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ABSTRACT

This thesis investigates the design and analysis of broadcast
routing algorithms for use in store~-and-forward pac.et switched computer
networks. Broadcast routing 1is taken here to be a special case of
multi-destination routing, in which a packet is delivered to all

destinations rather than to some subset.

We examine five alternatives to transmitting separately addressed
packets from the source to the destinations. The algorithms are
compared qualitatively in terms. of memory requirements, ease of
implementation, adaptiveness to changing network conditions, and
reliability. The algorithms are also éompared quantitatively in terms
of the numbér of packet copies generated to perform broadcast and the
delays to propagate the packet to all destinations. Lower bounds on the

performance measures are determined for all the algorithms by examining

regular graphs.

Protocols that érovide reliable communication wusing broadcast
routiﬁg, i.e. broadcast protocols, are analogous to interprocess
communication protocols except that communication is between one process
and many processes. Reliable broadcast protocol design 1is faced with
problems similar to those in the design of interprocess communication
protocols ~ addressing, sequencing, duplicate detection and guarantee of

delivery. This area presents many subjects for future research,

iv



We describe a few applications for broadcast protocols in
distributed computing environments. In particular, we show in detail
how the catalog of a distributed file system could be structured in a
simple way, if the system could make use of efficient reliable broadecast

protocols,

The properties of reliable broadcast protocols at the host level
emerge from the reliability of the routing algorithms and the
applications for the protocols. We have examined the tradeoffs between
global and subgroup broadcast routing. One conclusion we offer is that
communication subnets should suppbrt both capabilities in the form of

multi-destination addressing and reverse path forwarding respectively.

An outcome of the investigation of broadcast routing algorithms is
the formulation of two  distributed (parallel) algorithms  for
constructing ‘minimal spanning trees. We believe that these algorithms
are the first of their kind. The formulation of such algorithms has
made the problems‘ affecting the design of distributed algorithms in
network environments clearer. These minimal spanning tree algorithms
can be used i1in broadcast routing, as well as other networks like the

Packet Radio Network.
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CHAPTER 1

INTRODUCTION

l.1 Introduction

This thesis investigates the design and analysis of broadcast
protocols in packet switched computer networks. 1In particular, we are
concerned with the design and analysis of broadcast routing algorithms

for use in store-and-forward packet switching computer networks.

Computer coﬁmunication network feasibility and utility has been
demonstrated by the ARPANET [Roberts72, McQuillan72], and the other
operational and planned networks 1like Telenet {Opderbeck76], TYMNET
[Tymes71], CYCLADES [Pouzin73]}, and AUTODIN II. Much of bthe research
accompanying these developments has focussed on thg communication subnet
itself [Fultz72, Gerla73, Metcalfe73, McQuillan74, Lam74, Tobagi74,

Kamoun76]. The emergence of packet communication as an important

. technology for computer communication has been clearly demonstrated.

Packet switching provides communication using computers as well as

communication among computers.

Wé are onlyunow'ﬁégihning to seé the sharing bf rééources befweeﬁ
the computers connected by the communication subnet; one:of the original
goals of the ARPANET [Roberts70). All communiqation befween the. host
computers i1s viewed as interprocess communication, and resource sharing
is made possible by a layer of protocols or agreements [Crocker72].

Interprocess communication is the basis on which all other protocols are
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built and has received a great deal of renewed interest [Carr?70,
McKenzie72, Walden72, Metcalfe72, Cerf74, Sunshine75]. We believe that

it is now time to examine broadcast protocols.

Distributed operating systems that support a distributed computing
environment [Farber72a, Thomas73, Crocker75] may often have to make.
available to a user process a remotely resident resource. The resource
may be capable of migfation (e.g. files in a distributed file system or
processes capable of performing specialized functions), or could be the
least expensive.copy of a duplicated resource [Cosell75]. In order to
find such a resource the requesting host may have to send a request
message to all hosts potentially capable of supplying the resource. In
general, this set of hosts will be a subset of all the hosts in the
network. For the purpose of this thesis, however, we consider the
problem of delivering the message to all hosts. The requestor will be

said to broadcast the message (to all hosts).

Broadcast protocols are, therefore, similar to interprocess
communication protocols except that communication is between one process
and many processes. Reliable broadcast protocol design is faced with
problems similar to thosé in the design of interprocess communication
protocols ~ addressing,:sequencing,_duplicate.detection and guarantee of

delivery.

The efficiency of the broadcast is greatl& dependent on the nature
of the particular subnet over which it is attempted. The structure of
the subnet also influences the design of the broadcast protocol chosen

to find resources, For example, multiaccess channels, like those
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available in the ALOHA system [Abramson70], the Ethernet [Metcalfe76],
satellite networks [Abramson73], or riﬁg networks [Farber72} lend
themselves very well to broadcast protocols since the very nature of the
subnét makes every transmission available to all hosts. Circuit
switched networks provide point-to-~point communication, and so broadcast
is done either by having a separate circuit between the broadcaster and
each receiver, or by.creafing a multidrop circuit, that behaves like a
ring, between the broadcaster and the receivers. Store~and-forward
packet éwitched networks (PSNs) have storage and a (small) hoiding time
at every switching node, PSNs are more suitable for performing
broadcast than CSNs, as advantaée can be taken of the packet mode of
communication, and so separately addressed packets to each destination
need not be transmitted. The ARPANET will be used as the model for
PSNs. Some observations on broadcast protocols and routing in packet

switched networks can be found in [Kahn76].

Multi-destination routing, which can be used for broadcast routing
is found in AUTODIN I [Paoletti73}, in the form of multiple addresses in
the message headers. AUTODPIN I is a message switqhed network and does
not have the same stringent real time constraints as packet switched
networks. The average_address_multiplicity.per message in this network
ié;.1;75;'iit.is quite likely that mdlti?deétinétidn‘addréésing ;s.fOuhd
in some other military, or special purpose networks (SITA), but this

capability has not been well documented.

There are many ways of performing broadcast in PSNs so as to reduce

the total amount of communication needed, thereby performing the
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broadcast quickly and cheaply, as well as lowering the possibility of
subnet congestion. We describe five alternatives to transmitting
separately addressed packets to each destination. One of these ways is
to use a mnulti-destination addressing scheme in the communication
subnet. We determine the reliability of such algorithms to deliver
packets to all hosts, and examine the effect of'thi; on broadcast
protocols at the host level. We propose a set of performance measures
for broadcast communication and evaluate the algorithms by determining

lower bounds for these measures in regular graphs.

We now briefly describe a few applicetions where broadcast routing
is useful.‘ First some terminology for describing the components of the
distributed network enviromment. A host is a computer system that is a
potential user and/or supplier of resources in the distributed computing
system. A user is a person or a program that interacts with the host.

A user process is ‘a process associated with a user. A switching node is

a device, in many cases a small computer, that accepts data and control
from the host and sends 1t over the communication links, with the
possible cooperation of other switching nodes, to the destination. The
collection of switching nodes and communication 1links is the

communication network or communication subnet. In a PSN, the switching

nodes will be paeket eﬁitches; We aseﬁme‘ﬁhat ali comﬁunicatioﬁ Between

hosts is viewed as interprocess communication.

In distributed data gathering systems, real time data may be
generated by remote sensors. The data must be collected before it is

processed. For reasons concerning reliability and simplicity the
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sensors may not know which nodes, or how many of them are gathering
data, Only the gathering nodes need decide which information to keep.

Broadcast routing is necessary for such a scheme to work efficiently.

In the ARPANET user authentication and billing scheme [Cosell75], a
TIP must locate an RSEXEC server process to verify the users’ password,
and then periodically record the users’ usage of the network. Broadcast
comnunication helps in locating an RSEXEC server faster, and can help in

redundantly storing accounting data.

In distributed file systems, flle access requests can be broadcast,
so that the user need not know ;he current location of the file. 1If
broadcast communication is efficient, then the structure of the catalog
for the file system can be simp'ified. We describe how the cataiog

structure and search algorithms benefit by the availability of broadcast

communication.

To create a very secure communication environment, broadcast
communication can be used to send all messages to all destinations
efficiently. By choosing the appropriate broadcast routing algoeorithm,
uniform traffic patterns can be created within the subnet. By
encrypting the data, only the appropriate receivers will be able to
rdeco&é..thé meséage. | As‘é résﬁlt;mén bﬁéérﬁér cén‘ngt feil‘ffom wheré

the data originated and to where it is destined. s

P S

In addition, in this thesis, we describe two distributed algorithms
for constructing minimal spanning trées in computer communication

networks, in which there is no one source of control. The algorithms
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are both asyncﬁronous and concurrent in operation. Our investigation
into the design of such algorithms was spawned by our efforts to design
broadcast routing algorithms. The minimal spanning tree can be used for
forwarding broadcast messages. Each node knows which of the edges
incident to it are branches of the minimal spanning tree. Hence, a
"broadcast" packet arriving on one such branch ﬁould be delivered to all
hosts connected to the node, and forwarded along the remaining branches.
By being able to construct such trees in parallel, it is possible to
adaptively construct new minimal spanning trees as the conditions within
the subnet change. Minimal spanning tree routing also appears to have
application in the design of adaptive routing algorithms, since the
branches of the minimal spanning tree could be Gsed to transmigwéélay
estimétes to all nodes, rather than using the hop by hop refinement
technique [McQuillan74]. The adaptive version of the distributed
algorithm has applications in communication networks like the Packet

Radio Network (PRNET) [Kahn75, Frank75] in which the packet radio

repeaters must configure themselves into a virtual topology when

randomly placed in an operating environment, for example when dropped
out of an airplane. The algorithms can also be used in a multiprocessor

computer system to construct minimal spanning trees for the many

_applicafions they are wused for. We believe that_these algorithms are

the first of their kind. The design of such algorithms reveal the kinds

of communication . and synchronization problems that are typical 1in

distributed computing environments.
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................

1.2" Summary

In Chapter 2, we present two distributed algorithms for the
construction of minimal spanning trees in computer communication
networks., The algorithms are based on the sequential algorithm proposed
by Prim [Prim57]. The algorithms can be executed concurrently and
asynchronously by the different compdters of the network. There 1is no
one point of control. The important feature in their design is the
synchronization and communication between the processors, in an

environment where there may be arbitrary delays in communication. The

first algorithm is static, in that it assumes certain initial conditions

and constructs the minimal spanning tree, The second algorithm 1is
adaptive and executes continuously. It dynamically converts the old
(minimal) spanning tree into a new minimal spanning tree when edge costs

change, nodes are removed from the network, or new nodes are added to

the network. . Such algorithms can be used in multiprocessor computer

systems as well.

Chapters 3 and 4 focus on the design and analysis of broadcast
routing algorithms in store-and-forward packet switched computer

networks. Chapter 3 proposes five alternatives to separately addressing

packets to each destination, and qualitatiﬁely_ compares them. The

reliability ‘achievable from these algorithms is determined. The
properties of a high level broadcast protocol emerge from the properties
of the underlying routing algorithm and the 'requirements of processes
using the prbtocol. We discuss the tradéoffs between a broadcast-to-all

strategy compared to a broadcast-to-subset strategy.
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Chapter 4 proposes performance measures for broadcast communication
in such networks, The measures determine the overhead imposed on the
communication subnet by a broadcast, and the delays in achieving
broadcast. The various broadcast routing algorithms are quantitatively
compared by determining lower bounds on their performance in regular
graphs. The lower bounds determine the performance of these algorithms
in "ideal" networks, against which ﬁetwork designers may measure their

networks.

In Chapter 5 we discuss the structure of a distributed file system.

We review current work in this effort, and propose a model to structure

the catalog of the file system, and search algorithms for locating the
files. We show how the performance of thé system improves if there is
an underlying broadcast communication capability. By using such a
capability, it ;s not necessary to have multiple copies of the catalog,

which must be kept consistent,

Chapter 6 wraps up this thesis by stating the results énd
conclusions of our research. Open problems stemming from our work are
stated, since they provide important areas for future research. A set
of Appendices enhance the description in various chapters. There is one
_Appeg@ix per chapter - the first one prqyides_a detg;led table of

contents to this thesis.

ot



CHAPTER 2

DISTRIBUTED ALGORITHMS FOR CONSTRUCTING MINIMAJ, SPANNING TREES

2.1 Introduction

In this chapter, we present two distribu;ed algorithms for
constructing minimal spanning trees in computer communication networks.
The algorithms can be executed concurrently and asynchronously by the
different computers of a network. There is no one source of control.
The algorithms are also suitable for constructing minimal spanning trees
using a multiprocessor computer system. The first algorithm is static,
in that it assumes certain initial conditions and constructs the minimal
spanning tree. The second algorithm is adaptive and executes
continuously. It dynamically converts an old {(minimal) spanﬁing tree
into a new minimal spanning tree when edge costs change, nodes are
removed from the network, or new nodes are added to the network, Some
applications in ‘computef communication networks that require

constructing minimal spanning trees are now described.

The minimal spanning tree can be wused for forwarding broadcast
messages. in distributed . operating systems built . on top of a packet
switched netwérk. If 2 minimal spanning tree was embedded on the
existing subnet topology, then any node on_this minimal spanning tree
could initiate a broadcast, and the packets‘ would. be forwarded along
fhié tree to all destilnations. Each node knows which of the edges

incident to it are branches of the minimal spanhing tree. Hence, a
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"broadcast" packet arriving on one such branch would be delivered to all
hosts connected to the node, and forwarded along the remaining branches.
This technique assumes, of course, that the cost of communication along
an edge of the network is same in both directions. This is not true, in
general, for PSNs, since the traffic patterns determine the queueing

delays in either direction of a 1link. It is, however, not a bad
approximation. Figure 2.1 shows the communication subnet of a PSN with
the embedded minimal spanning tree. If broadcast was initiated from a
host connected to node 1, then a packet would be transmitted along each
of the minimal spanning tree branches in the directions shown in the
figure. Note that all the edges in the subnet do not have the same
cost. We examine, i1n detail, the suitability of using the minimal

spanning tree for broadcast routing in Chapters 3 and 4.

Broadcast routing 1s also used by the minimal spanning tree
algorithms themselves, When the minimal spanning tree has been
constructed, all nodes must be informed and ~“the simplest way 1is to
broadcast the message along the branches of the tree. In the
construction process itself, a message may havé to be sent from one node
to another in the same subtree as the originator. We shall see that we
can use the subtree for routing, by broadcasting the message rather than

" relying éon another underlying routing mechanism.

'.Minimal spanning tree routing alsd appears to have application in
‘the design of adaptive routing algorithms, since the branches of the
minimal spanning tree could be used to broadcast delay estimates to all
nodes,.‘rather than using a hop by hop refinement technique

[McQuillan74]. We have not explored this possibility.
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Figure 2.1. BROADCAST ALONG THE BRANCHES
FROM NODE 1.

OF THE MST INITIATED

11
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h»um“ﬂiﬁéqadaptive algorithm has special application in communication
networks 1like the Packet Radio Network (PRNET) {Kahn?75, Frank75]. The
packet radio repeaters must configure themselves into a suitable
topology when randomly placed in an operating environmenﬁ, for example
when dropped out of an airplane. Currently a tree-like topology is set

up from a centralized point of control. If a minimal spanning tree is

acceptable, then this algorithm could be used.

Section 2.2 discusses construction principles for minimal spanniﬁg
trees, and section 2.3 describes an abstraqt parallel algorithm by which
such trees can be constructed in-a distributed environment. Sections
2.4 and 2.5 discﬁss the static algorithm, and 2.6 the adaptive
algorithm. These algorithms are based on-- the abstract parallel

algorithm.
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2.2 Construction Principles for Minimal Spanning Trees -

In this section we review definitions and construction principles
of minimal spanning trees. A network is composed of a set of nodes and
a set of edges that connect pairs of nodes and have a cost associated

with them. The Minimal Spanning Tree (MST) of such a network is a

subset of the edges such that there exists a path between every pair of
nodes, and the sum of the cost of these edges is a minimum. The edgés

in this MST will be called the branches of the MST.

In graph theoretical terms the MST problem can be stated as
follows. Consider a connectgd, un&irected graph, G, with vertex set V,
and edge set, E (E is a subset of VxV). A spanning tree is a subset of
E, such that there 1is a wunique path between any two vertices in V.
Suppose there is a cost associated with every edge in E; a minimal
spanning tree of G is a spanning tree of G that minimizes the sum of the

cost of the edges. [Bentley75].. '

The path between any two nodes in a spanning tree is the sequence
of edges of the spanning tree that must be traversed to get from one

node to the other. The cost of a path 1is the sum of the edges

comprising the path. If the cost of a path is larger than that of
ahdthér; ‘then that 'path 15 said to be ldngef than the other. The
diameter of a spanning tree is the cost of the 1longest path in the

spanning tree.

Bentley and Friedman [Beﬁtley75] briefly review existing techniques

for the construction of MSTs and propose fast algorithms for the
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construction of MSTs in multidimensional coordinate spaces. These
algorithms -are-of the order of NfBgN: where N is the number of nodes. A
complete bibliography on the subject (uﬁ to 1974) can be found in
[Pierce75]. The construction principles for MSTs were first formalized
by Prim [Prim57] and are applicable to networks for which the edge costs
(e.g. 1length, distance, delay) need not be distinct or consistent with

Euclidean geometry.

The networks of‘interest to us will be the general class of

networks studied by Prim.

2.2.1 Prim’s Principles

Prim (1957) suggested two principles for constructing MSTs. We
paraphrase some of his definitions, construction rules, and conditions.

The principles assume that the construction process is sequential. An

isolated node is a node to which, at a given stage of the construction,
no connections have yet been made. A fragment is a subset of nodes
connected by edges between members of the subset. These edges will

become branches of the MST. An isolated fragment is a fragment to

which, at a given stage of construction, no external connections have

beeq_made, . The distance (cost) of a node from a fragment of which it is

-",‘.‘\. Y

not an element is the minimum of its diStances (costs) from each of the

individual nodes comprising the fragment. A nearest neighbor of a node

is a node whose distance from the specified node is at least as small as

that of any other. A nearest neighbor of a fragment, analogously, is a
' node whose distance from the specified fragment is at least as small as

that of any other.
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Prim proved that an MST could always be constructed by following

the following two principles.

Principle 1 (Pl): Any isolated node can be connected to a nearest

neighbor.

Principle 2 (P2): Any 1isolated fragment can be connected to a

nearest neighbor by a shortest available edge*.

These principles were based on two necessary conditions.

Necessary Condition 1 (NC1l): Every node in an MST must be connected

to at least one nearest neighbor.

Necessary Condition 2 (NC2): Every fragment in an MST must be

connected to at least one nearest neighbor by a shortest available

edge.

2.2.2 Existing Algorithms

Most existing algorithms wuse Pl and P2 to create an isolated
frégment and then increase the number of nodes in the fragment until it
becomes an MST. The primary concern has been how to structure the data
.sq_that it is possible to quick}y determine the shortest edge by which

an isolated fragment can be connected to a node outside it. This is of

*The nearest neighbor of a fragment may be connected to the nodes of the
fragment by more than one edge. Usually the process of determining the
nearest neighbor of a fragment will involve examining the edge costs
connecting nodes within the fragment to nodes outside it, and so the
shortest available edge will easily be determined.
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great importance if a fully connected network having a large number of
nodes is under study. All these algorithms are sequentialj there is no
concurrency in growing many isolated fragments. The multi-fragment

algorithm [Bentley75] is sequential in its operation.

The goal of our research is to deseribe concurrent, asynchronous
algorithms to create an MST. Such algorithms are desirable not
necessarily for the increased speed of execution (which we expect), but
also because they ensure that there is no one-source of control.. Suéh
algorithms are ideally suited to computer communication hetworks, in
which control is distributed in order to improve the reliability of the.
network, and to make the network more sensitive to changing load
conditions. The algorithms may also be used for constructing MSTs for
other applications using a multiprocessor computer, such as the Pluribus

[Ornstein75].
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2.3 Parallel MST algorithms

In the most abstract setting,'parallel algorithms, based on Prim‘s

principles, for constructing MSTs can be stated as follows.

Initialization: Let every node be a fragment. A fragment is a

subtree of the MST. The MST is unique 1if all the edge costs are

distinct [Kruskal56].

General step: Choose one or more fragments. For each fragment

chosen select the minimum cost edge connecting a node of the
fragment to a node outside the -fragment. Add all selected edges to
the spanning tree being constructed. These added edges combine
certain fragments. Combine these fragments into new, larger

fragments.
Repeat the general step until only one fragment is left,

It is immediate from the basic properties of minimum spanning trees
and from the fact that the MST is unique, that this algorithm correctly

computes the MST. The difficulties in implementing the algorithm arise

- ~ -

. S v, T .
N - ~Erom-eommunication and synchronization problems. We present in this

R N N

chapter two techniques for performing commﬁnication and synchronization
 between the Concufrenﬁ pfbcééseé;‘aﬂd describe pdséibie'éltefnéfiVeé.éﬁd
their underlying assumptions.‘ We call ‘these algorithms distributed
algorithms because the computers of a network ;re very loosely coupled,
and because we would like the algorithms to be resilient to network

errors and failures.
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2.3.1 Properties of Distributed MST Algorithms

A distributed algorithm consists of é program executing in each of
the nodes such that, when all the programs terminate, the result would
be an MST connecting the nodes. Every node will know which of the edges
connected to it are branches of the MST. It will be necessary for the
nodes to communicate with their neighbors or some other node by means of

messages. Properties of such algorithms that are of interest include:

(i) Does shared information between nodes have to be locked when

modified?
(ii) What form of synchronization is required between the nodes?
(1i1) Are there any special initial conditions?

(iv) Does the algorithm work only for certain combination edge

costs?

(v) In a network environment can the algorithm account for some of
the nodes going down, new nodes coming up, edges breaking, or edge

éosts changing?

In order to prove that any algorithm for constructing MSTs works,
it is suffiéieﬁt'tb show’that‘everyibpéfatién perfbrﬁea is idenéical .to
Pl or P2, and that the algorithm terminates. We w@ll constantly map the
algorithms we describe, in terms of the abstréct ﬁarallel algorithm in
order to see how the synchronization and communication between the

concurrent asynchronous processes is achieved. Note that for the



Distributed MST Algorithms . 19

parallel algorithm based on Prim’s principles to work, the edge costs in
the network must be distinct so that the MST is unique. This in general
will not be the case, and so we first describe a distributed transform

by which a graph can be converted into one with distinct edge costs.

2.3.2 Transforming a Network into one with Distinct Edge Costs

Since there 1is only‘ one edge connecting any two nodes in the
network, and nodes have disﬁinct identities (numbers), each edge has a
unique pair of node identities associated with it. This makes it very
easy to dynamically order the edges with the sane cost, thus
transforming the network into one with distinct edge costs. Spira
suggested an idea that _led to this transform, and the formal

description, which follows, was suggested by Tarjan.

Let C(e) be the cost associated with edge e, where e is a tuple

(nl,nz), where n and n, are the identities of the two nodes. Let the

modified cost C (e) of e be the triple
C’ (e) = (C(e), min(nl,nz), max(nl,nz)).

The triples are ordered lexicographically, i.e. (1,j,k) < (1,3 " ,k’) 1iff
'1<j," or 1=i’ and j<j’, or i=1i’ and j=3° and k<k’. With modified costs
defined in this way all edges have distinct costs, and C(ey) < C(e,)
implies C'(el) < C'(ez) where e; and e,y afe any two edges in the
network. There iﬁ_how a total ordering defined on the modified edge
costs, and that is.all that is necessary for the parallel MST algorithm

to work.
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This transformation can be performed every time a node compares the
cost of two edges, since each node in a network typically knows the
identity 6f the node at the other end of an edge. Hence, the network
can be transformed into one with distinct edge costs using a distributed

algorithm.
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2.4 A Static Distributed MST Algorithm

This distributed algorithm can be used to construct an MST in a
computer network, or using a multiprocessor computing system. The
algorithm assumes that all components of the distributed environment are
'functioning correctly, and that each node knows which other nodes are
its neighbors and tﬁe cost of the edges connecting it to its neighbors.
This algorithm is not adaptive to changing edge costs or new nodes being

added to the network, and hence the term "static".

2.4.1 The Basic Model

The underlying philosophy of the algorithm is based on NCl, which
states that every node must be connected to at least one of its nearest
neighbors. Hence every node knows which neighbor to form a branch with.
However, the result of such an action by every node will create an MST
| only in some cases. In general, such an action will produce a number of
fragments that must be connected together appropriately. The
distributed algorithm must discover that such a fragment has been
created and then choose an appropriate edge to connect the fragment to

other such fragments without introducing any cyecles in the graph.
We now introduée SOme'défiﬁifiohs, and prové'somé‘simpie properties
of the model. This is mainly to provide a framework and vocabulary for

the treatment of the algorithm which will follow.
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2.4.2 Definitions

Figure 2.2a shows a network, in which e@ery edge has a distinct
cost associated with it. The MST for this network is shown in figure
2.2b. Notice that some of the branches of this MST have been marked.

The markings have the following interpretation:

*p s Such a branch is called a singly marked branch. This branch

is part of tﬁe'MST'since it connects the node from which the

-

arrow emanatés‘to its nearest neighbor (by virtue of NCl).

oPp—«¢+ Such a branch is called a.doubly marked branch. It connects

both nodes to their nearest neighbors.
¢————» This branch is unmarked.

In figure 2.2b, edges BD, CF, GF, FJ, NM, EI, HK and PO are singly
marked. Edges AQ: IK, LO and JM are doubly marked while DE, EF and IL

are unmarked.

The largest fragments composed only of marked branches (singly or

doubly) will be called Marked Fragments (MFs). Notice that MFs are

connected by unmarked branches to form larger fragments until the MST is
formed. In figure ‘Z,Zb,‘uqmarked branch DE connects marked fragments

{A, B, D} and {H, K, I, E}. 1In a network that does not have distinect .
edge costs, a number of MSTs are possible. There may be different_wayé
of creating'MFs in each case, and.so the number and identity of the

singly and doubly marked branches will vary.
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Figure 2.2a. A NETWORK.
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Figure 2.2b. THE MINIMAL SPANNING TREE FOR THE NETP-ORK.
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We now state and prove some simple properties of these MSTs.

We. know that a network with N nodes has an MST with N-1 branches.

Theorem 2.1: In an MST, the number of MFs equals the number of doubly

marked branches, and each such fragment contains exactly one doubly

marked branch.

Proof: Every MF is a subtree of the MST (by definition of the
construction of MSTs). Each MF 1is alsoc an MST for the nodes

included in the MF (alsc by definition of MSTs).

Every node in the MF (let.there be m of these) has a nearest
neighbor. Thus, m branches will be marked. However, there are
only m-l1 branches in an MST of m nodes, so it follows that exactly
one branch must be doubly marked. Thus, each MF has exactly one

doubly marked branch.

The complete MST consists of a set of MFs, and the number of
uniquely doubly marked branches is the cardinality of the set of

MFs in the MST.

Q.E.D.

Corollarj 2.1.1: Every MST has at least one doubly mafked branch

Theorem 2.2: In an MST, the number of unmarked branches is equal to one

less than the number of MFs.

Proof: The marked fragments of the MST can be viewed as super nodes

that are connected by unmarked branches to form a tree. A tree
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with N nodes has N-1 branches, and so the number of unmarked
branches 1n an MST is one less than the number of MFs.

Q.E.D.

A chain is a node subset (containing one or more nodes) connected
by edges, that are singly marked. These edges connect nodes to their
nearest neighbor. Edges are unique to a node, i.e. an edge cannot
connect two nodes to each others” nearest neighbors. Such a chain is a
fragment (but not a MF), and an MST for the node subset. The chain will
be said to have one active node - the node that would connect itself to
its nearest neighbor if the chain were extended, and still keep the
fragment a chain. In figure 2.2b some of the chains and their active
nodes are {GF; F active}, {G; G active}, {GF, FJ; J active},

{CF, GF, FJ; J active} and {CF, GF; F active}.

Notice that there is a certain monotonicity among the costs of
branchgs in a chain. For every node in the chain, the cost of the
branches incident at the node (as determined by the markings on the
branch) is greater than or equal to the cost of the branch leaving the
node (there 1is only one). This fact will be proved in the following

theorem.

‘Theorem 2.3: The éost‘of the poténtial branch.froﬁ.fhé éctivé node of

the chain must be less than or equal to the cost of the branches in the

starting chain.

Proof: This theorem is proved by induction.
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If the chain consists of only one node (which is also active)
then the cost of the potential branch must be less than those

already in the chain (the null set).

-Now assume that the chain has m branches satisfying this
property. The active node has at least one branch incident at it.
The active Epiefhas an edge to-its-nearest neighbor -which is not in
the chain. The cost of this edge can be less than or equal to that
of the lowest cost incident branch, but not more otherwise the node
at the other end of the potential branch would not be the active

node’s nearest neighbor.

Q.E.D.

Corollary 2.3.1: If the edge costs are distinet, then the branch out of

the active node of a chain has a cost less than that of any branch in

—

the starting chain.’

If the active nodes of two chains decide they are each others
neighbors, then the two chains merge, and this branch becomes a doubly
marked branch of the resulting MF that these two chains are part of.

The fesulting fragment is no longer a chain.

~When MFs connect to each other by an unmarked branch, the resulting

fragment will be called a Minimal Spanning Subtree (MSS). A MSS becomes

an MST when it contains all the MFs.

We now prove some simple properties for unmarked and doubly marked

branches. The proofs will be made for networks with distinct edge
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costs. The theorems will Be valid for networks with this restriction
removed except that the strict inequality will be replaced by a weaker

inequality.

Theorem 2.4: For a network with distinct edge costs, the doubly marked

t

branch of a MF has the lowest cost among the branches of that fragment.

Proof: The two nodes on either end of the doubly marked branch are
active nodes of two chains which have all the nodes of the MF
contained within them. The. potential branch from these active
nodes has a cost less than that for any branch in the respective
chains (from Corollary 2.3.1).' The cost of potential branches is
the same since théy are the same branch - a doubly marked Branch.
Hence the cost of a doubly marked branch is less than that of any
other branch in the MF.

Q.E.D.

Theorem 2.5: For a network with distinct edge costs, the cost of an

unmarked branch connecting two MFs is larger than that for the doubly

marked branch of either MF.

Proof: The unmarked branch ié connected to a node in the MF., This
node is alsorconﬁected‘to a marked branch in the ﬁF and so. the cost
of the unmarked branch is greater (since edge costs are distinct)
than that of the marked branch. From Theorem 2.4 it follows that
the cost of this marked branch is greater tham or equal to that of
the doubiy marked braﬁch of thé MI'. Hence the cost qf the unmarked

branch is larger than that of thg doﬁbly marked branch. Since this
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applies to both MFs connected by the unmarked branch, the theorem

is proved.

Q.E.D.

These definitions and proofs are useful in understanding how the
distributed algorithm for constructing an MST works, since the algorithm
revolves around the ideas of concurrently creating MFs and having them

grow into MS5Ss until the MST results.,

2.4.3 Statement of the Algorithm

We now describe the algorithm éor constructing an MST in a network
with distinct edge costs. The MST in such a network is unique; In
section 2.4.5 we show why the restriction on edge costs is necessary.
It 1is, however, a simple matter to transform a network into one with

distinct edge costs using a distributed technique (cf. section 2.3.2).

The basic philosophy of the algorithm i1s that each node must
independently find its nearest neighbor and make the edge connecting it
to that neighbor into a branch of the MST. The node then sends off a
message to the neighbor informing it of this construction. Two nodes
may realize that they are connected by a doubly marked branch. This is
‘whéﬁ thé cdfé“of.a'MF ié fbrmed;. Tﬁié muéf.gfoﬁ iﬁto the MF, éuch‘ MFs
will connect to other MFs §r MSSs until an MST is created. Since the
edge costs are distinct, the MST is unique. We‘will show in detail how
MFs connect to other. MFs or MSSs. No cycles are introduced by the

asynchrony and concurrency of the computation, because a unique branch
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connects any two fragments and there is never any ambiguity in choosing

ito»

We now introduce some more terminology. A node in a fragment is
sald to be the masfér if it decides from which node of the fragment, a .
branch should be created to a node lying outside the fragment. The node
that actually makes the construction will become gctive. In a MF there
is only one node that can be master. Initially there are no masters.
When a doubly marked branch is creaﬁed, one of the two nodes at either
end unambiguously becomes master. We show later how this decision can
be made.‘ When two MFs are connected by an unmarked branch, there may be
two potential masters (one in each MF). One of the masters
unambiguously relinquishes control to the other, which then determines
which node {of the fragment it has knowledge about) becomes active. The

result of all this is an MST!

Every operation described so far has been consistent with Prim’s
Principles. We will show this more precisely a little later, and will

now proceed to describe the algorithm formally.

2.4.3.1 State Information at Each Node

' 'The statement of the élgorithm will assume that each node ﬁas'a set
of state variables. These consist of:
(1) The state of the node; i.e. whether it is inactive; active or

. master. The state determines what the node should do when it gets a

message from another node.
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(i1) Iﬁformation about each of the edges the node is connected to. The
information contains source .and destination node identities of the edge,
its cost, whether the edge is a branch, whether this node and/or the
node at the other end marked the edge as a branch, and finally whether
this node and/or the node at the other end made it into a branch without -

marking it.

(1i1) A list of nodes that are in the fragment és seen by this node.
For each such node, information is kept on edges (potential branches)
comecting the node to nodes outside the fragment. Note that some of
these edges could already be branches, since the node at which this data
structure resides may not know to what other nodes the node at the other
end of the branch is connected, and so can not include that node in the

fragment state,

2.4.3,2 Internode Communication

Internode .communication 1is achieved by sending messages called
SIGNALS. Signals have five parameters; the source and destination node
‘identities, the command, the fragment state as seen by the source of the
signal,. and, 1f an edge is being made into a branch, information about
_the gdge as seen by the source of the signal. The command could be
‘mark this edge’, or ‘become master’ of ‘become master and make this
edge an unmarked branch”. A signal can be sent.to a node that is a
neighbor, or to a node that 1is not a neighbor but part of the same
fragment, if the command 1s ‘become master’. We assume that tﬁe

‘communication 1link between two nodes is full duplex, and that an
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underlying asynchronous mechanism guarantees reliable communication

between two nodes.

2.4.3.3 Associated Routines

There are some special routines at each node. MERGE_FRAG STATE
merges the fragment state received in a signal With the fragment state
already present at the node. Merging comnsists in adding nédes not
already part of the fragment and deleting edges whose nodes now lie
within the fragment. Note that the fragment state gets altered only
wvhen a signal arrives and 1is processed, and not when a signal is
produced. Hence, when a node makes an edge into a branch, the fragment
state i; unaltered as this node does not know what lies beyond the node

at the other end of the edge.

A routine calied MERGE EDGE_INFO merges the edge information
received in the signal (if any) with that contained for this edge at the

node.

DECIDE 1is a routine that determines which of two nodes should
become master. If DECIDE returns true this node should become master.
Relative node numbering could be used as an unambiguous decision. More
esoteéié techniqueg‘cbuld be used which may help the algorithm execute
faster. For example, both nodes know which edges the other is part of
(since both nodes just exchanged fragment states). The ' node .that
~ becomes master could Be the one that has a lower cost edge excluding the

one that connects both together.
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ANY NEIGHBOR is a routine which examines the fragment state and
determines which node (if any) should become master. If ANY NEIGHBOR
returns true, then the identity of this node is returned in MASTER NODE,
and the didentity of the node at the other end of the edge from
MASTER_NObE in DEST_NODE. The edge determined by (MASTER_NODE,
DEST_NODE) connects  this fragment to its nearest neighbor. If
ANY NEIGHBOR returns false, then there are no more neighbors of this

fragment and thus the MST has been constructed.

TRANSFER_MASTER CONTROL is a routine that examines the fragment
state through ANY_NEIGHBOR;_ If there is a neighbor, and if MASTER_NODE
is the node itself, then the node converts the edge determined by
(MASTER NODE, DEST NODE) into a branch if it already was not omne, and
signals the DEST NODE to ‘become master and make this edge an unmarked
branch’. If the edge is already a branch then DEST_NODE is signalled to
‘become master’. If MASTER NODE was not fhe node ifself, then

MASTER _NODE is signalled to ‘become master”’.

2.4,3.4 The Main Program

Abstractly, the program in each node can be formulated as follows.

" Initialization: Determine the cost of the edges incident at this node

and the identities of the nodes at the other end of the edges. Build

the data structure corresponding to the edge information and the

_ fragment state. The latter will contain only this node and its edges.
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First step: Convert the edge to the nearest neighbor into a marked

branch, and signal the neighbor to ‘mark this edge’.

General step: Wait for a signal. When it arrives MERGE_FRAG_STATE and

MERGE_EDGE_INFO.

If the command is “mark this edge’, then if the edge was marked by
both nodes then DECIPE who should become’master, as this is a doubly
marked edge. If this node becomes master then TRANSFER MASTER CONTROL.
If the edge was not marked by both nodes do nothing.

If the command is ‘become master” then TRANSFER MASTER_CONTROL.

If the command is ‘become master and make this edge an unmarked
branch’, then if the edge was made into an unmarked branch by both nodes
then DECIDE who should become master. If this node becomes master then
TRANSFER_MASTER_CONTROL. If both nodes did not make the edge into and

unmarked branch then TRANSFER MASTER CONTROL.

Repeat the general step.

2.4.4 Analysis of the Algorithm

We put off discussing the factors influencing the complexity of the
algorithm till section 2.4.4.2, and now prove that it does in fact

‘construct the MST,

In terms of the general model for parallel MST algorithms (cf.
section 2.3 General step), when this algorithm starts, each node is a
fragment and converts the edge connecting it to its nearest neighbor

into a branch. The neighbor is informed of this by a message. This
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message may'incur a delay before arriving at its destination, and in the
meantime the generator of the message is free to continue processing.

Every node now waits for messages.

The arrival of messages determines which fragments have merged into
larger fragments, and which nodes are permitted to repeat the general

step based on their knowledge of the fragment.

If a message arrives announcing the establishment of a singly
marked branch, then the node checks to see if it too had markéd this.
bra§ch. If not, then the node updates its data structures (merging
fragments) and continues to wait fo? other messages. If this branch
turns out to be a doubly marked brénch, then the core of a MF has been
created, and one of the two nodes unambiguously becomes master. There
may be many such cores in creation in the network. This event is of
great importance in the algorithm, since it determines which nodes can
repeat the general step (cf. section 2.3). Reéall fhat Marked Fragments
are conhected together by unmarked branches to create the MST. The
master node is, therefore, now in search of an '"unmarked branch" that
will connect this MF to another MF or MSS. The decision on which edge
to convert to a branch is based on the node’s current information of tﬁe
”frggmepp. ‘Sinqe“the MST is unique, so is the branchl that connécts a
fragment to its nearest neighbor, and so even with the asynchrony in the
operation of the algorithm, the decision of the active nodé is always
correct. Note that this is true even when the signals take different
amounts of time to be successfully transmitted. This is elaborated

below.
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In quest of this "unmarked branch" the node may pick aﬁ_ edge such
that the node at the other end is part of the same MF. This is possible
since the message from that node announcing the creation of the singly
marked branch may not have yet arrived. Such an action is not harmful
and is in fact important. Master control will be transferred to the new
node, which will now grow the MF with the help of more complete fragment
information, and master control will propagate until the "unmarked

branch" to another MF or MSS is found.

A node that is master may even decide that an edge that has already
beén made into a branch (but still exists in the fragment state)
cohnects the fragment to its nearest neighbor. The node just transfers
master control to thét node since it may have a>more accurate view of
the fragment and can make a better decision. The node which transfers
master control can not pick another edge to convert into a branch
because the edge it picks is not the lowest cost edge, and its inclusion

as a branch can easily create a cycle.

Note that a node that 1s active may convert an edge into the
"unmarked branch" without knowing what its complete MF looks like. This
is not harmful since MF branches are always marked, and messages

notifying neighbor nodes of this construction will evéntually arrive.

Two active nodes may decide to make an edge into an unmarked branch
éimultaneously,d in which case one of them unambiguously relinquishes

control to the other, and the master grows this MSS.
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Note that when the algorithm starts, there may be many nodes that
are master nodes, but eventually this will decrease to zero. Master
nodes will evéntually'determine that there are no more nodes lying
outside their fragment, and will thus conclude that the MST has been

created.

2.4.4.1 Termination of the Algorithm

The program at each node is said to terminate when it receives no
more messages. Of course, the node does not know if it is going to
recelve any more signals or not, and so if it transmits data along the
branches of the minimal spanning tree before it has been completely
constructed, the data may not get to all destinations. The proof of the
fact that the algorithm terminates is based on the observation that a
new signal 1is sent (in response to one received, that has a command
indicating that the node should become masterj if and only 1if the
fragment state at this node indicates that it is still possible to grow
the fragment. Nodes which are told to become master will eventually
refine their fragmeﬁt states such that there will be no nodes lying

outside the fragment and so no more signals will be generated.

In éome applications it may be desirable for each . node to
éxplicitij Eﬁéw‘ﬁﬁéﬁ thé MéT hés.béen‘cdnsﬁructéd. .This.is veryreasily
achieved. There will be one or more master nodes that will discover
upon examining their fragment‘ states that there are no nodes lying
outside the fragment, and therefore conclude that the MST has been

constructed. These nodes can brpadcast a signal whose command is
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done’. Upon receiving such a signal a node can proceed to wuse the

branches of the MST.

2.4.4.2 Factors Influencing Complexity

The factors that influence the complexity of this algorithm are the
degree of parallelism, the asynchrony of internode communication, the
number‘of signals transmitted, the length of signals, the overhead of
using a broadcast routing scheme to deliver signals to nodes in the same
fragment, and the data structures representing the fragment sfate and

edge information. All these factors are not independent of each other.

" The determination of .the complexity of parallel and distributed
algorithms is very difficult. Not only does the complexity as a
function of the number of processors and number of nodes have to be
determined, but also the effect of asynchrony and delay in internode
communication. There are no formal analysis techniques to be used in
this case. The simulation of the algorithm under' various éssumptions
and performance measures seems to be the best way to get a measure of
the complexity of such algorithms. While we have simulated the
algorithm  to make sure that it does in fact work, the detefmination of
its complexity is out of the scope of-this tﬁesis and a subject for.
fufﬁre ‘fééearch;. Wé ’do,‘ ho@ever, ‘diséusé ;he effgcts of delays in
transmission of signals, and.how the length of ' signals change as the
pomputation progresses. ‘In section 2.5.1 we discuss alternate ways for

gathering information about the fragment.
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2.4.5 Networks in which the Edge Costs are not Distinct

The algorithm presented in the previous section constructed an MST
since the edge costs were distinct, and so the decision made by an
active node to convert an edge into a branch was always correct and

unaffected by the asynchrony of the computation.

When the edge- costs are not distinct, the asynchrony of the
operation may introduce cycles, and thus will not construct an MST. To
see why this is possible, consider the example shown in figure 2.3.
Nodes A, B, and C are part of a larger network. Edges (A,B), (B,C) and
(A,C) are all of the same cost. It'may so happen that when each node is
converting an edge into a branch using Pl that node A chooses B, node B

chooses C, and node C chooses A. A cycle has resulted.

Similarly, 1f there are two MFs that have m&re than one possible
_unmarked branch connecting them together, then the master node in each
MF may cﬁoose a different edge to convert into a branch, thus creating a
cycle. Generalizing, we can say that 1f there is more than one edge
that can be converted into a branch so as to connect two fragments

together, then there is the possibility of a cycle.

‘__:Prim_ (1975) ‘showed‘ that if there érg many edges of the same cost
connecting a fragment to its nearest neighbors, then it did not matter
which was chosen, aﬁd an MST would still be constructed. Therefore, if
the network is converted into one with distinct edge costs, either
implicitly (cf. section 2.3.2), or expiicitly, then the algorithm

presented in section 2.4.3, would still be suitable.
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Recall that a node updates its knowledge of the fragment it is in
only when 1t receives signals. Therefore, the master node makes a
decision based on its current knowledge of the fragment. The decision
could have been made just before a signal that has new fragment
information arrives. The decision of the master node is never wrong or °
harmful in constructing the MST, but it might result in redundant
processing and transmission of further harmless but unnecessary signals.
Appendix B illustrates an example of such redundant computation beiﬁg
performed. Such ' effects must be taken into account when determining

complexity.

Recall again, that the fragment state transmitted 1in signals
consists of all the nodes within the fragment as seen by the originator
of the signal, and for each such node, edges (with their costs) that
connect them to nodes outside the fragment. The size of this data
structure depends on the topology of the network and the connectivity of
the nodes within it. Typically, when the fragment is small there will
be few nodes within the fragment, but many potential branches. As the
fragment grows the number of nodes within the fragment iﬁcreases as does
the number of potential branches, until a  point is reached when the
number of potential branches starts decreasing again. An interesting
subject for future research is to determine what this variation is, as a

function of network topology and internode communication asynchrony.
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Figure 2.3. A PART OF A NETWORK WITH
NONDISTINCT EDGE COSTS. The possi-
bility of a cycle exists.

40
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2;4.6 Conclusions

An algorithm has been described for constructing an MST in a
computer communication network, or wusing a multiprocessor. This
algorithm 1s asynchronous and concurrent, and so can be thought of as a

parallel algorithm for constructing an MST.
The algorithm has the following properties:

(i) Information on the state of an edge is duplicated at both nodes
of the edge. The data structure reflecting this information need
not be locked at the other end when either node decides to modify

it.

(1i) Cooperation between the nodes for the purpose of creating
branches, and for refining the state of the fragment at each node
is achieved by sending messages from a node‘to either its neighbor
-or to another node in the same fragment. There is no other need
for synchronization between the cooperating processes, such as
receiﬁing positive acknowledgements for'the messages, or aborting a
previously  “transmitted" message before it actually gets
transmitted (cf. section 2.5). Transmission of messages to a node
that - is  not a--neigkbor Bu£ i;&the-same fragment, can be'done by
broadcaéting (or relaying) it along the branches of the MST of this
fragment. Hence there 1s no mneed for another routing scheme. We
assume the existence of an .underlying - reliable interprocess
communication mechanism for transmitting messages betweén nodes

[Cerf74, Cerf74a, Sunshine75].



. Distributed MST Algorithms ' ‘ 42

(iii) The only special initial condition is that all nodes know the
cost of the edges connecting them to other nodes, and the

identities of these nodes.

(iv) The algorithm is able to construct an MST in a network that
has no constraint on the edge costs, since a network can always be

transformed into one with distinct edge costs.

(v) The algorithm cannot incrementally account for nodes going
down, edges breaking or changing costs, or nodes coming up. The

MST has to be recomputed.



Distributed MST Algorithms 4 43

2.5 An Alternate Model

Tarjan (in a private communication to the author) suggested an
alternate model,  similar to the one presented in section 2.4, by which
nodes communicate with one -another and construct the MST. We discuss

Tarjan’s proposal and examine the relevance of the assumptions.

The initial conditions for this model are the same as those for the
model of section 2.4, i.e. each node knows the identity of its neighbors
and the cost of the edges connecting it to them. The edge costs are
also distinct. In addition, assume that the communication across an
edge takes place in one direction aé a time. Thus, if.both nodes at the
end of an edge want to talk to each other simultaneously, one gets
precedence (it doesn’t matter which). We assume thét there 1is a
mechanism by which two nodes detect that both are attempting to use the
communication channel simultaneously, and one wins. We examine the
consequence of this assumption on the structure of the processes
residing in each node, and the asynchrony of the entire system a 1little

later.

Each fragment is defined by a set of edges previously added to the

MST which form a subtree spanning the fragment. We shall direct these

‘édgés (bfanhhés) so that they form a rooted tree —- each node will have
a single exiting edge, except for a unique node, the root, which has no

exiting edge. The root will be the communications center for the

fragment.
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Each fragment computes independently. Only when the fraément tries
to connect itself to another fragment via a minimum cost edge, or when
another fragment tries to connect itself to the given one, is there

interaction between fragments.
The computation carried out by a fragment consists of two steps.

1. Information Gathering: The root (i.e. the fragment’s

communication center) must find out the minimum cost edge
connecting the fragment to another fragment. The rootl could
broadcast a signal to all nodes in the fragment. A signal is then
returﬁed from each node in .the fragment to the root. This
information is combined, either along the way or in the root, to
determine the minimum cost edge (say (X,Y)) connecting a node (say

X) in the fragment with a node (say Y) outside the fragment.

2. Adding an Edge: The root sends a signal to X to add (X,Y) to

the MST. This signal travels along a path of the subtree from the
root to X. All  edges along this path have their directions
reversed. If (X,Y) has not yet been added to the MST, it is added
with direction from X to Y. This fragment is thus combined with
another fragment, and the new root is in some other part of the new
“fragment. If (X,Y) has‘élréédy;beéh added to the MST (direction
from Y to.X), X becomes tﬁe new root of the enlarged.fragment, and
step 1 is initiated from X. Hence, whenever a node gets a signal
to create a branch, it does so if it is not already there, and

determines if it is the root.
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The process continues within each fragment, until one fragment has
no potential branch connecting it to other nodes. The fragment is then
the only fragment (if the graph is connected) and it contains all the

nodes. The algorithm is now said to terminate.

There are several ways of doing the information gathering and edge
"addition, depending on how much information we wish to send along edges.

These are examined in detail in section 2.5.1

The advantage of not permitting communication to occur
simultaneously over an edge 1is that two nodes never convert the same
edge into a branch simultaneously. .Thus, the problem of deciding which
node should become the root (analogous to deciding which of two nodes
should unambiguously become master (cf. section 2.4.3)) never arises.
Further, the asynchrony of the system i1s restricted such that no
redundant computation is performed, as might occur 1f a master node
created an unmarked branch out of an edge that was to be singly marked,
and master control was “unnecessarily" transferred to the node at the

other end.

The advantage of directing the branches is that when.fragments
connect to one another there is one resulting root. The &lgorithm thus
proceéds in an bfdéfly féshiéh, éﬁd théré.ié ﬁd redundaﬁﬁ comﬁutaﬁioﬁ.
The way the MST evolves depends on the asynchrony of the communication
between the nodes. In the algorithm describéd in section 2.4, master
control was t:ansférred from node to node, with the number of masters

decreasing as fragments connected to one another. However, as we
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noticed, if there are unpredictable delays then a lot of redundant
 computation may be performed as master control gets passed around
unnecessaril& (see Appendix B). The static distributed MST algorithm
keeps no history of how master control is transferred and so redundant

computation is possible.

Let us now examine the consequence of the half duplex nature of
internode communication, and the fact that branches must be directed, on

the implementation of such a scheme in a computer network.

In order that simultaneous internode communication not take place,
it is not sufficient to treat the cémmunication links as half duplex.
This implies that if one node has already initiated an asynchronous
transmission of a signal over a branch, and the branch is in use in the
opposite direction, then this signal must be aborted, because the signal
that arrives must be processed before anything else is done. A previous
decision made by the the process must be undone. Alternatively, the
process must acquire "ownership" of the channel in a manner similar to
getting permission to enter 'a critical section of code. This may be
possible in some implementations, but if the communicatidn link is being

multiplexed such "ownership" may be difficult to implement, 1f if all.

' In  packet switched networks 1ike  the  ARPANET there ~is  a

positive~acknowledgement retransmission protocol to guarantee feliable
transmission between the switching nodes; the IMPs or TI?S. . Ownership
of the channel would have to extend until the signal was successfully
transmitted. We nofice, therefore, that the assumption of half duplex
internode communication affects the asynéhrqny of the software in each

node, and thus acts as a "synchronizing" mechanism between two nodes.
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When a signal is sent to a node within the fragment, in order to
connect the fragment to another fragment using a specified edge, the
branches along the path the signal traverses must have their directions
reversed. Hence, an underlying routing mechanism must exist that knows
what the subtree of the fragment looks like, so that it can route the -
signal over appropriate branches. An underlying routing algorithm, like
that present in the ARPANET may be usefﬁl, but again may not if it does
not route the signal over the right path. Each node along the way must
be informed that it must reverse the direction of the branch. Hence, it
is not only necessary for the signal to reach its destination but for
each node along the path to eiamine this signal (or an equivalent

scheme) .

2.5.1 Ways of Gathering Information about the Fragment

We describe some ways the root gathers information abo.: the

fragment of which it is the communications center.

The first approacﬁ 1s very similar to the one used in the static
distributed MST algorithm described in section 2.4.3. At each néde n,
we store a set F(n) which contains the nodes that n knows to be in the
fragment, and some representation of the edges incident to nodes which n
knows to be in the fragment. The root always chooses the minimum cost
edge, say (X,Y) connecting a node X, in the fragment, to node Y outside.
The root signals X to create this branch. All the information about the
fragment as seen By the root (F(n) and incident edges to nodes outside

the fragment) must be passed in the signal, and the direction of the



Distributed MST Algorithms - | 48

branches traversed changed. Note that initially all nodes are. roots of

the fragment consisting only of themselves.

The second approach is to store only the set F(n) at every node_ n
and, of course, information on edges and nodes incident to n. The
signal from the root indicating that a branch shquld be created contains
a boolean vector representing F(n). When a node discovers it 1s the
root, it broadcasts a message (signal) to all nodes in ihe set F(n) it
has knowledge of, in order to get back from each of them, the cost and
identity of potential branches leaving the fragment F(n). The root then
sighals X to create the branch. This technique causes more signals to
be generated because all the nodes in a fragment must be interrogated
before the minimum cost edge leaving it can be determined. The amount
of information in each signal 1is 1less than the first case. The
responses to a broadcast query message from the root could be comgined

in the root or along the nodes in the subtree on the way to the root.

The third and last approach i1is for each node only to have
information about the edges and nodes incident to it, When a node
discoveré_that it is the root, it must determine the nodes within its
fragmentl and the potential branches to nodes outside the fragment. The
- root could broadcast a message‘tq determine‘whiéh nodes are - within - the
fragment and then broadcast a message to tﬁem to find out what edges
leave the fragment and their costs. Both these operations could be
performed in one stage rather than two. The length of each signal is
now even smaller, and when the root signals X to create a branch, it

does not include any information about the fragment. Notice that when a
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root attempts to determine the identity of the nodes within its
fragment, it 1s not sufficient for each of the nodes to send a message
directly back to the root, because the root does not know how many nodes
there are going to be within the fragment and so does not know how long
to wait. Information must be combined élong the tree back to the root.
This 1s necessary because only a nocde that knows whether it is the leaf

of the subtree spanning the fragment.

The second and third alternatives have 1less information in each
signal but cause the generation of more signals than the first
alternative. However, there is more processing overhead at each of the

nodes in order to determine what the fragment looks like.

The second and third alterﬁatives could have been used even with
the static distributed MST algorithm described in section 2.4.3, since
theée alternatives do not depend on the assumption of half duplex
interncde communication, or the notion of directing the branches of the

subtrees being created.

We leave the determination of the suitabilities of these various
fragment-informatioﬁ gathering schemes for futﬁre research, since their
suitabilities are based on a measure of complexity of the resulting
élgorithm; a.Subjéct out'df'the séope Bf.ﬁhis thésis. We, ﬁoﬁeﬁei; féél
that the assumptions of half duplek interﬁode communication and the
overheads for directing the branches may not be appropriate for certain

applications in computer communication networks.
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2.6 An Adaptive Distributed MST Algorithm

In this section we present an adaptive distributed algorithm for
constructing MSTs. The algorithm executes continuously, and dynamically
converts an old (minimal) spanning tree into a new MST. The algorithm,
therefofe has phases; each phase transforms a spanning tree into an MST.
We show that one phase must be over before the next starts, otherwise
the information each node has about the fragment it is in, may become
inaccurate. If fragment information becomes inaccurate, then the
construction process could easily produce cycles instead of constructing
the MST. We will also describe how-the algorithm moves from phase to

phase. o

The algorithm takes into account edge costs changing, new nodes
being‘added to the network (edge costs to these nodes going from
infinity to a finite value), and nodes going down (edge costs to them
becoming infinite). The algorithm does, however, assume that all the
ﬁodes and edges are functioning correctly during a computation phase;
i.e. nodes and edges can not go down during a computation phase, though
new nodes and edges can be added. This algorithm can even be used to
construct an MST from scratch because tﬁe nodes of the network can all
be‘”cpnside:ed,,connected‘,to_ a fake node. In,this‘éase, the algorithm
looks very similar to the static dist;ibuted MST algorithm described in

section 2.4. We examine this special case in section 2.6.4.
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2.6.1 The Basic Model

Recall the abstracE parallel MST algorithm described in section
2.3. Fragments (subtrees of the MST) connect to other fragments to
create larger fragments until the one ‘remaining fragment spans the
"entire set of nodes. Various implementations of this algorithm impose
constraints on which fragments can connect to other fragments, the node
within a fragment that makes the decision to connect to another
fragment, and the form of dinternode communication and transfer of
control. The algorithm described in section 2.4 transferred master
control from node to node, while the one in section 2.5 determined which
node should become the root when two fragments were connected to one

another by the minimum cost edge, to form a larger fragment.

The algorithm to be described in this section uses the old
spanning tree to systematically pass control around so as to transform
this spénning tree into the MST. A tree spanning a network with N
nodes, has N-1 branches. The algorithm requires that each node (save
one) change one of these N-1 branches (one that is incident to it) into
a branch of the new MST, thereby completing the transformation. The
terminology used to describe ﬁhe algorithm is similar to that wused in

section 2.4. We will repeat definitions when appropriate.

A node 1s  said to be the leaf of the old spanning tree if it is
connected to the old'spanning tree by only one branch. In figure 2.4b
A, C, F, H, K, M, N and P are the leaf nodes of an old spanning tree for

the nefwork in figure 2.4a. A node is said to be master if it decides
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from which node of the new-fragment a branch should be created to a node
lying outside the- fraémeﬁﬁu The node that actually makes the
construction will become active. When a node becomes a leaf, it must
remove the old-~branch connecting it (and the fragment of the new MST) to
the old spanning tree, and replace it with a new-branch that connects
the new-fragment to its nearest neighbor. In this way the old spanning

tree is converted into a new MST.

A node becomes master when it becomes a leaf node. The last branch
of the old spanning tree is removed and a new one found. The master
node may transfer master control to some other node in the fragment in
search of the edge that connects this fragment to its nearest neighbor.
This may recur till a node becomes active. A new-branch is created and
master control disappears. However, if twp active nodes convert the
same edge into é branch, then one of them must unambiguously become
master again. This 1is because a master node and fherefore an active
node was the result of removing an old-branch and replacing it with a
new one. Each active node must create a branch, and so if two of them
create the same branch, there is one less new-branch and one of the two

active nodes must becomes master again.

Initially, the only fragments that  can compute are those. that
consist of single nodes that are leaves of the old spanning tree. These
nodes, asynchronously and concurrently, remove the branch thaﬁ connects
them to the old spanning tree and create a new~branch that connects them
to their nearest néighbors. As a consequence of such an action by leaf

nodes, other nodes in the:network will become leaf nodes and the process
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of replacing old branches continues, until all N-1 branches of the old
spanning tree have been replaced by new ones. This results in an MST.
In figure 2.4c, B, G and O are the newly created leaves after nodes A,
F, K, H, M, N and P have replaced the old-branches incident to them.
Signals that transfer master contrel or create a branch contain

information about the fragment as seen by the originator of the signal.
Note that if a leaf and therefore a master node wishes to make an
old—braﬁch into a new one, it need not remove the old one and then
create the new one in two separate signals. The node could just create

the new one, thereby implicitly removing the old one.

All N nodes in the network will eventually become master, but there
are only N-1 branches to be replaced. Some node will be the last éne to
become master. It will upon examining its fragment state realize that
there are no nodes lying outside the fragment, and therefore conclude
that the fragment spans all the nodes. Therefore the MST has been
constructed. Note that it 1Is not necessary for each node to know the
names of all the nodes in the network, or even the total number to make
this decision; Hence, new nodes can easily be added to the network. We
prove in section 2.6.3 that there is only'one-node that discdvers this
fact (unlike the algorithm of section 2.4.3). This node could then
' broa&cast'a *done’ signal to all ;thef‘nodes along the branches of the
MST. Upon receiving a ‘done” signal a node knows that the last
computation phase is over and that it can ‘reinitialize its state
information =~ for 'example, the new MST now becomes the old épanning

tree, and edge costs must be reestablished. ' Once a node has
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reinitialized itself, it can proceed with the next computation phase
when it becomes a leaf without having to wait for all other nodes to
have got the ‘done” signal. We examine how a computation phase

terminates and the next one initialized in detail in section 2.6.3.

2.6.2 Statement of the Algorithm

We now describe the algorithm formally. We assume that the only
change between two phases is the edge costs changing. We assume that
nodes and edges do not come up or go down. The algorithm accounts for
these variations, but we leave it for section 2.6.5 to explicitly show

this.

2.6.2.1 State Information at Each Node

The statement of the algorithm will assume that each node has a set

of state variables. These consist of:

(i) The state of the node with respect to the construction of the new
MST; 1.e. whethef it is inactive, active, master, or done, and the state
of the node with respect to the old spanning tree; i.e. whether it is a
1eaf or not. The staté determines what the node should do when it gets

a message from another node.

(11) Information about each of the edges the node is connected to. The
information contains source and destination node identities of the edge,
1its cost, whether the edge is an old-branch or a new-branch, and if a

new-branch whether this node and/or the node at the other end made it

into a branch.
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(1ii) A l1list of nodes that are in the fragment as seen by this node.
For each such node, information is kept on edges (potential branches)
connecting the node to nodes outside the fragment. Nofe that some of
these edges could already‘be branches, since the node at which this data
structure resides may not know to what other nodes the node at thé other
end of the branch is connected to, and so can not include that node in

the fragment state.

2.6.2.2 Internode Communication

Internode communication is achieved by sending messages called
SIGNALS. Signals have five parameters; the source and destination node
identities, the command, the fragment state as seen by the source of the
signal, and if an edge is being made into a branch, then information
about the edge as seen by the source of the signal, The command could
be “remove this old-branch”, ‘make this edge (old-branch) into a
new-branch”, or ’‘become master’. If the command is ‘remove this
old-branch’, then the fragment state should not be preseqt in the
signal. A signal can be sent to a node that is a neighbor, or to a node
that is not a neighbor but part of the same fragment if the command is

“become master’. We assume that the communication 1link between two
ﬁhbdes‘ is “fﬁli dhplei, énd thaf'én.underlying asynéhroﬁous mgqﬁaniém

guarantees reliable communication between two nodes.
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2.6.2.3 Associated Routines

There are some special routines at each node. Many of them are
identical or very similar to those defined in section 2.4.3.3. We
choose to give these the same names because they perform the same basic

functions.

MERGE_FRAG_STATE merges the fragment state received in a signal (if
any) with the fragment state already present at the node. Merging
consists in adding nodes not already part of the fragment and deleting
edges whose nodes now lie within the fragment. Note that the fragment
state gets altered only when a signél arrives and is processed, and not
when a - signal 1is produced. Hence, when a node makes an edge into a
branch, the fragment state is unaltered as this node does not know what

lies beyond the node at the other end of the edge.

A routine called MERGE EDGE INFO merges the edge information
received in the signal (if any) with that contained for this edge at the

node.

DECIDE is a routine that determines which of two nodes should
become master. If.DECIDE returns true this node should become master.
Relative node.numbering could be used as an unambiguods‘dacision. More
esoteric techniques could be used which may help the algorithm execute
faster. For example, both nodes know which edges the other is part of
(since both nodes just exchanged fragment states). The node that
becomes master céuld be the one that has a lower cost edge excluding the

one that connects both together.
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ANY NEIGHBOR is a routine which examines the fragment state and
determines which node (if any) should become master. If ANY NEIGHBOR
returns true, then the identity of this node is returned in MASTER;NOﬁE,
and the 1dentity'of the node at the other end of the edge from
MASTE&_NObE in  DEST _NODE. The edge determined by (MASTER _NODE,
DEST_NODE) connects this fragment to its nearest neighbor. If
ANY NEIGHBOR returns false then, there are no neighbors of this fragment

and thus the MST has been constructed.

CHANGE_ﬁRANCH is a routine that gets invoked when a node becomes a
leaf of the old spanning tree. The.routine examines the fragment state
through ANY NEIGHBOR. There must be a nearest neighbor. If the edge
(MASTER_NODE, DEST NODE) is the same as the last old-branch, then the
node makes this edge into a new-branch and signals DEST _NODE to ‘make
this edge (old-branch) into a new-branch’. Otherwise the old-branch is
removed and .DESI_NODE signalled to ‘remove this old-branch’, and a new

branch is created by calling TRANSFER MASTER CONTROL.

TRANSFER MASTER CONTROL is a routine that examines the fragment
state through ANY NEIGHBOR. 1If there is a neighbor, and if MASTER NODE
is the node itself, then the node converts the edge determined by

"(MASTER;NODES,“DESI_NODE)‘.intq a branch 1if it alrea&yswas‘not one, and .

.~signals—the -BEST_NODE to “‘make this edge (old-branch) into a

new-branch’ . If the edge i1s already a branch then DEST _NODE is
signalled to ‘become master”. If MASTER;NODE was not the node itself,
then MASTER NODE is signalled to ‘become master®. 1I1f ANY NEIGHBOR
returns faise; then broadcast a ’dﬁnef signal to all the nodes, and set

the state of the node to done.
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2.6.2.4 The Main Program

Abstractly, the program in each node can be formulated as follows.

Assume that all nodes know who their neighbors are.

Reinitialization: Determine the new cost of the edges incident at this -

node. Reinitialize the data structure corresponding to the edge
information and the fragment state. The latter will contain only this
node and its edges. The edge information will reflect which edges are

old-~-branches.

First step: If the node is a leaf then CHANGE_BRANCH.

General step: Wait for a signél. When it arrives MERGE FRAG STATE and
MERGE_EDGE INFO. |

If the command is ‘remove this old-branch’, then do nothing more
since the edge information already reflects this change.

If the command is “become master” then TRANSFER MASTER CONTROL.

If the command is ‘make this edge (old-branch) into a new-branch’,
then if the edge was made into a new-branch by both nodes then DECIDE
who should’ become master. If this node becomes master .then
TRANSFER_MASTER_CONTROL.

If the command is 'dong' then this computation phase is over, and
so forward the 'aqne’ signal along ali.the branches incident to this
node, except the one on which the signal arrivéd..

If the node is now a leaf then CHANGE_BRANCH.

If this node is done then this computation phase is over.

Repeat the general step until this computation bhase is over.
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Repeat the Initializations.

2.6,3 Termination and Reinitialization of Computation Phases

We now prove, informally, that there is one and only one node in
the network that determines that the MST has been constructed. This
node informs the others of the termination of the current computation
phase by broadcasting a “done’ signal, along the branches of the new MST
just constructed. Recall that the algorithm constructs the MST by
replacing the N-1 old-branches by new-branches. 0ld-branches get
replaced when a node becomes a leaf. There are N nodes in the network
and each gets the opportunity to be a leaf. We first show why all nodes
eventuaily become leaves, as the proof that only one node determines

termination of the computation phase depends on this fact.

As old-branches are replaced by new ones, other nodes become léaf
nodes. Eventually, there will be one node, say Z (that has never been a
leaf), that 1is connected by old-branches to m (m>2) leaf nodes. See
figure 2.5. These m nodes will attempt to replace the old-branches
incident to them, and signals will be sent to Z. Nodes always process
signals sequentially and to completion, and so when Z has proéessed m-1
signals iﬁ too‘will become a leaf. Therefore 511 nqdés become leaves of

the old spanning tree.

As a consequence of all nodes becoming leaves and there being only
N-1 old-branches, after the last node has become a leaf, two master

nodes in two fragments will make the same edge into a new-branch. (This
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is the last edge to be made into a new-branch by two active nodes.) One
of these two nodes unambiguously becomes master again, and transfers
master control in an attempt to connect the fragmgnt it is in to another
fragment. Master control will be transferred to some node that realizes
;hat there are now no more nodes lying outside the fragment. This node,
therefore, concludes that the MST has been constructed. There are no
other master nodes in the network at this time, because all other master
nodes, given rise from leaf nodes, have relinquished the "master"

property once a new-branch was created.

Let us now examine how nodes reinitialize themselves for the next
computation phase once a “done’ signal has been broadcast. A sufficient
condition for this adaptive algorithm to work is that a new computation
phase not ge "initiated while one is currently in progress. The
reinitialization process must always guarantee that this condition is
true. Let us see what happens 1if, for any reason, this condition 1is
violated. Figure 2.6a shows a network with an old spanning tree and new
edge costs. Assume that all nodes know that the last computation phase
has terminated and have reestablished the new edge costs. Figure 2.6b
illustrates what the .new MST would look like. We now show that while
this computation phase is in progress, if another one is initiated, then
- a éycle‘iéﬁconétructed Bécéuéé differéht ﬁarfs of fhew netﬁsrk. héve
differehf and inconsistent information about the fragments being
constructéd. Consider that instant of time wheﬁ B, C and D are leaves.

C will remove branch CA and signal O to become master so that it will

construct ON as a branch. Say nodes M and N decide to start another
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" computation phase and construct MF and NF as branches. F will become a
leaf. At this instant assume that the cost of edge FB has become 29
from 10, and that of FG has become 16.5 from 29. F will remove FB and
create FG as a branch. A cycle consisting of edges FG, GO, ON and NF
has been constructed. Many, much more subtle, cycles are possible. M
and N should not have started the new computation phase, and B and G
should not have agreed to changing the edge éosts. When a node gets a
‘done’ signal, it must communicate with its neighbors to establish the
costs of incident edges for the next computation phase. We examine the

requirements of the protocol that achieves this.

Let A be a node that has got the ‘done” signal. Some of A’s
neighbors may have received the “done’ signal, while others may not
have. Let B be A’s ﬁeighbor, and assume that B has not yet received the
signal. When A communicates with B, in an attempt to establish the cost
of edge (A,B), B must tell A that it will respond as soon as it gets a
‘done’ signal. When B gets the ‘done’ signal, then everything is fine,
since both nodeé have got the “done’ signal and can change the cost of
an edge connecting them., When all edges incident to a node have their
cost reestablished and new-branches marked as old—branches, the node can

. proceed with the new phase; if possible,

If B were to "blindly" agree on the new cost of the edge (A,B),
then subsequent actions of A may produce undesirable race conditions,
which cause yet anQtht*ggmpntation;phaseftq‘bé_initiated while one is
alréadf in progress. We 1llustrate this in figure 2.7. Assume that the

MST has just'been constructed and node E broadcasts the ‘done’ signal.
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Figure 2.6b. THE NEW MST AND A POSSIBLE CYCLE FGON IF A
COMPUTATION PHASE IS STARTED BEFORE THE CURRENT ONE HAS
TERMINATED. : : .

64



Distributed MST Algorithms 65

The new edge costs are also shown. Nodes will only establish them when
they get the “done’ signal. Aséume that G and A have received the
‘done’ signal while B has not. A will now establish the cost of edge AB
and B will biindly agree. A will then remove branch AF and create AB.
Assume that B now gets the “done’ signal. It will forward it to A and A
will go about reestablishing edge costs for another computation phase

and could easily construct cycles.

Therefore when A communicates with B about the new cost of edge AB,
A 1is kept waiting until B has got the “done’ signal. Only then is the
cost of AB reestablished. Hence, .when a node has been completely
'réinitialized, all its neighbors have also got the “done’ signal and
agreed on these edge costs. This simple protocol for reinitialization
is sufficient to guarantee that a new phase is not initiated while one
is currently active even when new nodes are being added. We show this
in._section 2.6.5. ‘The proof of this is straight forward. When a
reinitialized node subsequently becomes a leaf and/or master, it is
guaranteed that all i1its neighbors will process a signal it sends them
only after they have been reinitialized too. Hence, a signal belonging
to a new phase is noé processed by a node until it too 1s ready for the
new phase. Hence, the reinitialization protocol serves to synchronize
the knowlédge‘two'ﬁodeéwhévé of ﬁhé'edgéuthat connects them for the next
computation phase. Mofe esoteric reinitialization protocols may be

developed.

It is appropriate at this point to discuss the properties of the

broadcast routing scheme by which “done’ signals are delivered to all
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Figure 2.7. UNDESIRABLE RACE CONDITION
IF NODES BLINDLY AGREE ON NEW EDGE
COSTS .
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the nodes. The “done” signal is forwarded along the new-branches of the
MST. Since there is no alternate routing strategy, a node cannot get a
duplicate copy of a “done” signal. Further, when a “done’ signal of a
particular phase 1s broadcast, then “done’ signals of the previous phase
no longer' exist. This 1s true since all nodes do not complete their"
reinitialization until they too receive the ‘done’ signal. The
broadcast roufing scheme therefore guarantees to deliver exactly one

copy of the “done’ signal to a node, provided that edges and nodes do

not go down until after all nodes have learned of the termination of the

current phase.

When a node enters its reinitialization code because it receives a
done signal, it does not process any messages not related to
reinitialization until after it dis ready for the next phase. "
Analogously, if edge cost reestablishment messages arrive before the
node gets the “done” signal, then the node tells it neighbor that the
response will be coming shortly. Conceptually, one can imagine that two
nodes héve got two interprocess communication channels between them =~
one for réceiving and transmitting signals related to MST construction
and the other for reinitialization. The interprocess communication
channels should be reliable and provide sgquencéd communication [Cexf74,

Cerf74a, Suﬁshin¢75];"
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2.6.4 Constructing the MST from Scratch

Let us examine the operation of the algorithm when there is no
spanning tree initially overlayed oi the nodes of the network. The
nodes; however, can all be considered connected to a fake node by an
edge. Hence, there 1is a spanning tree overlayed on the nodes of the

network, and all the nodes are leaf nodes.

Hence, assuming that each node knows the identities of ‘its
neighbors and the cost of the edges connecting it to its neighbors, the
algorithm is no different from that described in section 2.6.2.4 except
that the initializations for the first phase have all nodes labelled as

C— -

leaves, and there are no old-branches.

Notice that this algorithm 1is now very similar to the static
distributed algorithm described in section 2.4.3. The signals used in
fhe adaptive algorithm are ‘make this edge (old-branch) into é
new-branch”® and _’become master”’ . These correspond, respectively, to
‘mark this édge' and ‘become master’ in the static algorithm. There is
no signal in the adaptive algorithm corresponding to ’“become master and
make this edge an unmarked branch’ in the static algorithm. This is so,
because in the adaptive algorithﬁ whenever two nodes convert the same
edge into a branch one of tHem'unaﬁbiguoﬁsly becomes master. This is
not always the case in the static algorithm where one of the nodes could
‘have created a marked branch while the other coﬁld have made that edge
into an . unmarked brancﬁ. There is an extra command in the static case

in order to transfer more information in a signal. Hence the static
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algorithm of section 2.4.3 is a special case of this adaptive algorithm.

The adaptive algorithm will still have only one node that
determines that the phase has terminated. Hence, the algorithm can be

o~

“?" “‘used to create an MST from scfatch and then have it adaptively change.
In the next section we examine the case where all nodes do ﬁdﬁﬁinitially
know the identities of their neighbors and the cost of the edges

connecting them to their mneighbors.

2.6.5 A Very General Environment

We now show how that algorithm'as described in section 2.6.2 can.be. ,, ..
used in a very asynchronous environment, where edge costs are changing,
new nodes are being added to the network, and some nodes are being
removed. The algorithm is essentially unchanged from that described in
section 2.6.2 but the initial conditions and reinitializations are a

little more complex.

During the reinitialization process that a node undergoes upon
léarning that the current computation phase is over, it may discover
tﬁat some of the edges incident to it have an infinite cost: This
iﬁplies that the édge can not be used for communication, and so it is

" not included in the node’s réinitiéiiied ffégmént éfate.‘.Sﬁéh edgés may -

have been branches. The node marks them as old-branches in its data
structures corresponding to the edge information so that the node can
'becomé a leaf and replace this old-branch. Note that it is likely that

the nodes on either end of such a dead branéh will attempt to replace
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-,

it. This could have happened even when edge costs were not infinite and

so this is not a special case.

If all edges to a node become infinite then the node and its
neighbors assume that the node has been removed from the network, and it
will be excluded from the MST being constructed by virtue of the action

each neighbor will take.

Now that we know how to account for nodes being removed from the
network, let us examine how new nodes and edges can be added to the
network. First, consider how new nodes are added. These nodes. could be
brand new nodes, or nodes that h;ve become completely partitioned off
from the network and now have edges of finife cost connecting them to
other nodes. Both situations are equivalent. When a new node comes up,
it discovers it neighbors using some simple low level protocol, and
attempts to establish interprocess communication channels with them.
The node now attempts to establish the edge costs so that it can
initialize its data structures and proceed with constructing the MST.
None of the neighbors will agree on the edge costs until they too are in
the (re)initialization process themselves - hecauée they got a ‘done’
signal,. or because they too are new nodes. When a new node has
completely. . initialized its data structures it can proceed. . A new node
is initialized as a leaf node and proceeds to connect itself to a node

by a branch. It is like any other leaf node now.

This simple method of iﬁtroducing new nodes into the network is

consistent with the rules for termination and initiation of phases. A



Distributed MST Algorithms : ' ' 71

new node can proceed with MST construction only at the begining of a
phase. This restriction may impose some delay before a new node can
proceed with MST construction. We feel that this delay is worth the

simplicity of the phase synchronizing scheme.

Next, consider how new edges can be added to the network. If these
new edges came from at least one new node, then it will be introduced
into a new computation phase at the same time by both the nodes at
either end, as we have just seen. Let us now examine how an edge that
once had an infinite cost now has a finite cost, i.e. it can be used for
communication again. Note that the nodes on either end are not new and
have been participating in computation phases, treating this edge as 1if
it did not exist. Either or both the nodes will discover that the edge
1s availlable for communication and estabiish interprocess communication
channels between them. The difficult part is introducing this edge with
é new finite cost into the‘same computation phase for both nodes. If we
assume that such edges come into existence only during the
reinitializétion process for both nodes, then either one of them could
initiate reestablishment of the edge cost and the edge would be
introduced in the new compufation phase for both nodes at the same time.
This assumption is necessary for the same reason that edges and ‘nodes
caﬁﬁot”go>down”during a Cdmputation‘phése,‘dr'fhat‘eage'ébSts ééq'ﬁbt be
changed during a computatioﬁ phase. That is, the algorithm assumes a
fixed topology during a computation phase and any change would cause the

state information at various nodes to be inconsistent.
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The assumption that no changes in topology can occur during a
computation phase, and only during the reinitialization period is not
unreasonable. The adaptive algorithm will be typically used in an
environment where an MST is constructed, and used for a certain period
of time and then reconstructed. Therefore each node will be in the
reinitialization process for a longish period of time, deciding what the
local topology should be 1ike for the next phase. Nodes could be
programmed to wait for a certain period of time when they have
reinitialized themselves and found out that they are leaﬁes. Hence, one
can dimagine that the nodes construct the MST, then spend some fime
reinitializing. Upon reinitialization the leaves of the MST could wait
for some time before starting the new phase. Once they have started the
phase, nodes that become leaves perform their usual functions. This
does not require clocks in different nodes to be synchronized or even

have the same period.

2.6.6 The Packet Radio Network Environment

‘We now describe how the algorithm can be used in the Packet Radio
Network [Kahn75, Frank?75) which uses centralized routing. Packets are
forwé;ded from a source repeater along the branches of a tree to the
stafion ﬁheré_tﬁey get routed éither to. a host connected to another
network for wﬁich the station acts like a gateway, or to a user
connected to a destination repeater. The tree élong which packets are
forwérded..is rooted at the station and could be a minimum height tree.

If a minimum spanning tree connecting the repeaters and station is
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eqﬁally satisfactory, then this algorithm can be used to construct the
MST when the repeaters are dropped from an airplane and the station is
already on tﬂe ground, The repeaters and station all have the same
algorithm executing in them. The algorithm adaptively recomputes the
MST as more répeaters land and discover other repeaters. We assume that
repeaters do not go down and edge costs do not become infinite (unless
. repeaters are in the reinitialization érocess!). We must, however,
permit new edges to be introduced into the network at all times and not
only during reinitialization. This can easily be done, as we shall see.
Notice that the assumptions for the adaptive algorithm to work have not

been violated in this real 1life application!

Aséume that an edge (A,B) can go from infinite cost to a finite
cost at any time. Either A or B, or both will discover that this edge
is available for communication and establish interprocess communication
channels bétween them. Assume now that A enters 1its reinitialization
code because it gets a “done’ signal. A attempts to reestablish the
cost of this edge. If B is also in its reinitialiéation code, then all
is fine and‘ the edge.will enter‘the new cémputation phase, as we have
seen in section 2.6.5. However, it is possible that B may alternatively

be in one of the two following states:

(1) B may just have reinitialized itself and proceeded with the new
phase (A and B could not communicate when B got its ‘done’ signal

since edge (A,B) did not exist at that time).
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(i1) B may not have yet got the ‘done’ sigﬁal.

A and B must synchronize their actions so that (A,B) has the same cost
as seen by both of them for all phases. Let us see how this 1is
achieved.. A will be told by B that it is not in the reinitialization
process and to wait for the response. A can not, however, wait
indefinitely because B may have been in a state described in (i) above.
A must treat this edge specially. A assumes that B is in state (ii)
above and waits for a certain amount of time. If B responds in that
time with establishment of the edge cost, all is again fine. If B does
not reépond, then A aborts this reestablishment and assumes that B was
in state (i) and therefore treats the edge as though it had an infinite
cost. A’s assumption may have been wroﬁg in that it just didn’t wait
long enough. In that éase the situation and process B goes through upon
getting its “done’ signal is symmetrical to what we just described.
Hence, if timings are not right, then it is likely that A and B will not
introduce this new edge into the network for a number of phases. We
believe that nodes will be in the reinitialization process for a loﬁgisb
ﬁeriod of time, and .that there are stochastic delays and 'so this
synchronization | will eventually come about. This synchronization
mechanism is very much in the same spirit as the'-bne qsed by the
Vinternet ffanémiésion -Coﬁtfol Progrém when it sets up an interprécess
communication channel across a very unreliable subnet [Cerf74a,

Tomlinson74, Dalal74, Dalal75, Sunshine?5].

As repeaters land they ﬁill discover the world around them. They

do not wait for all repeaters in.thei; neighborhood to lénd since they
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do not know how many there will be. A repeater decides that it has
enough neighbors and then considers itself initialized and proceeds to
construct the MST, It is possible that a small MST will be constructed
in the first phase, aod this will become larger as oew nodes are added
in subseouent phases. It is also possible that a number of small MSTs
will be constructed, but as more nodes land or the existence of new
edges are discovered the smalll MSTs will connect themselves to one

another producing a final MST.

2.6.7 Analysis of the Alporithm

The adaptive algorithm is relatively simple once a new computation
phase has been properly initiated. In terms of the abstract parallel
algorithm, leaf nodes decide to connect the new fragment they have
information about to another fragment by the minimum cost edge. Since
all N nodes eventually become leaves and there are only N-1
old—bfanches, one and only one node determines-that the computation
phase has terminated. This node informs the others by broadcasting a

‘done’ signal, along the branches of the MST just constructed.

The reinitialization process that a node undergoes upon realizing

-.that the current computation phase 1is .over  is very important. . The

properties of the protocol by which edge costs are established have been
described in sections 2.6.3, 2.6.4, and 2.6.5. ‘The algorithm assumes
that certain changes in topology, i.e. edges or nodes going down, only
occur during ‘reinitialization, in order to keep the topology from
changing during é‘computation phase, gnd to guéranteé that a computation

phase properly terminates.
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If edge costs are not distinct, then the asynchrony of the
construction process may result in cycles, in a manner similar to that

described in section 2.4.5.

The factors that influence the complexity of this algorithm are
similar to those described for the static algorithm in section 2.4.4.2,
and the actual determination of complexity is a _subject for future
research, Since control 1is transferred systematically, there is less
chance of redundant computation being performed as a result of long

communication delays.

The wvarious €£fragment information gathering schemes discussed in
section 2.5.1 could have been used in this algorithm too, instead of

passing the fragment state in each signal.

2.6.8 Conclusions

We have described an adaptive distributed algorithm that converts
the old spanning tree into an MST. The properties of this algorithm are
similar to those of the static algorithm with the additional feature
that it is adaﬁtive. The reinitialization process between two
computation phases must guarantee thét a new computation phase is not
‘initiated while .one. is cﬁffeﬁtiy in.progfess. Tﬁe reinifiaiié;tian’
protocol‘we have described must synchronize the knowledge two nodes have
of the edge coﬁnecting them for the next cémputation phase. This
requirement and the fagt that termination of a computation phase is

announced by a broadcast along the branches of the MST requires that
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edges and nodes can go down only during the reinitialization process.
New edges and nodes can be added to the network at any time, and are
introduced into the computation phase correctly. This algorithm can be
used in the Packet Radio Network to initially configure the radio

repeaters when they are dropped out of an airplane.
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2.7 Conclusions

We have presented two concurrent and asynchronous algorithms for
constructing MSTs in a distributed environment in which there is no one
point of control. One of the algorithms is adaptive to changes in
topology under certain constraints, We believe that these are the first
algorithms of their kind for constructing MSTs. We have described some
other alternatives for gathering state informaﬁion, but their

suitabiiity has still to be determined.

For some applications it might be desirable to construect an MST
with the minimum diameter. We .feel that by using a concurrent,
asynchronous algorithm based on Prim’s 'greedy"* algorithm, it is not
possible to guarantee that the MST constructed will be the one with the

minimum diameter.

#The use of this term was found in [Kershenbaum74)}. It indicates that
at every stage in the construction process, if there is more than one
nearest neighbor, then any one is chosen. The algorithm, therefore,
constructs an MST but does not optimize any other objective function.

!
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CHAPTER 3

BROADCAST ROUTING ALGORITHMS

3.1 Introduction

Broadcast routing is defined as the capability of the communication
subnet to deliver a broadcast message from one host to all destination
hosts. This 1is 'a special case of multi-destination routing, where a
message is delivered to more than one destination. We have described in

Chapter 1, the need for such a capability from the communication subnet.

The efficiency of the broadcast is greatly dependent on the nature
of the particuiar subnet over which it is attempted. In this chapter,
we describe broadcast routing algorithms for packet switched,
store~and-forward computer  networks. The  ARPANET [Roberts72,
McQuillan72] will be used as the model for such PSNs. PSNs have storage
and a (small) holding time at every switching node, and so can be
thought  of as providing statistical time division multiplexed

communication.

There are many ways of performing broadcast in PSNs so as to reduce
thé toféi‘ ambﬁﬁf df éommﬁniéation needed, ﬁhefeﬁy pérfogﬁiﬁg fhé
broadcast quickly and cheaply, as well as lowering the possibility of
subnet coﬁgestion.‘ We describe the algorithms and show the qualitative
tradeoffs. Much of this discussion is based on a private communication

_from Cerf [Cerf76). 1In Chapter 4, we determine lower bounds on the
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v

performance measure; for the algorithms, in order to compare them
quantitatiﬁely. The two important measures of ﬁerformance are the
number of packet copiles generated and transmitted to broadcast a packet
to all nodes, in packet-hops, and the delay in propagating the packet to

all nodes.

Sections 3.2 to 3.7 describe the various algorithms, section 3.8
discusses the reliability of broadcast protocols and section 3.9
discusses the tradeoffs between global and subgroup broadcast routing

algorithms.
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3.2 Separately Addressed Packets

Conventional packet switched networks based on point to point
circuits, 1like the ARPANET or Telenet, use fixed or dynamic routing
tables to minimize the number of transmissions (store-and-forward)
required to move a packet from source to destination. Such a system is
designed to support efficient point-to-point communication. Broadcast
communication can be achieved from such a system by sending a distinctly
addressed copy of the packet to each destination. There are several

drawbacks of such a scheme.

(1) A larger number of packet copies‘are forwarded and transmitted
for every broadcast than 1is necessary. We show later that the
minimum number of packet-hops to broadcast a packet in a subnet

with N nodes is N-1.

(1i) As a consequence of more packets belng transmitted than
necessary, the level of congestion within the subnet may increase,

thereby increasing the delay for delivering packets.

(iii) 1In some communication subnets, a virtual circuit may have to
be set up between the source and each destindtion in order to
transmit each. brpadcast packet.  This is annuﬁnecessary ﬁaste of.
resources since these virtual circuits may not be use& for further

communication.

We now examine algorithms that take advantage of the basic

store-and-forward nature of such networks., In order to minimize the
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delay to propagate a broadcast packet, it should be forwarded along the
shortest paths from the source to the destinations. . Figure 3.la and
3.1b show the shortest path trees from nodes 5 and 3 respectively. Note
that these shortest path trees are not unique in this example. Since
all communication 1links, 1in this example, have the same cost, the
shortest paths are based on hop-count. The broadcast packet is
forwarded £from the source along such a tree and delivered to the nodes
that lie on the path. 1In a subnet with N nodes, each source has N-1
destinations, The shortest path tree connects the source to all the
other nodes by N-1 branches, and therefore the minimum number of

packet-hops to broadcast a packet is N-l.
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Figure 3.1b. SHORTEST PATH TREE FROM NODE 3.
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3.3 Multi-Destination Addressing

If a multi-destination addressing scheme is available within the
subnet, then it can be coupled with the existing subnet routing
algorithms to minimize the delay and number of packet copies transmitted
to deliver a broadcast message to all destinations. This is because the
shortest path routing algorithms of the network have information

isomorphic to the N shortest path trees discussed above.

The basic problem, even with the multi-destination addfessing
scheme is for each node to decide where to forward the multi-addressed
packét. For example, in Figure.3.2, a source at node 5 might send a
multi-addressed packet to destinations connected to nodes 3, 6, 7, via
link "a" (as seen by node 5). A simple selection criterion for
labelling the multi-destination packéts is to assign destinations
- according to the preferred route as.indicated in the routing table. On
arrival at node 6, copies of the packet 1labelled (3,6,7)* would be
forwarded to nodes 3 and 7, relabelled with destination 3 on link a and

destination 7 on link b (as seen by node 6).

At their origin, in general, coples of broadcast messages are

assigned multiple destinations according to the routing table at the

origin node. The addresses of all destinations; requiring routing out

link "a", for example, would be attached to a single copy of the message
sent on link a. The next node would create more copies, if necessary,

assigning each copy a partition of the incoming address list.

*Assume that host addressing 1s synonymous with node addressing for this

simple example.
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Figure 3.2, MULTI-DESTINATION ADDRESSING
AILONG SHORTEST PATHS FROM NODE 5.
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* Network flooding (epdless retransmission and forwarding of a

broadcast packet) 1is prevented because messages which arrive at a

destination node no longer carry that address in any subsequent copies.

"Using such a capability, packets are forwarded and delivered along
the shortest paths from the broadcaster to the receivers. In a subnet
with N nodes, N-1 packets are transmitted. The time for completion of

the broadcast is equal to the delay to the receiver furthest away.

Routing algorithms that may be used ir PSNs [McQuillan74]. would
then remain unchanged, thereby permitting the system to adapt easily to
changing network conditions. The héaders of packets exchanged 5etween
switching nodes would have fo be designed to carry multiple destination
information. This could Be done by having a variable length packet
header, or having a fixed 1length bit map indicate the wvarious
destinations. Alternatively, there might be a fixed 1length header
capable of carrying a restricted nqmber of multiple destinations. The
disadvantage of such a scheme is that at the originating node more than
one copy of the pagket may be transmitted on the same link, if the
number of multiple destinations optimally vreachable on that 1link is
larger than the number of multiple destinations the packet header can
carry..‘This.may lead. to more_packet copies.  being tfansmitted by - the
other nodes as well, The ."badness" of this scheme is the number of
packet copies greater than N-1 transmitted to do broadcast. Separately
_addressed 'packéts is a épecial case of restricted multi-destination
addressing where the number of addresses is one. The forwarding

function of the switching node -would have to be sensitive to the
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multi-destination addresses, and therefore is more complex to implement.

. If the undérlying routing algorithm.changes the shortest path tree
after the broadcast packet has left the source node, then it is possible
that the. addressing decision made by the source or intermediary
forwarding nodes will be suboptimal. Therefore, more packets copies
will be transmitted than necessary, thereby also increasing the delay.
Hosts will, however, not get duplicates because packets contain
destination addresses, and at any time there is only one packet in

transit with a particular destination address.

The big advantage of this scheme is that it permits broadcast to a

subset of all possible destinations.

Many subnets may not wish to have a variable length address field,
or a bit map encoded multiple destination address, but would rather have
a special address "all" signifying that the packet 1is to go to all
destinations. Packets always have the source host in the header of the
packet. To avoid endless retransmission of a broadcast packet, without
the use of multi-destination addressing, it is necessary for each node
to know whether it lies on the current shortest path from a source to a
destination. That is, knowing the source of a broadcast packet, a node
lmﬁ5£ dééide'ovéf ﬁhich‘iinké“té fo:ward‘copiéé.ifit 6Bvioﬁéiy_.néed” hdt
forward copies back on tﬁe.link the packet arrived on. .We now examine

broadcast routing algorithms based on this constraint.
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3.4 Hot Potato Forwarding

We could use the "hot potato" propagation scheme first proposed by
Baran, et al, [Baran64] to achieve broadcast. Each node copies arriving
packets,  irrespective of their source, to all outgoing links except the
one on which it arrived. The scheme, as it stands, produces network
flooding very quickly. A scheme for discarding "old" packets must be

used to avoid network flooding.

The simplest scheme for detecting old packets is to have séquence
numbers assigned to broadcast packets transmitted from a source. Each
node checks to see if the broadcasé packet that arrives 1is an old
duplicate. If it 1is, then the packet is discarded. If it is a new
packet, then the sequence number is remembered and the packet forwarded
along all the other outgoing links. Since nodes have a finite memory
space, sequence numbers must be purged from the memory after a suitable
_ time. In order that this scheme work, packets must have an upper bound
on their lifetime in the subnet, and sequence numbers must not cycle
within this 1lifetime. This lifetime determines the lower bound on the

time that a node must remember a sequence number.

| Alternatively, if a "hop count" were kept in each packet, a packet
'couid"Be.discé:ded by a nodé if‘the hdp counﬁ exceeded'the‘iongéét pafh'
in the network (usually N-1 in a network rwith_ N nodes). With some
probability, this th;eshold could be reduced to a smaller number without
affecting the success of the broadcast; of course the threshold must be

larger than the diameter of the network. Consider what happens in a hot
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potato broadcast from node 5 in figure 3.3. Let the threshold be N-1=8
(it could be set to the maximum hop distance as currently known to the
source node. Under changing conditions this heuristic will fail, but

perhaps not so badly that it is useless).

For convenience, let us represent the initial copilies of broadcast
packets as Py where 1 ranges over the number of copies made by the
source node. As these packets are propagated, let us represent the
propagated copies as Pi(j) where j is the hop number. Thus, on the
first hop, Pl(l) is copy 1 arriving at the first node after departure
from the origin. Likewise for P,(1) ete. Figure 3.3 illustrates the
fesulting packet propagation for 3 hops. Table 3.1 shows which packets
have arrived at.which node§ after each hop. It is clear that after 3
hops, some nodes have already received 5 copies of the original packet,

and in fact one node has received 7!%

Obviously, the threshold choice is highly eritical. Furthermore,
duplicate . detection will require that broadcast messages contain
sequence numbers which will not cycle during the lifetime of a broadcast

propagation.

%¥Nota Bene: All P.(j) are identical in content. The = objective is to
deliver at least one Pi(j) to each node, and to deliver as few
duplicates as possible,
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Figure 3.3.

Table 3.1

HISTORY OF PACKET ARRIVALS FOR HOT POTATO PROPAGATION

90

PACKET PROPAGATION USING HOT POTATO FORWARDING AFTER 3 HOPS.

Node No. 1 2 3 4 5 6 7 8 9
Hop 1 X p4(1) X X X P1(1) X P3(1) P2(1)-
e (2) p.(2) | P.(2) p.(2) | P, (2) | P.(2) | P, (2)
Hop 2 4 % 4 3 X 2 197 T2 1
P3(2) P1(2) P2(2) P3(2)
93(3) P3(§). P, (3) P,(3) P2(3) P,(3) ?4(3) 94(3) P1(3>
p2(3) p1(3) p1(3) 93(3) ‘p2(3) p2(3) P1(3) P1(3)
Hop 3 P,(3) [ P,(3) | P,(3) pé(S) P,(3)
P3(2) Pl(S)
P, (3)
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3.5 Source Based Forwarding

If the N optimal shortést path trees (one for each node as the
sou:ce) can somehow be incorporéted in each of the nodes, then broadcast
packets to be sent to "all" destinations can be forwarded based on their
source. For each source, each node knows along which links incident to
it, it must forward the packets. Table 3.2 illustrates a broadcast
forwarding table derived from a fixed, minimum hop routing strategy for
the network in figure 3.2. Each column of Table 3.2 is a broadcast
strategy opefated by the node whose name appears at the top of the
column. Each row represents the spanning tree used to broadcast packets
from the source at the left of the row. If node i receives a broadcast
packet whose source is j, it looks at the jth row of its routing column
and sends copies of the packet out along the indicated 1links. For
instance, node 6 will send coples of a packet originating at node 5 out
links a and b (as seen by 6). 1If the table entry ié empty, then the
packét is not forwarded further. Each node will have one column of this

forwarding table.

There 1s no network flooding, or duplicate detection in this case
either. This scheme also tends to minimize propagation delay and the
_number 6f, packets. traﬁsmitted; . The disadvantage‘iéutha; it requires
additional table space at each node, and thaf in its cﬁrrent form the
algorithm does mnot adapt to changing network conditions. 1In the next
sectiﬁn we ‘describe a similar algorithm which is adaptive to changing

network conditions.
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BROADCAST FORWARDING TABLE FOR NETWO I{OWN IN FIGURE 3.2
{Note: Assume host addressing 1s syno ymo with node addressing)

rding Node

wa%w%/%%

WN-TI.T.7: 1
& |
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3.6 Reverse Path Forwarding

We now describe another broadcast routing algorithm that forwards
packets based on their source of broadcast. The simple version of the
algorithm. does not use a forwarding table like Table 3.2, but only the
routing table that a node would normally use to route packets. This
simple scheme is suboptimal in the number of packet copies transmitted,
and so we extend it to use a table similar to Table 3.2. This table is
constructed dynamically and therefore the algorithm i1is adaptive to
changing network conditions. Note that even the suboptimal algorithm
would be adaptive since it makes use of the routing table, which in most
communicgtion networks 1s dynamically updated. We will describe the
algorithm in context of the routing algorithﬁ and tables used by the

IMPs in the ARPANET. Appendix C briefly reviews this routing algorithm.

The 1idea behind the algorithm was first proposed by Metcalfe (in a
private communication to the author). The broadcast packets are not
forwarded along the tree of shortest paths that connect the source to
the destinations, but rather the tree of shortest paths that connect the
destinations to the source. Hence, the name reverse path forﬁarding.
In the event that communication costs in eitherAdirection of an edge are

same, - the two trees will be identical.

3.6.1 The Simple Scheme

Whén a broadcast packet from-a particular source (with destination

"all") arrives on a particular communication link, the node determines
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from its routing table whether it would route a packet to that source
along the same link. If so, the packet 1is delivered to all hosts
' connected to the node, and forwarded along all links except the one on
which it arrived. The node does this because it concludes that it lies
on the éhortest path that connects some of the destinations to the
source. If the packet did not arrive on the correct link, then it is

discarded.

This simple algorithm guarantees prevention of network flooding,
because the paths along which packets are accepted for delivery and
forwarding are cycle free. We .show why this 1is so. A packet is
accepted on a link if the link is part of the paths that connect the
destinations to the source by the shortest paths as determined by the
normal routing algorithm. If the normal routing algorithm creates, at
any time, a unique route between two nodes, then the shortest paths from
the destinations to the source will be a tree that is cycle free. Thése
paths will also be cycle free if the normal routing algorithm creates
cycle free routes between any two nodes. Routing algorithms, in

general, sétisfy both these properties.

This scheme requires no modification to the packet format currently
used'. in -the ARPANET.. . The IMP code would, however, ﬁave‘to be enhanced
to perform the forwarding function. Abstractly, in an ALGOL-like

language, the program in the IMP would be:



e
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1f PACKET.DEST = ALL

then begin
if INCOMING_LINK = ROUTING TABLE(PACKET.SOURCE)

then [deliver to all hostéj and forward along all other edges]
else [discard the packet]

else begin
-[route this normal packet];
end;

Im

The number of packets transmitted is, however, larger than the
minimum. The delay for propagating the packets may be larger than the
optimal value 1if the reverse path tree 1s very much different from the
shortest path tree. Figure 3.4 . illustrates how packets would be
forwarded along the reverse paths from node 8. The notation for
labelling packets is identical to that used 1in section 3.4. Note,
again, that the packets that are acﬁepted by the nodes for delivery to
the hosts connected to them, arrive on branches of a tree that conﬁect

the destinations to the source by the shortest path.

3.6.2 The Optimal Scheme

Notice from figure 3.4 that the total number of packet copies
trénsmitted is 22, while the minimum number is N-1=8. The total number
is equal to the sum of the connectivities of éaéh node minus (N-1),
since each node forwards ‘a packet along all but one'llnk incident to 1it,
except for the source which transmits Ehe packet 6n all 1links incident
to it. For most network topologies this number is much larger than the

minimum.
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Figure 3.4, SUBOPTIMAL REVERSE PATH FORWARDING INITIATED FROM NODE 8,
(Note: host addressing synonymous with node addressing.)
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If each node knew along which 1links to forward the packet (as
determined by columns of Table 3.2), then the number of packet copies
transmitted would be equal to N-1. Such a BROADCAST FORWARDING TABLE at

node 6, of the network in figure 3.2, is illustrated in figure 3.5

—

In terms of tﬁe reverse path forwarding model, in order to
construct such a forwarding table, a node must know to which
destinations a given link will be used by its neighboring nodes to
transmit a packet. Hence, 1if a broadcast packet arrived from one of
those "déstination", then the node will know along which 1links to
forward 1it. Periodically, each node will transmit to its neighbors a
LINK USAGE TABLE indicating to which destinations the node wiil use thi§
-1ink for transmitting packets, When a node receives such a table, it is
written over the appropriate column of its BROADCAST ROUTING TABLE. The
row to be written over is the row corresponding to the 1link that the
arriving LINK USAGE_TABLE came in on. The LINK USAGE_TABLE can easily
be derived from the ROUTING TABLE at a node. The LINK USAGE_TABLEs are
the inverse of the ROUTINQ_?ABLE, i.e. they indicate for which.
destinations a particular 1link will be used. Figure 3.5 also

illustrates the ROUTING TABLE from which the LINK USAGE TABLE for link d

was derived. This LINK USAGE TABLE will be transmitted to node 5.

The LINK USAGE_TABLE could be transmitted every 2/3 of a second
along with the MINIMUM DELAY TABLE. The BROADCAST ROUTING TABLE and
LINK_USAGE_TABLEs could be stored as bit maps since their entries are

"logical values,
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Links
a b c d d
1 0 0 0 0 0
2 0 0 0 0 4]
3 0 0 0} 1 (4]
4 0 0 o 0 1
)
0
§ 5 1 1 0 0 1
a
6 1 1 1 1 0
7 0 0 0 0 0
8 0 0 0 o 1
9 1 0 0 0 0
LINK _
BROADCAST FORWARDING_TABLE USAGE_
TABLE

Destination

a a a d d o b d c

ROUTING_TABLE

Figure 3.5. THE. TABLES AT NODE 6 FOR THE NETWORK OF FIGURE 3.2 TO
ACHIEVE OPTIMAL REVERSE PATH FORWARDING.
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Note that the BROADCAST_FORWARDING TABLE is a function of. the
source of the broadcast message. It is very easy to show by an example
that if the tabie was indexed by link numbers instead, then the scheme
does not guarantee that the minimum number of packet copieé will be

transmitted. This optimal scheme is an adaptive version of the source

-—

based forwarding algorithm.

Abstractly, in an ALGOL-like language, the forwarding function of

the IMP could be expressed as:

1f PACKET.DEST = ALL
then begin .
1if INCOMING_LINK = ROUTING_TABLE(PACKET.SOURCE)

then begin
[deliver the packet to all hosts];

[forward the packet along links determined by the row
of BROADCASI_FORWARDING_IABLE(PACKET.SOURCE)];
end
else [discard the packet]
~ end
else begin
[route this normal packet];
end;

3.6.3 Reliability Issues

We now examine what happens' if the adaptive routing algorithm
changes the reverse pathltree from a particular source, once a broadcast
ﬁackéﬁ ‘has ﬁeeﬁ traﬁsﬁiﬁtéd ffﬁm the éoﬁrée, but haé.ﬁﬁé been :écéived
by all destinétions. We will show that the reverse‘ path forwarding
algotithm can not guarantee to eveh deliver at least one copy of the

broadcast packet to each destination.
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In the simplé version of the algorithm, a broadcast ‘packet is
transmitted along every 1link of the network. At any instant a node
always has one and only one branch corresponding to a given reverse path
tree. The reverse path tree for a given source may, however, change
during a broadcast, thus causing a duplicate packet to be delivered to a
host. For example, in figure 3.4, assume that node 2 has just received
packet P2(2) along link (5,2) which is a branch, but P3(2) from node 1
has not yet arrived at 2. Node 2 will deliver the packet to the hosts
connected to 1it, and forward the packet appropriately. The
ROUTING TABLE at 2 may now be updated, such that the appropriate link to
use to get to node 8 is (2,1) ;nd not (2,5). Therefore, when P3(2)

arrives from 1, it too will be delivered to all hosts connected to 2.

Similarly, if P1(4) and P3(2) arrived at 2 before P2(2), they would
be discarded as (2,5) is the appropriate link to get to node 8. The
ROUTING TABLE at 2 wmay now be updated to replace (2,5) with (2,1).
Subsequently, when P2(2) arrives it will be discarded and node 2 will

not have received a single copy of the packet.

Now, let us examine ‘the optimal scheme. in which packets only
traverse thé paths of the reverse path tree. 1In figure 3.4, assume that
P,(2) has~arrived-at node 6 from 5. It will be delivered to -all :hosts
connected to 5 and not forwarded any further. At this time assume that
P1(2) has not yet arrived at node 7 from 9. The update algorithm in the
meantime replaces the branéh (7,3) by (6,3). Hence, when Pj(2) arrives
aﬁ node 7, it will be delivered to ail hosts connected to 7, but will
not be forwarded. As a consequence, hosts connected. to node 3 will

never receive the broadcast packet.
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Similarly, 4if P;(2) and P;(3) had arrived respectively at nodes 7
and 3 before P2(2) reached node 6, and then branch (7,3) was replaced by

(6,3), hosts connected to 3 will receive duplicate copies of the

broadcast packet.

Note that the optimal scheme forwards broadcast packets only if
they arrived on the "correct link". That is, the same 1link that the
node would have used to transmit a packet to the source of the broadcast
packet. This was necessary in the simple scheme to prevent network
flooding. In the optimal scheme the test 1is not necessary (if the
reverse path tree did not dynamically change), because packets would
only be forwarded along branches of the reverse path tree and therefore
only arrive on the “correct 1link". If the reverse path tree dynamically
changes during a broadcast, then a node may forwérd a packet along a
link it thinks is a branch, but its neighbor at the other end thinks is
not a branch. For example, in figure 3.4, node 7 may forward P1(3) to
3, while 3 has in the meantime sent 7 a LINK USAGE TABLE that does not
include link (3,7) in the reverse path tree for source 8. Hence, node 3
will conclude that P;(3) did not arrive on the_"correct 1link" and will
discard it. This may result in 3 never receiving a copy of the packet.
Alterhatively, if nodes accepted and forwarded broadcast packets bésed
on‘tﬁeir éoﬁrcerirféépecfive of thé.iiﬁk. they arfivéd oﬁ, ltﬁén' more
paékets would be transmitted than necessary and‘some nodes may receive

duplicates.

Hence, hosts may get duplicates or not receive a packet. We

examine the consequence of such situations in section 3.8.
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3.7 Forwarding along a Spanning Tree

If a single spanning tree was embedded on the existing subnet
topadee?s —tHetrvrenyerwiode on-®riy <-spanning tree could initiate a
broadcast, and the packets would be forwarded along this tree to all
destinations. Each node knows which of the links incident to it are
branches of the spanning tree. Hence, a broadcast packet arriving on
one such branch would be delivered to all hosts connected to the node,
and forwarded along the remaining branches. Note that _the forwarding
function is independent of the source of the broadcast. Such a
technique results in the minimum transmission of packets, N-1 in a
subnet with N nodes. The time for completing the broadcast is a
function of where it.was initiated, as..in some cases, some of the
transmissions could take place concurrently. The worst case.time for
completing the broadcast is a function of the diameter of the spanning
tree. Hence, the delay to propagate a packet to all destinations

depends on the particular tree chosen to span all the nodes.

‘We have chosen to use the minimal spanning tree. This is because
we have devised distributed_algorithms for constructing MSTs in computer
networks (see Chapter 2). Hence, if the load conditions in the network
.were to. change it is possible .to adaptively construct -a new. MST in
parallel, Figure 3.6 shows the communication subnet of_a.PSN with the
embed&ed minimal spanning tree. If broadcast was initiate& frdm a host
connected to node 6, then a packet would bé transmittedigiong each of

the minimal spanning trée branches in the directions shown in the

. figure. _This technique assumes, of course, that the cost of
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communication on a branch of the minimal spanning tree is same in both
directions. This is not true, in general, for PSNs, since the traffic
patterns determine the queueing delays in either direction of the link.

It is, however, not a bad approximation.

It might be argued that if all hosts broadcast very often, then the
links comprising the minimal spanning tree would become very congested.
We know that for a small number of broadcasts such a technique is
preferable, and feel that even for a large number of broadcasts it may
still be suitable. This feeling is based on the fact that if fhere were
no special broadcast routing scheme, then by transmiting a separate
packet to each destination, far more congestion would be introduced. Of
course, if the minimal spanning tree were able to reconfigure itself
dynamically to changing load conditions then such a technique is far

more suitable.

The minimal spanning tree routing scheme 1is very simple to
implement, does not introduce flooding, and minimizes the number of
packets transmitted. It does not,; however, guarantee to minimize
broadcast delay. The MSTs constructed by the distributed algorithms are
not guaranteed tb Be miniﬁum diameter MSTs either. This scheme does not
adapt easily to changing network conditions, since it is a reasonably
complex task to reconstruct the MST. Further, the old MST must be used
for forwarding Broadcast packets until the new one is constructed, or
else all destinations ﬁay not be reached. Synchronizing the.switch over

from one MST to the other may be a little complex too.
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v

Rt

Figure 3.,6. BROADCAST ALONG THE MST INITI-
ATED FROM NODE 6. (Note: edge costs are
not equal in this example,)
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3.8 Reliability of Broadcast Routing Protocols

An interesting issue is whether broadcast routing within the subnet
can be made reliéble, and what the implications of this is on the higher

level broadcast protocols in the host.

ﬁe have S?en in tpe previéus sections that under the assumptions of
a perfectly reliable communicationJSubnet, éoﬁe of the breadcast routing
algorithms are reliable. S;parately addressed packets éqﬂ
multi-destination addressing guarantce to déliver one and only one copy
of a broadcast packet to. all ‘destinations even if adaptive routing
algorithms are used within the subget. Source based forwarding and MST

forwarding also guarantee to deliver exactly one copy of a message to

each destination becaiise they use a fixed routing strategy.

Hot potato forwarding guarantee to deliver at least one copy of the
broadecast packet to each destination. ~ The reverse path forwarding
scheme, however, may deliver duplicates. or even no copy. This happens
because a co@plete reverse path tree may not exist at all times when the

adaptive routing algorithm is in the process of_changing it,

In reality, the _subnet is not perfectly reliable and so it is.
‘:likely that”any_of the schemes may deliver duplicates_or\najcopy of the
broadcast packet. The important issues are to'defermine what high level
‘operatfﬁhs should be performed within thersubnet or the hosts, in order
to guarantee an acceptable level of reliability. This depends, of
course, on -the degree of reliability required by the appl;cations that

make use of this capability.
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In some data gathering systems the real time nature of the system
may make it nonsensical to retransmit broadcast packets from the source,
because the time value of the information drops too rapidly. 1In a voice
conferencing system, for example, the delays introduced by an attempt to
retransmit digital voice packets may be less tolerable than the loss of

a broadcast packet or two.

In some applications one might take the position that unreliable

broadcast is a prelude to reliable point to point communication; for

example when a TIP in the ARPANET locates an RSEXEC server [Cosell75].

There will bé other applicatiéns in which one and only one copy of
the broadcast packet must be delivered to all hosts. The broadcast
protocol within the hosts or the subnet (should it guarantee this) must
sequence broadcast messages (packets) generated from the source, so that
duplicates may be filtgred.at the destinations. Furthér,‘responses to a
particular broadcast can contain the sequence number of the broadcast to

identify with which message the response is associated.

It may be necessary for the recipilents to acknowledge the bréédcast
messages (packet), so that the source may retransmit only to hosts that
did not respond,_thus reducing the total bandwidth used in the reliable
broadcast. We believe that aﬁy'kind of'acknowlédgeﬁeﬁt”schémé Qséd'ﬁGSt‘
be between the destinations and the sourcé. Schemes in which the subnet
attempts to collect and merge, in a distributed fashion, the
acknowledgements .into one écknowledgement aré not preferaple. For

example, attempts at merging the acknowledgements along a tree to the
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source may deadlock or be unreliable because of timing problems. Such
problems do not arise during broadcast because there is no need to wait

before transmitting, say two copies of the packet.

We have not described in any detail the structure and properties of
a high level reliable broadcast protocol analogous to reliable
interprocess communication protocols [Cerf74a, Cef74b, Sunshine75] 1if
implemented within the hosts, or wvirtual circuits [Rybeznski76] if
implemented within the subnet. Clearly there are many problems
associated with port addressing, sequencing, duplicate detection, and
guarantéeing delivery to all. Broadcast protocols at the higher level
will need to perform these functions even if the subnet is inherently
broadcast in nature. Requirements for such protocols will become
clearer as distributed computing environments make greater use of such

capabilities. This is a very important subject for future research.




Broadcast Routing Algorithms 108

3.9 Global vs Subgroup Broadcast Routing Algorithms

We conjecture that it 1is wuseful to divide broadcast routing
algorithms into two classes, one oriented towards sending a message to
(almost) every host on the network, an& the other oriented towards
sending a message to a relatively small percentage of all hosts. This
issue was first raised by Steve Crockef. We use the term global and

subgroup to refer to the two classes respectively.

Algorithms of the first c¢lass will have a reasonable cbst for
transmitting a message to all hosts, but essentially the same cost for
sending the message to even a sméll group., Those of the second class
will have a reasonable cost for sending a message to a small group, but
extravagant cost for sending the message to all hosts. Examples of the
first kind are source based forwarding, MST forwarding, hot‘ potato
forwarding, and reverse path forwarding, while separately addressed

packets and multi-destination addressing are examples of the second.

If algorithms that support efficient global broadcast routing are
used to deliver messages to a subset of the destinations, then a number
of hosts will receive packets that they will subsequently discard. This
is a wasteful use of a critical resource - the communication channel
‘connécting the host to the subnet. In such cases the channel may become
the bottieneck.

Of course, techniques of the first class can be modified to be used

for subgroup - routing. For example, different MSTs could be used for

different subgroups. Alternaﬁively, a node that is on a single MST, but
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does not have hosts belonging to the subgroup, will forward the packet
without delivering it to the hosts. Such adaptations are not very
general and require special setting up in the subnet. They can,
however, be wuseful if communication networks wish to provide such

special services.

The basis for dividing broadcast routing algorithms into the two
groups 1is based on what we imagine communication networks will be used
for. The most usuai use of broadcast protocols will be to reach a small
fraction of the hosts, and therefore there is the need for efficient
subgroup fouting algorithms. However, for limited purpose networks, it
is easier to.imagine the need for communication with all hosts, and
therefore it will be desirable to use global broadcast routing
algorithms. We feel that global broadcast routing algorithms have very

little use in large, public, multi-purpose networks.

There 1is most likely different reliability attainable from the two
classes. Subgroup broadcast protocols may be capable of returning
verification of receipt with a reasonable cost, while it would be very

expensive to do this for global broadcast protocols in. large networks.

Hence, there is an equally important need to consider subgroup

broadcast routihg algorithms in large computer communication networks.
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3.10 Conclusions

We have described five alternatives to separately addressed packets
to achieve broadcast communication from store-and-forward packet
switched computer communication networks, The properties of the
algorithms are summarized below. In the next chapter we determine

quantitative measures of performance for these algorithms.

(a) Multi-Destination Addressing

Advantages:

(i) Adapts easily to changing network conditions.
(ii) Permits broadcast to a subset of all possible destinations.-

(1i1) Tends to minimize delay and number of packets transmitted per

broadcast.

(iv) No flooding or duplicate detection problem.

Disadvantages:

(1) Requires variable length packet headers, or a fixed length bit
map capable of carrying all destination addressess if tﬁe minimum
number of paéket' éopiés ié .to be tfansmitted.w :Résfriéfed
- multi-destination addressing can be used with a possible increase

in the number of packet copies transmitted.

(ii) More complex to Implement since the forwarding function of the
node has to modify the header and be sensitive to the multiple

destinations.
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(b) Hot Potato Forwarding

Advantages:

(1) Very simple to implement in its primitive form.

Disadvantages:

(1) Invites flooding and duplicate detection problems.

(ii) High overhead in superfluous packet copies.

(c) Source Based Forwarding

Advantages:

(1) Tends to minimize propagation delay and number of packet copies

transmitted.

(ii) Does not introduce flooding or duplicate detection.

(11) Does not have the overhead of multiple addressing.

Disadvantages:

(i) Requires additional table space in each node.

(ii) thﬁeaéily adépted to changing network conditions.
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(d) Reverse Path Forwarding

Advantages:

(1) Adapts easily to changing network conditions.
(11) Does not introduce flooding.
(iii) Does not have the overhead of multiple addressing.

(iv) Minimizes the number of packet copies if the optimal version

is used.

(v) Minimizes the propagation delay if the reverse path tree is

identical to the shortest path tree.

Disadvantages:

(1) Requires additional table space if the optimal version is used.
(ii) More complex to maintain forwarding tables.

(i1i) The scheme does not guarantee to deliver a copy of a

broadcast packet to each destination.

(e) Forwarding along the MST

Advantages:

(1) Simﬁle to implement, if fixed. Requires little table space;

just a list of branches incident to the node,
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(i1) Minimizes .total packet copies sent.

_(iii) Implicitly avoids £flooding and the need for duplicate

detection.
(iv)iDoes not require multiple destination addressing.

.Disadvantages:

(1) Not easily adapted to changing conditions.
(1i) Does not necessarlly minimize propagation delay.

We have demonstrated the need for global and subgroup broadcast
routing algorithms. The multi-destination addressing scheme is the most
versatile, since it can be used satisfactorily in both environments,
though the length of the header may become very long in large networks.
There is some cutoff point after which it is more economical to use

algorithms explicitly designed for global broadcast routing.

We feel that networks should provide a subgfoup broadcast routing
capability, in the form of multi-destination addressing, and a global
broadcast routing capability in the form of MST forwarding or reverse

path forwarding.

Reliable broadcast protocols must be built around these routing
~ algorithms. ‘Since not all applications require reliable broadcast, it
_ méy ‘be épproptiate for the hosts to provide this function. This is a

subject for future research.
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CHAPTER 4

PERFORMANCE EVALUATION OF BROADCAST ROUTING ALGORITHMS

4.1 Introduction

In this chapter we develop performance measures for broadcast
routing in store-and-forward computer communication networks. These
measures are used to evaluate the efficiency of the various broadecast

routing algorithms described in the previous chapter.

The measures of performance are a function of the topology of the
network, and can easily be determined for the various routing schemes
for a given network. We would, however, like to have theoretical bounds
on these measures for various classes of networks. The various classes
of networks are distinguished by certain topological properties of the
graphs that represent them, like the degree of the nodes, or whether the
graph 1s regular or not [Harary69]. An alternate approach is to

determine lower bounds for these measures for random graphs [Erdos73].

In this thesis .we éoncentrate on determining lower bounds for
networks that can be represented as regular graphs. Cerf, Cowan, Mullin
“aﬁd.Stanfbn‘[Cerf74c]'héﬁe.sh6ﬁﬁ Ehat “cdmpﬁter‘séoﬁﬁﬁnicafion"networks:
represénted as regular graphs have useful properties regarding
vulnetability, an& shortest path lengths. They alé§ show that by
analyiing certain types of regulér graphs, .lower bounds on these

properties can be derived. These lower bounds determine the shortest
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path length and vulnerability for "ideal" networks against which network
designers may measure their networks. For this reason, we too,
determine the lower bounds on these performance measures for regular
graphs. In addition, the analysis provides a uniform basis by which to

compare the various algorithms,

Section 4.2 proposes a set of performance measures, and section 4,3
reviews and extends some properties of regular graphs. Sections 4.4 to
4.8 determine the performance of the various broadeast routing
algorithms. Section 4.9 compares the wvarious algorithms, and 4.10

determines average values of the performance measures for the ARPANET

topology.
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4.2 Performance Measures

This section develops some performance measures for broadcast
communication in store-and-forward networks. We develop the performance
measures by considering the overhead imposed on the communication subnet

by a broadcast, and the delays in performing the broadcast.

An important measure of the amount of bandwidth used in performing
a broadcast, and of the processing overhead in the switching

(store-and-forward) nodes of the subnet is the Number of Packets

Transmitted, NPT(i), in broadcasting a message initiated from node i in

the subnet. NPT(i) is in units of packet-hops per broadcast.

The Broadcast Delay, BD(i,j), is the delay before node j receives a

broadcast message initiated from i. BD(i,j) is in appropriate units for

delay, e.g. éeconds or hops. The average Broadcast Delay, BDav(i), from
a node i that initiates the broadcast is an estimate of the delay before
‘a receiver hears the message.. BDav(1i) is thérefore a measure of the
ability of the broadcast routing scheme to deliver messages quickly when

initiated ffom i. In a communication subnet with N nodes

N .
BDav(i) = _1 * 5 BD(4,j). (4.1)
- N-1 j=1 _ s .

J#1

Analogdusly, BDmax(i) 1is the maximum Broadcast Delay from a

broadcaster i, and therefore is an indication of the maximum delay
before all receilvers have heard the message. BDmax(i) 1is, therefore,

also a measure of the cost of broadcast from node i.



Performance Evaluation of Broadcast Routing Algorithms ‘ 117
BDmax(i) = max {BD(1l,j) V 1<§<N, j#i}. (4.2)

These measures are useful in the design of timeouts for the reinitiation
of the broadcast, or recovery techniques in distributed operating
systems that use the broadcast routing feature of the communication

subnet to locate resources,

The Broadcast Cost, BC, in a communication network is the sum of
the cost of broadcast with each node as the initiator. It is assumed
that each node has equal probébility of initiating a broadcast.
BDmax(i) 1is the cost of broadcast when initiated from node i. Hence, if
there are N nodés in the network, tﬁen

N _
BC = 3 BDmax(i). (4.3)
i=1

These measures of performance can easily be determined for a
particular network using a particular broadcast routing technique. The
performance measures are a function of the topology of the network. In
order to determine lower bounds on these measures, we examine regular

graphs.
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4.3 Regular Graphs

In this section we review and extend some of the definitions and
properties of regular graphs, Moore graphs, and generalized Moore

graphs.

We assume that the number of nodes in the graph is N, and that all
edge costs are the same and equal to one. The degree of a node in a
graph is the number of edges incident to that node. If the degree of
all the nodes is same and equal to D, then the graph is called‘regular
with degree D. Figure 4.1 shows some regular graphs. A theorem and two
corollaries may be stated concerniné the relationship between N and D in

regular graphs. These are simple, and stated without proof.

Theorem 4.1t The sum of the degrees'of the nodes of any graph is twice

the number of edges in the graph.

Corollary 4.1.1: In any graph the number of nodes of odd degree is

even.

Corollary 4.1.2: A regular graph with degree D and N nodes can always

be constructed if N*D 1s even.

ansider‘ a regular graph withl‘deggee D.. Thé‘maximum_numbeerf,a.

nodes at distance one from any node is D, at distance two D(D-l), at

distance three D(D—l)2 and so on. Moore graphs are those regular graphs
that héve exactly D(D—l)-'i'1 nodes at distance j, for any node
consldered. Figure 4.2a illustrates such a tree as seen.from one node

X, where the graph has 10‘nodes and is of degree 3. Such a picture can
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Figure 4.1. SOME REGULAR GRAPHS.
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be drawn for all nodes in the graph. Thus one must join all nodes at
the highest numbered 1level together in such a way to meet-ihis
constraint. This creates a sort of "spaghetti junction" at the highest
level. Figure 4.2b illustrates how the treévof figure 4.2a can be
converted into a Moore graph. Figure 4.2c is a more aesthetic

representation of figure 4.2b. This 1is the Petersen Graph. Moore

graphs satisfy the following relation:

m
N=1+Dx5 (p-1)i71, (4.4)
i=1
where j 1s the level number and m the highest level. Conditions under
wvhich a given graph can be a Moore graph have been derived in

[Boffman60, Cerf73].

Of course, not all graphs have a number of nodes that satisfy
equation (4.4). 1In this case the extra nodes are placed at the highest
numbered level, m, and one must then join the nodes at level m and wn~1
such that the constraints are satisfied. Such graphs are called

generalized Moore graphs and have been studied in detail by Cerf, Cowan,

Mullin and Stanton [Cerf73, Cerf74d, Cerf74e]; A generalized Moore

graph having 16 nodes and of degree 3 is illustrated in figure 4.3.

We.now introduce a new term. A pseudo generalized Moore graph is a
regular graph such that for at least one node, thé number of nodes at
~distance j is D(I)--l)j'1 for gll j>1 except possibly the highest numbered
level which may be incompletelfvfilled. In other words, from tﬁe point

of view of that node, the graph looks like a filled tree except for the
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LEVEL O | 1
LEVEL 1 4 3 2
LEVEL 2 10 9 8 7 6 5

Figure 4.2a

2o\

5 10

Figure 4.2b

- Figure 4.2¢c

Figure 4.2. A MOORE GRAPH.
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T S e

Figure 4.3. A GENERALIZED MOORE GRAPH HAV-~
ING 16 NODES AND DEGREE 3.

Figure 4.4. A PSEUDO GENERALIZED MOORE GRAPH
HAVING 22 NODES AND OF DEGREE 3.
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spaghetti junction at the last two levels. Figure 4.4 illustrates a
pseudo generalized Moore graph of degree 3 having 22 nodes. A Moore
graph does not exist for such a regular graph [Cerf73], even though its
highest numbered level 1is gompletely filled, and so neither does a

generalized Moore graph.

Theorem 4.2: For a given N and D such that a regular graph exists, a

pseudo generalized Moore graph also exists.

Proof: The theorem is proved by showing that a pseudo generalized

Moore graph can always be constructed if a regular graph can.

Take any node and connect it to D other nodes. Take each of
these D nodes and connect each to D-1 other nodes that have not
already been connected to, so as to form a tree. Continue
connecting the leaves of the tree to D-1 other nodes until all N
nodes have been used. The result is a minimum height tree with the

starting node as the root. The highest level m may be incompletely

filled, where m>1l.

We now show that if N*D is even then the nodes at level m and

m-1 that do not have degree D can be connected to one another so as

to produce a regular graph.

Let U be the number of nodes by which the nth level 1s
unfilled. If ﬁhe mth level was completely‘ filled then it would
have D(D-1)™! nodes that would give,riée to D(D-l)m branches.
.However, there are U less nodes at the mth level and fherefore the

mth level gives rise to U(D-1) less branches, but the (m-l)th level
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gives rise to an additional U. Therefore the total number of

branches that must be connected to one another
= D(D-1)™ + U - U(D-1)
= D(D-1)® - U(Dp-2).

If this number i1s always even, then the branches can be
appropriately paired off producing a regular graph, The first
term, D(D-1)" is always even for any D since m>l. When D is even,
the second term is also even. We now show that when D is odd, U is
even causing the second term.also to be even, thereby proving the
theorem. We now determine U. It is equal to the total number of

nodes if the mth level was full minus the actual number of nodes.

- 1
v= Som-DIt N+
=1

D[(D-1)™-1] = N + 1
D-2

D(D~1)"-D+D-2 - N
D-2

D(D-1)"-2 - N.

. D=2
Since D is odd, N must be even (Corollary 4.1.2). D(D-1)M is even
for all m>l. Since D-2 is odd and U is an integer, the first term

is even. Therefore U is even.

Q.E.D.
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From the definitions just introduced we see that Moore graphs are
generalized Moore graphs, which in turn are pseudo generalized Moore

graphs which themselves are regular graphs. We now determine Jlower

bounds for the diameter and average path length in regular graphs.

" 4.3.1 Some Lower Bounds in Regular Graphs

Cerf, et al, [Cerf74b, Cerf74c] have derived expressions for the
lower bound on the diameter and average path length in regular graphs.
They do so by analyzing the tree of a pseudo generalized Moore graph of
degree D with N nodes.' Note that for some D and N, regular graphs may

not exist, but a minimum height tree does and so the analysis 1s valid.

The lower bound on the diameter of regular graphs, DIA(N,D) 1is
determined by finding the height of a minimum height tree connecting the

N nodes of degrée D.

" DIA(N,D) = m = IlogD_l N*(D-2) +?', for D>2. (4.5)
D

A plot of DIA(N,D) is shown in figure 4.5.

The sum of the shortest path lengths from the root of the tree to
all the other nodes can easily be determined. We first assume that the
mth level is completely fille& and then subtract the contribution by the
nodes that are absent. The lower bouﬁd on the -sum of the shortest path
lengths for a regular graph, SPLsum, is equal to the sum of the shortest

path lengths from the root. Therefore
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Figure 4.5. LOWER BOUND ON THE DIAMETER OF REGUIAR GRAPHS.
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m m ’
SPLsum(N,D) = D* 5 j*(D-1)I71 - (1 + 0+ ¥ (0-1)3"1 - y*m.  (4.6)
i=1 3=1

The dependence of SPLsum on N, and D is illustrated in figure 4.6.

The lower bound on the average shortest path length in regular
graphs, SPLav, is analogously equal to the average shortest path length
from the root of the tree, and is:

SPLav(N,D) = SPLsum(N,D). (4.7)
N1

Figure 4.7 illustrates this relation.

These bounds are met by generalized Moore graphs, since for every
node, the shortest path lengths look like the tree just described. 1In

general these bounds will not be met by all regular graphs.
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Figure 4.7. LOWER BOUND ON THE AVERAGE PATH LENGTH IN REGUIAR GRAPHS,
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4.4 Separately Addressed Packets (SAP)

In this section we determine lower bounds* for NPT, BDav, BDmax and
BC for regular graphs when the broadcast routing strategy is to transmit
separately addressed packets from the source to each destination. We‘
assume that. the routing of the packets is along the shortest path (in

the graph theoretical sense) from the broadcaster to the destinations.

4.4.1 Number of Packets Transmitted

Assume thaf each broadcast message consists of a single packet.
Hence the number of packetdhops. from a broadcaéter to a receiver is
equal to the path 1length from the broadcaster to thelmreceiver.
Therefore a lower bound on the number of packets transmitted to achieve
the broadcast is equal to the lower .bound on the sum of the path

lengths. Therefore
NPT(N’D)SAP = SPLsum(N,D). (4.8)

The dependence of NPTgap on N and D is illustrated in figure 4.6.

4.4.2 Broadcast Delay

In ‘order ‘to determine the lower bound on the variousubroadcast‘
‘delays'when transmitting separately addressed packets, we must determine

the " order 1in which messages (packets) ‘are. transmitted from the

*Since lower bounds are being determined, 1, will be dropped from
"NPT(i), BDav(i) and BDmax(i). ' '
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broadcaster to the various receivers so that the maximum broadcast delay
is miﬁimized. Siﬁce 'the lower bounds are being determined by
considering the root node of a pseudo generalized Moore graph, the
‘optimal paths 1lie along the branches of the tree connecting the root
node to the various other nodes. TFigure 4.8a illustrates such a minimum

height tree for a node X. The subtrees of X form the primary subtrees

of this tree. We assume that X can be transmitting packets to all
primary subtrees at once, and hence we must consider the delays for a
particular primary subtree -~ the longest one. Also assume that no other

traffic is present to interfere with the broadcast packets.

The rate at which packets may be transmitted to nodes in a primary
subtree is determined by the transmission delays of the communication
1link. Let us assume that this is a constant and that all times are
relative to this quantity. In order to minimize the time taken to
broadcast the packets to all nodes of the primary subtree, the root X
must transmit packets to the node farthest away first and so on. This
ensures that there will be as many packets as possible in transit at the
same Eime, thus minimizing the total broadcast delay. If node X started
transmitting a packet at time zero, and then one more at every time
interval, then the laét packet would be transmit;ed at.time equal to thg
numﬁér df ﬁodeé.iﬁ tﬁe primary‘sﬁbﬁréé minuS"”bﬁéTﬁ?rThis packet would
arrive at.iﬁs destinétion in one.time unlt, since its destination is the
ciosest node - the root of the primary subtree. Hence the time taken
for.all nodés in the primary subtree to get the B:oadcast message is

equal to the number of nodes in the primary subtree. Figure 4.8b
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Figure 4.8a. SHORTEST PATH TREE FOR ROUTING.
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Flgure 4.8b. ORDER IN WHICH PACKETS ARE TRANSMITTED.
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illustrates the order in which the packets are transmitted for the

largest primary subtree of the tree in figure 4.8a.

We now proceed to find the number of nodes in the largest primary

subtree of a pseudo generalized Moore graph.

Let R be the number of nodes remaining in the unfilled 1level,

should there be one, and let h be the highest numbered completely filled

level.
h = mn-1 if U#0
=n if U=0
h
and R = N-1 - 3 D(p-1)3-1,
j=1

If R is equal to zero, then the number of nodes in each primary subtree

is the same and equal to

m
5 (-1)3-1,
j=1 .

However, R may not be equal to zero, and since we want to find the lower
bound on delay, we want td determine fhe minimum number of nodes in- the
mlargest"briﬁary~subtree. Hence. the.-R remaining nodes (and~hence,:the U
unfilled places) must be distributed as equally as possible among the
primary subtrees.. The minimdm number of unfilled places any primary
subtree can have is |U/D]. Therefore the minimum numbef of nodes in the

iargest primary subtree, and hence BDmaxSAP is
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< 1
BDmax(N,D)g,p = 5 (D-1)371 - |u/p) (4.9)
=1

and
BC(N,D)SAP = N*BDmax(N,D)SAP. (4.10)

These relationships are illustrated in  figures 4.9, and 4.10

respectively.

In order tohéind the average broadcast delay we must find the delay
to all nodes and then divide by the number of receivers. For the moment
assume ' that all primary subtrees ére completély filled, (lgter ﬁe will
remove this assumption). It was shown that packets were transmitted
from the root at times 0,1,2,....( EE(D—I)j'1 - 1) if the highest level
is completely filled. These packet;L;ie first destined for nodes in
level m, then m-l,.... and finally level 1. Hence the time taken for a

transmitted plus the level number in which the destination lies. Let

NPS be the number of nodes in a completely filled primary subtree.

m
Nes = 5 (p-1)371.
=1

The sum of delays for all D completely filled primary subtrees 1is:

m UB
D¥5 3 (§ + NPS - 1),
j=1 1i=LB
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where
j=-1 .
LB =1+ 3 (p-1)k-!
k=1
and
d k-1
UB = z (D-1)""",
k=1

The outer summation cycles through each of the levels, while the inner
summation cycles through the nodes within a level. The 1limits of the
inner summation are themselves summations dependent on j since the
number of nodes 1in a ‘level depends on the level number. The
simplification of the summation can be found in Appendix D, and we just

hatp
-

state the result here:

D*NPS#* (NPS—=1+2m) - D*(NPS-m).
2 D-2

o . RV
In general, however, U will not be equal to zero, and so the

reduction in delay owing to these U unfilled places must be determined.
Each unfilled place causes the reduction of one unit of delay from all
nodes 1in its primary subtree except those at its own level. This is

‘readily'apparent since.the root is able to transmit all the packets in a

..shortér time. This reduction. amounts to:

m-1

vt 3 o-1)37L.

j=1

The reduction in total delay owing to the U unfilled. places themselves

must now be determined. These unfilled positions were equally
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distributed among the primary subtrees. Therefore we must cyéle through

the primary subtrees removing the node with the largest delay each tiﬁe.
The largest delay a node in a primary subtree can have is:
m+ (D-1)™1 -1,
Thergfore the reduction in total delay is

U-1
Y (m+ -1 -1 - /D))
i=0

U-1
= U*{(m-1) + (@-1)"1} - T |i/p].
i=0
The number of complete cycles through the D primary subtrees is

[U/Qj. During each one of these cycles, D nodes are removed; finally

leaving U~D*|U/D] nodes.

U-1 ~ lu/n]
& 2 li/D} = T D(3-1) + |U/Dj*{U - D*|U/D|}
1=0 j=1

(D/2)*[U/D) #{ [U/D) -1} + U*|u/D| - D*|U/D)?

\u/D] *{(D/2)*|U/D|~(D/2)+U-D* [U/D] }

\u/D} #{u-(p/2)*|U/D| -(D/2)}.

W epr——nre
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.. Total Delay = D*NPS*(NPS~14+2m) /2 ~ D*(NPS-m)/(D-2)

m-1
- ux Y (0-1)3"1 - px{(m-1)+(D-1)2"1}
=1

- |u/p} *{U-(D/2)* |U/D} ~(D/2)}.
o BDav(N,D)SAP = Total Delay/(N-1).

This relation is shown in figure 4.11.

137

(4.11)
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4.5 Multi-Destination Addressing (MDA) and Source Based TForwarding

(SBF)

This section determines the performance measures when the broadcast
routing technique is either multi-destination addressing or source based
forwarding. The two techniques have the same performance since they
both forward the packets along the optimal paths from the broadcaster to

the receivers.

The number of packets transmitted is equal to the minimum number of
edges by which the broadcaster is connected to the all the destinations.

This is N-1. Therefore
NPT(N,D)yps = NPT(N,D)gpp = N-1. (4.12)

From the view point of the node initiating the broadcast the rest
of the network looks like a minimum height tree. This tree is similar

to the tree of a pseudo generalized Moore graph. Therefore we have: 7

BDav(N,D)MDA = BDav(N,D)SBF = SPLav(N,D) (4.13)
BDmax(N,D)yps = BDmax(N,D)gp = DIA(N,D) (4.14)

BC(N,D)MDA = BC(N,D)SBF = N*BDmax(N,D)MDA. (4.15)

These relationships are 1illustrated in figures 4.7, 4.5, and 4.12

respectively.

We have not determined the number of packet copies transmitted and

the various delays if a restricted multi-destination addressing scheme
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BCIN,D)ups = BCIN,D)ggr
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were to be used. This is a subject for future research. The analysis
parallels that used to determine the performance measures if separately
addressed packets were transmitted (cf. section 4.4). One must
determine the optimal order in which destinations are assigned, to the
restricte& multi-destination address field in the header, and the
optimal order in which the packets are transmitted. This formulation
would then include the analysis for separately addressed packets aﬁd
multi-destination addressing as special cases, where the 1length of

address field is one, or as long as desired, respectively.
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4.6 Hot Potato Forwarding (HPF)

We analyze the hot potato broadcast routing scheme in which each
packet maintains a hop count, and if this ever exceeds the discard
threshold, DT, then thg packet is discarded in order to prevent the

subnet from flooding.

Since there is a discard threshold after which packets will be
discarded, every packet transmitted from the broadcaster along the
various links will be forwarded DT timés. From the source, fhe packet
will be transmitted D times, and then each node that receives a packet
will forward it (D-1) times. Therefore, the total number of p;ckets

»transmitted is:

DT ,
NPT(N,D)ypp = » D*(D-1)3°1,
i=1

This is the actual number of packet copies transmitted and not a
bound. If the discard threshold was N-1, then the upper bound on NPT

would be:

NPT(N,D)ypp(upper) = D*{(D-1)(N-1) _ 1}/(p-2). (4.16)
This 1s illustrated in figure 4.13. Notice how quickly the number of
packet coples transmitted per broadcast'becomes very large for even a

smail sized network.

The smallest safe value of DT 1s equal to the diameter of the
graph. The lower bound on the diameter of regular graphs is given by

equatioh (4.5). Therefore a lower bound on NPT(N,D) is:
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NPT (N, D) yp (Lower) = D#{(D-1)PTAMNDY 1y /¢p_y, (4.17)
This is illustrated in figure 4.14.

Since a packet is being forwarded along all links except the one on
which it érrived, BDav and BDmax are identical to those for the
multi-destination routing, or the source based forwarding case.

Therefore

BDav(N,D)ypp = SPLav(N,D) (4.18)
BDmax(N,D)ypp = DIA(N,D) (4.19)
BG(N,D)ypp = N*DIA(N,D). (4.20)

These dependencies are illustrated in figures 4.7, 4.5 and 4.12

respectively.

Note that in the determination of BDav, BDmax and BC, queueing
delays arising from the interference of the extra packets were not taken
into account. In all the other broadcast routing schemes discussed so
fai, BDmax was also a measure of the time during which packets of a
particular broadcast message would remain in the network. This is so
E because extra ééckets were not gengrated by the network in an attempt to
fﬁrwar& .tﬁe éaqkets to ail the desﬁiﬁétiohs. In the hét potatd
broadcasf routing scheme BDmax is ﬁot a measure of how long packéts for
a particular broadcast will remain in the subnet. It is difficult to
determine analytically what this time is. Intuitively, however, an

estimate can be determined 1f queueing delays are neglected. A
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Figure 4.13., UPPER BOUND ON THE NUMBER OF PACKETS TRANSMITTED FOR
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particular packet transmitted from the broadcasting node will keep
giving rise to newer packets DT times. Hence a very low lower bound on

the time for which broadcast packets will remain in the subnet is DT.
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4.7 Reverse Path Forwarding (RPF)

We have shown in section 3.6.2, that if the simple reverse path
forwarding scheme is used, then each node except the source forwards
exactly one of the afriving broadcast packet along all links except the
one on which it arrived. The source transmits the broadcast packet

along all links incident to it.
<~ NPT(N,D) ppp(simple) = N*(D-1) + 1. (4.21)
This is illustrated in figure 4.15.

If the optimal version of the algorithm is used then broadcast

packets are only forwarded along the branches of the reverse path tree

and therefore
NPT(N,D)RPF(thimaI) = N-1. (4.22)

In determining the lower bound on delays, since all edge costs are
same and equal to unity the reverse path tree from a source is

isomorphic to the shortest path tree. Therefore

BDav(N,D)RPF = SPLav(N,D) (4.23)
BDmax(N,D)ppp = DIA(N,D) ) L (he24)
BC(N,D)ppp = N*DIA(N,D). . (4.25)

These dependencies are illustrated in figures 4.7, 4.5 and 4.12

respectively.
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Note that in the simple scheme, the delays are not dependent on the
fact that extra packéts are transmitted, since these packets are
transmitted along links that are not part of the shortest path tree from
the source. These packets, therefore, do not interfere with the packets
th;t are - forwarded along the branches of the tree. BDmax is, however,
in. this case not a measure of the time that a broadcast packet will

remain in the network, but can be used as a rough approximation.
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4.8 Minimal Spanning Tree Forwarding (MST)

We now determine the various performance measures when broadcast is

performed along the branches of a minimum spanning tree that connects

the various nodes of the network.

The number of packets transmitted is equal to the number of

branches of the MST, which is N-1. Therefore

NPT(N, = N-1. (4.26)

D) ygT

4.8.1 Broadcast Delays

In order to determine the various performance measures based on
delays, we must first determine what the MST in regular graphs looks
like. The girth of a graph is the length of the smallest cycle or
circuit that can occur in the graph. Cerf, Cowan, Mullin and Stanton
have shown that the girth of a Moore graph is 2m+l [Cerf73), and of
generalized Moore graphs is greater than or equal to 2m-1 [Cerf74d].
The girth was determined by examining the minimum height tree and the
permissible connections in the spaghetti junction. Hence, the tree
obtained by removing one of the connections in the spagheﬁti junction
results in‘a minimum diameter spanning tree that is also the minimuﬁlw.
diameter MST. '-;incé' édch a tree cén always be éénéﬁfucﬁéd fd: bseudb
generalized Moore graphs, the 1oﬁer bound on the diameter of MSTs in
regular graphs is 2m-2, " The performance meaéures are determined for

thesé MSTs.
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Lower bounds on Bdav and BDmax are determined by finding BDav(X)
and BDmax(X) where X i1is the broadcaster and is also the root of the

tree. Therefore
BDav(N,D)MST = SPL&V(N,D) (4- 27)
BDmaX(N,D)MST = DIA(N,D) . (4. 28)

These relationships are illustrated in figures 4.7 and 4.5 respectively.

The lower bound on the broadcast cost, BGC, could have been

calculated as:
BC(N,D)MST = N*BDmax(N,D)MST,

as has been done for the other broadcast routing techniques. However,
for MSTs it is possible to find a much tighter lower bound by finding
the sum of the maximum broadcast cost from every node. 1In order to
perform this analysis it is necessary to make some assumptions on the
. position of .the nodes in the highest unfilled level, should there be
one, Since we are interested in finding a lower bound, the nodes of the
unfilled level should be filled completely from either end as shown in

figure 4.16.

Let PS be 'thé number of primafy subtrees ébntaining nodes of the

unfilled level. Since the R nodes are bunched up at either end, we

have:

PS = [_R
=k
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D=4

I~}
i
w

Figure 4.16. ARRANGEMENT OF NODES AT THE
HIGHEST LEVEL.
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where h is the highest completely filled level.

Let §(x) be the unit Iimpulse function defined as

6 (x) 1 if x=0

0 otherwise.

The maximum cost of broadcast from a node at level j, is equal to
the level number, j, plus the height (highest 1level) of the longest
primary subtree excluding the one containing the node. If PS is greater

than one, then for all nodes the height of such a primary subtree is m.

The maximum cost of broadcast érom the root is m. From each of the
nodes 1n the unfilled 1level, the maximum cost of broadcast is
2m—-§(PS~1). The wmaximum broadcast cost from all the other nodes is
determined by first supposing that PS is greater than one, and lthen

subtracting the extra delay if PS is equal to one. Therefore

BC(N,D)MST = m + R*(2m-§(PS-1))
h
+ Y {(m+§)*D*(D~1)3 " a(D-1) 3" s 5(Ps-1)}.
1=1

(4.29)

_Figure 4.17 illustrates the dependence of BCygr on N.and D.
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4.9 Comparison of the Different Schemes

We now compare the six different broadcast routing algorithms.
Lower bounds on NPT, BDav, BDmax and BC for the different algorithms,
for a vregular graph of degree 3 are shown in figures 4.18, 4.19, 4.20
and 4.21 respectively. These figures illustrate the behaviour of the
performance measures for large N, We notice, that for a
broadcast~to-all mode of communication, separately addressed packets is
definitely not suitable owing to the large overhead on the communication
subnet. Hot potato forwarding is,also not suitable because of the extra
traffic it generates. Forwarding along the MST, multi-destination
addressing, source based forwarding and reverse path forwarding are
acceptable techniques. Thelr relative merits and demerits have been

discussed in detail in the previous chapter.
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4,10 Performance in the ARPANET

We now determine the performance of the different algorithms for
ﬁhe ARPANET topology. The performance measures are determined by taking
the average of the measures as seen by each node. Figures 4.22 and 4.23
illustrate the geographic and logical maps of the ARPANET as of August
1976. Table 4.1 shows the values of thé various pgrformance4 measures.
These values were determined using a computer program that computes, for
all the algorithms, the performance measures as seen from each node fér

any graph, whose edge costs are known.

The maximum degree of any node’in the ARPANET is 4, and the network
has 59 nodes. Table 4.2 indicates lower bounds on the performance
measures for a regular graph of degree 4 having 59 nodes. There is a
large discrepancy between the corresponding entries of Tables 4.1 and
4.2 because the ARPANET topology does not resemble a regular graph and
because the theoretical measures of performance are lower bounds.
Notice that the values of - NPT for the regular graphs when using hot
potato forwarding represents upper bounds on NPT for the ARPANET, since
the regular graph has more links than the ARPANET topology, and this is

the factor that determines NPT,
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Table 4.1

ACTUAL PERFORMANCE OF THE ROUTING ALGORITHMS IN THE ARPANET

160

Measure - NPT ﬁﬁ;v ﬁﬁﬁax BC
Packet~
Type Hops Hops Hops Hops
SAP 330 20.6 34,5 2152
MDA
SBF 58 5.3 9.1 538
HPF
(upper) * 5.3 9.1 538
(lower) 618,.6
RPF
(simple) 86 5.3 2.1 538
(optimal) 58
MST 58 12.5 25.6 1509

*
Computation exceeded 30 min

on IBM 370/168.
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Table 4.2

PERFORMANCE OF ROUTING ALGORITHMS IN A
REGULAR GRAPH OF DEGREE 4 HAVING 59 NODES

easure NPT BD BD BC
av max
Packet-
Type Hops Hops Hops Hops
SAP 160 9.5 15 885
MDA
SBF 58 2.8 4 236
HPF
(upper) * 2,8 4 236
(lower) -160

RPF
(simple) 178 2.8 4 236

(optimal) 58
MST 58 2.8 4 377

*
Computation very expensive.
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4.11 Conclusions

In this chapter we have proposed some performance measures for
broadcast routing in packet switched store-and-forward computer
networks. We then determined lower bounds on these measures, for the

g

different routing algorithms described -in Chapter 3, by examining

regular graphs,

This analysis provides a quantitative rbasis for comparing the
broadcast routing algorithms. A network designer can determine the cost
of performing broadcast 1n his network by using a computer simulation
similar to the one used- in this éhesis for analyzing the ARPANET.
Alternatively, the network can be transformed into a regular graph and
then lower bounds on the performance measures can be determined.

The regular graph derived from the network topology could be one
whose degree is equal to the largest degree of any node in the network,
and whose number of nodés is equal to 'that in the network. This
technique was - used in section 4.10 on the ARPANET topology.
Alternatively, the minimal regular graph containing the given network as’
a subgraph could.be used. This construction waé determined by Erdds and
Kglly_[Epd3373a], Ou:_experienée‘has shown that both these techniques
- provide measures that are lower thaﬁ the actual values. The suitability
of such techniques as a usefdl heuristic that preserves the relative
ordering between.the measures for the different algorithms is a subject

for future research.
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CHAPTER 5

DISTRIBUTED FILE SYSTEMS: AN APPLICATION

5.1 Intrbduction

The file system is one of the most important and basic resources of
a distributed operating system that permits resource sharing in a
computer network. The extension of notions like integrating memory with
the file system as in Multics [Daley68, Bensoussan72}, or the dynamic
association between memory and file-pages as in Tenex [Murphy72], or

that many files are executable programs, to a networking environment
" - .

e L

leads to the requirement that the computers within the network be
homogeneous 1f resource sharing is to be successful. However, many

files are in standard formats e.g., ASCII or EBCDIC, or can be

restructured using a data reconfiguration protocol, making them suitable

for use even in a heterogeneous computer network. For generality we
will assume that the computer network consists of heterogeneous
computers, but that the virtual memory seen by all of them is the same;
the homogeneity being natural, or artificial via protocol translation
(where possible of course). This chapter reviews and proposes models
for the structure of a distriﬁutéd'file‘System in such an envifonment,
and shows that aﬁ underlying'broadcast communication éapability greatly
imprdves the perfbrmance of such a system. We have not solved all the
problems, but propose a structure an& a set of algoritﬁms that we feel

could be used to builld a distributed file system.
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No assumptions are made as té whether the computer network provides
a single operating system, whose components are distributed, or whether
the hosts in the network have independent operating systems designed to
treat resources that are remote or local in a similar manner, thereby

providing uniform access to all of them. The term distributed operating

' system will encompass both structures. Examples of distributed
operating systems that also support distributed £ile systems are the
Resource lSharing Executive (RSEXEC) in the ARPANET [Thomas73], the
National Software Works (NSW) in the ARPANET [Crocker75, COMPASS76], and
the Distributed Computing System (DCS) at the University of California
at Irvine [Farber72a, Rowe75]. Da%id Boggs at XEROX PARC has also been
working on distributed file systems, and file systems suitable in a
networking environment in which pages of files can be accessed over the

communication subnet [private communication January 1977].

For the purposes of this thesis, a file is an organized collection
of elements, which could be words, characters, or bits. The system
which controls the mechanisms for access, creation, modification and
deletion ig-éaiied the file szsﬁem. The coilection of directories that
control and provide access to the files is the catalog for the file
system. Since directories are files, the catalog is a collection of
files., At this level a file is féfﬁaﬁiesé and 'is‘.réferehced by a
symbolic name. Daley and Neumann provide an excellent discussion on the

structure of a' general purpose file system [Daley65]. The logical

'structure of the file system discussed in this thesis is based on their

model ,
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A distributed file system (DFS) is therefore one whose components

or resources (the files) are distributed among a number of computer
systems, on whose secondary storage systems the resources reside. There
are many‘édvantages of having a DFS and of building distributed data
bases [Booth72]. One of the primary reasons is to provide a fail-soff‘

file system.
There are two aspects of the DFS that we wish to model:

(1) Mechanisms for structuring the directories of the .file system,
and search algorithms for locating a symbolically referenced file.
The file, or subsets of it, caﬁ then be transferréd to the primary
memory of the system on which the request was originally generated.

The structure of the directories must provide the desired level of

access protection.

(1i) Algorithms for permitting files to migrate from one host in
the distributed operating system to another so that all the files
are (nearly) optimally located, based on an objective function that

minimizes the overall cost for accessing and storing the files.

If the DFS permits only single copies of files, then file migration

Increases the efficiency with which files .are accessed, but .not the

availability of files.. If multiple copies are permitted, then the

avallability of files also increases.

For tﬁe purpose of keeping the problems and analysis tractable,

certain simplifying aésumptions- are made about the files in the DFS.
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Initially, it 1s assumed that there exists only one copy of any file ‘in

the entire file system, and that the operations permitted on the file
will include creation, deletion, modification, examination and
execution. It is assumed ' that mechanisms, similar to ones prevalent in
non-distributed file systems [Murphy72, Madnick69], for controlling

multiple simultaneous access are also present. Next, the existence of

duplicate copies of read-only files will be considered, and finally the

problems introduced by the existence of duplicate copies of modifiable

files will be examined. It is also assumed that a file is accessed by’

moVing the entire file from the file system storage into the memory
hierarchy that simulates a user’s virtual memory space. This latter
constraint can be removed when appropriate cost '‘measures for using

portions of a file over extended periods of time are found.

Resource sharing environments should often provide transparency of
location to the user, who might wish to be unaware of the distributed
natufe of the system. Resources which are remote, though referenced
identically to locally resident ones, may take a longer time to become
avaiiable. As a consequence, most host operating systems, e.g. those in
the ARPANET [R8berts72, McQuillan72, Crocker72, Metcalfe73], are unaware
of the topological structure of the communication network since the

“hosts ‘are  "users" of ‘thé"cbmmunicatidni network. ‘HoweVer,"wﬁen a
distributed operating system: is attempting to optimize use of its
résources, knowledge of the topology (if the network is not inherently
broadéast in nature) is essential. This will be readily apparent when
algorithms for causing files to migrate between computér systehs are

; e he e s P AR A
|

considered.
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,,,,, No detailed assumptions are made as to the technology or structure
of the distributed environment. The communication subnet could be
packet-switched, circuit-switched or a multiaccess channel. The
terminology wused 1in this chapter will have counterparts in all
communication subnets, though our analysis of file migration is biased °
towards store-and-forward networks. A host is a computer system that is
a potential wuser and/or supplier of resources ‘in the distributed

operating system. A user is a person or a program that interacts with

the host. A user process is the process associated with a wuser. A

switching node is a device, in many cases a small computer, that accepts

data and control from the host and sends it over the communication
links, with the possible cooperation of other switching nodes, to the
destination. The collection of switching nodes and communication links

is the communication network or communication subnet. We assume that

all communication between hosts is viewed as interprocess communication,

and that it can be performed reliably [Cerf74, Cerf74a, Sunshine75].

Figure 5,1 illustrates such a distributed network environmment.

One of the primary goals of the DFS presented in this thesis is to
perform the necessary functions using distributed algorithms, under the
assumption that no centralized information sburce or point of control .o
exists.” Such an assumption 1is necessary in order to preéefve the
reliability of the DFS. There are usually many points of control in a
distributed algorithm, and so if any should g6 down then it is usually
possible to continue to function (possibly in a degraded fashion). We
will investigate. the exteht to which conventional algorithms used in

implementing file systems can be distributed.

oy
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5.2 User Interface and Catalog Structure

The DFS will consist of local file systems at each of the hosts.
Their resources are available to all users. Figure 5.2 shows this
model., In generai, the host may divide its local file system into two
parts; a private part and a sharable part. The host may use the private
part to provide storage for permanently resident files for its local
users. It may even copy files from the DFS into the private file
system, in order to have a permanently resident copy outside fhe domain
of the DFS, Such copies may become inconsistent with their
counter-parts in the DFS. The file system provided by the NSW consists
of a sharable global NSW file séaée, as well as a private, non-sharable
local file space at every host [Schantz76]. We do not make use of any
such techniques in this thesis, and therefore assﬁme independence
betweeﬁ these two parts, and so leave the private part out of all

subsequent discussions.

We will assume that the entire file system will have a hierarchical
structure, since it seems most appropriate from the users’ point of view
. [Daley65}. Files will be referenced symbolically and shared by a number
of users. File names must be unique and must not change even when files
miérate to other thts,_so‘that this ‘govement _1S‘Itransparent to the
ﬁsefs of fhe files. ‘Thé file structure may be thought of as a tree of
files, some of which are directories. Except for the root directory,
each file finds iggelf pointed to by exactly one branch in exactly one
directory. The tree name of a file will be its name relative to the

root directory., Figure 5.3a illustrates such a structure. Links may
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now be superimposed on this structure, such that files may be accessed
from directories other than those present in their respective tree
names. Note that tree names do not contain any links. The path name of
a file is its name relative to the root directory and may contain links.
Hence, inrgeneral, a file can have only one tree name but many path
names. The tree name and path name of a file can be specified r;lative
to a working directory other than the root. Since the tree name of the
working directory is known the absolute tree name of the file can always
be determined, Figure 5.3b illustrates a directory structﬁre with
links, The file systems of Multies [Organick72], Unix [Ritchie74] and
Tenex [Bobrow72] have similar structures. liﬁ a conventional monolithic
file system, the directory files in the catalog provide a reference
point for naming files, access control to the files that are their

offspring, and indicating where on secondary storage they reside.

We now consider different ways of physically structuring the
catalog, and the assumptions and constraints required, in order to
create a distributed system with the same logical structure as described
above. Once files have been created and entered into the DFS catalog
thef may migrate and physically reside at anyrhost. When a file moves,

neither its tree name or path name changes, only its location.

5.2.1 Centralized or Duplicated Catalogs

The logical catalog structure could be centralized at one host,
with the non-directory files scattered amoﬁg various hosts. Without

getting into the implementation details, note that each host (except the
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Tree name of file marked * relative to ro0ot is BF and of file marked
** is C.H.E

Figure 5.3a. A HIERARCHICAL CATALOG STRUCTURE WITHOUT LINKS.

Tree name of file marked * relative to root is BF; path name of *
‘relative to root C isGXKF and, relative to the root, could be A.B.K.F.

© Directory file; [ Nondirectory file; Links are subscripted with L

Figure ‘5.3b. A HIERARCHICAL CATALOG STRUCTURE WITH LINKS.




Distributed File Systems - 172

one that haé the catalog) that has non-directory files, must have a
private directory indicating where on secondary storage the files
physically reside., This information might have been included in the
cantralized kéatalog, but such a restriction couples the various hosts
very tightly, and prohibits each local file system from making any local
modifications to the position of the files on its secondary storage,
without updating the appropriate directory files. The global file space
provided by the NSW consists of a centralized catalog resident on the
Works Manager Host, with the non-directory files scattered among the
Storage Hosts [COMPASS76, Muntz76]. We rule out this alternative since
it contradicts our fundamental requirement (providing a fail-soft DFS
.system)}, since 1f the host with the directories goes down so does the
entire DFS. Further, reference to any file requires network

communication.

In order to overcome some of these problems, the catalog could be
duplicated at a few or all hosts. This appears to be the ideal case,
since files can be found quickly and the structﬁre has sufficient
redundaney built in it to be fail-soft._ Such a scheme 1is, however,
wasteful of space, and introducgs a lot of complex problems. Since
catalogs consist of files, there are now duplicate copies of many files.
Directory files have the reéd?wrifé propérty;'and 8o how af§ fhé;Qafioué
catalogs kept consistent when non-directory files are created, are
deleted, or migrate? If the catalog is duplicated at every host, then
there is no need to have a separate.private directory for 1locating the

physical secondary stofage location of a file, since the catalog at
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every host can include this information, as in some sense the catalog is

private to every host.

5.2.2 Partitioning the Catalog Based on Pointers

Rather than impose constraints on the position‘ and movement of
directory files, we would like the DFS to permit any file to migrate;
should it be necessary. We now propose the structure of a DFS that
permits this, It 1s very similar to a conventional monolithie file
system, except tha;ﬂthe physical location of any file (as determined by
examining its parent directory file) is limited just to the identity of

the host on which it currently resides.

Assume that there is only one copy of every file in the file
system, and that it can reside at any local file system. Each directory
file will point to the host on which its offspring reside. Of course,
each local file system must have a directory that associates the tree
name of a file, resident there, to its physical secondary storage
location. Such a directory must have an appropriate data structure that
permits a fast search by tree name for such files [TENEX-4]. We‘ will

éall this data structure the Local File Directory (LFD). This

_"direc;ory" is not part of the DFS,_anﬂ is_pfivate to each host. Such a
scheme does not preclude a file from migrating, as long as the file’s
parent directory is updated to reflect this movement. Figure 5.4
111ustrates‘how a catalog would appear after some of the files had

migrated.
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Figure 5.4a. A LOGICAL CATALOG STRUCTURE
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BL = FOUP-OG . KL = ROOT.B

O DIRECTORY FILES; @ NONDIRECTORY FILES; LINKS ARE SUBSCRIPTED WITH L; -» POINTER TO APPROPRIATE HOST

% Dots are left out of the file name past the root for pictorial clarity, since it introduces no ambiguity.

Figure 5.4b. PARTITIONING BASED ON POINTERS IN A DFS WITH 3 HOSTS.
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When a file is referenced, the root directory must first be located
in order to find the first directory file., Each of the directories in
the path name, which may includes links, is stepped through (as in a
conventional monolithic file catalog), with the access rights being
checked, and the location (host) of the next file in the path name being
determined. The next file in the path name is found because the host on
which it regides is known, and  that host knows where on secondary
storage the file resides by looking up the tree name in its LFD. When a
file is belng created, the same sequence of events has to be undertaken
in order to determine whether the file can in fact be given that name.
If it can, then the necessary éirectory files must be updated. The
catalog files of the DIS are distributed in space, and so the search for
a file is also distributed in space. Such a search can be implemented
by having the locus of computation move from one host to another, until
the file is found and transferred to the initiator of the search, or by
having the host initiating the search interrogate each of the files
constituting the path name, either by retrieving each of them into its
own virtual memory for examination, or by interrogating the remote data
base th:ough an appropriate Protocol. We elaborate on these two
approaches, since they ‘determine an implementation of the DFS, and

structure of the directory files themselves.

If the files comprising the.path name of a file being referenced
are always looked at by the host making the request, then directory
files must never have any information in them that relates to some

specific local implementation, i.e. they must be formatted identically
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and not have %ny information like local disk addresses. If the remote
files .are interrogated through an appropriate protocol, then such an
implementation does not require the requesting host to examine directory
files that are not resident at its local file system. As a consequence,
the LFD at a host can use some of the directory files of the DFS for
locating files on secondary storage. For example, if a file and its
parent directory are both present at the' same host, then, the parent
directory could point to a secondary storage location for the file.
This is just an implementation detail. Directory files must be marked
as '"open", when in use, so that they are not modified inadvertently.
For example, if a file and its pareﬁt directory were present at the same
host, and that file was to migrate, then that file can only migrate
after the parent directory has beeﬁ updated appropriately. Such
implementations can be made‘to achieve some degree of reliability when
performing the distributed search, since the initiator of the search has
control at all times. For example if a file with tree name A.B;C was
being referenced, then the host referencing the file would have to

examine the root directory, then A, and finally A.B before A,B.C was

made available.

Alternatively, the requesting host could send a message to a
‘pfoééss reéiding Hét ‘thé“saﬁe‘host as.the.foot difectofj; a&d hﬁvé it‘
send a message to a process reéiding at  the same host as the first
directbry file din the éath name of the fiie being referenced., The
access rights would be verified and the process of sending messages

would recur until the file was found. The file could then be
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transferred into the virtual memory of the host initiating the request,
and all the processes spawned along the way hotified, so that they could
disappear;‘ Such an implementa;ion can also be made to perform the
distributed search reliably, since should it fail at any point for any
reason, status information can percolate through the process chain to
the initiator. Such an implementation does not require a host to
 examine or interrogate directory files that are not resident in its LFD,
since control 1is transferred to a remote‘process to continue stepping

through the directories in the path name of the fila.

Such a catalog structure perﬁité the easy extension of a monolithice
catalog into a distributed one. However, every file in the path name of
a file must be examined, before it can be accessed. This can be time
consuming if the files are scattered around. The system is fail-soft in
only one respect. If parts of the cétalog are unavailable, then those
files that do not have any of the unavailable files in their path names,
can still be referenced. Of course, 1if the root directory is
unavailable, then the entire file system is unavailable. Further, when
files migrate_it is necessary to update the parent directory. This may
not be poSsiblé 1f the network suddenly becomes partitioned, or if a

host goes down.

-5.2.3 Partitioning the Catalog Based on Pure Broadcast

When partitioning of the DFS catalog 1is based on pointers, 4
directory file explicitly points to a host where its offspring reside.

This feature makes it possible to locate a remotely resident file very
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easily, but degrades the reliability of the DFS, since there is a single

copy of the root directory, and file pointers must be correctly updated.

An object may be searched for, either by following a set of
pointers, or by performing an associative search, We— now propose a
catalog structure that uses broadcast protocols for performing a
distributed associative search to find the host where a file resides.
This catalog structure is an extension ;f the one that used pointers to

locate a file,

The root directory is vital for locating every file. Normally
every local file system would have to know where it was resident, in
order to locate the first file of a tree name. Each local file system,
however, knows which files are present at its site by examining its LFD.
These include files at level one in the logical catalog, and so it is
possible to do away with the root directory, as we shall see. In the
scheme to be described, when a file does not reside at the same host as
its parent directory, the parent directory does not point to the host
yhere the file resides. The directory simply reflects the fact that it
does not know who has it. The catalog would be partitioned in a manner
similar to thgt illustrated in figure 5.4b, except that the root, root

pointers, and inter-host pointers would not be present.

The search algorithm is essentially the same as the one that used
- pointers, except that a broadcast search protocol is used to determine
the location of a file instead of following inter-host pointers. The

search could be implemented with the locus of control moving from a
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process on one host to a pfocess on another, or with the control being
éxercised from the host initiating the request. In the latter case, the
LFD should first be examined before initiating the broadcast search.
For example, i1f host 1 make a request for a file with path name A.B.C,
and both A and A.B.C are present at host 1, but A.B is present at host

2, then after host 1 has examined A.B (explicitly or implicitly), it
should first examine its LFD for A.B.C before initiating a broadcast

search for itl

When a file is being searched.for, a message must be broadcast for
every file in the path name whose location is unknown. A local file
system responds to a broadcast search message by examining its LFD and
complying with the details of a specific broadcast protocol aﬁd the

distributed search protocol.

In general, such a catalog partitioning permits as general a file
system as proposed by Daley and Neumann, if each of the directories in
‘the path name is stepped through until the file is found. Such a scheme
does not preclude files from migrating. This scheme is more resilient
to failures than the one based on following pointers, because all
requests do not have to go through a critical resource; the root
directory, and wheﬁ files migrate pointers do not have to be made
consistent, Tﬁe increased reliability is bought at the expense of
increased communicétion. Such a scheme is not suitable, in general,
 in networks where broadcast routing is expensive, and the path name of a
file can be arbitrarily long, since the process of interrogating the

constituent directories may ..take a long time. Chapters 3 and 4 have
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examined different ways of achieving ©broadcast routing in
store-and-forward packet switched computer networks. The relative

performance of these techniques has also been determined in these

chapters.

Farber and Heinrich propbse a scheme for structuring the file
catalog in therDCS [Farber72b]. Their scheme is very similar to both
the schemes based on pointers and pure broadcast (cf. section 5.2.2 and
5.2.3). This comes about because communication in the DCS is based on
process addressing rather than host addressing, processes can migrate,

and the communication subnet is essentially a multiaccess channel.

3

The catalog is partitioned into a number of units that contain one
or more directories. In order to find a non-directory file, a broadcast
is first performed to find the identity of the process that knows
something about the user’s master directory. This process is then
interrogated to find the identity of the process that knows the identity
of the next process in the hierarchy. This is repeated until the file
is found. Since processes can migrate the messages must be broadcast to
all hosts. In general, broadcast is performed as many times as the
depfh of the path name of that file. Figure 5.5 illustrates such a
catalog;‘ The number of broadcasts neéessary to find' a file in this
example is three. Such a technique is simple and appropriate in the
DCS, whose subnet is a multiaccess channel and where network addressing

is based on process names. Such a catalog structure, in general,

vpermits links.
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User 1 User 2 User

Figure 5.5a. LOGICAL STRUCTURE OF THE FILE
SYSTEM IN THE DCS.
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The 0CS achieves a fail-soft file system since it treats the file
system as a single level, instead of the hierarchical structure in say
Multics. The first two levels are primarily for narrowing down the
associative search any process would have to perform. The access
protection checks are made while attempting to reference the desired
file and not at intermediary directories. Further, all files have their
path.name associated with them, should it be necessary to find a file
without having to go through the directories. We believe that these two
are good ideas. For these reasons, however, it appears that the file
system in the DCS does not permit links. We believe that aliasing can
still be provided using a singlé level file system, and explore this

possibility in section 5.2.5.

5.2.4 Partitioning the Catalog Based on File Usage Patterns

All files can be found using the broadcast search described in
section 5.2.3. The amount of information in the catalog is necessary
and sufficient for the DFS to work, although rather inefficiently if the
proportion of requests to remote files is large. The performance of
this ~scheme can be improved, if some additional information on file
usage patterns is kept by each of the 1local file system. This
information 'might help locate a file without having to 'pe"rf'ormé

broadcast search in many cases.

In addition to the LFD every local file system should have another
directory (structured similar to tﬁe LFD) that contains what it believes

are the current locations' (host identities) of some recently used
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non~-resident files., This will be called the Recently Used Directory

{RUD) . For a local file system to have an entry in its RUD; the file
must have been resident at the host pointed to, though it may have since
migrated. Hence, the important property of the RUD is that its contents
need not be.correct when it is examined, though it must have been '
correct at some time. The RUD is private to each host and not part of

the DFS,

5.2.4,1 Search Algorithms

We now briefly indicate how this DFS structure would operate. When
a file is referenced (and its path name is known), each of the
directories in the path name must be examined in order to expand links,
and to perform the necessary access protection checks until the desired
file 1s found. As we described éarliér, the distributed search for a
file can be performed by transferring the locus of control from a
process on one host to a process on another, until the file is found, or
by letting the host making the request examine/interrogate each
non—directory file itself. We describe how both search schemes would

benefit from the RUD.

First, consider the case where the search is initiated and
.contrélled £rom the host making the request. As in the case with pure
broadcast scheme, the host continues ﬁo examine .directory files until it
does ‘not know where the next one is located. Instead of performing a
broadcast search at this point, the host could chain down RUD entries in

various hosts, starting from an entry in its RUD, or maybe from the RUD
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at the host where the current directory file was located., The choice of
which RUD entry to start from could affect the outcome of the search.
~ Such a search will eitﬁer find the file (directory or non-directory), or
reach a point where no more RUD pointers are available. This search

will be called the cascade-search. If the search succeeds, then the

file 1s examined, and the search for the desired file would continue if
necessary. If the cascade-search fails, then the host must resort to
the broadcast search. Of course, it might broadcast the search request
only to a subset of all the hosts, since it thinks that soﬁe éf them

already do not have the file.

Now consider ‘thém“implemegsation where the locus of control is
transferred from host to host until the file is found. As in the case
" with pure broadcast, a point may come when the location of the next file
in the path name 1s unknown. Instead of transferring the locus of
control to a host through a broadcast protocol, control could be
transfered to the appropriate host through the cascade-search. If the
cascade-search succeeds the initiator of the cascade-search transfers
control to the appropriate host. If the search fails, then the
initiator of the cascade-search must transfer control via a broadcast
search protocol. The broadcast message could be sent to possibly a
subseﬁ bf.tﬁé hdsté. ” o o

We prove in sectioh‘ 5.2.4.2 that, 1f the syétem functions
correctly, (i.e. no tabies have been corrupted) then the cascade-search
terminates - it either finds the file or comes to a dead end. fhis

means that it is not possible for the search to get caught in a loop.
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We believe that files will not move around rapidly and so the above
technique is appropriate. The size of the RUD at each local file system
is dependent on available space and primarily affects 1local
responsiveness. Note that replacement algorithms for the RUD must also
be considé:ed. They will be determined by file refereqce patterns, a

subject that has received some investigation in [Stritter76].

The catalog structure and search algorithms presented here are an
extension of the techniques used by the RSEXEC. The RSEXEC has a less
general file system catalog than proposed here, and does not permit
automatic file migration, and so the techniques employed there are
simpler. The wuser profile in the RSEXEC maps file names in a user’s
virtuallfile system to the physical 1location of the files in the

ARPANET, and so resembles the RUD.

This discussion leads us to conclude that 1f files are to migrate,
then the logical tree structured catalog, which may include 1links, is
solely for the convenience of the user, whé can name files relative to a
given reference point, and for the file system to perform accéSS
protection checks at evefy stage. The file system may have to employ

different mechanisms for searching for a file.

We ‘examine the cascade-search in gréaﬁét detail in the next two
subsections, and then exaﬁine in section 5,2.5 the structure of a DFS
that has restrictions on 1inks in the catalog, but makes use of
techniques presented in' this section. This constraint reduces the

excessive overhead of examining each directory file in path name of a
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- file., We then discuss some of the requirements of broadcast search

protocols in section 5.2.6.

5.2.4.2 Properties of the Cascade~Search Algorithm

This section examines in detail the properties of the
cascade-search described in section 5.2.4. A few observed axioms

regarding the search algorithm are now stated.

Axiom 5.1: The RUD entry for a particular file at any host can only
point to one other host; i.e. it is unique. The file must reside, or

have resided at the host pointed to.

Axiom 5.2: When a file moves to a host, the RUD entry for that file at
that host (should one have existed) must be cleared. Hence, a file can

not both reside at a host and be present as an entry in the host’s RUD.
Axiom 5.3: At any time, a host can reclaim the RUD entry for any file.

Axiom 5.4: When a file moves from one host to another, an éntry is
created for it in the RUD of the host where it originally resided, and
the éntry points to the new host. (This axiom is oniy included for the
ease of proving properties of the algorithm, and is consistent with

Axiom 5.3).

Under the conditions.of a perfectly reliable system, the algorithm,
wheh initiated from a host, is said to terminate (if the file is found
or no further pointer exists) in a time proportional to the number of

hosts in the DFS.
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Theorem 5.1: The cascade-search terminates.

Proof: Since there is no interaction between the various files in

the DFS, the theorem is proved for any one file F.

Let N be the number of nodes in the DFS. Let ay i be a

. 1]
directed arc from node i1 to j if there exists an entry for F in the
RUD at i, and it points to j. This is true for all I1<1,j<N, i#j.

By definition arc 24,3 has head 1 and tail j.
’

Let G be a simple directed graph, such that G = [V, A(t)],
where V is a finite set of vertices of cardinality N, and A(t) is
the finite set of arcs a at time t. A path p of G is a

. i’j, i!j
cascade~search sequence initiated at i and terminating at j.

Figure 5.6 shows such a graph G.

From Axiom 5.1 it can be concluded that only one arc can leave
any node. From Axiom 5.2 it can be concluded that any node that
has no arcs leaving it represents a case where the file either
resides at that node, or does not and the node does not know where
the file is, Such a node 1is a point of termination for the
algorithm. Since hosts may reclaim RUD entries at will
(Axiom 5.3), points of - termination may ‘appear' anywhere in the:

graph.

The theorem 1s proved by showing that G is always loop free,
when files migrate, under the constraints of the four axioms. The
theorem 1is proved by contradiction. We show that when a file

~moves, 1f a loop is created, then an axiom is violated.
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Figure 5.6. A GRAPH G = [v,A(t)].
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Figure 5.7. A LOOP IS PRODUCED IF AXIOM 5.2 IS VIOLATED.
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Consider a G with |V‘Zl and |A(t)|21, such that the
cascade-search terminates. The file may or may not be present at
the tail of any arc. Now, if the file moves it may do so to a node
which does not already lie on the graph, in which case an RUD entry
will be created by virtue of Axiom 5.4, and the cascade-search will
terminate siﬁce there is no path continuation from the new node.
On the other hand, the file mady move to a node already on the
graph. By virtue of Axiom 5.2, the RUD entry (should one have
existed) at the new node of residence must be removed. If this
entry is not removed, and the node from which the file moved was
also in the graph, the addition of the are will produce a loop.
Figure 5,7 shows a file moving from ;ode vy to vg, and producing a

loop if and only if Vg does not remove arc az_4°

Since no 1loops are introduced when a file moves, the
cascade~-search terminates. RUD entries are created only i1if the
file actually resides af that destination. Hence, in a correctly
functioning system, there is no spurious way of introducing RUD
entries, which may cause loops.

Q.E.D.

Corollary 5.1.1: 1If there exist duplicate copies of a file (with the

same name) within the DFS, then the cascade-search still terminates.*

kAssume that the conéistency problem has been solved for duplicate
‘copies of modifiable files, or that the duplicate copies are read-only.
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Proof: For the purpose of the proof, each of the duplicate copies
can be thought of as a separaﬁe file, and since the proof of
Theorem 5.1 assumed independence between files, the corollary
follows.

Q.E.D.

5.2.4.3 Reliability of the Cascade-Search

It was proved that the cascade-search will always terminate in a
finite time under the assumptione of a correctly functioning system (no
random errors to change table entries). In such a correctly functioning
environment, the protocol used for implementing the cascade-search could.
" be one in which the initiator of the search listens for a response on a
particular port, the identity of which is specified along with the
request for the file. The initiator is unaware of the number of RUD
pointers chained through by intermediary hosts, and will either receive
the file from the host that has it (and possibly update its RUD entry
for this file), or realize that the cascade-search has failed, or
thmeout.. The_latter signifies that the file was most probably not found

using the cascade-search and a alternative approach should be taken.

If the search is performed as described ebove, ;hen_;he_hos; froe_
‘which the requeet was initiated, has no idea how many other hosts were
involved in searching for the file. This.is of no coesequence if the
file is found. In considering the action teken if the cascade-search
falls, the requesting host will have to brdadcest the request to all

hosts. If it knew which ones were visited by the cascade-search, and
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thus did not have the file (at that time), then the broadéést request
need only go to the remaining hosts, thus minimizing the eﬁtra network
traffic required to find the file. Of course, one can éonstruct an
example where a race condition causes a file not to be found. The file
being searched for could have moved to a host that was visited by the
cascade-search and at that time knew nothing about the file. The
broadcast to the remaining hosts will not find the file; unless one of

those hosts has an RUD pointer to the file.

On | the other hand, if the DFS was unfeliable, then the
cascade-search could fail because of the existence of a loop in which a
request circulates - indefinitely, or because a request is lost. Figure
5.8 shoﬁs how the creation of a spurious RUD entry at node vg causes
there to be a loop. A(t) is the set of arcs that exist at time t, and
A(t+l) the set at time t+l. A spurious entry replaced asg ¢ by as g at
t+l. A loop in the cascade-search has been created if it is initiated
from vg, v; or vg for the file. 1If the requesting host knew which hosts

were involved in the loop, it could attempt to break it.

The cascade-search need not be performed "recursively", but could
also be performed "iteratively". That is, other hosts do not perform
thg 3ear¢h on behalf of thg initiatpr, but instead éach“host on the.
 search yéatﬁ returﬁs the contents of.its RUD entry'to the initiator,
Hence, the initiator iteratively interrogétes each host on the search
path until  the search terminates. In the process of doing so, the
initiator can keep track of each host visited, and thus can determine

the existence of a loop. The loop can be broken by having all hosts




Distributed File Systems S 1092

V= {ﬁlfﬂz,63,84,65,66,67,88}'

Alt) = {ag 1,85 142 4i8g 708g 5085 o)

Alt+l) = {33,1'a2,1'a1,4'a8,7'a7,5'a5,s]

Figure 5.8. SPURIOUS RUD ENTRY AT 95 AT TIME t +1
“ PRODUCES A LOOP IN THE CASCADE-SEARCH. ‘ '
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involved in the loop purge their RUDs, since it 1is not possible to
determine the £faulty host. Another approach to loop detection is to
pass a counter with the recursive search. This counter gets incremented
each time, and if it exceeds a certain count {the number of nodes in the
DFS), then a loop exists. Breaking the loop requires more information

to be passed around.

Note that a "recursive" or “iterative" implementation of the
cascade-search can be used with either of the two implementations of the
algorithm that finds the a file; i.e. having the locus of control move
through the network, or having .the host requesting the file do the

interrogation of the directory files.

5.2.5 A DFS with Constraints on Links

.t
The search aléoé&thms deéﬁribed‘iﬁ“sections 5.2.1, 5.2#2,‘5;2;3 and
5.2.4, examined each directory file in the path name of the file being
referenced. This was‘necessary Because the tree name of the file being
referenced was not.known at the time it was referenced, and because
access protection checks were performed when éxamining each directory

file.

" If the access protection for each file is stored in a Ffile
deécriptor block that moves with the file, then access protection checks
need not be made at every step in the search, but only when the file is
found. Further, if the tree name of the file being referenced.was known

-at the time it was referenced, then again there is no need to examine
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the directory files in its name, in order to find the file. Hence, even
though the logical file system is structured like a tree, for reasons
concerning how a user wishes to view his file system, for purposes of
protection and searching for a file, they can all be viewed as existing
at the same level. This is how the distributed file system in the DGCS
is structured. The advantages of such a design is that files may be
found relatively quickly, since excessive communication does not have to
be performed in order to find all the directory files first. Further,
even if directory files are unavailable, it 1is possible to find the

referenced file. The disadvantages of such a structure is that file

‘descriptor blocks may become large, and there can be 1large overheads

when certain file operations are performed; for example when a file is
created or deleted, both the file and its parent directory must be

examined and searched for independently.

A one 1level file system can be achieved, if any of the following
three'approaches are taken regarding links and aliases in the naming of
files. Each of these restrictions guarantees that the tree name of the

file being referenced is known at the time it is referenced.

(1) Links could be prohibitted entirely. Therefore the path name

of a:file corresponds to its tree name, which is unique.

(ii) There are no links in the catalog, but files can have aliases.
The file descriptor block could contain all the aliases.by which

that file is knowm.
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(111) The only links permitted in the catalog are those in the
working directory of the user. These links must point to the tree
name of a file. Since the tree name of the working directory is
known, the tree name of any file relative to this directory is also
known. For example, if the tree name of the working directory is
A.B, and this directory has a link called C to a file whose tree
name is X.Y.Z, and a branch to a file called D, then reference to a
file C or D relative to the working directory is all right, since
- they translate to tree mnames X.Y.Z and A.B.D respectively. A
reference to a file C.E relative to the working directory would be
improper since the tree name of such a file can not be determined
without first examining X.Y.Z. Search for an improperly referenced

file will fail.

We briefly indicate how the search technique described in section
5.3.4, the cascade—searéh, could be used in a single level file
structure. When a file is referenced, its ‘tree name is first
defermined. Tﬁe LFD at the host where the request was made i1is first
examined to see if the file resides locally. If so, the search is over.
If not, the local file system assumes that the tree name is a proper
file name, and proceeds to f£ind it. It could perform a broadcast
"ééaréh, ‘by ‘which eééh‘locéllfilé"sjstem eﬁaminéswits LFD ﬁd-sééuifﬁthe
. file is present, and if so communigates -with the fequesting host to
determine 1f the requesting user process has the correct.priﬁileges.
This is an gxﬁensive way to search for a file, énd so the requesting

host first initiates a cascade-search if there is a RUD entry for that
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file. If the cascade-search finds the file, then the search is over,
otherwise a broadcast search (to possibly a subset of the hosts) must be

performed.

5.2.6 Bréadcast Search Protocols

We have shown ﬁhat broadcast search protocols can be used to find
files, or any resource in a distributed environment, when knowledge of
the location of the resource is present only at the its site of
residence. Such a restriction may be enforced because the system can be
made fail-soft if complicated-data structures do not have to be updated
when resources migrate. Broadcast searches perform an associative

search in a distributed environment.

We have shoun that the broadcast message may be destinea- for all
hosts in ﬁhe network, or for a subset if not all hosts suppoft a local
file system or if it is known thaf some of the hosts definitely do not
have the file. The underlying broadcast routing capability of the
communication subnet must support both types of broadcast routing. This
is necessary because if there is only a broadcast-to-all capability,
even 1f the subnet traffic i1s minimal, each host has to process the
bxqadcgst message. This consumes. processing _bower  unnecessari1y aﬁd-
congests the path between the switching node 5nd the host. Chapter 3

examines this problem in greater detail.

The broadcast search protocol must be designed such that it only

locates the file. Once the file has been Jlocated the requestor
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communicates with the local file system , where the file is resident, in
order to make sure that the requesting process has the aﬁpropriate
access rights, The system must be designed such that this communication
is secure, and that no information that may compromise the requesting
user procéss is leaked out into the distributed environment. This can
be achieved by transmitting sensitive information only on a reliable
point-to-poiﬁt interﬁrocess communication channel, and not by using a
broadcast protocol. The communication itself can be encrypted using the
NBS encryption algorithm [NBS75]. Secure communication and secure

operating system design is receiving a lot of attention these days.
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5.3 File Migration

One of the advantages of having a distributed file system 1is the
ability to place files in the network so that the total cost of using
them from various hosts in the network is minimized. This requirement
might, in general, argue for multiple copies of some fiies. It is
always desirable to have the processing activity take place near its
program and data, in order to reduce excessive data transfers.* A system
that permits file migration allows for the dynamic reconfiguration of
the file locations. Files can migrate because a user proceés explictitly
moves them from one local file system to another, or automatically. If
files can migrate automatically, then an efficient DFS can be built with
single copies of files. If the file system and terminal bhandlers are
decoupled from the processor, then if the processor goes down, users can
use another host and have their files migrate. Techniques for achieving

this optimization are examined in this section.

5.3.1 Related Research

Thé‘ probleq of file allocation in a network is very similar to the
plant 1o¢ation p;;blem in Operations Research, and so the models used
are vefy similar. Most of the tethiques proposed so fap £a11 into this
c#tegory .[Chu69; Césé§72, | Eswaran74, Uran§74, Levin75, Chang?75,
Chandy76]; Techniques in estimation theory and time series analyses are

used to predict what the file access patterns will be like in the near

future, in order to make the optimization adaptive [Segall76).

*Cheap wideband satellite communication may change this requiremeﬁt.
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Chu formulates the model as an integer (0 .or 1) programming
problem. The model considers storage cost, transmission cost, file
lengths, request and update rates of the files, the maximum storage
capacity of each computer and the maximum allowable expected access time
to files at each computer. The model takes into account queueing delays
resulting from finite line capacity, but assumes that.there are single
copies of files. Casey reformulates the problem in order to make it
more amenable to analysls and lets the numbef of copies of a file be the
outcome of the optimization. An implicit assumption is that the line
.éapacity is large enough so as not to produce queueing delays. He

proposes a mechanism for obtaining the solution.

Levin and Morgan extend Casey’s model by assuming a much more
complicated behavior between program and data file interaction.
Previous analysis assumed stationary access rates. They extend it to

non-stationary but deterministic rates, and then to the case where the

non-stationarity is modelled by a probability distribution.

Eswaran’s result 1is very important. He proves that the model as
formulated by Casey 1s polynomial complete, and so advises that
heuristics should be used to find the solution. Chandy and Hewes do

- precisely this, and propose a near-optimal heuristic that works well, -

Chang assumes that the network is hierarchically structured - and
proposes a model. Such a model may be appropriate for specialized data
base applications, where the network has thé structure similar to IBM's

System Network Architecture [SNA76].
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Segall proposes a complex model for estimating where a file must
move to, based on how it has been moving and the behavior of request

rates from various hosts.

All these models and techniques model file activity very
accurately, but do not consider that the communication cost (usually
delay~to-last-bit) may vary with changing load conditions, owing to the
presence of other kinds of non-file traffic in the network. Many models
make the implicit assumption that the line capacity is large enough so0
as not to produce queueing delays. In the analysis that assumes
non-stationary request patterns for the files, it is very difficult to
see how the data is gathered or how the results of the optimization are
enforced. These models also do not assume the existence of an
underlying routing algorithm that is adaptive to changing load
conditiéns, and network failures® [McQuillan74]. We believe that if
automatic file migration is to occur, then distributed algorithms should
be used since it is sensitive to the distributed nature of the network.
Each file system maiiitains sufficient statistics on the usage of the
files resident at its host, in order to determine where the files should
move (if at all). We propose one such an algorithm in Appendix E. Its

.suitability is a subject for future research.
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5.4 Multiple Copies of a File

b 8

If éhe DFS permits énly single copies of files, then a lot of
fail-softness of the system is lost. <If multiple copies-of files each
having the same name are permitted, then the availability of files.
increases, as does the efficiency of file accesses since the various
coples may be scattered around in the network. We have touched upon the
problems of permitting multiple copies of files in previous sections of
this chapter. We examine these problems in greater detail in this
section. We assume that there 1s an external mechanism by which
duplicate copies are created or .deleted from the DFS. Automatic
techniques for creating or deleting duplicate copies of files based on

file usage patterns in the network is a subject for future research.

For the purpose of locating any of the duplicate copies of a file,
each of them can be treated independently. We have proved (Corollary
5.1.1) that the cascade-search i1s unaffected by the existence of
duplicate' copies of read-only files. The cascade-search does not
guarantee to locate the nearest copy of a file (nor all copiesj, since
the copy located depends on the particular set of RUD pointers
traversed. A broadcast search may locate the nearest copy of a. file.
Ihe Qistr;buted ‘a;gori;hm tha; optimiZes‘the location of a copy of a
file (see Appendix E), does so indepéndent of the existence of other
copies. This is appropriate if the files are truly different. However,
when there are duplicate coples of a file, their movement and thus the
location they come to rest depends on the. locations from whiéh thé

requests originated. Since the cascade~search does not guarantee to -
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access the nearest copy, the distributed optimization may cause all the
coples to bunch up, instead of being distribqted through the DFS. A
éimple (but rather inefficient) way to overcome this problem is to have
each host flush its RUD entries periodically, and then create new ones
based on a pure broadcast search, thereby getting a pointer to the

nearest copy.

If the multiple coples are modifiable, then the search algorithm
nust perform an additional set of functions besides just 1locating tﬁe

file. We discuss these functions in the next subsection.

5.6.1 Ensuring Consistency Between Duplicate Copies

A number of problems arise if the different copies are modifiable
and it is important to guarantee consistency between them, as is usually
:hé case. This 1is because, - owing to the inherent delays in
communication and the possibility of host crashes and network failures,
race conditions may cause an older copy to be accessed or leave some

copies inconsistent with one another.

~ -

If all accesses were coordinated by a centralized authority, then
'the'system could guarantee consistehcy betweep the copies since it could
pérmit multipié feaders,'qf dﬁlyvoﬁe‘ﬁriter at  éﬁy tiﬁe ‘[C§Q¥tois7i];
After a writer had finished, all the copies would have to be made
consistent with one another Before any otber reader or writer was
permitted access to the file. This may take an unpredictable amount of

time 1f a key host goes down or the network becomes temporarily




Distributed File Systems 203

partitioned. Such a scheme can be implemented by permitting only
non-directory files to have multiple copies and centralizing the
catalog. The global file space in the NSW is managed in a similar way

[Schantz76, Muntz76].

We are, however, trying to get away from centralized schemes, and
would like to treat all files, directory and non~directory, identically.
This problem appears to be very diffiéult. Consistency befween files
can be guaranteed if some simplifying assumptions are made about the
kinds of modifications permitted on the files. In a scheme proposed by
Johnson and Thomas [Johnson75], the.modification of an element in a data
base does not depend on its old value, thereby doing away with global
synchronization and locking., All modifications to a file, from all
hosts are ordered so that it 1is possible to distinguish older
nmodification requests (which may be delayed in the network) from more
recent ones. An appropriate protocol exists to determine when a
" delete-entry request has been received by all data base sites, so that
the entry may be garbage collected without introducing ény unwanted
effects. If users of a file take upon themselves the responsibility of
guaranteeing consistency between copies of the file, then in many cases
it 1is possible to define appropriate protocols to achieve this. An
example of a multi-site data gathering system can be found in

[Schéntz74].

An algorithm for maintaining duplicate data bases has recently been
proposed by Thomas [Thomas76] . This algorithm permits updates to

redundantly maintained data bases from any of the data base sites.
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Races between conflicting, concurrent update requests are resolved in a
‘ manner that maintains both the internal consistency- and mutual
consistencx of the data base copies. ’The synchronization mechanism that
resolvés races does not introduce the possibility of deadlock. The data
base maintenance mechanism can recover from and function effectively in
the presence of communication (network) and data base site <(host)
failures. The algorithm 18 robust with respect to lost and duplicate
messages, the (temporary) inability of data base managing processes to
communicate with one another (due to network or host crashes), and the
loss of memory (state information) by one or more data Base managing
processes. The algorithm does ngt require all ﬁﬁe data base managing
processes to be up and accessible in order -that the system function
correctly. The synchronization mechanisms only require pairwise
interaction between the data base managing processes. The algorithm
does not depend on a broadcast communication capability, but might be
reformulated to take advantage of such a capability should it exist.
This 1is an important and useful result. Such an algorithm permits the
design of very general distributed file systems. 0f course,
restrictions on which directory or non-directory files should have
multiple copies may improve the efficiency of the DFS, because schemes

which guarantee consistency in such a general environment are often

expensive,
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5.5 Conclusions

We have shown the need for a distributed file system, and that the

basic problems in its design are:
(1) file npaming conventions,

(ii1) providing simple and quick ways for searching for a file, and

checking its access rights, even when it moves,
(1ii) ensuring consistency between duplicate copies of files,

(iv) and designing techniques for permitting the automatic

migration of files.

The DFS presented in this chapter uses distributed algorithms for
searching for files, and for moving them in order to minimize the cost
of using them by all wusers (Appendix E). The need for an efficient
underlying broadcast routing capability in the subnet has been
demonstrated, since such a capability permits. the use of broadcast
searches. If broadcast searches can be used, then the search algorithm
fdr finding a file and the catalog structure can be simplified. We

believe that these ideas can be extended to a file system that
(1) hés.ﬁﬁitibié‘éopies of read-write files,
(11) has finite file system storage at each host,

(i11) permits some damage to the table'entries, and
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(iv) has appropriate cost measures for permiting transfer of pages

of an open file over an extended period of time.

The problem of guaranteeing consistency among duplicate copies of
files is a very difficult problem, and solutions using distributed
control are only now emerging, The suitability of the distributed
optimization in various network topologies, using different routing

algorithms, and under various file usage patterns, is a topic for future

research,
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

This thesis has investigated the design and analysis of broadcast
routing algorithms in store-and-forward packet switched computer
networks. We have described a few applidétions for broadcast protocois
in distributed computing_gnvironments. In particular, we have shown in
- detail how the catalog of a distributed file system could be structured
in a simple way, if the system could make use of efficient reliable

broadcast protocols.

We have described five alterpatives to transmitting separately
addressed packets from the source to the destinations. The algorithms
" have been compared qualitatively, in terms of memory requirements, ease
of implémentation, adaptiveness to changing network conditions, and
reliability., The algorithms have also been -compared quantitatively, in
termé of the number of packet copies generated to perform broadcast, and
the delays to propagate the packet to all destinations. In order to
compare thg‘algp:i;hms in this fashion, 1qwer_bpunds‘on the performance .
measuree were determiﬁed for all the algoﬁithms by examining regular

graphs.

The properties of reliable broadcast protocols at the host level
emerge from the reliability of the routing algorithms and the

applications for the protocols. We have examined the tradeoffs between
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~~

global and subgroup broadcast routing. We believe that communication
subnets  should support both capabilities in the form of

multi-destination addressing, and reverse path forwarding respectively.

An outcome of the investigation of broadcast routing algorithms was
the formulation of two distributed (parallel) algorithms for
constructing minimal spanning trees. We believe that these algorithms
are the first of their kind. The formulation of such algorithms has
made the problems affecting the design of distributed algorithms in
network environments clearer. These minimal spanning tree algorithms
can be. used in broadcast routing, as well as other networks like the

Packet Radio Network.
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6.2 Suggestions for Future Research

We have Iindicated topics for future research during the course of

this dissertation and briefly summarize the important ones again.

The determination of the complexity of the distributed minimal
spanning tree algorithﬁs is an interesting subject for future research.
The factors that influence the complexity are the degree of parallelism,
the. asynchrony of internode communication, the ‘number of signals
transmitted, the length of signals, the overhead of using a broadcast
routing scheme to deliver signals to nodes in the same fragment, and the
data structures representing the.fragment state and edge information,
All these factors are not independent of each other. We believe that
simulation under various conditions may be an appropriate way to
determine the complexity of such algorithms. The suitability of the
various information gathering schemes by the master node must also be
determined. The reinitialzation protocol in the adaptive algorithm was

‘very simple. More esoteric protocols may be developed with additional
properties that make the algorithm more robust. 1In general, the design
6f robﬁst distributed algorithms is an important topic for future

research, as well.

-~ The 'design of reliable broadcast protocols analogous to reliable
interprocess cbmmunication protocols 1is a very important subject for
future research. The structure of such ptotocols is determined by the '
application and the féliability of the.underlying broadcast routing
algorithms., Efficient subgroup broadcast routing élgorithms must also

be designed since global broadcast routing has large overhead in large
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mul ti~-purpose communication subnets. Restricted multi-~destination
addressing must be investigated further, since it appears to be a good

compromise for both subgroup and global broadcast routing.

The performance evaluation of the broadcast routing algorithms in
the presence of background traffic, interference by packets of the same
broadcast, and complex cost measures must be performed. We have not
assumed that the 1links of the subnet can have different dollar costs,
and that a user may wish to minimize not delay and number of packet
copies, but the dollar cost of performing broadcast. The suitability of
using regular graphs as ideal networks must be examined further, as the
process of converting a given network topology into a regular graph may

be a useful design heuristic.

The design of distributed £file systems has many open problems.
There are problems related to naming conventions, search algorithms,
‘maintenance of consistency between duplicate copies of fiies, automatic
creation of duplicates for efficiency and reliability purposes, and
automatic file migration. The distributed file migration algorithm of
Appendix E must be investigated in greater detail, to see how well it
performs 1its optimization under%different request patterns and network
topologies. The algorithm for maintaining consistency between duplicate
data bases [Thomas76] ﬁust be investigated for efficiency and ease of
implementation. | Efficient and reliable techﬁiques for performing
synchronization between processes in a distributed environﬁent must also
be developed. The design of such file systéms will make it possible to

reference large distributed data bases, and make it possible to design
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'systems that can be easily expanded. We hope to see the development of

general purpose distributed operating systems.
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APPENDIX B

AN EXAMPLE OF REDUNDANT COMPUTATION OWING TO COMMUNICATION DELAYS

We show how redundant computation may be performed when
constructing the minimal spanning tree using the static algorithm
described in section 2.4. Extra but harmless computation 1is performed
because of delays in transmitting signals. Consider the construction of

the MST in figure B.l.
Let us assume that at time To the following conditions exist:

(i)- The subtree consisting of nodes H, K, I, and E has been

constructed and E is active (referred to as {H,K,I,E; E active}).
(ii) The subtree {P,0,L; L active} has been constructed.

(iii) The subtree {A,D; D ac;ive} has been constructed.

(iv) The gubtree {C,G,F,J,M,N; F active} has been constructed.

(v) The signal from B to D creating BD as a marked branch has not

yet arrived.

"~ Let us assume that the ‘active nodes transmit the foilowing"éignals‘

at time TO=

(1) E signals D making ED an unmarked branch and transferring

master control to D.
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Figure B,1a A NETWORK,

10
20 400 E

Figure B.1b THE MINIMAL SPANNING TREE FOR THE NETWORK.
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(2) L signals I making LI an unmarked branch and transferring

master control to I.

(3) D signals B making DB an unmarked branch and transferring

master control to B.

(4) F signals E making FE an unmarked branch and transferring

<

master control to E.

At  time T signals corresponding to (v), (3) and (2) arrive at
their respective destinations causing the generation of the following

signals:

(I) B is master and it transfers master control back to D since it
thinks there is a minimum cost edge incident at D, connecting the

fragment it is part of, to another fragment.
(IT) I is master and it transfers master control to E.

At time Té the signal corresponding to (I) arrives at D, and causes

the generation of the following signal:

(a) D is active and signals E making DE and unmarked branch and

transferring master control to E.

At time Tj signals corresponding to (1) and (a) reach their
respective destinations, and assuming that D unambiguously becomes

master it generates the following signal:
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(A) D signals I to become master.

At time Ty the signals corresponding to (II) and (A) arrive at
their respective destinations and cause the generation the following

signals:

(al) E signals F making EF an unmarked branch and transferring

master control to F.
(a2) I signals E to become master.

At time Tg signals corresponding to (5) and (al) arrive at their
respective destinations, and assume that F unambiguously becomes master.
F will upon examining its fragment state discover that the MST has been

constructed and broadcast a ‘done”’ signal.

At  time T6 the signal corresponding to (a2) arrives at E. E
becomes master and discovers that the MST has been constructed. It too

broadcasts a “done’ signal.

There are no more signals in the system except ‘done’ signals and
the algorithm will terminate. This example shows the type of race

conditions that can occur and how the algorithm copes with them.
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THE ARPANET ROUTING ALGORITHM

In this appendix we describe part of the routing algorithm
originally installed in the ARPANET. Much of this appendix is taken
verbatim from [McQuillan74]. Details of the routing algorithms and

their performance can be found in McQuillan®s thesis.

The: ARPANET routing algorithm an be summarized as follows. This
algorithm directs each packet to its destination along a path for which
the totgl estimated transit time 1is smallest. This path 1s not
determined in advance. Instead, each IMP individually' decides which
line (link, edge) to use in transmitting a packet addressed to another
desfination. This selection is made by a simple table lookup procedure.
For each possible destination, an entry in the routing table designates

the appropriate next line in the path.

Each IMP maintains a NETWORK DELAY TABLE which gives an estimate of
the delay it expects a packet to encounter in reaching every possible

destination over each of its output lines. This table and other tables

mentioned below are shown in figure C.1 as kept by IMP 2, for example. . ..

Thus, the delay from IMP 2 to IMP 5 using line 3 is found to be 4 in the
NETWORK DELAY TABLE. Periodically, every 2/3 of a second, the MP
gselects thé miniﬁum. delay to each destination and puts it in the
MINIMUM DELAY_TABLE. It also notes the line giving the minimum delay

~ and keeps the number of the line in the ROUTING TABLE for use in routing
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Destination
1 2 3 4 5 e o » 64
11}14 6 7112 5 21 4
o
» 5 2 8 8 7 5 8 18 5
-t
3 6 7 6 8 4 19 3
, IMP_
NETWORK_DEIAY TABLE DELAY__
TABLE
6 0 6 5 4 18
MINIMUM_DELAY:- TABLE
3 0 3 2 3 2

at '/}' ROUTING_TABLE
IMP2

Figure C.1. THE ARPANET ROUTING TABLES IN AN IMP.
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packets. | Also  every 2/3 of a second, the IMP passes its
MINIMUM DELAY TABLE to each of its immediage neighbors, that 1is, it
sends the MINIMUM DELAY TABLE out each of its phone lines. Of course,
before the MINIMUM DELAY TABLE is transmitted to the neighboring IMPs,

the IMP sets the minimum delay to itself to zero.
i

Since all the neighbors of an :IMP are also sending out their
MINIMUM DELAY TABLE every 2/3 second, wi;h their owﬁ entry set to zero,
an IMP receives a MINIMUM DELAY TABLE from each of its neighbors every
2/3 second. These tables are read in over the rows of the
NEIWORK DELAY TABLE as they arrive. The row to be written over is the
row corresponding to the phone line that the arriving
MINIMUM DELAY TABLE came in over. After all the neighbors’ estimates
have arrived, the IMP adds the delay saved by the IMP itself to the
neighbors’ estimates. This is done by adding the IMP_DELAY TABLE to
each column of the NETWORK DELAY TABLE. Thus the IMP has an estimate of
the total delay to each destination over the best path to that

destination,

In parallel with tﬁis computation, the IMPs also compute and
propagate shortest path information in a similar fashion. This
infopmation is used only in the detgrmination_qf connectivity, ,An_uppgr
limit ‘of thé number of lines in the longest path in the network is used

as the cut-off for disconncted or nonexistent nodes.
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SUM OF DELAYS FOR A COMPLETELY FILLED PRIMARY SUBTREE

In this Appendix we simplify the expression for the sum of delays
for a completely filled primary subtree when separately addressed

packets are sent to each destination.

The sum of delays for a completely filled primary subtrees is:

m
2 Z(J+NPS-1).

where
§-1
LB =1+ 3 (-1
=1
and
]
UB = g: (-1)%-1,
=1

In order to simplify this expression, let
j-1
a= Z(n -1 and b—g_':(n— 1k,
1

Therefore, the inner summation becomes: .

b . .
>, (§+NPS-1)
i=1l4+a :
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b a
Y (3+NPS—1) = D (J+NPS-i)
i=0 i=0

(b+1)*(34NPS) - b(b+1)/2 ~ (at+l)*(j+NPS) + a(a+l)/2

(j+NPS)*(b—-a) + {a(at+l) ~ b(b+1)}/2

(1/2)*{2 (j+NPS) *(b-a) + (a+b)*(a-b) + (a=b)}

(1/2)*{2 (+NPS) % (D~-1)3"1 ~ (b-a)*(1+a+b))

I

(1/2)*[2 (348PS) *(D-1)3"1 - (p-1)3"Leg14((D-1)3"1-1) /2

+ (-13-1y/(0-2) 1

(1/2)*[2(3+NP8) *(D-1)3"1 = (D-1)I"La(p+(p-1)3"Le(p-1)3-4)) .
(D-2)

Now performing the outer summation we get:

m m m
Y sy x-1)3"1 - 3 p-nIt - ¥ (-1H2G-D
=1 =1 2(p-2) i=1 20-2)
m m
+ ¥ 0-D231 4 Y 4ol
i=1 2(0-2) =1 2(p-2)

The first, second and last terms can be computed together giving:

m m
(NPS - D/(2(D-2)) + 4/(2(D~2))¥*(-1)3"L + 3 3% (p-1)3-1
j=1 : . - 3=l
S . 1
= NPS®{NPS - (D-4)/(2(D-2)} + 3. 3*(d-1)371,
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m

3 (o-1)3

S 31
and 3 5% (-1)3"1 = g
= b j=1

= 4 [{(-1)™1-1}/(p-2) - 1]
db

{(m+1)*(D-1)"4(D~2) - (D-1)""! 4 13/(p-2)2

{(m+1)*(D-1)"*(D-2) -(D-1)™1}/(D-2)% + 1/(D-2)2

(D-1)™#{m(D-2)-1}/(D-2)2 + 1/(p-2)2

(D-1)™*m* (D-2) /(D-2)% - (D-1)"/(D-2)% + 1/(-2)2

m#* (D-1)™/(D-2) - {(D-1)"~1}/(D-2)2

m*(D-1)"/(D-2) - NPS/(D-2).

Since (D-1)" = NPS*(D-2) + 1, the above further simplifies to:
m*{NPS*(D~2)+1)/(D~-2) -~ NPS/(D-2)
= m*NPS + (m-NPS)/(D-2).
<. The first, second and last terms simplify to:
NPS*{NPS-(D-4)/(2(D-2)} + m*NPS + (m-NPS)/(D-2).

The third and fourth terms simplify to:

~(1/(2(0-2))* 3 {(0-1)23"2 4 (p-1)%3-1)
=1 | :
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m
~(p/(2(p-2))%  (p-1)2{3-1)
j=1

]

—(D/(2(D-2))*[{(D-1)2™ = 1}/¢(D-1}% - 1}]

~(D/(2(D-2))*[{(D=1)"~1}%{ (D-1)"+1}]
(D-1-1)*(D=-1+1)

—(1/(2(D-2))*[NPS*{ (D-1)"-1+2})

i

- (NPS/2)*[{(D=1)"=1}/(D=2) + 2/(D-2)]

-NPs2/2 - NPS/(D-2).

Therefore the total delay now becomes:

NPS*{NPS=(D=4)/(2(D=2)} + m*NPS + (m-NPS)/(D-2)
-NPS2/2 - NPS/(D-2).

= NPSZ - (D*NPS - 4NPS)/{2(D-2)} - NPS2/2 - NPS/(D-2)

+ m*NPS + (m-NPS)/(D-2)

NPS2/2 + {(-D*NPS + 4NPS -2NPS}/{2(D-2)} + m*NPS + (m=NPS)/(D-2)

NPS2/2 - NPS#(D-2)/{2(D-2)} + m*NPS + (m-NPS)/(D-2)

NPS2/2 - NPS/2 + m*NPS + (m-NPS)/(D-2)

= NPS*{NPS~1+2m}/2 - (NPS-m)/(D-2).
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A DISTRIBUTED FILE MIGRATION ALGORITHM

E.l1 Introduction

In this Appendix, we describe a distributed algorithm for locating
files in a computer network. This algorithm is applicable mainly in a
store~-and-forward network since it attempts to  minimize the
communication cost for accessing the files. In an inherently broadcast
network the communication cost to access a file is independent of its

location, as long as it is not present locally.

Therefore, we belleve that the position of a file should move
closer to the host that accesses it most often. Files will move around
in the DFS, and may even reside at a host where they are not being
referenced beéause hosts nearby access it. Drawing an analogy with
force fields, at each requesting site the magnitude of the vector is a
function of the request rate and the retrieval delay for the file. The
direction of the vector is from the file to the requesting host, ’ The
file should be placed in the two dimensional space such that the sum of

all the vectors is zero, Hence the file is in "equilibrium".

E.2 A Distributed File Migration Algorithm

A distributed algorithm is now proposed for performing automatic

file migration. It 1is based on the "climb" algorithm used as a
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réplacement algorithm _in paging systems [Coffman73], except that files
can climb in more than one direction. Assume that there is only one
copy of any file in the DFS, that there is infinite file storage space
at each local file system, and that the cost of storage is the same at
every host. We believe that files will not move about very quickly,
thereby justifying the éascade—search. Of course, the interval chosen
for deciding whether to move the files may affect the validity of RUD

entries.

Let us assume that there is only one host connected to each
switching node. Assume that each local file system has knowledge of
which hosts are its physical neighbours. It includes its own host in
this set. Figure E.la éhows the physical neighbor hosts for host 1.
Evéfy time a particular file is accessed, the file system on which it
resides calculates the cost to transfer the file to the requestor. The
cost is mainly a function of the time taken for this transaction. The
file system also records via which physical neighbor thg file first
went. (In a store and forward network, there may be adaptive routing, .
and packets of the file may take different paths, and so the physical
neighbo: recorded is the one ‘via which most packets went £for this
transaction). Hence, information on the cumulative-~cost for a given
direction and file is méiﬁfaiﬁédH at each‘.iocél file ‘s&sfeﬁ, This
information is wused to determine .which files should move and to which
physical neighbor. Hence each file climbs from iﬁs present place to
anotﬁer until it reaches what it thinks 1s the appropriate local file

system., Each local file system in the DFS ﬁay attempt to transfer a -
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file only to one of its immediate physical neighbors. Hence, although
requests for a file are coming from all hosts in the network, for
purposes of the optimization it appears as though the requests are

concentrated at the neighboring hosts.,

Any dynamic algorithm may lead to instabilities of the kind where
the file keeps moving aroun& without any apparent benefit. This could
happen if a file kept oscillating between two nodes, or if the movement
of one file caused many others to move unnecessarily. The latter
situation ;;uld arise if the local file systems had finite storage.
Therefore a file should be moved to a neighbor file system only if the

savings in cost in doing so is larger than a threshold - at 1least the

cost of moving it from one host to another.

Different strategies for making the decision to cause a file to

migrate will now be considered. First some definitions are introduced.

Let U be 'the Utilization matrix, where an element u(i,n) is the

utilization of the file i from neighbor n. U is of dimension NFNxNPN
where NFN is thé Number of Files at tﬁis Node, and NPN is the Number of
Physical Neighbors of this node. (The node counts itself as a physical
neighbor). An element of U corresponds to the cumulative-cost for a
 given direction and file. Its value'isﬁdépendeht’on'fhg‘:timé"ihﬁefﬁaly
over which the measufement was made, and may also be determined using a
predictive algorithm on the measurements. Figure E.lb illustrates what

U may look like at a host.
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Figure E.la. PHYSICAL NEIGHBOR HOSTS OF

HOST 1.
Hosts
1 2 3 4 5
1 0
2 3 8 1
32
Flles 3 5 20
4 2 15 22 8 7
5] 16 0 0 54 12
6 5 1 8 6 0
= .

Figure E.lb. THE UTILIZATION MATRIX AT
HOST 1. (Units are arbitrary.)
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Let S be the Selection matrix, where an element s(i,n) dis the

savings in cost made by transferring file i to neighbor n. S is of
dimension NFNxNPN. The n that gives the maximum saving for a particular

file is the appropriate neighbor to transfer the file.

Let D be the threshold matrix, where an element d(i,n) is the

expected cost for transferring file i to neighbor n. D is of dimension

NFNxNPN.

The elements of S are determined. from the measurements on file
utilization over a period of time. At the end of this interval, if
there are any files, whose migratioﬁ would redqce the cost of their
usage, then they are transferred to the neighbor that results in maximum
cost reduction, The elements of S are ordered by the saving in cost
achievable, if the file was to be moved to a neighbor. The file system
should attempt to move those files that would result in maximum saving

first.

We now show different ways of finding S.

E.2.1 Algorithm I

~ The simplest algorithm is one in which
S=U-Do (Enl)

In other words, a file 1is transferred to the neighbor that makes

greatest utilization of it. The algorithm makes no use of the

topological relationship of the host on which it is executing with the
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rest in the network. Hence it 1s possible that transfer of a file in
the direction of greatest utilizafion may not contribute to lowering the
’ i

overall cost of usage of the file, Figure E.2 illustrates an example in

which the decision based on this simple algorithm is sub-optimal.

E.2,2 Algorithm II

This algorithm makes some simplifying assumptions regarding the
topology and routing algorithms of the network, thereby attempting to
overcome the sub-optimality of Algorithm I. It assumes that when a file
is moved to another neighbor, thenrthe requests and transfer of data
from thg other neighbors will include, in their path, the switching node
to which the host, on which the file originally resided, is connected.
In figure E.3, if the file was originally at host 1, and is now moved to
2, then traffic from hosts 3, 4, 5 will pass through node 1. 1In
deciding which host (if any) a file should move to, the local file
system at host 1 decides if there is any saving in the total cost of
using the file after it has moved. If the file was moved to host 2,
then the cost of usage from hosts 1, 3, 4 and 5 would increase, while
that from 2 would decrease. The threshold cost and the cost of transfer

over the various links have to be taken into account as well.

We now show how elements gf S are calculated. Let L(g) be the cost
of communication from the file system at the host on which this
algorithm is executing to - its physical neighbors g, for allgl<g NPN.
The host on which the algorithm executes is g=1. These communication

costs are illustrated in figure E.3. The savings in cost in using a
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Hy

Assume that a file
U there is

File

F 1is at Host 1 and that the appropriate row of

Host

30 25 25 2

The decision to transfer the file to Host 2 would be sub-optimal if
the distribution of actual requests for F were

Host
File 1

10

12 0

Assuming infinite line capacity and minimum distance (hop) routing,
the cost (request rate X distance *) of keeping the file at 1 is

(15 4. 30 +.25 +.25 +.2) =
(30 +15 + 2 + 10 + 2 + 30 + 36)

97 units while at host 2 it would:be"
= 125 units.

Assume the distance for satisfying requests to locally resident files
is 1/2 unit while link costs are equal to 1 unit.

" Figure E.2,

SUB-OPTIMAL DECISION USING ALGORITHM I.
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a, b, ¢, d, e are link costs.

Communication costs L as seen by host 1 are:
L(1) =e; L(2) =b +e; LB) =d + e;
L(4) =c +e; L(5) =a +e

Figure E.3. HOST 1 AND ITS PHYSICAL NEIGHBORS.
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file after transfering it to neighbor n, is equal to" the difference
between the cost of keeping the file at the current host and at neighbor
n. The cost of using a file i at its current residence is equal to the

sum of its utilizations from different neighbors, and is equal to

NPN

Elu(i,g) . (E.2)
g=

Now, if the file were to move to neighbor n, the cost of using it
at n would be different. In figure E.3, if the file were to move from
host 1 to 2, then the utilization from host 5 would increase to
(L(5)-L(1)+L(2))/L(5) of iﬁs original wvalue. This is wunder the
assumption that traffic passes through the switching node to which host
l‘is connected, and thét L(1l) relative to all hosts is the same i.e. the
communication cost of retrieving a file from local file storage is the
same for all hosts. Generalizing, we conclude that when the file moves
to neighbor n, the utilization from all neighbors g, g#n, increases to
(L(g)-L{(1)+L(n))/L(g) times its original value. The utilization from n
itself ‘increases' to L(1)/L(n) times its original value. Therefore the
cost éf using.a file‘i at a neighbor n is equal to

NPN .
Cu(in)*L(L) /L(n) + ) u(d,g) *(L(g)-L(1)+L(n))/L(g). = (E.3)

g=1
g#n

The savings in cost of using the file 1 when it has moved to n is
given by equation (B.2) minus equation (E.3). Simplifying, elements of

'S are given by:
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NPN

s(i,n) = u(i,n)*(L(n)-L(1))/L(n) - 3 u(i,g)*(L(n)~L(1))/L(g)] - d(i,n)
g=1
g+n in=2,...,NPN

[
(=]

s(i,n) = sn=1

(E.4)

The savings are relative to the cost of keeping the file at this host.

E.2.3 Algorithm IIX

This algorithm is an extension of the previous one, and attempts to
take into account in greater detail the path taken by file traffic from
the neighbors once the file has been moved. If the traffic does not
pass through the node corresponding to the original host (as in
Algorithm II), then it must pass through some other node such that the
cost is 1less (by virtue of.the routing algorithms of the communication
subnet). These alternate routes depend on the topology and dynamically
changing load conditions. These factors could be taken into account in

the following way:

: NPN
8{1,n) = u(i,n)*(L(n)-L(1))/L(n) - 3 r(g,n)*u(i,g)*(L(n)-L(1))/L(g)
g=1
. g&#n
- d(i,n) n=2,...,NPN
S(i’n) e v : : e R : ‘ ;n.-=1

" (E.5)

.where r(g,n) is the topology and routing factor for each neighbor pair.

This factor is always less than or equal to one. R is the topology and

routing matrix. It 1is of dimension NPNxNPN. Further research 1is
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required to determine how these factors are calculated, i.e. should they
be calculated dynamically or can they be assumed to be heuristic

constants?

E.3 Discussion

It is hoped that this distributed optimization will approximate the
same optimum as would be predicted by an algorithm that hasmcomplete
knowledge of the topology and request rateg. This is greatly dependent
on the rate of variation of the request rates and the speed with which
such an algorithm can track the changing optimum. Further, the topology
and routing algorithms of the communication network may be such that the
stepwise optimization causes a file to get stuck at a local minimum.
The effect of network topologies and routing algorithms on the success

of this optimization technique is a topic for future research.

E.4 Finite Storage and Differing Storage Costs

Séction E.2 indicated that when the algorithm for placing the files
in the network is as distributed as the step-wise optimization proposed,
the cost for utilizing the file has to be based on the time to
successfully transfer the file, the rate of usage from each host, and
the size of the file. This iS because these are the 'dhiy‘ pa:améters
that the file system on which the file resides can measure.

Local  fi1e systems in reality will nof have infinite file storage,

and so this fact must be incorpora;ed into the distributed algorithm, if

possible. We describe a possible technique. When the file system
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storage 1s nearly comﬁletely used (say 90%), then the file system must
try to archive thoée files that were not accessed (for say 30 days). If
all the files were accessed, and there are no candidates for migration,
then the file system must do something, otherwise it can not partake in
the distributed optimization. This might be one such solution to the
finite storage problem, but results in a breakdown of the optimization
process once any host has madé the decision not to accept files from its
neighbors; Alternatively, the host can move a file such that its
movement will cause the least lqss in optimization. Hopefully such a
strategy will cause files that are not very often accessed to find their
"correct" location. These ideas ére sheer speculation since their

effect on the optimization process has not been determined.

We also feel that the distributed optimization proposed can not, in
its present fqr@, be made to incorporate differing cost of storage at
each host. Even if a host knew the cost of storage of its physical
neighbor?, this knowledge is not useful since if it were incorporated in
the cosi function, 1t might result in a file getting stuck at a local

minima.

E.5 An Observation

Traditionally, protocols have been structured in a layered .fashion
[Crocker72]. This 1is verf appropriate when interfaces.between various
lévels are clean, and étate information at lower levels is not required
at higher 1levels. However, a diStribu;ed. operating sysfem that is

trying to optimize the location of its resources in the network must
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have some knowledge of the topology of the communication ‘subnet. The
network of hosts. gcannot look 1like a fully connected network for all
purposes. The amount of topological information required should be the
minimal amount that guarantees some acceptable level of optimization.
The algorithms presented in this section suggest that near neighbor
information may be sufficient, This is, in addition, helpful when the
network is expanded by adding more hosts, since the data structures of
only the near neighbors of the new host have to be modified. This means
that the host/switching-node interface has to be sensitive to. this. The
switching node will have to tell the host along which path the packets
(say) were sent, Figure E.4 illustfates this dinteraction between the

IMP and a host in the ARPANET.

E.6 Conclusions

This appendix has proposed a distributed file migration algotithm.
Its suitability has yet to be determined. The algorithm must be
extended to an environment where there is more than one host connected
to each switching node, Cheap wideband communication may, however, make

automatic file migration unnecessary.
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USER PROCESSES

. +« . . . |FILE SYSTEM

JTEINET [ FIP RJE
HOST/HOST)
HOST/IMP /

\

IMP/HOST -\
ROUTING

coe s HOST

] . . . . IMP

TO OTHER
- HOSTS AND IMPS

Figure E.4. PROTOCOL IAYERING IN THE ARPANET.
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