set waucovmer's

Woles-to-%pat ‘
. I " ;
é\‘r'\'a—(sas(-’a‘m%
o S/
et reo
3.‘:\ ves ::an_
| ok
o) (\ SO&*&A*‘-‘N—V\Q
wle“:idb iyl _mmzmrmbfesp o4
L__/ o¥ N&
rea&ﬁ nMgv;ba Ve
i | S 'O
Now l i N Totes e il —
%“‘P\—://;:\z l ———ll -
biond?)
/ I3 M
Seereh” :
J‘ R4
holes oSl -:Zl—
7
L= ikl
(veques L)

BUNGIE - EXHIBIT 1002 Part 3 of 5

0595

ol

Achieg) -

2

(T o Pﬂ—&
Pealges

d

0596

AL

fote (oo \/

Edce Secerin | ng

% 1N ~ —

P

0597

)

e

0598

sa«lextnaml L
(pai «:%e'

(€

0599

2t (FillHole)

e 2!

|Hond le Comaechi] Dichibd
}R&(}Seamji ;&xﬁéeggzigl

L 1

0600

'Dis‘od‘o‘uf Crx stBOf)

&
%M«p . FcC‘ LD

of

Ro~d le Beoedred
Ms §

fpok‘ue i

C owweo\\w |

0601

2 ot ¢~
\ s) 8 maichbor
me %,
ywesso
Ft;ccss ol
O X Ofd,a-r
‘)Z YW F" % 2‘5
Diski]’ G'Z
Broodcest
Rdesage |

oy

o

oy

0602

0

Dfs“ri w‘

8¢ ocadevs

of

Selech next
v\u%\n‘oo -

¢ Wbovr

£ e Ny

F- 29

0603

conds hin-Checl

o)

message ©

s»—& L:\fmaﬂ

:e(e sV

(o)

0604

2\

’ Add Wﬁgkbw

-

ob

N Bk

(rsh~)

0605

Re s oy ed ’
07., M‘NM{&G

10
Add Neaghper()

o "
Teermone,
' Kﬂﬁgkbdl’”ﬂ

—
Rorgup

=) . ——

V

0606

Hordle - Origin |

0| messaqe

Mot e Corrachr
ea:} Sareh ap—ad

0°¢ r/(% 24
edce selactady IV

Yy 93

rewen-e @
0% Leen Moaghbor

o4

o~
g-re/;:\ Nex K\\ vor

6%

Cou t‘*‘”ﬁgih’(’

0607

DisJﬂ*:bv\tL

Takapeal Messe

(o

0608

0609

/e

03 W | oS
swa '\44" 'ibb.f\
ST | ot b
| e 2T neichbor
) 0 L’ 0
Sxtserod
S"‘A Mw %‘Jsc Mh,‘
ynesso &2 _;&Lﬂcj%‘ v\‘ﬂs)\br‘
o
ndd f\)u%"\h?f‘
n)

0610

22

|7 97

Eodals neagbo
wot VY ,‘éf!

N (e~
0>

M’iﬂ)u%‘\ba«‘T

3N B
‘?‘Z‘Botg!
neA

0'-/

0611

8

crende (i5F oF
nehbors, |

il 0.’

W‘rnbwu\?

massogéfl

0612

U.S. Patent Application No. 09/629,575 EXPRESS MATI, NO. ELA404935353US

10

15

20

25

BROADCASTING ON A BROADCAST CHANNEL

CROSS-REFERENCE TO RELATED APPLICATIONS

. This application is related to U.S. Patent Application No. ,
entiled “BROADCASTING NETWORK,” filed on July 31, 2000 (Attorney Docket
No. 030048001 US); U.S. Patent Application No. ’ , entitled “JOINING A
BROADCAST CHANNEL,” filed on July 31, 2000 (Attorney Docket No. 030048002 US);
U.S. Patent Application No. » “LEAVING A BROADCAST CHANNEL,”
filed on July 31,2000 (Attorney Docket No. 030048003 US); U.S. Patent Application
No. , entitled “BROADCASTING ON A BROADCAST CHANNEL,” filed
on July 31, 2000 (Attorney Docket No. 030048004 US); U.S. Patent Application
No. ' , entitled “CONTACTING A BROADCAST CHANNEL,” filed on
July 31,2000 (Attoney Docket No. 030048005 US); U.S. Patent Application
No. , entitled “DISTRIBUTED AUCTION SYSTEM,” filed on
July 31,2000 (Attomey Docket No. 030048006 US); U.S. Patent Application
No. , entitled “AN INFORMATION DELIVERY SERVICE,” filed on
July 31, 2000 (Attomey Docket .No. 030048007 US); U.S. Patent Application
No. , entitled “DISTRIBUTED CONFERENCING SYSTEM,” filed on
July 31,2000 (Attorney Docket No. 030048008 US); and U.S. Patent Application
No. , entitted “DISTRIBUTED GAME ENVIRONMENT,” filed on
July 31, 2000 (Attomey Docket No. 030048009 US), the disclosures of which are

incorporated herein by reference.

TECHNICAL FIELD

The described technology relates generally to a computer network and more

particularly, to a broadcast channel for a subset of a computers of an underlying network.
BACKGROUND

There are a wide variety of computer network communications techniques such

as point-to-point network protocols, client/server middleware, multicasting network

[03004-8004/SL003733.100) -1- 731700

0613

10

20

25

30

protocols, and peer-to-peer middleware. Each of these communications techniques have
their advantages and disadvantages, but none is particularly well suited to the simultaneous
sharing of information among computers that are widely distributed. For example,
collaborative processing applications, such as a network meeting programs, have a need to
distribute information in a timely manner to all participants who may be geographically
distributed. '

The point-to-point network protocols, such as UNIX pipes, TCP/IP, and UDP,
allow processes on different computers to communicate via point-to-point connections. The
interconnection of all participants using point-to-point connections, while theoretically
possible, does not scale well as a number of participants grows. For example, each
participating process would need to manage its direct connections to all other participating
processes. Programmers, however, find it very difficult to manage single connections, and
management of multiple connections is much more complex. In addition, participating
processes may be limited to the number of direct connections that they can support. This
limits the number of possible participants in the sharing of information.

The client/server middleware systems provide a server that coordinates the
communications between the various clients who are sharing the information. The server
functions as a central authority for controlling access to shared resources. Examples of
client/server middleware systems include remote procedure calls (“RPC”), database servers,
and the common object request broker architecture (“CORBA”). Client/server middleware
systems are not particularly well suited to sharing of information among many participants.
In particular, when a client stores information to be shared at the server, each other client
would need to poll the server to determine that new information is being shared. Such
polling places a very high overhead on the communications network. Alternatively, each
client may register a callback with the server, which the server then invokes when new
information is available to be shared. Such a callback technique presents a performance
bottleneck because a single server needs to call back to each client whenever new
information is to be shared. In addition, the reliability of the entire sharing of information
depends upon the reliability of the single server. Thus, a failure at a single computer (i.e.,
the server) would prevent communications between any of the clients.

The multicasting network protocols allow the sending of broadcast messages to

multiple recipients of a network. The current implementations of such multicasting network

[03004-8004/5L.003733.100} -2- 731/00

0614

10

15

20

25

30

protocols tend to place an unacceptable overhead on the underlying network. For example,
UDP multicasting would swamp the Internet when tryiing to locate all possible participants.
IP multicasting has other problems that include needing special-purpose infrastructure (e.g.,
routers) to support the sharing of information efficiently.

The peer-to-peer middleware communications systems rely on a multicasting
network protocol or a graph of point-to-point network protocols. Such peer-to-peer
middleware is provided by the T.120 Internet standard, which is used in such products as
Data Connection’s D.C.-share and Microsoft’s NetMeeting. These peer-to-peer middleware
systems rely upon a user to assemble a point-to-point graph of the connections used for
sharing the information. Thus, it is neither suitable nor desirable to use peer-to-peer
middleware systems when more than a small number of participants is desired. In addition,
the underlying architecture of the T.120 Internet standard is a tree structure, which relies on
the root node of the tree for reliability of the entire network. That is, each message must pass
through the root node in order to be received by all participants.

It would be desirable to have a reliable communications network that is
suitable for the simultaneous sharing of information among a large number of the processes
that are widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents a
broadcast channel.

Figure 2 illustrates a graph representing 20 computers connected to a broadcast
channel.

Figures 3A and 3B illustrate the process of connecting a new computer Z to the
broadcast channel.

Figure 4A illustrates the broadcast channel of Figure 1 with an added

computer.

Figure 4B illustrates the broadcast channel of Figure 4A with an added
computer.

Figure 4C also illustrates the broadcast channel of Figure 4A with an added
computer.
(03004-8004/SLO03733.100] -3- 7/31/00

0615

10

15

20

25

30

Figure SA illustrates the disconnecting of a cdmputer from the broadcast
channel in a planned manner.

Figure 5B illustrates the discomnecting of a computer from the broadcast
channel in an unplanned manner.

Figure 5C illustrates the neighbors with empty ports condition.

Figure 5D illustrates two computers that are not neighbors who now have
empty ports.

Figure 5E illustrates the neighbors with empty ports condition in the small
regime.

Figure 5F illustrates the situation of Figure SE when in the large regime.

Figure 6 is a block diagram illustrating components of a computer that is
connected to a broadcast channel.

Figure 7 is a block diagram illustrating the sub-components of the broadcaster
component in one embodiment.

Figure 8 is a flow diagram illustrating the processing of the connect routine in
one embodiment.

Figure 9 is a flow diagram illustrating the processing of the seek portal
computer routine in one embodiment. |

Figure 10 is a flow diagram illustrating the processing of the contact process
routine in one embodiment.

Figure 11 is a flow diagram illustrating the processing of the connect request
routine in one embodiment.

Figure 12 is a flow diagram of the processing of the check for external call
routine in one embodiment.

Figure 13 is a flow diagram of the processing of the achieve connection routine
in one embodiment.

Figure 14 is a flow diagram illustrating the processing of the external
dispatcher routine in one embodiment.

Figure 15 is a flow diagram illustrating the processing of the handle seeking
connection call routine in one embodiment.

Figure 16 is a flow diagram illustrating processing of the handle connection

request call routine in one embodiment.

[03004-8004/SL.003733.100] -4- 7731/00

0616

10

15

20

25

30

Figure 17 is a flow diagram illustrating the processing of the add neighbor
routine in one embodiment.

Figure 18 1s a flow diagram illustrating the processing of the forward
connection edge search routine in one embodiment.

Figure 19 is a flow diagram illustrating the processing of the handle edge
proposal call routine.

Figure 20 is a flow diagram illustrating the processing of the handle port
connection call routine in one embodiment.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in
one embodiment. ,

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher
routine in one embodiment.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast
message routine in one embodiment.

Figure 24 is a flow diagram illustrating the processing of the distribute
broadcast message routine in one embodiment.

Figure 26 is a flow diagram illustrating the processing of the handle connection
port search statement routine in one embodiment.

Figure 27 is a flow diagram illustrating the processing of the court neighbor
routine in one embodiment.

Figure 28 is a flow diagram illustrating the processing of the handle connection
edge search call routine in one embodiment.

Figure 29 is a flow diagram illustrating the processing of the handle connection
edge search response routine in one embodiment.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine
in one embodiment.

Figure 31 is a flow diagram illustrating the processing of the acquire message
routine in one embodiment.

Figure 32 is a flow diagram illustrating processing of the handle condition
check message in one embodiment.

Figure 33 is a flow diagram illustrating processing of the handle condition

repair statement routine in one embodiment.

{03004-8004/5L003733.100] -5- 7131/00

0617

10

15

20

25

30

Figure 34 is a flow diagram illustrating the processing of the handle condition
double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel overlays a point-to-point
communications network is provided. The broadcasting of a message over the broadcast
channel is effectively a multicast to those computers of the network that are currently
connected to the broadcast channel. In one embodiment, the broadcast technique provides a
logical broadcast channel to which host computers through their executing processes can be
connected. Each computer that is connected to the broadcast channel can broadcast
messages onto and receive messages off of the broadcast channel. Each computer that is
connected to the broadcast channel receives all messages that are broadcast while it is
connected. The logicél broadcast channel is implemented using an underlying network
system (e.g., the Internet) that allows each computer connected to the underlying network
system to send messages to each other connected computer using each computer’s address.
Thus, the broadcast technique effectively provides a broadcast channel using an underlying
network system that sends messages on a point-to-point basis.

The broadcast technique overlays the underlying network system with a graph
of point-to-point connections (i.e., edges) between host computers (i.e., nodes) through
which the broadcast channel is implemented. In one embodiment, each computer is
connected to four other computers, referred to as neighbors. (Actually, a process executing
on a computer is connected to four other processes executing on this or four other
computers.) To broadcast a message, the originating computer sends the message to each of
its neighbors using its point-to-point connections. Each computer that receives the message
then sends the message to its three other neighbors using the point-to-point connections. In
this way, the message is propagated to each computer using the underlying network to effect
the broadcasting of the message to each computer over a logical broadcast channel. A graph
in which each node is connected to four other nodes is referred to as a 4-regular graph. The
use of a 4-regular graph means that a computer would become disconnected from the
broadcast channel only if all four of the connections to its neighbors fail. The graph used by
the broadcast technique also has the property that it would take a failure of four computers to

[03004-8004/SL003733.100) -6- 31460

0618

10

15

20

25

30

'divide the graph into disjoint sub-graphs, that is two separate broadcast channels. This

property is referred to as being 4-connected. Thus, the graph is both 4-regular and 4-
connected.

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents
the broadcast channel. Each of the nine nodes A-I represents a computer that is connected to
the broadcast channel, and each of the edges represents an “edge” connection between two
computers of the broadcast channel. The time it takes to broadcast a message to each
computer on the broadcast channel depends on the speed of the connections between the
computers and the number of connections between the originating computer and each other
computer on the broadcast channel. The minimum number of connections that a message
would need to traverse between each pair of computers is the “distance” between the
computers (i.e., the shortest path between the two nodes of the graph). For example, the
distance between computers A and F is one because computer A is directly connected to
computer F. The distance between computers A and B is two because there is no direct
connection between computers A and B, but computer F is directly connected to computer B.
Thus, a message originating at computer A would be sent directly to computer F, and then
sent from computer F to computer B. The maximuin of the distances between the computers
is the “diameter” of broadcast channel. The diameter of the broadcast channel represented
by Figure 1 is two. That is, a message sent by any computer would traverse no more than
two connections to reach every other computer. Figure 2 illustrates a graph representing 20
computers connected to a broadcast channel. The diameter of this broadcast channel is 4. In
particular, the shortest path between computers 1 and 3 contains four connections (1-12, 12-
15, 15-18, and 18-3).

The broadcast technique includes (1) the connecting of computers to the
broadcast channel (i.e., composing the graph), (2) the broadcasting of messages over the
broadcast channel (i.e., broadcasting through the graph), and (3) the disconnecting of
computers from the broadcast channel (i.e., decomposing the graph) composing the graph.

Composing the Graph

To connect to the broadcast channel, the computer seeking the connection first

locates a computer that is currently fully connected to the broadcast channel and then

[03004-8004/SL003733.100] -7- 731700

0619

10

15

20

25

30

establishes a connection with four of the computers that are already connected to the
broadcast channel. (This assumes that there are at least four computers already connected to
the broadcast channel. When there are fewer than five computers.connected, the broadcast
channel cannot be a 4-regular graph. In such a case, the broadcast channel is considered to
be in a “small regime.” The broadcast technique for the small regime is described below in
detail. When five or more computers are connected, the broadcast channel is considered to
be in the “large regime.” This description assumes that the broadcast channel is in the large
regime, unless specified otherwise.) Thus, the process of connecting to the broadcast
channel includes locating the broadcast channel, identifying the neighbors for the connecting
computer, and then connecting to each identified neighbor. Each computer is aware of one
or more “portal computers” through which that computer may locate the broadcast channel.
A seeking computer locates the broadcast channel by contacting the portal computers until it
finds one that is currently fully connected to the broadcast channel. The found portal
computer then directs the identifying of four computers (i.e., to be the seeking computer’s
neighbors) to which the seeking computer is to connect. Each of these four computers then
cooperates with the seeking computer to effect the connecting of the seeking computer to the
broadcast channel. A computer that has started the process of locating a portal computer, but
does not yet have a neighbor, is in the “seeking connection state.” A computer that is
connected to at least one neighbor, but not yet four neighbors, is in the “partially connected
state.” A computer that is currently, or has been, previously connected to four neighbors is
in the “fully connected state.”

Since the broadcast channel is a 4-regular graph, each of the identified
computers is already connected to four computers. Thus, some connections between
computers need to be broken so that the seeking computer can connect to four computers. In
one embodiment, the broadcast technique identifies two pairs of computers that are currently
connected to each other. Each of these pairs of computers breaks the connection between
them, and then each of the four computers (two from each pair) connects to the seeking
computer. Figures 3A and 3B illustrate the process of a new computer Z connecting to the
broadcast channel. Figure 3A illustrates the broadcast channel before computer Z is
connected. The pairs of computers B and E and computers C and D are the two pairs that are

- identified as the neighbors for the new computer Z. The connections between each of these

pairs is broken, and a connection between computer Z and each of computers B, C, D, and E

{03004-8004/5L003733.100} -8- 7/31/00

0620 -

10

15

20

25

30

is established as indicated by Figure 3B. The process of breaking the connection between
two neighbors and reconnecting each of the former neighbors to another computer is referred
to as “edge pinning” as the edge between two nodes may be considered to be stretched and
pinned to a new node.

Each computer connected to the broadcast channel allocates five
communications ports for communicating with other computers. Four of the ports are
referred to as “internal” ports because they are the ports through which the messages of the
broadcast channels are sent. The connections between internal ports of neighbors are
referred to as “internal” connections. Thus, the internal connections of the broadcast channel
form the 4-regular and 4-connected graph. The fifth port is referred to as an “external” port
because it is used for sending non-broadcast messages between two computers. Neighbors
can send non-broadcast messages either through their internal ports of their connection or
through their external ports. A seeking computer uses external ports when locating a portal
computer.

In one embodiment, the broadcast technique establishes the computer
connections using the TCP/IP communications protocol, which is a point-to-point protocol,
as the underlying network. The TCP/IP protocol provides for reliable and ordered delivery
of messages between computers. The TCP/IP protocol provides each computer with a “port
space” that is shared among all the processes that may execute on that computer. The ports
are identified by numbers from 0 to 65,535. The first 2056 ports are reserved for specific
applications (e.g., port 80 for HTTP messages). The remainder of the ports are user ports
that are available to any process. In one embodiment, a set of port numbers can be reserved
for use by the computer connected to the broadcast channel. In an alternative embodiment,
the port numbers used are dynamically identified by each computer. Each computer
dynamically identifies an available port to be used as its call-in port. This call-in port is used
to establish connections with the external port and the internal ports. Each computer that is
connected to the broadcast channel can receive non-broadcast messages through its external
port. A seeking computer tries “dialing” the port numbers of the portal computers until a
portal computer “answers,” a call on its call-in port. A portal computer answers when it is
connected to or attempting to connect to the broadcast channel and its call-in port is dialed.
(In this description, a telephone metaphor is used to describe the connections.) When a
computer receives a call on its call-in port, it transfers the call to another port. Thus, the

[03004-8004/SL003733.100) -9- 7731/00

0621

10

15

20

25

30

seeking computer actually communicates through that transfer-to port, which is the external
port. The call is transferred so that other computers can place calls to that computer via the
call-in port. The seeking computer then communicates via that external port to request the
portal computer to assist in connecting the seeking computer to the broadcast channel. The
seeking computer could identify the call-in port number of a portal computer by successively
dialing each port in port number order. As discussed below in detail, the broadcast technique
uses a hashing algorithm to select the port number order, which may result in improved
performance.

A seeking computer could connect to the broadcast channel by connecting to
computers either directly connected to the found portal computer or directly connected to one
of its neighbors. A possible problem with such a scheme for identifying the neighbors for
the seeking computer is that the diameter of the broadcast channel may increase when each
seeking computer uses the same found portal computer and establishes a connection to the
broadcast channel directly through that found portal computer. Conceptually, the graph
becomes elongated in the direction of where the new nodes are added. Figures 4A-4C
illustrate that possible problem. Figure 4A illustrates the broadcast channel of Figure 1 with
an added computer. Computer J was connected to the broadcast channel by edge pinning
edges C-D and E-H to computer J. The diameter of this broadcast channel is still two.
Figure 4B illustrates the broadcast channel of Figure 4A with an added computer.
Computer K was connected to the broadcast channel by edge pinning edges E-J and B-C to
computer K. The diameter of this broadcast channel is three, because the shortest path from
computer G to computer K is through edges G-A, A-E, and E-K. Figure 4C also illustrates
the broadcast channel of Figure 4A with an added computer. Computer K was connected to
the broadcast channel by edge pinning edges D-G and E-J to computer K. The diameter of
this broadcast channel is, however, still two. Thus, the selection of neighbors impacts the
diameter of the broadcast channel. To help minimize the diameter, the broadcast technique
uses a random selection technique to identify the four neighbors of a computer in the seeking
connection state. The random selection technique tends to distribute the connections to new
seeking computers throughout the computers of the broadcast channel which may result in
smaller overall diameters.

[03004-8004/S1.003733.100] -10- 731/00

0622

10

15

20

25

30

Broadcasting Through the Graph

As described above, each computer that is connected to the broadcast channel
can broadcast messages onto the broadcast channel and does receive all messages that are
broadcast on the broadcast channel. The computer that originates a message to be broadcast
sends that message to each of its four neighbors using the internal connections. When a
computer receives a broadcast message from a neighbor, it sends the message to its three
other neighbors. Each computer on the broadcast channel, except the originating computer,
will thus receive a copy of each broadcast message from each of its four neighbors. Each
computer, however, only sends the first copy of the message that it receives to its neighbors
and disregards subsequently received copies. Thus, the total number of copies of a message
that is sent between the computers is 3N+1, where N is the number of computers connected
to the broadcast channel. Each computer sends three copies of the message, except for the
originating computer, which sends four copies of the message.

The redundancy of the message sending helps to ensure the overall reliability
of the broadcast channel. Since each computer has four connections to the broadcast
channel, if one computer fails during the broadcast of a'message, its neighbors have three
other connections through which they will receive copies of the broadcast message. Also, if
the internal connection between two computers is slow, each computer has three other
connections through which it may receive a copy of each message sooner.

Each computer that originates a message numbers its own messages
sequentially. Because of the dynamic nature of the broadcast channel and because there are
many possible connection paths between computers, the messages may be received out of
ordef. For example, the distance between an originating computer and a certain receiving
computer may be four. After sending the first message, the originating computer ‘and
receiving computer may become neighbors and thus the distance between them changes to
one. The first message may have to travel a distance of four to reach the receiving computer.
The second message only has to travel a distance of one. Thus, it is possible for the second
message to reach the receiving computer before the first message.

When the broadcast channel is in a steady state (i.e., no computers connecting
or disconnecting from the broadcast channel), out-of-order messages are not a problem
because each computer will eventually receive both messages and can queue messages until

all earlier ordered messages are received. If, however, the broadcast channel is not in a
[03004-8004/SL.003733.100) -11- 7731/00

0623

10

15

20

25

30

steady state, then problems can occur. In particular, 8 computer may connect to the
broadcast channel after the second message has already been received and forwarded on by
its new neighbors. When a new neighbor eventually receives the first message, it sends the
message to the newly connected computer. Thus, the newly connected computer will receive
the first message, but will not receive the second message. If the newly connected computer
needs to process the messages in order, it would wait indefinitely for the second message.
One solution to this problem is to have each computer queue all the messages
that 1t receives until it can send them in their proper order to its neighbors. This solution,
however, may tend to slow down the propagation of messages through the computers of the
broadcast channel. Another solution that may have less impact on the propagation speed is
to queue messages only at computers who are neighbors of the newly connected computers.
Each already connected neighbor would forward messages as it receives them to its other
neighbors who are not newly connected, but not to the newly connected neighbor. The
already connected neighbor would only forward messages from each originating computer to
the newly connected computer when it can ensure that no gaps in the messages from that
originating computer will occur. In one embodiment, the already connected neighbor may
track the highest sequence number of the messages already received and forwarded on from
each originating computer. The already connected computer will send only higher numbered
messages from the originating computers to the newly connected computer. Once all lower
numbered messages have been received from all originating computers, then the already
connected computer can treat the newly connected computer as its other neighbors and
simply forward each message as it is received. In another embodiment, each computer may
queue messages and only forwards to the newly connected computer those messages as the
gaps are filled in. For example, a computer might receive messages 4 and 5 and then receive
message 3. In such a case, the already connected computer would forward queue messages 4
and 5. When message 3 is finally received, the already connected computer will send
messages 3, 4, and 5 to the newly connected computer. If messages 4 and 5 were sent to the
newly connected computer before message 3, then the newly connected computer would
process messages 4 and 5 and disregard message 3. Because the already connected computer
queues messages 4 and 5, the newly connected computer will be able to process message 3.

It is possible that a newly connected computer will receive a set of messages from an

originating computer through one neighbor and then receive another set of message from the

{03004-8004/SL003733.100] -12- 131100

0624

10

15

20

25

30

same originating computer through another neighbor. If the second set of messages contains
a message that is ordered earlier than the messages of the first set received, then the newly
connected computer may ignore that earlier ordered message if the computer already

processed those later ordered messages.

Decomposing the Graph

A connected computer disconnects from the broadcast channel either in a
planned or unplanned manner. When a computer disconnects in a planned manner, it sends a
disconnect message to each of its four neighbors. The disconnect message includes a list that
identifies the four neighbors of the disconnecting computer. When a neighbor receives the
disconnect message, it tries to connect to one of the computers on the list. In one
embodiment, the first computer in the list will try to connect to the second computer in the
list, and the third computer in the list will try to connect to the fourth computer in the list. If
a computer cannot connect (e.g., the first and second computers are already connected), then
the computers may try connecting in various other combinations. If connections cannot be
established, each computer broadcasts a message that it needs to establish a connection with
another computer. When a computer with an available internal port receives the message, it
can then establish a connection with the computer that broadcast the message. Figures 5A-
5D illustrate the disconnecting of a computer from the broadcast channel. Figure SA
illustrates the disconnecting of a computer from the broadcast channel in a planned manner.
When computer H decides to disconnect, it sends its list of neighbors to each of its neighbors
(computers A, E, F and I) and then disconnects from each of its neighbors. When
computers A and I receive the message they establish a connection between them as
indicated by the dashed line, and similarly for computers E and F.

When a computer disconnects in an unplanned manner, such as resulting from
a power failure, the neighbors connected to the disconnected computer recognize the
disconnection when each attempts to send its next message to the now disconnected
computer. Each former neighbor of the disconnected computer recognizes that it is short one
connection (i.e., it has a hole or empty port). When a connected computer detects that one of
its neighbors is now disconnected, it broadcasts a port connection request on the broadcast
channel, which indicates that it has one internal port that needs a connection. The port

connection request identifies the call-in port of the requesting computer. When a connected

{03004-8004/SL003733.100] -13- 131/00

0625

10

15

20

25

30

computer that is also short a connection receives the connection request, it communicates
with the requesting computer through its external port to establish a connection between the
two computers. Figure 5B illustrates the disconnecting of a computer from the broadcast
channel in an unplanned manner. In this illustration, computer H has disconnected in an
unplanned manner. When each of its neighbors, computers A, E, F, and I, recognizes the
disconnection, each neighbor broadcasts a port connection request indicating that it needs to
fill an empty port. As shown by the dashed lines, computers F and I and computers A and E
respond to each other’s requests and establish a connection. '

It 1s possible that a planned or unplanned disconnection may result in two
neighbors each having an empty internal port. In such a case, since they are neighbors, they
are already connected and cannot fill their empty ports by connecting to each other. Such a
condition is referred to as the “neighbors with empty ports” condition. Each neighbor
broadcasts a port connection request when it detects that it has an empty port as described
above. When a neighbor receives the port connection request from the other neighbor, it will
recognize the condition that its neighbor also has an empty port. Such a condition may also
occur when the broadcast channel is in the small regime. The condition can only be
corrected when in the large regime. When in the small regime, each computer will have less
than four neighbors. To detect this condition in the large regime, which would be a problem
if not repaired, the first neighbor to receive the port connection request recognizes the
condition and sends a condition check message to the other neighbor. The condition check
message includes a list of the neighbors of the sending computer. When the receiving
computer receives the list, it compares the list to its own list of neighbors. If the lists are
different, then this condition has occurred in the large regime and repair is needed. To repair
this condition, the receiving computer will send a condition repair request to one of the
neighbors of the sending computer which is not already a neighbor of the receiving
computer. When the computer receives the condition repair request, it disconnects from one
of its neighbors (other than the neighbor that is involved with the condition) and connects to
the computer that sent the condition repair request. Thus, one of the original neighbors
involved in the condition will have had a port filled. However, two computers are still in
need of a connection, the other original neighbor and the computer that is now disconnected
from the computer that received the condition repair request. Those two computers send out

port connection requests. If those two computers are not neighbors, then they will connect to

[03004-8004/SL003733.100] -14- 31/00

0626

10

15

20

25

30

each other when they receive the requests. If, however, the two computers are neighbors,
then they repeat the condition repair process until two non-neighbors are in need of
connections.

It is possible that the two original neighbors with the condition may have the
same set of neighbors. When the neighbor that receives the condition check message
determines that the sets of neighbors are the same, it sends a condition double check message
to one of its neighbors other than the neighbor who also has the condition. When the
computer receives the condition double check message, it determines whether it has the same
set of neighbors as the sending computer. If so, the broadcast channel is in the small regime
and the condition is not a problem. If the set of neighbors are different, then the computer
that received the condition double check message sends a condition check message to the
original neighbors with the condition. The computer that receives that condition check
message directs one of it neighbors to connect to one of the original neighbors with the
condition by sending a condition repair message. Thus, one of the original neighbors with
the condition will have its port filled.

Figure 5C illustrates the neighbors with empty ports condition. In this
illustration, computer H disconnected in an unplanned manner, but computers F and I
responded to the port connection request of the other and are now connected together. The
other former neighbors of bomputer H, computers A and E, are aiready neighbors, which
gives rise to the neighbors with empty ports condition. In this example, computer E received
the port connection request from computer A, recognized the possible condition, and sent
(since they are neighbors via the internal connection) a condition check message with a list
of its neighbors to computer A. When computer A received the list, it recognized that
computer E has a different set of neighbor (i.e., the broadcast channel is in the large regime).
Computer A selected computer D, which is a neighbor of computer E and sent it a condition
repair request. When computer D received the condition repair request, it disconnected from
one of its neighbors (other than computer E), which is computer G in this example.
Computer D then connected to computer A. Figure 5D illustrates two computers that are not
neighbors who now have empty ports. Computers E and G now have empty ports and are
not currently neighbors. Therefore, computers E and G can connect to each other.

Figures 5E and SF further illustrate the neighbors with empty ports condition.

Figure 5E illustrates the neighbors with empty ports condition in the small regime. In this
{03004-8004/5L003733.100) -15- 7131400

0627

10

15

20

25

30

example, if computer E disconnected in an unplanned manner, then each computer
broadcasts a port connection request when it detects the disconnect. When computer A
receives the port connection request form computer B, it detects the neighbors with empty
ports condition and sends a condition check message to computer B. Computer B recognizes
that it has the same set of neighbors (computer C and D) as computer A and then sends a
condition double check message to computer C. Computer C recognizes that the broadcast

channel is in the small regime because is also has the same set of neighbors as computers A

. and B, computer C may then broadcast a message indicating that the broadcast channel is in

the small regime.

Figure 5F illustrates the situation of Figure SE when in the large regime. As
discussed above, computer C receives the condition double check message from computer B.
In this case, computer C recognizes that the broadcast channel is in the large regime because
it has a set of neighbors that is different from computer B. The edges extending up from
computer C and D indicate connections to other computers. Computer C then sends a
condition check message to computer B. When computer B receives the condition check
message, it sends a condition repair message to one of the neighbors of computer C. The

computer that receives the condition repair message disconnects from one of its neighbors,

other than computer C, and tries to connect to computer B and the neighbor from which it

disconnected tries to connect to computer A.
Port Selection

As described above, the TCP/IP protocol designates ports above number 2056
as user ports. The broadcast technique uses five user port numbers on each computer: one
external port and four internal ports. Generally, user ports cannot be statically allocated to
an application program because other applications programs executing on the same computer
may use conflicting port numbers. As a result, in one embodiment, the computers connected
to the broadcast channel dynamically allocate their port numbers. Each computer could
simply try to locate the lowest number unused port on that computer and use that port as the
call-in port. A seeking computer, however, does not know in advance the call-in port
number of the portal computers when the port numbers are dynamicz_llly allocated. Thus, a
seeking computer needs to dial ports of a portal computer starting with the lowest port
number when locating the call-in port of a portal computer. If the portal computer is

(03004-8004/SL003733.100] -16- 31100

0628

10

15

20

25

30

connected to (or attempting to connect to) the broadcast channel, then the seeking computer

~ would eventually find the call-in port. If the portal computer is not connected, then the

seeking computer would eventually dial every user port. In addition, if each application
program on a computer tried to allocate low-ordered port numbers, then a portal computer
may end up with a high-numbered port for its call-in port because many of the low-ordered
port numbers would be used by other application programs. Since the dialing of a port is a
relatively slow process, it would take the seeking computer a long time to locate the call-in
port of a portal computer. To minimize this time, the broadcast technique uses a port
ordering algorithm to identify the port number order that a portal computer should use when
finding an available port for its call-in port. In one embodiment, the broadcast technique
uses a hashing algorithm to identify the port order. The algorithm preferably distributes the
ordering of the port numbers randomly through out the user port number space and only
selects each port number once. In addition, every time the algorithm is executed on any
computer for a given channel type and channel instance, it generates the same port ordering,
As described below, it is possible for a computer to be connected to multiple broadcast
Channels that are uniquely identified by channel type and channel instance. The algorithm
may be “seeded” with channel type and channel instance in order to generate a unique
ordering of port numbers for each broadcast channel. Thus, a seeking computer will dial the
ports of a portal computer in the same order as the portal computer used when allocating its
call-in port.

If many computers are at the same time seeking connection to a broadcast
channel through a single portal computer, then the ports of the portal computer may be busy
when called by seeking computers. The seeking computers would typically need to keep on
redialing a busy port. The process of locating a call-in port may be significantly slowed by
such redialing. In one embodiment, each seeking computer may each reorder the first few
port numbers generated by the hashing algorithm. For example, each seeking computer
could randomly reorder the first eight port numbers generated by the hashing algorithm. The
random ordering could also be weighted where the first port number generated by the
hashing algorithm would have a 50% chance of being first in the reordering, the second port
number would have a 25% chance of being first in the reordering, and so on. Because the
secking computers would use different orderings, the likelihood of finding a busy port is

reduced. For example, if the first eight port numbers are randomly selected, then it is
[U3004-8004/SL003733.100) -17- 731100

0629

10

15

20

25

30

possible that eight seeking computers could be simultaneously dialing ports in different
sequences which would reduce the chances of dialing a busy port.

Locating a Portal Computer

Each computer that can connect to the broadcast channel has a list of one or
more portal computers through which it can connect to the broadcast channel. In one
embodiment, each computer has the same set of portal computers. A seeking computer
locates a portal computer that is connected to the broadcast channel by successively dialing
the ports of each portal computer in the order specified by an algorithm. A seeking computer
could select the first portal computer and then dial all its ports until a call-in port of a
computer that is fully connected to the broadcast channel is found. If no call-in port is
found, then the seeking computer would select the next portal computer and repeat the
process until a portal computer with such a call-in port is found. A problem with such a
seeking technique is that all user ports of each portal computer are dialed until a portal
computer fully connected to the broadcast channel is found. In an alternate embodiment, the
seeking computer selects a port number according to the algorithm and then dials each portal
computer at that port number. If no acceptable call-in port to the broadcast channel is found,
then the seeking computer selects the next port number and repeats the process. Since the
call-in ports are likely allocated at lower-ordered port numbers, the seeking computer first
dials the port numbers that are most likely to be call-in ports of the broadcast channel. The
seeking computers may have a maximum search depth, that is the number of ports that it will
dial when seeking a portal computer that is fully connected. If the seeking computer
exhausts its search depth, then either the broadcast channel has not yet been established or, if
the seeking computer is also a portal computer, it can then establish the broadcast channel
with itself as the first fully connected computer.

When a seeking computer locates a portal computer that is itself not fully
connected, the two computers do not connect when they first locate each other because the
broadcast channel may already be established and accessible through a higher-ordered port
number on another portal computer. If the two seeking computers were to connect to each
other, then two disjoint broadcast channels would be formed. Each seeking computer can
share its experience in trying to locate a portal computer with the other seeking computer. In
particular, if one seeking computer has searched all the portal computers to a depth of eight,

103004-8004/SL003733.100] -18- 31/00

0630

10

15

20

25

30

then the one seeking computer can share that it has searched to a depth of eight with another
seeking computer. If that other seeking computer has searched to a depth of, for example,
only four, it can skip searching through depths five through eight and that other seeking
computer can advance its searching to a depth of nine.

In one embodiment, each computer may have a different set of portal
computers and a dlﬂ'erent maximum search depth. In such a situation, it may be possible that
two disjoint broadcast channels are formed because a seeking computer cannot locate a fully
connected port computer at a higher depth. Similarly, if the set of portal computers are
disjoint, then two separate broadcast channels would be formed.

Identifying Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting computer are
preferably selected randomly from the set of currently connected computers. One advantage
of the broadcast channel, however, is that no computer has global knowledge of the
broadcast channel. Rather, each computer has local knowledge of itself and its neighbors.
This limited local knowledge has the advantage that all the connected computers are peers
(as far as the broadcasting is concerned) and the failure of any one computer (actually any
three computers when in the 4-regular and 4-connect form) will not cause the broadcast
channel to fail. This local knowledge makes it difficult for a portal computer to randomly
select four neighbors for a seeking computer.

To select the four computers, a portal computer sends an edge connection
request message through one of its internal connections that is randomly selected. The
receiving computer again sends the edge connection request message through one of its
internal connections that is randomly selected. This sending of the message corresponds to a
random walk through the graph that represents the broadcast channel. Eventually, a
receiving computer will decide that the message has traveled far enough to represent a
randomly selected computer. That receiving computer will offer the internal connection
upon which it received the edge connection request message to the seeking computer for
edge pinning. Of course, if either of the computers at the end of the offered internal
connection are already neighbors of the seeking computer, then the seeking computer cannot
connect through that internal connection. The computer that decided that the message has

{03004-8004/SL003733.100] -19- 31100

0631

10

15

20

25

30

traveled far enough will detect this condition of already being a neighbor and send the
message to a randomly selected neighbor.

In one embodiment, the distance that the edge connection request message
travels is established by the portal computer to be approximately twice the estimated
diameter of the broadcast channel. The message includes an indication of the distance that it
is to travel. Each receiving computer decrements that distance to travel before sending the
message on. The computer that receives a message with a distance to travel that is zero is
considered to be the randomly selected computer. If that randomly selected computer cannot
connect to the seeking computer (e.g., because it is already connected to it), then that
randomly selected computer forwards the edge connection request to one of its neighbors
with a new distance to travel. In one embodiment, the forwarding computer toggles the new
distance to travel between zero and one to help prevent two computers from sending the
message back and forth between each other.

Because of the local nature of the information maintained by each computer
connected to the broadcast channel, the computers need not generally be aware of the
diamcter of the broadcast channel. In one embodiment, each message sent through the
broadcast channel has a distance traveled field. Each computer that forwards a message
increments the distance traveled field. Each computer also maintains an estimated diameter
of the broadcast channel. When a computer receives a message that has traveled a distance
that indicates that the estimated diameter is too small, it updates its estimated diameter and
broadcasts an estimated diameter message. When a computer receives an estimated diameter
message that indicates a diameter that is larger than its own estimated diameter, it updates its
own estimated diameter. This estimated diameter is used to establish the distance that an

edge connection request message should travel.

External Data Representation
The computers connected to the broadcast channel may internally store their

data in different formats. For example, one computer may use 32-bit integers, and another
computer may use 64-bit integers. As another example, one computer may use ASCII to
represent text and another computer may use Unicode. To allow communications between
heterogeneous computers, the messages sent over the broadcast channel may use the XDR
(“eXternal Data Representation”) format.

(03004-8004/5L003733.100) -20- 1131/00

0632

10

15

20

25

30

The underlying peer-to-peer communications protocol may send multiple
messages in a single message stream. The traditional technique for retrieving messages from
a stream has been to repeatedly invoke an operating system routine to retrieve the next
message in the stream. The retrieval of each message may require two calls to the operating
system: one to retrieve the size of the next message and the other to retrieve the number of
bytes indicated by the retrieved size. Such calls to the operating system can, however, be
very slow in comparison to the invocations of local routines. To overcome the inefficiencies
of such repeated calls, the broadcast technique in one embodiment, uses XDR to identify the
message boundaries in a stream of messages. The broadcast technique may request the
operating system to provide the next, for example, 1,024 bytes from the stream. The
broadcast technique can then repeatedly invoke the XDR routines to retrieve the messages
and use the success or failure of each invocation to determine whether another block of 1,024
bytes needs to be retrieved from the operating system. The invocation of XDR routines do
not involve system calls and are thus more efficient than repeated system calls.

M-Regular

In the embodiment described above, each fully connected computer has four
internal connections. The broadcast technique can be used with other numbers of internal
connections. For example, each computer could have 6, 8, or any even number of internal
connections. As the number of internal connections increase, the diameter of the broadcast
channel tends to decrease, and thus propagation time for a message tends to decrease. The
time that it takes to connect a seeking computer to the broadcast channel may, however,
increase as the number of internal connections increases. When the number of internal
connectors is even, then the broadcast channel can be maintained as m-regular and
m-connected (in the steady state). If the number of internal connections is odd, then when
the broadcast channel has an odd number of computers connected, one of the computers will
have less than that odd number of internal connections. In such a situation, the broadcast
network is neither m-regular nor m-connected. When the next computer connects to the
broadcast channel, it can again become m-regular and m-connected. Thus, with an odd
number of internal connections, the broadcast channel toggles between being and not being

m-regular and m-connected.

[03004-8004/SL003733.100] -21- 731/00

0633

10

15

20

25

30

Components
Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcast channel. The above description generally assumed that there was
only one broadcast channel and that each computer had only one connection to that broadcast
channel. More generally, a network of computers may have multiple broadcast channels,
each computer may be connected to more than one broadcast channel, and each computer
can have multiple connections to the same broadcast channel. The broadcast channel is well
suited for computer processes (e.g., application programs) that execute collaboratively, such
as network meeting programs. Each computer process can connect to one or more broadcast
channels. The broadcast channels can be identified by channel type (e.g., application
program name) and channel instance that represents separate broadcast channels for that
channel type. When a process httcmpts to connect to a broadcast channel, it seeks a process
currently connected to that broadcast channel that is executing on a portal computer. The
seeking process identifies the broadcast channel by channel type and channel instance.
Computer 600 includes multiple application programs 601 executing as
separate processes. Each application program interfaces with a broadcaster component 602
for each broadcast channel to which it is connected. The broadcaster component may be
implement as an object that is instantiated within the process space of the application
program. Alternatively, the broadcaster component may execute as a separate process or
thread from the application program. In one embodiment, the broadcaster component
provides functions (e.g., methods of class) that can be invoked by the application programs.
The primary functions provided may include a connect function that an application program
invokes passing an indication of the broadcast channel to which the application program
wants to connect. The application program may provide a callback routine that the
broadcaster component invokes to notify the application program that the connection has
been completed, that is the process enters the fully connected state. The broadcaster
component may also provide an acquire message function that the application program can
invoke to retrieve the next message that is broadcast on the broadcast channel. Alternatively,
the application program may provide a callback routine (which may be a virtual function
provided by the application program) that the broadcaster component invokes to notify the
application program that a broadcast message has been received. FEach broadcaster
component allocates a call-in port using the hashing algorithm. When calls are answered at

103004-8004/SL003733.100] -22- 131/00

0634

10

15

20

25

the call-in port, they are transferred to other ports that serve as the external and internal
ports.

The computers connecting to the broadcast channel may include a central
processing unit, memory, input devices (e.g., keyboard and pointing device), output devices
(e.g., display devices), and storage devices (e.g.,, disk drives). The memory and storage
devices are computer-readable medium that may contain computer instructions that
implement the broadcaster component. In addition, the data structures and message
structures may be stored or transmitted via a signal transmitted on a computer-readable
media, such as a communications link.

Figure 7 is a block diagram illustrating the sub-components of the broadcaster
component in one embodiment. The broadcaster component includes a connect component
701, an external dispatcher 702, an internal dispatcher 703 for each internal connection, an
acquire message component 704 and a broadcast component 712. The application program
may provide a connect callback component 710 and a receive response component 711 that
are invoked by the broadcaster component. The application program invokes the connect
component to establish a connection to a designated broadcast channel. The connect
component identifies the external port and installs the external dispatcher for handling
messages that are received on the external port. The connect component invokes the seek
portal computer component 705 to identify a portal computer that is connected to the
broadcast channel and invokes the connect request component 706 to ask the portal computer
(if fully connected) to select neighbor processes for the newly connecting process. The
external dispatcher receives external messages, identifies the type of message, and invokes
the appropriate handling routine 707. The internal dispatcher receives the internal messages,
identifies the type of message, and invokes the appropriate handling routine 708. The
received broadcast messages are stored in the broadcast message queue 709. The acquire
message component is invoked to retrieve messages from the broadcast queue. The
broadcast component is invoked by the application program to broadcast messages in the
broadcast channel.

The following tables list messages sent by the broadcaster components.

(03004-8004/SL003733.100| -23- 131/00

0635

EXTERNAL MESSAGES

Message Type

Description

seeking_connection_call

Indicates that a seeking process would like to know whether the
receiving process is fully connected to the broadcast channel

connection_request_call

Indicates that the sending process would like the receiving
process to initiate a connection of the sending process to the
broadcast channel

edge_proposal_call

Indicates that the sending process is proposing an edge through
which the receiving process can connect to the broadcast
channel (i.e., edge pinning)

port_connection_call

Indicates that the sending process is proposing a port through
which the receiving process can connect to the broadcast
channel

connected_stmt

Indicates that the sending process is connected to the broadcast
channel

condition_repair_stmt

Indicates that the receiving process should disconnect from one
of its neighbors and connect to one of the processes involved in
the neighbors with empty port condition

INTERNAL MESSAGES

Message Type

Description

broadcast_stmt

Indicates a message that is being broadcast through the
broadcast channel for the application programs

connection_port_search_stmt | Indicates that the designated pracess is looking for a port

through which it can connect to the broadcast channel

connection_edge_search_call | Indicates that the requesting process is looking for an edge

through which it can connect to the broadcast channel

connection_edge_search_resp | Indicates whether the edge between this process and the

sending neighbor has been accepted by the requesting
party

diameter_estimate_stmt

Indicates an estimated diameter of the broadcast channel

diameter_reset_stmt

Indicates to reset the estimated diameter to indicated
diameter

disconnect_stmt

Indicates that the sending neighbor is disconnecting from
the broadcast channel

condition_check stmt

Indicates that neighbors with empty port condition have

103004-8004/5L003733.100)

-24. 131100

0636

10

15

20

25

been detected

condition_double_check_stmt | Indicates that the neighbors with empty ports have the
same set of neighbors

shutdown_stmt Indicates that the broadcast channel is being shutdown

Flow Diagrams
Figures 8-34 are flow diagrams illustrating the processing of the broadcaster

component in one embodiment. Figure 8 is a flow diagram illustrating the processing of the
connect routine in one embodiment. This routine is passed a channel type (e.g., application
name) and channel instance (e.g., session identifier), that identifies the broadcast channel to
which this process wants to connect. The routine is also passed auxiliary information that
includes the list of portal computers and a connection callback routine. When the connection
is established, the connection callback routine is invoked to notify the application program.
When this process invokes this routine, it is in the seeking connection state. When a portal
computer is located that is connected and this routine connects to at least one neighbor, this
process enters the partially connected state, and when the process eventually connects to four
neighbors, it enters the fully connected state. When in the small regime, a fully connected
process may have less than four neighbors. In block 801, the routine opens the call-in port
through which the process is to communicate with other processes when establishing external
and internal connections. The port is selected as the first available port using the hashing
algorithm described above. In block 802, the routine sets the connect time to the current
time. The connect time is used to identify the instance of the process that is connected
through this external port. One process may connect to a broadcast channel of a certain
channel type and channel instance using one call-in port and then disconnects, and another
process may then connect to that same broadcast channel using the same call-in port. Before
the other process becomes fully connected, another process may try to communicate with it
thinking it is the fully connected old process. In such a case, the connect time can be used to
identify this situation. In block 803, the routine invokes the seek portal computer routine
passing the channel type and channel instance. The seek portal computer routine attempts to
locate a portal computer through which this process can connect to the broadcast channel for
the passed type and instance. In decision block 804, if the seek portal computer routine is

{03004-8004/5L003733.100) -25- 131/00

0637

10

15

20

25

30

successful in locating a fully connected process on that portal computer, then the routine
continues at block 805, else the routine returns an unsuccessful indication. In decision block
805, if no portal computer other than the portal computer on which the process is executing
was located, then this is the first process to fully connect to broadcast channel and the
routine continues at block 806, else the routine continues at block 808. In block 806, the
routine invokes the achieve connection routine to change the state of this process to fully
connected. In block 807, the routine installs the external dispatcher for processing messages
received through this process’ external port for the passed channel type and channel instance.
When a message is received through that external port, the external dispatcher is invoked.
The routine then retumns. In block 808, the routine installs an external dispatcher. In block
809, the routine invokes the connect request routine to initiate the process of identifying
neighbors for the seeking computer. The routine then returns.

Figure 9 is a flow diagram illustrating the processing of the seek portal
computer routine in one embodiment. This routine is passed the channel type and channel
instance of the broadcast channel to which this process wishes to connect. This routine, for
each search depth (e.g., port number), checks the portal computers at that search depth. If a
portal computer is located at that search depth with a process that is fully connected to the
broadcast channel, then the routine returns an indication of success. In blocks 902-911, the
routine loops selecting each search depth until a process is located. In block 902, the routine
selects the next search depth using a port number ordering algorithm. In decision block 903,
if all the search depths have already been selected during this execution of the loop, that is
for the currently selected depth, then the routine returns a failure indication, else the routine
continues at block 904. In blocks 904-911, the routine loops selecting each portal computer
and determining whether a process of that portal computer is connected to (or attempting to
connect to) the broadcast channel with the passed channel type and channel instance. In

block 904, the routine selects the next portal computer. In decision block 905, if all the '

portal computers have already been selected, then the routine loops to block 902 to select the
next search depth, else the routine continues at block 906. In block 906, the routine dials the
selected portal computer through the port represented by the search depth. In decision block
907, if the dialing was successful, then the routine continues at block 908, else the routine
loops to block 904 to select the next portal computer. The dialing will be successful if the
dialed port is the call-in port of the broadcast channel of the passed channel type and channel

[03004-8004/SL003733.100] -26- 31100

0638

10

15

20

25

30

instance of a process executing on that portal computer. In block 908, the routine invokes a
contact process routine, which contacts the answering process of the portal computer through
the dialed port and determines whether that process is fully connected to the broadcast
channel. In block 909, the routine hangs up on the selected portal computer. In decision
block 910, if the answering process is fully connected to the broadcast channel, then the
routine returns a success indicator, else the routine continues at block 911. In block 911, the
routine invokes the check for external call routine to determine whether an external call has
been made to this process as a portal computer and processes that call. The routine then
loops to block 904 to select the next portal computer.

Figure 10 is a flow diagram illustrating the processing of the contact process
routine in one embodiment. This routine determines whether the process of the selected
portal computer that answered the call-in to the selected port is fully connected to the
broadcast channel. In block 1001, the routine sends an external message (ie.,
seeking_connection_call) to the answering process indicating that a seeking process wants to
know whether the answering process is fully connected to the broadcast channel. In block
1002, the routine receives the external response message from the answering process. In
decision block 1003, if the external response message is successfully received (ie.,
seeking connection_resp), then the routine continues at block 1004, else the routine retums.
Wherever the broadcast component requests to receive an external message, it sets a time out
period. If the external message is not received within that time out period, the broadcaster
component checks its own call-in port to see if another process is calling it. In particular, the
dialed process may be calling the dialing process, which may result in a deadlock situation.
The broadcaster component may repeat the receive request several times. If the expected
message is not received, then the broadcaster component handles the error as appropriate. In
decision block 1004, if the answering process indicates in its response message that it is fully
connected to the broadcast channel, then the routine continues at block 1005, else the routine
continues at block 1006. In block 1005, the routine adds the selected portal computer to a
list of connected portal computers and then retuns. In block 1006, the routine adds the
answering process to a list of fellow seeking processes and then returns.

Figure 11 is a flow diagram illustrating the processing of the connect request
routine in one embodiment. This routine requests a process of a portal computer that was

identified as being fully connected to the broadcast channel to initiate the connection of this
(03004-8004/SL003733.100] -27- 7731100

0639

10

15

20

25

30

process to the broadcast channel. In decision block 1101, if at least one process of a portal
computer was located that is fully connected to the broadcast channel, then the routine
continues at block 1103, else the routine continues at block 1102. A process of the portal
computer may no longer be in the list if it recently disconnected from the broadcast channel.
In one embodiment, a seeking computer may always search its entire search depth and find
multiple portal computers through which it can connect to the broadcast channel. In block
1102, the routine restarts the process of connecting to the broadcast channel and returns. In
block 1103, the routine dials the process of one of the found portal computers through the
call-in port. In decision block 1104, if the dialing is successful, then the routine continues at
block 1105, else the routine continues at block 1113. The dialing may be unsuccessful if, for
example, the dialed process recently disconnected from the broadcast channel. In block
1105, the routine sends an external message to the dialed process requesting a connection to
the broadcast channel (i.e., connection_request_call). In block 1106, the routine receives the
response message (i.e., connection_request resp). In decision block 1107, if the response
message is successfully received, then the routine continues at block 1108, else the routine
continues at block 1113. In block 1108, the routine sets the expected number of holes (i.e.,
empty internal connections) for this process based on the received response. When in the
large regime, the expected number of holes is zero. When in the small regime, the expected
number of holes varies from one to three. In block 1109, the routine sets the estimated
diameter of the broadcast channel based on the received response. In decision block 1111, if
the dialed process is ready to connect to this process as indicated by the response message,
then the routine continues at block 1112, else the routine continues at block 1113. In block
1112, the routine invokes the add neighbor routine to add the answering process as a
neighbor to this process. This adding of the answering process typically occurs when the
broadcast channel is in the small regime. When in the large regime, the random walk search
for a neighbor is performed. In block 1113, the routine hangs up the external connection
with the answering process computer and then returns.

Figure 12 is a flow diagram of the processing of the check for external call
routine in one embodiment. This routine is invoked to identify whether a fellow seeking
process is attempting to establish a connection to the broadcast channel through this process.
In block 1201, the routine attempts to answer a call on the call-in port. In decision block
1202, if the answer is successful, then the routine continues at block 1203, else the routine

{03004-8004/SL003733.100) -28- 731/00

0640

10

15

20

25

30

returns. In block 1203, the routine receives the external message from the external port. In
decision block 1204, if the type of the message indicates that a seeking process is calling
(i.e., seeking connection_call), then the routine continues at block 1205, else the routine
returns. In block 1205, the routine sends an external message (i.e., seeking_connection_resp)
to the other seeking process indicating that this process is also is seeking a connection. In
decision block 1206, if the sending of the external message is successful, then the routine
continues at block 1207, else the routine returns. In block 1207, the routine adds the other
seeking process to a list of fellow seeking processes and then returns. This list may be used
if this process can find no process that is fully connected to the broadcast channel. In which
case, this process may check to see if any fellow seeking process were successful in
connecting to the broadcast channel. For example, a fellow seeking process may become the
first process fully connected to the broadcast channel.

Figure 13 is a flow diagram of the processing of the achieve connection routine
in one embodiment. This routine sets the state of this process to fully connected to the
broadcast channel and invokes a callback routine to notify the application program that the
process is now fully connected to the requested broadcast channel. In block 1301, the
routine sets the connection state of this process to fully connected. In block 1302, the
routine notifies fellow seeking processes that it is fully connected by sending a connected
external message to them (i.e., connected_stmt). In block 1303, the routine invokes the
connect callback routine to notify the application program and then returns.

Figure 14 is a flow diagram illustrating the processing of the external
dispatcher routine in one embodiment. This routine is invoked when the external port
receives a message. This routine retrieves the message, identifies the external message type,
and invokes the appropriate routine to handle that message. This routine loops processing
each message until all the received messages have been handled. In block 1401, the routine
answers (e.g., picks up) the external port and retrieves an external message. In decision
block 1402, if a message was retrieved, then the routine continues at block 1403, else the
routine hangs up on the external port in block 1415 and returns. In decision block 1403, if
the message type is for a process seeking a connection (i.e., seeking_connection_call), then
the routine invokes the handle seeking connection call routine in block 1404, else the routine
continues at block 1405. In decision block 1405, if the message type is for a connection

request call (i.e., connection_request_call), then the routine invokes the handle connection

{03004-8004/SL003733.100] -29- 73100

0641

10

15

20

25

30

request call routine in block 1406, else the routine continues at block 1407. In decision
block 1407, if the message type is edge proposal call (i.e., edge proposal_call), then the
routine invokes the handle edge proposal call routine in block 1408, else the routine
continues at block 1409. In decision block 1409, if the message type is port connect call
(Ze., port_connect_call), then the routine invokes the handle port connection call routine in
block 1410, else the routine continues at block 1411. In decision block 1411, if the message
type is a connected statement (i.e., connected stmt), the routine invokes the handle
connected statement in block 1112, else the routine continues at block 1212. In decision
block 1412, if the message type is a condition repair statement (i.e., condition_repair_stmt),
then the routine invokes the handle condition repair routine in block 1413, else the routine
loops to block 1414 to process the next message. After each handling routine is invoked, the
routine loops to block 1414. In block 1414, the routine hangs up on the external port and
continues at block 1401 to receive the next message.

Figure 15 is a flow diagram illustrating the processing of the handle seeking
connection call routine in one embodiment. This routine is invoked when a seeking process
is calling to identify a portal computer through which it can connect to the broadcast channel.
In decision block 1501, if this process is currently fully connected to the broadcast channel
identified in the message, then the routine continues at block 1502, else the routine continues
at block 1503. In block 1502, the routine sets a message to indicate that this process is fully
connected to the broadcast channel and continues at block 1505. In block 1503, the routine
sets a message to indicate that this process is not fully connected. In block 1504, the routine
adds the identification of the seeking process to a list of fellow seeking processes. If this
process is not fully connected, then it is attempting to connect to the broadcast channel. In
block 1505, the routine sends the external message response (i.e., seeking_connection_resp)
to the seeking process and then returns.

Figure 16 is a flow diagram illustrating processing of the handle connection
request call routine in one embodiment. This routine is invoked when the calling process
wants this process to initiate the connection of the process to the broadcast channel. This
routine either allows the calling process to establish an internal connection with this process
(e.g., if in the small regime) or starts the process of identifying a process to which the calling
process can connect. In decision block 1601, if this process is currently fully connected to

the broadcast channel, then the routine continues at block 1603, else the routine hangs up on

[03004-8004/SL003733.100] -30- 131100

0642

10

15

20

25

30

the external port in block 1602 and returns. In block 1603, the routine sets the number of
holes that the calling process should expect in the response message. In block 1604, the
routine sets the estmated diameter in the response message. In block 1605, the routine
indicates whether this process is ready to connect to the calling process. This process is
ready to connect when the number of its holes is greater than zero and the calling process is
not a neighbor of this process. In block 1606, the routine sends to the calling process an
external message that is responsive to the connection request call (ie.,
connection_request_resp). In block 1607, the routine notes the number of holes that the
calling process needs to fill as indicated in the request message. In decision block 1608, if
this process is ready to connect to the calling process, then the routine continues at block
1609, else the routine continues at block 1611. In block 1609, the routine invokes the add
neighbor routine to add the calling process as a neighbor. In block 1610, the routine
decrements the number of holes that the calling process needs to fill and continues at block
1611. In block 1611, the routine hangs up on the external port. In decision block 1612, if
this process has no holes or the estimated diameter is greater than one (i.e., in the large
regime), then the routine continues at block 1613, else the routine continues at block 1616.
In blocks 1613-1615, the routine loops forwarding a request for an edge through which to
connect to the calling process to the broadcast channel. One request is forwarded for each
pair of holes of the calling process that needs to be filled. In decision block 1613, if the
number of holes of the calling process to be filled is greater than or equal to two, then the
routine continues at block 1614, else the routine continues at block 1616. In block 1614, the
routine invokes the forward connection edge search routine. The invoked routine is passed
to an indication of the calling process and the random walk distance. In one embodiment, the
distance is twice in the estimated diameter of the broadcast channel. In block 1614, the
routine decrements the holes left to fill by two and loops to block 1613. In decision block
1616, if there is still a hole to fill, then the routine continues at block 1617, else the routine
returns. In block 1617, the routine invokes the fill hole routine passing the identification of
the calling process. The fill hole routine broadcasts a connection port search statement (i.e.,
connection_port_search_stmt) for a hole of a connected process through which the calling
process can connect to the broadcast channel. The routine then returns.

Figure 17 is a flow diagram illustrating the processing of the add neighbor
routine in one embodiment. This routine adds the process calling on the external port as a

{03004-8004/SL003733.100] -31- 731/00

0643

15

20

25

30

neighbor to this process. In block 1701, the routine identifies the calling process on the
external port. In block 1702, the routine sets a flag to indicate that the neighbor has not yet
received the broadcast messages from this process. This flag is used to ensure that there are
no gaps in the messages initially sent to the new neighbor. The external port becomes the
internal port for this connection. In decision block 1703, if this process is in the seeking
connection state, then this process is connecting to its first neighbor and the routine
continues at block 1704, else the routine continues at block 1705. In block 1704, the routine
sets the connection state of this process to partially connected. In block 1705, the routine
adds the calling process to the list of neighbors of this process. In block 1706, the routine
installs an internal dispatcher for the new neighbor. The internal dispatcher is invoked when
a message 1s received from that new neighbor through the internal port of that new neighbor.
In decision block 1707, if this process buffered up messages while not fully connected, then
the routine continues at block 1708, else the routine continues at block 1709. In one
embodiment, a process that is partially connected may buffer the messages that it receives
through an internal connection so that it can send these messages as it connects to new
neighbors. In block 1708, the routine sends the buffered messages to the new neighbor
through the internal port. In decision block 1709, if the number of holes of this process
equals the expected number of holes, then this process is fully connected and the routine
continues at block 1710, else the routine continues at block 1711. In block 1710, the routine
invokes the achieve connected routine to indicate that this process is fully connected. In
decision block 1711, if the number of holes for this process is zero, then the routine
continues at block 1712, else the routine returns. In block 1712, the routine deletes any
pending edges and then returns. A pending edge is an edge that has been proposed to this
process for edge pinning, which in this case is no ldnger needed.

Figure 18 is a flow diagram illustrating the processing of the forward
connection edge search routine in one embodiment. This routine is responsible for passing
along a request to connect a requesting process to a randomly selected neighbor of this
process through the internal port of the selected neighbor, that is part of the random walk. In
decision block 1801, if the forwarding distance remaining is greater than zero, then the
routine continues at block 1804, else the routine continues at block 1802. In decision block
1802, if the number of neighbors of this process is greater than one, then the routine
continues at block 1804, else this broadcast channel is in the small regime and the routine

[03004-8004/SL003733.100) -32- 31100

0644

10

15

20

25

30

continues at block 1803. In decision block 1803, if the requesting process is a neighbor of
this process, then the routine returns, eise the routine continues at block 1804. In blocks
1804-1807, the routine loops attempting to send a connection edge search call internal
message (i.e., connection_edge search_call) to a randomly selected neighbor. In block 1804,
the routine randomly selects a neighbor of this process. In decision block 1805, if all the
neighbors of this process have already been selected, then the routine cannot forward the
message and the routine returns, else the routine continues at block 1806. In block 1806, the
routine sends a connection edge search call internal message to the selected neighbor. In
decision block 1807, if the sending of the message is successful, then the routine continues at
block 1808, else the routine loops to block 1804 to select the next neighbor. When the
sending of an internal message is unsuccessful, then the neighbor may have disconnected
from the broadcast channel in an unplanned manner. Whenever such a situation is detected
by the broadcaster component, it attempts to find another neighbor by invoking the fill holes
routine to fill a single hole or the forward connecting edge search routine to fill two holes. In
block 1808, the routine notes that the recently sent connection edge search call has not yet
been acknowledged and indicates that the edge to this neighbor is reserved if the remaining
forwarding distance is less than or equal to one. It is reserved because the selected neighbor
may offer this edge to the requesting process for edge pinning. The routine then returns.
Figure 19 is a flow diagram illustrating the processing of the handle edge
proposal call routine. This routine is invoked when a message is received from a proposing
process that proposes to connect an edge between the proposing process and one of its
neighbors to this process for edge pinning. In decision block 1901, if the number of holes of
this process minus the number of pending edges is greater than or equal to one, then this
process still has holes to be filled and the routine continues at block 1902, else the routine
continues at block 1911. In decision block 1902, if the proposing process or its neighbor is a
neighbor of this process, then the routine continues at block 1911, else the routine continues
at block 1903. In block 1903, the routine indicates that the edge is pending between this
process and the proposing process. In decision block 1904, if a proposed neighbor is already
pending as a proposed neighbor, then the routine continues at block 191 1, else the routine
continues at block 1907. In block 1907, the routine sends an edge proposal response as an
external message to the proposing process (ie., edge_proposal _resp) indicating that the
proposed edge is accepted. In decision block 1908, if the sending of the message was

[03004-8004/SL003733.100] -33- 7131/00

0645

10

15

20

25

30

successful, then the routine continues at block 1909, else the routine returns. In block 1909,

the routine adds the edge as a pending edge. In block 1910, the routine invokes the add .

neighbor routine to add the proposing process on the external port as a neighbor. The routine
then returns. In block 1911, the routine sends an external message (i.e., edge_proposal_resp)
indicating that this proposed edge is not accepted. In decision block 1912, if the number of
holes is odd, then the routine continues at block 1913, else the routine returns. In block
1913, the routine invokes the fill hole routine and then returns.

Figure 20 1s a flow diagram illustrating the processing of the handle port
connection call routine in one embodiment. This routine is invoked when an external
message is received then indicates that the sending process wants to connect to one hole of
this process. In decision block 2001, if the number of holes of this process is greater than
zero, then the routine continues at block 2002, else the routine continues at block 2003. In
decision block 2002, if the sending process is not a neighbor, then the routine continues at
block 2004, else the routine continues to block 2003. In block 2003, the routine sends a port
connection response external message (i.e., port_connection_resp) to the sending process that
indicates that it is not okay to connect to this process. The routine then returns. In block
2004, the routine sends a port connection response external message to the sending process
that indicates that is okay to connect this process.’ In decision block 2005, if the sending of
the message was successful, then the routine continues at block 2006, else the routine
continues at block 2007. In block 2006, the routine invokes the add neighbor routine to add
the sending process as a neighbor of this process and then returns. In block 2007, the routine
hangs up the external connection. In block 2008, the routine invokes the connect request
routine to request that a process connect to one of the holes of this process. The routine then
returns.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in
one embodiment. This routine is passed an indication of the requesting process. If this
process is requesting to fill a hole, then this routine sends an internal message to other
processes. If another process is requesting to fill a hole, then this routine invokes the routine
to handle a connection port search request. In block 2101, the routine initializes a
connection port search statement internal message (i.e., connection _port_search_stmt). In
decision block 2102, if this process is the requesting process, then the routine continues at

block 2103, else the routine continues at block 2104. In block 2103, the routine distributes
[03004-8004/SLD03733.100) -34- 7131/00

0646

10

15

20

25

30

the message to the neighbors of this process through the internal ports and then returns. In
block 2104, the routine invokes the handle connection port search routine and then returns.

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher
routine in one embodiment. This routine is passed an indication of the neighbor who sent the
internal message. In block 2201, the routine receives the internal message. This routine
identifies the message type and invokes the appropriate routine to handle the message. In
block 2202, the routine assesses whether to change the estimated diameter of the broadcast
channel based on the information in the received message. In decision block 2203, if this
process is the originating process of the message or the message has already been received
(i.e., a duplicate), then the routine ignores the message and continues at block 2208, else the
routine continues at block 2203A. In decision block 2203A, if the process is partially
connected, then the routine continues ai block 2203B, else the routine continues at block
2204. In block 2203B, the routine adds the message to the pending connection buffer and
continues at block 2204. In decision blocks 2204-2207, the routine decodes the message
type and mvokes the appropriate routine to handle the message. For example, in decision
block 2204, if the type of the message is broadcast statement (i.e., broadcast_stmt), then the
routine invokes the handle broadcast message routine in block 2205. After invoking the
appropriate handling routine, the routine continues at block 2208. In decision block 2208, if
the partially connected buffer is full, then the routine continues at block 2209, else the
routine continues at block 2210. The broadcaster component collects all its internal
messages in a buffer while partially connected so that it can forward the messages as it
connects to new neighbors. If, however, that buffer becomes full, then the process assumes
that it is now fully connected and that the expected number of connections was too high,
because the broadcast channel is now in the small regime. In block 2209, the routine invokes
the achieve connection routine and then continues in block 2210. In decision block 2210, if
the application program message queue is empty, then the routine returns, else the routine
continues at block 2212. In block 2212, the routine invokes the receive response routine
passing the acquired message and then returns. The received response routine is a callback
routine of the application program.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast
message routine in one embodiment. This routine is passed an indication of the originating

process, an indication of the neighbor who sent the broadcast message, and the broadcast
[03004-8004/SL.003733.100] -35- 131/00

0647

10

15

20

25

30

meésage itself. In block 2301, the routine performs the out of order processing for this
message. The broadcaster component queues messages from each originating process until it
can send them in sequence number order to the application program. In block 2302, the
routine invokes the distribute broadcast message routine to forward the message to the
neighbors of this process. In decision block 2303, if a newly connected neighbor is waiting
to receive messages, then the routine continues at block 2304, else the routine returns. In
block 2304, the routine sends the messages in the correct order if possible for each
originating process and then returns.

Figure 24 is a flow diagram illustrating the processing of the distribute
broadcast message routine in one embodiment. This routine sends the broadcast message to
each of the neighbors of this process, except for the neighbor who sent the message to this
process. In block 2401, the routine selects the next neighbor other than the neighbor who
sent the message. In decision block 2402, if all such neighbors have already been selected,
then the routine returns. In block 2403, the routine sends the message to the selected
neighbor and then loops to block 2401 to select the next neighbor.

Figure 26 is a flow diagram illustrating the processing of the handle connection
port search statement routine in one embodiment. This routine is passed an indication of the
neighbor that sent the message and the message itself. In block 2601, the routine invokes the
distribute internal message which sends the message to each of its neighbors other than the
sending neighbor. In decision block 2602, if the number of holes of this process is greater
than zero, then the routine continues at block 2603, else the routine returns. In decision
block 2603, if the requesting process is a neighbor, then the routine continues at block 2605,
else the routine continues at block 2604. In block 2604, the routine invokes the court
neighbor routine and then returns. The court neighbor routine connects this process to the
requesting process if possible. In block 2605, if this process has one hole, then the neighbors
with empty ports condition exists and the routine continues at block 2606, else the routine
returns. In block 2606, the routine generates a condition check message (ie.,
condition_check) that includes a list of this process’ neighbors. In block 2607, the routine
sends the message to the requesting neighbor.

Figure 27 is a flow diagram illustrating the processing of the court neighbor
routine in one embodiment. This routine is passed an indication of the prospective neighbor

for this process. If this process can connect to the prospective neighbor, then it sends a port

(03004-8004/SL003733.100] -36- 7/31/00

0648

10

15

20

25

30

connection call external message to the prospective neighbor and adds the prospective
neighbor as a neighbor. In decision block 2701, if the prospective neighbor is already a
neighbor, then the routine returns, else the routine continues at block 2702. In block 2702,
the routine dials the prospective neighbor. In decision block 2703, if the number of holes of
this process is greater than zero, then the routine continues at block 2704, else the routine
continues at block 2706. In block 2704, the routine sends a port connection call external
message (i.e., port_connection_call) to the prospective neighbor and receives its response
(i.e., port_connection_resp). Assuming the response is successfully received, in block 2705,
the routine adds the prospective neighbor as a neighbor of this process by invoking the add
neighbor routine. In block 2706, the routine hangs up with the prospect and then returns.
Figure 28 is a flow diagram illustrating the processing of the handle connection
edge search call routine in one embodiment. This routine is passed a indication of the
neighbor who sent the message and the message itself. This routine either forwards the
message to a neighbor or proposes the edge between this process and the sending neighbor to
the requesting process for edge pinning. In decision block 2801, if this process is not the
requesting process or the number of holes of the requesting process is still greater than or
equal to two, then the routine continues at block 2802, else the routine continues at block
2813. In decision block 2802, if the forwarding distance is greater than zero, then the
random walk is not complete and the routine continues at block 2803, else the routine
continues at block 2804. In block 2803, the routine invokes the forward connection edge
search routine passing the identification of the requesting process and the decremented
forwarding distance. The routine then continues at block 2815. In decision block 2804, if
the requesting process is a neighbor or the edge between this process and the sending
neighbor is reserved because it has already been offered to a process, then the routine
continues at block 2805, else the routine continues at block 2806. In block 2805, the routine
invokes the forward connection edge search routine passing an indication of the requesting
party and a toggle indicator that alternatively indicates to continue the random walk for one
or two more computers. The routine then continues at block 2815. In block 2806, the
routine dials the requesting process via the call-in port. In block 2807, the routine sends an
edge proposal call external message (i.e., edge_proposal_call) and receives the response (i.e.,
edge_proposal_resp). Assuming that the response is successfully received, the routine
continues at block 2808. In decision block 2808, if the response indicates that the edge is

{03004-8004/SL003733.100] -37- 131/00

0649

10

15

20

25

30

acceptable to the requesting process, then the routine continues at block 2809, else the
routine continues at block 2812. In block 2809, the routine reserves the edge between this
process and the sending neighbor. In block 2810, the routine adds the requesting process as
a neighbor by invoking the add neighbor routine. In block 2811, the routine removes the
sending neighbor as a neighbor. In block 2812, the routine hangs up the external port and
continues at block 2815. In decision block 2813, if this process is the requesting process and
the number of holes of this process equals one, then the routine continues at block 2814, else
the routine continues at block 2815. In block 2814, the routine invokes the fill hole routine.
In block 2815, the routine sends an connection edge search response message (i.e.,
connection_edge_search_response) to the sending neighbor indicating acknowledgement and
then returns. The graphs are sensitive to parity. That is, all possible paths starting from a
node and ending at that node will have an even length unless the graph has a cycle whose
length is odd. The broadcaster component uses a toggle indicator to vary the random walk
distance between even and odd distances.

Figure 29 is a flow diagram illustrating the processing of the handle connection
edge search response routine in one embodiment. This routine is passed as indication of the
requesting process, the sending neighbor, and the message. In block 2901, the routine notes
that the connection edge search response (i.e., connection_edge search resp) has been
received and if the forwarding distance is less than or equal to one unreserves the edge
between this process and the sending neighbor. In decision block 2902, if the requesting
process indicates that the edge is acceptable as indicated in the message, then the routine
continues at block 2903, else the routine returns. In block 2903, the routine reserves the edge
between this process and the sending neighbor. In block 2904, the routine removes the
sending neighbor as a neighbor. In block 2905, the routine invokes the court neighbor
routine to connect to the requesting process. In decision block 2906, if the invoked routine
was unsuccessful, then the routine continues at block 2907, else the routine returns. In
decision block 2907, if the number of holes of this process is greater than zero, then the
routine continues at block 2908, else the routine returns. In block 2908, the routine invokes
the fill hole routine and then returns.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine
in one embodiment. This routine is invoked by the application program to broadcast a

message on the broadcast channel. This routine is passed the message to be broadcast. In

{03004-8004/SL003733.100] -38- 131/00

0650

10

15

20

25

30

decision block 3001, if this process has at least one neighbor, then the routine continues at
block 3002, else the routine returns since it is the only process connected to be broadcast
channel. In block 3002, the routine generates an internal message of the broadcast statement
type (i.e., broadcast _stmt). In block 3003, the routine sets the sequence number of the
message. In block 3004, the routine invokes the distribute internal message routine to
broadcast the message on the broadcast channel. The routine returns.

Figure 31 is a flow diagram illustrating the processing of the acquire message
routine in one embodiment. The acquire message routine may be invoked by the application
program or by a callback routine provided by the application program. This routine returns a
message. In block 3101, the routine pops the message from the message queue of the
broadcast channel. In decision block 3102, if a message was retrieved, then the routine
returns an indication of success, else the routine returns indication of failure.

Figures 32-34 are flow diagrams illustrating the processing of messages
associated with the neighbors with empty ports condition. Figure 32 is a flow diagram
illustrating processing of the handle condition check message in one embodiment. This
message is sent by a neighbor process that has one hole and has received a request to connect
to a hole of this process. In decision block 3201, if the number of holes of this process is
equal to one, then the routine continues at block 3202, else the neighbors with empty ports
condition does not exist any more and the routine returns. In decision block 3202, if the
sending neighbor and this process have the same set of neighbors, the routine continues at
block 3203, else the routine continues at block 3205. In block 3203, the routine initializes a
condition double check message (i.e., condition_double_check) with the list of neighbors of
this process. In block 3204, the routine sends the message internally to a neighbor other than
sending neighbor. The routine then returns. In block 3205, the routine selects a neighbor of
the sending process that is not also a neighbor of this process. In block 3206, the routine
sends a condition repair message (i.e., condition_repair_stmt) externally to the selected
process. In block 3207, the routine invokes the add neighbor routine to add the selected
neighbor as a neighbor of this process and then returns.

Figure 33 is a flow diagram illustrating processing of the handle condition
Tepair statement routine in one embodiment. This routine removes an existing neighbor and
connects to the process that sent the message. In decision block 3301, if this process has no
holes, then the routine continues at block 3302, else the routine continues at block 3304. In

[03004-8004/SL003733.100] -39- 731100

0651

10

15

20

25

block 3302, the routine selects a neighbor that is not involved in the neighbors with empty
ports condition. In block 3303, the routine removes the selected neighbor as a neighbor of

this process. Thus, this process that is executing the routine now has at least one hole. In -

block 3304, the routine invokes the add neighbor routine to add the process that sent the
message as a neighbor of this process. The routine then returns.

Figure 34 is a flow diagram illustrating the processing of the handle condition
double check routine. This routine determines whether the neighbors with empty ports
condition really 1s a problem or whether the broadcast channel is in the small regime. In
decision block 3401, if this process has one hole, then the routine continues at block 3402,
else the routine continues at block 3403. If this process does not have one hole, then the set
of neighbors of this process is not the same as the set of neighbors of the sending process. In
decision block 3402, if this process and the sending process have the same set of neighbors,
then the broadcast channel is not in the small regime and the routine continues at block 3403,
else the routine continues at block 3406. In decision block 3403, if this process has no holes,
then the routine returns, else the routine continues at block 3404. In block 3404, the routine
sets the estimated diameter for this process to one. In block 3405, the routine broadcasts a
diameter reset internal message (i.e., diameter_reset) indicating that the estimated diameter is
one and then returns. In block 3406, the routine creates a list of neighbors of this process. In
block 3407, the routine sends the condition check message (i.e., condition_check_stmt) with
the list of neighbors to the neighbor who sent the condition double check message and then
returns. ‘

From the above description, it will be appreciated that although specific
embodiments of the technology have been described, various modifications may be made
without deviating from the spirit and scope of the invention. For example, the
communications on the broadcast channel may be encrypted. Also, the channel instance or
session identifier may be a very large number (e.g., 128 bits) to help prevent an unauthorized
user to maliciously tap into a broadcast channel. The portal computer may also enforce
security and not allow an unauthorized user to connect to the broadcast channel.

Accordingly, the invention is not limited except by the claims.

[03004-8004/51.003733.100] -40- 71/00

0652

CLAIMS

1. A method of broadcasting data through a computer network, the method

comprising:

receiving at a computer the data from a neighbor computer;

determining whether the received data has already been transmitted
from the receiving computer to its neighbor computers;

when it is determined that the data has aiready. been transmitted,
disregarding the received data; and

when it is determined that the data has not already been transmitted,
transmitting the received data to neighbor computers of the receiving computer.

2. The method of claim 1 wherein the computer network is a 4-regular

graph.

3. The method of claim 1 wherein the computer network implements a
broadcast channel wherein the neighbor computers of the computer network are connected
using point-to-point connections.

4, The method of claim 3 wherein the connections are TCP/IP connections.

5. The method of claim 1 wherein the computer network is a broadcast
channel that is implemented using an underlying network that connects computers using

point-to-point connections.

6. The method of claim 5 wherein the underlying network is the Internet.

{03004-8004/SL.003733.100] -41- 7731/00

0653

7. A broadcaster component in a computer connected to a computer
network, comprising:

an originating module that transmits data that originates from the
computer to each of the neighbor computers;

a receiving module that receives multiple copies of data that originates
from another computer, each copy of the data being received from a different neighbor
computer; and

a forwarding module that transmits a copy of the received data to each

neighbor computer other than that neighbor computer from which the copy was received.

8. The broadcaster component of claim 7 including

a sending module that provides a copy of the received data to an

application program.

9. The broadcaster component of claim 7 wherein the computer network is

a broadcast channel implemented using an underlying point-to-point computer network.

10. The broadcaster component of claim 7 including:
a locating module for locating a portal computer that is connected to the

computer network.

11. The broadcaster component of claim 7 including:
a connecting module for connecting the computer to the computer
network.

12. The broadcaster component of claim 7 including:
a portal module for initiating joining of a requesting computer to the
computer network.

13. The broadcast component of claim 7 wherein the computer is connected

to its neighbor computer using a point-to-point connection.

{03004-8004/SL003733.100) -42- 731100

0654

14. A method of broadcasting data on a computer network, the method

compnsing: 4

establishing connections between each computer of the computer
network and at least three other computers of the computer network;

when a computer originates data, sending the data to each of the
computers to which it is connected; and

when a computer receives data, sending a first copy of the data that it
receives to each of the computers to which it is connected other than the computer from

which it received the data.

15. The method of claim 14 wherein computers and connections of the

computer network form an m-regular graph.

16. The method of claim 15 wherein each computer is connected to an even

number of computers.

17. The method of claim 14 wherein the computers and connections of the

computer network form an m-regular and m-connected graph.
18. The method of claim 17 wherein m is even.
19. The method of claim 17 wherein m is 4.

20. The method of claim 14 wherein the computers are connected using

point-to-point connections.

2]. The method of claim 14 wherein the computers are connected using the
Internet.

{03004-8004/5L003733.100) -43- 731100

0655

22. A computer-readable medium containing instructions for controlling a

computer system to broadcast data on a broadcast channel, by a method comprising:

establishing connections between each computer of the broadcast
channel and three other computers of the broadcast channel using point-to-point connections;

when a computer originates data, sending the data to each of the
computers to which it is connected; and

when a computer receives data, sending a copy of the data that it
receives to each of the computers to which it is connected other than the computer from
which it received the data.

23. The computer-readable medium of claim 22 wherein computers and

connections of the computer network form an m-regular graph.

24. The computer-readable medium of claim 23 wherein each computer is

connected to an even number of computers.

25. The computer-readable medium of claim 22 wherein the computers and
connections of the broadcast channel form an m-regular and m-connected graph.

26. The computer-readable medium of claim 25 wherein m is even.
27. The computer-readable medium of claim 25 wherein m is 4.

28. The computer-readable medium of claim 22 wherein the computers are

connected using the Internet.

{03004-8004/51003733.100) -44- 731/00

0656

ho [
Aot .»m*;¢o¢- ’ —
w3l el N B4 2dS | 7
£o =20
W
Nnas
- (:x “WEX hE ¥ /
o422) 0 .
J*P—W?W .«{/.&mmPvU .
~T
SISV .
_S0 |0
(Xds) \
\v .u?.?op J\
s SD ~3£&.ﬁw N\
slﬁ;.ah(30_ o~ L P J.v*a\sw -
21569
T |
00 PO 2 Gt peSRIaT

0657

254
..-:/Hw‘_«nu«-ﬂ. ¢ QII*SA_.«..O
~AN D |-
€ R v D)
sl
_So
e = "q
~0s 4
ho
souv#s\.. rwen -
290 S | Lloc.
.e«c*.ﬁ—d wovuo 202137 ! __
20) @ W
o |
e T ﬂdm S) Ze| o) a0 Y15

sSngny=y v

0658

SRR

Olg

Ke)

ﬂ?éxt%& \\”UV

!

T

O

S

N~ =~

34

o)
1

Q
3;—‘«.14

T2

404

21921 12977

0659

b33

w24 hqp { 407
ﬂ.w.*PQT D2Y2

wﬁfﬁ:& %

® » \Ugﬁ..N
S U..:L h A , - P D) !
3 wz...\l | ..(H‘N“Wm $SO|7
Q3 ?2Nes ; |
SR TR Ya| 2
\ O3 Vv 4$2g L

d.((ﬁdg.l

0660

ro4s
orb |§\‘:~i§.

[¥}

oL

Ori‘e_, \

| Poctmdp -

Drive

So,uvt e c\2ssS

or

rovelyos

wy

61

Receive |

L'l

Co h(‘\‘W‘GJ'l

0%

S Temsm: T
%’"ﬁﬁé’“ -

Dene

0661

U
J—ﬂ Jeoiyng
{v10g 53022 n#; rapong SQ\Q’Q..%/C Sy
£o - —

&P«agcia kmquxtm_

) e,

1 Q
QO \d—pQ:JCDb;._mﬂ_zm)zb(_t

0662

2h ﬁ\wwnm
%
a1/
/
~ ~
; ~ NE__
ht™ \
~ S—
1% bz |
S2poy ho wdl v co wdx g5 TN
€
TS~
/[
LX)
. ~.
\Nuﬂﬂ 2 VU3 3 oF ~ 1€
v
b2 ‘ ! 0
\N\V \N\ -~ ./4 :
Iz © ” |
@l s3apop 2¢ WIT re W31 Q..\ s2pond

0663

o vy,
SS20Ppd 04 A

co -1 .WM.\JQ%(?P’.:&

«mwvogod vrower

o .\(Nu/w JZQ%.H 2.44 J i.mUD

>32Mpp-f| vromen “

lo

“TNopT W4T

0664

mw,.u

P .o‘*

L

|
m
|

(A4

Pres

[

P FLF;
%3367

ot

2dS

~
_,
290D :
Jooc: —
i€ T
os 295
05
CEEN e _
_ ‘:
21.7)
2977
,. i

ol S

Q@

et a S coprcrss e 5% 71

| oy ‘..m.u._\.e.r 01} 410G T;@

g

0665

o/ °3

<o

Ty
wbthil

20 =8
owvy Ul

—

Jajiepser
' d.wq.iw_
jo

0@

0666

Buha-

oc

Selet,

Cpen us-
55 e

0667

oP%M

<2134
M
m
g
h
ho a: 1 .WH
a) /t .
4 Y X2 W41
L
.l\\..W\
\)\r.
<l
| .
2p9 Lho% — ¢
H ! z 77 2 .
i I 3 ‘
{1t r 0
o] 14
- 9 _ o1/ _ >
_ m
,QA.AQQ 20 ‘AMAX {0 BT

oo

0668

e
TR RN
1141 1o J
ldgfam*!‘_,!\ﬁu\lu\.vb 1T 1l P o =
e 1,2] iz ¥
po T AN

qqé «.. .rf:>

I "
H W.uﬂ\\hhonﬁ.\ ,o\a\:f;,,\./ :
L j

1T O% o6
20 2| R
ol

T
-

|a

0669

sete decked

PocTir

‘ "'u".‘.i eg. si {3 F) |

0670

Lo

Y e T EE: Q

N
€e
I e
rims
el
$S03D I
. h .
Y S
20 |
, A 2L SR A
ot oirers lTu FroToY
2TLw& 2)q2 92 . ..kr—cl?.ov
<0

Snelffd PN
-) *:VWM - *A.s..A.TQQ

JCI3LeGY 2
2 opect]

—

=) mg 1@

0671

Lo

90

9/ 314

1
1 — :
L.y =
" BpoN \u'll i
[- ——
A ~O
2z I \
]
P! < 0 WIT

17

2uw0) PUS fo.wdwmw.
20} W O) 35@@ 2
. L ppavuod Y c.gcu
X4 153vch .ﬂ.ﬁn w10 2
lﬁ..v“od v
. . ..L:USSO.V v, o .—)’-80 o
HfrgsyeS LS pres
299,) 41 §Vw62 109) 1 3 w:\ooi 240 Wi
al 30| %wmm
m’ \v l ‘ylil
.—/ / ~— A K
.L 0 — 1 J!\—
/ £0
A 0 Lo
S
WwiaT

0672

Yo rrovR it
Cdt (\O"_h (/\/\‘%

(e

(Doce >

F\'% 17

0673

W4T

L¢

w4z

¥ 2peqy

0674

 Proces s

info lrpor‘}‘

PQ:‘ theob P A

Avipriee N~

e

\K 0%

-.:).)A& |

dUsraom et
903 C

e b

' /\ ey
o oty .0

~ -

[y °l

(700 % 7op 2ol im

0675

0676

U.

10

15

20

25

S. Patent Application No. 09/629,024

¥
i

DISTRIBUTED CONFERENCING SYSTEM ,

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. Patent Application No. ,
entitted “BROADCASTING NETWORK,” filed on July 31, 2000 (Attorney Docket
No. 030048001 US); U.S. Patent Application No. , entitled “JOINING A
BROADCAST CHANNEL,” filed on July 31, 2000 (Attorney Docket No.| 030048002 US);
U.S. Patent Application No. , “LEAVING A BROADCAST CHANNEL,”
filed on July 31, 2000 (Attorney Docket No. 030048003 US); U.S. Pltent Application
No. , entitled “BROADCASTING ON A BROADCAST CHANNEL,” filed
on July 31, 2000 (Attorney Docket No. 030048004 US), U.S. Patent Application
No. , entitled “CONTACTING A BROADCAST CHANNEL,” filed on
July 31,2000 (Attorney Docket No. 030048005 US); U.S. Patent Application

No. , entitled “DISTRIBUTED AUCTION SYSTEM,” filed on
July 31,2000 (Attorney Docket No. 030048006 US); U.S. Patent Application
No. , entitted “AN INFORMATION DELIVERY SERVICE,” filed on
July 31,2000 (Attorney Docket No. 030048007 US); U.S. Patent Application
No.__ , entitled “DISTRIBUTED CONFERENCING SYSTEM,” filed on
July 31,2000 (Attormey Docket No. 030048008 US); and U.S. Patent Application
No. , entitled “DISTRIBUTED GAME ENVIRONMENT,” filed on

July 31,2000 (Attorney Docket No. 030048009 US), the disclosure‘? of which are

incorporated herein by reference.

TECHNICAL FIELD }
|

The described technology relates generally to a computer n:etwork and more

particularly, to a broadcast channel for a subset of a computers of an underly’ring network.
|

|
BACKGROUND !

There are a wide vaniety of computer network communications techniques such

as point-to-point network protocols, client/server middleware, multicasting network

[03004}061/81.003733 .106] -1- 7731/00

$00¥ -

EXPRESS MAIL NO. EL4049352790:

0677

10

15

20

25

30

protocols, and peer-to-peer middleware. Each of these communications

techniques have

their advantages and disadvantages, but none is particularly well suited to the simultaneous

sharing of information among computers that are widely distributed.
collaborative processing applications, such as a network meeting programs
distribute information in a timely manner to all participants who may be
distributed.

The point-to-point network protocols, such as UNIX pipes, T(

allow processes on different computers to communicate via point-to-point c¢

For example,
have a need to

> geographically

CP/IP, and UDP,

pnnections. The

interconnection of all participants using point-to-point connections, while theoretically

possible, does not scale well as a number of participants grows. For
participating process would need to manage its direct connections to all ot
processes. Programmers, however, find it very difficult to manage single ¢
management of multiple connections is much more complex. In additic
processes may be limited to the number of direct connections that they ca;
limits the number of possible participants in the sharing of information.

The client/server middleware systems provide a server that
communications between the various clients who are sharing the informat
functions as a central authority for controlling access to shared resource
client/server middleware systems include remote procedure calls (“RPC”), ¢

and the common object request broker architecture (“CORBA”). Client/se

example, each
her participating
sonnections, and
bn, participating
n support. This

coordinates the
on. The server
5. Examples of
jatabase servers,

rver middleware

systems are not particularly well suited to sharing of information among many participants.

In particular, when a client stores information to be shared at the server, ¢

rach other client

would need to poll the server to determine that new information is beinF shared. Such

polling places a very high overhead on the communications network. Alternatively, each

client may register a callback with the server, which the server then inv
information is available to be shared. Such a callback technique present

bottleneck because a single server needs to call back to each client

okes when new
s a performance

whenever new

information is to be shared. In addition, the reliability of the entire sharing of information

depends upon the reliability of the single server. Thus, a failure at a singl
the server) would prevent communications between any of the clients.

The multicasting network protocols allow the sending of broad
multiple recipients of a network. The current implementations of such mult

(03004-8001/SL003733.106) -2-

e computer (i.e.,

cast messages to

icasting network

7/31/00

0678

10

15

20

25

30

|

protocols tend to place an unacceptable overhead on the underlying network. For example,

UDP multicasting would swamp the Intemet when trying to locate all poss

ible participants.

IP multicasting has other problems that include needing special-purpose infrastructure (e.g.,

routers) to support the sharing of information efficiently.

The peer-to-peer middleware communications systems rely o
St
middleware is provided by the T.120 Internet standard, which 1s used in

network protocol or a graph of point-to-point network protocols.

Data Connection’s D.C.-share and Microsoft’s NetMeeting. These peer-to-
systems rely upon a user to assemble a point-to-point graph of the conn

sharing the information. Thus, it is neither suitable nor desirable to

n a multicasting
ich peer-to-peer
such products as
peer middleware
ections used for

use peer-to-peer

middleware systems when more than a small number of participants 1s desired. In addition,

the underlying architecture of the T.120 Internet standard is a tree structure, which relies on

the root node of the tree for reliability of the entire network. That is, each message must pass

through the root node in order to be received by all participants.

It would be desirable to have a reliable communications
suitable for the simultaneous sharing of information among a large number
that are widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

network that is

of the processes

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents a

broadcast channel.

Figure 2 illustrates a graph representing 20 computers connected to a broadcast

channel.

Figures 3A and 3B illustrate the process of connecting a new computer Z to the

broadcast channel.

Figure 4A illustrates the broadcast channel of Figure 1 {with an added
computer.

Figure 4B illustrates the broadcast channel of Figure 4A |with an added
computer. '

Figure 4C also illustrates the broadcast channel of Figure 4.‘# with an added
computer. :

[03004-8001/51L.003733.106]

731700

0679

10

15

20

25

30

|

Figure 5A illustrates the disconnecting of a computer froxh the broadcast
channel in a planned manner. :

Figure 5B illustrates the disconnecting of a computer from the broadcast
channel in an unplanned manner. ‘

Figure 5C illustrates the neighbors with empty ports condition.%

Figure 5D illustrates two computers that are not neighborsi who now have
empty ports.
Figure SE illustrates the neighbors with empty ports conditilon in the small
regime. : :

Figure SF illustrates the situation of Figure SE when in the largie regime.

Figure 6 is a block diagram illustrating components of a computer that is
connected to a broadcast channel.

Figure 7 is a block diagram illustrating the sub-components of the broadcaster
component in one embodiment.

Figure 8 is a flow diagram illustrating the processing of the cennect routine in
one embodiment.

Figure 9 is a flow diagram illustrating the processing of the seek portal
computer routine in one embodiment. ‘

Figure 10 is a flow diagram illustrating the processing of the| contact process
routine in one embodiment. ;

Figure 11 is a flow diagram illustrating the processing of the| connect request

routine in one embodiment.

Figure 12 is a flow diagram of the processing of the check for external call

routine in one embodiment. ’

Figure 13 is a flow diagram of the processing of the achleve cqnncctlon routine
in one embodiment.

Figure 14 is a flow diagram illustrating the processing #)f the external
dispatcher routine in one embodiment. !

Figure 15 is a flow diagram illustrating the processing of thc% handle seeking
connection call routine in one embodiment.

Figure 16 is a flow diagram illustrating processing of the handle connection
request call routine in one embodiment.

[03004-8001/SL003733.106) -4- § 31000

0680

10

15

20

25

30

|
Figure 17 is a flow diagram illustrating the processing of the add neighbor
routine in one embodiment.
Figure 18 is a flow diagram illustrating the processing of the forward

connection edge search routine in one embodiment.

Figure 19 is a flow diagram illustrating the processing of the handle edge
proposal call routine. |

Figure 20 is a flow diagram illustrating the processing of the handle port
connection call routine in one embodiment.

Figure 21 is a flow diagram illustrating the processing of the ﬂll hole routine in
one embodiment. '

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher
routine in one embodiment. '

Figure 23 is a flow diagram illustrating the processing of the ;handle broadcast
message routine in one embodiment. '

Figure 24 is a flow diagram illustrating the processing ¢f the distribute
broadcast message routine in one embodiment. i

Figure 26 1s a flow diagram illustrating the processing of the hkmdle connection
port search statement routine in one embodiment. ‘

Figure 27 is a flow diagram illustrating the processing of thh court nelghbor
routine in one embodiment. :

Figure 28 is a flow diagram illustrating the processing of the hbndle connection
edge search call routine in one embodiment. |

Figure 29 is a flow diagram illustrating the processing of the handle connection
edge search response routine in one embodiment. ‘

Figure 30 is a flow diagram illustrating the processing of the broadcast routine
in one embodiment.

Figure 31 is a flow diagram illustrating the processing of the|acquire message
routine in one embodiment.

Figure 32 is a flow diagram illustrating processing of the handle condition

check message in one embodiment.

Figure 33 is a flow diagram illustrating processing of the handle condition
repair statement routine in one embodiment. l

{03004-8001/5L003733.106] -5- : 13100

0681

10

15

20

25

30

Figure 34 is a flow diagram illustrating the processing of the handle condition
double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel overlayqi a point-to-point
communications network is provided. The broadcasting of a message m}er the broadcast
channel is effectively a multicast to those computers of the network tliiat are currently
connected to the broadcast channel. In one embodiment, the broadcast tech:nique provides a
logical broadcast channel to which host computers through their executing 'processes can be
connected. Each computer that is connected to the broadcast channel can broadcast
messages onto and receive messages off of the broadcast channel. Each icomputer that is
connected to the broadcast channel receives all messages that are broadcast while it is
connected. The logical broadcast channel is implemented using an underlying network
system (e.g., the Internet) that allows each computer connected to the underlying network
system to send messages to each other connected computer using each computer’s address.

Thus, the broadcast technique effectively provides a broadcast channel using an underlying

network system that sends messages on a point-to-point basis.

The broadcast technique overlays the underlying network sysiem with a graph
of point-to-point connections (i.e., edges) between host computers (i.e.,; nodes) through
which the broadcast channel is implemented. In one embodiment, eéch computer is
connected to four other computers, referred to as neighbors. (Actually, a pirocess executing
on a computer is connected to four other processes executing on thJJs or four other
computers.) To broadcast a message, the originating computer sends the mcftssage to each of
its neighbors using its point-to-point connections. Each computer that receLives the message
then sends the message to its three other neighbors using the point-to-pointi connections. In

this way, the message is propagated to each computer using the underlying network to effect

~ the broadcasting of the message to each computer over a logical broadcast channel. A graph

in which each node is connected to four other nodes is referred to as a 4-rei ar graph. The

use of a 4-regular graph means ﬂ1at a computer would become disconnected from the

broadcast channel only if all four of the connections to its neighbors fail. The graph used by

the broadcast technique also has the property that it would take a failure of i}ou: computers to
!

{03004-8001/5L003733.106] -6- 7131/00

0682

10

15

20

25

30

divide the graph into disjoint sub-graphs, that is two separate broadcasti channels. This
property is referred to as being 4-connected. Thus, the graph is both 4-regular and 4-
connected.

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents
the broadcast channel. Each of the nine nodes A-I represents a computer th;at is connected to
the broadcast channel, and each of the edges represents an “edge” connection between two
computers of the broadcast channel. The time it takes to broadcast a message to each
computer on the broadcast channel depends on the speed of the connecti;ons between the
computers and the number of connections between the originating computer and each other
computer on the broadcast channel. The minimum number of conneétion}s that a message
would need to traverse between each pair of computers is the “distante” between the
computers (i.e., the shortest path between the two nodes of the graph). For example, the
distance between computers A and F is one because computer A is direcjtly connected to
computer F. The distance between computers A and B is two because tPere 1s no direct
connection between computers A and B, but computer F is directly connected to computer B.
Thus, a message originating at computer A would be sent directly to com Juter F, and then
sent from computer F to computer B. The maximum of the distances between the computers
is the “diameter” of broadcast channel. The diameter of the broadcast channel represented
by Figure 1 is two. That is, a message sent by any computer would travei;'se no more than
two connections to reach every other computer. Figure 2 illustrates a grapth representing 20
computers connected to a broadcast channel. The diameter of this broadcasl@ channel is 4. In
particular, the shortest path between computers 1 and 3 contains four conndéctions (1-12, 12-
15, 15-18, and 18-3). |

The broadcast technique includes (1) the connecting of computers to the
broadcast channel (i.e., composing the graph), (2) the broadcasting of m%essages over the
broadcast channel (i.e., broadcasting through the graph), and (3) the éiisconnecting of
computers from the broadcast channel (i.e., decomposing the graph) composiing the graph.

Composing the Graph

To connect to the broadcast channel, the computer seeking the connection first

locates a computer that is currently fully connected to the broadcast c#lannel and then

{03004-8001/5L003733.106) -7- ' 7/31/00

0683

10

20

25

30

establishes a connection with four of the computers that are already cj:onnected to the
broadcast channel. (This assumes that there are at least four computers already connected to
the broadcast channel. When there are fewer than five computers connected, the broadcast
channe] cannot be a 4-regular graph. In such a case, the broadcast channel: is considered to
be in a “small regime.” The broadcast technique for the small regime is dt%scribed below in
detail. When five or more computers are connected, the broadcast chaxmei is considered to
be in the “large regime.” This description assumes that the broadcast cham%xel is in the large
regime, unless specified otherwise.) Thus, the process of connecting to the broadcast
channel includes locating the broadcast channel, identifying the neighbors t{or the connecting
computer, and then connecting to each identified neighbor. Each computefr 1s aware of one
or more “portal computers” through which that computer may locate the b%oadcast channel.
A seeking computer locates the broadcast channel by contacting the portal cj;omputers until it
finds one that is currently fully connected to the broadcast channel. The found portal

computer then directs the identifying of four computers (i.e., to be the seeking computer’s

neighbors) to which the seeking computer is to connect. Each of these foqfr computers then
cooperates with the seeking computer to effect the connecting of the seekiné computer to the
broadcast channel. A computer that has started the process of locating a po | computer, but
does not yet have a neighbor, is in the “seeking connection state.” Ata‘

connected to at least one neighbor, but not yet four neighbors, is in the “pzirﬁally connected

omputer that is

”

state.” A computer that is currently, or has been, previously connected to ffour neighbors is
in the “fully connected state.”

Since the broadcast channel is a 4-regular graph, each of the identified
computers is already connected to four computers. Thus, some conriections between
computers need to be broken so that the seeking computer can connect to fohr computers. In
one embodiment, the broadcast technique identifies two pairs of computers that are currently
connected to each other. Each of these pairs of computers breaks the coxfmection between
them, and then each of the four computers (two from each pair) connecfts to the seeking
computer. Figures 3A and 3B illustrate the process of a new computer Z (f:onnecting to the
broadcast channel. Figure 3A illustrates the broadcast channel before computer Z is
connected. The pairs of computers B and E and computers C and D are the two pairs that are
identified as the neighbors for the new computer Z. The connections between each of these

pairs is broken, and a connection between computer Z and each of computers B, C, D, and E

[03004-8001/SL003733.106) -8- 7/31/00

0684

10

15

20

25

30

is established as indicated by Figure 3B. The process of breaking the cm%mection between
two neighbors and reconnecting each of the former neighbors to another coxjnputer is referred
to as “edge pinning” as the edge between two nodes may be considered to/ be stretched and
pinned to a new node.

- Each computer connected to the broadcast chaxmeli allocates five
communications ports for communicating with other computers. Four !of the ports are
referred to as “internal” ports because they are the ports through which th¢ messages of the
broadcast channels are sent. The connections between internal ports ibf neighbors are
referred to as “internal” connections. Thus, the internal connections of the ﬁroadcast channel
form the 4-regular and 4-connected graph. The fifth port is referred to as an “extemal” port
because it is used for sending non-broadcast messages between two computers. Neighbors
can send non-broadcast messages either through their intemal ports of thq::ir connection or
through their external ports. A seeking computer uses external ports when% locating a portal
computer.

In one embodiment, the broadcast technique establishes the computer
connections using the TCP/IP communications protocol, which is a point-to-point protocol,
as the underlying network. The TCP/IP protocol provides for reliable and ordered delivery
of messages between computers. The TCP/IP protocol provides each computer with a “port
space” that is shared among all the processes that may execute on that computer. The ports
are identified by numbers from 0 to 65,535. The first 2056 ports are reserved for specific
applications (e.g., port 80 for HTTP messages). The remainder of the ports are user ports
that are available to any process. In one embodiment, a set of port numbers can be reserved
for use by the computer connected to the broadcast channel. In an alternative embodiment,
the port numbers used are dynamically identified by each computer. " Each computer
dynamically identifies an available port to be used as its call-in port. This call-in port is used
to establish connections with the external port and the internal ports. Each; computer that is
connected to the broadcast channel can receive non-broadcast messages ﬂ&ough its external
port. A seeking computer tries “dialing” the port numbers of the portal computers until a
portal computer “answers,” a call on its call-in port. A portal computer aﬁlswers when it is
connected to or attempting to connect to the broadcast channel and its calliin port is dialed.

(In this description, a telephone metaphor is used to describe the connections.) When a

computer receives a call on its call-in port, it transfers the call to anotheqi port. Thus, the

[03004-8001/SL003733.106] -9- | 7/31/00

i
)

0685

10

15

20

25

30

seeking computer actually communicates through that transfer-to port, which is the external
port. The call is transferred so that other computers can place calls to that lcomputer via the
call-in port. The seeking computer then communicates via that external p(i>rt to request the
portal computer to assist in connecting the seeking computer to the broadczjlst channel. The
seeking computer could identify the call-in port number of a portal computcfr by successively
dialing each port in port number order. As discussed below in detail, the bréadcast technique
uses a hashing algorithm to select the port number order, which may refsult in improved
performance. ‘

A seeking computer could connect to the broadcast channel by connecting to
computers either directly connected to the found portal computer or directly connected to one
of its neighbors. A possible problem with such a scheme for identifying t:hc neighbors for
the seeking computer is that the diameter of the broadcast channel may indrease when each
seeking computer uses the same found portal computer and establishes a connection to the
broadcast channel directly through that found portal computer. Conceptually, the graph
becomes elongated in the direction of where the new nodes are added.. Figures 4A-4C
illustrate that possible problem. Figure 4A illustrates the broadcast channel of Figure 1 with
an added computer. Computer J was connected to the broadcast channel by edge pinning
edges C-D and E-H to computer J. The diameter of this broadcast channel is still two.
Figure 4B illustrates the broadcast channel of Figure 4A with an added computer.
Computer K was connected to the broadcast channel by edge pinning edges E-J and B-C to
computer K. The diameter of this broadcast channel is three, because the shortest path from
computer G to computer K is through edges G-A, A-E, and E-K. Figure 4C also illustrates
the broadcast channel of Figure 4A with an added computer. Computer K was connected to
the broadcast channel by edge pinning edges D-G and E-J to computer K. . The diameter of
this broadcast channel is, however, still two. Thus, the selection of neighbors impacts the
diameter of the broadcast channel. ‘To help minimize the diameter, the brqiadcast technique
uses a random selection technique to identify the four neighbors of a computer in the seeking
connection state. The random selection technique tends to distribute the co?pnections to new

seeking computers throughout the computers of the broadcast channel which may result in

smaller overall diameters.

{03004-8001/SL003733.106) -10- 731700

0686

10

15

20

25

30

Broadcasting Through the Graph

As described above, each computer that is connected to the broadcast channel
can broadcast messages onto the broadcast channel and does receive all messages that are
broadcast on the broadcast channel. The computer that originates a message to be broadcast
sends that message to each of its four neighbors using the internal connéctions. When a
computer receives a broadcast message from a neighbor, it sends the mesisage to its three
other neighbors. Each computer on the broadcast channel, except the originating computer,
will thus receive a copy of each broadcast message from each of its four neighbors. Each
computer, however, only sends the first copy of the message that it receive$ to its neighbors
and disregards subsequently received copies. Thus, the total number of coéies of a message
that is sent between the computers is 3N+1, where N is the number of corﬁputers connected
to the broadcast channel. Each computer sends three copies of the message, except for the
originating computer, which sends four copies of the message.

The redundancy of the message sending helps to ensure the overall reliability
of the broadcast channel. Since each computer has four connections to the broadcast
channel, if one computer fails during the broadcast of a message, its neigp'bbors have three
other connections through which they will receive copies of the broadcast q’tessage. Also, if
the internal connection between two computers is slow, each computer: has three other
connections through which it may receive a copy of each message sooner.

Each computer that originates a message numbers its own messages
sequentially. Because of the dynamic nature of the broadcast channel and because there are
many possible connection paths between computers, the messages may be received out of
order. For example, the distance between an originating computer and a certain receiving
computer may be four. After sending the first message, the originating computer and
receiving computer may become neighbors and thus the distance between ithem changes to
one. The first message may have to travel a distance of four to reach the receiving computer.
The second message only has to travel a distance of one. Thus, it is possible for the second
message to reach the receiving computer before the first message.

When the broadcast channel is in a steady state (i.e., no computers connecting
or disconnecting from the broadcast channel), out-of-order messages are not a problem
because each computer will eventually receive both messages and can queue messages until

all earlier ordered messages are received. If, however, the broadcast channel is not in a

[03004-8001/5SL.003733.106) -11- 7/31/00

0687

10

15

20

25

30

steady state, then problems can occur. In particular, a computer may connect to the
broadcast channel after the second message has already been received and }forwarded on by
its new neighbors. When a new neighbor eventually receives the first mess;age, it sends the
message to the newly connected computer. Thus, the newly connected compf:uter will receive
the first message, but will not receive the second message. If the newly corinected computer
needs to process the messages in order, it would wait indefinitely for the secfpnd message.
One solution to this problem is to have each computer queueiall the messages
that it receives until it can send them in their proper order to its neighborst:.. This solution,
however, may tend to slow down the propagation of messages through the L:omputers of the
broadcast channel. Another solution that may have less impact on the pro;!)agation speed is
to queue messages only at computers who are neighbors of the newly conn%l:cted computers.
Each already connected neighbor would forward messages as it receives ﬁlem to its other
neighbors who are not newly connected, but not to the newly connected neighbor. The
already connected neighbor would only forward messages from each originating computer to
the newly connected computer when it can ensure that no gaps in the messages from that
originating computer will occur. In one embodiment, the already connected neighbor may
track the highest sequence number of the messages already received and fo:rwarded on from
cach originating computer. The already connected computer will send only ihighcr numbered
messages from the originating computers to the newly connected computer; Once all lower
numbered messages have been received from all originating compﬁters, then the already
connected computer can treat the newly connected computer as its other neighbors and
simply forward each message as it is received. In another embodiment, each computer may
queue messages and only forwards to the newly connected computer those messages as the
gaps are filled in. For example, a computer might receive messages 4 and 51 and then receive
message 3. In such a case, the already connected computer would forward cjueue messages 4
and 5. When message 3 is finally received, the already connected corﬁputer will send
messages 3, 4, and 5 to the newly connected computer. If messages 4 and 5 were sent to the
newly connected computer before message 3, then the newly connected :computer would
process messages 4 and 5 and disrégard message 3. Because the already connected computer
queues messages 4 and 5, the newly connected computer will be able to prbcess message 3.
It is possible that a newly connected computer will receive a set of messages from an

originating computer through one neighbor and then receive another set of message from the

(03004-8001/8L.003733.106] -12- : 7100

0688

10

15

20

25

30

same originating computer through another neighbor. If the second set of messages contains
a message that is ordered earlier than the messages of the first set received, then the newly

connected computer may ignore that earlier ordered message if the computer already

processed those later ordered messages.

Decomposing the Graph
A connected computer disconnects from the broadcast channel either in a

planned or unplanned manner. When a computer disconnects in a planned manner, it sends a
disconnect message to each of its four neighbors. The disconnect message includes a list that
identifies the four neighbors of the disconnecting computer. When a neighbor receives the
disconnect message, it tries to connect to one of the computers on the list. In one
embodiment, the first computer in the list will try to connect to the second computer in the
list, and the third computer in the list will try to connect to the fourth computer in the list. If
a computer cannot connect (e.g., the first and second computers are already connected), then
the computers may try connecting in various other combinations. If connections cannot be
established, each computer broadcasts a message that it needs to establish a connection with
another computer. When a computer with an available internal port receives the message, it
can then establish a connection with the computer that broadcast the message. Figures SA-
5D illustrate the disconnecting of a computer from the broadcast channel. Figure SA
illustrates the disconnecting of a computer from the broadcast channel in a planned manner.
When computer H decides to disconnect, it sends its list of neighbors to each of its neighbors
(computers A, E, F and I) and then disconnects from each of its neighbors. When
computers A and I receive the message they establish a connection between them as
indicated by the dashed line, and similarly for computers E and F.

When a computer disconnects in an unplanned manner, such as resulting from
a power failure, the neighbors connected to the disconnected computer recognize the
disconnection when each attempts to send its next 4message to the now disconnected
computer. Each former neighbor of the disconnected computer recognizes that it is short one

connection (i.e., it has a hole or empty port). When a connected computer detects that one of

- its neighbors is now disconnected, it broadcasts a port connection request>on the broadcast

channel, which indicates that it has one internal port that needs a connection. The port

connection request identifies the call-in port of the requesting computer. When a connected

(03004-8001/SL003733.106) -13- 31400

0689

10

15

20

25

30

computer that is also short a connection receives the connection request, lit communicates
with the requesting computer through its external port to establish a conneqition between the
two computers. Figure 5B illustrates the disconnecting of a computer fro:m the broadcast
channel in an unplanned manner. In this illustration, computer H has disfconnected In an
unplanned manner. When each of its neighbors, computers A, E, F, and I, recognizes the
disconnection, each neighbor broadcasts a port connection request indicating that it needs to
fill an empty port. As shown by the dashed lines, computers F and I and computers A and E
respond to each other’s requests and establish a connection.

It 1s possible that a planned or unplanned disconnection may result in two
neighbors each having an empty internal port. In such a case, since they are neighbors, they
are already connected and cannot fill their empty ports by connecting to each other. Such a
condition is referred to as the “neighbors with empty ports” condition. Each neighbor
broadcasts a port connection request when it detects that it has an empty port as described
above. When a neighbor receives the port connection request from the other neighbor, it will
recognize the condition that its neighbor also has an empty port. Such a condition may also
occur when the broadcast channel is in the small regime. The condition can only be
corrected when in the large regime. When in the small regime, each computer will have less
than four neighbors. To detect this condition in the large regime, which would be a problem
if not repaired, the first neighbor to receive the port connection request recognizes the
condition and sends a condition check message to the other neighbor. The condition check
message includes a list of the neighbors of the sending computer. When the receiving
computer receives the list, it compares the list to its own list of neighbors. If the lists are
different, then this condition has occurred in the large regime and repair is needed. To repair
this condition, the receiving computer will send a condition repair request to one of the
neighbors of the sending computer which is not already a neighbor of the receiving
computer. When the computer receives the condition repair request, it disconnects from one
of its neighbors (other than the neighbor that is involved with the condition): and connects to
the computer that sent the condition repair request. Thus, one of the oﬁginal neighbors
involved in the condition will have had a port filled. However, two computers are still in
need of a connection, the other original neighbor and the computer that is now disconnected

from the computer that received the condition repair request. Those two computers send out

port connection requests. If those two computers are not neighbors, then they will connect to
(03004-8001/$1.003733.106} -14- 773100

0690

10

15

20

25

30

each other when they receive the requests. If, however, the two computers are neighbors,
then they repeat the condition repair process until two non-neighbors are in need of
connections.

It is possible that the two original neighbors with the condition may have the
same set of neighbors. When the neighbor that receives the condition check message
determines that the sets of neighbors are the same, it sends a condition double check message
to one of its neighbors other than the neighbor who also has the condition. When the
computer receives the condition double check message, it determines whether it has the same
set of neighbors as the sending computer. If so, the broadcast channel is in the small regime
and the condition is not a problem. If the set of neighbors are different, then the computer
that received the condition double check message sends a condition check message to the
original neighbors with the condition. The computer that receives that condition check
message directs one of it neighbors to connect to one of the original neighbors with the
condition by sending a condition repair message. Thus, one of the original neighbors with
the condition will have its port filled.

Figure 5C illustrates the neighbors with empty ports condition. In this
illustration, computer H disconnected in an unplanned manner, but computers F and I
responded to the port connection request of the other and are now connected together. The
other former neighbors of computer H, computers A and E, are already neighbors, which
gives rise to the neighbors with empty ports condition. In this example, computer E received
the port connection request from computer A, recognized the possible condition, and sent
(since they are neighbors via the internal connection) a condition check message with a list
of its neighbors to computer A. When computer A received the list, it recognized that
computer E has a different set of neighbor (i.e., the broadcast channel is in the large regime).
Computer A selected computer D, which is a neighbor of computer E and sent it a condition
repair request. When computer D received the condition repair request, it disconnected frem
one of its neighbors (other than computer E), which is computer G in this example.
Computer D then connected to computer A. Figure 5D illustrates two computers that are not
neighbors who now have empty ports. Computers E and G now have empty ports and are
not currently neighbors. Therefore, computers E and G can connect to each other.

Figures SE and SF further illustrate the neighbors with empty ports condition.
Figure 5E illustrates the neighbors with empty ports condition in the small regime. In this

[03004-8001/SL0D3733.106) -15- 131/00

0691

10

15

20

25

30

example, if computer E disconnected in an unplanned manner, then each computer
broadcasts a port connection request when it detects the disconnect. When computer A
receives the port connection request form computer B, it detects the neighbors with empty
ports condition and sends a condition cheék message to computer B. Computer B recognizes
that it has the same set of neighbors (computer C and D) as computer A and then sends a
condition double check message to computer C. Computer C recognizes that the broadcast
channel is in the small regime because is also has the same set of neighbors as computers A
and B, computer C may then broadcast a message indicating that the broadcast channel is in
the small regime.

Figure SF illustrates the situation of Figure SE when in the large regime. As
discussed above, computer C receives the condition double check message from computer B.
In this case, computer C recognizes that the broadcast channel is in the large regime because
it has a set of neighbors that is different from computer B. The edges extending up from
computer C and D indicate connections to other computers. Computer C then sends a
condition check message to computer B. When computer B receives the condition check
message, it sends a condition repair message to one of the neighbors of computer C. The
computer that receives the condition repair message disconnects from one of its neighbors,
other than computer C, and tries to connect to computer B and the neighbor from which it
disconnected tries to connect to computer A.
Port Selection

As described above, the TCP/IP protocol designates ports above number 2056
as user ports. The broadcast technique uses five user port numbers on each computer: one
external port and four internal ports. Generally, user ports cannot be statically allocated to
an application program because other applications programs executing on the same computer
may use conflicting port numbers. As a result, in one embodiment, the computers connected
to the broadcast channel dynamically allocate their port numbers. Each computer could
simply try to locate the lowest number unused port on that computer and use that port as the
call-in port. A seeking computer, however, does not know in advance the call-in port
number of the portal computers when the port numbers are dynamically allocated. Thus, a
seeking computer needs to dial ports of a portal computer starting with the lowest port
number when locating the call-in port of a portal computer. If the portal computer is

[03004-8001/SL003733.106] -16- 7131/00

0692

10

20

25

30

connected to (or attempting to connect to) the broadcast channel, then the seeking computer

“would eventually find the call-in port. If the portal computer is not connected, then the

seeking computer would eventually dial every user port. In addition, if each application
program on a computer tried to allocate low-ordered port numbers, then a portal computer
may end up with a high-numbered port for its call-in port because many of the low-ordered
port numbers would be used by other application programs. Since the dialing of a port is a
relatively slow process, it would take the seeking computer a long time to locate the call-in
port of a portal computer. To minimize this time, the broadcast technique uses a port
ordering algorithm to identify the port number order that a portal computer should use when
finding an available port for its call-in port. In one embodiment, the broadcast technique
uses a hashing algorithm to identify the port order. The algorithm preferably distributes the
ordering of the port numbers randomly through out the user port number space and only
selects each port number once. In addition, every time the algorithm is executed on any
computer for a given channel type and channel instance, it generates the same port ordering.
As described below, it is possible for a computer to be connected to multiple broadcast
channels that are uniquely identified by channel type and channel instance. The algorithm
may be “seeded” with channel type and channel instance in order to generate a unique
ordering of port numbers for each broadcast channel. Thus, a seeking computer will dial the
ports of a portal computer in the same order as the portal computer used when allocating its
call-in port.

If many computers are at the same time seeking connection to a broadcast
channel through a single portal computer, then the ports of the portal computer may be busy
when called by seeking computers. The seeking computers would typically need to keep on
redialing a busy port. The process of locating a call-in port may be significantly slowed by
such redialing. In one embodiment, each seeking computer may each reorder the first few
port numbers generated by the hashing algorithm. For example, each secking computer
could randomly reorder the first eight port numbers generated byﬁ the hashing algorithm. The
random ordenng could also be weighted where the first port number generated by the
hashing algorithm would have a 50% chance of being first in the reordering, the second port
number would have a 25% chance of being first in the reordering, and so on. Because the
secking computers would use different orderings, the likelihood of finding a busy port is

reduced. For example, if the first eight port numbers are randomly selected, then it is

[03004-8001/SL003733.106) -17- 7131/00

0693

10

15

20

25

30

possible that eight seeking computers could be simultaneously dialing ports in different
sequences which would reduce the chances of dialing a busy port.

Locating a Portal Computer

Each computer that can connect to the broadcast channel has a list of one or

’

more portal computers through which it can connect to the broadcast channel. In one
embodiment, each computer has the same set of portal computers. A seeking computer
locates a portal computer that is connected to the broadcast channel by successively dialing
the ports of each portal computer in the order specified by an algorithm. A seeking computer
could select the first portal computer and then dial all its ports until a call-in port of a
computer that is fully connected to the broadcast channel is found. If no call-in port is
found, then the seeking computer would select the next portal computer and repeat the
process until a portal computer with such a call-in port is found. A problem with such a
seeking technique is that all user ports of each portal computer are dialed until a portal
computer fully connected to the broadcast channel is found. In an alternate embodiment, the
seeking computer selects a port number according to the algorithm and then dials each portal
computer at that port number. If no acceptable call-in port to the broadcast channel is found,
then the seeking computer selects the next port number and repeats the process. Since the
call-in ports are likely allocated at lower-ordered port numbers, the seeking computer first
dials the port numbers that are most likely to be call-in ports of the broadcast channel. The
seeking computers may have a maximum search depth, that is the number of ports that it will
dial when seeking a portal computer that is fully connected. If the seeking computer
exhausts its search depth, then either the broadcast channel has not yet been established or, if
the seeking computer is also a portal computer, it can then establish the broadcast channel
with itself as the first fully connected computer.

When a seeking computer locates a portal computer that is itself not fully
connected, the two computers do not connect when they first locate each other because the
broadcast channel may already be established and accessible through a higher-ordered port
number on another portal computer. If the two seeking computers were to connect to each
other, then two disjoint broadcast channels would be formed. Each seeking computer can
share its experience in trying to locate a portal computer with the other seeking computer. In

particular, if one seeking computer has searched all the portal computers to a depth of eight,

{03004-8001/SL003733.106} -18- 7131/00

0694

10

20

25

30

then the one seeking computer can share that it has searched to a depth of eight with another
seeking computer. If that other seeking computer has searched to a depth of, for example,
only four, it can skip searching through depths five through eight and that other seeking
computer can advance its searching to a depth of nine.

In one embodiment, each computer may have a different set of portal
computers and a different maximum search depth. In such a situation, it may be possible that
two disjoint broadcast channels are formed because a seeking computer cannot locate a fully
connected port computer at a higher depth. Similarly, if the set of portal computers are

disjoint, then two separate broadcast channels would be formed.

Identifving Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting computer are
preferably selected randomly from the set of currently connected computers. One advantage
of the broadcast channel, however, is that no computer has global knowledge of the
broadcast channel. Rather, each computer has local knowledge of itself and its neighbors.
This limited local knowledge has the advantage that all the connected computers are peers
(as far as the broadcasting is concerned) and the failure of any one computer (actually any
three computers when in the 4-regular and 4-connect form) will not cause the broadcast
chanﬁel to fail. This local lmowledge makes it difficult for a portal computer to randomly
select four neighbors for a seeking computer.

v To select the four computers, a portal computer sends an edge connection
request message through one of its internal connections that is randomly selected. The
receiving computer again sends the edge connection request message through one of its
internal connections that is randomly selected. This sending of the message corresponds to a
random walk through the graph that represents the broadcast channel. Eventually, a
receiving computer will decide that the message has traveled far enough to represent a
randomly selected computer. That receiving computer will offer the internal connection

upon which it received the edge connection request message to the seeking computer for

edge pinning. Of course, if cither of the computers at the end of the offered internal

connection are already neighbors of the seeking computer, then the seekingA computer cannot

connect through that internal connection. The computer that decided that the message has

(03004-8001/SL003733.106] -19- 7131400

0695

10

15

20

25

30

traveled far enough will detect this condition of already being a neighbor and send the

message to a randomly selected neighbor.

In one embodiment, the distance that the edge connection request message

travels is established by the portal computer to be approximately twice the estimated

diameter of the broadcast channel. The message includes an indication of the distance that it
is to travel. Each receiving computer decrements that distance to travel before sending the
message on. The computer that receives a message with a distance to travel that is zero is
considered to be the randomly selected computer. If that randomly selected computer cannot
connect to the seeking computer (e.g., because it is already connected to it), then that
randomly selected computer forwards the edge connection request to one of its neighbors
with a new distance to travel. In one embodiment, the forwarding computer toggles the new
distance to travel between zero and one to help prevent two computers from sending the
message back and forth between each other.

Because of the local nature of the information maintained by each computer
connected to the broadcast channel, the computers need not generally be aware of the
diameter of the broadcast channel. In one embodiment, each message sent through the
broadcast channel has a distance traveled field. Each computer that forwards a message
increments the distance traveled field. Each computer also maintains an estimated diameter
of the broadcast channel. When a computer receives a message that has traveled a distance
that indicates that the estimated diameter is too small, it updates its estimated diameter and
broadcasts an estimated diameter message. When a computer receives an estimated diameter
message that indicates a diameter that is larger than its own estimated diameter, it updates its
own estimated diameter. This estimated diameter is used to establish the distance that an

edge connection request message should travel.

External Data Representation

The computers connected to the broadcast channel may internally store their
data in different formats. For example, one computer may use 32-bit integers, and another
computer may use 64-bit integers. As another example, one computer may use ASCII to
represent text and another computer may use Unicode. To allow communications between
heterogeneous computers, the messages sent over the broadcast channel may use the XDR

(“eXternal Data Representation”) format.

[03004-8001/SL003733.106] -20- 7/31/00

0696

‘15

20

25

30

The underlying peer-to-peer communications protocol may send multiple
messages in a single message stream. The traditional technique for retrieving messages from
a stream has been to repeatedly invoke an operating system routine to retricve the next
message in the stream. The retrieval of each message may require two calls to the operating
system: one to retrieve the size of the next message and the other to retrieve the number of
bytes indicated by the retrieved size. Such calls to the operating system can, however, be
very slow in comparison to the invocations of local routines. To overcome the inefficiencies
of such repeated calls, the broadcast technique in one embodiment, uses XDR to identify the
message boundaries in a stream of messages. The broadcast technique may request the
operating system to provide the next, for example, 1,024 bytes from the stream. The
broadcast technique can then repeatedly invoke the XDR routines to retrieve the messages
and use the success or failure of each invocation to determine whether another block of 1,024
bytes needs to be retrieved from the operating system. The invocation of XDR routines do
not involve system calls and are thus more efficient than repeated system calls.

M-Regular

In the embodiment described above, each fully connected computer has four
internal connections. The broadcast technique can be used with other numbers of internal
connections. For example, each computer could have 6, 8, or any even number of internal
connections. As the number of internal connections increase, the diameter of the broadcast
channel tends to decrease, and thus propagation time for a message tends to decrease. The
time that it takes to connect a seeking computer to the broadcast channel may, however,
increase as the number of internal connections increases. When the number of internal
connectors is even, then the broadcast channel can be maintained as m-regular and
m-connected (in the steady state). If the number of internal connections is odd, then when
the broadcast channel has an odd number of computers connected, one of the computers will
have less than that odd number of internal connections. In such a situation, the broadcast
network 1s neither m-regular nor m-connected. When the next computer connects to the
broadcast channel, it can again become m-regular and m-connected. Thus, with an odd
number of internal connections, the broadcast channel toggles between being and not being

m-regular and m-connected.

{03004-8001/SL003733.106] -21- 731/00

0697

10

15

20

25

30

Components .
Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcast channel. The above description generally assumed that there was
only one broadcast channel and that each computer had only one connection:to that broadcast
channel. More generally, a network of computers may have multiple broadcast channels,
each computer may be connected to more than one broadcast channel, and each computer
can have multiple connections to the same broadcast channel. The broadcast channel is well
suited for computer processes (e.g., application programs) that execute collaboratively, such
as network meeting programs. Each computer process can connect to one or more broadcast
channels. The broadcast channels can be identified by channel type (e.g, application
program name) and channel instance that représents separate broadcast channels for that
channel type. When a process attempts to connect to a broadcast channel, it seeks a process
currently connected to that broadcast channel that is executing on a portal computer. The
seeking process identifies the broadcast channel by channel type and channel instance.
Computer 600 includes multiple application programs 601 executing as
separate processes. Each application program interfaces with a broadcaster component 602
for each broadcast channel to which it is connected. The broadcaster component may be
implement as an object that is instantiated within the process space of the application
program. Alternatively, the broadcaster component may execute as a separate process or
thread from the application program. In one embodiment, the broadcaster component
provides functions (e.g., methods of class) that can be invoked by the application programs.
The primary functions provided may include a connect function that an application pfogram
invokes passing an indication of the broadcast channel to which the application program
wants to connect. The application program may provide a callback routine that the
broadcaster component invokes to notify the application program that the connection has
been completed, that is the process enters the fully connected state. The broadcaster
component may also provide an acquire message function that the application program can
invoke to retrieve the next message that is broadcast on the broadcast channel. Alternatively,
the application program may provide a callback routine (which may be a virtual function
provided by the application program) that the broadcaster component invokes to notify the
application program that a broadcast message has been received. Each broadcaster

component allocates a call-in port using the hashing algorithm. When calls are answered at

(03004-8001/SL.003733.106} -22- 731/00

0698

10

15

20

25

30

the call-in port, they are transferred to other ports that serve as the external and internal
ports.

The computers connecting to the broadcast channel may include a central
processing unit, memory, input devices (e.g., keyboard and pointing device), output devices
(e.g., display devices), and storage devices (e.g., disk drives). The memory and storage
devices are computer-readable medium that may contain computer instructions that
implement the broadcaster component. In addition, the data structures and message
structures may be stored or transmitted via a signal transmitted on a computer-readable
media, such as a communications link.

Figure 7 1s a block diagram illustrating the sub-components of the broadcaster
component in one embodiment. The broadcaster component includes a connect component
701, an external dispatcher 702, an internal dispatcher 703 for each internal connection, an
acquire message component 704 and a broadcast component 712. The application program
may provide a connect callback component 710 and a receive response component 711 that
are mvoked by the broadcaster component. The application program invokes the connect
component to establish a connection to a designated broadcast channel. The connect
component identifies the external port and installs the external dispatcher for handling
messages that are received on the external port. The connect component invokes the seek
portal computer component 705 to identify a portal computer that is connected to the
broadcast channel and invokes the connect request component 706 to ask the portal computer
(if fully connected) to select neighbor processes for the newly connecting process. The
external dispatcher receives external messages, identifies the type of message, and invokes
the appropriate handling routine 707. The internal dispatcher receives the internal messages,
identifies the type of message, and invokes the appropriate handling routine 708. The
received broadcast messages are stored in the broadcast message queue 709. The acquire
message component 1s invoked to retrieve messages from the broadcast queue. The
broadcast component is invoked by the application program to broadcast messages in the

broadcast channel.

A Distnibuted Conferencing System
In one embodiment, a conferencing system is implemented using the broadcast

" channel. Each participant in a conference connects to the conference’s broadcast channel,

{03004-8001/SLD03733.106] . -23- 731/00

0699

10

20

25

30

and a participant is designated as the speaker. The conferencing application program may
include a speaker component and an attendee component. The speaker component
broadcasts the conference events on the broadcast channel. Each attendee component
receives the conference events and displays the results of the conference events. For
example, the speaker may present slides at the conference along with a description of each
slide. [Each attendee may receive an electronic copy of the slides in advance of the
conference. At the scheduled time for the conference, the speaker and each attendee joins
the conference by connecting to the broadcast channel of the conference. The speaker
component allows the speaker to indicate when to display which slide. When a new slide is
displayed, the speaker component broadcasts a new slide message. When the attendee
component receives the new slide message, it displays the new slide to the participant. Also,
the speaker component may allow the speaker to draw on a slide using a stylus or other
pointing device. The speaker component then broadcasts draw messages on the broadcast
channel so the attendee component can display the drawing to the attendees. The
conferencing system may also use speech-to-text and text-to-speech to distribute the
speaker’s comments to all attendees.

The conferencing system may provide a directory web site where
participants can locate and sign up for a conference of interest. The directory may provide a
hierarchical categorization of scheduled conferences. When a user decides to sign up for a
conference, the web server may download the broadcaster component and the conferencing
application program to the attendee’s computer, if not already stored on the attendee’s
computer. The web server will also download the channel type and channel instance
associated with the broadcast channel for the conference along with the identification of the
portal computers for the broadcast channel. The web server may also download the slides or
other content to be displayed to the attendees during the conference.

The conferencing system may allow an entity to schedule conferences
using the web site. For example, a software company may want to schedule a conference to
announce a new product. The creation of the conference would entail the generation of a
channel type and channel instancé, the specification of a security level (e.g., encrypted
messages), the specification of attendee qualifications, the providing of a description and
scheduled time of the conference, the specification of the content to be distributed to the

attendees, and so on. The speaker at a conference may not want to publicize the actual

[03004-8001/5L003733.106] -24- 731/00

0700

15

20

25

content (e.g., slides) in advance. In such a situation, the content can be encrypted when
distributed to the attendees, and a key to decrypt the content can be distributed by the
speaker during the conference. For example, each slide for the software company’s
announcement can be encrypted with a different key, and the appropriate key can be
broadcast with each new slide message.

The conferencing system may allow attendees to broadcast comments
on the broadcast channel. The times when an attendee can broadcast comments may be
controlled by the speaker. For example, the speaker component may broadcast a comments
allowed message and a comments not allowed message to delimit the times when comments
will be allowed. Comments broadcast outside those times may be ignored. Alternatively, the
attendees may be allowed to broadcast comments at any time, but the other attendees ignore
those comments until the speaker broadcasts an approval message indicating that the attendee
component can display a certain comment.

The conferencing system may allow each attendee to connect to and
disconnect from the conference broadcast channel as this wish during the conference. In
addition, the conferencing system may allow multiple speakers to share the “podium.” The
speakers can pass a speakers token between them to indicate who is currently speaking and
thus in control of the conference. An attendee who joins the conference late may be able to
synchronize with the conference by accessing a conference monitoring web server. The
monitoring web server may be connected to the conference broadcast cha:%nnel and monitor
the current state of the conference. When an attendee joins late, the monitoring web server
can provide the attendee with the current state of the conference. From then on, the attendee
can listen on the broadcast channel to follow the progress of the conference. In addition, the
attendee component may allow the attendee to view parts of the presentation other than that
which is currently being presented. In this way, an attendee can refer back to or ahead to
other portions of the presentation.

The following tables list messages sent by the broadcaster components.

EXTERNAL MESSAGES

Message Type Descniption

seeking_connection_call | Indicates that a seeking process would like to know whether the

receiving process is fully connected to the broadcast channel

(03004-8001/SL003733.106) -25- 7731/00

0701

connection_request_call

Indicates that the sending process would like the receiving
process to initiate a connection of the sending process to the
broadcast channel

edge_proposal_call

Indicates that the sending process is proposing an edge through
which the receiving process can connect to the broadcast
channel (i.e., edge pinning)

port_connection_call

Indicates that the sending process is proposing a port through
which the receiving process can connect to the broadcast
channel

connected stmt

Indicates that the sending process is connected to the broadcast
channel

condition_repair_stmt

Indicates that the receiving process should disconnect from one
of its neighbors and connect to one of the processes involved in
the neighbors with empty port condition

INTERNAL MESSAGES

Message Type

Description

broadcast_stmt

Indicates a message that is being broadcast through the
broadcast channel for the application programs

connection_port_search_stmt | Indicates that the designated process is looking for a port

through which it can connect to the broadcast channel

connection_edge search_call | Indicates that the requesting process is looking for an edge

through which it can connect to the broadcast channel

connection_edge_search_resp | Indicates whether the edge between this process and the

sending neighbor has been accepted by the requesting
party

diameter_estimate_stmt

Indicates an estimated diameter of the broadcast channel

diameter reset stmt

Indicates to reset the estimated diameter to indicated
diameter

disconnect_stmt

Indicates that the sending neighbor is disconnecting from
the broadcast channel

condition_check_stmt

Indicates that neighbors with empty port condition have
been detected

condition_double_check stmt | Indicates that the neighbors with empty ports have the

same set of neighbors

shutdown_stmt

Indicates that the broadcast channel is being shutdown

{03004-8001/8L003733.106]

-26- 31/00

0702

10

15

20

25

30

Flow Diagrams
Figures 8-34 are flow diagrams illustrating the processing of the broadcaster

component in one embodiment. Figure 8 is a flow diagram illustrating the processing of the
connect routine in one embodiment. This routine is passed a channel type (e.g., application
name) and channel instance (e.g., session identifier), that identifies the broadcast channel to
which this process wants to connect. The routine is also passed auxiliary information that
includes the list of portal computers and a connection callback routine. When the connection
is established, the connection callback routine is invoked to notify the application program.
When this process invokes this routine, it is in the seeking connection state. When a portal
computer is located that is connected and this routine connects to at least one neighbor, this
process enters the partially connected state, and when the process eventually connects to four
neighbors, it enters the fully connected state. When in the small regime, a fully connected
process may have less than four neighbors. In block 801, the routine opens the call-in port
through which the process is to communicate with other processes when establishing external
and internal connections. The port is selected as the first available port using the hashing
algorithm described above. In block 802, the routine sets the connect time to the current
time. The connect time is used to identify the instance of the process that is connected
through this external port. One process may connect to a broadcast channel of a certain
channel type and channel instance using one call-in port and then disconnects, and another
process may then connect to that same broadcast channel using the same call-in port. Before
the other process becomes fully connected, another process may try to communicate with it
thinking it is the fully connected old process. In such a case, the connect time can be used to
identify this situation. In block 803, the routine invokes the seek portal computer routine
passing the channel type and channel instance. The seek portal computer routine attempts to
locate a portal computer through which this process can connect to the broadcast channel for
the passed type and instance. In decision block 804, if the seek portal computer routine is
successful in locating a fully connected process on that portal computer, then the routine
continues at block 805, else the routine returns an unsuccessful indication. In decision block
805, if no portal computer other than the portal computer on which the process is executing
was located, then this is the first process to fully connect to broadcast channel and the
routine continues at block 806, else the routine continues at block 808. In block 806, the

routine invokes the achieve connection routine to change the state of this process to fully

[03004-8001/SL003733.106) -27- 7/31/00

0703

10

15

20

25

30

connected. In block 807, the routine installs the external dispatcher for processing messages

_ received through this process’ external port for the passed channel type and channel instance.

When a message is received through that external port, the external dispatcher is invoked.
The routine then returns. In block 808, the routine installs an external dispatcher. In block
809, the routine invokes the connect request routine to initiate the process of identifying
neighbors for the seeking computer. The routine then returns.

Figure 9 is a flow diagram illustrating the processing of the seek portal
computer routine in one embodiment. This routine is passed the channel type and channel
instance of the broadcast channel to which this process wishes to connect. This routine, for
each search depth (e.g., port number), checks the portal computers at that search depth. If a
portal cémputer 1s located at that search depth with a process that is fully connected to the
broadcast channel, then the routine returns an indication of success. In blocks 902-911, the
routine loops selecting each search depth until a process is located. In block 902, the routine
.selects the next search depth using a port number ordering algorithm. In decision block 903,
if all the search depths have already been selected during this execution of the loop, that is
for the currently selected depth, then the routine returns a failure indication, else the routine
continues at block 904. In blocks 904-911, the routine loops selecting each portal computer
and determining whether a process of that portal computer is connected to (or attempting to
connect to) the broadcast channel with the passed channel type and channel instance. In
block 904, the routine selects the next portal computer. In decision block 905, if all the
portal computers have already been selected, then the routine loops to block 902 to select the
next search depth, else the routine continues at block 906. In block 906, the routine dials the
selected portal computer through the port represented by the search depth. In decision block
907, if the dialing was successful, then the routine continues at block 908, else the routine
loops to block 904 to select the next portal computer. The dialing will be successful if the
dialed port is the call-in port of the broadcast channel of the passed channel type and channel
instance of a process executing on that portal computer. In block 908, the routine invokes a
contact process routine, which contacts the answering process of the portal computer through
the dialed port and determines whether that process is fully connected to the broadcast
channel. In block 909, the routine hangs up on the selected portal computer. In decision
block 910, if the answering procéss is fully connected to the broadcast channel, then the

routine returns a success indicator, else the routine continues at block 911. In block 91 1, the

{03004-8001/SL003733.106) .-28- 31/00

0704

10

15

20

25

30

routine invokes the check for external call routine to determine whether an external call has
been made to this process as a portal computer and processes that call. The routine then
loops to block 904 to select the next portal computer.

Figure 10 is a flow diagram illustrating the processing of the contact process
routine in one embodiment. This routine determines whether the process of the selected
portal computer thaf answered the call-in to the selected port is fully connected to the
broadcast channel. In block 1001, the routine sends an external message (i.e.,
seeking_connection_call) to the answering process indicating that a seeking process wants to
know whether the answering process is fully connected to the broadcast channel. In block
1002, the routine receives the external response message from the answering process. In
decision block 1003, if the external response message is successfully received (i.e.,
seeking connection_resp), then the routine continues at block 1004, else the routine returns.
Wherever the broadcast component requests to receive an external message, it sets a time out
period. If the external message is not received within that time out period, the broadcaster
component checks its own call-in port to see if another process is calling it. In particular, the

dialed process may be calling the dialing process, which may result in a deadlock situation.

_ The broadcaster component may repeat the receive request several times. If the expected

message is not received, then the broadcaster component handles the error as appropriate. In
decision block 1004, if the answering process indicates in its response message that it is fully
connected to the broadcast channel, then the routine continues at block 1005, else the routine
continues at block 1006. In block 1005, the routine adds the selected portal computer to a
list of connected portal computers and then returns. In block 1006, the routine adds the
answering process to a list of fellow seeking processes and then returns.

Figure 11 is a flow diagram illustrating the processing of the connect request
routine in one embodiment. This routine requests a process of a portal computer that was
identified as being fully connected to the broadcast channel to initiate the connection of this
process to the broadcast channel. In decision block 1101, if at least one process of a portal
computer was located that is fully connected to the broadcast channel, then the routine
continues at block 1103, else the routine continues at block 1102. A process of the portal
computer may no longer be in the list if it recently disconnected from the broadcast channel.
In one embodiment, a seeking computer may always search its entire search depth and find
multiple portal computers through which it can connect to the broadcast channel. In block

[03004-8001/SL003733.106] -29. 7131/00

0705

10

15

20

25

30

1102, the routine restarts the process of connecting to the broadcast channel and returns. In
block 1103, the routine dials the process of one of the found portal computers through the
call-in port. In decision block 1104, if the dialing is successful, then the routine continues at
block 1105, else the routine continues at block 1113. The dialing may be unsuccessful if, for
example, the dialed process recently disconnected from the broadcast channel. In block
1105, the routine sends an external message to the dialed process requesting a connection to
the broadcast channel (i.e., connection_request_call). In block 1106, the routine receives the
response message (i.e., connection_request_resp). In decision block 1107, if the response
message is successfully received, then the routine continues at block 1108, else the routine
continues at block 1113. In block 1108, the routine sets the expected number of holes (i.e.,
empty internal connections) for this process based on the received response. When in the
large regime, the expected number of holes is zero. When in the small regime, the expected
number of holes varies from one to three. In block 1109, the routine sets the estimated
diameter of the broadcast channel based on the received response. In decision block 1111, if
the dialed process is ready to connect to this process as indicated by the response message,
then the routine continues at block 1112, else the routine continues at block 1113. In block

1112, the routine invokes the add neighbor routine to add the answering process as a

| - neighbor to this process. This adding of the answering process typically occurs when the

broadcast channel is in the small regime. When in the large regime, the random walk search
for a neighbor i1s performed. In block 1113, the routine hangs up the external connection
with the answering process computer and then returns.

Figure 12 is a flow diagram of the processing of the check for external call
routine in one embodiment. This routine is invoked to identify whether a fellow seeking
process is attempting to establish a connection to the broadcast channel through this process.
In block 1201, the routine attempts to answer a call on the call-in port. In decision block
1202, if the answer is successful, then the routine continues at block 1203, else the routine
returns. In block 1203, the routine receives the external message from the external port. In
decision block 1204, if the type of the message indicates that a seeking process is calling
(i.e., seeking_connection_call), then the routine continues at block 1205, else the routine
returns. In block 1205, the routine sends an external message (i.e., seeking_connection_resp)
to the other seeking process indicating that this process is also is seeking a connection. In

decision block 1206, if the sending of the external message is successful, then the routine

[03004-8001/SL003733.106) -30- 31100

0706

15

20

25

30

continues at block 1207, else the routine returns. In block 1207, the routine adds the other
seeking process to a list of fellow seeking processes and then returns. This list may be used
if this process can find no process that is fully connected to the broadcast channel. In which
case, this process may check to see if any fellow seeking process were successful in
connecting to the broadcast channel. For example, a fellow seeking process may become the
first process fully connected to the broadcast channel.

Figure 13 is a flow diagram of the processing of the achieve connection routine
in one embodiment. This routine sets the state of this process to fully connected to the
broadcast channel and invokes a callback routine to notify the application program that the
process is now fully connected to the requested broadcast channel. In block 1301, the
routine sets the connection state of this process to fully connected. In block 1302, the
routine notifies fellow seeking processes that it is fully connected by sending a connected
external message to them (i.e., connected_stmt). In block 1303, the routine invokes the
connect callback routine to notify the application program and then returns.

Figure 14 is a flow diagram illustrating the processing :of the external
dispatcher routine in one embodiment. This routine is invoked when the external port
receives a message. This routine retrieves the message, identifies the external message type,
and invokes the appropriate routine to handle that message. This routine ﬂoops processing
each message until all the received messages have been handled. In block ﬂ401, the routine
answers (e.g., picks up) the external port and retrieves an external message. In decision
block 1402, if a message was retrieved, then the routine continues at block 1403, else the
routine hangs up on the external port in block 1415 and returns. In decision block 1403, if
the message type is for a process seeking a connection (i.e., seeking_connection_call), then
the routine invokes the handle seeking connection call routine in block 1404, else the routine
continues at block 1405. In decision block 1405, if the message type is for a connection
request call (i.e., connection_request_call), then the routine invokes the handle connection
request call routine in block 1406, else the routine continues at block 1407. In decision

block 1407, if the message type is edge proposal call (i.c., edge proposal _call), then the

-routine invokes the handle edge proposal call routine in block 1408, else the routine

continues at block 1409. In decision block 1409, if the message type is port connect call
(i.e., port_connect_call), then the routine invokes the handle port connection call routine in

block 1410, else the routine continues at block 1411. In decision block 141 1, if the message

[03004-8001/5L003733.106] -31- 731/00

0707

10

5

20

25

30

type is a connected statement (ie, connected_stmt), the routine invokes the handle
connected statement in block 1112, else the routine continues at block 1212. In decision
block 1412, if the message type is a condition repair statement (i.e., condition_repair_stmt),
then the routiné invokes the handle condition repair routine in block 1413, else the routine
loops to block 1414 to process the next message. After each handling routine is invoked, the
routine loops to block 1414. In block 1414, the routine hangs up on the external port and
continues at block 1401 to receive the next message.

Figure 15 is a flow diagram illustrating the processing of the handle seeking
connection call routine in one embodiment. This routine is invoked when a seeking process
is calling to identify a portal computer through which it can connect to the broadcast channel.
In decision block 1501, if this process is currently fully connected to the broadcast channel
identified in the message, then the routine continues at block 1502, else the routine continues
at block 1503. In block 1502, the routine sets a message to indicate that this process 1s fully
connected to the broadcast channel and continues at block 1505. In block 1503, the routine
sets a message to indicate that this process is not fully connected. In block 1504, the routine
adds the identification of the seeking process to a list of fellow seeking processes. If this
process is not fully connected, then it is attempting to connect to the broadcast channel. In
block 1505, the routine sends the external message response (i.e., seeking_connection_resp)
to the seeking process and then returns.

| Figure 16 is a flow diagram illustrating processing of the handle connection
request call routine in one embodiment. This routine is invoked when the calling process
wants this process to initiate the connection of the process to the broadcast channel. This
routine either allows the calling'process to establish an internal connection with this process
(e.g., if in the small regime) or starts the process of identifying a process to which the calling
process can connect. In decision block 1601, if this process is currently fully connected to
the broadcast channel, then the routine continues at block 1603, else the routine hangs up on
the external port in block 1602 and returns. In block 1603, the routine sets the number of
holes that the calling process should expect in the response message. In block 1604, the
routine sets the estimated diameter in the response message. In block 1605, the routine
indicates whether this process is ready to connect to the calling process. This process is
ready to connect when the number of its holes is greater than zero and the calling process is

not a neighbor of this process. In block 1606, the routine sends to the calling process an

{03004-8001/SL003733.106) -32- 731400

0708

10

15

20

25

30

external message that 1is responsive to the connection request call (ie.,
connection_request_resp). In block 1607, the routine notes the number of holes that the
calling process needs to fill as indicated in the request message. In decision block 1608, if
this process is ready to connect to the calling process, then the routine continues at block
1609, else the routine continues at block 1611. In block 1609, the routine invokes the add
neighbor routine to add the calling process as a neighbor. In block 1610, the routine
decrements the number of holes that the calling process needs to fill and continues at block
1611. In block 1611, the routine hangs up on the external port. In decision block 1612, if
this process has no holes or the estimated diameter is greater than one (ie., in the large
regime), then the routine continues at block 1613, else the routine continues at block 1616.
In blocks 1613-1615, the routine loops forwarding a request for an edge through which to
connect to the calling process to the broadcast channel. One request is forwarded for each
pair of holes of the calling process that needs to be filled. In decision block 1613, if the
number of holes of the calling process to be filled is greater than or equal to two, then the
routine continues at block 1614, else the routine continues at block 1616. In block 1614, the
routine invokes the forward connection edge search routine. The invoked routine is passed
to an indication of the calling process and the random walk distance. In one embodiment, the
distance is twice in the estimated diameter of the broadcast channel. In block 1614, the
routine decrements the holes left to fill by two and loops to block 1613. In decision block
1616, if there is still a hole to fill, then the routine continues at block 1617, else the routine
returns. In block 1617, the routine invokes the fill hole routine passing the identification of
the calling process. The fill hole routine broadcasts a connection port search statement (i.e.,
connection_port_search_stmt) for a hole of a connected process through which the calling
process can connect to the broadcast channel. The routine then returns.

Figure 17 is a flow diagram illustrating the processing of the add neighbor
routine in one embodiment. This routine adds the process calling on the external port as a
neighbor to this process. In block 1701, the routine identifies the cailing process on the
external port. In block 1702, the routine sets a flag to indicate that the neighbor has not yet
received the broadcast messages from this process. This flag is used to ensure that there are
no gaps in the messages initially sent to the new neighbor. The external port becomes the
internal port for this connection. In decision block 1703, if this process is in the seeking

connection state, then this process is connecting to its first neighbor and the routine

(03004-8001/SL003733.106) -33- 131109

0709

10

15

20

25

30

continues at block 1704, else the routine continues at block 1705. In block 1704, the routine
sets the connection state of this process to partially connected. In block 1705, the routine
adds the calling process to the list of neighbors of this process. In block 1706, the routine
installs an internal dispatcher for the new neighbor. The internal dispatcher is invoked when
a message is received from that new neighbor through the internal port of that new neighbor.
In decision block 1707, if this process buffered up messages while not fully connected, then
the routine continues at block 1708, else the routine continues at block 1709. In one
embodiment, a process that is partially connected may buffer the messages that it receives
through an internal connection so that it can send these messages as it connects to new
neighbors. In block 1708, the routine sends the buffered messages to the new neighbor
through the internal port. In decision block 1709, if the number of holes of this process
equals the expected number of holes, then this process is fully connected and the routine
continues at block 1710, else the routine continues at block 1711. In block 1710, the routine
invokes the achieve connected routine to indicate that this process is fully connected. In
decision block 1711, if the number of holes for this process is zero, then the routine
continues at block 1712, else the routine returns. In block 1712, the routine deletes any
pending edges and then returns. A pending edge is an edge that has been proposed to this
process for edge pinning, which in this case is no longer needed.

Figure 18 is a flow diagram illustrating the processing of the forward
connection edge search routine in one embodiment. This routine is responsible for passing
along a request to connect a requesting process to a randomly selected neighbor of this
process through the internal port of the selected neighbor, that is part of the random walk. In
decision block 1801, if the forwarding distance remaining is greater than zero, then the

routine continues at block 1804, else the routine continues at block 1802. In decision block

- 1802, if the number of neighbors of this process is greater than one, then the routine

continues at block 1804, else this broadcast channel is in the small regime and the routine
continues at block 1803. In decision block 1803, if the requesting process is a neighbor of
this process, then the routine returns, else the routine continues at block 1804. In blocks
1804-1807, the routine loops attempting to send a connection edge search call internal
message (i.e., connection_edge_search_call) to a randomly selected neighbor. In block 1804,
the routine randomly selects a neighbor of this process. In decision block 1805, if all the

neighbors of this process have already been selected, then the routine cannot forward the

[03004-8001/SL003733.106] -34- 731/00

0710

10

15

20

25

30

message and the routine returns, else the routine continues at block 1806. In block 1806, the
routine sends a connection edge search call internal message to the selected neighbor. In
decision block 1807, if the sending of the message is successful, then the routine continues at
block 1808, else the routine loops to block 1804 to select the next neighbor. When the
sending of an internal message is unsuccessful, then the neighbor may have disconnected
from the broadcast channel in an unplanned manner. Whenever such a situation is detected
by the broadcaster component, it attempts to find another neighbor by invoking the fill holes
routine to fill a single hole or the forward connecting edge search routine to fill two holes. In
block 1808, the routine notes that the recently sent connection edge search call has not yet
been acknowledged and indicates that the edge to this neighbor is reserved if the remaining
forwarding distance is less than or equal to one. It is reserved because the selected neighbor
may offer this edge to the requesting process for edge pinning. The routine then returns.
Figure 19 is a flow diagram illustrating the processing of the handle edge
proposal call routine. This routine 1s invoked when a message is received from a proposing
process that proposes to connect an edge between the proposing process and one of its
neighbors to this process for edge pinning. In decision block 1901, if the number of holes of
this process minus the number of pending edges is gréater than or equal to one, then this
process still has holes to be filled and the routine continues at block 1902, else the routine
continues at block 1911. In decision block 1902, if the proposing process or its neighbor is a
neighbor of this process, then the routine continues at block 1911, else the routine continues
at block 1903. In block 1903, the routine indicates that the edge is pending between this
process and the proposing process. In decision block 1904, if a proposed neighbor is already
pending as a proposed neighbor, then the routine continues at block 1911, else the routine
continues at block 1907. In block 1907, the routine sends an edge proposal response as an
external message to the proposing process (i.e., edge proposal resp) indicating that the
proposed edge is accepted. In decision block 1908, if the sending of the message was
successful, then the routine continues at block 1909, else the routine returns. In black 1909,
the routine adds the edge as a pending edge. In block 1910, the routine invokes the add
neighbor routine to add the proposing process on the external port as a neighbor. The routine
then returns. In block 1911, the routine sends an external message (i.e., edge_proposal_resp)
indicating that this proposed edge is not accepted. In decision block 1912, if the number of

{03004-8001/SLO03733.106] -35- 7131/00

0711

10

15

20

25

30

holes is odd, then the routine continues at block 1913, else the routine returns. In block
1913, the routine invokes the fill hole routine and then returns.

Figure 20 is a flow diagram illustrating the processing of the handle port
connection call routine in one embodiment. This routine is invoked when an external
message is received then indicates that the sending process wants to connect to one hole of
this process. In decision block 2001, if the number of holes of this prdcess is greater than
zero, then the routine continues at block 2002, else the routine continues at block 2003. In
decision block 2002, if the sending process is not a neighbor, then the routine continues at
block 2004, else the routine continues to block 2003. In block 2003, the routine sends a port
connection response external message (i.e., port_connection_resp) to the sending prbcess that
indicates that it is not okay to connect to this process. The routine then returns. In block
2004, the routine sends a port connection response external message to the sending process
that indicates that is okay to connect this process. In decision block 2005, if the sending of
the message was successful, then the routine continues at block 2006, else the routine
continues at block 2007. In block 2006, the routine invokes the add neighbor routine to add
the sending process as a neighbor of this process and then returns. In block 2007, the routine
hangs up the external connection. In block 2008, the routine invokes the connect request
routine to request that a process connect to one of the holes of this process. The routine then
returns.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in
one embodiment. This routine is passed an indication of the requesting process. If this
process 1s requesting to fill a hole, then this routine sends an internal message to other
processes. If another process 1s requesting to fill a hole, then this routine invokes the routine
to handle a connection port search request. In block 2101, the routine initializes a
connection port search statement internal message (i.e., connection port_search stmt). In
dectsion block 2102, if this process is the requesting process, then the routine continues at
block 2103, else the routine continues at block 2104. In block 2103, the routine distributes
the message to the neighbors of this process through the internal ports and then returns. In
block 2104, the routine invokes the handle connection port search routine and then returns.

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher
routine in one embodiment. This routine is passed an indication of the neighbor who sent the

internal message. In block 2201, the routine receives the internal message. This routine

(03004-8001/SL003733.106) -36- 1731/00

0712

10

15

20

25

30

identifies the message type and invokes the appropriate routine to handle the message. In
block 2202, the routine assesses whether to change the estimated diameter of the broadcast
channel based on the information in the received message. In decision block 2203, if this
process is the originating process of the message or the message has already been received
(i.e., a duplicate), then the routine ignores the message and continues at block 2208, else the
routine continues at block 2203A. In decision block 2203A, if the process is partially
connected, then the routine continues at block 2203B, else the routine continues at block
2204. In block 2203B, the routine adds the message to the pending connection buffer and
continues at block 2204. In decision blocks 2204-2207, the routine decodes the message
type and invokes the appropriate routine to handle the message. For example, in decision
block 2204, if the type of the message is broadcast statement (i.e., broadcast_stmt), then the
routine invokes the handle broadcast message routine in block 2205. After invoking the
appropriate handling routine, the routine continues at block 2208. In decision block 2208, if
the partially connected buffer is full, then the routine continues at block 2209, else the
routine continues at block 2210. The broadcaster component collects all its internal
messages in a buffer while partially connected so that it can forward the messages as it
connects to new neighbors. If, however, that buffer becomes full, then the process assumes
that it is now fully connected and that the expected number of connections was too high,
because the broadcast channel is now in the small regime. In block 2209, the routine invokes
the achieve connection routine and then continues in block 2210. In decision block 2210, if
the application program message queue is empty, then the routine returns, else the routine
continues at block 2212. In block 2212, the routine invokes the receive response routine
passing the acquired message and then returns. - The received response routine is a callback
routine of the application program.

- Figure 23 is a flow diagram illustrating the processing of the handle broadcast
message routine in one embodiment. This routine is passed an indication of the originating
process, an indication of the neighbor who sent the broadcast message, and the broadcast

message itself. In block 2301, the routine performs the out of order processing for this

-message. The broadcaster component queues messages from each originating process until it

can send them in sequence number order to the application program. In block 2302, the
routine invokes the distribute broadcast message routine to forward the message to the

neighbors of this process. In decision block 2303, if a newly connected neighbor is waiting

{03004-8001/SL.O03733.106) -37- 7131/00

0713

10

15

20

25

30

to receive messages, then the routine continues at block 2304, else the routine returns. In
block 2304, the routine sends the messages in the correct order if possible for each
originating process and then returns.

Figure 24 is a flow diagram illustrating the processing of the distribute
broadcast message routine in one embodiment. This routine sends the broadcast message to
each of the neighbors of this process, except for the neighbor who sent the message to this
process. In block 2401, the routine selects the next neighbor other than the neighbor who
sent the message. In decision block 2402, if all such neighbors have already been selected,
then the routine returns. In block 2403, the routine sends the message to the selected
neighbor and then loops to block 2401 to select the next neighbor.

Figure 26 is a flow diagram 1llustrating the processing of the handle connection
port search statement routine in one embodiment. This routine is passed an indication of the
neighbor that sent the message and the message itself. In block 2601, the routine invokes the
distribute internal message which sends the message to each of its neighbors other than the
sending neighbor. In decision block 2602, if the number of holes of this process is greater
than zero, then the routine continues at block 2603, else the routine returns. In decision
block 2603, if the requesting process is a neighbor, then the routine continues at block 2605,
else the routine continues at block 2604. In block 2604, the routine invokes the court
neighbor routine and then returns. The court neighbor routine connects this process to the
requesting process if possible. In block 2605, if this process has one hole, then the neighbors
with empty ports condition exists and the routine continues at block 2606, else the routine
returns. In block 2606, the routine generates a condition check message (ie.,
condition_check) that includes a list of this process’ neighbors. In block 2607, the foutine
sends the message to the requesting neighbor.

Figure 27 is a flow diagram illustrating the processing of the court neighbor
routine in one embodiment. This routine is passed an indication of the prospective neighbor
for this process. If this process can connect to the prospective neighbor, then it sends a port
connection call external message to the prospective neighbor and adds the prospective
neighbor as a neighbor. In decision block 2701, if the prospective neighbor is already a
neighbor, then the routine returns, else the routine continues at block 2702. In block 2702,
the routine dials the prospective neighbor. In decision block 2703, if the number of holes of

this process is greater than zero, then the routine continues at block 2704, else the routine
[03004-8001/SL003733.106] -38- 731/00

0714

10

15

20

25

30

continues at block 2706. In block 2704, the routine sends a port connection call external
message (i.e., port_connection_call) to the prospective neighbor and receives its response
(i.e., port_connection_resp). Assuming the response is successfully received, in block 2705,
the routine adds the prospective neighbor as a neighbor of this process by invoking the add
neighbor routine. In block 2706, the routine hangs up with the prospect and then retumns.
Figure 28 is a flow diagram illustrating the processing of the handle connection
edge search call routine in one embodiment. This routine is passed a indication of the
neighbor who sent the message and the message itself. This routine either forwards the
message to a neighbor or proposes the edge between this process and the sending neighbor to
the requesting process for edge pinning. In decision block 2801, if this process is not the
requesting process or the number of holes of the requesting process is still greater than or
equal to two, then the routine continues at block 2802, else the routine continues at block

2813. In decision block 2802, if the forwarding distance is greater than zero, then the

random walk is not complete and the routine continues at block 2803, else the routine

continues at block 2804. In block 2803, the routine invokes the forward connection edge
search routine passing the identification of the requesting process and the decremented
forwarding distance. The routine then continues at block 2815. In decision block 2804, if
the requesting process is a neighbor or the edge between this process and the sending
neighbor is reserved because it has already been offered to a process, then the routine
continues at block 2805, else the routine continues at block 2806. In block 2805, the routine
invokes the forward connection edge search routine passing an indication of the requesting
party and a toggle indicator that alternatively indicates to continue the random walk for one
or two more computers. The routine then continues at block 2815. In block 2806, the
routine dials the requesting process via the call-in port. In block 2807, the routine sends an
edge proposal call external message (i.e., edge proposal call) and receives the response (i.e.,
edge_proposal_resp). Assuming that the response is successfully received, the routine
continues at block 2808. In decision block 2808, if the response indicates that the edge is
acceptable to the requesting process, then the routine continues at block 2809, else the
routine continues at block 2812. In block 2809, the routine reserves the edge between this
process and the sending neighbor. In block 2810, the routine adds the requesting process as
a neighbor by invoking the add neighbor routine. In block 2811, the routine removes the
sending neighbor as a neighbor. In block 2812, the routine hangs up the external port and

{03004-8001/SL003733.106) -39- 131/00

0715

10

15

20

25

30

continues at block 2815. In decision block 2813, if this process is the requesting process and
the number of holes of this process equals one, then the routine continues at block 2814, else
the routine continues at block 2815. In block 2814, the routine invokes the fill hole routine.
In block 2815, the routine sends an connection edge search response message (ie.,
connection_edge_search_response) to the sending neighbor indicating acknowledgement and
then returns. The graphs are sensitive to parity. That is, all possible paths starting from a
node and ending at that node will have an even length unless the graph has a cycle whose
length is odd. The broadcaster component uses a toggle indicator to vary the random walk
distance between even and odd distances.

Figure 29 is a flow diagram illustrating the processing of the handle connection
edge search response routine in one embodiment. This routine is passed as indication of the
requesting process, the sending neighbor, and the message. In block 2901, the routine notes
that the connection edge search response (i.e., connection_edge search_resp) has been
received and if the forwarding distance is less than or equal to one unreserves the edge
between this process and the sending neighbor. In decision block 2902, if the requesting
process indicates that the edge is acceptable as indicated in the message, then the routine
continues at block 2903, else the routine returns. In block 2903, the routine reserves the edge
between this process and the sending neighbor. In block 2904, the routine removes the
sending neighbor as a neighbor. In block 2905, the routine invokes the court neighbor
routine to connect to the requesting process. In decision block 2906, if the invoked routine
was unsuccessful, then the routine continues at block 2907, else the routine returns. In
decision block 2907, if the number of holes of this process is greater than zero, then the
routine continues at block 2908, else the routine returns. In block 2908, the routine invokes
the fill hole routine and then returns.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine
in one embodiment. This routine is invoked by the application program to broadcast a
message on the broadcast channel. This routine is passed the message to be broadcast. In
decision block 3001, if this process has at least one neighbor, then the routine continues at
block 3002, else the routine returns since it is the only process connected to be broadcast
channel. In block 3002, the routine generates an internal message of the broadcast statement

type (i.e., broadcast _stmt). In block 3003, the routine sets the sequence number of the

{03004-8001/SL003733.106) -40- 7131/00

0716

10

15

20

25

30

message. In block 3004, the routine invokes the distribute internal message routine to
broadcast the message on the broadcast channel. The routine returns.

Figure 31 is a flow diagram illustrating the processing of the acquire message
routine in one embodiment. The acquire message routine may be invoked by the application
program or by a callback routine provided by the application program. This routine returns a
message. In block 3101, the routine pops the message from the message queue of the
broadcast channel. In decision block 3102, if a message was retrieved, then the routine
returns an indication of success, else the routine returns indication of failure.

Figures 32-34 are flow diagrams illustrating the processing of messages
associated with the neighbors with empty ports condition. Figure 32 is a flow diagram
illustrating processing of the handle condition check message in one embodiment. This
message is sent by a neighbor process that has one hole and has received a request to connect
to a hole of this process. In decision block 3201, if the number of holes of this process is
equal to one, then the routine continues at block 3202, else the neighbors with empty ports
condition does not exist any more and the routine returns. In decision block 3202, if the
sending neighbor and this process have the same set of neighbors, the routine continues at
block 3203, else the routine continues at block 3205. In block 3203, the routine initializes a
condition double check message (i.e., condition_double_check) with the list of neighbors of
this process. In block 3204, the routine sends the message internally to a neighbor other than
sending neighbor. The routine then retuns. In block 3205, the routine selects a neighbor of
the sending process that is not also a neighbor of this process. In block 3206, the routine
sends a condition repair message (i.e., condition repair stmt) externally to the selected
process. In block 3207, the routine invokes the add neighbor routine to add the selected
neighbor as a neighbor of this process and then returns.

Figure 33 is a flow diagram illustrating processing of the handle condition
repair statement routine in one embodiment. This routine removes an existing neighbor and
connects to the process that sent the message. In decision block 3301, if this process has no
holes, then the routine continues at block 3302, else the routine continues at block 3304. In
block 3302, the routine selects a neighbor that is not involved in the neighbors with empty
ports condition. In block 3303, the routine removes the selected neighbor as a neighbor of

this process. Thus, this process that is executing the routine- now has at least one hole. In

[03004-8001/SL0O03733.106] -41- 7/31/00

0717

10

15

20

25

block 3304, the routine invokes the add neighbor routine to add the process that sent the
message as a neighbor of this process. The routine then returns.

Figure 34 is.a flow diagram illustrating the processing of the handle condition
double check routine. This routine determines whether the neighbors with empty ports
condition really is a problem or whether the broadcast channel is in the small regime. In
decision block 3401, if this process has one hole, then the routine continues at block 3402,
else the routine continues at block 3403. If this process does not have one hole, then the set
of neighbors of this process is not the same as the set of neighbors of the sending process. In
decision block 3402, if this process and the sending process have the same set of neighbors,
then the broadcast channel is not in the small regime and the routine continues at block 3403,
else the routine continues at block 3406. In decision block 3403, if this process has no holes,
then the routine returns, else the routine continues at block 3404. In block 3404, the routine
sets the estimated diameter for this process to one. In block 3405, the routine broadcasts a
diameter reset internal message (i.e., diameter_reset) indicating that the estimated diameter is
one and then returns. In block 3406, the routine creates a list of neighbors of this process. In
block 3407, the routine sends the condition check message (i.e., condition_check_stmt) with

the list of neighbors to the neighbor who sent the condition double check message and then

~ returns.

From the above description, it will be appreciated that although specific
embodiments of the technology have been described, various modifications may be made
without deviating from the spirit and scope of the invention. For example, the
communications on the broadcast channel may be encrypted. Also, the channel instance or
session 1dentifier may be a very large number (e.g., 128 bits) to help prevent an unauthorized
user to maliciously tap into a broadcast channel. The portal computer may also enforce
security and not allow an unauthorized user to connect to the broadcast channel.

Accordingly, the invention is not limited except by the claims.

[03004-8001/SL003733.106) -42- 7/31/00

0718

10

11

12

13

14
15

16

17

18

CLAIMS

1. A computer network for providing a conferencing system for a plurality
of participants, each participant having connections to at least three neighbor participants,
wherein an originating participant sends data to the other participants by sending the data

through each of its connections to its neighbor participants and wherein each participant

“ sends data that it receives from a neighbor participant to its other neighbor participants.

2. The computer network of claim 1 wherein each participant is connected

to 4 other participants.

3. The computer network of claim 1 wherein each participant is connected

to an even number of other participants.

4. The computer network of claim 1 wherein the network is m-regular,

where m is the number of neighbor participants of each participant.

5. The computer network of claim 1 wherein the network is m-connected,

where m 1s the number of neighbor participants of each participant.

6. The computer network of claim 1 wherein the network is m-regular and

m-connected, where m is the number of neighbor participants of each participant.
7. The computer network of claim 1 wherein all the participants are peers.

8. The computer network of claim 1 wherein the connections are peer-to-

peer connections.

(03004-8001/SL003733.106) -43- 7/31/00

0719

19

20

21

22

23
24

25
26

27

28

29
30
31
32
33

34

35
36

37

38
39

40

9. The computer network of claim 1 wherein the connections are TCP/IP

connections.

10. The computer network of claim 1 wherein each participant is a process

executing on a computer.

11. The computer network of claim 1 wherein a computer hosts more than

one participant.

12. The computer network of claim 1 wherein each participant sends to each

of its neighbors only one copy of the data.

13. The computer network of claim 1 wherein the interconnections of

participants form a broadcast channel for a topic of interest.

14. A distributed conferencing system comprising;
a plurality of broadcast channels, each broadcast channel for conducting
a conference;
means for identifying a broadcast channel for a conference of interest;
and

means for connecting to the identified broadcast channel.

15. The distributed conferencing system of claim 14 wherein means for
identifying a conference of interest includes accessing a web server that maps conferences to

corresponding broadcast channel.
16. The distributed conferencing system of claim 14 wherein a broadcast

channel is formed by attendee computers and a speaker computer that are each

interconnected to at least three other computers.

{03004-8001/SL003733.106] -44- 7/31/00

0720

“ 4

0721

0722

0723

Fig 7FA

0724

2l

0725

It

0726

0727

\D

-5 31

0729

0730

. FTV& :g—F:

P%.ﬂ:’

0731

¢

Qo

2 J»\au__mm(
| O
!
'
[
hg‘—wsmwsrgu
\«W«MW@U .wmbx._\wc:}uw
. L2 et A
0
| ©

0732

eppdsiq

s

)

B h\o

nzWS:,

Cod

Rosspy

G-»&:&

ek

|1vc¢

ot

|ﬂuw‘ vo)

QU

oy

Moy

)

Yom
"o
.*)u::cU

Q/

0733

g (fw TW}
‘P . _u:uvme.olashm_
O

. Connec}fh«xfn €o>
O plon ‘ |
[c w toct:
oz
Set

I, st Crtaeerdd
I'\Sw t‘,(tlwaﬂ Dusszfﬁc‘“‘r‘
D;SMCLQ" »
9
Conneck ﬂ.’eM
_(ln}'uu‘-«, ‘
LTaue)

0734

Contuch—
Pf%

i

ol

rréeso %&

o 2

Recerve &tarrd

W°ﬁmg£

N

i

o¢
Auasécﬂhol
seeRing compdR |

I

0735

So¥ s A_K*‘ holeg
@Lfm veaxPchno

o9
-F*{‘av-\ MPM

i

AM () q%kbavf“

0736

Check EE)
K Extm—o:

ol

o
Success
Y

z
w
23

QeceVe Egtnn o’
Messo SQ :

Success

Y| °7

Add ohar 6.8
felow ceelkar

Fr% |~

0737

Ackieve
Connech

Co (\ '\9(‘»\\0\ -
S Yede =
connected

noi\‘(\?q fellow
besbrio: -

_—

JaNoke

o

L

o3

oNn
CJ‘;} Nocle

()

0738

F\'E I“]

fé:r‘i\t
pcg'gos.a\ ce

[O

Ra~de Por
Conneeth o~Cau | | —

Poct k- |

0739

~Sa¢elExf3vv47
Messege

0740

nN
Sel wwwcormer's

Woles-to-
At el
I Of(

set readu7

VA ves PM

o9
pdd
neAennd v
] .
j < ne A T
}\OAA%~1i§___:’//////,jj;7t::.lz’ l holee fo i |
v |
bioed?)
PN ,
13 9
, %gmweco&pl
.SemJ«", — 1
I» Lo
holes 1ol 1l —:a-—
2
L_[E il
(vecues |)

0741

’Zi";‘;‘:id)

| Purep

edgg

sz]

0742

[o .A-’d?/‘f'

Ar s b Yo oo L

EngSe«»);, l nJ _
C“u N - '

0743

0744

o2

So~d Ex Favnal
ecla

(’\P ? 2o z_\

‘ r2e11k4-)
,Sa«A Exf.wawf

W\esso%e,

Success
0" oF ‘

| i Weighbo -
i

ey

nned “
Ciearu es

0745

ro.cts

Horrd L@ Cornnech:

OO»rdA

T

0746

Tatarnal) :
9 222) (reghlood)

g

L
%M‘ﬂ . FuQZ/V

YWeisaa ¢ €
1l o2

Assess
0 Y-8 Ry

of

Ra~d le Bcoedreg
‘ W\ss

Ackhaeve |

c a-v\het}\b\.

0747

(@

ot
odbe 2 maihbor

mwmesso %

0748

Howm Nni'gkbow

= 24.

0749

Conds hnrC hec Q

VW €S SOcL WLy
© L]

)

cod Lobramdd
mes;a%sb

xe

=D

0750

2 Court
‘ Frspt

Addl W sighbon

P AR

l Moot Eos ook

(Cosh—)

ol

0751

{roe Wed h-',k@

C=D

Res a3l ed?,]
01’ 'CI‘WUM{ b]'

0752

Medle . Oricin
&iu)u‘kbor

I 0| Mmessace

UJ{’CCM‘-
€8¢ Saveh oup—|

eds,asd:-.d DY e

y o3

reware €
o0& Leem m‘di‘bf

o4

R N4
AN N gh bor

-~

O
Cou r*‘”ﬁ‘sk b(‘

0753

0754

0755

wilr pista
.

neAch
0

So-d Pebarof
messo &ﬁ

A&ﬁ’ﬂﬂigk$9f

]

=

0756

22

AJi&l)aghbw,

e

T

Fig 35

Eam

0757

o3
>
holes ==
Cte_cJ.%ffs(- of
0] ‘tesele C
Soad Trtnrod diaimeker o 2
massog e _
2 fom w‘l'shkﬁ o5
M'DA}M
Message -
e [

0758

http://-~»ww fags.org/rfcs/rfc1832.html 01/29/2002--page 1

Internet RFC/STD/FYI/BCP Archives

RFC1832

[Index | Search | What's New | Comments | Help]

Network Working Group R. Srinivasan
Request. for Comments: 1832 Sun Microsystems
Category: Standards Track August 1995

XDR: External Data Representation Standard
Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memc is unlimited.

ABSTRACT

This document describes the External Data Representation Standard
(XDR) protocol as it is currently deployed and accepted.

TABLE OF CONTENTS

1. INTRODUCTION 2
2. BASIC BLOCK SIZE 2
3. XDR DATA TYPES 3
3.1 Integer 3
3.2 Unsigned Integer 4
3.3 Enumeration 4
3.4 Boolean . 4
3.5 Hyper Integer and Unsigned Hyper Integer 4
3.6 Floating-point 5
3.7 Double~precision Floating-point 6
3.8 Quadruple-precision Floating-point 7
3.9 Fixed-length Opaque Data 8
3.10 variable-iength Opaque Data 8
3.11 String]
3.12 Fixed-length Array 10
3.13 Variable-length Array 10
3.14 Structure 11
3.15 Discriminated Union 11
3.16 Void 12
3.17 Constanz 12
3.18 Typedef 13

0759

http://www.faqgs.org/rfcs/rfc1832.html 01/29/2002--page 2

3.19 COptional-data 14
3.20 Areas for Future Enhancement 15
4, DISCUSSION i5
5. THE XDR LANGUAGE SPECIFICATION 17
5.1 Notational Conventions 17
5.2 Lexical Notes 17
5.3 Syntax Information 18
5.4 Syntax Notes 19
6. AN EXAMPLE OF AN XDR DATA DESCRIPTION 20
7. TRADEMARKS AND OWNERS 21
APPENDIX A: ANSI/IEEE Standard 754-1985 22
APPENDIX B: REFERENCES 24
Security Considerations 24
Author's Address 24

1. INTRODUCTION

XDR is a standard for the description and encoding of data. It is
useful for transferring data between different computer
architectures, and has been used to communicate data between such
diverse machines as the SUN WORKSTATION*, VAX*, IBM-PC*, and Cray~*.
XDR fits into the 1ISO presentation layer, and is roughly analogous in
purpose to X.408, ISO Abstract Syntax Notation. The major difference
between these two is that XDR uses implicit typing, while X.409 uses
explicit typing.

XDR uses a language to describe data formats. The language can only
be used only to describe data; it is not a programming language.

This language allows one tc describe intricate data formats in a
concise manner. The alternative of using graphical representatiocns
(itself an informal language) quickly becomes incomprehensible when
faced with complexity. The XDR language itself is similar to the C
language [1], just as Courier [4] is similar to Mesa. Protocols such
as ONC RPC (Remote Procedure Call) and the NFS* (Network File System)
use XDR to describe the format of their data.

The XDR standard makes the following assumption: that bytes (or
octets) are portable, where a byte is defined to be 8 bits of data.

A given hardware device should encode the bytes onto the various
media in such a way that other hardware devices may decode the bytes
without loss of meaning. For example, the Ethernet* standard
suggests that bytes be encoded in "little-endian" style [2], or least
significant bit first.

2. BASIC BLOCK SIZE

The representation of all items requires a multiple of four bytes (or
32 bits) of data. The bytes are numbered (0 through n-1. The bytes
are read or written tTo some byte stream such that byte m always
precedes byte m+l. If the n bytes needed to contain the data are not
a multiple of four, then the n bytes are followed by enough (0 to 3)
residual zero bytes, r, to make the total byte count a multiple of 4.

We inciude the familiar grapnic box notation for illustration and

comparison. 1n most illustrations, each box (delimited by a plus
sign at the 4 corners and vertical bars and dashes) depicts a byte.

0760

http://www.faqs.org/rfcs/rfc1832.html 01/29/2002--page 3

Ellipses (...) between boxes show zero or more additional bytes where
required.
fmm - to——m———- T e Fommm— - L e +
| byte 0 | byte 1 |...|byte n-1] 0 [oonl 0 ! BLOCK
oo Fooitmmmmmm—— e I L +
| <===—mmmm——- n bytes---------- >|<====== r bytes------ >
| <==mmmmm o n+r (where (n+r) moed 4 = 0)>----------- > |

3. XDR DATA TYPES

Each of the sections that follow describes a data type defined in the
XDR standard, shows how it is declared in the language, and includes
a graphic illustration of its encoding.

For each data type in the language we show a general paradigm
declaration. Note that angle brackets (< and >) denote
variablelength sequences of data and square brackets ({ and }) denote
fixed-length sequences of data. "n", "m" and "r" denote integers.
For the full language specification and more formal definitions of
terms such as "identifier"™ and "declaration", refer to section 5:
"The XDR Language Specification”.

For some data types, more specific examples are included. A more
extensive example of a data description is in section 6: "An Example
of an XDR Data Description”.

3.1 Integer
An XDR signed integer is a 32-bit datum that encodes an integer in
the range [-2147483648,2147483647). The integer is represented in
two's complement notation. The most and least significant bytes are

0 and 3, respectively. Integers are declared as follows:

int identifier;

(MSB) (LSB)
bt Fommm———— fommm + ‘
|[byce 0 ibyte 1 |byte 2 }(byte 3 | INTEGER
B R o +
Cmmmmmmm - 32 bits-——==mmmmu- >

3.2. Unsigned Integer

An XDR unsigned integer is a 32-bit datum that encodes a nonnegative
integer in the range {0,4294967295]. It is represented by an
unsigned binary number whose most and least significant bytes are 0
and 3, respectively. An unsigned integer is declared as follows:

unsigned int identifier;

(MSB) (LSB)

B e e it tmmm——— tmmmm - +

Ibyte 0 |Ibyte 1 |byte 2 |byte 3 | UNSIGNED INTEGER
i b LT TR e P R +

e 32 bits-=—=-==m-mmm- >

0761

http://www.faqs.org/rfcs/rfc1832.html

3.3 Enumeration
Enumerations have the same representation as signed integers.
Enumerations are handy for describing subsets of the integers.
Bnumerated data is declared as follows:

enum { name-identifier = constant, ... } identifier;

For example, the three colors red, yellow, and blue could be
described by an enumerated type:

enum { RED = 2, YELLOW = 3, BLUE = 5 } colors:;

It is an error to encode as an enum any other integer than those that
have been given assignments in the enum declaration.

3.4 Boolean
Booleans are important enough and occur frequently enough to warrant
their own explicit type in the standard. Booleans are declared as
follows:
bool identifier;
This is equivalent to:
enum { FALSE = 0, TRUE = 1 } identifier;
3.5 Hyper Integer and Unsigned Hyper Integer
The standard also defines 64-bit (8-byte) numbers called hyper
integer and unsigned hyper integer. Their representations are the
obvious extensions of integer and unsigned integer defined above.
They are represented in two's complement notation. The most and
least significant bytes are 0 and 7, respectively. Their

declarations:

hyper identifier; unsigned hyper identifier;

(MSB) . (LSB)
e T B et tommmm—— tom———— o tomm +
Ibyte 0 |byte 1 |byte 2 |byte 3 |byte 4 |byte 5 |byte 6 |byte 7 |
bmmmm - Fmmmm——— Fmmmm Fo—————— tmmmm o —- tmmm to————— +
e 64 bits------—------mmmm e >

HYPER INTEGER
UNSIGNED HYPER INTEGER

3.6 Floating-point

The standard defines the floating-point data type "float" (32 bits or
4 bytes). The encoding used is the IEEE standard for normalized
single-precision floating-point numbers (3)]. The following three
fields describe the single-precision floating-point number:

S: The sign of the number. Values 0 and 1 represent positive and
negative, respectively. One bit.

01/29/2002--page 4

0762

http://~vww.faqs.org/rfcs/rfc 1832.html 01/29/2002--page 5

E: The exponent of the number, base 2. 8 bits are devoted to this
field. The exponent is biased by 127.

F: The fractional part of the number's mantissa, base 2. 23 bits
are devoted to this field.

Therefore, the floating-point number is described by:
(-1)**s = 2**(E-Bias) * 1.F
It is declared as follows:

float identifier;

e tmmm Fomm——— Fommem—— +

|byte 0 |byte 1 |byte 2 |byte 3 | SINGLE-PRECISION
Si E | F | FLOATING-POINT NUMBER
Fmmmm Fommm——— Femm - ot

1|<- 8 ->|<—====—~ 23 bits------ > |

Cmmmmmm 32 bits-——====——-=-- >

Just as the most and least significant bytes of a number are 0 and 3,
the most and least significant bits of a single-precision floating-
point number are 0 and 31. The beginning bit (and most significant

bit) offsets of S, E, and F are 0, 1, and 9, respectively. Note that
these numbers refer to the mathematical positions of the bits, and
NOT to their actual physical locations (which vary from medium to
medium) .

The IEEE specifications should be consulted concerning the encoding
for signed zero, signed infinity (overflow), and denormalized numbers
(underflow) {3). According to IEEE specifications, the "NaN" (not a
number) 1is system dependent and should not be interpreted within XDR
as anything other than "NaN".

3.7 Double-precision Fleoating-point

The standard defines the encoding for the double-precision floating-
point data type "double" (64 bits or 8 bytes). The encoding used is
the IEEE standard for normalized double-precision floating-point
numbers [3]. The standard encodes the following three fields, which
describe the doublie-precision floating-point number:

S: The sign of the number. Values 0 and. 1 represent positive and
negative, respectively. One bit.

=2

The exponent of the number, base 2. 11 bits are devoted to
this field. The exponent is biased by 1023.

F: The fractional part of the number's mantissa, base 2. 52 bits
are devoted to this field.

Therefore, the floating-point number is described by:

(-1)~*§ = 2~~(E-Bias) * 1.F

0763

http://www.faqs.org/rfcs/rfc 1832 html 01/29/2002--page 6

It is declared as follows:

double identifier;

tmmm fomm—— t--m—— Fommm—— po————- o B o= +
Ibyte Otbyte llbyte 2ibyte 3lbyte 4|byte 5|byte 6|byte 7|
S| E | F

tom——— Fo———— Fom———— e it Fom———— R e ——— +
1]<€==11-->|<===—=====-—-——==252 bitg---—=====---===--—- >|
e bttt 64 bits-----————=———---—m————— - >

DOUBLE-PRECISION FLOATING-POINT

Just as the most and least significant bytes of a number are 0 and 3,
the most and least significant bits of a double-precision floating-
point number are 0 and 63. The beginning bit (and most significant
bit) offsets of S, E, and F are 0, 1, and 12, respectively. Note

that these numbers refer to the mathematical positions of the bits,
and NOT to their actual physical locations (which vary from medium to
medium) .

The IEEE specifications should be consulted concerning the encoding
for signed zero, signed infinity (overflow), and denormalized numbers
(underflow) [3]. According to IEEE specifications, the "NaN" (not a
number) is system dependent and should not be interpreted within XDR
as anything other than "NaN".

3.8 Quadruple-precision Floating-point

The standard defines the encoding for the quadruple-precision
filoating-point data type "quadruple" (128 bits or 16 bytes). The
encoding used is designed to be a simple analog of of the encoding
used for single and double-precision floating-point numbers using one
form of IEEE double extended precision. The standard encodes the
following three fields, which describe the quadruple-precision
floating-point number:

S: The sign of the number. Values 0 and 1 represent positive and
negative, respectively. One bit.

3

The exponent of the number, base 2. 15 bits are devoted to
this field. The exponent is biased by 16383.

I': The fractional part of the number's mantissa, base 2. 112 bits
are devoted to this field.

Therefore, the floating-point number is described by:
(-1)*~s * 2**(E-Bias) * 1.F

It is declared as follows:
quadruple identifier;

mm———— fmm e fommm——— Fomm———— +o———— d=, e +
{byte Olbyte libyte 2|byte 3|byte 4|byte 5| ... bytel5|

0764

http://www.fags.org/rfcs/rfc1832.html 01/29/2002--page 7

Si E | F I
e TP Fommm Fom— - tommm— e Fe e +
1]<====15=-==>|<--mmmmmmmmmem 112 bits-—----===---====-= >
Cmmm e 128 bitg=---=-=====--—==-----——o >

QUADRUPLE-PRECISION FLOATING-POINT

Just as the most and least significant bytes of a number are 0 and 3,
the most and least significant bits of a quadruple-precision
floating-point number are 0 and 127. The beginning bit (and most

significant bit) offsets of S, E , and F are 0, 1, and 16,
respectively. Note that these numbers refer to the mathematical
positions of the bits, and NOT to their actual physical locations
(which vary from medium to medium) .

The encoding for signed zero, signed infinity (overflow), and
denormalized numbers are analogs of the corresponding encodings for
single and double-precision floating-point numbers (5], [6]. The
"NaN" encoding as it applies to quadruple-precision floating-point
numbers is system dependent and should not be interpreted within XDR
as anything other than "NaN".

3.9 Fixed-length Opagque Data

At times, fixed-length uninterpreted data needs to be passed among
machines. This data is called "opaque" and is declared as follows:

opaque identifier([nj;

where the constant n is the (static) number of bytes necessary to
contain the opaque data. If n is not a multiple of four, then the n
bytes are followed by enough (0 to 3) residual zero bytes, r, to make
the total byte count of the opaque object a multiple of four.

0 1
Fmmm e, dmmm fmmm————— L +
| byte 0 | byte 1 {...|byte n-1| 0 ool 0 !
——————————————————— e i e I et L
fommmmm o n bytes----=-~-=--- >|<=mmmm- r bytes------ >
j<mmmmm - n+r (where (n+r) mod 4 = 0)------------ > |

FIXED-LENGTH OPAQUE
3.10 Variable-length Opaque Data

The standard also provides for variable-length (counted) opaque data,
defined as a sequence of n (numbered 0 through n-1) arbitrary bytes
to be the number n encoded as an unsigned integer (as described
below), and followed by the n bytes of the sequence.

Byte m of the seguence always precedes byte m+l of the sequence, and
byte 0 of the sequence always follows the sequence's length (count).
I1f n is not a multiple of four, then the n bytes are followed by
enough (0 to 3) residual zero bytes, r, to make the total byte count
a multiple of four. Variable-length opaque data is declared in the
following way:

opague identifier<m>;

0765

http://www.fags.org/rfcs/rfc1832.html 01/29/2002--page 8

or
opaque identifier<>;

The constant m denotes an upper bound of the number of bytes that the
sequence may contain. If m is not specified, as in the second
declaration, it is assumed to be (2**32) - 1, the maximum length.

The constant m would normally be found in a protccol specification.
For example, a filing protocol may state that the maximum data
transfer size is 8192 bytes, as follows:

opaque filedata<8192>;

0 1 2 3 4 5 e
o fomom - Fom—m—— Fm———— hm———— e oot —- Fo———— I +
| length n tbyteO|bytelf...| n-1] 0 f(...] 0 |
dmmm R it tomom - Frmm——— Fom———e o I Fm———— L +
| <===mw=- 4 bytes------- > <= n bytes------ >|<=---r bytes--->|
|<----n+r (where (n+r) mod 4 = 0)---->]

VARIABLE-LENGTH OPAQUE

It is an error to encode a length greater than the maximum described
in the specification.

3.11 String

The standard defines a string of n (numbered 0 through n-1) ASCII
bytes to be the number n encoded as an unsigned integer (as described
above), and followed by the n bytes of the string. Byte m of the

_ string always precedes byte m+l of the string, and byte 0 of the
string always follows the string's length. If n is not a multiple of
four, then the n bytes are followed by enough (0 to 3) residual zero
bytes, r, to make the total byte count a multiple of four. Counted
byte strings are declared as follows:

string object<m>;
or
string object<>;

The constant m denotes an upper bound of the number of bytes that a
string may contain. If m is not specified, as in the second

declaration, it is assumed to be (2**32) - 1, the maximum length.
The constant m would normally be found in a protocol specification.
For example, a filing protocol may state that a file name can be no
longer than 255 bytes, as follows:

string filename<235>;

0 1 2 3 4 5 e
e et D Fom——— o R Fom——- L L L +
length n ibyteO|byteltl...| n-1 | 0 f{...1 O
e PR fomm—m tm———— - S DT tom———— Foitmmmm— +
[{==mmme- 4 bytes------- >{<----~-- n bytes------ >|<==--r bytes--->|
|<-=---n+r (where (n+r) mod 4 = 0)---->]

STRING

It is an error to encode a length greater than the maximum described

0766

http://www fags.org/rfcs/rfc1832.html 01/29/2002--page 9

in the specification.
3.12 Fixed-length Array

Declarations for fixed-length arrays of homogeneous elements are in
the following form:

type-name identifier([n]:

Fixed-length arrays of elements numbered 0 through n-1 are encoded by
individually encoding the elements of the array in their natural
order, 0 through n-1. Each element's size is a multiple of four
bytes. Though all elements are of the same type, the elements may
have different sizes. For example, in a fixed-length array of
strings, all elements are of type "string", yet each element will
vary in its length.

tomm b Fom—to—— i e R i Sttt L L SR
| element 0 | element 1 j...1 element n-1 |
B e e B e ket T e S S
[<==—-—mmmmmmm e n elements-------—-————-----— > |

FIXED-LENGTH ARRAY
3.13 Variable-length Array

Counted arrays provide the ability to encode variable-length arrays of
homogeneous elements. The array is encoded as the element count n (an
unsigned integer) followed by the encoding of each of the array's
elements, starting with element 0 and progressing through element n- 1.
The declaration for variable-length arrays follows this form:

type-name identifier<m>;
or
type—-name identifier<>;

The constant m specifies the maximum acceptable element count of an
array; if m is not specified, as in the second declaration, it is

assumed to be (2**32) - 1.
o 1 2 3
e it D e it I S e
! n .| element 0 | element 1 |...|element n-1|
e e e e itk ekt S EE S S SR e
{<-4 bytes->|<----—---------- n elements------------- >|

COUNTED ARRAY

It is an error to encode a value of n that is greater than the
maximum described in the specification.

3.14 Structure
Structures are declared as follows:
struct {

component~declaration-A;
component-declaration-B;

0767

http://www.faqgs.org/rfcs/rfc1832.html 01/29/2002--page 10

} identifier;

The components of the structure are encoded in the order of their
declaration in the structure. Each component's size is a multiple of
four bytes, though the components may be different sizes.

Fommmmmm e Fommm e ...

| component A | component B |... STRUCTURE
fmmmm Fomm e +.o..

3.15 Discriminated Union

A discriminated union is a type composed of a discriminant followed
by a type selected from a set of prearranged types according to the
value of the discriminant. The type of discriminant is either "int",
"unsigned int", or an enumerated type, such as "bool". The component
types are called "arms" of the union, and are preceded by the value
of the discriminant which implies their encoding. Discriminated
unions are declared as follows:

union switch (discriminant-declaration) {
case discriminant-value-A:

arm-declaration-A;
case discriminant-value-B:
arm-declaration-B;
default: default-declaration;
} identifier;

Each "case" keyword is followed by a legal value of the discriminant.
The default arm is optional. If it is not specified, then a valid
encoding of the union cannot take on unspecified discriminant values.
The size of the implied arm is always a multiple of four bytes.

The discriminated union is encoded as its discriminant followed by
the encoding of the implied arm.

0 1 2 3
B bt el SR S
| discriminant | implied arm | DISCRIMINATED UNION
B Fmm—r e — e ——

3.16 Void
An XDR void is a O-byte quantity. Voids are useful for describing
operations that take no data as input or no data as output. They are
also useful in unions, where some arms may contain data and others do
not. The declaration is simply as folliows:
void;

Voids are illustrated as follows:

++

0768

http://www.fags.org/rfcs/rfc1832.html

| VO1iD
++
--><~- 0 bytes

3.17 Constant
The data declaration for a constant follows this form:
const name-identifier = n;

"const" 1is used to define a symbolic name for a constant; it does not
declare any data. The symbolic constant may be used anywhere a
regular constant may be used. For example, the following defines a
symbolic constant DOZEN, equal to 12.

const DOZEN = 12;
3.18 Typedef

"typedef" does not declare any data either, but serves to define new
identifiers for declaring data. The syntax is:

typedef declaration;

The new type name is actually the variable name in the declaration
part of the typedef. For example, the following defines a new type
called "eggbox" using an existing type called "egg":

typedef egg eggbox{DOZEN];

Variables declared using the new type name have the same type as the
new type name would have in the typedef, if it was considered a
variable. For example, the following two declarations are equivalent
in declaring the variable "fresheggs":

eggbox fresheggs; egg fresheggs [DOZEN};

When a typedef involves a struct, enum, or union definition, there is
another (preferred) syntax that may be used to define the same type.
In general, a typedef of the following form: :

typedef <<struct, union, or enum definition>> identifier;

may be converted to the alternative form by removing the "typedef"
part and placing the identifier after the "struct", "union", or
"enum" keyword, instead of at the end. For example, here are the two
ways to define the type "bool":

typedef enum { /* using typedef */
FALSE = 0,
TRUE = 1

} bool;

enum bool { /* preferred alternative */
FALSE = Q,
TRUE = 1

ii

01/29/2002--page 11

0769

http://www.faqs.org/rfcs/rfc 1832 .html 01/29/2002--page 12

The reason this syntax is preferred is one does not have to wait
until the end of a declaration to figure out the name of the new
type.

3.19 Optional-data

Optional-data is one kind of union that occurs so frequently that we
give it a special syntax of its own for declaring it. It is declared
as follows:

type-name *identifier;
This is equivalent to the following union:

union switch (bool opted) {
case TRUE:
type-name element;
case FALSE:
void;
} identifier;

It is also equivalent to the following variable-length array
declaration, since the boolean "opted" can be interpreted as the
length of the array:

type-name identifier<l>;

Optional-data is not so interesting in itself, but it is very useful
for describing recursive data-structures such as linked-lists and
trees. For example, the following defines a type "stringlist" that
encodes lists of arbitrary length strings:

struct *stringlist {
string item<>;
stringlist next;
b

It could have been equivalently declared as the following union:

union stringlist switch (bool opted) {
case TRUE:
struct {
string item<>;
stringlist next;
} element;
case FALSE:
void;

3

b

or as a variable-length array:
struct stringlist<l> {

string item<>;

stringlist next;
)i

0770

http://www.faqs.org/rfcs/rfc 1832 html

Both of these declarations obscure the intention of the stringlist
type, so the optional-data declaration is preferred over both of
them. The optional-data type also has a close correlation to how
recursive data structures are represented in high-level languages
such as Pascal or C by use of pointers. In fact, the syntax is the
same as that of the C language for pointers.

3.20 Areas for Future Enhancement
The XDR standard lacks representations for bit fields and bitmaps,

since the standard is based on bytes. Also missing are packed (or
binary-coded) decimals.

The intent of the XDR standard was not to describe every kind of data
that people have ever sent or will ever want to send from machine to
machine. Rather, it only describes the most commonly used data-types

of high-level languages such as Pascal or C so that applications
written in these languages will be able to communicate easily over
some medium.

One could imagine extensions to XDR that would let it describe almost

‘any existing protocol, such as TCP. The minimum necessary for this
are support for different block sizes and byte-orders. The XDR

discussed here could then be considered the 4-byte big-endian member

of a larger XDR family.
4. DISCUSSION

(1) Why use a language for describing data? What's wrong with
diagrams?

There are many advantages in using a data-description language such
as XDR versus using diagrams. Languages are more formal than

diagrams and lead to less ambiguous descriptions of data. Languages
are also easier to understand and allow one to think of other issues

instead of the low-level details of bit-encoding. Also, there is a

close analogy between the types of XDR and a high-level language such

as C or Pascal. This makes the implementation of XDR encoding and

decoding modules an easier task. Finally, the language specification
itself is an ASCII string that can be passed from machine to machine

to perform on-the-fly data interpretation.
(2) Why is there only one byte-order for an XDR unit?

Supporting two byte-orderings requires a higher level protocol for
determining in which byte-order the data is encoded. Since XDR is
not a protocol, this can't be done. The advantage of this, though,
is that data in XDR format can be written to a magnetic tape, for
example, and any machine will be able to interpret it, since no
higher level protocol is necessary for determining the byte-order.

(3) Wny is the XDR byte-order big-endian instead of little-endian?

Isn't this unfair to little-endian machines such as the VAX(r), which

has to convert from one form to the other?

Yes, it is unfair, but having only one byte-order means you have to

01/29/2002--page 13

0771

http://www.fags.org/rfcs/rfc1832.html

w

]

be unfair to somebody. Many architectures, such as the Motorola
68000* and IBM 370*, support the big-endian byte-order.

(4) Wny is the XDR unit four bytes wide?

There is a tradeoff in choosing the XDR unit size. Choosing a small
size such as two makes the encoded data small, but causes alignment
problems for machines that aren't aligned on these boundaries. A
large size such as eight means the data will be aligned on virtually
every machine, but causes the encoded data to grow too big. We chose
four as a compromise. Four is big enough to support most
architectures efficiently, except for rare machines such as the
eight-byte aligned Cray*. Four is also small enough to keep the
encoded data restricted to a reasonable size.

(5) Why must variable-length data be padded with zeros?

It is desirable that the same data encode into the same thing on all
machines, so that encoded data can be meaningfully compared or
checksummed. Forcing the padded bytes to be zero ensures this.

(6) Why is there no explicit data-typing?

Data-typing has a relatively high cost for what small advantages it
may have. One cost is the expansion of data due to the inserted type
fields. Another is the added cost of interpreting these type fields
and acting accordingly. And most protocols already know what type
they expect, so data-typing supplies only redundant information.
However, one can still get the benefits of data-typing using XDR. One
way is to encode two things: first a string which is the XDR data
description of the encoded data, and then the encoded data itself.
Another way 1is to assign a value to all the types in XDR, and then
define a universal type which takes this value as its discriminant
and for each value, describes the corresponding data type.

THE XDR LANGUAGE SPECIFICATION
Notational Conventions

This specification uses an extended Back-Naur Form notation for
describing the XDR language. Here is a brief description of the
notation:

(1) The characters (', '(', "y', '{', '")}', '"', and '*' are special.
(2) Terminal symbols are strings of any characters surrounded by
double quotes. (3) Non-terminal symbols are strings of non-special
characters. (4) Alternative items are separated by a vertical bar
("1"). (5) Optional items are enclosed in brackets. (6) Items are
grouped together by enclosing them in parentheses. (7) A '*'
following an item means 0 or more occurrences of that item.

For example, consider the following pattern:
lla " llvery" (ll' " Ilvery")] [" cold ” lland ll] " rainy ”
("da_y"] "night")

An infinite number of strings match this pattern. A few of them are:

01/29/2002--page 14

0772

http://www fags.org/rfcs/rfc 1832 html

"a very rainy day"

"a very, very rainy day"

"a very cold and rainy day"

"a very, very, very cold and rainy night"

5.2 Lexical Notes
(1) Comments begin with '/*' and terminate with '*/'. (2) White

space serves to separate items and is otherwise ignored. (3) An
identifier is a letter followed by an optional sequence of letters,

digits or underbar ('_'). The case of identifiers is not ignored.
(4) A constant is a sequence of one or more decimal digits,
optionally preceded by a minus-sign ('-').

5.3 Syntax Information

declaration:
type-specifier identifier
| type-specifier identifier "[" value "]"
| type-specifier identifier "<" [value] ">"
| "opaque" identifier "[" value "1"
i
|
|
!

"opaque" identifier "<" [value] ">"
"string" identifier "<" [value] ">"
type-specifier "*" identifier
"void"
value:
constant
| identifier

type-specifier:
["unsigned"]} "int"
{ ["unsigned"] "hyper"
i "float"
| "double"
| "guadruple"
["bool™"
| enum-type-spec
| struct-type-spec
| union-type-spec
{ identifier

enum-type-spec:
"enum" enum-body

enum-body:
'I{“
(identifier "=" value)
("," identifier "=" value)*

n}u

Struct-type-spec:
"struct" struct-body

struct-body:
ll(ll

01/29/2002--page 15

0773

http://www.faqgs.org/rfcs/rfc1832.html 01/29/2002--page 16

(declaration ";")

(deciaration ";")~
"}ll

union-type-spec:
"union" union-body

union-body:

"switch™ " (" declaration ")" "{"
("case"™ wvalue ":" declaration ";")
{ "case" value ":" declaration ";")*
{ "default" ":" declaration ";"]

n}n

constant-def:
"const" identifier "=" constant ";"

type-def:
"typedef" declaration ";"
| "enum" identifier enum-body ";"
| "struct" identifier struct-body ":;"
| "union" identifier union-body ";"

definition:
type-def
| constant-def

specification:
definition ~

5.4 Syntax Notes

(1) The following are keywords and cannot be used as identifiers:
"bool", "case", "const", "default", "double", "quadruple", "enum",
"float", "hyper", "opaque", "string", "struct", "switch", "typedef",
"union", "unsigned" and "void".

(2) Only unsigned constants may be used as size specifications for
arrays. If an identifier is used, it must have been declared
previously as an unsigned constant in a "const" definition.

(3) Constant and type identifiers within the scope of a specification
are in the same name space and must be declared uniquely within this
scope.

(4) Similarly, variable names must be unique within the scope of
struct and union declarations. Nested struct and union declarations
create new scopes.

(5) The discriminant of a union must be of a type that evaluates to
an integer. That is, "int", "unsigned int", "bool", an enumerated
type or any typedefed type that evaluates to one of these is legal.
Also, the case values must be one of the legal values of the
discriminant. Finally, a case value may not be specified more than
once within the scope of a union declaration.

6. AN EXAMPLE OF AN XDR DATA DESCRIPTION

0774

http://www fags.org/rfcs/rfc1832.html

Here is a short XDR data description of a thing called a "file",
be used to transfer files from one machine to another.

wnich might

const MAXUSERNAME = 32; /* max length of a user name */
const MAXFILELEN = 65535; /* max length of a file */
const MAXNAMELEN = 255; /* max length of a file name */
/7(
* Types of files:
*/
enum filekind ({
TEXT = 0, /* ascii data */
DATA = 1, /* raw data */
EXEC = 2 /* executable */

b

/*
* File information, per kind of file:
*/
union filetype switch (filekind kind) {
case TEXT:
void; : /* no extra information
case DATA:
string creator<MAXNAMELEN>; /* data creator

case EXEC:
string interpretor<MAXNAMELEN>; /* program interpretor

}i

/*
* A complete file:
*/
struct file ({
string filename<MAXNAMELEN>; /* name of file */
filetype type; /* info about file */
string owner<MAXUSERNAME>; /* owner of file */
opaque data<MAXFILELEN>; /* file data */

i

*/
*/

*/

Suppose now that there is a user named "john" who wants to store his
lisp program "sillyprog" that contains just the data "(gquit)". H
file would be encoded as follows:

OFFSET

HEX BYTES ASCII COMMENTS

00 00 00 0S8 RN -- length of filename = 9

73 69 6¢ 6¢ sill -- filename characters

79 70 72 6f ypro -- ... and more characters
67 00 00 00 g... -- ... and 3 zero-bytes of f
00 00 00 02 ceen -- filekind is EXEC = 2

00 00 00 04 e -- length of interpretor = 4
6c 69 73 70 lisp -- interpretor characters

00 00 00 04 e -- length of owner = 4

6a 6f 68 6e john -- owner characters

00 00 00 06 e -- length of file data = 6
28 71 75 69 (qui -- file data bytes

74 29 00 00 t).. -- ... and 2 zero-bytes of f

is

ill

ill

01/29/2002--page 17

0775

http://www.fags.org/rfcs/rfc1832.html

7.

TRADEMARKS AND OWNERS

SUN WORKSTATION Sun Microsystems, Inc.
VAX Digital Equipment Corporation

IBM-PC International Business Machines Corporation
Cray Cray Research

NF'S Sun Microsystems, Inc.

Ethernet Xerox Corporation.

Motorola 68000 Motorola, Inc.

I8M 370 International Business Machines Corporation

APPENDIX A: ANSI/IEEE Standard 754-1985

For

The definition of NaNs, signed zero and infinity, and denormalized
numbers from [3] is reproduced here for convenience. The definitions
for cuadruple-precision floating point numbers are analogs of those
for single and double-precision floating point numbers, and are
defined in [3].

In the following, 'S' stands for the sign bit, 'E' for the exponent,
and 'F' for the fractional part. The symbol 'u' stands for an

undefined bit (0 or 1).

For single-precision floating point numbers:

Type S (X bit) E (8 bits) F (23 bits)
signalling NaN u 255 (max) . Quuuuu---u
(with at least
one 1 bit)
quiet NaN u 255 (max) . luuuuu---u
negative infinity 1 255 (max) .000000---0
positive infinity 0 255 (max) .000000---0
negative zero 1 0 .000000---0
positive zero 0 0 .000000---0
double-precision floating point numbers:
Type S (1 bit) E (11 bits) F (52 bits)
signalling NaN u 2047 (max) . Quuuuu---u
(with at least
one 1 bit)
quiet NaN u 2047 (max) . luuuuu---u
negative infinity 1 2047 (max) .000000---0
positive infinity 0 2047 (max) .000000---0
negative zero i 0 .000000---0
positive zero 0 0 .000000---0

01/29/2002--page 18

0776

http://www.fags.org/rfcs/rfc 1832 . html

For quadruple-precision floating point numbers:

Type S (1 bit) E (15 bits) F (112 bits)

signalling NaN u

32767 (max)

. OQuuuuu---u
(with at least
one 1 bit)

quiet NaN u 32767 (max) . luuuuu---u
negative infinity 1 32767 (max) .000000---0
positive infinity 0 32767 (max) .000000---0
negative zero 1 0 .000000~---0
positive zero 0 0 .000000---0

Subnormal numbers are represented as follows:

Precision Exponent Value

single o (-1)%*s * 20%(-126) * 0.F
Double 0 (=1)**s * 2%*(-1022) * 0.F
Quadruple 0 (-1)**S * 2%*(-16382) * 0.F

APPENDIX B: REFERENCES

Brian W. Kernighan & Dennis M. Ritchie, "The C Programming
Language", Bell Laboratories, Murray Hill, New Jersey, 1978.

Danny Cohen, "On Holy Wars and a Plea for Peace", IEEE Computer,
Cctober 1981.

"IEEE Standard for Binary Floating-Point Arithmetic", ANSI/IEEE
Standard 754-1985, Institute of Electrical and Electronics

Engineers, August 1985.

"Courier: The Remote Procedure Call Protocol", XEROX
Corporation, XSIS 038112, December 1981.

"The SPARC Architecture Manual: Version 8", Prentice Hall,
ISBN 0-13-825001-4.

"H? Precision Architecture Handbook"™, June 1987, 5954-9906.

Srinivasan, R., "Remote Procedure Call Protocol Version 2",

RFC 1831, Sun Microsystems, Inc., August 1995.

Security Considerations

Security issues are not discussed in this memo.

Author's Address

01/25/2002--page 19

0777

http./iwww fags.org/rfcs/rfc 1832 html 01/29/2002--page 20

Raj Srinivasan

Sun Microsystems, Inc.
ONC Technologies

2550 Garcia Avenue

M/S MTV-5-40

Mountain View, CA 94043
usa

Phone: 415-336-2478
Fax: 415-336-6015
EMail: raj@eng.sun.com

[Index | Search | What's New | Comments | Help]

Comments/Questions about this archive ? Send mail to rfc-admin@fags.org

0778

-

s A Primer
A on the
- T.120

Series

Standard

@ DataBeam.

0779

A DataBeam Corporation White Paper

A PRIMER ON THE T.120 SERIES STANDARDS

Broad vendor support
means that end users
will be able to choose
from a variety of inter-
operable products.

The T.120 standard contains a series of communication
and application protocols and services that provide sup-
port for real-time, multipoint data communications.
These multipoint facilities are important building blocks
for a whole new range of collaborative applications,
including desktop data conferencing, multi-user applica-
tions, and multi-player gaming.

Broad in scope, T.120 is a comprehensive specification
that solves several problems that have historically slowed
market growth for applications of this nature. Perhaps
most importantly, T.120 resolves complex technological
issues in a manner that is acceptable to both the comput-
ing and telecommunications industries.

Established by the International Telecommunications
Union (ITU), T.120 is a family of open standards that
was defined by leading data communication practitioners
in the industry. Over 100 key international vendors,
including Apple, AT&T, British Telecom, Cisco Systems,
Intel, MCI, Microsoft, and PictureTel, have committed
to implementing T.120-based products and services.

While T.120 has emerged as a critical element in the data
communications landscape, the only information that
currently exists on the topic is a weighty and complicated
set of standards documents. This primer bridges this
information gap by summarizing T.120’s major benefits,
fundamental architectural elements, and core capabilities.

A PRIMER ON THE T.120 STANDARD 1

0780

A DataBeam Corporation White Paper

Key BENEFiTs oF T.120

So why all the excitement about T.120?
The bottom line is that it provides excep-
tional benefits to end users, vendors, and
developers tasked with implementing real-
time applications. The following list is a
high-level overview of the major benefits
associated with the T.120 standard:

Multipoint Data Delivery

T.120 provides an elegant abstraction for
developers to create and manage a
multipoint domain with ease. From an
application perspective, data is seamlessly
delivered to multiple parties in “realtime.”

Interoperability

viding a flexible solution for mixed unicast
and multicast networks. The Multicast
Adaptation Protocol (MAP) is expected to
be ratified in early 1998,

Network Transparency

Applications are completely shielded from
the underlying data transport mechanism
being used. Whether the transport is a
high-speed LAN or a simple dial-up
modem, the application developer is only
concerned with a single, consistent set of
application services.

Platform Independence

Because the T.120 standard is completely
free from any platformm dependencies, it
will readily take advantage of the

T.120 allows endpoint

T.120 BENEFITS

inevitable advances in

applications from multiple | o putipoint Data Delivery

vendors to interoperate.
T.120 also specifies how
applications may interop-

erate with (or through) a | « Multicast Enabled Delivery
variety of network bridg- | o Network Transparency

ing products and services
that also support the T.120
standard.

Reliable Data

v Interoperability
¢ Reliable Data Delivery

v Platform Independence

v Network Independence

v Support for Varied Topologies
v Application Independence

computing technology. In
fact, DataBeams cus-
tomers have already ported
the T.120 source code eas-
ily from Windows to a
variety of environments,
including 0s/2,
MAC/OS, several versions
of UNIX, and other pro-
prietary real-time operat-
ing systems.

Delivery v Scalability Network
Error-corrected data deliv- | « Co-existence with Other Independence
ery ensures that all end- Standards

points will receive each v Extendability

data transmission.

The T.120 standard sup-
ports a broad range of

Multicast Enabled Delivery

In muliticast enabled networks, T.120 can
employ reliable (ordered, guaranteed) and
unreliable delivery services. Unreliable
data delivery is also available without mul-
ticast. By using multicast, the T.120 infra-
structure reduces network congestion and
improves performance for the end user.
The T.120 infrastructure can use bath
unicast and multicast simultaneously, pro-

transport options, includ-
ing the Public Switched Telephone
Networks (PSTN or POTS), Integrated
Switched Digital Networks (ISDN),
Packet Switched Digital Networks
(PSDN), Circuit Switched Digital
Networks (CSDN), and popular local area
network protocols (such as TCP/IP and
IPX via reference protocol). Furthermore,
these vastly different network transports,
operating at different speeds, can easily co-
exist in the same multipoint conference.

A PRIMER ON THE T.120 STANDARD

0781

A DataBeam Corporation White Paper

Support for Varied Topologies

Multipoint conferences can be set up with
virtually no limitation on network topolo-
gy. Star topologies, with a single
Muttipoint Control Unit (MCU) will be
common early on. The standard also sup-
ports a wide variety of other topologies
ranging from those with multiple, cascad-
ed MCUs to topologies as simple as a
daisy-chain. In complex multipoint con-
ferences, topology may have a significant
impact on efficiency and performance.

Application Independence

Although the driving market force behind
T.120 was teleconferencing, its designers
purposely sought to satisfy a much broad-
er range of application needs. Today,
T.120 provides a generic, real-time com-
munications facility that can be used by
many different applications. These appli-
cations include interactive gaming, virtual

reality and simulations, real-time subscrip-
tion news feeds, and process control appli-
cations.

Scalability

T.120 is defined to be easily scalable from
simple PC-based architectures to complex
multi-processor environments character-
ized by their high performance. Resources
for T.120 applications are plentiful, with
practical limits imposed only by the con-
fines of the specific platform running the
software.

Co-existence with Other
Standards

T.120 was designed to work alone or with-
in the larger context of other ITU stan-
dards, such as the H.32x family of video
conferencing standards. T.120 also sup-
ports and cross-references other important
ITU standards, such as V.series modems.

Ficure 1: MopEL oF ITU T.120 SERIES ARCHITECTURE

{Using both Standard and

Application(s)

No!

Application P)

¥

Application(s)
(Using Std. App. Pratocols)

Node

Controller

Apptlication(s)
{Using Std. App. Protocols)

Multipoint File Transfer T.127

f Still iImage Exchange 7.126

TU-T Standard
ication Protoco

Generic Application
Template (GAT) T.121
¥

Pratocols

Generic Application t
i Template (GAT) T.121)
e)

—

Generic Conference Control {GCC)

T.124

Multipoint Communication Service (MCS)
T.122/125

A PRIMER ON THE T.120 STANDARD

0782

A DataBeam Corporation White Paper

Extendability

The T.120 standard can be freely extended
to include a variety of new capabilities,
such as support for new transport stacks
(ike ATM or Frame Relay), improved
security measures, and new application-
level protocols.

ARCHITECTURAL OVERVIEW

The T.120 architecture relies on a multi-
layered approach with defined protocols
and service definitions between layers.
Each layer presumes that all layers exist
below. Figure 1 provides a graphical repre-
sentation of the T.120 architecture.

The lower level layers (T.122, T.123,
T.124, and T.125) specify an application-
independent mechanism for providing
multipoint data communication services
to any application that can use these facil-
ities. The upper level layers (T.126 and
T.127) define protocols for specific con-
ferencing applications, such as shared
whiteboarding and multipoint file trans-
fer. Applications using these standardized
protocols can co-exist in the same confer-
ence with applications using proprietary
protocols. In fact, a single application may
even use a mix of standardized and non-
standardized protocols.

COMPONENT OVERVIEW

The following overview describes the key
characteristics and concepts behind each
individual component of the T.120 stan-
dard. This overview starts at the bottom of
the T.120 stack and progresses upward.

Transport Stacks - T.123

T.120 applications expect the underlying
transport to provide reliable delivery of its
Protocol Data Units (PDUs) and to seg-
ment and sequence that data. T.123 speci-
fies transport profiles for each of the fol-
lowing:

* Public Switched Telephone
Netwarks (PSTN)

* Integrated Switched Digital
Networks (ISDN)

* Circuit Switched Digital
Networks (CSDN)

* Packet Switched Digital
Networks (PSDN)

» TCP/IP
* Novell Netware JPX

(via reference profile)

As highlighted below in Figure 2, the
T.123 layer presents a uniform OS] trans-
port interface and services (X.214/X.224)

FIGURE 2: CROSS-SECTION OF T.123 TRANSPORTS (BAsic MobDE PROFILES)

l Multipoint Communication Service (T.122/T.125) l

Trar;i[;::rL‘Syer l X.22410 | | X22410 | [X.22410 | X 22410
RFC1006

I "UIHSCFJ [null + SCF I I null + SCF I T.123

B
[Q922 I [Q.922 l I Qe * l
COM.DRV SRR T wwiexsexou WINSOCK DLL :“':‘:':('&'::;”
X.21 00 X.21 bis

PSTN ISDN IPX TePap

* Subset of Q.922

A PRIMER ON THE T.120 STANDARD

0783

A DataBeam Corporation White Paper

to the MCS layer above. The T.123 layer
includes built-in error correction facilities
so application developers do not have to
rely on special hardware facilities to per-
form this function.

In a given computing environment, a
transport stack typically plugs into a local
facility that provides an interface to the
specific transport connection. For exam-
ple, in the Windows environment,

available, such as IP networks. While mul-
ticast provides unreliable delivery, many
applications using T.120 require reliable
services. Developers can incorporate a
variety of multicast error correction
schemes into MAP, thereby selecting the
scheme most closely aligned with their
application.

In 1996, the ITU is expected to adopt
extensions to support important new

DataBeam's transport stacks
plug into COMM.DRV for
modem communications,
WINSOCK.DLL for TCP/IP
and UDP/IP communications,
and NWIPXSPX. DLL for

The MCU is a logical
construct whose role
may be served by a
node on a desktop
or by special-
purpose equipment
Novell IPX communications |within the network.

transport facilities, such as
Asynchronous Transfer Mode
(ATM) and H.324 POTS
videophone. It is necessary to
note that developers can easily
produce a proprietary transport
stack (supporting, for example,

support.

The Multicast Adaptation Protocol
(MAP) service layer is a new extension to
MCS. MAP manages unicast- and multi-
cast-based transports. MAP can be used
with any transport where multicast is

AppleTalk) that transparently
uses the services above T.123. An impor-
tant function of MCUs or T.120-enabled
bridges, routers, or gateways is to provide
transparent interworking across different
network boundaries.

FIGURE 3: ExAMPLES OF VALID MCS TOPOLOGIES

TOP PROVIDER

NODE

d

NODE I NODE I
NODE I ! NODE
i

CASCADED MCU TOPOLOGY

TOP PROVIDER

TOP PROVIDER

| \ :
H
i NODE I NODE I NODE '

TRADITIONAL STAR TOPOLOGY

MCu

NODE NODE NODE

DAISY-CHAIN TOPOLOGY

A PRIMER ON THE T.120 STANDARD

0784

A DataBeam Corporation White Paper

Multipoint Communication
Service (MCS) -T.122,T.125

T.122 defines the multipoint services
available to the developer, while T.125
specifies the data transmission protocol.
Together they form MCS, the multipoint
“engine” of the T.120 conference. MCS
relies on T.123 to deliver the data. (Use of
MCS is entirely independent of the actual
T.123 transport stack(s) that is loaded.)

FIGURE 4: CHANNEL DIAGRAM

MCS is a powerful tool that can be used to
solve virtually any multipoint application
design requirement. MCS is an elegant
abstraction of a complex organism.
Learning to use MCS effectively is the key
to successfully developing real-time appli-
cations.

How MCS Works

In a conference, multiple endpoints (or
MCS nodes) are logically connected
together to form what T.120 refers to as a
domain. Domains generally equate to the
concept of a conference. An application
may actually be attached to

In a T.120 conference, nodes connect up-
ward to a Multipoint Control Unit
(MCU). The MCU model in T.120 pro-
vides a reliable approach that works in
both public and private networks.
Muttiple MCUs may be easily chained
together in a single domain. Figure 3 illus-
trates three potential topology structures.
Each domain has a single 7op Provider or
MCU that houses the information base
critical to the conference. If the Top
Provider either fails or leaves a conference,
the conference is terminated. If a lower
level MCU (i.e., not the Top Provider)
fails, only the nodes on the tree below that
MCU are dropped from the conference.
Because all nodes contain MCS, they are
all potentially “MCUs."

One of the critical features of the T.120
approach is the ability to direct data. This
feature allows applications to communi-
cate efficiently. MCS applications direct
data within a domain via the use of chan-
nels. An application can choose to use
multiple channels simultaneously for
whatever purposes it needs (for example,
separating annotation and file transfer
operations). Application instances choose
to obtain information by subscribing to
whichever channel(s) contains the desired
data. These channel assignments can be
dynamically changed during the life of the
conference. Figure 4 presents an overview
of multiple channels in use within a
domain.

It is the application developer's responsi-
bility to determine how to use channels

multiple domains simulta-
neously. For example, the

TaABLE 1: CHANNEL SETUP EXAMPLE

chairperson of a large Channel ~ Type Priority -Routing

onlinc conference may 1 Error Control Channels Top Standard
simultaneously monitor - - -

L , , , 2 Annotations High Uniform
information being dis-

cussed among several activ- 3 Bitmap Images Medium | Uniform
ity groups. 4 File Transfer Low Standard

A PRIMER ON THE T.120 STANDARD

0785

A DataBeam Corporation White Paper

within an application. For example, an
application may send control information
along a single channel and application
data along a series of channels that may
vary depending upon the type of data
being sent. The application developer may
also take advantage of the MCS concept of
private channels to direct data to a discrete
subset of a given conference.

Data may be sent with one of four priori-
ty levels. MCS applications may also spec-
ify that data is routed along the quickest
path of delivery using the standard send
command. If the application uses the uni-
form send command, it ensures that data
from multiple senders will arrive at all des-
tinations in the same order. Uniform data
always travels all the way up the tree to the
Top Provider. Table 1 provides an example
of how a document conferencing applica-
tion could set up its channels. Reliable or
unreliable data delivery is determined by
the application.

There are no constraints on the size of the
data sent from an application to MCS.
Segmentation of data is automatically per-
formed on behalf of the application.
However, after receiving the data it is the
application’s responsibility to reassemble
the data by monitoring flags provided
when the data is delivered.

Tokens are the last major facility provided
by MCS. Services are provided

Another popular use of tokens is to coor-
dinate tasks within a domain. For exam-
ple, suppose a teacher wants to be sure
that every student in a distance learning
session answered a particular question
before displaying the answer. Each node in
the underlying application inhibits a spe-
cific token after receiving the request to
answer the question. The token is released
by each node when an answer is provided.
In the background, the teacher’s applica-
tion continuously polls the state of the
token. When all nodes have released the
token, the application presents the teacher
with a visual cue that the class is ready for
the answer.

Generic Conference Control
(GCC)-T.124

Generic Conference Control provides a
comprehensive set of facilities for estab-
lishing and managing the multipoint con-
ference. It is with GCC that we first see
features that are specific to the electronic
conference.

At the heart of GCC is an. important
information base about the state of the
various conferences ‘it may be servicing.
One node, which may be the MCU itself,
serves as the Top Provider for GCC infor-
mation. Any actions or requests from
lower GCC nodes ultimately filter up to
this Top Provider.

to grab, pass, inhibit, release,’
and query tokens. Token
resources may be used as either
exclusive (i.e., locking) or non-
exclusive entities.

One of GCC's most

important roles is to
maintain information
about the nodes and
applications that are
in a conference.

Using mechanisms in GCC,
applications create conferences,
join conferences, and invite
others to conferences. As end-
points join and leave confer-
ences, the information base in

Tokens can be used by an appli-

cation in a number of ways. For example,
an application may specify that only the
holder of a specific token. such as the con-
ductor, may send information in the con-
ference.

GCC is updated and can be
used to automatically notify all endpoints
when these actions occur. GCC also
knows who is the Top Provider for the
conference. However, GCC does not con-
tain detailed topology information about
the means by which nodes from lower
branches are connected to the conference.

A PRIMER ON THE T.120 STANDARD

7

0786

A DataBeam Corporation White Paper

FiIGURe 5: T.121 GENERIC APPLICATION TEMPLATE

User Application(s)

Generic Application Template {T.121)

Node Controller

Application Resource
Manager {ARM)

Generic Conference Controt (GCC)
T.124

Muttipoint Communication Service (MCS)
T.122/125

Application Service
Element(s) (ASE)

Every application in a conference must
register its unique application key with
GCC. This enables any subsequent join-
ing nodes to find compatible applications.
Furthermore, GCC provides robust facili-
ties for applications to exchange capabili-

ties and arbitrate feature sets. In this way, .

applications from different vendors can
readily establish whether or not they can
interoperate and at what feature level. This
arbitration facility is the mechanism used
to ensure backward compatibility between
different versions of the same application.

GCC also provides conference security.
This allows applications to incorporate
password protection or “lock” facilities to
prevent uninvited users from joining a
conference.

Another key function of GCC is its abili-
ty to dynamically track MCS resources.
Since multiple applications can use MCS
at the same time, applications rely on
GCC to prevent conflicts for MCS
resources, such as channels and tokens.
This ensures that applications do not step
on each other by attaching to the same
channel or requesting a token already in
use by another application.

Finally, GCC provides capabilities for sup-
porting the concept of conductorship in a
conference. GCC allows the application to
identify the conductor and a means in
which to transfer the conductor’s “baton.”
The developer is free to decide how to use
these conductorship facilities within the
application.

T.124 Revised

As part of the ongoing enhancement
process for the T.120 standards, the ITU
has completed a draft revision of T.124.
The new version, called T.124 Revised,
introduces a number of changes to
improve scalability. The most significant
changes address the need to distribute ros-
ter information to all nodes participating
in a conference, as well as improvements
in the efficiency of sending roster refresh
information (from the Top Provider) any
time a node joins or leaves a conference.

To improve the distribution of roster
information, the concept of Node
Categories was introduced. These cate-
gories provide a way for a 1.124 node to
join or leave a conference without affect-
ing the roster information that was dis-
tributed throughout a conference. In addi-

A PRIMER ON THE T.120 STANDARD

0787

A DataBeam Corporation White Paper

Ficure 6: T.126 WORKSPACE DIAGRAM

r
! Virtual Pointer Plane
|

tion, the Full Roster Refresh, which was
previously sent any time a new node
joined a conference, was eliminated by
sending out roster details from the Top
Provder. These changes will not affect
backward compatibility to earlier revisions
of T.124. This revision will go to the ITU
for Decision in March of 1998.

Generic Application Template
(GAT) -T.121

T.121 provides a template for T.120
resource management that developers
should use as a guide for building applica-
tion protocols. T.121 is mandatory for
standardized application protocols and is
highly recommended for non-standard
application protocols. The template
ensures consistency and reduces the
potential for unforeseen interaction
between different protocol implementa-
tions.

Within the T.121 model, GAT defines a
generic Application Resource Manager
(ARM). This entity manages GCC and
MCS resources on behalf of the applica-
tion protocol-specific functionality
defined as an Application Service Element
(ASE). Figure 5 demonstrates the GAT
model within the T.120 architecture.
Simply put, GAT provides a consistent
model for managing T.120 resources
required by the application to which the
developer adds application-specific func-
tionality.

GAT's functionality is considered to be
generic and common to all application
protocols. GAT's services include
enrolling the application in GCC and
attaching to MCS domains. GAT also
manages channels, tokens, and capabilities
on behalf of the application. On a broad-
er scale, GAT responds to GCC indica-

A PRIMER ON THE T.120 STANDARD

9

0788

A DataBeam Corporation White Paper

Ficure 7: T.127 FiLE TRANSFER MODEL

Current yansmitter Node that requires Node that requires
- sourcing files Aend B fleA flesAand 8
- MBFT MBFT MBFT
LJ L-X 3
| Popey =~ t [o
| : !
o b . ot
t : i
0 : M
| . IR
i : g
I - Y]
MCS Top MCS MCS MCS
Provider Provider Provider Provider
=T L&k BRI x ¥
l HEE '
. | Data Channels | . [0t
aonbute ¢ wiusoutiFl I I N
......... i a
Comrol Channel : o T o
N]
U :

tions and can invoke peer applications on
other nodes in the conference.

Still Image Exchange and
Annotation (Sl) - T.126

T.126 defines a protocol for viewing and
annotating still images transmitted
between two or more applications. This
capability is often referred to as document
conferencing or shared whiteboarding.

An important benefit of T.126 is that it
readily shares visual information between
applications that are running on dramati-
cally different platforms. For example, a
Windows-based desktop application could
casily interoperate with a collaboration
program running on a PowerMac.
Similarly, a group-oriented conferencing
systemn, without a PC-style interface,
could share data with multiple users run-
ning common PC desktop software.

As Figure 6 illustrates, T.126 presents the
concept of shared virtual workspaces that
are manipulated by the endpoint applica-
tons. Each workspace may contain a col-
lection of objects that include bitmap
images and annotation primitives, such as
rectangles and freehand lines. Bitmaps
typically originate from application infor-
mation. such as a word processing docu-

ment or a presentation slide. Because of
their size, bitmaps are often compressed to
improve performance over lower-speed
communication links.

T.126 is designed to provide a minimum
set of capabilities required to share infor-
mation between disparate applications.
Because T.126 is simply a protocol, it does
not provide any of the API-level structures
that allow application developers to easily
incorporate shared whiteboarding into an
application. These types of facilities can
only be found in toolkit-level implemen-
tations of the standard (such as
DataBeams Shared Whiteboard
Application Toolkit, known as SWAT).

Multipoint Binary File Transfer
-T.127

T.127 specifies a means for applications to
transmit files between multiple endpoints
in a conference. Files can be transferred to
all participants in the conference or to a
specified subset of the conference.
Multiple file transfer operations may
occur simultaneously in any given confer-
ence and developers can specify priority
levels for the file delivery. Finally, T.127
provides options for compressing files
before delivering the data. Figure 7 dis-

10

A PRIMER ON THE T.120 STANDARD

0789

A DataBeam Corporation White Paper

FIGURE 8: NETWORK-LEVEL INTEROPERABILITY DIAGRAM
PROPRIETARY PROPRIETARY
DATA CONFERENCING DATA CONFERENCING
APPLICATION APPUICATION
MULTIPOINT
CONTROL UNIT
Generic
Conferance GCC GCC
Control
MCS f T.122/T.125 l [T.122/T.125 T.1227.125

Network
aspects T.123 I T.123 [I T.12rl

|
[o=]
I

Ancther Temminal or MCU

plays a view of conference-wide and indi-
vidual file transfers.

Node Controller

The Node Controller manages defined
GCC Service Access Points (SAPs). This
provides the node flexibility in responding
to GCC events. Most of these GCC events
relate to establishing conferences, adding
or removing nodes from a conference, and
breaking down and distributing informa-
tion. The Node Controller's primary

range of functionality found within a
Node Controller can vary dramatically by
implementation.

Only one Node Controller can exist on an
active T.120 endpoint. Therefore, if multi-
ple applications need to simultanecusly
use T.120 services, the Node Controlier
needs to be accessible to each application.
The local interface to the Node Controller
is application- and vendor-specific and is
not detailed in the T.120 documentation.

responsibility is to translate these events
and respond appropriately.

Some GCC events can be handled auto-
matically; for example, when a remote
party joins a conference, each local Node
Controller can post a simple message
informing the local user that “Bill Smith
has joined the conference.” Other events
may require user intervention; for examn-
ple, when a remote party issues an invita-
tion to join a conference, the local Node
Controller posts a dialog box stating that
“Mary Jones has invited you to the Design
Review conference. <Accept> <Decline>."

Node controllers can be MCU-based, ter-
minal-based, or dual-purpose. DataBeam’s
application, FarSite, for example, contains
a dual-purpose Node Controller. The

INTEROPERABILITY

Buyers overwhelmingly rate interoperabil-
ity as the number one purchase criteria in
their evaluation of teleconferencing prod-
ucts. For most end users, interoperability
translates to “my application can talk to
your application”—regardless of which
vendor supplied the product or on what
platform it runs. When examining the
T.120 standard closely, buyers can see that
it provides for two levels of interoperabili-
ty: application-level interoperability and
network-level interoperability.

Network-level Interoperability

Network-level interoperability means that
a given product can interwork with like
products through the infrastructure of

A PRIMER ON THE T.120 STANDARD

11

0790

A DataBeam Corporation White Paper

FIGURE 9: APPLICATION-LEVEL INTEROPERABILITY DIAGRAM

DATABEAM'S OTHER STANDARDS-BASED
STANDARDS-BASED DATA CONFERENCING
APPLICATION APPLICATION
MULTIPOINT
CONTROL
UNIT
Generic
Conference GCC
Control
Mcs T.A22T.125 T.122T.125 TA22IT.125
Network
aspects I 7123 | |T'123 | lt‘is l
Ancthe
terminal or

MCu

network products and services that sup-
port T.120. For example, T.120-based
conferencing bridges (MCUs) that can
support hundreds of simultaneous users
are now being developed. If an application
supports only the lower layers of T.120,
customers can use these MCUs to host a
multipoint conference only if everyone in
the conference is using the exact same
product. Figure 8 displays network inter-
operability through a conference of like
products.

Application-level
interoperability

The upper levels of T.120 specify proto-
cols for common conferencing applica-
tions, such as shared whiteboarding and
binary file transfer. Applications support-
"ing these protocols can interoperate with
any other application that provides similar
support, regardless of the vendor or plat-
form used. For example, through T.126,
users of DataBeam's FarSite application
will be able to share and mark up docu-
ments with users of group conferencing
systems. This interoperability will exist in
simple point-to-point conferences as well
as large multipoint conferences using a
conference bridge. Figure 9 represents

application-level interoperability between
two standards-based applications connect-
ed in a conference.

In the short-term, network-level interop-
erability will be the most common form of
T.120 support found in conferencing
applications. This is largely due to the fact
that the lower-level T.120 layers were rati-
fied by the ITU more than a year in
advance of the application-level layers.
However, end users will not be satisfied
with network interoperability alone. For
the market to grow, vendors will have to
deliver the same application-level interop-
erability (or endpoint interoperability)
that customers enjoy today with fax
machines and telephones.

RATIFICATION OF THE T.120
AND FUTURE T.130
STANDARDS

The Recommendations for the core
multipoint communications infrastruc-
ture components (T.122, T.123, T.124
and T.125) were ratified by the ITU
between March of 1993 and March of
1995. The first of the application stan-
dards (T.126 and T.127) was approved in

12

A PRIMER ON THE T.120 STANDARD

0791

A DataBeam Corporation White Paper

March of 1995. An overview of the T.120
series was approved in February of 1996 as
Recommendation T.120. T.121 (GAT)
was also approved at that time. Stable
drafts of these recommendations existed
for some time prior to the ratification,
thereby providing a means for DataBeamn
to actively develop products in parallel to
the standardization effort.

The existing ratified standards are being
actively discussed for possible amend-
ments and extensions. This commonly
occurs when implementation and interop-
erability issues arise.

T.130 Audio-visual Control For
Multimedia Conferencing

The T.130 series of recommendations
define an architecture, a management and
control protocol, and a set of services
which together make up an Audio-Visual

Control system (AVC). This system sup-
ports the use of real-time streams and ser-
vices in a multimedia conferencing envi-
ronment. The protocol and services sec-
tion, outlined in T.132, consists of two
parts: management and control. Together,
they allow Network Elements, such as the
traditional MCU, Gateway, or Conference
Server, to provide T.132 audio and video
services to their endpoints. Some of the
services include Stream ldentification,
On-Air Identification, Video Switching,
Audio Mixing, Remote Device Control,
and Continuous Presence.

The T.130 series is built upon existing
ITU-T conferencing recommendations
such as the H.320 audio-visual conferenc-
ing series and the T.120 series for
multipoint data conferencing. The T.130
series is compatible with systems, such as
H.323, in which audio and video are

FIGURE 10: AuDIO-VISUAL CONTROL ARCHITECTURE

User Applications

Real- Res}-

time time

Audic Video Node Controller

Device Devics
- 4
(Non-standard Application
ITU-T Standard Applicstion Protocol Entities
Protocol Entitiss
Control
Generic Contersnce
Audio Vidso Control
Stream(s) Stresm{s) T.124 (GCC!
Muttipoint Comwnunication Service
T.A22T.125 (MCS)
X Network-gpecific Transport
Network-specific Protocols (T.123)
Control Entity A
Oata
A 4 \ 4 Conro v

Network Muttiplex

A PRIMER ON THE T.120 STANDARD

13

0792

A DataBeam Corporation White Paper

transmitted independently of T.120, as
well as systems which are capable of trans-
mitting multiple media types within a
common multiplex.

Unlike other standardized methods for
managing real-time streams within a con-
ference, T.130 provides some unique capa-
bilities:
* Contains a network- and platform-
independent control protocol for
managing real-time streams

* Coordinates operations across
network boundaries

* Processes and distributes media
streams within a conference
environment

* Delivers of Quality of Service (QoS)
to multimediacommunications
applications

* Provides distributed conference
management

* Leverages the functionality of existing
multimedia protocols

T130 can be used in any conferencing
scenario where there is a need for
multipoint audio or video. T.130 relies
upon the services of GCC and MCS to
transmit control data, but the audio and
video strearns are transported in indepen-
dent logical channels due to the transmis-
sion requirements of real-time data flows.

(See Figure 10).

T.130 and T.132 were determined in
March of 1997 and should be ratified in
January of 1998. T.131, which defines
network-specific mappings to allow AVC
to communicate with the underlying
Multimedia Control Protocol, such as
H.245, should be determined in the Fall
of 1997.

VENDOR COMMUNITY
SupPPORT FOR T.120

More than 100 multinational companies
have pledged their support for the T.120
standard and more are being added to this
list every week. Public supporters of T.120
include international market leaders, such
as Apple, AT&T, British Telecom, Cisco
Systemns, Deutsche Telecom, IBM, Intel,
MCI, Microsoft, Motorola, PictureTel,
and DataBeam.

Most supporters of T.120 are also mem-
bers of the International Multimedia
Teleconferencing Consortium (IMTC).
The goals of the IMTC are to promate the
awareness and adoption of ITU telecon-
ferencing standards, including T.120 and
H.32x. The IMTC provides a forum for
interoperability testing and helps to define
Application Programming Interfaces
(APIs). DataBeam's co-founder and chief
technical officer, C.). "Neil” Starkey,
serves as the president of the IMTC.
Previously, Starkey served for six years as
chairman of the ITU study group that
defined T.120.

New MARKETS FOR T.120
DEPLOYMENT

The teleconferencing community is the
first market segment to adopt the T.120
standard. Because the technology is broad
in scope, it can be effectively used by a
number of other application software ven-
dors and equipment providers.

The computing paradigm is rapidly
extending past today's personal productiv-
ity model. Over the next two years, we will
witness the development of a new genera-
tion of application software that incorpo-
rates multi-party collaboration.
Independent Software Vendors (ISVs)
have begun to adopt T.120 as the means in
which to incorporate real-time collabora-

14

A PRIMER ON THE T.120 STANDARD

0793

A DataBeam Corporation White Paper

tion capabilities into common desktop
applications, such as word processing and
presentation graphics. Engineering prod-
ucts, such as Computer Aided Design
(CAD) software, are also on the migration
path to T.120 technology. Other ISVs
with a strong interest in T.120 include
developers of fax, remote control, docu-
ment imaging, and “overtime” collabora-
tion products, such as Lotus Notes.

With T.120 technology in the hands of
operating system providers and horizontal
application vendors, network equipment
providers are beginning to take notice. For
vendors of PBXs, network bridges, hubs,
routers and switches, T.120 represents an
important opportunity to provide value-
added capabilities within their network
products. In the short-term, these features
will represent an opportunity for compet-
itive advantage. However, within the next
year, T.120 support will be a required fea-
ture.

Finally, we can envision a whole range of
T.120 applications in the areas of interac-
tive video, network gaming, and simula-
tions. From Nintendo to DOOM to set-
top boxes, the need for bidirectional
multipoint data communications is acute.
The ability to use a common set of APls
and protocols that are broadly supported
from the desktop through the network
will drive the adoption of T.120 into these
important emerging markets.

The work of both the IMTC and the ITU
represents organized efforts to promote a
basic connectivity protocol that will
encourage the growth of the multimedia
telecommunications market. The
Standards First™ initiative, which is sup-
ported by many industry leaders, requires
a minimum of H.320 and T.120 compli-
ance, which is enough to establish this
basic connectivityprotocol. Manufacturers
are then able to build on the basic compli-
ance by adding features to their products,
creating Standards Plus equipment.

With Standards First, the IMTC has the
end users interests in mind. By ensuring
interoperability among equipment from
competing manufacturers, Standards First
also ensures that a customer’s initial
investment is protected and future system
upgrades are possible. The IMTC is help-
ing to educate the industry and the public
about the importance, function, and sta-
tus of standards. In addition, the organiza-
tion provides a coordination point for
industry leaders to communicate their
interests to the ITU-T. As the multipoint
multimedia teleconferencing industry
continues its rapid growth, the develop-
ment and implementation of standards for
interoperability, and the work of the
IMTC, will be instrumental in securing
the market's future. '

IMTC, ITU, AND T.120

Standards have played an important part
in the establishment and growth of several
consumer and telecommunications mar-
kets. By creating a basic commonality,
standards ensure compatibility among
products from different manufacturers.
This encourages companies to produce
varying solutions and encourages end
users to purchase the solutions without
fear of obsolescence or incompatibility.

IMPLEMENTING T.120

With the T.120 set of standards in place,
third-party developers are faced with yet
another challenge— implementation.
DataBeam's Collaborative Computing
Toolkit Series (CCTS™) has jump-started
the conferencing industry by providing
the first standards-based toolkits for devel-
oping multipoint, data-sharing applica-
tions. These toolkits encapsulate the com-
plex system-wide, multipoint communica-
tions stacks that allow application devel-
opers to rapidly embed sophisticated real-
time, data-sharing capabilities into new or

A PRIMER ON THE T.120 STANDARD

15

0794

A DataBeam Corporation White Paper

existing products. Simply stated, CCTS
provides a seamless solution for parties
developing standards-based communica-
tion solutions.

As a result, DataBeam envisions an accel-
cration in the development of software
applications and network infrastructure
products such as, PBXs, bridges, routers,
network switches, and LAN servers, that
incorporate T.120. In addition, the indus-
try will grow well beyond today’s existing
paradigms and the world will begin to see
a whole range of new products and ser-
vices that incorporate T.120. Users wait-
ing for the standards dust to settle can
now feel confident that with the support
of vendors like Microsoft, DataBeams
T.120-based Collaborative Computing
Toolkit Series is the best solution for
industry-wide interoperability.

16

A PRIMER ON THE T.120 STANDARD

0795

T.120 INFORMATION
SOURCES

DataBeam Corporation
3191 Nicholasville Road
Lexington, Kentucky 40503
USA

Phone: (606) 245-3500

Fax: (606) 245-3528

E-Mail: info@databeam.com

Web Page: http://www.databeam.com

International Telecommunications
Union

Sales Service

Place des Nations

CH-1211 Genéve 20

Switzerland

Phone: +41 22 730 6141
Fax: +41 22 7305194
E-Mail: sales@itu.ch

Web Page: http://www.itu.ch

International Multimedia

Teleconferencing Consortium, Inc.

111 Deerwood Road, Suite 372
San Ramon, California 94583
USA

Phone: (510) 743-4455

Fax: (510) 743-9011

E-Mail: dkamlani@imtc.fabrik.com
Web Page: http://www.imtc.org/imtc

@ DataBeam.

Copyright ©1995, 1996, 1997 DataBeam Corporation.
All Rights Reserved. Printed in the USA.

Updated May 14,1997.

This document may be reproduced,
provided such reproduction is performed in its
complete, unaltered form.

FarSite, CCTS, and DataBeam are

registered trademarks of DataBeam Corporation. All
other product and brand names are trademarks or
registered trademarks of their respective holders.

0796

d01l'1'€¢
§joo0joig JOAET 1I0dsuel] 341 € ¢
guoisisAd| 9'¢ct

dog pue’diy '4d4S0 -buinoy di ‘¥'¢'c
UonN[OSay SSaJppy PUB dHY €°C'E
WidjsAS SWEN UleWioday]l 27Z¢
Sassalppy dl 'L'C'E
NET R BEIVE] (VRIS
J9AE §5€jiaju| fiCMISN 8l I'E
2in323j1Yd1y |090301d dI/dDL1 3UL '€
(sonijod pue) ssweN ulewoq v'¢
UGiEnsiuilipy 19uidiu| €'
“YIMOoI9 Jauiu] "¢’
{i9uialu] 9y) pue d|/dJ1 @€ JeyM ‘¢
donsnponuj ‘|

Sjuauo09

19ded jey) jo uoisiaa pajepdn ue sijuawnsop siyl ‘$661 1snbny 6 uo ‘ajs
Jaydoo 11ay) uo pajsod pue ‘9INI3ju| 3y} o) paypiwqgns Ajjeuibiio sem s1aded sy

6661 14dy €2

wosjjiyoienbuiny
*ou| ‘sajeroossy JlIH
19|SS9)] ') Aieo)

JauJaju] ay} pue
$]090}0.d di/dJL JO MIIAIDAQ UY

Buiuiea paseg-qepn/pe] ._Qo::mc__

BRINGT & Puily

2002 ‘62 Asenuer

1 93ed--2007/67/10 : , “y/suonjeaqnd/Are1quwod iy mmm//:dny

suonedungg peis By

soysiBar o} o0y YO0
SASSPLD SUUO

$80IN0S8Y J3YIQ -
SBAIUDIY
uonesqng -

$3009 -

suonR2lqnd
3DIS

0797

80ByI3)uUl PIEPUB)S By} BW023q Sey Jey) |00010Jd 310Mau-1asn B Jo Juawdojaasp ayl sem | JNVJ MY 8ul Jo synsal
Bunse| jsow ayj o auQ ‘Buiyopms jaxoed o} mau s1em jey) $|000jo.d Jo Jaquinu e 0} aj)| areb | JNYdYY [eulbuo ayy

‘£261 Aq adoing 0} suonoauuoo pey pue | /g) Aq

"S'N [ejuauluod a8y} pauueds | INVUHY 8U) ‘6961 JO pud ayj Aq Sapou JNoY WIM 'YI1ON 1& Pa|lejsul Sem | INVAHY 8u)
Jo apou is11y 8y} ‘6961 Jaqualdasg uj ((Ngg) UBWMBN pue yauelag }jog o) 3Jomau Buiyoyms 1axoed e Aojdap pue ubisap
0] JoesuOoD e papieme (Vdy V) Aouaby s)oafoid yoleasay padsueApy ay) ‘8961 1oquiadaq u) ‘S'N 8yl Ul sajIs yolessal
papunj-goQ joauuoassiul o) jJuswiadxe papuny (QoQ) asuaje(jo juswpedaq ‘SN e se uebaq jouidju| urepow ayL

‘S$}I0M)3U BJEP {EDILIOUODS ‘}SB) Ul JINSal Aljua pajliwsuel) e Jo 8zis ay) Uo
wi| saddn ue pue Buixajdiyinw jeosHE)S 'JOBY Ul ‘INg S1asN [BNPIAIPUI O} pajedlpap aq o} Jeadde $a2Jnosal UoedIUNWILWOD
Jomjau ‘uolippe uj ‘swajqoid ainjej-jo-juiod ajburs Buneuiwije ‘Apuspuadapul pajesado sjusuodwoo jje Jey) os paubisap
8q p|noo syiomiau Buiyoums joxoed ‘saineq pue ueleg 0} Buip100oy "palled ag pINoMm Jey; s)iun Bjep ay) 1o} jaxoed wis)

3y} paulod pue "'y’ 8y} Ul 801AI8G [BJSO4 aU) Jo} yJom Juapuadapul Ul eapl Jejiwis e pajsabbns saineqg pjeuoq 182104

JIY 'S'N 8y} Joj jJodal e Ul I0M)BU B)ep PIEMIOJ-PUB-2I0)S ‘JUBID1YD 'JSNCO] B pagquosap ‘uolelodion puey ayj jo ‘ueleg
{ned ‘2961 U| 'S82IN0SaJ }I0M)aU Jo asn Juaoiysul Aiybiy ut sjnsas Buiyoums N0 ‘(swiy jo pouad Joys Aiaa e Buunp
JN220 SUOISSIWSUE.Y) By} JO JSOW “'8'1) a.njeu u| A}sing S| J1§el} Bjep JSOW 8snedaq "Sieak paipuny e Apeau Joj SyJomjau
auoydasja} ay) jo ABojouyos) ayj ‘Buiyoims Inoud ‘Ajpweu ‘Aep ay) Jo ABojouysa) 310Mjau SUOIIEDIUNWILIODS|D) UOWWOD
sow au; Aq paused ‘ejep Aueuiq pue 1x3a) aidwis pasudwod palsixa uonedIuNWWOod J13iNdwod ajll| leym ‘sgas | du) o) Joud

(3vuta3u) 3Y3 pue) di/dOL 40 uolINjoAZ YL '}'Z

(1661 'J9ISNYIS 3 UOWIS) UOAT Miel pue JaujeH ane)y Aq jeusajul ay) Jo suiblQ ayy :a1e7 dn Aejs spiezipm e19ym

pue (5661 ‘A8|S8M-UOSIPPY) SNIES Jajad Aq puodeq pue | INHTLNI OF LINYLHY Woid :jeN ey Bused 18uisju| ay)
1O sauo]siy Juaj|eoxa om} peal 0} pabin aie siapeas 'Jybisul pue uolleUWIOjUI jBUOHIPPE JO4 ‘AI0)SIY 3] JO BUWOS SSNISIp
IIm uoIoas siyj jpalbuimiaiul A[ajiulap 1SOW 1. S3L0ISIY Jiay) 'JUBlayIp a/e 19uid)U| 8y} pue s1000)0id di/dDL aul UM

£19UIB)U| BY) pUE dI/dDL 248 JBUYM T

"uoljeulIojul Pajiejap 8J0W J0j $834n0s 18yio Auew o) Builiayas

‘jutod Buieys pue apinG Jauq e se jueaw S|)| ‘s}daouod pue ‘sus) ‘AJo)siy Uo siseydws ue YIm ‘dl/dDL PUe jaulaiu
8Y] JO MBIAIBAO PEOIQ B SBpIA0Id owaw SiY | j8oeds J|Bys JO JiWi| Iy} PaYoeBa) dABY SBI0JSH00Q 9SNEdsq alow azuoyjne
0} Juejon|al aJe s1aysiignd jey) SH00Q YIns AUBW OS 8ie 8} ‘SJIBaA |BI9ASS |SB| 8U) Ul 8|qe|lBAR 8Ww02ag aABY ey}
SMOYS /] UBAS pue 'S8sInod 'sajoipe 'sy00q jauiajul pue di/dD 1 Jo jaquinu Jueoyiubis sy} ueaq sey asn ul yymosb sy
jo ubis auQ ‘(js1asn asuajui Ajjeas 10} AjUO pue) Swa)sAs JaINdWOD JO JaqUNU Pajill] B UO 3|ge|ieAe Ajuo 8iam 3wl auo
1e jey) saiiin pue sjoo) ay) Buisn ase ‘awy) 1sdij 8y} 1o) Auew ‘pue jaula)u| ayj Buisn ase ajdoad jo Jaquinu Buiseasoul uy

uononposu] L

ddn ¢ee
¢ 98ed--2007/67/10 y/suonyeat|qnd/ALeiqr oo iy mmam//:dny

0798

:sped aauy) sasudwod aInjonIls mau ay] ‘Jaussiul aljgnd ayj Ul 3jos S,4SN 3Y) 8onpas 0} adeld ul nd sem ue|d e ‘p661 Y|

‘S18SN |[e 0} %I0M)au ay) uado
0] S4S| 4SN-UOU WoJj ainssasid DSUBIUI PBUIBWA) 3J3Y} 'SSO[SLMOABN '@0IAI8S BUOGYOE] JOULIBU| |BIOJOWWOD & apiaosd
pue ajowoid o) seibojouyoa] 1INNN Pue ‘(1Sd) [euseuIa|j wEm~m>w mocmc:otwm ‘SOIWOJY [eJ8UBS) AQ PaWIO) SEM

90UO0 jey) Jsuiaju| a8y jo wwa___nmn_mu wrz JO jje jnoqe jno mc_vcu MOU 8JBm S13sn _m_o._wrcEOo pue wwo_?_wm jlew jguisiy|
pue ‘ansagndwod ‘|19 palosuuod Aema)eb jew) e ‘686 | Ul Y)8UIB)U| BY) BZIRIDIBWILWOD 0} ainssaid paseaioul Sem

aJay) ‘uolippe u| ‘suoediunwwod paads-ybiy pue Buyndwooiadns Jo seale ay) Ul Yasessal jo Buipuny ayj 0} 3oeq ob o)
pesjsul pasjuem jnq ‘syJjomjau Buipuny pue Buiuunl Jo $SUISNG 8Y) Ul 8¢ 0} juem Jou pIp }I jey) pap1oap 4SN 8yl ‘€661 U

'sa)is papunj-JSN

pue suonnyjsui jeuoijeanpa 1oy sjulod uooaUUod |B20] apiroid 0) (S4S|) siepiroid adinas Jauiaiu| [euoibal jo Jaquinu e
papunj osle 4SN ayj ‘awi) jo pouad siy} 6unQ "L 661 Jo pua ayj Aq sajes (SdgiN 9€2 1) €1 0) duogyoeq 1 INJSN aul Jo
uolisueyy ayj Buisinsedns pue | IN4SN 2yy buibeuew Joj ajqisuodsal sem '|QN pue NE| Aq pawioj Auedwod yjoid-uou e
(SNV) "ouj ‘s@0iAJes B YIOMIBN PaoUBAPY 1D Pue ‘gl (ueBiydi Jo Alisiaaiun syl e passpenbpesy yiompau jeuoibal
ajejs uebiyoiy e) Juapy Buisudwod wniposuod e Aq pasiaadns sem yiomjau pabeuew-Ajeuoisssjoid, e o) uojelbiy
‘6861 Ul syl (sAqW vS L) LL 0) pepesBdn Ajg)ejdwod sem pue syul sdgx-gg paslidwod Ajjeurbuo | INASN aulL

‘(uoNoBUUOIBI}

swajsAs uadp o} uonesbiw Jo |e0b ajew N ay) ym) AJIAIjoaUU0IB)UI JO) paAojdwa sem di/dD1 ‘@dnjeu ul jodojosdninw
Ajabie| suam suoyeoydde | INJSN Apea ybnoylpy ‘18ulsju] ay) Se ABpo)] MOUY am Jey) auoqyoeq ay) Buiwoosaq
Ajjenjuana 'syom)au jeuoifial JgN-uoU pue papunj-4SN U)ogq uaamiaq AjiaDauu0d apiaold pue moib o) panujuod
1INASN 8yl '9sn [eidJawwo-uou o) oiel) pajiwil 4SN ay) Aq pauyap ,Aoljod asn ajeudoiddy, ay) ‘alowlaypuny
"SW3JSAS |ENPIAIPUI JOJ WSIUBYISW UOII8ULODIBIU UB SE JOU 'S3I0MJBU JaY)J0 JOj uogydeq e se papuajul Ajjeuibluo sem
‘1 ANASN 8yl paqgnp “yiomiau siy] (YyDON) ysieasay ouaydsow)y Joj J8jua)) [eUOlEN BY) pue s13)uad Jeyndwoosadns
jeuoiBas papunj-4SN JNOJ J08UU0DIB)UI O} HI0M)BU BUOGNOE] B J|Ing ({SN) UolBpUNO4{ 80UB10S |BUOHEN 84} ‘9861 Y

XINN

(uonnquisig asemyos Asjaxiag) sSde v ‘uoniejuswajdwi X[NN S BlUloyeD O AjSIBAIUN BY) JO) [9UIBY SUCHEDIUNWIWOD

ayj ul uorsnjaul s)i yum d1/do1 o Ajueindod ayj ui 1s00q abny e mes os|e Jeah jBy] ‘YJOMISN eleqg 9susaq ay) jJo

JJed awedaq pue diyes) Aiejjiw A11eo 0) pasn sem ‘| INTIN PaJied ‘Jayjo ay) 'Sa)is d1wspede pue Juswdojsaap/ydiessal
1o9UU0dIBUL 0] PaSN SEM ‘| INVAHY P3alIed NS ‘Jusuodwod suQ sjuauodwod omj ojul Jjds sem | JNVYJHY @4l ‘€861 U]

"13NVdYV @43 jo

aouepodwi pue adoos ay) Buioueyua Jjaypuny ‘suolesiunwwod ney-Guoj 1o} ayns [000joid di/dDL 24} 8SN pInom swig)sAs
Jayndwod Jisy) Jo |je Jey) pajepuew og ay} ‘€861 Ul (G661 1aquiadag Ul pasesa]as Sem UoIedliosds ‘gad| 10 ‘g UOISIBA
dl 8y} ‘uonippe ut) way) o) paljdde suolesiipow |e1aAaS pey asey yioq ybnoyje ‘1 g6l Jaquaidag ul uajm a1am Aepo)
SN UOWWOD Ul 3Je jey) d| Pue 41 Ulog jo suoisiaa |eulbuo ay) ‘gidos se Aldwis o) paliagal Ajlensn s ‘suoneojdde
pue s]020j0.d JOo UoND3||02 able| B 0] Si8)al A|lenjoe yotum ‘ajins |ooojoid ay) sny ‘|osojoid aibuls e se Ajjeuoljoun)
pauolsiaua Ajjeuibuo a1om d| pue 401 '(dl) 1000)01d 1ouisiu) pue (40 1) 0901014 j011u00) UoIssiwsues] ay) uodn

paseq ‘'] INVJYY @y Inoybnouy) pajuswaidwn pue psesodoid sem $j000)0Jd SUONEIIUNWWOD JO 8}INS }SNQOS BJ0W ‘MaU
e 'v/61 Ul ‘peojaiel) yiomjau Sumolb ayy yim dn Buidasy jo sigedesul aq o) paroid JON ‘Jsremoy ‘awi} 180 (dON)
|020104d [043U0D) HIOMIBN By} Pa||ed Sem | INVJHVY Y} Ul peonpoJjul [000j0.d SUOIIEDIUNWWOD JSOY-0}-1SOY |eniul 8y |

"92IMIBS GZ'X SJuudg Jo ped e mou st jsus|al
‘Buiweuas yonw Jaje py6L Ul '90IAIeS Blep paydlims-1axoed |eioawwod e '1aus|a) Jels o) Ngg pabeinoous aoeusiul
JPJEPUESS, SIY| "Gz X uollepuswwoday (1 1|00 Alaw.oy) 1-n1| ‘Aloweu ‘Syomjeu payopms j8xoed pue siasn usamjeq

€ 33ed--z007/627/10 Tyy/suonedtjqnd/Areq Ao iy mmay//:dny

0799

"LANVJYY 8yl Jo (asiwap pue) yimosb ay) Bunuswnoop sdew 3jomjau Jo Jaqunu e pajuid-al (0661 J8Q0I0 ‘MaInay
suoneolunwwo) Jendwos ,'sdejy 1 INVY4HY palos(as,) uyey 9 Jad ‘0664 AN Ul pauoISSILIWOIBp SEM puB 'Jauiay|
By} O] paAOW OlyeJ) pue sajis Se sOg6| 8l ay) Buunp Jajjews pue Jajlews malb }| ¢ 1 INVINY (eulbuo ay) Jo jeym puy

‘sieaf [eJoASS ISB| By} JO} UBaQ SBY PUB ‘SYjuow

aAjam) o) usj A1eae 8zis ul Bulignop s| jauleju| ay) Jey) pelewiiss si §| 'SyJomjeu 000'00Z Uey) siow Bunosuuooiau
Jnoy-jley AIaAs JusliLoe)e YIOM)BU MaU B Jnoge Jo ajel e e BuimosB sijaussiuj 8yl ‘8661 Alenuer Aq sisoy ajqeyoeal
oljliw og Al1eau pey jaulaiul ay) ‘wayy o) Buiploody ‘ABAINS UIBWIOQ joUJa)U| |[ENUUB-ILUBS B S8INQL)SIP S,PLEZIA YIOMIBN

efjuauodxa Ajjesa))) peouanadxa Sey JOMIBU 8y} ‘jey) JBljY ‘986 Ul S3)IS JO JaqUINU JSBPOW B)M paje)s osie 1 INISN
8yl ‘€861 Ul NS Sem)i 810489 S8POU QY Jepun isnf 0} maib pue GIEL Ul SSPOU INOJ Yiim papels | INVIHY 8yl

ymou Jauiaju) Z'Z

['9g61 Inoge aouis Aeme sieak om}, uaaq arey sjooojold

SO ‘mopuim Buipiis e jo ajdwexs ajewn ay) sjuasaidal |SO 1ey) Jno pajuiod aaey siaalasqo Aisnpul awos :310N]
juawalinbal Ajuo-|SO. au) doip pue di/dD1 dielodiodul pinoys diSO9 ey} paisabbns ye61 ul (1 SIN) ABojouyosa) pue
Splepuejg Joj 81njiisu| jeuoneN ay) wouj yodal e ‘Ajjeuld "Ajoajoadsal ((dNTD) 1000]0.1d JohAe] }I0M)BN SSI|UOHIBUL0D
ay) pue (yd1) v sseo jooojoid podsuel] |SO 8yl Apenoiued 'sjooojoid |SO Ojut 9)eiBiw 0) paue)s sainjes) 4| pue 401
Auew se spuom Yioq Jo 1saq ay) noqe Buuiq oy 1ay)abo) yiom 0} pajels SaljiuNWWod |[SO PUe Jaulaju) ay) ‘pousad awes
siy) 6uung ‘di/d D1 Jeno ajesado 0} suoljesijdde |SO Smojje aiem}jos 3QOS| 'aeq au) 4o} uojeibiw (SO 104 yoeoisdde
ue apirosd 0) 0661 Ul padojaasp sem (3AOSI) Juawuosaug Juswdojaaad 0S| 8y} ‘Isil4 Japlo Ul a1e SUOIJBAISSQO

JO Jaquinu e ‘SSB[BYNBABN '81eqap dl/dD1L ‘SA 1SO aY) ul uonjisod e axye) 0) owaw siy) Jo asodind ayj Jou st §|

*8)ins |020}0.d UOKOBULOIB)UI SWa)sAs uado |eas ay) ‘AuBw JO SpuUIW 8y} Ul

awedaq d|/dD 1 olium Keme sieak jo ajdnod e s a1am sjonpoid |SO [11" Hieip eaeqg) ,8pod Buiuuns pue SNSUasuUod
ybnoJ ul arslaq apn Buntoa pue ‘sjuspisald ‘sBupy joalel ap, Peal0 ay) uodn paseq ‘(S8lis 4SN/VJNY JO jaquinu jjlews
ay) 0} anp jjlews sem Apunwiwod uado siy) jo azis ay) ybnoyj|e) Juawuoliaua uado ue Ui JNO palsed uaaq sAemje pey
uswdoaasp di/dD1 "‘Malb jauiaju| ay) se sgge L 8ie| 8yl Buunp panunuod di/dD4 Jo Juswdojansep ‘sjepuew sy} aydsaq

‘Papnioul Jou sem d|/dD1 pue juswuwanob jesapa) ayj 0} pjos sjonpouid Aq pajioddns aq o) aaey pinom jey) sjooojoud jo
13s ay) pauyap (dISOD) 810.d ISO udWuUIBA0D g ay) ‘Apuanbasqng Jno paseyd aq pINom d|/dD1 4O sn pue 0661
1snBny Aq sj020j01d |SO @SN 0] 8AeyY pinom sjonpoid suoledluNWWoD J1a3ndwoo (je Jey) pajepuew goQ ayl "Aeme sieak
Jo 8|dnod e Ajuo a1am sjonpoid |SO pue swiojie|d aiempiey pajiwij uo Ajuo uels i aouls uonnjos Asejsidosd ‘wusjul ue Se

PBMBIA MOU SEM d|/dD 1 "$1020}0Jd [SO 1dOpE 0] 8S0YD JUBWUIBA0S) "S'N 38U} JO JSOW pue o 8y} ‘sliymues ‘gge| Ui

‘8661 Aq papua Burpuny
Siy "jusioyns-jjas Ajje1osawwos awodaq oy Buipuny paonpal Jo sieak sl USAIB aiam SS| PapUNj-4SN ‘uolippe |

‘Jaulaju| ay) 1o} sjooojoid Buynols sjenbape ainsus o) ‘igjigiy bUIjAGY syl €

'2661 Ul {SdaN 80°Z29) 21-00 0 papeibdn

Ale19jdwos sem §i (sdqy 26°6G1) £-00 1. pajelado pue Geg| Ul Pajle}sul Sem yiomjau siyl '|DW Aq pajerado
'S18JUBd papunj-4SN pue SHV¥N 8y} BuiosuuoIBlul YJOMIBU B ‘831AIBS HIOM)BN alogyoeg pesds bifi AisAay) 2

‘uojjesado

Ul OS|e ale S4yYN 4SN-uouU |e1anas ("D’ ‘uojBulysSepn pue '0dsioueid UBS “JJOA MBN ‘06esiy)D) SdyN yons
inoy Buipuny A|uo st 4SN 8y} yBnoy)y ‘FOBULTIIBIUI PINOM SJS| [ENPIAIPUI 818UM ‘(STVN) STUIOS SS800Y JIOMIAN |

v 28ed--2002/67/10 “y/suonedrqnd;/Arelqiwod iy mam//:duy

0800

r

‘6661

aunr Aq uoladwaos o pauado aq o) sey ssauisng uoljessibal ay) ybnoyle ‘000z Jaquisideg 0} papua)xa Sem 10BIU0D
S,ISN ‘UoHIppE U| ‘SWJIj J3YJO Y)IM SUIBWOP 3S0Y} Ul saweu Ja]sibal pinod s1asn Jey} 1ng SUIBWOP asOu) Joj Jojeljsiuipe
8[0S 8y} ulewal [IM |SN 1BY) Paploap Sem |l ‘866 | 19G0I00 U] "Sulewop asoy) o) uonelisibas ay) dn yoid pjnoys

OYM SUIWLIBIEP O} Pal} BUOAIDAD BlIUM SBWI} |BIBASS PBPUBIXe SEM PUE 8661 |1idy Ul INO Ues JOBJUOD S,|SN "SUlBWIOP
npa pue ‘jau- ‘610 'woo 8y) Joy Ajuoyne uonesisibal aaSnOXs pey pue 4SN SY) JO Jleyaq uo DINJ8ju| ay) pajesado
(1SN} "5U["sSUGIHNOS JiOMBN ‘661 Ut Buuels ‘Jaulalu| ay) ul sabueyd Jo sjdwexa Buiysalajul ue s| HINJBIU] YL

‘JOUIBIU| BY) UO SBSS3IPPE d| PUB SBWEU JSOY S8JIoU003l 1By}

aseqejep panguIsIp a4y} ‘((SNQ) wejsAs sweN ulewoq ayj Jo jJuswabeuew pue UoIJeuIPIO0I [|BJB3AQ 8U) Jo} 8|qisucdsal
oS|e sem H|NJ2JU| 8y ‘Sulewop 'g N-uou Bulipuey ppom ayj punole SH|N Ylim ‘'sawieu asay) Jo Ajsoyjne ||e1aao pey
{HiNIBjUY) 18)UdS Udijewioju] YIoMISN 18UIS U] aul ‘8661 112dy mun ‘Apoyine Buiweu g1 ay) Aq paubisse ale ssweu
urewoq (WYNVi) AiIoqiny Siaquin palbissy 18isiuj ay) Aq pabeuew usaq A([8o1i0}sIYy sey (SJaqunu pajejai-di/ddL
lle pue) aoeds ssaippe 4| 8y ‘swWweu Jsoy pue ‘(jeuoydo) ujewopgns pue ulewop ‘(Q11) uiewop jaasl-doj e Buisiidwod
a1monuis Buiweu |eoiyoielaly @ asn sjsoy Jaulsju "AJAIOE JUaLINO pue ASIBA0JJUOD BWOS JO 1oalgns ay) S| SBWEU UIBWOp

Jaulaju] Jo Juawubisse ay) ‘sasodind jeuonelado 10§ JBUIBIU| B JO UOIRJSILILIPE BY) 0} pale|as Apoadip jou ybnoyly

(sonilod pue) sawen ujewoq ¥'Z

‘suoljeziueblo Jaqwaw | SH|4 8y Aq paje}ijioe} pue pasueyud Apjealb si AJunoas jlomjau Jauiaiu|
‘prom 8y} Jnoybnoiy) sdg| pue ‘saouabe |ejuswulanob ‘saujunod Auew Buijuassidal (s 4]D) swes) asuodsay
Aousbiaw3 Jayndwo) Jo Jaguinu e Jo J10)euIpiood ay) si SUIEa | AJiinSeE pue 8sliodsay juspidlj jo wnicjayy e
‘18uIBu; |eqolb ay) uiypm ajeradoisiul 0) (S4S|) SIaPIADI4 B2IAIDS JBUIB)U| S)SISSe
osje dnoub siy] "suoiesado jaulsiu| apMpUOm SB)JeUIPI00D (§4) dnoidy Builiuejd Blilesluibuyauisjlj syl e
Taulaju) aininj ayj JO UOIIN|OAS3 3y} O) wocwtoas_ jo
yoseasa) Buyowoud ‘'sdnoib passeas wial-buo) Jo Jaquinu e sasudwod (1 H[) 99165 58] (oieasay 15uisjiuj ayl o
4431
ay) 0} uonoaulp sepinoid HS| 8y G| 8y} Jo Apog Jayjo ay; st (HEH[) diitiey Buiiss| s buissuibuy j8lisil| ayL e
. 18UIBYU[§,AEpO] Uisjoy pue punocibyoeq “KiGiSiH—315i, u punoj aq ued sseooid spiepue)s
JauIBju| ay) pue {1 3| ayj jo Aiojsiy pue punosbyoeq ay| “sainpaocoid pue sauljapinb dnoib Bunjom 41 3)
8y} saquosap Y aym ‘Ajsanoadsal ‘90S| pue 413) ay) usemieq diysuonejal ayj pue ssa20.d spiepuels
413] au} ul parjoaut suoeziuebio ay) aquosap Z pue §Z20Z SO4H 'v661 JO pus ayj e Apoq spiepue)s
euoljeUIBlUl UB SB 4] 3| 8y} pajipalooe OS] jey) ybnouas jueayiubis si suonjeoyioads asay; jo joedwi ay| sjooojoud
pue suoneoyioads Bunum Buipnjoul ‘Jaussiu| ay) Jo SaijiAloe jBJIUYd8) ay) Jo) Appgisuodsas Aiewnd aaey sdnosb
Bunjjom m.u_km__ a3yl "gv| @y} Jo saipoq Aewnd om) ay) jo auo st {(J13Ji) 8310 ¥{Se] bunsaulbu jauIail] oyl e

"pIEOY SAINAIOY JOUIBIU| DY) JOJ SUOHEDIUNIWOD PUE
1ybisiano sapiroid osje 0S| ‘suonesydde pue saibojouyoa) Buiyiomlauiaiul S pUB 'Jaulsju| 8y} JOf UDIBUIPIO0D
Buipinoid uoijeziuebio [euoljeuialUI [BJUBLLIUIBACS-UOU B SI 'Z66| Ul palsaleyd (HOS)) Aj8io0s Jauisjul ay) e

:aJe saljoyne Jaulaju) Jueoiubis ay) Buowy 018 ‘uonezipiepue)s ‘Juswdolaaap |000)0id ‘Buiweu ‘Buissaippe se yons
‘Allesjuso pabeuew aq Ajuo ued jey} sbuiyy asoy) sbeuew 0} JoAamoy ‘Jauisiu| ay) o) palinbal si Apsoyjne [eJjuss awos

ipaziuebio jam jey) Aueau
JouU S| Ji jey) wied swos nq ‘Aysieue 0} paiedwod uaaq Sey Jauleiu] ayl “1auliaiu] syl (Jo uoiuod e) sajesado auokians
19A “Jojesado |B)jusd ou sey Jaulsu] 8y 'jaulsiu| ay) (Jo uoniod B) SUMO 8UO0AIBAS 184 ‘18Umo 3|BulS OU Sey JauIdju| By

UOHEASIUIWPY JBUIAYU| €7

¢ 98ed--7007/67/10 “y/suonedtqnd/AreIqy o iy mammy/:dny

0801

(DiINJBIU| BY)

Aq passjsiuiwpe pue [i5URG7Y BUKIOMISN j€18pa 3§ ay) 0) pejebajep) selouabe Juswuianob |eiape ‘SN :A0b°
Ayeayy jeuoneuwisjul Aq paysijgejse suoneziuebiQ Jur

(Anysibay paseysg ayj pue JiNJ8IU| ay) Aq pass)siuiwpe) suoneziueblio yyoid-uop :Bi0°

(Aysibay paleys auy) pue DiNJ8ju| ay} Aq passisiuiupe) siapiaocid yiomiaN :jau’

(OINJBY| BY)

Aq paigjsiuiwpe) sanisisaiun pue sabajod seak-4 0) pajwy Ajlensn Aepo} ybnoyjje ‘suoinjijsul [euoneonp3 :npe’
(Ansibay paseys 8y} Aq pais)siuiwpe) suoneziueblo [elosswwo) (woo’

:apnjoul sulewop [aAsj-doj 01suab spIm-pUOAA ‘BWEBU UIBWIOP (9AS]
-doj B ylim pua saweu sjsoy Jaulaju| 1el-0)-jybis Wwolj peal si sweU 8y) Ji POO)SISpUN 1S5 S! 8INJONJIS SWEU UBWOP 8y |

{UIBdS) V'S "UlewopIa)u]

("S’fiy Uoneiodion SpPUsiiGam

(WopbUTy pajiun) jouseju] [Bnpin
("§"R) OIsA
(yewuaq) SV Jaupeda|a|

'S oU] HOMISN W0Js[e] SARJBIaU|
. (’S'NJ ou| "dweyoju|
(WePBUIS| Paiilfy 8 VS $HIoMisNOIU|

(&) S3IAISE T8UISIU| BRUBAY OjUj

{"S'N) ouj "WoN?d

(‘S'N) Uonerodion NoY

{'S'n)ywod >.aw_cwﬂ_c_mEOO

[]

[]

L]

L]

L]

[]

Am_co_m.mov EijeUuilioN e
(LuopBuIS pajitf) meszZ °
[]

[]

[4

L 4

[]

[

sy ﬂ.@dw»amﬂ
'S Wwos8indagsliEN
{'s'n) "oy .w_wo._wgc_ SW

(’S'N) suonpesiunwiwo) ﬁw>> iiv
(AEMION) dSi 8AISY

("S'N) "dul "enusAY IeN 6

:| @seud
ey Jeyjsibal e se Joxew ay) JaJua O} Bjqe aq [IM PUB SPIEPUE)S UOIE}IP8IOO. S) Jaw pey jey) seiuedwod juesidde Jayjo
62 J0 11| B pasunouue os|e NNYO| ‘sielisibal pajipaioose-NNYD) |le 0) pauado aq |im suiewop 610" pue ‘jau’ ‘wod’ ay) Jo}

wayshg Ansibay paseys auy ‘awi) Jeyy Iy ‘6661 ‘ounr [un unt jim weiboid paqiss) Jesjsibar aAljedwod ay) Jo | 8seyd

:sulewop 610 pue ‘Jau’ ‘WO’ 8y} 10§ WISAS Asjsibay
paleys aannaduiod mau syl Jo ped aq o} pajos|es usaq pey saluedwod aAl Jey) paosunouue NNYDI ‘6661 ‘L2 IMdy U0

(0Sd) suswubisse Jsjswesed j000)oid pue (OSY) sessaippe di
(OSNQ@) saweu wewop Bupnpul *Ajjigisuodsal Jo seale s)| Jo uolesiuiwpe ay) Joy Aoijod sjeald 0] (SOS) suoneziuebiQ
yoddng |eisAss wio) M NNYD ‘Hoddns Asjsnpui wv:s paaiadal sey NNvI| ‘(jleded sy Jo adodas ay) puohaq

mhmnE:z pUE S5WeN paubissy 10] cle_m_oa‘_o.‘o..~|m5m|.c_ ay) st suonesnsibal Q116 sjpuey o} Apog 1samau ay) .m__cscmmE

9 a8ed--2007/62/10 ‘ “ysuonyeot qnd/Areqimod iy mmm,//:duy

0802

"$80IA8S Uoljewlojul Buipinoid sanus 1oj opur

Sal}IAloB JusWwulepajua/uoneasdsl Buiziseydwsa saiua Joj 981
‘saljiAljoe Juswuesajua pue jein)no Buiziseydws saljua Joj sue’
‘MMM 28U} 0} pajejal saniaoe Buiziseydwae sanjjue 1oy gam
‘aseyoind o} spoob Burniayo sassauisng 10} 810’

‘SWilY JO 'SassauIsng Joy uLly’

:$@7.L6 mau usass jo uoneasd ay) pasodoid DHY| 8U ‘2661 Aenigad u| .A.mn_._.rmv
sulewo(jgaa do| (eqo|b pue sausibas Bujweu |eqoib jeuoiippe ysi|qelsa 0} jesodoid e JaA0 ajeqap |euoijeussiul
ay) Jo} .Soa |eosoy m se joe 0} pue sanss| Buiweu asay) Jo 2UWOS 8Aj0Sa1 0) pawLo} sem (DHYI) Sawwo) 90H

ey aq ued sBWEU Moy Jnoge >whm>oh~coo pasned aAeY asn |BUOHBUISUI PUB '8ZIS JOM]BU ‘AJIAO. [BIDIBWILLOD
paseasoul Jo sainssald ay) jnq ‘sieak Auew 10} jjam payIoMm sey juswabeuew pue Juswubisse Q11 JO 8wayds ayl

08F1 934 ul punoy ag Aew ulewop sn ayj jnoge

uoneuwoul 8IO (JUOWIBA ‘8ljopeYD Ul JOUISIF [00YDS YINOS UspushiyD ay) ul [00yDS [BJjua) ajjopeyD ay) 0} siajal
SNIAZ L)' PSSO°S00 ulewop ay) 6-9) snepoa-jejsod-ajes g |y 1aL)sip-jooyas jooyos wioy ay) Buisn Ajjensn ‘Ajapim Aiea
ued aoeds aweu gLy ay] (A1ajes algnd Jo Juswpedaq JUOWIBA 8y 0} siulod sn‘ja-gje)s sdp sweu ulewop ay) '6'8)

N 8poo-jejsod-aje)s s)esjuswpedsp wioy ay) aye} Alensn aoeds sweu jJuswuiaAob ajels ayj ul seweu ulewoQg sajud
o sadA} olauab Jayjo |e1aaas pue (SNI) swnasnw (g|]) salesql] (909D) siuawuisAob Jo sjounod (31v1S) seousbe
Juswuiaaob ajejs (D3 1) sjooyos |esiuyos) (99) sebaljoo Aunwwod (Z 1)) S|00yds 10} 80edS SWEU BY) UIY)IM PBAISSal
osje ale sayouelq [euoijound ‘eluibliA ‘uojsay ul saAljeniu} yoseasay jeuoiieN 10} uoljeiodio) ay) 0) siajal ‘ajdwexs

10} 'SN"BA°UOJSA UUD BWEU UlBWOP 8Y) "SN'9poo-jejsod-aje)s apoo-ydeibajal-Aj10 aweu-Ajnus wioj ay) Jo ssweu

sn aoeds aweu sn ay) u) ssweu jeaiydesboa ‘uonouny Jo Aydeiboab Jo siseq ay) uo paziuebio Ajabie si utewop sn ayl

"wopbury pajiun sy Ul SUOHNYISUI BUOIEINPS PUB |BIOISILIOD 10} SBXIJINS BU} BJE ¥N°28° PUB ¥N°02° PUB ‘001X Ul
SUOHN}ISUI [BUOIIBONPS PUB |BIDIBWIWOD JO) SBXINS 8y} SIB XW'Npa’ PUB XwW wod’ Jey) os ‘'sqL ay) 0} Jejiwis ulewopqns
e asn saujunoo Auepy ‘Juem Aay) jey) Aem Aue ul surewopqns paseq-Aunos ay) aziuebio Aew saujunod Jualaylq

_'saweu ulewop (ego)

i6] Aij§iBaY UEsIIsWY aup Aq nmmmcmE ale mw_:w_mw._ Buiweu ou_omn_ eISY pue :mmao_:m_ mhmcaw_EmI UIB)SaM BY L

‘pajeoon) >__mo_m>r_a Ajjenjoe si JSoy B alaym pue apod A)unod e Usam}aq uoije}asiod Aue

AjluBSS88U JOU S| 813y} JEY) B}0U 0} juepodwt si)i ‘(salels Uw._ch sn pue ‘(ooixaly) xw ‘(ueder) df ‘(puejaly) a1 ‘(|9eS)|) It
‘['epoo A3junoo ggL g QS| [0 UE Jou S| YN ybBnoyje pausjesd eq o) swaas (wopbuiy pspun) ¥n° Q7L 8y} pesn Ajasel
st g6° @11 8y) 'suoseas |ea1I0jsIY BWOS 104 :JLON] (Uiejug 1e8ID) g6 ‘(aoueiq) 4 (uledg) se ‘(Auewian) sp ‘(epeued)
£9 8.Je $8p0d AJJunod ulewop paseq-ggL e OS] Jayl0 "ueder ‘BWEYONOA Ul AliSiaAiun 019 Jo Juawpedaq ABojouyos |
pue 8ousIog 8Y) je Jsoy e S| df*oe 018y Jsul 0w pue eijesysny 0} Aema)leb jaulaju ay) Jo ssalppe ay) sI ‘gjdwexs

Jo} ‘ne'zo ueuunw 99| E PIEPUEIS (S| ul paulyap sapod A1Junod 18}18]-0M) 8Y) 8Sh SBWEU UIBWOP |3A3}-do} 18Y10

UIBLWOP |8A3)-dO} [BIDIBWIWOD BY) UIUIM (1) UlBWOP SB)RID0SSY ___I ayj ul AEQQE }soy e o_ sJ8j8s WoI \\.E Em\om sweu
1soy ay| ‘(npa) ulewop jarsl-doj [euoneonpa ay) ulyNm ‘(nwep) Alisieaiun WRY Sexa] e Juswyedesq (QlL3) uonnguisiq
lerysnpuj pue ABojouyos) Buussulbug sy ui Jendwod e o) paubisse s| ‘ajdwexa 10§ ‘Npa e} djud sUieU JSoy 8y

(SToMIaN e1eq asusjaq 'S'N 8y Aq pabeuew) Aejjw ‘g ws e

L 98ed--z007/6T/10 . --y/suonedtjqnd/AreIqiAuod | Iy mmm//:dpy

0803

"yoejs jos0j04d di/dD1 payduns ‘| JUNDIL

[_ _ | | | Aetey | | | bButy | | FOVIYIINI
| ddd | dI7S | WIY | NOSI | SAWS | 2wexg | Gz X |I0ad| usoi | 3Isurayly | NYOMIIN
fmmmt o - +----- e to———— tomm——— t------ s tom e |
| a¥v | a1 | IANMEINT
e i e S S e

[AdSOIdHDT | | d4dn | dolL 1 I¥0dSNY¥L

..... L I e e e e e e e e e el

|butg| |dIY | dWNS I SNA |dOd | 28buTa | d9g | dLIH | dIWS | I2ydoo|d1d|32uTaL] NOIL¥DIT4EY

‘diysuone)al J1ay) pue sabeyoed aiemjos di/dD 1 [BI9J8WIIOD JSOW O} UOWWoI sjuauodwod uojedsydde pue
joooj0.d Jofew ay) smoys ng ‘aAlsneyxs sueaw ou Ag si welbeip siy) ‘ainjoanyole jooojoid 41/dD 1 au} smoys | ainbiy

"SJUBLBA XIUN JSOW SB [|8M SB ‘| N/86/S6 SMOPUIM PUEB '00%/SO ‘2/SO Ul papiaosd
s1 Joddns di/dDL @Aleu pue Aepo) swalsAs Buijeiado pasn-Ajapim (e o} ajqejieAe ae $j020jo.d di/dDL 'SS8IayUaAsN
‘wa)shs Bunesado ayy yiim sjooojoid di/dol Buypung papels xiun SHZ ¥ 9oUls ‘aAoge pauoijuaw se ‘pan A|jesuolsiy

uaaq aAey Aay) ‘Ajeieiedas padojaasp alupA “WwaisAs Buijesado xXiun ay) Yiim paleioosse AJuowwod 1Sow st 4l/ddL

IN3231Yaly |030j0id dI/dDL 3yl '€

“SlJomawel) Dos_-oﬁm 8y} Jopun pays!|qe|sa

JO WRPUBIOWS}y UBWOQ [9Ae 0oL DHaUs5 ayj Jo uonealgnd ayy Yim 1661 AR Ul POAJOSSIP SEM DHY| 841

‘8661 Ul SN @Y} Ul JoBIJUOD 4SN BU) JO UoISNIDUoD uodn paieys aq OS|e aJam
640" pue ‘jau’ ‘wod” sgLb Buysixa aaiy) ay) ‘alowlsylnd ‘siedisibas mau ay) Buowe paieys aqg ||m yoiym Jo e ‘sgiLb
M3U 3] Japun SaWeu UIBWOP |aAd}-puodas juelb o) paysiqelsa aq siedjsibas mau gz 0) dn jey) pasodoid osje DHY| aulL

"ainjeoUsWoOU |euosiad 10 [enpialpul Bulysim 8SoyY) J0j wou” e

g 98ed--2007/67/10 “yysuoneatqnd/Areiqi/wiod 1y smmm//:dny

0804

Fmdmdmdmdotototodtotodototmfodmdedototot—t—totot—tot—todot-d-t-t—+
068L9SVECTTOG6EBLISPFECTOBSB8LOSSYPECTO
£

T
€ ZcZ¢ceceZzegegeczi1t11111IT1TTIT1ICT

"|0JJUOD MO} 40} WISIUBYIBL B apiaoid Jou saop 4] ‘yibug| ul (s}8100)

s9)Aq 6£5's9 0} dn aq Aew jey) ‘abessaw e jo Juawbesy auo Jo ‘abessaw e uiejuod sweibejep di "uoisabuod yiomau
10 s1o413 0) anp Js0] s}axyoed Jnoqe WajsAs Jsoy pus ay) Ajou Jou Aiaajjap asjuelenb jJou SB0p ¥10M|BU 8y} 8snedaq
8jqelaiun se 0} PalIa)dl SaLIIBLIOS S 8JIAISS SIY| “YJOMJBU BY) SS0J0B 801A8Ss Jodsuel (ssajuoloauuod) weibejep

JakeT jausajul ayl ‘Z'c

‘(N@s| 40 Bujuuru

uaym “6'a) uoleooje yipimpueq diweudp pue ‘swsiueyosw Ajunaas ‘(§jod6joid ddd 10151 VNVI syl a8s) uoppauuod
9|Buis e Jano sjoo0joid sidinw snosuejnwis Joj poddns ssepiaocid ‘uolippe Ul ‘ddd ‘UoIIBUU0D Snouolyouhse ue

o} paywi 6uiaq ueyy Jayiel dj Buisn jauisiu| ayy 0] 08UU0D ‘810jaiaY) ‘pue JBAISS JSOY B 0} Ajjoau1p yoeye ued uaindwod
sjowas B ‘ddd 10 d11S UM ‘Sjooojoid om] 8say) apnjoul swajsAs ssef-0d 1o} sabexoed aiemyjos di/dD 1 [erosawwod
SO ‘Sjuswuoliaua dn-jelp 10 aul} pases] uj Se Yons 'asn uj 8q Aew [020j0.d yul| ejep BuiApapun 1ayjo ou 8i8ym S82IAIBS
[0o0jo.d 1ahe| yu BlEp 8piaoid 0} pesn 8q Aew ‘Ajaanoadsal (T891 44 "ddd) 1090}0.id Julod-01-juiod pue (G601

04Y 'dI1S) 10001014 18waiu| aul] jeuas aul ‘di/dD1 0} ueasjas Aueinaied ale sjod0)0id asepsjul Butkpapun au) jo om|

. ‘SJ8YJ0 SNoJBWNU Se |[am se ‘ainbiy sy} ui umoys
salbojouyos} ayj Jo e 18A0 papodsuel) 8q ueo sabessaw d| ‘spew 8q o} paau Aew SUOIEPOLLWOIVE U[EPaD YBnoylly
‘ABojouyos) yiomjau eale apim 1o |eoo| Buipepun Aue Ajesu Jaao ajesedo o) paubisep usaq esey s]000j0id d4|/dDL dUlL

Jaken asepajuf J40M}aN 3yl ‘L'¢

{(v661 'As1SOM-UOSIPPY) SUBARIS

(2661 'lIH-MeIOOW) 1184 'S AQ "pa 'pug ‘Ajunosg 4j pue 9Ad| Yiim uolejuawajdwl pue ‘sj020joid ‘8imde)ydly di/dd L
(1661 ‘lleH-aonuald) J18wod A AQ '9/z ‘a.njoajyoly pue ‘sjod0joid ‘sajdioutid | “JOA ‘di/dOL ylim Buniompauiaiuy

0] paliajal ale siapeay 'S|020)oid ay) Jo uolejuawsidwi pue asn Jnoge uojjewiojul pajiejsp Buipnpul 'a)ins

|030j04d B S dl/dD1 JO Sioadse jje 8quosap Jey; ualum useq aney siaded pue s»300q Jo Jequnu abie| y ~siakej asoy)
asodwod jey) sjooojoid ay) pue a}ins di/dD L dU) Ul S19AEB| 8U) JO YIS JO MBIAIAAD Jaliq B apiAoid (M MOjag SUCHIas ay |

6 93ed--2002/67/10 “y/suonesiqnd/A1eiqiwod iy mmmy//:dny

0805

"SISqUINN j050j0id
JOISITS,YNVI @i je punoj 8q ued siaquinu jodojoid 4| Jo 1si| @331dwod v (68) 4dSO 40 (L1} dan '(9) dOL

‘(1) dW D1 apnjour suondo ‘1axoed ay) Ul paliied ejep ay) JO sjuajuod jooojoid Jake| Jaybiy au) sajedlpuj ;j020j0l
"Papiedsip aq |Im 18x0ed au)

0 0} s}8b 11 §1 'auo Aq anjeA 111 8y} Juawaioap (Iim jaxoed siy) S89S jey) Ja)nos AJBAT HJOMIBU 8y} UIylIm pap.ledsip
8J0J8q 8)e) 0) pamojje sI jaxoed siy) jey; sdoy jo Jaquinu ay) Buljedipul ‘GGz 0) g WOy anjeA v (71 1) aArT-oj-awif e
'sa)Aq g JO sjuawaIaul Ul JBSHO BY] Sa1edIpu! |Im piaY SiY) ‘sjusawbely Juanbasgns ul g aq |Im }8SH0 B} ‘Wesl)s

Juawbey) e Jo ja¥oed JSu) ay) U Jexoed jeuibiio ay) ul yuswbelj siyy Jo uonisod 3y} SajedIpu| [JasyQ juewbel e
‘(00
as sAem|e pue) pasnun s jiq p4y) 8yl "uonejuawbely sassaiddns yoiym ‘1g (4Q) Juawbel4 j,uog ay} si 1q puodas
ay) ‘pajquasseas aq ued jayoed ay) jeY) SMOUY JBAI08) 8y} jey) os joyoed e jo juaswbel) Jse| ay) sjedlpul 0}
asn s| pue ‘1q (4N) syuswbelq a10p 8y} pajieo s Jiq 1S4l 8yt A|quasseal pue uoljejuawbely 10j pasn os|y ;sbej{ e
‘Alquiasseal 10} 18Y)o yoea
yjim pajeloosse ag ued uoljeuljsap ay) je buiale sjuawbely Jualayip Jeyy os Jsoy Bupiwsuery ayy Aq psubisse
S1 Jaluap! S ‘1suiaju} ay) Buisiaaed) ajiym saoald Jajjews ojui pajuawbely s joyoed e uaym pasn :uoneaynusp| e
(NLN) Hun uoISSIWSUEB) WNWIXBW 8Y) 0} pajiwi]
aie sazis jaxoed ‘aoijoeld uy 'sa)Aq GEG'GY JO ‘g p9 SI J19oed d| Ue JO 82IS WwnwiXew ay} ‘pidl siy) Jo azis ay)
uaAl9 "ejep pue Japeay yjoq Buipnjoul ‘j9xoed aljus 8y Jo (18100 Jo 'sa)Aq ui) Yibusj ay) sajedlpu| (yjbua (ejof e
‘Ayngenjas Jo ‘indybnousy) ‘Aejep 18090 Jayya 1oy paziwido aq ajnos ay) jey) }senbas ued Jo (2
-0) Ajuoud ao1n8s e Ajoads ued pue ‘sdepajul 8d1AI8S Jake Jaulaluy/iehe] podsuel) ay) ssoioe sjsanbas 8oIuBs
0} asuodsal ul)soy Bugeuibuo ay) Aq yos eq ued piay SOL @Ui ‘vAd| ut Aepoj papoddns Ajjessuab jou ybnoyyy
‘Sjwsuel))i S)9¥oed 10} 8JIAIBS JO SBSSED Judlaylp Isanbai o} Jsoy Bunjeutbuo ue smojly ((SOL) 821n8S JO adA) e
(10T0) G)SED| JE JO BNjEA B SEBY SABM|E P|al} SIY} OS ‘S18)00 Qg S! Jopeay yibus)
-wnwiuiw v ‘spiom (18100) 11q Z¢ ul Japeay weibejep ay) Jo Yyibua) ay) sajedipu| :(JH/) yibue] 1opeas joulaiul e
[SisqUIrN UGISIOA di 10 18I S, YNV
ay) 89s ‘g pue § sapisaq paubisse uaaq aAeYy SJaquinu UOISIBA ¢| Auew *Ajlen)oy :310ON] '00T10 anjea Aleuiq
BY) UIBJUOD {IM PjaY SIY} OS ‘¢ UDISIOA S| dj JO UOISIBA JuauInd 8y ‘18x)oed ay) JO UDISIaA di 8y salioads uoisian e

:8Je 'SUOI)OUN) N18Y) PUB ‘18peay ay) Ul paulejuod spialy 8yl ‘yibuaj ui (s8)Aq 0Z) SpJOM G
sea| Je aq |[IM Japeay d| Ue jey) ajou ‘psom jiq-zg o|buis e syjuasaidai mos yoe3 ‘g je buipels ‘Wybu-0)-)a) woly pasaqunu
ale s}iq ‘D 4y 8y} Yum Juajsisuod s) wesbelp ay) Jo jewlo) ayy ‘Z ainbi4 Ul uMmoys s jew.o) Japeay jayoed 4} JIseq ay |

‘Jeusioy Japeay (weibejep) yoxoed dj 'z 3¥NOIA

R e e e et e

T releq _
B e ik T L Ll T
I (butppeq) *rrsu0T3do !

e e T el kb Ak (T SO N UV SO SIS SN SR SRS S SO ST MU M S SR
| SS3IPPY UOT3BUTISS(

S S
| SS3IPPY 22IN0S , |
e e R e et S S e S S

— e

[wnsxoayn Idpeay _ 10203014 | TLL

R e i e i e e s
! 125330 2udwbeag isbetal UOTIEDTITIUIPT

B e e ate s ol Sl sEs thb el el S S s Shel S M sh e sl S ek e Sl el S e i e e e 3
! yabus1 R30I | SOL: | TIHI |uoTsaaal

01 28ed--z007/62/10 | -j/suonedijqnd/AIeIqiWOd 1Y mmm//:dpy

0806

"JIOMJBUGNS € UIYIIM JSOY Disioads ay) SajedIpul payans (Qi~ LSOH) Jaliusp)
1SOH 8y "}Jomjau auoydaja) ey} ul pasn s 8poo eale 10 ‘apod A)1D ‘apod A1junod ay) se Aem awes sy yonw ‘SyIomiau
usamjaq Bunnol [aasl-ybiy 10} pasn st G|~ LN 8YL 18UIBIU| BY} O} PRJOBUUDD YJoMIBUGNS di/dD L SU} Salnuap! playans

AI”L3N) 18y1}usp| YIoM}BN BYJ ‘SPJBIIGNS OM) OJul PapPIAIpGNs ale pue sasodind Buiinos 1oy [eDIyo.RIBIY BJ8 SBSSBIPPE d|

Jeulod ssauppy d| '€ 3¥NOId
|| Bt e e
i AT IYINIWNTHEIXE [TITITIT! 4 sserd
T B e e
| a1 LSYDIITINW [01TITIT] a ssetrd
fmmm - it bt ————————— =ttt |
_ a1 ISsoH ! ar 13N fottiITl D SseTd
j—mm - Fommmm - e i +—t+-+-|
[a1 LSOH _ ar Ian [0ITI € sseTD
fmmmm e e tmmmmmmmm oo +-+-1
I a1 1SOoH | QI 13N ot Y ssefd
.. ey
T068L9GHFE€EZ2T068L9SHEZTOB68LISHEZTO
€€222222222Z1111T1T1TT1T171TI

"21°901'291°802 S! SSaippe d| 8|dwes Y ‘[ew/dsp pajjop
SE 0} pa.uiajal S| uoljejou ay) ‘spoisad Aq pajeledas ale san|eA 8y} aouIS 'S8JAQ SSalppe 8y) JO Yoea Jo anjeA [euwioap
ay) Bunuasaidal ‘siaqwnu Jnoj jo adsuanbas e se uspum AjjeoidA) ale Asy| ‘(g @inbiq) yiBus| ul sjig Ze ale sassalppe d|

sassalppy dl 'L CE

STEqUITIN GOGdO di 10 18I S ¥YNV| au) woyj usye) aie suondo

dl -Aiepunog piom e 0] papped aq [!m pue ‘(spiom 1) SaJAQ Of 0} dn asn Aew st uondo ay| uoledIpuUl AUNd8s
Jo Bunnos aoinos paytoads-1opuas se yons ‘1oxoed uaaib Aue o} paydde aq Aew yoiym suondo Jo Jos v suondp e
"19x0ed ay) aA18981 0] papusul 1SOY 38U} JO SSaIPPe d| :SSa/ppy uoneunssqg e
"1@xoed ay) Bulpuss JSoy ay} JO SSaIPpe d| 'SS8JpPY 824105 e

19y0ed 8JjUs BY) UBY) J8Y)e) Japeay ay) S¥O8YD A|uo pial} SIY) ‘810jaiay) ‘pPuB 3DIAISS ajqeyalun ue sapiaold
d| 18y} Jaquiaway "881j-101i9 S| JOPR3Y d| PBAISOS) 8U] JBY) SINSUD 0} UOIBWIOUI SBIIBYD [WNSYI3YD) JIOPESL e

11 98ed--2002/62/10 "*"}/SuONEI qNd/AIRIQ/WOd (1Y MMk /ARy

0807

'901°291°'80Z 40 QI L3N O SSBID B 0} J8yd1 Yloq vz /LT 90T°291°80Z
PUB 0" GGZ° G52 SSZ LT°90T 29T 802 'SNYL "Ql” L3N 3y} 10} sq ssasppe juesyiubis jo jequnu ay) Bunuasaidal
1aquinu e se jsnl Jo Wioj |ewiosp panop ul uajjum aq Aew SSBW Jougns ‘ainjela)l| pue Jxsjuod ay) uodn Buipuadeq

ve 0'662'65¢'SS¢ o)
9l 00'65¢'sS¢ g
8 0'0065¢ v

s)ig JO Jagqunp }Se Jaugng sse|o

:81e QI L3N 8y} 4o} S)iq ssaippe juedipubis

JO JIBqWNu pue ¥SBeW jaugns ay) ‘S8sSaIPpe d| ,INJsseld, Jo4 's)iq Q) LIN Iuedyiubis ay) sejesipul s| Jo Jaquinu

8U) pue jewioap Pajiop Ul UsjUM S| ysew jaugns 8y] ‘sesodind Buno. Joy (310MjBUQNS JO/PUEB) HIOMIBU BY) SBlYIIUSPI
1ey) ssaippe ay) Jo uoljiod ay) ajeosipul 0) pasn ale SySeul Jauqng ‘ysew jaugns ay) si |oo} Buissaippe jeuoippe uy

'0'652'891'264-0'0'891 261 Sassaippe O Sse|D 952 8yl Pue ‘'0'0'LE'CLL-0'0'9L'CLL S8SSaIppe g SSEe|D UadxIs
ay) '(1INVJYY o1 paubisse Apawioy) 0°'0°0'0L SS2JPPE V SSe|D au) ale s~ LIN PaAIasay "SYI0M)au 8say) 0} jauIsiu

Y} 48A0 PaJNoI 8q Jou |Im sjexoed pue sassaippe yiomjau ajeaud 10) 8161 Ddy Ul paaiasal useq aney sq(L3N eseass

"Jsoyjeoo) 8Y) 0) S18)81 |'0'0°LZ) SSaIppe jsoy ayoads ay pue Bupse) yoeqdool Joj pasn

SI 221 Jo @njea QI L3N V HOMIBU B UO S)SOY [|e 0} SI9j1 pue ssaippe Jseopeolq e si (, |-, Se pajouap osie ng ‘ajAq
sauo-||e ue o) Buiajes uaym 55z, UBNLM Ajlensn) sauo |18 Jo a1 LSOH V '901°Z91°80Z 40 GI” L3N B YIm ssaippe D
SSEe|D 8Y) 0} SIay8l ‘UsY) ‘0'901 291 80Z SS@IpPE 8y} Homjaugns aljue ue o} Buiayal uaym Japjoy ade|d e se panIasal
anjeA Awwnp e si (aaoqe pasn se) 0 Jo dI” LSOH V 'Bulueaw (e12ads aAey Jo/pue paAlssal ale San|eA SSaIppe [BIBA8S

‘9sn |ejuswiIadxa J0) PAIBSa) 816 PUB 'GGZ PUB OpZ UBBM|3Q BnjeA B
1w uibaq sessaippe J sse|) SESSIPPY ISESIIN 18UIBIG] Jo 1s1) B suteluiew YNY| 8y} ‘(sisoy ajdiinw o} weibejep a|buis
e Buipuas “81) Bulseaninw d| 10} pasn aie pue ‘6eZ PUB yZZ Usam|aq anjeA B ypm uibaq Aew sassalppe (g SSe|D 'Sjsoy

jenpiaipul o) paubisse Ajuowwos Jou aie pue Ajuo suonoun [e1oads Joy pasn ase sassejo ssalppe om} Buulewsas ay

‘(LA ‘slied smojiag '18NJBA0S) 0°28°861 602 Pue (S81e100ssY [IIH) 0'Z01'29L 802 8pnjoul

sajdwexa (j0 sse|n-qns 10) O sse|) ale Aepo) syiomjau o) paubisse sassalppe JSO €22 Pue g6l usamiaq

Jaquinu e aq [|im ssaippe D sse|D B Jo JIBIp Jsuy ay | Hsomjau Jad sysoy (Z-gZ) Sz 01 dn Ajuo ssaippe ueo pue
SHJOM}BU ||BWS J0) POPUBIUI 8JB SSSBIPPE 8SaY) ‘Al” LSOH 119-8 PUB 1~ 13N IIQ-1Z & SBY SSaippe) SSE|Q YV o

(auNuQ eouswy) 0'0'€91 25| PUE (19NISSM) 0'0'8€EL'821

pnpul sajduiexa juswubisse ssalppe g sse|D "awi} 8Wos 10} SSaIPPEe g ssej) mau e 18b o) Jnoyyip Aaa uaaq sey

s1)l pue dn pasn Bulaq yum pauajealyy usaq Buo| sey aoeds ssaippe g SSB|D 8y ‘L6l PUE 82| ussmjaq Jaqunu

€ 8q [|!m SsaJppe g sse|d e Jo iBip 1suy 8y Hiomjau sad sisoy (g, Z) 9€6°G9 0} dn SS3IPPE UED PUE SHIOMIBU
pozis 9jei9pow Joj papudiul dIe SassaIppe g ssej) 'al” LSOH #19-94 pue a|” 13N)ig-v| & Sey Ssaippe g SSejQ v o

'(WE1) 0°0°0'6 pue (Jaueld NGQ)

0°0'0' ¥ @apnjoul sajdwexs ‘paubisse uaaq aABY SaSSaIppe Y SSB|D M3) AjJoAlEI3Y 97| Pue | usam)aq Jjaquinu

aq ||im S8sSsaIppe Y Sse|D B jo ibip 1s11) 8yl "yJomjau Jad sjsoy ?NNV 912'24.'9} 0} dn ssaippe UBD pue S}JoM}au
abue| A1an 10§ papuajul a1e sassaIppe Y SSejD 'Al” LSOH 19-¢Z Pue QI 1IN)Iq-/ e SeY SSaIppe Y SSBIQ V ®

:pleuagns i~ L3N 8y Jo yibus| 8y} sI sesseo ayj usemiaq souaiayp Ajuo ay) pue Buissaippe
1SOY 10§ Pasn aie O pue ‘g 'y S8SSE|D 'SaSSEd SSa/ppe |BISASS S8UIISP d| 'SHJOM)BU S2IS JUBJaJJIp 81ePOWIOIde O

1 38ed--z007/67/10 “3/suonedt|qnd/AreIqi|wod [y mam//:dny

0808

uoljewojul Jo sadAj Buimo||o} 8y) UKeIUOD SIaAI9S AWEN

"JOAJS BWeU S,uleLLIOop 8Y) 0) papJemIo) 8q |jim Isanbas SNQ 8y pue Jsoy)abie} ay) 10} JaNBS

aweu ajepdoisdde ue auiwislep (IIM ‘UBY) ‘JBAIBS JOOI 8Y]| "SJBAIBS JO0I 8U) JO BUO O} Jsenbas 8y} SpJEMIO) JBAIBS BWEU
{E00] 28U} ‘3|gR|IEAR JOU S| UOHBWICJUI KIBSSB3U JI LJBAISS SWEU 8Y) Je Payoed 10 painbijuod Jay)ia si ey} Uoijeuloul
yim jsenbal ay) 0y puodsal 0} ajqe aq Aew 18AI3S SWEU [BO0| Y} JBAIBS 3B [BD0] B 0} 8Y) 0} }SOY [B}IU 8Y)

Aq spew si jsanbas SNQ € ‘sweu s)soy 3y} uodn paseq SSaIpPe 4| S)SOY B UIBIGO O} SPasu Jauiaju| ayj Uo SOy B Usym

'SJONIBS
aWeU BAllEjLIoYINE BSBY) O ||E O IS|| B Ulejulew (adoing pue Eisy ul Japulewsas ay} yum ‘Ajlenjoe S n a8y} Ui jsow) aqolb
S|e UlBWOP YIES ‘UIBWIOP 8Y) JNOGE UOBWIOUI vmum_ﬁ SNQd lie mc_mEoo jey) uiewop AJBA8 10} JoAIBS BWBU BAjjBjIoYINE

a|buis e s| aiey| ‘19uUIB)U| BY) UO SUIBLIOP || JOJ UOIHBWIOJUI SSBIPPE 4| pue aweu jsoy Buiuiejuos aseqejep psinqulsip
e sl SNQ @yl ‘pajeald sem (SNQ) wa)sAs awenN ulewoq ay} HI0Mjau ay) Lo SBWEU MBU JO ajel |SB) 8y} Sjpuey o}

[19p|0j smopuTH D BY) Ul PUNO)
8q AjjleotdA) ues pue SISOH pPaj|ed si ajl) 8y} 'SWajsAS SMOPUIAA YOSOIDIN UQO “d1jes) SNQ [BI0] U0 UMOP INd O] YJomjsu
|e00] 8U) UO SJSOY JO Saweu 8j1ouodal o} pasn Ajjlensn ybnoyjje swajsAs xiun uo punoy ||is aJe sajij IXI * SISOH :JLON]

‘malb yiomjau ay) se uoljn|os ajqejess

B Jou sem Inq ‘Yimoub Jo ajes mojs B pey pue |jews Sem | INVJHY 8U} 8jilym ainseaw ajenbape ue sem siy) (sa)

Sel|e pue ‘aweu Jsoy ‘SSaIppe di 3y} papnjoul YoIum ‘sjsoy |je JO ISi| B PaUIBjUOD jey) IXJ, ' SISOH P3j|ed 3| e paulejulew
1soy Aians ‘| INVANY Auea ay) uj "Jaulsiu| ay) jo ainjonyis Buiweu ulewop ay) paquosap Jaded sy ui uoissnasip Jaipeq

‘sasodind

BunnoJ Joj Ssalppe duBWNU B 0) jOB(q Paje|SuUBl) 8q JSNW 3Weu ay) ‘1aanamoy ‘8|doad Joj JusIUBAUOD SI SIY) BIIYM ‘BWeu e
pue ssaippe d| JUaWnNU B Y)oq SABY 'UsY) 'S)SOY d| SO "SBWERU JSOY Y}IM 3|qePojwod aiow ale ajdoad ‘peajsul yoepe
A8y} yoIym 0} SISOY 38U} JO SBSSBIPPE JLBWNU BU) SZIIOWSL JOU OP SIBSN Jsow ‘YiBus| Ul S)Iq ZE 8ie S8SS3IPPE di 3lIUM

wajsAS swepN urewoqg 8yl 22

‘A jeuoneziueblo ajbuis e o} paubisse aq Aew sassalppe ajdinw asneosaq

18uiaju| agnd auy) 0} PaydE)E SHIOMIBU JO JaqUINU BY) JO UOIJ3|182 8NJ} B jOU SJB SI3qUUNU 3Say) '13ABMOY ‘pasn Ajapim
os Buiwooaq si Y| asnesag ‘aoeds 9 sseyD ayy ul Apenonled ‘Aepoy Jebie| A|pajqnopun si Jaquinu siy) ‘paubisse
$8SSaJppe O SSB|) 8/£'8Z| PUE 'SBsSalppe g SSB|D) Z68S 'S9SSaippe Y SSeID G 819m 818y) ‘0661 Alenuer Jo sy

Anue s|ge) Janol ajbuis e Ul paipoads aq ued sassalppe D SSe|D INoy 10) uclewsoul Bunol .m:mc g|dwexa ay) ul 'sa|qe)
8qoS8p *(aID) Bunnoy uleWop.ajul SS8SSEID Pajed ssa00id B Sasn SaSSaIPPE SJEPIOSUOD 0} S3|GE) BURNOl Ui SYSEW

18uQns Jo 8sn siy] "uewop siy) o) Bunno. 104 (,2z/, 10) 0°252'SSZ GSZ NSBW J8ugns 8y} 8sn pue ‘0'LEL'891 261 pue
0'0€1'891°C6) '0'621'891°C61 '0'821:891 26| Sessalppe J sse|] Inoj ay) paubisse aq ybiw sasn s|buls e ‘AjaAneuss)ly

(,02/., 40) 0'0¥2 SS2Z G52 29 pinom adeds ssaippe g sse|) Jabie| ay) uiyym sjaugns |enpialpul o) Guinos Joj ysew ayy
allym “(,91/, 10) 0'0°'SGZ'SSZ 9Q PINOM 18UIBIU| BY} LUO @I~ LIN 8y} 0} BulNoJ JoJ ¥SEW 18uqns ay) ‘8sed Siu) Ul ‘al” LSOH
1g-Z1 pue ‘I’ 1INENS 1a-¥ ‘al” LIN 1g-94 e ojul pajuswbas aq jybiw yoiym 0'0'91'z.L aoeds ssaippe g ssejd

8y) paubisse aq Jybiw Jasn e ‘sjdwexa 104 "Ql” LSOH (48j/WS) pue (Ql” LINGNS) L8yiuap| yJomjaugng e ojul playqns
al” LSOH ay) Bunuawbes Aq syiomjau |ed160) ajdijnw auljep o} aoeds ssalppe Jiay) apiapgns Aew yiomjau e ‘ajdwexa
Jo4 ‘seoeds ssaippe |lews ajdinw aulquiod o) 10 adeds ssalppe abie| e 8pIAIPgNS 0} pasn 8q OS|e UeD SYSBW jaugng

€1 33ed--7007/67/10 “y/suonedljqnd/ATeIqr o (i mamy/: 9:_

0809

e dn Bupjoo| Aq uonouny siy) swiopad j| ‘s)exoed ajnos o) Ajjigisuodsal ay) sey d] ‘jodojoid Jake] IoM)BN SO UB SY

d9g Pue ‘di¥ '4dSO bunnoy di v'¢’€

[puewwod e- dxe ay) Buisn aull puewwod (§ N/86/S6 SMOPUIA
1) SOQ JO Xluf) B WOJj PamalA 3Q UeD 3Yoed 4NV 8yl "UOIBWIOjUI 4HY Juadal Buuols ayoeo e uiejulew sisoy di :310N]

"(ssaippe OV 208 3331 UE JO Woj By} saxe)
Yaym) ssasppe (31) uoneinw3 Ny Si 0) Ssaippe W1V sjualdioas e sdew yoium (dyv31) dHY uoneinwl Ny e
"Slaljijuapl jsuueyoyyied [enpia |\ 1Y pue ssaippe 4| ue uaamiaq Buiddew e apinoid d¥YUINLY PUB dHVINLY
Jalusp! JINJJID [eNpIA Aeje) Bwel) B pUB SSBIpPE d| ue usamjaq Huiddew e sapinoid yoiym ‘(dyvu|) 4Hy 8sieau| e
. ssaippe DV
UMo s)i Buimouy uo paseq ssaippe d| Sii aulwid)ap 0} J0ssa30id SSBJ-%SIP B SMOJIE UdIym (dHVY) dHV 9Siansy e

_ :Buipnjoul ‘pauljep uaaq OS|e aAeY Sa.NPadosd UOHN|OSal SSAIPPE JBYID

awely Ny 8y ul Aposuip paused ale abessaw dyYy ‘'smoys | ainbi4 sy 'ssaippe DV UMO S) Ylim asuodsay dyy ue
puas ||M SSaIPPE d| UMO S}| $8ZIuB0J8J JBY) N 9Y) UO UONE]S Y] "SS8JPPE DV PSJBIOOSSE 1) 10} SYSE puB SSalppe
di uoneunsap ayj sasiuaApe jsenbal dyY 8y} ‘ssaippe Jseapeoiq DY ay) Buiuiejuos awey) e ul j@xyoed jsenbay dyv
ue spuas Jsoy ayj :a|dwis Ajaaneals Ajjenioe si ssaooid sy} ‘ssaippe 4| auy) Ajuo Buimouy uaym SSaIppe DY S,JoAI808i)
B UJB3)| UBD JSOY B Jey) 0S wsiueyoaw e sapiroid ‘928 D4y Ul paquosap '(dyV) [090j0id Uonjosay SSaIppy a9yl
"}JOM}BU BWES BY} UO JAAI3D31 Papuajul 8y) JO SSaIppe DV Ui Mouy| Jou Aew ssaooid 4| SJapuas ay) ‘Ajajeunpojun

(J8n01 Jo ‘Aemajeb Jnejap ay) Jo Ssaippe DV 8U) JOj peajsul 30Oo) ||IIM 13puas ay}

%JOMJBU JaYyjoue UO S} JSoy uoijeunsap ayj §|) ‘awels j090joid DA NV 8y} ul padeld si Ssalppe DY A Uoljeulisap ayj pue
19)0ed d} 9y) ul paoe|d S| SSaIppe 4| UCIBUIISaP BY) 8SNeDaq S| SIY) ‘JOAI308) papusiul ay) JO Sassalppe DY PUB d| aul
yjoq mouy jsnw uoyesydde Buipuas ay} ‘yomjau awes ay} UO Jsoy Jayjoue o} weibejep e puas 0} SpPasau JSOY B UBYAA

"S9SSAIPPE d| SB SWES Y} JOASU BJB SBSSAIPPE DY 'SSaIppE DVIN aUl

Buisn pawioad ag jouued Bunnos os ‘{ealyolessiy-uou aie pue YBus| ul sq-gy a1 S8ssaIppe DA "S8pou Uoljeunsap
pUE 821N0S 8Y) JO SSBIPPE (DY) [04JUOO SSBOOE WINIPBW JO ‘YIOMJBU [BI0] Y SUIBJUOD NY] 8Y) UO UDISSIWSUEl)
K18Ag (NV1) Sy10Mjau BaJe |e00] Jausay)g Aq pajoauuoossjul Ajuowwos sjsoy uo uel suonejuswaldwi 4i Ae3

uonnjosay ssalppy pue 4y €°¢’t

‘9 Aq SNU UMOTNOA dh BUISS, pue (sajeroossy B Ajjied,0) N7 "D Pue Z)qlY 'd Aq gNIg pue SNQ 8pniou! seouaisjal
SNQ [euolippy "alis qa (ViAR) saueijly Buisiomsiisii) PioAA ay) woy punoy 8q ued SNQ 8y INOGE UOEW.OU! BION

"UIBLLIOP SiU) JOf JBAISS JIBW BY) SI WOD Jjiy jlew

soy ay) sayoads aseqelep aWeU wod jjiy 8y) Ui SPI0oal-X|\ 81 }Soy oiioads e 0) Juss 8q 0} Sey jlew pue ‘aweu
]SOy B JOU ‘BWeu UIBWOP B S| SS8IPPE 8y} Jo uoiiod ,Wod'|jiy, 8u) 1By} 810N "Wwod jiy@ienbuiny 'SSaippe |iew-9
Joyine sy Jopisuos ‘aidwexa Ue sy "ulewop UaAIb e 10} S18A18S |leW BY) S}Si| p100a1 abueyoxa 1ewW Y (ps00ai- XN
‘urewop uaalb e 10} (S)JaAIas aWeU SABLOYINE BU) S)SI| PI0IB J19AISS SWERU Y :pI0d8I-SN

“aWeu)soY B 0} Ssalppe d| ue sdew piooal 18uiod v :p10094-8 1 4

'SSaIppPE d| Ue 0} sweujsoy e sdew piodal SSBIPPE Uy :pI008s-Y

1 98ed--200Z/67/10 : . : “3/suonedlqnd/Areiqr/wod Iy mmm//:dny

0810

s19yoed ay) Jo joadse sWwos yum wajqoid e paisjunodua JSoy JO JBIN0J B JBY) SBJEDIPU| (We|qOId 18)aWeIed e
‘puewwod Buid ay) Joj siseq ay) ale sabessaw asay] ‘ejep awes ay) buluiejuoo Ajdey oyo3 ue
yim spuodsai Jsoy Suiniaoes ay) pue ‘ejep awos Buuiejuod Ajjeuondo 1ayjo ay) o} abesssw oydo3 ue spuas |soy
8UQ JoMjBU BY) UO 3|geYIEDI BIE S)SOY JBYJaYM XO8YD O] pasnh aJe sabessaw om) esay] Ajday oyoz pue oyog e
‘@21A198 JO 3dA) s1y) 10} BjqeydeaIun
SI 1SOY JO 3Jomjau ay) Jo ‘(yas si Bey-4q) pemojje jou 1nqg palinbai si uonejuswbely ‘ajgesnun 10 umouyun si Jod Jo
030j0.d 8Y) ‘umoudUN JO B|eyIB3IUN S| }JOMIBU 1O JSoY 8Y) Jey) aq Aew AJaA|Iap-uou ay) JOj UOSESsl 8y] "payoesl
2Q JOUUBD JSOY UDIJeUNISSP 8y} 8snedaq PalaAlap aq jouued jaxoed e jey) S8)edipu| ;e/qeyaealun uoneuseq e

:8pnpous sedA} abessaw gy DI pefojdws Ajuowwod ayy

"dl JO JUBWUODJIAUS S$SB|UONYBUU0D By} Ul juepodwi Apejnoied st |000}j0.d |B18).|j00 SiY| "SJUBAS |ewlouqge Jnoge
weibejep d) Jo Japuas ay) sayou Jey) di o1 Jounipe ue si ‘Z6Z H34 Ul paqlosap '|000joid abessa |0Juo) Jaulsiul 8yl

dWOI '§°CE

"198(gns oiy1oads Siy} UO S8JUBIB)BI

ajqejieae }saq 3y} Jo auo si BwalnK uensuyD Aq jauwssiuy ayy u Bunnoy ‘|iejep Jo |9As] swos 0} Buinos d| ssnasip saoge
pauonuaw sY00q dI/dD1 aul Jo e ubnoyly “d| J8Ao sjuswbas 401 ul pauied aie ‘ainjedap |ejo) e ul ‘'sabessaw 499
‘weibejep 4| ue u) Aossp palled S| ‘puey Jaylo ay) uo ‘abesssw 44S0O Uy '193oed d4j Ue Ul palued si ‘uiny Ul ‘yomym
weisbejep 4an e ul pauied si sbessaw 41y V "dl 9) 499 PUe ‘4d4S0 ‘dIy Jo diysuoneds |000)o1d ay) smoys | ainbi4

Jl1Wwouo23d 4o ‘|eba) ‘Ajunoas ‘|eanyjod uo paseq saioiod Buinos a)eald o) JOjeJSIUIWPE S,3I0M)BU B smojje yoiym ‘buynol
aseq-£aljod spoddns os|e -4OF }JOM)BU UOIBUIISAP 8y} 0) 8JN0J [BNJOE 3y} 310)S S3|ge) 4Og 'Sj020joid JOJOBA SIUE]}SIP
13y)o [|e Jsowie aijun Ing ‘diy a1} '1000j0Jd J0JOBA BJUEJSIP B SI 4O ‘Suiewop Bulnol Jaulsju) usamiaq uoljew.olul
Bunnos apiroid 0} pasn sl JI asnesaq josojosd Aemeeb Jousixe ue st (-499g) ¥ UOISIaA |000)j0id Aemajes) Japiog ayl

"18UJBIU| 8y} Ul 4|y Buioeidas

Alpides s1 €861 948 u paquasap ‘Z uaisIan 4d4SO 'salqe) Bunnods amue uey) Jayjes snjejs syul sii ul sabueyo Ajuo
S)SEOpPEOIQq J8IN0I B ‘4450 UNM "SyJomjau 1abie| 0) ajeos o} s|ge Ja)jaq Si pue ‘yipimpueq }Iomjau ssaj salinbai ‘Ja)se)
sabl1aAuod 'q|y uey) 1sngqos alow si Jey) wyobie Buinol sjels yuil e s [020}oud (44S0) 1S4 Yied Isapoys uadQ syl

. -§8d A} 8bESS8UI "diy Jo 1s!| B sulejuiew YNY| 941

aun3IA pue 'SINIA Mielaiddy ‘aiepIeN UM pajeicosse asoy) Buipnioul 'd4iy uodn paseq aie sNYT S.Aepoj Jo Auew 1o}
sj0o0j0.id Bunos Juauny 'ymoib Jo ajel JSe} S} SBNUNUOD ¥JOMIBU ayj SB JauIaJu| ay) uo Juaioiaul Ajbuisealoul swodaq
sey diy ‘Ajeunpojun ‘sdoy g| o} pajiwy si yied e pue ‘1502 syjed e Jo oujaw ay) se Junod doy sasn 4y ‘sa|qe} bujnol
asque say) abueyoxa Ajjeoipouad siejnos Bupoqubiau 'diy YNa ‘wuLoble Jjojoaa-aduelsip e Buisn uoljewsojul 3|qe}

'sj020j0.4d sAemajeb
Jouajul se 0) paliayas Alleouauab ale s|000)oid asay} ‘ulBWOP dY) JO apisur S| Bunnos ay) adUIS "YIOMJBU S,4S| UB UIyIm
10 }Jjomjau ajesodiod B ulyym se yons ‘uiewop Jejnoied e uiyim Bunnod apiaoid oy pasn Ajewiid ale 41y pue 44sO

'dOf pue ‘4d4S0 ‘diy ‘Alpuleu ‘Jaulsju| ayj pue d| ypm pajeroosse Ajuouwwod
sjoo0joid Bunnos aaiy) aie a8y ‘uonewojul Buynos yum sajqe) Bunnos ay) ayeindod jey) ‘gl jou pue ‘sjosojosd
bunnos s1)1 ng "a|qe) ay) ul uonew.ojul 8y} uo paseq Buipiemio) pue a|qe) Bunnos e Ul @I~ 13N di uolteunsap s1axoed

¢ 1 93ed--z00Z/62/10 “yysuonedtqud/Areiqlwod iy s/ duy

0811

:8pNJoUl PUB UOIJOBUUOD B JO BPIS JBAISS

ay) sjousp syaqunu pod umowy-jap, (ssaippe uoleuljsep ‘Hod uoljeul}sap ‘ssalppe 82.nos ‘Jod 821nos) 8|dnj-Inoj

Ui Aq 18wisiu] ay) uo paiuap! Ajenbiun SI SjSOY OM] USBM}SQ UOHEDIUNWILIOD PUS-0}-PUS BU} PUE 'Jax20s B wioj jayabo)
ssaippe dj pue Jeyijuapl Jod 8y ‘sebessaw 4an/doL Ut Jeuynuapi yod e Aq o) paiajal ase suoyedldde sake-iaybiy

"} a1nbi4

Ul UMOYS SB ‘'ddn 40 401 JaAo uni Ajjen)oe suojedlidde yons jsow se ,'suonesljdde 41/dD 1. O} J8jaJ 0} Jawousiw e st}
ey anbie ued auQ (4an) 1090joid4 weibejeq Jasn ay) pue j090j0id |0JJUOD) UOISSIWSURI] By} pajjeo ale sj020joid asay)
‘sJafe] uoissag pue podsuelj |SO a8y} 0} Ajybnos puodsaliod jey) sjo20joid om} sasidwod a)ins j0o0joid dl/dD1 8yl

§1020j0.1d J9Aeq yodsuei] ayl ‘¢€'¢

{(71g7) 8bed gspm auoqg

(URS) 8bE4 GOAN UGIjEIsUSEY IXBN di

. {313)) ébed dnoic) Bujiopn budi

(9661 ‘suog % A8|ipm uyor) sewoyy uaydals Aq sj020j01d dI/4O L 8y} pue bud)

"18|8$3) At Aq |000)0Id JOUIBIU| UONjeIsuas) IXoN ay] 9Adl,

(9661 ‘lleH-221uB.d) BWANNH UeNSLYD Aq j000j0id J8uIa)u| MBN BYL ‘9Ad)

(9661 ‘ABISBM-UOSIPPY) U UB UOSIY pPue Jaupelg)00S Aq uoijelauas) 1XaN j090j0.id jaultdiul :bud)

:IN0 %989 ‘GAd| INOGE UOHEW.OUI BI0W JO4

Anjenuapiuod ejep pue ‘fubsjul ejep ‘uojesnuayine poddns o) suoisudxy e
saAN0alqo ao1Aas-jo-A)ienb yuasayip yim sadA) aiel) Joy yoddns sapeg e
SHiq 82| O} 9zIs ssalppe d| 8y} Buiseaiou| e

:0} ajej2J 8bueyd Jo sease Alewid "ebueyd |eoIpes e uey} Jayjel ‘pAd| WOl UOIINOAD ue se paubisap s! 9Ad|

Ul paulejuod sI gAd Jo uondiosap Atewud ay) "yoel] SpIEpUB)S }8ulaju) 8y} Ojul palajua Sem (QAd]) 9 UOISIBA d) ‘G661
aje| u| ‘Alessedau Bulwodaq sem d| Jo uoisian mau e jey) paziubooas sem § ‘suoieolidde Buibiawes mau pue jsulsiu|
auy) Jo ymoub snopuawal) 83 0) an(Q " UOISIOA SI S086 L AjBa 8U) 9ouIS asn Ul Usaq Sey Jey) d| JO UOISIBA |BIDIJ0 By |

9 UOISION df '9°2'E

"S)00J0 J13Y} 3ZIU0IYIUAS UBD S)Soy Jey) os wsiueydaw e Buipiaoid pue ‘swelbejep buissasoid
pue Buuayng puads swajsAs ajowal Buo| moy jo ainseaw e Buip|alA ‘abessaw ay) ui (Ajejnuelb puodasijiiw yjim)
dwejsawyj e aoeld ynq ‘sabessaw oyo3 ay) o} tejlwis ase sabessow asay | Ajdey dwejsawiy pue dwejsowi] e
"palidxa J1aw uonejuswbel) sy) 810J8q paAIadal Jou sem jaxoed aljue
8yj 8snedaq Jo g payoeal pjal} 11| 8y} asneosaq papledsip uaaq sey weibejep e jey) Sajedipu| ;papsadx3y 11
. ‘swelsbejep Buipiedsip S| pue
aoeds Jayng pajiwi) 0) anp Ajjensn) uoljsabuod Butousuadxa si j1 jey) a}1edipul 0} J8JN0J B AQ JuaS [youany 82.n0s e
1emally 8yj Je pPayo0Jq 8q Ajjensn pinoys sebessau joalipay ‘suoseal A}1unoes 104 "SSalppe
Jayjoue 0} papJemio} 8q pinoys sjaxoed jey) mouy jsoy Buipuas ayj 18] 0} 18)N0l 1O JSoy e AQ pas(;joalipsy e
"JepesaH

91 38ed--z002/62/10 ~ ryysuonedtjqnd/Areiquauod iy -mmay//:duy

0812

! Iaquny 1USWSHPITMOUXDY

i T e e e e O T e e e e

| Iaquny douanbag |

B e s Tl e e e R s s R e T e e e e o T e e s

i 3104 UOT2BUTISIQ | 1I04 22anog

B N s s S B T T T s e e T e et ST S
06 8L9GSVEZTO068L9GSHFEZTOG6S8LIGSHKEEZTIDO
£

T
£ cc¢cceccceccececzi1Ti1i1i1IIIICTTI

‘d01 Aq papiaoud ao1nias podsuel) ajqeras ay) JaAo aje1ado 8lns di/dD.L 8yl ul suonesiidde 8y} JO JSO ‘UOIj08.1I0D JOLD
pue ‘|o4juod moy ‘Bupuanbas ‘sjiNou [enIA Bujeuiwsa) pue Bulysijgejss ‘sabessaw Buijjewsoy 10j s8Nl sapnoul 41
"JOM)BU 8Y) SSOIOE §IIAIBS UOIEDIUNWWOD (PajudII0-UoI}o8uu0d) JINdII0 |enyiA B sapiaoid 'E6Z D49 Ul paquasaep ‘4oL

dol1 '}+°€e€

SIBqUINN 1104 JO SIS WVNVI @u) ul punoy aq ues paubisse uaaq aAey jey) sJaqunu pod Jo sij aje1dwod y

d¥ dan 0zs

dej-dWNS dan z9i

dANS ddn 191

£AdOd ddlL 0il

dllH d0l 08

18buy 4oL 62

laydog ddl 0.

SNA d4an/doL €S

sloym 401 €

dINS doL Sz

JBupRl doL €2

[oQuod 414 4oL 12

Jgjsueneepdld d0L 02
uoyjesijddy (0203014 # J0d

L1 93ed--z00z/62/10 "y/suoneoiqnd/Areiqiwod iy mmm//:duy

0813

EIELNN
uoifdo d51 e Jo 1si e Sulejulew YNY| 84 '9ES JO SSIA UE O} S}nejep ‘juasqe Ji ‘pue uondo pasn AjuowLwod jsow
ay) st (SSN) azis Juawbas wnwixew 'suondo jo Ajairea e ajeljobau 0} Juswysi|ge}sa uoiIauuod je pasn suoido
‘Juawbas sy ul ejep
pajpadxauou Jo 13100 }sJij 8y} Jo uoiisod ay) sajedipul ‘18s s BB} YN 2y Usym pijea “Jajuiod yuabin ay) ‘ejep
ewJou, pue Japeay ayj usamjaq Juswbas e uj paoeid s| pue Buusyng 404 |ewJsou sassedAq Ajjensn ‘wnj ui ‘ejep
sy} ‘uonesljdde Jake| Jaybiy e Aq Ajuoud-ybiy se payew uaaq sey jey) uonewsou si ejep yuabin usjuiog juabin
‘(ejep pue Japeay ay) buipnjout) yuswbas ay) Joj uooa}ap J043 Jiq Alejuswipnl SBPIAOI [WNSYI8YD
"J9AI903) ay) woyy Jdadoe o) Buyjim s) Juswbas siy) Jo Japuas ay) jey) sajAq
pPajilWisuey JO JaqUINU BY) S| YOIYM 82IS MOPUIM 8A1828J 3Y} JO BN|BA BY) SUIBJUOD '|OJ)JUOD MOY JO} PESN ‘MOPUIM
‘uonoalIp yoea ul Juawbas N|4 suo saJinbal uoloauuod ay) Buisojd Aeyajdwon ‘buijaael)
S| juawbas siyj UoRIBIIP BY) Ul UOHOBUUOD ¢ 1 8Y} JO UOIBUIWLIS) |ewlou Jsanbas 0) 188 :(NJ4) ysiui4 ©
"Jaqunu asuanbas jenul ay) Aued syuswbas ay) jeyy buyeosipul
‘UOoIOBUU0I B ysliqelsa 0} pasn sjuswbas |eniul ayy ul 18S ((NAS) siaquiny aauanbas azjuoiyduls o
‘UOIJIBULUOI dD 1 PUS-0}-pua ay) SajeuIWwla) A|SjeIpawwWl ‘19S UBUAA (1 S&) Uonoauuo) 19say ©
‘ejep
40 sjun jjews Bupywsues) 10j jnjasn ‘|1 03 Jayng ay} Joj Buiiem Jnoyum passyng Ajpuaning si jey) ejep au}
Jwsues; A|gjelpawwl 0} 401 83104 0) sjuem uoneostdde Bupiwsuel) ay) usym pasn (HSd) uonoun4 ysngd o
‘Juswysijqe)se uoljoBuuLod
Buunp abessaw Jsiyy ay) Bunp jdaoxa Y18s Ajjensn si)ig SIYL "PIEA SI pjaly JaquinN JuawBpajmouy oy
8Y) Ul PBUIBJUDD BNjBA 8Y) JeyY) S8)edipul ‘}8s UaUM (MO V) jueoiiubis pial4 Juawbpajmouxdy ©
‘PliEA S| 8njeA pjay Jajulod uabin ay) jey) pue ejep (Auoud-ybiy
J0) Juabin sulejuod Juawbas Juaund ay) Jey) Sajedlpul ‘J8s UBUM :(9¥N) JuBLIUBIS plal4 J8julod juabin ©
:apnjoul sbey 8y ‘uooauUD jBNUPIA 4D 1 3Y) JO sjoadse ulepad jo5uod jey) sbey jo 19s v :sbej4 josjuo)
"yibus) Japeay Juswbas ay) sejesiput ‘uay) ‘play siy) ‘Juswbas siy) u) 3)Aq e1ep ISl 8y} 0} S0 18SyO eled
"JoA1@081 8y} wolj pajoadxa 8)Aq Jxau ay) Jo Jaquinu
aouanbas ay) sajeslpul pial} siy) ‘ejep jo jdiadal abpaimoudoe o) Japuas ay) Aq pasn saquiny Juswbpaimouyoy
‘Ajlenuanbas palaqunu Jou ale syuswbas 49| snonbiuod
Ul siaquinu asuanbaes ‘Junod Juawbas e uey) Jayjes JUNOD 8)AQ B 0) SI9J3) Jagquinu aouanbas ay) aouls ‘weal)s
9)Aq uONVdUUOD ([eJBAO BY) Ul BJAQ ElEp 1Sl SJuswbas siy) Jo Jaquinu 8ousnbas ay) SUIR)UOD JaquinN 8ouanbas
‘uonealjdde 1afej-1aybiy pue
Uo128UU0D pud-0)-pua ay) AJuapt 0] sliod uoleulSSp pUE 82IN0S aU)} AJJuap| ‘Lo4 uoneulsag PUB 104 821N0S

.ale

(¢ a1nbi1g) Juswbas ay) Jo sp|ay BY | "IBAIS038I PUB JBPUAS USaMIaq Wealls 9)AQq ay) Wou) S8JAQ JO 320|q B Spuas Ajasaw
Inq ‘as Jad ‘'sabessaw aziubooal Jou saop 4O 1 1By} JoB} 8Y) 0} 8NP Si BWeU aY) Juswbas B Paj|ed s Jiun Bjep 401 ayl

‘jeusso} Juawbas ¢J1 ‘v 3¥NOIL

R e e e T e et

Trreleq _

B e e s e e e T e e e e e e T e s s s B e e T A e e e e e Tt
| (butpped) c s rsuotadp |
R i e e e e e B e e e B e e T R e e e e e e e Tt T it ol

] I93UuTOog uSbin | wnNs¥o3ayd

R R e e e e s T i et B e e e e e e e e e e e e e
| MOPUTM | sbera | (psazesai)| 29s330|
e e e e B e S e e T T S

81 23ed--7002/67/10 “y/suonedtqnd/Areiqiuod iy mmmy/:duy

0814

(HE§ H3Y) %Jom}au 8y} Uo S)SoyY Jay)0 SS809E 0} }Soy
dl/d01 @uo 0 uo pabbo| Jasn e Buimoj(e |090)0.d JeUIIB] [BNLIA B YOM]BN UOHRIIUNIILIOIS|S JO) UOYS ;Jauja]

:apnjoul sjooojoid
pasn Ajuowwo) ‘Jduisiu| 8y} ale jey) saljiin pue suoneddde ayj poddns sjooojosd Jake uonesiiddy dirdoL @yl

suopealjddy ‘p'¢

‘(ejep pue Japesy ay) buipnjoui) weibejep sy) 10} UONIB)BP J0.IB 1Iq AIBJUBLUIPNI SBPIADI :WNSHI8YD
‘welibejep 4an auj Jo yibusj |ejo) ay; sajeolpu| :yjbus
"UOI0BUU0D pud-0}-pud ay) Jo pod uoneulisap ay) Seyuap| .Jod uonjeulssg e
‘0 0} 18s aq Aew
pue 4gn ui jeuoido si pjay Sy} JO 8sn ‘UOIIBUUOD BY) JO BpIS 2IN0S 8] e Lod 4an BuU} S8UNUBP| (Lo 824N0S e

:ase (g ainbi4) weibejep 4an e Jo spjay syl

‘Jeunio} weibejep dan ‘s 3y¥N9I4

ER R e e it et el s el el el el
*rreleqg |
i e e e e e R e e e e e e e e e e e e e e el et e e el el el e E T
I unsyoay)d I yibuag |
e e e e s A e e e e e e e e e i e i et ek Il el e e e
| 3104 uOT3RUTISOQ | 1104 ¥21INn0§
_ R e
T068L9SVYEZTO68LISVEZTOG6S8LYISYEZTO
€€¢ZczecezzeeeIelIITITIIiIITITTITII

—

‘uonediidde ay) Joj 18%00s e apiaoid 0)
ssaippe d| 8yj 0} Jaquinu Jod e ppe o} si uoijouny Alewnd s,4@n ‘UONBUILLIS) PUB JUSWYSIIQE)S3 }INJID [eNYIA O} }SO| awi)
ou s) a8y} 8snedaq ddn Jo 8dinies welbejep sy} o} peyns 1a}jaq ale *asuodsal pue Aianb a|dwis B BA|0AUI JBY} 8S0Y)

dan 2¢ee€
61 93ed--7007/62/10 _ “y/suonediqnd/A1eIq oy | [y mamy/dpy

0815

'uo0s awnAue Jeaddesip Jou |[ImM
8WeU JBP|0 BY) INg '9)INS (00004 JoUIs}Ul By} SE 0} pailajal ale sjooojoid asay) ‘A|Buiseasou| “sain pue ‘suonedtidde
‘sj000}0.d jo 8)INns e s! Jng s]020)0Jd uolEdIUNWWED Jo Jied B Aj8Iaw Jou Si 4//dD] 'UMOYS SBY UOISSNISIP SIY) SY

Aiewwnsg ‘g'¢

(PIGAA pue 'TAUSSIE0d “JWLH W alqejieAe osje) pjedays aAa)s 3 Jajssay A1eo Aq (T51270J8/0¢€
IAd) S9N PuE S|o0] dI/dJ 1 PUE jaulaju| Uo Jswid Y, Ul punoj aq ueo suoneoljidde asayj jo 1sow Buisn o) apinb v

‘)soy ajowal e o} Buljsael) uaym axe) [im sjaxoed jey) 8jnoJ ay) sAe|dsip Jey] |00) ¥ (8nciaoell e
($6653Y") uonewsoju

JOBJUOD UIBWOP puB SUIBWOP }8Ws)U| JN0ge Uojlewout 10} sasedelep yaieas jeyl saniinn ‘JWYNIIN/SIOYM
‘sabessaw oyog 4Dl sasn ‘1soy jey) o) abessaw e Buyiab ul Aousje| ay) pue

SISOy JBYJ0 JO SNjejs 2y} duIwId)ap 0} Wa)sAS auo Je Jasn e smojie jey) Aijin e ‘1adouio jauisju 18yoed ay| buig e
(661 ‘IleH adnuaid Hid) sod ‘W Aq 'a/g Juswabeueyy jauisiuj 0} UCIINPOIIU]
uy 0089 JT1dWIS JHL PUe (7661 'IIIH-MBIDIN) 1B 'S AQ JWNS Ul PUNnoj 8q ued juswabeuew 3iomjau
paseg- n_:n_oh pue JAINS UO UOIIBWIOjUI |BUOIPPY ‘UBas 8q 0) 184 sey N>n=>_zm }0 asn peaidsopim .xm_ano Aoa

saseqejep co:mE._oE_ Jswobeuew pue sainpaooid saulyap |000)0Id EwEmmmcms_ SUOMIBN m_aE_w mc._. ‘dWNS

‘sulewop

UMM SJBAISS SLWEU PUE 1B JO UONBIOOSSE SU) SE [[oM SB 'S9SS3IPPE d| Y)IM UOIBIJOSSE JIay} PUB SBWEU Jauidju|
JO ainjonys ay) sauyap (anoqe ¢ ¢ U0I58S vl eyap atow Apybis ul paguosap) welsAg sweN ulewoq ayl ‘'SNg ¢

(0971 534) €dOd st uoisIan Juaund ay |

saxoqjiew Ji1ay) abeuew 0} JasSN 8y} SMO||E PUB jualjo 8y} 0} JBAISS 8y} WOJ) {lew PEOJUMOP 0) Pash St JOd ‘18A8s
{lew-8 Ue pue aJEMJJOS JUBI|D |lBW SJBSN B USaM]B(Q 33BBJUI B|dWIS B SBUYBP j000J0Jd 83O 1S0d 84l :40d *
(i H4Y) ssesn Jo/pue sjsoy JBYJ0 JO SNE)S 8y} 3uiWia)ap o) pasn 4abuiy e

(9981 94Y) ebenbue| bujew.oy Juapuadapul

-wiojfield ‘paseq-||DSY ue ‘(W1H) ebenbue dnyiep 1xaadAH sy ul uapum aie sabed pAMM JUBLIND

sow ay) Buiaq (Gy1 DY) 0°|L UOISIBA 1 | H UM ‘)Buiaju| 8y 18A0 8Sn Ul 8J8 d] | H JO SUOISIaA SnoueA (MMM}
g3 @PIM PHOAA 8UJ J8A0 uonewoju| jo abueyoxa 1oy siseq ay) St |000)01d Jajsuel | 1xapadAH 8yl ‘diiH

(€661 ‘lleH @onuaid H1d) @s0y ‘W Aq yrepy a1u0410913 yum soog ey buisold :39vSSIN

LINYFLNI FHL PUe (€661 'sajeoossy g A||19y,0) swepy H pue a4 'q Aq syomjay pue buissaippy

..@x\. apnjpoul mEQw>m jrew o_co:om_w UO S)00Q 80uais)ay (SuoIsusIXy |IB|N J8uUIa| mmosza:_:_\s IJNIN

IEW PUas 0} JUBIO [IEW-8 UE MO||E O} JO JaUIBJU| By} UO SIBAJDS [IBW-B UsBMaq pasn SI dLNS (17

ay) JaAo Jiew 2ju0Jjo8)a Jo sbueyoxa ay) 1oj |000j0id plEpURIS BY} SI [000101d Jajsuel] |Ie| 3|dWIS 8Y] ‘JINS @
(€Y1 DY) salis Jayio 0 syul| Yiim

‘90BU9)U| |BOIYDIBIBIY ‘UBALP-NUBW B Buisn sauojisodal ejep yBnoly) YoIeas 0} S1aSn SMO|[e Jey) |00} Y 1aydos) e

‘01do) payoads e UO Sa|lj 10} SBYIS 41 4 SnowAuoue passisiBal (je yoless o) Jasn e smojje jey) AN v -aiyoiy e

(656
D4Y) siaindwod JSoy sjowas pue |BEJ0] UBSMIBQ Sajl} JBJSUBJ) 0] J8SN B SMO||B |000]0.d Jajsuel] a|i4 8y] ‘di4 *

0z 28ed--2007/62/10 | "1/suopedt gnd/Areiq/woo |y ma//:dny

0816

05T DIy Ul paquossep ale $8j0U |A 4 8Y) “ANUNWWoD jauIsiu|
ayj Joj uonewlojul punolbyoeq Buipiaoid Ajjeoiioads Jesqns D4 Jayloue ale sjuswnoop (|A4) UOIBLLIOU| INOA 104

‘Splepue)s Jaulsiuj JO JS)| [BIDIY0 Y] SUIRUOD sAem|e T (LS pue ssado.d spiepuels Jaulau| ay)
$8Quos8p 920z OJd 'uoeubisap ,g1S, UB YliM Paiyiiusp! ‘'sOJY U} JO 18SqNS B Ul pajuswnoop aie SPJepUB)S jausajuj

"JewJoj 1x8} ||DSY Ui 3|qB|IBAR SJ€ JSOW PUB ‘BUl|-UO 3jqejieAe A[aaJ} ||B 8le SO 4Y 'Sjudwnoop
{D4Y) sjuswwo) 10} jsanbay Sk pajnquisip ale sjelon} pue Jowny ‘spodal ‘spiepuels ‘suoljesyioads jaulau|

jmou suibaq uny |eas ay|

‘Jousaju| 8y} 0 8d0IS PUE S|O0} BY) PUBISISPUN PUE 8SN 181N} 0] SSSI0E UBD J8PEa. Bu) Jey} UOHeWIO| [BUOHIPPE JO
Bues apim B s) 818y} JaUIBiU| BY) pue S|020j0id di/d D1 @y} Inoge uonewloul punoibyoeq papirosd Ajuo Sey owsw siy|

$92JN0G UOBULIOU| JBYIO b

‘suoneoidde Jo/pue SHIOMJOU OM] USBM]BG UOISIBAUOD
jooojoid apinoid 0} pasn si Aemareb e ‘ABojoulwia) SO Ul ‘SIUBWIUCIIAUS SO Ul WaJSAS ajeipaliudlul 10 SJUBWUOIIAUS
NV1 Ul Jgjnos e pajjed Ajlensn 8ojAsp B 'sjauqns omj ay) Bunosuuooisjul 80IA8p ay) Jo) pasn si Aemajel w.s) ay) jey) sjoN

‘ABojouyoa) JJom)au Bale SpIM JO |BIO] UOWIWOD
Aue Apesu Aojdwa Aew yiomjaugns Bulkpapun ay) 'S¥JOM}au eale apim pue [eoo] Bulpnjoul ‘syiompaugns Bulusasajul Aue
18A0 801A18S Yodsues) (9@) weibejep e sepinoid 4| (1ehe] siy) e uonoauuod weibejep pua-o)-pus ue sapiaosd ‘umoys
10U ‘d@aMn) ‘SISOY OM] 8y} Usam}aq uoIoI3UU0d DD [BNUIA ‘ajqeljas e sapiroid 40| swajsAs *Buijediunwwod-pus

0 ‘}soy ui apisal safljiin pue suonedlddy "di/dD 1 Jo sieAe] j020j01d snouea 8y} usamiaq diysuoneal ay) smoys g ainbi4

LSOH

| Z YIomaisuqnsg
| e mmmmmm—immo o
| d1

_ IIIIIIIIIIIIII

12 28ed--7007/62/10

"34n}2931ydae 93INS 1020304d di/d DL "9 FUNDOIS

AYMALYD
|||||||||||||||||||||||| +'.I||I.|.II-| - an am am
[<emmmm e >|z3augng| 132ugng | <-——~~—~~ > |
_ [—====-- e _ _
I<-- 2a -->| dI [<-- 90 -->|
L e DL LT L _
< — ATNOITO TENITITA ——m e e - >
| i
| <= UOT3O3UUOD PUB-0I-PUD —=--——— >

LSoH

“y/suoneatjgnd/AIeIqranod iy maw /s dny

0817

YJOMIBN UOlEpUNO4 82UdII2S |eUOllEN 13IN4SN

uoi}epuno4 adcualdg |euolieN 4SN
80IAI8S SLWBU IBJUSYD uoljewWIOU] YIoMIBN JIWVYNDIN

puooas sad (s)g Jo suolw) spgebsp sdaw

|0J]U0D SSBJ0E (BIpaw JO) WnIpa OV

10]098S UOlEZIPJEPURIS UOIIBJIUNWWOD3|3] UOIUM UOHEDIUNWWOD3 | |BUOljeuIdiu| 1-nu
A18100g j8usBu| 208!

uoljezipJepue)s 1oy uoljeziuebiQ |euoneusa| 0SI

1000}0.4 18uiBu| dl

80J04yse] Buussuibul jauisiy) 413

dnolo Bunasyg Bulaaulbul jsulaiuy oS3

|000)0.4 abessaly 104u0)) JBulalY| dWoI

Aoyiny siaquinN paubissy 1aulajuj VNVI

pieog saljIAlDY Jaulalu| avi

[000}0.4 Jajsuel) JxejadAH dilH

abenbue dnylep 1xapadAiy IWLH

3]1J01d UOIJO3UUO0DIBIU| SWI)SAS uadQ JUBWUIBA0D ‘SN di1S0o
SO 4Y JO SB1BS UOIJBWIOUY JROA JOH IAd

1000j0.4 Jajsues] 3|4 did

8deu9lu| eleq paInquisiq 18qi4 1aa4d

s]s|| suoysany) paysy Afjusnbai4 ov4d

asuaje(Jo juswpedsqg 's'N aoa

wa)sAg awepN ulewoq SNa

Aousbyy s)osfoid yoieasay paosueapy asuajag vduva
abueyox3 1auisiu| |BIDIBUIWOYD) X110

aaIww o) aAneynsuo) auoydaje] pue ydeibaja| |euoneussiu) 11199
swdojaas(] aiemjjos Aajayiag ass

[000j0i4 Aemajes) 1apiog d9d

9pOW JBJSuUel] SNOUOJYIUASY WLV

abueyalaju| uolew.oju] 10} PO PIBPUBIS UBILBWY 11DSY
yomjaN Aouaby sjo8loid Yyoieasay paoueApy | INVAHY

|030j0.44 UOIIN|0SaY SSBIPPY a4V

SUOIJBIARIQQY PUB SWAUOIDY °G

"S82JN0S UOIJEWIOUI
Jow uaAs o} jutod sjuswNoop asay} Jo saiyl IV (7071 H4) .suonsanp Jesn 18ulsju| pasusiadxy, paysy Aluowwon o}

- SJOMSUY pUB SUONSBND) U0 |A4, :SI8SN Jaulaju| 0) Jsa.iajul Jejndjued jo ale sPy4 yons om| 18ydog pue jauiaju|
au) o} AydeiboidAio pue NgsS| wol) BuiBuel ‘so1do) Jo Jaquinu e 10§ punoj aq Aew sisi| (DY) uonsany paysy Ajuanbaiy

2z 93ed--2002/67/10 “y/suonedt|qnd/AreIqu oy [y mma//:dny

0818

S199187)) | SMaN |suonedijgnd Jels | 81doadq Inp | 51015-3
SE5iAI6 [ELi6i5§8)0id | BUiliEI] g UdiiednpT | SiY1HoGY | SUHoH

PSEqpSs) INOA ST PUSS ¢ S)usWwwo? Jo suonsanp
EELVEEEY]
SJYbiY 1 "OoUj "S81e100sSY |IH 100¢ '000¢ 6661 8661 2661 9661 G661 © IybUuAdod

WeJSSaY~/1aU JoA0S MMM/J-dNY Jo WO [y MMM/ i

(xey) 6255-¥09-0€9 L+
(9010 BWOY) GLEE-6.8-208 L+

950 LA J81S8yoj0D
Jajuad yuodybiy 901
S8JRI00SSY [IIH
19|s88) ‘D Aieg

S$SaJppy s.Joyjny ‘g9

|030joid welbeleq Jasn dan

uiewop |aaaj-do | all

|000J0id |0JU0D) UOISSILISUR) | dol

SO ¥ JO SB1I8S SpIEpuURIS J8WIau| ails
1000j0.d juswabeuey y1omjaN ajdwis dWINS
[000j0.d Jajsuel] |lep ajdwis dlWS
80IM8S BleQ JiqeBawniniy paydyims SANWS
dl aulq jeusg dins

SjuBaWWOY 104 1sanbay D44

|020}j04d uoljewsoju| Bunnoy " did
|000j01d UONN|OSBY SSAIPPY 9S19A0Y dyvd
1030}0.1d juiod-03-juiod ddd

18414 yled 1sapoys uadQ 4dS0O
uol}9BUUOIBIU| SWa)SAS uadQ ISO

€2 93ed--7007/67/10 | “y/suonedjqnd/AreqrAuod |1y mamy/:dny

0819

The Common Object Request Broker:
Architecture and Specification

Revision 2.6
Deczmber 2001

0820

Copyright 1998, 1999, Alcatel

Copyright 1997, 1998, 1999 BEA Systems, Inc.

Copyright 1995, 1996 BNR Europe Ltd.

Copyright 1998, Borland International

Copyright 1998, Cooperative Research Centre for Distributed Systems Technology (DSTC Pty Ltd)
Copyright 2001, Concept Five Technologies

Copyright 1991, 1992, 1995, 1996, Digital Equipment Corporation
Copyright 2001, Eternal Systems, Inc.

Copyright 1995, 1996, 1998, Expersoft Corporation

Copyright 1996, 1997 FUJITSU LIMITED

Copyright 1996, Genesis Development Corporation

Copyright 1989- 2001, Hewlett-Packard Company

Copyright 2001, HighComm

Copyright 1998, 1999, Highlander Communications, L.C.
Copyright 1991, 1992, 1995, 1996 HyperDesk Corporation
Copyright 1998, 1999, Inprise Corporation

Copyright 1996 - 2001, International Business Machines Corporation
Copyright 1995, 1996 ICL, plc

Copyright 1998 - 2001, Inprise Corporation

Copyright 1998, International Computers, Ltd.

Copyright 1995 - 2001, IONA Technologies, Ltd.

Copyright 1998 - 2001, Lockheed Martin Federal Systems, Inc.
Copyright 1998, 1999, 2001, Lucent Technologies, Inc.
Copyright 1996, 1997 Micro Focus Limited

Copyright 1991, 1992, 1995, 1996 NCR Corporation
Copyright 1998, NEC Corporation '

Copyright 1998, Netscape Communications Corporation
Copyright 1998, 1999, Nortel Networks

Copyright 1998, 1999, Northern Telecom Corporation
Copyright 1995, 1996, 1998, Novell USG

Copyright 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright 1991- 2001 Object Management Group, Inc.
Copyright 1998, 1999, 2001, Objective Interface Systems, Inc.
Copyright 1998, 1999, Object-Oriented Concepts, Inc.
Copyright 1998, 2001, Oracle Corporation

Copyright 1998, PeerLogic, Inc.

Copyright 1996, Siemens Nixdorf Informationssysteme AG
Copyright 1991 - 2001, Sun Microsystems, Inc.

Copyright 1995, 1996, SunSoft, Inc.

Copyright 1996, Sybase, Inc.

Copyright 1998, Telefonica Investigacion y Desarrolio S.A. Unipersonal
Copyright 1998, TIBCO, Inc.

Copyright 1998, 1999, Tri-Pacific Software, Inc.

Copyright 1996, Visual Edge Software, Ltd.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,

worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified

version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright

in the included material of any such copyright holder by reason of having used the specification set forth herein or having

conformed any computer software to the specification.

0821

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION 1S BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is protected
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and 110P are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING
. All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to

report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/lssue.

0822

0823

Contents

Preface.cvieeiiieeiiiviirocesacenonacanenes eeee. XXXVii

1. TheObjectMeodel.........covvvvieninnn, Cereeeieaeean 1-1
1.1 OVEIVIEW .. i e e e e e 1-1

1.2 ObjectSemanticscooviinivinnen.en. 1-2

1.21 Objectscivieriiieenernrrnrecrsrnsnes 1-2

1.22 RequestSovoevieentonoroonranssannns 1-3

1.2.3 Object Creation and Destruction............. 1-4

1,24 Types. ... cvivivieeerirenncarnsssensnssanses 1-4

1.24.1 Basictypes coii.. 14

1.2.42 Constructed types 1-5

1.2.5 Interfacescoviiiiineiniereenrannas 1-6

1.2.6 ValueTypes.....covvivinnreerncnnncerannes 1-6

1.2.7 Abstract Interfacesccivteereenns 1-7

1.2.8 Operationscoviveivrvrenereeronans 1-7

1.28.1 Parameters 1-8

1.282ReturnResult, 1-8

1.283 Exceptionsiivinnn.. 1-8

1.284Contextst 1-8

1.2.8.5 Execution Semantics 1-8

1.29 Attributes oiiiiiiii it it enereees 1-9

1.3 Object Implementation. 1-9

1.3.1 The Execution Model: Performing Services 1-9

1.3.2 The Construction Model 1-10

2. CORBAOvVerview........oovvvinsnnnsnnne Chessaenenans 2-1
2.1 Structure of an Object Request Broker............... 2-1

2.1.1 Object Request Brokerccoevuuvenn, 2-6

2.1.2 Clients, . ..o vivninninnnoioessessranssnnas 2-7

2,13 Object Implementations00u. 2-7

2.1.4 Object Referencescovviveninssansen 2-8

December 2001 Common Object Request Broker Architecture (CORBA), v2.6 ’ v

0824

Contents

vi

2.1.5 OMG Interface Definition Language.......... 2-8

2.1.6 Mapping of OMG IDL to Programming Languages 2-8

217 ClientStubsco0iinvrererartierenes 2-9

2.1.8 Dynamic Invocation Interface................ 2-9

2.19 lmplementation Skeleton 2-9

2.1.10 Dynamic Skeleton Interface 2-10

2.1.11 Object Adapters.........coveeterenernasans 2-10

2.1.12 ORBlnterfacecivvvevenrenanonenns 2-10

2.1.13 Interface Repositoryccoiiiiiannnns 2-11

2.1.14 lmplementation Repository.................. 2-11

22 ExampleORBs........... i, 2-11
2.21 Client- and lmpliementation-resident ORB 2-11

2.2.2 Server-based ORB...........cccvvevvevnnns 2-12

223 System-based ORBc.c0vvvenn 2-12

2.24 Library-based ORB.........cccvivvevennsnn 2-12

23 StructureofaClient............., 2-12
2.4 Structure of an Object Implementation. 2-13
2.5 Structure of an Object Adapter. 2-15
2.6 CORBA Required Object Adapter. 2-17
2.6.1 Portable Object Adapter.................... 2-17

2.7 The Integration of Foreign Object Systems 2-17
3. OMG IDL Syntax and Semantics Ceeeeenn Ceretacaee e 3-1
31 OVeIVIEW ...t e 3-2
3.2 Lexical Conventions. . . e 3-3
321 ToKemS......vovuvrereeronsnrovsvennsanans 35

322 ComMENtS. ..ovvevrrernrensneensasnarnnans 3-6

323 Identifiers........iiiiiiiiiiiriectnnnens 3-6

3.2.3.1 Escaped Identifiers 3-6

324 Keywordscoviiiiiiiiiiieneaneaanns 3-7

325 Literalsvveiirriiiirnsresesenanenennn 3-8

3.2.5.1 Integer Literals 3-8

3.2.5.2 Character Literals 3-9

3.2.5.3 Floating-point Literals 3-10

3254 String Literals 3-10

3.2.5.5 Fixed-Point Literals 3-11

33 Preprocessing............. i - 3-11
34 OMGIDLGrammar.t 3-12
3.5 OMGIDL Specification.couuenn.. 3-16
3.6 ModuleDeclaration, 3-17
3.7 Interface Declaration 3-17
3.7.1 Interface Headerccvvivinnnn 3-17

3.7.2 Interface Inheritance Specification 3-18

373 InterfaceBodyoovvviiiiiiiiiinaennnns 3-18

Commaon Object Request Broker Architecture (CORBA), v2.6

December 2001

0825

Contents

3.74 Forward Declaration....................... 3-19
3.7.5 InterfaceInheritance...............covuvnnn 3-19
3.8 Value Declarationoit oo, 3-24
381 RegularValueType............c.covvennns 3-24
381.1ValueHeader 3-24
381.2ValueElement 3-25
3.8.1.3 Value Inheritance Specification 3-25
38.14StateMembers 3-25
3.8.1.5Initializers 3-26
3.8.1.6 Value Type Example 3-26
3.82 BoxedValue TYPe......cvvvvvevornnannnnnns 3-26
3.83 AbstractValueTypeccocvennnn 3-27
3.84 Value Forward Declaration.................. 3-28
3.8.5 Valuetype Inheritance...........ccv0veennns 3-28
39 ConstantDeclaration, 3-29
3901 SymaX......eeviteetintenraroecorsaaennan 3-29
392 Semanticscociiiiriiiiiieriiiiiseanne 3-30
3.10 TypeDeclaration oo, 3-33
3.10,1 BasicTypes.....ccvviiieeeiinenennnssnosnns 3-34
3.10.1.1 Integer Types 3-35
3.10.1.2 Floating-Point Types 3-36
3.10.13CharTypecovviiiien.n.. 3-36
3.10.14 Wide Char Type 3-36
3.10.1.5Boolean Type 3-36
3.10.1.6 Octet Typecooivunennien. ot 3-36
3.101.7Any Type oo 3-37
3.10.2 Constructed Types.......coovevnrnns e 3-37
31021 Structures 3-37
3.10.2.2 Discriminated Unions 3.37
3.10.2.3 Constructed Recursive Types and
IForward Declarations 3-39
3.10.2.4 Enumerations 3-41
3.10.3 TemplateTypescovvviiiienrenaenenns 3-41
3.103.1 Sequences 341
3.10328uings 3-42
31033 Wstringsl 342
31034 Fixed Typec........ 343
3.104 ComplexDeclarator...........coviveeeennnn 3-43
31041 Amays ..o 3-43
3105 Native Types......covviriieineerneiennennss 3-43
3.11 ExceptionDeclaration 3-47
3.12 Operation Declarationo ... 3-47
3.12.1 Operation Attribute.coveveenrs. 3-48
3.12.2 Parameter Declarations..................... 3-48
3.12.3 RaisesExpressions............co0iiennn., 3-49
3.12.4 Context Expressionscc00eenne. 3-49
3.13 Attribute Declaration 3-50
314 CORBAModule..............ccoiiiinnnne. ... 3-51
December 2001 Common Object Request Broker Architecture (CORBA), v2.6 vii

0826

Contents

3.15 NamesandScopingc.coiiiimnenenennn. 3-52
3.15.1 Qualified Names........cccoevveeevanansens 3.52
3.15.2 Scoping Rules and Name Resolution 3-54
3.15.3 Special Scoping Rules for Type Names......... 3-57
4. ORBlInterface e tiesreer et eaarenns 4-1
41 OVeIVIEWo e 4-1
42 TheORBOperationscovuiiueenenenns 4.2
421 ORBldentity...........c.cvevveentnrnenenn 4-7
421.1id 4.7
4.2.2 Converting Object References to Strings....... 4-8
422.1object_to_stringcoounnnnn 4-8
4222string to_object 4-8
4.2.3 Getting Service Information................. 4-8
4.2.3.1 get_service_information 4-8
4.24 Thread-Related Operations................... 4-9
4.24.}work_pending 4-9
4242perform_work 0. 49
42431UN ... 4-10
4244shutdownl 4-10
4245destroy 4-11
4.3 Object Reference Operations 4-12
4,3.1 Determining the Object Interface............. 4-13
43.1.1get_interface 4-13
4.3.2 Duplicating and Releasing Copies of
Object Referencescvvuen e 4-14
432.1duplicate 4-14
4322release i 4-14
433 NilObject Referencescveeveevnnen. 4-14
433 1is.nil ... 4-14
43.4 Equivalence Checking Operation............. 4-15
434105 8. . 0o 4-15
4.3.5 Probing for Object Non-Existence 4-15
435 Inon_existent....................... 4-15
4.3.6 - Object Reference ldentity 4-16
4.3.6.1 Hashing Object Identifiers 4-16
4.3.6.2 Equivalence Testing 4-16
4.3.7 Type Coercion Considerations 4-17
4.3.8 Getting Policy Associated with the Object...... 4-17
438 1getpolicy 4-17
43.82get_client_policy 4.18
4.3.8.3 get_policy_overrides 4-19
4.3.9 Overriding Associated Policies on an
Object Referenceo ivviveiinnant, 4-19
4.3.9.]1 set_policy_overrides 4-19
4.3.10 Validating Connection.............cc00eurn. 4-20
4.3.10.1 validate_connection 4-20
4.3.11 Getting the Domain Managers Associated with
theObject. . ..ovviviviiiiiiiireernenenes 4-20
4.3.11.1 get_domain_managers 4-20
44 ValueBase Operations.cvvivmeentnenenn... 4-21
viii Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0827

Contents

4.5 ORB and OA Initialization and Initial References 4-21
4.5.1 ORB Initializationcoovvveeiniannn 4-22
4.5.2 Obtaining Initial Object References........... 4-23
4,5.3 Configuring lnitial Service References......... 4-26
4.5.3.1 ORB-specific Configuration 4-26
45320RBImitRefl 4-26
4.5.3.3 ORBDefaultlnitRef [4.27
4.5.3.4 Configuration Effect on
resolve_initial_references 4-27
4.5.3.5 Configuration Effect on list_initial_services 4-28
46 ContextObject........... ... 0. 4-28
4.6.1 Introduction...........ccoiiviiiniranenen 4-28
4.6.2 Context Object Operations.................. 4-29
4.6.2.1 get_default_context 4.30
4622setone_value0 .. unnn 4-30
4623set_values ot 4-30
4.624get_values 4-31
4.62.5delete_values 4-31
462.6¢create_child 4.32
4627delete i 4-32
47 CurrentObjectvi i e 4-32
48 PolicyObjectot 4-33
4.8.1 Definition of Policy Object 4-33
481.1C0PY i 4-34
48.1.2Destroy ...t 4-34
48.13Policy_type ..., 4.34
4.8.2 Creation of Policy Objects..........ccc0vnnnn 4-34
4.8.2.1 PolicyErrorCode - 4-35
4822PolicyError il 4-35
4823Create_policy 4-35
4.8.3 Usages of Policy Objects 4-36
4.8.4 Policy Associated with the Execution Environment 4-37
4.8.5 Specification of New Policy Objects 4-37
4.8.6 Standard Policies..............cciiieentn, 4-39
4.9 ManagementofPolicies............... 4-43
4.9.1 Client Side Policy Management 4-43
4.9.2 Server Side Policy Management. e © 4-43
4.9.3 Policy Management Interfaces 4-44
' 4.93.] interface PolicyManager 4-44
4.9.3.2 interface PolicyCurrent 4-46
4.10 Management of Policy Domains 4-46
4.10.1 BasicConcepts........oovevervrnreneeosans 4-46
4.10.1.1 Policy Domain 4-46
4.10.1.2 Policy Domain Manager 4-47
4.10.1.3 Policy Objects 4-47

4.10.1.4 Object Membership of Policy Domains ~ 4-47
4.10.1.5 Domains Association at Object

Reference Creation 4-48

4.10.1.6 Implementor’s View of Object Creation 4-48

4,10.2 Domain Management Operations.......... e 4-49

December 2001 Common Object Request Broker Architecture (CORBA), v2.6 ix

0828

Contents

4.10.2.7 Domain Manager 4-50
4.10.2.8 Construction Policy 4-51
411 TypeCodes 4-51
4.11.1 The TypeCode Interfacecvcveuus 4-52
4,11.2 TypeCodeConstantscov0uvverenss 4-56
4.11.3 Creating TypeCodesccvvvvrennn, 4-57
4.12 EXCEPHONSovvninieniiiiiniinii i 4-61
4,12.1 Definitionof Termscc.civviveeevanns 4-61
4.12.2 System Exceptions...........c.coivveiian, 4-62
4.12.3 Standard System Exception Definitions 4-63
4.123.1 UNKNOWN ooaee. 4-65
4.12.3.2 BAD_PARAM 4-65
4.1233NO_MEMORY 4-65
41234IMP_LIMITt 4-66
4.12.3.5 COMM_FAILURE 4-66
4.123.6INV_OBJREF 4-66
4.12.3.7 NO_PERMISSION 4-66
4.1238INTERNALcoiivenn... 4-66
4.1239MARSHAL 4-66
4.123.10INITIALIZE 4-67
4.12.3.11 NO_IMPLEMENT 4-67
4.12.3.12BAD_TYPECODE 4-67
4.12.3.13 BAD_OPERATION 4-67
4.12.3.14 NO_RESOURCES 4-67
4.123.15NO_RESPONSE 4-67
4.12.3.16 PERSIST_STORE 4-67
4.12.3.17BAD_INV_ORDER. 4-67
412318 TRANSIENT 4-68
4.123.19 FREE_MEM 4-68
4.12320INV_IDENT 4-68
4.12321INV_FLAGot 4-68
4.12.322INTF_REPOS 4-68
4.12.323 BAD_CONTEXT 4-68
4.12.3.24 OBJ_ADAPTER 4-68
4.12.3.25 DATA_CONVERSION 4-68
4.12.3.26 OBJECT_NOT_EXIST 4-69
4.12.3.27 TRANSACTION_REQUIRED - 4-69
4.12.3.28 TRANSACTION_ROLLEDBACK .. 4-69
4.12.3.29 INVALID_TRANSACTION 4-69
4.12330INV_POLICYcvivinenn. 4-69
4.12.3.31 CODESET_INCOMPATIBLE 4-69
4.12332REBIND, 4-69
412333 TIMEOUT 4-70
4.12.3.34 TRANSACTION_UNAVAILABLE . 4-70
4.12.3.35 TRANSACTION_MODE 4-70
4.12336BAD_QOS 4-70
4,124 Standard Minor Exception Codes 4-70
5. Value Type Semantics.covvveveeeeennrrecennionsoans - |
5.1 OVEIVIEW . . i it e e et 5-1
5.2 ArchiteCture it 5-2
5.2.1 Abstract Valuesccoeiveinneeironeaces 5-3
X Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0829

Contents

December 2001

522 Operationsccocveveivtercaiatioranns 5-3

5.2.3 Value Type vs. Interfaces. 5-4

5.2.4 Parameter Passing.......ccccvtevieiiannne 5-4

5.2.4.1 Value vs. Reference Semantics 5-4

5.2.4.2 Sharing Semantics 5-4

5.2.4.3 Identity Semantics 5-4

5.2.4.4 Any parametertype 5-5

5.2.5 Substitutability Issues................ .00 5-5

5.2.5.1 Value instance -> Interface type 5-5

5.2.5.2 Value Instance -> Abstract interface type 5-5

5.2.5.3 Value instance -> Value type 5-5

5.2.6 Widening/Narrowing........c.covevivivenns 5-6

5.2.7 Value Base Type........coivtvvennnnianees 5-6

528 LifeCycleissues.......coeveveeennersnonaes 5-7

5.2.8.1 Creation and Factories 5-7

5.2.9 Security Considerationsco0ivvevnes 5-7

5294 ValueasValue 5-8

5.2.9.2 Value as Object Reference 5-8

5.3 Standard Value Box Definitions 5-9
54 Language Mappings...............coiviiiiiiin. 5-9
5.4.1 General Requirements.o..0. ciee 59

5.4.2 Language Specific Marshaling cereresnes 59

5.4.3 Language Specific Value Factory Requirements. 5-9

5.4.4 Value Method Implementation............ vee 5-10

5.5 CustomMarshaling vt 5-10
5.5.1 Implementation of Custom Marshaling........ 5-11

5.5.2 Marshaling Streams.......... 2

5.6 Access to the Sending Context Run Time 5-18
6. Abstract Interface Semantics..........ccoiiiiieiienans .o. 6-1
6.1 OVEIVIEWttt e 6-1
6.2 Semantics of Abstract Interfaces 6-1
6.3 UsageGuidelines................ccoiirieneenrn.. 6-3
6.4 Example...... 6-3
6.5 Security Considerationsccouveennene.nn. 6-4
6.5.1 Passing Values to Trusted Domains 6-4

7. Dynamic Invocation Interface ceereseaans 7-1
7.1 OVEIVIEW . .ttt e e e e eeee s AP B |
7.1.1 Common Data Structuresc00eunen 7-2

7.1.2 Memory Usage. ...cvvvennrinoeiesnnoncnens 7-4

7.1.3 Return Status and Exceptions................ 7-4

7.2 Request Operationscouuuvuuunenen. 7-4
7.2.1 create_request ittt ienans 7-5

722 add_arg........ccoiveiirneinriniiitnrinnns 7-7

S 2 B 111 - N 7-8

Common Object Request Broker Architecture (CORBA), v2.6 xi

0830

Contents

724 delete.......coivii ittt eianns 7-8

725 send.....ivevnieriiioreretaisasrisaronanns 7-8

7.2.6 poll_responsecceceetinirrenranaone 7-9

727 get_reSPONSE. ... ccvvreecosarnsasnsosananss 7-9

728 sendP...ceeiertirncntiiotarneritienasnes 7-10

7.2.9 Prepare........c.ceiecececcrttriittcionsnes 7-10

7210 sendC......cvveiiiiecncioriartsireoaasaan 7-10

7.3 ORBOPErations.ccuuuiinvneenennnnnnnns 7-11

7.3.1 send_multiple_requests............co0000nnn 7-11

7.3.2 get_next_response and poll_next_response 7-11

7.4 Pollingcoinini i 7-12

7.4.1 Abstract Valuetype Pollable.............. ...t 7-14

741.lis_ready ... 7-14

7.4.1.2 create_pollable_set 7-14

7.4.2 Abstract Valuetype DlIPollable 7-14

7.4.3 interface PollableSetcovvivviaennns 7-14

7.4.3.1 create_dii_pollable 7-15

7.432add_pollable 7-15

7.4.3.3 get_ready_pollable 7-15

7A4341emMOVeot 7-16

743 5number_left L 7-16

7.5 ListOperations.oc.ocueeuinananaeannn. 7-16

7.5.1 create_list..........cciinennn Cerreeseraes 7-17

7.5.2 add_item.covveeeninncnonnns Ceeereee 7-17

753 free coovieiiiiiiiiiiiiacenes crerressenees 7-17

7.54 frec_memorycoveveevons Ceeeaees oo 7-18

7.5.5 get_countiieieiiiieeenanes Crerenaas 7-18

7.5.6 create_operation_list.............. . 00l 7-18

8. Dynamic SkeletonInterfacecocieieiiiiian, 8-1

81 Introductionc.c.ciiiiiiiiiininiinan.. 8-1

8.2 OVEIVIEW . ..ttt et e e 8-2

8.3 ServerRequestPseudo-Object. 8-3
8.3.1 ExplicitRequest State:

ServerRequestPseudo-Object 8-3

84 DSI:LanguageMappingcoiuvneinn... 8-4

8.4.1 ServerRequest’s Handling of Operation Parameters 8-4
8.4.2 Registering Dynamic Implementation Routines . 8-5

9. Dynamic Management of Any Values.000t. 9-1
9.1 OVeIVIEW ...ttt 9-1

92 DynAny APL. 9-3

9.2.1 Locality and Usage Constraints 9-9

9.2.2 Creating a DynAny Object 9-9

9.2.3 The DynAny Interface. 9-11

9.2.3.1 Obtaining the TypeCode associated

Xii Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0831

Contents

with a DynAny object 9-11
9.2.3.2 Initializing a DynAny object from another
DynAnyobject 9-12
9.2.3.3 Initializing a DynAny object from an any
value ... 9-12
9.2.3.4 Generating an any value from a DynAny
ODJECE . o ottt 9-12
9.2.3.5 Comparing DynAny values 9-12
9.2.3.6 Destroying a DynAny object 9-13
9.2.3.7 Creating a copy of a DynAny object 9-13
9.2.3.8 Accessing a value of some basic type in
aDynAnyobject 9-13
9.2.3.9 lterating through components of a DynAny 9-15
9.2.4 The DynFixed Interfaceccc00vvnn 9-16
9.2.5 The DynEnum Interface 9-16
9.2.6 The DynStructInterface..............o0veen 9-17
9.2.7 The DynUnion interface o0 9-19
9.2.8 The DynSequence Interface 9-21
9.29 The DynArrayInterface.................... 9-22
9.2.10 The DynValueCommon Interface............. 9-23
9.2.11 The DynValue Interfacec0ivven 9-24
9.2.12 The DynValueBox Interface 9-24
9.3 UsageinC++Language............... 9-25
9.3.1 Dynamic creation of CORBA::Any values...... 9-25
9.3.1.1 Creating an any that contains a struct ... 9-25
9.3.2 Dynamic interpretation of CORBA::Any values. 9-26
9.3.2.1 Filtering of events e 9-26
10. The Interface Repository.........covviiiniernenennnnne . 10-1
10.1 "OVerVIEW ... i e 10-1
10.2 Scope of an Interface Repository 10-2
10.3 Implementation Dependencies 10-4 -
10.3.1 Managing Interface Repositories 10-4
104 BasiCs.ottt e 10-5
10.4.1 Names and ldentifiers 000 10-6
10.4.2 Typesand TypeCodescovvevnievrnns 10-6
10.4.3 Interface Repository Objectst 10-6
10.4.4 Structure and Navigation of the Interface
Repositorycviiiiiiiiiiiiinnieansnns 10-7
10.5 Interface Repository Interfaces. 10-9
10.5.1 Supporting Type Definitions................. 10-10
1052 IRObject.....cvvvverienrnrnnsneranoononns 10-11
10.5.2.1 Read Interface 10-11
10.5.2.2 Write Interface 10-11
1053 Contained.......ovvviiiiienriiernonsanns 10-11
10.5.3.1 Read Interface 10-12
10.5.3.2 Write Interface 10-13
1054 Container.........ccvviiinvnionencncnaanns 10-14
10.54.1 ReadInterface 10-17
December 2001 Common Object Request Broker Architecture (CORBA), v2.6 xiii

0832

Contents

10.54.2 Write Interface 10-18
1055 IDLTYPe . vvivrvvrortnnseenrosaanncsnsnss 10-19
10.5.6 Repositoryccveviiiininnareenenrans 10-20
10.5.6.1 Read Interface 10-21
10.5.6.2 Write Interface 10-21
1057 ModuleDefcoovviniiiiiettonerrrannons 10-22
10.5.8 ConstantDef........... eeereeie i, 10-22
10.5.8.1 Read Interface 10-22
10.5.8.2 Write Interface 10-23
1059 TypedefDef.......covviieriiiiiirinenannes 10-23
10.5.10 StructDefcviviiviriecnrenrerrsasnnees 10-23
10.5.10.1 Read Interface 10-24
10.5.10.2 Write Interface 10-24
10.5.11 UnionDef.coiiiiriiieinnssrorenrocens 10-24
10.5.11.1 Read Interface 10-24
10.5.11.2 Write Interface 10-25
105,12 EnumDef.ciiviviinitiennnrernannnses 10-25
10.5.12.1 Read Interface 10-25
10.5.12.2 Write Interface 10-25
10.5.13 AliasDefccvviiiiviirvrarinsnsnnssss 10-25
10.5.13.1 Read Interface 10-26
10.5.13.2 Write Interface 10-26
10.5.14 PrimitiveDef........ . it ieiiereriennnnns 10-26
10.5.15 StringDefcivviiiiiiiiiiiiiaanen, 10-26
10.5.16 WstringDef...... et as et iee. 10-27
10.5.17 FixedDef......coviiiiviirieerirnnnsnnnnas 10-27
10.5.18 SequenceDef............ccoviriiiiieiienen 10-27
10.5.18.1 Read Interface 10-28
10.5.18.2 Write Interface 10-28
10519 ArrayDef.........iiiiiiiiiiieiiiincennnns 10-28
10.5.19.1 Read Interface 10-28
10.5.19.2 Write Interface 10-28
10.5.20 ExceptionDefcccivviviiinvnnann. 10-29
10.5.20.1 Read Interface 10-29
10.5.20.2 Write Interface 10-29
10.5.21 AttributeDef.........ccvvivieriiirivenennns 10-29
10.5.21.1 ReadInterface 10-30
10.5.21.2 Write interface 10-30
10.5.22 OperationDef.............ovciviivinnennnn. 10-30
10.5.22.1 ReadInterface 10-31
10.5.22.2 Write Interface 10-32
10.5.23 InterfaceDef......... ... ittt iiivannnes 10-32
10.5.23.1 ReadInterface 10-33
10.5.23.2 Write Interface 10-34
10.5.24 AbstractinterfaceDef................cv0. .. 10-34
10.5.24.1 Read Interface 10-34
10.5.24.2 Write Interface 10-35
10.5.25 LocallnterfaceDefccivvvervienenes 10-35
10.5.25.1 Read Interface 10-36
10.5.25.2 Write Interface 10-36
10.5.26 ValueMemberDef..........ccvviiverenen., 10-37
10.5.26.1 Read interface 10-37
10.5.26.2 Write Interface 10-38
Xiv Commaon Object Request Broker Architecture (CORBA), v2.6 December 2001

0833

Contents

105.27 ValueDef.ottt ieeronassannvees 10-38
10.5.27.1 Read Interface 10-40
10.5.27.2 Write Interface 10-40
105.28 ValueBoxDef.........coviivavenrarnnorenes 10-41
10.5.28.1 Read Interface 1041
10.5.28.2 Write Interface 10-41
10.5.29 NativeDefc0viiveeerrennnnnnes 10-41
10.6 Repositorylds.......... 10-42
10,61 OMGIDLFormat..........covuvevesascnnss 10-42
10.6.2 RMIl Hashed Format.........ccovvverenrans 10-43
1063 DCEUUID Formatcveevvonsanses 10-44
1064 LOCAL Format.........c.eveveveneennnnees 10-45
10.6.5 Pragma Directives for Repositoryld........... 10-45
'10.6.5.1 The IDPragma 10-45
10.6.5.2 The Prefix Pragma 10-45
10.6.5.3 The Version Pragma 10-48
10.6.5.4 Generation of OMG IDL - Format IDs . 10-49
10.6.6 For More Information.................cc0.o 10-50
10.6.7 RepositorylDs for OMG-Specified Types........ 10-50
10.7 OMG IDL for Interface Repository 10-51
11. The Portable Object Adapterccoveveivnnvvnennns 11-1
LIL OVEIVIEW ...t e e 11-1
11.2 Abstract Model Descriptioncoounen.n.. 11-2
11.2.1 Model Componentscccovvevreervosons 11-2
11.2.2 Model Architectureccviveerieeaanss 11-4
1123 POACreation........cvoevvvvneanercnenss’ 11-6
11.2.4 ReferenceCreationccvvviieennns 11-7
11.2.5 Object Activation Statesccevveeen 11-8
11.2.6 RequestProcessingccvvvvenenns 11-9
11.2.7 lmplicit Activation...........coeeeiiioeenas 11-10
11.2.8 Multi-threadingccvvvieveniinnnss 11-11
11.2.8.1 POA Threading Models i1-11
11.2.8.2 Using the Single Thread Model 11-11
11.2.8.3 Using the ORB Controlled Model 11-12
11.2.8.4 Using the Main Thread Mode! 11-12
11.2.8.5 Limitations When Using Multiple
] Threads 11-12
11.2,9 Dynamic Skeleton Interface 11-12
11.2.10 Location TranSparencycveveveeceeess 11-14
11.3 Interfacest 11-14
11.3.1 The ServantIDL Type..........covevnennnen 11-15
11.3.2 POAManager Interface..................... 11-15
11.3.2.1 Processing States 11-16
113.22activatecoeieninn... 11-18
11323 hold_requests 11-18
11.3.2.4 discard_requests 11-19
113.25deactivate 11-19
11326getstatecoiin. .. 11-20
December 2001 Common Object Request Broker Architecture (CORBA), v2.6 XV

0834

Contents

11.3.3

1134

11.3.5

11.3.6

11.3.7

11.3.8

11.3.9

11.4

Xvi

IDL for PortableServer Module

Comman Object Request Broker Architecture (CORBA), v2.6

AdapterActivator Interface..................
11.3.3.1 unknown_adapter
ServantManager Interface
11.3.4.] Common Information for
Servant Manager Types
ServantActivator Interface
11.3.5.] incarnate
11.3.5.2 etherealize
ServantLocator Interface
11.3.6.1 preinvoke
11.3.6.2 postinvoke
11.3.6.3 ServantLocator and Location
Determination
POA Policy Objectso vvvevivennvrennnns
11.3.7.1 Thread Policy
11.3.7.2 Lifespan Policy
11.3.7.3 Object 1d Uniqueness Policy
11.3.7.4 1d Assignment Policy
11.3.7.5 Servant Retention Policy
11.3.7.6 Request Processing Policy
11.3.7.7 Implicit Activation Policy
POA Interface Creeeeansanenrnae
11.3.8.1 create_POA
11.3.82find_ POA i
11.3.8.3 destroy
11.3.8.4 Policy Creation Operations
11.3.8.5 the_name
11.3.8.6 the_parent
11.3.8.7 the_children
11.3.8.8 the_POAManager
11.3.8.9 the_activator
11.3.8.10 get_servant_manager
11.3.8.11 set_servant_manager
113812 get servant......................
11.3.8.13 set_servant
11.3.8.14 activate_object
11.3.8.15 activate_object_with_id
11.3.8.16 deactivate_object :
11.3.8.17 create_reference
11.3.8.18 create_reference_with_id
11.3.8.19servant_to_id
11.3.8.20 servant_to_reference
11.3.8.21 reference_to_servant
11.3.8.22 reference_to_id
11.3.8.23 id_to_servant
11.3.8.24 id_to_reference
11.3.8.25id
CurrentOperationscccviiiiiennienss
11391 get POA
11.3.9.2 get_object_id
11.3.9.3 get_reference
11394 get_ servant.

December 2001

0835

Contents

11.6 Usage Scenarios.ouiviiviennvnnnneann. 11-52
11.6.1 Gettingthe RootPOAc.ccvvennn 11-52
11.6.2 CreatingaPOAcoviiiiiinnnnnn, 11-53

11.6.3 Explicit Activation with POA-assigned Object 1ds11-53
11.6.4 Explicit Activation with User-assigned Object 1ds 11-54

11.6.5 Creating References before Activation......... 11-55
11.6.6 Servant Manager Definition and Creation...... 11-55
11.6.7 Object Activation on Demand................ 11-57
11.6.8 Persistent Objects with POA-assigned lds...... 11-59
11.6.9 Multiple Object 1ds Mapping to a Single Servant 11-59
11.6.10 One Servant for All Objects 11-59
11.6.11 Single Servant, Many Objects and Types,

Using DSI ..ot iniiiiiiieiieiintinnnnnonnes 11-62
12. Interoperability Overviewciiiiiiiiiinrecnnnnnes 12-1
12.1 Elements of Interoperability. 12-1
12.1.1 ORB Interoperability Architecture 12-2
12.1.2 Inter-ORB Bridge Support.................. 12-2
12.1.3 General Inter-ORB Protocol (GI1OP).......... 12-3
12.1.4 Internet Inter-ORB Protocol (110P)........... 12-3

12.1.5 Environment-Specific Inter-ORB Protocols
(ESIOPS). o cvviiniiiiiiiiiiiiiiienienne,s 12-4
12.2 Relationship to Previous Versions of CORBA 12-4
12.3 Examples of Interoperability Solutions 12-5
12.3.1 Examplel............0v0enn Ceerrereaeana 12-5
1232 Example2......ciiiiiiiieirenerienanonnas 12-5
123.3 Example3................. Chreriere e 12-5
12.3.4 Interoperability Compliance................. 12-5
124 Motivating Factors, 12-8
12.4.1 ORB Ilmplementation Diversity 12-8
124.2 ORBBoundariesccovevreenennnnns 12-8
12.4.3 ORBs Vary in Scope, Distance, and Lifetime.... 12-9
12.5 Interoperability Design Goals. 12-9
1251 Non-Goals..........civiiiiiiiieiervneanns 12-10
13. ORB Interoperability Architecture..............ccoceunn.. 13-1
13,1 OVervIewt e 13-1
13.1.1 DOMAINS v v ivveiieeenerenencennssnncenses 132
13.1.2 BridgingDomainsccovvuervennn, 13-2
132 ORBsandORB Services 13-3
13.2.1 The Nature of ORB Services................. 13-3
13.2.2 ORB Services and Object Requests 13-3
13.2.3 Selection of ORB Services.........c.ccvvvunn 13-4
133 Domains...........coii e 13-5
13.3.1 DefinitionofaDomain...................... 13-5
December 2001 Common Object Request Broker Architecture (CORBA). v2.6 xvii

0836

Contents

Xviii

13.3.2 Mapping Between Domains: Bridging......... 13-6
13.4 Interoperability BetweenORBs 13-7
13.4.1 ORB Services and Domains 13-7
1342 ORBsandDomains...........ccvvenvienonns 13-7
13.4.3 Interoperability Approaches................. 13:-8
13.4.3.1 Mediated Bridging 13-8
13.4.3.2 Immediate Bridging 13-9
13.4.3.3 Location of Inter-Domain Functionality 13-9
13.43.4 Bridging Level 13-10
13.44 Policy-Mediated Bridging................... 13-10
13.4.5 Configurations of Bridges in Networks 13-11
13.5 ObjectAddressing it 13-11
13.5.1 Domain-relative Object Referencing 13-12
13.5.2 Handling of Referencing Between Domains 13-12
13.6 An Information Model for Object References 13-14
13.6.1 What Information Do Bridges Need?.......... 13-14
13.6.2 Interoperable Object References: 1ORs........ 13-14
13.6.3 1ORProfiles.........ccviviiniineneenenss 13-15
13.6.4 Standard IOR Profiles...................... 13-17
13.6.4.1 The TAG_INTERNET_IOP Profile ... 13-17

13.6.4.2 The TAG_MULTIPLE_COMPONENTS
Profile 13-18
13.6.4.3 The TAG_SCCP_IOP Profile 13-18
13.6.5 1O0R Components............ Cereerrieeaes . 13-18
13.6.6 Standard 10R Components eee. 13-19
13.6.6.1 TAG_ORB_TYPE Component 13-20

13.6.6.2 TAG_ALTERNATE_IIOP_ADDRESS
Componentcovvuunen. 13-20
13.6.6.3 Other Components 13-20
13.6.7 Profile and Component Composition in lIORs. .. 13-21
13.6.8 10R CreationandScope...........ccvvuunne 13-22
13.6.9 Stringified Object References................ 13-22
13.6.10 Object URLS......ovvtivviennninunrrananss 13-23
13.6.10.1 corbaloc URL 13-24
13.6.10.2 corbalocirir URL 13-25
13.6.10.3 corbaloc:iiop URL 13-26
13.6.10.4 corbaloc Server Implementation 13-27
13.6.10.5 corbaname URL 13-27
13.6.10.6 Future corbaloc URL Protocols 13-27
13.6.10.7 Future URL Schemes 13-27
13.7 Service Contextc.uvuirireniennennnnnn. 13-28
13.7.1 Standard Service Contexts0cu.n 13-29
13.7.2 Service Context Processing Rules............. 13-31
13.8 Coder/Decoder Interfaces. 13-31
13.8.1 Codeclnterfacecovvivvnennrneneenes 13-31
13.8.1.1 Exceptions 13-32
13.8.1.20perations 13-32
1382 CodecFactorycccvvvvvivaneraneenns 13-33
13.8.2.1 Encoding Structure 13-34
Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0837

Contents

13.8.2.2 CodecFactory Interface 13-34
13.9 Feature Support and GIOP Versions. 13-35
13.10 Code SetConversioncnovuenneenennn. 13-36
13.10.1 Character Processing Terminology 13-36
13.10.1.1 Character Set 13-36
13.10.1.2 Coded Character Set, or Code Set 13-36
13.10.1.3 Code Set Classifications 13-37
13.10.1.4 Narrow and Wide Characters 13-37
13.10.1.5 Char Data and Wchar Data 13-38
13.10.1.6 Byte-Oriented Code Set 13-38
13.10.1.7 Multi-Byte Character Strings 13-38
13.10.1.8 Non-Byte-Oriented Code Set 13-38
13.10.1.9 Char and Wchar Transmission Code
Set (TCS-Cand TCS-W)........... 13-38
13.10.1.10 Process Code Set and File Code Set . 13-38
13.10.1.11 Native Code Set 13-39
13.10.1.12 Transmission Code Set 1339
13.10.1.13 Conversion Code Set (CCS) 13-39
13.10.2 Code Set Conversion Framework............. 13-39
13.10.2.1 Requirements 13-39
13.10.2.2 Overview of the Conversion
Framework 13-40
13.10.2.3 ORB Databases and Code Set
Converterscovvnnnn. 13-41
13.10.2.4 CodeSet Component of IOR _
_ Multi-Component Profile 13-42
13.10.2.5 GIOP Code Set Service Context 1343
13.10.2.6 Code Set Negotiation 13-44
13.10.3 Mapping to Generic Character Environments .. 13-47
13.10.3.1 Describing Generic Interfaces 13-48
13.10.3.2 Interoperation 1348
13.10.4 Example of Generic Environment Mapping 13-48
13.10.4.1 Generic Mappings 13-49
13.10.4.2 Interoperation and Generic Mappings . 13-49 .
13.10.5 Relevant OSFM Registry Interfaces........... 13-49
13.10.5.1 Character and Code Set Registry 13-49
13.10.5.2 Access Routines 13-50
14. Building Inter-ORB Bridgescovvvviieeeenrinnaens 14-1
14.1 Imtroduction e 14-1
14.2 In-Line and Request-Level Bridging 14-2
14.2.1 In-lineBridging.............coveivieinia, 14-3
14.2.2 Request-level Bridging 14-3
14.2.3 Coliocated ORBsc0iviveivinnn. 14-4
14.3 Proxy Creation and Management. 14-5
14.4 Interface-specific Bridges and Generic Bridges. 14-6
14.5 Building Generic Request-Level Bridges. 14-6
14.6 Bridging Non-Referencing Domains 14-7
14.7 Bootstrapping Bridges oo oL 14-7
December 2001 Common Object Request Broker Architecture (CORBA), v2.6 xix

0838

Contents

15. General Inter-ORB Protocolc.... careeens 15-1
15.1 Goals of the General Inter-ORB Protocol. 15-2
152 GIOPOVEIVIEWottt it 15-2

15.2.1 Common Data Representation (CDR) 15-3
152.2 GIOP Message Overviewc.ooveeeenenn 15-3
1523 GIOP Message Transfer 154
153 CDRTransferSyntax................ ..., 15-4
153.1 Primitive Typescciviiieneevererans 15-5
15.3. 1.1 Alignment 15-5
15.3.1.2 Integer Data Types 15-6
15.3.1.3 Floating Point Data Types 15-7
153.140ctetcoiiiiiiiiiii 15-10
153.15Boolean oL 15-10
15.3.1.6 Character Types 15-10
153.2 OMG IDL Constructed Types................ 15-11
15321 Alignment 15-11
153228truct ... 15-12
15323 Union ... oo ii e 15-12
15324Armay ... 15-12
153258equence 15-12
15326Enum oo, 15-12
15.3.2.7 Strings and Wide Strings 15-12
 15.3.2.8 Fixed-Point Decimal Type 15-13
153.3 Encapsulation............ccivtvirvenarnnss 15-14
1534 ValueTypesccvvevnvnvnenncnennncnnss 15-15
15.3.4.1 Partial Type Information and Versioning 15-16
15342Example 15-17
15.3.4.3 Scope of the Indirections 15-19
15344 Null Values 15-19
15.3.4.5 Other Encoding Information 15-19
15.3.4.6 Fragmentation 15-19
15347 Notationcoivuinvnainnn. 15-22
15348 TheFormat 15-22
153.5 Pseudo-Object Types.......ccvvoveveenesnsnss 15-23
153.5.1 TypeCode 15-23
15352°A0y oo 15-29
15353 Principalo oLl 15-29
15354Context 15-29
15355Exception 15-29
153.6 Object Referencesc.cvvveeevnnnenns 15-30
15.3.7 AbstractInterfacesc0i0eerenens 15-30
154 GIOPMessage Formats 15-30
154.1 GIOP MessageHeadercovveveennn 15-31
154.2 RequestMessagecovvevvieeneiaronans 15-33
15.4.2.1 Request Header 15-33
15422 RequestBody 15-36
154.3 ReplyMessage........cooiverirenevneneans 15-37
1543.1 ReplyHeader 15-37
15432ReplyBody, 15-38
15.4.4 CancelRequest Messagecoveveenenss 15-40
15.4.4.1 Cancel Request Header 15-40

XX Commaon Object Request Broker Architecture (CORBA), v2.6 December 2001

0839

Contents

15.4.5 LocateRequest Message..........occievenvnes 15-41
15.4.5.1 LocateRequest Header 15-41
15.4.6 LocateReply Messagecocevunnes 15-42
15.4.6.1 Locate Reply Header 15-42
15.4.6.2 LocateReply Body 15-43

15.4.6.3 Handling ForwardRequest Exception
from ServantLocator 15-44
15.4.7 CloseConnection Message...........covvvens 15-44
15.4.8 MessageError Messagecoovvinennns 15-44
1549 Fragment Message.....covvevvrvnerronennnss 15-44
15.5 GIOP Message Transport.oouvunn. 15-46
15.5.1 - Connection Management...........oe0eusues 15-46
15.5.1.1 Connection Closure 1547
15.5.1.2 Multiplexing Connections 1548
1552 MessageOrderingccvvevenennnnn, 15-48
156 ObjectLocationc.oiiiiiinriennininnn. 15-48
15.7 Intemet Inter-ORB Protocol (IIOP) 15-50
15.7.1 TCP/IP Connection Usage.coovvevuraes 15-51
15.7.2 11OP IOR Profiles e 15-51
15.7.3 110P 1OR Profile Components 15-54
15.8 Bi-Directional GIOP 15-55
15.8.1 Bi-DirectionalllIOP................ccoevt. 15-57
15.8.1.1 11OP/SSL considerations 15-58
159 Bi-directional GIOP policy. ot 15-58
1510 OMGIDL. i 15-59
~ : 15.10.1 GIOPModule..........coiveievriverronnnen 15-59
15.10.2 11IOPModule ... ciivieiiviinnennnernonees 15-63
15.10.3 BiDirPolicy Module.................co0vts 15-64
16. TheDCEESIOP 0ottt tiineesrsnncenronssnensss 16-1
16.1 Goals of the DCE Common Inter-ORB Protocol 16-1
16.2 DCE Common Inter-ORB Protocol Overview 16-2
16.2.1 DCE-CIOPRPCciitiniiirnninnenns 16-2
16.2.2 DCE-CIOP Data Representation 16-3
16.2.3 DCE-CIOP MeSsages. .. c..vcveeiavocrncnses 16-4
16.2.4 Interoperable Object Reference (IOR) 16-5
16.3 DCE-CIOP Message Transport 16-5
16.3.1 Pipe-based Interfacec.evivvnnn. 16-6
163.1.1Invokel 16-8
163.1.2Locatec..iiiia.., 16-8
16.3.2 Array-based Interface..........ovvevevnnnnss 16-8
1632.11nvoke 16-10
16322Locatet 16-11
164 DCE-CIOP Message Formats. 16-11
16.4.1 DCE_CIOP Invoke Request Message.......... 16-11
16.4.1.1 Invoke request header 16-11
16.4.1.2 Invoke requestbody 16-12
December 2001 Common Object Request Broker Architecture (CORBA), v2.6 XXi

0840

Contents

16.4.2 DCE-CIOP Invoke Response Message......... 16-12

16.4.2.1 Invoke response header 16-13

16.4.2.2 Invoke Response Body 16-13

16.4.3 DCE-CIOP Locate Request Message.......... 16-14

16.4.3.1 Locate Request Header 16-14

16.4.4 DCE-CIOP Locate Response Message......... 16-15

16.4.4.1 Locate Response Header 16-15

16.4.4.2 Locate Response Body 16-16

16.5 DCE-CIOP Object References. 16-16
16.5.1 DCE-CIOP String Binding Component. 16-17

16.5.2 DCE-CIOP Binding Name Component........ 16-18

16.5.2.1 BindingNameComponent 16-18

16.5.3 DCE-CIOP No Pipes Component............. 16-19

16.5.4 Complete Object Key Component 16-19

16.5.5 Endpoint 1D Position Component............. 16-20

16.5.6 Location Policy Component 16-20

16.6 DCE-CIOP ObjectLocation. 16-21
16.6.1 Location Mechanism Overview 16-22

16.6.2 Activation.........ccvivieieiiiiiinnionnns 16-23

16.6.3 Basic Location Algorithm 16-23

16.6.4 Use of the Location Policy and the Endpoint 1D . 16-24

16.6.4.1 Current location policy 16-24

16.6.4.2 Original location policy 16-24

16.6.4.3 Original Endpoint1D 16-24

16.7 OMG IDL for the DCE CIOPModule 16-25
16.8 References forthisChapter 16-26
17. Interworking Architecture Ceeseesasiaasann 17-1
17.1 Purpose of the Interworking Architecture 17-2
17.1.1 Comparing COM Objects to CORBA Objects .. 17-2

17.2 Interworking ObjectModel 17-3
17.2.1 Relationship to CORBA Object Model 17-3

17.2.2 Relationship to the OLE/COM Model......... 174

17.2.3 Basic Description of the Interworking Model ... 17-4

17.3 Interworking Mapping Issues. 17-8
174 Interface Mappingc.oiirirunnnnnnnnn. 17-8
1741 CORBA/COM .. .iiiiiiiinirineecnnrannns 17-9

174.2 CORBA/Automationooevnvnvenes 17-9

1743 COM/CORBA ... it tiiiiiiiiiiirinnnanes 17-10

1744 Automation/CORBA 00t 17-10

17.5 Interface Composition Mappings 17-11
1751 CORBA/COMcoiitiinriinenrnnncnnss 17-11

175.1.1 COM/CORBA 17-12

17.5.1.2 CORBA/Automation 17-12

17.5.1.3 Automation/CORBA 17-13

17.5.2 Detailed Mapping Rules 17-13

17.5.2.1 Ordering Rules for the CORBA->MIDL

Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0841

Contents

Transformationc.covonn.. 17-13
17.5.2.2 Ordering Rules for the
CORBA->Automation Transformation . 17-13

17.5.3 Example of Applying Ordering Rules 17-14
17.5.4 Mapping Interface Identity.................. 17-16
17.5.4.1 Mapping Interface Repository 1Ds to
COMIIDS ... 17-17
17.5.4.2 Mapping COM 11Ds to CORBA
Interface IDs 17-18
17.6 Object Identity, Binding, and Life Cycle 17-18
17.6.1 Object ldentity Issuesccccvvearrnns 17-19
17.6.1.1 CORBA Object 1dentity and Reference
Properties 17-19
17.6.1.2 COM Object 1dentity and Reference
Properties it 17-19
17.6.2 Bindingand LifeCycle00t 17-20
17.6.2.]1 Lifetime Comparison 17-20
17.6.2.2 Binding Existing CORBA Objects to
COMViews...........cooiiiunn.. 17-21
17.6.2.3 Binding COM Objects to CORBA Views 17-22
17.6.2.4 COM View of CORBA Life Cycle 17-22
17.6.2.5 CORBA View of COM/Automation
LifeCycle 17-23
17.7 Interworking Interfaces 17-23
17.7.1 SimpleFactory Interface 17-23
17.7.2 1MonikerProvider Interface and Moniker Use .. 17-23
17.7.3 ICORBAFactory Interface 17-24
17.7.4 1ForeignObject Interface...............cvvss 17-26
17.7.5 1CORBAObject Interface 17-27
17.7.6 1CORBAObject2ccovviieiinvnnans 17-28
17.7.7 10RBObject Interface........cccceevvenennn 17-28
17.7.8 Naming Conventions for View Components 17-30
17.7.8.1 Naming the COM View Interface 17-30

17.7.8.2 Tag for the Automation Interface 1d ... 17-30
17.7.8.3 Naming the Automation View Dispatch

Interface 17-30
17.7.8.4 Naming the Automation View Dual
Interface, 17-31
17.7.8.5 Naming the Program Id for the COM
Classvii i 17-31
17.7.8.6 Naming the Class Id for the COM
Class ..., 17-32
17.8 Distribution 1732
17.8.1 Bridge Locality...........ccieviienaiennn, 17-32
17.8.2 Distribution Architecturec0.. 17-33
17.9 Interworking Targets v 17-34
17.10 Compliance to COM/CORBA Interworking. 17-34
17.10.1 Products Subject to Compliance.............. 17-34
17.10.1.1 Interworking solutions 17-34
17.10.1.2 Mapping solutions 17-35
December 2001 Common Object Request Broker Architecture (CORBA), v2.6 xxiii

0842

Contents

17.10.1.3 Mapped components 17-35

17.10.2 Compliance Points........cv0vvieeeennorsns 17-36

18. Mapping: COMand CORBAcviieienrenrnons 18-1
18.1 DataTypeMappingcciieniennnnnnnn. 18-1
18.2 CORBA to COM Data Type Mapping 18-2
18.2.1 Mapping for Basic DataTypes 18-2

18.2.2 MappingforConstantscvoveeererens 18-2

18.2.3 Mapping for Enumerators000. 18-3

18.2.4 Mapping for String Types.............ovue. 18-4

18.2.4.1 Mapping for Unbounded String Types . 18-4

18.2.4.2 Mapping for Bounded String Types ... 18-5

18.2.5 Mapping for Struct Types.............ve0vann 18-5

18.2.6 Mapping for Union Typesccovvvvnns 18-6

18.2.7 Mapping for Sequence Types 18-8

18.2.7.1 Mapping for Unbounded Sequence Types 18-8
18.2.7.2 Mapping for Bounded Sequence Types 18-8

18.2.8 Mapping for Array Typescoevvennn, 18-9
18.2.9 Mapping for the any Type...............0tt 18-9
18.2.10 Interface Mapping.........cccvveeiiaiernen 18-11
18.2.10.1 Mapping for interface identifiers 18-11
18.2.10.2 Mapping for exception types 18-11
18.2.10.3 Mapping for Nested Types 18-21
18.2.10.4 Mapping for Operations 18-22
18.2.10.5 Mapping for Oneway Operations 18-24
18.2.10.6 Mapping for Attributes 18-24

18.2.10.7 Indirection Levels for Operation
Parameters 18-26
18.2.11 Inheritance Mapping........cvveereerennnes 18-26
18.2.12 Mapping for Pseudo-Objects 18-29

18.2.12.1 Mapping for TypeCode pseudo-object 18-29
18.2.12.2 Mapping for context pseudo-object . .. 18-31
18.2.12.3 Mapping for principal pseudo-object . 18-32

18.2.13 Interface Repository Mapping 18-32
18.3 COM to CORBA Data Type Mapping 18-33
18.3.1 Mapping for Basic Data Types 18-33
18.3.2 MappingforConstantscvvvuenns 18-34
18.3.3 Mapping for Enumerators0... 18-34
18.3.4 Mapping for String Types...........cvcvvenns 18-35
18.3.4.1 Mapping for unbounded string types . .. 18-35
18.3.4.2 Mapping for bounded string types 18-36
18.3.4.3 Mapping for Unicode Unbounded
String Types, 18-36
18.3.4.4 Mapping for unicode bound string types 18-37
18.3.5 Mapping for Structure Types0. 18-37
18.3.6 Mapping for Union Typesccvvveevns 18-38
18.3.6.1 Mapping for Encapsulated Unions 18-38
18.3.6.2 Mapping for nonencapsulated unions .. 18-39
18.3.7 Mapping for Array Types.........ccvveeenns 18-40
18.3.7.1 Mapping for nonfixed arrays 18-40
XXiv Commaon Object Request Broker Architecture (CORBA), v2.6 December 2001

0843

Contents

18.3.7.2 Mapping for SAFEARRAY 18-40
18.3.8 Mapping for VARIANT.cc.oet 18-41
18.3.9 Mappingfor Pointers................c.00nts 18-43
18.3.10 InterfaceMapping..........cocvvivinnennns 18-44
18.3.10.1 Mapping for Interface ldentifiers 18-44
18.3.10.2 Mapping for COM Errors 18-44
18.3.10.3 Mapping of Nested Data Types 1847
18.3.10.4 Mapping of Names 18-47
18.3.10.5 Mapping for Operations 18-47
18.3.10.6 Mapping for Properties 18-48
18.3.11 Mapping for Read-Only Attributes 18-49
18.3.12 Mapping for Read-Write Attributes 18-49
18.3.12.1 Inheritance Mapping -18-50
18.3.12.2 Type Library Mapping 18-52
19. Mapping: Automation and CORBA 19-1
19.1 Mapping CORBA Objects to Automation 19-2
19.1.1 Architectural Overview..................... 19-2
19.1.2 Main Features of the Mapping............... 19-3
19.2 Mapping for Interfaces. 19-3
19.2.1 Mapping for Attributes and Operations 19-4
19.2.2 Mapping for OMG IDL Single Inheritance..... 19-5
19.2.3 Mapping of OMG 1DL Multiple Inheritance.... 19-6
19.3 Mapping for Basic DataTypes.ot 19-9
19.3.1 Basic Automation Typesc.vivvnne 19-9
19.3.2 Special Cases of Basic Data Type Mapping..... 19-10
19.3.2.1 Converting Automation long to
CORBA unsignedlong 19-10
19.3.2.2 Demoting CORBA unsigned long to
Automationlong 19-11
19.3.2.3 Demoting Automation long to CORBA
unsignedshort 19-11

19.3.2.4 Converting Automation boolean to CORBA
boolean and CORBA boolean to Automation

boolean 19-11
19.3.3 Mapping for Strings il 19-11
194 IDLtoODLMapping..........cc0vienirvinennne .. 19-12

19.4.1 A Complete IDL to ODL Mapping for the Basic
DataTypescovvvnvininriennnsaenanns 19-12
19.5 Mapping for Object References 19-15
1951 TypeMappingcooivvvrvevinnensennanes 19-15

19.5.2 Objecct Reference Parameters and

_ 1ForeignObject.covievnranninaaat, 19-16
19.6 Mapping for Enumerated Types. 19-17
19.7 Mapping for Arraysand Sequences 19-18
19.8 Mapping for CORBA Complex Types 19-19
19.8.1 Mapping for Structure Typesc...... 19-20
19.8.2 Mapping for Union Typesc0vvunnn 19-21
December 2001 Common Object Request Broker Architecture (CORBA). v2.6 XXV

0844

Contents

XxXVi

19.8.3 Mapping for TypeCodescccvvrovsess 19-22
19.8.4 Mappingforanys..........c.ccvevivenecronns 19-24
19.8.5 Mapping for Typedefsc0cevennns 19-25
19.8.6 MappingforConstantsccveevnvene 19-25
19.8.7 Getting Initial CORBA Object References 19-26
19.8.8 Creating Initial in Parameters for Complex Types19-27
19.8.8.1 1TypeFactory Interface 19-29
19.8.8.2 DIObjectlnfo Interface 19-29
19.8.9 Mapping CORBA Exceptions to Automation
Exceptionsc.cccititiiuenccsncnansnns 19-30
19.8.9.1 Overview of Automation Exception
Handling 19-30
19.8.9.2 CORBA Exceptions 19-30
19.8.9.3 CORBA User Exceptions 19-31
19.8.9.4 Operations that Raise User Exceptions . 19-32
19.8.9.5 CORBA System Exceptions 19-33
19.8.9.6 Operations that raise system exceptions 19-34
19.8.10 Conventions for Naming Components of the
Automation Viewooviiiiiiieniaenan 19-36
19.8.11 Naming Conventions for Pseudo-Structs, Pseudo-
Unions, and Pseudo-Exceptions 19-36
19.8.12 Automation View Interface as a Dispatch
Interface (Nondual)covvvienvennns 19-36
19.8.13 Aggregation of Automation Views 19-38
19.8.14 DIland DSI.....ccvvvvnviineenrninnnnssns 19-38
19.9 Mapping Automation Objects as CORBA Objects. 19-38
19.9.1 Architectural Overview.........cooivvevnens 19-38
19.9.2 Main Features of the Mapping 19-39
19.9.3 Getting Initial Object References............. 19-40
19.9.4 Mapping for Interfaces0t 19-40
19.9.5 Mapping for Inheritance.................... 19-40
19.9.6 Mapping for ODL Properties and Methods. 19-41
19.9.7 Mapping for Automation Basic Data Types..... 19-42
19.9.7.1 Basic automation types 19-42
19.9.8 ConversionErrors..........ccoveivienannn. 19-43
19.9.9 Special Cases of Data Type Conversion........ 19-43
19.9.9.1 Translating COM::Currency to
Automation CURRENCY 19-43
19.9.9.2 Translating CORBA double to
Automation DATE 19-43
19.9.9.3 Translating CORBA boolean to
Automation boolean and Automation
boolean to CORBA boolean 19-43
19.9.10 A Complete OMG IDL to ODL Mapping for the Basic
DataTypes .. oo oviiiereanirieenerenennnns 19-44
19.9.11 Mapping for Object References 19-46
19.9.12 Mapping for Enumerated Types.............. 19-47
19.9.13 Mapping for SafeArraysco0eeen, 19-48
19.9.13.1 Multidimensional SafeArrays 19-48
19.9.14 Mapping for Typedefs...................... 19-48
Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0845

Contents

19.9.15 Mapping for VARIANTScovvveienennen, 19-48
19.9.16 Mapping Automation Exceptions to CORBA ... 19-49
19.10 Older Automation Controllers 19-49
19.10.1 Mapping for OMG IDL Arrays and Sequences
' to Collectionsovvivieneernrnrnnenns 19-49
19.11 Example Mappings. J 19-51
19.11.1 Mapping the OMG Naming Service to
AUtomation.covvevrirertcrsaroaconaes 19-51
19.11.2 Mapping a COM Service to OMGIDL 19-51
19.11.3 Mapping an OMG Object Service to Automation 19-55
20. Interoperability with non-CORBA Systems................. 20-1
20.1 Introductiono 20-1
20.1.1 COM/CORBAPartAcoovvvrenenonns 20-2
20.2 Conformancelssues.............. ..., 20-2
20.2.1 Performancelssuescoovuevveannans 20-3
20.2.2 Scalability Issuesc.cvvvvrerrieacennns 20-3
20.2.3 CORBA Clients for DCOM Servers........... 20-3
203 Localityofthe Bridge 20-4
204 ExtentDefinition i 20-5
20.4.1 Marshaling Constraints.co0veeenens 20-6
204.2 Marshaling Key.......ovvvvnerennroneonsns 20-6
2043 ExtentFormat...........cciiieiieneenenas 20-7
20.43.0 DVO_EXTENTooviiiinn. 20-8
20432DVO_IFACE 20-8
20.433 DVO_IMPLDATA 20-8
20434DVO BLOBo 20-8
20.5 Request/Reply Extent Semantics 20-8
206 ConsiStencyc.c.ouueeenn.. e 20-9
20.6.1 1IValueObjectcvvvivvierenancennss 20-10
20.6.2 1Synchronize and DISynchronize............. 20-11
20.6.2.1 Mode Property 20-11
20.6.2.2 SyncNow Method 20-11
20.6.2.3 ReCopy Method 20-11
207 DCOMValueObjects.c.cvrenvr i 20-11
' 20.7.1 Passing Automation Compound Types as DCOM
Value Objectsoovtvieiinnieennenaones 20-11
20.7.2 Passing CORBA-Defined Pseudo-Objects as
DCOM Value Objectscovivevnrnsnnns 20-12
20.73 1ForeignObject.ccvvtiieivieienrnneans 20-12
20.74 DIlForeignComplexTypec.ovvetn 20-12
20.7.5 DIForeignException.ccvventn 20-12
20.7.6 DISystemException.........co00ivviirnennnn 20-12
20.7.7 DICORBAUserException 20-13
2078 DICORBAStructcoviviiiievnerenansns 20-13
20.79 DICORBAURNIONcoivvvenrirnennssnnns 20-13
December 2001 Common Object Request Broker Architecture (CORBA), v2.6 xxvii

0846

Contents

20.7.10 DICORBATypeCode and ICORBATypeCode ... 20-13

20.7.11 DICORBAADYcovvuivrresronnonansnnes 20-14

20.7.12 ICORBAADNYoivvvrvvrnnronansnnnnesss 20-15

20.7.13 User ExceptionsInCOMcc0vunen 20-15

20.8 ChainAvoidance it 20-16
20.8.1 CORBA Chain Avoidance........ccevvearrsn 20-16

20.8.2 COM Chain Avoidancecovevvuennss 20-17

209 ChainBypass..........c.uvneniniiniinnnin.. 20-19
20.9.1 CORBA ChainBypass.........cccvvvvneenes 20-19

2092 COMChainBypass.......co0veenes eeeasens 20-20

20.10 Thread Identification 20-21
21. Portable Interceptors..........ccvvieerencerirocnnconans 21-1
21.1 Introductiont 21-1
21.1.1 ObjectCreation........ccvveievieevensases 21-2

21.1.2 ClientSends Request..........coveevetveens 21-3

21.1.3 Server Receives Requestovivvens 21-4

21.1.4 ServerSendsReplycocviveveeivienn. 21-4

21.1.5 Client Receives Reply Ceveaaaes veees 21-5

21.2 InterceptorInterface................, 21-5
21.3 Request Interceptors., 21-6
21.3.1 Design Principles Ceeraeaenes v 21-6

21.3.2 General Flow Rules....... Ceteeseees cveeeas 2147

21.3.3 The Flow Stack Visual Model....... ceereenes 21-8

21.3.4 The Request Interceptor Points Cerreeees 21-8

21.3.5 Client-Side Interceptorcovvvvvven.s 21-9

21.3.6 Client-Side Interception Points............... 21-9

21.3.6.1 send_request 21-9

213.62send_poll it 21-9

213.63receive_replyl 21-10

21.3.6.4 receive_exception 21-10

21.3.6.5receive_other 21-1]

21.3.7 Client-Side Interception Point Flow........... 21-11

21.3.7.]1 Client-side Flow Rules 21-11

21.3.7.2 Additional Client-side Details 21-12

21.3.7.3 Client-side Flow Examples 21-12

21.3.8 Server-Side Interceptor............0000vennn 21-14

21.3.9 Server-Side Interception Points 21-14

21.3.9.1 receive_request_service_contexts 21-14

21.3.9.2 receive_request 21-15

21393send_replyo 21-15

21.3.9.4 send_exception 21-16

21395send other, 21-16

21.3.10 Server-Side Interception Point Flow 21-17

21.3.10.1 Server-side FlowRules 21-17

21.3.10.2 Additional Server-side Details 21-17

21.3.10.3 Server-side Flow Examples 21-18

21.3.11 Request Information 21-20

xxviii

Common Object Request Broker Architecture (CORBA), v2.6

December 2001

0847

Contents

21.3.12 Requestlnfo Interface 21-21
213121 request_id 21-21
21.3.1220peration, 21-21
21.3.123 arguments e, 21-21
21.3.12.4 exceptionsc.ceuunn.n 21-22
21.3.12.5contexts 21-22
21.3.12.6 operation_context 21-22
21312 7result ... 21-22
21.3.12.8 response_expected 21-23
21.3.12.9SynC_SCOPE . ..\ oo eee i 21-23
21.3.12.10reply_status 21-23
21.3.12.11 forward_reference 21-24
21.3.1212get slot ... 21-24
21.3.12.13 get_request_service_context 21-25
21.3.12.14 get_reply_service_context,. 21-25

21.3.13 ClientRequestlnfo Interface................. 21-25
21.3.13.1target 1-27
21.3.13.2 effective_target 21-27
21.3.13.3 effective_profile 21-27
21.3.13.4 received_exception 21-27
21.3.13.5 received_exception_id 21.27
21.3.13.6 get_effective_component 2127
21.3.13.7 get_effective_components 21-28
21.3.13.8 get_request_policy 21-28
21.3.13.9 add_request_service_context 21-28

21.3.14 ServerRequestlnfo Interface................. 21-29
21.3.14.1 sending_exception 21-30
21.3.1420bject_id 21-30
21.3.143 adapter_id 2]-31
21.3.14.4 target_most_derived_interface 21-31
21.3.14.5 get_server_policy 21-31
21.3.046sset_slot 21-3]
21.3.14.7target_1S_at 21-31
21.3.14.8 add_reply_service_context 21-32

21.3.15 ForwardRequest Exception.................. 21-32

21.4 Portable Interceptor Current.oovon... 21-33

2141 OVervieW.......cvotvvioecnsocnsoronsoenns 21-33

21.4.2 Obtaining the Portable Interceptor Current. ... 21-33

21.4.3 Portable Interceptor Current Interface........ 21-33
2143 0 getslot. ...t 21-34
21432setslotoonii i 21-34

21.4.4 Use of Portable Interceptor Current 21-34
21.4.4.1 Client-side use of PICurrent 21-34
21.4.4.2 Example of PlCurrent to Handle

Client-side Recursion 21-35

21.4.4.3 Server-side use of PICurrent 21-36

21.4.4.4 Request Scope vs Thread Scope 21-37

21.4.4.5 Flow of P1Current between Scopes 21-37

21.4.4.6 Notes on PICurrent and Scopes 21-39

21.5 IORINterceptorouivuinvenenennnennnnn. 21-39

21.5.1 OVerVieW......ovvievrronncrsooncnennnenss 21-39

21.5.2 1ORInterceptor Interfacecvvvvevnn, 21-39
21.5.2.]1 establish_components 21-40

December 2001 Common Object Request Broker Architecture (CORBA). v2.6 XXix

0848

Contents

21.5.3 1ORInfo Interfacecovveenvoccnns 21-40
21.5.3.1 get_effective_policy 21-40
21.5.3.2 add_ior_component 21-41
21.5.3.3 add_ior_component_to_profile 21-41
21.6 PolicyFactoryo, 21-42
21.6.1 PolicyFactory Interface..................... 21-42
21.6.1.1create_policy 21-42
21.7 Registering Interceptors o, 21-42
21.7.1 ORBIlnitializer Interface............cv0vvne. 21-43
2171 pre_init. il 2143
21.7.12post_init 21-43
21.7.2 ORBIlnitlnfo Interface................cc.... 21-43
21.7.2.1 DuplicateName Exception 21-44
21.7.2.2 InvalidName Exception 21-44
21723 arguments 21-45
21.7240rb_id....... ... i 21-45
21.7.2.5codec_factory 21-45
21.7.2.6 register_initial_reference 21-45
21.7.2.7 resolve_initial_references 21445
21.7.2.8 add_client_request_interceptor 2145
21.7.2.9 add_server_request_interceptor 21-46
21.7.2.10 add_ior_interceptor 21-46
21.7.2.11 allocate_slot_id 21-46
21.7.2.12 register_policy_factory 21-46
21.7.3 register_orb_initializer Operation............ 21-47
21.7.3.1 Mappings of register_orb_initializer ... 21-47
21.7.4 Notes about Registering Interceptors.......... 21-49
21.8 Dynamic Initial References 21-49
21.8.1 register_initial_reference tetesesnsenes 21-49
219 ModuleDynamic i 21-50
21.9.1 NVList PIDL Represented by
ParameterList IDLccivivvnivnenn 21-50
21.9.2 ContextList PIDL Represented by
ContextList IDL.......cvveerveerennncnnnns 21-50
21.9.3 ExceptionList PIDL Represented by
ExceptionList IDLcoc0iiiininnnnn 21-51
21.9.4 Context PIDL Represented by
RequestContext IDLccvvveviennns 21-51
21.10 Portable Interceptor IDL 21-51
22, CORBA Messaging.....cvoeveeennnnnncnaenss cetieeanen 22-1
22.1 Sectionl-Introduction 22-2
22.2 Messaging Quality of Service 22-2
22.2.1 RebindSupport.......cccviiiiiiiiiiienns 22-5
22.2.1.1 typedef short RebindMode 22-5
22.2.1.2 interface RebindPolicy 22-5
22.2.2 SynchronizationScopeccv0tiieennn 22-6
22.2.2.1 typedef short SyncScope 22-6
22.2.2.2 interface SyncScopePolicy 227

XXX

Common Object Request Broker Architecture (CORBA), v2.6

December 2001

0849

Contents

21.5.3 IORInfolnterfaceccvvuvnunnnn 21-40
21.5.3.1 get_effective_policy 21-40
21.5.3.2 add_tor_component 2141
21.5.3.3 add_ior_component_to_profile 21-41
21.6 PolicyFactory ... 21-42
21.6.1 PolicyFactory Interface..................... 21-42
21.6.1.1 create_policy 21-42
21.7 Registering Interceptors 21-42
21.7.1 ORBInitializer Interface.................... 21-43
2170 pre_imit i 21-43
217,12 post_inmit oo 21443
21.7.2 ORBInitlnfo Interface...................... 21-43
21.7.2.1 DuplicateName Exception 21-44
21.7.2.2 InvalidName Exception 21-44
21723 arguments, 21-45
21.7240mbid 2145
21.7.2.5 codec_factory 21-45
21.7.2.6 register_initial_reference 21-45
21.7.2.7 resolve_initial_references 21-45
21.7.2.8 add_client_request_interceptor 2]1-45
21.7.2.9 add_server_request_interceptor 21-46
21.7.2.10 add_ior_interceptor 21-46
21.7.2.11 allocate_slot_id 21-46
21.7.2.12 register_policy_factory 21-46
21.7.3 register_orb_initializer Operation 21-47
21.7.3.1 Mappings of register_orb_initializer . .. 21-47
21.7.4 Notes about Registering Interceptors........ .. 21-49
21.8 Dynamic Initial References 21-49
21.8.1 register_initial_reference, 21-49
21.9 ModuleDynamicot 21-50
21.9.1 NVList PIDL Represented by
ParameterList IDLcocvevine. 21-50
21.9.2 ContextList PIDL Represented by
ContextList IDL.coiiiiviiinvnnnn 21-50
21.9.3 ExceptionList PIDL Represented by
ExceptionList IDL...........coevvivveenns. 21-51
21.9.4 Context PIDL Represented by
RequestContext IDLcoveveninnrann 21-51
21.10 Portable Interceptor IDL 21-51
22, CORBA MeSSaiNg . .. cvcoviieerionsoncnsonssnssnanannns 22-1
22.1 SectionI-Introduction 22-2
22.2 Messaging Quality of Service 22-2
22.2.1 RebindSupport.........ccciiiviiinieninan 22-5
22.2.1.1 typedef short RebindMode 22-5
22.2.1.2 interface RebindPolicy 22-5
22.2.2 Synchronization ScopeL, 22-6
22.2.2.1 typedef short SyncScope 22-6
22.2.2.2 interface SyncScopePolicy 22-7

XXX

Common Object Request Broker Architecture (CORBA), v2.6

December 2001

0850

Contents

December 2001

22.2.3 Request and Reply Priority.................. 22-7
22.2.3.1 struct PriorityRange 22-7
22.2.3.2 interface RequestPriorityPolicy 22-7
22.2.3.3 interface ReplyPriorityPolicy 22-8
22.2.4 Request and Reply Timeout 22-8
22.2.4.1 interface RequestStartTimePolicy 22-8
22.2.4.2 interface RequestEndTimePolicy 229
22.2.4.3 interface ReplyStartTimePolicy 22-9
22.2.4 .4 interface ReplyEndTimePolicy 229

22.2.4.5 interface RelativeRequestTimeoutPolicy 22-9
22.2.4.6 interface RelativeRoundtripTimeout

Policycovvi 22-10
2225 RoOULDE. . vvvvrreivennernnnesarocnasannns 22-10
22.2.5.1 typedef short RoutingType 22-10
22.2.5.2 struct RoutingTypeRange 22-10
22.2.5.3 interface RoutingPolicy 22-11
22.2.5.4 interface MaxHopsPolicy 22-11
22.2.6 QueueOrdering.........coevvveerrnevoensns 22-11
22.2.6.1 typedef short Ordering 22-11
22.2.6.2 interface QueueOrderPolicy 22-12
22.3 Propagation of Messaging QoS 22-12
22.3.1 StructureS.........oeeeverorseorenessanses 22-12
22.3.2 Messaging QoS Profile Component 22-13
22.3.3 Messaging QoS Service Context.............. 22-13
224 Sectionll -Introduction. 22-13
22.5 RunningExample........... o oL 22-15
22.6 AsyncOperationMapping........... ... 22-16
22.6.1 Callback Model Signatures (sendc) 22-16
22.6.1.1 Implied-IDL for Operations 22-16
22.6.1.2 Implied-1DL for Attributes 22-17
226.13Example ol 22-17
22.6.2 Polling Model Signatures (sendp)............. 22-18
22.6.2.1 Implied-IDL for Operations 22-18
22.6.2.2 Implied-1DL for Attributes 22-19
22623Example L, 22-19
22.7 Exception Delivery in the Callback Model. 22-20
22.7.1 Generic ExceptionHolder Value.............. 22-20
22.7.2 Type-Specific ExceptionHolder Mapping 22-21
2273 Exampleiiiiiiiiiiiiiiieianieanns 22-21
22.8 Type-Specific ReplyHandler Mapping 22-22
22.8.1 ReplyHandler Operations for
NO_EXCEPTION Repliescocevenvvnen. 22-23
22.8.2 ReplyHandler -Operations for Exceptional .
Replies ..o iiiiiiiiiiiiiiiiiiieennnnnanns 22-24
2283 Exampleiiiiiiiiiiiii it 22-24
229 GenericPollerValue., 22-25
22.9.1 operation_target..........c.0iiiiineeianans 22-26
22.9.2 operation_Name............vuoeestnenrrasss 22-26
22.9.3 associated_handler..........ccietnrerrennns 22-26
Commaon Object Request Broker Architecture (CORBA), v2.6 xxxi

0851

Contents

2294 is_from_poller i, 22-26
22.10 Type-Specific Poller Mapping 22-26
22.10.1 Basic Type-Specific Poller................... 2227
22.10.1.1 Poller operations for Interface
OPErations 22-27
22.10.1.2 Poller operations for Interface
attributes L 22-28
22.10.2 Persistent Type-Specific Poller 22-29
22,103 Examplevviviiiiiiiiiiiiiiieiiaeian 22-29
22.11 Example Programmer Usage 22-30
22.11.1 Example Programmer Usage (Examples
Mappedto C+4+). .. oviii it iiieienienennans 22-30
22.11.2 Client-Side C++ Example for the Asynchronous
Method Signatures.........cooeveeencennens 22-31

22.11.3

22.114

22.11.5

22.12 Section III - Introduction

22.14 Message Routing

22.14.1

22.14.2

Client-Side C++ Example of the Callback Model 22-32
22.11.3.1 C++ Example of Generated

ExceptionHolder 22-32
22.11.3.2 C++ Example of Generated

ReplyHandler 22-32
22.11.3.3 C++ Example of User-Implemented

ReplyHandler 22-34
22.11.3.4 C++ Example of Callback Client

Program 22-38

Client-Side C++ Example of the Polling Model.. 22-39

22.11.4.1 C++ Example of Generated Poller ... 22-39
22.11.4.2 C++ Example of Polling Client

Program 22-40

22.11.4.3 C++ Example of Using PollableSet
ina Client Program 22-42
Server Side.......cvvviiiiieiieieriinnionss 22-44
.......................... 22-45
22.13 Routing Object References. 22-46
................................ 22-47
Structures.ooiiiiiii ittt eienaennas 22-49
22.14.1.1 MessageBody 22-49
22.14.1.2 RequestMessage 22-49
22.14.1.3 ReplyDestination 22-50
22.14.1.4 Requestinfo L. 22-50
Interfacesc.viiiiinniiiniinnennnns 22-51
22.142.1 ReplyHandler.................... 22-51
22.1422Router i 22-51
22,1423 send_request 22-51
22.14.2.4 send_multiple_requests 22-51
22.14.2.5 UntypedReplyHandler 22-51
22.142.6reply . .o 22-51
22.14.2.7 PersistentRequest 22-52
22.14.2.8 readonly attribute reply_available 22-52
22,1429 get_replyl 22-52
22.14.2.10 attribute associated_handler 22-52
22.14.2.11 PersistentRequestRouter 22-53
22.14.2.12 create_persistent_request 22-53

XXXii

Common Object Request Broker Architecture (CORBA). v2.6

December 2001

0852

-Contents

December 2001

22.14.3 Routing Protocolc.oviivnnennn, 22-53
22.143.1 InvokingClient 22-54
22.14.3.2 Initial Request Router 22-55
22.14.3.3 Request Routing Algorithm 22-55
22.14.3.4 Intermediate Request Router 22-56
22,1435 TargetRouter 22-56
22.14.3.6 Replying to a Type-specific

ReplyHandler 22-58
22.14.3.7 Replying to an UntypedReplyHandler 22-58
22.14.3.8 Handling of Service Contexts 22-58

22.14.3.9 Handling LOCATION_FORWARD
Replies ot 22-59
22.143.10 Routing of Replies 22-59
22.14.3.11 UntypedReplyHandler 22-59
22.15 Router Administrationo, 22-60
22.15.1 Constantsiviviiareineriertteecnaaas 22-63
22.15.1.1 typedef short RegistrationState 22-63
22.15.2 EXCeptionsc.cveviiecnrneiantanacnoans 22-64
22.15.2.1 exception InvalidState 22-64
22.15.3 Valuetypescccevenienenrennannananns 22-64
22.153.1 RetryPolicy 22-64
22.15.3.2 ImmediateSuspend 22-64
22.15.3.3 UnlimitedPing 22-64
22.15.3.4 LimitedPing 22-64
22.153.5 DecayPolicy 22-65
22.153.6 ResumePolicy 22-65
22.15.4 Interfacescvveitvrirenroceranon vee. 22-65
22.154.1 RouterAdmin 22-65
22.15.4.2 register_destination 22-65
22.15.4.3 suspend_destination 22-65
22.15.4.4 resume_destination 22-65
22.15.4.5 unregister_destination 22-66
23. MinimumCORBAciitiiiieeeinnesn . ceeeans 23-1
23.1 Introductionoiiuiiiiiiiiii 23-2
232 IDL. .. 23-2
23.3 CORBA Omitted Features 2322
23.4 ORB Interface Omissions. 23-3
23401 ORBiiiiiiiiieninetncennsanrsnanosns 23-3
2342 Object.....civeeriinirsnerasnansnsoananns 234
23.43 ConstructionPolicycovvviiiienianes 234
23.5 Dynamic Invocation Interface 23-5
23.6 Dynamic Skeleton Interface........................ 23-5
237 DynamiC ANy.t 23-5
23.8 Interface Repository......... 23-5
2381 TypeCode.......oviiiiiieiiiiiiinneenians 23-5
23.9 Portable Object Adapter.c.cviuvenn .. 23-6
23.9.1 Interfacesciviviiienieiinnnaannas 23-6
239.1.1POA ... e 23-6
Common Object Request Broker Architecture (CORBA), v2.6 Xxxiii

0853

Contents

XXXiv

239.12Curmrent 23-6
23.9.1.3 Policy interfaces 23-7
239.1.4POAManager 23-7
23.9.1.5 AdapterActivator 23-7
23.9.1.6 ServantManagers 23-7
23.9.2 Policiesovveiriiiinirieneniacnnasannas 23-7
23.9.2.1 ThreadPolicy 23-7
23.9.2.2 LifespanPolicy 23-8
23.9.2.3 ObjectldUniquenessPolicy 23-8
23.9.2.4 ldAssignmentPolicy 23-8
23.9.2.5 ServantRetentionPolicy 23-8
23.9.2.6 RequestProcessingPolicy 23-8
23.9.2.7 implicitActivationPolicy 23-9
23.10 Interoperability.......... 23-9
23.10.1 DCE Interoperability....................... 23-9
23.11 COM/CORBA Interworking.ooueveenn.. 23-10
23,12 INterCePlOTS. . o vttt et et e 23-10
23.13 Language Mappings.couiirinnnenn.. 23-10
23.13.1 C++ Mapping Specific Issues 23-10
23.13.2 Java Mapping Specific Issues 23-10
23.14 minimumCORBAOMGIDL............. 23-11
23.14.1 ORBlInterfacecoivvvernrienrnnnnn 23-11
23.14.2 Dynamic Invocation Interface................ 23-14
23.14.3 Dynamic Skeleton Interface 23-14
23.14.4 Dynamic Management of Any Values 23-14
'23.14.5 Interface Repositoryco0venennn 23-14
23.14.6 Portable Object Adapter.................... 23-22
23.14.7 Interceptorsc.ceveeeeerornovoconnnas 23-29
24. Real-TimeCORBA...........civiieiinenennn. creeeeeens 24-1
24.1 Goals of the Specification. PIPI 24-2
24.2 ExtendingCORBA..................... e 24-3
243 Approachto Real-TimeCORBA 24-3
24.3.1 The Natureof Real-Time.................... 24-3
24.3.2 Meeting Real-Time Requirements 24-4
2433 activitieS ... vvt ittt ittt 24-4
24.3.4 End-to-End Predictability................... 24-5
24.3.5 Managementof Resourcesccovevvnnne 24-6
244 Compatibility 24-6
244.1 Interoperabilityciiiiiiiiiiaiann 24-6
2442 Portability.0ttt 24-7
2443 CORBA - Real-Time CORBA Interworking.... 24-7
245 Real-Time CORBA Architectural Overview 24-7
24.5.1 Real-Time CORBA Modules................. 24-8
2452 Real-TimeORB..........coviiiiiinianan, 24-8
24.5.3 Thread Scheduling........cccovvevieneeian, 24-9
Common Ohject Request Broker Architecture (CORBA), v2.6 December 2001

0854

Contents

December 2001

2454 Real-Time CORBA Priorityccoveveenn
24.5.5 Native Priority and PriorityMappings.........
24.5.6 Real-Time CORBA Current........ccovevens
2457 PriorityModelscoiiierenienionenn
24.5.8 Real-Time CORBA Mutexes and Priority Inheritance
24-10
2459 Threadpools........coivviueienrviennenens
24.5.10 Priority Banded Connectionscccvt.
24.5.11 Non-Multiplexed Connections
24.5.12 Invocation Timeoutscoovvvaenenss
24.5.13 Client and Server Protocol Configuration......
24.5.14 Real-Time CORBA Configuration............
24.5.15 Scheduling Service.........cvvvvvieerivanns
246 Real-TimeORB coivin.
24.6.1 Real-Time ORB Initialization................
24.6.2 Real-Time CORBA System Exceptions

247 Real-TIimePOA i e,
24.8 Native Thread Priorities,
249 CORBAPHONtYy.......civiii i,

24.10 CORBA Priority Mappingscoiuiieennnn
24.10.1 C Language binding for PriorityMapping......
24.10.2 C++ Language binding for PriorityMapping ...
24,10.3 Ada Language binding for PriorityMapping.. ..
24.10.4 Java Language binding for PriorityMapping . ..
24.10.5 Semanticsvvviiiiriiiatticrr e anaese

24.11 Real-TimeCurrent it i

24.12 Real-Time CORBA Priority Models.
24.12.1 PriorityModelPolicycovviaeennns
24.12.2 Scope of PriorityModelPolicy................
24.12.3 Client Propagated Priority Model
24.12.4 Server Declared Priority Model

24.12.5 Setting Server Priority on a per-Object
Reference Basisciiviieieennn,

24.13 Priority Transforms
24.13.1 C Language Binding for PriorityTransform
24.13.2 C++ Language Binding for PriorityTransform. .
24.13.3 Ada Language binding for PriorityTransform ..
24.13.4 Java Language binding for PriorityTransform..
24.13.5 Semantics iveiiieiiiiiiiieteienaaran

24.14 Mutex Interface e

24.15 Threadpools
24.15.1 Creation of Threadpool without Lanes
24.15.2 Creation of Threadpool with Lanes
24.15.3 Request Bufferingccc0vnn,

Common Object Request Broker Architecture (CORBA), v2.6

XXXV

0855

Contents

24.15.4 Scope of ThreadpoolPolicy 24-33
24.16 Implicit and Explicit Binding. 24-33
24.17 Priority Banded Connections 24-34
24.17.1 Scope of PriorityBandedConnectionPolicy 24-35
24.17.2 Binding of Priority Banded Connection........ 24-36
24.18 PrivateConnectionPolicy 24-37
24.19 Invocation Timeout............. ... 24-38
24.20 Protocol Configuration. 24-38
24.20.1 ServerProtocolPolicy.........ovvvrieenennnn 24-39
24.20.2 Scope of ServerProtocolPolicy 24-41
24.20.3 ClientProtocolPolicycocovvevevnvennnns 24-41
24.20.4 Scope of ClientProtocolPolicy................ 24-42
24.20.5 Protocol Configuration Semantics 24-42
2421 Consolidated IDL. 24-43
2422 Introductioncvitiiiiiiii e i 24-48
2423 IDL. ... e 24-49
2424 SemantiCs. oot it 24-50
2425 Example. i e 24-51
24.25.1 Server C++ ExampleCode 24-51
24.25.2 Client C++ Example Code. cresess 24-52
24.25.3 Explanation of Example Ceeeiiene cees 24-53
25. Fault Tolerant CORBA....... P £ |
25.1 FaultTolerant CORBA....................... 25-1
25.1.1 Fault Tolerance for Diverse Applications....... 25-1
25.1.2 Objectives. ... covveverrensrencaroonasaons 25-2
25.1.3 BasicConcepts.......icovevevanrirnnereoes 25-3
25.1.3.1 Replication and Object Groups 25-3
25.1.3.2 Fault Tolerance Domains 25-3
25.1.3.3 Fault Tolerance Properties 25-3
25.1.3.4 Strong Replica Consistency 25-4
25.1.4 Architectural Overview...........ccoevvenne 25-4
25.1.4.1 Fault Tolerance Property Management . 25-6
25.1.4.2 Replication Management 25-6
25.1.4.3 Fault Detection and Notification 25-7
25.1.4.4 Logging and Recovery 25-7
25.1.5 Requirements........covveeeeinveceacnsans 25-8
25.1.6 Limitations.........civiivvierenrronrnnne 25-11
25.2 Basic Fault Tolerance Mechanisms 25-12
’ 2521 OVEIVIEW. . ..oviierereronsnnossrroenssones 25-12
25.2.2 Interoperable Object Group References 25-13
25.2.2.1 TAG_FT_GROUP Component 25-14
25.2.2.2 TAG_FT_PRIMARY Component 25-16

25.2.3 Interoperable Object Group Reference
Operationsc.covuieeveneeensaranens 25-16

XXxvi Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0856

Contents

25.2.3.1 get_interface 25-17
2523205 8.0 iit i 25-17
252330smil ... 25-17
2523.4n0n_€eXISteNtttt 25-17
25.23.5is_equivalent 25-17
25236hashol 25-18
25.2.3.7 create_request.l an 25-18
25.23.8getpolicy 25-18
25.2.3.9 get_domain_managers 25-18
25.2.3.10 set_policy_overrides 25-18
25.2.4 Modes of Profile Addressing................. 25-18
25.2.4.1 Profiles That Address Object Group
Memberst 25-18
25.2.4.2 Profiles That Address Gateways 25-19
25.2.4.3 Choice of Profile Addressing Mode ... 25-19
25.2.5 Accessing Server Object Groups 25-19
25.2.5.1 Access via l10P Directly to the
Primary Member 25-20
25.2.5.2 Access via lIOP and a Gateway 25-20
25.2.5.3 Access via a Multicast Group
Communication Protocol 25-20
25.2.6 Extensions to CORBA Failover Semantics 25-21
25.2.7 Most Recent Object Group Reference......... 25-22
25.2.7.1 FT_GROUP_VERSION Service Context 25-22
25.2.8 Transparent Reinvocation.............. .00 25-23
25.2.8.1 FT_REQUEST Service Context 25-24
25.2.8.2 Request Duration Policy 25-26
25.2.8.3 Fault Handling for GIOP Messages ... 25-26
25.2.9 Transport Heartbeats 25-27
25.2.9.1 TAG_FT_HEARTBEAT_ENABLED
Component 25-28
25.2.9.2 Heartbeat Policy 25-28
25.2.9.3 Heartbeat Enabled Policy 25-30
253 Replication Management 25-31
25.3.1 Overview........covoevecenioornnnasasanns 25-31
25.3.2 Fault Tolerance Properties 25-32
25.3.2.1 ReplicationStyle 25-32
25.3.2.2 MembershipStyle 25-33
25.3.2.3 ConsistencyStyle 25-34
25.3.2.4 FaultMonitoringStyle 25-35
25.3.2.5 FaultMonitoringGranularity 25-35
25.32.6Factories 25-36
25.3.2.7 InitialNumberReplicas 25-36
25.3.2.8 MinimumNumberReplicas........... 25-36
25.3.3 FaultMonitoringintervalAndTimeout 25-37
25.3.4 Checkpointintervalieivennenees 25-37
2535 Common Types......oovvveenevenssaconnsen 25-38
253.5.1 Identifiersl . 25440
25352Exceptions 25-42
253.6 Replication Manager..........c.covvuverans 25-44
2536.1 Operations 25-44
25.3.7 PropertyManagerccc000nnennns 25-45
25.3.7.1 Operationsu. 25-46
December 2001 Common Object Request Broker Architecture (CORBA), v2.6 xxxvii

0857

Contents

25.3.7.2 get_properties 25-49
25.3.8 ObjectGroupManager..........coevvesvnens 25-49
25.3.8.10perations000nnn. 25-50
25.3.9 GenericFactoryciiiiiiiiinininieans 25-56
2539.11dentiflers 25-59
25.39.20perationsc. ... 25-59
25.3.10 Obtaining the Reference for the
Replication Manager....................... 25-61
25311 UseCases ..vvvveernnnsnreressessssvonsass 25-61
25.3.11.1 Infrastructure-Controlled Membership
Style . ..o 25-61
25.3.11.2 Application-Controlled Membership
Style . oo 25-63
25.3.11.3 Unreplicated Object Creation and
Deletionccoviviiiennnn. 25-65
254 FaultManagementt 25-66
2541 OVerview.........covivvvvenccnrorsnsnsans 25-66
25.4.2 Architecture.,........cociviieiiiiiiiinenes 25-67
25.4.2.1 Fault Detection 25-68
25.4.2.2 Fault Notification 25-68
25423 Fault Analysis 25-68
25.42.4 Scalability 25-68
25.4.2.5 Deployment of Fault Detectors 25-69
25.4.3 Connecting Fault Detectors to Applications 25-70
25.44 Pull-Based Monitoringc...n 25-71
25.4.4.1 PULL Fault Monitoring Style 25-71
25.4.4.2 PullMonitorable Interface 25-71
2545 FaultEventTypesccciviveeiennens 25-72
25.4.5.1 ObjectCrashFault 25-72
254.6 FaultNotifier........cccoiivineeeerennnns 25-73
25.4.6.1 Identifiersl 25-75
254.6.20perationsiiienainn. 25-75
25463 Filteringo il 25-77
25.4.6.4 Mapping of the Fault Notifier to
the CosNotification Service 25-78
2547 USECaSES ...cvvvvnnrnninrnencanssesannans 25-79
25.4.7.1 The Fault Detector as a Fault
Notification Supplier 25-79
25.4.7.2 The Replication Manager as a Fault
Notification Consumer 25-80
25.5 Logging & Recovery Management. 25-81
2551 Overview.......cooiieinsiessenssecioneons 25-81
255.2 Logging Mechanism.............cco0vevunne 25-81
25.53 Recovery Mechanism..........c.oveviuvnnns 25-82
25.54 Checkpointable and Updateable Interfaces..... 25-84
2554.1 1dentifiers 25-85
25.54.2Exceptions00eeniiinn 25-85
25.5430perations00euainan 25-86
25544set_update 25-87
2555 UseCase....ovivireinresinsnoannonsnonass 25-87
25.5.5.1 Infrastructure-Controlled .
Consistency Style 25-87
Xxxviii Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0858

Contents

26. Secure Interoperability............. criensecnenns PN 26-1
26.1 OVerview e 26-2
26.1.1 AsSumptions.........cccieeenenenaaricaans 26-3
26.2 Protocol Message Definitions. 26-4
26.2.1 The Security Attribute Service Context Element 26-4
26.2.2 SAS context_data Message Body Types........ 26-5
26.2.2.1 EstablishContext Message Format 26-5
26.2.2.2 ContextError Message Format 26-7
26.2.2.3 CompleteEstablishContext Message
Format 26-7
26.2.2.4 MessagelnContext Message Format ... 26-9
26.2.3 Authorization Token Format 26-10
26.2.3.1 Extensions of the IETF AC Profile for
CSIV2 . 26-11
26.2.4 Client Authentication Token Format 26-11
26.2.4.1 Username Password GSS Mechanism
(GSSUP) ..o 26-12
26.2.5 ldentity Token Format.........cccvvevnvenvnns 26-14
26.2.6 Principal Names and Distinguished Names.. ... 26-15
26.3 Security Attribute Service Protocol 26-16
26.3.1 Compound Mechanismsccvvuenn .. 26-16
26.3.1.1 Context Validation 26-17
26.3.1.2 Legend for Request Principal
Interpretations 26-18
26.3.1.3 Anonymous ldentity Assertion 26-19
26.3.1.4 Presumed Trust 26-19
26.3.1.5 Failed Trust Evaluations 26-19
26.3.1.6 Request Principal Interpretations 26-20
26.3.2 Session Semantics Ceeeseisaserananes 26-21
26.3.2.1 Negotiation of Statefulness 26-21
26.3.2.2 Stateful/Reusable Contexts 26-22
26.3.3 TSSState Machine..........coovvivvvenennns 26-23
26.3.3.1 TSS State Machine Actions 26-25
26.3.4 CSSStateMachinecovveiiernsennn 26-27
26.3.4.1 CSS State Machine Actions 26-30
26.3.5 ContextError Values and Exceptions.......... - 26-30
26.4 Transport Security Mechanisms. 26-31
26.4.1 Transport Layer Interoperability............. 26-31
26.4.2 Transport Mechanism Configuration.......... 26-31
26.4.2.1 Recommended SSL/TLS Ciphersuites . 26-31
26.5 Interoperable Object References 26-32
26.5.1 Target Security Configuration 26-32
26.5.1.1 AssociationOptions Type 26-33
26.5.1.2 Transport Address 26-35
26.5.1.3 TAG_TLS_SEC_TRANS 26-35
26.5.1.4 TAG_SECIOP_SEC_TRANS 26-37
26.5.1.5 TAG_CSI_SEC_MECH_LIST 26-38
26.5.1.6 TAG_NULL_TAG 26-43
26.5.2 Client-side Mechanism Selection 26-43

26.5.3 Client-Side Requirements and Location Binding 26-44

December 2001 Commaon Object Request Broker Architecture (CORBA), v2.6 XXXiX

0859

Contents

26.5.3.1 Comments on Establishing Trust in Client 2645

26.6 ConformancelLlevels...................... e 26-45
26.6.1 ConformanceLevelO............ccivvvvnnns 26-45
26.6.1.]1 Transport-Layer Requirements 26-45

26.6.1.2 Service Context Protocol Requirements 26-46
26.6.1.3 Interoperable Object References (IORs) 26-47

26.6.2 ConformancelLevel 1..........0000tvvevnnns 26-47

26.6.2.1 Authorization Tokens 26-47

26.6.3 Conformancelevel2............covvvvneenn 26-47

26.6.3.1 Authorization-Token-Based Delegation 26-47

26.6.4 Stateful Conformance..........covvveenunn. 26-48

26.7 Sample Message Flows and Scenarios................ 26-48
26.7.1 Confidentiality, Trust in Server, and Trust in Client

Established in the Connection 26-49

26.7.1.1 Sample IOR Configuration 26-50

26.7.2 Confidentiality and Trust in Server Established in the
Connection - Stateless Trust in Client Established in
ServiceContextccvvvvnercrnronnrsees 26-51

26.7.2.1 Sample 1I0R Configuration 26-52

26.7.3 Confidentiality, Trust in Server, and Trust in Client

Established in the Connection - Stateless Trust

Association Established in Service Context..... 26-53
26.7.3.1 Sample IOR Configuration 26-54
26.7.3.2 Validating the Trusted Server 26-54
26.7.3.3 Presuming the Security of the

Connectionc.cvuen.n. 26-55

26.74 Confidentiality, Trust in Server, and Trust in Client
‘ Established in the Connection - Stateless Forward Trust

Association Established in Service Context..... 26-56
26.7.4.1 Sample IOR Configuration. 26-57
26.8 References forthisChapter 26-57
26.9 IDL. e e e 26-58
269.1 ModulelOP cciiiiriiieiennnacnanens 26-58
26.9.1.1 New Types Defined for CSIv2 26-58
26.9.2 Module GSSUP - Username/Password GSSAPI1
Token Formats........ W veeeserarreanananss 26-58

26.9.3 Module CSI - Common Secure Interoperability . 26-59
26.9.4 Module CSI1OP - CSlv2 10R Component

Tag Definitionsciviiiineninnone 26-63
Appendix A-OMGIDL Tagsoovviiniennnnssnaness oo A-l
GlosSary. ...ttt i ettt ie e 1
1T 1
xi Common Object Request Broker Architecture (CORBA). v2.6 December 2001

0860

About This Document

Preface

Under the terms of the collaboration between OMG and X/Open Co Ltd., this
document is a candidate for endorsement by X/Open, initially as a Preliminary
Specification and later as a full CAE Specification. The collaboration between OMG
and X/Open Co Ltd. ensures joint review and cohesive support for emerging object-
based specifications.

X/Open Preliminary Specifications undergo close scrutiny through a review process at
X/Open before publication and are inherently stable specifications. Upgrade to full
CAE Specification, after a reasonable interval, takes place following further review by
X/Open. This further review considers the implementation experience of members and
the full implications of conformance and branding.

Object Management Group

December 2001

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

Common Object Request Broker Architecture (CORBA), v2.6 XXxvii

0861

X/Open

X/Open is an independent, worldwide, open systems organization supported by most of
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through the
practical implementation of open systems. X/Open’s strategy for achieving its mission
is to combine existing and emerging standards into a comprehensive, integrated
systems environment called the Common Applications Environment (CAE).

The components of the CAE are defined in X/Open CAE specifications. These contain,
among other things, an evolving portfolio of practical application programming
interfaces (APIs), which significantly enhance portability of application programs at
the source code level. The APIs also enhance the interoperability of applications by
providing definitions of, and references to, protocols and protocol profiles.

The X/Open specifications are also supported by an extensive set of conformance tests
and by the X/Open trademark (XPG brand), which is licensed by X/Open and is
carried only on products that comply with the CAE specifications.

Intended Audience

The architecture and specifications described in this manual are aimed at software
designers and developers who want to produce applications that comply with OMG
standards for the Object Request Broker (ORB). The benefit of compliance is, in
general, to be able to produce interoperable applications that are based on distributed,
interoperating objects. As defined by the Object Management Group (OMG) in the
Object Management Architeciure Guide, the ORB provides the mechanisms by which
objects transparently make requests and receive responses. Hence, the ORB provides
interoperability between applications on different machines in heterogeneous
distributed environments and seamlessly interconnects multiple object systems.

Context of CORBA

The key to understanding the structure of the CORBA architecture is the Reference
Model, which consists of the following components:

* Object Request Broker, which enables objects to transparently make and receive
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described in this manual

« Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains. For example, the Life Cycle Service defines conventions for creating,
deleting, copying, and moving objects; it does not dictate how the objects are
implemented in an application. Specifications for Object Services are contained in
CORBAservices: Common Object Services Specification.

XXXxviii Commaon Object Request Broker Architecture (CORBA), v2.6 December 2001

0862

Associated Documents

December 2001

» Common Facilities, a collection of services that many applications may share,
but which are not as fundamental as the Object Services. For instance, a system
management or electronic mail facility could be classified as a common facility.
Information about Common Facilities will be contained in CORBAfacilities:
Common Facilities Architecture.

» Application Objects, which are products of a single vendor on in-house
development group that controls their interfaces. Application Objects correspond
to the traditional notion of applications, so they are not standardized by OMG.
Instead, Application Objects constitute the uppermost layer of the Reference
Model.

The Object Request Broker, then, is the core of the Reference Model. It is like a
telephone exchange, providing the basic mechanism for making and receiving calls.
Combined with the Object Services, it ensures meaningful communication between
CORBA-compliant applications.

The CORBA documentation set includes the following books:

 Object Management Architecture Guide defines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG
standards are based. It also provides information about the policies and
procedures of OMG, such as how standards are proposed, evaluated, and
accepted.

» CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

« CORBAservices: Common Object Services Specification contains specifications
for the Object Services.

» CORBAfacilities: Common Facilities Architecture contains the architecture for
Common Facilities.

OMG collects information for each book in the documentation set by issuing Requests
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote.

To obtain books in the documentation set, or other OMG publications, refer to the
enclosed subscription card or contact the Object Management Group, Inc. at:

OMG Headguarters
250 First Avenue, Suite 201
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

CORBA, v2.6: Associated Documents XXXiX

0863

Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mapping is
a sepdrate, optional compliance point. Optional means users aren’t required to
implement these points if they are unnecessary at their site, but if implemented, they
must adhere to the CORBA specifications to be called CORBA-compliant. For instance,
if a vendor supports C++, their ORB must comply with the OMG IDL to C++ binding
specified in the C++ Language Mapping Specification.

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to “Compliance to COM/CORBA
Interworking” on page 17-34.

As described in the OMA Guide, the OMG’s Core Object Model consists of a core and
components. Likewise, the body of CORBA specifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

The CORBA core specifications are categorized as follows:
CORBA Core, as specified in Chapters 1-11

CORBA Interoperability, as specified in Chapters 12-16
CORBA Interworking, as specified in Chapters 17-21

CORBA Quality of Service, as specified in Chapters 22-26

Note — The CORBA Language Mappings have been separated from the CORBA Core
and each language mapping is its own separate book. Refer to CORBA Language
Mappings at the OMG Formal Document web area for this information.

Structure of This Manual

This manual is divided into the categories of Core, Interoperability, and Interworking.
These divisions reflect the compliance points of CORBA. In addition to this preface,
CORBA: Common Object Request Broker Architecture and Specification contains the
following chapters:

Core

Chapter 1 - The Object Model describes.the computation model that underlies the
CORBA architecture.

Chapter 2 - CORBA Overview contains the overall structure of the ORB architecture
and includes information about CORBA interfaces and implementations.

x1 Common Object Request Broker Architecture (CORBA). v2.6 December 2001

0864

December 2001

Chapter 3 - OMG IDL Syntax and Semantics details the OMG interface definition
language (OMG IDL), which is the language used to describe the interfaces that client

.objects call and object implementations provide.

Chapter 4 - ORB lnterface defines the interface to the ORB functions that do not
depend on object adapters: these operations are the same for all ORBs and object
implementations.

Chapter 5 - Value Type Semantics describes the semantics of passing an object by
value, which is similar to that of standard programming languages.

Chapter 6 - Abstract Interface Semantics explains an 1DL abstract interface, which
provides the capability to defer the determination of whether an object is passed by
reference or by value until runtime.

Chapter 7 - The Dynamic Invocation lnterface details the D1, the client’s side of
the interface that allows dynamic creation and invocation of request to objects.

Chapter 8 -- The Dynamic Skeleton lnterface describes the DSI, the server’s-side
interface that can deliver requests from an ORB to an object implementation that does
not have compile-time knowledge of the type of the object it is implementing. DSI is
the server’s analogue of the client’s Dynamic Invocation Interface (DIl).

Chapter 9 - Dynamic Management of Any Values details the interface for the
Dynamic Any type. This interface allows statically-typed programming languages such
as C and Java to create or receive values of type Any without compile-time knowledge
that the typer contained in the Any.

Chapter 10 - Interface Repository explains the component of the ORB that manages
and provides access to a collection of object definitions.

Chapter 11 - Portable Object Adapter defines a group of IDL interfaces than an
implementation uses to access ORB functions.

Interoperability

Chapter 12 - Interoperability Overview describes the interoperability architecture
and introduces the subjects pertaining to interoperability: inter-ORB bridges; general
and Internet inter-ORB protocols (GIOP and 110OP); and environment-specific, inter-
ORB protocols (ESIOPs).

Chapter 13 - ORB Interoperability Architecture introduces the framework of ORB
interoperability, including information about domains; approaches to inter-ORB
bridges; what it means to be compliant with ORB interoperability; and ORB Services
and Requests.

Chapter 14 - Building Inter-ORB Bridges explains how to build bridges for an
implementation of interoperating ORBs.

Chapter 15 - General Inter-ORB Protocol describes the general inter-ORB protocol
(GIOP) and includes information about the GIOP’s goals, syntax, format, transport,
and object location. This chapter also includes information about the Internet inter-
ORB protocol (110P).

CORBA, v2.6: Structure of This Manual xli

0865

xlii

Chapter 16 - DCE ESIOP - Environment-Specific Inter-ORB Protocol (ESIOP)
details a protocol for the OSF DCE environment. The protocol is called the DCE
Environment Inter-ORB Protocol (DCE ESIOP).

Interworking

Chapter 17 - Interworking Architecture describes the architecture for
communication between two object management systems: Microsoft’s COM (including
OLE) and the OMG’s CORBA.

Chapter 18 - Mapping: COM and CORBA explains the data type and interface
mapping between COM and CORBA. The mappings are described in the context of
both Winl6 and Win32 COM.

Chapter 19 - Mapping: OLE Automation and CORBA details the two-way mapping
between OLE Automation (in ODL) and CORBA (in OMG IDL).

Note: Chapter 19 also includes an appendix describing solutions that vendors might
implement to support existing and older OLE Automation controllers and an appendix
that provides an example of how the Naming Service could be mapped to an OLE
Automation interface according to the Interworking specification.

Chapter 20 - Interoperability with non-CORBA Systems describes the effective
access to CORBA servers through DCOM and the reverse.

Chapter 21 - Portable Interceptors defines ORB operations that allow services such
as security to be inserted in the invocation path.

Quality of Service (QoS)

Chapter 22 - CORBA Messaging includes three general topics: Quality of Service,
Asynchronous Method Invocations (to include Time-Independent or “Persistent”
Requests), and the specification of interoperable Routing interfaces to support the
transport of requests asynchronously from the handling of their replies.

Chapter 23 - Minimum CORBA describes minimumCORBA, a subset of CORBA
designed for systems with limited resources.

Chapter 24 - Real-Time CORBA defines an optional set of extensions to CORBA
tailored to equip ORBs to be used as a component of a Real-Time system.

Chapter 25 - Fault Tolerant CORBA describes Fault Tolerant systems, basic fault
tolerance mechanisms, replication management, and logging and recovery -
management.

Chapter 26 - Common Secure Interoperability defines the CORBA Security
Attribute Service (SAS) protocol and its use within the CS1v2 architecture to address
the requirements of CORBA security for interoperable authentication, delegation, and
privileges.

Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0866

Typographical Conventions

Acknowledgements

December 2001

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.
Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

The following companies submitted and/or supported parts of the specifications that
were approved by the Object Management Group to become CORBA:

¢ Adiron, LLC

* Alcatel

¢ BEA Systems, Inc.

* BNR Europe Ltd.

 Borland International, Inc.

» Compaq Computer Corporation

» Concept Five Technologies

* Cooperative Research Centre for Distributed Systems Technology (DSTC)
* Defense Information Systems Agency
* Digital Equipment Corporation

* Ericsson

¢ Eternal Systems, Inc.

 Expersoft Corporation

¢ France Telecom

« FUJNTSU LIMITED

* Genesis Development Corporation

e Gensym Corporation

¢ Hewlett-Packard Company

* HighComm

* Highlander Communications, L.C.

¢ Humboldt-University

* HyperDesk Corporation

« ICL, Plc.

* Inprise Corporation

« International Business Machines Corporation
* International Computers, Inc.

CORBA, v2.6: Typographical Conventions xliii

0867

« IONA Technologies, Plc.

» Lockheed Martin Federal Systems, Inc.
¢ Lucent Technologies, Inc.

» Micro Focus Limited

e MITRE Corporation

e Motorola, Inc.

* NCR Corporation

+ NEC Corporation

* Netscape Communications Corporation
¢ Nortel Networks

* Northern Telecom Corporation

¢ Novell, Inc.

+ Object Design, Inc.

¢ Objective Interface Systems, Inc.

¢ Object-Oriented Concepts, Inc.

¢ OC Systems, Inc.

 Open Group - Open Software Foundation
¢ QOracle Corporation

« PeerLogic, Inc.

« Persistence Software, Inc.

¢ Promia, Inc.

« Siemens Nixdorf Informationssysteme AG
« SPAWAR Systems Center

« Sun Microsystems, Inc.

« SunSoft, Inc.

* Sybase, Inc.

* Telefonica Investigacion y Desarrollo S.A. Unipersonal
¢ TIBCO, Inc.

¢ Tivoli Systems, Inc.

« Tri-Pacific Software, Inc.

* University of California, Santa Barbara
* University of Rhode Isiand

+ Visual Edge Software, Ltd.

¢ Washington University

In addition to the preceding contributors, the OMG would like to acknowledge Mark
Linton at Silicon Graphics and Doug Lea at the State University of New York at
Oswego for their work on the C++ mapping.

References

IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-35.

xliv Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0868

The Common Object Request Broker: Architecture and Specification, Revision 2.2,
February 1998.

CORBAservices: Common Object Services Specification, Revised Edition, OMG TC
Document 95-3-31.

COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.
COBOL 85 ANSI X3.23-1985 / 1SO 1989-i985.
1EEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

XDR: External Data Representation Standard, RFC1832, R. Srinivasan, Sun Micro-
systems, August 1995, ’

OSF Character and Code Set Registry, OSF DCE S1G RFC 40.1 (Public Version), S.
(Martin) O’Donnell, June 1994.

RPC Runtime Support For 118N Characters — Functional Specification, OSF DCE
SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Qpen System Interface Definitions, 1ssue 4 Version 2, 1995.

December 2001 CORBA, v2.6: References xlv

0869

xlvi

Common Object Request Broker Architecture (CORBA), v2.6

E

- T
s

s

December 2001

0870 &

Interoperability Overview 12

Contents

This chapter contains the following sections.

Section Title Page
“Elements of Interoperability” 12-1
“Relationship to Previous Versions of CORBA” 12-4
“Examples of Interoperability Solutions” 12-5
“Motivating Factors” 12-8
“Interoperability Design Goals” 12-9

ORB interoperability specifies a comprehensive, flexible approach to supporting
networks of objects that are distributed across and managed by multiple, heterogeneous
CORBA-compliant ORBs. The approach to “interORBability” is universal, because its
elements can be combined in many ways to satisfy a very broad range of needs.

12.1 Elements of Interoperability

The elements of interoperability are as follows:

® ORB interoperability architecture

¢ Inter-ORB bridge support

® General and Internet inter-ORB Protocols (GIOPs and 110Ps)

In addition, the architecture accommodates environment-specific inter-ORB protocols
(ESIOPs) that are optimized for particular environments such as DCE.

December 2001 Common Object Request Broker Architecture (CORBA), v2.6 12-1

0871

12

12-2

12.1.1 ORB Interoperability Architecture

The ORB Interoperability Architecture provides a conceptual framework for defining
the elements of interoperability and for identifying its compliance points. 1t also
characterizes new mechanisms and specifies conventions necessary to achieve
interoperability between independently produced ORBs.

Specificaily, the architecture introduces the concepts of immediate and mediated
bridging of ORB domains. The Internet Inter-ORB Protocol (110P) forms the common
basis for broad-scope mediated bridging. The inter-ORB bridge support can be used to
implement both immediate bridges and to build “half-bridges” to mediated bridge
domains.

By use of bridging techniques, ORBs can interoperate without knowing any details of
that ORB’s implementation, such as what particular 1PC or protocols (such as ESIOPs)
are used to implement the CORBA specification.

The 11OP may be used in bridging two or more ORBs by implementing “half bridges”
that communicate using the 11OP. This approach works for both stand-alone ORBs, and
networked ones that use an ESIOP.

The 110OP may also be used to implement an ORB’s internal messaging, if desired.
Since ORBs are not required to use the 110P internally, the goal of not requiring prior
knowledge of each others’ implementation is fully satisfied.

12.1.2 Inter-ORB Bridge Support

The interoperability architecture clearly identifies the role of different kinds of
domains for ORB-specific information. Such domains can include object reference
domains, type domains, security domains (e.g., the scope of a Principal identifier), a
transaction domain, and more.

Where two ORBs are in the same domain, they can communicate directly. In many
cases, this is the preferable approach. This is not always true, however, since
organizations often need to establish local control domains.

When information in an invocation must leave its domain, the invocation must traverse
a bridge. The role of a bridge is to ensure that content and semantics are mapped from
the form appropriate to one ORB to that of another, so that users of any given ORB
only see their appropriate content and semantics.

The inter-ORB bridge support element specifies ORB APls and conventions to enable
the easy construction of interoperability bridges between ORB domains. Such bridge
products could be developed by ORB vendors, Sieves, system integrators, or other
third-parties.

Because the extensions required to support Inter-ORB Bridges are largely general in
nature, do not impact other ORB operation, and can be used for many other purposes
besides building bridges, they are appropriate for all ORBs to support. Other
applications include debugging, interposing of objects, implementing objects with
interpreters and scripting languages, and dynamically generating implementations.

Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0872

12

The inter-ORB bridge support can also be used to provide interoperability with non-
CORBA systems, such as Microsoft’s Component Object Model (COM). The ease of
doing this will depend on the extent to which those systems conform to the CORBA
Object Model.

12.1.3 General Inter-ORB Protocol (GIOP)

The General Inter-ORB Protocol (GIOP) element specifies a standard transfer syntax
(low-level data representation) and a set of message formats for communications
between ORBs. The GIOP is specifically built for ORB to ORB interactions and is
designed to work directly over any connection-oriented transport protocol that meets a
minimal set of assumptions. It does not require or rely on the use of higher level RPC
mechanisms. The protocol is simple, scalable and relatively easy to implement. It is
designed to allow portable implementations with smail memory footprints and
reasonable performance, with minimal dependencies on supporting software other than
the underlying transport layer.

While versions of the GIOP running on different transports would not be directly
interoperable, their commonality would allow easy and efficient bridging between such
networking domains.

12.1.4 Internet Inter-ORB Protocol (IIOP)

The Internet Inter-ORB Protocol (11OP) element specifies how G1OP messages are
exchanged using TCP/IP connections. The 110P specifies a standardized
interoperability protocol for the Internet, providing “out of the box” interoperation
with other compatible ORBs based on the most popular product- and vendor-neutral
transport layer. It can also be used as the protocol between half-bridges (see below).

The protocol is designed to be suitable and appropriate for use by any ORB to
interoperate in Internet Protocol domains unless an alternative protocol is necessitated
by the specific design center or intended operating environment of the ORB. In that
sense it represents the basic inter-ORB protocol for TCP/IP environments, a most
pervasive transport layer.

The 110P’s relationship to the G1OP is similar to that of a specific language mapping
to OMG IDL; the GIOP may be mapped onto a number of different transports, and
specifies the protocol elements that are common to all such mappings. The. GIOP by
itself, however, does not provide complete interoperability, just as IDL cannot be used
to build complete programs. The 110P and other similar mappings to different
transports, are concrete realizations of the abstract G1OP definitions, as shown in
Figure 12-1 on page 12-4.

December 2001 CORBA. v2.6: Elements of Interoperability 12-3

0873

12

Mandatory for CORBA

CORBA/IDL

N

ESIOPs

Figure 12-1 Inter-ORB Pratocol Relationships.

12.1.5 Environment-Specific Inter-ORB Protocols (ESIOPs)

This specification also makes provision for an open-ended set of Environment-Specific
Inter-ORB Protocols (ESIOPs). Such protocols would be used for “out of the box”
interoperation at user sites where a particular networking or distributing computing
infrastructure is already in general use.

Because of the opportunity to leverage and build on facilities provided by the specific
environment, ESIOPs might support specialized capabilities such as those relating to
security and administration.

While ESIOPs may be optimized for particular environments, all ESIOP specifications
will be expected to conform to the general ORB interoperability architecture
conventions to enable easy bridging. The inter-ORB bridge support enables bridges to
be built between ORB domains that use the 110P and ORB domains that use a
particular ESIOP. ‘ :

12.2 Relationship to Previous Versions of CORBA

The ORB Interoperability Architecture builds on Common Object Request Broker
Architecture by adding the notion of ORB Services and their domains. (ORB Services
are described in Section 13.2, “ORBs and ORB Services,” on page 13-3). The
architecture defines the problem of ORB interoperability in terms of bridging between
those domains, and defines several ways in which those bridges can be constructed.
The bridges can be internal (in-line) and external (request-level) to ORBs.

APIs included in the interoperability specifications include compatible extensions to

_previous versions of CORBA to support request-level bridging:

® A Dynamic Skeleton Interface (DS]) is the basic support needed for building
request-level bridges. It is the server-side analogue of the Dynamic Invocation
Interface and in the same way it has general applicability beyond bridging. For
information about the Dynamic Skeleton Interface, refer to the Dynamic Skeleton
Interface chapter.

Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0874

12

® APIs for managing object references have been defined, building on the support
identified for the Relationship Service. The APIs are defined in Object Reference
Operations in the ORB Interface chapter of this book. The Relationship Service is
described in the Relationship Service specification; refer to the CosObjectldentity
Module section of that specification.

12.3 Examples of Interoperability Solutions

The elements of interoperability (Inter-ORB Bridges, General and Internet Inter-ORB
Protocols, Environment-Specific Inter-ORB Protocols) can be combined in a variety of
ways to satisfy particular product and customer needs. This section provides some
examples.

12.3.1 Example 1

ORB product A is designed to support objects distributed across a network and provide
“out of the box” interoperability with compatible ORBs from other vendors. In
addition it allows bridges to be built between it and other ORBs that use environment-
specific or proprietary protocols. To accomplish this, ORB A uses the 1OP and
provides inter-ORB bridge support.

12.3.2 Example 2

ORB product B is designed to provide highly optimized, very high-speed support for
objects located on a single machine. For example, to support thousands of Fresco GU!I
objects operated on at near function-call speeds. In addition, some of the objects will
need to be accessible from other machines and objects on other machines will need to
be infrequently accessed. To accomplish this, ORB A provides a half-bridge to support
the Intemet 10P for communication with other “distributed” ORBs.

12.3.3 Example 3

ORB product C is optimized to work in a particular operating environment. 1t uses a
particular environment-specific protocol based on distributed computing services that
are commonly available at the target customer sites. In addition, ORB C is expected to
interoperate with other arbitrary ORBs from other vendors. To accomplish this, ORB C
provides inter-ORB bridge support and a companion half-bridge product (supplied by
the ORB vendor or some third-party) provides the connection to other ORBs. The half-
bridge uses the 110P to enable interoperability with other compatible ORBs.

12.3.4 Interoperability Compliance

An ORB is considered to be interoperability-compliant when it meets the following
requirements:

December 2001 CORBA, v2.6: Examples of Interaperability Solutions - 12-5

0875

12

12-6

® |n the CORBA Core part of this specification, standard APls are provided by an
ORB to enabie the construction of request-level inter-ORB bridges. APIs are
defined by the Dynamic Invocation Interface, the Dynamic Skeleton Interface, and
by the object identity operations described in the Interface Repository chapter of
this book.

* An Internet Inter-ORB Protocol (110P) (explained in the Building Inter-ORB
Brdiges chapter) defines a transfer syntax and message formats (described
independently as the General Inter-ORB Protocol), and defines how to transfer
messages via TCP/IP connections. The 110P can be supported natively or via a half-
bridge.

Support for additional ESIOPs and other proprietary protocols is optional in an
interoperability-compliant system. However, any implementation that chooses to use
the other protocols defined by the CORBA interoperability specifications must adhere
to those specifications to be compliant with CORBA interoperability.

Figure 12-2 on page 12-7 shows examples of interoperable ORB domains that are
CORBA-compliant.

These compliance points support a range of interoperability solutions. For example, the
standard APls may be used to construct “half bridges™ to the 110P, relying on another
“half bridge” to connect to another ORB. The standard APls also support construction
of “full bridges,” without using the Internet 10P to mediate between separated bridge
components. ORBs may also use the Internet 1OP internally. In addition, ORBs may
use GIOP messages to communicate over other network protoco! families (such as
Novell or OSI), and provide transport-level bridges to the 110P.

The GIOP is described separately from the 110P to allow future specifications to treat
it as an independent compliance point.

Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0876

12

ORB Domains ORB Domains

lHOP

CORBA V2.0 Interoperable

CORBA V2.0 Interoperable

IHOP

CORBA V2.0 Interoperable

*e.g. Proprietary protocol or
GIOP OSI mapping

Figure 12-2 Examples of CORBA Interoperability Compliance

December 2001 CORBA, v2.6: Examples of Interaperability Solutions 12-7

0877

12

12.4 Motivating Factors

This section explains the factors that motivated the creation of interoperability
specifications.

12.4.1 ORB Implementation Diversity

Today, there are many different ORB products that address a variety of user needs. A
large diversity of implementation techniques is evident. For example, the time for a
request ranges over at least 5 orders of magnitude, from a few microseconds to several
seconds. The scope ranges from a single application to enterprise networks. Some
ORBs have high levels of security, others are more open. Some ORBs are layered on a
particular widely used protocol, others use highly optimized, proprietary protocols.

The market for object systems and applications that use them will grow as object
systems are able to be applied to more kinds of computing. From application
integration to process control, from loosely coupled operating systems to the
information superhighway, CORBA-based object systems can be the common
infrastructure.

12.4.2 ORB Boundaries

Even when it is not required by implementation differences, there are other reasons to
partition an environment into different ORBs.

For security reasons, it may be important to know that it is not generally possible to
access objects in one domain from another. For example, an “internet ORB” may make
public information widely available, but a “company ORB” will want to restrict what
information can get out. Even if they used the same ORB implementation, these two
ORBs would be separate, so that the company could allow access to public objects
from inside the company without allowing access to private objects from outside. Even
though individual objects should protect themselves, prudent system administrators
will want to avoid exposing sensitive objects to attacks from outside the company.

Supporting multiple ORBs also helps handle the difficult problem of testing and
upgrading the object system. 1t would be unwise to test new infrastructure without
limiting the set of objects that might be damaged by bugs, and it may be impractical to
replace “the ORB” everywhere simultaneously. A new ORB might be tested and
deployed in the same environment, interoperating with the existing ORB until either a
complete switch is made or it incrementally displaces the existing one.

Management issues may also motivate partitioning an ORB. Just as networks are
subdivided into domains to allow decentralized control of databases, configurations,
resources, management of the state in an ORB (object reference location and
translation information, interface repositories, per-object data) might also be done by
creating sub-ORBs.

12-8 Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0878

12

12.4.3 ORBs Vary in Scope, Distance, and Lifetime

Even in a single computing environment produced by a single vendor, there are reasons
why some of the objects an application might use would be in one ORB, and others in
another ORB. Some objects and services are accessed over long distances, with more
global visibility, longer delays, and less reliable communication. Other objects are
nearby, are not accessed from elsewhere, and provide higher quality service. By
deciding which ORB to use, an implementer sets expectations for the clients of the
objects.

One ORB might be used to retain links to information that is expected to accumulate
over decades, such as library archives. Another ORB might be used to manage a
distributed chess program in which the objects should all be destroyed when the game
is over. Although while it is running, it makes sense for “chess ORB” objects to access
the “archives ORB,” we would not expect the archives to try to keep a reference to the
current board position.

12.5 Interoperability Design Goals

December 2001

Because of the diversity in ORB implementations, multiple approaches to
interoperability are required. Options identified in previous versions of CORBA
include:

® Protocol Translation, where a gateway residing somewhere in the system maps
requests from the format used by one ORB to that used by another.

® Reference Embedding, where invocation using a native object reference delegates to
a special object whose job is to forward that invocation to another ORB.

® Alternative ORBs, where ORB implementations agree to coexist in the same address
space so easily that a client or implementation can transparently use any of them,
and pass object references created by one ORB to another ORB without losing
functionality.

In general, there is no single protocol that can meet everyone's needs, and there is no
single means to interoperate between two different protocols. There are many
environments in which multiple protocols exist, and there are ways to bridge between
environments that share no protocols. '

This specification adopts a flexible architecture that allows a wide variety of ORB
implementations to interoperate and that includes both bridging and common protocol
elements.

The following goals guided the creation of interoperability specifications:

® The architecture and specifications should allow high-performance, small footprint,
lightweight interoperability solutions.

® The design should scale, should not be unduly difficult to implement, and should
not unnecessarily restrict implementation choices.

CORBA, v2.6: Interoperability Design Goals 12-9

0879

12

® Interoperability solutions should be able to work with any vendors’ existing ORB
implementations with respect to their CORBA-compliant core feature set; those
implementations are diverse.

* All operations implied by the CORBA object model (i.e., the stringify and
destringify operations defined on the CORBA:ORB pseudo-object and all the
operations on CORBA:Object) as well as type management (e.g., narrowing, as
needed by the C++ mapping) should be supported.

12.5.1 Non-Goals

The following were taken into account, but were not goals:
® Support for security

® Support for future ORB Services

12-10 Commaon Object Request Broker Architecture (CORBA), v2.6 December 2001

0880

13.1 Overview

December 2001

ORB Interoperability Architecture 13

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 13-1
“ORBs and ORB Services” 13-3
“Domains” 13-5
“Interoperability Between ORBs” 13-7
“Object Addressing” 13-11
“An Information Model for Object References” 13-14
“Service Context” 13-28
“Coder/Decoder Interfaces” 13-31
“Feature Support and GIOP Versions” 13-35
“Code Set Conversion” 13-36

The original Interoperability RFP defines interoperability as the ability for a client on
ORB A to invoke an OMG IDL-defined operation on an object on ORB B, where ORB
A and ORB B are independently developed. It further identifies general requirements
including in particular:

® Ability for two vendors” ORBs to interoperate without prior knowledge of each
other’s implementation.

Commaon Object Request Broker Architecture (CORBA), v2.6 13-1

0881

13

13-2

® Support of all ORB functionality.

* Preservation of content and semantics of ORB-specific information across ORB
boundaries (for example, security).

In effect, the requirement is for invocations between client and server objects to be
independent of whether they are on the same or different ORBs, and not to mandate
fundamental modifications to existing ORB products.

13.1.1 Domains

The CORBA Object Model identifies various distribution transparencies that must be

supported within a single ORB environment, such as location transparency. Elements

of ORB functionality often correspond directly to such transparencies. Interoperability
can be viewed as extending transparencies to span multiple ORBs.

In this architecture a domain is a distinct scope, within which certain common
characteristics are exhibited and common rules are observed over which a distribution
transparency is preserved. Thus, interoperability is fundamentally involved with
transparently crossing such domain boundaries.

Domains tend to be either administrative or technological in nature, and need not
correspond to the boundaries of an ORB installation. Administrative domains include
naming domains, trust groups, resource management domains and other “run-time”
characteristics of a system. Technology domains identify common protocols, syntaxes
and similar “build-time” characteristics. In many cases, the need for technology
domains derives from basic requirements of administrative domains.

Within a single ORB, most domains are likely to have similar scope to that of the ORB
itself: common object references, network addresses, security mechanisms, and more.
However, it is possible for there to be multiple domains of the same type supported by
a given ORB: internal representation on different machine types, or security domains.
Conversely, a domain may span several ORBs: similar network addresses may be used
by different ORBs, type identifiers may be shared.

13.1.2 Bridging Domains

The abstract architecture describes ORB interoperability in terms of the translation
required when an object request traverses domain boundaries. Conceptually, a mapping
or bridging mechanism resides at the boundary between the domains, transforming
requests expressed in terms of one domain’s model into the model of the destination
domain.

The concrete architecture identifies two approaches to inter-ORB bridging:
® At application level, allowing flexibility and portability.
¢ At ORB level, built into the ORB itself.

Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0882

13

13.2 ORBs and ORB Services

The ORB Core is that part of the ORB which provides the basic representation of
objects and the communication of requests. The ORB Core therefore supports the

minimum functionality to enable a client to invoke an operation on a server object,
with (some of) the distribution transparencies required by CORBA.

An object request may have implicit attributes which affect the way in which it is
communicated - though not the way in which a client makes the request. These
attributes include security, transactional capabilities, recovery, and replication. These
features are provided by “ORB Services,” which will in some ORBs be layered as
internal services over the core, or in other cases be incorporated directly into an ORB’s
core. It is an aim of this specification to allow for new ORB Services to be defined in
the future, without the need to modify or enhance this architecture.

Within a single ORB, ORB services required to communicate a request will be
implemented and (implicitly) invoked in a private manner. For interoperability between
ORBs, the ORB services used in the ORBs, and the correspondence between them,
must be identified.

13.2.1 The Nature of ORB Services

ORB Services are invoked implicitly in the course of application-level interactions.
ORB Services range from fundamental mechanisms such as reference resolution and
message encoding to advanced features such as support for security, transactions, or
replication.

An ORB Service is often related to a particular transparency. For example, message
encoding — the marshaling and unmarshaling of the components of a request into and
out of message buffers — provides transparency of the representation of the request.
Similarly, reference resolution supports location transparency. Some transparencies,
such as security, are supported by a combination of ORB Services and Object Services
while others, such as replication, may involve interactions between ORB Services
themselves.

ORB Services differ from Object Services in that they are positioned below the
application and are invoked transparently to the application code. However, many ORB
Services include components which correspond to conventional Object Services in that
they are invoked explicitly by the application.

Security is an example of service with both ORB Service and normal Object Service
components, the ORB components being those associated with transparently
authenticating messages and controlling access to objects while the necessary
administration and management functions resemble conventional Object Services.

13.2.2 ORB Services and Object Requests

Interoperability between ORBs extends the scope of distribution transparencies and
other request attributes to span multipie ORBs. This requires the establishment of
relationships between supporting ORB Services in the different ORBs.

December 2001 CORBA, v2.6: ORBs and ORB Services 13-3

0883

13

In order to discuss how the relationships between ORB Services are established, it is
necessary to describe an abstract view of how an operation invocation is communicated
from client to server object.

1. The client generates an operation request, using a reference to the server object,
explicit parameters, and an implicit invocation context. This is processed by certain
ORB Services on the client path.

2. On the server side, corresponding ORB Services process the incoming request,
transforming it into a form directly suitable for invoking the operation on the server
object.

3. The server object performs the requested operation.
4. Any result of the operation is returned to the client in a similar manner.

The correspondence between client-side and server-side ORB Services need not be
one-to-one and in some circumstances may be far more complex. For example, if a
client application requests an operation on a replicated server, there may be multiple
server-side ORB service instances, possibly interacting with each other.

In other cases, such as security, client-side or server-side ORB Services may interact
with Object Services such as authentication servers.

13.2.3 Selection of ORB Services

The ORB Services used are determined by:

® Static properties of both client and server objects; for example, whether a server is
replicated.

® Dynamic attributes determined by a particular invocation context; for example,
whether a request is transactional.

* Administrative policies (e.g., security).

Within a single ORB, private mechanisms (and optimizations) can be used to establish
which ORB Services are required and how they are provided. Service selection might
in general require negotiation to select protocols or protocol options. The same is true
between different ORBs: it is necessary to agree which ORB Services are used, and
how each transforms the request. Ultimately, these choices become manifest as one or
more protocols between the ORBs or as transformations of requests.

In principle, agreement on the use of each ORB Service can be independent of the
others and, in appropriately constructed ORBs, services could be layered in any order
or in any grouping. This potentially allows applications to specify selective
transparencies according to their requirements, although at this time CORBA provides
no way to penetrate its transparencies.

A client ORB must be able to determine which ORB Services must be used in order to
invoke operations on a scrver object. Correspondingly, where a client requires dynamic
attributes to be associated with specific invocations, or administrative policies dictate,
it must be possible to cause the appropriate ORB Services to be used on client and

134 Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0884

13

server sides of the invocation path. Where this is not possible - because, for example,
one ORB does not support the full set of services required - either the interaction
cannot proceed or it can only do so with reduced facilities or wransparencies.

13.3 Domains

From a computational viewpoint, the OMG Object Model identifies various
distribution transparencies which ensure that client and server objects are presented
with a uniform view of a heterogeneous distributed system. From an engineering
viewpoint, however, the system is not wholly uniform. There may be distinctions of
location and possibly many others such as processor architecture, networking
mechanisms and data representations. Even when a single ORB implementation is used
throughout the system, local instances may represent distinct, possibly optimized
scopes for some aspects of ORB functionality.

Representation

Figure 13-1 Different Kinds of Domains can Coexist.

Interoperability, by definition, introduces further distinctions, notably between the
scopes associated with each ORB. To describe both the requirements for
interoperability and some of the solutions, this architecture introduces the concept of
domains 1o describe the scopes and their implications.

Informally, a domain is a set of objects sharing a common characteristic or abiding by
common rules. It is a powerful modelling concept which can simplify the analysis and
description of complex systems. There may be many types of domains (e.g.,

management domains, naming domains, language domains, and technology domains).

13.3.1 Definition of a Domain

Domains allow partitioning of systems into collections of components which have
some characteristic in common. In this architecture a domain is a scope in which a
collection of objects, said to be members of the domain, is associated with some
common characteristic; any object for which the association does not exist, or is
undefined, is not a member of the domain. A domain can be modeled as an object and
may be itself a member of other domains.

It is the scopes themselves and the object associations or bindings defined within them
which characterize a domain. This information is disjoint between domains. However,
an object may be a member of several domains, of similar kinds as well as of different
kinds, and so the scts of members of domains may overlap.

December 2001 CORBA, v2.6: Domains 13-5

0885

13

The concept of a domain boundary is defined as the limit of the scope in which a
particular characteristic is valid or meaningful. When a characteristic in one domain is
translated to an equivalent in another domain, it is convenient to consider it as
traversing the boundary between the two domains.

Domains are generally either administrative or technological in nature. Examples of
domains related to ORB interoperability issues are:

® Referencing domain — the scope of an object reference

® Representation domain — the scope of a message transfer syntax and protocol
® Network addressing domain — the scope of a network address

® Network connectivity domain — the potential scope of a network message

® Security domain — the extent of a particular security policy

® Type domain — the scope of a particular type identifier

¢ Transaction domain - the scope of a given transaction service

Domains can be related in two ways: containment, where a domain is contained within
another domain, and federation, where two domains are joined in a manner agreed to
and set up by their administrators.

13.3.2 Mapping Between Domains: Bridging

Interoperability between domains is only possible if there is a well-defined mapping
between the behaviors of the domains being joined. Conceptually, a mapping
mechanism or bridge resides at the boundary between the domains, transforming
requests expressed in terms of one domain’s model into the model of the destination
domain. Note that the use of the term “bridge” in this context is conceptual and refers
only to the functionality which performs the required mappings between distinct
domains. There are several implementation options for such bridges and these are
discussed elsewhere.

For full interoperability, it is essential that all the concepts used in one domain are
transformable into concepts in other domains with which interoperability is required,
or that if the bridge mechanism filters such a concept out, nothing is lost as far as the
supported objects are concerned. In other words, one domain may support a superior
service to others, but such a superior functionality will not be available to an
application system spanning those domains.

A special case of this requirement is that the object models of the two domains need to
be compatible. This specification assumes that both domains are strictly compliant
with the CORBA Objcct Model and the CORBA specifications. This includes the use of
OMG IDL when defining interfaces, the use of the CORBA Core Interface Repository,
and other modifications that were made to CORBA. Variances from this model could
easily compromise some aspects of interoperability.

13-6 Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0886

13

13.4 Interoperability Between ORBs

An ORB “provides the mechanisms by which objects transparently make and receive
requests and responses. In so doing, the ORB provides interoperability between
applications on different machines in heterogeneous distributed environments...” ORB
interoperability extends this definition to cases in which client and server objects on
different ORBs “transparently make and receive requests.”

Note that a direct consequence of this transparency requirement is that bridging must
be bidirectional: that is, it must work as effectively for object references passed as
parameters as for the target of an object invocation. Were bridging unidirectional (e.g.,
if one ORB could only be a client to another) then transparency would not have been
provided, because object references passed as parameters would not work correctly:
ones passed as “callback objects,” for example, could not be used.

Without loss of generality, most of this specification focuses on bridging in only one
direction. This is purely to simplify discussions, and does not imply that unidirectional
connectivity satisfies basic interoperability requirements.

13.4.1 ORB Services and Domains

In this architecture, different aspects of ORB functionality - ORB Services - can be
considered independently and associated with different domain types. The architecture
does not, however, prescribe any particular decomposition of ORB functionality and
interoperability into ORB Services and corresponding domain types. There is a range
of possibilities for such a decomposition:

1. The simplest model, for interoperability, is to treat all objects supported by one
ORB (or, alternatively, all ORBs of a given type) as comprising one domain.
Interoperability between any pair of different domains (or domain types) is then
achieved by a specific all-encompassing bridge between the domains. (This is all
CORBA implies.) .

2. More detailed decompositions would identify particular domain types - such as
referencing, representation, security, and networking. A core set of domain types
would be pre-determined and allowance made for additional domain types to be
defined as future requirements dictate (e.g., for new ORB Services).

13.4.2 ORBs and Domains

In many respects, issues of interoperability between ORBs are similar to those which
can arise with a single type of ORB (e.g., a product). For example:

®* Two installations of the ORB may be installed in different security domains, with
different Principal identifiers. Requests crossing those security domain boundaries
will need to establish locally meaningful Principals for the caller identity, and for
any Principals passed as parameters.

® Different installations might assign different type identifiers for equivalent types,
and so requests crossing type domain boundaries would need to establish locally
meaningful type identifiers (and perhaps more).

December 2001 CORBA, v2.6: Interoperability Between ORBs 13-7

0887

13

Conversely, not all of these problems need to appear when connecting two ORBs of a
different type (e.g., two different products). Examples include:

® They could be administered to share user visible naming domains, so that naming
domains do not need bridging.

® They might reuse the same networking infrastructure, so that messages could be
sent without needing to bridge different connectivity domains.

Additional problems can arise with ORBs of different types. In particular, they may
support different concepts or models, between which there are no direct or natural
mappings. CORBA only specifies the application level view of object interactions, and
requires that distribution transparencies conceal a whole range of lower level issues. It
follows that within any particular ORB, the mechanisms for supporting transparencies
are not visible at the application-level and are entirely a matter of implementation
choice. So there is no guarantee that any two ORBs support similar internal models or
that there is necessarily a straightforward mapping between those models.

These observations suggest that the concept of an ORB (instance) is too coarse or
superficial to allow detailed analysis of interoperability issues between ORBs. Indeed,
it becomes clear that an ORB instance is an elusive notion: it can perhaps best be
characterized as the intersection or coincidence of ORB Service domains.

13.4.3 Interoperability Approaches

When an interaction takes place across a domain boundary, a mapping mechanism, or
bridge, is required to transform relevant elements of the interaction as they traverse the
boundary. There are essentially two approaches to achieving this: mediated bridging

and immediate bridging. These approaches are described in the following subsections.

Domain Domain Domain Domain

Interop

Mediated Bridging Immediate Bridging

Figure 13-2 Two bridging techniques, different uses of an intermediate form agreed on between
the two domains.

13.4.3.1 Mediated Bridging

With mediated bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of cach domain, between the internal form of that domain
and an agreed, common form.

Observations on mediated bridging are as follows:

® The scope of agreement of a common form can range from a private agreement
between two particular ORB/domain implementations to a universal standard.

13-8 Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0888

13

® There can be more than one common form, each oriented or optimized for a
different purpose.

® |f there is more than one possible common form, then which is used can be static
(e.g., administrative policy agreed between ORB vendors, or between system
administrators) or dynamic (e.g., established separately for each object, or on each
invocation).

* Engineering of this approach can range from in-line specifically compiled (compare
to stubs) or generic library code (such as encryption routines), to intermediate
bridges to the common form.

13.4.3.2 Immediate Bridging

With immediate bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of each domain, directly between the internal form of one
domain and the internal form of the other.

Observations on immediate bridging are as follows:

® This approach has the potential to be optimal (in that the interaction is not mediated
via a third party, and can be specifically engineered for each pair of domains) but
sacrifices flexibility and generality of interoperability to achieve this.

® This approach is often applicable when crossing domain boundaries which are
purely administrative (i.e., there is no change of technology). For example, when
crossing security administration domains between similar ORBs, it is not necessary
to use a cornmon intermediate standard.

As a general observation, the two approaches can become almost indistinguishable
when private mechanisms are used between ORB/domain impiementations.

13.4.3.3 Location of Inter-Domain Functionality

Logically, an inter-domain bridge has components in both domains, whether the
mediated or immediate bridging approach is used. However, domains can span ORB
boundaries and ORBs can span machine and system boundaries; conversely, a machine
may support, or a process may have access to more than one ORB (or domain of a
given type). From an engineering viewpoint, this means that the components of an
inter-domain bridge may be dispersed or co-located, with respect to ORBs or systems.
1t also means that the distinction between an ORB and a bridge can be a matter of
perspective: there is a duality between viewing inter-system messaging as belonging to
ORBs, or to bridges.

For example, if a single ORB encompasses two security domains, the inter-domain
bridge could be implemented wholly within the ORB and thus be invisible as far as
ORB interoperability is concerned. A similar situation arises when a bridge between
two ORBs or domains is implemented wholly within a process or system which has
access to both. In such cases, the engineering issues of inter-domain bridging are

December 2001 CORBA, v2.6: Interoperability Between ORBs 13-9

0889

13

confined, possibly to a single system or process. If it were practical to implement all
bridging in this way, then interactions between systems or processes would be solely
within a single domain or ORB.

13.4.3.4 Bridging Level

As noted at the start of this section, bridges may be implemented both internally to an
ORB and as layers above it. These are called respectively “in-line” and *“request-level”
bridges.

Request-level bridges use the CORBA APls, including the Dynamic Skeleton
Interface, to receive and issue requests. However, there is an emerging class of
“implicit context” which may be associated with some invocations, holding ORB
Service information such as transaction and security context information, which is not
at this time exposed through general purpose public APls. (Those APls expose only
OMG IDL-defined operation parameters, not implicit ones.) Rather, the precedent set
with the Transaction Service is that special purpose APls are defined to allow bridging
of each kind of context. This means that request-level bridges must be built to
specifically understand the implications of bridging such ORB Service domains, and to
make the appropriate API calls.

13.4.4 Policy-Mediated Bridging

An assumption made through most of this specification is that the existence of domain
boundaries should be transparent to requests: that the goal of interoperability is to hide
such boundaries. However, if this were always the goal, then there would be no real
need for those boundaries in the first place.

Realistically, administrative domain boundaries exist because they reflect ongoing
differences in organizational policies or goals. Bridging the domains will in such cases
require policy mediation. That is, inter-domain traffic will need to be constrained,
controlled, or monitored; fully transparent bridging may be highly undesirable.
Resource management policies may even need to be applied, restricting some kinds of
traffic during certain periods.

Security policies are a particularly rich source of examples: a domain may need to
audit external access, or to provide domain-based access control. Only a very few
objects, types of objects, or classifications of data might be externally accessible
through a “firewall.”

Such policy-mediated bridging requires a bridge that knows something about the traffic
being bridged. It could in general be an application-specific policy, and many policy-
mediated bridges could be parts of applications. Those might be organization-specific,
off-the-shelf, or anywhere in between.

Request-level bridges, which use only public ORB APIs, easily support the addition of
policy mediation components, without loss of access to any other system infrastructure
that may be needed to identify or enforce the appropriate policies.

13-10 Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0890

13

13.4.5 Configurations of Bridges in Networks

In the case of network-aware ORBs, we anticipate that some ORB protocols will be
more frequently bridged to than others, and so will begin to serve the role of
“backbone ORBs.” (This is a role that the 11OP is specifically expected to serve.) This
use of “backbone topology” is true both on a large scale and a small scale. While a
large scale public data network provider could define its own backbone ORB, on a
smaller scale, any given institution will probably designate one commercially available
ORB as its backbone.

Backbone ORB

Figure 13-3 An ORB chosen as a backbone will connect other ORBs through bridges, both full-
bridges and half-bridges.

Adopting a backbone style architecture is a standard administrative technique for
managing networks. It has the consequence of minimizing the number of bridges
needed, while at the same time making the ORB topology match typical network
organizations. (That is, it allows the number of bridges to be proportional to the
number of protocols, rather than combinatorial.)

In large configurations, it will be common to notice that adding ORB bridges doesn’t
even add any new “hops” to network routes, because the bridges naturally fit in
locations where connectivity was already indirect, and augment or supplant the
existing network firewalls.

13.5 Object Addressing

The Object Model (see Chapter 1, Requests) defines an object reference as an object
name that reliably denotes a particular object. An object reference identifies the same
object each time the reference is used in a request, and an object may be denoted by
multiple, distinct references.

December 2001 CORBA. v2.6: Object Addressing 13-11

0891

13

The fundamental ORB interoperability requirement is to allow clients to use such
object names to invoke operations on objects in other ORBs. Clients do not need to
distinguish between references to objects in a local ORB or in a remote one. Providing
this transparency can be quite involved, and naming models are fundamental to it.

This section discusses models for naming entities in multiple domains, and
transformations of such names as they cross the domain boundaries. That is, it presents
transformations of object reference information as it passes through networks of inter-
ORB bridges. It uses the word “ORB” as synonymous with referencing domain; this is
purely to simplify the discussion. In other contexts, “ORB” can usefully denote other
kinds of domain.

13.5.1 Domain-relative Object Referencing

Since CORBA does not require ORBs to understand object references from other
ORBs, when discussing object references from multiple ORBs one must always
associate the object reference’s domain (ORB) with the object reference. We use the
notation D0.R0 to denote an object reference R0 from domain D0; this is itself an
object reference. This.is called “domain-relative” referencing (or addressing) and need
not reflect the implementation of object references within any ORB.

At an implementation level, associating an object reference with an ORB is only
important at an inter-ORB boundary; that is, inside a bridge. This is simple, since the
bridge knows from which ORB each request (or response) came, including any object
references embedded in it.

13.5.2 Handling of Referencing Between Domains

When a bridge hands an object reference to an ORB, it must do so in a form
understood by that ORB: the object reference must be in the recipient ORB’s native
format. Also, in cases where that object originated from some other ORB, the bridge
must associate each newly created “proxy” object reference with (what it sees as) the
original object reference.

Several basic schemes to solve these two problems exist. These all have advantages in
some circumstances; all can be used, and in arbitrary combination with each other,
since CORBA object references are opaque to applications. The ramifications of each
scheme merits attention, with respect to scaling and administration. The schemes
include:

1. Object Reference Translation Reference Embedding: The bridge can store the
original object reference itself, and pass an entirely different proxy reference into
the new domain. The bridge must then manage state on behalf of each bridged
object reference, map these references from one ORB’s format to the other’s, and
vice versa.

13-12 Common Object Request Broker Architecture (CORBA). v2.6 December 2001

0892

13

2. Reference Encapsulation: The bridge can avoid holding any state at all by
conceptually concatenating a domain identifier to the object name. Thus if a
reference DO.R, originating in domain D0, traversed domains D/... D4 it could be
identified in D4 as proxy reference d3.d2.d1.d0.R, where dn is the address of Dn
relative to Dn+1.

d0

Figure 13-4 Reference encapsulation adds domain information during bridging.

3. Domain Reference Translation: Like object reference translation, this scheme holds
some state in the bridge. However, it supports sharing that state between multiple
object references by adding a domain-based route identifier to the proxy (which still
holds the original reference, as in the reference encapsulation scheme). It achieves
this by providing encoded domain route information each time a domain boundary
is traversed; thus if a reference DO.R, originating in domain D0, traversed domains
D!...D4 it would be identified in D4 as (d3, x3).R, and in D2 as (d/,xI).R, and so
on, where dn is the address of Dn relative to Dn+1, and xn identifies the pair (dn-1,
xn-1).

Figure 13-5 Domain Reference Translation substitutes domain references during bridging.

4. Reference Canonicalization: This scheme is like domain reference translation,
except that the proxy uses a “well-known” (e.g., global) domain identifier rather
than an encoded path. Thus a reference R, originating in domain D0 would be
identified in other domains as DO.R.

Observations about these approaches to inter-domain reference handling are as follows:

® Naive application of reference encapsulation could lead to arbitrarily large
references. A “topology service” could optimize cycles within any given
encapsulated reference and eliminate the appearance of references to local objects
as alien references.

A topology service could also optimize the chains of routes used in the domain
reference translation scheme. Since the links in such chains are re-used by any path
traversing the same sequence of domains, such optimization has particularly high
leverage.

December 2001 CORBA, v2.6: Object Addressing 13-13

0893

13

® With the general purpose APls defined in CORBA, object reference translation can
be supported even by ORBs not specifically intended to support efficient bridging,
but this approach involves the most state in intermediate bridges. As with reference
encapsulation, a topology service could optimize individual object references. (APls
are defined by the Dynamic Skeleton Interface and Dynamic Invocation Interface)

® The chain of addressing links established with both object and domain reference
translation schemes must be represented as state within the network of bridges.
There are issues associated with managing this state.

® Reference canonicalization can also be performed with managed hierarchical name
spaces such as those now in use on the Internet and X.500 naming.

13.6 An Information Model for Object References

13-14

This section provides a simple, powerful information model for the information found
in an object reference. That model is intended to be used directly by developers of
bridging technology, and is used in that role by the 110P, described in the General
Inter-ORB Protocol chapter, Object References section.

13.6.1 What Information Do Bridges Need?

The following potential information about object references has been identified as
critical for use in bridging technologies:

® /s it null? Nulls only need to be transmitted and never support operation invocation.

® What type is it? Many ORBs require knowledge of an object’s type in order to
efficiently preserve the integrity of their type systems.

What protocols are supported? Some ORBs support objrefs that in effect live in
multiple referencing domains, to allow clients the choice of the most efficient
communications facilities available.

® What ORB Services are available? As noted in Section 13.2.3, “Selection of ORB
Services” on page 13-4, several different ORB Services might be involved in an
invocation. Providing information about those services in a standardized way could
in many cases reduce or eliminate negotiation overhead in selecting them.

13.6.2 Interoperable Object References: IORs

To provide the information above, an “Interoperable Object Reference,” (10R) data
structure has been provided. This data structure need not be used internally to any
given ORB, and is not intended to be visible to application-level ORB programmers. It
should be used only when crossing object reference domain boundaries, within
bridges.

This data structure is designed to be efficient in typical single-protocol configurations,
whilc not penalizing multiprotocol ones.

Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0894

13

December 2001

module [OP { I1'IDL

// Standard Protocol Profile tag values

typedef unsigned long Profileld;
struct TaggedProfile {
Profileld tag;
sequence <octet> profile_data;
}

I an Interoperable Object Reference is a secjuence of
I object-specific protocol profiles, plus a type ID.

struct IOR {
string type_id;
sequence <TaggedProfile> profiles;

h

// Standard way of representing multicomponent profiles.
/l This would be encapsulated in a TaggedProfile.

typedef unsigned long Componentid;
struct TaggedComponent {
Componentid tag;
sequence <octet> component_data;
B
typedef sequence<TaggedComponent> TaggedComponentSeq;
|5

13.6.3 IOR Profiles

Object references have at least one tagged profile. Each profile supports one or more
protocols and encapsulates all the basic information the protocols it supports need to
identify an object. Any single profile holds enough information to drive a complete
invocation using any of the protocols it supports; the content and structure of those
profile entries are wholly specified by these protocols.

When a specific protocol is used to convey an object reference passed as a parameter
in an IDL operation invocation (or reply), an IOR which reflects, in its contained
profiles, the full protocol understanding of the operation client (or server in case of
reply) may be sent. A receiving ORB which operates (based on topology and policy
information available to it) on profiles rather than the received IOR as a whole, to
create a derived reference for use in its own domain of reference, is placing itself as a
bridge between reference domains. Interoperability inhibiting situations can arise
when an orb sends an IOR with multiple profiles (using one of its supported protocols)

CORBA, v2.6: An Information Model for Object References 13-15

0895

13

to a receiving orb, and that receiving orb later returns a derived reference to that object,
which has had profiles or profile component data removed or transformed from the
original 10R contents.

To assist in classifying behavior of ORBS in such bridging roles, two classes of IOR
conformance may be associated with the conformance requirements for a given ORB
interoperability protocol:

® Full IOR conformance requires that an orb which receives an 10R for an object
passed to it through that ORB interoperability protocol, shall recover the original
I0R, in its entirety, for passing as a reference to that object from that orb through
that same protocol

® Limited-Profile IOR conformance requires that an orb which receives an IOR
passed to it through a given ORB interoperability protocol, shall recover all of the
standard information contained in the 10R profile for that protocol, whenever
passing a reference to that object, using that same protocol, to another ORB.

Note — Conformance to 110P versions 1.0, 1.1 and 1.2 only requires support of limited-
Profile IOR conformance, specifically for the 110P IOR profile. However, due to
interoperability problems induced by Limited-Profile IOR conformance, it is now
deprecated by the CORBA 2.4 specification for an orb to not support Full IOR
conformance. Some future 11OP versions could require Full IOR conformance.

An ORB may be unable to use any of the profiles provided in an 10R for various
reasons which may be broadly categorized as transient ones like temporary network
outage, and non-transient ones like unavailability of appropriate protocol software in
the ORB. The decision about the category of outage that causes an ORB to be unable
to use any profile from an 1OR is left up to the ORB. At an appropriate point, when an
ORB discovers that it is unable to use any profile in an 10R, depending on whether it
considers the reason transient or non-transient, it should raise the standard system
exception TRANSIENT with standard minor code 2, or IMP_LIMIT with the
standard minor code 1.

Each profile has a unique numeric tag, assigned by the OMG. The ones defined here
are for the 11OP (see Section 15.7.3, “11OP 10R Profile Components” on page 15-54)
and for use in “multiple component profiles.” Profile tags in the range 0x80000000
through Oxffffffff are reserved for future use, and are not currently available for
assignment.

Null object references are indicated by an empty set of profiles, and by a “Null” type
1D (a string which contains only a single terminating character). Type 1Ds may only be
“Null” in any message, requiring the client to use existing knowledge or to consult the
object, to determine interface types supported. The type 1D is a Repository 1D
identifying the interface type, and is provided to aliow ORBs to preserve strong typing.
This identifier is agreed on within the bridge and, for reasons outside the scope of this
interoperability specification, needs to have a much broader scope to address various
problems in system evolution and maintenance. Type 1Ds support detection of type
equivalence, and in conjunction with an Interface Repository, allow processes to reason
about the relationship of the type of the object referred to and any other type.

13-16 Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0896

13

The type ID, if provided by the server, indicates the most derived type that the server
wishes to publish, at the time the reference is generated. The object’s actual most
derived type may later change to a more derived type. Therefore, the type 1D in the
10R can only be interpreted by the client as a hint that the object supports at least the
indicated interface. The client can succeed in narrowing the reference to the indicated
interface, or to one of its base interfaces, based solely on the type 1D in the IOR, but
must not fail to narrow the reference without consulting the object via the “_is_a” or
“_get_interface” pseudo-operations.

ORBs claiming to support the Full-IOR conformance are required to preserve all the
semantic content of any IOR (including the ordering of each profile and its
components), and may only apply transformations which preserve semantics (e.g.,
changing Byte order for encapsulation).

For example, consider an echo operation for object references:
interface Echoer {Object echo(in Object 0);};

Assume that the method body implementing this “echo” operation simply returns its
argument. When a client application invokes the echo operation and passes an
arbitrary object reference, if both the client and server ORBs claim support to Full IOR
conformance, the reference returned by the operation is guaranteed to have not been
semantically altered by either client or server ORB. That is, all its profiles will remain
intact and in the same order as they were present when the reference was sent. This
requirement for ORBs which claim support for Full-IOR conformance, ensures that,
for example, a client can safely store an object reference in a naming service and get
that reference back again later without losing information inside the reference.

13.6.4 Standard IOR Profiles

module 0P {
const Profileld TAG_INTERNET_IOP = 0;
const Profileld TAG_MULTIPLE_COMPONENTS = 1;
const Profileld TAG_SCCP_IOP = 2;

typedef sequence <TaggedComponent> MultipleComponentProfile;

)

13.6.4.1 The TAG_INTERNET_IOP Profile

The TAG_INTERNET_IOP tag identifies profiles that support the Internet Inter-ORB
Protocol. The ProfileBody of this profile, described in detail in Section 15.7.2, “110P
I0R Profiles” on page 15-51, contains a CDR encapsulation of a structure containing
addressing and object identification information used by 110P. Version 1.1 of the
TAG_INTERNET_IOP profile also includes a sequence<TaggedComponent> that
can contain additional information supporting optional 110P features, ORB services
such as security, and future protocol extensions.

December 2001 CORBA. v2.6: An Information Model for Object References 13-17

0897

13

Protocols other than 110P (such as ESIOPs and other GIOPs) can share profile
information (such as object identity or security information) with 110P by encoding
their additional profile information as components in the TAG_INTERNET_IOP
profile. All TAG_INTERNET_IOP profiles support 110P, regardless of whether they
also support additional protocols. Interoperable ORBs are not required to create or
understand any other profile, nor are they required to create or understand any of the
components defined for other protocols that might share the TAG_INTERNET_IOP
profile with 110P.

The profile_data for the TAG_INTERNET_IOP profile is a CDR encapsulation of
the lIIOP::ProfileBody_1_1 type, described in Section 15.7.2, “l110P 1OR Profiles” on
page 15-51.

13.6.4.2 The TAG_MULTIPLE_COMPONENTS Profile

The TAG_MULTIPLE_COMPONENTS tag indicates that the value encapsulated is of
type MultipleComponentProfile. In this case, the profile consists of a list of
protocol components, the use of which must be specified by the protocol using this
profile. This profile may be used to carry 10R components, as specified in Section
13.6.5, “JOR Components” on page 13-18.

The profile_data for the TAG_MULTIPLE_COMPONENTS profile is a CDR
encapsulation of the MultipleComponentProfile type shown above.

13.6.4.3 The TAG_SCCP_IOP Profile
See the CORBA/IN Interworking specification (dtc/2000-02-02).

13.6.5 IOR Components

TaggedComponents contained in TAG_INTERNET_IOP and
TAG_MULTIPLE_COMPONENTS profiles are identified by unique numeric tags
using a namespace distinct form that is used for profile tags. Component tags are
assigned by the OMG.

Specifications of components must include the following information:
® Component ID: The compound tag that is obtained from OMG.

® Structure and encoding: The syntax of the component data and the encoding rules.

If the component value is encoded as a CDR encapsulation, the IDL type that is
encapsulated and the GIOP version which is used for encoding the value, if different
than GIOP 1.0, must be specified as part of the component definition.

® Semantics: How the component data is intended to be used.

® Protocols: The protocol for which the component is defined, and whether it is
intended that the component be usable by other protocols.

At most once: whether more than one instance of this component can be included in
a profile.

13-18 Common Object Request Broker Architecture (CORBA). v2.6 December 2001

0898

13

December 2001

Specifications of protocols must describe how the components affect the protocol. In
addition, a protocol definition must specify, for each TaggedComponent, whether
inclusion of the component in profiles supporting the protocol is required
(MANDATORY PRESENCE) or not required (OPTIONAL PRESENCE). An ORB
claiming to support Full-IOR conformance shall not drop optional components, once
they have been added to a profile.

13.6.6 Standard IOR Components

The following are standard IOR components that can be included in
TAG_INTERNET_IOP and TAG_MULTIPLE_COMPONENTS profiles, and may
apply to 110P, other GI1OPs, ESIOPs, or other protocols. An ORB must not drop these
components from an existing IOR.

module IOP {

&

const Componentid
const Componentld
const Componentid
const Componentld

const Componentid
const Componentid
const Componentid
const Componentld
const Componentid
const Componentid
const Componentid
const Componentid
const Componentid
const Componentid
const Componentid
const Componentid
const Componentid
const Componentid
const Componentid
const Componentid
const Componentid
const Componentid

TAG_ORB_TYPE =0;
TAG_CODE_SETS =1;

TAG_POLICIES = 2;
TAG_ALTERNATE_IIOP_ADDRESS = 3;

TAG_ASSOCIATION_OPTIONS = 13;
TAG_SEC_NAME = 14;
TAG_SPKM_1_SEC_MECH = 15;
TAG_SPKM_2_SEC_MECH = 16;
TAG_KerberosV5_SEC_MECH = 17;
TAG_CSI_ECMA_Secret_SEC_MECH = 18;
TAG_CSI_ECMA_Hybrid_SEC_MECH =19;
TAG_SSL_SEC_TRANS = 20;
TAG_CSI_ECMA_Public_SEC_MECH = 21;
TAG_ GENERIC_SEC_MECH = 22;
TAG_FIREWALL_TRANS = 23;
TAG_SCCP_CONTACT_INFO = 24;
TAG_JAVA_CODEBASE = 25;
TAG_TRANSACTION_POLICY = 26;
TAG_MESSAGE_ROUTERS = 30;
TAG_OTS_POLICY = 31;
TAG_INV_POLICY = 32;
TAG_INET_SEC_TRANS =123;

The following additional components that can be used by other protocols are specified
in the DCE ESIOP chapter of this document and CORBAServices, Security Service, in
the Security Service for DCE ESIOP section:

CORBA. v2.6: An Information Model for Object References

const Componentid
const Componentld
const Componentid
const Componentid
const Componentid
const Componentid

TAG_COMPLETE_OBJECT_KEY = 5;
TAG_ENDPOINT_ID_POSITION = 6;
TAG_LOCATION_POLICY =12;
TAG_DCE_STRING_BINDING = 100;
TAG_DCE_BINDING_NAME = 101;
TAG_DCE_NO_PIPES = 102;

13-19

0899

13

const Componentld TAG_DCE_SEC_MECH = 103; // Security Service

13.6.6.1 TAG_ORB_TYPE Component

It is often useful in the real world to be able to identify the particular kind of ORB an
object reference is coming from, to work around problems with that particular ORB, or
exploit shared efficiencies.

The TAG_ORB_TYPE component has an associated value of type unsigned long,
encoded as a CDR encapsulation, designating an ORB type 1D allocated by the OMG
for the ORB type of the originating ORB. Anyone may register any ORB types by
submitting a short (one-paragraph) description of the ORB type to the OMG, and will
receive a new ORB type ID in retum. A list of ORB type descriptions and values will
be made available on the OMG web server.

The TAG_ORB_TYPE component can appear at most once in any 1OR profile. For
profiles supporting 110P 1.1 or greater, it is optionally present.

13.6.6.2 TAG_ALTERNATE_IIOP_ADDRESS Component

In cases where the same object key is used for more than one internet location, the
following standard IOR Component is defined for support in 110P version 1.2.

The TAG_ALTERNATE_IIOP_ADDRESS component has an associated value of

type
struct {
string HostiD,
unsigned short Port
|5

encoded as a CDR encapsulation.

Zero or more instances of the TAG_ALTERNATE_IIOP_ADDRESS component type
may be included in a version 1.2 TAG_INTERNET_IOP Profile. Each of these
alternative addresses may be used by the client orb, in addition to the host and port
address expressed in the body of the Profile. In cases where one or more
TAG_ALTERNATE_IIOP_ADDRESS components are present in a
TAG_INTERNET_IOP Profile, no order of use is prescribed by Version 1.2 of 110P.

13.6.6.3 Other Components

The following standard components are specified in various OMG specifications:

®* TAG_CODE_SETS - See Section 13.10.2.4, “CodeSet Component of IOR Multi-
Component Profile” on page 13-42.

®* TAG_POLICIES - See CORBA Messaging - chapter 22.

®* TAG_SEC_NAME - See the Security Service specification, Mechanism Tags
section. '

13-20 Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0900

13

December 2001

TAG_ASSOCIATION_OPTIONS - See the Security Service specification, Tag
Association Options section.

TAG_SSL_SEC_TRANS - See the Security Service specification, Mechanism
Tags section.

TAG_GENERIC_SEC_MECH and all other tags with names in the form
TAG_*_SEC_MECH - See the Security Service specification, Mechanism Tags
section.

TAG_FIREWALL_SEC - See the Firewall specification (orbos/98-05-04).

TAG_SCCP_CONTACT_INFO - See the CORBA/IN Interworking specification
(telecom/98-10-03).

TAG_JAVA_CODEBASE - See the Java to IDL Language Mapping specification
(formal/99-07-59), Codebase Transmission section.

TAG_TRANSACTION_POLICY - See the Object Transaction Service specification
(formal/00-06-28).

TAG_MESSAGE_ROUTERS - See CORBA Messaging (chapter 22).

TAG_OTS_POLICY - See the Object Transaction Service specification
(formal/00-06-28).

TAG_INV_POLICY - See the Object Transaction Service specification
(formal/00-06-28).

TAG_INET_SEC_TRANS - See the Security Service specification
(formal/00-06-25).

TAG_COMPLETE_OBJECT_KEY (See Section 16.5.4, “Complete Object Key
Component” on page 16-19).

TAG_ENDPOINT_ID_POSITION (See Section 16.5.5, “Endpoint ID Position
Component” on page 16-20).

TAG_LOCATION_POLICY (See Section 16.5.6, “Location Policy Component” on
page 16-20).

TAG_DCE_STRING_BINDING (See Section 16.5.1, “DCE-CIOP String Binding
Component” on page 16-17).

TAG_DCE_BINDING_NAME (See Section 16.5.2, “DCE-CIOP Binding Name
Component” on page 16-18).

TAG_DCE_NO_PIPES (See Section 16.5.3, “DCE-CIOP No Pipes Component” on
page 16-19).

13.6.7 Profile and Component Composition in IORs
The following rules augment the preceding discussion:

1. Profiles must be independent, complete, and self-contained. Their use shall not

depend on information contained in another profile.

2. Any invocation uses information from exactly one profile.

CORBA, v2.6: An Information Model for Object References 13-21

0901

