
OLYMPUS EX. 1010 - 1/1582

 The ‘

S-DOS® ,
L‘ Encyclopedla

Foreword, Bill Gates

General Editor, Ray Duncan

OLYMPUS EX. 1010 -1/1582

OLYMPUS EX. 1010 - 2/1582

MS-DO

EnCyclopedia

OLYMPUS EX. 1010 - 2/1582

OLYMPUS EX. 1010 - 3/1582

Published by
Microsoft Press

A Division of Microsoft Corporation
16011 NE 56th Why, Box 97017, Redmond, Washington 98073—9711?
Copyright © 1988 by Microsoft Press
All rights reserved. No part ofthe contents of this book
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Cataloging in Publication Data
The MS-DOS encyclopedia : versions 1.0 through 3.2 /
editor, Ray Duncan.

p. cm.
Includes indexes.

1. MS—DOS (Computer operating system) I. Duncan. Ray, 1952—
11. Microsoft Press.

QA?6.76.063MT4 1988 83—21452
005.4'46-dc19 CIP
iSBN 155615-1748

Printed and bound in the United States ofAmerica.

123456739RMRM321098

Distributed to the book trade in the

United States by Harper 3: Row.

Distributed to the book trade in

Canada by General Publishing Company. Ltd.

Distributed to the book trade outside the

United States and Canada by Penguin Books Ltd.

Penguin Books Ltd. Harmondsworth, Middlesex, England
Penguin Books Australia Ltd.. Ringwood. Victoria, Australia
Penguin Books NZ. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

iBM®. IBM AT®, P5f2®. and TopView® are registered trademarks of International Business Machines Corporation.
GW—BASIC®, Microsoft®, MSG), MS‘DOS®, SOFTCARD®, and XENIXtE are registered trademarks of
Microsoft Corporation.

Microsoft Press gratefully acknowledges permission to reproduce material listed below.
Page 4: Courtesy The Computer Museum.
Pages 5, 11, 42: Intel 4004. 8008, 8080, 8086, and 80286 microprocessor photographs. Courtesy Intel Corporation.
Page I3: Reprinted from PopularEiectrom'cs, january 1975 Copyright © 1975 Ziff Communications Company.
Page 15: Reprinted with permission of Rod Brock.
Page 16: Reprinted with permission ofThe Seattle Times Copyright © 1983.
Pages 19, 34, 42: IBM PC advertisements and photographs of the PC, PC/XT, and PC/AT reproduced with
permission oflnternational Business Machines Corporation Copyright © 1981. 1982, 1984. All rights reserved.
Page 21: “Big IBM's Little Computer” Copyright © 1981 by The New York Times Company. Reprinted by

. permission.
“IBM Announces New Microcomputer System” Reprinted with permission of infoWbrld Copyright © 1981.
"IBM really gets personal" Reprinted with permission of Personal Computing Copyright © 1981.
“Personal Computer from IBM” Reprinted from DATAMATION Magazine, October 1981 Copyright © by Cahners
Publishing Company.
"IBM’s New Line Likely to Shake up the Market for Personal Computers“ Reprinted by permission ofThe Wall
Streetjournal Copyright © Dow Jones 8: Company, Inc. 1981. All Rights Reserved.
Page 36: "Irresistible DOS 3.0” and “The Ascent of DOS" Reprinted from PC Techfournal,
December 1984 and October 1986. Copyright © 1984, 1986 Ziff Communications Company.
“MS—DOS 2.00: A Hands-On Tutorial" Reprinted by permission ofPC World from Volume 1, issue 3, March 1983,
published at 501 Second Street, Suite 600, San Francisco, CA 9410?.

Special thanks to Bob O'Rear, Aaron Reynolds, and Kenichi ikeda.

OLYMPUS EX. 1010 - 3/1582

OLYMPUS EX. 1010 - 4/1582

Encyclopedia Staff

Editor-in-Chief: Susan Lammers

Editorial Director: Patricia Pratt

Senior Editor: Dorothy L. Shattuck

Senior Technical Editor: David L. Rygrnyr

Special Projects Editor: Sally A. Brunsman

Editorial Coordinator: Sarah Hersack

Associate Editors and Technical Editors:

Pamela Beason, Ann Becherer, Bob Combs,
Michael Halvorson, Jeff Hinsch, Dean Holmes,

Chris Kinata, Gary Masters, Claudette Moore,
Steve Ross, Roger Shanafelt, Eric Stroo,
Lee,Thomas, JoAnne Woodcock

Copy Chief: Brianna Morgan. Proofreaders:
Kathleen Atkins, Julie Carter, Elizabeth

Eisenhood, Matthew Eliot, Patrick Forgette,
Alex Hancock, Richard Isomaki, Shawn Peck,

Alice Copp Smith

Editorial Assistants: Wallis Bolz, Charles Brod,
Stephen Brown, Pat Erickson, Debbie Kern, Susanne
Mthoton, Vihn Nguyen, Cheryl VanGeystel

Index: Shane-Armstrong Information Services

Production: Larry Anderson, Jane Bennett, Rick

Bourgoin, Darcie S. Furlan, Nick Gregoric, Peggy
Herman, Lisa Iversen, Rebecca Johnson, Ruth Pettis,

Russell Steele, Jean Trenary, Joy Ulskey

Marketing and Sales Director: James Brown

Director of Production: Christopher D. Banks

Publisher: Min S. Yee

OLYMPUS EX. 1010 - 4/1582

���������	�
�
�����
��OLYMPUS EX. 1010 - 5/1582

Contributors
E Bay Duncan, General Editor Duncan received a BA. in Chemistry from the University of Califor—
{- nia, Riverside, and an MD. from the University of California, Los Angeles, and subsequently received
' specialized training in Pediatrics and Neonatology at the Cedars-Sinai Medical Center in Los Angeles. He

has written many articles for personal computing magazines, including BYTE, PC Magazine, Dr: Dobb’s
Journal, and Softahh/PC. and is the author of the Microsoft Press book AdmncedMS—DOS. He is the
founder of Laboratory Mierosystems Incorporated, a software house specializing in FORTH interpreters
and compilers.

Steve Basin-id: Bostwick holds a 3.5. in Physics from the University of California, Los Angeles, and
has over 20 years' experience in scientific and commercial data processing. He is president of Query
Computing Systems, Inc., a software firm specializing in the Creation of systems for applications that
interface microcomputers with specialized hardware. He is also an instructor for the UCLA Extension
Department of Engineering and Science and helped design their pepulat Microprocessor Hardware and
Software Engineering Certificate Program.

Keith Enigma Born and raised in Orange County. California, Burgoyne began programming in
1974 on IBM 570 mainframes. In 1979, he began developing microcomputer products for Apples,
TRS—Bfls, Ataris, Commodores, and lBM PCs. He is presentlyr Senior Systems Engineer at Local Data of
Torrance, California, which is a maior producer of IBM 31?4/3274 and System 5X protocol conversion
products. His previous writing credits include numerous user manuals and tutorials.

Robert/I. Byers Byers is the author of the bestselling Eueryman’s Database Primer. He is presently
involved with the Emerald Bay database proiecr with RSPI and Migent, Inc.

Mom Hogan During 11 years working with personal computers, Hogan has been a software devel-
oper, a programmer, a technical writer, a marketing manager, and a lecturer. He has written six books,
numerous magazine articles, and four manuals. Hogan is the author of the forthcoming Microsoft Press
book PC Programmer's Son rcebook.

fim Kyle Kyle has 23 years” experience in computing. Since 196?, he has been a systems program-
mer with strong telecommunications orientation. His interest in microcomputers dates from 1975. He is
currently M15 Administrator for BTI Systems, inc, the OEM Division of BancTec Inc, manufacturers of
MICR equipment for the banking industry. He has written 14 books and numerous magazine articles
(mostly on ham radio and hobby electronics) and has been primary Forum Administrator for Computer
Language Magazine‘s CLMFORUM on CompuServe since early 1985.

Gordon Letwin Letwin is ChiefArchitoct, Systems Software, Microsoft Corporation. He is the author
of inside 05/2, published by Microsoft Press.

diaries Pemfd Petzold holds an MS. in Mathematics from Stevens Institute of Technology. Before
launching his writing career, he worked 10 years in the insurance industry, programming and teaching
programming on [BM mainframes and PCs. He is the author of the Microsoft Press book Programming
Windows 2.0, a contributing editor to PC Magazine, and a frequent contributor to the Microsoft Systems
journal

Chip Rabinowitz Rabinowitz has been a programmer for 11 years. He is presently chief program-
mer for Productivity Solutions, a microcomputer consulting firm based in Pennsylvania, and has been
Forum Administrator for the CompuServe MICROSOFT SIG since 1986.

Contributors vii

OLYMPUS EX. 1010 - 5/"1'523‘2‘

OLYMPUS EX. 1010 - 6/1582
am’a’a‘

Jim Tomldn Tomlin holds a 13.5. and an MS. in Mathematics, He has programmed at Boeing,
Microsoft, and Opcon and has taught at Seattle Pacific University. He now heads his own company in
Seattle, which specializes in PC systems programming and industrial machine vision applications.

Richard Wilton Wilton has programmed extensively in PL/l, FORTRAN, FORTH, C, and several
assembly languages. He is the author of Programmer’s Guide to PC {BPS/2 Video Systems, published
by Microsoft Press.

Van Wolverton
A professional writer since 1963, Wolverton has had bylines as a newspaper reporter,

editorial writer, political columnist, and technical writer. He is the author of Running MS—DOS and
Supercharging MS—DOS, both published by Microsoft Press.

William Wong Wong holds engineering and computer science degrees from Georgia Tech and
Rutgers University. He is director of PC Labs and president of Logic Fusion, Inc. His interests include
operating systems, computer languages, and artificial intelligence. He has written numerous magazine
articles and a book on MS-DOS.

JoAnne Woodcock Woodcock, a former senior editor at Microsoft Press, has been a writer for
Encyclopaedm Britannica and a freelance and project editor on marine biological studies at the
University of Southern California. She is co-editor (with Michael Halvorson) of XENDfat Work and
co—author (with Peter Rinearson) of Microsoft Word Style Sheets, both published by Microsoft Press.

Special Technical Advisor
Mark Zbikowski

TechnicalAdvisors

Paul Allen Michael Geary
Steve Ballmer Bob Griffin

Reuben Borman Doug Hogarth
Rob Bowman James W. Johnson
John Butler Kaamel Kermaani

Chuck Carroll Adrian King
Mark Chamberlain Reed Koch

David Chell James Landowski
Mike Colee Chris Larson

Mike Courtney Thomas Lennon
Mike Dryfoos Dan Lipkie
Rachel Duncan Marc McDonald

Kurt Ec khardt Bruce McKinney
Eric Evans Pascal Martin
Rick Farmer Estelle Mathers
Bill Gates Bob Matthews

'T‘LA llf‘ nnn n.-4ar_14‘_4 J,- 7

David Melin
Charles Mergentimc
Randy Nevin
Dan Newell
Tani Newell
David Norris

Mike O’Leary
Bob O’Rear
Mike Olsson

Larry Osterman
Ridge Ostling
Sunil Pai‘
Tim Paterson

Gary Perez
Chris Peters
Charles Petzold

John Pollock
Aaron Reynolds
Darryl Rubin
Ralph Ryan _
Karl Schulmeisters

Rajen Shah
Barry Shaw
Anthony Short
Ben Slivka

Jon Smirl
Betty Stillmaker
John Stoddard
Dennis Tillman

. Greg Whitten
Natalie Yount
Steve Zeck

OLYMPUS EX. 1010 - 6/1582

OLYMPUS EX. 1010 - 7/1582

Contents

Foreword by Bill Gates 5 xi ' '

Preface by Ray Duncan , xv

Introduction xvii

Section I: The Development ofMS—DOS 1

Section II: Programming in the MS-DOS Environment 47

Part A: Structure of MS-DOS

Article 1: An Introduction to MS-DOS 51

Article 2: The Components of MS-DOS 61

Article 3: MS—DOS Storage Devices 85

Part B: Programming for MS-DOS

Article 4: Structure of an Application Program 107

Article 5: Character Device Input and Output 149

Article 6: Interrupt-Driven Communications 167

Article 7: File and Record Management 247
Article 8: Disk Directories and Volume Labels 279

Article 9: Memory Management 297
Article 10: The MS-DOS EXEC Function 521

Part C: Customizing MS-DOS

Article 11: Terminate-and-Stay—Resident Utilities 347

Article 12: Exception Handlers 385

Article 13: Hardware Interrupt Handlers 409

Article 14: Writing MS—DOS Filters 429
Article 15: Installable Device Drivers 447

Part D: Directions ofMS-DOS

Article 16: Writing Applications for Upward Compatibility 489
Article 17: Windows 499

Part E: Programming Tools 1

Article 18: Debugging in the MS-DOS Environment 541

Article 19: Object Modules 643
Article 20: The Microsoft Object Linker 701

Content: 1395

OLYMPUS EX. 1010 - 7/1582

OLYMPUS EX. 1010 - 8/1582

Section 111: UserCommands 723

Introduction 725

User commands are listed in alphabetic order. This section includes ANSI.SYS,
BATCH, CONFIG.SYS, DRIVERSYS,~ EDLIN, RAMDRIVESYS, and VDISKSYS.

Section IV: Programming Utilities 961

Introduction 963

CREF 967

EXEZBIN 971

EXEMOD 974
EXEPACK 977

LIB 980

LINK 987

MAKE 999
MAPSYM 1004
MASM 1007

Microsoft Debuggers:

DEBUG 1020
SYMDEB 1054

CodeVieW 1157

Section V: System Calls 1175

Introduction 1177

System calls are listed in numeric order.

Tho MCDDC Fnrvrlnhorh’fl

Appendixes 1431

Appendix A: MS-DOS Version 5.5 1453

Appendix B: Critical Error Codes 1459

Appendix C: Extended Error Codes 1461 .

Appendix D: ASCII and IBM Extended ASCII Character Sets 1465

Appendix E: EBCDIC Character Set 1469

Appendix F: ANSISYS Key and Extended Key Codes 1471

Appendix G: File Control Block (FCB) Structure 1475

Appendix H: Program Segment Prefix (P5P) Structure 1477

Appendix I: 8086/8088/80286/80386 Instruction Sets 1479

Appendix]: Common MS—DOS Filenarne Extensions 1485

Appendix K: Segmented (New) .EXE File Header Format 1487

Appendix L: Intel Hexadecimal Object File Format 1499

Appendix M: 8086/8088 Software Compatibility Issues 1507

Appendix N: An Object Module Dump Utility 1509

Appendix 0: IBM PC BIOS Calls 1513

OLYMPUS EX. 1010 - 8/1582

OLYMPUS EX. 1010 - 9/1582

Indexes 1531

Subject 1535

Commands and System Calls 1565

”nu 10m in

OLYMPUS EXT1010 - 9/1582

���������	�
�
����
��
��OLYMPUS EX. 1010 - 10/1582

Foreword

Microsoft’s MS—DOS is the most popular piece of software in the world. It runs on more

than 10 million personal computers worldwide and is the foundation for at least 20,000

applications —the largest set of applications in any computer environment. As an industry
standard for the family of 8086—based microcomputers, MS-DOS has had a central role in
the personal computer revolution and is the most significant and enduring factor in fur-

thering Microsoft’s original vision— a computer for every desktop and in every home. The

challenge of maintaining a single operating system over the entire range of 8086ba5ed

microcomputers and applications is incredible, but Microsoft has been committed to meet-

ing this challenge since the release of MS-DOS in 1981. The true measure of our success
in this effort is MS-DOS‘s cominued prominence in the microcomputer industry.

Since MS—DOS’s creation, more powerful and much-improved computers have entered the
marketplace, yet each new version of MS—DOS reestablishes its position as the foundation

for new applications as well as for old. To explain this extraordinary prominence, we must

look to the origins of the personal computer industry. The three most significant factors in
the creation of MS-DOS were the compatibility revolution, the development of Microsoft

BASIC and its widespread acceptance by the personal computer industry, and IBM’s deci-

sion to build a computer that incorporated 16bit technology.

The compatibility revolution began with the Intel 8080 microproceSsor. This technolog-

ical breakthrough brought unprecedented Opportunities in the emerging microcomputer
industry, promising continued improvements in power, speed, and cost of desktop com-

puting. In the minicornputer market, every hardware manufacturer had its own special
instruction set and Operating system, so software developed for a specific machine was in-

compatible with the machines of other hardware vendors. This specialization also meant

tremendous duplication of effort‘each hardware vendor had to write language compilers,
databases, and other development tools to fit its particular machine. Microcomputers

based on the 8080 microprocessor promised to change all this because different manu—

facturers would buy the same chip with the same instruction set.

From 1975 to 1981 (the 8—bit era of microcomputing), Microsoft convinced virtually

every personal computer manufacturer—Radio Shack, Commodore, Apple, and dozens
of others—4:0 build Microsoft BASIC into its machines. For the first time, one common lan-

guage cut across all hardware vendor lines. The success of our BASIC demonstrated the

advantages of compatibility: To their great benefit, users were finally able to move appli-
cations from one vendor‘s machine to another.

M03t machines produced during this early period did not have a built-in disk drive.

Gradually, however, floppy disks, and later fixed disks, became less expensive and more

common, and a number of disk-based programs, including WordStar and dBASE, entered

the market. A standard disk operating system that could accommodate these develop-
ments became extremely important, leading Lifeboat, Microsoft, and Digital Research all to
support CP/M—SU, Digital Research’s 8080 D08.

Foreword xiii
IIIIA‘AIFI I_\I AAA“ AAIAL-nh

OLYMPUS EX. 1010 - 10/1582

OLYMPUS EX. 1010 - 11/1582

3,5'.3

The 8-bit era proved the importance of having a multiple-manufacturer standard that

permitted the free interchange of programs. It was important that software designed for

the new 16-bit machines have this same advantage. No personal computer manufacturer in

1980 could have predicted with any accuracy how quickly a third—party software industry

would grow and get behind a strong staridard— a standard that would be the software

industry’s lifeblood. The intricacies of how MS—DOS became the most common 16bit

operating system, in part thr0ugh the work we did for IBM, is not the key point here. The

key point is that it was inevitable for a popular operating system to emerge for the 16-bit

machine, just as Microsoft’s BASIC had prevailed on the 8—bit systems.

It Was overwhelmingly evident that the personal computer had reached broad acceptance

in the market when Time in 1982 named the personal computer “Man of the Year.” MS—

DOS was integral to this acceptance and pOpularity, and we have continued to adapt

MS-DOS to support more powerful computers without sacrificing the compatibiiity that is

essential to keeping it an industry standard; The presence of the 80386 microprocessor

guarantees that continued investments in Intel-architecture software will be worthwhile.

our goal with The MS—DOS Enqxiopedia is to provide the most thorough and accessible

resource available anywhere for MS—DOS programmers. The length of this book is many

times greater than the source listing of the first version of MS-DOS -—evidence of the

growing complexity and sophistication of the operating system. The encyclopedia will be

especially useful to software developers faced with preserving continuity yet enhancing

the portability of their applications.

Our thriving industry is committed to exploiting the advantages offered by the protected

mode introduced with the 80286 microprocessor and the virtual mode introduced with the

80386 microprocessor. MS-DOS will continue to play an integral part in this effort. Faster

and more powerful machines running Microsoft OS/2 mean an exciting future of multi-
tasking systems, networking, improved levels of data protection, better hardware memory

management for multiple applications, stunning graphics systems that can display an inno-
vative graphical user interface, and communication subsystems. MS-DOS version 3, which

runs in real mode on 80286-based and 80586—based machines, is a vital link in the Family

API of 08/2. Users will continue to benefit from our commitment to improved operating-

system performance and usability as the future unfolds.

Bill Gates

W's: Tho Mtnnc Fmrqmlnfladl'r!

OLYMPUS EX. 1010 -11/1582

OLYMPUS EX. 1010 - 12/1582

_ Preface

In the space of six years, MS-DOS has become the most widely used computer operating

system in the world, running on more than 10 million machines. It has grown, matured,

and stabilized into a flexible, easily extendable system that can support networking,

graphical user interfaces, nearly any peripheral device, and even CD ROMS containing

massive amounts of On-line information. MS—DOS will be with us for many years to come

as the platform for applications that run on low—cost, 8086/8088—based machines.

Not surprisingly, the success of MS—DOS has drawn many writers and publishers into its

orbit. The number of books on MS—DOS and its commands, languages, and applications

dwarfs the list of titles for any other operating system. Why, then, yet another book on

MS-DOS? And what can we say about the operating system that has not been said already?

First, we have written and edited The MS-DOSEncyciopedfa with one audience in mind:

the community of working programmers. We have therefore been free to bypass elemen-

tary subjects such as the number of bits in a byte and the interpretation of hexadecimal

numbers. Instead, we have emphasized detailed technical explanations, working code ex—

amples that can be adapted and incorporated into new applications, and a systems view of
even the most common MS—DOS commands and utilities.

Second, because we were not subject to size restrictions, we have explored topics in depth

that other MS—DOS books mention only briefly, such as exception and error handling,

interruptdriven communications, debugging strategies, memory management, and install-

able device drivers. We have commissioned definitive articles on the relocatable object

' modules generated by Microsoft language translators, the operation of the Microsoft Ob-

ject Linker, and terminate-and—stay-resident utilities. We have even interviewed the key

developers of MS—DOS and drawn On their files and bulletin boards to offer an entertain—

ing, illustrated account of the origins of Microsoft‘s standard-setting operating system.

Finally, by combining the viewpoints and experience of non—Microsoft programmers and

writers, the expertise and resources of MicrOsoft software developers, and the publishing

know—how of Microsoft Press, we have assembled a unique and comprehensive reference

to MS—DOS services, commands, directives, and utilities. In many instances, the manu-

scripts have been reviewed by the authors of the Microsoft tools described.

We have made every effort during the creation of this book to ensure that its contents are

timely and trustworthy. In a work of this Size, however, it is inevitable that errors and omis-
sions will occur. If you discover any such errors, please bring them to our attention so that

they can be repaired in future printings and thus aid your fellow programmers. To this

end, Microsoft Press has established a bulletin board on MCI Mail for posting corrections

and comments. Please refer to page xvi for more information. I

Ray Duncan

Preface

OLYMPUS Ex.xio1o - 12/1582

OLYMPUS EX. 1010 - 13/1582

Introduction

The MS—DOS Encyclopedia is the most comprehensive reference work available on

Microsoft’s industry-standard operating system. Written for experienced microcomputer

users and programmers, it contains detailed, version-specific information on, all the
MS—DOS commands, utilities, and system calis, plus articles by recognized experts in

specialized areas of MS—DOS programming. This wealth of material is organized into

major topic areas, each with a format suited to its content. Special typOgraphic conven-

tions are also used to clarify the material.

Organization ofthe Book

The MS-DOS Encyciopedia is organized into five major sections, plus appendixes. Each

section has a unique internal organization; explanatory introductions are included where

appropriate.

Section I, The Development of MS—DO'S, presents the history of Microsoft’s standard-
setting operating system from its immediate predecessors through version 5.2. Numerous

photographs, anecdotes, and quotations are included.

Section 11, Programming in the MS-DOS Environment, is divided into five parts: Structure

of MS-DOS, Programming for MS-DOS, Customizing MS—DOS, Directions of MSDOS, and

Programming Tools. Each part contains several articles by acknowledged experts on these
topics. The articles include numerous figures, tables, and programming examples that pro-

vide detail about the subject.

Section III, User Commands, presents all the MS—DOS internal and external commands in
alphabetic order, including ANSISYS, BATCH, CONFIGSYS, DRIVERSYS, EDLIN,

RAMDRIVEBYS, and VDISKSYS. Each command is presented in a structure that allows

the experienced user to quickly review syntax and restrictions on variables; the less

experienced user can refer to the detailed discussion of the command and its uses. .

Section IV, Programming Utilities, uses the same format as the User Commands section to

present the Microsoft programming aids, including the DEBUG, SYMDEB, and CodeView

debuggers. Although some of these utilities are supplied only with Microsoft language

products and are not included on the MS-DQS system or supplemental disks, their use is

intrinsic to programming for MS—DOS, and they are therefore included to create a corn-

prehensive reference.

In trndufin‘nfl xm’z‘

OLYMPUS EX. 1010 - 13/1582

OLYMPUS EX. 1010 - 14/1582

_ .- updates to The M's-DOS Encyclopedia. _

Periodically, the 5141151 The MS—DOS EncyclopediaWill pnblish updates containing
_ clarifications or corrections tothe information presented'In thiscurrent edition. To ob~ _

tain inforrnation aboutreceiving these updates, please checlf: the appropriate box on the '
buSine'ss reply card_in the back of.this book or send your name and address to: MS—DOS _ I

'- Encyclopedia Update Information, c/o MicrosoftPress, 16011”NE $6thWay-g.Box 97017 '
' Redmond WA 9807s9717.

Bulletin Board Servrce ._-I- ..
- - Microsoft Press15 sponsoIing abulletin board on MCI Mail. for postingandreceiving Cor.- - -

_ rections and comments for The MS—DOSEncyclopedia To use thisservice,logo-1'1 toMCI '
' - 'Mail and after reCeiving the prompt; type ' - -- - - - . - - -
I : VIEW cantata

. The Bulktin Booed name prompt willbe displayedThen type I
Mspksss cannery "

I-to conned to the Microsoft Press bulletin board AliSI:of the. indiwdual Microsoft Press
- bulletin boards will be displayed, simplychoose MSPress DOSENC‘Ytoentertheen? - '-

' cyclopediasbulletin board. .- -

_ SpecmlCompanion Disk Offer " ._ ' '

Microsoft Press has created a set of valuable, time saving compamon diskstoTkéMS-DOS '
-' Encydopedi'a. They contain theroutines and functional programs that are listed_t__hroug_t_1—-I

out this book—thousands of. lines of. executable code. Conveniently organIZed- these I
disks Will save youhours of typing tinie and allowyouto Start using. thecode immediately. -
The _cotnpanion disks _are only available direcrly- froIn"Microsoft Press. To order,- use the _
special bindin card in the back ofthe book or send$4995 fereachset of disks plus sales -
tax if applicable and $5 50-per dishfor domestic postage andhandling,$800 per disk for

I foreign orders, to} MiCrosoft Press,Attn: CornpanionDisk”Offer, 21919 20th Ave __S E., Box '_ _
'3011, Bothell, WA 98041-3011 Please specify 5.25inch or3.S—inchformat. Payment mnst be
in U.S funds You may pay by checkor mOney order (payable to Microsoft Press); or by

_ American Express VISA, or MasterCard; please inelude-y_ou_r credit cardnumber and ex-

piration date. All domestic orders are shipped 2nd day-Iair upon receipt of order by _
'Microsoft - - - I

. CA residents 5% plus local option tax,.CT 75%, FL 6% MA 5%, 311N696, MO4.225%, NY4% pluslocal
. option tax WA _State 7. 8%-

xvi The 1145—1305 Encyclopedia

OLYMPUS EX. 1010 - 14/1582

OLYMPUS EX. 1010 - 15/1582

Italic font indicates user-supplied variable names, procedure names in text, parameters
whose values are to be supplied by the user, reserved words in the C programming lan-

guage, messages and return values in text, and, occasionally, emphasis.

A typographic distinction is made between lowercase l and the numeral} in both text and
program listings.

Cross—references appear in the form SECTION NAME: PART NAME, COMMAND NAME, OR IN—
TERRUPT NUMBER: Article Name or Function Number.

Color indicates user input and program examples.

Terminology

Although not an official IBM name, the term PC—DOS in this book means the IBM imple—
mentation of MS—DOS. If PC—DOS is referenced and the information differs from that for

the related MS-DOS version, the PC-DOS version number is included. To avoid confusion,
the term D05 is never used without a modifier.

The names of special function keys are spelled as they are shown on the IBM PC keyboard.
In particular, the execute key is called Enter, not Return. When <Enter> is included in a

user—entry line, the user is to press the Enter key at the end of the line.

The common key combinations, such as Ctrl—C and Ctrl—Z, appear in this form when the

actual key to be pressed is being discussed but are written as Control-C, Control-Z, and so

forth when the resulting code is the true reference. Thus, an article might reference the
Control—C handler but state that it is activated when the user presses Ctrl-C.

Unless specifically indicated, hexadecimal numbers are used throughout. These numbers
are always followed by the designation H (h in the code portions of program listings).

Ranges of hexadecimal values are indicated with a dash —for example, 07—0AH.

The notation (more) appears in italic at the bottom of program listings and tables that are

continued on the next page. The complete caption or table title appears on the first page

of a continued element and is designated Continued on subsequent pages.

Introduction xix

OLYMPUS EX. 1010 - 15/1582

OLYMPUS EX. 1010 - 16/1582

Section V, System Calls, documents Interrupts 20H through 27H and Interrupt ZFH. The

Interrupt 21H functions are listed in individual entries. This section, like the User Com-

mands and Programming Utilities sections, presents a quick review of usage for the ex—

perienced user and also provides extensive notes for the less—experienced programmer.

The 15 appendixes provide quick-reference materials, including a summary of MS—DOS
version 3.3 the segmented (new) .EXE file header format an object file dump utility, and

the Intel hexadecimal object file format Much of this materialIS organized into tables or
bulleted lists for ease of use.

The book includes two indexes —— one organized by subject and one organized by com—
mand name or system-call number. The subject index provides comprehensive references

to the indexed topic; the command index references only the major entry for the com-

mand or system call.

Program Listings

The MS—DOS Encyclopedia contains numerous program listings in assembly language, C,

and QuickBASIC all designed to run on the IBM PC family and compatibles. Most of these

programs are complete utilities, some are routines that can be incorporated into function-
ing programs Vertical ellipses are often used to indicate where additional code would be
supplied by the user to create a more functional program All program listingsare heavily
commented and are essentially self-documenting.

The programs were tested using the Microsoft Macro Assembler (MASM) version 4.0, the

Microsoft C Compiler version 4.0, or the Microsoft QuickBASIC Compiler version 20
The functional programs and larger routines are also available on disk Instructions for
ordering are on the page preceding this introductionand on the mail-in card bound into
this volume

Typography and Terminology

Because The MS—DOS Encyclopedia was-designed for an advanced audience, the reader
_ generally will be familiar with the notation and typographic conventions used in this
volume. However, for ease of use, a few special conventions should be noted.

Typographic conventions

Capital letters are used for MS-DOS internal and external commands in text and syntax

‘ lines. Capital letters are also Used for filenames in text.

OLYMPUS EX. 1010 - 16/1582

���������	�
�
����
��
��
OLYMPUS EX. 1010 - 17/1582

h.

'1fo‘~

OLYMPUS EX. 1010 - 18/1582

__§____w_____m

OLYMPUS-EX. 1010- 18/1582

���������	�
�
����
��
��OLYMPUS EX. 1010 - 19/1582

1975
The Development ofMS-DOS

To many people who use personal computers, MS-DOS is the key that unlocks the power
of the machine. It is their most Visible connection to the hardware hidden inside the

cabinet, and it is through MS—DOS that they can run applications and manage disks and
disk files.

In the sense that it opens the door to doing work with a personal computer, MS-DOS is

indeed a key, and the lock it fits is the Intel 8086 family of microprocessors. MS-DOS and

the chips it works with are, in fact, closely connected — so closely that the story of

MS—DOS is really part of a larger history that encompasses not only an operating system

but also a microprocessor and, in retrospect, part of the explosive growth of personal

computing itself.

Chronologically, the history of MS—DOS can be divided into three parts. First came the

formation of Microsoft and the events preceding Microsoft’s decision to develop an

operating system. Then came the creation of the first version of MS-DOS. Finally, there is

the continuing evolution of MS—DOS since its release in 1981.

Much of the story is based on technical developments, but dates and facts alone do not

provide an adequate look at the past. Many people have been involved in creating MS—DOS

and directing the lines along which it continues to grow. To the extent that personal opin-
ions and memories are appropriate, they are included here to provide a fuller picture of

the origin and development of MS-DOS.

Before MS-DOS

The role of International Business Machines Corporation in Microsoft’s decision to create

MS-DOS has been well publicized. But events, like inventions, always build on prior ac-

complishments, and in this respect the roots of MS-DOS reach farther back, to four hard-

ware and software developments of the 19705: Microsoft’s disk-based and stand-alone

versions of BASIC, Digital Research’s CP/M—80 operating system, the emergence of the

8086 chip, and a disk operating system for the 8086 developed by Tim Paterson at a hard-

ware company called Seattle Computer Products.

Microsoft and BASIC

On the surface, BASIC and MS—DOS might seem to have little in common, but in terms of

file management, MS-DOS is a direct descendant of a Micr050ft version of BASIC called
Stand-alone Disk BASIC.

Before Microsoft even became a company, its founders, Paul Allen and Bill Gates, de—

veloped a version of BASIC for a revolutionary small computer named the Altair, which

was introduced in january 1975 by Micro Instrumentation Telemetry Systems (MITS) of

Section I: The Development ofMS»DOS 3

OLYMPUS EX. 1010 - 19/1582

OLYMPUS EX. 1010 - 20/1582

197’s

. I Thejannary 1975 cover of Popular

HOW TO “READ” FM TUNER SPECIFICATIONS l Electronits magmasfeamriag the
machine that caught the :magmatrom

P_opular Electronics at:assiffiatg‘ttitrst
warms my.same rucmmrcs mmzms JANUARY 1975/75.: Allen and Bill Gates.

3'I1
i

PROJECT BREAKTHROUGH!

“brld’s First Minicomputer Kit
to Rival Commercial Models...

"ALTAIR 8800” save oven $1000w}:.l"

ALSO IN THIS ISSUE.

0 Ar: Under-$90 Sclanllflc Calculator Project -
' T’s I CCD's-TV Camera Tube Successor?

I I'lryrmor-Controlled Pharaflarhars
TEST REPORTS!
Technics 200 Speaker System
Pioneer FIT-1011 Open-Reel Recorder
Tram Diamond-4O63 AM Transceiver
Edmund Schntiflr: 'Kirlian" Photo Kit
Hewlett-Packard 5381 Frequanqr Counter

J

! Although it was too limited to serve as the central processor for a generalvpurpose compu-
' ter, the 8008 was undeniably the ancestor of the 8080 as far as its architecture and instruc—

tion set were concerned. Thus Traf—O—Data’s work with the 8008 gave Gates and Allen a

head start when they later developed their versiOn of BASIC for the Altair.

Paul Allen learned of the Altair from the cover story in the january 1975 issue of Popular

Electronics magazine. Allen, then an employee of Honeywell in Boston, convinced Gates,

a student at Harvard University, to develop 3 BASIC for the new computer. The two wrote

their version of BASIC for the 8080 in six weeks, and Allen flew to New Mexico to demon—

strate the language for MITS. The developers gave themselves the company name of

Microsoft and licensed their BASIC to MITS as Microsoft’s first product.

Though not a direct forerunner of MSDOS, Altair BASIC, like the machine for which it was

developed, was a landmark product in the history of personal computing. On another

level, Altair BASIC was also the first link in a chain that led, Somewhat circuitously, to Tim

Paterson and the disk operating system he developed for Seattle Computer Products for

the 8086 chip.

5 m. rm“...

OLYMPUS EX. 1010 - 20/1582

���������	�
�
�����
�
��OLYMPUS EX. 1010 - 21/1582

1976

§+orafifi («and +33, Ed'éld.

@ 1.2” flaw.
CrTuT‘TA‘B’J pplhlvr +9 max'l' luv-'4 (LLH'Rl)

Lln'fi“? 1‘“? 1" (11.51%)
ant-radar oh 1.“; Cm halt 1:
16:0 (1 {we}

4304193 afme er 6:41 IQ}

.— ‘Ztra . (Ilw‘l’es?
Slmylt. vnrlwuij _ 6 {wife} f'" Mfr-av“?
'1 indie; on): +142 nan-«L.
LT oak; ‘levé +£u- «all-«Zn
flawed-v «Fu— end.‘ «1.;le >

[ammo] Aw? “radioI bull-c ham -
2 la hf}: ix: mill-1 .
Halo.” --

mfiwls 'Faf e‘d" 3"
Esmfiwigj Iowa-f l-eaj'ggfl. ’Qr‘ 541%

Frag. SPOLQ; (if “1.1 L: 1- Evan-d?)
ESTK'TDP mg5+ ndwf J 2dr1 S’ruc‘iL- 5"?“ Y

hefty-w or and: / fared lawmfiwirirs

{£11. $96921

[£95755] 0»er S‘fm'Hj “ 5°33{Virtues

CMEMSFL) “\fibflsa' “(11:42.19 rgfba‘mq.

/\L-IS 5W aLlL-ms {or smfgffi
+64»; maxawfi- oh! cachOTéJ’"
Ls- {or gfrmors WWW div-“OJ! In QFEfl-jlt.

L—

m WEE/MY. 191‘5

[and in; Soft Hare

_ Softuan fro! .‘IITS Bill be pro—vzdud in a chucksumcd Format.
There will ho a bootstrap loader
that you key in manually (less Khan25 bytes). l'his ml read a check-
au 1|qu {tho 'hin“ load-r] which
.111 be mm- 120 mu.

rar audio caautte loading rh-bmstrag and. chock—awn load“; will
b! long“. an a! this will a. el-
plain-d in «tail in a can: packaglthat «in. la out with all saftuare.

for loading nun-chucksumud

paper taps: hen is a short program:
STKLOC: W Gm}?

(2 bytes-i]. 1w byte ofGETHEH Mdrua
l? high byte 0!comm addrus]

START.-
:1va '. LXI 14,0

LII 5?. STXLOC
III (flag-input channel.»
RM. 132‘ input ready bit
IDIZ :rcady?
IN data—input channel)CPI 4D“) = IN}! 5*
R82
III}! A
STA CFC-MC
PET

CJIGLOC :

(2? bytes)
'Punch a paper tape uixh leader.

a flu? start byte. In. by" ‘a be
stored a: loo 0. the byte to M“and at L, - — - are. Stan at
snm‘. making sun thl Ila-cry thu
loader La la is unwound. Make
sun you don‘t wipe out the loader
by lnldilq on top of it.

Tn run this again thong! cucmchack to CPI. - 316.

a,

On the left. Bill Gator '5 original handwritten notes describing memory configurationforAIrair BASIC. On
the right, a short bootstrapprogram written by Gatesforalmir users; published in mainly 1975 edition ofrhe
MITS user newsletter; Computer 1 'olea

From paper tape to disk

Gates and Allen's early BASIC for the Altair was loaded from paper tape after the bootstrap

to load the tape was entered into memory by flipping switches on the front panel of the

computer. In late 1975, however, MITS decided to release a f loppy—disk system for the

Altair—the first retail floppy—disk system on the market. As a result, in February 1976

Allen, by then Director of Software for MITS, asked Gates to write a disk-based version of
Altair BASIC. The Altair had no operating system and hence no method of managing files,

so the disk BASIC would have to include some file—management routines. It would, in

effect, have to function as a rudimentary operating system.

Secrion l.- The Development ofMS—DOS 7

OLYMPUS EX. 1010 - 2171'582

OLYMPUS EX. 1010 - 22/1582

1975

4

'..'.-\'.|.mflm

The Altair. Christiane-d one evening shortly befiare its appearance on the cone;- of Popular Electronics
magazine, the computer was namedfor the night’s destination ofthestarshtp Enterprise. Thepkotogmph
dearly shows the input switches on thefronrpanel afrhe cabinet.

Albuquerque, New Mexico. Though it has long been eclipsed by other, more powerful

makes and models, the Altair was the first “personal” computer to appear in an environ-

ment dominated by minicomputers and mainframes. It was, simply, a metal box with a

panel of switches and lights for input and output, a power supply, a motherboard with 18

slots, and two boards. One board was the central processing unit, with the 8-bit Intel 8080

microprocessor at its heart; the other board provided 256 bytes of random-access memory.

This miniature computer had no keyboard, no monitor, and no device for permanent

storage, but it did posSess one great advantage: a price tag of $397.

Now, given the hindsight of a little more than a decade of microcomputing history, it is

easy to see that the Altair's combination of small size and affordability was the thin edge

of a wedge that, in just a few years, would m0ve everyday computing power away from
impersonal monoliths in climate-controlled rooms and onto the desks of millions of

people. In 1975, however, the computing environment was still primarily a matter of data

processing for specialists rather than personal computing for everyone. Thus when 4 KB

The MCI—K}? Fnrun‘nnods'n

OLYMPUS EX. 1010 - 22/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 23/1582

1975

;_I:l)',".fl._ll up, “I'LflIIi.|le“——__-"=-‘E.=

Intel’s 4004, 8008 and 8080 chips. Ar the top {9}? is the 4—bit 4004, which was namedfor the agar-extractive
number afold—fizshioned transistors it replaced. A: the bottom I9]? is the 8—bit 8608 which addressed 16KB of
memory,- rhfs was the chip used in the Tmf-O-Data tape—reader built by Paul Gilbert. A: the right is the 8080,
afaster 8—bit chip that could address 64 KB ofmemory. The brain oftheMl’TSAltaii; the 8080 was, in many
respects, the chip or: which thepersonal computing industry was built. The 4004 and 8008 chips were
developed early in the 19705,- the 8080 appeared m 1974.

memory expansion boards became available for the Altair, the software needed most by its
users was not a word processor or a spreadsheet, but a programming language -——and the

language first developed for it was a version of BASIC written by Bill Gates and Paul Allen,

Gates and Allen had become friends in their teens, while attending Lakeside School in

Seattle. They shared an intense interest in computers, and by the time Gates was in the

tenth grade, they and another friend named Paul Gilbert had formed a company called

Traf—O—Data to produce a machine that automated the reading of 16—channel. 4digit,

binary—coded decimal (BCD) tapes generated by traffic-monitoring recorders. This ma—

chine, built by Gilbert, was based on the Intel 8008 microprocessor, the predecessor
of the 8080 in the Altair.

Section I.- The Development ofMS—DOS 5

OLYMPUS'EXEMO :23/1'523‘2‘

OLYMPUS EX. 1010 - 24/1582

197’s

Thefanmry I975 cooler of Popular
HOW TO “READ” FM TUNER SPECIFICATIONS Elecmnlcs magazmelfea‘wmtg ”“3

machine that caught the imaginations' O
ofrhousands raffles—minded electron-

op a _ n1 _ S . ics enthusiasts — among them, Paul
was tmsesrsmms arc-moms mama»: JANUARY wry-rs: Alter: and Bill Gates.

‘.-_.:.m-_u:.u¢t.am"'

PROJECT BREAKTHROUGH I

“brld’s FirstMinicomputer Kit
to Rival Cormnerclal Models...

"ALTAIR 8800” SAVE oven $1000
_r

 ALTAIH. ”BOO ' 1‘

ALSO IN THIS ISSUEI.

0 An Uncle 490 Sclcntlflc Calculator Project
- a CCD's-TV Camera Tubs Successor?

I Thyrlslor~¢onlroll¢d Photoflashcn
TEST REPORTS!
Technics 200 Speaker System
Pioneer RT-lml Open-Reel Recorder
Tram Diamond-40 CB AM Transceiver
Edmund Scientific 'Kirlian' Photo Kit
Hewletbfickard 5381 Frequency Counter

Although it was too limited to serve as the central processor for a general-purpose compu—

ter, the 8008 was undeniably the ancestor of the 8080 as far as its architecture and instruc-

tion set were concerned. Thus Traf—O-Data’s work with the 8008 gave Gates and Allen a

head start when they later developed their version of BASIC for the Altair.

Paul Allen learned of the Altair from the cover story in the january 1975 issue of Popular

Electronics magazine. Allen, then an employee of Honeywell in Boston, convinced Gates,

a student at Harvard University, to develop a BASIC for the new cornputer. The two wrote
their version of BASIC for the 8080 in six weeks, and Allen flew to New Mexico to demon-

strate the language for MITS. The developers gave themselves the company name of

Microsoft and licensed their BASIC to MITS as Microsoft’s first product.

Though not a direct forerunner of MS—DOS, Altair BASIC, like the machine for which it was

developed, was a landmark product in the history of personal computing. On another

level, Altair BASIC was also the first link in a chain that led, somewhat circuitously, to Tim

Paterson and the disk operating system he developed for Seattle Computer Products for
the 8086 chip.

OLYMPUS EX. 1010 - 24/1582

���������	�
�
������
��OLYMPUS EX. 1010 - 25/1582

19?6

6+or11; [afiwl (,1. EA‘filC.

@ um (16"‘4
Cr-ruf’lfl'aj Porn‘l‘tr "I" aft l.-'{ (lawlicg)

“M“, 1.4" ‘* (ILHM)
Cl’lérad-Ef‘ sh 1|v\‘< (3%:- half. 1‘]
7'60 t1 and

‘V-wcn’l abate 4;- ear—lrl |..‘<>

'- 74:”: (i‘wfij?
‘ Smrl—L tam-"silly, ‘ é, Hie/2. W Wadi,

7— ‘“HE; 9w: 44-0 net-.44.,
“l Lurks rpm: 414 Valuer
(Rip-es? ‘a‘ar Edda URvaCe >

[Aflq’fl‘lfij Arm, Wit/tn;1 burl-f. ham
‘2 5.111.; lenq‘lk
Value} --'

Regards ‘Fnr "9“(JA arr
[Ema-‘13,) lot-Hr} loo-flax 'Gr 5-[9

Free. 31mm [sr.,.,t¢.- Ere
[S‘I'KTDP] met regard 51...; Mr)

Ste-CP- T _
LFIZE‘T'bP) Isa-r0». or shat / MT {warmer sin-ts

Mitt mun ’l— 0hr? rolled-15F
6- far are“? ”EMMA tireW‘4 m 953%“

mm WIS/MY. 191!

Loading Software

Soft-a." from HITS VI 11 1:: pm-n'dc-d in a chucksmed format.
There will be a bootstrap loader
that you lay In manually {less than
25 bytes). This will. read a check-
atn leader [the ‘bin' Loader] which
will bl about LID by‘t‘u.

Fur audio cassette loading thebootstrap and c'hlekauu leader: will
be long". All. of this will in u-
phlm in Mail. In a new" packagethat will. 3: out with all software.

Far loading nm-chcekamd
paper tape: hen is a short program:
STKLOC'. W SETH}?!

l1 bytes-l1 10M bytu ofGETNEH address
#2 high byte of651112! Nana}

START: LXI ",0
BETHW: LEI SP, STKLGC

[N «flag-input channel»
RM. :59: input ready bit
RN: :remy?
IN «flan-input channel)CiifiwC: C?! can: = I!!! El:
FJIZ '
INF. A
STJ CHGWC
MIT

(22 bytes]
Punch a paper tape with leader.

a 0"! um byte. the hytI to bl
star-ad at 10: u, the byte to bustar-d It 1. - - - ctc. Start at
START, asking sure t‘m memory the
losdn- in in is unprotected. Make
sure you don‘t trips mt the leads:
by leading an top of it.

To run this again change CHEM):back to C?! - 375.

93

On the left, Bill Gates ‘5 original handwritten notes describing memory configurationfor-Altair BASIC. On
the right, a short bootstrapprogram written by GatesforAItm'r users'pnblfshed in thejuly 1975 edition ofrhe
MITS mar newsletter: Computer Notes.

From paper tape to disk

Gates and Allen’s early BASIC for the Altair was loaded from paper tape after the bootstrap

to load the tape was entered into memory by flipping switches on the front panel of the

computer. In late 1975, however, MITS decided to release a f10ppy-disk system for the
Altair—the first retail floppy-disk system on the market. As a result, in February 1976
Allen, by then Director of Software for MITS, asked Gates to write a disk-based version of

Altair BASIC. The Altair had no operating system and hence no method of managing files,

so the disk BASIC would have to include some file-management routines. It would, in

effect, have to function as a rudimentary operating system.

Section I: The Development ofMS—DOS 7

OLYMPUS EX. 1010 - 25/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 26/1582

1977-19743

Microsoft, 1976’, Albuquerque,
NewMexico. Top row, left to fight:
Steve Wood, Bob Wallace, Jim Lame.
Middle row, lefl to right: Bob O’Rear,
Bob Greenberg, Marc McDonald.
Gordon Igtwirt. Bottom row, left to
right: Bill Gates, Andrea fiewt‘s,
Marla Wood, PaulAllen.

Gates, still at Harvard University, agreed to write this version of BASIC for MITS. He went

to Albuquerque and, as has often been recounted, checked into the Hilton Hotel with a
stack of yellow legal pads. Five days later he emerged, yellow pads filled with the code for

the new version of BASIC. Arriving at MITS with the code and a request to be left alone,

Gates began typing and debugging and, after another five days, had Disk BASIC running
on the Altair.

This disk—based BASIC marked Microsoft’s entry into the business of languages for per—

sonal computers—not only for the MITS Altair, but also for such companies as Data

Terminals Corporation and General Electric. Along the way, Microsoft BASIC took on

added features, such as enhanced mathematics capabilities, and, more to the point in
terms of MS-DOS, evolved into Stand—alone Disk BASIC, produced for NCR in 1977.

Designed and coded by Marc McDonald, Standalone Disk BASIC included a file—
management scheme called the FAT, or file allocation table that used a linked list for man-

aging disk files. The FAT, born during one of a series of discussions between McDonald

and Bill Gates, enabled disk-a] location information to be kept in one location, with

"chained” references pointing to the actual storage locations on disk. Fast and flexible,

this file—management strategy was later used in a stand—alone version of BASIC for the 8086
chip and eventually, through an operating system named M—DOS, became the basis for the

file—handling routines in MS-DOS.

M-DOS

8

During 1977 and 1978, Microsoft adapted both BASIC and Microsoft FORTRAN for an

increasingly popular 8—bit operating system called CP/M. At the end of 1978, Gates and

Allen moved Microsoft from‘Albuquerque to Bel levue, Washington. The company con—
tinued to concentrate on programming languages, producing versions of BASIC for the
6502 and the TI9900.

The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 26/1582

OLYMPUS EX. 1010 - 27/1582

CP/M

<5'0 1m
sldoddrd torsmicrocompcner

- soft/yore

Orlvoneeomponysalslne pace with
mimmmsom

MW
Wham ifs B‘SIC F0332“. c!

032:3, me Wiéeillr‘sl mi‘
CIDCOWEI‘ mam: use so“-
wore by Meme-1.emanates“: NC'K

M913. Cams 0"-
n.31miflm‘fl6-"WmuQmS-certnr. C'o-

MMJJLD‘S 13:23..Masmit. NniuchJl
Eek-mail. CINJamen-err

 MACROvfl'U FACKAGEmiemmwmm'ammimmfi
mmwmmm. Liningmolommwmm.m»mmour Mmemmmrcsmmm.rummage. mmngMCIc-adrswngtm
0'6me mmbowmcsedsaow-

cuemromtdeil‘éml—edwfingernail are: ml 345 [kmwhirtldad mm“! W11)
MBASIC — NEW RELEASE Mmmmfinmmmmammmmmmam WT!
mm VWBQ.WM1RAW¢XIWMHCOM-mxmfinsmwmwmmtnm‘mcmhm

neenw Wmww-‘ancmmmcmww Wm. 3350.
w

EDIT-30 PACKAGE [CPfM vetston only} the W1wedflu01 mm No‘rue mum Wimamuccrwrrm harem
access. Irewmmamnmec-mdmbw Wazoo moi-DP-al] Am mtwovmire Weum. much clawswom\dm

cream-vies Scream-firearm m

. ANSi ‘P‘d C030 [:80 .: rowan-icuewhllflr‘e-Hcdw woo-3e near—weWDMQG-Nuu EXTEND 559nm 53m RIM 520
PREVIEW OF UPCOMING PRODUCTS fin escort-so we sorta-16 sw-otmag mm‘eouea a; a: “WW. he Wanner-ad mafia AA trimfi_mom whimslems ammmto’uch mammm

Am ctMccwlf.
new things are
honoerung oll

A5 aoumm am mm- c: ‘.i':;l‘r-'.<i|r,-;)I wt r.r (NM'
Decial 0911th mm:

1978

A Mi'crosofi advertisementfrom the
january 1979 issue of Byte magazine
mentioning someproducts and the
machines they ran on. in the tower
right carrier is an announcement of
the company‘s mom? to Beliewe,
Washington.

During this same period, Marc McDonald also worked on developing an 8-bit operating

system called M—DOS (u5ually pronounced “Midas" or “My DOS”). Although it never

became a real part of the Microsoft product line, M-DOS was a true multitasking operating

system modeled after the DEC TOPS-10 operating system. M—DOS provided good perfor-

mance and, with a more flexible FAT than that built into BASIC, had a better file-handling

structure than the up-and—coming CP/M operating system. At about 30 KB, however,

M-DOS was unfortunately too big for an 8—bit environment and so ended up being rele—

gated to the back room. As Allen describes it, “Trying to do a large, full—blown operating

system on the 8080 was a lot of work, and it took a lot of memory. The 8080 addresses only

64 K, so with the success of CP/M, we finally concluded that it was best not to press on
with that.”

In the volatile microcomputer era of 1976 through 1978, both users and developers of per-

sonal computers quickly came to recognize the limitations of running applications on top

of Microsoft’s Stand—alone Disk BASIC or any other language. MITS, for example, scheduled

Section L The Deuetopmem ofMS—DOS 9

OLYMPUS EX. 1010 - 27/1582

OLYMPUS EX. 1010 - 28/1582

1978

ajuly 1976-release date for an independent operating system for its machine that used the

code from the Altair’s Disk BASIC. In the'same year, Digital Research, headed by Gary

Kildall; released its Control Program/Monitor, or CP/M.

CP/M was a typical microcomputer software product of the 19705 in that it was written by

one person, not a group, in response to a specific need that had not yet been filled. One of

the mOst interesting aspects of CP/M’s history is that the software was developed several

years before its release date— actually, several years before the hardware on which it

would be a standard became commercially available.

In 1973, Kildall, a professor of computer science at the Naval Postgraduate School in

Monterey, Califomia, was working with an 8080-based small computer given him by Intel

Corporation in return for some programming he had done for the company. Kildall's

machine, equipped with a monitor and paper~tape reader, was certainly advanced for the

time, but Kildall became convinced that magnetic—disk storage w0uld make the machine
even more efficient than it was.

Trading some programming for a disk drive from Shugart, Kildall first attempted to build

a drive controller on his own. Lacking the necessary engineering ability, he contacted a

friend, John Torode, who agreed to handle the hardware aspects of interfacing the compu-

ter and the disk drive while Kildall worked on the software portion —the refinement of an

operating system he had written earlier that year. The result was CP/M.

The version of CP/M develop-edby Kildall in 1975 underwent several refinements. Kildall

enhanced the CP/M debugger and assembler, added a BASIC interpreter, and did some
Work on an editor, eventually developing the product that, from about 1977 until the ap—

pearance of the IBM Personal Computer, set the standard for 8-bit microcomputer operat-

ing systems. '

Digital Research’s CP/M included a command interpreter called CCP (Console Command

Processor), which acted as the interface between the user and the operating system itself,

and an operations handler called BDOS (Basic Disk Operating System), which was

re5ponsible for file storage, directory maintenance, and other such housekeeping chores.

For actual input and outputae- disk I/O, screen display, print requests, and so on — CP/M

included a BIOS (Basic Input/Output System) tailored to the requirements of the hardware

on which the operating system ran.

For file storage, CP/M used a system of eight-sector allocation units. For any given file, the

allocation units were listed in a directory entry that included the filename and a table giv«

ing the disk locations of 16 allocation units. If a long file required more than 16 allocation

units, CP/M created additional directory entries as required. Small files could be aCCessed

rapidly under this system, but large files with more than a single directory entry could re-

quire numerous relatively time-consurning disk reads to find needed information.

At the time, however, CP/M was highly regarded and gained the support of a broad base of

hardware and software developers alike. Quite powerful for its size (about 4KB), it was, in

all respects, the undisputed standard in the 8-bit world, and remained so until, and even

after, the appearance of the 8086.

1n '1'].-1lrv—-nr~n , ,ncacgsu

OLYMPUS EX. 1010 - 28/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 29/1582

1978

The 16—bit late! 8086 chip, introduced in 1978.
Muchfasfier andfar morepowerfizi than its 8—bit

! predecessor the 8080, the 8086 had the ability to
_II address one megabyte ofmemory.

at

The 8086

When Intel released the 8-bit 8080 chip in 1974, the Altair was still a year in the future.

The 8080 was designed not to make computing a part of everyday life but to make house-

hold appliances and industrial machines more intelligent. By 1978, when Intel introduced

the 16-bit 8086, the microcomputer was a reality and the new chip represented a major

step ahead in performance and memory capacity. The 8086‘s full 16bit buses made it fast-

er than the 8080, and its ability to address one megabyte of random—access memory was a

giant step beyond the 8080’s 64 KB limit. Although the 8086 was not compatible with the

8080. it was architecturally similar to its predecessor and 8080 source code could be me-

chanically translated to run on it. This translation capability, in fact, was a major influence

on the design of Tim Paterson’s operating system for the 8086 and, through Paterson’s

work, on the first released version of MS—DOS.

When the 8086 arrived on the scene, Microsoft, like other developers, was confronted with

two choices: continue working in the familiar 8-bit world or turn to the broader horizons

offered by the new 16-bit technology. For a time, Microsoft did both. Acting on Paul Allen's

suggestion, the company develoPed the SoftCard for the p0pular Apple II, which was

based on the 8-bit 6502 microprocessor. The SoftCard included a 280 microprocessor and

a copy of CP/M-80 licensed from Digital Research. With the SoftCard, Apple I1 users could

run any program or language designed to run on a CP/M machine.

It was 16-bit technology, however, that held the most interest for Gates and Allen, who

believed that this would soon become the standard for microcomputers. Their optimism

was not universal— more than one voice in the trade press warned that industry invest-

ment in 8-bit equipment and software was too great to successfully introduce a new stan-
dard. Microsoft, however, disregarded these forecasts and entered the 16—bit arena as it

had with the Altair: by developing a stand—alone version of BASIC for the 8086.

Section I.- The De be!opnwm ofMS—DOS 11

OLYMPUS EX. 1010 - 29/1582

OLYMPUS EX. 1010 - 30/1582

ll 1979-1980
1.
1.'

3 At the same time' and, coincidentally, a few miles south in Tukwila, Washington, a major
contribution to MS-DOS was taking place Tirn Paterson working at Seattle Computer

Products, a company that built memory boards, was developing an 8086 CPU card for use
in an 5-100 bus machine

86-DOS

Paterson was introduced to the 8086 chip at a seminar held by Intel in June 1978. He had

attended the seminar at the suggestion ofhis employer, Rod Brock of Seattle Computer

Products. The new chip sparked his interest because, as he recalls, “all its instructions
worked on both 8 and 16 bits, and you didn’t have to do everything through the accumu-

later. It was also real fast— it could do a 16-bit ADD in three clocks. ”

After the seminar, Paterson—again with Brock’s support—began work with the 8086.

He finished the design of his first 8086 CPU board inJanuary 1979 and by late spring had

developed a working CPU, as well as an assembler and an 8086 monitor. Injune, Paterson

took his system to Microsoft to try it with Stand-alone BASIC, and soon after, Microsoft

: BASIC was running on'Seattle Computer’s new board.

1 During this period, Paterson also received a call from Digital Research asking whether

they could borrow the new board for developing CP/M-86. Though Seattle Computer did

1 . not have a board to loan, Paterson asked when CP/M-86 would be ready. Digital’s represen—

I tative said December 1979, which meant, according to Paterson’s diary, “we’ 11 have to live

i with Stand—alone BASIC for a few months after we start shipping the CPU, but then we’ll be
' able to switch to a real operating system ”

Early in June, Microsoft and Tim Paterson attended the National Computer Conference
in New York. Microsoft had been invited to share Lifeboat Associates’ ten-by-ten foot

booth, and Paterson had been invited by Paul Allen to show BASIC running on an 8—100

8086 system. At that meeting, Paterson was introduced to Microsoft’s M-DOS, which he

found interesting because it used a system for keeping track ofdisk files —the FAT devel—
oped for Stand—alone BASIC — that was different from anything he had encountered.

After this meeting, Paterson continued working on the 8086 board, and by the end of the
year, Seattle Computer Products began shipping the CPU with a BASIC option.

When CP/M-86 had still not become available by April 1980, Seattle Computer Products

decided to develop a 16-bit operating system of its own. Originally, three operating sys—

tems were planned: a single-user system, a multiuser version, and a small interim product

soon informally christened QDOS (for Quick and Dirty Operating System) by Paterson.

Both Paterson (working on QDOS) and Rod Brock knew that a standard operating system

for the 8086 was mandatory if users were to be assured of a wide range of application soft-
ware and languages. CP/M had become the standard for 8-bit machines, so the ability to

mechanically translate existing CP/M applications to run on a 16—bit system became one of

Paterson’s major goals for the new operating system. To achieve this compatibility, the sys—

tem he deveIOped mimicked CP/MBO’S functions and command structure, including its
use of file control blocks (FCBs) and its approach to executable files.

1“} '1']... air r‘lnr‘n____._l_L__l.'_

OLYMPUS EX. 1010 - 30/1582

OLYMPUS EX. 1010 - 31/1582

1980

_‘ Arr. aduertfsemtfor
GO 1B-BIT now —— WE HAVE MADE IT EASY ’59 Seattle Computer

Products 8086 CPLl

with 86-003-published8086 in the December 1980
'55 B t .

8Mhz.2-cardCPUSer I we 0f is

WITH 86-0039 $595 3“
ASSEMBLED, TESTED. GUARANTEED

Wlfll out E-cerd SUBS CPU sal youcan upgraderowZBU 8-
km S-lou system to run mru Ilml‘rs as lasl by swapping the
OPUS. ll you use our 1641“ memory. ll wrll run Imr [Ines asr551. Uplu 84K d! your slam: a-bit memory may bended inll’lo
3086's l-moabybe addressing I'an Aswilch allowuilher‘in! 5 MM operation. Memnfy access renunremenls al 4 Mmz.exceed son used.

The EPROM monitor allows you to dismay. aller. andmarch memory, do r'nmrla and ourenls. and cool your dusk.
Damaging ans Include reg'rsler drspfiay and change. Singleslewng. and execute mm omakpoinls.

The :01 Includes a «not con wnhp-ogrammnble baud mle.
lwr rrldenendem programmable la-h-l burners [two may be
combined for a Iirne-dl-aay clackg. aperal‘nlm and parallel outport. andan intarrupl conlrollar with 15 Input; Em-rrulponar
may 5! aDDlied to line Iimers lo marnLaan the solar flulmg
system primer-0H lime. TolaJ powerflarrlpsall > EV.IasslharI‘00 me. a: «16V and a1 IIGV.

85-005“. our 3195 8088 s-rrgla use: my mural-“g
system. rs plow-fled w-lrlodl adorn-anal amigo ll allow-s
Mncwns such as console I D 01 characIMs and slnllgs. andranflafl'l or aaquemal reading and wming no named dusk Mes.
Whrle ll has a diflerent larvrlal 1mm OP M. It perform; similar
calls olus some enlensrons [C‘P M rsaragisleledlraoemwx ol'
Drgrtal Fla-search Borodrawn] lls manual-m allows relative-
l, nay cunlrgutatidn ol ID ID oirleranl hardware Drratrly

cm umllen lu- CF M. lransrala thus lo sou source code.
assamue Irle source code. and Ihen run :ha program on "II!8055 processor Under E's-DOS Thls alldws the cmversldn or
any 250 program. ldr which source boner! armlabla. lorunonthe much hgner penermanoe 3086.

BASIC-Ba by mason rs available for lhe 8053 a: 5350
Several firms are wrung on aoolrcetrnn programs Call forCullen! whilst! S‘dlUS.

.ln Wald licensed lor use on a single mule! onlyaunporred are the Tame! and Cromemud d-sk tonlmllers.THE 88-305“ package undone! an 5036 resrdonr ae-
semater. a 28010 8086 scarce cede ltflMBthaulllllle read

Ian-63c Insure agreements required. Shaping from stock In
one went: Bank card; parsonalcmcks. GODS okay Ther: :3
a was, ralum privilege. Allocards are guaranlced doeyear
— Dolh pans and lanor snrppea plueao By an In US and
Canada. FO‘C'DQH purchases musl be preoa-d In US IundsAlso Ed 810 our board Ida overseas aw sl'lvmem

Irles wI'IIIBfl In CF Mend carwmlhonl Iolhe aa-DOSlomlal. a
llne 9mm and dish marnrgnande uI-Mraa Cll semi-dance ID
250 users rs the alarm]! all In: uanslalor Io scum ZED source

Bi16 16-BIT MEMORY
Thrs board was aes-gnad Idr the isms. n l! central-rad as

I“ by E Dtls when accessed by an Bro-I processor and
cmlngurea BK by as buts when used wllh a 154m (votessorThu conI-qurahoo swatch-n9 rs aulofllaI-c and Is done by the
card san'plmg the "smear! requesl' Signal sen: mu by all S-
100 I: EE lS-brl CPU boards. me card has alllne high rlorsa
rmmumryrealurn clour well known PLUS RAM came as well
as "amended addreasrng". intended addressing rs aregladavmen! lbr bank selacl. Il makes use ol'alolalolfli andraas lrnas
la gun: a arreclry addressable range at over IE megabytes.[For New systems_ a smlcn wlll cause the card lo We me
lop 5 address lavas] ‘Ihrs card ensures that your memory
board purchase wrll nol soon be obsolete. ll I5 guaranleed loIurl wllhoul Ilall ’IflMS w-Ih our 5086 CPU ”I wanna ans Mil:
clock Snrppndlrom slnfiif-‘rrcas I-a. $280.59. 5250.10-ud.S240

g Scuttle Computer Products, IM.n H mm", am. sum. m velar:

mos: 575.1330

At the same time, however, Paterson was dissatisfied with certain elements of CP/M, one

of them being its file-allocation system, which he considered inefficient in the use of disk

space and too slow in operation. So for fast. efficient file handling, he used a file allocation
table, as Microsoft had done with Stand-alone Disk BASIC and M-DOS. He also wrote a

translator to translate 8080 code to 8086 code, and he then wrote an assembler in 2280

assembly language and used the translator to translate it.

Four months after beginning work, Paterson had a functioning 6 KB operating system,

officially renamed 86-DOS, and in September 1980 he contacted Microsoft again, this time
to ask the company to write a version of BASIC to run on his system.

Section I.- Tke Development ofMS—DQS‘ 13

OLYMPUS EX. 1010 - 31/1582

OLYMPUS EX. 1010 - 32/1582

1930

IBM

While Paterson was developing 86-DOS, the third major element leading to the creation of

MS-DOS was gaining force at the opposite end of the country. IBM, until then seemingly

oblivious to most of the developments in the microcomputer world, had turned its atten—

tion to the possibility of developing a lowend workstation for a market it knew well: busi-
ness and business people.

On August 21, 1980, a study group of IBM representatives from. Boca Raton, Florida, visited
Microsoft. This group, headed by a man named Jack Sams, told Microsoft of IBM’s interest

in developing a computer based on a microproceSSOr. IBM was, however, unsure of micro-

computing technology and the microcomputing market. Traditionally, IBM relied on long

development cycles —typically four or five years— and was aware that such lengthy
design periods did not fit the rapidly evolving microcomputer environment.

One of IBM’s solutions—the one outlined by Sams’s group —was to base the new
machine on products from other manufacturers. All the necessary hardware was available,

but the same could not be said of the software, Hence the visit to Microsoft with the ques-
tion: Given the specifications for an 8—bit computer, could Microsoft write a ROM BASIC for

it by the following April?

Microsoft responded positively, but added questions of its own: Why introduce an 8-bit _

computer? Why not release a 16-bit machine based on Intel‘s 8086 chip instead? At the end

of this meeting—the first of many— Sams and his group returned to Boca Raton with a

proposal for the development of a low—end, 16~bit business workstation. The venture was
named Project Chess.

One month later, Sams returned to Microsoft asking whether Gates and Allen could, still

by April 1981, provide not only BASIC but also FORTRAN, Pascal, and COBOL for the new
computer. This time the answer was no because, though Microsoft’s BASIC had been

designed to run as a stand-alone product, it was unique in that respect—the other lan-

guages would need an operating system. Gates suggested CP/M-86, which was then still
under development at' Digital Research, and in fact made the initial contact for IBM. Digital

Research and IBM did not come to any agreement, however.

Microsoft, meanwhile, still wanted to write all the languages for IBM —approximateiy 400

KB of code. But to do this within the allotted six-month scheduie, the company needed

some assurances about the operating system IBM was going to use. Further, it needed

specific information on the internals of the operating system, because the ROM BASIC

would interact intimately with the BIOS.

The turning point -

That state of indecision, then, was Microsoft’s situation on Sunday, September 28, 1980,
when Bill Gates, Paul Allen, and Kay Nishi, a Microsoft vice president and president of

ASCII Corporation injapan, sat in Gates’s eighth—floor corner office in the Old National

Bank Building in Bellevue, Washington. Gates recalls, "Kay and I were just sitting there at

night and Paul was on the couch. Kay said, ‘Got to do it, got to do it.’ It was only 20 more K

1 K T"... In“ nnr r5.-.....J..+....-:.'..

OLYMPUS EX. 1010 - 32/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 33/1582

1980 '

of code at most— actually, it turned out to be 12 more K on top of the 400. It wasn’t that big

a deal, and once Kay said it, it was obvious. We’d always wanted to do a low—end operating
system, we had specs for low-end operating systems, and we knew we were going to do

one up on 16-bi

At that point, Gates and Allen began looking again at Microsoft’s proposal to IBM. Their

estimated 400 KB of code included four languages, an assembler, and a linker. To add an

operating system would require only another 20 KB or so, and they already knew of a

working model for the 8086: Tim Paterson’s 86—DOS. The more Gates, Allen, and Nishi

talked that night about developing an operating system for IBM’s new computer, the more

possible —— even preferable —the idea became.

Allen’s first step was to contact Rod Brock at Seattle Computer Products to tell him that

Microsoft wanted to develop and market SCP’s operating system and that the company had

an OEM customer for it. Seattle Computer Products, which was not in the business of

marketing software, agreed and licensed 86-DOS to Microsoft. Eventually, SCP sold the

operating system to Microsoft for $50,000, favorable language licenses, and a license back
from Microsoft to use 86—DOS on its own machines.

In October 1980, with 86-DOS in hand, Microsoft submitted another proposal to IBM. This
time the plan included both an operating system and the languages for the new computer.

Time was short and the boundaries between the languages and the operating system were

unclear, so Microsoft explained that it needed to control the development of the operating

system in order to guarantee delivery by spring of 1981. In November, IBM signed the
contract.

Creating MS-DOS

At Thanksgiving, a prototype of the IBM machine arrived at Microsoft and Bill Gates, Paul

Allen, and, primarily, Bob O’Rear began a schedule of long, sometimes hectic days and

total immersion in the project. As O’Rear recalls, “If I was awake, I was thinking about

the project.”

The first task handled by the team was bringing up 86-DOS on the new machine. This was
a challenge because the work had to be done in a constantly changing hardware environ-
ment while changes were also being made to the specifications of the budding operating

system itself.

As part of the process, 86—DOS had to be compiled and integrated with the BIOS, which
Microsoft was helping IBM to write, and this task was complicated by the media. Paterson’s

86-DOS —— not counting utilities such as EDLIN, CHKDSK, and INIT (later named

FORMAT) — arrived at Microsoft as one large assembly—language program on an 8—inch

floppy disk. The IBM machine, however, used 51/4-inch disks, so Microsoft needed to de—
termine the format of the new disk and then find a way to get the operating system from
the old format to the new.

Section I.- The Development ofMS—DOS 1 5

OLYMPUS EX. 1010 - 33/1582

OLYMPUS EX. 1010 - 34/1582

1980—1981

Patti/Ills»: and

81!! Gates (198.2).

This work, handled by O’Rear, fell into a series of steps. First, he moved a section of code

from the 8—inch disk and compiled it. Then, he cenverted the code to Intel hexadecimal

format. Next, he uploaded it to a DEC-2020 and from there downloaded it to a large Intel
fixed-disk deveIOpment system with an In—Circuit Emulator. The DEC-2020 used for this

task was also used in developing the BIOS, so there was additional work in downloading

the BIOS to the Intel machine, converting it to hexadecimal format, moving it to an IBM

development system, and then crossloading it to the IBM prototype.

Defining and implementing the MS-DOS disk format~— different from Paterson's 8—inch

format—was an added challenge. Paterson’s ultimate goal for 86—DOS was logical device

independence, but during this first stage of development, the operating system simply had

' l to be convened to handle logical records that were independent of the physical record size.

|
i

l
j: Paterson, still with Seattle Computer Products, continued to work on 86-DOS and by the

i end of 1980 had improved its logical device independence by adding functions thatl i! streamlined reading and writing multiple sectors and records, as well as records of variable
I size. In addition to making such refinements of his own, Paterson also worked on dozens
t l of changes requested by Microsoft, from modifications to the operating system’s startup
I, 1 messages to changes in EDLIN, the line editor he had written for his own use. Throughout

1| i this process, IBM’s security restrictions meant that Paterson was never told the name of the

1' ! OEM and never shown the prototype machines until he left Seattle Computer Products and
I joined Microsoft in May 1981.I

1 And of course, throughout the process the developers encountered the myriad loose ends,
I momentary puzzles, bugs, and unforeseen details without which no project is complete.
F - There were, for example, the serial card interrupts that occurred when they should not

‘ g5 and, frustratingly, a hardware constraint that the BIOS could not accommodate at first and
h that resulted in sporadic crashes during early MS-DOS operations.

f
il
I
I
I

I 1 5 Tim us me manmrnnndan

OLYMPUS EX. 1010 - 34/1582

OLYMPUS EX. 1010 - 35/1582

1980-1981

Bob O’Rear’s sketch of
the steps involved in
moving 86—005 to the
IBMprototype.

mmumn 1. TL”; nmmlnnmmr nf‘II/KLDOS’ 1 7

OLYMPUS EX. 1010 - 35/1582

OLYMPUS EX. 1010 - 36/1582

1980-1981

' Dog 0.8.4.1“ «Lakes
0%» WWW» 9v w+W~WW

' W1 W :
MM nu 0.1ka” mm union—W'Inw

(filL I ‘l‘l‘t‘l'l N‘hhknddddd
WM- ' Mil-tn sbboshwmaokmaflgr
mtmw ‘ 11111 and Bbbos Altaiflmdatcirmmed-vm

Ida. IEEQJ 14' «Mb vamifigmmm'? fl {5!}: “mumbfiy ,J”_ 9W0: ‘5 * .lé‘muHEc.m

_, 3' q/L SQ“ Oeboflibflpcliam‘n-‘wawd_siu~p«I x O €63" Wnrfll‘ “vi-I» MammCmc Nada—L

0 1i. WILL ‘
W ugh] y, _ ‘fibeaoan mawflwflmmq

(%/ L, 9-4., "ck ‘ mm wan-{:5 + 90x1: sum—.3
' 1 .M M—Wj W am, 1 ”mm M M M

v{ .C'm “Wham a.) :3 meflm

*- WW (MA) 12...; “a
yr 1 M mi R‘s—13:. W; 1%... $1305

Y/‘b WW 05-? 605 MT Lama-.0

1» MM «4‘ 59cm L141 3} +1. [Wham.W Unit at

0qu @‘ggh my?“ 63:, am MM
74— l{.I—l:sza;nf._ CKLDSLQWMW“.

Part ofBob 0 ’Rear’s "laundry” list ofoperarireg—$1.9m changes and correctionsfor ear-1yApril 1981. Around
Ikis time, interim beta copies were shxpped to IBMfor resting.

1 9 Wm “crime 1:””””” Inna/4;”

OLYMPUS EX. 1010 - 36/1582

OLYMPUS EX. 1010 - 37/1582

“My own IBM computer.
Imagine that.”

Presenting the IBM of
Personal Computers.

198]

The 1981 debut ofthe
IMPer-sonal

Computer.

F’j

it: fiffiwmwmmmqm wimymmuwm om

mmmaummwnmmloukmlm
WWminmurlnaywmimmmummmu nit-Hm your
Mmsmwmlwahm

mmnmnmmeim Platinum-«m
uumumywrraommnmmmtbm
pin a: Mir was“. fuim.0flowfl
mmwrmmwmbmm
anamupduudymmdvemmmmmmmammal: Milan menu-M mm.

am umrllfasanlBH Puma: Cunpuletmkhmiwmmbfiflwduaam-
knurlnub'rphymgwuwdnumg

I aimulmmn

“Dad, can I use

the IBM computer
tonight?”

:Mm.mrmumnwmw:
meIWHKR—WWHCMGDJTW
mmdumwdmmgmgwmmaglemwum mummmwu
(wkmmmrpclnwnmlrmmwwmggigu-mmpumunm: new Sun “hung
MmmmnaamCuna—u

mmwmuMPcmulfiamwmbcmofdlg but new 5mm :1 ywrhmiflyl a...”
wwdflkfl rum-hilt Sunfisllinuhul
Ilm‘umcnmnw.unhmadmlmnlwammm.mmwvaurmn'wmywesummit-Incarnate.

namuudunmrmiymdumu Pena-u:
Winner AM- me'swma Scan
mfi'flm mlmmunnlflxmflmlmrm WEI“ [TIK IBM MW MIW'II) DI-‘ishn
mmmmim: IhmmmldnsemOmit“

mmmwmmmmmwmr
mm Hmmwe.moum.mjwmfinr

mmcmwltmnllufllmmk
in

a_______‘ ... n uum”... .‘1 t- a“... . .- .‘.. u... w

In spite of such difficulties, however, the new operating system ran on the prototype for

the first time in February 1981. In the six months that followed, the system was continually

refined and expanded, and by the time of its debut in August 1981, MS-DOS, like the IBM

Personal Computer on which it appeared, had become a functional product for home
and office use.

OLYMPUS EX. 1‘610 - 37/1582

OLYMPUS EX. 1010 - 38/1582

1981

Version 1

The first release of MS-DOS, version 1.0, was not the operating system Microsoft envi-

sioned as a final model for 16bit computer systems. According to Bill Gates, ”Basically,
what we wanted to do was one that was more like MS-DOS 2, with the hierarchical file

system and everything. . .the key thing [in developing version 1.0] was my saying, ‘Look,

we can come out with a subset first and just go upward from that.” "

This first version — Gates’s subset ofmsoosaawés actually a good compromise be-
tween the present and the future in two important respects: It enabled Microsoft to meet

the development schedule for IBM and it maintained program—translation compatibility
with CP/M. '

Available only for the IBM Personal Computer, MS—DOS 1.0 consisted of 4000 lines of

assembly-language source code and ran in 8 KB of memory. In addition to utilities such

as DEBUG, EDLIN, and FORMAT, it was organized into three major files. One file,
IBMBIOCOM, interfaced with the ROM BIOS for the IBM PC and contained the disk and

character input/output system. A second file, IBMDOS.COM, contained the DOS kernel, in—

cluding the application-program interface and the disk—file and memory managers. The

third file, COMMANDCOM, was the external command processor—the part of MS-DOS
most visible to the user.

To take advantage of the existing base of languages and such popular applications as

WordStar and dBASE II, MS—DOS was designed to allow software developers to mechan—
ically translate source code for the 8080 to run on the 8086. And because of this link,

MSLDOS looked and acted like CP/M—SO, at that time still the standard among operating

systems for microcomputers. Like its 8-bit relative, MS-DOS used eight—character filenames

and three-character extensions. and it had the same conventions for identifying disk drives

in command prompts. For the most part, MS-DOS also used the same command language,

offered the same file services, and had the same general structure as CP/M. The resem—

blance was even more striking at the programming level, with an almost one-to-one cor-

respondence between CP/M and MS—DOS in the system calls available to application
1:)ngrams.

New Features

MS-DOS was not, however, a CP/M twin, nor had Microsoft designed it to be inextricably

bonded to the IBM PC. Hoping to create a product that would be successful over the long

term, Microsoft had taken steps to make MS-DOS flexible enough to accommodate

Changes and new directions in the hardware technology—disks, memory boards, even

microprocessors —~ on which it depended. The first steps toward this independence from

1

l

l

OLYMPUS EX. 1010 - 38/1582

OLYMPUS EX. 1010 - 39/1582

1981

Retail Sales

[11 US. Up

, sum: as
Big I.B.M.‘s Littie Computer

1‘5 Dflk'TDP "nu s mummy-sum i I 3% ‘- - ' . In ul
Model Brings gland-urn minimum J y

. A New Image But AnalystsAre Dubious of
General Uptum

IBM's New Line Likely to Shake Up
The Market for Personal ComputersD! Gum nunM“ m... 41— inuwntmul"gr vm_m.-m.m.i mm a:Ann M Ell m ’3 mid (Ill! innin WWII mm. m Mwnowmt mound mm- nu
Ir»: 5; I! w Wfi‘ nun innu

cmbw.Wmllmhmq-xmwnImi mr In mk . a manwaiting-ma nun-mominn-mum Immmm
IN Map WWW uMAM-IMMEHHWWhmflmmlu.mm Mil-ll. nr mm. m w

mmmr.wmnommaim
WynJNmIBHw n1mummzam.mim 4vuwlmmmium m Inni-mum .na mam mm (Mnull-u m mom: mm on ran:mumhmueronui.WMWchIKCF‘fl.

 "mm W W" NM w- I!“ I. m 0! r In WIOMI!MM

“mummmm mam"... “mg. www.mm...umum.umwm.ma wlwmflmmlu.“ simmemmimmmfl

EWBifi -
uni-summing“:

IBMAnnouncesNewMicrocomputerSjystemIt's Ofl‘fcl‘d'L- One surprisemums-um”ml "trainer-wanna In.“ .- .. w n. my..." 1. w: myin an”... --vuu..u.—o—. nun-“mi. hag—w..."-num M. » nu" 4.5-.- hr raw-wlw«no» umuWuw~m..nw wm-mnwm mini...”mum. .mmm «my u.- a: n. n... W Maguflwfi‘
m an- -mr in...” .- me a..- g-‘Mw-wdmu-(fi'an mm Mmknld _ m. mum. {aw -- n-In‘ ...ma... ...,u.n..mi.am..... m.mm u «um. .1 n. m x. win-nu...“ "MM-ummay mm .. 9. mm... -n mum's-um nus-num-mnimmu mav- mmwwwmw»

IBM realty gets personsl.

I' sun uni Campullflamd comm: mailsims :5 Mil u diwnly “31:15! uni-porno
W WWII man, inn “)1. pnini'm;

PERSONAL COMPUTERS

cu! nil; in his sewn uperial nailuiui mar-kfiing «min Mink such rm:men.
Dinah Emmy. w; minim: di-

rucloi oflau's gnu-y imam animus whn
hrmd rm and movie 1%“ u 0.: ma-
cImcsIu anyhow may mean“: been
damned m 3.. onion! mini-lain; cfl'ofl.
bu: any: il will in! telling in uoiumes ol 10

Th. inianIr's lung-
ailiitd l'll1fj' inio it. 9'li “mlliu. M "id RWK 10"" M1 Mn' "-cly.vcrygm."wiliiombehgnken
BOVIHfliflI Inll’k'l II!!! II" Km no arllwrin Io be m bdrm: flii!
III."- in Mlion in} IR glib: of MWWioi mhwmik but maul-dag rm- "IR. with Bridge slid M5 been nim-
fm_ mum a: Ham's mi Mill" Magi-Ir "mind by Iii! Boa Rum. Fla”
31min P¢Mfll| Comlu. Highly mmpl- anmayolpuluptdwpliflb‘mquam
rablc Io nfieriliy [mm uni-commie“ Ap- am In: expend mm .miuel'w: Ieih:9|: ms Radio such. "I: main: izm- tower-i: m.
pvlcrmuwMumllilallimhhlflllit—l Cu: gym-minke: pubs: [mm Pam-ma:
wagon to new a! IM (nits: grow-n; uu- Sohwm. “twain; puny; Mm Mm-
mflm arm infinity. milieu: Sciencn Amuica'a Maire: Son-
aypeal MI home new I: well I: carnal: :G'I Baywriwr hind puma-wing system.praiumm. M6 in price [min SL565 Alflmuah IMwoulfllI't "y, ram Iadgpm-
fonlurc-boucs cavfimiionioWJW for dently developed pwkunsmceruin mu:

m u “I IBM chi-‘2': wuamr.asm inuudimm. dc-mhim M m. Shell we“, skier 1h:

”rural. a: will a home mm

plum; slang [a 1h: influm by im- suff. IBM Ms Mimi oil! in: machine wlfli

mu “m1 newuch [mmelud'mgtoin- Among mu: m an: populx Vlsl-

TM (emu. which ii dammit-i wu: mention. and mien-aim Unlimi-

Niall-mm tunnel. D! will“ wld duuogh 002m: {oldie :ommruwzuu M359

 ymmwmmmm
9(me madman-an IBM Rm

mquh-auiupuymxmdmflmuficc
mm in hot»: apn-am u : chi: 8

MD“. The unit. m “MW. plays (Whack-m]
mwmupmmmwuymm Iahikmmuofdwhummmmm,
dummkunmavm mmmymihuamm

 Thu-unwiebweuumnlazmglflcriu
MEIEHSGSJprs-bedxbvyugfisms}wwwcmwmmamm mdwiflufldmmdilntmmifiginmrur
Wmluww.w Mimi-1mm. WWWWIMWKWW

mmmmfipu-nmmmaWum i mmwsflnflumdmm.wdflihmflmpmawmm(maimd r' Emmi!

mmnmmmmmupmd.m
mmwammuwxm

u WWWNL‘M [MI

A samplmg offiie headlines and newspaperarflcfes ma: abounded when IBM announced its Personal
Computer:

Sean‘on I: The Dewfopmen! ofMS—DOS 21

OLYMPUS EX. 1010 - 39/1582

OLYMPUS EX. 1010 - 40/1582

1981

A pagefrom Microsoft '3 third-quarter

“CROW .
T 1' reporifori981'.

L—--— i mmenu-w W“: - us at .m m

runwéuhlpmfid fifl‘afigfif‘ Mlcmfinfi
xcwrdwmwm- 'IBMBI'EERSH‘IB maewnaauvhcim COBOL
mwfimmm $8“ _ nmslcasmaknum{Ww'mm 1 EE ”er

umnmlmawflhfi PBSSESGSA

mmm- 1Validatlon lmmmmm
aims-mm.-
mumwmn-pc shamed-mewme‘rxm mmmwaworsen-mm lnm “W “MSW”lowwmm“ www.mlugulum
mmhwlw ”WW‘WP C I Ln.” Mpum.rusw.
mauwat‘amm nboaomrawm
mamwuwwm ”WWW“

mmummwmwm Imianpwammhnknnhwmname-WWI;
Mlfimln magma-elm\InIMSE‘WWJDDJ
haw-am

mwmrm .\Winn-room“
Minimum-gas .Mum mm

rmmumIcahn oime manmom»let: u saga cnu lflflsflm

 ammmfllwmhnotmammvytmnmm

WH‘WW Tmmnmmm WIS WW“
mmwflm- --: rwoongmlolm "mcmm-Wmlwu‘lhelm - ' |6-U|mmd.floedfly 51" WW”
mammogram-m : ImmmlflIm—mfll W-W"m'mwaimammmw MWBASUC. ”WNW
unwuwm ._ Thu-mm swam: “"“w‘ ”u" ”“1"museum-m ”mebw WW'IM'Wmwcsmmm ' mhww. CPMPD’W‘W'”minnows-mm . WWMMMM$ "mm ““5“”macaw-«um 005 newsman-man, 5“”W“ml°5'“ism-u wmwmwflu m“""”‘“ m
yew-immense mmnmw Wrwwmnummonmmm mmmmwm a” ' "' m‘m'
wwmmmw wmcflmzxowaw :aagamsumslllawnummmhamnw swnuutuw-m ”mm WHWIW

“mnmnccmflumm “Immune-mm””WWW
m-nosus-Dosmw mumps-9 uhmcoam

gunman«umIn». and «I mm— mm.IhuWW"WW Mummmmum medulllium Imp-m
AISNWM ion SEND: «seem lemagcr.-mn¢mmummy WWW pinu- M‘W‘mam-u km“ s! mos Mm“m,Mara-ImammuI10.WW.¢I

I‘mW”mW«was man ism awn-m;dam wwmlflkWWW-u
mun-IIman maymusmum‘s-mmnuns has been madam
I'm-mumelm164:1meM.Wamnuamtwww

in n m: Haunt.) Inky In!Wt FORTRAN Wmmum Ianmum."swarm.MWmmmmw
gnome 361K www.mwWWW ml Realm U!
mmm.mmmmwmwii-Intramural m.mmWWW”'0

memos!mm mm.hm Mmm
wamolm when-mm fora-mmmlmw nl'lug- umuvmhmlum

mun-rummage WIWJMMMMM

specific hardware configurations appeared in MS—DOS version 1.0 in the form of device-

independent input and output, variable record lengths, relocatable program files, and a

replaceable command processor.

MS—DOS made input and output device-independent by treating peripheral devices as if

they were files; To do this, it assigned a reserved filename to each of the three devices it

recognized: CON for the console (keyboard and display), PRN for the printer, and AUX for

the auxiliary serial ports. Whenever one of these reserved names appeared in the file con-

trol block of a file named in a Command, all operations were directed to the device, rather

than to a disk file. (A file control block, or FCB, is a 37-byte housekeeping record located

. in an application‘s portion of the memory space. It includes, among other things, the file-

name, the extension, and information about the size and starting location of the file
on disk.)

Such device independence benefited both application developers and computer users.

011 the deveIOpment side, it meant that applications could use one set of read and write
calls, rather than a number of different calls for different devices, and it meant that an ap-

plication did not have to be modified if new devices were added to the system. From the

iI
I..lI
I
I
lI.
II
l
J1
I.
I.I
.'
.l
lI
I
r
l
I

OLYMPUS EX. 1010 - 40/1582

���������	�
�
�����
�
��OLYMPUS EX. 1010 - 41/1582

1981

user‘s point of view, device independence meant greater flexibility. For example, even if a

program had been designed for disk I/O only, the user could still use a file for input or
direct output to the printer.

Variable record lengths provided another step toward logical independence. In CP/M, logis
cal and physical record lengths were identical: 128 bytes. Files could be accessed only in

units of 128 bytes and file sizes were always maintained in multiples of 128 bytes. With

MS-DOS, however, physical sector sizes were of no concern to the user. The operating sys-

tem maintained file lengths to the exact size in bytes and could be relied on to support logi-
cal records of any size desired.

Another new feature in MS-DOS was the relocatable program file. Unlike (JP/M, MS-DOS

had the ability to load two different types of program files, identified by the extensions

.COM and .EXE. Program files ending with .COM mimicked the binary files in CP/M. They

were more compact than .EXE files and loaded somewhat faster, but the combined pro-

gram code, stack, and data could be no larger than 64 KB. A .EXE program, on the other

hand, could be much larger because the file could contain multiple segments, each of

- which could be up to 64KB. Once the segments were in memory, MS—DOS then used part

of the file header, the relocation table, to automatically set the correct addresses for each

segment reference.

I
l
lI

In addition to supporting .EXE files, MS«DOS made the external command processor,

COMMAND. COM, more adaptable by making it a separate relocatable file just like any

other program. It could therefore be replaced by a custom command processor, as long
as the new file was also named COMMANDCOM.

Performance

Everyone familiar with the IBM PC knows that MS-DOS eventually became thedominant
Operating system on 8086~based microcomputers. There were several reasons for this, not

least of which was acceptance of MS-DOS as the Operating system for IBM’s phenomenally

successful line of personal computers. But even though MS—DOS was the only operating

system available when the first IBM PCs were shipped, positioning alone would not neces-

sarily have guaranteed its ability to outstrip CP/M—SG, which appeared six months later.

MS—DOS also offered significant advantages to the user in a number of areas, including the

allocation and management of storage space on disk.

Like CP/M. MS—DOS shared out disk space in allocation units. Unlike CP/M, however,

MS-DOS mapped the use ofthese allocation units in a central file allocation table ——the

FAT—that was always in memory. Both operating systems used a directory entry for

recording information about each file, but whereas a CP/M directory entry included an al—
location map — a list of sixteen 1 KB allocation units where successive parts of the file

Were stored —- an MS—DOS directory entry pointed only to the first alloeation unit in the

FAT and each entry in the table then pointed to the next unit associated with the file. Thus,

CP/M might require several directory entries (and more than one disk access) to load a file

Section I: The Dewi'opmem DIME-Dos 23

OLYMPUS EX. 1010 - 41/1582

OLYMPUS EX. 1010 - 42/1582

_ I. . 1981

and all available disk space without having to aCCess the disk at all. As a result, MS-DOS’s

ability to find and load even very long files was extremely rapid compared with CP/M’s.

No other important features — the ability to read and write multiple records with one

operating-system call and the transient use of memory by the MS-DOS command

processor—’— provided further efficiency for both users and developers.

_;. g larger than 16 KB, but MS—DOS retained a complete in—memory list of all file components
l

l

The independence of the logical record from the physical sector laid the foundation for the

ability to read and write multiple sectors. When reading multiple records in CP/M, an appli~

_ _ cation had to issue a read function call for each sector, one at a time. With MS—DOS, the ap-

' ' :i plication could issue one read function call, giving the operating system the beginning
3! record and the number of records to read, and MS—DOS would then load all of the corre—

sponding sectors automatically.

Another innovative feature of MS—DOS version 1.0 was the division of the command pro-

cessor, COMMANDCOM, into a resident portion and a transient portion. (There is also a

third part, an initialization portion, which carries out the commands in an AUTOEXEC

l batch file at startup. This part of COMMANDEOM is discarded from memOry when its
_, ,I work is finished.) The reason for creating resident and transient portions of the command

if g processor had to do with maximizing the efficiency of MS-DOS for the user: On the one

|
|
|

hand, the programmers wanted COMMAND. COM to include commonly requested func-

tions, such as DIR and COPY, for speed and ease of use; on the other hand, adding these

commands meant increasing the size of the command processor, with a resulting decrease

, in the memory available to application programs. The solution to this trade—off of speed

- i versus utility was to include the extra functions in a transient portion of COMMANDCOM

that could be overwritten by any application requiring more memOry. To maintain the in—

tegrity of the functions for the user, the resident part of COMMANDCOM was given the
job of checking the transient portion for damage when an application terminated. If neces-

sary, this resident portion would then load a new copy of its transient partner into memory.

Ease of Use

In addition to its moves toward hardware independence and efficiency, MS~DOS included

several services and utilities designed to make life easier for users and application devel-

opers. Among these services were improved error handling, automatic logging of disks,

date and time stamping of files, and batch processing.

MS—DOS and the IBM PC were targeted at a nontechnical group of users, and from the

beginning IBM had stressed the importance of data integrity. Because data is most likely

to be lost when a user responds incorrectly to an error message, an effort was made to in-
clude concise yet unambiguous messages in MS—DOS. To further reduce the risks of misin-

terpretation, Microsoft used these messages consistently across all MS-DOS functions and

utilities and encouraged developers to use the same messages, where appropriate, in their

appiications.

OLYMPUS EX. 1010 - 42/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 43/1582

1981

Package Content!
0 I diskztta, with the fulloflinq 5113::commcon

Msnosdson3131.1“.0011newsmanFXLCGMAHIH

‘ Contents1 PIS-DDS Disk operating system Hanna).
Xntxoduction

Features and Benefits ar Ms-Dos
Using This Manualsyntax Notation
Ms—Dns structure and characteristics

General its-Dos comnda1 Control Functinn Characters
2 special Editing Commands3 Disk max:

System Requirements chapter 11.l.
The its-nos Operating System requiran 8K byte: of memoryr 1,

Chaptex www.con
O z2. 1 Prompt.2.2 Filenalnea2.3 Comm-ands2.3r1 Internal cam-ma.2. 3. 2 External Conmand:

0 chapter 3 sum3,1 1nvakan noun3.: Cemmand:3 . 2 .1 Command Parametets3 . 2.2 Interline Command:
3.: Error Message:

chuptex 4 DEBUG
4.1 Invoking naaus4 . Z Comnds4 . 2 . 1 Command Parameters
4.2.2 Command DescriptlonaL] Error Messages

0 chapter amenInvoking FILCOHcommandsi ruenma. 2 switches
Examples

Instructinns to: Single Disk Drive Users

Chaptez 6

Twopagesfrom Microsoft'sMS—DOS version 1.0 manual. On the left, the system ’5 requirements — 8 KB of
memory,- on the right, the 118—puge manual ’5 complete table ofcontents.

In a further attempt to safeguard data, MS—DOS also trapped hard errors ——- such as critical

hardware errors —— that had previously been left to the hardware—dependent logic. Now
the hardware logic could simply report the nature of the error and the operating system

would handle the problem in a consistent and systematic way. MS—DOS could also trap the

Control—C break sequence so that an application could either protect against accidental

termination by the user or provide a graceful exit when appropriate.

To reduce errors and simplify use of the system, MS-DOS also automatically updated mem-

ory information about the disk when it was Changed. in CP/M, users had to log new disks

as they changed them —— a cumbersome procedure on single—disk systems or when data

was stored on multiple disks. In MS—DOS, new disks were automatically logged as long as
no file was currently open.

Another new feature —— one visible with the DIR command — was date and time stamping

of disk files. Even in its earliest forms, MS—DOS tracked the system date and displayed it at

every startup, and now, when it turned out that only the first 16 bytes of a directory entry

Section I: The Developth ofMS—DOS 25I II IA‘AIFI I_\I AAA“ AOIAL-nh

OLYMPUS EX. 1010 - 43/1582

OLYMPUS EX. 1010 - 44/1582

1981-1982.

were needed for file-header information, the MS-DOS programmers decided to use some

of the remaining 16 bytes to record the date and time of creation or update (and the size of
the file) as well.

Batch processing was originally addedto MS-DOS to help IBM. IBM wanted to run

scripts — sequences of commands or other operations —- one after the other to test various
functions of the system. To do this, the testers needed an automated method of calling

routines sequentially. The result was the batch processor, which later also provided users

with the convenience of saving and running MS-DOS commands as batch files.

Finally, MS-DOS increased the options available to a program when it terminated. For ex-

ample, in less sophisticated operating systems, applications and other programs remained

in memory only as long as they were active; when terminated, they were removed from

memory. MS—DOS, however, added a terminate-and—stay—resident function that enabled a

program to be locked into memory and, in effect, become part of the operating-system
environment until the computer system itself was shut down or restarted.

The Marketplace

When IBM announced the Personal Computer, it said that the new machine would run

three operating systems: MS—DOS, CP/M—86, and SofTech Microsystem’s pSystem. Of the

three, only MS—DOS was available when the IBM PC shipped. Nevertheless, when MS-DOS

was released, nine out of ten programs on the InfoWorid bestseller list for 1981 ran under

CP/M-SO, and CHM—86, which became available about six months later, was the Operating

system of choice to most writers and reviewers in the trade press.

Understandably, MS—DOS was compared with CP/M—BO and, later, CP/M—86. The main con—

cern was compatibility: To what extent was Microsoft’s new operating system compatible

with the existing standard? No one could have foreseen that MS-DOS would not only catch

up with but supersede CP/M. Even Bill Gates now recalls that “our most optimistic view of

the number of machines using MS-DOS wouldn’t have matched what really ended up

happening.”

To begin with, the success of the IBM PC itself surprised many industry watchers. Within a

year, IBM was selling 30,000 PCs per month, thanks in large part to a business community

that was already comfortable with IBM’s name and reputation and, at least in retrospect,

was ready for the leap to personal computing. MS—DOS, of course, benefited enormously

from the success of the IBM PC— in large part because IBM supplied all its languages and

applications in MS-DOS format. ‘

But, at first, writers in the trade press still believed in CP/M and questioned the viability of
a new operating system in a world dominated by CP/MBO. Many assumed, incorrectly, that

a CP/M-86 machine could run CP/M-SO applications. Even before CP/M—86 was available,

Future Computing referred to the IBM PC as the “CP/M Record Player" — presumably in

anticipation of a vast inventory of CP/M applications for the new computer—and led its

readers to assume that the PC was actually a CP/M machine.

76 Thu MC.nnc purwtnhmh'n

OLYMPUS EX. 1010 - 44/1582

���������	�
�
������
��OLYMPUS EX. 1010 - 45/1582

1981—1982

Microsoft, meanwhile, held to the belief that the success of IBM’s machine or any other

16—bit microcomputer depended ultimately on the emergence of an industry standard for a

16—bit operating system. Software developers could not afford to develop software for even

two or three different operating systems, and users could (or would) not pay the prices the

developers would have to charge if they did. Furthermore, users would almost certainly

rebel against the inconvenience of sharing data stored under different operating-system
formats. There had to be one operating system, and Microsoft wanted MS-DOS to be
the one,

The company had already taken the first step toward a standard by choosing hardware

independent designs wherever possible. Machine independence meant portability, and
portability meant that Microsoft could sell one version of MS—DOS to different hardware

manufacturers who, in turn, could adapt it to their own equipment. Portability alone,
however, was no guarantee of industry-wide acceptance. To make MS-DOS the standard,

Microsoft needed to convince software developers to write programs for MS-DOS. And in

1981, these developers were a little confused about IBM’s new operating system.

An Operating system by any other name . . .

A tangle of names gave rise to one point of confusion about MS—DOS. Tim Paterson‘s

“Quick and Dirty Operating System” for the 8086 was originally shipped by Seattle

Computer Products as SIS—DOS. After Microsoft purchased 86—008, the name remained

for a while, but by the time the PC was ready for release, the new system was known as

MS-DOS, Then, after the IBM PC reached the market, IBM began to refer to the operating

system as the IBM Personal Computer DOS, which the trade press soon shortened to
PC—DOS. IBM‘s version contained some utilities, such as DISKCOPY and DISKCOMP, that

were not included in MS—DOS, the generic version available for license by other manufac-

turers. By calling attention to these differences, publications added to the confusion about
the distinction between the Microsoft and IBM releases of MS—DOS.

Further complications arose when Lifeboat Associates agreed to help promote MS—DOS but

decided to call the operating system Software Bus 86. MS—DOS thus became one of a line

of trademarked Software Bus products, another of which was a product called SB—SO,
Lifeboat’s version of CP/M-BO. I

Finally, some of the first hardware companies to license MS-DOS also wanted to use their
own names for the operating system. Out of this situation carne such additional names as

COMPAQ-DOS and Zenith’s Z-DOS.

Given this confusing host of names for a product it believed could become the industry

standard, Microsoft finally took the lead and, as developer, insisted that the operating sys

tem was to be called M54305. Eventually, everyone but IBM complied.

Developers and MS-DOS

Early in its career, MS—DOS represented just a small fraction of Microsoft’s business——

much larger revenues were generated by BASIC and other languages. In addition, in the

first two years after the introduction of the IBM PC, the growth of CHM-86 and other

Section I: The Development ofMS—DOS 27
IIIIA‘AIFI I_\I AAA“ AEIAL'nh

OLYMPUS EX. 1010 - 45/1582

OLYMPUS EX. 1010 - 46/1582

1981-1982

environments nearly paralleled that of MS—DOS. So Microsoft found itself in the unenviable

position of giving its support to MS—DOS while also selling languages to run on CP/M-86,
thereby contributing to the growth of software for MS—DOS’S biggest competitor.

Given the uncertain outcome of this two-horse race, some other software developers
chose to wait and see which way the hardware manufacturers would jump. For their part,

the hardware manufacturers were confronting the issue of compatibility between operat-
ing systems. Specifically, they needed to be convinced that MS—DOS was not a maverick m

that it could perform as well as CHM—86 as a base for applications that had been ported

from the CP/M-SO environment for use on 16-bit computers.

Microsoft approached the-problem by emphasizing four related points in its discussions
with hardware manufacturers:

I First, one of Microsoft‘s goals in developing the first version of MS—DOS had always

been translation compatibility from CP/M-SO to MS-DOS software.

0 Second, translation was possible only for software written in 8080 or 280 assembly

language; thus, neither MS«DOS nor CP/M-86 could run programs written for other

8—bit processors, such as the 6800 or the 6502.

0 Third, many applications were written in a high—level language, rather than in assem—
bly language. I

0 Fourth, most of those high—Ievel languages were Microsoft products and ran on
MS—DOS.

Thus, even though some people had originally believed that only CP/M-86 would auto-

matically make the installed base of CP/M—SO software available to the IBM PC and other

16-bit computers, Microsoft convinced the hardware manufacturers that MS—DOS was, in

actuality, as flexible as CP/M-86 in its compatibility with existing— and appropriate—
CP/M-SO software.

MS—DOS was put at a disadvantage in one area, however, when Digital Research convinced

several manufacturers to' include both 8080 and 8086 chips in their machines. With 8—bit

and 16-bit software used on the same machine, the user could rely on the same disk format

for both types of software. Because MS—DOS used a different disk format, CP/M had the

edge in these dual-processor machines—although, in fact, it did not seem to have much

effect on the survival of CP/M-86 after the first year or so.

Although making MS—DOS the operating system of obvious preference was not as easy as

simply convincing hardware manufacturers to offer it, Microsoft’s list of MS—DOS custom-
ers grew steadily from the time the operating system was introduced. Many manufacturers
continued to offer CP/M-86 along with MS-DOS, but by the end of1983 the technical supe—

riority of MS-DOS (bolstered by the introduction of such products as Lotus 1-2-3) carried
the market. For example, when DEC, a longtime holdout, decided to make MS-DOS the pri—

mary operating system for its Rainbow computer, the company mentioned the richer set of

commands and “dramatical 1y” better disk performance of MS-DOS as reasons for its
choice over CP/M—86.

')Q "N... ”c nnc- 5..-..urnnng:-

OLYMPUS EX. 1010 - 46/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 47/1582

IRS—DOS
standard Dpemlng Syslzm Ior BDEB Micros
115-005: 1 an: ”mung mum Imam mama. 1wmm mlwsola. Imam-mu Mum Nun-mcarp mus-DDS Inn's Ian Plum-l Demn Dosm
a II: m-Nifil mm» 91 aha-u 19! an quw Comma.“trawl" ”In” fill Ii|h IBM l‘fl Int-Ml 91M! mum(omgdl mlmflllhul'lu IMCMI IIIII (flaw Iflllflu

wml flakes M34308 Im norm-It?
 NI 3‘ Mew-mall: HIM IBISI Minimums“:mum. FDRYMNIDBUL. Fuel} '0 hymn

Inn-mm 5. unmmsmns um an M5 beam IliulldIIIII wmungum MI! I» Illa Mu mm Mew" Ill“Wm“, magnum-m: mum-m mam. In mm. an. 8-3“ new nl' ”-0500"!
Imam- m uwva eommumu mm IS-MmIla-u. mm Iion mgr-m «nun in Mal mumInmnuam u- nn um: DIS-ODS ma tau-u nomanger-on uumna” no «If-ounce Ml! anu-nwinn 9! Lou m Inn ”II—m. ml Ina-moon“: IIIM Ia-e'n ”IWD

um m I!!! mwllulum Inn-mu Ins-on: Ina Wimpwmm Mnfl- "III as up on note Mhm

. Immune-Imam lun-
I-Is-nos ion-u moan “Wm. all—m mucus..-mum wII-mu "II mm.wnos «mummum whwch-oa. army-“mm. "maylangua- Iouneu no. much In. lllhl concur-6w
Imam-I. III-mt no! anon gloom-II um um «mo-lmom In MOI] :“lmmlowflofi I
um nunmIn un— BWIHWIYIIIMI.

- Buta- map-um NO
MEI-DDS mm v0 In «III-rum nm In In. um:um: Mum "mm as um .nmu nu.
hum um um roman-m. Thai-nu mama-umwar-ma mun- an“ 5! nude: In. mm.5mm: oPEu mo emu gnu am at mine. me.man inn-m nu mun" qu mmmm
swans “macaw 'rnaI m mm in maynu aim-m am

The Fululo 0| ”3-005
utmon phnltom MS-wa nu ldlllinfll:«mam mom-m 9!wa maku mum-Inmn IIndian-w mum- nnmml. M ”Md-"In ubon pmlnlfll Imus emf-s: "mm Inmagn Ion: wmoltmhImam uIIx 'p'vn' Ina ‘Ial-ng" II mom-w Wmnan-mm.

1981-1982

lddlllorull R's-DOS Faalunn and Bellam-
. wan-n Earn-u MIDI mm1.1qu

THIpanII' ngnilunumlmwmmw
ulcmnflmm.

Fur filial-III Fit mm.-

an mar-um nu mug mu mu.
namuluhmm

w M a now via: w mung swim-4:. mi: urn",III-mm warm that oil: amen mm mm Ir

NumMonk Iluum
unun mmoI mum mum: mu m hum-emu
meg-ma m aim we IN” mum an...

___________.____.___L__________._____.

Iunlhllg DIS-W5 mum-mam Iva-Iran m N Muriul‘m'.
mm; Inks-DDS Inn umua Io-mrm Imus-mo MIMI Iama mums wwn “5.005 new»: wpuIm us-Dos .aIn Imlulll mince m mkwmw mmlne Irv-ma

o lfilflfld ‘IIU Emu“! Fromm!“
Ins-00% mum Iimw urn ”a; man man mu IIn flak flflu new: u any but! amlng w plague“. us-DDS uIII .nlrr IM nan-mm mm Imun. II' "III umuoneannu m gamma Noam. M5 Dos will munnu mm mmJMn m: hr u um“: unit.
”must!” m: an many: meurmlmnmeal man-um sum.

- Camila! finsvlm Ilium
us-oos n In", Imam walling mum rumour;(on In: Human "Inc-um IInkilID mr amm- Iu
mam- ugm-nu. um um um com-um aloe-Inn 'nIns-003mm um mm«in; Iona-rm mm1M!- Ialdi Hm II? Wm loam. 1M". ”IS-DOBan“ MIM! $964K WW INH liflhllliofl 0| WWmun-nu mum

. fimlmfl. hum. ’lo cum-mun:-
M54235 rm «1 punIc-I mm an Mo 9: an an M5-
005 nun-«m ram: OSComnllbll Inga: 59"!thIn: ll. ma nun cam-Ir up Io 4 Wm:
WIM n my. mn-II. mm m “.005 an anIiIuoI mm-wronnl mam mum. nus-nos l|man-cm m woman :w-n Mal “clan.123 I! M! I lat-led penny in MEI-DOS.
Hams umnhml Ir. um m 01 mom. I ma.
mama one «an n 1.1: mm I loot-l mum unnIn «In:III-AIM film-w new unmasoos mum«my whelu III| 1i|I um I» In: in». “my lhlllam to 188 mu 1m wanna m «on Mt mungcomma?! at |Pon an» an: or: n.

Fun: IO! us-nus um: um um bur-emu. a llplhet and
Dunn! Mimi-"9. nun "pond. rm‘lhufl one In no emwaned. m1 Ml‘lwlmn.

noimlng Irv-nu Ian m laml'y “was Ira-n Mr a-

nu mum «Immune Mn M'umx' mImm-m
mm mm- gammy Incl-I. mu pin-Intuit" flunllult

um. u an In I: sun-mummy- um mum

unplu- Wu Hz: 16 qum m mu m "yam all-um

mm “5.005 uurl Mm mm lama 2!

. Ila mm“: In: woman». mm 9.: “I.
am gnu rm: hu- In mmy am mule-II arm-"IWm Kn when unwfl a BIOS.

- I'Imom Sumn-
Thu ulna-mam Inn-mm mm In mouklfle IIno 1mm on In. mu bl- I“! I5 am: new: In- an m-m-n m.

o ulna-unman-
1m war; Imam .mwm anqu atm‘amwpml snhm m mean In Mama Ins-msu «nu-Hun ‘S-NI wanna Imam. Iflcwnilinplh‘Imam mama" gun nun lho 0-5-1 m: m 1:meUS.L|I¢w-l w beau-mu swan annual «In-w- ht"MS-DOS onmrrr-IIBM

- um. Ian cumu-
IQH i1 0|“!in WI! Junfllflfl «HID! ”5996. IBN‘ MI“noun-u m-emn ml: lnfl Miefrnqfl an. flung
mm lccrunlmg "umum. Ina m umh'anhnrl mMmq nod-I VHS-DOS.

 mum". In;
mm NE Eigm. sun: '19Baum-c. £09msans-Isa man I‘ an 323945

Sean»: 1’: The Dewiopmem ofMS-DOS

OLYMPUS EX.

A Microsofl original equipment manufacturer (GEM) marketing brochure describing the strengths ofMS—DOS.

29

1010 - 47/1582

OLYMPUS EX. 1010 - 48/1582

1982-1935

Version 2

After the release of PC-specific version 1.0 of MS—DOS, Microsoft worked on an update
that contained some bug fixes. Version 1.1 was provided to IBM to run on the upgraded PC
released in 1982 and enabled MS-DOS to work with double-sided, 520 KB floppy disks.

This version, referred to as 1.25 by all but IBM, was the first version of MS—DOS shipped by

other OEMs, including COMPAQ and Zenith.

Even before these intermediate releases were available, however, Microsoft began plan-

ning for future versions of MS—DOS. In developing the first version, the programmers had

had two primary goals: running translated CP/M-SO software and keeping MS-DOS small.

They had neither the time nor the room to include more sophisticated features, such as
those typical of Microsoft’s UNIX—based multiuser, multitasking operating system, XENIX.

But when IBM informed Microsoft that the next major edition of the PC would be the

Personal Computer XT with a 10-megabyte fixed disk, a larger, more powerful version of

MS~DOS—- one closer to the operating system Microsoft had envisioned from the start—
became feasible.

There were three particular areas that interested Microsoft: a new, hierarchical file system,

installable device drivers, and some type of multitasking. Each of these features contrib-

uted to version 2.0, and together they represented a major change in MS—DOS while still

maintaining compatibility with version 1.0.

The File System

Primary responsibility for version 2.0 fell to Paul Allen, Mark Zbikowski, and Aaron
Reynolds, who wrote (and rewrote) most of the version 2.0 code. The major design issue

confronting the developers, as well as the most visible example of its difference from ver-

sions 1.0, 1.1, and 1.25. was the introduction of a hierarchical file system to handle the file-

management needs of the XT’s fixed disk.

Version 1.0 had a single directory for all the files on a floppy disk. That system worked well

enough on a disk of limited capacity, but on a 10—megabyte fixed disk a single directory

could easily become unmanageably large and cumbersome.

CP/M had approached the problem of high—capacity storage media by using a partitioning

scheme that divided the fixed disk into 10 user areas equivalent to 10 separate floppy-disk

drives. On the other hand, UNIX, which had traditionally dealt with larger systems, used

a branching, hierarchical file structure in which the user could create directories and

subdirectories to organize files and make them readily accessible. This was the file

management system implemented in XENEX, and it was the MS-DOS team’s choice for

handling files on the XT’s fixed disk.

so The MS—DOS Ennciobedra

OLYMPUS EX. 1010 - 48/1582

OLYMPUS EX. 1010 - 49/1582

1982-1985

TheMS—DOS dersion 1.0 manual next :0 Int: version 2.0 manual.

Partitioning, IBM’s initial choice, had the advantages of familiarity, size, and ease of imple-

mentation. Many small-system users #particularly software developers—were already

familiar with partitioning, if not overly fond of it, from their experience with CP/M. Devel-

opment time was also a major concern, and the code needed to develop a partitioning

scheme would be minimal compared with the code required to manage a hierarchical file

system. Such a scheme would also take less time to implement.

However, partitioning had two inherent disadvantages. First, its functionality would

decrease as storage capacity increased, and even in 1982, Microsoft was anticipating Sub-

stantial growth in the storage capacity of disk-based media. Second, partitioning de-
pended on the physical device. If the size of the disk changed, either the number or the

size of the partitions must also be changed in the code for both the operating system and

the application programs. For Microsoft, with its commitment to hardware independence,

partitioning would have represented a step in the wrong direction.

A hierarchical file structure, ‘on the other hand, could be independent of the physical

device. A disk could be partitioned logically, rather than physically. And because these

partitions (directories) were controlled by the user, they were open—ended and enabled

the individual to determine the best way of organizing a disk.

Ultimately, it was a hierarchical file system that found its way into MS—DOS 2,0 and even-

tually convinced everyone that it was, indeed, the better and more flexible solution to the

problem of supporting a fixed disk. The file system was logically consistent with the

XENIX fiie structure, yet physically consistent with the file access incorporated in versions

1.x, and was based on a root, or main, directory under which the user could create a sys—

tem of subdirectories and sub—subdirectories to hold files. Each file in the system was iden-

tified by the directory path leading to it, and the number of subdirectories was limited only

by the length of the pathname, which .could not exceed 64 characters.

In this file structure, all the subdirectories and the filename in a path were separated

from one another by backslash characters, which represented the only anomaly in the

XENIX/MS—DOS system of hierarchical files. XENIX used a forward slash as a separator,

but versions 1.x of MS-DOS, borrowing from the tradition of DEC operating systems,
already used the forward slash for switches in the command line, so Microsoft, at IBM’s

request, decided to use the backslash as the separator instead. Although the backslash

Section I; The Dewiobmem ofMS-DOS 31

OLYMPUS EX. 1010 - 49/1582

OLYMPUS EX. 1010 - 50/1582

1982—1983

character created no practical problems, except on keyboards that lacked a backslash, this

decision did introduce inconsistency between MS-DOS and existing UNIX-like operating
systems. And although Microsoft solved the keyboard problem by enabling the user to
change the switch character from a slash to a hyphen, the solution itself created compati-

_ bility problems for people who wished to exchange batch files. '

Another major change in the file-management system was related to the new directory
structure: In order to fully exploit a hierarchical file system, Microsoft had to add a new

way of calling file services.

Versions ll: of MS~DOS used CP/M-like structures called file control blocks, or FCBs, to

maintain compatibility with older CP/M~80 programs. The FCBs contained all pertinent

information about the size and location of a file but did not allow the user to specify a file

in a different directory. Therefore, version 2.0 of MS—DOS needed the added ability to ac-

cess files by means of handles, or descriptors, that could operate across directory lines.

!_ _. ' In this added step toward logical device independence, MS-DOS returned a handle when-

ever an MS—DOS program opened a file. All further interaction with the file involved only
this handle. MS-DOS made all necessary adjustments to an internal structure -— different

from an FCB wso that the program never had to deal directly with information about the

file‘s location in memory. Furthermore, even if future versions of MS-DOS were to change

. the structure of the internal control units, program code would not need to be rewritten-

I the file handle would be the only referent needed, and this would not change.
Putting the internal control units under the supervision of MS-DOS and substituting

‘ handles for FCBs also made it pessible for MS—DOS to redirect a program’s input and out-
put. A system function was provided that enabled MS—DOS to divert the reads or writes I

directed to one handle to the file or device assigned to another handle. This capability was

used by COMMANDCOM to allow output from a file to be redirected to a device, such as a

printer, or to be piped to another program. It also allowed system cleanup on program
terminations.

Installable Device Drivers

At the time Microsoft began developing version 2.0 of MS-DOS, the company also realized

that many third-party peripheral devices were not working well with one another. Each

manufacturer had its Own way of hooking its hardware into MS-DOS and if two third—party

devices were plugged into a computer at the same time, they would often conflict or fail.

One of the hallmarks of IBM’s approach to the PC was open architecture, meaning that

users could simply slide new cards into the computer whenever new input/output de-

vices, such as fixed disks or printers, were added to the system. Unfortunately, version

1.0 of MS—DOS did not have a corresponding open architecture built into it—the BIOS

OLYMPUS EX. 1010 - 50/1582

���������	�
�
����
�
��OLYMPUS EX. 1010 - 51/1582

1982—1983

contained all the code that permitted the operating system to run the hardware. If inde—

pendent hardware manufacturers wanted to develop equipment for use with a computer
manufacturer’s operating system, they would have to either completely rewrite the device

drivers or write a complicated utility to read the existing drivers, alter them, add the code

to support the new device, and produce a working set of drivers. If the user installed more

than one device, these patches would often conflict with one another. Furthermore, they
would have to be revised each time the computer manufacturer updated its version
of MS—DOS.

By the time work began on version 2.0, the MS-DOS team knew that the ability to install

any device driver at run time was vital. They implemented installable device drivers by

making the drivers more modular. Like the FAT, IO.SYS (IBMBIOCOM in PC—DOS)

became, in effect, a linked list—— this time, of device drivers —— that could be expanded

through commands in the CONFIGSYS file on the system boot disk. Manufacturers could

now write a device driver that the user could install at run time by including it in the
CONFIGSYS file. MS—DOS could then add the device driver to the linked list.

By extension, this ability to install device drivers also added the ability to supersede a pre—

viously installed driver -—— for example, the ANSI.SYS console driver that supports the ANSI

standard escape codes for cursor positioning and screen control.

Print Spooling

At IBM’s request, version 2.0 of MS-DOS also possessed the undocumented ability to per-

form rudimentary background processing— an interim solution to a growing awareness of
the potentials of multitasking.

Background print Spooling was sufficient to meet the needs of most people in most situa-

tions, so the print spooler, PRINTCOM, was designed to run whenever MS-DOS had

nothing else to do. When the parent application became active, PRINT.COM would be in-

‘ terrupted until the next lull. This type of background processing, though both limited and
l extremely complex, was exploited by a number of applications, such as SideKick.

Loose Ends and a New MS-DOS

Hierarchical files, installable device drivers, and print Spooling were the major design
decisions in version 2.0. But there were dozens of smaller changes, too.

For example, with the fixed disk it was necessary to modify the code for automatic logging
of disks. This modification meant that MS—DOS had to access the disk more often, and file

access became much slower as a result. In trying to find a solution to this problem, Chris

Peters reasoned that, if MS-DOS had just checked the disk, there was some minimum time

Section 1* The Development ofMS-DOS 35

OLYMPUS EX. 1010 - 51/1582

OLYMPUS EX. 1010 - 52/1582

1982-1983

Two members ofthe
18M fine ofpersonai
computersfor which
bersions I and 2 of
MS-DOS were dew!—

oped. On the iefi, the
origins! IBM PC (ver—
sion 1.0 ofMS—DQS‘);
on the right, the IBM
PCS/Xi" (version 2.0).

a user would need to physically change disks. If that minimum time had not elapsed, the
current disk information in RAM —whether for a fixed disk or a floppy—was probably

still good.

Peters found that the fastest anyone could physically change disks. even if the disks were

damaged in the process, was about two seconds. Reasoning from this observation, he had

MS—DOS check to see how much time had gone by since the last disk access. If less than
two seconds had elapsed, he had MS-DOS assume that a new disk had not been inserted

and that the disk information in RAM was still valid. With this little trick, the speed of file

handling in MS—DOS version 2.0 increased considerably.

Version 2.0 was released in March 1983, the product of a surprisingly small team of six de-
velopers, including Peters, Mani Ulloa, and Nancy Panners in addition to Allen, Zbikowski,

and Reynolds. Despite its complex new features, versiOn 2.0 was only 24 KB of code.

Though it maintained its compatibility with versions 1.x, it was in reality a vastly different
operating system. Within six months of its release, versiOn 2.0 gained widespread public

aceeptance. In addition, popular application programs such as Lotus 12-3 took advantage

of the features of this new version of MS—DOS and thus helped secure its future as the

industry standard for 8086 processors.

Versions 2.1 and 2.25 ./

The world into which version 2.0 of MS—DOS emerged was considerably different from the

one in which version 1.0 made its debut. When IBM released its original PC. the business

market for microcomputers was as yet undefined —— if not in sc0pe, at least in terms of who

and what would dominate the field. A year and a half later, when the PC/XT came on the

scene, the market was much better known. It had, in fact, been heavily influenced by IBM

itself. There were still many MS-DOS machines, such as the Tandy 2000 and the Hewlett

Packard HPlSO, that were hardware incompatible with the IBM, but manufacturers of new

computers knew that IBM was a force to consider and many chose to compete with the

IBM PC by emulating it. Software developers, too, had gained an understanding of busi-

ness computing and were confident they could position their software accurately in the
enormous MS-DOS market.

54 The MS—DOS Encyclopedia

OLYMPUS EX. '1o1o - 52/1582

���������	�
�
������
��OLYMPUS EX. 1010 - 53/1582

 1985

In such an environment, concerns about the existing base of CP/M software faded as

developers focused their attention on the fast-growing business market and MS—DOS

quickly Secured its position as an industry standard. Now, with the obstacles to MS—DOS

diminished, Microsoft found itself with a new concern: maintaining the standard it had

created. Henceforth, MS-DOS had to be many things to many people. IBM had require—
ments; other OEMs had requirements. And sometimes these requirements conflicted.

Hardware Developers

When version 2.0 was released, IBM was already planning to introduce its Per. The PCjr

would have the ability to run programs from ROM cartridges and, in addition to using half—

height fiver-inch drives, would employ a slightly different disk—controller architecture. Be—
cause of these differences from the standard PC line, IBM‘s immediate concern was for a
version 2.1 of MS—DOS modified for the new machine.

For the longer term, IBM was also planning a faster, more powerful PC with a 20-megabyte

fixed disk. This prOSpect meant Microsoft needed to look again at its file—management sys—

tem, because the larger storage capacity of the 20-megabyte disk stretched the size iimita—'
tions for the file allocation table as it worked in version 2.0.

However, IBM’s primary interest for the next major release of MS—DOS was networking.

Microsoft would have preferred to pursue multitasking as the next stage in the develop-

ment of MsaDOS, but iBM was already deveIOping its IBM PC Network Adapter, a plug-in

card with an 80188 chip to handle communications. So as soon as versiOn 2.0 was released,

the MS-DOS team, again headed by Zbikowski and Reynolds, began work on a networking

version (5.0) of the operating system.

Meanwhile . . .

The international market for MS-DOS was not significant in the first few years after the
release of the IBM PC and version 1.0 of MS-DOS. iBM did not, at first, ship its Personal

Computer to Europe, so Microsoft was on its own there in promoting MS-DOS. In 1982, the

company gained a significant advantage over CHM—86 in Europe by concluding an agree-
ment with Victor, a software company that was very successful in Europe and had already
licensed CP/M-86. Working closely with Victor, Microsoft provided special development

support for its graphics adaptors and eventually convinced the company to offer its pro-

ducts only on MS—DOS. In}apan, the most popular computers were 280 machines, and

given the country’s huge installed base of 8—bit machines, 16-bit computers were not taking

hold. Mitsubishi, however, offered a 16-bit computer. Although CP/M—86 was Mitsubishi’s

original choice for an operating system, Microsoft helped get Multiplan and FORTRAN

running on the CP/M-86 system, and eventually won the manufacturer’s support for
MS~DOS.

Section I: The Development ofMS—DOS 35

OLYMPUS EX. 1010 - 53/1582

OLYMPUS EX. 1010 - 54/1582

1983

A sample thhe mom that appeared
with each new version ofMS—DOS.

 . Irresistible
DOS 3.0Wong! , m
30WmaWb-WWWW:

IMIIwn-nflfllWhammum—.m-yluvm .hunches-n.nun-«Moos-

I o murmoymiq 9pm

MS-DOS. 2.00: A

Hands-On Tutorial
Man...
Mar-memmman”figmflmfiwam‘f”MdWrww—ww.mmmumma’maWuwwduwm~aKmfimhhfihmhmmuwmmnfimamhlnmn’ta—rmwmm*mnw’flgwn‘wmflM

(“man-unumnmmmmumwwmmnhwmmdhmvmfiimnwmflrlwhmmwnnlmfiflMWn-fl—am.mmmhmmwmmw.M-erIWlU-nkwumWe‘lWIflur-iwm mmauumWewflmbu—fi.mmfinosey-mummmrncm.m“Mmquuamnm.mummmwim.mmTun—l m...au>.u.‘nmu Hi Int-“dim”mama... “mm-oh|uM.q»flwthMMflILmMI—ny—rho-lyMIMDHDrw—I-lehw.

Thu-warn»nos}.w.aan.m~mminmn.m4m_.m.m.omw.
mmun.mamm-m .wannwmmnqumw“autumn-.mummhumm

L.”

In the software arena, by the time development was underway on the 2.x releases of
MS-DOS, Microsoft’s other customers were becoming more vocal about their owrr needs.

Several wanted a networking capability, adding weight to IBM’s request, but a more urgent

need for many—a need not shared by IBM at the time — was support for international

products. Specifically, these manufacturers needed a version of MS-DOS that could be sold

in other countries "—a version of MS—DOS that could display messages in other languages

and adapt to country-specific conventions, such as date and time formats. I

 i
I.I
I
I
l
i
J

r
lI
i
g
_|l
|

Microsoft, too, wanted to internationalize MS-DOS, so the MS—DOS team, while modifying

the operating system to support the Per, also added functions and a COUNTRY command

that allowed users to set the date and time formats and other country—dependent variables
in the CONFIGSYS file.

an Th9 MR—DOS‘ Fncuclnrwdia

OLYMPUS EX. 1010 - 54/1582

���������	�
�
�����
��OLYMPUS EX. 1010 - 55/1582

1983

A Ktmfi screen with
NEE PC—QBDD Sol-m Personal Computer WMS-DUS copyrightW55“ 9.
?f7fl‘)‘}1‘ HS-DUS N -‘/ '5'; 3. 'ID 8Cepyriaht 1931,1935 Microsoft Corp. 2‘ NEC Corporation

manaienatsw
stars, a w t Pi 4 703 Ntcbtc .sts 't’f

.
i
I

i
i
i

WON -'J' 5') 3.10

i Fla-DIR N
F5417 a: 03?4x¢03:i€'l=-—1n5’<wi1KHALR‘HJ5’4 w; l~ 'J ii swam

. .. nsstou ow ATIRIB EXE BnCKUP EXEcHIiDGK site can: con copra cm msnourar OM muse srsFC EXE rim EKE Pam-r EXE KE'I' cm Lnstt EKE
was com SPEED _ cw SWITCH om srs EXE soar cman @937 7 amass“.

36041180 Mr maintainers.

”74 a ma? tsetse.

a [an] mitts—Dos e

At about the same time, another international requirement appeared. TheJapanese market

for MS—DOS was growing, and the question of supporting 7000 Kanj i characters (ideo-

grams) arose. The difficulty with Kanjiis that it requires dual-byte characters. For English

and most European character sets, one byte corresponds to one character. japanese Char—

acters, however, sometimes use one byte, sometimes tw0. This variability creates prob—

lems in parsing, and as a result MS—DOS had to be modified to parse a string from the

beginning, rather than back up one character at a time.

This support for individual country formats and Kanji appeared in version 2.01 of MS-DOS.
IBM did not want this version, so support for the Per, developed by Zbikowski, Reynolds,

Ulloa, and Eric Evans, appeared separately in version 2.1, which went only to IBM and did
not include the modifications for international MS-DOS.

Different customers, different versions

As early as versiort 1.25, Microsoft faced the problem of trying to satisfy those OEM cus—
tomers that wanted to have the same version of MS—DOS as IBM. Some, such as COMPAQ,

were in the business of selling IOU—percent compatibility with IBM. For them, any differ—

ence between their version of the operating system and IBM’s introdLICed the possibility of

incompatibility. Satisfying these requests was difficult, however, and it was not until ver—

sion 5.1 that Microsoft was able to supply a system that other OEMs agreed was identical
with IBM’s.

Before then, to satisfy the OEM customers, Microsoft combined versions 2.1 and 2.01 to

create version 2.11. Although IBM did not accept this because of the internationalization

code, version 2.11 became the standard version for all non—IBM customers running any

form of MS-DOS in the 2.): series. Version 2.11 was sold worldwide and translated into
about 10 different languages. Two other intermediate versions provided support for

Hangeul (the Korean character set) and Chinese Kanji.

Seclr‘on I: The Desefopmen! ofMS—DOS 57

OLYMPUS EX. 1010 - 55/1582

OLYMPUS EX. 1010 - 56/1582

1983

Software Concerns

After the release of version 2.0, Microsoft also gained an appreciation of the importance—-

and difficulty———of supporting the people who were developing software for MS—DOS.

Software developers worried about downward compatibility. They also worried about
upward compatibility. But despite these concerns, they sometimes used programming

practices that could guarantee neither. When this happened and the resulting programs

were Successful, it was up to Microsoft to ensure compatibility.

For example, because the information about the internals of the BIOS and the ROM inter-

face had been published, software developers could, and often did, work directly with the

hardware in order to get more speed. This meant sidestepping the operating system for

some operations. However, by choosing to work at the lower levels, these developers lost

the protection provided by the operating system against hardware changes. Thus, when

low—level changes were made in the hardware, their programs either did not work or did

not run cooperatively with Other applications.

Another software problem was the continuing need for compatibility with CP/M. For

example, in CP/M, programmers would call a fixed address in low memory in order to re-

l quest a function; in MS-DOS, they would request operating~systcrn services by executing a; software interrupt. To support older software, the first version of MS-DOS allowed a pro-

: ' gram to request functions by either method. One of the CP/M-based programs supported

I in this fashion was the very.p0pu1ar WordStar. Since Microsoft could not make changes inMS-DOS that would make it impossible to run such a widely used program, each new ver-

i sion of MS—DOS had to continue supporting CP/M-style calls.A more pervasive CP/M—related issue was the use of PCB—style calls for file and record

management. The version 1.x releases of MS-DOS had used PCB-style calls exclusively, as
had CP/M. Version 2.0 introduced the more efficient and flexible handle calls, but Microsoft
could not simply abolish the old FCB-style calls, because so many popular programs used

them. In fact, some of Microsoft’s own languages used them. So, MS—DOS had to support

both types of calls in the version 2.x series. To encourage the use of the new handle calls,

however, Microsoft made it easy for MS-DOS users to upgrade to version 2.0. In addition,

the company convinced IBM to require version 2.0 for the PC/XT and also encouraged
software developers to require 2.0 for their applications.

l

1 At first, both software developers and OEM customers were reluctant to require 20
I because they were concerned about problems with the installed user base of 1.0
: systems— requiring version 2.0 meant supporting both sets of calls. Applications also
I‘ needed to be able to detect which version of the operating system the user was running.

I For versions 1.x, the programs would have to use FCB calls; for versions 2.x, they would
i use the file handles to exploit the flexibility of MS—DOS more fully.
II
I
I
I
iI
I
I
I
I
l
1
ll
l

All told, it was an awkward period of transition, but by the time Microsoft began work on
version 5.0 and the support for IBM's upcoming 20—megabyte fixed disk, it had become

apparent that the change had been in everyone’s best interest.

38 The Ms-Dossmpczopedra

OLYMPUS EX. 1010 - 56/1582

OLYMPUS EX. 1010 - 57/1582

1933-1984

Version 3

The types of issues that began to emerge as Microsoft worked toward version 3.0, MS—DOS

for networks, exaggerated the problems of compatibility that had been encountered
before.

First, networking, with or without a multitasking capability, requires a level of cooperation

and compatibility among programs that had never been an issue in earlier versions of

MS-DOS. As described by Mark Zbikowski, one of the principals involved in the project,

”there was a very long period of time between 2.1 and 3.0 —almost a year and a half. Dur—

ing that time, we believed we understood all the problems involved in making DOS a net-

working product. [But] as time progressed, we realized that we didn’t fully understand it,

either from a compatibility standpoint or from an operatingesystem standpoint. We knew

very well how it [DOS] ran in a single~tasking environment, but we started going to this
new environment and found places where it came up short.“

In fact, the great variability in programs and programming approaches that MS‘DOS

supported eventually proved to be one of the biggest obstacles to the development of a

sophisticated networking system and; in the longer term, to the addition of true
multitasking.

Further, by the time Microsoft began work on version 3.0, the programming style of the

MS—DOS team had changed considerably. The team was still small, with a core group of

just five people: Zbikowski, Reynolds, Peters, Evans, and Mark Bebic. But the concerns for
maintainability that had dominated programming in larger systems had percolated down

to the MS-DOS environment. Now, the desire to use tricks to Optimize for speed had to be

tempered by the need for clarity and maintainability, and the small package of tightly

written code that was the early MS-DOS had to be sacrificed for the same reasons.

Version 3.0

All told, the work on version 3.0 of MS-DOS proved to be long and difficult. For a year and

a half, MicrOsoft grappled with problems of software incompatibility, remote file manage—

ment, and logical device independence at the network level. Even so, when IBM was ready

to announce its new Personal Computer AT, the network software for MS-DOS was not

quite ready, so in August 1984, Microsoft released version 3.0 to IBM without network
software.

Version 5.0 supported the AT’s larger fixed disk, its new CMOS clock, and its high-capacity

1.2—megabyte floppy disks. It also provided the same international support included earlier
in versions 2.0] and 2.11. These features were made available to Microsoft’s other OEM

customers as version 3.05.

F Section 1- The Development ost-DOS 59

OLYMPUS EX. 1010 - 57/1582

OLYMPUS EX. 1010 - 58/1582

1983-1984

\J mm

‘ min. DISK-KESET —¢—"ramxs" FAN. [
@ Lame Remmvf —_—_—-———-arm, 5.1-.c.r...mm‘

mm. Rggd- Eflvn- F'Ienoefi" Fm. IsEnncfi- On
stage. CLOSE c

«on W m We

- —.—SETDIR snag NEXT E C
-——n ”1""

I I'.mm. ‘4'—
R “‘ —.<1.. . _ll l——*

0 8:5st l'§.PiU-KJPK m mmwm
@ “WDF

5.3mm

h‘ - b w
R“ We -— mg! 53:»

Row" M 5 NSF. Raw .,..*7 onaemnrzz . ”RITE C® DURITF—
Aarort Reynolds? dMgram ofwrsimz 3.0’5 network support, sketched out to embt’e him to add thefatl option
to Interrupt 24 andfmd att‘pfaces where existingpart5 ofMSvDOS were aflefited. Em afler networking had
become a reality, Reynolds kept this dt'agrampmned to his ofltce wait stmpbr because “it was so much work
toput togethet "

tin Tho Mtnnc Fflny‘fnnmfin

OLYMPUS EX. 1010 - 58/1582

���������	�
�
������
��OLYMPUS EX. 1010 - 59/1582

1983-1984

'—

‘ [Jul

‘1!!!va MKMK ‘
«51354;; Dos_CLos¢—:

FATREAD—c D 5
WI

—)c +9.” ’ushpA
"'7 0‘ “Jon;

—I R 1

56ET.DRNE .FaEasmcE ‘ odsn

Section I: The Development ofMS—DOS 41

OLYMPUS EX. 1010 - 59/1582

OLYMPUS EX. 1010 - 60/1582

1985-1984

The titre! 80286 micro—

processor, the chip at
- the heart ofthe IBM

PG’A'E which is shown
beside it. Version 3.0 of
MS—DOS, dewiopedfor
this machine, afar-ed
supportfor networks
and thePCJ‘IT's 1.2—

' megabytefloppy disk
drive and built-in
CMOS dock.

But version 3.0 was not a simple extension of version 2.0. In laying the foundation for net—

working, the MS—DOS team had completely redesigned and rewritten the DOS kernel.

Different as it was from version 1.0, version 2.0 had been built on top of the same structure.
For example, whereas file requests in MS—DOS 1.0 used FCBs, requests in version 2.0 used

file handles. However, the version 2.0 handle calls would simply parse the pathname and

then use the underlying FCB calls in the same way as version 1.0. The redirected input and

output in version 2.0 further complicated the file—system requests. When a program used

one of the CP/M-compatible calls for character input or output, MS—DOS 2.0 first opened a
handle and then turned it back into an FCB call at a lower level. Version 3.0 eliminated this

redundancy by eliminating the old FCB input/output code of versions 1 and 2, replacing it
with a standard set of I/O calls that could be called directly by both FCB calls and handle

_ calls. The look—alike calls for CP/M—compatible character [/0 were included as part of the

i set of handle calls. As a result of this restructuring, these calls were diStinctly faSter in
version 5.0 than in version 2.0.

More important than the elimination of inefficiencies, however, was the fact that this new

structure made it easier to handle network requests under the 180 Open System Intercon—

nect model Microsoft was using for networking. The ISO model describes a number of

protocol layers, ranging from the app]ication-to-application interface at the top level down

to the physical link —«— plugging into the network —— at the lowest level. In the middle is the

transport layer, which manages the actual transfer of data. The layers above the transport

layer belong to the realm of the operating system; the layers below the transport layer are

traditionally the domain of the network software or hardware.

On the IBM PC netw0rk, the transport layer and the server functions were handled by

IBM’s Network Adapter card and the task of MS-DOS was to support this hardware. For its

other OEM customers, however, Microsoft needed to supply both the transport and the

server functions as software. Although version 3.0 did not prOvide this general—purpose

networking software, it did provide the basic support for IBM’s networking hardware.

The support for IBM consisted Of redirector and sharer software. MS—DOS used an ap—

proach to networking in which remote requests were routed by a redirector that was able

J 42 The MS-DOSEncvcioDedia

OLYMPUS EX. 1010 - 60/1582

���������	�
�
�����
�
��OLYMPUS EX. 1010 - 61/1582

1984

to interact with the transport layer of the network. The transport layer was composed of I
the device drivers that could reliably transfer data from one part of the network to another.

Just before a call was sent to the newly designed low—level file I/O code, the operating sys—
tem determined whether the call was local or remote. A local call would be allowed to fall

through to the local file [/0 code; a remote call would be passed to the redirector which,

working with the operating system, would make the resources on a remote machine

appear as if they were local.

Version 3.1

Both the redirector and the sharer interfaces for IBM’s Network Adapter card were in place

in version 3.0 when it was delivered to IBM, but the redirector itself wasn't ready. Version

3.], completed by Zbikowski and Reynolds and released three months laterf completed this
network support and made it available in the form of Microsoft Networks for use on non—
IBM network cards.

MicrOsoft Networks was built on the concept of “services" and “consumers." Services

were provided by a file server, which was part of the Networks application and ran on a

computer dedicated to the task. Consumers were programs on various network machines.
Requests for information were passed at a high level to the file server; it was then the

reSponsibility of the file server to determine where to find the information on the disk.

The requesting programs—the consumers— did not need any knowledge of the remote
machine, not even what type of file system it bad.

This ability to pass a high-level request to a remote server without having to know the

details of the server’s file structure allowed another level of generalization of the system.

In MS-DOS 5.1, different types of file systems could be accessed on the same network. It

was possible, for example, to access a XENI‘X machine across the network from an
MS—DOS machine and to read data from XENIX files

‘. Microsoft Networks was designed to be hardware independent. Yet the variability of the

classes of programs that would be using its structures was a major problem in developing

a networking system that would be transparent to the user. In evaluating this variability,

Microsoft identified three types of programs:

0 First were the MS—DOS—compatible programs. These used only the documented

software-interrupt method of requesting services from the operating system and

would run on any MS+DOS machine without problems.
0 Second were the MS—DOS-based programs. These would run on {BM—compatible

computers but not necessarily on all MS—DOS machines.

0 Third were the programs that used undocumented features of MS-DOS or that

addressed the hardware directly. These programs tended to have the best perfor-

mance but were also the most difficult to support.

Of these, Microsoft officially encouraged the writing of MS-DOS—compatible programs for
use on the network.

Section 1- The Dewiopmem ofMS—DOS 43.n-n..—. .—‘: ‘A‘A AAIA—AA

OLYMPUS EX. 1010 - 61/1582

OLYMPUS EX. 1010 - 62/1582

1986

Network concerns

The file-access module was changed in version 3.0 to simplify file management on the

network, but this did not solve all the problems. For instance, MS-DOS still needed to han-

dle FCB requests frOm programs that used them, but many programs would open an PCB

and never close it. One of the functions of the server was to keep track of all open files

on the network, and it ran into difficulties when an PCB was Opened 50 or 100 times and °

never closed. To solve this problem, Microsoft introduced an PCB cache in version 3.1 that

allowed only four PCBs to be open at any one time. If a fifth FCB was opened, the least re-

cently used one was closed automatically and released. In addition, an FCBS command

was added in the CONFIGSYS file to allow the user or network manager to change the

maximum number of FCBs that could be open at any one time and to protect some of the
FCBs frOm automatic closure.

In general, the logical device independence that had been a goal of MS-DOS acquired new

meaning —and generated new problems—with networking. One problem concerned

printers on the network. Commonly, networks are used to allow several people to share a

printer. The network could easily accommodate a program that would open the printer,

Write to it, and close it again. Some programs, however, would try to use the direct IBM

BIOS interface to access the printer. To handle this situation, MicrOsoft’s designers had to

develop a way for MS-DOS to intercept these BIOS requests and filter out the ones the
server could not handle. Once this was accomplished, version 3.1 was able to handle most

types of printer output on the network in a transparent manner.

Version 3.2

In january 1986, Microsoft released another revision of MS-DOS, version 3.2, which
supported 31/2-inch floppy disks. Version 3.2 also moved the formatting function for a

device out of the FORMAT utility routine and into the device driver, eliminating the need

for a special hardware—dependent program in addition to the device driver. It included a

sample installable-block—device driver and, finally, benefited the users and manufacturers
of IBM-compatible computers by including major rewrites of the MS~DOS utilities to
increase compatibility with those of IBM.

44 The MS—DOS Encwiooedia

OLYMPUS EX. 1010 - 62/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 63/1582

1987

The Future

Since its appearance in 1981, MS-DOS has taken and held an enviable position in the

microcomputer environment. Not only has it “taught” millions of personal computers

“how to think,” it has taught equal millions of people how to use computers. Many highly
sophisticated computer users can trace their first encounter with these machines to the

original IBM PC and version 1.0 of MS—DOS. The MS—DOS command interface is the one

with which they are comfortable and it is the MS—DOS file structure that, in one way or

another, they wander through with familiarity.

Microsoft has stated its commitment to ensuring that, for the foreseeable future, MS-DOS

will continue to evolve and grow, changing as it has done in the past to satisfy the needs of

its millions of users. In the long term, MS—DOS, the product of a surprisingly small group of

gifted people, will undoubtedly remain the industry standard for as long as 8086-based

(and to some extent, 80286—based) microcomputers exist in the business world. The story

5 - of MS—DOS will, of course, remain even longer. For this operating system has earned its

place in microcomputing history.

foAnne Woodcock

Section I: The Development ofMS—DOS 45

OLYMPUS EX. 1010 - 63/1582

OLYMPUS EX. 1010 - 64/1582

OLYMPUS EX. 1010 - 64/1582

OLYMPUS EX. 1010 - 65/1582

Part A

Structure of MS-DOS

}
IxE
;

OLYMPUS EX. 1010 - 65/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 66/1582

Article 1: An Introduction to MS—DOS

Article 1

An Introduction toMS-DOS

An Operating system is a set of interrelated supervisory programs that manage and control

computer processing in general, an Operating system provides

0 Storage management

0 Processing management
0 Security
0 Human interface

Existing operating systems for microcomputers fall into three major categories: ROM

monitors, traditional operating systems, and Operating environments. The general charac-
teristics of the three categories are listed in Table 1—1.

Table 1-1. Characteristics of the Three Major Types ofOperating Systems.

Traditional

ROM Operating Operating
Monitor System Environment

Complexity Low Medium High

Built on Hardware BIOS Operating system
Delivered on ROM Disk Disk

Programs on ROM Disk Disk

Peripheral support Physical Logical logical

Disk access Sector File system File system

Example PC ROM BIOS MS—DOS Microsoft Windows

A ROM monitor is the simplest type of operating system. It is designed for a particular

hardware configuration and provides a program with basicwand often direct—— access to

peripherals attached to the computer. Programs coupled with a ROM monitor are often

used for dedicated applications such as controlling a microwave oven or controlling the

engine of a car.

A traditional micrOcomputer operating sysrem is built on top of a ROM monitor, or BIOS

(basic input/output system), and provides additional features such as a file system and log-

ical aceess to peripherals. (Logical access to peripherals allows applications to run in a

hardware—independent manner.) A traditional operating system also stores programs in

files on peripheral storage devices and, on request, loads them into memory for execution.

i MS—DOS is a traditional Operating system.

An operating environment is built on top of a traditional operating system. The operating

environment provides additional services. stich as common menu and forms support, that

Section N: Programming in the MS—DOS Environment 51.n-n..—. ._‘, ‘A‘A

OLYMPUS EX. 1010 - 66f1"5'é§

OLYMPUS EX. 1010 - 67/1582

Part A: Structure of MS—DOS

simplify program operation and make the user interface more consistent. Microsoft

Windows is an operating environment.

MS-DOS System Components

The Microsoft Disk Operating System, MS-DOS, is a traditional microcomputer operating

system that consists of five major components:

0 The operating-system loader
The MS—DOS BIOS

The MS-DOS kernel

The user interface (shell)

Support programs

Each of these is introduced briefly in the following pages. See PROGRAMMING IN THE

MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS: The Components of MS-DOS.

The Operating-system loader

The operating—system loader brings the operating system from the startup disk into RAM.

The complete loading process, called bootstrapping, is often complex. and multiple

loaders may be involved. (The term bootstrapping came about because each level pulls up

the next part of the system, like pulling up on a pair of bootstraps.) For example, in most

standard MS-DOS-based microcomputer implementations, the ROM loader, which is the

first program the microcomputer executes when it is turned on or restarted, reads the disk

bootstrap loader from the first (boot) sector of the startup disk and executes it. The disk

bootstrap loader, in turn, reads the main portions of MS-DOS — MSDOSSYS and IO.SYS
(IBMDOSCOM and IBMBIO.COM with PC—DOS) — from conventional disk files into mem-

ory. The special module SYSINIT within MSDOSSYS then initializes MS-DOS‘s tables and

buffers and discards itself. See PROGRAMMING IN THE MS~DOS ENVIRONMENT: Smut}

TURE OF Ms—Dos: MS—DOS Storage Devices.

(The term loader is also used to refer to the portion of the operating system that brings

application programs into memory for execution. This loader is different from the ROM

loader and the operating-system loader.)

The MS-DOS BIOS

The MS-DOS BIOS, loaded from the file IO.SYS during system initialization, is the layer of

the operating system that sits between the operating—System kernel and the hardware. An

application performs input and output by making requests to the operating—system kernel,
which, in turn, cails the MS-DOS BIOS routines that access the hardware directly. See

SYSTEM CALLS. This division of function allows application programs to be written in a

hardware-independent manner.

The MS—DOS BIOS consists of some initialization code and a collection of device drivers.

(A device driver is a specialized program that provides support for a specific device such as

OLYMPUS EX. 1010 - 67/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 68/1582

Article 1: An Introduction to MS-DOS

a display or serial port.) The device drivers are responsible for hardware access and for the
interrupt support that allows the associated devices to signal the microprocessor that they
need service.

The device drivers contained in the file IO.SYS, which are always loaded during system
initialization, are sometimes referred to as the resident drivers. With MS-DOS versions 2.0

and later, additional device drivers, called installable drivers, can optionally be loaded dur-

ing system initialization as a result of DEVICE directives in the system’s configuration file.
See PROGRAMMING IN THE MS—DOS ENVIRONMENT: CUSTOMIZING Ms—Dos: Installable

Device Drivers; USER COMMANDS: CONFIG.SYS:DEVICE.

The MS-DOS kernel

The services provided to application programs by the MS-DOS kernel include

0 Process control

0 Memory management

0 Peripheral support
0 A file system

The MS—DOS kernel is loaded from the file MSDOS.SYS during system initialization.

Process control

Process, or task, control includes program loading, task execution, task termination, task
scheduling, and intertask communication.

Although MS—DOS is not a multitasking operating system, it can have multiple programs

residing in memory at the same time. One program can invoke another, which then

becomes the active (foreground) task. When the invoked task terminates, the invoking

program again becomes the foreground task. Because these tasks never execute simulta-

neously, this stack-like operation is still considered to be a single-tasking operating
system.

MS—DOS does have a few “hooks” that allow certain programs to do some multitasking

on their own. For example, terminate—and—stay—resident (TSR) programs such as PRINT

use these hooks to perform limited concurrent processing by taking control of system
resources While MS-DOS is “idle,” and the Microsoft Windows operating environment

adds support for nonpreemptive task switching.

The traditional intertask communication methods include semaphores, queues, shared

memory, and pipes. Of these, MS-DOS formally supports only pipes. (A pipe is a logical,
unidirectional, sequential stream of data that is written by one program and read by

another.) The data in a pipe resides in memory or in a disk file, depending on the imple-
mentation; MS—DOS uses disk files for intermediate storage of data in pipes because it

is a single-tasking operating system.

Memory management

Because the amount of memory a program needs varies from program to program, the

traditional operating system ordinarily provides memory-management functions. Memory

Section II: Programming in the MS—DOS Environment 55.n-n..—. ._‘: ‘A‘A AAll—AA

OLYMPUS EX. 1010 - 68/1582

OLYMPUS EX. 1010 - 69/1582

Part A: Structure of MS—DOS

requirements can also vary during program execution, and memory management is

especially necessary when two or more programs are present in memory at the same time.

MS-DOS memory management is based on a pool of variable—size memory blocks. The

two basic memory—management actions are to allocate a block from the pool and to return

an allocated block to the pool. MS—DOS allocates program space from the pool when the

program is loaded; programs themselves can allocate additional memory from the pool.

Many programs perform their own memory management by using a local memory pool, or

heap —an additional memory block allocated from the operating system that the applica-

tion program itself divides into blocks for use by its various routines. See PROGRAMMING

IN THE MS—DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS: Memory Management.

Peripheral support

The Operating system provides peripheral support to programs through a set of operating—

system calls that are translated by the operating system into calls to the appropriate device
driver.

Peripheral support can be a direct logical-to—physical-device translation or the operating

system can interject additional features or translations. Keyboards, disPIays, and printers

usually require only logical—to-physicabdevice translations; that is, the data is transferred

between the application program and the physical device with minimal alterations, if any,
by the operating system. The data provided by clock devices, 0n the other hand, must be

transformed to Operating-systemoependent time and date formats. Disk devices—and

block devices in general — have the greatest number of features added by the operating

system. See The File System below.

As stated earlier, an application need not be concerned with the details of peripheral

devices or with any special features the devices might have. Because the operating system

takes care of all the logical—to—physicaldevice translations, the application program need

only make requests of the operating system.

The file system

The file system is one of the largest portions of an operating system. A file system is built

on the storage medium of a block device (usually a floppy disk or a fixed disk) by mapping

a directory strUCture and files onto the physical unit of storage. A file system on a disk
contains, at a minimum, allocation information, a directory, and space for files. See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE or MS-DOS': MS—DOS

Storage Devices.

The file allocation information can take various forms, depending on the operating sys-

tem, but all forms basically track the space used by files and the space available for new

data. The directory contains a list of the files stored on the device, their sizes, and informa-
tion about where the data for each file is located.

Several different approaches to file allocation and directory entries exist. MS-DOS uses a

particular allocation method called a file allocation table (FAT) and a hierarchical directory

OLYMPUS EX. 1010 - 69/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 70/1582

Article 1: An Introduction to MS—DOS

structure. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Sraucruas or MS-DOS:

MS-DOS Storage Devices,- PROGRAMMING FOR MS-DOS‘. Disk Directories and Volume Labels.

The file granularity available through the operating system also varies depending on the

implementation. Some systems, such as MS-DOS, have files that are accessible to the byte
level; others are restricted to a fixed record size.

File systems are sometimes extended to map character devices as if they were files. These

device “files” can be opened, closed, read from, and written to like normal disk files, but

all transactions occur directly with the specified character device. Device files provide a
useful consistency to the environment for application programs; MS-DOS supports such

files by assigning a reserved logical name (such as CON or PRN) to each character device.

The user interface

The user interface for an operating system, also called a shell or command processor, is

generally a conventional program that allows the user to interact with the operating sys-
tem itself. The default MS-DOS user interface is a replaceable shell program called
COMMANDCOM.

One of the fundamental tasks of a shell is to load a program into memory on request and

pass control of the system to the program so that the program can execute. When the pro-

gram terminates, control returns to the shell, which prompts the user for another com-
mand. In addition, the shell usually includes functions for file and directory maintenance

and display. In theory, most of these functions could be provided as programs, but making

them resident in the shell allows them to be accessed more quickly. The tradeoff is mem-

ory space versus speed and flexibility. Early microcomputer-based Operating systems pro-

vided a minimal number of resident shell commands because of limited memory spaCe;

modern operating systems such as MS—DOS include a wide variety of these functions as
internal commands.

Support programs

The MS-DOS software includes support programs that provide access to operating—system

facilities not supplied as resident shell commands built into COMMAND. COM. Because

these programs are stored as executable files on disk, they are essentially the same as ap—

plication programs and MS—DOS loads and executes them as it would any other program.

The support programs provided with MS-DOS, often referred to as external commands,

include disk utilities such as FORMAT and CHKDSK and more general support programs

such as EDLIN (a line'oriented text editor) and PRINT (3. TSR utility that allows files to be

printed while another program is running). See USER COMMANDS.

MS-DOS releases

MSADOS and PGDOS have been released in a number of forms, starting in 1981. See THE

DEVELOPMENT OF MS—DOS. The major MS-DOS and PC-DOS implementations are sum-

marized in the following table.

Section II: Programming in the MS—DOS Environment 55

OLYMPUS EX. 101'6'576/‘1'582

OLYMPUS EX. 1010 - 71/1582

Part A: Structure ofMS—DOS

 Version Date Special Characteristics

PC—DOS 1.0 1981 First operating system for the IBM PC
Record-oriented files

PC-DOS 1.1 1982 ‘ Double-sided-disk support
MS-DOS 1.25 1982 First OEM release of MS—DOS

MS—DOS/PC—DOS 2.0 1983 Operating system for the IBM PC/XT

UNIX/XENIX—like file system
Installable device drivers

Byte-oriented files

Support for fixed disks

PC—DOS 2.1 Operating system for the IBM Per

MS—DOS 2.11 Internationalization support

_ 2.0x bug fixes

MS-DOS/PC-DOS 3.0 1984 Operating system for the IBM PC/AT

Support for 1.2 MB floppy disks

Support for large fixed disks

Support for file and record locking

Application control of print spooler

MS—DOS/PC—DOS 3.1 1984 Support for MS Networks

MS-DOS/PC-DOS 3.2 1986 3.5-inch floppy—disk support

'. . _ Disk track formatting support added to
g . device drivers

_ . MS-DOS/PC—DOS 3.5 1987 Suppert for the IBM PS/Z

i i Enhanced internationalization support

Improved file-system performance

Partitioning support for disks with capacity
above 32 MB

original IBM PC, which was typically shipped with 64 KB of memory or less. MS-DOS and

PC-DOS versions 1.); were similar in many ways to CP/M, the popular Operating system for

8—bit microcomputers based on the Intel 8080 (the predecessor of the 8086). These ver—

sions of MS-DOS used a single-level file system with no subdirectory support and did not

support installable device drivers or networks. Programs accessed files using file control

blocks (FCBS) similar to those found in CP/M programs. File operations were record

oriented, again like CP/M, although record sizes could be varied in MS—DOS.

l PC—DOS version 1.0 was the first commercial version of MS~DOS. It was developed for the
|
|

Although they retained compatibility with versions 1.x, MS—DOS and PC-DOS versions 2.x

represented a major change. In addition to providing support for fixed disks, the new ver—

sions switched to a hierarchical file system like that found in UNIX/XENIX and to file-
handle access instead of FCBs. (A file handle is a 16-bit number used to reference an inter-

nal table that MS—DOS uses to keep track of currently open files; an application program

ii has no aCCess to this internal table.) The UNDC/XENI'X—style file functions allow files to be

1; treated as a byte stream instead of as a collection of records. Applications can read or write
1 to 65535 bytes in a single operation, starting at any byte offset within the file. Filenames

:4 u.- ..n “An-

OLYMPUS EX. 1010 - 71/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 72/1582

Article 1: An Introduction to MS—DOS

used for opening a file are passed as text strings instead of being parsed into an FCB.

Installable device drivers were another major enhancement.

MS-DOS and PC-DOS versions 3.x added a number of valuable features, including support

for the added capabilities of the IBM PC/AT. for larger-capacity disks, and for file—locking

and record—locking functions. Network support was added by providing hooks for a redi—

rector (an additional operating—system module that has the ability to redirect local system
service requests to a remote system by means of a local area network).

With all these changes, MS—DOS remains a traditional single-tasking operating system. It
provides a large number of system services in a transparent fashion so that, as long as they

use only the MS-DOS-supplied services and refrain from using hardware—specific opera-

tions, applications developed for one MS-DOS machine can usually run on another.

Basic MS-DOS Requirements

Foremost among the requirements for MS-DOS is an Intel 8086-compatible micrOproces—
SOr. See Specific Hardware Requirements below.

The next requirement is the ROM bootstrap loader and enough RAM to contain the

MS—DOS BIOS, kernel, and shell and an application program. The RAM must start at ad—

dress 0000:0000H and, to be managed by MS—DOS, must be contiguous. The upper limit

for RAM is the limit placed upon the system by the 8086family+1 MB.

The final requirement for MS—DOS is a set of devices supported by device drivers, includ-

ing at least one block device, one character device, and a clock device. The block device is

usually the boot disk device (the disk device from which MS-DOS is loaded); the character

device is usually a keyboard/display combination for interaction with the user; the clock

device, required for time-of-day and date support, is a hardware counter driven in a sub-
multiple of one second.

Specific hardware requirements

MS-DOS uses several hardware components and has specific requirements for each. These

components include

0 An 8086-family microprocessor
0 Memory

0 Peripheral devices

0 A ROM BIOS (PC-DOS only)

The microprocessor

MS—DOS runs on any machine that uses a microproeessor that executes the 8086/8088

instruction set, including the Intel 8086, 80036, 8088, 80186, 80188, 80286, and 80386 and
the NBC V20, V30, and V40.

Section H: Programming in the MS~DOS Environment 57

OLYMPUS EX. 101'6'57271'5'8‘2‘

OLYMPUS EX. 1010 - 73/1582

Piart A: Structure ofMS—DOS

The 80186 and 80188 are versions of the 8086 and 8088, integrated in a single chip with

direct memory access, timer, and interrupt support functions. PC~DOS cannot usually run

on the 80186 or 80188 because these chips have internal interrupt and interface register

addresses that conflict with addresses used by the PC ROM BIOS. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: CUSTOMIZING MS-DOS: Hardware Interrupt Handlers

MS—DOS, however, does not have address requirements that conflict with those interrupt
and interface areas.

The 80286 has an extended instruction set and two operating modes: real and protected.
Real mode is compatible with the 8086/8088 and runs MS—DOS. Protected mode, used by

operating systems like UNIX/XENLX and MS 03/2, is partially compatible with real mode

in terms of instructions but provides access to 16 MB of memory versus only 1 MB in real
mode (the limit of the 8086/8088). '

The 80386 adds further instructions and a third mode called virtual 86 mode. The 80386

instructions operate in either a 16-bit or a 52bit environment. MS-DOS can run on the

80586 in real or virtual 86 mode, although the latter requires additional support in the form
of a virtual machine monitor such as Windows 686.

Memory requirements

At a minimum, MS-DOS versiOns 1.x require 64 KB of contiguous RAM from the base of

memory to do useful work; versions 2.): and 3.): need at least 128 KB. The maximum is

1 MB, although most MS-DOS machines have a 640 KB limit for IBM PC compatibility.

MS-DOS can use additional noncontiguous RAM for a RAMdisk if the proper device driver

is included. (Other uses for noncontiguous RAM include buffers for video displays, fixed

disks, and network adapters.)

PC-DOS has the same minimum memory requirements but has an upper limit of 640 KB
on the initial contiguous RAM, which is generally referred to as conventional memory.
This limit was imposed by the architecture of the original IBM PC, with the remaining

area above 640 KB reserved for video display buffers, fixed disk adapters, and the ROM
BIOS. Some of the reserved areas include

Base Address Size (bytes) Description

A000:0000H 10000H (64 KB) EGA video buffer

B000:0000H 1000H (4 KB) Monochrome video buffer

B800:0000H 4000B (16 KB) Color/graphics video buffer
C800:0000H 4000H (16 KB) Fixed-disk ROM

F000:0000H ' 10000H (64 KB) PC ROM BIOS and ROM BASIC

The bottom 1024 bytes of system RAM (locations 00000003FFH) are used by the micro-

processor for an interrupt vector table — that is, a list of addresses for interrupt handler

routines. MS-DOS uses some of the entries in this table, such as the vectors for interrupts

20H through ZFH, to store addresses of its own tables and routines and to provide linkage

to its services for application programs. The IBM PC ROM BIOS and IBM PC BASIC use

many additional vectors for the same purp05es.

OLYMPUS EX. 1010 - 73/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 74/1582

Article]: An Introduction to MS—DOS

Peripheral devices

MS—DOS can support a wide variety of devices, including floppy disks, fixed disks, CD

ROMS, RAMdisks, and digital tape drives. The required peripheral support for MS-DOS is

provided by the MS—DOS BIOS or by installable device drivers.

Five logical devices are provided in a basic MS—DOS system:

 Device Name Description

CON Console input and output

PRN Printer output

AUX Auxiliary input and output

CLOCKS Date and time support
Varies (A—E) One block device

These five logical devices can be implemented with a BIOS supporting a minimum of

three physical devices: a keyboard and display, a timer or clock/calendar chip that can

provide a hardware interrupt at regular intervals, and a block storage device. In such a
minimum case, the printer and auxiliary device are simply aliases for the console device.

However, most MS—DOS systems support several additional logical and physical devices.
See PROGRAMMING IN THE MS—DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS.‘

Character Device Input and Output.

The MS-DOS kernel provides one additional device: the NUL device. NUL is a "bit

bucket" —that is, anything written to NUL is simply discarded. Reading from NUL always
returns an end-of~file marker. One common use for the NUL device is as the redirected

i output device of a command or application that is being run in a batch file; this redirection
prevents screen clutter and disruption of the batch file’s menus and displays.

The ROM BIOS

MS-DOS requires no ROM support (except that most bootstrap loaders reside in ROM)

and does not care whether device-driver support resides in ROM or is part of the MS-DOS

IO.SYS file loaded at initialization. PC-DOS, on the other hand. uses a very specific ROM

BIOS. The PC ROM BIOS does not provide device drivers; rather, it provides support rou-

tines used by the device drivers found in IBMBIOCOM (the PC-DOS version of IO.SYS).

The support provided by a PC ROM BIOS includes

Powerwon self test (POST)

Bootstrap loader

Keyboard

Displays (monochrome and color/graphics adapters)
Serial ports 1 and 2

Parallel printer Ports 1, 2, and 3
Clock
Print screen

Section II.- Programming in the MS—DOS Environment 59.n-n..—. .—‘: ‘A‘A _‘l‘—AA

OLYMPUS EX. 1010 - 74/1582

OLYMPUS EX. 1010 - 75/1582

Part A: Structure of MS-DOS

The PC ROM BIOS loader routine searches the ROM space above the PC-DOS 640 KB limit

for additional ROMS. The IBM fixed—disk adapter and enhanced graphics adapter (EGA)
contain such ROMS. (The fixeddisk ROM also includes an additional loader routine that

allows the system to start from the fixed disk.)

Summary

MS-DOS is a widely accepted traditional operating system. Its consistent and well—defined

interface makes it one of the easier operating systems to adapt and program.

MS-DOS is also a growing operating system— each version has added more features yet

made the system easier to use for both end-users and programmers. In addition, each ver-

sion has included more support for different devices, from 5.25Hinch floppy disks to high-
density 3.5-inch floppy disks. As the hardware continues to evolve and user needs become

more sophisticated. MS-DOS too will continue to evolve.

William Wong

OLYMPUS EX. 1010 - 75/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 76/1582

l
l

Article 2: The Components of MS-DOS

Article 2

The Components ofMS-DOS

MS-DOS is a modular operating system consisting of multiple components with special—

ized functions. When MS-DOS is copied into memory during the loading process, many of

its components are moved, adjusted, or discarded. However, when it is running, MS-DOS

is a relatively static entity and its components are predictable and easy to study. Therefore,

this article deals first with MS-DOS in its running state and later with its loading behavior.

The Major Elements

MS-DOS consists of three major modules:

Module MS-DOS Filename PC-DOS Filename

MS—DOS BIOS IO.SYS IBMBIOCOM
MS—DOS kernel MSDOS.SYS IBMDOS.COM

MS—DOS shell COMMANDCOM COMMANDCOM

During system initialization, these modules are loaded into memory, in the order given,

just above the interrupt vector table located at the beginning of memory. All three modules
remain in memory until the computer is reset or turned off. (The loader and system initial-

ization modules are omitted from this list because they are discarded as soon as MS-DOS

is running. See Loading MS—DOS below.)

The MS-DOS BIOS is supplied by the original equipment manufacturer. (OEM) that

distributes MS—DOS, usually for a particular computer. See PROGRAMMING IN THE
MS—DOS ENVIRONMENT: STRUCTURE OF Ms-Dos: An Introduction to MS-DOS. The kernel

is supplied by Microsoft and is the same across all OEMs for a particular version of
MS—DOS— that is, no modifications are made by the OEM. The shell is a replaceable

module that can be supplied by the OEM or replaced by the user; the default shell,

COMMANDCOM, is supplied by Microsoft.

The MS-DOS BIOS

The file IO.SYS contains the MS-DOS BIOS and the MS-DOS initialization module,

SYSINIT. The MS-DOS BIOS is customized for a particular machine by an OEM. SYSINIT

is supplied by Microsoft and is put into IO.SYS by the OEM when the file is created. See
Loading MS-DOS below.

Section 11: Programming in the MS—DOS Environment 61

OLYMPUS EX. 1010 - 76/1582

OLYMPUS EX. 1010 - 77/1582

Part'A; Structure of MS—DOS

The MS-DOS BIOS consists of a list of resident device drivers and an additional initializa-

tion module created by the OEM. The device drivers appear first in IO.SYS because they

remain resident after IQSYS is initialized; the MS—DOS BIOS initialization routine and

SYSINIT are usually discarded after initialization.

The minimum set of resident device drivers is CON, PRN, AUX, CLOCK$, and the driver

for one block device. The resident character—device drivers appear in the driver list before
the resident block-device drivers; installable character-device drivers are placed ahead of

the resident device drivers in the list; installable block-device drivers are placed after the

resident device drivers in the list. This sequence allows installable character-device drivers

to supersede resident drivers. The NUL device driver, which must be the first driver in the
Chain, is COntained in the MS—DOS kernel.

Device driver code can be split between IO.SYS and ROM. For example, most MS-DOS sys-

tems and all PC—DOS—compatible systems have a ROM BIOS that contains primitive device

support routines. These routines are generally used by resident and installable device

drivers to augment routines contained in RAM. (Placing the entire driver in RAM makes
the driver dependent on a particular hardware configuration; placing part of the driver in

ROM allows the MS—DOS BIOS to be paired with a particular ROM interface that remains

constant for many different hardware configurations.)

The IO.SYS file is an absolute program image and does not contain relocation information.

The routines in IO.SYS assume that the CS register contains the segment at which the file is
loaded. Thus, IO.SYS has the same 64 KB restriction as a .COM file. See PROGRAMMING

IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS: Structure of an Application

Program. Larger IO.SYS files are possible, but all device driver headers must lie in the first

64 KB and the code must rely on its own segment arithmetic to access routines outside
the first 64 KB.

The MS-DOS kernel

The MS—DOS kernel is the heart of MS-DOS and provides the functions found in a tradi-

tional operating system. It is contained in a single proprietary file, MSDOS.SYS, supplied

by Microsoft Corporation. The kernel provides its support functions (referred to as system

functions) to application programs in a hardware—independent manner and, in turn, is iso—

lated from hardware characteristics by relying on the driver routines in the MS-DOS BIOS

to perform physical input and output operations.

The MS—DOS kernel provides the following services through the use of device drivers:

0 File and directory management

0 Character device input and output

0 Time and date support

It also provides the following non-devicerelated functions:

0 Memory management

O Task and environment management

0 Country—specific configuration

R) m”. we nnc cumminuxrn

OLYMPUS EX. 1010 - 77/1582

���������	�
�
�������
��
OLYMPUS EX. 1010 - 78/1582

Article 2: The Components of MS—DCIS

Programs access system functions using software interrupt (INT) instructions. MS-DOS

reserves Interrupts 20H through SFH for this purpose. The MS—DOS interrupts are

Interrupt Name

:3le Terminate Program
21H MS—DOS FUnction Calls

22H Terminate Routine Address

25H Control-C Handler Address
24H Critical Error Handler Address

25H Absolute Disk Read
26H Absolute Disk Write

27H Terminate and Stay Resident
28H —2EH Reserved

2FH Multiplex
30H- 5FH Reserved

Interrupt 21H is the main source of MS—DOS services. The Interrupt 21H functions are
implemented by placing a function number in the AH register, placing any necessary

parameters in other registers, and issuing an INT 21H instruction. (MS-DOS also supports

a call instruction interface for CP/M compatibility. The function and parameter registers
differ from the interrupt interface. The (IBM interface was provided in MS—DOS version 1.0
solely to assist in movement of CP/M—based applications to MS—DOS. New applications
should use Interrupt 21H functions exclusively.)

MS—DOS version 2.0 introduced a mechanism to modify the operation of the MS—DOS BIOS

and kernel: the CONFIGSYS file. CONFIGSYS is a text file containing command options
that modify the size or configuration of internal MS—DOS tables and cause additional de-

vice drivers to be loaded. The file is read when MS-DOS is first loaded into memory. See
USER COMMANDS: cowsrosvs.

The MS-DOS shell

The shell, or command interpreter, is the first program started by MS—DOS after the
MS-DOS BIOS and kernel have been loaded and initialized. It provides the interface
between the kernel and the user. The default MS—DOS shell, COMMANDCOM, is a

commandpriented interface; other shells may be menu-driven or screenoriented.

COMMANDCOM is a replaceable shell. A number of commercial products can be used

i as COMMAND.COM replacements, or a programmer can develop a customized shell. The
' new shell program is installed by renaming the program to COMMANDCOM or by using

the SHELL command in CONFIGSYS. The latter method is preferred because it allows
initialization parameters to be passed to the shell program.

Section II: Programming in the MS—DOS Environment 63

HUAWFI FX, 1010 - 78/1589

OLYMPUS EX. 1010 - 78/1582

OLYMPUS EX. 1010 - 79/1582

Part A: Structure of MS—DOS _'_-,.‘.‘A_._=,,rh::,.”or:...

COMMANDCOM can execute a set of internal (built—in) commands, load and execute

programs, or interpret batch files. Most of the internal commands support file and direc-

tory operations and manipulate the program environment segment maintained by

COMMANDCOM. The programs executed by COMMANDCOM are .COM or .EXE files

loaded from a block device. The batch (.BAT) files supported by COMMANDCOM pro

vide a limited programming language and are therefore useful for performing small,

frequently used series of MS-DOS commands. In particular, when it is first loaded by

MS-DOS, COMMANDEOM searches for the batch file AUTOEXECBAT and interprets it, if

found, before taking any other action. COMMANDCOM also provides default terminate,
Control—C and Critical errOr handlers whose addresses are stored in the vectors for Inter-

rupts 22H, 231-1, and 24H. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:

Cusmmrzmo MS-DOS: Exception Handlers.

COMMAND.COM’5 Split personality

COMMANDCOM is a conventional .COM application with a slight twist. Ordinarily, a

.COM program isloaded into a single memory segment. COMMANDCOM starts this way

but then copies the nonresident portion of itself into high memory and keeps the resident

portion in low memory. The memory above the resident portion is released to MS—DOS.

The effect of this split is not apparent until after an executed program has terminated

and the resident portion of COMMANDEOM regains control of the system. The resident
portion then computes a checksum on the area in high memory where the nonresident
portion should be, to determine whether it has been overwritten. If the checksum matches

a stored value, the nonresident portion is assumed to be intact; otherwise, a copy of the

nonresident portion is reloaded from disk and COMMANDCOM continues its normal

operation.

This “split personality” exists because MS-DOS was originally designed for systems with a

limited amount of RAM. The nonresident portion of COMMANDEOM, which contains the

built—in commands and batch-file-processing routines that are not essential to regaining

control and reloading itself, is much larger than the resident portion, which is responsible

for these tasks. Thus, permitting the nonresident portion to be overwritten frees additional

RAM and allows larger application programs to be run.

Command execution

COMMANDCOM interprets commands by first checking to see if the specified command

matches the name of an internal command. If so, it executes the command; otherwise, it

searches for a .COM, .EXE, or .BAT file (in that order) with the specified name. If a .COM

or .EXE program is found, COMMANDCOM uses the MS—DOS EXEC function (Interrupt
21H Function 4BH) to load and execute it; COMMANDCOM itself interprets .BAT files.

If no file is found, the message Bad command orfiie name is displayed.

Although a command is usually simply a filename without the extension, MS-DOS versions

3.0 and later allow a command name to be preceded by a full pathname. If a path is not

explicitly specified, the COMMANDCOM search mechanism uses the contents of the

OLYMPUS EX. 1010 - 79/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 80/1582

Article 2: The Components of MS—DOS

PATH environment variable, which can contain a list of paths to be searched for com-

mands. The search starts with the current directory and proceeds through the directories

specified by PATH until a file is found or the list is exhausted For example, the PATH

specification

PATH C:\BIN;D:\BIN;E:\

causes COMMANDCOM to search the current directory, then C:\BIN, then D:\BIN, and
finally the root directory of drive E. COMMAND. COM searches each directory for a match—

ing .COM, .EXE, or .BAT file, in that order, before moving to the next directory.

MS-DOS environments

Version 2.0 introduced the concept of environments to MS-DOS. An environment is a

paragraph-aligned memory segment containing a concatenated set of zero-terminated
(ASCIIZ) variable—length strings of the form

variable= mine

that provide such information as the current search path used by COMMANDCOM to find

executable files, the location of COMMANDCOM itself, and the format of the user prompt.
The end of the set of strings is marked by a null string— that is, a single zero byte. A

specific environment is assOCiated with each program in memory through a pointer con—

tained at offset 2CH in the 256byte program segment prefix (PSP). The maximum size of
an environment is 52 KB; the default size is 160 bytes.

If a program uses the EXEC function to load and execute another program, the contents of
the new program’s environment are provided to MS-DOS by the initiating programw— one

of the parameters passed to the MS—DOS EXEC function is a pointer to the new program’s

environment. The default environment provided to the new program is a copy of the

initiating program’s environment.

A program that uses the EXEC function to load and execute another program will not

itself have access to the new program's environment. because MS—DOS provides a pointer

to this environment only to the new program. Any changes made to the new program's en-
vironment during program execution are invisible to the initiating program because a

1' child program‘s environment is always discarded when the child program terminates.

The system‘s master environment is normally associated with the shell COMMANDCOM.

COMMANDEOM creates this set of environment strings within itself from the contents
of the CONFIGSYS and AUTOEXECBAT files, using the SET, PATH, and PROMPT com—
mantis. See USER COMMANDS: auroaxecsa’r; cONriosvs. In MS—DOS version 3.2, the

initial size of COMMAND.COM's environment can be controlled by loading

COMMAND. COM with the /E parameter, using the SHELL directive in CONFIGSYS.

For example, placing the line

SHELL=COWND . COM {E : 20 48 HP

Section II.- Progmmming in the M's-DOS Environment 65
LII IAUUIZI EV «nan OnldEO’)

OLYMPUS EX. 1010 - 80/1582

OLYMPUS EX. 1010 - 81/1582

Bart A: Structure of MS—DOS

in CONFIGSYS sets the initial size of COMMAND.COM’s environment to 2 KB. (The /P

option prevents COMMANDCOM from terminating, thus causing it to remain in memory

until the system is turned off or restarted.)

The SET command is used to display or change the COMMAND. COM environment con-

tents. SET with no parameters displays the list of all the environment strings in the envi-

ronment. A typical listing might show the following settings:

conspsc=m \COmiaND . con
PATH=C:\;A:\;B:\
PROMPT=$p 3d t_nq
TMP=C:\TEMP

The following is a dump of the environment segment containing the previous environment

example:

0 1 2 3 d 5 6 7 B 9 A B C D E E‘
0000 43 4F 4J3 53 50 45 43 313-41 3A 5C 43 4F 4D 40 41 COMSPEC=A:\COMMA
0010 4E 44 2E 43 4F 4D 00 50—41 54 48 3D 43 331 5C 33 ND.COM.PATH=C:\F
0020 41 3A 5C 33 42 3A SC {JO-5.0 52 4? 4D 50 54 30 24 R:\;B:\~PROMPT=$

0030 TU 20 20 24 64 20 20 24-74 24 5F 24 6E 24 6? 00 p 501 t_nq.
0040 54 4D 50 3D 43 3A 5C 54—45 40 513 GD 00 00 DO 00 TMP=C:\TEMP

A SET command that specifies a variable but does not specify a value for it deletes the vari-
able from the environment.

A program can ignore the contents of its environment; however, use of the environment

can add a great deal to the flexibility and configurability of batch files and application
programs.

Batch files

Batch files are text files with a .BAT extension that contain MS—DOS user and batch com-

mands. Each line in the file is limited to 128 bytes. See USER COMMANDS: BATCH. Batch

files can be created using most text editors, including EDLIN, and short batch files can
even be created using the COPY command:

C3COFY CON SAMPLE.BAT (Enter)

The CON device is the system console; text entered from the keyboard is echoed on the

screen as it is typed. The copy operation is terminated by pressing Ctrl-Z (or the F6 key on
IBM-compatible machines), followed by the Enter key.

Batch files are interpreted by COMMAN D. COM one line at a time. In addition to the stan-

dard MS-DOS commands, COMMANDCOM’S batch—file interpreter supports a number of
special batch commands:

Command Meaning

ECHO " Display a message.
FOR " Execute a command for a list of files.

(mare)

66 The Monroe Fnr'IMInmdi/l

OLYMPUS EX. 1010 - 81/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 82/1582

Article 2: The Components of MS—DOS

Command Meaning

GOTO * Transfer control to another point.

IF * Conditionally execute a command.

PAUSE Wait for any key to be pressed.
REM Insert comment line.

SHIFT ' Access more than 10 parameters.

‘ MS—DOS versions 2.0 and later

Execution of a batch file can be terminated before completion by pressing Ctrl—C or

Ctrl-Break, causing COMMAN D.COM to display the prompt

Terminate batch job? (SE/N}

1/0 redirection

I/O redirection was introduced with MS—DOS version 2.0. The redirection facility is imple-

mented within COMMANDEOM using the Interrupt 21H system functions Duplicate File

Handle (45H) and Force Duplicate File Handle (46H). COMMANDCOM uses these func-

tions to provide both redirection at the command level and a UNIX/XENIX—like pipe

facility.

Redirection is transparent to application programs, but to take advantage of redirection, an

application program must make use of the standard input and output file handles. The in—
put and output of application programs that directly access the screen or keyboard or use
ROM BIOS functions cannot be redirected.

Redirection is specified in the command line by prefixing file or device names with the

special characters >, >>, and <. Standard output (default = CON) is redirected using > and
>> followed by the name of a file or character device. The former character creates a new

file (or overwrites an existing file with the same name); the latter appends text to an exist—
ing file (or creates the file if it does not exist). Standard input (default = CON) is redirected

with the < character followed by the name of a file or character device. See also PRO-

GRAMMING IN THE MS—DOS ENVIRONMENT: CUSTOMIZING MS-DOS: Writing MS—DOS
Filters.

; The redirection facility can also be used to pass information from one program to an-

other through a “pipe." A pipe in MS-DOS is a special file created by COMMANDCOM

.9 COMMANDCOM redirects the output of one program into this file and then redirects this
file as the input to the next program. The pipe symbol, a vertical bar (0, separates the pro—

gram names. Multiple program names can be piped together in the same command line:

worn as : SORT : MORE <Enter>

This command is equivalent to

C’DIR if . * ‘3 PIPEU <Ent.er>
C>SORT < PIPEU > PIPE'I (Enter)
C>MORE < PIPE'I <Ente:>

Section II: Programming in the Mai—DOS Environment 67
I II IA‘AIFI I_\I AAA“ nnlarnn

OLYMPUS EX. 1010 - 82/1582

OLYMPUS EX. 1010 - 83/1582

Part A: Structure of MS—DOS

The concept of pipes came from UNIX/XENIX, but UNDC/XENDC is a multitasking oper-

ating system that actually runs the programs simultaneously. UNIX/XENIX uses memory

buffers to connect the programs, whereas MS-DOS loads one program at a time and passes
information through a disk file.

Loading MS-DOS

Getting MS—DOS up to the standard to prompt is a complex process with a number of

variations. This section discusses the complete process normally associated with MS—DOS

versions 2.0 and later. (MSwDOS versions 1.}; use the same general steps but lack support for
various system tables and installable device drivers.)

MS-DOS is loaded as a result of either a “cold boot” or a “warm boot.” On IBM-compatible
machines, a cold boot is performed when the computer is first turned on or when a hard—

ware reset occurs. A cold boot usually performs a power-on self test (POST) and deter-

mines the amount of memory available, as well as which peripheral adapters are installed.

The POST is ordinarily reserved for a cold boot because it takes a noticeable amount of

time. For example, an IBM—compatible ROM BIOS tests all conventional and extended

RAM (RAM above 1 MB on an 80286-based or 80386-based machine), a procedure that

can take tens of seconds. A warm boot, initiated by simultaneously pressing the Ctrl, Alt,

and Del keys, bypasses these hardware checks and begins by checking for a bootable disk.

A bootable disk normally contains a small loader program that loads MS-DOS from the
same disk. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE or MS—DOS:

MS—DOS Storage Devices. The body of M5~DOS is contained in two files: IO.SYS and
MSDOSSYS (IBMBIOCOM and IBMDOSCOM with PC-DOS). IO.SYS contains the

Microsoft system initialization module, SYSINIT, which configures MS—DOS using either

default values or the specifications in the CONFIGSYS file, if one exists, and then starts up

the shell program (usually COMMANDCOM, the default). COMMANDEOM checks for an

AUTOEXECBAT file and interprets the file if found. (Other shells might not support such

batch files.) Finally, COMMANDCOM prompts the user for a command. (The standard

MS-DOS prompt is A> if the system was booted from a floppy disk and C> if the system

was booted from a fixed disk.) Each of these steps is discussed in detail below.

The ROM BIOS, POST, and bootstrapping

All 8086/8088—compatible microprocessors begin executiOn with the CS:IP set to
FFFF:OOOOI-I, which typically contains a jump instruction to a destination in the ROM BIOS

I that contains the initialization code for the machine. (This has nothing to do with MS-DOS;

it is a feature of the Intel microprocessors.) On IBM-compatible machines, the ROM BIOS

occupies the address space from F00020000H to this jump instruction. Figure 2-1 shows the

location of the ROM BIOS within the 1 MB address space. Supplementary ROM support
i can be placed before (at lower addresses than) the ROM BIOS.

All interrupts are disabled when the microprocessor starts execution and it is up to the

initialization routine to set up the interrupt vectors at the base of memory.

£0 mr.-n;r- hf‘r n,,,, ,s,a, i,

OLYMPUS EX. 1010 - 83/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 84/1582

Article 2: The Components of MS—DOS

1— FFFF:OOGFH(1 MB)
«(- FFFF:0000H

4— F000:0000H

Other ROM and RAM

1*— Top of RAM

(A000:00001-I for IBM PC)

4——— 0000:0000H

Figure 2-1. Memory layom at star-mp.

The initialization routine in the ROM BIOS -—-the POST procedurertypically deter-

mines what devices are installed and operational and checks conventional memory (the

first 1 MB) and, for 80286—based or 80386-based machines, extended memory (above 1

MB). The devices are tested, where possible, and any problems are reported using a series
of beeps and display messages on the screen.

When the machine is found to be operational, the ROM BIOS sets it up for normal opera-

tion. First, it initializes the interrupt vector table at the beginning of memory and any inter-
rupt controllers that reference the table. The interrupt vector table area is located from

0000:0000H to 0000:03FFH. On IBM-compatible machines, some of the subsequent mem-

ory (starting at address 0000:0400H) is used for table storage by various ROM BIOS rou-
tines (Figure 2-2). The beginning load address for the MS-DOS system files is usually in

the range 0000:0600H to 0000:0800H.

Next, the ROM BIOS sets up any necessary hardware interfaces, such as direct memory
access (DMA) controllers, serial ports, and the like. Some hardware setup may be done

before the interrupt vector table area is set up. For example, the IBM PC DMA controller
also provides refresh for the dynamic RAM chips and RAM cannot be used until the

refresh DMA is running; therefore, the DMA must be set up first.

Some ROM BIOS implementations also check to see if additional ROM BIOSs are installed

by seaming the memory from A00010000H to F000:0000H for a particular sequence of sig—

nature bytes. If additional ROM BIOSs are found, their initialization routines are called to
initialize the associated devices. Examples of additional ROMs for the IBM PC family are
the PC/XT'S fixeddisk ROM BIOS and the BOA ROM BIOS.

The ROM BIOS now starts the bootstrap procedure by executing the ROM loader routine.

On the IBM PC, this routine checks the first f loppy-disk drive to see if there is a bootable

Section 11: Programming m the MS—DOS Environmr 69

LlllA‘llIl—I I_V anan OAIAEOO

OLYMPUS EX. 1010 - 84/1582

���������	�
�
������
��OLYMPUS EX. 1010 - 85/1582

Part A: Structure of MS—DOS

4* FFFFIDDFHU MB) ROM B103 4—- FFFF:0000H

4—- F000:0000H

Other ROM and RAM

4—- Top of RAM .
(A000:0000H for IBM PC}

Free RAM

41—- 0000:0600H
ROM BIOS tables

4—- 0000:0400H

Inten-upt vectors

1"- OOOOJDOODH

Figure 2—2. The interrupt nectar tabie and the ROM BIOS mate.

disk in it. If there is not, the routine then invokes the ROM associated with another boot—

able device to see if that device contains a bootable disk. This procedure is repeated until
a bootable disk is found or until all bootable devices have been checked without success,

in which case ROM BASIC is enabled.

Bootable devices can be detected by a number of proprietary means. The IBM PC ROM

' BIOS reads the first sector on the disk into RAM (Figure 2—3) and checks for an 8086—family

I 5 short or long jump at the beginning of the sector and for M55H in the last word of the sec-
.' ' tor. This signature indicates that the sector contains the operating—system loader. Data

' ' disks—those disks not set up with the MS—DOS system files— usually cause the ROM
loader routine to display a message indicating that the disk is not a bootable system disk.

The customary recovery procedure is to display a message asking the user to insert

another disk (with the Operating system files on it) and press a key to try the load Opera-

tion again. The ROM loader routine is then typically reexecuted from the beginning so
that it can repeat its normal search procedure.

-'l When it finds a bootable device, the ROM loader routine loads the operating—system loader

'5.‘ Q and transfers control to it. The Operating—system loader then uses the ROM BIOS services
through the interrupt table to load the next part of the operating System into low memory.

Before it can proceed, the operatingnsystem loader must know something about the con-

figuration of the system boot disk (Figure 2-4). MS-DOS-compatible disks contain a data

4 - structure that contains this information. This structure, knOWn as the BIOS parameter

l'I block (BPB), is located in the same sector as the operating—system loader. From the con—
. I I tents of the BPB, the operating—system loader calculates the location of the root directory

70 The MS—DOS Encyciopedfa

OLYMPUS EX. 1010 - 85/1582

OLYMPUS EX. 1010 - 86/1582

Article 2; The Components of MS-DOS

(- FFFF:000FH(1 MB)
(— FFFF:0000H

(- F00020000H
ROM BIOS

Other ROM and RAM

(— Top of RAM
(A000:0000H for IBM PC)

Possible free RAM

Boot sector ‘ <— Arbitrary location

ROM BIOS tables

Interrupt vectors

Figure 2-3. A loaded boot sector.

(- 0000:0600H
(— 0000:0400H

(— 0000:0000H

Boot sector (— First sector on the disk

Reserved

(optional)

Root directory

IO.SYS

MSDOSSYS '

Figure 2—4. Boot-disk. configuration.

71
Section 11: Programming in the MS—DOS Environment

OLYMPUS EX. 1010 - 86/1582

OLYMPUS EX. 1010 - 87/1582

Part-ArSLructure ofMS-DOS

for the boot disk so that it can verify that the first two entries in the root directory are

IO.SYS and MSDOS.SYS. For versions of MS-DOS through 3.2, these files must also be the

first two files in the file data area, and they must be contiguous. (The operating-system

loader usually does not check the file allocation table [FAT] to see if IO.SYS and

MSDOS.SYS are actually stored in centigUOus sectors.) See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: STRUCTURE or MS-DOS: MS-DOS Storage Devices.

Next; the operating—system loader reads the sectors containing IO.SYS and MSDOS.SYS

into contiguous areas of memory just above the ROM BIOS tables (Figure 2—5). (An alterna-

tive method is to take advantage of the operating—system loader’s final jump to the entry

point in IO.SYS and include routines in IO.SYS that allow it to load MSDOS.SYS.)

Finally, assuming the file was loaded without any errors, the operating—system loader

transfers control to IO.SYS, passing the identity of the boot device. The operating-system

loader is no longer needed and its RAM is made available for other purposes.

4(— FFFF:000FH(1 MB}

ROM BIOS

Other ROM and RAM

Possible free RAM

Free RAM

MSDOS.SYS

IO.SYS

ROM BIOS tables

Figure 2—5. 10.575 andMSDOSSYS loaded.

<— F00010000H

(— Top of RAM
(A00010000H for IBM PC)

4— Arbitrary location

‘— SYSINIT

«(— MS—DOS BIOS (resident device drivers)
1— 0000:0600}!

4— 0000:0400H

1— 0000:0000H

.I -rr| nu .u. "Anv-

OLYMPUS EX. 1010 - 87/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 88/1582

Article 2: The Components of MS—DOS

MS-DOS system initialization (SYSINI’I‘)

MS—DOS system initialization begins after the operating-system loader has loaded IO.SYS

and MSDOSSYS and transferred control to the beginning of IOSYS. To this point, there
has been no standard loading procedure irnpOsed by MS-DOS, although the IBM PC load—

ing procedure outlined here has become the de facto standard for most MS-DOS machines.
When control is transferred to IO.SYS, however, MS-DOS imposes its standards.

The IOSYS file is divided into three modules:

0 The resident device drivers

0 The basic MS-DOS BIOS initialization module

0 The MS—DOS system initialization module, SYSINIT

The two initialization modules are usually discarded as soon as MS—DOS is completely

initialized and the shell program is running; the resident device drivers remain in memory
while MS-DOS is running and are therefore placed in the first part of the IO.SYS file,
before the initialization modules.

The MS-DOS BIOS initialization module ordinarily displays a signon message and the

copyright notice for the OEM that created IO.SYS. On IBM-COmpatible machines, it then

. examines entries in the interrupt table to determine what devices were found by the ROM

BIOS at POST time and adjusts the list of resident device drivers accordingly. This adjust-
ment usually entails removing those drivers that have no corresponding installed hard—

ware. The initialization routine may also modify internal tables within the device drivers.
The device driver initialization routines will be called later by SYSINIT, so the MS—DOS

BIOS initialization routine is now essentially finished and control is transferred to the
SYSINIT module.

SYSINIT locates the tOp of RAM and copies itself there. It then transfers control to the copy

and the copy proeeeds with system initialization. The first step is to move MSDOS.SYS,
which contains the MS-DOS kernel, to a position immediately following the end of the

resident portion of IO.SYS, which contains the resident device drivers. This move over-

writes the original copy of SYSINIT and usually all of the MS—DOS BIOS initialization rou-

tine, which are no longer needed. The resulting memory layout is shown in Figure 2—6.

SYSINIT then calls the initialization routine in the newly relocated MS—DOS kernel. This

routine performs the internal setup for the kernel, including putting the appropriate values
into the vectors for Interrupts 20H through SFH.

The MS-DOS kernel initialization routine then calls the initialization function of each

! resident device driver to set up vectors for any external hardware interrupts used by the

I device. Each block-device driver returns a pointer to a BPB for each drive that it supports;
these BPBs are inspected by SYSINIT to find the largest sector size used by any of the
drivers. See PROGRAMMING IN THE MS—DOS ENVIRONMENT: STRUCTURE or MS—DOS:

MS—DOS Storage DeviCes. The kernel initialization routine then allocates a sector buffer the

size of the largest sector found and places the NUL device driver at the head of the device
driver list.

Section 11- Programming in the MS-DOSEnutronment 73

tan...- LII IAUUIZI EV «nan OOIdEO’)

OLYMPUS EX. 1010 - 88/1582

OLYMPUS EX. 1010 - 89/1582

Part A: Structure of MS—DOS

+— FFFF;000FH(1 MB)

ROM BIOS

Other ROM and RAM

MS—DOS kemei

(MSDOSSYS)

MS—DOS BIOS

(IO.SYS)

ROM BIOS tables

Intenupt vectors

Figure 2-6. SYSIMTandMSDOS.5YS relocated.

<— F000:0000H

(— Top of RAM
{A000:0000H for IBM PC)

4‘“ Resident device drivers

1(- 0000:06001-1

<— 0000:0400H

 4(— 0000000011

The kernel initialization routine's final operation before returning to SYSINIT is to display

the MS—DOS copyright message. The loading of the system portion of MS—DOS is now com-

plete and SYSINIT can use any MS-DOS function in conjunction with the resident set of
device drivers.

SYSINIT next attempts to open the CONFIGSYS file in the root directory of the boot

drive. If the file does not exist, SYSINIT uses the default system parameters; if the file is

- opened, SYSINIT reads the entire file into high memory and converts all characters to

i uppercase. The file contents are then processed to determine such settings as the number
i of disk buffers, the number of entries in the file tables, and the number of entries in the

drive translation table (depending on the specific commands in the file), and these struc-

tures are aliocated following the MS—DOS kernel (Figure 2-7).

Then SYSINIT processes the CONFIGSYS text sequentially to determine what installable

device drivers are to be implemented and loads the installable device driver files into

memory after the system disk buffers and the file and drive tables. Installable device driver

files can be located in any directory on any drive whose driver has already been loaded.
Each installable device driver initialization function is called after the device driver file is

loaded into memory. The initialization procedure is the same as for resident device drivers,

except that SYSINIT uses an address returned by the device driver itself to determine

where the next device driver is to be placed. See PROGRAMMING IN THE MS-DOS ENVI-

|
i
|

1
i

J
i
!

:' RONMENT: Cusrorvnzmc— MS-DOS: Installabie Device Drivers.I|
i
E
|
|
l

7‘ “L" "“"mw' OLYMPUS EX. 1010 - 89/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 90/1582

5

Article 2: The Components of MS—DOS

SYSINIT

Installabie
device drivers

File control blocks

 Disk buffers

NIB-DOS tables

MS-DOS kernel
(MSDOSSYS)

MS-DOS BIOS

(1051(5)

ROM BIOS tables

 Interrupt vectors

+— FFFF1000FHU MB)

f-e F000:0000H

«it: Top of RAM
(momma for IBM PC)

41-— Resident device drivers

(- 0000:0600H
1r— 0000:0400H

'4— 0000:0000}!

Figure 2— 1 Tables allocated and installable device drivers loaded.

Like resident device drivers, installable device drivers can be discarded by SYSINIT if the

device driver initialization routine determines that a device is inOperative or nonexistent.
A discarded device driver is not included in the list of device drivers. Installable character-

device drivers supersede resident character-device drivers with the same name; installable

bloe kdevice drivers cannot supersede resident block-drivers and are assigned drive letters

following those of the resident block-deviCe drivers.

52cm»: 11; Programming in me MS—DOS Environment 75

LII IA‘AIl—I I_V anan nnmcon

OLYMPUS EX. 1010 - 90/1582

OLYMPUS EX. 1010 - 91/1582

Part-A? Structure ofMS-DOS

SYSINIT now closes all open files and then opens the three character devices CON, PRNI

and AUX. The console (CON) is used as standard input, standard output, and standard

error; the standard printer port is PRN (which defaults to LP’I‘D; the standard auxiliary port

is AUX (which defaults to COMI). Installable device drivers with these names will replace

any resident versions.

Starting the shell

SYSINIT's last function is to load and execute the shell program by using the MS-DOS
EXEC function. See PROGRAMMING IN THE MSwDOS ENVIRONMENT: PROGRAMMING

FOR MS-DOS: The MS-DOS EXEC Function. The SHELL statement in CONFIGSYS specifies

both the name of the shell program and its initial parameters; the default MS—DOS shell is

COMMANDCOM. The shell program is loaded at the start of free memory after the
installable device drivers or after the last internal MSsDOS file control block ifthere are

no installable device drivers (Figure 2-8).

COMMAND.COM

COMMANDCOM consists of three parts:

I A resident portion
I An initialization module

I A transient portion

The resident portion contains support for termination of programs started by

COMMANDCOM and presents criticalerror messages. It is also responsible for re-

loading the transient portion when necessary.

The initialization module is called once by the resident portion. First, it moves the tran-

sient portion to high memory. (Compare Figures 2-8 and 2-9.) Then it processes the

parameters specified in the SHELL command in the CONFIGSYS file, if any. See USER
COMMANDS: COMMAND. Next, it processes the AUTOEXECBA’I‘ file, if one exists, and

finally, it transfers control back to the resident portion, which frees the space used by the
initialization module and transient portion. The relocated transient portion then displays

the MsnDOS user prompt and is ready to accept commands.

The transient portion gets a command from either the console or a batch file and executes

it. Commands are divided into three categories:

0 Internal commands

0 Batch files

0 External commands

Internal commands are routines contained within COMMANDCOM and include opera—
tions like COPY or ERASE. Execution of an internal command does not overwrite the tran-

sient portion. Internal commands consist ofa keyword, sometimes followed by a list of I
command-specific parameters.

1'5 7'1.” ”r rm: E...-....l'.-.+.,.J.',,

OLYMPUS EX. 1010 - 91/1582

���������	�
�
�������
��
OLYMPUS EX. 1010 - 92/1582

Article 2: The Components of MES—DOS

4-— FFFF:000FH{1 MB)

ROM BIOS

Other ROM and RAM

«(L— F000:0000H

4— Top of RAM

(AODOflODOH for IBM PC)

COMMANDEUM

(transient)
COWANDEOM

(initialization)

COMMAND. COM

(resident)

Instaliable
device drivers

File comm} blocks

Disk buffers

MS-DOS kernel

(MSDOSSYS)

MS-DOS BIOS
(IO.SYS)

ROM BIOS tables

Interrupt vectors

Figure 2-8. COMMANDCOM foaded.

4— Residem device dl'ivers

4- 0000:0600H
(—- 0000:6400}!

(- 0000:0000}!

Section N.- ngrammmg in the MS-DQSEnvironmm 77

E HUAWEI EX. 1010 - 92/1582

OLYMPUS EX. 1010 - 92/1582

OLYMPUS EX. 1010 - 93/1582

Part A: Structure ofMS—DOS

(— FFFF:000FH(1 MB]

Other ROM and RAM

COMMANDCOM

(u'ansiem)

COMMANDEOM

(resident)

Installahle
device drivers

File control blocks

Disk buffers

MS~DOS tables

MS-DOS kernel

(MSDOSSYS)

MS-DOS BIOS

{ICLSYSJ

Interrupt vectors

Figure 2—9. COMMANDCQM after refocari'on.

4— F000:0000H

«(— rob of RAM
(awesome for IBM PC)

 1— Resident device drivers

4(—~ 0000;0600H

<— 0000:0400H
 (— 0000:0000H

Batch files are text files that contain internal commands, external commands, batch-file
directives. and nonexecutable comments. See USER COMMANDS: BATCH.

External commands, which are actually executable programs, are stored in separate
files with .COM and .EXE extensions and are included on the MS-DOS distribution disks.

SeePROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms—Dos: Struc-

ture of an Application Program. These programs are invoked with the name of the file

without the extension. (MS-DOS versions 5.x allow the complete pathnarne 'of the external

command to be specified.)

OLYMPUS EX. 1010 - 93/1582

���������	�
�
�������
��
OLYMPUS EX. 1010 - 94/1582

Article 2: The Components of MS-DOS

External commands are loaded by COMMAN DCOM by means of the MS-DOS EXEC func—

tion. The EXEC function loads a program into the free memory area. also called the tran—
sient program area CTPA), and then passes it control. Control returns to COMMANDCOM

when the new program terminates. Memory used by the program is released unless it is a

terminate—and-stay-resident (TSR) program, in which case some of the memory is retained
for the resident portion of the program. See PROGRAMMING N THE MS-DOS ENVIRON-
MENT: Cusromrzmo MS-DOS: Terminate-and-Stay—Resident Utilities.

After a program terminates, the resident portion of COMMANDCOM checks to see if the

transient portion is still valid, because if the program was large, it may have overwritten
the transient portion's memory space. The validity check is done by computing a check-

sum on the transient portion and comparing it with a stored value. If the checksums do
not match, the resident portion loads a new copy of the transient portion from the
COMMAND.COM file.

Just as COMMANDCOM uses the EXEC function to load and execute a program. pro

grams can load and execute other programs until the system runs out of memory. Figure
2-10 shows a typical memory configuration for multiple applications loaded at the same
time. The active taskuthe last one executedmordinarily has complete control over the

system, with the exception of the hardware interrupt handlers, which gain control
whenever a hardware interrupt needs to be serviced.

MS-DOS is not a multitasking operating system, so although several programs can be resi-
dent in memory, only one program can be active at a time. The stack-like nature of the

system is apparent in Figure 2-10. The top program is the active one; the next program
down will continue to run when the top program exits, and so on until control returns to

COMMAND. COM. RAM-resident programs that remain in memory after they have termi-

nated are the exception. In this case, a program lower in memory than another program
can become the active program, although the one—active—process limit is still in effect.

A Custom shell program

The SHELL directive in the CONFIGSYS file can be used to replace the system's default
shell, COMMAND. COM, with a custom shell. Nearly any program can be used as a system

shell as long as it supplies default handlers for the Control—C and critical error exceptions.

For example, the program in Figure 2—11 can be used to make any application program
appear to be a shell program—4? the application program terminates, SHELLCOM

restarts it, giving the appearance that the application program is the shell program.

SHELLCOM sets up the segment registers for Operation as a .COM file and reduces the

program segment size to less than 1 KB. It then initializes the segment values in the param—
eter table for the EXEC function, because .COM files cannot set up segment values within a
program. The Control-C and critical error interrupt handler vectors are set to the address of

the main program loop, which tries to load the new shell program. SHELLCOM prints a

message if the EXEC operation fails. The loop continues forever and SHELL.COM will
never return to the now-discarded SYSINIT that started it

Section II.- Progmnaming in the M3—00.? Environment 79

i HUAWEI EX. 1010 - 94/1582
OLYMPUS EX. 1010 - 94/1582

OLYMPUS EX. 1010 - 95/1582

Part A: Structure of MS-DOS

«— FFFF:000FH(1 MB)
ROM BIOS

‘— FUOU:ODDOH

Other ROM and RAM

COMMANDEOM

(transient)

«t— T015 of RAM
(A000:0000H for IBM PC)

Program #3
(active)

COMMANDCOM

(resident)

Installable
device drivers

File comm] blocks

Disk buffers

MS-DOS tables

MS—DOS kernel

(MSDOSSYS)

“156113252305 “‘(— Resident device drivers
4!— 0000:06DOH

BS ‘— 0000:0400H

(— 0000:0000H

Figure 2—10. Multipleprograms ioaded.

—‘—“'—‘“'fi“—"‘—*‘-‘-—v—-—————q——nm—-u—v—-—v—""".——-——~—an__a...._...___.'''"

OLYMPUS EX. 1010 - 95/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 96/1582

-r#¥FMfixmfig

; SHEL

r

L.RSM

Article 2: The Components of MS—DOS#____.._________._____________________—_____~__i_____________

A simple program to run an application as an
MS—DOS shell program. The program name and
startup parameters must be adjusted before
SHELL is assembled.

Written by William Wong

; To create SHELL.COM:

stderr

start

start

; CS:

C>MRSH SHELL;
C>LINK SHELL;
CBEXEZBIN SHELL.EXE SHELL.COM

equ 2
equ Odh
aqu Oah

Set up DS,

assume

proc
mov
add
mov
mov
mov
mov

push
push
push
ret

endp

DS, 55 =

standard error

ASCII carriage return
; ASCEI linefeed

segment para public ‘CODE'

ES, and 55:5? to run as

cs:cseq
far
ax,cs
ax,10h
ds.ax
ss,ax J

sp,offset stk
ax,offset shell

Ax =

cs ; push
d3 : push
ax ; push

; jump

-— Main program running as .COM ~-

cseg
Original CS value on top of stack

assume cs:cseq.ds:eseg,ss:cseq

.COM --

set up segment registers
segment after P5P

set up stack pointer

original CS
segment of shell
offset of shell
to shell

seglsize equ (({offset last) — (offset startJ) + 10£hif16
shell pro: near

pop es : ES = segment to shrink
mov bx,5eg-size : BK = new segment size
mow ah,4ah ; AH = modify memory block
int 21h ; free excess memory
mov cmd_seg.ds ; setup segments in
mov fcb1_seg,ds ; parameter block for EXEC
mov fcb2_seg,ds
mov dx,offset main_loop
mov ax,2523h ; AX . set Controluc handler

Figure 2-11. A simpleprogram to run an application as an MS—Dos shell. (more)

Section H.- Programming in the MS-DOS Environment 81
LII IAUUIZI EV «nan nQIAEO’)

OLYMPUS EX. 1010 - 96/1582

OLYMPUS EX. 1010 - 97/1582

Part A: Structure of MS—DOS_n._____l____il_i_________________H___H____h_wfl_fl‘H________fl‘_______________q____‘#_

int 21h ; set handler to DS:DX
mov dx,offset main_loop
mov ax,2524h : AX = set critical error handler
int 21h .- set handler to 05:0):

; Note: DS is equal to CS

main_loop: I
push ds ; save segment registers
push es
mov cststk_seg,ss ; save stack pointer
mov cs:stk_off,sp

mov dx,offset pgm_name'
mov bx,offset parablk

,- . mOV ax,dbflflh ; AX = EXECfrun program
5: :- . int 21h : carry = EXEC failed

4 ' mov ss,cs:stk_seg ; restore stack pointer
E P mov Sp,cs:stk_off
I P pop es ; restore segment registers

pop ds

:_ jnc main_loop ' ; loop if program run
!I! mov dx,offset load_msg
L. mov cx.load_msg_length
_i5 call print ; display error message

; mov ah.flBh ; AH = read without echo! int 21h ; wait for any character
jmp main_loop ; execute forever

shell endp

-— Print string --1

; DS:DX = address of string

. ; CX = size

It print pro: near
E mov ah,40h ; AH = write to file

‘. mov bx,5tderr ; Bx = file handle
1 int 21h ; print string

=I:i ret
‘ _ print endp

{'l ; -- Message strings —-

-: load_msg db cr,lf

5 db 'Cannot load program.'.cr,lf
. db 'Press any key to try again.',cr,lf

loadlmsg_lenqth equ $-load_msg
r = F

i ; —— Program data area ~—[- i
- i 5tk_seg dw 0 ; stack segment pointer

: stkuoff dw 0 ; save area during EXEC
i ' pgmname db '\NEWSHELL.COM'.O ,- any program will do
I -|

. I Ii Figure2—H. Continued. (more)

(an H: .u. nnnr- n....;.

OLYMPUS EX. 1010 - 97/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 98/1582

Article 2: The Components of MS—DOSWWW

par_blk dw O ; use current environment
dw offset cmd_line ; command-line address

cmd_seg dw 0 ; fill in at initialization
dw offset fcb1 ; default FCB #1

fcb1eseg dw O ; fill in at initialization
dw offset fcb2 ; default FCB #2

fcb2_seg dw 0 ; fill in at initialization
cmd_1ine db 0,cr ; actual command line
fcb1 db 0

db 11 dup (‘ ')
db 25 dup (0)

fcb2 db 0

db 11 dup (' ‘)
db 25 dup (0)
dw 200 dup (0) ; program stack area

stk dw 0

last equ $; last address used
cseg ends

end start

Figure 2—11. Continued.

SHELLCOM is very short and not too smart. It needs to be changed and rebuilt if the name .

of the application program changes A simple extension to SHELL—call it XSHELL»

would be to place the name of the application program and any parameters in the com-

mand line. XSHELL would then have to parse the program name and the contents of the

tWo FCBs needed for the EXEC function. The CONFIGSYS line for starting this shell
would be

SHELL=XSHELL \SHELL\DEMO.EXE PARAM1 PARAMZ PARAM3

SHELLCOM does not set up a new environment but simply uses the one passed to it.

William Wong

Section 11- Programming in the MS—DOS Environment 83

LII IA\I\II:I EV «nan OQMRQ’)

OLYMPUS EX. 1010 - 98/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 99/1582

Article 3.- MS—DOS Storage Devices

Article 3

MS-DOS Storage Devices

Application programs access data on MS-DOS storage devices through the MS-DOS file-

system support that is part of the MS-DOS kernel. The MS-DOS kernel accesses these

storage devices, also called block devices, through two types of device drivers: resident
block-device drivers contained in 10.5YS and installable block-device drivers loaded

from individual files when MS-DOS is loaded. See PROGRAMMING IN THE MS-DOS

ENVIRONMENT: STRUCTURE or MS-DOS: The Components of MS—DOS; Cusrowzmo
MS-DOS: Installable Device Drivers.

MS-DOS can handle almost any medium, recording method, or other variation for a storage
device as long as there is a device driver for it. MS-DOS needs to know only the sector size

and the maximum number of sectors for the device; the appropriate translation between

logical sector number and physical location is made by the device driver. Information

about the number of heads, tracks, and so on is required only for thOse partitioning pro-
grams that allocate logical devices along these boundaries. See layout of a Partition below. -

The floppydisk drive is perhaps the best-known block device, followed by its faster
cousin, the fixed-disk drive. Other MS-DOS media include RAMdisks, nonvolatile

RAMdisks, removable hard disks, tape drives, and CD ROM drives. With the proper device
driver, MS-DOS can place a file system on any of these devices (except read—only media
such as CD ROM),

This article discusses the structure of the file system on floppy and fixed disks, starting

with the physical layout of a disk and then moving on to the logical layout of the file sys-
tem. The scheme examined is for the IBM PC fixed disk.

Structure of an MS-DOS Disk

The structure of an MS—DOS disk can be viewed in a number of ways:

0 Physical device layout

logical device layout

Logical block layout
MS-DOS file system

The physical layout of a disk is expressed in terms of sectors, tracks and heads. The logical
device layout, also expressed in terms of sectors, tracks, and heads, indicates how a logical

device maps onto a physical device. A partitioned physical device contains multiple logical

devices; a physical device that cannot be partitioned contains only one. Each logical device

Section H: Programming in theMS—DOS Environment 85
LII IAUUIZI EV «nan nnldEO’)

OLYMPUS EX. 1010 - 99/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 100/1582

Part A: Structure of MS—DOS

has a logical block layout used by M5~DOS to implement a file system. These various
views of an MS-DOS disk are discussed below. See (.2350 PROGRAMMING IN THE M$DOS

ENVIRONMENT: PROGRAMMING FOR MS~DOSr File and Record Management; Disk Directo—
ries and Volume Labels.

Layout of a physical block device

The two major block-device implementations are solid—state RAMdisks and rotating mag—
netic media such as floppy or fixed disks. Both implementations provide a fixed amount of

storage in a fixed number of randomly accessible same-size sectors.

RAMdisks

A RAMdisk is a block device that has sectors mapped sequentially into RAM. Thus, the

RAMdisk is viewed as a large set of sequentially numbered sectors whose addresses are

computed by simply multiplying the seam number by the sector size and adding the base
address of the RAMdisk sector buffer. Access is fast and efficient and the access time to any

sector is fixed, making the RAMdisk the fastest block device available. However, there are

significant drawbacks to RAMdisks. First. they are volatile; their contents are irretrievably

lost when the computer’s power is turned off (although a special implementation of the

RAMdisk known as a nonvolatile RAMdisk includes a battery backup system that ensures

that its contents are not lost when the computer’s power is turned off). Second, they are
usually not portable.

Physical disks

Floppy-disk and fixed—disk systems, on the other hand, store information on revolving

platters coated with a special magnetic material. The disk is rotated in the drive at high

speeds—approximately 300 revolutions per minute (rpm) for floppy disks and 5600 rpm

for fixed disks. (The term "fixed” refers to the fact that the medium is built permanently
into the drive, not to the motion of the medium.) Fixed disks are also referred to as “hard"

disks, because the disk itself is usually made from a rigid material such as metal or glass;

floppy disks are usually made from a flexible material such as plastic.

A transducer element called the read/write head is used to read and write tiny magnetic

regions on the rotating magnetic medium. The regions act like small bar magnets with

north and south poles. The magnetic regions of the medium can be logically oriented

toward one or the other of these poles — orientation toward One pole is interpreted as a

specific binary state (I or 0) and orientation toward the other pole is interpreted as the

opposite binary state. A change in the direction of orientation (and hence a change in the

binary value) between two adjacent regions is called a flux reversal, and the density of a

particular diskimplernentation can be measured by the number of regions per inch reli—

ably capable of flux reversal. Higher densities of these regions yield higher—capacity disks.

The flux density of a particular system depends on the drive mechanics, the characteris~

tics of the read/write head, and the magnetic properties of the medium.

I _ i The read/write head can encode digital information on a disk using a number of recording

' techniques, including frequency modulation (FM), modified frequency modulation (MFM),

86 The sis—nos Encwionedi‘a

OLYMPUS EX. 1010 - 100/1582

OLYMPUS EX. 1010 - 101/1582

EE-‘Qmmwi‘fa'yr'qm‘wfifimm;
:mmnxtmm.'r.

"-2.?!

Article 3: MS—DOS Storage Devices

run length limited (RLL) encoding, and advanced run length limited (ARLL) encoding.-
Each technique offers double the data encoding density of the previous one. The associ—

ated control logic is more complex for the denser techniques.

Tracks

A read/write head reads data from or writes data to a thin section of the disk called a

track, which is laid out in a circuiar fashion around the disk (Figure 3-1). Standard 5.25—

inch f10ppy disks contain either 40 (0—39) or 80 (0—79) tracks per side. Like-numbered

tracks on either side of a double—sided disk are distinguished by the number of the read/

write head used to access the track. For example, track 1 on the top of the disk is identified

as head 0, track 1; track 1 on the bottom of the disk is identified as head 1, track 1.

Tracks can be either spirals, as on a phonograph record, or concentric rings. Computer

media usually use one of two types of concentric rings. The first type keeps the same num-
ber of sectors on each track (see Sectors below) and is rotated at a constant angular veloc—

ity (CAV). The second type maintains the same recording density across the entire surface
of the disk, so a track near the center of a disk contains fewer sectors than a track near the

perimeter. This latter type of disk is rotated at different speeds to keep the medium under

the magnetic head moving at a constant linear velocity (CLVl

Figure 3-1. Thepkysr‘cai layout oft: CAV9—secror, 5.25—mchfloppy disk.

Most MS—DOS computers use CAV disks, although a CLV disk can store more sectors using

the same type of medium. This difference in storage capacity occurs because the limiting

factor is the flux density of the medium and a CAV disk must maintain the same number

of magnetic flux regions per sector on the interior of the disk as at the perimeter. Thus,

the sectors on or near the perimeter do not use the full capability of the medium and the

heads, because the space reserved for each magnetic flux region on the perimeter is larger
than that available near the center of the disk. In spite of their greater storage capacity,

however, CLV disks (such as CD ROMs) usually have slower aCcess times than CAV disks

because of the constant need to fine—tune the motor speed as the head moves from track to

track. Thus, CAV disks are preferred for MS—DOS Systems.

87Section H: Programming in theMS-DOS Environment

OLYMPUS EX. 1010 -101/1582

OLYMPUS EX. 1010 - 102/1582

Part A; Structure ofM$DOS

Heads

Simple disk systems use a single disk, or platter, and use one or two sides of the platter;

more complex systems, such as fixed disks, use multiple platters. Disk systems that use
both sides of a disk have one read/write head per side; the heads are positioned over the

track to be read from or written to by means of a positioning mechanism such as a solenoid

or servomotor. The heads are ordinarily moved in unison, using a single head—movement

mechanism; thus, heads on opposite sides of a platter in a double—sided disk system

typically access the same logical track on their associated sides of the platter. (Performance

can be increased by increasing the number of heads to as many as one head per track,

eliminating the positioning mechanism However, because they are quite expensive, such

multiple-head systems are generally found only on high-performance minicomputers and
mainframes.)

The set of like—numbered tracks on the two sides of a platter (or on all sides of all platters
in a multiplatter system) is called a cylinder. Disks are usually partitioned along cylinders.

Tracks and cylinders may appear to have the same meaning; however, the term track is
used to define a concentric ring containing a specific number of sectors on a single side of

a single platter, whereas the term cylinder refers to the number oflike~numbered tracks on

a device (Figure 3-2).

Side 0. track 7

Side 1.
track 7

1

cylinder

Side 2. track 3'
Side 3. track 7

Figure 3-2. Tracks and cylinders on afixed—disk sjrsl‘m.

Sectors

: Each track is divided into equal-size portions called sectors. The size of a sector is a power
r of 2 and is usually greater than 128 bytes— typically, 512 bytes.

Floppy disks are either hard-secreted or soft—sectored, depending on the disk drive and

|_ the medium. Hardwsectored disks are implemented using a series of small holes near the

RR Tim inform c pmrur’nhon‘c'a

OLYMPUS EX. 1010 - 102/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 103/1582

Article 5: MS—DOS Storage Devices

center of the disk that indicate the beginning of each sector; these holes are read by a

photosensor/LED pair built into the disk drive. Soft—sectored disks are implemented by
magnetically marking the beginning of each sector when the disk is formatted. A soft-

sectored disk has a single hole near the center of the disk (see Figure 31-1) that marks the

location of sector 0 for reference when the disk is formatted or when error detection is per-

formed; this hole is also read by a photosensor/LED pair. Fixed disks use a special imple—
mentation of soft sectors (see below). A hard-sectored floppy disk cannot be used in a

disk drive built for use with soft—sectored floppy disks (and vice versa).

In addition to a fixed number of data bytes, both sector types include a certain amount of
overhead information, such as error correction and sector identification, in each sector.

The structure of each sector is implemented during the formatting process.

Standard fixed disks and 5.25-inch floppy disks generally have from 8 to 17 physical sec-

tors per track. Sectors are numbered beginning at 1. Each sector is uniquely identified by a
complete specification of the read/write head, cylinder number, and sector number. To

access a particular sector, the disk drive controller hardware moves all heads to the speci-

fied cylinder and then activates the appropriate head for the read or write operation.

The read/write heads are mechanically positioned using one of two hardware implemen-
rations. The first method, used with floppy disks, employs an “open—loop” servomecha—
nism in which the software computes where the heads should be and the hardware moves
them there. (A servomechanism is a device that can move a solenoid or hold it in a fixed

p0sition.) An open—loop system employs no feedback mechanism to determine whether

the heads were positioned correctly—the hardware simply moves the heads to the

requested position and returns an error if the information read there is not what was

expected. The positioning mechanism in floppy-disk drives is made with close tolerances
because if the positioning of the heads on two drives differs, disks written on one might
not be usable on the other.

Most fixed disk systems use the second methodaa “closed—loop” servomechanism that

reserves one side of one platter for positioning information This information, which indi-
cates where the tracks and sectors are located, is written on the disk at the factory when

the drive is assembled. Positioning the read/write heads in a closed-loop system is actually

a two-step process: First. the head assembly is moved to the approximate location of the

read or write operation; then the disk controller reads the closed—loop servo information,

compares it to the desired location, and fine-tunes the head position accordingly. This

fine—tuning approach yields faster access times and also allows for higher-capacity disks
because the positioning can be more accurate and the distances between tracks can

therefore be smaller. Because the “servo platter" usually has positioning information on

one side and data on the other, many systems have an odd number of read/write heads
for data.

Interleaving

CAV MS—DOS disks are described in terms of bytes per sector, sectors per track, number of

cylinders, and number of read/write heads. Overall access time is based on how fast the
disk rotates (rotational latency) and how fast the heads can move from track to track

(track—to—track latency).

Section II: Programming in the MS—DOS Environment 89
LII IAUUIZI EV «nan anIAEO’)

OLYMPUS EX. 1010 - 103/1582

OLYMPUS EX. 1010 - 104/1582

Part A:-;Structure of MS—DOS

On most fixed disks, the sectors on the disk are logically or physically numbered so that

logically sequential sectors are not physically adjacent (Figure 3-3). The underlying prime")
pie is that, because the controller cannot finish processing one sector before the next

sequential sector arrives under the read/write head, the logically numbered sectors must -'

be staggered around the track. This staggering of sectors is called skewing or, more com

monly, interleaving. A 2—to-1 (2:1) interleave places sequentially accessed sectors so that
there is one additional sector between them; a 5:1 interleave places two additional sectors

between them. A slower disk controller needs a larger interleave factor. A 5:1 interleave

means that three revolutions are required to read all sectors on a track in numeric order.

Rotation direction
! Figure3-3. A 3:1 interleave.

One approach to improving fixed‘disk performance is to decrease the interleave ratio.

This generally requires a specialized utility program and also requires that the disk be

reformatted to adjust to the new layout. Obviously, a 1:1 interleave is the most efficient,

provided the disk controller can process at that speed. The normal interleave for an IBM ..

PC/AT and its standard fixed disk and disk controller is 3:1, but disk controllers are avail— Q

able for the PC/AT that are capable of handling a 1:1 interleave. Floppy disks on MS-DOS-

based computers all have a 1:] interleave ratio.

Layout of a partition

For several reasons, large physical block devices such as fixed disks are often logically par—

titioned into smaller logical block devices (Figure 3—4). For instance, such partitions allow

a device to be shared among different operating systems. Partitions can also be used to

keep the size of each logical device within the PC—DOS 32 MB restriction (important for

large fixed disks). MS—DOS permits a maximum of four partitions.

A partitioned block device has a partition table located in one sector at the beginning of

the disk. This table indicates where the logical block devices are physically located. (Even

a partitioned device with only one partition usually has such a table.)

OLYMPUS EX. 1010 - 104/1582

���������	�
�
����
��
��
OLYMPUS EX. 1010 - 105/1582

‘im

Article 3: MS-DOS Storage Devices

Partition 1
Panition 2

' Partition 3‘ Partition 4

I 6

Figure 3—4. Apartitioned disk.

Under the MS-DOS partitioning standard, the first physical sector on the fixed disk con—

tains the partition table and a bootstrap program capable of checking the partition table

for a bootable partition, loading the bootable partition’s boot sector, and transferring con-
trol to it. The partition table, located at the end of the first physical sector of the disk, can
contain a maximum of four entries:

Offset From

Start ofSector SiZe (bytes) Description

01BEH 16 Partition #4

01CEH 16 Partition #3
01DEH 16 Partition #2

OlEEH 16 , Partition #1

01FEH 2 Signature: AASSH

The partitions are allocated in reverse order. Each 16—byte entry contains the following
information:

Offset From

Start ofEntry Size (bytes) Description

00H 1 Boot indicator

01H 1 Beginning head

(more)-

Section II: Programming in the MS—DOS Environment 91

HI IA\I\I|=| |=Y 1n1n _ manna?

OLYMPUS EX. 1010 - 105/1582

OLYMPUS EX. 1010 - 106/1582

Part A: Structure of MS—DOS

Offset From

Start ofEntry Size (bytes) Description

02H 1 Beginning sector

03H 1 Beginning cylinder I
04H 1 System indicator

05H 1 Ending head

06H 1 Ending sector
07H 1 Ending cylinder

08H 4 Starting sector (relative to beginning
of disk)

OCH 4 Number of sectors in partition

The boot indicator is zero for a nonbootable partition and 801-1 for a bootable (active) parti—

tion. A fixed disk can have only one bootable partition. (When setting a bootable partition,

partition programs such as FDISK reset the boot indicators for all other partitions to zero.)
See USER COMMANDS: FDISK.

The system indicators are

Code Meaning

00H Unknown

01H MS-DOS, 12—bit FAT

04H MS—DOS, 16-bit FAT

Each partition’s boot sector is located at the start of the partition, which is specified in

terms of beginning head, beginning sector, and beginning cylinder numbers. This infor-

mation, stored in the partition table in this order, is loaded into the DX and CK registers by

the PC ROM BIOS loader routine when the machine is turned on or restarted. The starting

sector of the partition relative to the beginning of the disk is also indicated. The ending

head, sector, and cylinder numbers, also inc [uded in the partition table, specify the last ac—

cessible sector for the partition. The total number of sectors in a partition is the difference

between the starting and ending head and cylinder numbers times the number of sectors

per cylinder.

MS—DOS versions 2.0 through 3.2 allow only one MS—DOS partition per partitioned device.

Various device drivers have been implemented that use a different partition table that

allows more than one MS—DOS partition to be installed, but the secondary MS-DOS parti—
tions are usually accessible only by means of an installable device driver that knows about

this change. (Even with additional MS-DOS partitions, a fixed disk can have only one b00t-

able partition.)

OLYMPUS EX. 1010 - 106/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 107/1582

Article 3: MS-DOS Storage Devices

Layout ofa file system

Block devices are accessed on a sector basis. The MS-DOS kernel, through the device

driver, sees a block device as a logical fixed—size array of sectors and assumes that the array

contains a valid MS—DOS file system. The device driver, in turn, translates the logical sector
requests from MS-DOS into physical locations on the block device.

The initial MS-DOS file system is written to the storage medium by the MS—DOS FORMAT

program. See USER COMMANDS: FORMAT. The general layout for the file system is shown

in Figure 5-5.

OEM identification, BIOS parameter block. Loader routine
Reserved area

File allocation table (FAT) #1

Possible additional copies of FAT

Root disk directory
Files area.

Figure 3—5. The MS-DOSfr'le system.

The boot sector is always at the beginning of a partition. It contains the OEM identifica—

tion, a loader routine, and a BIOS parameter block (BPB) with information about the

device, and it is followed by an optional area of reserved sectors. See The Boot Sector

below. The reserved area has no specific use, but an OEM might require a more complex
loader routine and place it in this area. The file allocation tables (FATS) indicate how the

file data area is allocated; the root directory contains a fixed number of directory entries;

and the file data area contains data files, subdirectory files, and free data sectors.

Section II: Programming in theMS—DOS Environment 93

:2 LII IA‘AIl—I I_V anan AA'IIAEOO

OLYMPUS EX. 1010 - 107/1582

OLYMPUS EX. 1010 - 108/1582

Part A: Structure of MS—DOS JET'V'Fi-tk'_.._._._,.._._.._
All the areas just described— the boot sector, the FAT, the root directory, and the file data
area — are of fixed size; that is. they do not change after FORMAT sets up the medium-

The size of each of these areas depends on various factors. For instance, the size of the FAT
is proportional to the file data area. The root directory size ordinarily depends on the type
of device; a single-sided floppy disk can hold 64 entries, a double-sided floppy disk can
hold 112, and a fixed disk can hold 256. (RAMdisk drivers such as RAMDRIVE.SYS and
some implementations of FORMAT allow the number of directory entries to be specified.)

ice-e:

The file data area is allocated in terms of clusters. A cluster is a fixed number of con—

tiguous sectors. Sector size and cluster size must be a power of 2. The sector size is usually
512 bytes and the cluster size is usually 1, 2, or 4 KB, but larger sector and cluster sizes are

possible. Commonly used MS-DOS cluster sizes are

W”9W
Single—sided floppy disk 1 512

Double-sided floppy disk 2 1024
i PC/AT fixed disk 4 2048

1 PC/XT fixed disk 8 4096
' 5 Other fixed disks 16 8192

Other fixed disks 32 16384

'Assumes 512 bytes per sector.

In general, larger cluster sizes are used to support larger fixed disks. Although smaller c1115"
. ter sizes make allocation more Space-efficient, larger clusters are usually more efficient for

- ! random and sequential access, especially if the clusters for a singie file are not sequentiallY
i _ allocated.

The file aliocation table contains one entry per cluster in the file data area. Doubling the

sectors per cluster will also halve the number of FAT entries for a given partition. See The
File Allocation Table below.

The boot sector

The boot sector (Figure 3—6) contains a BIOS parameter block, a loader routine, and some
other fields useful to device drivers. The BPB describes a number of physical parameters

1 of the device, as well as the location and size of the other areas on the device. The device

1 driver returns the BPB information to MS~DOS when requested, so that MS-DOS can deter-
mine how the disk is configured.

Figure 3—7 is a hexadecimal dump of an actual boot sector. The first 3 bytes of the boot seC-

tor shown in Figure 3—7 would be E9H ZCH 00H if a long jump were used instead of a short

one (as in early versions of MS-DOS). The last 2 bytes in the sector, SSH and AAH, are 21

fixed signature used by the loader routine to verify that the sector is a valid boot sector.

OLYMPUS EX. 1010 - 108/1582

���������	�
�
����
���
��
OLYMPUS EX. 1010 - 109/1582

E5:
g

00H
E9 XX XX or EB XX 90

031-]

OEM name and version (8 bytes)

OBH B 2 b)es er sector (ytes
ODH yt p

Sectors per allocation unit (1 byte)OEH

10H Reserved sectors, starting at 0 (2 bytes)
Number of FATS (1 byte)

1 1H BPB

13H Number of root-directory entries (2 bytes)

15H Total sectors in logical volume (2 bytes)

16H Media descriptor byte

Number of sectors per FAT (2 bytes)1 8H
Sectors per track (2 bytes)lAH
Number of heads (2 bytes)lCH

Number of hidden sectors (2 bytes)

lEH

Article 3: MS-DOS Storage Devices

Figure 3-6, Map ofthe boot sector ofan MS—DOS disk. Bytes OBI-l through 1 7Hare the BIOSparameter bloc/e
(BPB).

The BPB information contained in bytes OBI-l through 17H indicates that there are

512 bytes per sector

2 sectors per cluster
1 reserved sector (for the boot sector)
2 FATS

112 root directory entries
1440 sectors on the disk

F9H media descriptor
5 sectors per FAT

Section II: Programming in the MS—DOS Environment 95

HUAWFI FX, 1010 - 109/1589

OLYMPUS EX. 1010 - 109/1582

OLYMPUS EX. 1010 - 110/1582

Part A: Structure of MS-DOS

0000
0010
0020 .

0030 _ 30..x<.r3@.9.@{:

0130 GA 44 69 73 6B 20 42 fiF—GF 74 20 46 61 69 BC 75 .Disk Boot Failu

0190 72 65 0D 0A 00 0A 0E fiF-GE 2D 53 79 73 74 65 6D re ...Non-5ystem
01A0 20 64 69 73 08 20 SF 72—20 64 69 73 EB 20 65 72 disk or disk er

0130 72 6F 72 00 0A 52 65 70-60 61 63 65 20 61 6E 64 ror..Rep1ace and
01C0 20 70 72 65 73 73 20 61-5E 79 20 6B 65 79 20 77 press any key N
0100 68 65 BE 20 72 65 61 64-79 0D 03 00 00 00 00 00 hen ready

01E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
01F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 55 AA *

' E Figure 3- 7. Hexadecimal dump ofan MS-DOS boot sector. The BPB 1's highlighted.

Additional information immediately after the BPB indicates that there are 9 sectors per
track, 2 read/write heads, and 0 hidden sectors.

: .5; The media descriptor, which appears in the BPB and in the first byte of each FAT, is used to
' indicate the type of medium currently in a drive. IBM-compatible media have the fol low-

ing descriptors:

Descriptor Media Type MS-DOS Versions

OFBH Fixed disk 2, 3

OFOH 3.5-inch, 2-sided, 18 sector 5.2

0F9H 3.5—inch, 2—sided, 9 sector 3.2

I 0F9H 5.25-inch, 2-sided, 15 sector 5.):
' OFCH 5.5—inch, 1—sided, 9 sector 2.x, 3.x

'f OFDH 5.5-inch, 2-sided, 9 sector 2.x, 3.x
OFEH 5.25—inch, l-sided, 8 sector 1.x, 2.x, 3.x

OFFH 5.25-inch, 2-sidecl, 8 sectOr 1.x (except 1.0), 2, 5

! OFEH 8-inch, l-sided, single—density

{ OFDI-I Sninch, 2—sided, single-density
I I OFEH 8—inch, I-sided, double—density

.- OFDH 8-inch, 2~sided, double-density

OLYMPUS EX. 1010 -110/1582

���������	�
�
����

�
��OLYMPUS EX. 1010 - 111/1582

Article 3: MS—DOS Storage Devices

The file allocation table

The file allocation table provides a map to the storage locations of files on a disk by indi—
cating which clusters are allocated to each file and in what order To enable MS—DOS to

locate a file, the file’s directory entry contains its beginning FAT entry number. This FAT

entry, in turn, contains the entry number of the next cluster if the file is larger than one
cluster or a last-cluster number if there is only one cluster associated with the file. A file

whose size implies that it occupies 10 clusters will have 10 FAT entries and 9 FAT links.

(The set of links for a particular file is called a chain.)

Additional copies of the FAT are used to provide backup in case of damage to the first,
or primary, FAT; the typical floppy disk or fixed disk contains two FATS. The FATS are

arranged sequentially after the boot sector, with some possible intervening reserved area.

MS-DOS ordinarily uses the primary FAT but updates all FATs when a change occurs.

It also compares all FATS when a disk is first accessed, to make sure they match.

MS—DOS supports two types of FAT: One uses 12-bit links; the other, introduced with

version 3.0 to accommodate large fixed disks with more than 4087 clusters, uses 16-bit
links.

The first two entries of a FAT are always reserved and are filled with a copy of the media

descriptor byte and two (for a 12-bit FAT) or three (for a 16-bit FAT) OFFH bytes, as shown

in the following dumps of the first 16 bytes of the FAT:

12-bit FAT:

r9 FF FF 03 40 00 FF er—oo 07 F0 FF 00 oo oo oo

16-bit FAT:

re rr FF Fr 03 00 04 OO—FF FF 06 oo 07 00 FF rr

The remaining FAT entries have a one-to-one relationship with the clusters in the file data

area. Each cluster’s use status is indicated by its corresponding FAT value. (FORMAT in—

itially marks the FAT entry for each cluster as free.) The use status is one of the following:
it

12-bit 16-bit Meaning

OOOH OOOOH Free cluster
001H 00011-1 Unused code

FFO — FF6H FFFO—FFF6H Reserved

FF7H FFF7H Bad cluster; cannot be used
FFS—FFFH FFF8—FFFFH Last cluster of file '

All other values All other values Link to next cluster-in file

Section Ilv Programming in the MS—DOS Envigolqrpgr‘tn "_I 27V 4 A 4 A

OLYMPUS EX. 1010 -1 iii

IA En“

1 582

OLYMPUS EX. 1010 - 112/1582

Part A: Structure of MS—DOS

If a FAT entry is nonzero, the corresponding cluster has been allocated. A free cluster is

found by scanning the FAT from the beginning to find the first zero value. Bad clusters are

ordinarily identified during formatting. Figure 5—8 shows a typical FAT chain.

FAT entry: 0 i 2 . 3' 4 5 6 7 3 9

FFDH mar 003H 00511 FFTH 006H FFFH noon noon noon

(4093} (4095) (3) (5) (4037) (6) (4095) (0) (0) (0)

Unused: available cluster

continues...

Unusable

Unused; not available

Disk is double—sided, double—density

' i :3 . | Figure 3—8. Space allocation in the FATfor a typical MS-DOS disk.

. i Free FAT entries contain a link value of zero; a link value of 1 is never used. Thus, the first
-. "; allocatable link number, associated with the first available cluster in the file data area, is 2,

i I which is the number assigned to the first physical cluster in the file data area. Figure 3-9

I I f I shows the relationship of files, FAT entries, and clusters in the file data area.

5 I 5 There is no logical difference between the Operation of the 12-bit and 16-bit FAT entries;

the difference is simply in the storage and access methods. Because the 8086 is Specifically

designed to manipulate 8- or 16-bit values efficiently, the access procedure for the 12—bit

FAT is more complex than that for the 16—bit FAT (see Figures 5-10 and 3-11).

Special considerations

The FAT is a highly efficient bookkeeping system, but various tradeoffs and problems can

. occur. One tradeoff is having a partially filled cluster at the end of a file. This situation
i leads to an efficiency problem when a large cluster size is used, because an entire cluster is

allocated, regardless of the number of bytes it corrtains. For example, ten loo-byte files on a

5 disk with 16 KB clusters use 160 KB of disk space; the same files on a disk with 1 KB clus—

ters use only 10 KB— a difference of 150 KB, or 15 times less storage used by the smaller

cluster size. On the other hand, the 12—bit FAT routine in Figure 3-10 shows the difficulty

(and therefore slowness) of moving through a large file that has a long linked list of many

small clusters. Therefore, the nature of the data must be considered: Large database appli-

cations work best with a larger cluster size; a smaller cluster size allows many small text
files to fit on a disk. (The programmer writing the device driver for a disk device ordinarily
sets the cluster size.)

OLYMPUS EX. 1010 -112/1582

���������	�
�
����

��
��OLYMPUS EX. 1010 - 113/1582

Article 3: MS—DOS Storage Devices

12-bit FAT:

Reserved 0031-1 FFFH 00711 00011

mmflmm
1.11.???

 00411 006H FFFH

16bitFAT:

Reserved

000311 00041-1 FFFFH 00061-1 000711 FFE‘FH OOOOH

F8 PP PP F1? F1? FF FF FF

FATentry:

12-bitFAT: 0031-1 0041-1 FFFH 006H 0071-1 .FFFH 0001-1
Reserved continues...

16-bicFAT: 000311.000411.FFFFH 000611.000711-FFFFH OOOOH
Directoryentry

FILEl. TXT

(oints to FAT en 2)

FILE2. TXT

noints to FAT en: 5

1
File data area Corresponding FAT entry

4

.

.

7

.

Figure 3—9. Correspondence between the FATand thefile data area.

Section 11» Programming in the MS;DOS Environment 99

OLYMPUS EX. 1010 -113/1582

OLYMPUS EX. 1010 - 114/1582

Part A: Structure of MS—DOS

———— Obtain the next link number from a 12-bit FAT -----

; Parameters:

: ax = Current entry number
; ds:bx = address of FAT [must be contiguous]

; Returns:
: ax = next link number
1

; Uses: ax, bx, ex

next12 proc near

add bx,ax ; ds:bx = partial index
3hr ax,1 ; ex = offsetHZ

F ; carry = no shift needed

§ pushf ; saue carry
I _ add bx,ax ; d$:bx = next cluster number index

1 mov ax.[bx] ; ax = next Cluster numberpopf ; carry = no shift needed
jc shift ; skip if using top 12 bits
and ax,0fffh ; ex = lower 12 bits
rat

shift: mov cx,4 ; ox = shift count

i shr ax,cl ; ex = top 12 hits in lower 12 bitsret

‘ next12 endp

Figure 3-10. Assembly—Abnguage routine to access a 12-bit FAT. i ; ---— Obtain the next link number from a 16—bit FAT -----

! e'
E i ; Parameters:
r ; ex = current entry number

; d32bx = address of FAT (must be Contiguous)

; Returns:
; ax = next link number

; Uses: ax, bx, ox

E next16 proc near
add ax,ax ; ax = word offset
add bx,ax : ds:bx = next link number index
mov ax,[bx] ; ax = next link number
ret-

i next16 endp

Figure 3-11. AssembbJ—Ianguage routine to access a 16—bit FAT.

OLYMPUS EX. 1010 -114/1582

���������	�
�
����

�
��OLYMPUS EX. 1010 - 115/1582

Article 3: MS—DDS Storage Devices

Problems with corrupted directories or FATs, induced by such events as power failures

and programs running wild, can lead to greater problems if not corrected. The MS-DOS

CHKDSK program can detect and fix SOme of these problems. See USER COMMANDS:

C‘HKDSK. For example, one common problem is dangling allocation lists caused by the
absence of a directory entry pointing to the start of the list. This situation often results

when the directory entry was not updated because a file was not closed before the com—

puter was turned off or restarted. The effect is relatively benign: The data is inaccessible,
but this limitation does not affect other file allocation operations. CHKDSK can fix this

problem by making a new directory entry and linking it to the list.

Another difficulty occurs when the file size in a directory entry does not match the file

length as computed by traversing the linked list in the FAT. This problem can result in
improper operation of a program and in error responses from MS—DOS.

A more complex (and rarer) problem occurs when the directory entry is properly set up

but all or some portion of the linked list is also referenced by another directory entry. The
problem is grave, because writing or appending to one file changes the contents of the

other file. This error usually causes severe data and/or directory corruption or causes the
system to crash.

A similar difficulty occurs when a linked list terminates with a free cluster instead of a
last-cluster number. If the free cluster is allocated before the error is corrected, the

problem eventually reverts to the preceding problem. An associated difficulty occurs if a
link value of 1 or a link value that exceeds the size of the FAT is encountered.

In addition to CHKDSK, a number of commercially available utility programs can be used
to assist in FAT maintenance. For instance, disk reorganizers can be used to essentially

rearrange the FAT and adiust the directory so that all files on a disk are laid out sequentially
in the file data area and, of course, in the FAT.

The root directory

Directory entries, which are 52 bytes long, are found in both the root directory and the
subdiroctories. Each entry includes a filename and extension, the file‘s size, the starting

FAT entry, the time and date the file was created or last revised, and the file‘s attributes.

This structure resembles the format of the CP/M—style file control blocks (FCBS) used by
the MS-DOS version 1.x file functions. See PROGRAMMING IN THE MS—DOS

ENVIRONMENT: PROGRAMMING FOR MS-DOS'. Disk Directories and Volume Labels.

The MS-DOS file-naming convention is also derived from CP/M: an eight—character file-

name followed by a three—character file type, each left aligned and padded with spaces if
necessary. Within the limitations of the character set, the name and type are completely

arbitrary. The time and date stamps are in the same format used by other MS-DOS func-
tions and reflect the time the file was last written to.

Figure 3-12 shows a dump of a BIZ—byte directory sector containing 16 directory entries.

(Each entry occupies two lines in this example.) The byte at offset OABH, containing a
10H, signifies that the entry starting at OAOH is for a subdirectory. The byte at offset 160H,

containing OESH, means that the file has been deleted. The byte at offset 8BH, containing

Section N: Programming in the MS-DOS Environment 101
L" IA\I\I|=| |=Y 1H1 n _ 1 1 RM :29

OLYMPUS EX. 1010 -115/1582

OLYMPUS EX. 1010 - 116/1582

Part A: Structure of MS—DOS

the value 08H, indicates that the directory entry beginning at offset 80H is a volume label.

Finally the zero byte at offset JEOH marks the end of the directory, indicating that the sub—

sequent entries in the directory have never been used and therefore need not be searched
(versions 2.0 and later).

0 t 2 3 4 5 6 7 B 9 A B C D E F 0000 49 4F 20 20 20 20 20 20-53 59 53 2? 00 00 00 00 I0 SYS'....
0010 00 00 00 00 00 00 59 53-89 DB 02 00 D1 12 00 00 YS....Q...
0020 4F 53 44 4F 53 20 20 20-53 59 53 2? 00 00 00 00 MSDOS SYS'....
0030 00 00 00 00 00 00 41 49—52 0A 0? 00 C9 43 00 00 AIR...IC..
0040 41 4E 53 49 20 20 20 20-53 59 53 20 00 00 00 00 ANSI 3Y5 ...
0050 00 00 00 00 00 00 41 49—52 0A 1B 00 26 07 00 00AIR...v...
0060 53 54 41 4C 4B 20 20 20-45 50 45 20 00 00 00 00 XTALK EXB

0070 00 00 00 00 00 00 E7 TD-38 09 23 02 84 03 01 00 wiB.#
0080 4C 41 42 45 4C 20 20 20-20 20 20 08 00 00 00 00 LABEL
0090 00 00 00 00 00 00 8C 20-2A 09 00 00 00 00 00 00 *.D..R..

00A0 4C 4? 54 55 53 20 20 20—20 20 20 10 00 00 00 00 LOTUS
0030 00 00 00 00 00 00 E0 0A-E1 06 A6 01 00 00 00 00 '.a.&.a...
00C0 4C 54 53 4C 4? 41 44 20-43 4F 40 20 00 00 00 00 LTSLOAD COM

'1 0000 00 00 00 00 00 00 E0 0A-E1 06 A? 01 A0 27 00 00 '.a.'. '..
. 1 0030 4D 43 49 20 53 46 20 20-58 54 4B 20 00 00 00 00 MCIeSF XTK

. 1 00F0 00 00 00 00 00 00 46 19—32 00 B1 01 79 04 00 00 F.2.1.y..
1 1 0100 58 54 41 4C 43 20 20 20—43 4C 50 20 00 00 00 00 XTALK. HLP

. E 0110 00 00 00 00 00 00 C5 60—13 0? A3 02 AF 83 00 00 Ems.#.f...

I i 0120 54 53 20 20 20 20 20 20-43 4F 4D 20 00 00 00 00 TX COMI 0130 00 00 00 00 00 00.05 61—65 0C 39 01 E8 20 00 00 ae.9.h ..
0140 43 4F 40 40 41 4E 44 20-43 4F 4D 20 00 00 00 00 COMMAND CON

; | 0150 00 00 00 00 00 00 41 49-52 0A 2? 00 55 3F 00 00 AIR.'.U?..
1 1 0160 E5 32 33 20 20 20 20 20-45 58 45 20 00 00 00 00 B23 EXE

1 0170 00 00 00 00 00 00 9C 82—35 GB 42 01 00 5F 01 00 2..E.._..
j : 0180 47 44 20 20 20 20 20 20-44 52 56 20 00 00 00 00 GD DRV
:- 0190 00 00 00 00 00 00 £0 0A-E1 05 9A 01 5B 08 00 00 '.a...[...

01A0 4B 42 20 20 20 20 20 20-44 52 56 20 00 00 00 00 KB DRV
0130 00 00 00 00 00 00 E0 0A—E1 06 SD 01 60 01 00 00 '.a...'...
01C0 50 52 20 20 20 20 20 20-44 52 56 20 00 00 00 00 PR DRV
0100 00 00 00 00 00 00 E0 0A-E1 06 9E 01 49 01 00 00 '.a...I...
01E0 00 F6 F6 F6 F6 F6 F6 F5~F6 F6 F5 F6 F5 F6 F6 F6
01F0 F6 F6 F5 F5 F6 F6 F6 FE-Ffi F6 F6 F6 F6 F6 F6 F6

Figure 3-12. Hexadecimal dump ofa 51241er directory sector.

1

'1

l
|

|
J

1’ The sector shown in Figure 3-12 is actually an example of the first directory sector in the
1 root directory of a bootable disk. Notice that IO.SYS and MSDOSBYS are the first two files

- in the directory and that the file attribute byte (offset OBI-I in a directory entry) has a

binary value 'of 00100111, indicating that both files have hidden (hit 1 = 1), system (bit 0 = 1),

and read—only (bit 2 = 1) attributes. The archive bit (bit 5) is also set, marking the files for

possible backup.

I

OLYMPUS EX. 1010 -116/1582

���������	�
�
����

��
��OLYMPUS EX. 1010 - 117/1582

Article 3: MS—DOS Storage Devices

The root directory can optionally have a special type of entry called a volume label, iden-

tified by an attribute type of OSH, that is used to identify disks by name. A root directory
can contain only one volume label. The root directory can also contain entries that point to

subdirectories; such entries are identified by an attribute type of 10H and a file size of zero.

Programs that manipulate subdirectories must do so by tracing through their chains of
clusters in the FAT.

Two other special types of directory entries are found only within subdirectories. These
entries have the filenames . and .. and correspond to the current directory and the parent

directory of the current directory. These special entries, sometimes called directory

aliases, can be used to move quickly through the directory structure.

The maximum pathname length supported by MS—DOS, excluding a drive specifier but

including any filename and extension and subdirectory name separators, is 64 characters.

The size of the directory structure itself is limited only by the number of root directory

entries and the available disk space.

The file area

The file area contains subdirectories, file data, and unallocated clusters. The area is

divided into fixed4size clusters and the use for a particular cluster is specified by the corre-

sponding FAT entry.

Other MS-DOS Storage Devices

As mentioned earlier, MS-DOS supports other types of storage devices, such as magnetic—

tape drives and CD ROM drives. Tape drives are most often used for archiving and for
sequential transaction processing and therefOre are not discussed here.

CD ROMS are compact laser discs that hold a massive amount of information— a single
side of a ROM can hold almost 500 MB of data. However, there are some drawbacks to

current C ROM technology. For instance, data cannot be written to them —-—the informa-

tion is placed on the compact disk at the factory when the disk is made and is available on

a read-only basis. In addition, the access time for a CD ROM is much slower than for most

magnetic-disk systems. Even with these limitations, however, the ability to hold so much

information makes CD ROM a good method for storing large amounts of static information.

William Wong

Section [1.- Programming in the MS—DOS Environment 103

OLYMPUS EX. 1016311771682

OLYMPUS EX. 1010 - 118/1582

Part B

Programming for MS-DOS

OLYMPUS EX. 1010 -118/1582

���������	�
�
����

��
��OLYMPUS EX. 1010 - 119/1582

Article 4: Structure of an Application Program

Article 4

Structure ofan Application Program

Planning an MS-DOS application program requires serious analysis of the program’s size.

This analysis can help the programmer determine which of the two program styles sup

ported by MS—DOS best suits the application. The .EXE program structure provides a large

program with benefits resulting from the extra 512 bytes (or more) of header that preface

all .EXE files. On the other hand, at the cost of losing the extra benefits, the .COM program
structure does not burden a small program with the overhead of these extra header bytes.

Because .COM programs start their lives as .EXE progms (before being converted by
EXEZBIN) and because several aspects of application programming under MS-DOS

remain similar regardless of the program structure used, a solid understanding of .EXE

structures is beneficial even to the programmer who plans on writing only .COM pro—

grams. Therefore, we‘ll begin our discussion with the structure and behavior of .EXE
programs and then look at differences between .COM programs and .EXE programs,

including restrictions on the structure and content of .COM programs.

The .EXE Program

The .EXE program has several advantages over the .COM program for application design.
Considerations that could lead to the choice of the .EXE format include

Extremely large programs
Multiple segments
Overlays
Segment and far address constants

long calls
Possibility of upgrading programs to MS 03/2 protected mode

The principal advantages of the .EXE format are provided by the file header. Most
important, the header contains information that permits a program to make direct seg-

ment address references——a requirement if the program is to grow beyond 64 KB.

The file header also tells MS-DOS how much memory the program requires. This informa-

tion keeps memory not required by the program from being allocated to the programr—
an important consideration if the program is to be upgraded in the future to run efficiently

under MS 08/2 protected mode.

Before discussing the .EXE program structure in detail, we‘ll look at how .EXE programs
behave.

- Section 11.- Programming in the MS-DOS Environment 107

E I-IIIA\I\II:I I:Y 1n1n- 110/1132?
OLYMPUS EX. 1010 -119/1582

OLYMPUS EX. 1010 - 120/1582

Part B: Programming for MS-DOS

Giving control to the .EXE program

Figure 4-1 gives an example of how a .EXE program might appear in memory when

MS-DOS first gives the program control. The diagram shows Microsoft’s preferred pro-
gram segment arrangement.

4 SP
Any segments with class

STACK
4 SS

All segments -)'segments with classdeclared —SS
as part Of group -nyDGROUP segmentsDOROUP not_hownelsewhere

_ysegments with class_EGDATA
Stan segment _ysegrtijtentswLchlassEnames 4 [p
and start of en mg W1! 0D ‘ CS

program image Program segment prefix (PSP) I(loadmodule) I

————— _——-————————-~'<Ios.ss

Figure 4—1. ThetEXfipr-ogram: memory mop diagram with registerpointers.

Before transferring control to the .EXE program, MS-DOS initializes various areas of

memory and several of the microprocessor's registers. The following discussion explains

what to expect from MS—DOS before it gives the .EXE program coutrol.

The program segment prefix

The program segment prefix (PSP) is not a direct result of any program code. Rather, this

Special 256-byte (16wparagraph) page of memory is built by MS-DOS in front of all .EXE

and .COM programs when they are loaded into memory. Although the PSP does contain

several fields of use to newer programs, it exists primarily as a remnant of CP/M—u

Microsoft adopted the PSP for ease in porting the vast number of programs available under

CP/M to the MS-DOS environment. Figure 4-2 shows the fields that make up the PSP.

PSROOOOH (Terminate {old Warm Boot} Vector) The PSP begins with an 8086nfamily

INT 20H instruction, Which the program can use to transfer control back to MS-DOS. The
PSP includes this instruction at offset 00H because this address was the WBOOT (Warm

Boot/Terminate) vector under CP/M and CP/M programs usually terminated by jumping

to this vector. This method of termination should not be used in newer programs. See

Terminating the .EXE Program be10w.

ESE-000.212r (Address ofLast Segment Allocated to Program) MS-DOS introduced the word

at offset 02H into the PSP. It contains the segment address of the paragraph following the

block of memory allocated to the program. This address should be used only to determine

the size or the end of the memory block allocated to the program; it must not be con-

sidered a pointer to free memory that the program can appropriate. In most cases this ad—

dress will not point to free memory, because any free memory will already have been

1nn _.__-_

OLYMPUS EX. 1010 - 120/1582

���������	�
�
����
�
�
��OLYMPUS EX. 1010 - 121/1582

Article 4: Structure of an Application Program

xOH le x2H x3H x4H XSH x6H x7H x8H X9H xAH xBH xCH xDH XEH xFH

INT 20H End alloc Resv. Far call to MS—DOS fn handler Prev terminate address Prev Ctrl C“.

0CDH 20H seglo seg hi 9AH ofs 10 ofshi seg lo seg hi ofslo of: hi seglo seg hi ofslo ofs hi

,..address Prev critical error address Reserved. . .

OXH

 le

seglo seghi ofslo ofshi segla seghi

...Reserved Environ seg l' eserved...

2xH
seg lu sag hi

3xl-I ...Reserved... L.—MS'DOS 2'0and later only

4xH ...Reserved

5m 1m 2m and 11er Reserved Primary FCB...
0CDH 21H OCBH d F i 1

6xH ...Primary file control block (FCB) Secondary FCB...
e n a m e E x EOOHOOHOOHOOHd F i1

7m ...Secondary file control block (FCB) Reserved
e n a m e E x t OOHOOHOOHOOH

SxH Command tail and default disk transfer area (DTA) (continues through OFFH)“.
' Len I

Figure 442. Theprogram segmentprefix (PSP).

allocated to the program unless the program was linked using the /CPARMAXALLOC

switch. Even when /CPARMAXALLOC is used, MS—DOS may fit the program into a block

of memory only as big as the program requires Well-behaved programs should acquire

additional memory only through the MS—DOS function calls provided for that purpose.

PSP.-0005H (MS-DOS Function Call [oldBDOS] Vector) Offset 05H is also a hand-me-

down from CP/M. This location contains an 8086-family far (intersegment) call instruction

to MS-DOS’s function request handler. (Under CP/M, this address was the Basic Disk Oper-

ating System [BDOS] vector, which served a similar purpose.) This vector should not be
used to call MS—DOS in newer programs. The System Calls section of this book explains

the newer, approved method for calling MS-DOS. MS—DOS provides this vector only to sup-

port CP/M-style programs and therefore honors only the CP/M-style functions (00—24H)

through it.

PSR‘OOOAH—OOZ5H (Parent’s 22H, 23H, and 24HInterrupt Vector Save) MS-DOS uses

offsets OAH through 15H to save the contents of three program—specific interrupt vectors.

MS—DOS must save these vectors because it permits any program to execute another pro-

gram (called a child process) through an MS—DOS function call that returns control to the

original program when the called program terminates. Because the original program

resumes executing when the child program terminates, MS—DOS must restore these three

Section 11: Programming in the MS—DOS Environment 109

OLYMPUS EX. 1010 -121/1582

OLYMPUS EX. 1010 - 122/1582

Part B: Programming for MS—DOS

interrupt vectors for the original program in case the called program changed them. The

three vectors involved include the program termination handler vector (Interrupt 22H).
the Control—C/Control—Break handler vector (Interrupt 25H), and the critical error handler

vector (Interrupt 24H). MS-DOS saves the original preexecution contents of these vectors

in the child program's P5P as doubleword fields beginning at offsets OAH for the program
termination handler vector, OEH for the Control-C/Control—Break handler vector, and 12H
for the critical error handler vector.

PSR-002CH (Segment Address ofEnvironmem) Under MS—DOS versions 2.0 and later, the

word at offset 2CH contains one of the most useful pieces of information a program can

find in the PSP—the segment address of the first paragraph of the MS-DOS environment.

This pointer enables the program to search through the environment for any configuration

or directory search path strings placed there by users with the SET command.

PSP:0050H (NewMS-DOS Cali Vector) Many programmers disregard the contents of offset

50H. The location consists simply of an INT 21H instruction followed by a RETF. A .EXE
program can call this location using a far call as a means of accessing the MS-DOS function

handler. Ofcourse, the program can also simply do an INT 21H directly, which is smaller

and faster than calling 50H. Unlike calls to offset 05H, calls to offset 50H can request the

full range of MS—DOS functions.

P5R-005CH (Default File ControlBlock I) and P8P: OOGCH (Default File Control Block 2)

MS—DOS parses the first two parameters the user enters in the command line following the

program‘s name. If the first parameter qualifies as a valid (limited) MS—DOS filename

(the name can be preceded by a drive letter but not a directory path), MS-DOS initializes

offsets SCH through 63H with the first 16 bytes of an unopened file control block (FCB) for

the specified file. If the second parameter also qualifies as a valid MS-DOS filename,

MS-DOS initializes offsets 6CH through 7BH with the first 16 bytes of an unopened FCB for
the second specified file. If the user specifies a directory path as part of either filename,

MS-DOS initializes only the drive code in the associated FCB. Many programmers no

longer use this feature, because file access using FCBs does not support directory paths
and other newer M5~DOS features.

Because FCBs expand to 37 bytes when the file is Opened, Opening the first FCB at offset

' SCH causes it to grow from 16 bytes to 37 bytes and to overwrite the second PCB. Similarly,

I opening the second FCB at offset 6CH causes it to expand and to overwrite the first part of
. the command tail and default disk transfer area (DTA). (The command tail and default

l DTA are described below.) To use the contents of both default FCBs, the program should
copy the FCBs to a pair of 37-byte fields located in the program's data area. The program

can use the first FCB without moving it only after relocating the second FCB (if necessary)

! , and only by performing sequential reads or writes when using the first FCB. To perform

random reads and writes using the first FCB, the programmer must either move the first

FCB or change the default DTA address. Otherwise, the first FCB’s random record field will

overlap the start of the default DTA, See PROGRAMMING IN THE MS-DOS ENVIRON-

MENT: PROGRAMMING FDR M5~DOS: File and Record Management.

_________ ' " 0LYMPUSEX.1010-122/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 123/1582

Article 4: Structure ofan Application Program

PSP:0080H(Command Tail and Default DTA) The default DTA resides in the entire sec—

ond half (128 bytes) of the PSP. MS—DOS uses this area of memory as the default record
buffer if the program uses the PCB—style file access functions. Again, MS-DOS inherited

this location from CP/M. (MS—DOS provides a function the program can call to change the
address MS-DOS will use as the current DTA. See SYSTEM CALLS: INTERRUPT 21H: Func—

tion 1AH.) Because the default DTA serves no purpose until the program performs some

file activity that requires it, MS—DOS places the command tail in this area for the program
to examine. The command tail consists of any text the user types following the program

name when executing the program. Normally, an ASCII space (20H) is the first character

in the command tail, but any character MS-DOS recognizes as a separator can occupy this

position. MS—DOS stores the command—tail text starting at offset 81H and always places an

ASCII carriage return (ODH) at the end of the text. As an additional aid, it places the length

of the command tail at offset 80H. This length includes all characters except the final ODH.
For example, the command line

C>DOIT WITH CLASS <Enter>

will result in the program DOIT being executed with PSP:0080H containing

DB 20 57 49 54 48 20 43 4c 41 53 53 OD

len sp W I T H sp C L A S S or

The stack

Because .EXE—style programs did not exist under CP/M, MS-DOS expects .EXE programs
to operate in strictly MS-DOS fashion. For example, MS—DOS expects the .EXE program to

supply its own stack. (Figure 4-1 shows the program’s stack as the top box in the diagram.)

Microsoft’s high-level—language compilers create a stack themselves, but when writing in

assembly language the programmer must specifically declare one or more segments with

the STACK combine type. If the programmer declares multiple stack segments, possibly in
different source modules, the linker combines them into one large segment. See Control—
ling the .EXE Program’s Structure below.

Many programmers declare their stack segments as preinitialized with some recognizable

repeating string such as *STACK. This makes it possible to examine the program’s stack in

memory (using a debugger such as DEBUG) to determine how much stack space the pro-
gram actually used. On the other hand, if the stack is left as uninitialized memory and

linked at the end of the .EXE program, it will not require space within the .EXE file. (The
reason for this will become more apparent when we examine the structure of a .EXE file.)

Note: When multiple stack segments have been declared in different .ASM files, the

Microsoft Object Linker (LINK) correctly allocates the total amount of stack space speci—

fied in all the source modules, but the initialization data from all modules is overlapped
module by module at the high end of the combined segment.

An important difference between .COM and .EXE programs is that MS—DOS preinitializes

a .COM program’s stack with a termination address before transferring control to the pro—

gram. MS—DOS does not do this for .EXE programs, so a .EXE program cannot simply
execute an 8086-family RET instruction as a means of terminating.

Section II: Programming in the MS—DOS Environment 1 1 1IIIIAlIll—I l—\I AnAn AnnlAl-nn

OLYMPUS EX. 1010 - 123/1582

OLYMPUS EX. 1010 - 124/1582

Part B: Programming for MsDOS

Note: In the assembly-language files generated for a Microsoft C program or for programs

in most other high—level~languages, the compiler’s placement of a RET instruction at the

end of the main function/subroutine/procedure might seem confusing. After all, MS—DOS

does not place any return address on the stack. The compiler places the RET at the end of

win because main does not receive control directly frorn MS-DOS. A library initializa—

tion routine receives control from MS-DOS; this routine then calls mam. When min per—

forms the RET, it returns control to a library termination routine, which then terminates

back to MS-DOS In an approved manner.

Preallocated memory

While loading a .EXE program, MS—DOS performs several steps to determine the initial

amount of memory to be allocated to the program. First, MS-DOS reads the two values the

linker places near the start of the .EXE header: The first value, MINALLOC, indicates the

minimum amount of extra memory the program requires to start executing; the second
value, MAXALLOC, indicates the maximum amount of extra memory the program would

like allocated before it starts executing. Next, MS-DOS locates the largest free block of

memory available. If the size of the program‘s image within the .EXE file combined with

the value Specified for MINALLOC exceeds the memory block it found, MS-DOS returns

_.i " ! an error to the process trying to load the program. If that process is COMMANDCOM,

; l COMMANDCOM then displays a Program too big tofr't in memory error message and
3! terminates the user's execution request. If the block exceeds the program’s MINALLOC

' I requirement, MS—DOS then compares the memory block against the program’s image _
combined with the MAXALLOC request. If the free block exceeds the maximum memory

requested by the program, MS~DOS allocates only the maximum request; otherwise, it
allocates the entire block. MS-DOS then builds a PSP at the start of this block and loads

the program’s image from the .EXE file into memory following the PSP.

This process ensures that the extra memory allocated to the program will immediately

follow the program's image. The same will not necessarily be true for any memory

_ _ MS-DOS allocates to the program as a result of MS—DOS function calls the program per-
, ' forms during its execution. Only function calls requesting MS—DOS to increase the initial

I allocation can guarantee additional contiguous memory. (Of course, the granting of such

, increase requests depends on the availability of free memory following the initial
i i _I allocation.)

| Programmers writing .EXE programs sometimes find the lack of keywords or compiler/
| assembler switches that deal with MINALIDC (and possibly MAXALLOC) confusing. The
l programmer never explicitly specifies a MINALLOC value because LINK sets MINALLOC
: to the total size of all uninitialized data and/or stack segments linked at the very end of the
I program. The MINALLOC field allows the compiler to indicate the size of the initialized

E data fields in the load module without actually including the fields themselves, resulting in

, , J a smaller .EXE program file. For LINK to minimize the size of the .EXE file, the programi must be coded and linked in such a way as to place all uninitialized data fields at the end

' of the program. Microsoft high—level—Ianguage compilers handle this automatically;

I assembly-language programmers must give LINK a little help.

OLYMPUS EX. 1010 - 124/1582

���������	�
�
����
��
��
OLYMPUS EX. 1010 - 125/1582

Article 4: Structure of an Application Program

Note: Beginning and even advanced assembly-language programmers can easily {all into
an argument with the assembler over field addressing when attempting to place data fields
after the code in the source file. This argument can be avoided if programmers use the

SEGMENT and GROUP assembler directives. See Controlling the .EXE Program’s Struc—
ture below.

No reliable method exists for the linker to determine the correct MAXALLOC value

required by the .EXE program. Therefore, LINK uses a "safe" value of FFFFH, which

causes MS-DOS to allocate all of the largest block of free memory—which is usually all
free memory—"to the program. Unless a program specifically releases the memory for

which it has no use, it denies multitasking supervisor programs, such as IBM’s TopView,
any memory in which to execute additional programs — hence the rule that a well-

behaved program releases unneeded memory during its initialization. Unfortunately, this

memory conservation approach provides no help if a multitasking supervisor supports the
ability to load several programs into memory without executing them. Therefore, pro-
grams that have correctly established MAXALLOC values actually are well-behaved
programs.

To this end, newer versions of Microsoft LINK include the /CPARMAXALLOC switch

to permit specification of the maximum amount of memory required by the program. The
/CPARMAXALLOC switch can also be used to set MAXALLOC to a value that is known to

be less than MINALLOC. For example, specifying a MAXALLOC value of 1 (/CP:1) forces
MS—DOS to allocate only MINALLOC extra paragraphs to the program. In addition,

Microsoft supplies a program called EXEMOD with most of its languages. This program
permits modification of the MAXALDOC field in the headers of existing .EXE programs.
See Modifying the .EXE File Header below.

The registers

Figure 4—1 gives a general indication of how MS-DOS sets the 8086-family registers
before transferring control to a .EXE program. MS—DOS determines most of the original

register values from information the linker places in the .EXE file header at the start of the
.EXE file.

MS-DOS sets the SS register to the segment (paragraph) address of the start of any seg—

ments declared with the STACK combine type and sets the SP register to the offset from 88
of the byte immediately after the combined stack segments. (If no stack segment is

declared, MS—DOS sets 58:8? to CS:0000.) Because in the 8086rfamily architecture a stack

grows from high to low memory addresses, this effectively sets SS:SP to point to the base of
the stac k. Therefore, if the programmer declares stack segments when writing an assem-

bly—language program, the program will not need to initialize the SS and SP registers.
Microsoft’s high-level-language compilers handle the creation of stack segments automati-
cally. In both cases, the linker determines the initial SS and SP values and places them in

the header at the start of the .5103 program file.

Unlike its handling of the SS and SP registers, MS—DOS does not initialize the DS and ES
registers to any data areas of the .EXE program. Instead, it points D5 and ES to the start of

f Section 11.- Progmmming in theMS—DOS Environment 113HUAWEI EX. 1010 -125/1582

OLYMPUS EX. 1010 - 125/1582

OLYMPUS EX. 1010 - 126/1582

Part B: Programming for MS—DOS

the PSP. It does this for two primary reasons: First, MS—DOS uses the DS and ES registers to

tell the program the address of the PSP; second, most programs start by examining the

command tail within the PSP. Because the program starts without DS pointing to the data

segments, the program must initialize DS and (optionally) ES to point to the data segments

before it starts trying to access any fields in those segments. Unlike .COM programs, .EXE

programs can do this easily because they can make direct references to segments, as
follows:

MOV RX, SEG DATLSEGMENT_OR_GROUP_NAME
MOV D5 . RX
MOV as , pix

High-level-language programs need not initialize and maintain DS and E5; the compiler

and library support routines do this.

In addition to pointing DS and ES to the PSP, MS—DOS also sets AH and AL to reflect the

validity of the drive identifiers it placed in the two FCBs contained in the PSP. MS—DOS sets

AL to OFFH if the first FCB at PSP:005CH was initialized with a nonexistent drive identifier;

otherwise, it sets AL to zero. Similarly, MS—DOS sets AH to reflect the drive identifier

placed in-the second FCB at PSP:006CH.

When MS—DOS analyzes the first two command-line parameters following the program

name in order to build the first and second FCBs, it treats any character followed by a

colon as a drive prefix. If the drive prefix consists of a lowercase letter (ASCII a through

2), MS-DOS starts by converting the character to uppercase (ASCII A through Z). Then it

subtracts 40H from the character, regardless of its original value. This couverts the drive

prefix letters A through 2 to the drive codes 01H through lAH, as required by the two

FCBs. Finally, MS—DOS places the drive code in the apprOpriate FCB.

i This process does not actually preclude invalid drive specifications from being placed in
i . the FCBs. For instance, MS-DOS will accept the drive prefix !: and place a drive code of

' . _ OEIH in the FCB (! = 21H; 21H—40H = OElH). However, MS-DOS will then check the drive

I ' code to see if it represents an existing drive attached to the computer and will pass a value

I of OFFI-I to the program in the appropriate register (AL or AH) if it does not.

As a side effect of this process, MS—DOS accepts @: as a valid drive prefix because the

subtraction of 40H converts the @ character (40H) to 00H. MS-DOS accepts the 00H value

as valid because a 00H drive code represents the current default drive. MS—DOS will leave

the FCB’s drive code set to 00H rather than translating it to the code for the default drive

because the MS-DOS function calls that use FCBs accept the 00H code.

. Finally, MS—DOS initializes the CS and IP registers, transferring control to the program’s

' i entry point. Programs developed using high-level—language compilers usually receive con-
trol at a library initialization routine. A programmer writing an assembly-language pro-

gram using the Microsoft Macro Assembler (MASM) can declare any label within the

OLYMPUS EX. 1010 - 126/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 127/1582

Article 4: Structure of an Application Program

program as the entry point by placing the label after the END statement as the last line of the
program:

END ENTRY..POINT._LABEL

With multiple source files, only one of the files should have a label following the END
statement. If more than one source file has such a label, LINK uses the first one it encoun-

ters as the entry point.

The other processor registers (BX, CX, DX, BP, SI, and DI) contain unknown values when

the program receives control from MS-DOS. Once again, high—level-language program-
mers can ignore this fact—the compiler and library support routines deal with the situa-

tion. However, assembly—language programmers should keep this fact in mind. It may give
needed insight sometime in the future when a program functions at certain times and
not at others.

In many cases, debuggers such as DEBUG and SYMDEB initialize uninitialized registers to

some predictable but undocumented state. For instance, some debuggers may predictably

set BP to zero before starting program execution. However, a program must not rely on
such debugger actions, because MS-DOS makes no such promises. Situations like this

could account for a program that fails when executed directly under MS-DOS but works

fine when executed using a debugger.

Terminating the .EXE program

After MS-DOS has given the .EXE program control and it has completed whatever task
it set out to perform, the program needs to give control back to MS-DOS. Because of

MS-DOS’s evolution, five methods of program termination have accumulated~ not

including the several ways MS-DOS allows programs to terminate but remain resident
in memory.

Before using any of the termination methods supported by MS-DOS, the program should
always close any files it had open, especially those to which data has been written or

Whose lengths were changed. Under versions 2.0 and later, MS—DOS closes any files

opened using handles. However, good programming practice dictates that the program

not rely on the operating system to close the program’s files. In addition, programs written
to use shared files under MS-DOS versions 3.0 and later should release any file locks before

closing the files and terminating.

The Terminate Process withReturn Code function

Of the five ways a program can terminate, only the Interrupt 21H Terminate Process with

Return Code function (4CH) is recommended for programs running under MS—DOS ver-

sion 2.0 or later. This method is one of the easiest approaches to terminating any pro-
gram, regardless of its structure or segment register settings. The Terminate Process with
Return Code function call simply consists of the following:

MOV AH,4CH ;load the MS—DOS function code
MOV AL,RETURN_CODE ;load the termination code
INT 21H ;call MS—DOS to terminate program

Section [1: Programming in the MS-DOS Environment 1 1 5.n-n..—. ._‘: ‘A‘A ‘A—ll—AA

OLYMPUS EX. 1o1o - 127/1582

OLYMPUS EX. 1010 - 128/1582

Part B: Programming for MS-DOS

The example loads the AH register with the Terminate Process with Return Code function

code. Then it loads the AL regiSter with a return code. Normally, the return code repre~

sents the reason the program terminated or the result of any operation the program

performed.

A program that executes another program as a child process can recover and analyze the

child program's return code if the child process used this termination method. Likewise,

the child process can recover the RETURN_CODE returned by any program it executes as

a child process, When a program is terminated using this method and control returns to

MS-DOS, a batch (.BAT) file can be used to test the terminated program’s return code

using the IFERRORLEVEL statement.

Only two general conventions have been adopted for the value of RETURMCODE:
First, a RETURNFCODE value of 00H indicates a normal no-error termination of the

program; second, increasing RETURN_CODE values indicate increasing severity of con—

ditioris under which the program terminated. For instance, a compiler could use the

RETURNfiCODE 00H if it found no errors in the source file, 01H if it found only warning
errors, or 02H if it found severe errors.

If a program has no need to return any special RETURDLCODE values, then the following

instructions will suffice to terminate the program with a RETURN_CODF. of 00H:

MOV . AX,4CO0H
INT 21H

Apart from being the approved termination method, Terminate Process with Return Code

is easier to use with .EXE programs than any other termination method because all other

methods require that the CS register point to the start of the PSP when the program term i-

nates. This restriction causes problems for .EXE programs because they have code seg-

ments with segment addresses different from that of the PSP.

The only problem with Terminate Process with Return Code is that it is not available under

MS—DOS versions earlier than 2.0, so it cannot be used if a program must be compatible

with early MS-DOS versions. However, Figure 4—3 shows how a program can use the

_ approved termination method when available but still remain pre-2.0 compatible. See The
l ' Warm Boot/Terminate Vector below.

l TEXT SEGMENT PARA PUBLIC ’CODE'

ASSUME CS:TEXT.DS:NOTHING,ES:NOTHING,SS:NOTHING

TERM_VECTOR_ DD ?

:save pointer to termination vector in PSP

5 NOV WORD PTR C5:TERM_VECTOR+O,DOOOh :save offset of Warm Boot vector

i i MOV WORD PTR CS:TERM_VECTOR+2,DS :save segment addrese of P5Pl I

E Figure 4—3. Terminating properly under any MS-DOS version. (more)

i l ENTRY_PROC PROC FAR
l

l
|r

OLYMPUS EX. 1010 - 128/1582

���������	�
�
����
���
��
OLYMPUS EX. 1010 - 129/1582

Article 4.- Structure of an Application ProgramWm

;***** Place main task here *Iflflr

:determine which MS-DOS version is active, take jump if 2.0 or later

HOV AH.3011 ;load Get bis—DOS Version Number function code
INT 21h :call MS-DOS to get version number
OR AL.AL :see if pr9‘2.0 MS-DOS
J‘NZ TERM_.0200 :jump if 2.0 or later

;terminate under pro—2.0 MS-DOS

JMP CS:TERM_VECTOR :jump to Warm Boot vector in PSP

tterminate under MS—DOS 2.0 or later

TERM.0200: . .
MOU AX,4CODh :load MS—DOS termination function code

:and return code
INT 21h :Call MS-DOS to terminate

ENTRY_PROC END?

TEXT ENDS

END ENTRE_PROC ;define entry point

Figure 4—3. Continued.

The Terminate Program interrupt

Before MEL-DOS version 2.0, terminating with an approved method meant executing
an INT 20H instruction, the Terminate Program interrupt. The INT 20H instruction was

replaced as the approved termination method for two primary reasons: First, it did not

provide a means whereby programs could return a termination code; second, CS had
to point to the PSP before the WT 20H instruction was executed.

The restriction placed on the value of CS at termination did not pose a problem for .COM

programs because they execute with CS pointing to the beginning of the PSP. A .EXE pro—

gram, on the other hand, executes with CS pointing to various code segments of the pro-
gram, and the value of CS cannot be changed arbitrarily when the program is ready to
terminate. Because of this, few .EXE programs attempt simply to execute a Terminate Pro—

gram interrupt from directly within their own code segments. Instead, they usually use
the termination method discussed next.

The Warm Boot/Terminate vector

The earlier discussion of the structure of the PSP briefly covered one older method a .EXE

program can use to terminate: Offset 00H within the PSP contains an INT 20H instruction

to which the program can jump in order to terminate. MS—DOS adopted this technique to

support the many CP/M programs ported to MS—DOS. Under (JP/M, this PSP location was
referred to as the Warm Boot vector because the CP/M operating system was always

reloaded from disk (rebooted) whenever a program terminated.

Section II: Programming in the MS—DOS Envimnmem 117

HI IAWFI FX 1n1n -199I1589

OLYMPUS EX. 1010 - 129/1582

OLYMPUS EX. 1010 - 130/1582

Part B: Programming for MS—DOS

Because offset 00H in the PSP contains an iNT 20H instruction, jumping to that location

terminates a program in the same manner as an INT 20H included directly within the pro-

gram, but with one important difference: By jumping to PSP:0000H, the program sets the

CS register to point to the beginning of the PSP, thereby satisfying the only restriction

imposed on executing the Terminate Program interrupt. The discussion of MS—DOS Func—

tion 4CH gave an example of hovir a .EXE program can terminate via PSP:0000H. The ex-

ample first asks MS-DOS for its version number and then terminates via PSP:0000H only

under versions of MS-DOS earlier than 2.0. Programs can also use PSP:0000H under

MS—DOS versions 2.0 and later; the example uses Function 4CH simply because it is

preferred under the later MS-DOS versions.

The RET instruction

The other popular method used by CWM programs to terminate involved simply execut-

ing a RET instruction. This worked because CP/M pushed the address of the Warm Boot

vector onto the stack before giving the program control. MS—DOS provides this support
only for COM-style programs; it does not push a termination address onto the stack

before giving .EXE programs control.

The programmer who wants to use the RET instruction to return to MS—DOS can use the
variation of the Figure 4-5 listing shown in Figure 4-4.

TEXT SEGMENT PARA PUBLIC 'CODE'

ASSUME CS:TEXT,DS:NOTHING,ES:NOTHING,SS:NOTHING

ENTRY_PROC PRDC FAR :make proc FAR so RET will be FAR-

:Push pointer to termination vector in PSP
PUSH DS :push PSP’s segment address
XOR AX,AX :ax = 0 = offset of Warm Boot vector in PSP
PUSH AX rpush Warm Boot vectOr offset

;***’** Place main task here *****

:Determine which MS-DOS version is active, take jump if 2.0 or later

NOV RH,30h :load Get MS—DOS Version Number function code

INT 21h :call MS-DOS to get version number
0R AL,AL :see if pre—2.0 MS—DOS
JNZ TERILD200 :jump if 2.0 or later

:Terminate under pre—2.0 HS—DOS (this is a FAR proc, so RET will be FAR}
RET ' :pop PSP:00H into CS:IP to terminate

Figure 4-4. Using RETro return control to MS—DOS, (more)

110 an. .u—nnnu r.

OLYMPUS EX. 1010 - 130/1582

���������	�
�
����
�
�
��OLYMPUS EX. 1010 - 131/1582

Article 4: Structure of an Application Program“WW

:Terminate under MS-DOS 2.0 or later
TERM..0200:

MOV AX,4COOh ;AH = MS—DOS Terminate Process with Return Code
;function code, AL = return code of 00H

INT 21h ;call MS—DOS to terminate

ENTRY-PROC ENDP

'TEXT ENDS

END ENTRY_PROC ;declare the program's entry point

Figure 4-4. Continued.

The Terminate Process function

The final method for terminating a .EXE program is Interrupt 21H Function 00H (Termi-
nate Process). This method maintains the same restriction as all other older termination

methods: CS must point to the PSP. Because of this restriction, .EXE programs typically

avoid this method in favor of terminating via PSP:OOOOH, as discussed above for programs
executing under versions of MS—DOS earlier than 2.0.

Terminating and staying resident

A .EXE program can use any of several additional termination methods to return con-

trol to MS—DOS but still remain resident within memory to service a special event. See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: CUSTOMIZING MS—Dos: Terminate—and-

Stay-Resident Utilities. \

Structure ofthe .EXE files

So far we’ve examined how the .EXE program looks in memory, how MS-DOS gives the

program control of the computer, and how the program should return control to MS—DOS.
Next we’ll investigate what the program looks like as a disk file, before MS—DOS loads it

into memory. Figure 4-5 shows the general structure of a .EXE file.

The file header

Unlike .COM program files, .EXE program files contain information that permits the

.EXE program and MS-DOS to use the full capabilities of the 8086 family of microproces—

sors. The linker places all this extra information in a header at the start of the .EXE file.

Although the .EXE file structure could easily accommodate a header as small as 32 bytes,
the linker never creates a header smaller than 512 bytes. (This minimum header size corre-

sponds to the standard record size preferred by MS—DOS.) The .EXE file header contains

the following information, which MS-DOS reads into a temporary work area in memory
for use while loading the .EXE program:

00—01H (.EXE Signature) MS—DOS does not rely on the extension (.EXE or .COM) to
determine whether a file contains a .COM or a .EXE program. Instead, MS—DOS recognizes

the file as a .EXE program if the first 2 bytes in the header contain the signature 4DH SAH

Section 11: Programming in the MS—DOS Environment 1 19

I_IIII\\I\I:I EV «nan dqdldfigr)

OLYMPUS EX. 1010 -131/1582

OLYMPUS EX. 1010 - 132/1582

Part B: Programming for MS-DOS

XOH le XZH 13H K4H XSH XSH x’TH XBH x9H mu KBH KCH JtDH xEH JtFH

DxH ’ Signature I . tPage 5i - File Pages Reloc ltarris Headaeris MINALLOC WLLDC PraRelac SS4DH SAH 10 by: hi byt Io by! hi by: e byt i byt lo byt hi byt o byt hi by! In by! hi by: u byt hi by:

1 H ’ InlllalSP Nag Chksum Initial IP PreRclocCS RelochlOfs Overlay Numx ofs lo ofs hi lo byt hi by: ofs lo ofs hi sag 10 seg hi lo byt hi byt lo byll i by!

USE Raloc*
Tbl Ofs at 18H ’ Seg Relocation Pt: #1 Sag Relocation Ptr #2 Sag Relocation For #3 Sag Relocation Plr #4(offset is from ufs lo ofs hi sag lo sag hi ofs lo . l's hi sag 10 seg hi ofs lo -fs hi seg 10 seg hi ufs 10 ufs hi sag lo sag hi
sum of file)

Sag Relocation Ph- fln-fl Sag Relocation Pt: #rt-2 Sag Relocation Plr #n-l Sag Relocation Pu- #11
fs 1° ofs hi sea 10 set: hi fs lo -fs hi seg lo seg hi -fs la is hi se 10 seg hi f5 [0 ..rs hi sag lo sag hi

Use Header
Paras at 08H

(load module p
always starts on
paragraph boundary) ____________

{103d laudulel Use Last l’a‘I Size at 021-! Final 512$“: page as

. ' I Figure 4-5. Structure ty’a .EXEflie.

= . (ASCII characters M and Z). lfeither or both of the signature bytes contain other values,

; MS-DOS assumes the file contains a .COM program, regardless of the extension. The

'- - : reverse is not necessarily true — that is, MS—DOS does not accept the file as a .EXE pro—

: gram simply because the file begins with a .EXE signature. The file must also pass several
other tests.

_ 02—0315ir (Last Page Size) The word at this location indicates the actual number of bytes

| -'_ in the final 512‘byte page of the file. This word combines with the following word to deter—
' mine the actual size of the file. l

04—0519 (File Pages) This word contains a count of the total number of BIZ-byte pages

required to hold the file. If the file contains 1024 bytes, this word contains the value 0002H;

. _ if the file contains 1025 bytes, this word contains the value 00031-1. The previous word (Last

! i Page Size, 02—0311) is used to determine the number of valid bytes in the final 512-byte

page. Thus, if the file contains 1024 bytes, the Last Page Size word contains OODOH because

no bytes overflow into a final partly used page; if the file contains 1025 bytes, the Last Page

, Size word contains OOOIH because the final page contains only a single valid byte (the

.' _ 1025th byte).-

06—07H (Relocation Items) This word gives the number of entries that exist in the reloca—

tion pointer table. See Relocation Pointer Table below.

OLYMPUS EX. 1010 - 132/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 133/1582

Article 4: Structure ofan Application Program

08—09H (HeaderParagraphs) This word gives the size of the .EXE file header in l6—byte

paragraphs. It indicates the offset of the program’s compiled/assembled and linked image

(the load module) within the .EXE file. Subtracting this word from the two file-size words

starting at 02H and 04H reveals the size of the program’s image. The header always spans

an even multiple of 16-byte paragraphs. For example, if the file consists of a S12—byte
header and a 515-byte program image, then the file's total size is 1025 bytes. As discussed

before, the Last Page Size word (02—03H) will contain 0001B and the File Pages word

(04—05H) will contain OOOSH. Because the header is 512 bytes, the Header Paragraphs

word (08—09H) will contain 32 (OOZOH). (That is, 32 paragraphs times 16 bytes per para—

graph totals 512 bytes.) By subtracting the 512 bytes of the header from the 1025-byte total
file size, the size of the program's image canbe determined—in this case, 515 bytes

0A —OBH (MINALLOC) This word indicates the minimum number of 16-byte paragraphs
the program requires to begin execution in addition to the memory required to hold

the program’s image. MINALLOC normally represents the total size of any uninitialized

data and/or stack segments linked at the end of the program. LINK excludes the

Space reserved by these fields from the end of the .EXE file to avoid wasting disk space.

If not enough memory remains to satisfy MINALLOC when loading the program, MS-

DOS returns an error to the process trying to load the program. If the process is

COMMANDCOM, COMMAN D. COM then displays a Program too big refit in memory
error message. The EXEMOD utility can alter this field if desired. See Modifying the .EXE
File Header below.

OC—ODH (MAXALLOC) This word indicates the maximum number of 16-byte paragraphs
the program would like allocated to it before it begins execution. MAXALLOC indicates

additionai memory desired beyond that required to hold the program’s image. MS-DOS

uses this value to allocate MAXALLOC. extra paragraphs, if available. If MAXALLOC para-

graphs are not available, the program receives the largest memory block available — at

least MINALLOC additional paragraphs. The programmer could use the MAXALLOC field

to request that MS—DOS allocate space for use as a print buffer or as a program-maintained

heap, for example.

Unless otherwise Specified with the /CPARMAXALLOC switch at link time, the linker sets

MAXALLOC to FFFFH. This causes MS-DOS to allocate all of the largest block of memory

it has available to the program. To make the program compatible with multitasking super—

visor programs, the programmer should use /CPARMAXALLOC to set the true maximum

number of extra paragraphs the program desires. The EXEMOD utility can also be used
to alter this field.

Note: If both MINALLOC and MAXALLOC have been set to OOOUH, MS—DOS loads the

program as high in memory as possible. LINK sets these fields to OOOOH if the /HIGH
switch was used; the EXEMOD utility can also be used to modify these fields.

OE—OFH (Initial 53 Value) This word contains the paragraph addreSs of the stack segment
relative to the start of the load module. At load time, MS-DOS relocates this value by adding

the program’s start segment addreSs to it, and the resulting value is placed in the SS regis~

ter before giving the program control. (The start segment corresponds to the first segment
boundary in memory following the PSP.)

Section II: Programming in the MS-DOS Environment 121.n-n..—. ._‘: ‘A‘A ‘AAll—AA

OLYMPUS EX. 1o1o - 133/1582

OLYMPUS EX. 1010 - 134/1582

Part 8: Programming for MS—DOS

IOJIH (Initial SP Value) This word contains the absolute value that MS-DOS loads

into the SP register before giving the program control. Because MS—DOS always loads pro

grams starting on a segment address boundary, and because the linker knows the size of

the stack segment, the linker is able to determine the correct SP offset at link time; there

fore, MS-DOS does not need to adjust this value at load time; The EXEMOD utility can be
used to alter this field. '

12—13H(Compiememed Checksum) This word contains the one’s complement of the

summation of all words in the .EXE file. Current versions of MS—DOS basically ignore this

word when they load a .EXE program; however, future versions might not. When LINK

generates a .EXE file, it adds together all the contents of the .EXE file (including the .EXE

header) by treating the entire file as a long sequence of 16-bit words. During this addition,

LINK gives the Complemented Checksum word (12—13110 a temporary value of 00001-1 If

the file consists of an odd number of bytes, then the final byte is treated as a word with a

high byte of 00H. Once LINK has totaled all words in the .EXE file, it performs a one’s

complement operation on the total and records the answer in the .EXE file header at

offsets 12—151-1. The validity of a .EXE file can then be checked by performing the same

word-totaling process as LINK performed. The total should be FFFFH, because the total

- will include LINK’s calculated complemented checksum, which is designed to give the file

' : . _ the FFFFH total.

An example 7-byte .EXE file illustrates how .EXE file checksums are calculated. (This

is a totally fictitious file, because .EXE headers are never smaller than 512 bytes.) If this fic—

titious file contained the bytes 8CH CSH 8EH DSH BAH 10H B4I-I, then the file’s total

would be calculated using C88CH + DBSEH + 10BAH +00B4H= 13288H. (Overflow past 16

bits is ignored, so the value is interpreted as BZSSH.) If this were a valid .EXE file, then
the BZSSH total would have been FFFFH instead.

14—1511 (Initial 1P Value) This word contains the absolute value that MS-DOS loads into

the IP register in order to transfer control to the program. Because MS~DOS always loads

programs starting on a segment address boundary, the linker can calculate the correct IP

offset from the initial CS register value at link time; therefore, MS—DOS does not need

to adjust this value at load time.E

L 16—1 7H (Pre~Relocated Initial CS Value) This word contains the initial value, relative to
I. E the start of the load module, that MS—DOS places in the CS register to give the .EXE pro-

gram control. MS~DOS adjusts this value in the same manner as the initial SS value before

. loading it into the CS register.

18-49}! (Relocation Table @3390 This word gives the offset from the start of the file to

the relocation pointer table. This word must be used to locate the relocation pointer table,

because variable—length information pertaining to program overlays can Occur before the

table, thus causing the position of the table to vary.

'- l L‘i—JBH (Overlay Number) This word is normally set to OOOOH, indicating that the .EXE

- file consists of the resident, or primary, part of the program. This number changes only in

l files containing programs that use overlays, which are sections of a program that remainI

OLYMPUS EX. 1010 - 134/1582

���������	�
�
����
��
��OLYMPUS EX. 1010 - 135/1582

Article 4.- Structure of an Application Program

on disk until the program actually requires them. These program sections are loaded into

memory by special overlay managing routines included in the run-time libraries supplied
with some Microsoft high—level—language compilers.

The preceding section of the header (00-1B1-D is known as the formatted area. Optional

information used by high-level-language overlay managers can follow this formatted area.

Unless the program in the .EXE file incorporates such information, the relocation pointer
table immediately follows the formatted header area.

Relocation Pointer Table The relocation pointer table consists of a list of pointers to words
within the .EXE program image that MS-DOS must adjust before giving the program con—

trol. These words Consist of references made by the program to the segments that make up

the program. MS-DOS must adjust these segment address references when it loads the pro-

gram, because it can load the program into memory starting at any segment address

boundary.

Each pointer in the table consists of a doubleword. The first word contains an offset from

the segment address given in the second word, which in turn indicates a segment address

relative to the start of the load module. Together, these two words point to a third word

within the load module that must have the start segment address added to it. (The start seg-

ment corresponds to the segment address at which MS—DOS started loading the program's -

.EK'E File
End of file

Rel Seg Ref=003CH
Abs Seg Ref=25DlH

Load module

Memory

Relocation pointer

UO‘DQH'OOOSH Rel Seg Ref=003CH
Abs Sag Ref=25D1H

 Load module

Program segment prefix

Relocation pointer table 0002H10005H+2595H
2597H:0005H

F3

il
ti
{.

Formatted header area

 Stan offile

Figure 4—6. The .EXEfile relocationprocedure.

Section N: Programming in the M's-DOS Environment 125
" IIIIAlIll—I l—\I AnAn Ann-IAl-nn

OLYMPUS EX. 1010 - 135/1582

OLYMPUS EX. 1010 - 136/1582

Part B: Programming for MS—DOS

image, immediately following the PSP.) Figure 4-6 shows the entire procedure MS-DOS

performs for each relocation table entry.

The load module

The load module starts where the‘ .EXE header ends and consists of the fully linked image

of the program. The load module appears within the .EXE file exactly as it would appear in

memory if MS—DOS were to load it at segment address OOOOH. The only changes MS—DOS

makes to the load module involve relocating any direct segment references.

Although the .EXE file contains distinct segment images within the load module, it pro-

vides no information for separating those individual segments from one another. Existing

versions of MS-DOS ignore how the program is segmented; they simply copy the load

module into memory, relocate any direct segment references, and give the program
control.

loading the .EXE program

So far we’ve covered all the characteristics of the .EXE program as it resides in memory

and on disk. We’ve also touched on all the steps MS—DOS performs while loading the .EXE

program from disk and executing it. The following list recaps the .EXE program loading

process in the order in which MS—DOS performs it:

1. MS—DOS reads the formatted area of the header (the first lBH bytes) from the .EXE
file into a work area.

2. MS-DOS determines the size of the largest available block of memory.

3. MS—DOS determines the size of the load module using the Last Page Size (offset

02H), File Pages (offset 04H), and Header Paragraphs (offset 08H) fields from the

. _ header. An example of this process is in the discussion of the Header Paragraphs
l : field.

l . ' 4. MS—DOS adds the MINALLOC field (offset OAH) in the header to the calculated load-
' module size and the size of the PSP (1001-1 bytes). If this total exceeds the size of the

largest available block, MS—DOS terminates the load process and returns an error to

the calling process. If the calling process was COMMANDEOM, COMMANDCOM

then displays a Program too big tofi't in memory error message.
5. MS-DOS adds the MAXALLOC field (offset OCH) in the header to the calculated

load-module size and the size of the PSP. If the memory block found earlier exceeds

this calculated total, M&DOS allocates the calculated memory size to the program

from the memory block, if the calculated total exceeds the block’s size, MS—DOS
allocates the entire block. .

6. If the MINALLOC and MAXALLOC fields both Contain OOOOH, MS—DOS uses the

calculated load-module size to determine a start segment. MS-DOS calculates the
start segment so that the load module will load into the high end of the allocated
block. If either MINALLOC or MAXALLOC contains nonzero values (the normal

case), MS—DOS establishes the start segment as the segment following the PSP.

7. MS-DOS loads the load module into memory starting at the start segment.

l ' i 1 ’JA Thu lIJCJ'InC‘ merr’nhnrlli'n

OLYMPUS EX. 1010 - 136/1582

���������	�
�
����
���
��
OLYMPUS EX. 1010 - 137/1582

Article 4: Structure of an Application Program

8. MS-DOS reads the relocation pointers into a Work area and relocates the load mod-

ule’s direct segment references, as showu in Figure 4-6.

9. MS—DOS builds a PSP in the first 100H bytes of the allocated memory block. While

building the two FCBs within the PSP, MS—DOS determines the initial values for the
AI. and AH registers.

10. MS—DOS sets the SS and SP registers to the values in the header after the start seg—
ment is added to the 85 value.

11. MS—DOS sets the D5 and ES registers to point to the beginning of the P5P.

12. MS-DOS transfers control to the .EXE program by setting CS and IP to the values in
the header after adding the start segment to the CS value.

Controlling the .EXE program’s structure

We’ve now covered almost every aspect of a completed .EXE program. Next, we'll discuss

how to control the structure of the final .EXE program from the source level. We’ll start by
covering the statements provided by MASM that permit the programmer to define the

structure of the program when programming in assembly language. Then we‘ll cover the
five standard memory models provided by Microsoft’s C and FORTRAN compilers (both

version 4.0), which provide predefined structuring over which the programmer has
limited control.

The MASM SEGMENT directive

MASM's SEGMENT directive and its associated ENDS directive mark the beginning and
end of a program segment. Program segments contain collections of code or data that have

offset addresses relative to the same common segment address.

In addition to the required segment name, the SEGMENT directive has three optional
parameters:

segname SEGMENT [align] [combine] ['ciass'}

With MASM, the contents of a segment can be defined at one point in the source file and

the definition can be resumed as many times as necessary throughout the remainder of
the file. When MASM encounters a SEGMENT directive with a segname it has previously

encountered, it simply resumes the segment definition where it left off. This occurs regard—
less of the combine type specified in the SEGMENT directive —~ the combine type inf lu—

ences only the actions of the linker. See The combine Type Parameter below.

The align type parameter
The optional align parameter lets the programmer send the linker an instruction on how
to align a segment within memory. In reality, the linker can align the segment only in rela—

tion to the start of the program's load module, but the result remains the same because

MS—DOS always loads the module aligned on a paragraph (l6-byte) boundary. (The PAGE

align type creates a special exception, as discussed below.)

The following alignment types are permitted:

BYTE This align type instructs the linker to start the segment on the byte immediately

following the previous segment. BYTE alignment prevents any wasted memory between

the previous segment and the BYTE-aligned segment.

$ecn'on 11: Programming m the MS—DOS Environment 125

l HUAWEI EX. 1010 -137/1582
OLYMPUS EX. 1010 - 137/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 138/1582

Part B: Programming for MS-DOG

A minor disadvantage to BYTE alignment is that the 8086—family segment registers might

not be able to directly address the start of the segment in all cases. Because they can

address only on paragraph boundaries, the segment registers may have to point as many

as 15 bytes behind the start of the segment. This means that the segment size should not
be more than 15 bytes short of 64 KB. The linker adjusts offset and segment address refer~

ences to compensate for differences between the physical segment start and the paragraph
addressing boundary.

Another possible concern is execution Speed on true 16—bit 8086-family microprocessors.

When using non—8088 microprocessors, a program can actually run faster if the instruc-

tions and word data fields within segments are aligned on word boundaries. This permits

the 16—bit processors to fetch full words in a single memory read, rather than having to per-

form two single—byte reads. The EVEN directive tells MASM to align instructions and data

fields on word boundaries; however, MASM can establish this alignment only in relation to

the start of the segment, so the entire segment must start aligned on a word or larger

boundary to guarantee alignment of the items within the segment.

WORD This align type instructs the linker to start the segment on the next word bound—

ary. Word boundaries occur every 2 bytes and consist of all even addresses (addresses in
which the least significant bit contains a zero). WORD alignment permits alignment of data

fields and instructions within the segment on word boundaries, as discussed for the BYTE

alignment type. HoWever, the linker may have to waste 1 byte of memory between the pre-

vious segment and the wordnaligned segment in order to position the new segment on a

word boundary.

Another minor disadvantage to WORD alignment is that the 8086-family segment registers

' might not be able to directly address the start of the segment in all cases. Because they can

address only on paragraph boundaries, the segment registers may have to point as many as

14 bytes behind the start of the segment. This means that the segment size should not be

more than 14 bytes short of 64 KB. The linker adjusts offset and segment address refer-

ences to compensate for differences between the physical segment start and the paragraph

,- ' ' 3 addressing boundary.

PARA This 5113?: type instructs the linker to start the segment on the next paragraph

boundary. The segments default to PARA if no alignment type is specified. Paragraph

boundaries occur every 16 bytes and consist of all addresses with hexadecimal values end-

ing in zero (OOOOH, 0010H, 0020B, and so forth). Paragraph alignment ensures that the

segment begins on a segment register addressing boundary, thus making it possible to ad

dreSS a full 64 KB segment. Also, because paragraph addresses are even addresses, PARA

alignment has the same advantages as WORD alignment. The only real disadvantage to

PARA alignmem is that the linker may have to waste as many as 15 bytes of memory

between the previous segment and the paragraph-aligned segment.
l

i
. 3 PAGE This flight type instructs the linker to start the segment on the next page boundary.

i , Page boundaries occur every 256 bytes and consist of all addresses in which the low

address byte equals zero (OOOOH, 0100H, 020011, and so forth). PAGE alignment ensures

i

E

126 TheMS—DOS smegma

OLYMPUS 'E‘X'. ‘1‘01'0 :13‘3/‘1'53‘2‘

���������	�
�
����
���
��OLYMPUS EX. 1010 - 139/1582

Article 4: Structure of an Application Program

Only that the linker positions the segment on a page boundary relative to the start of the

load module. Unfortunately, this does not also ensure alignment of the segment on an
absolute page within memory. because MS-DOS only guarantees alignment of the entire
load module on a paragraph boundary.

When a programmer declares pieces of a segment with the same name in different source
modules, the align type specified for each segment piece influences the alignment of that

specific piece of the segment. For example, assume the following two segment declara-
tions appear in different source modules:

_DATA SEGMENT PARA PUBLIC 'DRTP.‘
DB '123 ‘

-DATR ENDS

_DPtTPt SEGMENT PARA PUBLIC 'DhTPt'
DB ' 456 '

“DATA ENDS

The linker starts by aligning the first segment piece located in the first object module on a

paragraph boundary, as requested. When the linker encounters the second segment piece
in the seccmd object module, it aligns that pieCe on the first paragraph boundary following

the first segment piece. This results in a iS-byte gap between the first segment piece and

the second. The segment pieces must exist in separate source modules for this to occur. if

the segment pieces exist in the same source module, MASM assumes that the second seg-
ment declaration is simply a resumption of the first and creates an object module with
segment declarations equivalent to the following:

_DATA SEGMENT PARA PUBLIC 'DATA'
DB ' 123 '
DB "l 56'

.DATR ENDS

The combine type parameter
The Optional combine parameter allows the programmer to send directions to the linker

on how to combine segments with the same segname occurring in different object mod-

ules. If no combine type is specified, the linker treats such segments as if each had a dif—

ferent segname. The combine type has no effect on the relationship of segments with

different segnames. MASM and LINK both support the following combine types;

PUBLIC This combine type instructs the linker to concatenate multiple segments having

the same segname into a single contiguous segment. The linker adjusts any address refer-

ences to labels within the concatenated segments to reflect the new position of those
labels relative to the start of the combined segment. This combine type is useful for ac-

cessing code or data in different source modules using a common segment register value.

STACK This combine type operates similarlyto the PUBLIC combine type, except for

two additional effects: The STACK type tells the linker that this segment comprises part of
the program‘s stack and initialization data contained within STACK segments is handled

differently than in PUBLIC segments. Declaring segments with the STACK combine type

permits the linker to determine the initial 55 and SP register values it places in the .EXE

Section II: Programming in the MS—DOS Environment 12?
HI IA‘AIEI :Y 1H1 n _ 1 520/1 FRO

OLYMPUS EX. 1010 - 139/1582

OLYMPUS EX. 1010 - 140/1582

Part B: Programming for MS—DOS

file header. Normally, a programmer would declare only one STACK segment in one of the

source modules. If pieces of the stack are declared in different source modules, the linker

will concatenate them in the same fashion as PUBLIC segments. However, initialization

data declared within any STACK segment is placed at the high end of the combined STACK

segments on a' module-by-module basis. Thus, each successive module‘s initialization data
overlays the previous module’s data. At least one segment must be declared with the

STACK combine type; otherwise, the linker will issue a warning message because it can-

not determine the program’s initial SS and SP values. (The warning can be ignored if the

program itself initializes SS and SP.)

COMMON This combine type instructs the linker to Overlap multiple segments having

the same segname. The length of the resulting segment reflects the length of the longest

segment declared. If any code or data is declared in the overlapping segments, the data

contained in the final segments linked replaces any data in previously loaded segments.
This combine type is useful when a data area is to be shared by code in different source
modules.

MEMORY Microsoft’s LINK treats this cembine type the same as it treats the PUBLIC

type. MASM, however, supports the MEMORY type for compatibility with other linkers

that use Intel’s definition of a MEMORY cambme type.

ATaddress This combine type instructs LINK to pretend that the segment will reside at

the absolute segment address. LINK then adjusts all address references to the segment in

accordance with the masquerade. LINK will not create an image of the segment in the

load module, and it will ignOre any data defined within the segment. This behavior is con-

sistent with the fact that MS~DOS does not support the loading of program segments into

absolute memory segments. All programs must be able to execute from any segment ad—

dress at which MS—DOS can find available memory. The SEGMENT AT address combine

type is useful for creating templates of various areas in memory outside the program. For

instance, SEGMENTATOOOOH could be used to create a template of the BOSS-family inter—

rupt vectors. Because data contained within SEGMENT AT address segments is suppressed

by LINK and not by MASM (which piaces the data in the object module), it is possible to

use .03] files generated by MASM with another linker that supports ROM or other absolute

code generation should the programmer require this specialized capability.

Theclass type parameter

The ciass parameter provides the means to organize different segments into classifications.

For instance, here are three source modules, each with its own separate code and data
segments:

:Module "A'"
LDATA SEGMENT PARA PUBLIC 'DATA'
:Module "A" data fields
LDATA ENDS .
LCODE SEGMENT PARA PUBLIC ‘CODE'
:Module "A" code
LCODE ENDS

END

(more)

OLYMPUS EX. 1010 - 140/1582

���������	�
�
����
�
�
��OLYMPUS EX. 1010 - 141/1582

Article 4: Structure of an Application Program

:Module "B"
BHDATR SEGMENT PARA PUBLIC 'DATA'
rModule “B“ data fields
B_DATA ENDS
BFCODE SEGMENT PARA PUBLIC 'CODE'
;Module "B" code
B_CODE ENDS

END

:Module "C"
CHDATA SEGMENT PARA PUBLIC 'DATA'
Module "C.“ data fields
C_DATA ENDS
C_CODE SEGMENT PARA PUBLIC 'CODE‘
:Module “C" code
C#CODE ENDS

END

If the 'CODE‘ and 'DATA' class types are removed from the SEGMENT directives shown

above, the linker organizes the segments as it encounters them, If the programmer speci-

fies the modules to the linker in alphabetic order, the linker produces the following

segment ordering:
A_DRTA
LCODE
B_DATA
B_CODE
C.DATA
C.CODE

However, ifthe programmer specifies the class types shown in the sample source mod-

ules, the linker organizes the segments by classification as follows:

‘DATA' class: A_DATR
B_DATR
CHDRTA

‘CODE' class: AmcoDE
B_CODE
CFCODE

Notice that the linker still organizes the classifications in the order in which it encounters

the segments belonging to the various classifications. To completely control the order in
which the linker organizes the segments, the programmer must use one of three basic

approaches. The preferred method involves using the fDOSSEG switch with the linker.

This produces the segment ordering shown in Figure 44. The second method involves

creating a special source module that contains empty SEGMENT-ENDS blocks for all the
segments declared in the various other source modules. The programmer creates the list

in the order the segments are to be arranged in memory and then Specifies the DB} file for

this module as the first file for the linker to process. This procedure establishes the order

of all the segments before LINK begins processing the other program modules, so the

Section H: Programming in the M‘s-DOS Environment 129

I-ll IA\I\I|=| |=Y 1n1n _ 1111/1132?

OLYMPUS EX. 1010 -141/1582

OLYMPUS EX. 1010 - 142/1582

Part B: Programming for MS-DOS

programmer can declare segments in these other modules in any convenient order. For

instance, the foliowing source module rearranges the result of the previous example so

that the linker places the 'CODE' class before the 'DATA‘ class:

A_CODE SEGMENT PARA PUBLIC 'CODE'
A_CODE ENDS
B_CODE SEGMENT PARA PUBLIC 'CODE'
B_CODE ENDS
C_CODE SEGMENT PARA PUBLIC 'CODE'
C_CODE ENDS

A_DATA SEGMENT PARA PUBLIC 'DATA'
A_DATA ENDS
ErDATA SEGMENT PARA PUBLIC 'DATA‘
B_DATA ENDS
C_DATA SEGMENT PARA PUBLIC 'DATA'
C_DATA ENDS

END

Rather than creating a new module, the third method places the same segment ordering

list shown above at the start of the first module containing actual code or data that the

programmer will be specifying for the linker. This duplicates the approach used by

Microsoft’s newer compilers, such as C version 4.0.

The ordering of segments within the load module has no direct effect on the iinker's

adjustment of address references to locations within the various segments. Only the
GROUP directive and the SEGMENT directive’s combine parameter affect address

adjustments perfonned by the linker. See The MASM GROUP Directive below.

Note: Certain older versions of the IBM Macro Assembler wrote segments to the object

file in alphabetic order regardless of their order in the source file. These older versions can
limit efforts to control segment ordering. Upgrading to a new version ofthe assembler is

the best solution to this problem.

Ordering segments to shrink the .EXE file

Correct segment ordering can significantly decrease the size of a .EXE program as it

resides on disk. This size-reduction ordering is achieved by placing all uninitialized data

fields in their own segments and then controlling the linker’s ordering of the program‘s

segments so that the uninitialized data field segments all reside at the end of the program.

When the program modules are assembled, MASM places information in the object mod—

ules to tell the linker about initialized and uninitialized areas of all segments. The linker

then uses this information to prevent the writing of uninitialized data areas that occur at

the end of the program image as part of the resulting .EXE file. To account for the memory

space required by these fields. the linker also sets the MINALLOC field in the .EXE file

header to represent the data area not written to the file. MS—DOS then uses the MINALLOC

field to reallocate this missing space when loading the program.

1 an 0—1.- “a nrm :‘_-..,i...ai_.u,.

OLYMPUS EX. 1010 - 142/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 143/1582

Article 4: Structure of an Application Program

The MASM GROUP directive

The MASM GROUP directive can also have a strong impact on a .EXE program. However,

the GROUP directive has no effect on the arrangement of program segments within mem-

ory. Rather, GROUP associates program segments for addressing purposes. '

The GROUP directive has the following syntax:

grpname GROUP segname,segname,segname, . . .

This directive causes the linker to adjust all address references to labels within any speci-
fied segname to be relative to the start of the declared group. The start of the group is de-
termined at link time. The group starts with whichever of the segments in the GROUP list
the linker places lowest in memory.

That the GROUP directive neither causes nor requires contiguous arrangement of the
grouped segments creates some interesting, although not necessarily desirable, possi-

bilities. For instance, it permits the programmer to locate segments not belonging to the

declared group between segments that do belong to the group. The only restriction im—

posed on the declared group is that the last byte of the last segment in the group must

occur within 64 KB of the start of the group. Figure 4—7 illustrates this type of segment

arrangement:

SEGMENT_C
(listed with GROUP directive)

LABEL_C >

—— LABEL__B D

64 KB Offset to . SEGMENT—B , .
maximum LABEL_B (not listed With GROUP directive)Offset to

LABEL-C —-— LABELWA D
SEGMENTflA

Offset m (listed with GROUP directive)

LABfL_A

Figure 4—7. Noncontz’guous segments in the same GROUP.

Warning: One of the most confusing aspects of the GROUP directive relates to MASM’s
OFFSET operator. The GROUP directive affects only the offset addresses generated by

such direct addressing instructions as

MOV AX, FIELD_LABEL

but it has no effect on immediate address values generated by such instructions as

MOV AX , OFFSET FIELD—LABEL

Section 11: Programming in the MS-DOS Environment 1 5 1

OLYMPUS EX. 1010 - 143/1582

OLYMPUS EX. 1010 - 144/1582

Part B: Programming for MS—DOS

Using the OFFSET operator on labels contained within grouped segments requires the

following approach:

HOV AX,OFFSET GROUP_NAME:FIELD_LABEL

The programmer must expt‘z'cftfy request the offset from the group base, because MASM

defines the result of the OFFSET operator to be the offset of the label from the start of its

segment, not its group.

Structuring a small program with SEGMENT and GROUP

Now that we have analyzed the functions performed by the SEGMENT and GROUP direc—

tives, we’ll put both directives to work structuring a skeleton program. The program,

shown in Figures 4-8, 4-9, and 4-10, consists of three source modules (MODULILA,

MODULE_B, and MODULE_C), each using the following four program segments:

Segment Definition
WTEXT The code or program text segment

_DATA The standard data segment containing preinitialized data fields the pro-

gram might change

CONST The constant data segment containing constant data fields the program

will not change

_BSS The “block storage segment/space" segment containing uninitialized data
fields"

' Programmers familiar with the IBM 1620/1630 or CDC 6000 and Cyber assemblers may recognize 555 as
“block started at symbol," which reflects an equally appropriate, although somewhat more elaborate, defini-
tion of the abbreviation. Other common translations of 838, such as “blank static storage," misrepresent the
segment name, because blanking of 355 segments does not occur~—the memoryr contains undetermined
values when the program begins execution.

i
i

E

:Source Module MODULE_A

:Predeolare all segments to force the linker's segment ordering **¥**¥s¥tx*x*¥

_TEXT SEGMENT BYTE PUBLIC 'CODE‘
_TEXT ENDS

_DATA SEGMENT WORD PUBLIC 'DATA'
_DATA ENDS

CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS

_BSS ENDS

ir
l
r
I
I
|
|
I
||
I
I|
I

I

i||
I
I
I

I

I . _BSS SEGMENT WORD PUBLIC lass'
il

: Figare 4—8. Structuring a .EXEprogram: MODULE__A_ (more)|
|
I

|

OLYMPUS EX. 1010 - 144/1582

���������	�
�
����
��
��
OLYMPUS EX. 1010 - 145/1582

Article 4: Structure of an Application Program

STACK SEGMENT PARA STACK 'STACK'
STACK ENDS

DGROUP GROUP LDATA,CONST,HBSS,STACK

;Constant declarations **$*****$**

CONST SEGMENT WORD PUBLIC 'CONST‘

CONST.FIELD_A DB 'Constant A' ;declare a MODULE_A constant

CONST ENDS

;Preinitialized data fields **

_DATA SEGMENT WORD PUBLIC 'DATA'

DATAVFIELDlA DB 'Data A' ;declare a MODULE_A preinitialized field

_DATA ENDS

;Uninitialized data fields ***

_BSS SEGMENT WORD PUBLIC 'BSS'

BSS_FIELD_A DB 5 DUP(?) ;declare a MODULE—A uninitialized field

.BSS ENDS

iProgram text **

_TEXT SEGMENT BYTE PUBLIC 'CODE'

ASSUME CS:_TEXT,DS:DGROUP,ES:NOTHING,SS:NOTHING

EXTRN FROG—BzNEAR ;label is in _TEXT segment (NEAR)
EXTRN PROC_C:NEAR ;label is in _TEXT segment (NEAR)

PROC_A PROC NEAR

CALL PRoc_B ;call into MODULE_B
CALL PROC_C icall into MODULELC

MOV AX,4COOH ;terminate (MS—DOS 2.0 or later only)
INT 21H

PROC_A ENDP

_TEXT ENDS

Figure 4—8. Continued. (more)

Section II.- Programming in theMS—DOS Environment 133
l-ll IA\I\I|=| |=Y 1 M n _ 1 ARM RR?

OLYMPUS EX. 1010 - 145/1582

OLYMPUS EX. 1010 - 146/1582

Part B: Programming for MS—DOS

:Stack i‘XI‘*¥I‘*¥¥***tt*********l$*i**i‘ifl11kIi3L13K)“3K1l‘*1NIII¥¥IW$tfilttiiififllihtl¥$$

STACK SEGMENT PARA STACK 'STACK'

Dw 123 DUPI?) . :declare some space to use as stack
STACK_BASE LABEL WORD

.

STACK ENDS

END FROG—A ;declare PROC_A as entry point

Figure 418’. Continued.

;Source Module MODULE_B

,‘Constant declarations ***********titirt##1‘*i‘ixit**=tt##1##kink*i-titakkahr-ttahttlkakxnltmmxw

CONST SEGMENT WORD PUBLIC 'CONST'

CONST_FIELD_B DB ‘Constant 3' ;declare a MODULE_B constant

CONST ENDS

;Preinitiallzad data fieldg *drtd‘***¥*****d‘!‘*1“.I:skits!****tt**¥*#¢***t********t**

“DATA SEGMENT WORD PUBLIC 'DATA'

DATA_FIELD_B DB 'Data 3' ;dec1are a MODULE_B preinitialized field

_DATA ENDS

;Uninitialized data fields-*it$1******&*itkit!¥t$tfifixxt3¥ttx¥tktttmlt$$ttt**t¥

_BSS SEGMENT WORD PUBLEC 'BSS'

BSS_FIELD_B DB 5 DUP(?] ;declare a MODULE_B uninitialized field

_BSS ENDS

;Program text xx*x*w*x*w*t*+*ttatt*:**¢t*t:«**¢*t*****k*i****+*****¢****tt****

DGROUP GROUP _DATA.CONST,;BSS

_TEXT SEGMENT BYTE PUBLIC 'CODE'

ASSUME CS:_TEXT,DS:DGROUP,ES:NOTHING,SS:NOTHING

figure 4-9. Structuring a .EXEprogmm: MODULLB. (more)

OLYMPUS EX. 1010 - 146/1582

���������	�
�
����
���
��
OLYMPUS EX. 1010 - 147/1582

Article 4: Structure of an Application Program

PUBLIC PROC_B :reference in MODULEFA
PROC_B PROC NEAR

RET

PROC_B END?

FTEXT ENDS

END

Figure 4-9. Continued.

:Source Module MODULE_C

.‘CDnstanc declarations i“*3?¥¥IHF3F3FDI3*???¥*I‘Wiilialalaltftti'5itt$$$$$$$i$¥¥¥i*¥**$**k**

CONST SEGMENT WORD PUBLIC 'CONST'

CONST_.E‘IE.LD_C DB 'Constant C' idECLare a MODULEJ: constant

CONST ENDS

;Preinitialized data fields ttxfittttttt$$11:**#ttv**k$tt:x*xt#***tvttxrtxxxtwt

_DATA SEGMENT WORD PUBLIC 'DATR'

DATLFIELD.C DB ‘Data C" ;declare a MODULEJ: preinitialized field

.DBTA ENDS

:Uninitialized data fields t****#$t*ttx$$****t!8¥xt$t8‘$***¥*¥*Ktt*tt$xx**#¥¥$

.355 SEGMENT WORD PUBLIC 'BSS'

BSS_EIELD_C DB 5 DUPt?) ;declare a MODULE-C uninitialized field

.355 ENDS

:Program text **$$£it**kt*¢**¢1$*tt****$**#‘tal£***********£tt$$$*$********$*$

DGROUP GROU? -DATA,CONST,.ESS

_TEXT SEGMENT BYTE PUBLIC 'CODE'

ASSUME CS:_TEXT,DS:DGROUP,ES:NOTHING,SS:NOTHING

Figure 4-10. Structuring a .EXEpmgram- MODULE_C. (more)

Section II: Programming in the MS-DOS Environment: 135

i HUAWEI EX. 1010 - 147/1582
OLYMPUS EX. 1010 - 147/1582

OLYMPUS EX. 1010 - 148/1582

Li's-astute

.-...,_.J'i-n':Part B: Programming for MS—DOS

PUBLIC PROC_C ;referenced in MODULEJ
PROC_C PROC NEAR

RET

FROG—C END?

_TEXT ENDS

END

' Figure 4-10. Continued.

This example creates a small memoryr model program image, so the linked program can

have only a single code segment and a single data segment — the simplest standard form

of a .EXE program. See Using Microsoft's Contemporary Memory Models below.

In addition to declaring the four segments already discussed, MODULE_A declares a

STACK segment in which to define a block of memory for use as the program’s stack and

also defines the linking order of the five segments. Defining the linking Order leaves the

programmer free to declare the segments in any order when defining the segment con-

! ; : tents— a necessity because the assembler has difficulty assembling programs that use
‘ forward references.

With Microsoft's MASM and LINK on the same disk with the .ASM files, the following com-
mands can be made into a batch file:

MRSM STRUCA;

[i i MASM STRUCBFMASH STRUCC:
LINK STRUCA+STRUCB+STRUCCKME

These commands will assemble and link all the .ASM files listed, producing the memory

map report file STRUCA.MAP shown in Figure 4—11.

Start Stop Length Name Class
OOOUOH OODOCH OOOODH _TEXT CODE
OOUUEH UUD1FH 00012H _DATA DATA

_ OOUZDH UUUBDH 0001EH CONST CONST

i i mosses 000415;}! 00mm _BSS 355l . 000508 0014FH 001UUH STACK STACK

Origin Group
J: 0000:O DGROUP

I' AddreSS Publics by Name|l

0000:0003 FROG—B

i 0000:000c PROC..C
I' ; .
I Figure 4-H. Structuringa .EXEprogrammory map resort. (more)

OLYMPUS EX. 1010 - 148/1582

���������	�
�
����
���
��
OLYMPUS EX. 1010 - 149/1582

Article 4: Structure of an Application Program

Address Publics by Va lue

0000: 00013 PROC_B
0000:000C PROC_C

Program entry point at 0000:0000

Figure 4—11. Continued.

The above memory map report represents the memory diagram shotvn in Figure 4—12.

Absolute

address Size in bytes

OOISOH)

STACK STACK (A) 256Class

meson ‘ ——-
WFH PARA align gap 1

mm 838 (e) 5 T
00049H 0RD ahgn gap 15
00044H 355 (B) 5

00043H WORD align gap 1 321
00031511! 03:13:) 150 «f I
00034H CONST (B) 10 30
WA” CONST (A) 10 lOOOZOH ————

W 3:52;; 2 t
DODMH IOOOOEH DATA (A) 6

“00003”! i + w
1 ‘3

”“0“" W” n laddressing) 00000H m
base

Figure 4—12. Structure oft-he sample .EXEprogmm.

Using Microsoft’s contemporary memory models

Now that we’ve analyzed the various aspects of designing assembly-language .EXE pro-
grams, we can look at how Microsoft's high—level-language compilers create .EXE pros

grams from high—levei-language source files. Even aSSemblv—language programmers will
find this discussion of interest and should seriously consider using the five standard

memory models outlined here.

This discussion is based on the MicrOsoft C Compiler version 4.0, which, along with the

Microsoft FORTRAN Compiler version 4.0, incorporates the most contemporary code
generator currently available. These newrer compilers generate code based on three to five

'-' Section H: Programming in the MS—DOS Environment 157

L HUAWEI EX. 1010 -149/1582
OLYMPUS EX. 1010 - 149/1582

OLYMPUS EX. 1010 - 150/1582

Part B: Programming for MS—DOS

of the following standard programmer—selectable program structures, referred to as mem-

Ory models. The discussion of each of these memory models will center on the model’s

use with the Microsoft C Compiler and will close with comments regarding any differences

for the Microsoft FORTRAN Compiler.

Small (C compilerswitch 2145) This model, the default, includes only a single code seg-

ment and a single data segment. All code must fit within 64 KB, and all data must fit within

an additional 64 KB. Most C program designs fall into this category. Data can exceed the

64 KB limit only if the far and huge attributes are used, forcing the compiler to use far

addressing, and the linker to place far and huge data items into separate segments. The

data-size-threshold switch described for the compact model is ignored by the Microsoft C

Compiler when used with a small model. The C compiler uses the default segment name

_TEXT for all code and the default segment name _DATA for all non—far/huge data.

Microsoft FORTRAN programs can generate a semblance of this model only by using the

/NM (name module) and /AM (medium model) compiler switches in combination with the

near attribute on all subprogram declarations.

Medium (C and FORTRANcompiler switch LAM) This model includes only a single data

segment but breaks the code into multiple code segments. All data must fit within 64 KB,

but the 64 KB restriction on code size applies only on a module-by-module basis. Data can

exceed the 64 KB limit only if the far and huge attributes are used, forcing the compiler to

use far addressing, and the linker to place far and huge data items into separate segments.

The data—size-threshold switch described for the compact model is ignored by the

Microsoft C Compiler when used with a medium model. The compiler uses the default seg-

ment name _,DATA for all non-far/huge data and the template module__TEXT to create

names for all code segments. The module element of module_TEXT indicates where the

compiler is to substitute the name of the source module. For example, if the source module

HELPFUNC.C is compiled using the medium model, the compiler creates the code seg-

ment HELPFUNC_TEXT. The Microsoft FORTRAN Compiler version 4.0 directly supports
the medium model.

Compact (C compiler-switch /AC) This model includes only a single code segment but

breaks the data into multiple data segments. All code must fit within 64 KB, but the data is

allowed to consume all the remaining available memory. The Microsoft C Compiler‘s op-

tional data—size-threshold switch (/Gt) controls the placement of the larger data items into

additional data segments, leaving the smaller items in the default segment for faster access.

Individual data items within the program cannot exceed 64 KB under the compact model

without being explicitly declared huge. The compiler uses the default segment name

wJI'EXT for all code segments and the template module #_DATA to create names for all data

segments. The module element indicates where the compiler is to substitute the source

module’s name; the # element represents a digit that the compiler changes for each addi—

tional data segment required to hold the module’s data. The compiler starts with the digit 5

and counts up. For example, if the name of the source module is HELPFUNCC, the com—

piler names the first data segment HELPFUNC5_DATA. FORTRAN programs can generate
a semblance of this model only by using the /NM (name module) and /AL (large model)

compiler switches in combination with the near attribute on all subprogram declarations.

I ' 1 2;! Tim JAKLMC‘ Fmrnltu'nhnt’dn

OLYMPUS EX. 1010 - 150/1582

���������	�
�
����

�
��OLYMPUS EX. 1010 - 151/1582

Article 4-. Structure of an Application Program

Large (C and FORTRANcompilerswitch /AL) This model creates multiple code and data

segments. The compiler treats data in the same manner as it does for the compact model
and treats code in the same manner as it does for the medium model. The Microsoft

FORTRAN Compiler version 4.0 directly supports the large model.

Huge (C and FORTRAN compiterswitch /AH) Allocation of segments under the huge

model follows the same rules as for the large model. The difference is that individual data

items can exceed 64 KB. Under the huge model, the compiler generates the necessary

code to index arrays or adjust pointers across segment boundaries, effectively transforming

the micr0processor’s segment-addressed memory into linear-addressed memory. This
makes the huge model especially useful for porting a program originally written for a pro-

cessor that used linear addressing. The speed penalties the program pays in exchange for

this addressing freedom require serious consideration. If the program actually contains
any data structures exceeding 64 KB, it probably contains only a few. In that case, it is best

to avoid using the huge model by explicitly declaring those few data items as huge using

the huge keyword within the source module. This prevents penalizing all the non-huge
items with extra addressing math. The Microsoft FORTRAN Compiler version 4.0 directly

supports the huge model.

Figure 4-13 shows an example of the segment arrangement created by a large/ huge model

program. The example assumes two source modules: MSCAC and MSCBC. Each source

module specifies enough data to cause the compiler to create two extra data segments for

that module. The diagram does not show all the various segments that occur as a result of

linking with the run-time library or as a result of compiling with the intention of using the

CodeView debugger.

Groups Classes Segments
4 SMCLH: Program stack

4 SM: m1 uninitialized global items, CLH: Empty

DGROUI’ 4 SMCLH: Ali uninitialized non—ramiuge items

4 SMCLH: Constants (floating point constraints, segment addresses, etc.)

4 SMCLH: All items that don't end up anywhere else

FAILESS ‘ SM: Nonexistent. CLl-I: All uninitialized global items

{ From MSCB only: SM: Farfhuge items, CLH: Items larger than threshold

4 From MSCB only: SM: Fari'huge items, CLH: Items larger than threshold
{ From MSCA only: SM: Fan'huge items, CLI-l: Items larger than threshold

d From MSCA only: SM: Farlhuge items, CLH: Items larger than threshold

1 SC: All code, MLH: Run-time library code only
MSCB_TEXT “ SC: Nonexistent.MLH: MSCBC Code

MSCAJ'EXT 4 SC: Nonexistent, MLH: MSCAC Code

S = Small model L = Large model
M 2 Medium model H = Huge model
C = Compact mode]

FARJDATA
Figure 4-13. General structure ofa Microsoft Cprogram.

Section II: Programming in the MS—DOS Environmam: 139

OLYMPUS EX. 1016 '-‘15'1'/'1"582

OLYMPUS EX. 1010 - 152/1582

Part B: Programming for MS—DOS

Note that if the program declares an extremely large number of small data items, it can

exceed the 64 KB size limit on the default data segment LDATA) regardless of the memory

model specified. This occurs because the data items all fall below the data—size—threshold

limit (compiler /Gt switch), causing the compiler to place them in the _DATA segment.

Lowering the data size threshold or explicitly 'using the far attribute within the source

modules eliminates this problem.

Modifying the .EXE file header

With most of its language compilers, Microsoft supplies a utility program called EXEMOD.

See PROGRAMMING UTILITIES: EXEMOD. This utility allows the programmer to display

and modify certain fields contained within the .EXE file header. Following are the header

fields EXEMOD can modify (based on EXEMOD version 4.0):

MAXALLOC This field can be modified by using EXEMOD’S /MAX switch. Because
EXEMOD operates on .EXE files that have already been linked. the lMAX switch can be

used to modify the MAXALLOC field in existing .EXE programs that contain the default

MAXALLOC value of FFFFH, provided the programs do not rely on MS-DOS’s allocating

all free memory to them. EXEMOD'S /MAX switch functions in an identical manner to
LINK’s /CPARMAXALLOC switch.

MINALLOC This field can be modified by using EXEMOD’s /MIN switch. Unlike the case

with the MAXALLOC field, most programs do not have an arbitrary value for MINALLOC.

MINALLOC normally represents uninitialized memory and stack space the linker has com«

pressed out of the .EXE file, so a programmer should never reduce the MINALLOC value

within a .EXE program written by someone else. If a program requires some minimum

amount of extra dynamic memory in addition to any static fields, MINALLOC can be in-

creased to ensure that the program will have this extra memory before receiving control. If

this is done, the program will not have to verify that MS-DOS allocated enough memory to

meet program needs. Of course, the same result can be achieved with0ut EXEMOD by

declaring this minimum extra memory as an uninitialized field at the end of the program.

Initial SP Value This field can be modified by using the /STACK switch to increase or

decrease the size of a program’s stack. However, modifying the initial SP value for pro-

grams developed using Microsoft language compiler versions earlier than the following

may cause the programs to fail: C version 3.0, Pascal version 3.3, and FORTRAN version

3.3. Other language compilers may have the same restriction. The /STACK switch can also

be used with programs developed using MASM, prOvided the stack space is linked at the

end of the program, but it would probably be wise to change the size of the STACK seg—

ment declaration within the program instead. The linker also provides a /STACK switch

.’ . that performs the same purpose.

Note: With the /H switch Set, EXEMOD displays the current values of the fields within
the .EXE header. This switch should not be used with the other switches. EXEMOD also

displays field values if no switches are used.
OLYMPUS EX. 1010 - 152/1582

���������	�
�
����
��
��OLYMPUS EX. 1010 - 153/1582

Article 4: Structure of an Application Program

-Waming: EXEMOD also functions correctly when used with packed .EXE files created

using EXEPACK or the /EXEPACK linker switch. However, it is important to use the

EXEMOD version shipped with the linker or EXEPACK utility. Poesible future changes in

the packing method may result in incompatibilities between EXEMOD and nonassodated
linker/EXEPACK versions.

Patching the .EXE program using DEBUG

Every experienced programmer knows that programs always seem to have at least one

unspotted error. If a program has been distributed to other users, the programmer will
probably need to provide those users with corrections when such bugs come to light. One

inexpensive updating approach used by many large companies consists of mailing out

single-page instructions explaining how the user can patch the program to correct the

problem.

Program patching usually involves loading the program file into the DEBUG utility sup-

plied with MS—DOS, storing new bytes into the program image, and then saving the pro—

gram file back to disk. Unfortunately, DEBUG cannot load a .EXE program into memory

and then save it back to disk in .EXE format. The programmer must trick DEBUG into

patching .EXE program files, using the procedure outlined below. See PROGRAMMING
UTILITIES: DEBUG.

Note: Users should be reminded to make backup copies of their program before attempt-

ing the patching procedure.

1. Rename the .EXE file using a filename extension that does not have special meaning
for DEBUG. (Avoid .EXE, .COM. and HEX.) For instance, MYPROGBIN serves well as

a temporary new name for MYPROGEXE because DEBUG does not recognize a file

with a .BIN extension as anything special. DEBUG will load the entire image of

MYPROGBIN, including the .EXE header and relocation table, into memory starting

at offset 1001-1 within a .COM-style program segment (as discussed previously).

2. Locate the area within the load module section of the .EXE file image that requires

patching. The previous discussion of the .EXE file image, together with compiler/
assembler listings and linker memory map reports, provides the information neces~

sary to locate the error within the .EXE file image. DEBUG loads the file image start

ing at offset 100H within a .COM-style program segment, so the programmer must

compensate for this offset when calculating addresses within the file image. Also, the

compiler listings and linker memory map reports provide addresses relative to the

start of the program image within the .EXE file, not relative to the start of the file

itself. Therefore, the programmer must first check the information contained in the

.EXE file header to determine where the load module (the prOgram's image) starts
within the file.

5. Use DEBUG ’s E (Enter Data) or A (Assemble Machine Instructions) command to

insert the corrections. (Normally, patch instructions to users would simply give an

address at which the user should apply the patch. The user need not know how to
determine the address.)

4. After the patch has been applied, simply issue the DEBUG W (Write File or Sectors)

command to write the corrected image back to disk under the same filename, pro

vided the patch has not increased the size of the program. If program size has

Section H,- Programming in the MS-DOS Environment 14 1

OLYMPUS EX. 1016 315'5/‘1'582

OLYMPUS EX. 1010 - 154/1582

Part B: Programming for MS-DOS

increased, first change the appropriate size fields in the .EXE header at the start of the

file and use the DEBUG R (Display or Modify Registers) command to modify the BX

and CK registers so that they contain the file image’s new size. Then use the W com-

mand to write the image back to disk under the same name.
5. Use the DEBUG Q (Quit) command to return to MS-DOS command level, and then

rename the file to the Original .EXE filenarne extension.

.EXE summary

To summarize, the .EXE program and file structures provide considerable flexibility in the

design of programs, providing the programmer with the necessary freedom to produce

large-scale applications. Programs written using Microsoft’s high-leveLlanguage compilers

have access to five standardized program structure models (small, medium, compact,

large, and huge). These standardized models are excellent examples of ways to structure

assembly—language programs.

The .COM Program

The majority of differences between .COM and .EXE programs exist because .COM

program files are not prefaced by header information. Therefore, .COM programs do not

benefit frOm the features the .EXE header provides.

The absence of a header leaves MS—DOS with no way of knowing how much memory the

.COM program requires in addition to the size of the program’s image. Therefore, MS-DOS

must always allocate the largest free block of memory to the .COM program, regardless of

the program’s true memory requirements. As was discussed for .EXE programs, this allo-

cation of the largest block of free memory u5ually results in MS—DOS’s allocating all

remaining free memory——an action that can cause problems for multitasking supervisor
programs.

The .EXE program header also includes the direct segment address relocation pointer

table. Because they lack this table, .COM programs cannot make address references to the

labels specified in SEGMENT directives, with the exception of SEGMENT AT address

directives. If a .COM program did make these references, MS—DOS would have no way of

adjusting the addresses to correspond to the actual segment address into which MS-DOS

loaded the program. See Creating the .COM Program below.

The .COM program structure exists primarily to support the vast number of CP/M pro—

grams ported to MS—DOS. Currently, .COM programs are most often used to avoid adding

the 512 bytes or more of .EXE header information onto small. simple programs that often

do not exceed 512 bytes by themselves.

The .COM program structure has another advantage: Its memory organization places the

PSP within the same address segment as the rest of the program. Thus, it is easier to access

fields within the PSP in .COM programs.

OLYMPUS EX. 1010 - 154/1582

���������	�
�
����
�
��
OLYMPUS EX. 1010 - 155/1582

Article 4: Structure of an Application Program

Giving control to the .COM program

After allocating the largest block of free memory to the .COM program, MS-DOS builds
a PSP in the lowest iOOH bytes of the block. No difference exists between the PSP MS-DOS

builds for .COM programs and the PSP it builds for .EXE programs. Also with .EXE pro-

grams, MS-DOS determines the initial values for the AI. and AH registers at this time and
then loads the entire .COM—file image into memory immediately following the PSP.
Because .COM files have no file—size header fields, MS—DOS relies on the size recorded in

the disk directory to determine the size of the program image. It loads the program exactly

as it appears in the file, without checking the file’s contents.

MS-DOS then sets the D5, ES, and SS segment registers to point to the start of the PSP. If

able to allocate at least 64 KB to the program, MS~DOS sets the SP register to offset FFFFH
+ 1 (0000B) to establish an initial stack; ifless than 64 KB are available for allocation to the

program, MS-DOS sets the SP to 1 byte past the highest offset owned by the program. In
either case, MS—DOS then pushes a single word of 00001-1 onto the program's stack for
use in terminating the program.

Finally, MS-DOS transfers control to the program by setting the CS register to the PSP’s

segment address and the IP register to OIOOH. This means that the program’s entry point
must exist at the very start of the program‘s image, as shown in later examples.

Figure 4—14 shows the overall structure of- a .COM program as it receives control from
MS-DOS.

.CUM program memoryr image

SP=FFFEH‘

 Remaining free memoryI
within first 64 KB allocated

to .COM program
(provided a full 64 KB was available)

64 KB*

.COM program image from file

‘1 CS,DS.ES.SS

*The SP and 64 KB values are dependent upon
MS-DOS having 64 KB or more of memory
available to allocate to the .COM program
at load time.

 .COM program image 4 l?=0l00H

Figure 4—!4. The .CDMprogram: memmy map diagram with registerpointers.

Section It Programming m the MS-DOS Environment 143

l HUAWEI EX. 1010 - 155/1582
OLYMPUS EX. 1010 - 155/1582

���������	�
�
����
��
��OLYMPUS EX. 1010 - 156/1582

Part 13-. Programming for MS—DOS

Terminating the .COM program

A .COM program can use all the termination methods described for .EXE programs but
should still use the MS-DOS Interrupt 21H Terminate Process with Return Code function

(4CH) as the preferred method. If the .COM program must remain compatible with ver-

sions of MS-DOS earlier than 2.0, it can easily use any of the older termination methods,

including those described as difficult to use from .EXE programs, because .COM programs

execute with the CS register pointing to the PSP as required by these methods.

Creating the .COM program

A .COM program is created in the same manner as a .EXE program and then converted

using the MS—DOS EXEZBIN utility. See PROGRAMMING UTILITIES: EXEZBIN.

Certain restrictions do apply to .COM programs, however. First, .COM programs cannot

exceed 64 KB minus lOOH bytes for the PSP minus 2 bytes for the zero word initially
pushed on the stack.

Next, only a single segment— or at least a single addressing group —- should exist within

the program. The following two examples Show ways to structure a .COM program to sat-

isfy both this restriction and MASM’s need to have data fields precede program code in the

source file. _

COMPROGIASM (Figure 4-15) declares only a single segment (COMSEG), so no special

considerations apply when using the MASM OFFSET operator. See The MASM GROUP

Directive above. COMPROGZASM (Figure 4-16) declares separate code (6556) and data

(DSEG) segments, which the GROUP directive ties into a common addressing block.

Thus, the programmer can declare data fields at the start of the source file and have the

linker place the data fields segment (DSEG‘) after the code segment (CSEG) when it links

the program, as discussed for the .EXE program structure. This second example simulates
the program structuring provided under CP/M by Microsoft’s old Macro—80 (M80) macro

assembler and Link-80 (180) linker. The design also expands easily to accommodate

COMMON or other additional segments.

COMSEG SEGMENT BYTE PUBLIC 'CODE‘

ASSUME CS:COMSEG,DS:COMSEG,ES:COMSEG.SS:COMSEG
ORG 0100H

BEGIN:

JMP START :skip over data fields

:Place your data fields here.

START: _

i :Plaee your program text here.
HOV ax,4coon :terminate (MS-DOS 2.0 or later only]
INT 21H

COMSEG ENDS
END BEGIN

Figure 4—15. .601”program with data at start.

] 44 Tim Meme Emdnnadr’a

OLYMPUS EX. 1010 - 156/1582

���������	�
�
����
��
��OLYMPUS EX. 1010 - 157/1582

Article 4: Structure of an Application Program——————————-——————-—————————————————-————~——-—-——_—_—__

CSEG SEGMENT BYTE PUBLIC ‘CODE' ;establish segment order
CSEG ENDS '
DSEG SEGMENT BYTE PUBLIC 'DATA'
DSEG ENDS

COMGRP GROUP CSEG,DSEG ;establish joint address baSe
DSEG SEGMENT

;Place your data fields here.
DSEG ENDS
CSEG SEGMENT

ASSUME CS:COMGRP,DS:COMGRP,ES:COMGRP,SS:COMGRP
ORG 0100H

BEGIN:

;Place your program text here. Remember to use
;OFFSET COMGRPzLABEL whenever you use OFFSET.

MOV AX,4CO0H ;terminate (Ms—DOS 2.0 or: later only)
INT 21H

CSEG ENDS
END BEGIN

Figure 4-16. .COMprogmm with data at end.

These examples demonstrate other significant requirements for producing a functioning
.COM program. For instance, the ORG 0100H statement in both examples tells MASM to

start assembling the code at offset lOOH within the encompassing segment. This corre—
sponds to MSDOS’S transferring control to the program at IP = 0100H. In addition, the

entry—point label (BEGIN) immediately follows the ORG statement and appears again as a

parameter to the END statement. Together, these factors satisfy the requirement that .COM

programs declare their entry point at offset 100H. If any factor is missing, the MS—DOS

EXEZBIN utility will not properly convert the .EXE file produced by the linker into a .COM

file. Specifically, if a .COM program declares an entry point (as a parameter to the END

statement) that is at neither offset 010OH nor offset OOOOH, EXEZBIN rejects the .EXE file

when the programmer attempts to convert it. If the program fails to declare an entry point

or declares an entry point at offset OOOOH, EXEZBIN assumes that the .EXE file is to be

converted to a binary image rather than to a .COM image. When EXEZBIN converts a .EXE

file to a non-.COM binary file, it does not strip the extra IOOH bytes the linker places in

front of the code as a result of the ORG 0100H instruction. Thus, the program actually
begins at offset ZOOH when MS—DOS loads it into memory, but all the program’s address
references will have been assembled and linked based on the lOOH offset. As a result, the

program—and probably the rest of the system as well— is likely to crash.

A .COM program also must not contain direct segment address references to any segments

that make up the program. Thus, the .COM program cannot reference any segment labels

or reference any labels as long (FAR) pointers. (This rule does not prevent the program

from referencing segment labels declared using the SEGMENT AT address directive.)

Following are various examples of direct segment address references that are not per-

mitted as part of .COM programs:

Section II: Programming in the MS—DOS Environment 145

OLYMPUS EX. 1010 - 157/1582

OLYMPUS EX. 1010 - 158/1582

Part B: Programming for MS—DOS

PROC_A PROC FAR
PROC_A ENDP CALL PROC_A ;intersegment call

JMP PROC_A :intersegment jump

or

EXTRN PROCJ: FAR

CALL PROCJ :interseqrnent call
JMP PROCHA :intersegment jump

Or

3 NOV AX,SEG SEG_A :segment address
'ii'i DD LABELJ :segmentmffset pointer

Finally, .COM programs must not declare any segments with the STACK combine type. If
a program declares a segment with the STACK combine type, the linker will insert initial

55 and SP values into the .EXE file header, causing EXEZBIN to reject the .EXE file. A .COM

program does not have explicitly declared stacks, although it can reserve space in a non-

STACK combine type segment to which it can initialize the SP register after it receives

control. The absence of a stack segment will cause the linker to issue a harmless warning
message.

When the program is assembled and linked into a .EXE file, it must be converted into a

binary file with a .COM extension by using the EXEZBIN utility as shown in the following
example for the file YOURPROGEXE:

i ' c>sxs23m YOURPROG YOURPROG.COM <Enter>

It is not necessary to delete or rename a .EXE file with the same filename as the .COM

, file before trying to execute the .COM file as long as both remain in the same directory,
I 3 ; because MS-DOS's order of execution is .COM files first, then .EXE files, and finally .BAT

r :3 1 files. However, the safest practice is to delete a .EXE file immediately after converting it to
I a .COM file in case the .COM file is later renamed or m0ved to a different directory. If a

.EXE file designed for conversion to a .COM file is executed by acddent, it is likely to crash

the system.

' i' Patching the .COM program using DEBUG

I . _ _ As discussed for .EXE files, a programmer who distributes software to users will probably
I ' 3 want to send instructions on how to patch in error corrections. This approach to software

: updates lends itself even better to .COM files than it does to .EXE files.|

. ; For example, because .COM files contain only the code image, they need not be renamed

' in order to read and write them using DEBUG. The user need only be instructed on how to

load the .COM file into DEBUG, how to patch the program, and how to Write the patched

l - 3' image back to disk. Calculating the addresses and patch values is even easier, because no
= header exists in the .COM file image to cause complications. With the preceding excep-

tions, the details for patching .COM programs remain the same as previously outlined for
.EXE programs.

OLYMPUS EX. 1010 - 158/1582

���������	�
�
����
��
��
OLYMPUS EX. 1010 - 159/1582

.COM summary

Article 4-. Structure of an Application Program

To summarize, the .COM program and file structures are a simpler but more restricted

approach to writing programs than the EMS structure because the programmer has only a

single memory model from which to choose (the .COM program segment model). Also,

.COM program files do not contain the SlZ-byte (or more) header inherent to .EXE files, so
the .COM program structure is well suited to Small programs for which adding 512 bytes

of header would probably at least double the file's size.

Summary of Differences

The following table summarizes the differences between .COM and .EXE programs.

Maximum size

Entry point

CS at entry

[P at entry

DS at entry

ES at entry
55 at entry

SP at entry

Stack at entry

Stack size

Subroutine calls
Exit method

Size of file

.COM program

65556 bytes minus 256 bytes
for PSP and 2 bytes for stack

P5P:0100H
P5P

OIOOH

PSP
PSP

PSP

FFFEH or top word in available
memory, whichever is lower

Zero word '

65536 bytes minus 256 bytes
for PSP and size of executable

code and data
NEAR

Interrupt 21H Function 4CH

preferred; NEAR RET if
MS-DOS versions 1.3:

Exact size of program

.EXE program:

No limit

Defined by END statement

Segment containing program’s
entry point

Offset of entry point within its
segment

PSP

PSP

Segment with STACK attribute
End of segment defined with

STACK attribute

Initialized or uninitialized,

depending on source
Defined in segment with

STACK attribute

NEAR or FAR

Interrupt 21H Function 4CH
preferred; indirect jump
to PSP:0000H if MS-DOS
versions 1.x

Size of program plus header (at
least 512 extra bytes)

Section II: Programming in the MS—DOS Environment 147

HUAWEI EX. 1010 -159/1582

OLYMPUS EX. 1010 - 159/1582

OLYMPUS EX. 1010 - 160/1582

Part B: Programming for MS-DOS

Which format the programmer uses for an application u5ually depends on the program’s

intended size, but the decision can also be influenced by a program’s need to address mul-
tiple memory segments. Normally, small utility prcigrams (such as CHKDSK and FOR—

MAT) are designed as .COM programs; large programs (such as the Microsoft C Compiler)

are designed as .EXE programs. The ultimate decision is, of course, [he programmer’s.

Keith Burgojme

OLYMPUS EX. 1010 - 160/1582

���������	�
�
����
�
�
��OLYMPUS EX. 1010 - 161/1582

Article 5: Character Device Input and Output

Article 5:

Character Device Input and Output

All functional computer systems are composed of a central processing unit (CPU), some

memory, and peripheral devices that the CPU can use to store data or communicate with

the outside world. In MS—DOS systems, the essential peripheral devices are the keyboard

(for input), the display (for output), and one or more disk drives (for nonvolatile storage).
Additional devices such as printers, modems, and pointing devices extend the function-

ality of the computer or offer alternative methods of using the system.

MS—DOS recognizes two types of devices: bloek devices, which are usually floppy—disk or
fixed-disk drives; and character devices, such as the keyboard, display, printer, and com-
munications ports.

The distinction between block and character devices is not always readily apparent, but

in general, block devices transfer information in chunks, or blocks, and character devices
move data one character (usually 1 byte) at a time. MS-DOS identifies each block device by

a drive letter assigned when the device's controlling software, the device driver, is loaded. '

A character device, on the other hand, is identified by a logical name (similar to a filename .

and subject to many of the same restrictions) built into its device driver. See PROGRAM-
MING IN THE MS-DOS ENVIRONMENT: CUSTOMIZING MS-DOS: Installable Device Drivers.

Background Information

Versions 1.); of MS—DOS, first released for the IBM PC in 1981, supported peripheral devices

with a fixed set of device drivers loaded during system initialization from the hidden file
IQSYS (0t IBMBIOCOM with PC—DOS). These versions of MS—DOS offered application

programs a high degree of input/output device independence by allowing character
devices to be treated like files, but they did not provide an easy way to augment the built-in

set of drivers if the user wished to add a third—party peripheral device to the system.

With the release of MS-DOS version 2.0, the hardware flexibility of the system was tremen-

dously enhanced. Versions 20 and later support installable device drivers that can reside in

separate files on the disk and can be linked into the operating system simply by adding a
DEVICE directive to the CONFIGSYS file on the startup disk. See USER COMMANDS:
CONFIG.SYS: Davies. A well-defined interface between installable drivers and the MS-DOS

kernel allows such drivers to be written for most types of peripheral devices without the

need for modification to the operating system itself.

The CONFIGSYS file can contain a number of different DEVICE commands to load sepa—

rate drivers for pointing devices, magnetic—tape drives, network interfaces, and so on. Each

driver, in turn, is specialized for the hardware characteristics of the device it supports.

'5i
i'
f
i
i

l
iI

i Section II: Programming in the M’s—DOS Environment 149LII IA\I\II:I EV «nan 4R4I4RQ’)

OLYMPUS EX. 1010 -161/1582

OLYMPUS EX. 1010 - 162/1582

Part B: Programming for MS-DOS

When the system is turned on or restarted, the installable device drivers are added to the

chain, or linked list, of default device drivers loaded from IO.SYS during MS—DOS initializa—

tion. Thus, the need for the system's default set of device drivers to support a wide range of

optional device types and features at an excessive cost of system memory is avoided.

One important distinction between block and character devices is that MS—DOS always
adds new block~device drivers to the tail of the driver chain but adds new character-device

drivers to the head of the chain. Thus, because MS—DOS searches the chain sequentially

and uses the first driver it finds that satisfies its search conditions, any existing character-

device driver can be superseded by simply installing another driver with an identical logi—
.cal device name.

This article covers some of the details of working with MS-DOS character devices: display-
ing text, keyboard input, and other basic character [/0 functions; the definition and use of

standard input and output; redirection of the default character devices; and the use of the

IOCTL function (Interrupt 21H Function 44H) to communicate directly with a character-

device driver. Much of the information presented in this article is applicable only to
MS-DOS versions 2.0 and later.

Accessing Character Devices

Application programs can use either of two basic techniques to access character devices in

a portable manner under MS-DOS. First, a program can use the handle-type function calls

that were added to MS-DOS in version 2.0. Alternatively, a program can use the so—called

“traditional” character-device functions that were present in versions 1.x and have been

retained in the operating system for compatibility. Because the handle functions are more

powerfui and flexible, they are discussed first.

I A handle is a 16—bit number returned by the operating system whenever a file or device is
opened or created by passing a name to MS—DOS Interrupt 21H Function 3CH (Create File

with Handle), SDH (Open File with Handle), SAH (Create Temporary File),-or SBH (Create

New File). After a handle is obtained, it can be used with Interrupt 21H Function SFH
(Read File or Device) or Function 40H (Write File or Device) to transfer data between the

i computer‘s memory and the file or device.

: i 3 During an open or create function call, MS-DOS searches the device-driver chain sequen—
{ I tially for a character device with the specified name (the extension is ignored) before

searching the disk directory. Thus, a file with the same name as any character device in the

driver chain— for example, the file NULTXT— cannot be created, nor can an existing file
be accessed if a device in the chain has the same name.

The second method for accessing character devices is through the traditional MS—DOS

character input and output functions, Interrupt 21H Functions 01H through OCH. These

functions are designed to communicate directly with the keyboard, display, printer, and

' serial port. Each of these devices has its own function or group of functions, so neither

OLYMPUS EX. 1010 - 162/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 163/1582

Article 5-. Character Device Input and Output

names nor handles need be used. However, in MS-DOS versions 2.0 and later, these func-

tion calls are translated within MS—DOS to make use of the same routines that are used by
the handle functions, so the traditional keyboard and display functions are affected by 1/0

redirection and piping.

Use of either the traditional or the handle-based method for character device I/O results

in highly portable programs that can be used on any computer that runs MS-DOS. A third,

less portable access method is to use the hardware-specific routines resident in the read-

only memory (ROM) of a specific computer (such as the IBM PC ROM BIOS driver func-

tions), and a fourth, definitely nonportable approach is to manipulate the peripheral

device’s adapter directly, bypassing the system software altogether. Although these latter
hardware-dependent methods cannot be recommended, they are admittedly sometimes

necessary for performance reasons.

The Basic MS-DOS Character Devices

Every MS—DOS system supports at least the following set of logical» character devices
without the need for any additional installable drivers:

Device Meaning

CON Keyboard and display

PRN System list device, usually a parallel port
AUX Auxiliary device, usually a serial port

CLOCK$ System real-time clock
NUL “Bit-bucket” device

These devices can be opened by name or they can be addressed through the “traditional"

function calls; strings can be read from or written to the devices according to their capabili-

ties on any MS-DOS system. Data written to the NUL device is discarded; reads from the
NUL device always return an end-of—file condition.

PC—DOS and compatible implementations of MS—DOS typically also support the following

logical character—device names:

Device Meaning

COMl First serial communications port
COMZ Second serial communications port

LPT1 First parallel printer port

LPTZ Second parallel printer port

LPT3 Third parallel printer port

Section IL Programming in the MS—DOS Environment 151.n-n..—. ._‘: ‘A‘A ‘AAll—AA

OLYMPUS EX. 1o1o - 163/1582

OLYMPUS EX. 1010 - 164/1582

Part B: Programming for MS—DOS

In such systems, PRN is an alias for LPT] and AUX is an alias for COMl. The MODE com-
mand can be used to redirect an LPT device to another device. See USER COMMANDS:
MODE.

As previously mentioned, any of these default character—device drivers can be superseded
by a user-installed device driver— for example, one that offers enhanced functionality or

changes the device’s apparent characteristics. One frequently used alternative character-

device driver is ANSISYS, which replaces the standard MS—DOS CON device driver and

allows ANSI escape sequences to be used to perform tasks such as clearing the screen,

controlling the cursor position, and selecting character attributes. See USER COMMANDS:
ANSISYS.

The standard devices

Under MS-DOS versions 2.0 and later, each program owns five previously Opened handles

for character devices (referred to as the standard devices) when it begins executing. These

handles can be used for input and output operations without further preliminaries. The
five standard devices and their associated handles are

 Standard Device Name Handle Default Assignment

Standard input (Sadie) 0 CON

Standard output (stdow) 1 CON
Standard error (stderr) 2 CON

Standard auxiliary (stdattx) 3 AUX

Standard printer (stdprn) 4 PRN

The standard input and standard output handles are especially important because they are

subject to I/O redirection. Although these handles are associated by defauit with the CON

device so that read and write operations are implemented using the keyboard and video

display. the user can associate the handles with other character devices or with files by

using redirection parameters in a program’s command line-.'

Redirection Result

< file Causes read operations from standard input to obtain data from file.

> fife Causes data written to standard output to be placed in file.

>> file Causes data written to standard output to be appended to file.

p] l p2 Causes data written to standard output by programp] to appear as the

standard input of program 192.

This ability to redirect I/O adds great flexibility and power to the system. For example,

programs ordinarily controlled by keyboard entries can be run with “scripts” from files,

the output of a program can be captured in a fiie or on a printer for later inspection, and

general—purpose programs (filters) can be written that process text streams without regard
to the text‘s origin or destination. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:

CusTOMIerG MS-DOS: Writing MS—DOS Filters.

152 The M5~DOS Encwfofledia

OLYMPUS EX. 1010 - 164/1582

���������	�
�
����
��
��
OLYMPUS EX. 1010 - 165/1582

Article 5: Character Device input and Output

Ordinarily, an application program is not aware that its input or output has been redi-

rected, although a write operation to standard output will fail unexpectedly if standard

output was redirected to a disk file and the disk is full. An application can check for the
existence of I/O redirection with an iOCTL (Interrupt 21H Function 44H) call, but it can-

not obtain any information abOut the destination of the redirected handle except whether
it is associated with a character device or with a file.

Raw versus cooked mode

MS—DOS associates each handle for a character device with a mode that determines how

I/O requests directed to that handle are treated. When a handle is in raw mode, characters

are passed between the application program and the device driver without any filtering or
buffering by MS—DOS. When a handle is in cooked mode, MS—DOS buffers any data that is
read from or written to the dCVice and takes special actions when certain characters are
detected.

During cooked mode input, MS—DOS obtains characters from the device driver one at a
time, checking each character for a Control-C. The characters are assembled into a string

within an internal MS-DOS buffer. The input operation is terminated when a carriage
return (ODH) or an end-Of-file mark CLAH) is received or when the number of characters

requested by the application have been accumulated. If the source is standard input, lone

linefeed characters are translated to carriage-return/linefeed pairs. The string is then
copied from the internal MS-DOS buffer to the application program’s buffer. and control

returns to the application program.

During cooked mode output, MS—DOS transfers the characters in the application pro-

gram‘s output buffer to the device driver one at a time, checking after each character for
a Control-C pending at the keyboard. If the destination is standard output and standard

output has not been redirected, tabs are expanded to spaces using eight-column tab stops.

Output is terminated when the requested number of characters have been written or when
an end-of—file mark (lAI-I) is encountered in the output string.

In contrast. during raw mode input or output, data is transferred directly between the

application program’s buffer and the device driver. Special characters such as carriage
return and the end—of—file mark are ignored, and the exact number of characters in the ap-

pl ication program‘s request are always read or written. MS-DOS does not break the strings

into single-character calls to the device driver and does not check the keyboard buffer for
Control-C entries during the I/O operation. Finally, characters read from standard input

in raw mode are not echoed to standard output.

As might be expected from the preceding description, raw mode input or output is usu-

ally much faster than cooked mode input or output, because each character is not being

individually processed by the MS-DOS kernel. Raw mode also allows programs to read
characters from the keyboard buffer that would otherwise be trapped by MS—DOS (for

example, Control—C, Control—P, and Control—S). (If BREAK is on, MS—DOS will still check for

Control—C entries during other function calls, such as disk operations, and transfer control

Section II.- Programming in the MS—DOS Environment 153

HI IA\I\I|=| |=Y 1n1n _ 1RRI1RRO

OLYMPUS EX. 1010 - 165/1582

OLYMPUS EX. 1010 - 166/1582

Part B: Programming for MS-DOS

to the Control-C exception handler if a Control—C is detected.) A program can use the

MS-DOS IOCTI. Get and Set Device Data services (Interrupt 21H Function 44H Sinfunc—
tions 00H and 01H) to set the mode for a character-device handle. See IOCTL below.

Ordinarily, raw or cooked mode is strictly an attribute of a specific handle that was

obtained from a previous Open operation and affects only the I/O operations requested

by the program that owns the handle. However, when a program uses IOC’I‘L to select raw

or cooked mode for one of the standard device handles, the selection has a global effect

on the behavior of the system because those handles are never closed. Thus, seme of the

“traditional" keyboard input functions might behave in unexpected ways. Consequently,

programs that change the mode on a standard device handle should save the handle's

mode at entry and restore it before performing a final exit to MS-DOS, so that the opera—

tion of COMMANDCOM and other applications will not be disturbed. Such programs

should also incorporate custom critical error and Control-C exception handlers so that the

programs cannot be terminated unexpectedly. See PROGRAMMING IN THE MS—DOS

ENVIRONMENT: CUSTOMIZING MS-DOS: Exception Handlers.

The keyboard

Among the MS-DOS Interrupt 21H functions are two methods of checking for and receiv—

ing input from the keyboard: the traditional method, which uses MS-DOS character input
Functions 01H, 06H, 07H, 08H, UAI-I, OBH, and OCH (Table 5-1); and the handle method,

which uses Function 5FH. Each of these methods has its own advantages and disadvan—

tages. See SYSTEM CALLS.

Table 5-1. Traditional MS-DOS Character Input Functions.

Read Multiple Ctrl-C

Function Name Characters Echo Check

01H Character Input with Echo No Yes Yes
06H Direct Console 1/0 No No No

071-1 Unfiltered Character Input
Without Echo No No . No

08H Character Input Without Echo No - No Yes

OAH Buffered Keyboard Input Yes Yes Yes

OBH Check Keyboard Status No No Yes

OCH Flush Buffer, Read Keyboard ‘ ‘ ‘

' Varies depending on function (from above) called in the AL register.

The first four traditional keyboard input calls are really very similar. They all return a char-

acter in the AL register; they differ mainly in whether they echo that character to the dis-

play and whether they are sensitive to interruption by the user's entry of a Control-C. Both

Functions 061-1 and OBH can be used to test keyboard status (that is, whether a key has

been pressed and is waiting to be read by the program); FunctiOn OBH is simpler to use,
but Function 06H is immune to Control—C entries.

1 III/i ’r‘l... Ilr nnc‘ DMAA.-Ino.-Ai.-.

OLYMPUS EX. 1010 - 166/1582

OLYMPUS EX. 1010 - 167/1582

Article 5: Character Device input and Output

Function OAH is used to read a “buffered line” from the user, meaning that an entire line is

accepted by MS-DOS before control returns to the program. The line is terminated when

the user presses the Enter key or when the maximum number of characters (to 255) speci—

fied by the program have been received. While entry of the line is in progress, the usual

editing keys (such as the left and right arrow keys and the function keys on IBM PCs and

compatibles) are active; only the final, edited line is delivered to the requesting program.

Function OCH allows a program to flush the type—ahead buffer before accepting input.

This capability is important for occasions when a prompt must be displayed unexpectedly

(such as when a critical error occurs) and the user could not have typed ahead a valid

response. This function should also be used when the user is being prompted for a critical

decision (such as whether to erase a file), to prevent a character that was previously

pressed by accident from triggering an irrecoverable operation. Function OCH is unusual

in that it is called with the number of one of the other keyboard input functions in register

A]... After any pending input has been discarded, Function OCH simply transfers to the

other specified input function; thus, its other parameters (if any) depend on the function

that ultimately will be executed.

The primary disadvantage of the traditional function calls is that they handle redirected

input poorly. If standard input has been redirected to a file, no way exists for a program

calling the traditional input functions to detect that the end of the file has been reached —

the input function will simply wait forever, and the system will appear to hang.

A program that Wishes to use handle-based 1/0 to get input from the keyboard must use

the MS-DOS Read File or Device service, Interrupt 21H Function SFH. Ordinarily, the pro-

gram can employ the predefined handle for standard input (0), which does not need to be

opened and which allows the program's input to be redirected by the user to another file

or device. lfthe program needs to circumvent redirection and ensure that its input is from

the keyboard, it can open the CON device with Interrupt 21H Function 3DH and use the

handie obtained from that open operation instead of the standard input handle.

A program using the handle functions to read the keyboard can control the echoing of
characters and sensitivity to Control—C entries by selecting raw or cooked mode with the

IOCTL Get and Set Device Data services (default = cooked mode). To test the keyboard

Status, the program can either issue an IOCTL Check Input Status call (Interrupt 21H Func—

tion 44H Subfunction 06H) or use the traditional Check Keyboard Status call (Interrupt
21H Function OBH).

The primary advantages of the handle method for keyboard input are its symmetry with

file operations and its graceful handling of redirected input. The handle function also

allows strings as long as 65535 bytes to be requested; the traditional Buffered Keyboard
Input function allows a maximum of 255 characters to be read at a time. This considera—

tion is important for programs that are frequently used with redirected input and output

(such as filters), because reading and writing larger blocks of data from files results in

more efficient operation. The only real disadvantage to the handle method is that it is

limited to MS-DOS versions 2.0 and later (although this is no longer a significant
restriction).

Section II.- Progmmmmg in the MS-DOS Environment 155

OLYMPUS EX. 1010 - 167/1582

OLYMPUS EX. 1010 - 168/1582

Part B: Programming for MS—DOS

Role of the ROM 8105

When a key is pressed on the keyboard of an IBM PC or compatible, it generates a hard—

ware interrupt (09H) that is serviced by a routine in the ROM BIOS. The ROM BIOS inter-

rupt handler reads I/O ports assigned to the keyboard controller and translates the key's
scan code into an ASCII character code. The result of this translation depends on the cur—

rent state of the NumLock and CapsLock toggles, as well as on whether the Shift, Control,

or Alt key is being held down. (The ROM BIOS maintains a keyboard flags byte at address

0000:0417H that gives the current status of each of these modifier keys.)

After translation, both the scan code and the ASCII code are placed in the ROM BIOS’s

32~byte (BS-character) keyboard input buffer. In the case of “extended" keys such as the

function keys or arrow keys, the ASCII code is a zero byte and the scan code carries all the

information. The keyboard buffer is arranged as a circular, or ring, buffer and is managed

as a first-in/first-out queue. Because of the method used to determine when the buffer is

empty, one position in the buffer is always wasted; the maximum number of characters

that can be held in the buffer is therefore 15. Keys pressed when the buffer is full are

discarded and a warning beep is sounded.

The ROM BIOS provides an additional module, invoked by software Interrupt 16H, that

allows programs to test keyboard status, determine whether characters are waiting in the

type—ahead buffer, and remove characters from the buffer. See Appendix 0: IBM PC BIOS

Calls. Its use by application programs should Ordinarily be avoided, however, to prevent

introducing unnecessary hardware dependence.

On IBM PCs and compatibles, the keyboard input portion of the CON driver in the

BIOS is a simple sequence of code that calls ROM BIOS Interrupt 16H to do the hardware-

dependent work. Thus, calls to MS-DOS for keyboard input by an application program are

subject to two layers of translation: The Interrupt 21H function call is converted by the

, , MS—DOS kernel to calls to the CON driver, which in turn remaps the request onto a ROM
' : i BIOS call that obtains the character

Keyboard programming examples

! : Example.- Use the ROM BIOS keyboard driver to read a character from the keyboard. The
character is not echoed to. the display.

i mov ah,00h ; subfunction 00H = read character
l! : int 16h ; transfer to ROM BIOSI
||

; now AH = scan code, AL character

Example.- Use the MS-DOS traditional keyboard input function to read a character from

the keyboard. The character is not echoed to the display. The input can be interrupted

with a Ctrl—C keystroke.

. mov ah,08h : function 031-] = character input
I 3' ; without echo
I int 21h ; transfer to MS—DOS

' I P new AL = character
f i I 1‘56 The MS-DOSEncwlobedia

OLYMPUS EX. 1010 - 168/1582

���������	�
�
����
���
��
OLYMPUS EX. 1010 - 169/1582

Article 5.- Character Device Input and Output

Exampfe: Use the MS—DOS traditional Buffered Keyboard Input function to read an entire
line from the keyboard, specifying a maximum line length of 80 characters. All editing

keys are active during entry. and the input is echoed to the display.

kbuf db 30 ; maximum length of read
db 0 : actual length of read
db BO dup i0) ; keyboard input goes here

mov dx,seg kbuf ; set DS:DX = address of
mov ds,dx . ; keyboard input buffer
mov dx,offset kbuf
mov ah,0ah : function OAH = read buffered line
int 21h : transfer to ms-nos

: terminated by a carriage return.
: and kbuf+1 = length of input,
: not including the carriage return

Example: Use the MS-DOS handle—based Read File or Device function and the standard

input handle to read an entire line from the keyboard, specifying a maximum line length
of 80 characters. All editing keys are active during entry, and the input is echoed to the dis-

play. (The input will not terminate on a carriage return as expected if standard input is in
raw mode.)

kbuf db 80 dup (0} ; buffer for keyboard input

mov dx,5eg kbuf I set DS:DX * address of
mov ds,dx : keyboard input buffer
mov dx.offset kbuf
mov cr,EU ; CK : maximum length of input
mov bx,0 : standard input handle = 0
mov ah,3fh ; function 3FH = read filefdevice
int 21h ; transfer to MS-DOS
jc error ; jump if function failed

; otherwise AX = actual

; length of keyboard input.
: including carriage-return and
; linefeed. and the data is
; in the buffer ’kbuf'

The display

The output half of [he MS-DOS logical character device CON is the video display. On IBM
PCs and compatibles, the video display is an “option" of sorts that comes in several forms.

IBM has introduced five video subsystems that support different types of displays: the

Monochrome Display Adapter (MDA), the Color/Graphics Adapter (CGA), the Enhanced

Graphics Adapter (EGA), the Video Graphics Array (VGA), and the Multi—Color Graphica
Array (MCGA). Other, non—lBM—compatible video subsystems in common use include the

Hercules Graphics Card and its variants that support downloadable fonts.

Section II: Frogramming in the M’s-DOS Enm’ro nmertt 157

HI IA\I\II=I FY 1n1n _ 1RQI1RRO

OLYMPUS EX. 1010 - 169/1582

OLYMPUS EX. 1010 - 170/1582

Part 3: Programming for MS-DOS

Two portable techniques exist for Writing text to the video display with MS-DOS function

calls. The traditional method is supported by Interrupt 21H Functions 02H (Character Out-

put), 06H (Direct Console I/O), and 09H (Display String). The handle method is supported

by Function 40H (Write File or Device) and is available only in MS-DOS versions 2.0 and
later. See SYSTEM CALLS: INTERRUPT 21H: Functions 02H, 06H, 09H, 40H. All these calls

treat the display essentially as a "glass teletype” and do not support bit-mapped graphics.

Traditional Functions 02H and 06H are similar. Both are called with the character to be

displayed in the DL register; they differ in that Function 02H is sensitive to interruption by

the user‘s entry of a Control—C, whereas Function 061-] is immune to Control-C but cannot

be used to output the character OFFH (ASCII rubout). Both calls check specifically for car—

riage return (00H), linefeed (OAH), and backspace (08H) characters and take the appro-

priate action if these characters are detected.

Because making individual calls to MS—DOS for each character to be displayed is inefficient

and slow, the traditional Display String function (09H) is generally used in preference to
Functions 02H and 06H. Function 09H is called with the address of a string that is term i—

nated with a dollar—sign character ($); it displays the entire string in one Operation, regard-

less of its length. The string can contain embedded control characters such as carriage
return and linefeed.

- To use the handle method for screen display, programs must call the MS—DOS Write File

5 g or Device service, Interrupt 21H Function 40H. Ordinarily, a program should use the pre-
l ' defined handle for standard output (I) to send text to the screen, so that any redirection

f ; ; ,3 j requested by the user on the program’s command line will be honored. If the program
:' _' . 5 needs to circumvent redirection and ensure that its output goes to the screen, it can either

' l ' use the predefined handle for standard error (2) or explicitly open the CON device with

Interrupt 21H Function SDH and use the resulting handle for its write operatiOns.

f I g The handle technique for displaying text has several advantages over the traditional
I calls. First, the length of the string to be displayed is passed as an explicit parameter, so

the string need not contain a special terminating character and the 3% character can be dis-

played as part of the string. Second, the traditional calls are translated to handle calls

inside MS-DOS, so the handle calls have less internal overhead and are generally faster.

Finally, use of the handle Write File or Device function to display text is symrrietric with
the methods the program must use to access its files. In short, the traditional functions

should be avoided unless the program must be capable of running under. MS-DOS ver-
sions 1.x.

Controlling the screen

One of the deficiencies of the standard MS—DOS CON device driver is the lack of screen—

control capabilities. The default CON driver has no built-in routines to support cursor

placement, screen clearing, display mode selection, and so on.

In MS-DOS versions 2.0 and later, an optional replacement CON driver is supplied in the

file ANSI.SYS. This driver contains most of the screen—control capabilities needed by text-

oriented application programs. The driver is installed by adding a DEVICE directive to the

158 The Ms-Dos Encyclopedia

OLYMPUS EX. 1010 - 170/1582

���������	�
�
����
�
�
��OLYMPUS EX. 1010 - 171/1582

Article 5.- Character Device Input and Output

CONFIGSYS file and restarting the system. When ANSISYS is active, a program can
position the cursor, inquire about the current cursor position, select foreground and

background colors, and clear the current line or the entire screen by sending an escape
sequence consisting of the ASCII Esc character (13H) followed by various function-

specific parameters to the standard output device. See USER COMMANDS: ANSISYS.

Programs that use the ANSISYS capabilities for screen control are portable to any MS-DOS
implementation that contains the ANSISYS driver. Programs that seek improved perfor-

mance by calling the ROM BIOS video driver or by assuming direct control of the hard-

ware are necessarily leSs portable and usually require modification when new PC models
or video subsystems are released,

Role ofthe ROM BIOS

The video subsystems in IBM PCs and compatibles use a hybrid of memory-mapped and

port-addressed I/O. A range of the machine's memory addresses is typically reserved for a
video refresh buffer that holds the character codes and attributes to be displayed on the

* sCreen; the cursor position, display mode, palettes, and similar global display char

acteristics are governed by writing control values to specific I/O ports.

The ROM BIOS of IBM PCs and compatibles contains a primitive driver for the MDA, CGA,

EGA, VGA, and MCGA video subsystems. This driver supports the following functions:

I Read or write characters with attributes at any screen position.

Query or set the cursor position.
Clear or scroll an arbitrary portion of the screen.

Select palette, background, foreground, and border colors.

Query or set the display mode GIG—column text, 80-column text, all-pointaaddressabie

graphics and so on).
I Read or write a pixel at any screen coordinate.

These functions are invoked by a program through software Interrupt 10H. See Appendix

0: IBM PC BIOS Calls In PC—DOS-compatible implementations of MS-DOS, the display
portions of the MS-DOS CON and ANSISYS drivers use these ROM BIOS routines. Video

subsystems that are not IBM compatible either must contain their own ROM BIOS or must

be used with an installable device driver that captures Interrupt 10H and provides appro-
priate support functions.

Text—only application programs should avoid use of the ROM BIOS functions or direct

' access to the hardware whenever possible, to ensure maximum portability between

I MS-DOS systems. However, because the MS-DOS CON driver contains no support for bit-
] mapped graphics, graphically oriented applications usual iy must resort to direct control

I of the video adapter and its refresh buffer for speed and precision.
l
l
l

ll

Section 1!.- Programming in theMS-DOS Environment 1 59

HI IA\I\I|=| |=Y 1n1n _ 171I1RR’)

OLYMPUS EX. 1010 -171/1582

OLYMPUS EX. 1010 - 172/1582

Part Fir-Programming for MS—DOS

Display programming examples

Example: Use the ROM BIOS Interrupt 10H function to write an asterisk character to Fit

display in text mode. (In graphics mode, BL must also be set to the desired foreground
color.)

mov ah,0eh : subfunction OER = write character
: in teletype mode

mov a1, '*' ; AL 2 character to display
mov bh,0 ; select display page 0
int 10h ; transfer to ROM BIOS video driver

Example: Use the MS-DOS traditional function to write an asterisk character to the dis

play. If the user’s entry of a Control—C is detected during the output and standard output is

in cooked mode, MSwDOS calls the Control-C exception handler whose address is found

in the vector for Interrupt 25H.

mov ah,02h ; function 02H = display Character
mov d1,'*' ; DL = character to display
int 21h ; transfer to its—DOS

Example; Use the MS~DOS traditional function to write a string to the display The output

: is terminated by the $ character and can be interrupted when the user enters a Control-C if

gy- i _ standard output is in cooked mode.

i

’3

msg db ‘This is a test message','$'

ii. men; dx,seg msg ; DS:D}(= address of text
mov d5,dx ; to display

'Qi mov dx,offset meg
mov ah.09h ; function 09H = display string
in: 21h ,- transfer to PIS-DOS

Example: Use the MS-DOS handle—based Write File or Device function and the predefined

handle for standard output to write a string to the display. Output can be interrupted by the

user’s entry of a Control-C if standard output is in cooked mode.

l : msg db 'This is a test message'
i . f- msg_len equ Swmsg

‘ |
i :

j mov dx,seg msg ; DS:DX = address of text
l. mov - ds,dx ': to display
: mov dx,offset msg
:_ mov cx,msg_len ; CX = length of text
i? mov bx,1 ; BX = handle for standard output
I mov 5111,4021 ; function 403 = write filei’device

f int 21h ; transfer to MS-DOSI
I .'

I
I
I
|
1.
r.
I

II
l I 16.“. Thu Heme Mariam.»

OLYMPUS EX. 1010 - 172/1582

���������	�
�
����
���
��
OLYMPUS EX. 1010 - 173/1582

Article 5; Character Device Input and Output

The serial communications ports

Through version 3.2, MS-DOS has built-in support for two serial communications ports,
identified as COMl and COM2, by means of three drivers named AUX, COM}, and COM2.

(AUX is ordinarily an alias for COMI.)

The traditional MS—DOS method of reading from and writing to the serial ports is through

Interrupt 21H Function 03H for AUX input and Function 04H for AUX output. In MS—DOS
versions 2.0 and later, the handle-based Read File or Device and Write File or Device func-

tions (Interrupt 21H Functions 5FH and 40H) can be used to read from or write to the aux-

iliary device. A program can use the predefined handle for the standard auxiliary device

(5) with Functions 3FI-I and 40H, or it can explicitly open the COMI or COM2 devices with
Interrupt 21H Function 3DH and use the handle obtained from that open operation to

perform read and write operations.

MS-DOS support for the serial communications port is inadequate in several respects for

high-performance serial I/O applications. First, MS—DOS provides no portable way to test

for the existence or the status of a particular serial port in a system; if a program “opens”
COM2 and writes data to it and the physical COM2 adapter is not present in the system, the

program may simply hang. Similarly, if the serial port exists but no character has been
received and the program attempts to read a character, the program will hang until one is

available; there is no traditional function call to check if a character is waiting as there is

for the keyboard.

MS-DOS also provides no portable method to initialize the communications adapter to a

particular baud rate, word length, and parity. An application must resort to ROM BIOS

calls, manipulate the hardware directly, or rely on the user to configure the port properly
with the MODE command before running the application that uses it. The default settings

for the serial port on PC-DOS«compatible systems are 2400 baud, no parity, 1 stop bit, and
8 databits. See USER COMMANDS: MODE.

A more serious problem with the default MS-DOS auxiliary device driver in IBM PCs and

Compatibles, however, is that it is not interrupt driven. Accordingly, when baud rates above
1200 are selected, characters can be lost during time—consuming operations performed by
the drivers for other devices, such as clearing the screen or reading or writing a floppy—disk

sector. Because the MS-DOS AUX device driver typically relies on the ROM 8108 serial port

driver (accessed through software Interrupt 14H) and because the ROM BIOS driver is not

interrupt driven either, bypaSsing MS-DOS and calling the ROM BIOS functions does not
usually improve matters.

Because of all the problems just described, telecommunications application programs

commonly take over complete control of the serial port and supply their own interrupt
handler and internal buffering for character read and write operations. See PROGRAM-
MING IN THE MS—DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS: Interrupt-Driven
Communications.

Section II: Progranaming in the MS—DOS Environment 161 l-ll IA\I\I|=| |=Y 1n1n _ 17QI1RRO

OLYMPUS EX. 1010 - 173/1582

OLYMPUS EX. 1010 - 174/1582

.-',';

....m.s.'_1¢'.'.i,-.-1:
Part B: Programming for MS—DOS

Serial port programming examples ___:ll,_L;"ldl;;llsfiiu
Example: Use the ROM BIOS serial port driver to write a string to COMl.

msg db 'This is a test message'
msg_len equ 3-m5g

mov bx,seg msg ; DS:BX = address of message
mov ds,bx
mov bx,off5et msg
mov cx.msg_len ; CX = length of message
mov dx,0 ; DX = U for COMI

L1: mov al,[bx1 ; get next Character into AL
mov ah,01h ; subfunetion 013 = output
int 14h ; transfer to ROM BIOS

inc bx ; bump pointer to output string
loop L1 ; and loop until all chars. sent

Example: Use the MS-DOS traditional function for auxiliary device output to write a string to COM].

msg db 'This is a test message‘ ’
msg_len equ $-msg

mov bx.3eg msg ; set DS:EX = address of message
_ mov ds,bx

E :: mov bx,off5et msg
| ; mov cx,msg_len ; set CX = length of message

El i: L1: mov dl,[bx] ; get next character into DL
lIll mov ah,04h ; function 04H = auxiliary output

2 ' int 21h ; transfer to MS—DOS
' inc bx ; bump pointer to output string

| loop L1 ; and loop until all dhars. sent

= Example.- Use the MS-DOS handle-based Write File or Device function and the predefined
5 . E handle for the standard auxiliary device to write a string to COM].I

II msg db 'This is a test message'
I msg_len equ $-msg|
I
I u

E l
ff mOV' dx.seg msg ; DS:DX = address of message
i mov ds.dx

l _ mov dx,offset meg
!. mov cx,msg_len : CK = length of message
i mov bx,3 : BX = handle for standard aux.

i mov ah,40h ; function 40H = write filefdeviee
I int 21h ; transfer to MS—DOS

i jc error ; jump if write operation failed

5 ;g .
I
I

”Ii -
ii i 144’) "T‘L- ur nnn n_-..-i_,.-.n-

OLYMPUS EX. 1010 - 174/1582

���������	�
�
����
��
��OLYMPUS EX. 1010 - 175/1582

Article 5: Character Device Input and Output

The parallel port and printer

Most MS—DOS implementations contain device drivers for four printer devices: LPTl, LPTZ,
LPTS, and PRN. PRN is ordinarily an alias for LPTI and refers to the first parallel output

port in the system. To provide for list devices that do not have a parallel interface, the LPT
devices can be individually redirected with the MODE command to one of the serial corn-

munications ports. See USER COMMANDS: mops.

As with the keyboard, the display, and the serial port, MS-DOS allows the printer to be
accessed with either traditional or handle—based function calls. The traditional function

call is Interrupt 21H Function 05H, which aCCepts a character in DL and sends it to the

physical device currently assigned to logical device name LPT].

A program can perform handle—based output to the printer with Interrupt 21H Function

40H (Write File or Device). The predefined handle for the standard printer (4) can be used

to send strings to logical device LPT]. Alternatively, the program can issue an open oper-
ation for a specific printer device with Interrupt 21H Function SDI-I and use the handle

obtained from that open operation with Function 40H. This latter method also allows

more than one printer to be used at a time from the same program.

Because the parallel ports are assumed to be output only, no traditional call exists for

input from the parallel port. In addition, no portable method exists to test printer port

status under MS-DOS; programs that wish to avoid sending a character to the printer

adapter when it is not ready or not physically present in the system must test the adapter’s

status by making a call to the ROM BIOS printer driver (by means of software Interrupt
17H; see Appendix 0: IBM PC BIOS Calls) or by accessing the hardware directly.

Parallel port programming examples

Example: Use the ROM BIOS printer driver to send a string to the first parallel printer port.

msg db 'This is a test message'
msg_len equ $-msg

mov bx,seg msg : DS:BX = address of message
mov ds,bx
mov bx.offset msg
mov cx,msg_len : CK = length of message
mov dx,0 ; DX = 0 for LPT1

L1: mov al,[b3] J get next character into AL
mov ah,00h ; subfunotion 00H = output
int 13h ; transfer to ROM BIOS
inc bx ; bump pointer to output string
loop L1 : and loop until all chars. sent

Section U.- Programming in the MS—DOS Environment 163
LII IA\I\II:I EV «nan 471:” R90

OLYMPUS EX. 1010 - 175/1582

OLYMPUS EX. 1010 - 176/1582

.r.“a.uni-(um
Part B: Programming for MS—DOS

Example: Use the traditional MS—DOS function call to send a string to the first parallel
printer port.

msq db 'This is a test message‘
msq_len equ S-msg

mov bx,seg meg ; DS:BX = address of message
mov ds,bx
mov bx,offset msg
mov cx,msg_len ; Cx = length of message

L1: mov dl.[bx] ; get next character into DL
mov ah,05h : function 05H = printer output
int 21h ; transfer to MS—DOS

inc bx : bump pointer to output string
loop L1 ; and loop until all chars. sent

Example: Use the handle—based MS-DOS Write File or Device call and the predefined

handle for the standard printer to send a string to the system list device. msg db ‘This is a test message'
m5g_.1en equ Sumsg

mov dx,seg meg ; DS:DX = address of message
mov ds,dx
mov dx,offset msg
mov cx,msg__len ; C): = length of message

5 mov bx,4 ; Bx = handle for standard printer
mov ah,4t|h ; function 40H = write filei’device
int 21h ; transfer to MS—DOS

jc error : jump if write operation failed

IOCTL

In versions 2.0 and later, MSADOS has provided applications with the ability to communi—

cate directly with device drivers through a set of subfunctions grouped under Interrupt
21H Function 44H (IOCTL). See SYSTEM CALLS: INTERRUPT 21H: Function 44H. The

IOCTL subfunctions that are particularly applicable to the Character No needs of appli-

cation programs arel r ‘

' Subfunction Name

I 00H Get Device Data

I 01H Set Device Data

i I 02H Receive Control Data from Character Device

i 5 (more)
I|

l a

l 11:): n- 110 “no ”unwell”-

OLYMPUS EX. 1010 - 176/1582

���������	�
�
����
���
��
OLYMPUS EX. 1010 - 177/1582

Article 5.- Character Device Input and Output

 Subfunction . Name

03H Send Control Data to Character Device

06H Check Input Status
07H Check Output Status
OAH Check if Handle is Remote (version 5.1 or later)

OCH Generic i/O Control for Handles: Get/Set Output Iteration Count

Various bits in the device information word returned by Subfunction 00H can be tested

by an application to determine whether a specific handle is associated with a character

device or a file and whether the driver for the device can process control strings passed by
Subfurictions 02H and 03H. The device information word also allows the program to test

whether a character device is the CLOCK$, standard input, standard output, or NUL device
and whether the device is in raw or cooked mode. The program can then use Subfunction
011-! to select raw mode or cooked mode for subsequent i/O performed with the handle.

Subfunctions 02H and 05H allow control strings to be passed between the device driver
and an application; they do not usually result in any physical [/0 to the device. For exam-

ple, a custom device driver might allow an application program to configure the serial port
by writing a specific set of control parameters to the driver with Subfunction 03H. Simi—
larly, the custom driver might respond to Subfunction 021-] by passing the application a

series of bytes that defines the current configuration and status of the serial port,

Subfunctions 06H and 07H can be used by application programs to test whether a device is
ready to accept an output character or has a character ready for input. These subfunctions

are particularly applicable to the serial communications ports and parallel printer ports
because MS-DOS does not supply traditional function calls to test their status.

Subfunction OAH can be used to determine whether the character device associated

with a handle is local or remote—~that is, attached to the computer the program is running
on or attached to another computer on a local area network. A program should not or—

dinarily attempt to distinguish between local and remote devices during normal input and
output, but the information can be useful in attempts to recover from error conditions.

This subfunction is available only if Microsoft Networks is running.

Finally, Subfunction OCH allows a program to query or set the number of times a device
driver tries to send output to the printer before assuming the device is not available.

IOCTL programming examples

Example: Use iOCTL Subfunction 00H to obtain the device information word for the stan—

dard input handle and save it, and then use Subfunction 01H to place standard input into
raw mode.

info dw ? ; save device information word here

(more)

Section it: Programming in the M's—DOS Environmen: 165

HUAWEI EX. 1010 - 177/1582

OLYMPUS EX. 1010 - 177/1582

OLYMPUS EX. 1010 - 178/1582

Part B: Programming for MS-DOS

mov ax,4400h ; AH = function 44H, IOCTL
AL = subfunction 00H, get device
information word mov bx,0 BX = handle for standard input

int 21h ; transfer to MS-DOS

mov info,dx ; save device information word
: {assumes DS = data segment]

or dl,20h ; set raw mode bit
mov dh,0 : and clear DH as MS-DOS requires
mov ax,4401h ; AL = subfunction 01H, set device

; information word
; [BX still contains handleJ

int 21h ; transfer to MS—DOS

Example Use IOCTI. Subfunction 06H to test whether a character is ready for input on the
first serial port. The function returns AI. = OFFH if a character is ready and AL = 00H if not.

mov ax,4406H : AH = function 44H, IOCTL
: AL = subfunction 06H. get
; input Status

mov bx,3 ; Bx = handle for standard aux
int 21h transfer to MS-DOS

or al,al test status of AUX driver
jnz ready ; jump if input character ready

else no character is waiting

. fim Kyle
Chip Rabinowitz

OLYMPUS EX. 1010 - 178/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 179/1582

Article 6: Interrupt-Driven Communications

Article 6

Interrupt-Driven Communications

In the earliest days of personal—computer communications, when speeds were no faster
than 300 bits per second, primitive programs that moved characters to and from the

remote system were adequate. The PC had time between characters to determine what it

ought to do next and could spend that time keeping track of the status of the remote
system.

Modern data—transfer rates, however, are four to eight times faster and leave little or no
time to spare between characters. At 1200 bits per second, as many as three characters can

be lost in the time required to scroll the display up one line. At such speeds, a technique to

permit characters to be received and simultaneously displayed becomes necessary.

Mainframe systems have long made use of hardware interrupts to coordinate such
activities. The processor goes about its normal activity; when a peripheral device needs
attention, it sends an interrupt request to the processor. The processor interrupts its activ-

ity, services the request, and then goes back to what it was doing. Because the response is

driven by the request, this type of proceSsing is known as interrupt-driven. It gives the
effect of doing two things at the same time without requiring two separate processors.

Successful telecommunication with PCs at modern data rates demands an interrupt—driven

routine for data reception. This article discusses in detail the techniques for interrupt-

driven communications and culminates in two sample program packages.

The article begins by establishing the purpose of communications programs and then
discusses the capability of the simple functions provided by MS—DOS to achieve this goal.

To see what must be done to supplement MS—DOS functions, the hardware (both the
modern and the serial port) is examined. This leads to a discussion of the method MS-DOS

has provided since version 2.0 for solving the problems of special hardware interfacing;
the installable device driver.

With the background established, alternate paths to interrupt—driven communications are
discussed —-— one following recommended MS-DOS techniques, the other following stan-

dard industry practice -— and prOgrams are developed for each.

Throughout this article, the discussion is restricted to the architecture and BIOS of the iBM

PC family. MS—DOS systems not totally compatible with this architecture may require sub-

stantially different approaches at the detailed level, but the same general principles apply.

iI

Ii

i
.r'

Purpose of Communications Programs

The primary purpose of any communications program is communicating —— that is, trans-

mitting information entered as keystrokes (or bytes read from a file) in a form suitable for

Section II: Programming in the MS-DOS Environment 167LII IIuMI:I :v 4 (M n 4 'lnld nor)

OLYMPUS EX. 1010 - 179/1582

OLYMPUS EX. 1010 - 180/1582

Part B: Programming for MS—DOS

transmission to a remote computer via phone lines and, conversely, converting informa-

tion received from the remote computer into a display on the video screen (or data in a
file).

Some years ago, the most abstract form of all communications programs was dubbed a

modem engine, by analogy to Babbage’s analytical engine or the inference—engine model

used in artificial—intelligence development. The functions of the modem engine are com~

mon to all kinds of communications programs, from the simplest to the most complex,

and can be described in a type of pseudo-C as follows:

The Modem Engine Pseudocode

DO { IF {input character is available)
send_it_to“remote:

IF [remote character is available)

usenit_locally;
} UNTIL [told_to“stop);

The essence of this modem-engine code is that the absence of aninput character, or of a

character from the remote computer, does not hang the loop in a wait state. Rather, the

engine continues to cycle: If it finds work to do, it' does it; if not, the engine keeps looking.

Of course, at times it is desirable to halt the continuous action of the modem engine. For
example, when receiving a long message, it is nice to be able to pause and read the mes—

sage before the lines scroll into oblivion. On the other hand, taking too long to study the

: . screen means that incoming characters are lost. The answer is a technique called flow con«
i troi, in which a special control character is sent to shut down transmission and some other

character is later sent to start it up again.

. Several conventions for flow control exist. One of the most wideSpread is known as

l {i i { XON/XOFF, from the old Teletype—33 keycap legends for the two control codes involved.
I In the original use, XOFF halted the paper tape reader and XON started it going again. In

mid-1967, the General Electric Company began using these signals in its time—sharing com—

: , . purer Services to control the flow of data, and the practice rapidly spread throughout the
l industry.

The sample program named ENGINE, shown later in this article, is an almost literal imple-

:- ' mentation of the modem-engine approach. This sample represents one extreme of sim-

i plicity in communications programs. The other sample program, CTERMC, is much more
complex, but the modem engine is still at its .heart.

: ' Using Simple MS-IiOS Functions

Because MS—DOS provides, among its standard service functions, the capability of sending

'- . output to or reading input from the device named AUX (which defaults to COMl, the first

OLYMPUS EX. 1010 - 180/1582

���������	�
�
����
�
�
��OLYMPUS EX. 1010 - 181/1582

ArtjCIe 6: Interrupt-Driven Communications

serial port on most machines), a first attempt at implementing the modem engine using
MS—DOS functions might look something like the following incomplete fragment of
Microsoft Macro Assembler (MASM) code:

;Ineomp1ete [and Unworkable] Implementation

LOOP: MOV AH.08h ; read keyboardIr no echo
INT 21h

MOV DL.AL ; set up to send
MOV AH.04h ; send to AUX device
INT 21h
MOV AH,O3h ; read from AUX device
INT 21h

HOV DL,AL ; set up to send
HOV AH,02h ; send to screen
INT 21h

JMP LOOP ; keep doing it

The problem with this code is that it violates the keep—looking principle both at the key-
board and at the AUX port: Interrupt 21H Function 08H does not return until a keyboard

character is available, so no data from the AUX port can be read until a key is pressed
locally. Similarly, Function 03H waits for a character to become available from AUX, so no.

more keys can be recognized locally until the remote systemsends a character. If nothing

is received, the loop waits forever.

Toovercome the problem at the keyboard end, Function OBI-I can be used to determine if
a key has been pressed before an attempt is made to read one, as shown in the following

modification of the fragment:

:Improved. (but Still Unworkahle] Implementation

LOOP: MOV AH,OBh ; test keyboard for char
INT 21h

OR AL.AL : test for zero
J2 RMT ; no char avail, skip
MOV AH,OBh : have Char, read it in
INT 21h

MOV DL,AL ; set up to send
HOV AH,04h ; send to AUX device
INT 21h

EMT:
HOV AH,03h ; read from AUX device
INT 21h

HOV DL.AL : set up to send
HOV An,02h ; send to screen
INT 21h

JMP LOOP ; keep doing it

This code permits any input from AUX to be received without waiting for a local key to

be pressed, but if AUX is slow about providing input, the program waits indefinitely before

checking the keyboard again. Thus, the problem is only partially solved.

Section IL Programming in the M54305 Environment 169

OLYMPUS EX. 1o1o -181/1'582

OLYMPUS EX. 1010 - 182/1582

Part B: Programming for MS—DOS

MS—DOS, however, simply does not provide any direct method of making the required

tests for AUX or, for that matter, any of the serial port devices. That is why communications

programs must be treated differently from most other types of programs under MS—DOS

and why such programs must beintimateiy involved with machine details despite all

accepted principles of portable program design.

The Hardware Involved

Personal—computer communications require at least two distinct pieces of hardware (sepa-

rate devices, even though they are often combined on a single board). These hardware ..

items are the serial port, which converts data from the computer‘s internal bus into a bit

stream for transmission over a single external line, and the modem, which converts the bit i,
stream into a form suitable for telephone-line (or, sometimes, radio) transmission. , i

The modem

The modem (:1 word coined from MOdulator—DEModulator) is a device that converts a

stream of bits, represented as sequential changes of voltage level, into audio frequency sig-

- ' , - 3 nais suitable for transmission over voice-grade telephone circuits (modulation) and con—
' i verts these signals back into a stream of bits that duplicates the original input (demodu—

lation).

l I i - Specific characteristics of the audio signals involved were established by AT&T when that
i_ company monopolized the modem industry, and those characteristics then evolved into

' E de facto standards when the monopoly vanished. They take several forms, depending on
the data rate in use; these forms are normally identified by the original Bell specification

number, such as 103 (for 600 bps and below) or 212A (for the 1200 bps standard).

The data rate is measured in bits per second (bps), often mistermed baud or even “baud

per second.” A baud measures the number of signals per second; as with knot (nautical

miles per hour), the time reference is built in. If one signal change marks one bit, as is true

for the Bell 103 standard, then baud and bps have equal values. However, they are not

equivalent for more complex signals. For example, the Bell 212A diphase standard for 1200

__ bps uses two tone streams, each operating at 600 baud, to transmit data at 1200 bits per
i " ' second.

I l ' For accuracy, this article uses bps, rather than baud, except where widespread industry

misuse of baud has become standardized (as in “baud rate generator").

. . Originally, the modem itself was a box connected to the computer‘s serial port via a cabie.
| 5 Characteristics of this cable, its connectors, and its signals were standardized in the 19605

i ; by the Electronic Industries Association (EIA), in Standard RSZSZC. Like the Bell standards

for modems, R5232C has survived almost unchanged. Its characteristics are listed in
Table 6-1.

OLYMPUS EX. 1010 - 182/1582

���������	�
�
����
���
��
OLYMPUS EX. 1010 - 183/1582

Article 6: Interrupt-Driven Communications

Table 6-1. R5252C Signals.

 DB25 Pin 232 Name Description

1 Safety Ground
2 EA TXD Transmit Data

5 BB RXD Receive Data

4 CA RTS Request To Send
5 CB CTS Clear To Send

6 CC DSR Data Set Ready
7 AB (3ND Signal Ground
8 CF DCD Data Carrier Detected

20 CD DTR Data Terminal Ready
22 CE RI Ring Indicator

With the increasing popularity of personal computers, internal modems that plug into the

PC’s motherboard and combine the modem and a serial port became available

The first such units were manufactured by Hayes Corporation, and like Bell and the EIA,
they created a standard. Functionally, the internal modem is identical to the combination

of a serial port, a connecting cable, and an external modem.

The serial port

Each serial port of a standard IBM PC connects the rest of the system to a type INSSZSO

Universal Asynchronous Receiver Transmitter (UART) integrated circuit (IC) chip devel-
oped by National Semiconductor Corporation. This chip, along with associated circuits in

the port,

1. Converts data supplied via the system data bus into a sequence of voltage levels on
the single TXD output line that represent binary digits.

2. Converts data received as a sequence of binary levels on the single RXD input line

into bytes for the data bus.

Controls the modem's actions through the DTR and RTS output lines.
Provides status information to the processor; this information comes from the

modern, via the DSR, DCD, CTS, and RI input lines, and from within the UART itself,

which Signals data available, data needed, or error detected.

95‘5”

The word asjmchronous in the name of the IC comes from the Bell specifications. When

computer data is transmitted, each bit‘s relationship to its neighbors must be preserved;
this can be done in either of two ways. The most obvious method is to keep the bit stream

strictly synchronized with a clock signal of known frequency and count the cycles to iden-
tify the bits. Such a transmission is known as synchronous, often abbreviated to synch or

sometimes bisync for binary synchronous. The second method, first used with mechanical
teleprinters, marks the start of each bit group with a defined start bit and the end with one
or more defined stop bits, and it defines a duration for each bit time. Detection of a start bit

Section 11.- ngramming m the MS—DOSEnuironmem 171

HUAWEI EX. 1010 -183/1582

OLYMPUS EX. 1010 - 183/1582

OLYMPUS EX. 1010 - 184/1582

Part B; Programming for MS—DOS

marks the beginning of a received group; the signal is then sampled at each bit time until

the stop bit is encountered. This method is known as asynchronous (or just asynch) and is
the one used by the standard IBM PC.

The start bit is, by definition, exactly the same as that used to indicate binary zero, and the

stop bit is the same as that indicating binary one. A zero signal is often called SPACE, and a

one signal is called MARK, from terms used in the teleprinter industry.

During transmission, the least significant bit of the data is sent first, after the start bit. A

parity bit, if used, appears as the most significant bit in the data group, before the stop bit

or bits; it cannot be distinguished from a databit except by its position. Once the first stop

bit is sent, the line remains in MARK (sometimes called idling) condition until a new start

bit indicates the beginning of another group. '

in most PC uses, the serial port transfers one 8-bit byte at a time, and the term word speci-

fies a 16—bit quantity. In the UART world, however, a word is the unit of information sent by
the chip in each chunk. The word length is part of the control information set into the chip

during setup operations and can be 5, 6, 7, or 8 bits. This discussion follows UART conven-

tions and refers to words, rather than to bytes.

One special type of signal, not often used in PC-to—PC communications but sometimes

necessary in communicating with mainframe systems, is a BREAK. The BREAK is an all—

SPACE condition that extends for more than one word time, including the stop-bit time.

{Many systems require the BREAK to last at least 150 milliseconds regardless of data rate.)

Because it cannot be generated by any normal data character transmiSSion, the BREAK is

used to interrupt, or break into, normal operation. The IBM PC’s 8250 UART can generate

- the BREAK signal, but its duration must be determined by a program, rather than by the

, I chip.

The 8250 UART architecture

The 8250 UART contains four major functional areas: receiver, transmitter, control circuits,

' and status circuits. Because these areas are closely related, some terms used in the follow~

ing descriptions are, of necessity, forward references to subsequent paragraphs.

The major parts of the receiver are a shift register and a data register called the Received

Data Register. The shift register assembles sequentially received data into word—parallel
form by shifting the level of the RXD line into its front end at each bit time and, at the same

time, shifting previous bits over. When the shift register is full, all bits in it are moved over

' : to the data register, the shift register is cleared to all zeros, and the bit in the status circuits

that indicates data ready is set. If an error is detected during receipt of that word, other bits
in the statUs circuits are also set.

Similarly, the major parts of the transmitter are a holding register called the Transmit

Holding Register and a shift register. Each word to be transmitted is transferred from the

:7..‘,“',.._._.._..,....._......

HJ'Jr-r

;-'i_1-tvt‘rm._ i. I I

OLYMPUS EX. 1010 - 184/1582

OLYMPUS EX. 1010 - 185/1582

Article 6: Interrupt—Driven Communications

data bus to the holding register. If the holding register is not empty when this is done, the

previous contents are lost. The transmitter’s shift register converts word-parallel data into

bit—serial form for transmission by shifting the most significant bit Out to the TXD line once

each bit time, at the same time shifting iower bits over and shifting in an idling bit at the

low end of the register. When the last databit has been shifted out, any data in the holding

register is moved to the shift register, the holding register is filled with idling bits in case

no more data is forthcoming, and the bit in the status circuits that indicates the Transmit

Holding Register is empty is set to indicate that another word can be transferred. The

parity bit, if any, and stop bits are added to the transmitted stream after the last databit
of each word is shifted out.

The control circuits establish three communications features: first, line control values,

such as word length, whether or not (and how) parity is checked, and the number of stop
bits; second, modern control values, such as the state of the DTR and RTS output lines; and

third, the rate at which data is sent and received. These control values are established by

two 8-bit registers and one 16-bit register, which are addressed as four 8-bit registers. They

are the Line Control Register (LCR), the Modem Control Register (MGR), and the 16bit

BRG Divisor Latch, addressed as BaudO and Baudl.

The BRG Divisor Latch sets the data rate by defining the bit time produced by the Pro-

grammable Baud Rate Generator (PBRG), a major part of the control circuits. The PBRG

can provide any data speed from a few bits per second to 38400 bps; in the BIOS of the
IBM PC, PC/XT, and PC/AT, though, only the range 110 through 9600 bps is supported.

How the LCR and the MCR establish their control values, how the PBRG is programmed,

and how interrupts are enabled are discussed later.

The fourth major area in the 8250 UART, the status circuits, records (in a pair of status

registers) the conditions in the receive and transmit circuits, any errors that are detected,

and any change in state of the RSZSZC input lines from the modern. When any status regis-

ter‘s content changes, an interrupt request, if enabled, is generated to notify the rest of the

PC system. This approach lets the PC attend to other matters without having to continually
monitor the status of the serial port, yet it assures immediate action when something does
occur.

The 8250 programming interface

Not all the registers mentioned in the preceding section are accessible to programmers.

The shift registers, for example, can be read from or written to only by the 8250’s internal
circuits. There are 10 registers available to the programmer, and they are accessed by only

seven distinct addresses (shown in Table 6a), The Received Data Register and the

Transmit Holding Register share a single address (a read gets the received data; a write

goes to the holding register). In addition, both this address and that of the Interrupt Enable

Register (IER) are shared with the PBRG Divisor Latch. A bit in the Line Control Register

called the Divisor Latch Access Bit (DLAB) determines which register is addressed at any

specific time.

Shaina h" H'narammma in fheMS—DOS Environment 175

OLYMPUS EX. 1010 - 185/1582

OLYMPUS EX. 1010 - 186/1582

Part B: Programming for MS—DOS

in the IBM PC, the seven addresses used by the 8250 are selected by the low 5 bits of;
port number (the higher bits select the specific port). Thus, each serial port occUpies '
positions it? the address space. However, Only the lowest address used— the one in w
the low 5 b1ts are 311 0 "— need be remembered in order to access all eight addresses. {.1_

Because of this, any serial port'in the PC is referred to by an address that, in hexadeci I
notation, ends rivith elther 0 0r 8: The COM} port normally uses address 03F8H, and c
11535 OZFSH‘ Thls IOWCSI port address is usually called the base port address, and each

IaddreiGS-able register i5 then referenced as an offset from this base value as shown inTable 2. '

Table 6-2. 8250 Port Offsets from Base Address.

Offset Name Description

If DLAB bit in LCR = 0: .

i. : OOH DATA Received Data Register if
5| ; , read from, Transmit Holding
'.' . ; Register if written to {Iii

. i 01H IER . Interrupt Enable Register I;
? IfDLAB bit in LCR = 1; .3:

. i 00H BaudO BRG Divisor Latch, low byte i
01H Baudl BRG Divisor Latch, high byte 1

. l i

i ' Not affected by DLAB bit: i.
02H HD Interrupt Identifier Register
05H LCR Line Control Register 5

l 04H MCR Modern Control Register 5
'- 05H .. LSR Line Status Register

06H ‘ MSR Modern Status Register

i The control circuits

The control circuits of the 8250 include the Programmable Baud Rate Generator (PBRG),
the Line Control Register (LCR), the MOdem COntrol Register (MGR), and the Interrupt En—
able Register GER),

The PBRG ESIathheS the bit time used for both transmitting and receiving data by divid—
ing an external cloclt signal. To select a desired bit rate, the appropriate divisor is loaded
"“0 the PBRGIS 16—13“ DiViSOT LfltCh by setting the Divisor Latch Access Bit (DLAB) in the
Line Control Register to 1(which changes the functions of addresses 0 and 1) and then

i writing the divisor in“) BaUdO a11d Baudl. After the bit rate is selected, DLAB is changed
'2 back to 0, to permit normal operation of the DATA registers and the IER.

1 7a Tho ram—nos Enmtonedflz

OLYMPUS EX. 1010 - 186/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 187/1582

Article 6: Interrupt—Driven Communications

With the 1.8432 MHz external UART clock frequency used in standard IBM systems,

divisor values (in decimal notation) for bit rates between 45.5 and 58400 bps are listed in

Table 6-5. These speeds are established by a crystal contained in the serial port (or internal
modem) and are totally unrelated to the speed of the processor’s clock.

Table 6-3. Bit Rate Divisor Table for 8250/IBM.

BPS Divisor

45.5 2532
50 2504

75 1536
110 1047

1345 857

150 768
500 384

600 192

1200 96
1800 64

2000 58
2400 48

4800 24

9600 12

19200 6
38400 5

The remaining control circuits are the Line Control Register, the Modern Control Register,

and the Interrupt Enable Register. Bits in the LCR control the assignment of offsets 0 and 1,

transmission of the BREAK signal, parity generation, the number of stop bits, and the word

length sent and received, as shown in Table 6—4.

Table 6-4. 8250 Line ControlRegister Bit Values.

Bit . Name Binary Meaning

Address Control:

7 DLAB 0mm Offset 0 refers to DATA;
offset 1 refers to IER

150m Offsets 0 and 1 refer to

BRG Divisor Latch

BREAK Control:

6 SETBRK 510500000: Normal UART operation

xlxxxmor ‘ Send BREAK signal

(more)

Section 11,- Programming in the MS-DOSEnuironmem ' 175
I II IA‘AIFI I_\I AAA“ An-IIAL-nh

OLYMPUS EX. 1010 - 187/1582

OLYMPUS EX. 1010 - 188/1582

Part B: Programming for MS—DOS

Table 6-4. Continued.

Bit

Parity Checking:
5 ’4 I 5

Stop Bits:
2

Word Length:
1,0

Name

GEN'PAR

XSTOP

WDS

WD6

WD7
WDB

Binary

xxOlexx
xxOl lxxx

xxlOlm

xxll 1m

mootlxx

W00

mill

xxxxxxlO

50009311

Meaning

No parity bit

Parity bit is ODD

Parity bit is EVEN

Parity bit is 1

Parity bit is 0

Only 1 stop bit

2 stop bits
(1.5 if WL = 5)

Word length = 5

Word length = 6
Word length = 7

Word length = 8

Two bits in the MCR {Table 6-5) control output lines DTR and RTS; two other MCR bits

(OUTl and OUT2) are left free by the UART to be assigned by the user; a fifth bit (TEST)

puts the UART into a self-test mode of Operation. The upper 3 bits have no effect on the
UART. The MCR can be both read from and written to.

Both of the u5er—assignable bits are defined in the IBM PC. OUTl is used by Hayes internal

modems to cause a power-on reset of their circuits; OUT2 controls the passage of UART-

generated interrupt request signals to the rest of the PC. Unless OUT2 is set to 1, interrupt .
signals from the UART cannot reach the rest of the PC, even though all other comrols are

properly set. This feature is documented, but obscurely, in the IBM Technicai Reference

manuals and the asynchronousvadapter schematic; it is easy to overlook when writing an

interrupt—driven program for these machines.

Table 6-5. 8250 Modern Control Register Bit Values.

Name Binary

TEST minor):

OUT2 xxxxlxxx

OUT] mlxx

RTS mouth:

DTR m]

Description

Turns on UART self-test configuration.

Controls 8250 interrupt signals (User2 Output).

Resets Hayes 1200b internal modern (Userl Output).
Sets RTS output to RSZSZC connector.

Sets DTR output to RSESZC connector.

OLYMPUS EX. 1010 - 188/1582

���������	�
�
����
���
��OLYMPUS EX. 1010 - 189/1582

Article 6-. interrupt—Driven Communications

The 8250 can generate any or all of four classes of interrupts, each individually enabled or

disabled by setting the appropriate control bit in the Interrupt Enable Register (Table 66).

Thus, setting the IER to 00H disables all the UART interrupts within the 8250 without

regard to any other settings, such as OUTZ, system interrupt masking, or the (ELI/ST] corn-

mands. The IER can be both read from and written to. Only the low 4 bits have any effect
on the UART.

“55. Table 6-6. 8250 Interrupt Enable Register Constants.

 Binary Action

)ooorlioot Enable Modem Status Interrupt.

moods): Enable Line Status Interrupt.
moooflx Enable Transmit Register Interrupt.

xxzoootxl Enable Received Data Ready Interrupt.

The status circuits

The status circuits of the 8250 include the Line Status Register (LSR), the Modern Status

Register (MSR), the Interrupt Identifier (IID) Register, and the interrupt-request generation
system.

The 8250 includes circuitry that detects a received BREAK signal and also detects three

classes of data—reception errors. Separate bits in the LSR (Table 6—7) are set to indicate that

a BREAK has been received and to indicate any of the following: a parity error (if lateral

parity is in use), a framing error (incoming bit = 0 at stopbit time), or an overrun error

(word not yet read from receive buffer by the time the next word must be moved into it).

The remaining bits of the LSR indicate the status of the Transmit Shift Register, the

Transmit Holding Register, and the Received Data Register; the most significant bit of the

LSR is not used and is always 0. The LSR is a read-only register; writing to it has no effect.

Table 6-7. 8250 Line Status Register Bit Values.

 Bit Binary Meaning

7 0m Always zero

6 xhooooot Transmit Shift Register empty

5 xxhoooot Transmit Holding Register empty
4 mliooot BREAK received

3 when: Framing error
2 MIX}; Parity error
1 moooflx Overrun error

0 mood Received data ready

Section II: Programming in the MS—DOS Environment 177

OLYMPUS EX. 1016 L‘18é/‘1'5'8‘2‘

���������	�
�
����
���
��OLYMPUS EX. 1010 - 190/1582

Part B.- Programming for MS—DOS

CLRGS:

HOV DX,03FDh ; Clear LSR
IN AL,DX
HOV DX,03F3h ; clear RX reg
IN AL.DX
MOV DX,03FEh ' ; Clear MSR
IN AL,DX
MOV DX,C|3FAh : IID reg
lN ALEX

IN ALEX ; repeat to be sure
TEST ALA ; int pending?
J2 CLRGS : yes, repeat

Note: This code does not completely set up the IBM serial port. Although it fully programs

the 8250 itself, additional work remains to be done. The system interrupt vectors must be

changed to provide linkage to the interrupt service routine (ISR) code, and the 8259

Priority Interrupt Controller (PIC) chip must also be programmed to respond to interrupt

, requests from the UART Channels. See PROGRAMMING IN THE MS—DOS ENVIRON-

i_ = MENT: CUSTOMIZING MS-DOS: Hardware Interrupt Handlers.

Device Drivers

All versions of MS—DOS since 2.0 have permitted the installation of user—provided device

drivers. From the standpoint of operating-system theory, using such drivers is the proper

way to handle generic communications interfacing. The fol lowing paragraphs are intended

- _ as a refresher and to explain this article’s departure from standard device—driver terminol-
[' _ ogy. See PROGRAMMING IN THE MS—DOS ENVIRONMENT: Cosromrzmo MS-DOS:

Installable Device Drivers.

, An installable device driver consists of (1) a driver header that links the driver to

i - others in the chain maintained by MS-DOS, tells the system the characteristics of this spe-
" cific driver, provides pointers to the two major routines contained in the driver, and (for a
i ' character—device driver) identifies the driver by name; (2) any data and storage space the

' driver may require; and (3) the two major code routines.

' f ' The code routines are called the Strategy routine and the Interrupt routine in normal
device~driver descriptions. Neither has any connection with the hardware interrupts dealt

with by the drivers presented in this article. Because of this, the term Request routine is

used instead of Interrupt routine, so that hardware interrupt code can be called an

interrupt service routine (ISR) with minimal chances for confusion.

MS-DOS communicates with a device driver by reserving space for a command packet

of as many as 22 bytes and by passing this packet’s address to the driver with a call to the

Strategy routine. All data transfer between MS~DOS and the driver, in both directions,

occurs via this command packet and the Request routine. The operating system places a

command code and, optionally, a byte count and a buffer address into the packet at the

specified locations, then calls the Request routine. The driver performs the command

and returns the status (and sometimes a byte count) in the packet.

F. : I 180 The MSADOS Encyclopedia

OLYMPUS EX. 1010 - 190/1582

���������	�
�
����
�
�
��OLYMPUS EX. 1010 - 191/1582

Article 6.- lnterrupt—Driven Communications

Two Alternative Approaches

Now that the factors involved in creating interrupt—driven communications programs have

been discussed. they can be put together into practical program packages. Doing so brings
out not only general principles but also minor details that make the difference between

success and failure of program design in this hardware—dependent and time—critical area.

The traditional way: Going it alone

Because MS-DOS provides no generic functions suitable for communications use, virtually
all popular communications programs provide and install their own port driver code, and

then remove it before returning to MS—DOS; This approach entails the creation of a com-
munications handler for each program and requires the “uninstallation” of the handler on

exit from the program that uses it. Despite the extra requirements, most communications

programs use this method.

The alternative: Creating a communications device driver

Instead of providing temporary interface code that must be removed from the system

before returning to the command level, an installable device driver can be built as a

replacement for COM»: so that every prOgram can have all features. However, this

approach is not compatible with existing terminal'programs because it has never been a
part of MS—DOS.

Comparison of the two methods

The traditional approach has several advantages, the most obvious being that the driver

code can be fully tailored to the needs of the program. Because only one program will

ever use the driver, no general cases need be considered.

However, if a user wants to keep communications capability available in a terminate—and—

stay-resident (TSR) module for background use and also wants a different type of commu—

nications program running in the foreground (not, of course, while the background task is

using the port), the background program and the foreground job must each have its own
separate driver code. And, because such code usually includes buffer areas, the duplicated
drivers represent wasted resources.

A single communications device driver that is installed when the system powers up and

that remains active until shutdown avoids wasting resources by allowing both the back-

ground and foreground tasks to share the driver code. Until such drivers are common,

however, it is unlikely that commercial software will be able to make use of them. In addi-

tion, such a driver must either provide totally general capabilities or it must include control

interfaces so each user program can dynamically alter the driver to suit its needs.

At this time, the use of a single driver is an interesting exercise rather than a practical

application, although a possible exception is a dedicated system in which all software is
either Custom designed or Specially modified. In such a system, the generalized driver

can provide significant improvement in the efficiency of resource allocation.

Section N.- Programming in tire MS-DOS Environment 181IIIIAlIll—I l—\I AnAn AAA IAl-nn

OLYMPUS EX. 1010 -191/1582

OLYMPUS EX. 1010 - 192/1582

Part 8: Programming for MS-DOS

A Device-Driver Program Package

Despite the limitations mentioned in the preceding secticm, the first of the two complete

packages in this article uses the concept of a separate device driver. The driver handles all
hardware-dependent interfacing and thus permits extreme simplicity in all other modules

of the package. This approach is presented first because it is especially well suited for in-
troducing the concepts of communications programs. However, the package is not merely
a tutorial device: It includes some features that are not available in most commercial

programs.

The package itself consists of three separate programs. First is the device driver, which
becomes a part of MS—DOS via the CONFIGSYS file. SeCond is the modem engine, which
is the actual terminal program. (A functionally similar component forms the heart of every

communications program. whether it is written in assembly language or a high-level lan—

guage and regardless of the machine or operating system in use.) Third is a separately exe-
cuted support program that permits changing such driver characteristics as word length,

parity, and baud rate.

In most programs that use the traditional approach, the driver and the support program
are combined with the modem engine in a single unit and the resulting mass of detail

obscures the essential simplicity of each part. Here, the parts are presented as separate

modules to emphasize that simplicity.

The device driver: COMDVR.ASM

The device driver is written to augment the default COMl and COMZ devices with other

devices named ASYl and ASYZ that use the same physical hardware but are logically sepa-

rate. The driver (COMDV‘RASM) is implemented in MASM and is shown in the listing in

Figure 6—1. Although the driver is written basically as a skeleton, it is designed to permit
extensive expansion and can be used as a general-purpose sample of device~driver
source code.

The code

: Title COMDVR Driver for IBM COM Ports

1

2 : ; Jim Kyle. 198'?
3 - ; Based on ideas from many sources
4 , ; including Mike Higgins. CLM March 1935:
S : ; public-domain INTBIOS program from BES'S;
E ,- COMBIOS.COM from (315 Programmers' SIG,- and
T : ; ADVANCED MS-DOS by Ray Duncan.
3 t Subttl MS-DOS Driver Definitions
9 :

10 : Comment at This cements out the Dbg macro

11 : Dbg Macro Ltrl.Ltr2.Ltr3 ; used only to debug driver...
12 : Local Xxx
13 : Push Es ; save all regs used

Figure 6—1. COMDVRASM. (more)

1 0') was Mei-inc Fnrvrfnmdl'a

OLYMPUS EX. 1010 - 192/1582

OLYMPUS EX. 1010 - 193/1582

Article 6: Interrupt—Driven Communications

\

Id : Push Di
15 : Push RX

16 : Les Di,Cs:Dbgptr ; get pointer to CRT
1T : Mov Ax,Es:[di]
1B : Mov Al,Ltr1 ; move in letters
19 : Stosw

20 : Mov Al,Ltr2
21 : Stosw
22 : Mov Al,Ltr3
23 : Stosw

24 : Cmp Di,1600 : top 10 lines only
25 : Jb Xxx
26 : Kor Di,Di
27 : Xxx: Mov Word Ptr Cs:Dbgptr.Di
28 : Pop Ax
29 : 9013 Di
3O : Pop Es
31 : Endm

32 : * ; asterisk ends commented-out region
33 : ;
34 : ; Device Type Codes
35 : DevChr Equ 3000b ; this is a character device
36 : DevBlk Equ UOOOh ; this is a block {disk} device
j? : DevIuc Equ 4000b ; this device accepts IOCTL requests
38 : DevNon Equ ZUGGh ; non—IBM disk driver (block only}
39 : DevOTB Equ 2000b ; MS-DOS 3.x out until busy supported {chaf
do : DevOCR Equ 0800b ; MS—DOS 3.x openfclosefrm supported
41 : Devx32 Equ 004Dh ; MS-DOS 3.2 functions supported
42 : DevSpc Equ 0010h ; accepts special interrupt 29H
43 : DevClk Equ UOUSh ; this is the CLOCK device
44 : DevNul Equ OOOQh ; this is the NUL device
45 : DevSto Equ OOOZh : this is standard output

46 : DevSti Equ 0001h ; this is standard input
47 : ;
43 : ; Error Status BITS
49 1 StsErr Equ 8000b ; general error
50 : StsBsy Equ 0200b ; device busy
51 : StsDne Equ 0100h ; request completed
52 : ;
53 : ; Error Reason values for lower-order bits

54 : Erer Equ 0 ; write protect error
55 : ErrUu Equ l ; unknown unit
56 : Eernr Equ 2 ; drive not ready
57 : ErrUc Equ 3 ; unknown command
53 : ErrCrc Equ 4 ; cyclical redundancy check error
59 : Errle Equ 5 . bad drive request structure length
50 2 ErrSl Equ 6 1 seek error
El : ErrUm Equ 7 ; unknown media
62 : Errsnf Equ 8 ; sector not found
63 : ErrPop Equ 9 ; printer out of paper
64 : Erer Equ 10 . write fault

Figure 6—1. Continued. (more)

Section II,- Programming in the MS-DOS Environment 183

OLYMPUS EX. 1010 - 193/1582

OLYMPUS EX. 1010 - 194/1582

Part 3: Programming for MS-DOS

65 : Erer Equ 11 ; read fault
65 : ErrGf Equ 12 ; general failure
6? : ;

66 : : Structure of an IIO request packet header.

69:;. . '.
To : Pack Struc

?1 : Len Db ? ; length of record
72 : Prtno Db ? : unit code
73 : Code Db ? ; command code
74 : Stat Dw ? ; return status

n) (unused MS-DOS queue link pointer}?5 : Dosq Dd 16 : Devq Dd ? ; {unused driver queue link pointer}
77 : Media Db ? ; media code on readfwrite
TB : Xfer Dw ? ; xfer address offset

T9 : Xseg Dw ? ; xfer address segment
80 : Count Dw ? : transfer byte count
81 : Sector Dw ? ; starting sector value (block only)
82 : Pack Ends
33 :
34 : Subttl IBM—PC Hardware Driver Definitions

85 : page
86 : ;

8? : ; 8259 data _
BS : PICib Equ 020h ; port for EOI
89 : PIC_e Equ 021h ; port for Int enabling
90 : EOI Equ 020h ; EOI control word
91 : :

92 : ; 8250 port offsets
93 : RxBuf Equ 0F8h ; base address
94 : Baud1 Equ RxBuf+l ; baud divisor high byte
95 : IntEn Equ RxBuf+1 ; interrupt enable register
96 : IntId Equ RxBuf+2 : interrupt identification register
97 : Lctrl Equ RxBuf+3 ; line control register
98 : Mctri Equ RxBuf+a ; modem control register
99 : Lstat Equ RxBuf+5 ; line status register

100 : Mstat Equ RxBuf+6 ; modem status register
101 : :
102 : ; 8250 LCR constants

103 : Dlab Equ 10000000b ; divisor latch access bit
104 : SetBrk Equ fl1000000b ; send break control bit
105 : StkPar Equ 00100000b ; stick parity control bit
106 : EynPar Equ 00010000b ; even parity bit
10? : GenPar Equ 00001000b ; generate parity bit
108 : Xstop Equ 00000100b ; extra stop bit
109 : was Equ 00000011b ; word length = S
110 : Wd7- Equ 00000010b ; word length = T
111 : Wdé Equ 00000001b : word length = 6

. 112 : :
: 113 : ; 8250 LSR constants

E 114 : xsre Equ OIOUDOOOh ; xmt SR empty

: 115 : xhre Equ 00100000b : xmt HR empty

‘i ' Figure 6-1 Continued. . (more)1| I

ri E

i- '
1 ' 101 mf._|lnnnnr.._.._r..__41_

OLYMPUS EX. 1010 - 194/1582

���������	�
�
����
��
��
OLYMPUS EX. 1010 - 195/1582

Article 6: Interrupt—Driven CommunicationsWM

116 : Brchv Equ 00010000b ; break received
11? : FrmErr Equ 00001000b ; framing error
118 : ParErr Equ 00000100b ; parity error
119 : OveRun Equ 00000010b ; overrun error
120 : rdta Equ 0000000113 ; received data ready
121 : AnyErr Equ Brchv+FrmErr+ParErr+0veRun
122 : : '
123 z .' 8250 MCR constants
12a : Lka Equ 00010000b ; UART out loops to in {test}
125 : Usr2 Equ 00001000b ; Gates 8250 interrupts
126 : U5r1 Equ 00000100b : aux user1 output
127 : SetRTS Equ 0000001Ub ; sets RTS output
123 : SetDTR Equ 00000001b ; sets DTR output
129 : ;
130 : : 8250 MSR constants
131 : CDlvl Equ 10000000b ; carrier detect level
132 : RIlvl Equ 01000000b ; ring indicator level
133 : DSRlvl Equ 00100000b : DSR level
134 : CTSlvl Equ 00010000b ; CTS level
135 : CDchg Equ 00001000b ; Carrier Detect change
136 : RIchg Equ 00000100b ; Ring Indicator change
131 : DSRchg Equ 00000010h ; DER change
138 : CTSchg Equ 00000001b ; CTS change
139 z ;
140 : ; 6250 IER constants
141 : SFInt Equ 00001000b : enable status interrupt
142 : E_Int Equ 00000100b : enable error interrupt
143 : X_Int Equ 00000010b ; enable transmit interrupt
144 : R_Int Equ 00000001b : enable receive interrupt
145 : Allint Equ 00001111b ; enable all interrupts
146 :
147 : Subttl Definitions for THIS Driver
148 : page
149 : ;

150 : : Bit definitions for the output status byte
151 : ,- I this driver only 1
152 : Linidl Equ Offh ; if all bits offIr xmitter is idle
153 : LinXof Equ 1 ; output is suspended by XOFF
154 : LinDSR Equ 2 ; output is suspended until DSR comes on again
155 : LinCTS Equ 4 ; output is suspended until CTS comes on again
156 : 5

151 : ; Bit definitions for the input status byte
158 : ; [this driver only:
159 1 BadInp Equ 1 ; input line errors have been detected
160 : LostDt Equ 2 ; receiver buffer overflowed. data lost
161 : OffLin Equ 4 : device is off line now
162 : .:

163 : : Bit definitions for the special characteristics words
164 : ; (this driver only i
165 : ; InSpec controls how input from the UART is treated
1.66 : ,-

ngure 6—1. Continued. (more)

/

Section II: Programming in the MS—DOS Environment 185

HUAWEI EX. 1010 -195/1582

OLYMPUS EX. 1010 - 195/1582

OLYMPUS EX. 1010 - 196/1582

Part B: Programming for MS—DOS

16?
163
169
170
111
112
1T3
1?4
115
176
17?
113
179
180
181
182
183
184
135
186
18?
188
139
190
191
192
193
194
195
196
19?
198
199
200
201
202
203
204
205
206
207
203
209
210
211
212
213
214
215
216
217

InStat

InSpec
OutSpec
Baud
Ifirst
Iavail
Ibuf
Ofirst
Oavail
Obuf
Unit

Driver

Asyncz:

:dbgptr

Equ

Struc
Dw
Dw
Du
Db

Db

Du
Dw
Dw
Dw
Dw

Dv
Dw
Dw
Dw
Ends

Segment
Assume

Org

Dw
Dw
Dw
Dw
Db

Dw
Dw
Dw
Dw
Db

Dd

mDamo

0001b

OutSpec

0001h
0002h
0004h
0010b
0020h

?
?
?
NdS

Usr2+5et

InEpc
Outxon
96
U

: errors translate to codes with parity bit on

controls how output to the UART is treated

DER is used to throttle output data
CTS is used to throttle output data

: XONKXOFF is used to throttle output data
; carrier detect is off—line signal

DSR is off-line signal

; each unit has a structure defining its state:
IHO port address
interrupt vector offset [NOT interrupt number!)
offset to interrupt service routine
default LCR bit settings during INIT.

; Output status bits after
RTS+SetDTR ; MCR bit settings during INIT,
; input status bits after
; special mode bits for INPUT
; special mode bits for OUTPUT
; current baud rate divisor value (1200 b]

offset of first character in input buffer
; offset of next available byte

pointer to input buffer '
offset of first character in output buffer
offset of next avail byte in output buffer
pointer to output buffer

m~.~.

Beginning of driver code and data

Cs:driver, ds:driver, es:driver
0

Async2,—
Davchr +
Strtegy
Request1
'ASY1

—1,—1
Devchr +
Strtegy
Requestz
'ASYZ

DbOUODDO

; drivers start at D

l ; pointer to next device
DevIoc ; character device with IOCTL

: offset of Strategy routine
; offset of interrupt entry point 1

' ; device 1 name

pointer to next device: MS—DOS fills in
Device ; character device with IOCTL

; offset of Strategy routine
; offset of interrupt entry point 2

' ; device 2 name

on

Following is the storage area for the request packet pointer

Figure 6—1. Continued. I’more)

OLYMPUS EX. 1010 - 196/1582

OLYMPUS EX. 1010 - 197/1582

Article 6: Interrupt-Driven Communications

218 : ;

219 : PackHd Dd 0
220 : ;

221 : ; baud rate conversion table
222 : Asy_baudt Dw 50,2304 ; first value is desired baud rate
223 : Dw 75,1536 ; second is divisor register value
224 : Dw 110,1047
225 : Dw 134, 857
226 : Dw 150, 786
227 : Dw 300, 384
228 : Dw 600, 192
229 : Dw 1200, 96
230 : Dw 1800, 64
231 : Dw 2000, 58
232 : Dw 2400, 48
233 : Dw 3600, 32
234 : Dw 4800, 24
235 : Dw - 7200, 16
236 : Dw 9600, 12
237 .

238 2 ; table of structures
239 z ; ASY1 defaults to the COM1 port, INT OCH vector, XON,
240 : ; no parity, 8 databits, 1 stop bit, and 1200 baud
241 : Asy_tab1:

242 : Unit <3f8h,30h,asy1isr,,,,,,,,in1buf,,,out1buf>
243 .

244 : ; ASYZ defaults to the COM2 port, INT OBH vector, XON,
245 : i no parity, 8 databits, 1 stop bit, and 1200 baud
246 : Asy_tab2:
247 z ' Unit <2f8h,2¢h,asyZisr,,,,,,,,in2buf,,,out2buf>
248 .

249 ; Bufsiz Equ 256 ; input buffer size
250 ; Bufmsk = Bufsiz—1 ; mask for calculating offsets modulo bufsiz
251 ; In1buf Db Bufsiz DUP (2)
252 ; Out1buf Db Bufsiz DU? (2
253 ; In2buf Db Bufsiz DUP (2)
254 ; Out2buf Db Bufsiz DUP (?
255 : ;

256 : i Following is a table of offsets to all the driver functions
257 .

258 ; Asy_funcs:

259 ; Dw Init ; 0 initialize driver
260 ; Dw Mchek ; 1 media check (block only)
261 ; Dw BldBPB ; 2 build BPB (block only)
262 ; Dw Ioctlin ; 3 IOCTL read
263 ; Dw Read ; 4 read
264 : Dw Ndread ; 5 nondestructive read
265 ; Dw Rxstat ; 6 input status
266 ; Dw Inflush ; 7 flush input buffer
257 ; Dw Write ; 8 write
268 ; Dw Write ; 9 write with verify

Figure 6-]. Continued. (more)

arm-M n. Drnarflmminfl m the MS—DOS Environment 187

OLYMPUS EX. 1010 - 197/1582

OLYMPUS EX. 1010 - 198/1582

Part B: Programming for MS-DOS

269 : Dw sztet ; 10 output status
270 : Dw Txflush ; 'I1 flush output buffer
211 : Dw Ioctlout ; 12 IOCTL write

272 1 ; Following are not used in this driver.....
213 : Dw Zexit : 13 open [3.x only, not used}
274 : Dw Zexit \ ; 14 close {3.x only, not used)
215 : Du Zexit ; 15 rem med (3.x only, not used)
216 : Dw Zexit ; 16 out until bsy {3.x only, not used}
27? : Du Zexit I 17
278 : Dw Zexit ; 18
279 : Du Zexit ; 19 generic IOCTL request [3.2 only}
280 : Dw Zexit ; 20

231 = Dw Zexit _ I 21
232 : Dw Zexit ; 22

283 : Dw Zexit ; 23 get logical drive map [3.2 only}
284 : Dw Zexit ; 24 set logical drive map [3.2 only)
285 :

235 : Subttl Driver Code

237 : Page
288 l ,-
239 . ; The Strategy routine itself:
290 : ;

291 : Strtegy Proc Far
292: ,- dhq 'S','R',"
293 : Mov Word Ptr CS:PackHd,EX ; store the offset
294 : Mov Word Ptr CS:PackHd+2,Es ; store the segment
295 : Ref;
295 l Strtegy Endp
297 - ,-

298 : Request1: ; async1 has been requested
299 : Push Si ; save SI

300 : Lea Si,Asy_tab1 : get the device unit table address
' 301 : Jrnp Short Gen_request

302 :

303 t RequestZ: ; asyncz has been requested
304 : Push Si ; save SI

305 : Lea Si,Asy_tab2 : get unit table two's address
306 :

307 1 Gen_request:
303 : ; dbg IRI'IRI’I I
309 : Pushf ; save all regs
310 : Old
311 : Push AX
312 : Push BK
313 : Push Cx
314 : Push BX
315 : Push Di

316 : Push. Hp
31? : Push D5
318 : Push Es
319 : Push Cs ; set DS = C3

Figure 6—}. Continued, (more)

1 88 The Mtnm Enmmrm'm

OLYMPUS EX. 1010 - 198/1582

OLYMPUS EX. 1010 - 199/1582

Article 6: Interrupt-Driven Communications
W

320 : Pop D5

321 : Les Bx,PackHd ; get packet pointer
322 I Lea Di,Asy_funcs ; point DI to jump table
323 : Mov Al,es:code[bx] ; command code
324 : wa

325 : Add Ax,Ax ; double to word
326 : Add Di,ax

327 : Jmp [di] ; go do it
328 : ;

329 : ; Exit from driver request
330 ;
331 : Exit? Proc Far

332 : Bsyexit:
333 : Mov Ax,StsBsy

334 : Jmp Short Exit
335
336 I Mchek:
337 I BldBPB: 338 1 Zexit: Xor Ax,Ax

339 2 Exit: Les Bx,PackHd ; get packet pointer
340 : 0r Ax,StsDne

341 : Mov Es:Stat[Bx],Ax ; set return status
342 : Pop Es ; restore registers
343 : Pop D5
344 : Pop Bp
345 : Pop Di
346 : Pop BX
347 : Pop CX
348 : Pop Bx
349 2 Pop Ax
350 : Popf
351 : Pop Si
352 : Ret
353 = ExitP Endp
354

355 l Subttl Driver Service Routines
356 1 Page
357 .

358 : ; Read data from device
359 :
350 1 Read:

361 : ; dbg 'R','d',' '
362 : Mov CX,Es:Count[bx] ; get requested nbr
363 : Mov Di,Es:Xfer[bx] ; get target pointer
364 : Mov Dx,Es:Xseg[bx]
365 1 Push Bx ; save for count fixup
366 : Push Es

367 z _ Mov Es,Dx
368 : Test InStat[si],BadInp Or LostDt
369 : Je No_lerr ; no error so far...
370 : Add Sp,4 ; error, flush SP

Figure 6—1. Continued. ‘ (more)

n A n "Manmmn m the MCDOSEnutronmem 189

OLYMPUS EX. 1010- 199/1582

OLYMPUS EX. 1010 - 200/1582

Part B: Programming for MS—DOS____.__—————_——--————-—-——--———-

371 : And InStatlsi].Not 1 BadInp 0r LostDt J
372 : Mov Ax,E‘.rer ,: error, report it
37'3 : Jmp Exit
374 : No_,lerr:
375 : Call Get_in _ ; go for one
376 : 0r. Ah,Ah
37? : an Got_all ; none to get now
318 : ' Stash ; store it".
3'39 : Loop No_lerr ; go for more
380 : Got-all:
381 : Pop E3
382 : Pop Bx
383 : Sub Di,Es:XEer[bx] ,- calc number scored
334 : Mov Es:Coum:[bx],Di ; return as count
385 : Jmp Zen-cit
386
38'? : ; Nondestructive read from device
333
389 : Ndread:
390 : Mov Di,ifirst[si]
391 : Cmp Di,iavail[si]
392 : Jne nget

i 393 : Jrnp Bsyexit ; buffer empty
I ; i 394 : nget:

395 : Push Ex
396 : Mov Bx, ibuf [Si]
397 : Mov Al, [hx+di]

a 398 :' Pop 13);
-l' 399 : Mov E5:media[bx],al ; return char
i 400 : Jrnp Zexit:
j 401 :

402 : ; Input status request
5 403 :

'f 404 : Rxstat:
:j 405 : Mov Di,ifir5t[sil

' 406 : Cmp Di,iavail[si]

: 40? : Jne Rxful
E! 403 : Jmp Bsyexit : buffer empty

.1 409 : Rxful:

f 410 : Jmp Zexit ; have data411 :

d 412 . ,- Input flush request
413 :

I 414 : Inflush:

‘E 415 : Mov Ax,iavail[si]
'1 416 : ' Mov Ifirstlsi],ax
Jr 41'? : Jmp Zexit
f 418 :

E £319 : ; Output data to device3; 420 :
.'

i ' Figure 6—1. Continued. (more)

|E

' K

OLYMPUS EX. 1010 - 200/1582

OLYMPUS EX. 1010 - 201/1582

Article 6: Interrupt-Driven Communications

421 : Write:

422 : ; dbg 'W','r',' '
423 : Mov Cx,es:count[bx]
424 : Mov Di,es:xfer[bx]
425 : Mov Ax,es:xseg[bx]
426 : Mov Es,ax
427 : Wlup:

428 : Mov Al,es:[di] ; get the byte
429 : Inc Di
430 : Wwait:

431 : Call Put_out ; put away
432 : Cmp Ah,0
433 : Jne Wwait ; wait for room!
434 : Call Start_output ; get it going

- 435 : Loop Wlup
436 :

437 : Jmp Zexit
438 :

439 z ; Output status request
440 .
441 : sztat:

442 : Mov Ax,ofirst[si]
443 : Dec Ax
444 : ‘ And Ax,bufmsk
445 : Cmp Ax,oavail[si]
446 : Jne Txroom

447 : Jmp Bsyexit ; buffer full
448 : Txroom:

449 : Jmp Zexit ; room exists
450 .

451 : ; IOCTL read request, return line parameters
452 :
453 : Ioctlin:

I454 : Mov Cx,es:count[bx]
455 : Mov Di,es:xfer[bx]
456 : Mov Dx,es:xseg[bx]
457 : Mov Es,dx
458 : Cmp Cx,10
459 : Je Doiocin
460 : Mov Ax,errbsl
461 : Jmp Exit
462 : Doiocin:

463 : Mov Dx,port[si] ; base port
464 : Mov Dl,Lctr1 ; line status
4 65 : Mov Cx, 4 ,' LCR, MCR, LSR, MSR
466 : Getport:
467 : In Al,dx
468 : Stos Byte Ptr [DI]
469 : Inc Dx
470 : Loop Getport
471

Figure 6-1. Continued. (more)

Cnrfinm n. Programming in the MS—DOS Environment 191

OLYMPUS EX. 1010 - 201/1582

OLYMPUS EX. 1010 - 202/1582

Part B: Programming for MS~DOS

4‘32 : Mov Ax,InSpec[si} ; spec in flags
4'33 : Stos Word Ptr [DI]
474 : Mov Ax,OutSpec[si] : out. flags
475 : Stos Word Ptr [DI]
476 : Mov Ambaud'lsi] ; baud rate
471' : Mov Bx,di
4T8 : Mov Di,offset Asy_baudu2
1:79 : Mov Cx,‘|5
480 : Baudcin:

431 : Crap [dihax
432 : Je Yesinb
483 : Add Difil
r184 : - Loop Eaudcin
485 : Yesinb;

486 : Mov Ax,-2[di1
48'? : Mov Di,hx

438 : Stos Word Pt: [DI]
489 : Jmp Zexit
490 :

491 = ; Flush output buffer request
492 :
493 : Txflush:

494 : Mov Ax,oavail[si]
495 : Mov 0first[si],ax
496 : Jmp Zexit
497 : '

498 : _: IOC‘TL request: change line parameters for this driver
499 :
500 : Ioctlout:

501 : Mov Cx,es:count [bx]
502 : Mov Di.es:xfer[bx]
503 : Mov Dx,es:xseq[bx]
50¢ : Mov Es,dx

_ 505 : Cmp Cx,10
- ';_ 506 : Je DoiocoutI 50'? : Mov Ax.err.bsl

508 : Jmp Exit
509 :
510 : Doiocout:

511 : Mov Dx,portfsi} ; base port

-'ii 512 : Mov D1,}..ctrl ; line ctrl
: 513 : Mov Al,es:[di]

514 : Inc Di

3 515 : Or Al,Dlab ; set baud
_ 516 : ' out Dmal517 : (:15

518 : Jnc 5+2
519 : Inc Dx ; mdrn ctrl
520 : Mov PAL-35: [C11]
521 : 0r ALUer ; Int Gate

E ' - 522 : out Dx,al
Figure 6-1. Continued. (ml

OLYMPUS EX. 1010 - 202/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 203/1582

Article 6: Interrupt-Driven Communications

523 : Add 01,3 ; skip LSR,MSR
524 : Mov Ax,es:[di]
525 : Add Di,2
526 : Mov InSpec[si],ax
527 : Mov Ax,es:[di]
528 : Add Di,2
529 : Mov OutSpec[si],ax

, 530 2 Mov Ax,es:[di] ; set baud
531 : Mov Bx,di
532 : Mov Di,offset Asy_baudt
533 : Mov Cx,15
534 : Eaudcout:

535 : Cmp [di],ax
536 : Je Yesoutb
537 : Add Di,4
538 : Loop Baudcout
539 .

540 : Mov Dl,Lctrl ; line ctrl
541 : In Al,dx ; get LCR data
542 : And Al,not Dlab ; strip
543 : Clc
544 : Jnc $+2
545 : Out Dx,al ; put back
546 : Mov Ax,ErrUm ; "unknown media"
547 : Jmp Exit
548 :
549 : Yesoutb:

550 : Mov AX,2[di] ; get divisor
551 : Mov Baud[si],ax ; save to report later
552 2 Mov Dx,port[si] ; set divisor
553 : Out D§,al
554 : Clc
555 : Jnc 5+2
556 : Inc Dx
557 2 Mov Al,ah
558 2 Out Dx,al
559 : Clc
560 : Jnc 3+2

561 z . Mov Dl,Lctrl ; line ctrl
562 : In Al,dx ; get LCR data
563 : And Al,not Dlab ; strip
564 : Clc
565 : Jnc $+2
566 : Out Dx,al ; put back
567 2 Jmp Zexit
568 :

569 : Subttl Ring Buffer Routines
570 : Page
571 :

572 : Put_out Proc Near ; puts AL into output ring buffer
573, : Push Cx ’

Figure 6-1. Continued ~ ' (more)

Section 11.- Programming in the MS-DOS Environment 193

OLYMPUS EX. 1010 - 203/1582

OLYMPUS EX. 1010 - 204/1582

Part B: Programming for MS-DOS

 574 2 Push Di
575 : Pushf
576 : C11
577 : Mov Cx,oavail[si] ; put ptr
578 : Mov Di,cx
579 : Inc Cx ; bump
580 : And Cx,bufmsk

581 : Cmp Cx,ofirst[si] ; overflow?
582 : Je Poerr ; yes, don’t
583 : Add Di,obuf[si] ; no
584 : Mov [di],al ; put in buffer
585 : Mov Oavail[si],cx '
586 : ; dbg 'p','o',' '
587 : Mov Ah,0

588 : Jmp Short Poret
589 : Poerrg
590 : , Mov Ah,—1
591 : Poret:

592 2 Popf
593 : Pop Di
594 : Pop Cx
595 2 Ret

596 : Put_out Endp
597

598 : Get_out Proc Near ; gets next character from output ring buffer
599 : Push' Cx 1
600 : Push Di - - 1
601 : Pushf ‘
602 : Cli 1
603 : Mov Di,ofirst[si] ; get ptr

604 : Cmp Di,oavail[si] ; put ptr

605 2 Jne Ngoerr ' ‘606 : Mov Ah,—1 ; empty

607 : Jmp Short Goret 1
608 : Ngoerr: 3

. 609 z ; dbg 'g','o‘,' ' 1
610 : Mov Cx,di ‘ 1
611 : Add Di,obuf[si] 1
612 : Mov Al,[di] ; get char
613 : Mov Ah,0
614 : Inc Cx ; bump ptr
615 : And Cx,bufmsk ; wrap

.616 : Mov Ofirst[si],cx
617 : Goret:

618 : Popf
619 : Pop Di
620 : Pop Cx
621 : Ret

622 : Get_out Endp
623

624 : Put_in Proc Near ; puts the char from AL into input ring buffer

Figure 6—1. Continued. (more)

194 The MS—DOS Encyclopedia ‘

OLYMPUS EX. 1010 - 204/1582

OLYMPUS EX. 1010 - 205/1582

r?!”

625
626
62?
628
629
630
631
632
633
634
635
636
63?
638
639
640
6“
642
643
644
645
646
64?
648
649
650
651
652
653
654
655
656
657
658
659
660
GM
662
663
664
665
666
667
668
669
670
6?1
672
673
634
6?5

Npierr:

Piret:

Put_in

Get_in

Gierr:

Giret:

Get_in

Push
Push
Pushf
Cli
Mov
Mov
Inc
And
Cmp
Jne
Mov
Jmp

Add
Nov
Nov

dbg
Mov

Popf
Pop
Pop
Ret

Endp

Proc
Push
Push
Pushf
Cli
Mov

Cmp
J9
Mov
Add
Nov
Nov

dbg
Inc
And
Mov

Jmp

HOV

Popf
Pop
Pop
Ret

Endp

Figure 6—I. Continued,

Cx
Di

Di,iavail[si]
Cx,di
Cx

Cx,bufmsk
Cx,ifixst[si]
Npierr
Aht—1
Short Piret

Di;ibuf[si]
[di],al
Iavaillsi],cx

lpl’lit’l I
Ah,0

Di
Cx

Article 6: Interrupt—Driven Communications

Near ; gets one from input ring buffer into AL
Cx
Di

Di,ifirst[si]
Di,iavail[si]
Gierr

Cx.di
Di,ibuf[su
Al,[di]
Ah,0

igl’!illl t
Cx

Cx,bufmsk
Ifirstlsi],cx
short Giret

Ahr-1

Cx

Ononfl

OLYMPUS EX. 1010 - 205/1582

OLYMPUS EX. 1010 - 206/1582

Part B: Programming for MS—DOS

676 : Subttl
677 : Page
678 :

679 : Asy1isr:
680 Sti
681 Push
682 . Lea
683 2 Jmp
684 :

685 2 Asy2isr:

686 2 Sti
687 : Push
688 Lea
689
690 Int_serve:
691 Push
692 Push
693 . Push
694 : Push
695 : Push
696 2 Push
697 Push
698 Pop
699 . Int_exit:
700 : : dbg
701 . Mov
702 : Mov
703 . In
704 : Cmp
705 . Je
706 : Jmp
707 : Int_modem:
708 z ; dbg
709 Mov
710 In
711 : Test
712 : an
713 . Test
714 2 J2
715 : Or
716 : Msdsr:
717 : Test
718 . an
719 2 Test
720 Jz
721 : Or
722 : Dsroff:
723 Test
724 : Jz
725 Or
726 Jmp

Figure 6—1. Continued.

196 TheMS—DOSEncyclopedia

Si

Silasy_tab1
Short Int_serve

Si

Si,asy_tab2

Ax ;
Bx
Cx
Dx
Di
D3
Cs ;
Ds

IIIIIXVII l
Dx,Port[si] :
Dl,IntId ;
Al,Dx
Al,00h
Int_modem
Int_mo_no

IMI’ISII' l
Dl,Mstat
Al,dx ;
Al,CDlVl .;
Msdsr ;

OutSpec[si],Outhf
Msdsr

InStat[si],OffLin

Interrupt Dispatcher Routine

save all regs

D5 CSset

base address
check Int ID

dispatch filter

read MSR content

carrier present?
test for DSR

is CD off line?
Yesr

1' no,

Al,DSRlvl ; DSR present?
Dsron ; yes, handle it

OutSpec[si],OutDSR ; no, is DSR throttle?
Dsroff

OtStat[si],LinDSR

OutSpec[si],OutDrf
Mscts

InStat[si],OffLin
Short Mscts

; yes, throttle down

; is DSR off line?

i yes, set flag

(more)

OLYMPUS EX. 1010 - 206/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 207/1582

Article 6: Interrupt—Driven Communications

?27 : Dsron:

T28 : Test OtStat[si],LinD5R ; throttled for DSR?
?29 : Jz Mscts
730 : Xor Otstat[si],LinDSR ; yes, clear it out
T31 : Call Start_output
732 : Mscts:

T33 : Test A1,CTslv1 ; CTS present?
?34 : _ an Ctson ; yes, handle it
735 : Test 0nt5pec[si],0utCT5- ; no, is‘CTS throttle?
736 : Jz Int_exit2
?37 : Or OtStatlsi],LinCTS ; yes, shut it down
?38 : Jmp Short Int_exit2
?39 : Ctson:

740 : Test OtStatIsi],LinCTS ; throttled for CTS?
741 : J2 Int_9xit2

?42 : Xor OtStatisiJ,LinCTS : yes, clear it out
?43 : Jmp Short Int_exit1
744 I Int—mo_no:

745 -. Cmp Al, 02h
T45 : Jne Int_txhno
?4? 1 Int_txmit:

748 : ; dbg 'T','x',' '
T49 : Intwexitit

?50 : Call Start_output ; try to send another
751 : Int_exit2:

752 : Jmp Int_exit
753 : Intth_no:

754 : Cmp Al,04h
755 : Jne Int_rec_no
?56 : Int_receive:

T57 : ; dbg 'R','x',' '
758 : HOV Dx,port[si]
T59 : In Al.dx ; take char from 8250
T60 : Test OutSpec[si],Outhn ; is XONHXOFF enabled?
T61 : Jz Stuff_in ; no

?62 : Cmp Al,‘3‘ And 01FH ; yes, is this KO???
163 : Jne Isq ; no, Check for XON
754 : Or OtStat[si],LinXof ; yes, disable output
165 : Jmp Int_exit2 ; don't store this one
766 : Isq:
?6? : Cmp Al.‘Q‘ And U1FH ; is this XON?
?68 : Jne Stuff_in ; no, save it

769 : Test OtStat[5i],LinX0f ; yes, waiting?
??0 : J2 Int_exit2 ; no, ignore it
771 : Kor OtStat[si],Linxof ; yes, clear the XOFF bit
?72 : Jmp Int_exit1 ; and try to resume xmit
773 : Int_rec_no:

774 : Cmp Al,06h
??5 : Jne Int_done
7TB : Int_rxstat:

7?? : ; dbg ‘E','R',' '

Figure6—I. Continued. (more)

,.
!'.

Section LE- Programming in the MS—DOSEnufr-onmg .Ffffi'IW-W’F’Fmrum-u..._..,.

OLYMPUS EX. 1016 '-‘207/1"582

OLYMPUS EX. 1010 - 208/1582

Part B: Programming for MS—DOS

Us : Mow D1,.Lstat
T'J'Q : In Ade
780 : Test InSpec[si],InEpC .' return them as codes?
781 : J2 Nocode ; no, just set error alarm
782 : And Al,AnyErr ; yes, mask off all but error bits
7'83 : Or Al,080h
3‘84 : Stuff_irl:

”1'85 : Call Put_in ; put input char in buffer
3‘85 : Crap M1,!) ' ; did it fit?
78? : Je Int_exit3 ; yes, all OK
788 : Or InStat[si].LostDt ; no. set DataLost bit
789 : Int_exit3:

1'90 : Jrnp Int_exit
"1'91 : Necode:

792 : 0r InStat [si] ,BadInp
1‘93 : Jmp Int_exit3
194 : Intidone:
'395 : Clc
3‘96 : Jnc 5+2
79? : Mov ALEOI ; all done now
"I93 : Out PIC_b,Al
799 : Pop Ds : restore regs
BOD : Pop Di
E101 : Pop BX
802 : Pop Cx
803 : Pop Bx
804 : Pop Ax
805 : Pop Si
806 : Iret
80? :

808 : Start._output Proc Near
309 : Test. OtStathi},LinIdl .‘ Blocked?
310 : an Dont_start ; yes, no output
311 : Mew Dx.port[si] ; no, check DART
8‘12 : Nov Dl.Lstat
E13 : In ALDx
B14 : Test ALthe ; empty?
S15 : Jz Dont_start ; no
815 : Call Getlout ; yes, anything waiting?
81'! : Or Ahfllh
B18 : an Dont_start ; no
319 : Nov ULRxBuf : yes, send it out
820 : Our. OX, 31

821 : : dbg '5','o',‘ '
822 : Dentistart:
823 : ret

824 : Start_output Endp
825 :

826 : Subttl Initialization Request Routine
82? : Page
328 :

figure 6-1. Continued. (more)

198 The MS—DOS Encyclqoedi'a

OLYMPUS EX. 1010 - 208/1582

OLYMPUS EX. 1010 - 209/1582

.. Article 6: Interrupt-Driven Communications

329 : Init: Lee
830 : Nov
831 : Nov
832 .

833 : Nov
334 : Nov
835 : Nov
836 : Out
837 : Clc
838 : Jnc
S39 : Nov
840 : Nov
841 . ' Out
842 ' Clc
843 : Jnc
844 : Inc
845 : Mov
846 . Out
84? : C15
848 : Jnc
849 .

850 : Mov
851 : Nov
852 : Out
853 : Mov
854 : Clc
855 : Jnc
856 : Nov
85? : Nov
858 : Out

'359 : C19
860 : Jnc

: Nov
862 : . Mov

-863 : Out
Mov

CleS: Mow

= Test
2 J2

= Cli
: Ker

Di,$

Es:Xfer[bx},Di
Es:Xseg[bx),Cs

Dx,Port[si]
Dl,Lctrl
A1,Dlab
Dx,Al

$+2
Dl,RxBuf
Ax,Baud[si]
Dx.Al

5+2
Dx

A1,Ah
Dx,Al

5+2

D1,Lctr1

Al,0t5tat[sil
Dx,Al

OtStatlsi],D

3+2
D1.IntEn
A1,All Int
[mm

5+2

Dl,Mctrl

Al.InStat[si]
Dx,Al

InStatIsi],D

Dl,Lstat
A1,Dx
Dl.RxBuf
A1,Dx
Dl,Mstat
A1,Dx
Dl,IntId
A1,Dx
Al,Dx
A1,:

Cles

Ax,Ax

Section H- Programming in :heMS-DOSEnvfronmem

release rest...

base port

enable divisor

set baud

set LCR

from table

clear status

IER

enable ints in 8250

set MCR

from table

clear status

clear LSR

clear Rx reg

clear MSR

IID reé

int pending?
yes, repeat

set int vec

OLYMPUS EX. 1010 - 209/1582

Ononfl

OLYMPUS EX. 1010 - 210/1582

Part B: Programming for MS—DOS

BBQ : Mov Es,Ax
881 : Mov Di.Vect[si}
882 : Mov Ax,IsrAdr[5i} ; from table
883 : Stosw

3841 : Mov Es:[dil,cs
ass : '
886 : In Al,PIC_e ; get 8259
BB? : And ALOEH'I ; corn‘l/‘Z mask
833 : Clc
839 : an 9+2
890 : Out PIC_e.A1
8‘31 : 51:5.
892 :

893 : Mov ALEOI ; now send EOI just in case
894 : Out: PICJifil
395 :'
596 : ; dbg 'D','I',‘ " ; driver installed
89? : Jmp Zexit
398 :
899 : Driver Ends
900 : End

Figure 6-1. Continued.

The first part of the driver SOurce code (after the necessary MASM housekeeping details

in lines 1 through 8) is a commentedout macro definition (lines 10 through 32). This

macro is used only during debugging and is part of a debugging technique that requires

no sophisticated hardware and no more complex debugging program than the venerable

DEBUGCOM. (Debugging techniques are discussed after the presentation of the driver

! : program itself.)

I l ; . E Definitions
The actual driver source program consists of three sets of EQU definitions (lines 34

_ through 194), followed by the modular code and data areas (lines 197 through 900). The

; l = 1 5 first set of definitions (lines 54 through 82) gives symbolic names to the permissible values
: I for MS—DOS devicedriver control bits and the device-driver structures.

_| The second set of definitions (lines 84 through 145) assigns names to the ports and bit
-: ! I _ values that are associated with the IBM hardware— both the 8259 PIC and the 8250 UART.

-i' ' ; ' The third set of definitions (lines 147 through 194) assigns names to the control values and

l . ' structures associated with this driver.

The definition method used here is recommended for all drivers. To move this driver from

the IBM architecture to some other hardware, the maior change required to the program

would be reassignment of the port addresses and bit values in lines 84 through 145.

The control values and structures for this specific driver (defined in the third EQU set)

provide the means by which the separate support program can modify the actions of each

of the two logical drivers. They also permit the driver to return status information to both

i om ’14... run nnr- n...-J.\..-.J.-..

OLYMPUS EX. 1010 - 210/1582

OLYMPUS EX. 1010 - 211/1582

Article 6: Interrupt-Driven Communications

the support program and the using program as necessary. Only a few features are imple-

mented, but adequate space for expansion is provided. The addition of a few more defini-

tions in this area and one or two extra procedures in the code section would do all that is

necessary to extend the driver’s capabilities to such features as automatic expansion of
tab characters, case conversion, and so forth, should they be desired.

Headers and structure tables

The driver code itself starts with a linked pair of device-driver header blocks, one for

ASY1 (lines 201 through 207) and the other for ASY2 (lines 208 through 213). Following

the headers, in lines 215 through 236, are a commented—out space reservation used by the

debugging procedure (line 215), the pointer to the command packet (line 219), and the

baud-rate conversion table (lines 221 through 236).

The conversion table is followed by structure tables containing all data unique to ASY1

(lines 259 through 242) and ASY2 (lines 244 through 247). After the structure tables,

buffer areas are reserved in lines 249 through 254. One input buffer and one output buffer

are reserved for each port. All buffers are the same size; for simplicity, buffer size is given a

name (at line 249) so that it can be changed by editing a single line of the program.

The size is arbitrary in this case, but if file transfers are anticipated, the buffer should be

able to hold at least 2 seconds’ worth of data (240 bytes at 1200 bps) to avoid data loss dur—
ing writes to disk. Whatever size is chosen should be a power of 2 for simple pointer arith—

metic and, if video display is intended, should not be less than 8 bytes, to prevent losing
characters when the screen scrolls.

If additional ports are desired, more headers can be added after line 215; corresponding

structure tables for each driver, plus matching pairs of buffers, would also be necessary.

The final part of this area is the dispatch table (lines 256 through 284), which listsoffsets

Of all request routines in the driver; its use is discussed below.

Strategy and Request routines

With all data taken care of, the program code begins at the Strategy routine (lines 289

through 296), which is used by both ports. This code saves the command packet address

passed to it by MS-DOS for use by the Request routine and returns to MS—DOS.

The Request routines (lines 298 through 56'?) are also shared by both ports, but the two

drivers are distinguished by the address placed into the SI register. This address points to

the structure table that is unique to each port and contains such data as the port’s base

address, the associated hardware interrupt vector, the interrupt service routine offset

within the driver’s segment, the base offsets of the input and output buffers for that port,

two pointers for each of the buffers, and the input and output status conditions (including

_ baud rate) for the port. The only difference between one port‘s driver and the other’s is
the data pointed to by SI; all Request routine code is shared by both ports.

Each driver’s Request routine has a unique entry point (at line 298 for ASYI and at line 303

for ASY2) that saves the original content of the SI register and then loads it with the ad-

dress of the structure table for that driver. The routines then join as a common stream at
line 307 (Gen_ request).

emu"... n. Drnnrammdun m flan are fine cmmynnmnm 701

OLYMPUS EX. 1010 - 211/1582

OLYMPUS EX. 1010 - 212/1582

Part B: Programming for MS—DOS

- This common code preserves all other registers used (lines 309 through 318), sets DS
equal to CS (lines 319 and 320), retrieves the command-packet pointer saved by the Strat-.

egy routine (line 321), uses the pointer to get the command code (line 323), uses the code

to calculate an offsetinto a table of addresses (lines 324 through 326), and performs an in-

dexed jump (lines 322 and 327) by way of the dispatch table (lines 256 through 284) to the

routine that executes the requested command (at line 336, 360, 389, 404, 414, 421, 441, 453,
500, or 829).

Although the device-driver specifications for MS-DOS version 3.2 list command request ‘

codes ranging from O to 24, not all are used. Earlier versions of MS-DOS permitted only 0

'to 12 (versions 2.x) or 0 to 16 (versions 3.0 and 3.1) codes. In this driver, all 24 codes are

accounted for; those not implemented in'this driver return a DONE and NO ERROR status

to the caller. Because the Request routine is called only by MS—DOS itself, there is no check

for invalid codes. Actually, because the header attribute bits are not set to specify that

codes 13 through 24 are valid, the 24 bytes occupied by their table entries (lines 273

through 284) could be saved by omitting the entries They are included only to showhow nonexistent commands can be accommodated.

Immediately following the dispatch indexed jump, at lines 329 through 353 within the

same PROC declaration, is the common code used by all Request routines to store status

information in the command packet, restore the registers, and return to the caller. The

alternative entry points for BUSY status (line 332), NO ERROR status (line 338), or an error

code (in the AX register at entry to Exit, line 339) not only save several bytes of redundant

code but also'1mprove readability of the code by providing unique single labels for BUSY
NO ERROR, and ERROR return conditions.

All of the Request routines, except for the Im't code at line 829, immediately follow the

dispatching shell in lines 558 through 568. Each is simplified to perform just one task, such

as read data in or write data out. The Read routine (lines 360 through 385) is typical: First,
the requested byte count and user’s buffer address are obtained from the command '

packet. Next, the pointer to the command packet is saved with a PUSH instruction, so that

the ES and BX registers can be used for a pointer to the port’s input buffer.

Before the Get_z'n routine that actually accesses the input buffer is called, the input status

byte is checked (line 368). If an error condition is flagged, lines 370 through 373 clear the
status flag, flush the saved pointers from the stack, and jump to the error—return exit from

the driver. If no error exists, line 375 calls Get_ in to access the input buffer and lines 376

and 377 determine whether a byte was obtained. If a byte is found, it is stored in the user’s
buffer by line 378, and line 379 loops back to get another byte until the requested count 3

has been obtained or until no more bytes are available. In practice, the count is an upper E
limit and the loop is normally broken when data runs out.

No matter how it happens, control eventually reaches the GoLall routine and lines 381
and 382, where the saved pointers to the command packet are restored from the stack.

Lines 383 and 384 adjust the count value in the packet to reflect the actual number of bytes

obtained. Finally, line 385 jumps to the normal, no-errorexit from the driver. I

202 TheMS-DOS Encyclopedia

1

‘ l
OLYMPUS EX. 1o1o - 212/1582

OLYMPUS EX. 1010 - 213/1582

Article 6: Interrupt-Driven Communications

Buffering

' Both buffers for each driver are of the type known as circular, or ring, buffers. Effectively,
such a buffer is endless; it is accessed via pointers, and when a pointer increments past the
end of the buffer, the pointer returns to the buffer’s beginning. Two pointers are used here

for each buffer, one-to put data into it and one to get data out. The get pointer always
points to the next byte to be read; the put pointer points to where the next byte will be
written, just past the last byte written to the buffer.

If both pointers point to the same byte, the buffer is empty; the next byte to be read has

not yet been written. The full-buffer condition is more difficult to test for: The put pointer

is incremented and compared with the get pointer; if they are equal, doing a write would
force a false buffer-empty condition, so the buffer must be full.

All buffer manipulation is done via four procedures (lines 569 through 674). Put_ out

(lines 572 through 596)writes a byte to the driver’s output buffer or returns a buffer-full

indication by setting AH to OFFH. Get_out (lines 598 through 622)gets a byte from the
output buffer or returns OFFH in AH to indicate that no byte is available. Put_ in (lines 624

through 648) and Get_ in (lines 650 through 674) do exactly the same as Put_out and

Get_out, but for the input buffer. These procedures are used both by the Request routines

and by the hardware interrupt service routine (ISR).

Interrupt service routines

The most complex part of this driver is the ISR (lines 676 through 806), which decides

which of the four possible services for a port is to be performed and where. Like the

Request routines, the ISR provides unique entry points for each port (line 679 for ASY1 and

line 685 for ASY2);_ these entry points first preserve the SI register and then load it with the
address of the port’s structure table. With SI indicating where the actions are to be per-

formed, the two entries then merge at line 690 into common code that first preserves all

registers to be used by the ISR (lines 690 through 698) and then tests for each of the four
possible types of service and performs each requested action.

Much of the complexity of the ISR is in the decoding of modem—status conditions. Because
the resulting information is not used by this driver (although ‘it could be used to prevent

. attempts to transmit while off line), these ISR options can be removed so that only the

, Transmit and Receive interrupts are serviced. To do this, Alllnt (at line 145) should be

changed from the OR of all four bits to include only the transmit and receive bits (03H,
' or OOOOOOllB).

The transmit and receive portions of the ISR incorporate XON/XOFF flow Control (for

transmitted data only) by default. This controlis done at the ISR level, rather than in the
using program, tominimize the time required to respond to an incoming XOFF signal. -

Presence of the flow-control decisions adds complexity to what would otherwise be

extremely simple actions.

Flow control is enabled or disabled by setting the OutSpeC word in the structure table

with the Driver Status utility (presented later) via the IOCTL function (Interrupt 21H Func-

tion 44H). When flow control is enabled, any XOFF character (11H) that is received halts
all outgoing data until XON (13H) is received. No XOFF or XON is retained in the input

Section [1: Programming in the MS—DOS Environment 205

OLYMPUS EX. 1010 - 213/1582

OLYMPUS EX. 1010 - 214/1582

Part B: Programming for MS-DOS

buffer to be sent on to any program, although all patterns other than XOFF and XON are

passed through by the driver. When flow control is disabled, the driver passes all patterns

in both directions. For binary file transfer, flow control must be disabled.

The transmit action is simple: The code merely calls the Steroutput procedure at line
750. Start_output is described in detail below.

The receive action is almost as simple as transmit, except for the flow-control testing. First,

the ISR takes the received byte from the UART (lines 758 and 759) tolavoid any chance of

an overrun error. The ISR then tests the input specifier_(at line 760) to determine whether
flow control is in effect. If it is not, processing jumps directly to line 784 to store the

received byte in the input buffer with Put_ in (line 785).

If flow control is active, however, the received byte is compared with the XOFF character

(lines 762 through 765). If the byte matches, output is disabled and the byte is ignored. If

the byte is not XOFF, it is compared with XON (lines 766 through 768). If it is not XON

either, control jumps to line 784. If the byte is XON, output is re—enabled if it was disabled.

Regardless, the XON byte itself is ignored.

When control reaches Stuff_in at line 784, Put_ in is called to store the received byte in
the input buffer. If there is no room for it, a lost-databit is set in the input status flags (line
788); otherwise, the receive routine is finished.

If the interrupt was a line-status action, the LSR is read (lines 776 through 779). If the input
specifier so directs, the content is converted to an IBM PC extended graphics character by

setting bit 7 to 1 and the character is stored in the input buffer as if it were a received byte. .

Otherwise, the Line Status interrupt merely sets the generic BadInp error bit in the input

status flags, which can be read with the IOCTL Read function of the driver.

When all ISR action is complete, lines 794 through 806 restore machine conditions to those

existing at the time of the interrupt and return to the interrupted procedure.

The Start_output routine

StarLouzput (lines 808 through 824) is a routine that, like the four buffer procedures, is

used by both the Request routines and the ISR. Its purpose is to initiate transmission of a

byte, provided that output is not blocked by flow control, the UART Transmit Holding

Register is empty, and a byte to be transmitted exists in the output ring buffer. This routine
uses the Get_out buffer routine to access the buffer and determine whether a byte is avail-

able. If all conditions arevmet, the byte is sent to the UART holding register by lines 819
and 820.

The Initialization Request routine

The Initialization Request routine (lines 829 through 897) is critical to successful operation

of the driver. This routine is placed last in the package so that it can be discarded as soon V

as it has served its purpose by installing «the driver. It is essential to clear each register of

the 8250 by reading its contents before enabling the interrupts and to loop through this

204 The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 214/1582

OLYMPUS EX. 1010 - 215/1582

Article 6: Interrupt-Driven Communications

action until the 8250 finally shows no requests pending. The strange Clcjnc 3+2
Sequence that appears repeatedly in this routine is a time delay required by high—speed
machines (6 MHz_ and up) so that the 8250 has time to settle before another access is
attempted; the delay does no harm on slower machines.

Using COMDVR

The first step in using this device driver is assembling it with the Microsoft Macro Assem-

bler (MASM). Next, use the Microsoft Object Linker (LINK) to create a .EXE file. Convert

the .EXE file into a binary image file with the EXEZBIN utility. Finally, include the line
DEVICE=COMDVR.SYS in the CONFIGSYS file so that COMDVR will be installed when

the system is restarted.

Notes The number and colon at the beginning of each line in the program listings in this
article are for reference only and should not be included in the source file.

Figure 6—2 shows the sequence of actions required, assuming that EDLIN is used for
modifying (or creating) the CONFIGSYS file and that all commands are issued from the
root directory of the boot drive.

Creating the driver:

C>MASM COMDVR; <Enter>
C>LINK COMDVR; <Enter>
C>EXE2BIN COMDVR.EXE COMDVR.SYS <Enter>

Modifying CONFIG.SYS (AZ = press Ctrl-Z):

C>EDLIN CONFIG.SYS <Enter>
*#I <Enter>
*DEVICE=COMDVR.SYS <Enter>
*“Z <Enter>
*E <Enter>

Figure 6—2. Assembling, linking, and installing COMDVR.

Because the devices installed by COMDVR do not use the standard MS—DOS device names,
no conflict occurs with any program that uses conventional port references. Such a pro-

gram will not use the driver, and no problems should result if the program is well behaved

and restores all interrupt vectors before returning to MS-DOS.

Device-driver debugging techniques

The debugging of device drivers, like debugging for any part of MS-DOS itself, is more

difficult than normal program checking because the debugging program, DEBUG.COM or

DEBUG.EXE, itself uses MS-DOS functions to display output. When these functions are

being checked, their use by DEBUG destroys the data being examined. And because

MS—DOS always saves its return address in the same location, any call to a function from

inside the operating system usually causes a system lockup that can be cured only by

shutting the system down and powering up again. '

Section 11: Programming in the MS—DOS Environment 205

OLYMPUS EX. 1010 - 215/1582

OLYMPUS EX. 1010 - 216/1582

Part B: Programming for MS—DOS

One way to overcome this difficulty is to purchase costly debugging tools. An easier

way is to bypass the problem: Instead ofusing MS—DOS functions to track program opera—

tion, write data directly to video RAM, as in the macro DBG (lines 10 through 32 of
COMDVR.ASM).

This macro is invoked with a three-character parameter string at each point in the pro-

gram a progress report is desired. Each invocation has its own unique three-character

string so that the sequence of actions can be read from the screen. When invoked, DBG
expands into code that saves all registers and then writes the three-character string to

video RAM. Only the top 10 lines of the screen (800 characters, or 1600 bytes) are used:

The macro uses a single far pointer to the area and treats the video RAM like a ring buffer.

The pointer, Dbgptr (line 215), is set up for use with the monochrome adapter and points
to location B000:0000H; to use a CGA or EGA (in CGA mode), the location should be

changed to 3800:0000H.

Most of the frequently used Request routines, such as Read and Write, have calls to DBG

as their first lines (for example, lines 361 and 422). As shown, these calls are commented .
out, but for debugging, the source file should be edited so that all the calls and the macro
itself are enabled.

With DBG active, the top 10 lines of the display are overwritten with a continual sequence ,-
of reports, such as RR Tx, put directly into video RAM. Because MS-DOS functions are not ‘
used, no interference with the driver itself can occur.

Although this technique prevents normal use of the system during debugging, it greatly

simplifies the problem of knowing what is happening in time-critical areas, such as hard-

ware interrupt Service. In addition, all invocations of DBG in the critical areas are in con-

ditional code that is executed only when the driver is working as it should.

Failure to display the pi message, for instance, indicates that the received-data hardware

interrupt is not being serviced, and absence of go after an Ix report shows that data is not
being sent out as it should.

Of course, once debugging is complete, the calls to DBG should be deleted or commented
out. Such calls are usually edited out of the source code before release. In this case, they

remain to demonstrate the technique and, most particularly, to show placement of the calls

to provide maximum information with minimal clutter on the screen.

A simple modem engine

206

The second part of this package is the modem engine itself (ENGINEASM), shown in the

listing in Figure 6—3. The main loop of this program consists of only a dozen lines of code

(lines 9 through 20). Of these, five (lines 9 through 15) are devoted to establishing initial

contact between the program and the serial-port driver and two (lines 19 and 20) are for

returning to command level at the program’s end.

Thus, only five lines of code (lines 14 through 18) actually carry out the bulk of the pro- ,
gram as far as the main loop is concerned. Four of these lines are calls to subroutines that

The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 216/1582

OLYMPUS EX. 1010 - 217/1582

, get and put data from and to the console and the serial port; the fifth is theJMP that closes
the loop. This structure underscores the fact that a basic modem engine is simply a data-
transfer loop.

1 : TITLE engine
2 :

3 : CODE SEGMENT PUBLIC 'CODE'
4 z

5 - ASSUME CS:CODE,DS:CODE,ES:CODE,SS:CODE
6

7 : ORG 0100h
8 :

9 : START: mov dx,offset devnm ; open named device (ASY1)
10 : mov ax,3d02h

11 : int ' 21h
12 mov handle,ax ; save the handle
13 . jc quit
14 ; alltim: call getmdm ; main engine loop‘
15 call putcrt
16 : call getkbd
17 : call putmdm
18 : jmp alltim

19 : quit: mov ah,4ch ; come here to quit
20 int 21h
21 . .

22 ; getmdm proc ; get input from modem
23 - mov cx,256
24 . mov bx,handle
25 . mov dx,offset mbufr
26 : mov ax,3FOOh
27 : int 21h
28 - jc quit
29 . mov mdlen,ax
30 : ret

31 : getmdm endp
32 .

_33 ; getkbd proc ; get input from keyboard
34 mov kblen,0 ; first zero the count
35 : mov ah,11 ; key pressed?
36 : int 21h
37 : inc al
38 : jnz nogk ; no
39 : mov ah,7 ; yes, get it
40 : int 21h

41 : cmp al,3 ; was it Ctrl-C?
42 : je quit ; yes, get out

43 ; mov kbufr,al ; no, save it
44 : inc kblen

45 ; cmp al,13 ; was it Enter?
46 : jne nogk ; no

Figure 6—3. ENGINEASM. (more)

Section 11: Programming in the MS—DOS Environment 207

OLYMPUS EX. 1010 - 217/1582

OLYMPUS EX. 1010 - 218/1582

Part B: Programming for MS—DOS

208

47 :
48 :
49 :
50 :
51
52

6O
61

63
64
65 .
66 :
67 :
68

7O
71
72

74
75 :
76 :

: mdlen
78 :
79 :

77

80
81

69 :

nogk:
getkbd

: putmdm
53 :
54 :
55 :
56 :
57 :
58 :
59 :

: nopm:
: putmdm

62 ~

: putcrt

: nope:
2 putcrt

73 :
: devnm

handle
kblen

mbufr
kbufr

: CODE
82 :

mov
inc
ret

endp

proc
mov

jcxz
mov
mov
mov
int

jc
ret

endp

proc
mov

jcxz
mov
mov
mov

int

jc
ret

endp

db
dw
dw
dw
db
db

ENDS
END

Figure 6-3. Continued.

Because the details of timing and data conversion are handled by the driver code-each

of the four subroutines is— to show just how simple the whole process is—essentially a
buffered interface to the MS-DOS Read File or Device or Write File or Device routine.

For example, the getmdm procedure (lines 22 through 31) asks MS—DOS to read a max— ‘

imum of 256 bytes from the serial device and then stores the number actually read in a

word named mdlen. The driver returns immediately, without waiting for data, so the nor-

mal number ofbytes returned is either 0 or 1. If screen scrolling causes the loop to be

delayed, the count might be higher, but it should never exceed about a dozen characters.

When called, the putcrt procedure (lines 65 through 72) checks the value in mdlen. If

the value is zero, putcrt does nothing; otherwise, it asks MS-DOS to write that number of

bytes from mbufr (where getmdm put them) to the display, and then it returns.

The MS-DOS Encyclopedia

byte ptr kbufr+1,10 ; yes, add LFkblen

; put output to modem
cx,kblen
nopm
bx,handle
dx,offset kbufr
ax,4000h
21h

quit

; put output to CRT
cx,mdlen
nopc
bx,1
dx,offset mbufr
ah,40h

21h ’ I
quit I

'ASYl',0 : miscellaneous data and buffers
O
0
0

256 dup (0)
80 dup (O)

START
OLYMPUS EX. 1010 - 218/1582

OLYMPUS EX. 1010 - 219/1582

Article 6: Interrupt—Driven Communications

Similarly, get/ebd gets keystrokes from the keyboard, stores them in lebufr, and posts a
count in leblen; putmdm checks leblen and, if the count is not zero, sends the required
number of bytes from lebufr to the serial device.

Note that get/ebd does not use the Read File or Device function, because that would wait

for a keystroke and the loop must never wait for reception. Instead, it uses the MS-DOS

functions that test keyboard status (OBH) and read a key without echo (07H). In addition,
special treatment is given to the Enter key (lines 45 through 48): A linefeed is inserted in

lebufr immediately behind Enter and leblen is set to 2.

A Ctrl—C keystroke ends program operation; it is detected in get/ebd (line 41) and causes

immediate transfer to the quit label (line 19) at the end of the main loop. Because ENGINE

uses only permanently resident routines, there is no need for any uninstallation before

returning to the MS—DOS command prompt.

ENGINEASM is written to be used as a .COM file. Assemble and link it the same as

COMDV'RSYS (Figure 6-2) but use the extension COM instead of SYS; no change to
CONFIGSYS is needed.

The driver-status utility: CDVUTL.C

The driver-status utility program CDVUTL.C, presented in Figure 6-4, permits either of
the two drivers (ASY1 andASY2) to be reconfigured after being installed, to suit different

needs. After one of the drivers has been specified (port 1 or port 2), the baud rate, word

length, parity, and number of stop bits can be changed; each change is made indepen-

dently, with no effect on any of the other characteristics. Additionally, flow control can be

switched between two types of hardware handshaking— the software XON/XOFF control

or disabled—and error reporting can be switched between character-oriented and

message—oriented operation.

1 : /* cdvutl.c — COMDVR Utility
2 ; * Jim Kyle — 1987
3 * for use with COMDVR.SYS Device Driver
4 : */
5 -

6 : #include <stdio.h> /* i/o definitions */
7 : #include <conio.h> /* special console i/o */
B : #include <stdlib.h> /* misc definitions */
9 : #include <dos.h> /* defines intdos() */

10 :

11 : /* the following define the driver status bits */
12 :

13 : #define HWINT 0x0800 /* MCR, first word, Hw Ints gated */
14 : #define o_DTR 0x0200 /* MCR, first word, output DTR */
15 : #define o_RTS 0x0100 /* MCR, first word, output RTS */
16 :

17 : #define m_PG 0x0010 /* LCR, first word, parity ON */
18 : #define m_PE OXOOOB /* LCR, first word, parity EVEN */

Figure 6-4. CDVUTL.C (more)

Section II.- Progmmming in the MSADOS Environment 209

OLYMPUS EX. 1010 - 219/1582

OLYMPUS EX. 1010 - 220/1582

Part B: Programming for MS—DOS

210

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
3s
39
4o
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
6O
61
62
63
64
65
66
67

68
69

#define m_XS 0x0004 /* LCR, first word, 2 stop bits
: #define m_WL 0x0003 /* LCR, first word, wordlen mask

#define i_CD 0xsooo' /* MSR, 2nd word, Carrier Detect
#define i_RI 0x4000 /* MSR, 2nd word, Ring Indicator
#define i_DSR 0x2000 /* MSR, 2nd word, Data Set Ready
#define i_CTS 0x1000 /* MSR, 2nd word, Clear to Send

. #define l_SRE 0x0040 /* LSR, 2nd word, thr SR Empty
: #define l_HRE 0x0020 /* LSR, 2nd word, thr HR Empty

#define l_BRK 0x0010 /* LSR, 2nd word, Break Received
#define l_ER1 OXOOOB /* LSR, 2nd word, FrmErr
#define l_ER2 0x0004 /* LSR, 2nd word, ParErr
#define l_ER3 0x0002 /* LSR, 2nd word, OveRun
#define l_RRF 0x0001 /* LSR, 2nd word, Rcvr DR Full

/* now define CLS string for ANSI.SYS */
#define CLS "\033[2J"

FILE * dvp;
; union REGS rvs;

int iobf [5];

main ()

(cputs ("\nCDVUTL — COMDVR Utility Version 1.0 — 1987\n");
disp (1; /* do dispatch loop

}

disp () /* dispatcher; infinite loop
(int c,

u;

u = 1;
while (1)

(cputs ("\r\n\tCommand (? for help): ");
switch (tolower (c = getche ())) /* dispatch

1
case '1' : /* select port 1

fclose (dvp);
dvp = fopen ("ASY1", "rb+");

u = 1; I
break;

case '2' z . /* select port 2
fclose (dvp);

dvp = fopen ("ASY2", "rb+");
u = 2;
break;

case 'b' : /* set baud rate
if (iobf [4] == 300

iobf [4] = 1200;

Figure 6-4. Continued.

The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 220/1582

*/
*/
*/
*/
*/
*/
*/

(more)

OLYMPUS EX. 1010 - 221/1582

7O : else
’71 : if (iobf [4] == 1200)

72 : iobf [4] = 2400;
73 : else

74 : _if (iobf [4] == 2400)
75 : iobf [4] = 9600;
76 : else
77 : iobf [4] = 300;
78 : iocwr ();
79 : break;
80

81 : case 'e' : /* set parity even */
82: iobf[0]:=(m_PG+n_PE.);
83 : iocwr ();
84 : break;
85 .

86 : case 'f' : /* toggle flow control */
87 : if (iobf [3] == 1 1
88 : iobf [3] = 2;
89 : else
90: if(iobf[3]==2)
91 : iobf [3] = 4;
92 : else
93 : if (iobf [3] == 4)

94 : _iobf [3] = O;
95 : else
96 : iobf [3] = 1;
97 : iocwr ();
98 : break;
99 . ‘

100 : case 'i' : /* initialize MCR/LCR to 8N1 : */
101 : iobf [0] = (HWINT + o_DTR + O_RTS + m_WL);
102 : iocwr ();
103 : break;
104 .

105 : case '?' : /* this help list */
106 : cputs (CLS); /* clear the display */
107 : center (."COMMAND LIST \n");
108 : center ("1 = select port 1 L = toggle word LENGTH ");
109 : center ("2 = select port 2 N = set parity to NONE ");
110 : center ("B = set BAUD rate 0 = set parity to ODD ‘ ");
111 : center ("E = set parity to EVEN R = toggle error REPORTS");
112 2 center ("F = toggle FLOW control S = toggle STOP bits ");
113 : center (“I = INITIALIZE ints, etC. Q = QUIT “);
114 : continue;
115 .

116 : case '1' : /* toggle word length */
117 : iobf [0] A= 1;
118 : iocwr 1);
119 : break;
120

Figure 6—4. Continued. (more)

Section 11: Programming in the MS-DOS Environment 2 1 1

OLYMPUS EX. 1010 - 221/1582

OLYMPUS EX. 1010 - 222/1582

212

Part B: Programming for MS-DOS

121 case 'n' : /* set parity off */
122 iobf[0] =~(m_PG+m_.PE);
123 iocwr 0;
124 break;
125 .

126 case '0' : /* set parity odd */
127 iobf [O] := m_PG;
128 , iobf [0] =~ ME;
129 - iocwr (); '
130 break;

131 . _
132 case 'r' : /* toggle error reports */
133 iobf [2] "=1,-
134 iocwr 0;
135 break;
136

137 case 's' : /* toggle stop bits */ I
138 iobf [0] "= M5;
139 iocwr O;
140 break;
141

142 case 'q'
143 fclose (dvp); ,'

144 exit (O); /* break the loop, get out */ ~ /145) ‘

146 cputs (CLS); /* clear the display */
147 center ("CURRENT COMDVR STATUS");

148 report (u, dvp); /* report current status */
149 1
150 1
151

152 center (s) char * s; /* centers a string on CRT */
153 (int i ;
154 for(i=80-strlen(s);i>0;i-=2)
155 putch (' '),-
156 cputs (s);
157 cputs ("\r\n");
158 }
159

160 iocwr () /* IOCTL Write to COMDVR */
161 (rvs x ax = 0214403;

162 rvs x . bx = fileno (dvp);
163 rvs x cx = 10;
164 rvs x . dx = (int) iobf;
165 intdos (& rvs, & rvs);
166 1
167
168 char * onoff (X) int: x ;

169 { return (x ? " ON" : " OFF"); ”
170 1
171

Figure 6-4. Continued. (more)

The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 222/1582

OLYMPUS EX. 1010 - 223/1582

Article 6-. Interrupt-Driven Communications- —‘-‘“-——-——-——.—.——-———‘-—__

172 1 report I unit 1 int unit ;
'113 : I char temp [80 l:
174 : rvs . x . ax = 0x4402:
175 : rvs . x . bx = filono I dvp);
176 : rvs . x .cx = 10:
1?? : rus . x . dx = I int 1 iobf;

113 : intdos I & rvs, & rvs J; E* use IOCTL Read to get data *3

179 : sprintf I temp, “\nDevice ASY%d\t%d BPS, %d-c—%c\r\n\n”,
130 : unit, iobf [4 l. /* baud rate *3
181 : 5 + I iobf [G] & m_WL 1, f* word length 3!
1S2 : I iobf [U] & m_PG ? _
133 : I iobf [0] & m_PE ? 'E' : 'O' l : 'N‘ L
134 : I iobf [0 J a mlxs ? '2‘ : '1' J]; [3 stop bits *I
185 : cputs I temp };
186 t _

187 : cputs I “Hardware Interrupts are" 1:
183 : cputs I onoff I iODf 1 0 1 & HWINT I}:
1&9 : cputs I ", Data Terminal Rdy" 1;
190 : cputs I onoff I iobf [0 1 & o_DTR)1;
191 : cputs I ", Rqst To Send" L
192 : cputs I onoff I iobf I 0 J & o_RTS J}:
193 : cputs I ".\r\n“ J: .
194 :

195 : cputs I "Carrier Detect" 1;
195 : Cputs I onoff I iobf [1 ‘ & i_CD J}:
197 : "cputs I ". Data Set Roy“ J:

198 : cpu'ts I onoff I iobf 1 i ' .5 1.13% 1},-
199 : cputs I ", Clear to Send" 1;
200 : cputs I onoff I iobf [1 & iflCTS J};
201 : cputs I ", Ring Indicator“ 1;
202 : cputs I onoff I iobf I 1 _ & i_RI)1;
203 : cputs I ".\r\n");
204 : .

205 : Cputs I l_SRE & iobf [I ? "thr 5R Empty, " : "" J;
205 : cputs I l_HRE a iobf [1 ' ? "thr HR Empty, " : "“ J;
201 : cputs I l_BRK & iobf [1 ? "Break ReceiVed, " : “"]J
203 : cputs I 1_ER1 & iobf [1 ' ? "Framing Error, " : “" 1;
209 : cputs I l_ER2 5 iobf [1 ? "Parity Error, " I “")1
210 : cputs I l_ER3 a iobf [1 ? "Overrun Error. " : ““ 1:
211 : cputs I l_RRF a iobf [1 ? "Rcvr DR Full, " :'"" 1:
212 : Cputs I "\h\b.\r\n"]:
213

214 : cputs I "Reception errors " 1;
215 : if I iobf [2] == 1 }

216 : cputs I "are encoded as graphics in buffer" 1:
217 : else-

218 : cputs I "set failure flag" 1;
219 : cputs I “ \r\n“ 1:
220 : _

221 : cputs I “Outgoing Flow Control " J:
222 : if I iobf [3 l & 4]

Figure 6—4. Continued, (more)

Section II.- Progmmmmg in meMS—DOSEnvirmmm 213I

OLYMPUS EX. 1010 - 223/1582

OLYMPUS EX. 1010 - 224/1582

Part B: Programming for MS-DOS___________________________________

214

223 : cputs ("by XON and XOFF");
224 : else

225 : if (iobf [3 J & 2
226 : cputs ("by RTS and CTS"');
227 : else

228 : if (iobf [3] & 1)
229 2 cputs ["by DTR and DSR");
230 : else '

231 : cputs ("disabled");
232 : cputs (".\r\n");
233 :)
234 2

235 : Mend of cdvutl.c */

Figure 6-4. Continued.

Although CDVUTL appears complicated, most of the complexity is concentrated in the
routines that map driver bit settings into on—screen display text. Each such mapping

requires several lines of source code to generate only a few words of the display report. '

Table 6—10 summarizes the functions found in this program.

Table 6-10. CDVUTL Program Functions.

Lines Name Description

42 —45 main() Conventional entry point.

47— 150 dispO Main dispatching loop.
152— 158 centerO Centers text on CRT.

160— 166 iocer Writes control string to driver with IOCTL Write.

168— 170 onofi’O Returns pointer to ON or OFF.
172—233 reportO Reads driver status and reports it on display.

The long list of #defme operations at the start of the listing (lines 11 through 33) helps-

make the bitmapping comprehensible by assigning a symbolic name to each significant bit

in the four UART registers. '

The main() procedure of CDVUTL displays a banner line and then calls the dispatcher

» routine, dispO, to start operation. CDVUTL makes no use of either command-line parame-
ters or the environment, so the usual argument declarations are omitted.

Upon entry. to 6115170, the first action is to establish the default driver as ASY1 by setting

at = 1 and opening ASY1 (line 50); the program then enters an apparent infinite loop

(lines 51 through 149).

With each repetition, the loop first prompts for a command (line 52) and then gets the

next keystroke and uses it to control a huge switch() statement (lines 55 through 145). If
no case matches the key pressed, the switch() statement does nothing; the program sim—

ply displays a report of all current conditions at the selected driver (lines 146 through 148)

and then closes the loop back to issue a new prompt and get another keystroke.

TheMS-DOS Encyclopedia

OLYMPUS EX. 1010 - 224/1582

OLYMPUS EX. 1010 - 225/1582

w..--‘

Article 6: Interrupt—Driven Communicationsw

However, if the key pressed matches one of the cases in the switch() statement, the corre-
Sponding command is executed. The digits 1 (line 55) and 2 (line 61) select the driver to

be affected. The .7 key (line 105) causes the list of valid command keys to be diSplayed.
The q key (line 142) causes the program to terminate by calling exit(0) and is the only
exit from the infinite loop. The other valid keys all change one or more bits in the IOCTL

control string to modify corresponding attributes of the driver and then send the string to
the driver by using the MS-DOS IOCTL Write function (Interrupt 21H Function 44H Sub-

function 03H) Via function iocer (lines 160 through 166).

After the command is executed (except for the q command, which terminates operation

of CDVUTL and returns to MS—DOS command level, and the .7 command, which displays

the command list), the report() function (lines 172 through 253) is called (at line 148) to

display all of the driver’s attributes, including those just changed. This function issues an

IOCTL Read command (Interrupt 21H Function 44H Subfunction 02H, in lines 174 through

178) to get new status information into the control string and then uses a sequence of bit

filtering (lines 179 through 232) to translate the obtained status information into words for

display.

The special console I/O routines provided in Microsoft C libraries have been used exten-

sively in this routine. Other compilers may require changes in the names of such library

routines as getch or dosint as well as in the names of #include files (lines 6 through 9).

Each of the actual command sequences changes only a few bits in one of the 10 bytes of
the command string and then writes the string to the driver. A full-featured communica-

tions program might make several changes at one time —for example, switching from

7-bit, even parity, XON/XOFF flow control to 8-bit, no parity, without flow control to pre-

vent losing any bytes with values of 11H or 13H While performing a binary file transfer with

error-correcting protocol. In such a case, the program could make all required changes to

the control string before issuing a single IOCTL Write to put them into effect.

The Traditional Approach \

Because the necessary device driver has never been a part of MS-DOS, most communica-

tions programs are written to provide and install their own port driver code and remove it

before returning to MS—DOS. The second sample program package in this article illustrates

this approach. Although the major part of the package is written in Microsoft C, three

assembly-language modules are required to provide the hardware interrupt service rou—

tines, the exception handler, and faster video display. They are discussed first.

The hardware ISR module

The first module is a handler to service UART interrupts. Code for this handler, including

routines to install it at entry and remove it on exit, appears in CH1.ASM, shown in Figure
6-5.

Section 11: Programming in the MS—DOS Environment 21 5

OLYMPUS EX. 1010 - 225/1582

OLYMPUS EX. 1010 - 226/1582

 Part B: Programming for MS-DOS

1 TITLE CH1 .ASM
2 :

3 : ; CH1.ASM -— support file for CTERM.C terminal emulator
4 ; set up to work with COM2
5 ; for use with Microsoft C and SMALL model only...
6 :

7 _TEXT segment byte public 'CODE'
3 _TEXT ends

9 : _DATA segment byte public 'DATA'
10 : _DATA ends

11 1 CONST segment byte public 'CONST'
12 : CONST ends

13 : iBSS segment byte public 'B85'
14 : _BSS ends
15 :

1 6 : DGROUP GROUP CONST, _BSS, _DATA
17 1 assume CS :_TEXT, DS : DGROUP, ES :DGROUP, SS : DGROUP
18

19 I _TEXT segment
20

21 : public _i_m,_rdmdm,_Send_Byte,_wrtmdm,_set_mdm,_u_m
22 .

23 : bport EQU 02F8h ; COM2 base address, use 03F8H for COM1 _
24 : getiv EQU 350Bh ; COM2 vectors, use OCH for COM1
25 : putiv EQU 250Bh
26 : imrmsk EQU 00001000b ; COM2 mask, use 00000100b for COM1
27 : oiv_o DW 0 ; old int vector save space
28 : oiv_s DW 0
29 :

30 : bf_pp DW in_bf ; put pointer (last used)
31 : bf_gp DW in_bf ; get pointer (next to use)
32 : bf_bg DW in_bf ; start of buffer
33 : bf_fi DW b_last ; end of buffer
34 .

35 : in_bf DB 512 DUP (?) ; input buffer
36 :

37.: b_last EQU $; address just past buffer end
38 . '
39 : bd_dv DW 0417h ; baud rate divisors (0:110 bps)
40 :. DW 0300b ; code 1 = 150 bps
41 : DW 0180b ; code 2 = 300 bps
42 : DW 00C0h ; code 3 = 600 bps
43 : DW 0060h ; code 4 = 1200 bps
44 : DW 0030h ; code 5 = 2400 bps

\ 45 : DW 0018h ; code 6 = 4800 bps
46 : DW OOOCh ; code 7 = 9600 bps
47 z

48 : _set_mdm proc near ; replaces BIOS 'init' function
4 9 : PUSH BP ’
50 : MOV BP,SP ; establish stackframe pointer
51 : PUSH ES ; save registers

Figure 6-5. CHLASM (more)

216 TheAflEDOSEqukpafia

OLYMPUS EX. 1010 - 226/1582

OLYMPUS EX. 1010 - 227/1582

52
53
54
55
56
57
58
59
6O
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
B4
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102

PUSH
MOV
MOV
MOV

MOV
MOV
MOV
OUT
MOV
MOV
ROL
AND
MOV
ADD
MOV
MOV
OUT
MOV
MOV
OUT
MOV
AND
MOV
OUT
MOV
MOV
OUT
POP
POP
MOV
POP
RET

: tset_mdm endp

: _wrtmdm proc
_Send_Byte:

PUSH
MOV
PUSH
PUSH
MOV
MOV
MOV
MOV
MOV
OUT
MOV
MOV
CALL
JNZ
MOV

Figure 6-5. Continued.

DS

AX,CS
DS,AX
ES,AX
AH,[BP+4]
DX,BPORT+3
AL,80h
DX,AL
DL,AH
CL,4
DL,CL
DX,OOOO1110b
DI,OFFSET bd_dv
DI,DX
DX,BPORT+1
AL,[DI+1]
DX,AL
DX,BPORT
AL,[DI]
DX,AL
AL,AH
AL,00011111b
DX,BPORT+3
DX,AL
DX,BPORT+2
AL,1
DX,AL
DS
ES

SP,BP
BP

near

BP

BP,SP
ES
DS

AX,CS
DS,AX
ES,AX
DX,BPORT+4
AL,OBh
DX,AL
DX,BPORT+6
BH,30h
w_tmr
w_out

DX,BPORT+5

-

Article 6: Interrupt-Driven Communications

point them to CODE segment

get parameter passed by C
point to Line Control Reg
set DLAB bit (see text)

shift param to BAUD field

mask out all other bits

make pointer to true divisor
set to high byte first

put high byte into UART
then to low byte

now use rest of parameter
to set Line Control Reg

Interrupt Enable Register
Receive type only

restore saved registers

write char to modem
name used by main program

set up pointer and save regs

establish DTR, RTS, and OUTZ

check for on line, CTS

timed out
check for UART ready

Section II.- Programming in the MS—DOS Environment

OLYMPUS EX. 1010 - 227/1582

Ononfl

217

OLYMPUS EX. 1010 - 228/1582

 Part B; Programming for MS-DOS

103 : MOV BH, 20h
104 : CALL w_tmr
105 : JNZ w_out ; timed out

106 : MOV DX,BPORT ; send out to UART port
107 : Mov AL, [BP+4] ; get char passed from C
1.08 : OUT DX,AL
109 1 w_out: POP DS ; restore saved regs
1 1 O : POP ES

111 : MOV SP,BP
112 : POP BP
1 13 : RET

114 1 __wrtmdm endp
1 15

115 1 _rd.mdm proc near ; reads byte from buffer
1 17 : PUSH BP

118 1 MOV BP,SP ; set up ptr, save regs
119 : ' PUSH ES
120 : PUSH D5

121 : MOV AX, CS
122 : MOV DS,AX
123 : MOV ES,AX
124 : .MOV AX,OFFFFh ; set for EOF flag
125 1 MOV BX,bf_gp ; use "get" ptr I
126 1 CMP BX,bf_pp ; compare to "put" '
127 1 J2 nochr ; same, empty
128 : INC BX ; else char available
129 : CMP BX,bf_fi ; at end of bfr?
130 : JNZ noend ; no

131 2 MOV BX,bf_bg ; yes, set to beg
132 1 noend: MOV AL, [BX] ; get the char
133 = MOV bf_gp,BX ; update "get" ptr
134 1 INC AH ; zero AH as flag
135 1 nochr: POP DS ; restore regs
136 : POP ES

137 : MOV SP, BP
138 : POP BP
139 : RET

140 : _rdmdm endp
141 :

142 1 w_tmr proc near
143 1 MOV BL,1 ; wait timer, double loop
144 1 w_tm1: SUB CX,CX ; set up inner loop
145 : w__tm2: IN AL,DX ; check for requested response
146 : Mov AH,AL ; save what came in
147 2 AND AL,BH ; mask with desired bits

148 : CMP AL,BH ; then compare
149 : Jz w_tm3 ; got it, return with ZF set
150 1 LOOP w_tm2 ; else keep trying
151 : DEC BL ; until double loop expires
152 : JNZ w_tm1

153 : OR BH,BH ; timed out, return NZ

Figure 6-5. Continued. (more)

2 18 The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 228/1582

OLYMPUS EX. 1010 - 229/1582

154

‘155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

.174
' 175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

w_tm3:
w_tmr

RET

endp

Article 6; Interrupt—Driven Communications

; hardware interrupt service routine
rts_m:

nofix:

_i_m

im1:

CLl
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
POP
MOV
IN
MOV
INC
CMP
JNZ
MOV
MOV
MOV
MOV
OUT
POP
POP
POP
POP
POP
IRET

proc
PUSH
MOV

'PUSH
PUSH
MOV
MOV
MOV
MOV
MOV
OUT

MOV
IN
MOV
TEST
JNZ
CMP
JNZ
MOV
IN

Figure 6-5. Continued.

DS
AX
BX
CX
DX
CS
DS

DX,BPORT
AL,DX
BX,bf_pp
BX

BX,bf_fi
nofix

BX,bf_bg
[BX].AL
bf_pp,BX
AL,20h
20h,AL
DX
CX
BX
AX
DS

near
BP

BP,SP
ES
DS

AX,CS
DS,AX
ES,AX
DX,BPORT+1
AL,DFh
DX,AL

DX,BPORT+2
AL,DX
AH,AL
AL,1
im5

AH,O
im2

DX,BPORT+6
AL,DX

save all regs

set Ds same as CS

grab the char from UART

use "put" ptr
step to next slot
past end yet?
no

yes, set to begin
put char in buffer
update “put" ptr
send EOI to 8259 chip

restore regs

install modem service

save all regs used

set Ds,ES=cs

Interrupt Enable Reg
enable all ints now

clear junk from UART
read IID reg of UART
save what came in

anything pending?
no, all clear now
yes, Modem Status?
no

yes, read MSR to clear

Section II.- Programming in the MS-DOS Environment

OLYMPUS EX. 1010 - 229/1582

(more)

219

OLYMPUS EX. 1010 - 230/1582

Part B: Programming for MS-DOS__

205 : im2: CMP AH,2 ; Transmit HR empty?
206 : JNZ im3 ; no (no action needed)
207 : im3: CMP AH,4 ; Received Data Ready?
208 : JNZ im4 ; no
209 : MOV DX,BPORT ; yes, read it to Clear
210 : IN AL,DX
211 : im4: CMP AH,6 ; Line Status?
212 2 JNZ im1 ; no, check for more
213 : MOV DX,BPORT+5 ; yes, read LSR to clear
214 : IN AL,DX
215 : JMP im1 ; then check for more
216

217 : im5: MOV DX,BPORT+4 ; set up working conditions
218 : MOV AL,0Bh ; DTR, RTS, OUT2 bits
219 : OUT DX,AL
220 : MOV AL,1 ; enable RCV interrupt only
221 : MOV DX,BPORT+1
222 : OUT DX,AL
223 : MOV AX,GETIV ; get old int vector
224 : INT 21h

225 : MOV oiv_o,BX ; save for restoring later
226 : MOV oiv_s,ES

227 : MOV DX,OFFSET rts_m ; set in new one /
228 : MOV AX,PUTIV
229 : INT 21h

230 E IN AL,21h ; now enable 8259 PIC
231 : ‘ AND AL,NOT IMRMSK
232 : A OUT 21h,AL
233 : MOV AL,20h ; then send out an E01
234 : OUT 20h,AL
235 2 POP DS ; restore regs
236 : POP ES

237 : MOV SP,BP
238 : POP BP
239 : RET

240 : _i_m endp
241

242 : _u_m proc near ; uninstall modem service
243 : PUSH BP

244 : MOV BP,SPV ; save registers
245 2 IN AL,21h ; disable COM int in 8259
246 : OR AL,IMRMSK 1 '
247 : OUT 21h,AL
248 : PUSH ES
249 : PUSH D8

250 : MOV AX,CS ; set same as CS
251 : MOV DS,AX
252 : MOV ES,AX

253 : MOV‘ AL,0 ,- disable UART ints ’
254 : MOV DX,BPORT+1
255 : OUT DX,AL

Figure 6-5. Continued. (more)

220 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 230/1582

OLYMPUS EX. 1010 - 231/1582

Article 6: Interrupt—Driven Communications

256 : MOV DX,oiv_o ;'restore original Vector
' 257 : MOV DS,oiv_s

258 : MOV AX, PUTIV
259 : INT 21h

260 : PQP DS ; restore registers
‘261 : POP ES '
262 : MOV SP, BP
263 : POP BP
264 : RET

265 : _u_m endp
266 :
267 : _TEXT ends
268 :
269 : END

Figure 6-5. Continued.

The routines in CH1 are set up to work only with port COMZ; to use them with COMl, the

three symbolic constants BPORT (base address), GETIV, and PUTIV must be changed to

match the COMl values. Also, as presented, this code is for use with the Microsoft C small

memory model only; for use with other memory models, the C compiler manuals should

be consulted for making the necessary changes. See also PROGRAMMING IN THE

MS—DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS: Structure of an Application Program.

The parts of CH1 are listed in Table 6—11, as they occur in the listing. The leading under-

score that is part of the name for each of the six functions is supplied by the C compiler;

within the C program that calls the function, the underscore is omitted.

Table 6-11. CH1 Module Functions.

Lines Name Description

1-26 . Administrative details.
27—46 Data areas. ‘

48—84 . _set_mdm Initializes UART as specified by parameter passed
from C.

86— 1 14 _wrtmdm Outputs character to UART.

87 wSemLByte Entry point for use if flow control is added to system.

1 16— 140 _rdmdm Gets character from buffer where ISR put it, or signals
that no character available.

142— 155 w__tmr Wait timer; internal routine used to prevent infinite

wait in case of problems.

157— 182 rts_m Hardware ISR; installed by _Lm and removed by
_u_m.

184—240 _ i_m Installs ISR, saving old interrupt vector.

242 —265 _u_m Uninstalls ISR, restoring saved interrupt vector.

Section 11: Programming in the MS—DOS Environment 221

OLYMPUS EX. 1010 - 231/1582

OLYMPUS EX. 1010 - 232/1582

Part B: Programming for MS-DOS

For simplest operation, the ISR used in this example (unlike the device driver) services
only the received-data interrupt; the other three types of IRQ are disabled at the UART.

Each time a byte is received by the UART, the ISR puts it into the buffer. The_rdmdm

code, when called by the C program, gets a byte from the buffer if one is availablle not,

__rdmdm returns the C EOF code (—1) to indicate that no byte can be obtained.

To send a byte, the C program can call either _Send_Byte 0r _wrtmdm; in the package

as shown, these are alternative names for the same routine. In the more complex program
from which this package was adapted, _Send_Byte is called when flow control is desired

and the flow-control routine calls _wrtmdm. To implement flow control, line 87 should be

deleted from CH1.ASM and a control function named Send_Byte() should be added to the

main C program. Flow—control tests must occur in Send_Byte(); _wrlmdm performs the

actual port interfacing. '

To set the modem baud rate, word length, and parity, _set_ mdm is called from the C

program, with a setup parameter passed as an argument. The format of this parameter is

shown in Table 6-12 and is identical to the IBM BIOS Interrupt 14H Function 00H

(Initialization).

Table 6-12. se't_mdm() Parameter Coding.

Binary Meaning

00010000: Set to 110 bps

00119000: Set to 150 bps

Olexxxx Set to 300 bps

01 1xxxxx Set to 600 bps

100m Set to 1200 bps
101XXXXX Set to 2400 bps

110m Set to 4800 bps

1 llxxxxx Set to 9600 bps

XXXXOXXX No parity

XXXOlXXX ODD Parity

xxxl 1XXX * EVEN Parity

XXXXXOXX 1 stop bit

XXXXXIXX 2 stop bits (1.5 if WL = 5)

XXXXXXOO Word length = 5

XXXXXXOl Word length = 6

mocxxlo Word length = 7

XXXXXXI 1 Word length = 8

The CH1 code provides a 512-byte ring buffer for incoming data; the buffer size should be

adequate for reception at speeds up to 2400 bps without loss of data during scrolling.

222 The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 232/1582

OLYMPUS EX. 1010 - 233/1582

Article 6: Interrupt—Driven Communications

The exception-handler module

For the ISR handler of CH1 to be usable, an exception handler is needed to prevent return

of control to MS—DOS before _u_m restores the ISR vector to its original value. If a pro-

gram using this code returns to MS-DOS without calling_u_ m, the system is virtually cer-

tain to crash when line noise causes a received—data interrupt and the ISR code is no longer
in memory.

A replacement exception handler (CH1A.ASM), including routines for installation, access,

and removal, is shown in Figure 6-6. Like the ISR, this module is designed to work with

Microsoft C (again, the small memory model only). '

Note: This module does not provide for fatal disk errors; if one occurs, immediate restart-
ing is necessary. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CUSTOMIZING

MS-DOS: Exception Handlers.

\D
10 :
11
12

14

17
18 :
19 :
20 :
21

23
24

27
28

31
32

OJ\IO'\U'IJ>WN_|
13 :

15 :
16 :

22‘:

25 :
26 :

29 p
30 :

33 .

TITLE CH1A.ASM

; CH1A.ASM —— support file for CTERM.C terminal emulator
; this set of routines replaces Ctrl-C/Ctrl—BREAK
; usage: void set_int(), rst_int();
; int broke(); /* boolean if BREAK */

_TEXT segment byte
_TEXT ends

_DATA segment byte
_DATA ends

CONST segment byte
CONST ends

_BSS segment byte
_BSS ends

DGROUP GROUP CONST, ,BSS,
ASSUME CS:_TEXT,

_DATA SEGMENT BYTE

OLDINT1B DD 0

_DATA ENDS

_TEXT SEGMENT

myint1b:

for use with Microsoft C and SMALL model only...

public

public

public

public

PUBLIC

'CODE'

'DATA'

'CONST'

'BSS'

ADATA

'DATA'

DS:DGROUP, ES:DGROUP, SS:DGROUP

; storage for original INT 1BH vector

PUBLIC _set_int,_rst_int,_broke

mov word ptr cs:brkflg,1Bh
iret

Figure 6-6. CH1A.ASM.

; make it nonzero

(more)

Section 11.- Programming in the MS-DOS Environment 223

OLYMPUS EX. 1010 - 233/1582

OLYMPUS EX. 1010 - 234/1582

Part B: Programming for MS-DOS

224

34
35
36
37
38

4O
41
42

44
45
46 .
47
48

50
51
52
53
54
55
56
57
58
59
60
61

'62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

39 .

43 .

49 '

: _TEXT

myint23:
mov
iret

brkflg dw

: _broke proc
xor

xchg
. ret

I _broke endp

word ptr cs:brkflg,23h

near

ax,ax

ax,cs:brkflg

_set_int proc near
mov

int
mov
mov

push
mov
mov

lea
mov

int
mov
mov

lea
mov

int
P0P
ret

: _set_int endp

push
lds
mov
int

P0P
ret

; _rst_int endp

ends

END

Figure 6-6. Continued.

The three functions in CHlA are _set_int, which saves the old vector value for Interrupt
lBH (ROM BIOS Control-Break) and then resets both that vector and the one for Interrupt
23H (Control-C Handler Address) to internal ISR code; __rst__z‘m, which restores the -

; make it nonzero

flag that BREAK occurred

returns 0 if no break

prepare to reset flag-
‘return current flag value

ax,351bh ; get interrupt vector for 1BH
21h ; (don’t need to save for 23H)
word ptr oldint1b,bx 4; save offset in first word
word ptr oldint1b+2,es ; save segment in second word

ds ; save our data segment
ax,cs ; set Ds to CS for now
ds,ax
dx,myint1b ; DS:DX points to new routine
ax,251bh ; set interrupt vector
21h

ax,cs ; set DS to cs for now
ds,ax
dx,myint23 ; DS:DX points to new routine
ax,2523h ; set interrupt vector
21h

ds ; restore data segment

. _rst_int proc near
ds

dx,oldint1b
ax,251bh
21h
ds

The MS—DOS Encyclopedia

save our data segment
DS:DX points to original
set interrupt vector

restore data segment
OLYMPUS EX. 1010 - 234/1582

OLYMPUS EX. 1010 - 235/1582

Article 6: Interrupt-Driven Communications

original value for the Interrupt 1BH vector; and_bro/ee, which returns the present value of
an internal flag (and always clears the flag, just in case it had been set). The internal flag is
set to a nonzero value in response to either of the revectored interrupts and is tested from

the main C program via the _brolee function.

The video display module

The final assembly—language module (CH2.ASM) used by the second package is shown

in Figure 6-7. This module provides convenient screen clearing and cursor positioning via
direct calls to the IBM BIOS, but this can be eliminated with minor rewriting of the rou-

tines that call its functions. In the original, more complex program (DT115.EXE, available

from DL6 in the CLMFORUM of CompuServe) from which CTERM was derived, this mod-
ule provided windowing capability in addition to improved display speed.

NNNNNNNNAd‘d‘ddAflQ \imm-wa—‘oxomdmcnwa—ono
29

31
32
33
34
35

(DQO‘UIuwaH

28 :

30 :

Figure 6- 7. CH2.ASM.

TITLE CH2.ASM

; CH2.ASM -- support file for CTERM.C terminal emulator
; for use with Microsoft C and SMALL model only...

I _TEXT segment byte public 'CODE'
1 _TEXT ends

: _DATA ‘ segment byte public 'DATA'
: _DATA ends

CONST segment byte public 'CONST'
CONST - ends

: _BSS segment byte public 'BSS'
: _BSS ends

: DGROUP GROUP CONST, _BSS, _DATA
assume CS:_TEXT, DS:DGROUP, ES:DGROUP, SS:DGROUP

: _TEXT segment

public __cls,__color,_;deol,__i_v,__key,__wrchr,__wrpos

atrib DB 0 ; attribute
: _colr DB 0 ; color

v_bas DW 0 ; video segment
v_ulc DW 0 ; upper left corner cursor
V_lrc DW 184Fh ; lower right corner cursor
v_col DW 0 ; current col/row

__key proc near ; get keystroke
PUSH BP

MOV AH,1 ; check status via BIOS
INT 1 6h

MOV AX, OFFFFh
JZ keyOO ; none ready, return EOF
MOV AH,O ; have one, read via BIOS

(more)

Section 11.- Programming in the MS-DOS Environment 225

OLYMPUS EX. 1010 - 235/1582

OLYMPUS EX. 1010 - 236/1582

Part B; Programming for MS-DOS

36 : INT

37 : keyOO: POP
38 : RET

39 : __key endp
40 :

41 : __wrchr proc
42 : PUSH
43 2 MOV
44 : MOV
45 : CMP
46 : JNB
47 : CMP
48 : JNZ
49 : DEC
50 : MOV
51 I CMP
52 2 JB
53 : JMP
54 :
55 : notbs: CMP
56_: JNZ
57 : MOV
58 : ADD
59 : AND
60 : MOV
61 : CMP
62 z ' JA
63 : JMP
64

65 : notht: CMP
66 : JNZ
67 : MOV
68 : INC
69 : CMP
70 : JBE
71 : CALL

72 : _ MOV
73 : noht1: MOV
74 : JMP
75 :
76 : notlf: CMP
77 : JNZ
78 : CALL
79 : JMP
80
81 : ck_cr: CMP
82 : JNZ
83 : MOV
84 : MOV
85 : JMP
86

Figure 6-7. Continued,

226 TheMS-DOS Encyclopedia

'BP

AL,byte ptr v_ulc

AL,OF8h

16h

near
BP

BP,SP
AL,[BP+4]
AL,’ '

prchr ; printing char, go do it
AL,8
notbs

BYTE PTR v_col ;

AL,byte ptr v_col

; get char passed by C

process backspace

nxt_c ; step to next column
norml

AL,9
notht

AL,byte ptr v_col ; process HTAB
AL,8 ' ;

byte ptr v_col,AL
AL,byte ptr v_lrc
nxt_c
SHORT norml

AL,0Ah
notlf

AL,byte ptr v_col+1
AL

AL,byte ptr v_lrc+1
noht1
scrol

AL,byte ptr v_lrc+1
byte ptr v_col+1,AL
SHORT

; process linefeed

norml

AL,OCh
ck_cr
__cls
SHORT

; process formfeed
ignor

AL,0Dh
ignor ;
AL,byte ptr v_ulc ;
byte ptr v_col,AL
SHORT norml

ignore all other CTL chars
process CR

Ononfl

OLYMPUS EX. 1010 - 236/1582

OLYMPUS EX. 1010 - 237/1582

87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

prchr:

nxt_c:

norml:

ignor:

__i_v

__wrpos

MOV-
PUSH
XOR
MOV
PUSH
MOV
PUSH
CALL
MOV
INC
MOV
CMP
JLE
MOV
PUSH
CALL
POP
MOV
PUSH
CALL
POP
CALL
MOV
POP
RET

endp

proc
PUSH
MOV
MOV
MOV
MOV
POP
RET

endp

proc
PUSH
MOV
MOV
MOV
MOV
MOV
MOV
PUSH
INT
POP
MOV
MOV
POP

Figure 6- 7. Continued.

AH,_colr
AX
AH,AH

Article 6: Interrupt—Driven Communications

; process printing char

AL,byte ptr v_col+1
AX

AL,byte ptr v_col
AX
wrtvr

SP,BP
BYTE PTR v_col ; advance to next column

AL,byte ptr v_col
AL,byte ptr V_lrc
norml

AL,0Dh
AX
__wrchr
AX

AL,OAh
AX
__wrchr
AX
set_cur
SP,BP
BP

near
BP

BP,SP
AX,0B000h
v_bas,AX
SP,BP
BP

near
BP

BP,SP
DH,[BP+4]
DL,[BP+6]
v_col,DX
BH,atrib
AH,2
BP
10h
BP

AX,v_col
SP,BP
BP

; went off end, do CR/LF

; establish video base segment

mono, B800 for CGA
; could be made automatic

; set cursor position

; row from C program
; col from C program
; cursor position
; attribute

; return cursor position

Section 11: Programming in the MS—DOS Environment

OLYMPUS EX. 1010 - 237/1582

MI..—

Onony

227

OLYMPUS EX. 1010 - 238/1582

Part B: Programming for MS-DOS

228

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

__wrpos

set_cur

set_cur

__color

__color

scrol

scrol

__cls

RET»
endp

proc
PUSH
MOV
MOV
MOV
MOV
PUSH
INT
POP
MOV
MOV
POP
RET

endp

proc
PUSH
MOV
MOV
MOV
MOV
SHL
AND
OR
MOV
XOR
MOV
POP
RET

endp

proc
PUSH
MOV
MOV
MOV
MOV
MOV
MOV
PUSH
INT
POP
MOV
POP
RET

endp

proc

Figure 6—7. Continued.

The MS-DOS Encyclopedia

near
BP

BP,SP
Dx,v_col
BH,atrib
AH,2
BP
10h
BP

AX,v_col
SP,BP
BF

near
BP

BP,SP
AH,[BP+6]
AL,[BP+4]
CX,4
AH,CL
AL,0Fh
AL,AH
_colr,AL
AH,AH
SP,BP
BP

near
3?

BP,SP
AL,1
CX,v_ulc
DX,v_lrc
BH,_colr
AH,6
BP
10h
BP

SP,BP
.BP

near

I

I

set cursor to v_col

use where v_col says

_color(fg, bg)

background from C
foreground from C /

pack up into 1 byte
store for handler's use

scroll CRT up by one line

count of lines to scroll

use BIOS

clear CRT

(more)

OLYMPUS EX. 1010 - 238/1582

OLYMPUS EX. 1010 - 239/1582

Article 6: Interrupt-Driven Communications______________________—————_—__

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

; __cls

: ._deol

deol1:

deolZ:

__deol

wrtvr

PUSH
MOV
MOV
MOV

MOV
MOV
MOV
MOV
PUSH
INT
POP
CALL
MOV
POP
RET

endp

proc
PUSH
MOV
MOV
MOV
PUSH
MOV
XOR
PUSH
MOV

CMP
JA
PUSH
CALL
POP
INC
JMP

MOV
MOV
POP
RET

endp

proc
PUSH
MOV
MOV
MOV
MOV
MOV
MUL
XOR

Figure 6-7. Continued.

BP

139,5?
AL,O
CX,v_ulc
v_col,CX
DX,v_lrc
BH,_colr
AH,6
BP
10h
BP
set_cur

SP,BP
BP

near
BP

BP,SP
AL,‘ '
AH,_colr
AX

flags CLS to BIOS

set to HOME

use BIOS scroll up

cursor to HOME

 delete to end of line

set up blanks

AL,byte pt: v_col+1
AH,AH
AX

AL,byte ptr v_col

AL,byte pt: v_lrc
deolZ
AX
wrtvr
AX
AL
deol1

AX,v_col
SP,BP
BP

near
BP

BP,SP
DL,[BP+4]
DH,[BP+6]
BX,[BP+8]
AL,80
DH

DH,DH

r

I
r

i

set up row value

at RH edge
current location
write a blank

next column

do it again

return cursor position

write video RAM (col, row, char/atr)

set up arg ptr
column
row

char/atr
calc offset

Ononfl

Section 11: Programming in the MS-DOS Environment 229

OLYMPUS EX. 1010 - 239/1582

OLYMPUS EX. 1010 - 240/1582

Part B: Programming for MS-DOS

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

: wrtVr

: _TEXT

ADD
ADD
PUSH
MOV
MOV
MOV
MOV
STOSW
POP
MOV
POP
RET

endp

ends

END

Figure 6- 7. Continued.

The sample smarter terminal emulator: CTERM.C

Given the interrupt handler (CH1), exception handler (CHlA), and video handler (CH2), a ,

simple terminal emulation program (CTERM.C) can be presented. The major functions of p
the program are written in Microsoft C; the listing is shown in Figure 6-8.

(D\IO'\U'I-bkp)l\)—‘k
\O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

AX,DX
AX,AX
ES

DI,AX
AX,v_bas
ES,AX
AX,BX

ES

SP,BP
BP

/* Terminal Emulator

Jim Kyle, 1987
*
*
*

*/

#include
#include
#include

: #include
#include
#define
#define
#define
#define

#define
#define

#define

Uses files CH1, CH1A, and CH2 for MASM support...

(cterm.c)

<stdio.h>
<conio.h>
<stdlib.h>
<dos.h>

<string.h>
BRK 'C'-'@'

ESC '[‘—'@'
XON 'Q'—'@'
XOFF 'S'-'@'

True 1
False O

Is_Function_Key(C) ((C)

static char capbfr [4096];
static int wh,

WS;

Figure 6-8. CTERM. C.

230 The MS-DOS Encyclopedia

adjust bytes to words
save seg reg

set up segment

get the data
put on screen
restore regs

/* special console i/o */
/* misc definitions */
/* defines intdos() */

/* control characters */

== ESC)

/* capture buffer */ ,

(more)

OLYMPUS EX. 1010 - 240/1582

OLYMPUS EX. 1010 - 241/1582

Article 6: Interrupt—Driven CommunicationsW

25 . 7
26 : static int I,
27 ; waitchr = 0,
28 : vflag = False,

29 : capbpl.
30 ; capbc,
31 : Ch!
32 : Want_7_Bit = True,
33 ; ESC_Seq_State = 0; /* escape sequence state variable */
34 .
35 ; int _cx ,
36 3 ~CYI
37 : _atr = 0x07, /* white on black */
38 : _pag = 0,
39 ; oldtop = 0,
40 : oldbot = 0x184f;
41 .

42 : FILE * in_file = NULL; /* start with keyboard input */
43 ; FILE * cap_file = NULL;
44

45 : #include "cterm.h" /* external declarations, etc. */
46 .

47 : int Wants_To_Abort () /* Checks for interrupt of script */
48 : { return broke (1;
49 : 1
50 : void
51

52 ; main (argc, argv) int argc ; /* main routine */
53 ; char * argv [];
54 : (char * Cp.
55 : * addext ();
56 : if (argc > 1) /* check for script filename */
57 ; in_file = fopen (addext (argv [1], ".SCR"), "r");
58 : if (argc > 2) /* check for capture filename */
59 ; cap_file = fopen (addext (argv [2], ".CAP"), "w");
60 : set_int (); ' /* install CH1 module */
61 : Set_Vid (); /* get video setup */
62 : cls (); /* clear the screen */

63 ; cputs ("Terminal Emulator"); /* tell who's working */
64 : cputs ("\r\n< ESC for local commands >\r\n\n");
65 ; Want_7_Bit = True;
66 : ESC_Seq_State = 0;
67 ; Init_Comm (); /* set up drivers,.etc. */‘
68 : while (1) /* main loop */
69 : i if ((Ch = kb_file 0) > 0) /* check local */
70 1 { if (Is_Function_Key (Ch))
71 : (if (docmd () < 0) /* Command */
72 : break;
73 :)
74 : p . else

’ 75 Send_Byte (Ch & 0X7F); /* else send it */

Figure 6-8. Continued. Ononfl

Section 11.- Programming‘ in theMS-DOS Environment 231

OLYMPUS EX. 1010 - 241/1582

OLYMPUS EX. 1010 - 242/1582

 Part B: Programming for MS-DOS \

76 : 1
77 ; if ((Ch = Read_Modem 0) >= 0) /* check remote */
78 ; f if (Want_7_Bit)

79 '; Ch &= 0X7F; /* trim off high bit */
80 ; switch (ESC_Seq_State) /* state machine */
81 ; 1

82 ; case 0 : /* no Esc sequence */
83 ; switch (Ch)
84 z {
85 : case ESC : .. /* Esc char received */
86 ; ESC_Seq__State = 1;
87 : break;
88 :
89 : default

90 : if (Ch == waitchr) /* wait if required */
91 : waitchr = O;
92 ; if (Ch == 12) /* clear screen on FF */
93 : cls 0; '

94 : else >
95 ; if (Ch != 127) /* ignore rubouts */
96 : { putchx ((char)’ Ch 1; /* handle all others */
97 : put_cap ((char) Ch);

98 : 1 . 1
99 z 1

100 : break;-
101 :

102 : case 1 : /* ESC -- process any escape sequences here */
103 : switch (Ch)
104 : ' (
105 : case 'A' : /* VT52 up */
106 : ; /* nothing but stubs here */
107 : ESC_Seq_State = 0;
108 : break;
109 .
110 : case 'B' : /* VT52 down */
111 z i

112 : Esc_Seq_State = O;
113 : break;
114 .

115 ; case 'c' : /* VT52 left */
116 : i

117 1 ESC_Seq_State = 0;
118 : break;
119 :

120 : case 'B' : /* VT52 right */
121 : i

122 : ESC_Seq_state = 0;
123 : break;
124 : ’
125 : case 'E' : /* VT52 Erase CRT */

126 : ClS U; /* actually do this one */

Figure 6-8. Continued. (more)

232 The MS-DOSEncyclopedia

OLYMPUS EX. 1010 - 242/1582

OLYMPUS EX. 1010 - 243/1582

127 : / ESC_Seq_State = 0;

'128 : break;
129

130 : case 'H' : /* VT52 home cursor */
131 : . locate (0, 0);
132 : ESC_Seq_State =-0;
133 : break;
134 .

135 : case 'j' : /* VT52 Erase to EOS */
136 : deos ();
137 : ESC_Seq_State = 0;
138 : break;
139 .

140 ; case ' [' : /* ANSI.SYS — VT1OO sequence */
141 ; ESC_Seq_State = 2;
142 : break;
143 :
144 : default
145 : putchx (ESC); /* pass thru all others */
146 : putchx ((char) Ch);
147 : Esc_Seq_State = 0;
148 : }
149 : break;
150 . ,

151 : case 2 : /* ANSI 3.64 decoder */
152 : ESC_Seq_State = O; > /* not implemented */
153 :)
154 :) .
155 : if (broke ()) /* check CH1A handlers */
156 : (cputs ("\r\n***BREAK***\r\n");
157 : break;
158 :)

159 : 1 /* end of main loop */
160 : if (cap_file) /* save any capture */

k 161 : cap_flush ();
162 : Term_Comm (); /* restore when done */
163 : rst_int (); /* restore break handlers */
164 : exit (0); /* be nice to MS-DOS */
165 :)
166 .

167 : docmd () /* local command shell */
168 : 1 FILE * getfil ();
169 : int wp;
170 : wp = True;
171 : if (! in_file ii vflag]

172 : cputs ("\r\n\tCommand: "); /* ask for command */
173 : else

174 : wp = False;

175 : Ch = toupper (kbd_wait ()1; /* get response - */
176 : if (wp)
177 : putchx ((char) Ch);

Figure 6-8. Continued. (more)

Section 11- Programming in the MS—DOS Environment 253

OLYMPUS EX. 1010 - 243/1582

OLYMPUS EX. 1010 - 244/1582

'11

Part B: Programming for MS-DOS

178 : switch (Ch)
179 : 1
180 : case 'S'
181 : if (WP)
182 ; cputs ("low speed\r\n");
183 : Set_Baud (300 1;
184 : break;
185
186 ; case 'D'
187 : if (WP)
188 : cputs ("elay (1-9 sec): ");
189 ; Ch = kbd_wait ();
190 : if (WP)
191 ; putchx ((char) Ch);

192'; Delay (1000* (Ch~ '0' 1),-
193 : if (WP)
194 : putchx ('\n');
195 : break;_
196 .
197 : case 'E'
198 : I if (wp)
199 : Cputs ("ven Parity\r\n");
200 ; Set_Parity (2);
201 : break;
202 .
203 ; case 'F'
204 : if (WP)
205 : cputs ("ast speed\r\n");
206 ; Set_Baud (1200);
207 : break;
208 .
209 : case 'H'
210 : if (wp)
211 : (cputs ("\r\n\tVALID COMMANDS:\r\n"),-
212 : cputs ("\tD = delay 0—9 seconds.\r\n");

213 ; cputs ("\tE = even parity.\r\n");
214 : cputs ("\tF = (fast)
215 : cputs ("\tN'= no parity.\r\n");
216 : . cputs ("\tO = odd parity.\r\n");
217 : cputs ("\tQ = quit, return to DOS.\r\n");
218 : cputs (I'\tR = reset modem.\r\n" 1;
219 : cputs ("\tS = (slow) 300—baud.\r\n");
220 : cputs ("\tU = use script file.\r\n");
221 : cputs ("\tv = verify file input.\r\n");
222 : cputs ("\tW = wait for char."):
223 : 1
224 : break;
225 .
226 : case 'N' .
227 : if (wp)

Figure 6-8. Continued.

234 TheMS-DOSEncyclopedia

/* and act on it */

1200-baud.\r\n");

(more)

OLYMPUS EX. 1010 - 244/1582

OLYMPUS EX. 1010 - 245/1582

\

228 : cputs ("o Parity\r\n");
229 : Set_Parity (1);
230 : break;
231 .

232 : case '0(.
233 : if (wp)
234 : cputs ("dd Parity\r\n");
235 : Set_Parity (3);
236 : break;
237 .
238 : case 'R' _
239 : if (wp)

24o : cputs ("ESET Com'm Port\r\n");
241 : Init_Comm ();
242 : break;
243 .
244 : case 'Q'
245 : if (wp)
246 : cputs (" = QUIT Command\r\n");
247 : Ch = (- 1);
248 : break;
249 .
250 : case 'U' .
251 1 if (in_file && I vflag)

252 : .; putchx ('U');
253 : cputs ("se file: ");
254 : getfil ();
255 : Cputs ("File ");
256 ; cputs (in_file ? "Open\r\n" : "Bad\r\n");
257 : waitchr = O;
258 : break;
259 .
260 : case 'V' .

261 : if (wp) ‘
262 : (cputs ("erify flag toggled ");
263 : cputs (vflag ? "OFF\r\n" : "ON\r\n");
264 :)
265 ; vflag = vflag ? False : True;
266 : break;
267
268 : case 'W' .

269 : ' if (wp)
270 : cputs ("ait for: <");
271 : waitchr = kbd_wait ();
272 : if (waitchr == ' ')
273 2 » waitchr = O;
274 : if (WP)
275 : (if (waitchr)
276 : putchx ((char) waitchr);
277 : else
278 z . cputs ("no wait");

Figure 6-8. Continued. (more)

Section IL Programming in the MS-DOS Environment 255

OLYMPUS EX. 1010 - 245/1582

OLYMPUS EX. 1010 - 246/1582

Pan B: Programming for MS«DOS

279 :
280
281
282
283 z
284
285 z
286
287
288
289 :
290
291
292
293 :
294
295 :
296 z
297
298
299
300
301
302 :
303 :
304 :
305 :
306 :
307 :
308 :
309 :
310
311

318
319 :
320 z
321
322 :
323 :

‘324 :
325 '
326 :
327 :
328
329 z

312 z
313 :
314 :
315 :
316 :
317 :

cputs (">\r\n");
)

break;

default

if (wp)
{ cputs ("Don't know ");

putchx ((char) Ch);
cputs ("\r\nUse 'H' command for

)
Ch= '?',-

)
if (wp) /*

("\r\n[any key]\r");
(Read_Keyboard () ==

{ cputs

while EOF) /*‘

)
return Ch ;

: kbdlwait () /*
(int c :

while ((c = kb_file () == (- 1))

return C & 255;

kb_file () /*
1 int c ;

if (in_file) /*
(c = Wants_To_Abort (); /*

if (waitchr && ! c)
c = (— 1); /*

else

if (d H (c = getc (in_file))
(fclose (in_file);

cputs
in_file NULL;
waitchr O;

(-1);

II

c =

}
else

if (c == '\n') /*
C = (- 1);

if (c == '\\') /*
c = esc ()i

if (vflag && c !=
(putchx ('(');

putchx ((char) c);
putchx ('1');

(- 1)) /*

)

Figure 6—8. Continued.

236 The MS-DOSEncyclopedia

== EOF :1 c == 26)

("\r\nScript File Closed\r\nW):

Help.\r\n");

if window open..._ */

wait for response */

wait for input */

input from kb or file */

USING SCRIPT */

use first as flag */

then for char */

ignore LFs in file */

process Esc sequence */

verify file char 1 */

(more)

OLYMPUS EX. 1010 - 246/1582

OLYMPUS EX. 1010 - 247/1582

Article 6: Interrupt~Driven Communications

330 z)

331 : else V /* USING CONSOLE */
332 : c = Read_Keyboard (); /* if not using file */
333 : return (c);
334 : }
335 -

336 : esc () /* script translator */
337 : (int c ;

338 : c = getc (in_file); /* control chars in file */
339 : switch (toupper (C))
340 : (
341 : case 'E'

342 : c = ESC;
343 : break;
344 : ~
345 : case ’N'
346 : c =-'\n';
347 : break;
348 .
349 : case 'R' .
350 : c = '\r';
351 : break;
352
353 : case 'T'
354 : c = '\t';
355 : break;
356 :
357 : case 'A' .

358 : c = getc (in_file) & 31;
359 : break;

360':)
361 : return (c);
362 : }
363 -

364 : FILE * getfil ()
365 :_(char fnm [20];
366 3 getnam (fnm, 15); /* get the name */
367 : if (l (strchr (fnm, '.')N
368 : strcat (fnm, ".SCR");
369 : return (in_file = fopen (fnm, "r“));
370 : }
371 :

372 : void getnam (b, s) char * b; /* take input to buffer */
373 : int 5 ;
374 : (while (s -- > 0)
375 : .{ if ((* b = (char) kbd_wait ()) != '\r'
376 : putchx (* b ++);
377 : else

378 : break ;
379 :)

380 : putchx ('\n');

Figure 6—8. Continued. (more)

Section 11- Programming in the MS—DOS Environment 237

OLYMPUS EX. 1010 - 247/1582

OLYMPUS EX. 1010 - 248/1582

Part B: Programming for MS-DOS \

381 : * b = 0;
382 :)
383 :

384 : char * addext (b, /* add default EXTension */
385 : e) char * b,
386 : * e;
387 : (static char bfr [20];
388! if (strchr (b, '.'))
389 : return (b);

390 : strcpy (bfr, b);
391 : strcat (bfr, e);
392 : return (bfr);
393 : }
394 ‘

395 t void put_cap (c) char c ;
396 : (if (cap_file && c != 13) /* strip out CR5 */
397 : fputc (c, cap_file); /* use MS—Dos buffering */
398 z)
399 '

400 = void cap_flush () /* end Capture mode */
401 : (if (cap_file)
402 : { fclose (cap_file);

403 2 cap_file = NULL; ,
404 1 cputs ("\r\nCapture file closed\r\n");
405 :)
406 : }
407 :

408 t /* TIMER SUPPORT STUFF (IBMPC/MSDOS) */

409 = static long timr; /* timeout register */
410 ‘

411 2 static union REGS rgv ;
412

413 : long getmr U
414 : (long now ; /* msec since midnite */
415 I rgv.x.ax = Ox2c00;
416 : intdos (& rgv, & rgv);
417 I now = rgv.h.ch; /* hours */
418 : now *= 60L; /* to minutes */

419 : now += rgv.h.cl; /* plus min */
420 2 now *= 60L; /* to seconds */

421 : now += rgv.h.dh; /* plus sec */
422 : now *=1OOL; /* to 1/100 */
423 2 now += rgv.h.dl; /* plus 1/100 */
424 I return (10L * now); /* msec value */

425 :) '
426

427 t void Delay (n) int n ; /* sleep for n msec */
428 :'{ long wakeup ;
429 5 ' wakeup = getmr () + (long) n; /* wakeup time */ '
430 : while (getmr () < wakeup)
431 : ; /* now sleep */

Figure 6-8. Continued. (more)

238 TheMS-DOSEncyclopedz‘a

OLYMPUS EX. 1010 - 248/1582

OLYMPUS EX. 1010 - 249/1582

432 z ;
433

434 I void Start_Timer (n) int n ;
getmr () + (long) n * 1000L;435 i (timr

436 :)
437

438 : Timer_Expir
439 : (return (
440 : }
441 .

442 = Set_Vid 0
443 I (_i_v 0;

ed ()
getmr

/*

Article 6: Interrupt-Driven CommunicationsW

/* set timeout for n sec

if timeout return 1 else return 0
() > timr);

/* initialize video
444 3 return 0;

‘44s :)
446 :

447 : void locate (row, col) int row ,
448 2 col;

449 z (_cy = row % 25;
450 1 _cx = col % 80;

451 : _wrpos (row, col); /* use ML from CH2.ASM
452 :)
453 z

454 3 void deol ()
455 = (_deol (); /* use ML from CH2.ASM
456 :) '
457

458 2 void deos ()
459 : { deol ();.
460 2 if (_cy < 24) /* if not last, clear
461 : (rgv.x.ax = 0x0600;
462 1 rgv.x.bx = (_atr << 8);
463 : rgv.x.cx = (_cy + 1) << 8?
464 : ' rgV.x.dx = 0x184F;
465 : int86 (0x10, & rgv, & rgv);
466 :)
467 = locate (_cy, _cx };
468 z)
469

470 2 void cls ()
471 : { _cls ();
472 :)
473

474 1 void cursor

475 : (rgv.x.cX
476 : rgv.x.aX
477 : int86 (o
478 :)
479

480 2 void revvid

481 z (if (yn)
482 :’ _atr =

Figure 6-8. Continued.

(yn) int yn ;
= yn ? 0X0607
= 0x0100;

X10, & rgv,

/* use ML

0x2607; /* ON/OFF

St rgv);

(yn) int yn ;

_color (8, 7); /* black on white

*/

*/

Onony

Section 11: Programming in the MS-DOSEnvironment 239

OLYMPUS EX. 1010 - 249/1582

OLYMPUS EX. 1010 - 250/1582

 Part B: Programming for MS—DOS

483 : else

484 : _atr = _color (15, 0); /* white on black */
485 :)
486

487 : putchx (c) char 0 ; /* put char to CRT */
488 : { if (c == '\n')
489 : putch ('\r');
490 : putch (c)i
491 : return c ;
492 :)
493 :

494 : Read_Keyboard () /* get keyboard character
495 ' - returns —1 if none present */
496 : { int c ;
497 : if (kbhit ()) /* no Char at all */
498 : return (getch ());
499 : return (EOF);
500 : 1
501 .

502 : /* MODEM SUPPORT */
503 : static char mparm,
504 : wrk [80 J;
505 '

506 : void Init_Comm () /* initialize comm port stuff */
507 : (static int ft = O; /* firstime flag */
508: if(ft++==0)

509 : ' i__m u,-
510 : Set_Parity (1); /* 8,N,1 */
511 : Set_Baud (1200); /* 1200 baud */
512 :) '
513 :

514 : #define B1200 0x80 /* baudrate codes */
515 2 #define B300 0x40
516

517 : Set_Baud (n 1 int n ; /* n is baud rate */
518:{if(n==300) ‘
519 : mparm = (mparm & 0x1F) + B300;
520 : else

521 : if (n == 12001

522 : mparm = (mparm & 0x1F) + B1200;
523 : else

524 : return 0; /* invalid speed v */
525 : sprintf (wrk, "Baud rate %d\r\n", n);
526 i cputs (wrk);
527 : set_mdm (mparm);
528 : return n ;
529 :)
530 :

531 : #define PAREVN 0x18 /* MCR bits for commands */ ’
532 : #define PARODD 0x10
533 : #define PAROFF 0x00

Figure 6-8. Continued. (more)

240 The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 250/1582

OLYMPUS EX. 1010 - 251/1582

Article 6: Interrupt—Driven CommunicationsW

534 : #define STOPZ 0x40
535 : #define WORDS 0x03
536 : #define WORD7 0x02
537 : #define WORD6 0x01
538 :

539 : Set_Parity (n) int n ; /f n is parity code *7
540 : (static int mmode; '
541 : if (n ==)

542 : mode = (WORDS : PAROFF); V /* off */
543 : else

544 : if (n == 2)

545 : mmode = (WORD7 : PAREVN); /* on and even */
546 : else

547 2 if (n == 3) .
548 = mmode = (WORD7 : PARODD); /* on and odd */
549 : else

550 : return 0; /* invalid code */
551 : mparm = (mparm & OxEO) + mmode;

552 : sprintf (wrh, "Parity is %s\r\n", (n == 1 ? "OFF"
553 : (n == 2 ? "EVEN" 2 "ODD")));
554 : cputs (wrk);
555 : set_mdm (mparm);
556 : return n ;
557 :)
558 '

559 : Write_Modem (c) char c ; /* return 1 if ok, else 0 */
560 : (wrtmdm (c);

561 : return (1); /* never any error */
562 :)
563 :

564 : Read_Modem ()
565 : (return (rdmdm (H; /* from int bfr */
566 : l -
567 -

568 : void TermnComm () /* uninstall comm port drivers . */
569 = (u_m i); '
570 :)
571

572 : /* end of cterm.c */

Figure 6-8. Continued.

CTERM features file-capture capabilities, a simple yet effective script language, and a

number of stub (that is, incompletely implemented) actions, such as emulation of the V152

and VT100 series terminals, indicating various directions in which it can be developed.

The names of a script file and a capture file can be passed to CTERM in the command line.

If no filename extensions are included, the default for the script file is .SCR and that for the

capture file is .CAP. If extensions are given, they override the default values. The capture

feature can be invoked only if a filename is supplied in the command line, but a script file

can be called at any time via the Esc command sequence, and one script file can call for
another with the same feature.

Section 11: Programming in the MS-DOSEnvironment 24 1

OLYMPUS EX. 1010 - 251/1582

OLYMPUS EX. 1010 - 252/1582

Part B: Programming for MS—DOS

242

The functions included in CTERM.C are listed and summarized in Table 6-13.

Table 6-13. CTERM.C Functions.

Lines Name

1— 5
7 — 1 1

12 —20

22 -—43

45

47—49 Wants_ T0_Abort()

52—165 mainO

167-— 297 docme

299— 304 lebd_wait()

306— 334 leb_file()

336—562 escO

364—370 getfiIO

372—382 gemamO

384— 595 addextO

395 — 598 put_cap()

400 —406 cap_flush()

408—41 1

41 3 —425 geter

427-432 DelayO
434—436 Start_TimerO

438—440 Timer;ExpiredO
442—445 Set_VidO

447-452 locateO

454— 456 019010

458—468 deosO

470—472 C150

474— 478 cursorO

480— 485 rewidO

487—492 putcth

TheMS-DOSEncyclopedia

Description

Program documentation.
Include files.

Definitions.

Global data areas.

External prototype declaration.

Checks for Ctrl-Break or Ctrl~C being pressed.

Main program loop; includes modern engine and

sequential state machine to decode remote
commands.

Gets, interprets, and performs local (console or

script) command.

Waits for input from console or script file.

Gets keystroke from console or script; returns EOF
if no character available.

Translates script escape sequence.

Gets name of script file and opens the file.

Gets string from console or script into designated
buffer. '

Checks buffer for extension; adds one if none

given.

Writes character to capture file if capture in effect.

Closes capture file and terminates capture mode if

capture in effect. I
Timer data locations.

Returns time since midnight, in milliseconds.

Sleeps n milliseconds.
Sets timer for 11 seconds.

Checks timer versus clock.

Initializes video data.

Positions cursor on display.
Deletes to end of line.

Deletes to end of screen.

Clears screen.

Turns cursor on or off.

Toggles inverse/normal video display attributes.

Writes char to display usingputchO (Microsoft C

library).

(more)

OLYMPUS EX. 1010 - 252/1582

OLYMPUS EX. 1010 - 253/1582

Article 6: Interrupt-Driven Communications

Table 6-13. Continued.

 Lines Name Description

494-500 Read_Keyboard() Gets keystroke from keyboard.
502—504 Modem data areas.

506—512 Init__Comm() Installs ISR and so forth and initializes modem.
514—515 Baud-rate definitions.

517—529 Set_BaudO Changes bps rate of UART.

531-537 Parity, WL definitions.

559—557 Set_Parity() Establishes UART parity mode.
559—562 Write_Modem() Sends character to UART.

564—566 Read_ModemO Gets character from ISR’s buffer.

568—570 Term_Comm() Uninstalls ISR and so forth and restores original
vectors.

'For communication with the console, CTERM uses the special Microsoft C library func—

tions defined by CONIO.H, augmented with the functions in the CH2.ASM handler. Much

of the code may require editing if used with other compilers. CTERM also uses the func—

tion prototype file CTERM.H, listed in Figure 6-9, to optimize function calling within the
program.

/* CTERM.H - function prototypes for CTERM.C */
int Wants_ToiAhort(void);
void mainlint ,char * *);
int docmd(voidl;
int kbd_wait(void);
int kb_file(void);
int esc(void);
FILE *getfil(void);
void getnam(char *,int);‘
char *addext(char *,char *);
void put_cap(char);
void cap_flush(void);
long getmr(void);
void Delay(int);
void Start_Timer(int);
int Timer_Expiréd(void);
int Set_vid(void);
void locate(int ,int);
void deol(void);
void deos(void);
void cls(void);
void cursor(int);
void revvid(int);
int putchx(char);

IEgureGEQ C7EFWIIL . Ononfl

Section II- Programming in the MS—DOS Environment 243

OLYMPUS EX. 1010 - 253/1582

OLYMPUS EX. 1010 - 254/1582

Part B: Programming for MS-DOS___________________________________—_

int Read_Keyboard(void);
void Init_Comm(void);
int Set_Baud(int);
int Set_Parity(int);
int Write_Modem(char);
int Read_Modem(void);
void Term_Comm(void);

/* CH1.ASM functions — modem interfacing */
void i_m(void);
void set_mdm(int);
void wrtmdm(int);

void Send_Byte(int);
int rdmdm(void);

' void u_m(void);

/* CH1A.ASM functions — exception handlers */
void set_int (void);
void rst_int (void);
int broke (void);

/* CH2.ASM functions — video interfacing */
void _i_v(void);
int _wrpos(int, int);
void _deol(void);
void _cls(void);
int _color(int, int);

Figure 6-9. Continued.

Program execution begins at the entry to main(), line 52. CTERM first checks (lines 56

thrOUgh 59) whether any filenames were passed in the command line; if they were,

CTERM opens the corresponding files. Next, the program installs the exception handler

(line 60), initializes the video handler (line 61), clears the display (line 62), and announces

its presence (lines 63 and 64). The serial driver is installed and initialized to 1200 bps and

no parity (lines 65 through 67), and the program enters its main modem-engine loop

(lines 68 through 159).

This loop is functionally the same as that used in ENGINE, but it has been extended to

detect an Esc from the keyboard as signalling the start of a local command sequence (lines

70 through 73) and to include a state-machine technique (lines 80 through 153) to recog-

nize incoming escape sequences, such as the VT52 or V'I‘lOO codes. To specify a local com-

mand from the keyboard, press the Escape (Esc) key, then the first letter of the local

command desired. After the local command has been selected, press any key (such as

Enter or the spacebar) to continue. To get a listing of all the commands available, press
Esc-H.

The leb_fz‘le() routine of CTERM (called in the main loop at line 69) can get its input from

either a script file or the keyboard. If a script file is open (lines 308 through 330), it is used

until EOF is reached or until the operator presses Ctrl—C to stop script-file input. Otherwise,

244 The MS-DOSEncyclopedia

OLYMPUS EX. 1010 - 254/1582

OLYMPUS EX. 1010 - 255/1582

Article 6: Interrupt-Driven Communications

input is taken from the keyboard (lines 331 and 332). If a script file is in use, its input is
echoed to the display (lines 325 through 329) if the V command has been given.

To permit the Esc character itself to be placed in script files, the backslash (\) character

serves as a secondary escape signal. When a backslash is detected (lines 323 and 324) in

the input stream, the next character input is translated according to the following rules:

Character Interpretation

E or e Translates to Esc.

N or n Translates to Linefeed.

R or r‘ Translates to Enter (CR).
T or t Translates to Tab.

A Causes the next character input to be converted into a control character.

Any other character, including another \, is not translated at all.

When the Esc character is detected from either the console or a script file, the (106me

function (lines 167 through 297) is called to prompt for and decode the next input charac-

ter as a command and to perform appropriate actions. Valid command characters, and the

actions they invoke, are as follows:

Command
Character Action

D Delay 0—9 seconds, then proceed. Must be followed by a decimal

digit that indicates how long to delay.

E Set EVEN parity.
F Set (fast) 1200 baud.

H Display list of valid commands.

N Set no parity. '

0 Set ODD parity.

Q Quit; return to MS-_DOS command prompt.
R Reset modem.

S Set (slow) 300 baud.

U Use script file (CTERM prompts for filename).

V Verify file input. Echoes each script—file byte.

W Wait for character; the next input character is the one that must be
matched.

Any other character input after an Esc and the resulting Command prompt generates the

message Don ’t lenowX (where X stands for the actual input character) followed by the

prompt Use ‘H’ commandforHelp.

Section 11- Programming in the MS-DOS Environment 245

OLYMPUS EX. 1010 - 255/1582

OLYMPUS EX. 1010 - 256/1582

Part B: Programming for MS-DOS

246

If input is taken from a script and the V flag is off, docme performs its task quietly, with
no output to the screen. If input is received from the console, however, the command let-

ter, followed by a descriptive phrase, is echoed to the screen. Input, detection, and execu-
tion of the local commands are accomplished much as in CDVUTL, by way of a large
switch() statement (lines 178 through 290).

Although the listed commands are only a subset of the features available in CDVUTL for

the device-driver program, they are more than adequate for creating useful scripts. The

predecessor of CTERM (DT115.EXE), which included the CompuServe B—Protocol file-

transfer capability but had no additional commands, has been in use since early 1986 to
handle automatic uploading and downloading of files from the CompuServe Information

Service by means of script files. In conjunction with an auto-dialing modem, DT115.EXE

handles the entire transaction, from login through logout, without human intervention.

All the bits and pieces of CTERM areput together by assembling the three handlers

with MASM, compiling CTERM with Microsoft C, and linking all four object modules into

an executable file. Figure 6-10 shows the complete sequence and also the three ways of
using the finished program.

Compiling:

C>MASM CH1 ; <Enter>
C>MASM CH1A; <Enter>
C>MASM CH2; <Enter>
C>MSC CTERM; <Enter>

Linking:

C>LINK CTERM+CH1+CH1A+CH2; <Enter>

Use:

(no files)

C>CTERM <Enter>

or

(script only) .

C>CTERM scriptfile <Enter>

OI'

C>CTERM scriptfile capturefile <Enter>

Figure 6-10. Putting CTERM together and using it.

' jim Kyle
Chip Rabinowitz

The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 256/1582

OLYMPUS EX. 1010 - 257/1582

Article 7: File and Record Management

Article 7

File and Record Management

The core of most application programs is the reading, processing, and writing of data

stored on magnetic disks. This data is organized into files, which are identified by name;

the files, in turn, can be organized by grouping them into directories. Operating systems

provide application programs with services that allow them to manipulate these files and

directories without regard to the hardware characteristics of the disk device. Thus, applica-

tions can concern themselves solely with the form and content of the data, leaving the

details of the data’s location on the disk and of its retrieval to the operating system.

The disk storage services provided by an operating system can be categorized into file

functions and record functions. The file functions operate on entire files as named
entities, whereas the record functions provide access to the data contained within files.

(In some systems, an additional class of directory functions allows applications to deal
with collections of files as well.) This article discusses the MS—DOS function calls that

allow an application program to create, open, close, rename, and delete disk files; read

data from and write data to disk files; and inspect or change the information (such as

attributes and date and time stamps) associated with disk filenames in disk directories.

See also PROGRAMMING IN THE MS—DOS ENVIRONMENT: STRUCTURE or MS-DOS:
MS—DOS Storage Devices; PROGRAMMING FOR MS-DOS: Disk Directories and Volume Labels.

Historical Perspective

Current versions of MS—DOS provide two overlapping sets of file and record management

services to support application programs: the handle functions and the file control block
(FCB) functions. Both sets are available through Interrupt 21H (Table 7-1). See SYSTEM
CALLS: INTERRUPT 21H. The reasons for this surprising duplication are strictly historical.

The earliest versions of MS-DOS used FCBs for all file and record access because CP/M,

which was the dominant operating system on 8—bit microcomputers, used FCBs. Microsoft

chose to maintain compatibility with CP/M to aid programmers in converting the many

existing CP/M application programs to the 16—bit MS—DOS environment; consequently,

MS—DOS versions 1.x included a set of PCB functions that were a functional superset of

those present in CP/M. As personal computers evolved, however, the FCB access method

did not lend itselfwell to the demands of larger, faster disk drives.

Accordingly, MS—DOS version 2.0 introduced the handle functions to provide a file and
record access method similar to that found in UNIX/XENIX. These functions are easier to

use and more flexible than their FCB counterparts and fully support a hierarchical (tree-
like) directory structure. The handle functions also allow character devices, such as the

Section II.- Programming in the MS-DOS Environment 247

OLYMPUS EX. 1010 - 257/1582

OLYMPUS EX. 1010 - 258/1582

Part B: Programming for MS—DOS

console or printer, to be treated for some purposes as though they were files. MS-DOS ver—

sion 3.0 introduced additional handle functions, enhanced some of the existing handle

functions for use in network environments, and provided improved error reporting for
all functions.

The handle functions, which offer far more capability and performance than the FCB

functions, should be used for all new applications. Therefore, they are discussed first in
this article.

Table 7-1. Interrupt 21H Function Calls for File and Record Management.

Handle FCB

Operation Function Function

Create file. SCH 16H

Create new file. SBH

Create temporary file. SAH

Open file. 3DH OFH
Close file. ’ SEH 10H

Delete file. 41H 15H
Rename file. 56H 17H

Perform sequential read. SFH 14H

Perform sequential write. 40H 1 5H
Perform random record read. 5FI-I 21H
Perform random record write. 40H 22H

Perform random block read. 27H
Perform random block write. 28H

Set disk transfer area address. 1AH .

Get disk transfer area address. ZFH

Parse filename. 29H

Position read/write pointer. 42H
Set random record number. 24H

Get file size. 42H 23H

Get/Set file attributes. 43H

Get/Set date and time stamp. 57H

Duplicate file handle. 45H
Redirect file handle. 46H

248 TheMS-DOSEncyclopedia

OLYMPUS EX. 1010 - 258/1582

OLYMPUS EX. 1010 - 259/1582

Article 7: File and Record Management

Using the Handle Functions

The initial link between an application program and the data stored on disk is the name of
a disk file in the form

drive:pat/A filenameext

where drive designates the disk on which the file resides, path specifies the directory
on that disk in which the file is located, and filenameext identifies the file itself. If drive

and/orpath is omitted, MS-DOS assumes the default disk drive and current directory.

Examples of acceptable pathnames include

C: \PAYROLL\ TAXESDAT

LETTERS\MEMO.TXT

BUDGETDAT

Pathnames can be hard-coded into a program as part of its data. More commonly, how—

ever, they are entered by the user at the keyboard, either as a command-line parameter or

in response to a prompt from the program. If the pathname is provided as a command-

line parameter, the application program must extract it from the other information in the

command line? Therefore, to allow a program to distinguish between pathnames and

other parameters when the two are combined in a command line, the other parameters,

such as switches, usually begin with a slash (/) or dash (—) character.

All handle functions that use a pathname require the name to be in the form of an ASCIIZ

' string— that is, the name must be terminated by a null (zero) byte. If the pathname is

hard-coded into a program, the null byte must be part of the ASCIIZ string. If the path-

name is obtained from keyboard input or from a command-line parameter, the null byte

must be appended by the program. See Opening an Existing File below.

To use a disk file, a program opens or creates the file by calling the appropriate MS-DOS

function with the ASCIIZ pathname. MS-DOS checks the pathname for invalid characters

and, if the open or create operation is successful, returns a 16-bit handle, or identification
code, for the file. The program uses this handle for subsequent operations on the file, such
as record reads and writes.

The total number of handles for simultaneously open files is limited in two ways. First, the
per—process limit is 20 file handles. The process’s first five handles are always assigned to

the standard devices, which default to the CON, AUX, and PRN character devices:-

Handle Service Default

0 Standard input Keyboard (CON)

1 Standard output Video display (CON)

2 Standard error Video display (CON)

3 Standard auxiliary First communications port (AUX)

4 Standard list First parallel printer port (PRN)

Section II- Programrrting in the MS—DOS Environment 249

OLYMPUS EX. 1010 - 259/1582

OLYMPUS EX. 1010 - 260/1582

Part B: Programming for MS-DOS

Ordinarily, then, a process has only 15 handles left from its initial allotment of 20; however,

when necessary, the 5 standard device handles can be redirected to other files and devices
or closed and reused.

In addition to the per—process limit of 20 file handles, there is a system-wide limit.

,MS-DOS maintains an internal table that keeps track of all the files and devices opened
with file handles for all currently active processes. The table contains such information as

the current file pointer for read and write operations and the time and date of the last write

to the file. The size of this table, which is set-when MS—DOS is initially loaded into memory,

determines the system-wide limit on how many files and devices can be open simulta-

neously. The default limit is 8 files and devices; thus, this system-wide limit usually
overrides the per-process limit.

To increase the size of MS-DOS’s internal handle table, the statement FILES=nnn can be

included in the CONFIG.SYS file. (CONFIGSYS settings take effect the next time the sys-
tem is turned on or restarted.) The maximum value for FILES is 99 in MS-DOS versions 2.x
and 255 in versions 3.x. See USER COMMANDS: CONFIG.SYS: FILES.

Error handling and the handle functions

When a handle—based file function succeeds, MS—DOS returns to the calling program with

the carry flag clear. If a handle function fails, MS—DOS sets the carry flag and returns an

error code in the AX register. The program should check the carry flag after each opera-
tion and take whatever action is appropriate when an error is encountered. Table 7-2 lists

the most frequently encountered error codes for file and record I/O (exclusive of network

operations).

Table 7-2. Frequently Encountered Error Diagnostics for File and Record

Management.

Code Error

02 File not found

03 Path not found

04 Too many open files (no handles left)
05 Access denied

06 , Invalid handle
1 1 Invalid format

12 Invalid access code

13 Invalid data

15 Invalid disk drive letter

17 . Not same device

18 No more files

The error codes used by MS—DOS in versions 5.0 and later are a superset of the MS—DOS
version 2.0 error codes. See APPENDIX B: CRITICAL ERROR CODES; APPENDIX C: EXTENDED

ERROR CODES. Most MS—DOS version 3 error diagnostics relate to network operations,

which provide the program with a greater chance for error than does a single-user system.

250 TheMS.DOS Encyclopedia

OLYMPUS EX. 1010 - 260/1582

OLYMPUS EX. 1010 - 261/1582

i Article 7: File and Record Management

, Programs that are to run in a network environment need to anticipate network problems.
For example, the server can go down while the program is using shared files.

Under MS—DOS versions 3.x, a program can also use Interrupt 21H Function 59H (Get
Extended Error Information) to obtain more details about the cause of an error after a

failed handle function. The information returned by Function 59H includes the type of
device that caused the error and a recommended recovery action.

Warning: Many file and record I/O operations discussed in this article can result in or be

affected by a hardware (critical) error. Such errors can be intercepted by the program if it

contains a custom critical error exception handler (Interrupt 24H). See PROGRAMMING

IN THE MS—DOS ENVIRONMENT: CUSTOMIZING MS-DOS: Exception Handlers.

Creating a file

MS-DOS provides three Interrupt 21H handle functions for creating files:

Function Name

SCH Create File with Handle (versions 2.0 and later)

SAH Create Temporary File (versions 5.0 and later)
SBH Create New File (versions 3.0 and later)

Each function is called with the segment and offset of an ASCIIZ pathnarne in the DS:DX

1 registers and the attribute to be assigned to the new file in the CX register. The possible
a ' attribute values are

Code Attribute

00H Normal file

01H Read-only file
02H Hidden file

04H System file

Files with more than one attribute can be created by combining the values listed above.
i For example, to create a file that has both the read-only and system attributes, the value

05H is placed in the CX register.

If the file is successfully created, MS-DOS returns a file handle in AX that must be used for

subsequent access to the new file and sets the file read/write pointer to the beginning of

the file; if the file is not created, MS-DOS sets the carry flag (CF) and returns an error code
in AX.

Function 3GB is the only file-creation function available under MS-DOS versions 2.x. It

must be used with caution, however, because if a file with the specified name already

exists, Function SCH will open it and truncate it to zero length, eradicating the previous

contents of the file. This complication can be avoided by testing for the previous existence

of the file with an open operation before issuing the create call.

Section 11: Programming in the MS-DOS Environment 25 1

OLYMPUS EX. 1010 - 261/1582

OLYMPUS EX. 1010 - 262/1582

Part B: Programming for MS-DOS

Under MS-DOS versions 3.0 and later, Function SBH is the preferred function in most cases
because it will fail if a file with the same name already exists. In networking environments,

this function can be used to implement semaphores, allowing the synchronization of pro-

grams running in different network nodes.

Function SAH is used to create a temporary work file that is guaranteed to have a unique

name. This capability is important in networking environments, where several copies of

the same program, running in different nodes, may be accessing the same logical disk

volume on a server. The function is passed the address of a buffer that can contain a drive

and/or path specifying the location for the created file. MS-DOS generates a name for the

created file that is a sequence of alphanumeric characters derived from the current time.

and returns the entire ASCIIZ pathname to the program in the same buffer, along with the

file’s handle in AX. The program must save the filename so that it can delete the file later, if

necessary; the file created with Function SAH is not destroyed when the program exits.

Example: Create a file named MEMO.TXT in the \LETTERS directory on drive C using

Function SCH. Any existing file with the same name is truncated to zero length and '

opened.

fname. db 'C:\LETTERS\MEMO.TXT',0
fhandle dw ?

mov dx,seg fname ; DS:DX = address of

mov ds,dx ; pathname for file }
mov dx,offset fname

xor cx,cx ; CX = normal attribute l
mov ah,3ch ; Function 3CH = create

int 21h ; transfer to MS—DOS i
jc error ; jump if create failed
mov fhandle,ax ; else save file handle

Example: Create a temporary file using Function SAH and place it in the \TEMP directory

on drive C. MS—DOS appends the filename it generates to the original path in the buffer

named fname. The resulting file specification can be used later to delete the file.

fname db 'C:\TEMP\' ; generated ASCIIZ filename
db 13 dup (0) ; is appended by MS-DOS

‘ fhandle dw ?

(more)

252 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 262/1582

OLYMPUS EX. 1010 - 263/1582

Article 7: File and Record Management——————-———————___—________———

mov dx,seg fname ; DS:DX = address of
mov ds,dx ; path for temporary file
mov dx,offset fname
xor cx,cx ; CX = normal attribute
mov ah,5ah ; Function BAH = Create

; temporary file
int 21h ; transfer to MS—DOS

jc error ; jump if create failed
mov fhandle,ax ; else save file handle

Opening an existing file

Function 3DH (Open File with Handle) opens an existing normal, system, or hidden file

in the current or specified directory. When calling Function SDH, the program supplies a

pointer to the ASCIIZ pathname in the DS:DX registers and a 1-byte access code in the AL

register. This access code includesvthe‘read/write permissions, the file—sharing mode, and
an inheritance flag. The bits of the access code are assigned as follows;

Bit(s) Description

0—2 Read/write permisSions (versions 2.0 and later)

3 , Reserved
4—6 File-sharing mode (versions 3.0 and later)

7 Inheritance flag (versions 5.0 and later)

The read/write permissions field of the access code specifies how the file will be used and

can take the following values:

Bits 0— 2 Description

000 _ Read permission desired
001 Write permission desired

010 Read and write permission desired

For the open to succeed, the permissions field must be compatible with the file’s attribute

byte in the disk directory. For example, if the program attempts to open an existing file

that has the read—only attribute when the permissions field of the access code byte is set to

write or read/write, the open function will fail and an error code will be returned in AX.

The sharing-mode field of the access code byte is important in a networking environment.

It determines whether other programs will also be allowed to open the file and, if so,

what operations they will be allowed to perform. Following are the possible values of the

file-sharing mode field:

Section 11': Programming in the MS—DOS Environment 255

OLYMPUS EX. 1010 - 263/1582

OLYMPUS EX. 1010 - 264/1582

Part B: Programming for MS-DOS

Bits 4—6 Description

000 Compatibility mode. Other programs can open the file and perform read or

write operations as long as no process specifies any sharing mode other than
compatibility mode.

001 Deny all. Other programs cannot open the file.

010 Deny write. Other programs cannot open the file in compatibility mode or

with write permission. _ ’

011 Deny read. Other programs cannot open the file in compatibility mode or with

read permission.

100 Deny none. Other programs can open the file and perform both read and

write operations but cannot open the file in compatibility mode.

When file—sharing support is active (that is, SHAREEXE has previously been loaded),

the result of any open operation depends on both the contents of the permissions and file-

sharing fields of the access code byte and the permissions and file—sharing requested by

other processes that have already successfully opened the file.

The inheritance bit of the access code byte controls whether a child process will inherit
that file handle. If the inheritance bit is cleared, the child can use the inherited handle to

access the file without performing its own open operation. Subsequent operations per-

formed by the child process on inherited file handles also affect the file pointer associated

with the parent’s file handle. If the inheritance bit is set, the child process does not inherit
the handle.

If the file is opened successfully, MS-DOS returns its handle in AX and sets the file read/
write pointer to the beginning of the file; if the file is not opened, MS-DOS sets the carry
flag and returns an error code in AX.

Example: Copy the first parameter from the program’s command tail in the program

segment prefix (PSP) into the array fname and append a null character to form an ASCIIZ

filename. Attempt to open the file with compatibility sharing mode and read/write access.

If the file does not already exist, create it and assign it a normal attribute.

cmdtail equ 80h ; PSP offset of command tail
fname db 64 dup (?)
fhandle dw ?

; assume that DS already
; contains segment of PSP

(more)

254 The Ms—Dos Encyclopedia

OLYMPUS EX. 1010 - 264/1582

OLYMPUS EX. 1010 - 265/1582

Article 7: File and Record Management-———————————————————————_____———————

; prepare to copy filename...
mov si,cmdtail ; DS:SI = command tail
mov di,seg fname ; ES:DI = buffer to receive
mov es,di ; filename from command tail
mov di,offset fname
cld ; safety first!

lodsb ; check length of command tail
or al,al
jz error ; jump, command tail empty

labell: ; scan off leading spaces
lodsb ; get next character
cmp al,20h ; is it a space?
jz labell ; yes, skip it

labe12:

cmp al,0dh ; look for terminator
jz label3 ; quit if return found
cmp al,20h
jz labe13 ' ; quit if space found
stosb ; else copy this character
lodsb ; get next character
jmp labelZ '

label3:

xor al,al ; store final NULL to
stosb ; create ASCIIZ string

; now open the file...
mov dx,seg fname ; DS:DX = address of
mov ds,dx ; pathname for file
mov dx,offset fname
mov ax,3d02h ; Function 3DH = open r/w
int 21h ; transfer to MS—DOS

jnc label4 ; jump if file found

cmp ax,2 ; error 2 = file not found
jnz error ; jump if other error

; else make the file...
xor cx,cx ; CX = normal attribute
mov ah,3ch ; Function SCH = create
int 21h ; transfer to MS—DOS

jc error ; jump if create failed

label4:

mov fhandle,ax ; save handle for file

Closing a file

Function SEH (Close File) closes a file created or opened with a file handle function. The

program must place the handle of the file to be closed in BX. If a write operation was per—

formed on the file, MS—DOS updates the date, time, and size in the file’s directory entry.

Section 11‘ Programming in the MS—DOS Environment 255

OLYMPUS EX. 1010 - 265/1582

OLYMPUS EX. 1010 - 266/1582

Part B: Programming for MS—DOS

Closing the file also flushes the internal MS-DOS buffers associated with the file to disk

and causes the disk’s file allocation table (FAT) to be updated if necessary.

Good programming practice dictates that a program close files as soon as it finishes

using them. This practice is particularly important when the file size has been changed, to

ensure that data will not be lost if the system crashes or is turned off unexpectedly by the

user. A method of updating the FAT without closing the file is outlined below under

Duplicating and Redirecting Handles.

Reading and writing with handles

Function 3FH (Read File or Device) enables a program to read data from a file or device

that has been opened with a handle. Before calling Function SFH, the program must set

the DS:DX registers to point to the beginning of a data buffer large enough to hold the

requested transfer, put the file handle in BX, and put the number of bytes to be read in CX.

The length requested can be a maximum of 65535 bytes. The program requesting the
read operation is responsible for providing the data buffer.

If the read operation succeeds, the data is read, beginning at the current position of the .
file read/write pointer, to the specified location in memory. MS-DOS then increments its

internal read/write pointer for the file by the length of the data transferred and returns

the length to the calling program in AX with the carry flag cleared. The only indication

that the end of the file has been reached is that the length returned is less than the length

requested. In contrast, when Function 3FH is used to read from a character device that is

not in raw mode, the read will terminate at the requested length or at the receipt of a car-

riage return character, whichever comes first. See PROGRAMMING IN THE MS—DOS
ENVIRONMENT: PROGRAMMING FOR Ms—Dos: Character Device Input and Output. If the

read operation fails, MS-DOS returns with the carry flag set and an error code in AX.

Function 40H (Write File or Device) writes from a buffer to a file (or device) using a handle
previously obtained from an open or create operation. Before calling Function 40H, the .

' program must set DS:DX to point to the beginning of the buffer containing the source data,

put the file handle in BX, and put the number of bytes to write in CX. The number of bytes
to write can be a maximum of 65535.

If the write operation is successful, MS-DOS puts the number of bytes written in AX and

increments the read/write pointer by this value; if the write operation fails, MS-DOS sets

the carry flag and returns an error code in AX.

Records smaller than one sector (512 bytes) are not written directly to disk. Instead,
MS-DOS stores the record in an internal buffer and writes it. to disk when the internal

buffer is full, when the file is closed, or when a call to Interrupt 21H Function ODH (Disk
Reset) is issued.

Note: If the destination of the write operation is a disk file and the disk is full, the only

indication to the calling program is that the length returned in AX is not the same as the

length requested in CX. Dis/efull is not returned as an error with the carry flag set.

A special use of the Write function is to truncate or extend a file. If Function 40H is called 2

with a record length of zero in CX, the file size will be adjusted to the current location .of '
the file read/write pointer.

256 The MS—DOSEncyclopedia

OLYMPUS EX. 1010 - 266/1582

OLYMPUS EX. 1010 - 267/1582

Article 7: File and Record Management

Example: Open the file MYFILEDAT, create the file MYFILE.BAK, copy the contents of
the .DAT file into the .BAK file using BIZ-byte reads and writes, and then close both files.

filel db 'MYFILE.DAT',0
file2 db 'MYFILE.BAK',0

handle1 dw ? ; handle for MYFILE.DAT
handle2 dw ? ; handle for MYFILE.BAK

buff db 512 dup (?) ; buffer for file I/O

; open MYFILE.DAT...
mov dx,seg file1 ; DS:DX = address of filename
mov ds,dx
mov dx,offset file1
mov ax,3d00h ; Function 3DH = open (read—only)
int 21h ; transfer to MS—DOS
jc error ; jump if open failed
mov handle1,ax ; save handle for file

; create MYFILE.BAK...
mov dX,offset file2 ; DS:DX = address of filename
mov cx,0 ; CX = normal attribute
mov ah,3ch ; Function 3CH = create
int 21h ; transfer to MS-DOS

jc error ; jump if create failed
mov handle2,ax ; save handle for file

loop: ; read MYFILE.DAT
mov dx,offset buff ; DS:DX = buffer address
mov cx,512 ; CX = length to read
mov bx,handle1 ; BX = handle for MYFILE.DAT

mov ah,3fh ; Function 3FH = read
lint 21h ; transfer to MS-DOS
jc error ; jump if read failed
or ax,ax ; were any bytes read?
jz _done ; no, end of file reached

; write MYFILE.BAK
mov dx,offset buff ; DS:DX = buffer address
mov cx,ax ; CX = length to write
mov bx,handle2 ; BX = handle for MYFILE.BAK
mov ah,40h ; Function 40H = write
int 21h ; transfer to MS—DOS

jc error ; jump if write failed
cmp ax,cx ; was write complete?
jne error ; jump if disk full
jmp loop ; continue to end of file

(more)

Section 11: Programming in the MS-DOS Environment 257

OLYMPUS EX. 1010 - 267/1582

OLYMPUS EX. 1010 - 268/1582

Part B: Programming for MS-DOS

done: ; now close files...
mov bx,handle1 ; handle for MYFILE.DAT
mov ah,3eh ; Function 3EH = close file
int 21h ; transfer to MS—DOS

jc error ; jump if close failed

mov bx,handle2 ; handle for MYFILE.BAK
mov ah,3eh ; Function 3EH = close file
int 21h ; transfer to MS-DOS

jc‘ error jump if close failed

Positioning the read/write pointer

Function 42H (Move File Pointer) sets the position of the read/write pointer associated

with a given handle. The function is called with a signed 32-bit offset in the CX and DX

registers (the most significant half in CX), the file handle in BX, and the positioning mode
in AL:

Mode Significance

00 Supplied offset is relative to beginning of file.

01 Supplied offset is relative to current position of read/write pointer.

02 Supplied offset is relative to end of file.

If Function 42H succeeds, MS—DOS returns the resulting absolute offset (in bytes) of the

file pointer relative to the beginning of the file in the DX and AX registers, With the most

significant half in DX; if the function fails, MS-DOS sets the carry flag and returns an error
code in AX.

Thus, a program can obtain the size of a file by calling Function 42H with an offset of zero

and a positioning mode of 2. The function returns a value in DX:AX that represents the

offset of the end-of—file position relative to the beginning of the file.

Example: Assume that the file MYFILEDAT was previously opened and its handle is

saved in the variable fhomdle. Position the file pointer 32768 bytes from the'beginning of
the file and then read 512 bytes of data starting at that file position.

fhandle dw ? ; handle from previous open
buff db 512 dup (?) ; buffer for data from file

(more)

258 TheMS-DOS Encyclopedia

OLYMPUS EX. 1010 - 268/1582

OLYMPUS EX. 1010 - 269/1582

mov cx,0
mov dx,32768
mov bx,fhandle
mov 31,0
mov ah,42h
int 21h

jc error

mov dx,offset buff
mov cx,512
mov bx,fhandle
mov ah,3fh
int 21h

jc error
cmp ax,512
jne error

Article 7: File and Record Management

- position the file pointer...
CX = high part of file offset
DX = low part of file offset
BX = handle for file

- AL = positioning mode
Function 42H = position
transfer to MS—DOS

jump if function call failed

now read 512 bytes from file
DS:DX = address of buffer
CX = length of 512 bytes

- BX = handle for file
Function 3FH = read
transfer to MS-DOS

jump if read failed
was 512 bytes read?
jump if partial rec. or EOF

W

Example: Assume that the file MYFILEDAT was previously opened and its handle is saved

in the variable fhandle. Find the size of the file in bytes by positioning the file pointer to

zero bytes relative to the end of the file. The returned offset, which is relative to the begin-

ning of the file, is the file’s size.

fhandle dw ?

mov cx,0
mov dx,0
mov bx,fhandle
mov al,2
mov ah,42h
int ' 21h-

jc error

Other handle operations

handle from previous open

position the file pointer
to the end of file...

CX = high part of offset

DX = low part of offset
BX = handle for file

- AL = positioning mode
Function 42H = position
transfer to MS-DOS

jump if function call failed

if call succeeded, DX:AX'
now contains the file Size

MS-DOS provides other handle-oriented functions to rename (or move) a file, delete a file,

read or change a file’s attributes, read or change a file’s date and time stamp, and duplicate
or redirect a file handle. The first three of these are “file-handle—like” because they use an

ASCIIZ string to specify the file; however, they do not return a file handle.

Section II.- Program'ming in the MS—DOS Environment

OLYMPUS EX. 1010 - 269/1582

259

OLYMPUS EX. 1010 - 270/1582

Part B: Programming for MS-DOS

Renaming a file

Function 56H (Rename File) renames an existing file and/or moves the file from one loca- .
tion in the hierarchical file structure to another. The file to be renamed cannot be a hidden

or system file or a subdirectory and must not be currently open by any process; attempting

to rename an open file can corrupt the disk. MS-DOS renames a file by simply changing its

directory entry; it moves a file by removing its current directory entry and creating a new
entry in the target directory that refers to the same file. The location of the file’s actual

data on the disk is not changed.

Both the current and the new filenames must be ASCIIZ strings and can include a drive

and path specification; wildcard characters (. and?) are not permitted in the filenames.

The program calls Function 56H with the address of the current pathname in the DS:DX

registers and the address of the new pathname in ES:DI. If the path elements of the two

strings are not the same and both paths are valid, the file “moves” from the source direc—

tory to the target directory. If the paths match but the filenames differ, MS-DOS simply

modifies the directory entry to reflect the new filename. .

If the function succeeds, MS-DOS returns to the calling program with the carry flag clear.

The function fails if the new filename is already in the target directory; in that case,

MS-DOS sets the carry flag and returns an error code in AX.

Example: Change the name of the file MYFILEDAT to MYFILE.OLD. In the same opera-

tion, move the file from the \WORK directory to the \BACKUP directory.

file1 db '\WORK\MYFILE.D‘AT‘ ,0
file2 db ' '\BACKUP\MYFILE.OLD',0

mov dx,seg filel ; DS:DX = old filename
mov ds,dx
mov es,dx
mov dx,offset file1
mov di,offset file2 ; ES:DI = new filename
mov ah,56h ; Function 56H = rename
int 21h ; transfer to MS-DOS

jc error . ; jump if rename failed

Deleting a file

260

Function 41H (Delete File) effectively deletes a file from a disk. Before calling the function,

a program must set the DS:DX registers to point to the ASCIIZ pathname of the file to be

deleted. The supplied pathname cannot specify a subdirectory or a read—only file, and the

file must not be currently open by any process.

The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 270/1582

OLYMPUS EX. 1010 - 271/1582

Article 7: File and Record Management

If the function is successful, MS-DOS deletes the file by simply marking the first byte of its
directory entry with a special character (OESH), making the entry subsequently unrecog-
nizable. MS—DOS then updates the disk’s FAT so that the clusters that previously belonged
to the file are “free” and returns to the program with the carry flag clear. If the delete

function fails, MS-DOS sets the carry flag and returns an error code in AX.

' The actual contents of the clusters assigned to the file are not changed by a delete opera-
tion, so for security reasons sensitive information should be overwritten with spaces or
some other constant character before the file is deleted with Function 41H.

Example: Delete the file MYFILE.DAT, located in the \WORK directory on drive C.

fname db ‘C:VNORK\MYFILE.DAT',O

mov dx,seg fname ; DS:DX = address of filename
mov ds,dx
mov dx,offset fname
mov ah,41h ; Function 41H = delete
int 21h ; transfer to MS-DOS

jc error ; jump if delete failed

Getting/setting file attributes

Function 45H (Get/Set File Attributes) obtains or modifies the attributes of an existing file.

Before calling Function 43H, the program must set the DS:DX registers to point to the _

ASCIIZ pathname for the file. To read the attributes, the program must set AL to zero; to set

the attributes, it must set AL to 1 and place an attribute code in CX. See Creating a File
above.

If the function is successful, MS-DOS reads or sets the attribute byte in the file’s directory

entry and returns with the carry flag clear and the file’s attribute in CX. If the function

fails, MS-DOS sets the carry flag and returns an error code in AX.

Function 43H cannot be used to set the volume-label bit (bit 3) or the subdirectory bit (bit

4) of a file. It also should not be used on a file that is currently open by any process.

Example: Change the attributes of the file MYFILE.DAT in the \BACKUP directory on

drive C to read-only. This prevents the file from being accidentally deleted from the disk.

fname db 'C:\BACKUP\MYFILE.DAT',O

mov . dx,seg fname ; DS:DX = address of filename
mov ds,dx
mov dx,offset fname
mov cx,1 ; CX = attribute (read—only)
mov ‘el,1 ; AL = mode (0 = get, 1 = set)

(more)

Section II.- Programming in the MS—DOS Environment 261

OLYMPUS EX. 1010 - 271/1582

OLYMPUS EX. 1010 - 272/1582

Part B: Programming for MS—DOS

mov ah,43h ; Function 43H = get/set attr
int 21h ; transfer to MS-DOS

jc error ; jump if set attrib. failed

Getting/setting file date and time

Function 57H (Get/Set Date/Time of File) reads or sets the directory time and date stamp

of an open file. To set the time and date to a particular value, the program must call Func- '
tion 57H with the desired time in CX, the desired date in DX, the handle for the file (ob-

tained from a previous open or create operation) in BX, and the value 1 in AL. To read the

time and date, the function is called with AL containing 0 and the file handle in BX; the

time is returned in the CX register and the date is returned in the DX register. As with

other handle-oriented file functions, if the function succeeds, the carry flag is returned

cleared; if the function fails, MS-DOS returns the carry flag set and an error code in AX.

The formats used for the file time and date are the same as those used in disk directory

entries and FCBs. See Structure of the File-Control Block below.

The main uses of Function 57H are to force the time and date entry for a file to be updated

when the file has not been changed and to circumvent MS-DOS’s modification of a file

date and time when the file has been changed. In the latter case, a program can use this

function with AL = 0 to obtain the file’s previous date and time stamp, modify the file, and

then restore the original file date and time by re-calling the function with AL = 1 before

closing the file.

Duplicating and redirecting handles

Ordinarily, the disk FAT and directory are not updated until a file is closed, even when

the file has been modified. Thus, until the file is closed, any new data added to the file can

be lost if the system crashes or is turned off unexpectedly. The obvious defense against

such loss is simply to close and reopen the file every time the file is changed. However,

this is a relatively slow procedure and in a network environment can cause the program

to lose control of the file to another process.

Use of a second file handle, created by using Function 45H (Duplicate File Handle) to

duplicate the original handle of the file to be updated, can protect data added to a disk file

before the file is closed. To use Function 45H, the program must put the handle to be

duplicated in BX. If the operation is successful, MS—DOS clears the carry flag and returns

the new handle in AX; if the operation fails, MS-DOS sets the carry flag and returns an
error code in AX.

If the function succeeds, the duplicate handle can simply be closed in the usual manner

with Function SEH. This forces the desired update of the disk directory and FAT. The orig—

inal handle remains open and the program can continue to use it for file read and write
operations.

Note: While the second handle is open, moving the read/write pointer associated with

either handle moves the pointer associated with the other.

262 The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 272/1582

OLYMPUS EX. 1010 - 273/1582

Article 7: File and Record Management

Example: Assume that the file MYFILEDAT was previously opened and the handle for
that file has been saved in the variable fhandle. Duplicate the handle and then close the

duplicate to ensure that any data recently written to the file is saved on the disk and that

the directory entry for the file is updated accordingly. '

fhandle dw ? ; handle from previous open

; duplicate the handle...
mov bx,fhandle ; BX = handle for file
mov ah,45h ; Function 45H = dup handle

int 21h ; transfer to MS-DOS g
jc error ; jump if function call failed

; now close the new handle...

mov bx,ax ; BX = duplicated handle
mov ah,3eh ; Function 3EH = close
int 21h ; transfer to MS—DOS

jc error ; jump if close failed
mov bx,fhandle ; replaceclosedhandlewithactivehandle

Function 45H is sometimes also used in conjunction with Function 46H (Force Duplicate

File Handle). Function 46H forces a handle to be a duplicate for another open handle — in

other words, to refer to the same file or device at the same file read/write pointer location.
The handle is then said to be redirected.

The most common use of Function 46H is to change the meaning of the standard input

and standard output handles before loading a child process with the EXEC function. In this
manner, the input for the child program can be redirected to come from a file or its output

can be redirected into a file, without any special kndwledge on the part of the child pro-

gram. In such cases, Function 45H is used to also create duplicates of the standard input

and standard output handles before they are redirected, so that their original meanings can
be restored after the child exits. See PROGRAMMING IN THE MS—DOS ENVIRONMENT:

CUSTOMIZING Ms-Dos: Writing MS—DOS Filters.

Using the FCB Functions -

A file control block is a data structure, located in the application program’s memory space,

that contains relevant information about an open disk file: the disk drive, the filename and

extension, a pointer to a position within the file, and so on. Each open file must have its

own FCB. The information in an FCB is maintained cooperatively by both MS-DOS and the

application program.

Section 11: Programming in the MS—DOS Environment 263

OLYMPUS EX. 1010 - 273/1582

OLYMPUS EX. 1010 - 274/1582

Part B: Programming for MS—DOS

MS-DOS moves data to and from a disk file associated with an FCB by means of a data
buffer called the disk transfer area (DTA). The current address of the DTA is under the

control of the application program, although each program has a 128-byte default DTA at

offset 80H in its program segment prefix (P8P). See PROGRAMMING IN THE MS—DOS

ENVIRONMENT: PROGRAMMING FOR MS-DOS: Structure of an Application Program.

Under early versions of MS-DOS, the only limit on the number of files that can be open

simultaneously with FCBS is the amount of memory available to the application to hold the

FCBS and their associated disk buffers. However, under MS-DOS versions 3.0 and later,’

when file-sharing support (SHAREEXE) is loaded, MS—DOS places some restrictions on

the use of FCBS to simplify the job of maintaining network connections for files. If the

application attempts to open too many FCBS, MS-DOS simply closes the least recently used

FCBS to keep the total number within a limit. \‘

The CONFIG.SYS file directive FCBS allows the user to control the alIOWed maximum

number of FCBs and to specify a certain number ofFCBS to be protected against automatic

closure by the system. The default values are a maximum of four files open simultaneously

using FCBS and zero FCBS protected from automatic closure by the system. See USER
COMMANDS: CONFIG.SYS: FCBS.

Because the FCB operations predate MS—DOS version 2.0 and because FCBS have a fixed

structure with no room to contain a path, the FCB file and record services do not support

the hierarchical directory structure. Many FCB operations can be performed only on files

in the current directory of a disk. For this reason, the use of FCB file and record operations

should be avoided in new programs.

Structure of the file control block

Each FCB is a 37-byte array allocated from its own memory space by the application pro-

gram that will use it. The FCB contains all the information needed to identify a disk file

and access the data within it: drive identifier, filename, extension, file size, record size,

various file pointers, and date and time stamps. The FCB structure is shown in Table 7—5.

Table 7-3. Structure ofa Normal File ControlBlock.

Offset Size

Maintained by (bytes) (bytes) Description

Program 00H 1 Drive identifier

Program 01H 8 Filename

Program 09H 3 File extension
MS—DOS OCH 2 Current block number

Program OEH 2 Record size (bytes)

MS-DOS ,10H 4 File size (bytes)

MS—DOS 14H 2 Date stamp

MS-DOS 16H 2 Time stamp
MS-DOS 18H 8 Reserved

MS-DOS 20H 1 Current record number

Program 21H 4 Random record number

264 The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 274/1582

OLYMPUS EX. 1010 - 275/1582

Article 7: File and Record Management

Drive identifier: Initialized by the application to designate the drive on which the file to

be opened or created resides. 0 = default drive, 1 = drive A, 2 = drive B, and so on. If the

application supplies a zero in this byte (to use the default drive), MS-DOS alters the byte
during the open or create operation to reflect the actual drive used; that is, after an open
or create operation, this drive will always contain a value of 1 or greater.

Filename: Standard eight-character filename; initialized by the application; must be left .
justified and padded with blanks if the name has fewer than eight characters. A device

name (for example, PRN) can be used; note that there is no colon after a device name.

File extension: Three-character file extension; initialized by the application; must be left

justified and padded with blanks if the extension has fewer than three characters.

Current bloc/e number.- Initialized to zero by MS-DOS when the file is opened. The block

number and the record number together make up the record pointer during sequential file
access.

Recordsize: The size of a record (in bytes) as used by the program. MS—DOS sets this field

to 128 when the file is opened or created; the program can modify the field afterward to

any desired record size. If the record size is larger than 128 bytes, the default DTA in the

PSP cannot be used because it will collide with the program’s own code or data.

File size: The size of the file in bytes. MS—DOS initializes this field from the file’s directory

entry when the file is opened. The first 2 bytes ofthis 4-byte field are the least significant

bytes of the file size.

Date stamp: The date of the last write operation on the file. MS-DOS initializes this field
from the file’s directory entry when the file is opened. This field uses the same format

used by file handle Function 57H (Get/Set/Date/Time of File):

DateFormat

'Bit:151413121110987654321'0

cmnnnanannnnnmnuunn

Bits Contents

‘ 0-4 DayofmonthCl—Sl)
. 5—8 Month (1—12)

9— 15 Year (relative to 1980)

Time stamp: The time of the last write operation on the file. MS-DOS initializes this field

from the file’s directory entry when the file is opened. This field uses the same format

used by file handle Function 57H (Get/Set/Date/Time of File):

Section 11: Programming in the MS—DOS Environment 265

OLYMPUS EX. 1010 - 275/1582

OLYMPUS EX. 1010 - 276/1582

Part B: Programming for MS—DOS

Time Format

Bit: 15 14 13 12 ll 10 9 8 7 6 5 4 3 2 l 0

 Content:

Bits Contents

0—4 Number of 2-second increments (0—29)

5 — 10 Minutes (0— 59)

11 — 15 Hours (0—23)

Current record number: Together with the block number, constitutes the record pointer

used during sequential read and write operations. MS-DOS does not initialize this field

when a file is opened. The record number is limited to the range 0 through 127; thus, there

are 128 records per block. The beginning of a file is record 0 of block 0.

Random recordpointer: A 4-byte field that identifies the record to be transferred by the
random record functions 21H, 22H, 27H, and 28H. If the record size is 64 bytes or larger,

only the first 3 bytes of this field are used. MS—DOS updates this field after random block _
reads and writes (Functions27H and 28H) but not after random record reads and writes

(Functions 21H and 22H).

An extended FCB, which is 7 bytes longer than a normal FCB, can be used to access files

with special attributes such as hidden, system, and read-only. The extra 7 bytes of an ex—

tended FCB are simply prefixed to the normal FCB format (Table 7-4). The first byte of

an extended FCB always contains OFFH, which could never be a legal drive code and

therefore serves as a signal to MS-DOS that the extended format is being used. The next 5

bytes are reserved and must be zero, and the last byte of the prefix specifies the attributes

of the file being manipulated. The remainder of an extended FCB has exactly the same

layout as a normal FCB. In general, an extended FCB can be used with any MS-DOS func-

tion call that accepts a normal FCB.

Table 7-4. Structure ofan Extended File Control Block.

Offset Size

Maintained by (bytes) (bytes) Description

Program 00H 1 Extended FCB flag = OFFH
MS-DOS 01H 5 Reserved

Program 06H 1 File attribute byte

Program 07H 1 Drive identifier ,

Program 08H 8 Filename

(more)

266 TheMS—DOSEncyclopedia

OLYMPUS EX. 1010 - 276/1582

OLYMPUS EX. 1010 - 277/1582

Article 7: File and Record Management

Table 7-4. Continued.

Offset . Size

Maintained by (bytes) (bytes) Description

Program 10H 3 File extension

MS-DOS 13H 2 Current block number

Program 15H 2 Record size (bytes)
MS—DOS 17H 4 File size (bytes)

MS-DOS lBH 2 Date stamp

MS-DOS lDH 2 Time stamp
MS-DOS 1FH 8 Reserved

MS-DOS 27H 1 Current record number

Program 28H 4 Random record number

Extended FCBflag: When OFFH is present in the first byte of an FCB, it is a signal to

MS-DOS that an extended PCB (44 bytes) is being used instead of a normal FCB (37 bytes).

File attribute byte: Must be initializedby the application when an extended FCB is used to

open or create a file. The bits of this field have the following significance:

Bit Meaning

0 Read-only
1 Hidden

2 System
5 Volume label

4 Directory
5 Archive

6 Reserved

7 Reserved

FCB functions and the PSP

The PSP contains several items that are of interest when using the FCB file and record

operations: two FCBs called the default FCBs, the default DTA, and the command tail for

the program. The following table shows the size and location of these elements:

PSP Offset

(bytes) Size (bytes) Description

SCH 16 Default FCB #1 '
6CH 20 Default FCB #2

80H 1 length of command tail
81H 127 Command-tail text

80H 128 Default disk transfer area (DTA)

Section 11: Programming in the MS—DOSEnvironment 267

OLYMPUS EX. 1010 - 277/1582

OLYMPUS EX. 1010 - 278/1582

Part B: Programming for MS—DOS

When MS-DOS loads a program into memory for execution, it copies the command tail
into the PSP at offset 81H, places the length of the command tail in the byte at offset 80H,

and parses the first two parameters in the command tail into the default FCBs at PSP
offsets SCH and 6CH. (The command tail consists of the command line used to invoke the

program minus the program name itself and any redirection or piping characters and their
associated filenames or device names.) MS—DOS then sets the initial DTA address for the

program to PSP:0080H.

For several reasons, the default FCBs and the DTA are often moved to another location

within the program’s memory area. First, the default DTA allows processing of only very

small records. In addition, the default FCBs overlap substantially, and the first byte of the
default DTA and the last byte of the first FCB conflict. Finally, unless either the command

tail or the DTA is moved beforehand, the first FCB-related file or record operation will

destroy'the command tail.

Function lAH (Set DTA Address) is used to alter the DTA address. It is called with the

segment and offset of the new buffer to be used as the DTA in DS:DX. The DTA address

remains the same until another call to Function 1AH, regardless of other file and record

management calls; it does not need to be reset before each read or write.

Note: A program can use Function 2FH (Get DTA Address) to obtain the current DTA '
address before changing it, so that the original address can be restored later.

Parsing the filename

Before a file can be opened or created with the FCB function calls, its drive, filename, and

extension must be placed within the proper fields of the FCB. The filename can be coded

into the program itself, or the program can obtain it from the command tail in the PSP or

by prompting the user and reading it inwith one of the several function calls for character
device input.

MS—DOS automatically parses the first two parameters in the program’s command tail into

the default FCBs at PSP:005CH and PSP:OO6CH. It does not, however, attempt to differenti-

' ate between switches and filenames, so the pre-parsed FCBs are not necessarily useful to

the application program. If the filenames were preceded by any switches, the program
itself has to extract the filenames directly from the command tail. The program is then

responsible for determining which parameters are switches and which are filenames, as

well as where each parameter begins and ends. I

After a filename has been located, Function 29H (Parse Filename) can be used to test it

for invalid characters and separators and to insert its various components into the proper

fields in an FCB. The filename must be a string in the standard form drivefllenameext.

Wildcard characters are permitted in the filename and/or extension; asterisk (*) wildcards

are expanded to question mark (?) wildcards. ,

To call Function 29H, the DS:SI registers must point to the candidate filename, ES:DI

must point to the 37—byte buffer that will become the FCB for the file, and AL must hold

the parsing control code. See SYSTEM CALLS: INTERRUPT 21H: Function 29H.

268 The MS—DOSEncyclopedz’a

OLYMPUS EX. 1010 - 278/1582

OLYMPUS EX. 1010 - 279/1582

If a drive code is not included in the filename, MS—DOS inserts the drive number of the
current drive into the FCB. Parsing stops at the first terminator character encountered in

the filename. Terminators include the following:

",=+ /"[]l<>lspacetab
!

If a colon character (:) is not in the proper position to delimit the disk drive identifier or if

a period (.) is not in the proper position to delimit the extension, the character will also be

treated as a terminator. For example, the filename C:MEMO.TXT will be parsed correctly;
however, ABC:DEF.DAY will be parsed as ABC. '

If an invalid drive is specified in the filename, Function 29H returns OFFH in AL; if the

filename contains any wildcard characters, it returns 1. Otherwise, AL contains zero upon

return, indicating a valid, unambiguous filename. _

‘Note that this function simply parses the filename into the FCB. It does not initialize any

other fields of the FCB (although it does zero the current block and record size fields), and

it does not test whether the specified file actually exists.

Error handling and FCB functions

The FCB-related file and record functions do not return much in the way of error infor-

mation when a function fails. Typically, an FCB function returns a zero in AL if the func-

tion succeeded and OFFH if the function failed. Under MS-DOS versions 2.x, the program
is left to its own devices to determine the cause of the error. Under MS-DOS versions 5.x,

however, a failed FCB function call can be followed by a call to Interrupt 21H Function

59H (Get Extended Error Information). Function 59H will return the same descriptive

codes for the error, including the error locus and a suggested recovery strategy, as would

be returned for the counterpart handle-oriented file or record function.

Creating a file

Function 16H (Create File with FCB) creates a new file and opens it for subsequent read/

write operations. The function is called with DS:DX pointing to a valid, unopened FCB.
MS-DOS searches the current directory for the specifed filename. If the filename is found,

MS-DOS sets the file length to zero and opens the file, effectively truncating it to a zero-

length file; if the filename is not found, MS-DOS creates a new file and opens it. Other

fields of the FCB are filled in by MS—DOS as described below under Opening a File.

If the create operation succeeds, MS-DOS returns zero in AL; if the operation fails, it

returns OFFH in AL. This function will not ordinarily fail unless the file is being created in

the root directory and the directory is full.

Warning? To avoid loss of existing data, the FCB open function should be used to test for

file existence before creating a file.

Section 11- Programming in theMS—DOSEnuironment 269

OLYMPUS EX. 1010 - 279/1582

OLYMPUS EX. 1010 - 280/1582

Part B: Programming for MS-DOS

Opening a file

270

Function OFH opens an existing file. DS:DX must point to a valid, unopened FCB contain— /

ing the name of the file to be opened. If the specified file is found in the current directory,

MS—DOS opens the file, fills in the FCB as shown in the list below, and returns with AL set

to 00H; if the file is not found, MS-DOS returns with AL set to OFFH, indicating an error.

When the file is opened, MS-DOS

The program may need to adjust the FCB —change the record size and the random record

pointer, for example —— before proceeding with record operations.

Example: Display a prompt and accept a filename from the user. Parse the filename into

.an FCB, checking for an illegal drive identifier or the presence of wildcards. If a valid,

unambiguous filename has been entered, attempt to open the file. Create the file if it does

not already exist.

Sets the drive identifier (offset 00H) to the actual drive (01 = A, 02 = B, and so on).
Sets the current block number (offset OCH) to zero.

Sets the file size (offset 10H) to the value found in the directory entry for the file.

Sets the record size (offset OEH) to 128. . .

Sets the date and time stamp (offsets 14H and 16H) to the values found in the direc—

tory entry for the file. kbuf db 64,0,64 dup (0)
prompt db 0dh,0ah,'Enter filename: $'
myfcb db 37 dup (0)

; display the prompt...
mov dx,seg prompt ; DS:DX = prompt address
mov ds,dx
mov es,dx

mov dx,offset prompt ,
mov ah,09h ; Function 09H = print string
int 21h ; transfer to MS-DOS

; now input filename...
mov dx,offset kbuf ; DS:DX = buffer address

mov ah,0ah ; Function OAH = enter string
int 21h ; transfer to MS-DOS

; parse filename into FCB...
mov si,offset kbuf+2 ; DS:SI = address of filename

mov di,offset myfcb ; ES:DI = address of fcb ’
mov ax,2900h ; Function 29H = parse name
int 21h ; transfer to MS—DOS
or al,al ; jump if bad drive or

jnz error ; wildcard characters in namef

Ononfl

The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 280/1582

OLYMPUS EX. 1010 - 281/1582

Article 7: File and Record ManagementW

. ; try to open file...
mov dx,offset myfcb ; DS:DX = FCB address
mov ah,0fh ; Function OFH = open file
int 21h ; transfer to MS—DOS '

or al,al ; check status
jz proceed ; jump if open successful

; else create file...
mov dx,offset myfcb ; DS:DX = FCB address
mov ah,l6h ; Function 16H = create
int 21h ; transfer to MS—DOS

or al,al ; did create succeed?
jnz error ; jump if create failed

proceed:
; file has been opened or
; created, and FCB is valid

. ; for read/write operations...

Closing a file

Function 10H (Close File with FCB) closes a file previously opened with an FCB. As usual,

the function is called with DS:DX pointing to the FCB of the file to be closed. MS—DOS

updates the directory, if necessary, to reflect any changes in the file’s size and the date and
time last written.

If the operation succeeds, MS—DOS returns 00H in AL; if the operation fails, MS-DOS
returns OFFH.

Reading and writing files with FCBs

MS-DOS offers a choice of three FCB access methods for data within files: sequential,
random record, and random block.

Sequential operations step through the file one record at a time. MS-DOS increments the

current record and current block numbers after each file access so that they point to the

beginning of the next record. This method is particularly useful for copying or listing files.

Random record access allows the program to read or write a record from any location in

the file, without sequentially reading all records up to that point in the file. The program

must set the random record number field of the FCB appropriately before the read or write

is requested. This method is useful in database. applications, in which a program must

manipulate fixed-length records.

Random block operations combine the features of sequential and random record access
methods. The program can set the record number to point to any record within a file, and

MS-DOS updates the record number after a read or write operation. Thus, sequential

operations can easily be initiated at any file location. Random block operations with a

record length of 1 byte simulate file-handle access methods.

All three methods require that the FCB for the file be open, that DS:DX point to the FCB,

that the DTA be large enough for the specified record size, and that the DTA address be

previously set with Function 1AH if the default DTA in the program’s PSP is not being

used.

Section 11:- Programming in the MS—DOS Environment 271

OLYMPUS EX. 1010 - 281/1582

OLYMPUS EX. 1010 - 282/1582

Part B: Programming for MS—DOS

MS-DOS reports the success or failure of any FCB-related read operation (sequential,
random record, or random block) with one of four return codes in register AL:

Code Meaning

00H Successful read

01H End of file reached; no data read into DTA

02H Segment wrap (DTA too close to end of segment); no data read into DTA

03H End of file reached; partial record read into DTA

MS-DOS reports the success or failure of an FCB-related write operation as one of three

return codes in register AL:

Code Meaning -

00H Successful write

01H , Disk full; partial or no write

02H Segment wrap (DTA too close to end of segment); write failed

For FCB write operations, records smaller than one sector (512 bytes) are not written

directly to disk. Instead, MS-DOS stores the record in an internal buffer and writes the data

to disk only when the internal buffer is full, when the file is closed, or when a call to Inter-

rupt 21H Function ODH (Disk Reset) is issued.

Sequential access: reading

Function 14H (Sequential Read) reads records sequentially from the file to the current
DTA address, which must point to an area at least as large as the record size specified in

the file’s FCB. After each read operation, MS—DOS updates the FCB block and record num-

bers (offsets OCH and 20H) to point to the next record.

Sequential access: writing

Function 15H (Sequential Write) writes records sequentially from memory into the file.

The length written is specified by the record size field (offset OEH) in the FCB; the memory

address of the record to be written is determined by the current DTA address. After each

sequential write operation, MS—DOS updates the FCB block and record numbers (offsets

OCH and 20H) to point to the next record.

Random record access: reading

Function 21H (Random Read) reads a specific record from a file. Before requesting the

read operation, the program specifies the record to be transferred by setting the record
size and random record number fields of the FCB (offsets OEH and 21H). The current DTA

address must also have been previously set with Function 1AH to point to a buffer of

adequate size if the default DTA is not large enough.

272 The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 282/1582

OLYMPUS EX. 1010 - 283/1582

Article 7: File and Record Management_W

After the read, MS-DOS sets the current block and Current record number fields (offsets

OCH and 20H) to point to the same record. Thus, the program is set up to change to
sequential reads or writes. However, if the program wants to continue with random record

access, it must continue to update the random record field of the FCB before each random
record read or write operation. ‘

Random record access: writing

Function 22H (Random Write) writes a specific record from memory to a file. Before

issuing the function call, the program must ensure that the record size and random record
pointer fields at FCB offsets OEH and 21H are set appropriately and that the current DTA

address points to the buffer containing the data to be written.

After the write, MS-DOS sets the current block and current record number fields (offsets

OCH and 20H) to point to the same record. Thus, the program is set up to change to

sequential reads or writes. If the program wants to continue with random record access, it

must continue to update the random record field of the FCB before each random record

read or write operation.

Random block access: reading

Function 27H (Random Block Read) reads a block of consecutive records. Before issuing

the read request, the program must specify the file location of the first record by setting
the record size and random record number fields of the FCB (offsets OEH and 21H) and

must put the number of records to be read in CX. The DTA address must have already been

set with Function 1AH to point to a buffer large enough-to contain the group of records to

be read if the default DTA was not large enough. The program can then issue the Function

27H call with DS:DX pointing to the FCB for the file. i

After the random block read operation, MS—DOS resets the FCB random record pointer
(offset 21H) and the current block and current record number fields (offsets OCH and 20H)

to point to the beginning of the next record not read and returns the number of records

actually read in CX.

If the record size is set to 1 byte, Function 27H reads the number of bytes specified in CX,

beginning with the byte position specified in the random record pointer. This simulates

(to some extent) the handle type of read operation (Function 3FH).

Random block access: writing

Function 28H (Random Block Write) writes a block of consecutive records from memory

to disk. The program specifies the file location of the first record to be written by setting

the record size and random record pointer fields in the FCB (offsets OEH and 21H). If the

default DTA is not being used, the program must also ensure that the current DTA address

is set appropriately by a previous call to Function 1AH. When Function 28H is called,

DS:DX must point to the FCB for the file and CX must contain the number of records to
be written.

After the random block write operation, MS-DOS resets the FCB random record pointer
(offset 21H) and the current block and current record number fields (offsets OCH and 20H)

to point to the beginning of the next block of data and returns the number of records
actually written in CX.

Section 11- Programming in the MS—DOS Environment 275

OLYMPUS EX. 1010 - 283/1582

OLYMPUS EX. 1010 - 284/1582

Part B: Programming for MS—DOS

If the record size is set to 1 byte, Function 28H writes the number of bytes specified in CX,
beginning with the byte position specified in the random record pointer. This simulates
(to some extent) the handle type of write operation (Function 40H).

Calling Function 28H with a record count of zero in register CX causes the file length to be
extended or truncated to the current value in the FCB random record pointer field (offset

21H) multiplied by the contents of the record size field (offset OEH)

Example: Open the file MYFILEDAT and create the file MYFILE.BAK on the current disk
drive, copy the contents of the .DAT file into the .BAK file using 512-byte reads and writes,
and then close both files.

fcbl db 0 ; drive = default
db 'MYFILE ' ; 8 character filename
db 'DAT' ; 3 character extension

_ db 25 dup (0) ; remainder of fcb1
fcbZ db 0 ; drive = default

db ‘MYFILE ' ; 8 character filename
db ‘BAK' ; 3 character extension
db 25 dup (0) ; remainder of fcb2

buff db 512 dup (?) ; buffer for file I/O

; open MYFILE.BAT..
mov dx,seg fcb1 ; DS:DX = address of PCB
mov ds,dx
mov dx,offset fcbl
mov ah,0fh ; Function OFH = open
int 21h ; transfer to MS—DOS

or al,al ; did open succeed?
jnz error ; jump if open failed

; Create MYFILE.BAK...
mov dx,offset fcb2 ; DS:DX = address of PCB
mov ah,16h ; Function 16H = create
int 21h ; transfer to MS~DOS
or‘ al,al ; did create succeed?
jnz ' error ; jump if create failed

; set record length to 512
mov word ptr fcb1+0eh,512
mov word ptr fcb2+0eh,512

; set DTA to our buffer...
mov dx,offset buff ; DS:DX = buffer address
mov ah,1ah ; Function 1AH = set DTA
int 21h ; transfer to MS-DOS

loop: ; read MYFILE.DAT
mov dx,offset fcbl ; DS:DX = PCB address
mov ah,14h ; Function 14H = seq. read ”
int 21h ; transfer to MS—DOS

or al,al ; was read successful?
jnZ done ; no, quit

; write MYFILE.BAK...

(more)

274 The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 284/1582

OLYMPUS EX. 1010 - 285/1582

Article 7: File and Record ManagementW

mov dx,offset fcb2 ; DS:DX e FCB address
mov ah,15h ; Function 15H = seq. write
int 21h ; transfer to MS~DOS
or al,al ; was write successful?
jnz error ; jump if write failed
jmp loop ; continue to end of file

done: ; now close files...
mov dx,offset fcb1 ; DS:DX = FCB for MYFILE.DAT
mov ah,10h ; Function 10H = close file
int 21h ; transfer to MS-DOS

or al,al ; did close succeed?
jnz error ; jump if close failed
mov dx,offset fcb2 ; DS:DX = FCB for MYFILE.BAK
mov ah,10h ; Function 10H = close file
int 21h ; transfer to MS—DOS
or al,al ; did close succeed?
jnz error ; jump if close failed

Other FCB file operations

As it does with file handles, MS-DOS provides FCB-oriented functions to rename or delete

a file. Unlike the other FCB functions and their handle counterparts, these two functions

accept wildcard characters. An additional FCB function allows the size or existence of a

file to be determined without actually opening the file.

Renaming a file

Function 17H (Rename File) renames a file (or files) in the current directory. The file to be

renamed cannot have the hidden or system attribute. Before calling Function 17H, the pro-

gram must create a special FCB that contains the drive code at offset 00H, the old filename
at offset 01H, and the new filename at offset 11H. Both the current and the new filenames

can contain the ?wildcard character. I

When the function call is made, DS:DX must point to the special FCB structure. MS-DOS

searches the current directory for the old filename. If it finds the old filename, MS-DOS

then searches for the new filename and, if it finds no matching filename, changes the

directory entry for the old filename to reflect the new filename. If the old filename field of

the special FCB contains any wildcard characters, MS—DOS renames every matching file.

Duplicate filenames are not permitted; the process will fail at the first duplicate name.

If the operation is successful, MS-DOS returns zero in AL; if the operation fails, it returns
OFFH. The error condition may indicate either that no files were renamed or that at least

one file was renamed but the operation was then terminated because of a duplicate
filename.

Example: Rename all the files with the extension .ASM in the current directory of the
default disk drive to have the extension .COD.

Section 11.: Programming in the MS—DOS Environment 275

OLYMPUS EX. 1010 - 285/1582

OLYMPUS EX. 1010 - 286/1582

Part B: Programming for MS-DOS

renfcb db . 0 ; default drive
‘ db '????????' ; Wildcard filename

db 'ASM' ; old extension ,
db 5 dup (O) ; reserved area'
db '????????' ; Wildcard filename
db 'COD' ; new extension

db 15 dup (O) ; remainder of FCB

mov dx,seg renfcb ; DS:DX = address of
mov ds,dx ' ; "special" FCB
mov dx,offset renfcb
mov ah,17h ; Function 17H = rename
int 21h ; transfer to MS—DOS
or al,al ; did function succeed?
jnz error ; jump if rename failed

Deleting a file

Function 13H (Delete File) deletes a file from the current directory. The file should not be

currently open by any process. If the file to be deleted has special attributes, such as read-

only, the program must use an extended FCB to remove the file. Directories cannot be

deleted with this function, even with an extended FCB.

Function 13H is called with DS:DX pointing to an unopened, valid FCB containing the
name of the file to be deleted. The filename can contain the ? Wildcard character; if it does,

MS—DOS deletes all files matching the specified name. If at least one file matches the FCB

and is deleted, MS-DOS returns 00H in AL; if no matching filename is found, it returns
OFFH.

Note: This function, if it succeeds, does not return any information about which and

how many files were deleted. When multiple files must be deleted, Closer control can be

exercised by using the Find File functions (Functions 11H and 12H) to inspect candidate
filenames. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR

Ms-Dos: Disk Directories and Volume Labels. The files can then be deleted individually.

Example: Delete all the files in the current directory of the current disk drive that have
the extension .BAK and whose filenames have A as the first character.

delfcb db 0 ; default drive
db 'A???????' ; Wildcard filename
db 'BAK' ; extension

db 25 dup (0) ; remainder of PCB '

(more)

276 TheMS—DOSEncyclopedz’a

OLYMPUS EX. 1010 - 286/1582

OLYMPUS EX. 1010 - 287/1582

Article 7: File and Record ManagementW

mov dx,seg delfcb ; DS:DX = FCB address
mov ds,dx
mov dx,offset delfcb
mov ah,13h ; Function 13H = delete
int 21h ; transfer to MS-DOS
or al,al ; did function succeed?
jnz error ; jump if delete failed

Finding file size and testing for existence

Function 25H (Get File Size) is used primarily to find the size of a disk file without opening
it, but it may also be used instead of Function 11H (Find First File) to simply test for the

existence of a file. Before calling Function 23H, the program must parse the filename into

an unopened FCB, initialize the record size field of the FCB (offset OEH), and set the

DS:DX registers to point to the FCB.

When Function 23H returns, AL contains OOH if the file was found in the current directory
of the specified drive and OFFH if the file was not found.

If the file was found, the random record field at FCB offset 21H contains the number of

records (rounded upward) in the target file, in terms of the value in the record size field

(offset OEH) of the FCB. If the record size is at least 64 bytes, only the first 3 bytes of the

random record field are used; if the record size is less than 64 bytes, all 4 bytes are used. To

obtain the size of the file in bytes, the program must set the record size field to 1 before the

call. This method is not any faster than simply opening the file, but it does avoid the over-

head of closing the file afterward (which is necessary in a networking environment).

Summary

MS—DOS supports two distinct but overlapping sets of file and record management

services. The handle-oriented functions operate in terms of null—terminated (ASCIIZ)

filenames and 16-bit file identifiers, called handles, that are returned by MS-DOS after a file

is opened or created. The filenames can include a full path specifying the file’s location in

the hierarchical directory structure. The information associated with a file handle, such as

the current read/write pointer for the file, the date and time of the last write to the file, and

the file’s read/write permissions, sharing mode, and attributes, is maintained in a table
internal to MS-DOS.

Section II: Programming in the MS-DOSEnvironment 277

OLYMPUS EX. 1010 - 287/1582

OLYMPUS EX. 1010 - 288/1582

Part B: Programming for MS-DOS

In contrast, the FCB—oriented functions use a 37-byte structure called a file control block,

located in the application program’s memory space, to specify the name and location of

the file. After a file is opened or created, the FCB is used by both MS-DOS and the applica-
tion to hold other information about the file, such as the current read/write file pointer,

while that file is in use. Because FCBs predate the hierarchical directory structure that was

introduced in MS-DOS version 2.0 and do not have room to hold the path for a file, the FCB

functions cannot be used to access files that are not in the current directory of the speci-
fied drive.

In addition to their lack of support for pathnames, the FCB functions have much poorer

error reporting capabilities than handle functions and are nearly useless in networking

environments because they do not support file sharing and locking. Consequently, it is
strongly recommended that the handle—related file and record functions be used ex—

clusively in all new applications. I

Robert Byers

Code by Ray Duncan

278 The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 288/1582

OLYMPUS EX. 1010 - 289/1582

Article 8: Disk Directories and Volume Labels

Article 8’ _
Disk Directories and Volume Labels

MS—DOS, being a disk operating system, provides facilities for cataloging disk files. The
data structure used by MS—DOS for this purpose is the directory, a linear list of names in

which each name is associated with a physical location on the disk. Directories are ac-

cessed and updated implicitly whenever files are manipulated, but both directories and

their contents can also be manipulated explicitly using several of the MS-DOS Interrupt
21H service functions.

MS—DOS versions 1.x support only one directory on each disk. Versions 2.0 and later,

however, support multiple directories linked in a two-way, hierarchical tree structure

(Figure 8-1), and the complete specification of the name of a file or directory thus must

describe the location in the directory hierarchy in which the name appears. This specifica-

tion, or path, is created by concatenating a disk drive specifier (for example, A: or C2), the

c:\ (root directory)

subdirectory ALPHA
subdirectory BETA
file FILELCOM
file FILEZCOM

C:\ALPHA , C:\BETA

subdirectory .
subdirectory . .
subdirectory EPSILON
file FILE4.COM

subdirectory .
subdirectory . .
subdirectory GAMMA
subdirectory DELTA
file FILE3.COM

C:\ALPHA\GAMMA C:\ALPHA\DELTA C:\BETA\EPSILON

subdirectory . subdirectory . subdirectory -
subdirectory . . subdirectory . . subdirectory - ~
file FILE5.COM file FILEl .COM

Figure 8-]. Typical hierarchical directory structure (MS-DOS versions 2.0 and later).

Section IL Programming in the MS—DOS Environment 279

OLYMPUS EX. 1010 - 289/1582

OLYMPUS EX. 1010 - 290/1582

Part B: Programming for MS—DOS

names of the directories in hierarchical order starting with the root directory, and finally

the name of the file or directory. For example, in Figure 8—1, the complete pathname for
FILE5.COM is C:\ALPHA\ GAMMA\ FILESCOM. The two instances of FILE1.COM, in the

root directory and in the directory EPSILON, are distinguished by their pathnames:
C: \ FILE1.COM in the first instance and C: \BETA\ EPSILON\ FILE1.COM in the second.

Note: If no drive is specified, the current drive is assumed. Also, if the first name in‘ the

specification is not preceded by a backslash, the specification is assumed to be relative to

the current directory. For example, if the current directory is C: \BETA\ EPSILON, the

specification \FILE1.COM indicates the file FILE1.COM in the root directory and the

specification FILE1.COM indicates the file FILE1.COM in the directory C:\BETA\ EPSILON.

See Figure 8-1.

Although the casual user of MS—DOS need not be concerned with how this hierarchical
directory structure is implemented, MS-DOS programmers should be familiar with the

internal structure of directories and with the Interrupt 21H functions available for manip-

ulating directory contents and maintaining the links between directories. This article

provides that information.

Logical Structure ofMS-DOS Directories

An MS-DOS directory consists of a list of 52-byte directory entries, each of which con—

tains a name and descriptive information. In MS-DOS versions 1.x, each name must be a

filename; in versions 2.0 and later, volume labels and directory names can also appear

in directory entries.

Directory searches

Directory entries are not sorted, nor are they maintained as a linked list. Thus, when

MS-DOS searches a directory for a name, the search must proceed linearly from the first

name in the directory. In MS-DOS versions 1.x, a directory search continues until the spec—

ified name is found or until every entry in the directory has been examined. In versions 2.0

and later, the search continues until the specified name is found or until a null directory

entry (that is, one whose first byte is zero) is encountered. This null entry indicates the

logical end of the directory.

Adding and deleting directory entries

MS—DOS deletes a directory entry by marking it with OESH in the first byte rather than by

erasing it or excising it from the directory. New names are added to the directory by reus-

ing the first deleted entry in the list. If no deleted entries are available, MS—DOS appends

the new entry to the list. '

280 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 290/1582

OLYMPUS EX. 1010 - 291/1582

Article 8: Disk Directories and Volume Labels

The current directory

When more than one directory exiSts on a disk, MS-DOS keeps track of a default search

directory known as the current directory. The current directory is the directory used for all
implicit directory searches, such as those occasioned by a request to open a file, if no alter—

native path is specified. At startup, MS—DOS makes the root directory the current directory,
but. any other directory can be designated later, either interactively by using the CHDIR

command or from within an application by using Interrupt 21H Function SBH (Change
Current Directory). '

Directory Format

The root directory is created by the MS-DOS FORMAT program. See USER COMMANDS:

FORMAT. The FORMAT program places the root directory immediately after the disks file

allocation tables (FATS). FORMAT also determines the size of the root directory. The size

depends on the capacity of the storage medium: FORMAT places larger root directories on

high—capacity fixed disks and smaller root directories on floppy disks. In contrast, the size

of subdirectories is limited only by the storage capacity of the disk because disk space for

subdirectories is allocated dynamically, as it is for any MS-DOS file. The size and physical

location of the root directory can be derived from data in the BIOS parameter block (BPB)
in the disk boot sector. See PROGRAMMING IN THE MS—DOS ENVIRONMENT: STRUC—

TURE OF MS-Dos: MS-DOS Storage Devices.

Because space for the root directory is allocated only when the disk is formatted, the
root directory cannot be deleted or moved. Subdirectories, whose disk space is allocated

dynamically, can be added or deleted as needed.

Directory entry format

Each 32-byte directory entry consists of seven fields, including a name, an attribute byte,

date and time stamps, and information that describes the file’s size and physical location

on the disk (Figure 8—2). The fields are formatted as described in the following paragraphs.

0 OBH OCH

(Reserved)

Figure 8-2. Format ofa directory entry.

Byte 16H 18H lAH lCH IFH

File size.m-

The name field (bytes O—OAH) contains an 11—byte name unless the first byte of the field

indicates that the directory entry is deleted or null. The name can be an 11-byte filename

(8-byte name followed by a 3-byte extension), an 11—byte subdirectory name (8-byte name

Section 1]: Programming in the MS—DOS Environment 281

OLYMPUS EX. 1010 - 291/1582

OLYMPUS EX. 1010 - 292/1582

Part B: Programming for MS-DOS

followed by a 3-byte extension), or an 11-byte volume label. Names less than 8 bytes and

extensions less than 5 bytes are padded to the right with blanks so that the extension al-

ways appears in bytes 08-OAH of the name field. The first byte of the name field can con—

tain certain reserved values that affect the way MS-DOS processes the directory entry:

Value Meaning

0 Null directory entry (logical end of directory in MS—DOS versions 2.0 and later)

5 First character of name to be displayed as the character represented by OESH
(MS-DOS version 3.2)

OESH Deleted directory entry

When MS—DOS creates a subdirectory, it always includes two aliases as the first two entries

in the newly created directory. The name . (an ASCII period) is an alias for the name of

the current directory; the name .. (two ASCII periods) is an alias for the directory’s parent
directory—that is, the directory in which the entry containing the name of the current

directory is found.

The attribute field (byte OBH) is an 8-bit field that describes the way MS—DOS processes
the directory entry (Figure 8-3). Each bit in the attribute field designates a particular attri-

bute of that directory entry; more than one of the bits can be set at a time.

Bit ’ 7 6 5 4 3 2 1' o

Figure 8-3. Format ofthe attributefield in a directory entry.

The read-only bit (bit 0) is set to 1 to mark a file read-only. Interrupt 21H Function SDH

(Open File with Handle) will fail if it is used in an attempt to open this file for writing. The

hidden bit (bit 1) is set to 1 to indicate that the entry is to be skipped in normal directory

searches — that is, in directory searches that do not specifically request that hidden entries

be included in the search. The system bit (bit 2) is set to 1 to indicate that the entry refers to

a file used by the operating system. Like the hidden bit, the system bit excludes a directory

_ entry from normal directory searches. The volume label bit (bit 5) is set to 1 to indicate that

the directory entry represents a volume label. The subdirectory bit (bit 4) is set to 1 when

the directory entry contains the name and location of another directory. This bit is always

set for the directory entries that correspond to the current directory (.) and the parent

directory (..). The archive bit (bit 5) is set to 1 by MS-DOS functions that close a file that

has been written to. Simply opening and closing a file is not sufficient to update the

archive bit in the file’s directory entry. ‘

The time and date fields (bytes 16—17H and 18—19H) are initialized by MS—DOS when
the directory entry is created. These fields are updated whenever a file is written to. The

formats of these fields are shown in Figures 8—4 and 8-5. '

282 The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 292/1582

OLYMPUS EX. 1010 - 293/1582

Article 8: Disk Directories and Volume Labels

Bit 15 10 4 0

Hours (0-23) Minmes (0'59) merit-533$”)

Figure 8—4. Format ofthe timefield in a directory entry.

Bit 15 8 4 0

Year (relative to 1980) Month (1-12) Day (1-31)

Figure 8-5. Format ofthe datefield in a directory entry.

The starting cluster field (bytes 1A—1BH) indicates the disk location of the first cluster

assigned to the file. This cluster number can be used as an entry point to the file allocation

- table (FAT) for the disk. (Cluster numbers can be converted to logical sector numbers with
the aid of the information in the disk’s BPB.)

For the . entry (the alias for the directory that contains the entry), the starting cluster field

contains the starting cluster number of the directory itself. For the .. entry (the alias for the

parent directory), the value in the starting chister field refers to the parent directory unless

the parent directory is the root directory, in which case the starting cluster number is zero.

The file size field (bytes 1C—1FH) is a 32-bit integer that indicates the file size in bytes.

Volume Labels

The generic term volume refers to a unit of auxiliary storage such as a floppy disk, a fixed

disk, or a reel of magnetic tape. In computer environments Where many different volumes

might be used, the operating system can uniquely identify each volume by initializing it
with a volume label.

Volume labels are implemented in MS—DOS versions 2.0 and later as a specific type of

' directory entry specified by setting bit 3 in the attribute field to 1. In a volume label direc-

tory entry, the name field contains an 11—byte string specifying a name for the disk volume.

A volume label can appear only in the root directory of a disk, and only one volume label

can be present on any given disk.

In MS-DOS versions 2.0 and later, the FORMAT command can be used with the /V switch

to initialize a disk with a volume label. In versions 3.0 and later, the LABEL command can

be used to create, update, or delete a volume label. Several commands can display a disk’s

volume label, including VOL, DIR, LABEL, TREE, and CHKDSK. See USER COMMANDS.

Section IL Programming in the MS—DOS Environment 283

OLYMPUS EX. 1010 - 293/1582

OLYMPUS EX. 1010 - 294/1582

Part B: Programming for MS—DOS

In MS—DOS versions 2.x, volume labels are simply a convenience for the user; no MS-DOS

routine uses a volume label for any other purpose. In MS-DOS versions 5.x, however, the

SHARE command examines a disk’s volume label when it attempts to verify whether a
disk volume has been inadvertently replaced in the midst of a file read or write operation.

Removable disk volumes should therefore be assigned unique volume names if they are
to contain shared files.

Functional Support for MS-DOS Directories

Several Interrupt 21H service routines can be useful to programmers who need to manipu-

late directories and their contents (Table 8-1). The routines can be broadly grouped into

two categories: those that use a modified file control block (FCB) to pass filenames to and

from the Interrupt 21H service routines (Functions 11H, 12H, 17H, and 23H) and those that

use hierarchical path specifications (Functions 39H, BAH, 3BH, 43H, 47H, 4EH, 4FH, 56H,
and 57H). See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR

Ms—Dos: File and Record Management; SYSTEM CALLS: INTERRUPT 21H.

The functions that use an FCB require that the calling program reserve enough memory
for an extended FCB before the Interrupt 21H function is called. The calling program ini-

tializes the filename and extension fields of the FCB and passes the address of the FCB to

the MS—DOS service routine in DS:DX. The functions that use pathnames expect all path-

names to be in ASCIIZ format—that is, the last character of the name muSt be followed

by a zero byte.

Names in pathnames passed to Interrupt 21H functions can be separated by either a back—

slash (\) or a forward slash (/). (The forward slash is the separator character used in path-

names in UNIX/XENIX systems.) For example, the pathnames C:/MSP/SOURCE/ROSE.PAS

and C:\MSP\SOURCE\ ROSE.PAS are equivalent when passed to an Interrupt 21H function.

The forward slash can thus be used in a pathname in a program that must run on both MS-

DOS and UNIX/XENIX. However, the MS—DOS comand processor (COMMANDCOM)

recognizes only the backslash as a pathname separator character, so forward slashes can-

not be used as separators in the command line.

Table 8-1. MS-DOS Functions for Accessing Directories.

Function Call With Returns Comment

Find First File AH = 11H AL = 0 (directory entry If default not satisfac-
DS:DX = pointer to found) or OFFH (not found) tory, DTA must be

unopened FCB DTA updated (if directory set before using
INT 21H entry found) this function.

Find Next File AH = 12H AL = 0 (directory entry Use the same FCB
DS:DX = pointer to found) or OFFH (not found) for Function 11H and

unopened FCB DTA updated (if directory Function 12H.
INT 21H entry found)

(more)

284 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 294/1582

OLYMPUS EX. 1010 - 295/1582

Table 8-1. Continued.

Article 8: Disk Directories and Volume Labels

 Function Call With Returns Comment

Rename File AH = 17H AL = 0 (file renamed) or

DS:DX = pointer to OFFH (no directory entry
modified FCB or duplicate filename)

INT 21H

Get File Size AH = 23H AL = 0 (directory entry
DS:DX = pointer to found) or OFFH (not found)

unopened FCB FCB updated with number
INT 21H of records in file

Create Directory AH = 39H Carry flag set (if error)
DS:DX = pointer to AX = error code (if error)

ASCIIZ pathname
INT 21H

Remove Directory AH = SAH Carry flag set (if error)
DS:DX = pointer to AX = error code (if error)

ASCIIZ pathname ~
INT 21 H

Change Current AH = SBH Carry flag set (if error)
Directory DS:DX = pointer to AX = error code (if error)

ASCIIZ pathname
INT 21H

Get/Set File AH = 45H Carry flag set (if error) > Cannot be used to
Attributes AL = 0 (get attributes) AX = error code (if error) modify the volume

1 (set attributes) CX = attribute field from label or subdirectory
CX = attributes (if AL = 1) directory entry (if called bits.
DS:DX = pointer to with AL .= 0)

ASCIIZ pathname
INT 21H

Get Current AH = 47H Carry flag set (if error)
Directory DS:SI = pointer to AX = error code (if error)

64—byte buffer Buffer updated with
DL = drive number pathname of current
INT 21H directory

Find First File AH = 4EH Carry flag set (if error) If default not satisfac-
DS:DX = pointer to AX = error code (if error) tory, DTA must be

ASCIIZ pathname DTA updated set before using
CX = file attributes to this function.

match
INT 21H

Find Next File AH = 4FH Carry flag set (if error)
INT 21H AX = error code (if error)

DTA updated
(more)

Section 11: Programming in the MS~DOSEnvironment 285

OLYMPUS EX. 1010 - 295/1582

OLYMPUS EX. 1010 - 296/1582

Part B: Programming for MS-DOS ‘ /

Table 8-1. Continued.

 Function Call With Returns Comment

Rename File AH = 56H Carry flag set (if error)
- DS:DX = pointer to ’ AX = error code (if error)

ASCIIZ pathname
ES:DI = pointer to

new ASCIIZ pathname
INT 21H

Get/Set Date/Time AH = 57H Carry flag set (if error)
of File AL = 0 (get date/time) AX = error code (if error)

1 (set date/time) CX = time (if AL = 0)
BX = handle DX = date (if AL = 0)
CX = time (ifAL = 1)
DX = date (if AL = 1)
INT 21H

Searching a directory

Two pairs of Interrupt 21H functions are available for directory searches. Functions 11H

and 12H use FCBs to transfer filenames to MS—DOS; these functions are available in all ver—

sions of MS—DOS, but they cannot be used with pathnames. Functions 4EH and 4FH sup—

port pathnames, but these functions are unavailable in MS—DOS versions 1.x. All four

functions require the address of the disk transfer area (DTA) to be initialized appropriately
before the function is invoked. When Function 12H or 4FH is used, the current DTA must

be the same as the DTA for the preceding call to Function 11H or 4EH.

The Interrupt 21H directory search functions are designed to be used in pairs. The Find

First File functions return the first matching directory entry in the current directory (Func-
tion 11H) or in the specified directory (Function 4EH). The Find Next File functions

(Functions 12H and 4FH) can be called repeatedly after a successful call to the corre-

sponding Find First File function. Each call to one of the Find Next File functions returns

the next directory entry that matches the name originally specified to the Find First File
function. A directory search can thus be summarized as follows:

call "find first file" function

while (matching directory entry returned)
call "find next file" function

Wildcard characters

286

This search strategy is used because name specifications can include the wildcard charac—

ters ?, which matches any single character, and * (see below) When one or more wildcard

characters appear in the name specified to one of the Find First File functions, only the ,

nonwildcard characters in the name participate in the directory search. Thus, for example,

the specification F00? matches the filenames F001, F002, and so on; the specification
FOO?????.??? matches F004. COM, FOOBAR. EXE, and FOONEW BAK, as well as F001 and

F002; the specification ????????.TXT matches all files whose extension is .TXT; the speci-

fication ????????.??? matches all files in the directory.

The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 296/1582

OLYMPUS EX. 1010 - 297/1582

Article 8: Disk Directories and Volume Labels

Function 4EH also recognizes the wildcard character it, which matches any remaining
characters in a filename or extension. MS—DOS expands the * wildcard character inter-

nally to question marks. Thus, for example, the specification FOO * is the same as

FOO?????; the specification FOO H is the same as FOO?????.???; and, of course, the spec-
ification u is the same as ????????.???.

Examining a directory entry

All four Interrupt 21H directory search functions return the name, attribute, file size, time,
and date fields for each directory entry found during a directory search. The current DTA

is used to return this data, although the format is different for the two pairs of functions:

Functions 11H and 12H return a copy of the 32-byte directory entry— including the cluster

number— in the DTA; Functions 4EH and 4FH return a 43-byte data structure that does

not include the starting cluster number. See SYSTEM CALLS: INTERRUPT 21H: Function
4EH.

The attribute field of a directory entry can be examined using Function 45H (Get/Set File
Attributes). Also, Function 57H (Get/Set Date/Time of File) can be used to examine a file’s

time or date. However, unlike the other functions discussed here, Function 57H is in-

tended only for files that are being actively used within an application — that is, Function

57H can be called to examine the file’s time or date stamp only after the file has been

opened or created using an Interrupt 21H function that returns a handle (Function SCH,
3DH, SAH, or 5BH).

Modifying a directory entry

Four Interrupt 21H functions can modify the contents of a directOry entry. Function 17H

(Rename File) can be used to change the name field in any directory entry, including hid-

den or system files, subdirectories, and the volume label. Related Function 56H (Rename

File) also changes the name field of a filename but cannot rename a volume label or a hid-

den or system file. However, it can be used to move a directory entry from one directory to

another. (This capability is restricted to filenames only; subdirectory entries cannot be
moved with Function 56H.)

Functions 43H (Get/Set File Attributes) and 57H (Get/Set Date/Time of File) can be used

to modify specific fields in a directory entry. Function 43H can mark a directory entry as a

hidden or system file, although it cannot modify the volume label or subdirectory bits.

Function 57H, as noted above, can be used only with a previously opened file; it provides

a way to read or update a file’s time and date stamps without writing to the file itself.

Creating and deleting directories

Function 39H (Create Directory) exists only to create directories— that is, directory

entries with the subdirectory bit set to 1; (Interrupt 21H functions that create files, such as

Function SCH, cannot assign the subdirectory attribute to a directory entry.) The converse

function, BAH (Remove Directory), deletes a subdirectory entry from a directory. (The

subdirectory must be completely empty.) Again, Interrupt 21H functions that delete files
from directories, such as Function 41H, cannot be used to delete subdirectories.

Section IL Programming in the MS—DOS Environment 287

OLYMPUS EX. 1010 - 297/1582

OLYMPUS EX. 1010 - 298/1582

Part B: Programming for MS-DOS

Specifying the current directory

A call to Interrupt 21H Function 47H (Get Current Directory) returns the pathname of the
current directory in use by MS—DOS to a user-supplied buffer. The converse operation, in

which a new current directory can be specified to MS—DOS, is performed by Function SBH
(Change Current Directory).

Programming examples: Searching for files

The subroutines in Figure 8-6 below illustrate Functions 4EH and 4FH, which use path

specifications passed as ASCIIZ strings to search for files. Figure 8—7 applies these assem-

bly-language subroutines in a simple C program that lists the attributes associated with

each entry in the current directory. Note how the directory search is performed in the
WHILE loop in Figure 8-7 by using a global wildcard file specification (*3) and by repeat-

edly executing FindNextFileO until no further matching filenames are found. (See Pro-

gramming Example: Updating a Volume Label for examples of the PCB—related search
functions, 11H and 21H.)

TITLE 'DIRS.ASM'

;
; Subroutines for DIRDUMP.C
I

ARG1 EQU [hp + 4] ; stack frame addressing for C arguments
ARG2 EQU [bp + 6]

_TEXT SEGMENT byte public 'CODE'
ASSUME cs:_TEXT

void SetDTA(DTA);
char *DTA;

PUBLIC _SetDTA
_setDTA PROC near

push bp
mov bp,sp

mov dx,ARGl ; DS:DX —> DTA

mov ah,1Ah ; AH = INT 21H function number ,
' int 21h ; pass DTA to MS—DOS

Figure 8—6 Subroutines illustrating Interrupt 21HFunctions 4EH and 4FH. (more)

288 The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 298/1582

OLYMPUS EX. 1010 - 299/1582

Article 8: Disk Directories and Volume Labels________—————————————————————————————__

; int GetCurrentDir(*path);
; V char *path;

/* returns error code */

/* pointer to buffer to contain path */

_GetCurrentDir

L01:

_GetCurrentDir

PUBLIC
PROC

push
mov

push

mov
xor
mov

int

jc

XOI‘

Pop
Pop
ret

ENDP

_GetCurrentDir
near

1313
prSP
si

si,ARG1
dl,dl
ah,47h
21h
L01

ax,ax

si

bP

; DS:SI —> buffer
; DL =
; AH =
; call
; jump

; no error, return AX

0 (default drive number)
INT 21H function number

MS-DOS; AX = error code
if error

0

r

; char
; int

*path;
attribute;

; int FindFirstFile(path, attribute); /* returns error code */

_FindFirstFile
PUBLIC
PROC

push
mov

mov
mov
mov

int

jc

Figure 8-6 Continued.

_FindFirstFile
near

bp
prSP

dx,ARG1
cx,ARG2
ah,4Eh

21h
L02

; DS:DX -> path
CX =

; AH =
; call

jump

n

M

attribute
INT 21H function number

MS—DOS; AX = error code
if error

(more)

Section 11.- Programming in the MS-DOS Environment 289

OLYMPUS EX. 1010 - 299/1582

OLYMPUS EX. 1010 - 300/1582

Part B: Programming for MS—DOS

290

L02:

_FindFirstFile

I ____._——____...________-______________-_...________...-_______________'_ _______________

xor

P0P
ret

ENDP

; int FindNextFile();

_FindNextFile

L03:

_FindNextFile

_TEXT

_DATA

CurrentDir
.DTA

_DATA

PUBLIC
PROC

push
mov

mov

int

jc

XOI‘

P0P
ret

ENDP

ENDS

SEGMENT word public

DB
DB

ENDS

END

Figure 8-6. Continued.

TheMS—DOS Encyclopedia

ax,ax

hp

.FindNextFile
near

109
bp, Sp

ah,4Fh
21h
L03

ax,ax

13?

64 dup(?)
64 dup(?)

/* returns error code */

- AH = INT 21H function number

'DATA'

no error, return AX = 0

call MS-DOS; AX = error code

jump if error

if no error, set AX = O
OLYMPUS EX. 1010 - 300/1582

OLYMPUS EX. 1010 - 301/1582

Article 8: Disk Directories and Volume LabelsW

/* DIRDUMP .c */

#define AllAttributes 0x3F /* bits set for all attributes */

main()
(

static char CurrentDir[64];
int ErrorCode;
int FileCount = O;

struct

(
char reserved[21];
char attrib;
int time;
int date;

long size;
char name[13];

) DTA;

/* display current directory name */

ErrorCode : GetCurrentDir(CurrentDir);
if(ErrorCode)
(

printf("\nError %d: GetCurrentDir",
exit(1);

ErrorCode);

printf("\nCurrent directory is \\%s", CurrentDir);

/* display files and attributes */

SetDTA(&DTA); /* pass DTA to MS-DOS */

ErrorCode = FindFirstFile("*.*", AllAttributes);

while(!ErrorCode)
(

printf("\n%125 —— ", DTA.name);
ShowAttributes(DTA.attrib);
++FileCount;

ErrorCode = FindNextFile();

/* display file count and exit */

printf(“\nCurrent directory contains %d files\n", FileCount);
return(0);

)

Figure 8-7. The complete DIRDUMP.Cprogram. (more)

Section IL Programming in the MS—DOS Environment 291

OLYMPUS EX. 1010 - 301/1582

OLYMPUS EX. 1010 - 302/1582

Part B: Programming for MS—DOS

ShowAttributes(a)
int a;
(

int i;
int mask = 1;

static char *AttribNamel] =
{

"read—only ",
"hidden ",
"system ",
"volume ",
"subdirectory ",
"archive "

l;

for(i=0; i<6; i++) /* test each attribute bit */
i

if(a & mask)

printf(AttribName[i]): /* display a message if bit is set */
mask = mask << 1;

)

Figure 8— 7. Continued.

Programming example: Updating a volume label

To create, modify, or delete a volume-label directory entry, the Interrupt 21H functions

that work with FCBs should be used. Figure 8-8 contains four subroutines that show how to
search for, rename, create, or delete a volume label in MS-DOS versions 2.0 and later.

TITLE 'VOLS.ASM'

; C—callable routines for manipulating MS—DOS volume labelsf
; Note: These routines modify the current DTA address.

ARGl EQU [bp + 4] ; stack frame addressing

DGROUP GROUP _DATA

_TEXT SEGMENT byte public 'CODE'
ASSUME Cs:_TEXT,ds:DGROUP

Figure 8-8. Subroutinesfor manipulating volume labels. (more)

292 The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 302/1582

OLYMPUS EX. 1010 - 303/1582

; char *GetVolLabel();

Article 8: Disk Directories and Volume Labels

/* returns pointer to volume label name */

I ___

PUBLIC
_GetVolLabel PROC

push
mov

push
push

call
mov
mov
int
test

jnz

mov
mov

call
mov

jmp

L01: xor

L02: pop
P0P
P0P
ret

_GetVolLabel ENDP

_GetVolLabel
near

bp
bp, sp
si
di

SetDTA

dx,offset DG
ah,11h
21h

al,al
L01

; pass DTA address to MS-DOS
ROUPzExtendedFCB

; AH = INT 21H function number

; Search for First Entry

; label found so make a copy
si,offset DGROUPzDTA + 8
di,offset DGROUP:VolLabel
CopyName
ax,offset DG
short L02

ax,ax

di
si

hp

ROUP:VolLabel ; return the copy’s address

; no label, return 0 (null pointer)

; int RenameVolLabel(label);
; char *label;

/* returns error code */

/* pointer to new volume label name */

PUBLIC
_RenameVolLabel PROC

push
mov

push
push

Figure 8—8. Continued.

_RenameVolLabel
near

bp
bPISP
si
di

among

Section 11.- Programming in the MS-DOS Environment 293

OLYMPUS EX. 1010 - 303/1582

OLYMPUS EX. 1010 - 304/1582

Part B: Programming for MS-DOS

mov
mov
call

mov
mov

call

mov
mov

int
xor

Pop
Pop
Pop
ret

_RenameVolLabel ENDP

; int NeonlLabel(label);
; char *label;

PUBLIC
_NeonlLabel PROC

push
mov

push
push

mov
mov

call

mov
mov

int
xor

P0P
POP
P0P
ret

_NeonlLabel ENDP

Figure 8—8. Continued.

294 The MS-DOS Encyclopedia

si,offset DGROUP:VolLabel ; 05:51 -> old volume name
di,offset DGROUP:Name1
CopyName ; copy old name to FCB

si,ARG1

di, offset DGROUP :Name2
CopyName ; copy new name into PCB

dx,offset DGROUP:ExtendedFCB ; DS:DX —> FCB
ah,17h ; AH = INT 21H function number

21h ; rename V
ah,ah ; AX = OCH (success) or OFFH (failure)

di ; restore registers and return
si

hp

/* returns error code */

/* pointer to new volume label name */

_NeonlLabel
near

bp
bp, Sp
si
di

si,ARG1
di,offset DGROUP:Name1
CopyName ; copy new name to FCB '

dx,offset DGROUP:ExtendedFCB
ah,16h ; AH = INT 21H function number
21h ; create directory entry
ah,ah ; AX = OCH (success) or OFFH (failure)

di ; restore registers and return
si

bp

OLYMPUS EX. 1010 - 304/1582

Ononfl

OLYMPUS EX. 1010 - 305/1582

Article 8: Disk Directories and Volume Labels__________—————_——____—————__

; int DeleteVolLabel(); /* returns error code */

’________________T__

PUBLIC
_DeleteVolLabel PROC

push
mov

push
push

mov
mov

call

mov
mov

int
xor

POP
POP
P0P
ret

_DeleteVolLabel ENDP

_DeleteVolLabel
near

bp
bp, SP
si
di

si,offset DGROUP:VolLabel
di,offset DGROUPzName1
CopyName ; copy current volume name to FCB

dx,offset DGROUP:ExtendedFCB
ah,13h ; AH = INT 21H function number
21h ; delete directory entry

ah,ah ; AX = OCH (success) or OFFH (failure)

di ; restore registers and return
si

bp

push
push

mov
mov
int

P0P
P0P
ret

SetDTA ENDP

Figure 8—8. Continued.

near

ax ; preserve registers used
dx

dx,offset DGROUP:DTA ;
ah,1Ah
21h ; set DTA

dx ; restore
ax

DSIDX —> DTA

; AH = INT 21H function number

registers and return

(more)

Section IL Programming in the MS—DOS Environment 295

OLYMPUS EX. 1010 - 305/1582

OLYMPUS EX. 1010 - 306/1582

Part B: Programming for MS-DOS

CopyName PROC near ; Caller: SI —> ASCIIZ source
; . DI —> destination

push ds
pop es ; ES = DGROUP
mov cx,11 ; length of name field

L11: lodsb ; copy new name into FCB
test al,al

jz . L12 ; .. until null character is reached
stosb

loop L11

L12: mov al,‘ ' ; pad new name with blanks
rep stosb
ret

CopyName ENDP

_TEXT . ENDS

_DATA SEGMENT word public 'DATA'

VolLabel DB 11 dup(0),0

ExtendedFCB DB OFFh ; must be OFFH for extended FCB I
DB 5 dup(0) ; (reserved) =
DB 1000b ; attribute byte (bit 3 = H
DB 0 ; default drive ID

Name1 DB 11 dup(‘?') ; global wildcard name
DB 5 dup(0) ; (unused) :

Name2 DB 11 dup(0) ; second name (for renaming entry)
DB 9 dup(0) ; (unused)

DTA DB 64 dup(0)

_DATA ENDS

END

Figure 8-8. Continued.

Richard Wilton

296 TheMS—DOSEncyclopedia

OLYMPUS EX. 1010 - 306/1582

OLYMPUS EX. 1010 - 307/1582

Article 9: Memory Management

Article 9

Memory Management

Personal computers that are MS-DOS compatible can be outfitted with as many as three

kinds 9f random-access memory (RAM): conventional memory, expanded memory, and
extended memory.

All MS-DOS machines have at least some conventional memory, but the presence of ex-

panded or extended memory depends on the installed hardware options and the model of

microprocessor on which the computer is based. Each storage class has its own capabil—

ities, characteristics, and limitations. Each also has its own management techniques, which

are the subject of this chapter.

Conventional Memory

Conventional memory is the term for the up to 1 MB of memory that is directly addressable

by an Intel 8086/8088 microprocessor or by an 80286 or 80386 microprocessor running in

real mode (8086-emulation mode). Physical addresses for references to conventional

memory are generated by a 16-bit segment register, which acts as a base register and holds

a paragraph address, combined with a 16-bit offset contained in an index register or in the

instruction being executed.

On IBM PCs and compatibles, MS-DOS and the programs that run under its control occupy

the bottom 640 KB or less of the conventional memory space. The memory space above

the 640 KB mark is partitioned among ROM (read—only memory) chips on the system

board that contain various primitive device handlers and test programs and among RAM

and ROM chips on expansion boards that are used for input and output buffers and for ad-

ditional device-dependent routines.

The bottom 640 KB of memory administered by MS-DOS is divided into three zones
(Figure 9-1):

0 The interrupt vector table

0 The operating system area

0 The transient program area

The interrupt vector table occupies the lowest 1024 bytes of memory (locations 00000—

OOBFFH); its address and length are hard-wired into the processor and cannot be changed.
Each doubleword position in the table is called an interrupt vector and contains the seg-

ment and offset of an interrupt handler routine for the associated hardware or software in—

terrupt number. Interrupt handler routines are usually built into the operating system,

Section 11- Programming in the MS—DOS Environment 297

OLYMPUS EX. 1010 - 307/1582

OLYMPUS EX. 1010 - 308/1582

Part B: Programming for MS-DOS

100000}: (1 MB)
ROM BIOS _additional ROM code

on expansion boards,
memory-mapped I/O

buffers

AOOOOH (640 KB)

Transient
program area

Boundary varies
MS-DOS and

its buffers, tables,
and device drivers

()0400H (1 KB)
0000011

Interrupt vector table

Figure 9-1. A diagram showing conventional memory in an IBM PC—compatible MS—DOS system. The bottom
1024 bytes ofmemory are usedfor the interrupt vector table. The memory above the vector table, up to the 640
KB boundary, is availablefor use byMS—DOS and theprograms that run under its control. The top 384 KB are
usedfor the ROM BIOS, other device-control and diagnostic routines, and memory—mapped input and output.

but in special cases application programs can contain handler routines of their own.

Vectors for interrupt numbers that are not used for software linkages or by some hardware

device are usually initialized by the operating system to point to a simple interrupt return

(IRET) instruction or to a routine that displays an error message.

The operating-system area begins immediately above the interrupt vector table and

holds the operating system proper, its tables and buffers, any additional installable device '

drivers specified in the CONFIGSYS file, and the resident portion of the COMMAND. COM

command interpreter. The amount of memory occupied by the Operating-system area

varies with the version of MS-DOS being used, the number of disk buffers, and the number
and size of installed device drivers.

The transient program area (TPA) is the remainder of RAM above the operating-system

area, extending to the 640 KB limit or to the end of installed RAM (whichever is smaller).

External MS-DOS commands (such as CHKDSK) and other programs are loaded into the

TPA for execution. The transient portion of COMMANDCOM also runs in this area.

The TPA is organized into a structure called the memory arena, which is divided into por-

tions called arena entries (or memory blocks). These entries are allocated in paragraph

(16—byte) multiples and can be as small as one paragraph or as large as the entire TPA.

Each arena entry is preceded by a control structure called an arena entry header, which

contains information indicating the size and status of the arena entry.

298 The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 308/1582

OLYMPUS EX. 1010 - 309/1582

Article 9: Memory Management

MS—DOS inspects the arena entry headers whenever a function requesting a memory-
block allocation, modification, or release is issued; when a program is loaded and exe—

cuted with the EXEC function (Interrupt 21H Function 4BH); or when a program is termi-
nated. If any of the arena entry headers appear to be damaged, MS-DOS returns an error to

the calling process. If that process is COMMANDCOM, COMMANDCOM then displays
the message Memory allocation error and halts the system.

MS-DOS support for conventional memory management

The MS-DOS kernel supports three memory-management functions, invoked with Inter~
rupt 21H, that operate on the TPA:

0 Function 48H (Allocate Memory Block)

0 Function 49H (Free Memory Block)

0 Function 4AH (Resize Memory Block)

These three functions (Table 9-1) can be called by application programs, by the command

processor, and by MS-DOS itself to dynamically allocate, resize, and release arena entries

as they are needed. See SYSTEM CALLS: INTERRUPT 21H: Functions 48H; 49H; 4AH.

Table 9-1. MS-DOS Memory-Management Functions.

Function Name

Allocate Memory Block

Free Memory Block

Resize (Allocated)

Memory Block

Get/Set Allocation

Strategy*

Call With

AH = 48H

BX = paragraphs needed

AH = 49H

E8 = segment of block to
release

AH = 4AH

BX = new size of block in

paragraphs

ES = segment of block to
resize

AH = 58H

' AL = 00H (get strategy)

01H (set strategy)

If setting:

BX = strategy:
00H = first fir

01H = best fit

02H = last fit

Returns

AX = segment of allocated
block

If failed:

BX = size of largest available

block in paragraphs

nothing

If failed:

BX = maximum size

for block in paragraphs

If getting:

AX = strategy code

‘ MS—DOS versions 3.x only.

Section Il- Programming in the MS—DOS Environment 299

OLYMPUS EX. 1010 - 309/1582

OLYMPUS EX. 1010 - 310/1582

Part B: Programming for MS-DOS

When the MS-DOS kernel receives a memory—allocation request, it inspects the chain of

arena entry headers to find a free arena entry that can satisfy the request. The memory

manager can use any of three allocation strategies:

0 First fit-the arena entry at the lowest address that is large enough to satisfy the
request

0 Best fit—the smallest available arena entry that satisfies the request, regardless of its

position

0 Last fit—the arena entry at the highest address that is large enough to satisfy the
request

If the arena entry selected is larger than the size needed to fulfill the request, the arena

entry is divided and the program is given an arena entry exactly the size it requires. A new
arena entry header is then created for the remaining portion of the original arena entry; it

is marked “unowned” and can be used to satisfy subsequent allocation calls.

Research on allocation strategies has demonstrated that the first-fit approach is most

efficient, and this is the default strategy used by MS—DOS. However, in MS—DOS versions

3.0 and later, an application program can select a different strategy for the memory man-

ager with Interrupt 21H Function 58H (Get/Set Allocation Strategy). See SYSTEM CALLS:
INTERRUPT 21H: Function 58H. '

Using the memory-management functions

When a program begins executing, it already owns two arena entries allocated on its

behalf by the MS-DOS EXEC function (Interrupt 21H Function 4BH). The first entry holds

the program’s environment and is just large enough to contain this information; the second

entry (called the program block in this article) contains the program’s PSP, code, data, and
stack. '

The amount of memory MS—DOS allocates to the program block for a newly loaded tran—

sient program depends on its type (.COM or .EXE). Under typical conditions, a .COM pro—

gram is allocated all of the first arena entry that is large enough to hold the contents of its

file, plus 256 bytes for the PSP and at least 2 bytes for the stack. Because the TPA is seldom

fragmented into more than one arena entry before a program is loaded, a .COM program

usually ends up owning all the memory in the system that does not belong» to the operat-

ing system itself— memory divided between a relatively small environment and a com-

paratively immense program block.

The amount of memory allocated to a .EXE program, on the other hand, is controlled .
by two fields called MINALLOC and MAXALLOC in the .EXE program file header. The

MINALLOC field tells the MS-DOS loader how many paragraphs of memory, in addition to
the memory required to hold the initialized code and the data present in the file, must be

available for the program to execute at all. The MAXALLOC field contains the maximum

number of excess paragraphs, ifavailable, to allocate to the program.

300 TheMS—DOS Encyclopedia

OLYMPUS EX. 1010 - 310/1582

OLYMPUS EX. 1010 - 311/1582

Article 9: Memory Management

The default value placed in MAXALLOC by the Microsoft Object Linker is FFFFH para-
graphs, corresponding to 1 MB. Consequently, a .EXE program is typically allocated all of
available memory when it is loaded, as is a .COM file. Although it is possible to set the

MAXALLOC field to other, smaller values with the linker’s /CPARMAXALLOC switch or

with the EXEMOD utility supplied with Microsoft language compilers, few programmers
. bother to do so.

In short, when a program begins executing, it usually owns all of available memory—
frequently much more memory than it needs. If the program wants to be well behaved in

its use of memory and, possibly, load child programs as well, it should immediately release
any extra memory. In assembly—language programs, the extra memory is released by call-

ing Interrupt 21H Function 4AH (Resize Memory Block) with the segment of the program’s

PSP in the ES register and the number of paragraphs of memory to retain for the program’s
use in the BX register. (See Figures 9-2 and 9-3.) In most high-level languages, such as

Microsoft C, excess memory is released by the run-time library’s startup module.

_TEXT segment para public 'CODE'

org 100h

assume cs:_TEXT,ds:_TEXT,es:_TEXT,ss:_TEXT

main proc near ; entry point from MS-DOS
; CS = DS = E8 = SS = PSP

; first move our stack

mov sp,offset stk ; to a safe place...

; now release extra memory...
mov bx,offset stk ; calculate paragraphs to keep

mov cl,4 ; (divide offset of end of
shr va,cl ; program by 16 and round up)
inc bx

mov ah,4ah ; Fxn 4AH = resize mem block
int 21h ; transfer to MS-DOS

jc error ; jump if resize failed

; otherwise go on with work...

main endp

(more)

Figure 9-2. An example ofa .COMprogram releasing excess memory after it receives controlfrom MS-DOS.
Interrupt 21HFunction 4AH is called with the segment address oftheprogram ’5 PSP in registerES and the
number ofparagraphs ofmemory to retain in registerBX.

Section 11.- Programming in the MS—DOS Environment 50 1

OLYMPUS EX. 1010 - 311/1582

OLYMPUS EX. 1010 - 312/1582

Part B: Programming for MS—DOS

dw '64 dup (?)
stk equ $; base of new stack area

_TEXT ends

end main ; defines program entry point

Figure 9—2. Continued.

_TEXT segment word public 'CODE' ; executable code segment

assume cs:_TEXT,ds:_DATA,ss:STACK

main proc far ; entry point from MS—DOS
; CS = _TEXT segment,
; DS = ES = PSP

mov ax,_DATA ; set DS = our data segment
mov ds,ax

; give back extra memory... ’
mov ax,es ; let AX = segment_of PSP base
mov bx,ss ; and Ex = segment of stack base
sub bx,ax ; reserve seg stack - seg psp
add bx,stksize/16 ; plus paragraphs of stack
inc bx ; round up
mov ah,4ah ; Fxn 4AH = resize memory block
int 21h ; transfer to MS—DOS

jc error ; jump if resize failed

main endp

_TEXT ends

_DATA seément word public 'DATA' ; static & variable data

_DATA ends

(more)

Figure 9-3. An example ofd .EXEprogram releasing excess memory after it receives controlfrom MS—DOS.
Thisparticular code sequence depends on the segment ordershown. When a .EXEprogram is linkedfrom
many different object modules, other techniques may be needed to determine the amount ofmemory occupied
by theprogram at run time.

502 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 312/1582

OLYMPUS EX. 1010 - 313/1582

Article 9: Memory Management

STACK segment para stack 'STACK'

db stksize dup (?)

STACK ends

end main ; defines program entry point

Figure 9-3. Continued.

Later, if the transient program needs additional memory for a buffer, table, or other work

area, it can call Interrupt 21H Function 48H (Allocate Memory Block) with the desired

number of paragraphs. If a sufficiently large block of memory is available, MS-DOS creates

a new arena entry of the requested size and returns a pointer to its base in the form of a

segment address in the AX register. If an arena entry of the requested size cannot be cre-

ated, MS-DOS returns an error code in the AX register and the size in paragraphs of the

largest available block of memory in the BX register. The application program can inspect
this value to determine Whether it can continue in a degraded fashion with a smaller

amount of memory.

When a program finishes using an allocated arena entry, it should promptly call Interrupt
21H Function 49H to release it. This allows MS-DOS to collect small blocks of freed mem-

ory into contiguous arena entries and reduces the chance that future allocation requests by

the same program will fail because of memory fragmentation. In any case, all arena entries

owned by a program are released when the program terminates with Interrupt 20H or

with Interrupt 21H Function 00H or 4CH.

A program skeleton demonstrating theuse of dynamic memory allocation services is

shown in Figure 9—4. ‘

mov bx,800h ; BOOH paragraphs = 32 KB
mov ah,48h ; Fxn 48H = allocate block ,
int 21h ; transfer to MS—DOS
jc error ; jump if allocation failed
mov bufseg,ax ; save segment of block

; open working file...
mov dx,offset filel ; DS:DX = filename address
mov ax,3d00h ; Fxn 3DH = open, read only
int 21h ; transfer to MS—DOS

jc error ; jump if open failed
mov handle1,ax ; save handle for work file

(more)

Figure 9-4. A skeleton example ofdynamic memory allocation. Theprogram requests a 32KB memory block,
uses it to copy its workingfile to a backupfile, and then releases the memory bloc/e. Note the use ofASSUME
directives toforce the assembler to generatepropersegment overrides on references to variables containingfile
handles.

Section [1: Programming in the MS-DOSEnuironment 505

OLYMPUS EX. 1010 - 313/1582

OLYMPUS EX. 1010 - 314/1582

Part B: Programming for MS-DOS

create backup file...-

mov dx,offset file2 ; DS:DX = filename address
mov cx,0 i CX = attribute (normal)
mov ah,3ch ' ; Fxn 3CH = create file
int 21h ; transfer to MS—DOS

jc error ; jump if create failed
mov handle2,ax ; save handle for backup file

push ds ; set E5 = our data segment
pop es
mov ds,bufseg ; set DS:DX = allocated block
xor' dx,dx

assume ds:NOTHING,es:_DATA i tell assembler

next: ; read working file...
mov bx,handle1 ; handle for work file
mov cx,8000h ; try to read 32 KB
mov ah,3fh ; Fxn 3FH = read
int 21h ; transfer to MS—DOS
jc error ; jump if read failed
or ax,ax ; was end of file reached?
jz done ; yes, exit this loop

now write backup file...
I

mov cx,ax ; set write length = read length
mov bx,handle2 ; handle for backup file
mov ah,40h ; Fxn 40H = write
int 21h ; transfer to MS-DOS ‘
jc error ; jump if write failed
cmp ax,cx ; was write complete?
jne error ; no, disk must be full
jmp next ; transfer another record

done: push es ; restore Ds = data segment
pop ds

assume ds:_DATA,es:NOTHING ; tell assembler

; release allocated block...

mov es,bufseg ; segment base of block
mov ah,49h ; Fxn 49H = release block
int 21h ; transfer to Ms—DOS
jc error ; (should never fail)

; now close backup file...
mov bx,handle2 ; handle for backup file

_mov ah,3eh ; Fxn 3EH = close ’
int 21h ; transfer to Ms—DOS
jc error ; jump if close failed

Figure 9-4. Continued. (more)

304 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 314/1582

OLYMPUS EX. 1010 - 315/1582

Article 9: Memory ManagementW

filel db 'MYFILE.DAT',0 ; name of working file
file2 db 'MYFILE.BAK',O ; name of backup file

handlel dw ? ; handle for working file
handle2 dw ? ; handle for backup file
bufseg dw ? ; segment of allocated block

Figure 9-4. Continued.

Expanded Memory

The original Expanded Memory Specification (EMS) version 3.0 was developed as a joint

effort of Lotus Development Corporation and Intel Corporation and was announced at the
Spring COMDEX in 1985. The EMS was designed to provide a uniform means for applica-

tions running on 8086/8088-based personal computers, or on 80286/80386-based com—

puters in real mode, to circumvent the 1 MB limit on conventional memory, thus providing

such programs with much larger amounts of fast random-access storage. The EMS version

3.2, modified from 3.0 to add support for multitasking operating systems, was released

shortly afterward as a joint effort of Lotus, Intel, and Microsoft.

The EMS is a functional definition of a bank—switched memory subsystem; it consists of

user-installable boards that plug into the IBM PC’s expansion bus and a resident driver pro-

gram called the Expanded Memory Manager (EMM) that is provided by the board manu-

facturer. As much as 8 MB of expanded memory can be installed in a single machine.

Expanded memory is made available to application software in 16 KB pages, which are

mapped by the EMM into a contiguous 64 KB area called the page frame somewhere

above the conventional memory area used by MS—DOS (0—640 KB). An application pro-

gram can thus access as many as four 16 KB expanded memory pages simultaneously. The

location of the page frame is user configurable so that it will not conflict with other hard—

ware options (Figure 9-5).

The Expanded Memory Manager

The Expanded Memory Manager provides a hardware-independent interface between

application programs and the expanded memory board(s). The EMM is supplied by the.
board manufacturer in the form of an installable character-device driver and is linked into

MS—DOS by a DEVICE directive added to the CONFIG.SYS file on. the system startup disk.

Internally, the EMM is divided into two distinct components that can be referred to as the

driver and the manager. The driver portion mimics some of the actions of a genuine in—

stallable device driver, in that it includes Initialization and Output Status subfunctions and
a valid device header. See PROGRAMMING IN THE MS—DOS ENVIRONMENT: CUSTOMIZ-

ING MS-DOS: Installable Device Drivers.

Section 11- Programming in the MS-DOS Environment 305,

OLYMPUS EX. 1010 - 315/1582

OLYMPUS EX. 1010 - 316/1582

Part B: Programming for MS»DOS

Expanded memory
—8 MB—
—
—
_
__
r _ ‘—_

Conventional memory —_
1 MB _—

ROM BIOS m -_"-"
—
—
—

— —— _
EMS Page frame _ _

«our 16KB pages> = =_
— —

640 KB ——
_

T’miem ng’a‘“ ma __
. _

—
—

M34305 —
00400H —

0 Interrupt vector table _0

Figure 9-5. A sketch ofthe relationship ofexpanded memory to conventional memory,- 16 KBpages of
expanded memory are mapped into a 64 KB area, called thepageframe, above the 640 KB boundary. The
location ofthepageframe can be configured by the user to eliminate conflicts with ROMS or[/0 bufi‘ers on
expansion boards. '

The second, and major, element of the EMM is the true interface between application soft—

ware and the expanded memory hardware. Several classes of services provide

Status of the expanded memory subsystem

Allocation of expanded memory pages

Mapping of logical pages into physical memory

Deallocation of expanded memory pages

Support for multitasking operating systems
Diagnostic routines

Application programs communicate with the EMM directly by means of a software inter— '

rupt (Interrupt 67H). The MS-DOS kernel does not take part in expanded memory

manipulations and does not use expanded memory for its own purposes.

306 TheMS—DOSEncyclopedia

OLYMPUS EX. 1010 - 316/1582

OLYMPUS EX. 1010 - 317/1582

Article 9: Memory Management

Checking for expanded memory

Before it attempts to use expanded memory for storage, an application program must
establish that the EMM is present and functional, and then it must use the manager portion
of the EMM to check the status of the memory boards themselves. There are two methods

a program can use to test for the existence of the EMM.

The first method is to issue an Open File or Device request (Interrupt 21H Function SDH)

using the guaranteed device name of the EMM driver: EMMXXXXO. If the open operation
succeeds, one of two conditions is indicated— either the driver is present or a file with the

same name exists in the current directory of the default disk drive. To rule out the latter

possibility, the application can issue IOCTL Get Device Information (Interrupt 21H Func-

tion 44H Subfunction 00H) and Check Output Status (Interrupt 21H Function 44H Subfunc-

tion 07H) requests to determine Whether the handle returned by the open operation is
associated with a file or with a device. In either case, the handle that was obtained from

the open function should then be closed (Interrupt 21H Function BEH) so that it can be
reused for another file or device.

The second method of testing for the driver is to use the address that is found in the vector

for Interrupt 67H to inspect the device header of the presumed EMM. (The contents of

the vector can be obtained conveniently with Interrupt 21H Function 35H.) If the EMM is

present, the name field at offset OAH of the device header contains the string EMADIXXXO.

This method is nearly foolproof, and it avoids the relatively high overhead of an MS-DOS
open function. However, it is somewhat less well behaved because it involves inspection

of memory that does not belong to the application.

The two methods of testing for the existence of the EMM are illustrated in Figures 9-6 and
9-7.

; attempt to "open'f EMM. . .
mov dx, seg emm_name ; DS:DX.= address of name
mov ds,dx ; of EMM
mov dx,offset emm_name
mov ax,3d00h ; Fxn 3DH, Mode = 00H

1 ; = open, read-only
int 21h ‘ ; transfer to MS—DOS
jc error ; jump if open failed

; open succeeded, make sure
: it was not a file...

(more)

Figure 9— 6. Testingfor thepresence ofthe ExpandedMemoryManager with the MS-DOS Open File orDevice
(Interrupt 21HFunction 30H) and IOCTL (Interrupt 21HFunction 44H)functions.

Section IL- Programming in the MS-DOS Environment 307 ,

OLYMPUS EX. 1010 - 317/1582

OLYMPUS EX. 1010 - 318/1582

Part B; Programming for MS-DOS

mov bx,ax ; BX = handle from open
mov ax,4400h ; Fxn 44H Subfxn 00H

; = IOCTL Get Device Information
int 21h ; transfer to MS—DOS

jc error ; jump if IOCTL call failed
and dx,80h ; Bit 7 = 1 if character device
jz error ; jump if it was a file

; EMM is present, make sure
i it is available...
; (BX still contains handle)

mov ax,4407h ; Fxn 44H Subfxn 07H
; = IOCTL Get Output Status

int 21h ; transfer to MS—DOS

jc error ; jump if IOCTL call failed
or al,al ; test device status
jz error ; if AL = 0 EMM is not available

; now close handle
; (BX still contains handle)

mov ah,3eh ; Fxn 3EH = Close
int 21h ; transfer to MS—DOS

jc error ; jump if close failed

emm_name db 'EMMXXXXO',0 ; guaranteed device name for EMM

Figure 9—6. Continued.

emm_int equ 67h ; EMM software interrupt

; first fetch contents of

i EMM interrupt vector...
mov al,emm_int ; AL = EMM int number
mov ah,35h ; Fxn 35H = get vector
int 21h ; transfer to MS-DOS

; now ES:BX = handler address

; assume ES:0000 points
; to base of the EMM... ~

(more)

Figure 9- 7. Testingfor thepresence ofthe ExpandedMemoryManager by inspecting the namefield in the
device driver header.

308 The MS-DOSEncyclopedia

OLYMPUS EX. 1010 - 318/1582

OLYMPUS EX. 1010 - 319/1582

Article 9: Memory Managementw

mov di,10 ; ES:DI = address of name
; field in device header

mov si,seg emm_name ; DS:SI = address of

mov ds,si ; expected EMM driver name
mov si,offset emm_name
mov cx,8 ; length of name field
cld

repz cmpsb ; compare names...
jnz error ; jump if driver absent

emm_name db 'EMMXXXXO' ; guaranteed device name for EMM

Figure 9-7. Continued.

Using expanded memory

After establishing that the EMM is present, the application program can bypass MS-DOS

and communicate with the EMM directly by means of software Interrupt 67H. The calling
sequence is as follows:

mov ah,function ; AH selects EMM function

; Load other registers with
; values specific to the
; requested service

int 67h ; Transfer to EMM

In general, the ES:DI registers are used to pass the address of a buffer or an array, and the

DX register is used to hold an expanded memory “handle.” Some EMM functions also use

other registers (chiefly AL and BX) to pass such information as logical and physical page
numbers. Table 9—2 summarizes the services available from the EMM.

Upon return from an EMM function call, the AH register contains zero if the function was

successful; otherwise, AH contains an error code with the most significant bit set (Table

9—5). Other values are typically returned in the AL and BX registers or in a user-specified
buffer.

Section 11.- Programming in theMS—DOS Environment 309

OLYMPUS EX. 1010 - 319/1582

OLYMPUS EX. 1010 - 320/1582

Part B: Programming for MS-DOS

.EHVGOUUfi—Dnm

 5;»“0050500390£033flaunt0wun~922m05.0880we308%;0:“$00:020comuwuznfim056meEggaa0:050:22muKO09mm922m0555.5ww.9Bang::002an::00cm>582:058080OH3.:...8SwanEgg—E580mg3&2u030E000:09:006:3.mmv55¢an53»06:0:22m05900:80:“Amie«8Bum?“50808bmsom>0a00mgRumwofi0009:5:08fl:00053093RvfifiauA<“0005quno.00deJélo0mEfl05E03$2:Bean:0meRHMQ9:028»nm<33uE<:8me05000:0an:50:02Q02
EASE?“w0mwa«o0035::330505055.48309cocwuzaaw0;“~300:0003EmuEmvconga—am.USwswfifiC00n023$9322m08.500:09“:22mvflngm05005000200.01E:8“520:3mEH60:35..“mmdeflmummmw05C033:OUEMEO00200bn—“0090000on“was:3:030:05

Q059$0100200560350b0>05;»U0?0D$550:05.:$505530A;00wa22m«0bag:5800a9030vanmoo380:09>3“00:05:000L98wa508020:5305m9wsomofiau3605300065305..235um2:.06chHMD0093fiuRQuNaRfimofi0080:“we.“000596“0%.50conga:0ao-0Ea9E21230flGenomemi;0230n:<mmvum<065322man505002822
0008020208:0Hoe

805%. 030E:m0mam00028.5Em0mwa22mEBHMD05“0:0889$05E300uv?a.m0mwaE0m0am0mma3080845:05;0::0m:80:5322m“0008235uKm$090800FEMSwemvmmm>880:22m5w“0005—8030000:”02EHo:U00:coumafiam05.mafian:<Emvn$30028::055050@095me00qumwooun—mwowGwow05mo000%50805:8?»anmoon$4a.050;050$0E9500mg50808009590Runa—QNE900m:0mg00E0Ew0wnKm0me22m0%00$0,600E0EM0w080E0.60058quQM9589500036fl08300mg05.@380u$2I?uE<VE053005£0500mg~00
40:285.“0.8

0:085322m05230000390:new0525000Nd939d005mm3“00308500:63:00“05“—00:030:08U0nawmx0039m5;»00402388us:8.2on0500wa000:a:835.0390nT?wowuE<05050:3Hm0hSwag—200003033000530Kad?.53040502:0050302

 0.534%05>563.395macawobm“5303134300300050§B¢Om05HOkhan—85m.Né050,—.
The MS—DOS Encyclopedia310

OLYMPUS EX. 1010 - 320/1582

OLYMPUS EX. 1010 - 321/1582

Article 9: Memory Management

‘

098.5

.:_0:00:80:?3080:::0:05:0:0Nmm::0>0:0—05:32m:<.NRIH0m5:0::E@9925m:3::0:000:00m::0:0:£0::M:00530:009mm:0:0085:0::00:05:22m5:050:300:80:00:050:00:00:5030255:20.:05::50:5:on010:0<.mmm0000008:0>0:0005:22m02:5U:053:5:2:..00:::01580::0005qu0::000:0:6:30:00550:020:0::0:0n_::::0::a:.:o_:Q=::0::_:0:50m0:::00:500::0:53:00MEQQNE0::0:900:O:5050::0005008000:5:::0>::00:00:00:0.:o:205:E305:5030:0:.05050:05::22m0::80:00:035:30005—5005:03::0:0:::0:::005
00:05:06:

535::ESMOE0::0::0:”00000000:oanszEm:w:::=0:205:53:850::0:00:»:05535::0—05:0::m::0005:0::0:002005205:0:8595::000550000005:02:5:0000:0::0302:0E0000:0520:05:32:25:30m::0:0.056000::0::0:E03:..0::v:030:0::c::5:5:005:0:005830Sam:0::E:50:0M0:::0::5:3dun5000005a:008:::0:m:0>05.00:55”.02:00:::00?»5:322m0:::050:9:0::m:25>00550:0:300waEOE0::0005985:00»00:9005:5::::0500:::000:05:3@05500:0:EB8:50:050:05::22m0::000:0:::.05m:0:0500008:00:02:053:000::m::000:&0::
Econ:5:.00505&2u0305:80u02:8

u:5:.805:22::o038::u:8033m.u02mafiau0235:0n5
100H03:::0:m:0>52%:u,20580u50280nE<

20:0:22mHND300nE<Emvn:<0:053235MNOvauEm:0:05:ESEHNOEvnE<mownE<0—0:“:22mnNDmmvuEa:

.205:208%00:0050058me5080::000550Rufio—:000:5:0::530:00—05:22m03:5:000:5:0::55:0”:.205:
:03»0:00:?00568500:030::0:0:0:m:w0:33550me05305:3050::000:090:0009:00:000::0:800”:.205:22:006000550»25:808:00656005605003050::00059.00:::00:0:m:w0:9:358-0505080::0005500:::00:09:000::05m05300022m0:::000:5::0:w:0>0::530m.0030::00:03:0:05:0::050—0::05050:05:a0:00505350503080::000550:0009%:50500:00:0:500:53: .2229m2:0::a:..00>._82._2a0500m8:90»m2:585:0022.»82m:6550new:0“2055:22:.

205$300:3000mm::0000—05%:22m«0:035:Z:0050:500:5:me0:060:52:003:05205m:0:m:0>22m:00E0502050—0530500:

311,Section 11: Programming in the MS-DOS Environment

OLYMPUS EX. 1010 - 321/1582

OLYMPUS EX. 1010 - 322/1582

Part B: Programming for MS~DOS

28¢.32>qum:9Euumfifisw30:68movcmmxvo5293k95.8800:mm35532583.65058:8BE:5.wuouwfiwoumEnEnE$me05Mo89389059config5.Eonaoaoc

98.moo95:‘ucansmv:0:LEEOE0280.—9DENuHaumm 8.953822mcanMERE—EmmkmbmMEwe38:805.Ammo€30.wEEwoanouszmmwR—Uum:onENC«Eumooaccusemacs€58:quyou250%fi.mGEmSESEtoaasm9fiuammovham5wcos—“5.5%.:9.55va2vanNdG299,22m5~00va99$actuaamEH.wEan—«E32003Hflnwmnowwwmww52.2wmcaawfibwuano«Emvenous530.—"Ema39@859”>33.mEEo:acumencougao0:05283%:wEnEwEHumnewHowH:NoAmmonouucensmv>8.“u$an50808@2335>8389cEuuwmmouchauEHumuES>953:52:535::05Go38$onMEQQNE>95“9529$wa“mEQQwEHowumoo.MMmQEmuffu.2:omuucaanm.I.A<-umma22m05we9%;wwwm“mnouuaansm9.53mu:4luvu$4355002:Hum.695m3300
duffONE.85hawksonHo:68:>332:60:58.—SEMwenun—En:82:qu05mmmmN85¢qu5:2825858

E39.8%a5RE.223585?was$8.305Emousse99555069>95659uE<bEoEwomEranHmm.683mamaE080821.30Hun—Ea9:82mKmE@05320:152: .coca—.6“:wovcmaxoFawn:mo29%:“m5ES?338%“mamahoHon—Esq0535:8865“:22m0308..8.Hun—Es:05can8:25:v.53vacuum2:”29:3wwEwEOuP55:08«0E03growwebani:uMm>55“0“onton5grow05E“23:88653=<8.59:.33590303506«EBEUv=ufl>95“05H258muv.2In?ua35>88EN53ozyouwoman~008:028nan—58—am?550440552:50.5302
.§§§u.3038.

TheMS-DOSEncyclopedia312

OLYMPUS EX. 1010 - 322/1582

OLYMPUS EX. 1010 - 323/1582

Article 9: Memory Management

Table 9-3. The Expanded Memory Manager (EMM) Error Codes.

Error Code Significance

OOH Function was successful.

80H Internal error in the EMM software. Possible causes include an error in the

driver itself or damage to its memory image.

81H Malfunction in the expanded memory hardware.

82H EMM is busy.

83H Invalid expanded memory handle.

84H Function requested by the application is not supported by the EMM.

85H No more expanded memory handles available.

86H Error in save or restore of mapping context.

87H Allocation request specified more logical pages than are available in the

system; no pages were allocated.
88H Allocation request specified more logical pages than are currently avail-

able in the system (the request does not exceed the physical pages that

exist, but some are already allocated to other handles); no pages were
allocated.

89H Zero pages cannot be allocated.

8AH Logical page requested for mapping is outside the range of pages assigned
to the handle. “

8BH Illegal physical page number‘in mapping request (not in the range 0—3).

SCH Save area for mapping contexts is full. ,

8DH Save of mapping context failed because save area already contains a con-

text associated with the requested handle.

8EH Restore of mapping context failed because save area does not contain a

context for the requested handle.

8FH Subfunction parameter not defined.

An application program that uses expanded memory should regard that memory as a
system resource, such as a file or a device, and use only the documented EMM services to

allocate, access, and release expanded memory pages. Here is the general strategy that

can be used by such a program:

1. Establish the presence of the EMM by one of the two methods demonstrated in

Figures 9—6 and 9—7.

2. After the driver is known to be present, check its operational status with EMM
Function 40H.

3. Check the version number of the EMM with EMM Function 46H to ensure that all ser-

vices the application will request are available.

4. Obtain the segment of the page frame used by the EMM with EMM Function 41H.

Allocate the desired number of expanded memory pages with EMM Function 43H. If

the allocation is successful, the EMM returns a handle in DX that is used by the appli-

cation to refer to the expanded memory pages it owns. This step is exactly analogous

.V‘

Section II: Programming in theMS-DOS Environment 3 1 3

OLYMPUS EX. 1010 - 323/1582

OLYMPUS EX. 1010 - 324/1582

Part B: Programming for MS—DOS

to opening a file and using the handle obtained from the open function for subse-
quent read/write operations on the file.

6. If the requested number of pages is not available, query the EMM for the actual num-
ber of pages available (EMM Function 42H) and determine whether the program can
continue. '

7. After successfully allocating the number of expanded memory pages needed, use
EMM Function 44H to map logical pages in and out of the physical pageframe, to store
and retrieve data in expanded memory.

8. When finished using the expanded memory pages, release them by calling EMM
Function 45H. Otherwise, the pages will not be available for use by other programs
until the system is restarted.

A program skeleton that illustrates this general approach to the use of expanded memory
is shown in Figure 9-8.

mov ' ah,40h ; test EMM status
int 67h ..
or ah,ah
jnz error ; jump if bad status from EMM

mov ah,46h ; check EMM version
int 67h

or ah,ah
jnz error ; jump if couldn’t get version
cmp al,30h ; make sure at least ver. 3.0
jb - error ; jump if wrong EMM version

mov ah,41h . ; get page frame segmentint 67h

or _ ah,ah
jnz error ; jump if failed to get frame
mov. page_frame,bx ; save segment of page frame

mov ah,42h ; get no. of available pages
int 67h ‘

or ah,ah
jnz error ; jump if get pages error
mov total_pages,dx ; save total EMM pages
mov avail_pages,bx ; save available EMM pages
or bx,bx

jz error ; abort if no pages available

mov ah,43h ; try to allocate EMM pages ,

(more)

Figure 9-8. Aprogram skeletonfor the use ofexpanded memory. This code assumes that thepresence ofthe
ExpandedMemory Manager has already been verified with one ofthe techniques shown in Figures 9-6
andELZ

514 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 324/1582

OLYMPUS EX. 1010 - 325/1582

Article 9: Memory Managementw

mov bx,needed_pages
int 67h ; if allocation is successful
or ah,ah

jnz error ; jump if allocation failed

‘mov emm_handle,dx ; save handle for allocated pages

; now we are ready for other
; processing using EMM pages

; map in EMM memory page...
mov bx,log.page ; BX <— EMM logical page number
mov al,phys,page ; AL <— EMM physical page (0—3)
mov dx,emm,handle ; EMM handle for our pages
may ah,44h ; Fxn 44H = map EMM page
int 67h

or ah,ah
jnz error ; jump if mapping error

; program ready to terminate,
; give up allocated EMM pages...

mov dx,emm_handle ; handle for our pages
mov ah,45h ; EMM Fxn 45H = release pages
int 67h

or ah,ah _
jnz error ; jump if release failed

Figure 9-8. Continued.

An interrupt handler or resident driver that uses the EMM follows the same general

procedure outlined in steps 1 through 8, with a few minor variations. It may need to

acquire an EMM handle and allocate pages before the operating system is fully functional;

in particular, the MS-DOS services Open File or Device (Interrupt 21H Function 3DH),

IOCTL (Interrupt 21H Function 44H), and Get Interrupt Vector (Interrupt 21H Function

35H) cannot be assumed to be available. Thus, such a handler or driver must use a mod-

ifiedversion of the “get interrupt vector” technique to test for the existence of the EMM,

fetching the contents of the Interrupt 67H vector directly instead of using MS-DOS Inter-
rupt 21H Function 55H.

A device driver or interrupt handler typically owns its expanded memory pages on a

permanent basis (until the system is restarted) and never deallocates them. Such a pro-

gram must also take care to save (EMM Function 47H) and restore (EMM Function 48H)

the EMM’s page-mapping context (the EMM pages mapped into the page frame at the

time the device driver or interrupt handler takes control of the system) so that use of the

expanded memory by a foreground program will not be disturbed.

Section 11: Programming in the MS-DOS Environment 315

OLYMPUS EX. 1010 - 325/1582

OLYMPUS EX. 1010 - 326/1582

Part B: Programming for MS.DOS

The EMM relies heavily on the good behavior of application softWare to avoid the corrup-

tion of expanded memory. If several applications that use expanded memory are running
under a multitasking manager, such as Microsoft Windows, and one or more of those appli-

cations does not abide strictly by the EMM’s conventions, the data stored in expanded

memory can be corrupted.

Extended Memory

Extended memory is that storage at addresses above 1 MB (lOOOOOH) that can be accessed

by an 80286 or 80386 micrOprocessor running in protected mode. IBM PCAT—compatible

machines can (theoretically) have as much as 15 MB of extended memory installed, in

addition to the usual 1 MB of conventional memory address space. Unlike expanded mem-
ory, extended memory is linearly addressable: The address of each memory cell is fixed,

so no special manager program is required.

Protected-mode operating systems, such as Microsoft XENIX and MS 08/2, can use ex-

tended memory for execution of programs. MS—DOS, on the other hand, runs in real mode

on an 80286 or 80586, and programs running under its control cannot ordinarily execute
from extended memory or even address that memory for storage of data.

To provide some access to extended memory for real—mode programs, IBM PC/AT—
compatible machines contain two routines in their ROM BIOS (Tables 9-4 and 9-5)

that allow the amount of extended memory present to be determined (Interrupt 15H Func—

tion 88H) and that transfer blocks of data between conventional memory and extended

Table 9-4. IBM PC/AT ROM BIOS Interrupt 15H Functions for

Access to Extended Memory.

Interrupt 15H Function Call With Returns .

Move Extended Memory Block AH = 87H" Carry flag = 0 if successful

CX = length (words) 1 if error
ES:SI = address ofblock AH = status:

move descriptor 00H no error

table 01H RAM parity error

02H exception inter—
rupt error

05H gate address line
. 20 failed

Obtain Size of Extended AH = 88H AX = kilobytes of memory

Memory installed above 1 MB

‘ Table 9-5 shows the descriptor table format used by Function 87H.

316 The Ms-Dos Encyclopedia

OLYMPUS EX. 1010 - 326/1582

OLYMPUS EX. 1010 - 327/1582

Article 9: Memory Management

memory (Interrupt 15H Function 87H). These routines can be used by electronic disks
‘(RAMdisks) and by other programs that wish to use extended memory for fast storage and
retrieval of information that would otherwise have to be written to a slower physical disk
drive.

Table 9-5. Block Move Descriptor Table Format for IBM PC/AT ROM BIOS

Interrupt 15H Function 87H (Move Extended Memory Block).

' Bytes Contents

OO—OFH Zero

10— 1 1H Segment length in bytes (2* CX— 1 or greater)
12— 14H 24-bit source address

15H Access rights byte (93H)

16- 17_H Zero

18— 19H Segment length in bytes (2 * CX— 1 or greater)
1A-1CH 24-bit destination address

1DH Access rights byte (95H)
1E— lFH Zero

20—2FH Zero

Note: This data structure actually constitutes a global descriptor table (GDT) to be used

by the CPU while it is running in protected mode; the zero bytes at offsets O—OFH and

20—2FH are filled in by the ROM BIOS code before the mode transition. The supplied 24-

bit address is a linear address in the range OOOOOO—FFFFFFH (not a segment and offset),

with the least significant byte first and the most significant byte last.

Programmers should use these ROM BIOS routines with caution. Data stored in extended

memory is volatile; it is lost if the machine is turned off. The transfer of data to or from

extended memory involves a switch from real mode to protected mode and back again.

This is a relatively slow process on 80286—based machines; in some cases it is only margin—

ally faster than actually reading the data from a fixed disk. In addition, programs that use

the ROM BIOS extended memory functions are not compatible with the MS-DOS 3.x Com—

patibility Box of MS OS/Z, nor are they reliable if used for communications or networking.

Finally, a major deficit in these ROM BIOS functions is that they do not make any attempt

to arbitrate between two or more programs or device drivers that are using extended

memory for temporary storage. For example, if an application program and an installed

RAMdisk driver attempt to put data in the same area of extended memory, no error is

returned to either program, but the data belonging to one or both may be destroyed.

Figure 9—9 demonstrates the use of the ROM BIOS routines to transfer a block of data from

extended memory to conventional memory.

Section 11.- Programming in the MS-DOSEnvironment 317

OLYMPUS EX. 1010 - 327/1582

OLYMPUS EX. 1010 - 328/1582

Part B: Programming for MS-DOS

bmdt db
db
db
db
db
db

buff db

mov
mov
mov
mov
mov
mov
mov
mov
mov
call
or

jnz

getblk proc

mOV
mov

mov
mov

8 dup (0)
8 dup (0)
8 dup (0)
8 dup (0)
8 dup (0)
8 dup (0)

80h dup (0)

dx,10h
ax,0
bx,seg buff
ds,bx
bx,offset buff
cx,80h
si,seg bmdt
es,si
si,offset bmdt
getblk
ah,ah
error

near

es:[si+10h],cx
es:[si+18h],cx

~.

‘.x.s.
I

block move descriptor table
dummy.descriptor
GDT descriptor
source segment descriptor
destination segment descriptor

BIOS CS segment descriptor
BIOS SS segment descriptor

buffer to receive data

DX:AX = source extended memory
address 100000H (1 MB)
DS:BX = destination conventional

memory address

CX = length to move (bytes)
ES:SI = block move descriptor table

get block from extended memory
test status

jump if block move failed

transfer block from extended

memory to real memory
call with

DX:AX = extended memory address
DS:BX = destination buffer

CX = length (bytes)
ES:SI ; block move descriptor table
returns

AH = 0 if transfer 0K

store length in descriptors

store access rights bytes
byte ptr es:[si+15h],93h
byte ptr es:[si+1dh],93h

(more)

Figure 9-9. Demonstration ofa block movefrom extended memory to conventional memory using the ROM
BIOS routine. Theprocedure getblk accepts a source address in extended memory, a destination address in
conventional memory, a length in bytes, and the segment and offset ofa block move descriptor table. The
extended-memory address is a linear532-bit address, ofwhich only the lower 24 bits are significant; the
conventional-memory address is a segment and offset. The getblk routine converts the destination segment
and oflset to a linear address, builds the appropriatefields in the blade move descriptor table, invokes the ROM
BIOS routine toperform the transfer; and returns the status in theAH register.

518 The Ms-DosEncyclopedia

OLYMPUS EX. 1010 - 328/1582

OLYMPUS EX. 1010 - 329/1582

Article 9: Memory ManagementW

; source (extended memory) address
mov es:[si+12h],ax
mov es:[si+14h],dl

; destination (conv memory) address
mov ax,ds ; segment * 16

mov dx}16
mul dx

add ax,bx ~ ; + offset —> linear address
adc dx,0
mov es:[si+lah],ax
mov es:[si+1ch],dl

-shr cx,l ; convert length to words
mov ah,87h ; Fxn 87H = block move
int 15h ‘; transfer to ROM BIOS

ret ; back to caller

Figure 9—9. Continued.

Summary

Personal computers that run MS—DOS can support as many as three different types of fast,

random-access memory (RAM). Each type has specific characteristics and requires differ-

ent techniques for its management.

Conventional memory is the term used for the 1 MB of linear address space that can be ac-

cessed by an 8086 or 8088 microprocessor or by an 80286 or 80386 microprocessor run-

ning in real mode. MS—DOS and the programs that execute under its control run in this

address space. MS—DOS provides application programs with services to dynamically allo— '

cate and release blocks of conventional memory.

As much as 8 MB of expanded memory can be installed in a PC and used for electronic

disks, disk caching, and storage of application program data. The memory is made avail-

able in 16 KB pages and is administered by a' driver program called the Expanded Memory

Manager, which provides allocation, mapping, deallocation, and multitasking sUpport.

Extended memory refers to the memory at addresses above 1 MB that can be accessed by

an 802864based or 80386-based microprocessor running in protected mode; it is not avail—

able in PCs based on the 8086 or 8088 microprocessors. As much as 15 MB of extended

memory can be installed; however, the ROM BIOS services to access the memory are

primitive and slow, and no manager is provided to arbitrate between multiple programs

that attempt to use the same extended memory addresses for storage.

Ray Duncan

/

Section 11.- Programming in the MS—DOS Environment 319

OLYMPUS EX. 1010 - 329/1582

OLYMPUS EX. 1010 - 330/1582

OLYMPUS EX. 1010 - 330/1582

OLYMPUS EX. 1010 - 331/1582

Article 10: The MS-DOS EXEC Function

Article 10

The MS-DOS EXEC Function.

The MS-DOS system loader, which brings .COM or .EXE files from disk into memory and
executes them, can be invoked by any program with the MS-DOS EXEC function (Inter-

rupt 21H Function 43H). The default MS-DOS command interpreter, COMMANDCOM,
, uses the EXEC function to load and run its external commands, such as CHKDSK, as well

as other application programs. Many popular commercial programs, such as databases and

word processors, use EXEC to load and run subsidiary programs (spelling checkers, for

example) or to load and run a second copy of COMMANDCOM. This allows a user to run

subsidiary programs or enter MS—DOS commands without losing his or her current

working context.

When EXEC is used by one program (called the parent) to load and run another (called

the child), the parent can pass certain information to the child in the form of a set of strings
called the environment, a command line, and two file control blocks, The child program

also inherits the parent program’s handles for the MS-DOS standard devices and for any

other files or character devices the parent has opened (unless the open operation was per—

formed with the “noninheritance” option). Any operations performed by the child on

inherited handles, such as seeks or file I/O, also affect the file pointers associated with the
parent’s handles. A child program can, in turn, load another program, and the cycle can be

repeated until the system’s memory area is exhausted.

Because MS—DOS is not a multitasking operating system, a child program has complete

control of the system until it has finished its work; the parent program is suspended. This

type of processing is sometimes called synchronous execution. When the child termi-

nates, the parent regains control and can use another system function call (Interrupt 21H

Function 4DH) to obtain the child’s return code and determine whether the program ter-

minated normally, because of a critical hardware error, or because the user entered a
Control-C.

In addition to loading a child program, EXEC can also be used to load subprograms and

overlays for application programs written in assembly language or in a high—level language

that does not include an overlay manager in its run-time library. Such overlays typically

cannot be run as self—contained programs; most require “helper" routines or data in the

application’s root segment.

The EXEC function is available only with MS—DOS versions 2.0 and later. With MS—DOS

versions 1.x, a parent program can use Interrupt 21H Function 26H to create a program

segment prefix for a child but must carry out the loading, relocation, and execution of the

child’s code and data itself, without any assistance from the operating system.

Section II: Programming in theMS-DOSEnvironment 32 1

OLYMPUS EX. 1010 - 331/1582

OLYMPUS EX. 1010 - 332/1582

Part B: Programming for MS-DOS

HOW EXEC Works

When the EXEC function receives a request to execute a program, it first attempts to locate

and open the specified program file. If the file cannot be found, EXEC fails immediately
and returns an error code to the caller.

If the file exists, EXEC opens the file, determines its size, and inspects the first block of the
file. If the first 2 bytes of the block are the ASCII characters MZ, the file is assumed to con-

tain a .EXE load module, and the sizes of the program’s code, data, and stack segments are

obtained. from the .EXE file header. Otherwise, the entire file is assumed to be an absolute

load image (a .COM program). The actual filename extension (.COM or .EXE) is ignored
in this determination.

At this point, the amount of memory needed to load the program is known, so EXEC

attempts to allocate two blocks of memory: one to hold the new program’s environment
and one to contain the program’s code, data, and stack segments. Assuming that enough

memory is available to hold the program itself, the amount actually allocated to the pro-

gram varies with its type. Programs of the .COM type are usually given all the free mem—

ory in the system (unless the memory area has previously become fragmented), whereas

the amount assigned to a .EXE program is controlled by two fields in the file header,

MINALLOC and MAXALLOC, that are set by the Microsoft Object Linker (LINK). See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS—Dos: Structure

of an Application Program; PROGRAMMING TOOLS: The Microsoft Object Linker; PROGRAM-
MING UTILITIES: LINK.

EXEC then copies the environment from the parent into the memory allocated for child’s

environment, builds a program segment prefix (PSP) at the base 'of the child’s program

memory block, and copies into the child’s PSP the command tail and the two default file
control blocks passed by the parent. The previous contents of the terminate (Interrupt

22H), Control-C (Interrupt 25H), and critical error (Interrupt 24H) vectors are saved in the

new PSP, and the terminate vector is updated so that control will return to the parent

program when the child terminates or is aborted.

The actual code and data portions of the child program are then read from the disk file

into the program memory block above the newly constructed PSP. If the child is a .EXE

program, a relocation table in the file header is used to fix up segment references within

the program to reflect its actual load address.

Finally, the EXEC function sets up the CPU registers and stack according to the program

type and transfers control to the program. The entry point for a .COM file is always offset

100H within the program memory block (the first byte following the PSP). The entry point

for a .EXE file is specified in the file header and can be anywhere within the program. See
also PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-Dos:

Structure of an Application Program.

When EXEC is used to load and execute an overlay rather than a child program, its opera-

tion is much simpler than described above. For an overlay, EXEC does not attempt to allo-

cate memory or build a PSP or environment. It simply loads the contents of the file at the

322 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 332/1582

OLYMPUS EX. 1010 - 333/1582

Article 10: The MS—DOS EXEC Function

address specified by the calling program and performs any necessary relocations (if the

' overlay file has a .EXE header), using a segment value that is also supplied by the caller.
EXEC then returns to the program that invoked it, rather than transferring control to the

code in the newly. loaded file. The requesting program is responsible for calling the
overlay at the appropriate location.

, Using EXEC to Load a Program

When one program loads and executes another, it must follow these steps:

1. Ensure that enough free memory is available to hold the code, data, and stack of the

child program.

2. Set up the information to be passed to EXEC and the child program.

3 Call the MS-DOS EXEC function to run the child program.

4. Recover and examine the child program’s termination and return codes.

Making memory available,

MS-DOS typically allocates all available memory to a .COM or .EXE program when it is

loaded. (The infrequent exceptions to this rule occur when the transient program area

is fragmented by the presence of resident data or programs or when a .EXE program is
loaded that was linked with the /CPARMAXALLOC switch or modified with EXEMOD.)

Therefore,before a program can load another program, it must free any memory it does
not need for its own code, data, and stack.

The extra memory is released with a call to the MS—DOS Resize Memory Block function

(Interrupt 21H Function 4AH). In this case, the segment address of the parent’s PSP is

passed in the ES register, and the BX register holds the number of paragraphs of memory

the program must retain for its own use. If the prospective parent is a .COM program, it
must be certain to move its stack to a safe area if it is reducing its memory allocation to less
than 64 KB.

Preparing parameters for EXEC

When used to load and execute a program, the EXEC function must be supplied with two

principal parameters:

0 The address of the child: program’s pathname

O The address of a parameter block

The parameter block, in turn, contains the addresses of information to be passed to the
child program. I '

The program name

The pathname for the child program must be an unambiguous, null-terminated (ASCIIZ)
file specification (no wildcard characters). If a path is not included, the current directory is
searched for the program; if a drivespecifier is not present, the default drive is used.

Section 11: Programming in theMS-DOS Environment 323

OLYMPUS EX. 1010 - 333/1582

OLYMPUS EX. 1010 - 334/1582

Part B: Programming for MS~DOS

The parameter block

The parameter block contains the addresses of four data items (Figure 10-1):

0 The environment block

0 The command tail

0 The two default file control blocks (FCBs)

The position reserved in the parameter block for the pointer to an environment is only

2 bytes and contains a segment address, because an environment is always paragraph

aligned (its address is always evenly divisible by 16); a value of OOOOH indicates the parent

program’s environment should be inherited unchanged. The remaining three addresses
are all doubleword addresses in the standard Intel format, with an offset value in the lower

word and a segment value in the upper word.

To Call

AH = 43H

AL = 00H load and execute child process
03H load overlay

DS:DX = segmentzoffset of ASCIIZ pathname for an executable program file
ES:BX = segmentzoffset of parameter block

Returns

If function is successful:

Carry flag is clear. ‘ V
Other registers are preserved if MS-DOS version 3.0 or later, destroyed if MS-DOS
versions 2.x.

If function is not successful:
Carry flag is set.
AX = error code

Parameter Block Format

Offset Contents

If AL = OCH (load and execute program):

00H Segment pointer of the environment to be passed
02H Offset of command—line tail for the new PSP
04H Segment of command—line tail for the new PSP
06H Offset of first file controlblock, to be copied into new PSP at offset SCH
08H Segment of first file control block
OAH Offset of second file control block, to be copied into new PSP at offset 6CH
OCH Segment of second file control block

If AL = 03H (load overlay):

00H Segment address where overlay is to be loaded
02H Relocation factor to apply to loaded image

Figure 10—1. Synopsis ofcalling conventionsfor the MS—DOS EXECfunction (Interrupt 21HFunction 43H),
which can be used to load and execute childprocesses or overlays.

324 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 334/1582

OLYMPUS EX. 1010 - 335/1582

Article 10: The MS—DOS EXEC Function

The environment

An environment always begins on a paragraph boundary and is composed of a series of
null-terminated (ASCIIZ) strings of the form:

name=variable

The end of the entire set of strings is indicated by an additional null byte. \

If the environment pointer in the parameter block supplied to an EXEC call contains zero,

the child simply acquires a copy of the parent’s environment. The parent can, however,

provide a segment pointer to a different or expanded set of strings. In either case, under

MS-DOS versions 3.0 and later, EXEC appends the child program’s fully qualified path-

name to its environment block. The maximum size of an environment is 32 KB, so very
large amounts of information can be passed between programs by this mechanism.

The original, or master, environment for the system is owned by the command processor

that is loaded when the system is turned on or restarted (usually COMMANDCOM).

Strings are placed in the system’s master environment by COMMANDCOM as a result of

PATH, SHELL, PROMPT, and SET commands, with default values always present for the

first two. For example, if an MS—DOS version 5.2 system is started from drive C and a PATH

command is not present in the AUTOEXECBAT file nor a SHELL command in the

CONFIG.SYS file, the master environment will contain the two strings:

PATH=

COMSPEC=C2\ COMMANDCOM

These specifications are used by COMMANDCOM to search for executable “external”
commands and to find its own executable file on the disk so that it can reload its transient

portion when necessary. When the PROMPT string is present (as a result of a previous

PROMPT or SET PROMPT command), COMMANDCOM uses it to tailor the prompt dis-

played to the user.

0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
0000 43 4F 4D 53 50 45 43 3D 43 3A 5C 43 4F 4D 4D 41 COMSPEC=C:\COMMA

0010 4E 44 2E 43 4F 4D 00 50 52 4F 4D 50 54 3D 24 70 ND.COM.PROMPT=$p
0020 24 5F 24 64 20 20 20 24 74 24 68 24 68 24 68 24 $_$d thhh$
0030 68 24 68 24 68 20 24 71 24 71 24 67 00 50 41 54 hhh qq$g.PAT
0040 48 3D 43 3A SC 53 59 53 54 45 4D 3B 43 3A 5C 41 H=C:\SYSTEM;C:\A
0050 53 4D 3B 43 3A 5C 57 53 3B 43 3A 5C 45 54 48 45 SM;C:VNS;C:\ETHE
0060 52 4E 45 54 3B 43 3A 5C 46 4F 52 54 48 5C 50 43 RNET;C:\FORTH\PC
0070 33 31 3B 00 00 01 00 43 3A 5C 46 4F 52 54 48 5C 31;....C:\FORTH\
0080 50 43 33 31 5C 46 4F 52 54 48 2E 43 4F 4D 00 PC31\FORTH.COM.

Figure 10-2. Dump ofa typical environment underMS—DOS version 3.2. Thisparticular example contains
the default COMSPECparameter and two relatively complex PATHand PROMPTcontrolstrings that were set
up by entries in the user’s AUTOEXECfile. Note the two null bytes at offset 73H, which indicate the end ofthe
environment These bytes arefollowed by thepathname oftheprogram that owns the environment.

Section [1: Programming in the MS—DOS Environment 523

OLYMPUS EX. 1010 - 335/1582

OLYMPUS EX. 1010 - 336/1582

Part B: Programming for MS—DOS

Other strings in the environment are used only for informational purposes by transient

programs and do not affect the operation of the operating system proper. For example,
the Microsoft C Compiler and the Microsoft Object Linker look in the environment for

INCLUDE, LIB, and TMP strings that specify the location of include files, library files, and

temporary working files. Figure 10-2 contains a hex dump of a typical environment block.

The command tail

The command tail to be passed to the child program takes the form of a byte indicating

the length of the remainder of the command tail, followed by a string ofASCII characters
terminated with an ASCII carriage return (ODH); the carriage return is not included in the

length byte. The command tail can include switches, filenames, and other parameters that

can be inspected by the child program and used to influence its operation Itis copied
into the child program’s PSP at offset 80H.

When COMMAND. COM uses EXEC to run a program, it passes a command tail that
includes everything the user typed in the command line except the name of the program

and any redirection parameters. I/O redirection is processed within COMMANDCOM
itself and is manifest in the behavior of the standard device handles that are inherited

by the child program. Any other program that uses EXEC to run a child program must try

to perform any necessary redirection on its own and must supply an appropriate com-

mand tail so that the child program will behave as though it had been loaded by
COMMANDCOM

The default file control blocks

The two default FCBs pointed to by the EXEC parameter block are copied into the child

program’s PSP at offsets SCH and 6CH.' See also PROGRAMMING IN THE MS-DOS

ENVIRONMENT: PROGRAMMING FOR MS-DOS: File and Record Management.

Few of the currently popular application programs use FCBs for file and record I/O
because FCBs do not support the hierarchical directory structure. But some programs do

inspect the default FCBs as a quick way to isolate the first two switches or other parame-
ters from the command tail. Therefore, to make its own identity transparent to the child

program, the parent should emulate the action of COMMAND. COM by parsing the first

two parameters of the command tail into the default FCBs. This can be conveniently ac-

complished with the MS—DOS function Parse Filename (Interrupt 21H Function 29H).

If the child program does not require one or both of the default FCBs, the corresponding

address in the parameter block can be initialized to point to two dummy FCBs in the appli-

cation’s memory space. These dummy FCBs should consist of 1 zero byte followed by 11
bytes containing ASCII blank characters (20H).

526 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 336/1582

OLYMPUS EX. 1010 - 337/1582

Article 10: The MS-DOS EXEC Function

Running the child program

After the parent program has constructed the necessary parameters, it can invoke the
EXEC function by issuing Interrupt 21H with the registers set as follows:

AH V = 4BH -

AL = OCH (EXEC subfunction to load and execute program)

DS:DX = segmentzoffset of program pathname

ES:BX = segment:offset of parameter block

Upon return from the software interrupt, the parent must test the carry flag to determine

whether the child program did, in fact, run. If the carry flag is clear, the child program was

successfully loaded and given control. If the carry flag is set, the EXEC function failed, and

the error code returned in AX can be examined to determine why. The usual reasons are

0 The specified file could not be found.

0 The file was found, but not enough memory was free to load it.

Other causes are uncommon and can be symptoms of more severe problems in the

system as a whole (such as damage to disk files or to the memory image of MS—DOS). With
MS-DOS versions 3.0 and later, additional details about the cause of an EXEC failure can

be obtained by subsequently calling Interrupt 21H Function 59H (Get Extended Error
Information).

In general, supplying either an invalid address for an EXEC parameter block or invalid

addresses within the parameter block itself does not cause a failure of the EXEC function,

but may result in the child program behaving in unexpected ways. ,

Special considerations

With MS-DOS versions 2.x, the previous contents of all the parent registers except for CS:IP

can be destroyed after an EXEC call, including the stack pointer in SS:SP. Consequently,

before issuing the EXEC call, the parent must push onto the stack the contents of any regis-

ters that it needs to preserve, and then it must save the stack segment and offset in a loca-

tion that is addressable with the CS segment register. Upon return, the stack segment and

offset can be loaded into SS:SP with code segment overrides, and then the other registers

can be restored by popping them off the stack. With MS-DOS versions 5.0 and later, regis-

ters are preserved across an EXEC call in the usual fashion.

Note: The code segments of Windows applications that use this technique should be

given the IMPURE attribute.

In addition, a bug in MS—DOS version 2.0 and in PC—DOS versions 2.0 and 2.1 causes an

arbitrary doubleword in the parent’s stack segment to be destroyed during an EXEC call.

When the parent is a .COM program and SS = PSP, the damaged location falls within the
PSP and does no harm; however, in the case of a .EXE parent where DS = 85, the affected

location may overlap the data segment and cause aberrant behavior or even a crash after
the return from EXEC. Thisbug was fixed in MS-DOS versions 2.11 and later and in
PC—DOS versions 3.0 and later.

Section 11- Programming in the MS—DOS Environment 327

OLYMPUS EX. 1010 - 337/1582

OLYMPUS EX. 1010 - 338/1582

Part B: Programming for MS—DOS

Examining the child program’s return codes

If the EXEC function succeeds, the parent program can call Interrupt 21H Function 4DH
(Get Return Code of Child Process) to learn whether the child executed normally to com-

pletion and passed back a return code or was terminated by the operating system because
of an external event. Function 4DH returns

AH = termination type:

OOH Child terminated normally (that is, exited via Interrupt 20H or Interrupt
21H Function 00H or Function 4CH).

01H Child was terminated by user’s entry of a Ctrl-C.

02H Child was terminated by critical error handler (either the user responded

with A to the Abort, Retry, Ignore prompt from the system’s default Inter-

rupt 24H handler, or a custom Interrupt 24H handler returned to MS-DOS

with action code = 02H in register AL).

03H Child terminated normally and stayed resident (that is, exited via Interrupt

21H Function 31H or Interrupt 27H).
AL = return code:

Value passed by the child program in register AL when it terminated with Interrupt
21H Function 4CH or 31H.

00H if the child terminated using Interrupt 20H, Interrupt 27H, or Interrupt 21H
Function 00H.

These values are only guaranteed to be returned once by Function 4DH. Thus, a subse-

quent call to Function 4DH, without an intervening EXEC call, does not necessarily return

any useful information. Additionally, if Function 4DH is called without a preceding suc-
cessful EXEC call, the returned values are meaningless.

Using COMMAND.COM With EXEC

An application program can “shell” to MS—DOS — that is, provide the user with an MS-DOS

prompt without terminating— by using EXEC to load and execute a secondary copy of

COMMANDCOM with an empty command tail. The application can obtain the location of

the COMMANDCOM disk file by inspecting its own environment for the COMSPEC string.

The user returns to the application from the secondary command processor by typing exit
at the COMMANDCOM prompt.

Batch—file interpretation is carried out by COMMANDCOM, and a batch (.BAT) file can—

not be called using the EXEC function directly. Similarly, the sequential search for .COM,

.EXE, and .BAT files in all the locations specified in the environment’s PATH variable is a
function of COMMAND,COM, rather than of EXEC. To execute a batch file or search the

system path for a program, an application program can use EXEC to load and execute a

secondary copy of COMMANDCOM to use as an intermediary. The application finds the

location of COMMAND. COM as described in the preceding paragraph, but it passes a
command tail in the form: '

/C program parameter] parameter2 . ..

328 TheMS—DOS Encyclopedia

OLYMPUS EX. 1010 - 338/1582

OLYMPUS EX. 1010 - 339/1582

Article 10: The MS-DOS EXEC Function '

where program is the .EXE, VCOM, or .BAT file to be executed. When program termi—
nates, the secondary copy of COMMANDCOM exits and returns control to the parent.

A parent and child example

The source programs PARENTASM in Figure 10-3 and CHILDASM in Figure 10-4 illustrate
how one program uses EXEC to load another.

name parent
title 'PARENT ——— demonstrate EXEC call'

. r‘

i ; PARENT.EXE ——— demonstration of EXEC to run process

; Uses MS-DOS EXEC (Int 21H Function 4BH Subfunction 00H)
; to load and execute a child process named CHILD.EXE,
; then displays CHILD’S return code.

; Ray Duncan, June 1987

stdin equ 0 ; standard input
stdout equ 1 ; standard output
stderr equ 2 ; standard error

stksize equ 128 ; size of stack

cr equ Odh ; ASCII carriage return
. lf equ Oah ; ASCII linefeed

DGROUP group _DATA,_ENVIR,_STACK

_TEXT segment byte public 'CODE' ; executable code segment

assume cs:_TEXT,ds:_DATA,ss:_STACK

stk_seg dw ? ; original SS contents
stkrptr dw ? ; original SP contents

I main proc far ; entry point from Ms—DOS
mov ax,rDATA ; set DS = our data segment
mov ds,ax

; now give back extra memory
‘ ; so child has somewhere to run...

I Figure 10-3. PARENTASM, source codeforPARENTEXE. (more)

\ Section 11: Programming in the MS-DOS Environment 329
OLYMPUS EX. 1010 - 339/1582

OLYMPUS EX. 1010 - 340/1582

Part B: Programming for MS—DOS

mov ax,es ; let AX = segment of PSP base
mov bx,ss ; and BX = segment of stack base
sub bx,ax f reserve seg stack - seg psp
add bx,stksize/16 ; plus paragraphs of stack
mov ah,4ah ; fxn 4AH = modify memory block
int 21h

jc main1
; display parent message

mov dx,offset DGROUP:msg1 ; DS:DX = address of message
mov cx,msg1_len ; CX = length of message
call pmsg,

push ds ; save parent’s data segment
mov stk_seg,ss ; save parent’s stack pointer
mov stk_ptr,sp

; now EXEC the child process...
mov ax,ds ; set ES = DS
mov es,ax

mov dx,3ffset DGROUP:cname ; DS:DX = child pathname
mov bx,offset DGROUP2pars ; ES:BX = parameter block
mov ax,4b00h - ; function 4BR subfunction 00H
int 21h ; transfer to MS-DOS

cli ; (for bug in some early 80885)
mov ss,stk_seg ; restore parent's stack pointer
mov sp,stk_ptr
sti ; (for bug in some early 80885)
pop ds ' ; restore DS = our data segment

jc main2 ; jump if EXEC failed

; otherwise EXEC succeeded,
: convert and display child’s
7 termination and return codes...

mov ah,4dh ; fxn 4DH = get return code
int 21h ; transfer to MS—DOS

xchg al,ah ; convert termination code
mov bx,offset DGROUszsg4a
call bZhex

mov al,ah ; get back return code
mov bx,offset DGROUP:msg4b ; and convert it
call b2hex

mov dx,offset DGROUszsg4 ; DS:DX = address of message
mov cx,msg4_len ; CX = length of message
call pmsg ; display it

mov ax,4c00h ; no error, terminate program
int . 21h ; with return code = 0 ’

Figure 10—3. Continued. (more)

330 The MS-DOS Encyclopedia

OLYMPUS EX. 1010 - 340/1582

OLYMPUS EX. 1010 - 341/1582

Article 10: The MS—DOS EXEC Function———~————————————————————————————————————__

main1:

main2:

main3:

main

b2hex

b2hex

ascii

asciiZ:
ascii

pmsg

mov
call
mov
mov

call

jmp

mov
call
mov
mov

call

mov

int

endp

proc

push'
shr
shr
shr
shr
call
mov

POP
and
call
mov

ret

endp

proc
add
cmp

jle
add

ret

endp

proc

bx,offset DGROUszSQZa
b2hex

dx,offset DGROUP:mng
cx,mng_len

Pmsg
main3

bx,offset DGROUP:msg3a
b2hex

convert error code

display message 'Memory
; resize failed.‘.‘

m

convert error coden

dx,offset DGROUszsgB ; display message 'EXEC
cx,msg3_len
pmsg

ax,4c01h
21h

near

ax

al,1
al,1
al,1
al,1
ascii

[bx],al
ax

al,0fh
ascii

[bx+1],al

near

al,'0'
al,'9'
ascii2
al,'A'—'9'-1

near

Figure 10-3. Continued.

; call failed...‘

; error, terminate program
with return code = 1

end of main procedure

; convert byte to hex ASCII
; call with AL = binary value
; ‘ BX addr to store string

; become first ASCII character
; store it

; isolate lower 4 bits, which
; become the second ASCII character
; store it

; convert value 00—0FH in AL
; into a "hex ASCII" character

; jump if in range 00~09H,
; offset it to range OA—OFH,

; return ASCII char. in AL

displays message on standard output
; call with DS:DX = address,
; CX = length

Ononfl

Section II: Programming in theMS—DOS Environment 331

OLYMPUS EX. 1010 - 341/1582

OLYMPUS EX. 1010 - 342/1582

Part B: Programming for MS-DOS

mov
' mov

int
ret

pmsg endp

_TEXT ends

_DATA

cname db

pars dw
dd
dd
dd

tail db
db

fcb1 db
db
db

fcb2 db
db
db

msg1 db
msg1_len equ

mng db
mnga db
mng_len equ

msg3 db
msg3a db
msg3_len equ

segment

bXIStdOUt i BX = standard output handle
ahl40h ; function 40H = write file/device
21h ; transfer to MS~DOS

; back to caller

para public 'DATA' ; static & variable data segment

'CHILD.EXE',O ; pathname of child process

_ENVIR segment of environment block
tail long address, command tail
fcb1 long address, default FCB #1
fcb2 long address, default FCB #2

fcb1-tail—2 ; command tail for child
'dummy command tail',cr

0 ; copied into default FCB #1 in
11 dup (' ') ; child's program segment prefix
25 dup (0) '

O ; copied into default FCB #2 in
11 dup (' ') ; child’s program segment prefix
25 dup (O)

cr,lf,'Parent executing!',cr,lf
$—msg1

cr,lf,'Memory resize failed, error code='
'xxh.',cr,lf

$—mng

cr,lf,'EXEC call failed, error code='
'xxh.',cr,lf
$-msg3

msg4 db cr,lf,'Parent regained controlfl
db cr,lf,'Child termination type='

msg4a db 'xxh, return code='
msg4b db ‘xxh.',cr,lf
msg4_len equ $—msg4

_DATA ends

_ENVIR segment para public 'DATA' ; example environment block
; to be passed to child

Figure 10—3. Continued.

332 TheMS-DOS Encyclopedia

OLYMPUS EX. 1010 - 342/1582

(more)

OLYMPUS EX. 1010 - 343/1582

_ENVIR

_STACK

_STACK

db
db

db

ends

segment

db

ends

end

Article 10: The MS-DOS EXEC Function

'PATH=',O

'PROMPT=p_ng',0
'COMSPEC=C:\COMMAND.COM',0
o ; extra null terminates block

basic PATH, PROMPT,
and COMSPEC strings

~¢

para stack 'STACK'

stksize dup (?)

main ; defines program entry point
Figure 10—3. Continued.

name child

title 'CHILD process'
;

; CHILD.EXE ——- a simple process loaded by PARENT.EXE
; to demonstrate the MS—DOS EXEC call, Subfunction 00H.

; Ray Duncan, June 1987
i

stdin equ 0 ; standard input
stdout equ 1 ; standard output
stderr equ 2 ; standard error

or equ Odh ; ASCII carriage return
lf equ Oah ; ASCII linefeed

DGROUP group _DATA,STACK

_TEXT segment byte public 'CODE' ; executable code segment

assume cs:_TEXT,ds:_DATA,ss:STACK

main proc far ; entry point from MS—DOS

mov . ax,_DATA ; set DS = our data segment
mov ds,ax

; display child message ...

Figure 10-4. CHILDASM, source codefor CHILDEXE. (more)

Section II: Programming in the MS—DOS Environment 35§

OLYMPUS EX. 1010 - 343/1582

OLYMPUS EX. 1010 - 344/1582

Part B: Programming for MS—DOS

mOV dXIOffSSt msg ; DS:DX = address of message

mov cxlmSg_len ; CX = length of message
mov bx,stdout ; BX = standard output handle
mov ah,40h ; AH = fxn 40H, write file/device
int 21h ; transfer to MS—DOS

jc .-main2 ; jump if any error

mov ax,4c00h ; no error, terminate child
int 21h ; with return code = 0

main2: mov ax,4c01h ; error, terminate child
int 21h ; with return code = 1

main endp . ; end of main procedure

_TEXT ends

_DATA segment para public 'DATA' ; static & variable data segment

msg db cr,lf,'Child executing!’,cr,lf
msg_len equ $—msg

_DATA ends

STACK segment para stack 'STACK'

dw 64 dup (?)

STACK ends

end main ; defines program entry point

Figure 10-4. Continued.

PARENT.ASM can be assembled and linked into the executable program PARENT.EXE

with the following commands:

C>MASM PARENT; <Enter>
C>LINK PARENT; <Enter>

Similarly, CHILD.ASM can be assembled and linked into the file CHILDEXE as follows:

C>MASM CHILD; <Enter>
C>LINK CHILD; <Enter>

When PARENT.EXE is executed with the command ,

C>PARENT <Enter>

334 The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 344/1582

OLYMPUS EX. 1010 - 345/1582

Article 10: The MS-DOS EXEC Functio

PARENT reduces the size of its main memory block With a call to Interrupt 21H Function
'4AH, to maximize the amount of free memory in the system, and then calls the EXEC func-
tion to load and execute CHILD.EXE.

CHILD.EXE runs exactly as though it had been loaded directly by COMMANDCOM,

CHILD resets the DS segment register to point to its own data segment, uses Interrupt 21H

' Function 40H to display a message on standard output, and then terminates using Interrupt
21H Function 4CH, passing a return code of zero.

When PARENTEXE regains control, it first checks the carry flag to determine whether

the EXEC call succeeded. If the EXEC call failed, PARENT displays an error message and

terminates with Interrupt 21H Function 4CH, itself passing a nonzero return code to
COMMANDCOM to indicate an error.

Otherwise, PARENT uses Interrupt 21H Function 4DH to obtain CHILD.EXE’s termination

type and return code, which it converts to ASCII and displays. PARENT then terminates

using Interrupt 21H Function 4CH and passes a return code of zero to COMMANDCOM
to indicate success. COMMANDCOM in turn receives control and displays a new user
prompt.

Using EXEC to Load Overlays -

Loading overlays with the EXEC function is much less complex than using EXEC to run

another program. The main program, called the root segment, must carry out the follow-

ing steps to load and execute an overlay:

1. Make a memory block available to receive the overlay.

2. Set up the overlay parameter block' to be passed to the EXEC function.

3. Call the EXEC function to load the overlay.
4. Execute the code within the overlay by transferring to it with a far call.

The overlay itselfcan be constructed as either a memory image (. COM) or a relocatable

(.EXE) file and need not be the same type as the root program. In either case, the overlay

should be designed so that the entry point (or a pointer to the entry point) is at the begin—

ning of the module after it is loaded. This allows the root and overlay modules to be main-

tained separately and avoids a need for the root to have “magical” knowledge of addresses

within the overlay.

To prevent users from inadvertently running an overlay directly from the command line,

overlay files should be assigned an extension other than .COM or .EXE. The most conve-

nient method relates overlays to their root segment by assigning them the same filename
but an extension such as .OVL or .OVl, .OV2, and so on.

Making memory available

If EXEC is to load a child program successfully, the parent must release memory. In
contrast, EXEC loads an overlay into memory that belongs to the calling program. If the

Section 11,- Programming in the MS—DOS Environment 535

OLYMPUS EX. 1010 - 345/1582

OLYMPUS EX. 1010 - 346/1582

Part B: Programming for MS-DOS

reot segment is a .COM program and has not explicitly released extra memory, the root

segment program need only ensure that the system contains enough memory to load the
overlay and that the overlay load address does not conflict with its own code, data, or
stack areas. -

If the root segment program was loaded from a .EXE file, no straightforward way exists

for it to determine unequivocally how much memory it already owns. The simplest course

is for the program to release all extra memory, as discussed earlier in the section on load-

ing a child program, and then use the MS-DOS memory allocation function (Interrupt 21H

Function 48H) to obtain a new block of memory that is large enough to hold the overlay.

Preparing overlay parameters

When it is used to load an overlay, the EXEC function requires two major parameters:

0 The address of the pathname for the overlay file

0 The address of an overlay parameter block

As for a child program, the pathname for the overlay file must be an unambiguous ASCIIZ

file specification (again, no wildcard characters), and it must include an explicit extension.

As before, if a path and/or drive are not included in the pathname, the current directory
and default drive are used.

The overlay parameter block contains the segment address at which the overlay should be

loaded and a fixup value to be applied to any relocatable items within the overlay file. If

the overlay file is in .EXE format, the fixup value is typically the same as the load address; if

the overlay is in memory-image (.COM) format, the fixup value should be zero. The EXEC

function does not attempt to validate the load address or the fixup value or to ensure that

the load address actually belongs to the calling program.

Loading and executing the overlay

After the root segment program has prepared the filename of the overlay file and the

overlay parameter block, it can invoke the EXEC function to load the overlay by issuing an

Interrupt 21H with the registers set as follows:

AH = 4BH

AL = 03H (EXEC subfunction to load overlay) ,

DSzDX = segment:offset of overlay file pathname

ES:BX = segmentzoffset of overlay parameter block

Upon return from Interrupt 21H, the root segment must test the carry flag to determine

whether the overlay was loaded. If the carry flag is clear, the overlay file was located and
brought into memory at the requested address. The overlay can then be entered by a far

call and should exit back to the root segment with a far return.

If the carry flag is set, the overlay file was not found or some other (probably severe) sys-
tem problem was encountered, and the AX register contains an error code. With MS—DOS l

336 The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 346/1582

OLYMPUS EX. 1010 - 347/1582

Article 10; The MsLDos EXEC Function

versions 3.0 and later, Interrupt 21H Function 59H can be used to get more information
about the EXEC failure. An invalid load address supplied in the overlay parameter block
does not (usually) cause the EXEC function itself to fail but may result in the disconcerting
message Memory Allocation Error; System Halted when the root program terminates.

An overlay example

The source programs ROOT.ASM in Figure 10-5 and OVERLAYASM in Figure 10—6 demon-

strate the use of EXEC to load a program overlay. The program ROOTEXE is executable

from the MS—DOS prompt; it represents the root segment of an application. OVERLAY is

constructed as a .EXE file (although it is named OVERLAYOVL because it cannot be run

alone) and represents a subprogram that can be loaded by the root segment when and
if it is needed.

name root

title 'ROOT --- demonstrate EXEC overlay‘

; ROOT.EXE -—— demonstration of EXEC for overlays

; Uses MS-DOS EXEC (Int 21H Function 4BR Subfunction 03H)

; to load an overlay named OVERLAY.OVL, calls a routine
; within the OVERLAY, then recovers control and terminates.

; Ray Duncan, June 1987-

stdin equ 0 ; standard input
stdout equ 1 ; standard output

stderr equ 2 _ ; standard error

stksize equ 128 ; size of stack

cr equ Odh ; ASCII carriage return

1f equ Oah ; ASCII linefeed

DGROUP group ___DATA, _STACK

_TEXT segment byte public 'CODE' ; executable code segment

assume cs:_TEXT,ds:_DATA,ss:_STACK

stk_seg dw ? ; original SS contents
stk_ptr dw ? ; original SP contents

Figure 10—5. ROOTASM, source codeforROOTEXE. 4 (more)

Section 11: Programming in the MS—DOS Environment 337 ,

OLYMPUS EX. 1010 - 347/1582

OLYMPUS EX. 1010 - 348/1582

 Part B: Programming for MS—DOS I
1'

main proc far ; entry point from MS-DOS

mov ax,_DATA ; set DS = our data segment
mov ds,ax

; now give back extra memory
mov ax,es ; AX = segment of PSP base
mov bx,ss ; BX = segment of stack base
sub bx,ax ; reserve seg stack - seg psp
add bx,stksize/16 ; plus paragraphs of stack
mov ah,4ah ; fxn 4AH = modify memory block
int 21h ; transfer to MS—DOS

jc main1 ; jump if resize failed

; display message 'Root i
; segment executing...‘ ‘

mov dx,offset DGROUPtmsg1 ; DS:DX = address of message 1
mov cx,msg1_len ; CX = length of message ;
call pmsg '

; allocate memory for overlay f
mov bx,1000h ; get 64 KB (4096 paragraphs) §
mov ah,48h ; fxn 48H, allocate mem block .
int 21h ,- transfer to MS—DOS ‘

jc main2 ; jump if allocation failed ‘

mov pars,ax ; set load address for overlay ‘
mov pars+2,ax ; set relocation segment for overlay
mov word ptr entry+2,ax ; set segment of entry point I

push ds ; save root’s data segment
mov stk_seg,ss ; save root’s stack pointer
mov stk_ptr,sp

; now use EXEC to load overlay
mov ax,ds ; set Es = 05
mov es,ax

mov dx,offset DGROUonname ; DS:DX = overlay pathname
mov bx,offset DGROUP2pars ; ES:BX = parameter block
mov ax,4b03h ; function 43H, subfunction 03H
int 21h ; transfer to MS-DOS

cli ; (for bug in some early 80885)
mov ss,stk_seg ; restore root's stack pointer
mov sp,stk_ptr
sti ; (for bug in some early 8088s)
pop ds ; restore DS = our data segment

jc main3 ,- jump if EXEC failed

otherwise EXEC succeeded...

Figure 10-5. Continued. (more)

338 The MS—DOS Encyclopedia

OLYMPUS EX. 1010 - 348/1582

OLYMPUS EX. 1010 - 349/1582

Article 10: The 'MS-DOS EXEC FunctionW

push ds ; save our data segment
call dword ptr entry ; now call the overlay
pop ds ; restore our data segment

; display message that root
; segment regained control...

mov dx,offset DGROUP:msgS ; DS:DX = address of message
mov cx,msgS_len ; CX = length of message
call pmsg ; display it

mov ax,4c00h ; no error, terminate program
int 21h ; with return code = 0

main1: mov bx,offset DGROUP:msg2a ; convert error code
call b2hex

mov dx,offset DGROUP:mng ; display message 'Memory
. mov cx,mng_len ; resize failed...‘

call pmsg
jmp main4

mainZ: mov bx,offset DGROUP:msg3a ; convert error code
‘ call b2hex .

mov dx,offset DGROUszsg3 ; display message 'Memory
mov cx,msg3_len ; allocation failed...‘
call pmsg
jmp main4

main3: mov bx,offset DGROUP:msg4a ; convert error code
call b2hex

mov dx,offset DGROUszsg4 ; display message 'EXEC
mov cx,msg4_len ; call failed...’
call pmsg

Imain4: mov ax,4c01h ; error, terminate program
int 21h ; with return code = 1

main endp ; end of main procedure

b2hex proc near ; convert byte to hex ASCII
; call with AL = binary value

, ; BX = addr to store string
push ax
shr al,1
shr al,1
shr al,1
shr al,1
call ascii . ; become first ASCII character
mov [bx],al ; store it
pop ax

Figure 10—5, Continued. ' (more)

Section 11: Programming in the MS—DOS Environment 339

OLYMPUS EX. 1010 - 349/1582

OLYMPUS EX. 1010 - 350/1582

Part B: Programming for MS—DOS________—__________________—__________———_——————

340

and
call
mov
ret

b2hex endp

ascii proc
add

cmp

jle
add

ascii2: ret‘
ascii endp

pmsg proc

mov
mov

int
ret

pmsg endp

_TEXT ends

_DATA

oname db

pars dw
dw

entry dd

msgl db
msg1_len equ

mng db
msg2a db
msg2_len equ

msg3 db
msg3a db
msgB_len equ

segment

al,0fh
ascii
[bx+1],al

near

al,'0'
al,'9'
ascii2

al,'A'-'9'—-1

near

bx,stdout
ah,40h
21h

para public ‘DATA'

'OVERLAY.OVL',0

cr,lf,'Root segment executing!’,cr,lf
S—msg1

cr,lf,'Memory resize failed, error code='
'xxh.',cr,lf
$-mng

cr,lf,'Memory allocation failed, error code—
'xxh.',cr,lf
S-msg3

Figure 10—5. Continued.

The MS—DOS Encyclopedia

\.\.

~.s.m

isolate lower 4 bits, which
become the second ASCII character
store it

convert value 00—OFH in AL
into a "hex ASCII" character

jump if in range 00—09H,
offset it to range OA—OFH,
return ASCII char. in AL.

displays message on standard output
call with DS:DX = address,

CX = length

BX = standard output handle
function 40H = write file/device
transfer to MS4DOS
back to caller

static & variable data segment

pathname of overlay file

load address (segment) for file
relocation (segment) for file

entry point for overlay

(more)

OLYMPUS EX. 1010 - 350/1582

OLYMPUS EX. 1010 - 351/1582

Article 10: The MS-DOS EXEC FunctionW

msg4
'msg4a

db cr,lf,'EXEC call failed,
db 'xxh.',cr,lf

msg4_len equ $-msg4

msgS

error code='

db cr,lf,'Root segment regained control!',cr,lf
msg5_len equ S—msg5

_DATA

_STACK

_STACK

ends

segment para stack 'STACK'

db stksize dup (?)

ends

end main

Figure 10—5. Continued.

name overlay
title 'OVERLAY segment'

i

; OVERLAY.OVL ——— a simple overlay segment
, loaded by ROOT.EXE to demonstrate use of
; the MS—DOS EXEC call Subfunction 03H.

; defines program entry point

; The overlay does not contain a STACK segment
; because it uses the ROOT segment’s stack.

; Ray Duncan, June 1987

stdin
stdout
stderr

or
if

_TEXT

ovlay

equ O
equ' 1
equ 2

equ Odh
equ Oah

segment byte public 'CODE'

assume cs:_TEXT,ds:iDATA
proc far

mov ax,_DATA
mov ds,ax

r

\-

~.

;

standard input
standard output
standard error

ASCII carriage return
ASCII linefeed

executable code segment

entry point from root segment

set DS

Figure 10-6. OVERLAYASM, source codefor OVERLAY. OVZ.

local data segment

(more)

Section 11: Programming in the MS—DOS Environment 541

OLYMPUS EX. 1010 - 351/1582

OLYMPUS EX. 1010 - 352/1582

OLYMPUS EX. 1010 - 353/1582

OLYMPUS EX. 1010 - 354/1582

OLYMPUS EX. 1010 - 355/1582

OLYMPUS EX. 1010 - 356/1582

OLYMPUS EX. 1010 - 357/1582

OLYMPUS EX. 1010 - 358/1582

OLYMPUS EX. 1010 - 359/1582

OLYMPUS EX. 1010 - 360/1582

OLYMPUS EX. 1010 - 361/1582

OLYMPUS EX. 1010 - 362/1582

OLYMPUS EX. 1010 - 363/1582

OLYMPUS EX. 1010 - 364/1582

OLYMPUS EX. 1010 - 365/1582

OLYMPUS EX. 1010 - 366/1582

OLYMPUS EX. 1010 - 367/1582

OLYMPUS EX. 1010 - 368/1582

OLYMPUS EX. 1010 - 369/1582

OLYMPUS EX. 1010 - 370/1582

OLYMPUS EX. 1010 - 371/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 372/1582

OLYMPUS EX. 1010 - 373/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 374/1582

OLYMPUS EX. 1010 - 375/1582

OLYMPUS EX. 1010 - 376/1582

OLYMPUS EX. 1010 - 377/1582

OLYMPUS EX. 1010 - 378/1582

OLYMPUS EX. 1010 - 379/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 380/1582

OLYMPUS EX. 1010 - 381/1582

OLYMPUS EX. 1010 - 382/1582

OLYMPUS EX. 1010 - 383/1582

OLYMPUS EX. 1010 - 384/1582

OLYMPUS EX. 1010 - 385/1582

OLYMPUS EX. 1010 - 386/1582

OLYMPUS EX. 1010 - 387/1582

OLYMPUS EX. 1010 - 388/1582

OLYMPUS EX. 1010 - 389/1582

OLYMPUS EX. 1010 - 390/1582

OLYMPUS EX. 1010 - 391/1582

OLYMPUS EX. 1010 - 392/1582

OLYMPUS EX. 1010 - 393/1582

OLYMPUS EX. 1010 - 394/1582

OLYMPUS EX. 1010 - 395/1582

OLYMPUS EX. 1010 - 396/1582

OLYMPUS EX. 1010 - 397/1582

OLYMPUS EX. 1010 - 398/1582

OLYMPUS EX. 1010 - 399/1582

OLYMPUS EX. 1010 - 400/1582

OLYMPUS EX. 1010 - 401/1582

OLYMPUS EX. 1010 - 402/1582

OLYMPUS EX. 1010 - 403/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 404/1582

OLYMPUS EX. 1010 - 405/1582

OLYMPUS EX. 1010 - 406/1582

OLYMPUS EX. 1010 - 407/1582

OLYMPUS EX. 1010 - 408/1582

OLYMPUS EX. 1010 - 409/1582

OLYMPUS EX. 1010 - 410/1582

OLYMPUS EX. 1010 - 411/1582

OLYMPUS EX. 1010 - 412/1582

OLYMPUS EX. 1010 - 413/1582

OLYMPUS EX. 1010 - 414/1582

OLYMPUS EX. 1010 - 415/1582

OLYMPUS EX. 1010 - 416/1582

OLYMPUS EX. 1010 - 417/1582

OLYMPUS EX. 1010 - 418/1582

OLYMPUS EX. 1010 - 419/1582

OLYMPUS EX. 1010 - 420/1582

OLYMPUS EX. 1010 - 421/1582

OLYMPUS EX. 1010 - 422/1582

OLYMPUS EX. 1010 - 423/1582

OLYMPUS EX. 1010 - 424/1582

OLYMPUS EX. 1010 - 425/1582

OLYMPUS EX. 1010 - 426/1582

OLYMPUS EX. 1010 - 427/1582

OLYMPUS EX. 1010 - 428/1582

OLYMPUS EX. 1010 - 429/1582

OLYMPUS EX. 1010 - 430/1582

OLYMPUS EX. 1010 - 431/1582

OLYMPUS EX. 1010 - 432/1582

OLYMPUS EX. 1010 - 433/1582

OLYMPUS EX. 1010 - 434/1582

OLYMPUS EX. 1010 - 435/1582

OLYMPUS EX. 1010 - 436/1582

OLYMPUS EX. 1010 - 437/1582

OLYMPUS EX. 1010 - 438/1582

OLYMPUS EX. 1010 - 439/1582

OLYMPUS EX. 1010 - 440/1582

OLYMPUS EX. 1010 - 441/1582

OLYMPUS EX. 1010 - 442/1582

OLYMPUS EX. 1010 - 443/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 444/1582

OLYMPUS EX. 1010 - 445/1582

OLYMPUS EX. 1010 - 446/1582

OLYMPUS EX. 1010 - 447/1582

OLYMPUS EX. 1010 - 448/1582

OLYMPUS EX. 1010 - 449/1582

OLYMPUS EX. 1010 - 450/1582

OLYMPUS EX. 1010 - 451/1582

OLYMPUS EX. 1010 - 452/1582

OLYMPUS EX. 1010 - 453/1582

OLYMPUS EX. 1010 - 454/1582

OLYMPUS EX. 1010 - 455/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 456/1582

OLYMPUS EX. 1010 - 457/1582

OLYMPUS EX. 1010 - 458/1582

OLYMPUS EX. 1010 - 459/1582

OLYMPUS EX. 1010 - 460/1582

OLYMPUS EX. 1010 - 461/1582

OLYMPUS EX. 1010 - 462/1582

OLYMPUS EX. 1010 - 463/1582

OLYMPUS EX. 1010 - 464/1582

OLYMPUS EX. 1010 - 465/1582

OLYMPUS EX. 1010 - 466/1582

OLYMPUS EX. 1010 - 467/1582

OLYMPUS EX. 1010 - 468/1582

OLYMPUS EX. 1010 - 469/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 470/1582

OLYMPUS EX. 1010 - 471/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 472/1582

OLYMPUS EX. 1010 - 473/1582

OLYMPUS EX. 1010 - 474/1582

OLYMPUS EX. 1010 - 475/1582

OLYMPUS EX. 1010 - 476/1582

OLYMPUS EX. 1010 - 477/1582

���������	�
�
��������
��OLYMPUS EX. 1010 - 478/1582

OLYMPUS EX. 1010 - 479/1582

OLYMPUS EX. 1010 - 480/1582

OLYMPUS EX. 1010 - 481/1582

OLYMPUS EX. 1010 - 482/1582

OLYMPUS EX. 1010 - 483/1582

OLYMPUS EX. 1010 - 484/1582

OLYMPUS EX. 1010 - 485/1582

OLYMPUS EX. 1010 - 486/1582

OLYMPUS EX. 1010 - 487/1582

OLYMPUS EX. 1010 - 488/1582

OLYMPUS EX. 1010 - 489/1582

OLYMPUS EX. 1010 - 490/1582

OLYMPUS EX. 1010 - 491/1582

OLYMPUS EX. 1010 - 492/1582

OLYMPUS EX. 1010 - 493/1582

OLYMPUS EX. 1010 - 494/1582

OLYMPUS EX. 1010 - 495/1582

OLYMPUS EX. 1010 - 496/1582

OLYMPUS EX. 1010 - 497/1582

OLYMPUS EX. 1010 - 498/1582

OLYMPUS EX. 1010 - 499/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 500/1582

OLYMPUS EX. 1010 - 501/1582

OLYMPUS EX. 1010 - 502/1582

OLYMPUS EX. 1010 - 503/1582

���������	�
�
�������
��OLYMPUS EX. 1010 - 504/1582

OLYMPUS EX. 1010 - 505/1582

OLYMPUS EX. 1010 - 506/1582

OLYMPUS EX. 1010 - 507/1582

OLYMPUS EX. 1010 - 508/1582

OLYMPUS EX. 1010 - 509/1582

OLYMPUS EX. 1010 - 510/1582

OLYMPUS EX. 1010 - 511/1582

OLYMPUS EX. 1010 - 512/1582

OLYMPUS EX. 1010 - 513/1582

OLYMPUS EX. 1010 - 514/1582

OLYMPUS EX. 1010 - 515/1582

OLYMPUS EX. 1010 - 516/1582

OLYMPUS EX. 1010 - 517/1582

OLYMPUS EX. 1010 - 518/1582

OLYMPUS EX. 1010 - 519/1582

OLYMPUS EX. 1010 - 520/1582

OLYMPUS EX. 1010 - 521/1582

OLYMPUS EX. 1010 - 522/1582

OLYMPUS EX. 1010 - 523/1582

OLYMPUS EX. 1010 - 524/1582

OLYMPUS EX. 1010 - 525/1582

