
Yoid: Extending the Internet Multicast Architecture

Paul Francis

ACIRI
francis@aciri.org, www.aciri.org

April 2, 2000

Contents

0.1 Abstract 3

1 Changes 4

2 Introduction 4

2.1 Document Roadmap

2.2 Motivation

2.3 Yoid: An Alternative Architecture

4

4

6

2.4 Yoid in a Nutshell

2.5 Yoid Pros and Cons (Mostly Pros) .

2.6 Back to the Architectural Foundation

2.7 Related Work

2.8 Simplicity (or Lack Thereof)

6

7

9

10

10

3 Yoid Architecture

3.1 Major Components

3.2 Yoid Tree and Mesh Topologies

3.3 Content Protocols

3.4 Yoid Tree Management Protocol (YTMP)

3.5 Parent Discovery and Selection in YTMP

3.6 Security Architecture Overview

12

12

13

16

20

26

30

3.7 API 30

4 Odds and Ends 32

4.1 Neighbor Aliveness

4.2 Configuration with Yoid Proxy Servers

32

33

1

BUNGIE - EXHIBIT 1019f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4.3 Web Caching (and Hierarchically Nested Groups)
4.4 Meta-Rendezvous Service (Another Nested Groups Application)

4.5 Distributing Across a Lot of Time

34

38

39

2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

0.1 Abstract

If we take a broad view of the term "multicast" to mean any distribution of content to more than one
machine, we find that multicast is proceeding along two distinct architectural tracks. On one track is
IP multicast, which mainly targets realtime non-reliable applications, but for which hopes run high for
reliable applications as well. On the other are a plethora of open or proprietary host- or server-based
approaches, each typically targeting a specific application or product line.

IP multicast suffers from a number of technical problems, lacks applications, and in general is having
trouble reaching critical mass, especially regarding anything resembling a global infrastructure. Server-
based approaches are valuable and wide-spread, but there is no synergy in terms of multiple distinct
groups working within the same architecture. As a result, progress is not as fast as it could be, and
consumers are strapped with multiple application-specific infrastructures to deal with.

This paper presents an architecture, called yoid, that aims to unify both tracks under a single umbrella
architecture. Yoid attempts to take the best from both tracks—reliable and asynchronous distribution
from the server-based track, and dynamic auto-configuration via a simple API from the IP multicast
track.

A key component of yoid is that it allows a group of endhosts (the hosts where the content-consuming
application resides) to auto-configure themselves into a tunneled topology for the purpose of content
distribution. Yoid can run over IP multicast, but does not require it. This allows application developers
to bundle yoid into their applications, giving their applications robust and scalable configuration-free
out-of-the-box multicast. This is key to the initial acceptance of yoid and for allowing it to reach critical
mass.

Yoid is not limited, however, to endhost-based distribution. It can also work in infrastructure servers
(boxes that receive, replicate, and forward content but that are not consumers of the content). This allows
improved performance for applications that require it. It can also provide other benefits such as better
security. The endhost- and server-based modes of operation taken together, along with yoid's ability to
utilize local islands of IP multicast, allow yoid to support the broadest possible range of applications.

3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1 Changes

April 2, 2000 Updated for name change from Yallcast to Yoid.

2 Introduction

2.1 Document Roadmap

Lest the reader be immediately put off by the size of this document, I offer the following brief roadmap:

If, having read the abstract, you want to go straight to a very brief technical overview of yoid, look
at Subsection 2.4 ("Yoid in a Nutshell") and perhaps the subsection preceding it (2.3). For a deeper
technical overview, see Subsections 3.1 and 3.2.

Otherwise, this paper pretty much proceeds in increasing detail, and you can just start at the beginning
and continue until you've read enough. The first Section (2, "Introduction"), tells you why we need
better distribution, what yoid is, and why yoid provides better distribution.

The second Section (3) takes you through yoid in increasing technical detail. Of particular interest
might be Subsection 3.4 ("Yoid Tree Management Protocol (YTMP)"), and to some extent the following
subsection, which describe how yoid tunneled topologies are dynamically configured—the only really
novel thing about yoid.

The last section outlines an assortment of enhancements that may be made to the basic architecture to
increase yoid's capabilities or solve various problems endemic to yoid. This section can easily be skipped
by all but the most interested readers.

This document is in an early draft stage. It is still missing references, and has not gone through any peer
review. Any references or comments on the document or yoid itself are greatly appreciated.

2.2 Motivation

Let's take a broad view of the term "multicast" and take it to mean every instance where content is
moved from one machine to more than one other machine. For lack of a better term, and to avoid long
and clumsy phrases, let's refer to this broad view multicast as simply distribution.

Viewed this way, the majority of what gets transmitted over the internet is distribution: mail, news, web
pages (HTML) and files of all types (jpg, mp3, etc.), chat, channels, DNS records, audio-video broadcasts,
and so on. While strictly 2-party exchanges are obviously important, it is not an exaggeration to say
that the internet is what it is because of its distribution functionality.

In spite of this, virtually every distribution application in the internet today runs over the unicast in
frastructure and derives its distribution functionality from mechanisms internal to and specific to the
application itself. For instance, RFC822 mail headers have mechanisms for detecting loops among mail
forwarders, NNTP has the NEWNEWS command to manage flooding of news articles, HTTP has redi
rection and mechanisms for handling caches, and so on. Practically speaking, though, there is no general
"infrastructure" support for distribution in existence today. The exception that proves this rule is IP
multicast, globally available tunneled in the form of the mbone, and privately available as either tunneled
or native IP multicast.

The reason this exception proves the rule is that IP multicast has so far not lived up to early expectations,
to say the least. And this in spite of the fact that it is now available on most host operating systems
and in most routers (though it is usually not "turned on"). Different people have different ideas on why
IP multicast has not taken off, ranging from a lack of tools for managing IP multicast installations to

4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

insufficient protocol development to a lack of IP multicast-ready applications (all examples of reasons
voiced by participants in the IETF maddogs ad hoc group). Many people, myself included, have labored
under the tacit assumption that if we could only fix this or that problem, and add this or that functionality,
then IP multicast would reach some sort of critical mass and take off, in the same sense that HTTP/HTML
at some point reached a critical mass and took off. It would then serve as the infrastructure foundation
upon which various kinds of distribution applications would be built.

I no longer believe this is a realistic possibility. IP multicast, in its role as "the architectural foundation
for internet distribution", suffers from one fundamental problem, one major problem, and a lot of nagging
problems.

The fundamental problem is that IP multicast works only across space, not across time, whereas most
distribution on the internet (almost everything mentioned above), works across both space and time.
What I mean by this is that the recipients of most types of distribution content (mail, web pages, etc.)
want to receive it at different times. Even content that under ideal conditions would reach all recipients
immediately (i.e., "push" content like mail) can't because not all recipients are ready to receive all the
time (mainly because they are not connected to the internet all the time). IP multicast, on the other
hand, requires that all recipients receive the content at the same time. (I understand that there is a way
around this, namely multicasting the content multiple times until all recipients have got it. But this is
not a very attractive thing to have to do, and rather proves my point.)

The major problem referred to above is that IP multicast addresses are too small. Basing the global
architectural foundation for distribution on a 27-bit address space is, frankly, silly. It may very well
be that some of the current initiatives for IP multicast address assignment will satisfactorily solve the
problem (I did say this was only a major problem, not a fundamental problem), but it really is bending
over backwards unnecessarily. And of course there is IPv6, but I wouldn't want to assume that that will
become ubiquitous any time soon.

The nagging problems include:

• Large IP multicast routing tables.

• Congestion control over IP multicast.

• Reliable data transport over IP multicast.

• Good access control and security mechanisms.

I want to repeat that all of the above discussion of IP multicast is in its role as "the architectural
foundation for internet distribution." To be fair, I understand that its not like some person or group ever
sat down and, working from a clean whiteboard, analyzed all the options and decided that IP multicast,
with its 27 bit address space and space-only distribution mechanism, was the best choice for all internet
distribution. Rather, we've incrementally backed ourselves into this corner via some set of historical
decisions, or non-decisions, that have long since been overtaken by events.

IP multicast is ideal for applications that cannot tolerate (much) delay, can tolerate some loss, and
have throughput that is relatively high but upper-bounded. This mainly includes interactive things like
audio-video conferencing and internet games. A host- or server-based approach works poorly or not at
all for these applications. On the other end of the spectrum, a host- or server-based approach is great for
applications that can tolerate significant delay (minutes or hours) and cannot tolerate loss. This includes
things like mail and file distribution. IP multicast works poorly or not at all for these applications. For
stuff in between (chat, distributed whiteboard, audio-video one-way broadcast), both can suffice, and
reasonable people could agree to disagree on which is better.

For this stuff in between, however, it just turns out that the path of least resistance for obtaining
distribution funtionality is the server-based approach. This may be in part because of the technical

5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

