12H, 14H, 15H, 21H, 22H, 27H,-28H, 4EH, and 4FH).

After the resident interrupt handlers are installed and the PSP, DTA, and extended error
information have been set up, the RAM-resident application can safely execute any Inter-
rupt 21H function calls except those that use JOStack (Functions 01H through OCH). These
functions cannot be used within a RAM-resident application even if the application sets
the critical error flag to force the use of the auxiliary stack, because they also use other
non-reentrant data structures such as input/output buffers. Thus, a RAM-resident utility
must rely either on user-written console input/output functions or, as in the example, on
ROM BIOS functions.

The application terminates by returning the interrupted program’s extended error infor-
mation, DTA, and PSP to MS-DOS, restoring the previous Interrupt 1BH, 23H, and 24H
handlers, and restoring the previous CPU registers and stack.

Richard Wilton

384 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 394/1582

Article 12: Exception Handlers

Article 12
Exception Handlers

Exceptions are system events directly related to the execution of an application program;
they ordinarily cause the operating system to abort the program. Exceptions are thus dif-
ferent from errors, which are minor unexpected events (such as failure to find a file on
disk) that the program can be expected to handle appropriately. Likewise, they differ from
external hardware interrupts, which are triggered by events (such as a character arriving at
the serial port) that are not directly related to the program’s execution.

The computer hardware assists MS-DOS in the detection of some exceptions, such as an
attempt to divide by zero, by generating an internal hardware interrupt. Exceptions related
to peripheral devices, such as an attempt to read from a disk drive that is not ready or does
not exist, are called critical errors. Instead of causing a hardware interrupt, these excep-
tions are typically reported to the operating system by device drivers. MS-DOS also sup-

. ports a third type of exception, which is triggered by the entry of a Control-C or Control-
Break at the keyboard and allows the user to signal that the current program should be
terminated immediately. :

MS-DOS contains built-in handlers for each type of exception and so guarantees a
minimum level of system stability that requires no effort on the part of the application
programmer. For some applications, however, these default handlers are inadequate. For
example, if a communications program that controls the serial port directly with custom
interrupt handlers is terminated by the operating system without being given a chance to
turn off serial-port interrupts, the next character that arrives on the serial line will trigger
an interrupt for which a handler is no longer present in memory. The result will be a sys-
tem crash. Accordingly, MS-DOS allows application programs to install custom exception
handlers so that they can shut down operations in an orderly way when an exception
occurs. :

This article examines the default exception handlers provided by MS-DOS and discusses
methods programmers can use to replace those routines with handlers that are more
closely matched to specific application requirements.

Overview

Two major exception handlers of importance to application programmers are supported
under all versions of MS-DOS. The first, the Control-C exception handler, terminates the
program and is invoked when the user enters a Ctrl-C or Ctrl-Break keystroke; the address

Section II: Programming in the MS-DOS Environment 385

OLYMPUS EX. 1010 - 395/1582

Part C: Customizing MS-DOS

of this handler is found in the vector for Interrupt 23H. The second, the critical error
exception handler, is invoked if MS-DOS detects a critical error while servicing an I/O
request. (A critical error is a hardware error that makes normal completion of the request
impossible.) This exception handler displays the familiar Abort, Retry, Ignore prompt;
its address is saved in the vector for Interrupt 24H.

When a program begins executing, the addresses in the Interrupt 23H and 24H vectors
usually point to the system’s default Control-C and critical error handlers. If the program is
a child process, however, the vectors might point to exception handlers that belong to the
parent process, if the immediate parent is not COMMAND.COM. In any case, the applica-
tion program can install its own custom handler for Control-C or critical error exceptions
simply by changing the address in the vector for Interrupt 23H or Interrupt 24H so that the
vector points to the application’s own routine. When the program performs a final exit by
means of Interrupt 21H Function 00H (Terminate Process), Function 31H (Terminate and
Stay Resident), Function 4CH (Terminate Process with Return Code), Interrupt 20H (Ter-
minate Process), or Interrupt 27H (Terminate and Stay Resident), MS-DOS restores the pre-
vious contents of the Interrupt 23H and 24H vectors.

Note that Interrupts 23H and 24H never occur as externally generated hardware interrupts
in an MS-DOS system. The vectors for these interrupts are used simply as storage areas for
the addresses of the exception handlers.

MS-DOS also contains default handlers for the Control-Break event detected by the ROM
BIOS in IBM PCs and compatible computers and for some of the Intel microprocessor ex-
ceptions that generate actual hardware interrupts. These exception handlers are not re-
placed by application programs as often as the Control-C and critical error handlers. The
interrupt vectors that contain the addresses of these handlers are ot restored by MS-DOS
when a program exits.

The address of the Control-Break handler is saved in the vector for Interrupt 1BH and is
invoked by the ROM BIOS whenever the Cirl-Break key combination is detected. The
default MS-DOS handler normally flushes the keyboard input buffer and substitutes
Control-C for Control-Break, and the Control-C is later handled by the Control-C exception
handler. The default handlers for exceptions that generate hardware interrupts either abort
the current program (as happens with Divide by Zero) or bring the entlre system to a halt
(as for a memory parity error).

The Control-C Handler

The vector for Interrupt 23H points to code that is executed whenever MS-DOS detects a
Control-C character in the keyboard input buffer. When the character is detected, MS-DOS
executes a software Interrupt 23H.

In response to Interrupt 23H, the default Control-C exception handler aborts the current
process. Files that were opened with handles are closed (FCB-based files are not), but no

386 The MS-DOS Encyclopedia

/

OLYMPUS EX. 1010 - 396/1582

Article 12: Exception Handlers

other cleanup is performed. Thus, unsaved data can be left in buffers, some files might

“not be processed, and critical addresses, such as the vectors for custom interrupt handlers,
might be left pointing into free RAM. If more complete control over process termination is
wanted, the application should replace the default Control-C handler with custom code.
See Customizing Control-C Handling below.

The Control-Break exception handler, pointed to by the vector for Interrupt 1BH, is closely
related to the Control-C exception handler in MS-DOS systems on the IBM PC and close
compatibles but is called by the ROM BIOS keyboard driver on detection of the Ctrl-Break
keystroke combination. Because the Control-Break exception is generated by the ROM
BIOS, it is present only on IBM PC-compatible machines and is not a standard feature of
MS-DOS. The default ROM BIOS handler for Control-Break is a simple interrupt return —
in other words, no action is taken to handle the keystroke itself, other than converting the
Ctrl-Break scan code to an extended character and passing it through to MS-DOS as normal
keyboard input.

To account for as many hardware configurations as possible, MS-DOS redirects the ROM
BIOS Control-Break interrupt vector to its own Control-Break handler during system
initialization. The MS-DOS Control-Break handler sets an internal flag that causes the
Ctrl-Break keystroke to be interpreted as a Ctrl-C keystroke and thus causes Interrupt 23H
to occur.

Customizing Control-C handling

The exception handlers most often neglected by application programmers—and most
often responsible for major program failures — are the default exception handlers invoked
by the Ctrl-C and Ctrl-Break keystrokes. Although the user must be able to recover from a
runaway condition (the reason for Ctrl-C capability in the first place), any exit from a com-
plex program must also be orderly, with file buffers flushed to disk, directories and in-
dexes updated, and so on. The default Control-C and Control-Break handlers do not
provide for such an orderly exit.

The simplest and most direct way to deal with Ctrl-C and Ctrl-Break keystrokes is to install
new exception handlers that do nothing more than an IRET and thus take MS-DOS out of
the processing loop entirely. This move is not as drastic as it sounds: It allows an applica-
tion to check for and handle the Ctr}-C and Cirl-Break keystrokes at its convenience when
they arrive through the normal keyboard input functions and prevents MS-DOS from
terminating the program unexpectedly.

The following example sets the Interrupt 23H and Interrupt 1BH vectors to point to an
IRET instruction. When the user presses Ctrl-C or Ctrl-Break, the keystroke combination
is placed into the keyboard buffer like any other keystroke. When it detects the Ctrl-C or
Ctrl-Break keystroke, the executing program should exit properly (if that is the desired
action) after an appropriate shutdown procedure.

To install the new exception handlers, the following procedure (set_int) should be called
while the main program is initializing:

Section II: Programming in the MS-DOS Environment 387

OLYMPUS EX. 1010 - 397/1582

Part C: Customizing MS-DOS

388

_DATA segment para public 'DATA’
oldint1b dd 0 ; original INT 1BH vector
oldint23 dd 0 ; original INT 23H vector
_DATA ends)
_TEXT segment byte public 'CODE’
assume cs:_TEXT,ds:_DATA,es:NOTHING
myintib: ; handler for Ctrl-Break
myint23: ; handler for Ctrl-C
iret
set_int proc near
mov ax, 351bh ; get current contents of
int 21h ; Int 1BH vector and save it
mov word ptr oldintib,bx
mov word ptr oldintib+2,es
mov ax,3523h ; get current contents of
int 21h ; Int 23H vector and save it
mov word ptr oldint23,bx
mov word ptr oldint23+2,es
push ds ; save our data segment
push cs ; let DS point to our
pop ds ; code segment
mov dx,offset myinttb
mov ax,251bh ; set interrupt vector 1BH
int 21h ; to point to new handler
mov dx,offset myint23
mov ax,2523h ; set interrupt vector 23H
int 21h ; to point to new handler
pop ds ; restore our data segment
ret ; back to caller
set_int endp
_TEXT ends

The application can use the following routine to restore the original contents of the vectors
pointing to the Control-C and Control-Break exception handlers before making a final exit
back to MS-DOS. Note that, although MS-DOS restores the Interrupt 23H vector to its pre-
vious contents, the application must restore the Interrupt 1BH vector itself.

rest_int proc near
push ds
mov dx,word ptr
mov ds,word ptr
mov ax,2523h
int 21h
pop ds
push ds
mov dx,word ptr
mov ds,word ptr
mov ax,251Bh
int 21h
pop ds
ret

rest_int endp

The MS-DOS Encyclopedia

H
oldint
oldint

;
oldint
oldint

;

;

’

save our data segment

23

23+2

restore original contents
of Int 23H vector

restore our data segment
then save it again

1B

1B+2

restore original contents
of Int 1BH vector

get back our data segment
return to caller

OLYMPUS EX. 1010 - 398/1582

Article 12: Exception Handlers

The preceding example simply prevents MS-DOS from terminating an application when a
Ctrl-C or Ctrl-Break keystroke is detected. Program termination is still often the ultimate
goal, but after a more orderly shutdown than is provided by the MS-DOS default Control-C
handler. The following exception handler allows the program to exit more gracefully:

myintib: ; Control-Break exception handler
iret ; do nothing
myint23: ; Control-C exception handler
call safe_shut_down ; release interrupt vectors,
; close files, etc.
Jmp program_exit_point

Note that because the Control-Break handler is invoked by the ROM BIOS keyboard driver
and MS-DOS is not reentrant, MS-DOS services (such as closing files and terminating with
return code) cannot be invoked during processing of a Control-Break exception. In con-
trast, any MS-DOS Interrupt 21H function call can be used during the processing of a
Control-C exception. Thus, the Control-Break handler in the preceding example does
nothing, whereas the Control-C handler performs orderly shutdown of the application.

Most often, however, neither a handler that does nothing nor a handler that shuts down

and terminates is sufficient for processing a Ctrl-C (or Ctrl-Break) keystroke. Rather than
simply prevent Control-C processing, software developers usually prefer to have a Ctrl-C
keystroke signal some important action without terminating the program. Using methods
similar to those above, the programmer can replace Interrupts 1BH and 23H with a routine -

like the following:
myintib: ; Control-Break exception handler
myint23: ; Control-C exception handler
call control_c_happened
iret

Notes on processing Control-C

The preceding examples assume the programmer wants to treat Control-C and Control-
Break the same way, but this is not always desirable. Control-C and Control-Break are not
the same, and the difference between the two should be kept in mind: The Control-Break
handler is invoked by a keyboard-input interrupt and can be called at any time; the
Control-C handler is called only at “safe” points during the processing of MS-DOS Interrupt
21H functions. Also, even though MS-DOS restores the Interrupt 23H vector on exit from a
program, the application must restore the previous contents of the Interrupt 1BH vector
before exiting. If this interrupt vector is not restored, the next Ctrl-Break keystroke will
cause the machine to attempt to execute an undetermined piece of code or data and will
probably crash the system.

Although it is generally desirable to take control of the Control-C and Control-Break inter-
rupts, control should be retained only as long as necessary. For example, a RAM-resident
pop-up application should take over Control-C and Control-Break handling only when it is
activated, and it should restore the previous contents of the Interrupt 1BH and Interrupt
23H vectors before it returns control to the foreground process.

Section II: Programming in the MS-DOS Environment 389 ’

OLYMPUS EX. 1010 - 399/1582

Part C: Customizing MS-DOS

The Critical Error Handler

When MS-DOS detects a critical error—an error that prevents successful completion of
an I/0 operation — it calls the exception handler whose address is stored in the vector for
Interrupt 24H. Informatjon about the operation in progress and the nature of the error is
passed to the exception handler in the CPU registers. In addition, the contents of all the
registers at the point of the original MS-DOS call are pushed onto the stack for inspection
by the exception handler.

The action of MS-DOS’s default critical error handler is to present a message such as

Error type error action device
Abort, Retry, Ignore?

This message signals a hardware error from which MS-DOS cannot recover without user
intervention. For example, if the user enters the command

C>DIR A: <Enter>

but drive A either does not contain a disk or the disk drive door is open, the MS-DOS criti-
cal error handler displays the message <

Not ready error reading drive A
Abort, Retry, Ignore?

I (Ignore) simply tells MS-DOS to forget that an error occurred and continue on its way.
(Of course, if the error occurred during the writing of a file to disk, the file is generally
corrupted; if the error occurred during reading, the data might be incorrect.)

R (Retry) gives the application a second chance to access the device. The critical error
handler returns information to MS-DOS that says, in effect, “Try again; maybe it will work
this time.” Sometimes, the attempt succeeds (as when the user closes an open drive door),
but more often the same or another critical error occurs.

A (Abor?) is the problem child of Interrupt 24H. If the user responds with A4, the applica-
tion is terminated immediately. The directory structure is not updated for open files,
interrupt vectors are left pointing to inappropriate locations, and so on. In many cases, re-
starting the system is the only safe thing to do at this point.

Note: Beginning with version 3.3, an F (Fail) option appears in the message displayed by
MS-DOS'’s default critical error handler. When Fail is selected, the current MS-DOS func-
tion is terminated and an error condition is returned to the calling program. For example,
if a program calls Interrupt 21H Function 3DH to open a file on drive A but the drive door
is open, choosing F in response to the error message causes the function call to return
with the carry flag set, indicating that an error occurred but processing continues.

390 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 400/1582

Article 12: Exception Handlers

Like the Control-C exception handler, the default critical error exception handler can and
‘should be replaced by an application program when complete control of the system is
desired. The program installs its own handler simply by placing the address of the new
handler in the vector for Interrupt 24H; MS-DOS restores the prev1ous contents of the Inter-
rupt 24H vector when the program terminates.

Unlike the Control-C handler, however, the critical error handler must be kept within
carefully defined limits to preserve the stability of the operating system. Programmers
must rigidly adhere to the structure described in the following pages for passing informa-
tion to and from an Interrupt 24H handler.

Flags

cs Flags and CS:IP pushed on stack

by original Interrupt 21H call
P

<€ SP on entry to Interrupt 21H handler

ES
DS
BP
DI
SI Registers at point of

original Interrupt 21H call
DX
cX
BX
AX

Flags

cs Return address from

Interrupt 24H handler
P

€— SP on entry to Interrupt 24H handler

Figure 12-1. The stack contents at entry to a critical error exception handler.

Section II: Programming in the MS-DOS Environment 391

OLYMPUS EX. 1010 - 401/1582

Part C: Customizing MS-DOS

Mechanics of critical error handling

MS-DOS critical error handling has two components: the exception handler, whose ad-
dress is saved in the Interrupt 24H vector and which can be replaced by an application
program; and an internal routine inside MS-DOS. The internal routine sets up the informa-
tion to be passed to the exception handler on the stack and in registers and, in turn, cails
the exception handler itself. The internal routine also responds to the values returned by
the critical error handler when that handler executes an IRET to return to the MS-DOS

kernel.

Before calling the exception handler, MS-DOS arranges the stack (Figure 12-1 on the pre-
ceding page) so the handler can inspect the location of the error and register contents at
the point in the original MS-DOS function call that led to the critical error.

When the critical error handler is called by the internal routine, four registers may contain
important information: AX, DI, BP, and SI. (With MS-DOS versions 1.x, only the AX and DI
registers contain significant information.) The information passed to the handler in the

" registers differs somewhat, depending on whether a character device or a block device is

causing the error.

Block-device (disk-based) errors

If the critical error handler is entered in response to a block-device (disk-based) error,
registers BP:SI contain the segment:offset of the device driver header for the device caus-
ing the error and bit 7 (the high-order bit) of the AH register is zero. The remaining bits of
the AH register contain the following information (bits 3 through 5 apply only to MS-DOS

versions 3.1 and later):

Bit Value Meaning
0 0 Read operation
1 Write operation
1-2 Indicate the affected disk area:
00 MS-DOS
01 File allocation table
10 Root directory
11 Files area
3 0 Fail response not allowed
1 Fail response allowed
4 0 Retry response not allowed
1 Retry response allowed
5 0 Ignore response not allowed
1 Ignore response allowed
6 0 Undefined

The AL register contains the designation of the drive where the error occurred; for exam-
ple, AL = 00H (drive A), AL = 01H (drive B), and so on.

392 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 402/1582

Article 12: Exception Handlers

The lower half of the DI register contains the following error codes (the upper half of this
register is undefined):

Error Code Meaning

00H Write-protected disk

01H Unknown unit

02H Drive not ready

03H Invalid command

04H Data error (CRC)

05H Length of request structure invalid
06H Seek error

07H Non-MS-DOS disk

08H Sector not found

09H Printer out of paper

0AH Write fault

0BH Read fault

OCH General failure

OFH Invalid disk change (version 3.0 or later)

Note: With versions 1., the only valid error codes are 00H, 02H, 04H, 06H, 08H, 0AH,
and OCH.

Before calling the critical error handler for a disk-based error, MS-DOS tries from one to
five times to perform the requested read or write operation, depending on the type of
operation. Critical disk errors result only from Interrupt 21H operations, not from failed
sector-read and sector-write opérations attempted with Interrupts 25H and 26H.

Character-device errors

If the critical error handler is called from the MS-DOS kernel with bit 7 of the AH register
set to 1, either an error occurred on a character device or the memory image of the file allo-
cation table is bad (a rare occurrence). Again, registers BP:SI contain the segment and
offset of the device driver header for the device causing the critical error. The exception
handler can inspect bit 15 of the device attribute word at offset 04H in the device header to
confirm that the error was caused by a character device —this bit is 0 for block devices
and 1 for character devices. See also PROGRAMMING IN THE MS-DOS ENVIRONMENT:
CusToMIZING Ms-DOs: Installable Device Drivers. ’

If the error was caused by a character device, the lower half of the DI register contains
error codes as described above and the contents of the AL register are undefined. The
exception handler can inspect the other fields of the device header to obtain the logical
name of the character device; to determine whether that device is the standard input,
standard output, or both; and so on.

Critical error processing

The critical error exception handler is entered from MS-DOS with interrupts disabled.
Because an MS-DOS system call is already in progress and MS-DOS is not reentrant, the

~

Section II: Programming in the MS-DOS Environmens 393

OLYMPUS EX. 1010 - 403/1582

Part C: Customizing MS-DOS

handler cannot request any MS-DOS system services other than Interrupt 21H Functions

01 through OCH (character 1/0 functions), Interrupt 21H Function 30H (Get MS-DOS Version
Number), and Interrupt 21H Function 59H (Get Extended Error Information). These func-
tions use a special stack so that they can be called during error processing.

In general, the critical error handler must preserve all but the AL register. It must not
change the contents of the device header pointed to by BP:SI. The handler must return to
the MS-DOS kernel with an IRET, passing an action code in register AL as follows:

Valuein AL Meaning

00H Ignore

01H Retry

02H Terminate process
03H Fail current system call

These values correspond to the options presented by the MS-DOS default critical error
handler. The default handler prompts the user for input, places the appropriate return
information in the AL register, and immediately issues an IRET instruction.

Note: Although the Fail option is displayed by the MS-DOS default critical error handler
in versions 3.3 and later, the Fail option inside the handler was added in version 3.1.

With MS-DOS versions 3.1 and later, if the handler returns an action code in AL that is not
allowed for the error in question (bits 3 through 5 of the AH register at the point of calD),
MS-DOS reacts according to the following rules:

If Ignore is specified by AL = 00H but is not allowed because bit 5 of AH = 0, the response -
" defaults to Fail (AL = 03H).

If Retry is specified by AL = 01H but is not allowed because bit 4 of AH = 0, the response
defaults to Fail (AL = 03H).

If Fail is specified by AL = 03H but is not allowed because bit 3 of AH = 0, the response
defaults to Abort. '

Custom critical error handlers

Each time it receives control, COMMAND.COM restores the Interrupt 24H vector to point
to the system’s default critical error handler and displays a prompt to the user. Conse-
quently, a single custom handler cannot terminate and stay resident to provide critical
_ error handling services for subsequent application programs. Each program that needs
_better critical error handling than MS-DOS provides must contain its own critical error
handler.

. Figure 12-2 contains a simple critical error handler, INT24.ASM, written in assembly lan-
guage. In the form shown, INT24.ASM is no more than a functional replacement for the
MS-DOS default critical error handler, but it can be used as the basis for more sophisticated
handlers that can be incorporated into application programs.

394 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 404/1582

Article 12: Exception Handlers

IN'T24.ASM contains three routines:

Routine Action
get24 Saves the previous contents of the Interrupt 24H critical error handler vec-
tor and stores the address of the new critical error handler into the vector.
res24 Restores the address of the previous critical error handler, which was
v saved by a call to get24, into the Interrupt 24 vector.
int24 . Replaces the MS-DOS critical error handler.

A program wishing to substitute the new critical error handler for the system’s default han-
dler should call the get24 routine during its initialization sequence. If the program wishes
to revert to the system’s default handler during execution, it can accomplish this with a call
to the res24 routine. Otherwise, a call to res24 (and the presence of the routine itself in
the program) is not necessary, because MS-DOS automatically restores the Interrupt 24H
vector to its previous value when the program exits, from information

stored in the program segment prefix (PSP).

The replacement critical error handler, in#24, is simple. First it saves all registers; then it
displays a message that a critical error has occurred and prompts the user to enter a key
selecting one of the four possible options: Abort, Retry, Ignore, or Fail. If an illegal key is
entered, the prompt is displayed again; otherwise, the action code corresponding to the
key is extracted from a table and placed in the AL register, the other registers are restored,
and control is returned to the MS-DOS kernel with an IRET instruction.

Note that the handle read and write functions (Interrupt 21H Functions 3FH and 40H),
which would normally be preferred for interaction with the display and keyboard, cannot
be used in a critical error handler.

name int24

title INT24 Critical Error Handler

; INT24.ASM — Replacement critical error handler
; by Ray Duncan, September 1987

cr equ 0dh ; ASCII carriage return
1f equ . 0ah ; ASCII linefeed
DGROUP group _DATA

_DATA segment word public 'DATA'

save24 dd 0 ; previous contents of Int 24H
; critical error handler vector

Figure 12-2. INT24.ASM, a replacement Interrupt 24H handler. (more)

Section II: PrograMming in the MS-DOS Environment 395

OLYMPUS EX. 1010 - 405/1582

Part C: Customizing MS-DOS

prompt db
db
kejs db

keys_len equ

codes db
~DATA ends

_TEXT segment
assume

public
get24 proc

push
push

mov
int

mov
mov

push
pop
mov
mov
int

pop

pop

ret
get24 endp

public
res24 proc

push

;i prompt message used by
; critical error handler
cr,1f,'Critical Error Occurred: '
'Abort, Retry, Ignore, Fail? §°

'aArRiIfF"' ; possible user response keys
$-keys ; {(both cases of each allowed)

2,2,1,1,0,0,3,3 ; codes returned to MS-DOS kernel
; for corresponding response keys

word public 'CODE'

cs:_TEXT, ds :DGROUP

get24’
near ; set Int 24H vector to point
; to new critical error handler
ds ; save segment registers
es
ax,3524h ; get address of previous
21h ; INT 24H handler and save it

word ptr save24,bx
word ptr save24+2,es

cs ; set DS:DX to point to
. ds ; new INT 24H handler
dx,offset _TEXT:int24
ax,2524h ; then call MS-DOS to
21h ; set the INT 24H vector
es ; restore segment registers
ds

; and return to caller

res24

near ; restore original contents
; of Int 24H vector

ds ; save our data segment

Figure 12-2. Continued.

396 TheMS-DOS Encyclopedia

OLYMPUS EX. 1010 - 406/1582

(more)

Article 12: Exception Handlers

res24

;

lds
mov
int

pop
ret

endp

dx, save24
ax,2524h
21h

ds

e N

put address of old handler
back into INT 24H vector

restore data segment
and return to caller

; This is the replacement critical error handler. It
; prompts the user for Abort, Retry, Ignore, or Fail and
; returns the appropriate code to the MS-DOS kernel.

7

int24

int24a:

proc

push
push
push
push
push
push
push
push

mov
mov
mov
mov
mov
int
mov
int

mov
mov
cld

far

bx
cx
dx
si
di
bp
ds
es

ax, DGROUP

ds, ax

es, ax

dx,offset prompt
ah, 0%

21h

ah,01h
21h

di,offset keys
cx, keys_len

repne scasb

jnz

mov

pop
pop
pop
pop
pop

int24a

al, {dit+keys_len-1]

es
ds
bp
di
si

Figure 12-2. Continued.

‘

;

v
’

;

;

;
;

;

7

entered from MS-DOS kernel

save registers

display prompt for user
using function 09H (print string
terminated by $ character)

get user’s response
function 01H = read one character

look up code for response key

prompt again if bad response

set AL = action code for MS-DOS
according to key that was entered:
0 = ignore, 1 = retry, 2 = abort, 3 = fail

restore registers

(more)

Section II: Programming in the MS-DOS Environment 397

OLYMPUS EX. 1010 - 407/1582

Part C: Customizing MS-DOS

Hardware-generated Exception Interrupts

398

pop
pop
pop
iret
int24 endp

_TEXT ends

end

dx
cx
bx

; exit critical error handler

Figure 12-2. Continued.

Intel reserved the vectors for Interrupts 00H through 1FH (Table 12-1) for exceptions
generated by the execution of various machine instructions. Handling of these chip-
dependent internal interrupts can vary from one make of MS-DOS machine to another;
some such differences are mentioned in the discussion.

Table 12-1. Intel Reserved Exception Interrupts.

Interrupt

Number Definition

00H Divide by Zero

01H Single-Step

02H Nonmaskable Interrupt (NMI)
03H Breakpoint Trap

04H Overflow Trap

05H BOUND Range Exceeded*

06H Invalid Opcode*

07H Coprocessor not Available

08H Double-Fault Exceptiont

09H Coprocessor Segment Overrunt
0AH Invalid Task State Segment (TSS)t
OBH Segment not Present |

O0CH Stack Exceptiont

ODH General Protection Exception t
OEH Page Fault}

OFH (Reserved)

10H Coprocessor Error

11-1FH (Reserved)

*The 80186, 80286, and 80386 microprocessors only.
+The 80286 and 80386 microprocessors only.
+ The 80386 microprocessor only.

The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 408/1582

Article 12: Exception Handlers

Note: A number of these reserved exception interrupts generally do not occur in MS-DOS
because they are generated only when the 80286 or 80386 microprocessor is operating in
protected mode. The following discussions do not cover these interrupts.

Divide by Zero (Interrupt 00H)

- An Interrupt OOH occurs whenever a DIV or IDIV operation fails to terminate within a
reasonable period of time. The interrupt is triggered by a mathematical anomaly: Division

-by zero is inherently undefined. To handle such situations, Intel built special processing
into the DIV and IDIV instructions to ensure that the condition does not.cause the pro-
cessor to lock up. Although the assumption underlying Interrupt O0H is an attempt to
divide by zero (a condition that will never terminate), the interrupt can also be triggered
by other error conditions, such as a quotient that is too large to fit in the designated register
(AX or AL).

The ROM BIOS handler for Interrupt 00H in the IBM PC and close compatibles is a simple
IRET instruction. During the MS-DOS startup process, however, MS-DOS modifies the in-
terrupt vector to point to its own handler—a routine that issues the warning message
Divide by Zero and aborts the current application. This abort procedure can leave the
computer and operating system in an extremely unstable state. If the default handler is
used, the system should be restarted immediately and an attempt should be made to find
and eliminate the cause of the error. A better approach, however, is to provide a replace-
ment handler that treats Interrupt 00H much as MS-DOS treats Interrupt 24H.

Single-Step (Interrupt 01H)

If the trap flag (bit 8 of the microprocessor’s 16-bit flags register) is set, Interrupt 01H
occurs at the end of every instruction executed by the processor. By default, Interrupt 01H
points to a simple IRET instruction, so the net effect is as if nothing happened. However,
debugging programs, which are the only applications that use this interrupt, modify the
interrupt vector to point to their own handlers. The interrupt can then be used to allow a
debugger to single-step through the machine instructions of the program being debugged,
as DEBUG does with its T (Trace) command.

Nonmaskable Interrupt, or NMI (Interrupt 02H)

In the hardware architecture of IBM PCs and close compatibles, Interrupt 02H is invoked
whenever a memory parity error is detected. MS-DOS provides no handler, because this
error, as a hardware-related problem, is in the domain of the ROM BIOS.

In response to the Interrupt 02H, the default ROM BIOS handler displays a message and
locks the machine, on the assumption that bad memory prevents reliable system opera-
tion. Many programmers, however, prefer to include code that permits orderly shutdown
of the system. Replacing the ROM BIOS parity trap routine can be dangerous, though,
because a parity error detected in memory means the contents of RAM are no longer reli-
able — even the memory locations containing the NMI handler itself might be defective.

Section II: Programming in the MS-DOS Environment 399

OLYMPUS EX. 1010 - 409/1582

Part C: Customizing MS-DOS

Breakpoint Trap (Interrupt 03H)

Interrupt 03H, which 'is used in conjunction with Interrupt 01H for debugging, is invoked
by a special 1-byte opcode (OCCH). During a debugging session, a debugger modifies the -
vector for Interrupt 03H to point to its own handler and then replaces 1 byte of program
opcode with the 0CCH opcode at any location where a breakpoint is needed.

When a breakpoint is reached, the 0CCH opcode triggers Interrupt 03H and the debugger
regains control. The debugger then restores the original opcode in the program being
debugged and issues a prompt so that the user can display or alter the contents of memory
or registers. The use of Interrupt 03H is illustrated by DEBUG and SYMDEB's breakpoint
capabilities.

Overflow Trap (Interrupt 04H)

If the overflow bit (bit 11) in the microprocessor’s flags register is set, Interrupt 04H occurs
when the INTO (Interrupt on Overflow) instruction is executed. The overflow bit can be
set during prior execution of any arithmetic instruction (such as MUL or IMUL) that can
produce an overflow error. '

The ROM BIOS of the IBM PC and close compatibles initializes the Interrupt 04H vector to
point to an IRET, so this interrupt becomes invisible to the user if it is executed. MS-DOS
does not have its own handler for Interrupt 04H. However, because the Intel microproces-
sors also include JO (Jump if Overflow) and JNO (Jump if No Overflow) instructions,
applications rarely need the INTO instruction and, hence, seldom have to provide their
own Interrupt 04H handlers.

BOUND Range Exceeded (Interrupt 05H)

Interrupt 05H is generated on 80186, 80286, and 80386 microprocessors if a BOUND
instruction is executed to test the value of an array index and the index falls outside the
limits specified by the instruction’s operand. The exception handler is expected to alter
the index so that it is correct—when the handler performs an interrupt return (IRET), the
CPU reexecutes the BOUND instruction that caused the interrupt.

On IBM PC/AT-compatible machines, the ROM BIOS assignment of the PrtSc (print screen)
routine to Interrupt 05H is in conflict with the CPU’s use of Interrupt 05H for BOUND
exceptions.

Invalid opcode (Interrupt 06H)

Interrupt 06H is generated by the 80186, 80286, and 80386 microprocessors if the current
instruction is not a valid opcode — for example, if the machine tries to execute a data
statement. : :

On IBM PC/ATs, Interrupt 06H simply points to an IRET instruction. The ROM BIOS rou- -
tines of some IBM PC/AT-compatibles, however, provide an interrupt handler that reports

an unexpected software Interrupt 06H and asks if the user wants to continue. A ¥ re-

sponse causes the interrupt handler to skip over the invalid opcode. Unfortunately,

because the succeeding opcode is often invalid as well, the user may have the feeling of

being trapped in a loop.

400 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 410/1582

Article 12: Exception Handlers

Extended Error Information

Under MS-DOS versions 1.x, the operating system provided limited information about
errors that occurred during calls to the Interrupt 21H system functions. For example, ifa
program called Function OFH to open a file, there were only two possible results: On
return, the AL register either contained 00H for a successful open or OFFH for failure. No
further detail was available from the operating system. Although some of these early sys-
tem calls (such as the read and write functions) returned somewhat more information,
the 1.x versions of MS-DOS were essentially limited to success/failure return codes.

Beginning with version 2.0 and the introduction of the handle concept, additional error
information became available. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:
PROGRAMMING FOR Ms-DOs: File and Record Management. For example, if a program
attempts to open a file with Interrupt 21H Function 3DH (Open File with Handle), it can
check the status of the carry flag on return to detect whether an error occurred. If the
carry flag is not set, the call was successful and the AX register contains the file handle.
If the carry flag is set, the AX register contains one of the following possible error codes:

Error Code = Meaning

01H Invalid function code

02H File not found

03H Path not found

04H Too many open files (no more handles available)
05H Access denied '

OCH Invalid access code

In some circumstances, however, even these error codes do not provide enough infor-
mation. Therefore, beginning with version 3.0, MS-DOS made extended error information
ava<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>