
0595
BUNGIE - EXHIBIT 1002 Part 3 of 5

BUNGIE — EXHIBIT 1002 Pan 3 of 5

0595

0596

0596

0597

0597

0598

0598

0599

0599

0600

'H0~JLeCanmq$;

POI" "
0600

0601

0601

0602

 Bro!) to;

m .,

0602

0603

20

0603

0604

0604

0605

0605

0606

0606

0607

0607

0608

0608

0609

0609

0610

 ’64 music 3

m7? M— 5o).

0610

0611

0611

0612

W

0612

0613

U.S. Patent Application No. 09/629,575

10

15

20

25

EXPRESS MAIL NO. EI’AO4935353US

BROADCASTING ON A BROADCAST CHANNEL

CROSS-REFERENCE TO RELATED APPLICATIONS

. This application is related to U.S. Patent Application No. .

entitled “BROADCASTING NETWORK,” filed on July 31, 2000 (Attorney Docket

No. 030048001 US); U.S. Patent Application No. , entitled “JOINING A

BROADCAST CHANNEL,” filed on July 31, 2000 (Attorney Docket No. 030048002 US);

U.S. Patent Application No. , “LEAVING A BROADCAST CHANNEL,”

filed on July 31,’ 2000 (Attorney Docket No. 030048003 US); U.S. Patent Application

No. entitled “BROADCASTING ON A BROADCAST CHANNEL,” filed

on July 31, 2000 (Attorney Docket No. 030048004 US); U.S. Patent Application

 No. entitled “CONTACTING A BROADCAST CHANNEL,” filed on

July 31,2000 (Attorney Docket No. 030048005 US); U.S. Patent Application

No. , entitled “DISTRIBUTED AUCTION SYSTEM,” filed on

July 31, 2000 (Attomey Docket No. 030048006 US); U.S. Patent Application

No. , entitled “AN INFORMATION DELIVERY SERVICE,” filed on

July 31, 2000 (Attorney Docket No. 030048007 US); U.S. Patent Application

No. , entitled “DISTRIBUTED CONFERENCING SYSTEM,” filed on

July 31, 2000 (Attorney Docket No. 030048008 US); and U.S. Patent Application

No. entitled “DISTRIBUTED GAME ENVIRONMENT,” filed on

July 31, 2000 (Attorney Docket No. 030048009 US), the disclosures of which are

incorporated herein by reference.

TECHNICAL FIELD

The described technology relates generally to a computer network and more

particularly, to a broadcast channel for a subset of a computers of an underlying network.

BACKGROUND

There are a wide variety of computer network communications techniques such

as point-to-point network protocols, client/server middleware, multicasting network

[mom—80045190373100] -l- 751/00

0613

0614

10

15

20

25

30

protocols, and peer-to-peer middleware. Each of these communications techniques have

their advantages and disadvantages, but none is particularly well suited to the simultaneous

sharing of information among computers that are widely distributed. For example,

collaborative processing applications, such as a network meeting programs, have a need to

distribute information in a timely manner to all participants who may be geographically

distributed.

The point-to-point network protocols, such as UNIX pipes, TCP/IP, and UDP,

allow processes on different computers to communicate via point-to-point connections. The

interconnection of all participants using point-to-point connections, while theoretically

possible, does not scale well as a number of participants grows. For example, each

participating process would need to manage its direct connections to all other participating

processes. Programmers, however, find it very difl'rcult to manage single connections, and

management of multiple connections is much more complex. In addition, participating

processes may be limited to the number of direct connections that they can support. This

limits the number of possible participants in the sharing of information.

The client/server middleware systems provide a server that coordinates the

communications between the various clients who are sharing the information. The server

functions as a central authority for controlling access to shared resources. Examples of

client/server middleware systems include remote procedure calls (“RPC”), database servers,

and the common object request broker architecture (“CORBA”). Client/server middleware

systems are not particularly well suited to sharing of information among many participants.

In particular, when a client stores information to be shared at the server, each other client

would need to poll the server to determine that new information is being shared. Such

polling places a very high overhead on the cormnunications network. Alternatively, each

client may register a callback with the server, which the server then invokes when new

information is available to be shared. Such a callback technique presents a performance

bottleneck because a single server needs to call back to each client whenever new

information is to be shared. In addition, the reliability of the entire sharing of information

depends upon the reliability of the single server. Thus, a failure at a single computer (i.e.,

the server) would prevent communications between any of the clients.

The multicasting network protocols allow the sending of broadcast messages to

multiple recipients of a network. The current implementations of such multicasting network'

[osmooalswosmioo] -2- 7131/00

0614

0615

10

15

20

25

30

protocols tend to place an unacceptable overhead on the underlying network. For example,

UDP multicasting would swamp the Internet when trying to locate all possible participants.

IP multicasting has other problems that include needing special-purpose infrastructure (e.g.,

routers) to support the sharing of information efficiently.

The peer-to-peer middleware commmicafions systems rely on a multicasting

network protocol or a graph of point-to-point network protocols. Such peer-to-peer

middleware is provided by the T.120 Internet standard, which is used in such products as

Data Connection’s D.C.-share and Microsoft’s NetMeeting. These peer-to-peer middleware

systems rely upon a user to assemble a point-to-point graph of the connections used for

sharing the information.

middleware systems when more than a small number of participants is desired. In addition,

the underlying architecture of the T.120 Internet standard is a tree structure, which relies on

the root node of the tree for reliability of the entire network. That is, each message must pass

Thus, it is neither suitable nor desirable to use peer-to-peer

through the root node in order to be received by all participants.

It would be desirable to have a reliable communications network that is

suitable for the simultaneous sharing of information among a large number of the processes

that are widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents a

broadcast channel.

Figure 2 illustrates a graph representing 20 computers connected to a broadcast

channel.

Figures 3A and 3B illustrate the process of connecting a new computer Z to the

broadcast channel.

Figure 4A illustrates the broadcast channel of Figure] with an added

computer.

Figure 4B illustrates the broadcast channel of Figure 4A with an added

computer.

Figure 4C also illustrates the broadcast channel of Figure 4A with an added

computer.

[osooa-aooalswoz'nuoo] -3- 7/31/00

0615

0616

10

15

20

25

30

Figure 5A illustrates the disconnecting of a computer from the broadcast

channel in a planned manner.

Figure SB illustrates the disconnecting of a computer from the broadcast

channel in an unplanned manner.

Figure 5C illustrates the neighbors with empty ports condition.

Figure 5D illustrates two computers that are not neighbors who now have

empty ports.

Figure 5E illustrates the neighbors with empty ports condition in the small

regime.

Figure 5F illustrates the situation of Figure 5E when in the large regime.

Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcast channel.

Figure 7 is a block diagram illustrating the sub-components of the broadcaster

component in one embodiment.

Figure 8 is a flow diagram illustrating the processing of the connect routine in

one embodiment.

Figure 9 is a flow diagram illustrating the processing of the seek portal

computer routine in one embodiment.

Figure 10 is a flow diagram illustrating the processing of the contact process

routine in one embodiment.

Figure 11 is a flow diagram illustrating the processing of the connect request

routine in one embodiment.

Figure 12 is a flow diagram of the processing of the check for external call

routine in one embodiment.

Figure 13 is a flow diagram of the processing of the achieve connection routine

in one embodiment.

Figure 14 is a flow diagram illustrating the processing of the external

dispatcher routine in one embodiment.

Figure 15 is a flow diagram illustrating the processing of the handle seeking
connection call routine in one embodiment.

Figure 16 is a flow diagram illustrating processing of the handle connection

request call routine in one embodiment.

[03004-8004/SL003'BJ. 100] ~4- 7/31/00

0616

0617

10

15

20

25

30

Figure 17 is a flow diagram illustrating the processing of the add neighbor

routine in one embodiment.

Figure 18 is a flow diagram illustrating the processing of the forward

connection edge search routine in one embodiment.

Figure 19 is a flow diagram illustrating the processing of the handle edge

proposal call routine.

Figure 20 is a flow diagram illustrating the processing of the handle port

connection call routine in one embodiment.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in

one embodiment. ,

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher

routine in one embodiment.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast

message routine in one embodiment.

Figure 24 is a flow diagram illustrating the processing of the distribute

broadcast message routine in one embodiment.

Figure 26 is a flow diagram illustrating the processing of the handle connection

port search statement routine in one embodiment.

Figure 27 is a flow diagram illustrating the processing of the court neighbor

routine in one embodiment.

Figure 28 is a flow diagram illustrating the processing of the handle connection

edge search call routine in one embodiment.

Figure 29 is a flow diagram illustrating the processing of the handle connection

edge search response routine in one embodiment.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine
in one embodiment.

Figure 31 is a flow diagram illustrating the processing of the acquire message
routine in one embodiment.

Figure 32 is a flow diagram illustrating processing of the handle condition

check message in one embodiment.

Figure 33 is a flow diagram illustrating processing of the handle condition

repair statement routine in one embodiment.

panama/31.003733. 100] -5- 701/00

'0617

0618

10

15

20

25

30

Figure 34 is a flow diagram illustrating the processing of the handle condition

double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel overlays a point-to-point

communications network is provided. The broadcasting of a message over the broadcast

channel is effectively a multicast to those computers of the network that are currently

connected to the broadcast channel. In one embodiment, the broadcast technique provides a

logical broadcast channel to which host computers through their executing processes can be

connected. Each computer that is connected to the broadcast channel can broadcast

messages onto and receive messages ofi‘ of the broadcast channel. Each computer that is

connected to the broadcast channel receives all messages that are broadcast while it is

connected. The logical broadcast channel is implemented using an underlying network

system (e.g., the Internet) that allows each computer connected to the underlying network

system to send messages to each other connected computer using each computer’s address.

Thus, the broadcast technique efi'ectively provides a broadcast channel using an underlying

network system that sends messages on a point-to-point basis.

The broadcast technique overlays the underlying network system with a graph

of point-to-point connections (i.e., edges) between host computers (1'.e., nodes) through

which the broadcast channel is implemented. In one embodiment, each computer is

connected to four other computers, referred to as neighbors. (Actually, a process executing

on a computer is connected to four other processes executing on this or four other

computers.) To broadcast a message, the originating computer sends the message to each of

its neighbors using its point-to-point connections. Each computer that receives the message

then sends the message to its three other neighbors using the point-to-point connections. In

this way, the message is propagated to each computer using the underlying network to effect

the broadcasting of the message to each computer over a logical broadcast channel. A graph

in which each node is connected to four other nodes is referred to as a 4-regular graph. The

use of a 4-regular graph means that a computer would become disconnected from the

broadcast channel only if all four of the connections to its neighbors fail. The graph used by

the broadcast technique also has the property that it would take a failure of four computers to

[oaooasoo4/swoa73uool -6- 7/31/00

0618

0619

10

15

20

25

30

divide the graph into disjoint sub-graphs, that is two separate broadcast channels. This

property is referred to as being 4-connected. Thus, the graph is both 4-regular and 4-

connected.

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents

the broadcast channel. Each of the nine nodes A-I represents a computer that is connected to

the broadcast channel, and each of the edges represents an “edge” connection between two

computers of the broadcast channel. The time it takes to broadcast a message to each

computer on the broadcast channel depends on the speed of the connections between the

computers and the number of connections between the originating computer and each other

computer on the broadcast channel. The minimum number of connections that a message

would need to traverse between each pair of computers is the “distance” between the

computers (i.e., the shortest path between the two nodes of the graph). For example, the

distance between computers A and F is one because computerA is directly connected to

computer F. The distance between computers A and B is two because there is no direct

connection between computers A and B, but computer F is directly connected to computer B.

Thus, a message originating at computer A would be sent directly to computer F, and then

sent from computer F to computer B. The maximum of the distances between the computers

is the “diameter” of broadcast charmel. The diameter of the broadcast channel represented

by Figure l is two. That is, a message sent by any computer would traverse no more than

two connections to reach every other computer. Figure 2 illustrates a graph representing 20

computers connected to a broadcast channel. The diameter of this broadcast channel is 4. In

particular, the shortest path between computers 1 and 3 contains four connections (l-12, 12-

15, 15-18, and 18-3).

The broadcast technique includes (1) the connecting of computers to the

broadcast channel (i. e., composing the graph), (2) the broadcasting of messages over the

broadcast charmel (i. e., broadcasting through the graph), and (3) the disconnecting of

computers from the broadcast channel (i. e., decomposing the graph) composing the graph.

Composing the Grth

To connect to the broadcast channel, the computer seeking the connection first

locates a computer that is currently fully connected to the broadcast channel and then

(03004-8004/SL003733JOO] -7- 7/31/00

0619

0620

10

15

20

25

30

establishes a connection with four of the computers that are already connected to the

broadcast channel. (This assumes that there are at least four computers already connected to

the broadcast channel. When there are fewer than five computers-connected, the broadcast

channel cannot be a 4-regular graph. In such a case, the broadcast channel is considered to

be in a “small regime.” The broadcast technique for the small regime is described below in

detail. When five or more computers are connected, the broadcast channel is considered to

be in the “large regime.” This description assumes that the broadcast channel is in the large

regime, unless specified otherwise.) Thus, the process of connecting to the broadcast

channel includes locating die broadcast channel, identifying the neighbors for the connecting

computer, and then connecting to each identified neighbor. Each computer is aware of one

or more “portal computers” through which that computer may locate the broadcast channel.

A seeking computer locates the broadcast channel by contacting the portal computers until it

The found portal

computer then directs the identifying of four computers (i.e., to be the seeking computer’s

finds one that is currently fully connected to the broadcast channel.

neighbors) to which the seeking computer is to connect. Each of these four computers then

cooperates with the seeking computer to effect the connecting of the seeking computer to the

broadcast channel. A computer that has started the process of locating a portal computer, but

does not yet have a neighbor, is in the “seeking connection state.” A computer that is

connected to at least one neighbor, but not yet four neighbors, is in the “partially connected

state.” A computer that is currently, or has been, previously connected to four neighbors is

in the “fully connected state.”

Since the broadcast channel is a 4-regular graph, each of the identified

computers is already connected to four computers. Thus, some connections between

computers need to be broken so that the seeking computer can connect to four computers. In

one embodiment, the broadcast technique identifies two pairs of computers that are currently

connected to each other. Each of these pairs of computers breaks the connection between

them, and then each of the four computers (two from each pair) connects to the seeking

computer. Figures 3A and 3B illustrate the process of a new computer Z connecting to the

broadcast channel. Figure 3A illustrates the broadcast channel before computer 2 is

connected. The pairs of computers B and E and computers C and D are the two pairs that are

' identified as the neighbors for the new computer Z. The connections between each of these

pairs is broken, and a connection between computer Z and each of computers B, C, D, and E

[03004~8004ISM03733. 1001 -8- 7/31/00

0620 '

0621

10

15

20

25

30

is established as indicated by Figure 3B. The process of breaking the connection between

two neighbors and reconnecting each of the former neighbors to another computer is referred

to as “edge pinning” as the edge between two nodes may be considered to be stretched and

pinned to a new node.

Each computer connected to the broadcast channel allocates five

communications ports for communicating with other computers. Four of the ports are

referred to as “intern ” ports because they are the ports through which the messages of the

broadcast channels are sent. The connections between internal ports of neighbors are

referred to as “internal” connections. Thus, the internal connections of the broadcast channel

form the 4-regular and 4-connected graph. The fifih port is referred to as an “external” port

because it is used for sending non-broadcast messages between two computers. Neighbors

can send non-broadcast messages either through their internal ports of their connection or

through their external ports. A seeking computer uses external ports when locating a portal

computer.

In one embodiment, the broadcast technique establishes the computer

connections using the TCP/IP communications protocol, which is a point-to-point protocol,

as the underlying network. The TCP/IP protocol provides for reliable and ordered delivery

of messages between computers. The TCP/IP protocol provides each computer with a “port

space” that is shared among all the processes that may execute on that computer. The ports

are identified by numbers from 0 to 65,535. The first 2056 ports are reserved for specific

applications (e.g., port 80 for HTTP messages). The remainder of the ports are user ports

that are available to any process. In one embodiment, a set of port numbers can be reserved

for use by the computer connected to the broadcast channel. In an alternative embodiment,

the port numbers used are dynamically identified by each computer. Each computer

dynamically identifies an available port to be used as its call-in port. This call-in port is used

to establish connections with the external port and the internal ports. Each computer that is

connected to the broadcast channel can receive non-broadcast messages through its external

port. A seeking computer tries “dialing” the port numbers of the portal computers until a

portal computer “answers,” a call on its call-in port. A portal computer answers when it is

connected to or attempting to connect to the broadcast channel and its call-in port is dialed.

(In this description, a telephone metaphor is used to describe the connections.) When a

computer receives a call on its call-in port, it transfers the call to another port. Thus, the

[03004-8004/SL003733. 100] -9- 7/31/00

0621

0622

10

15

20

25

30

seeking computer actually commnnicates through that transfer-to port, which is the external

port. The call is transferred so that other computers can place calls to that computer via the

call-in port. The seeking computer then communicates via that external port to request the

portal computer to assist in connecting the seeking computer to the broadcast channel. The

seeking computer could identify the call-in port number of a portal computer by successively

dialing each port in port number order. As discussed below in detail, the broadcast technique

uses a hashing algorithm to select the port number order, which may result in improved

performance.

A seeking computer could connect to the broadcast channel by connecting to

computers either directly connected to the found portal computer or directly connected to one

of its neighbors. A possible problem with such a scheme for identifying the neighbors for

the seeking computer is that the diameter of the broadcast channel may increase when each

seeking computer uses the same found portal computer and establishes a connection to the

broadcast channel directly through that found portal computer. Conceptually, the graph

becomes elongated in the direction of where the new nodes are added. Figures 4A-4C

illustrate that possible problem. Figure 4A illustrates the broadcast channel of Figure l with

an added computer. Computer J was connected to the broadcast channel by edge pinning

edges OD and E-H to computer J. The diameter of this broadcast channel is still two.

Figure 48 illustrates the broadcast channel of Figure 4A with an added computer.

Computer K was connected to the broadcast channel by edge pinning edges E-J and B-C to

computer K. The diameter of this broadcast channel is three, because the shortest path from

computer G to computer K is through edges G-A, A—E, and E-K. Figure 4C also illustrates

the broadcast channel of Figure 4A with an added computer. Computer K was connected to

the broadcast channel by edge pinning edges D-G and E-J to computer K. The diameter of

this broadcast channel is, however, still two. Thus, the selection of neighbors impacts the

diameter of the broadcast channel. To help minimize the diameter, the broadcast technique

uses a random selection technique to identify the four neighbors of a computer in the seeking
connection state. The random selection technique tends to distribute the connections to new

seeking computers throughout the computers of the broadcast channel which may result in
smaller overall diameters.

[MOM—80041810037233.1001 - l 0- 7/31/00

0622

0623

10

15

20

25

30

Broadcastin Throu the Gra h

As described above, each computer that is connected to the broadcast channel

can broadcast messages onto the broadcast channel and does receive all messages that are

broadcast on the broadcast channel. The computer that originates a message to be broadcast

sends that message to each of its four neighbors using the internal connections. When a

computer receives a broadcast message from a neighbor, it sends the message to its three

other neighbors. Each computer on the broadcast channel, except the originating computer,

will thus receive a copy of each broadcast message hour each of its four neighbors. Each

computer, however, only sends the first copy of the message that it receives to its neighbors

and disregards subsequently received copies. Thus, the total number of copies of a message

that is sent between the computers is 3N+l, where N is the number of computers connected

to the broadcast channel. Each computer sends three copies of the message, except for the

originating computer, which sends four copies of the message.

The redundancy of the message sending helps to ensure the overall reliability

of the broadcast channel. Since each computer has four connections to the broadcast

channel, if one computer fails during the broadcast of aimessage, its neighbors have three

other connections through which they will receive copies of the broadcast message. Also, if

the internal connection between two computers is slow, each computer has three other

connections through which it may receive a copy of each message sooner.

Each computer that originates a message numbers its. own messages

sequentially. Because of the dynamic nature of the broadcast channel and because there are

many possible connection paths between computers, the messages may be received out of

order. For example, the distance between an originating computer and a certain receiving
computer may be four. After sending the first message, the originating computer and

receiving computer may become neighbors and thus the distance between them changes to

one. The first message may have to travel a distance of four to reach the receiving computer.

The second message only has to travel a distance of one. Thus, it is possible for the second

message to reach the receiving computer before the first message.

When the broadcast channel is in a steady state (i.e., no computers connecting

or disconnecting from the broadcast channel), out-of-order messages are not a problem

because each computer will eventually receive both messages and can queue messages until
all earlier ordered messages are received. If, however, the broadcast channel is not in a
[03004-8004/SLOO3733JOO] -l 1- 7/31/00

0623

0624

10

15

20

25

30

steady state, then problems can occur. In particular, a computer may connect to the

broadcast channel after the second message has already been received and forwarded on by

its new neighbors. When a new neighbor eventually receives the first message, it sends the

message to the newly connected computer. Thus, the newly connected computer will receive

the first message, but will not receive the second message. If the newly connected computer

needs to process the messages in order, it would wait indefinitely for the second message.

One solution to this problem is to have each computer queue all the messages

that it receives until it can send them in their proper order to its neighbors. This solution,

however, may tend to slow down the propagation of messages through the computers of the

broadcast charmel. Another solution that may have less impact on the propagation speed is

to queue messages only at computers who are neighbors of the newly connected computers.

Each already connected neighbor would forward messages as it receives them to its other

neighbors who are not newly connected, but not to the newly connected neighbor. The

already connected neighbor would only forward messages from each originating computer to

the newly connected computer when it can ensure that no gaps in the messages from that

originating computer will occur. In one embodiment, the already connected neighbor may

track the highest sequence number of the messages already received and forwarded on from

each originating computer. The already connected computer will send only higher numbered

messages from the originating computers to the newly connected computer. Once all lower

numbered messages have been received from all originating computers, then the already

connected computer can treat the newly connected computer as its other neighbors and

simply forward each message as it is received. In another embodiment, each computer may

queue messages and only forwards to the newly connected computer those messages as the

gaps are filled in. For example, a computer might receive messages 4 and 5 and then receive

message 3. In such a case, the already connected computer would forward queue messages 4

and 5. When message 3 is finally received, the already connected computer will send

messages 3, 4, and 5 to the newly connected computer. If messages 4 and 5 were sent to the

newly connected computer before message 3, then the newly connected computer would

process messages 4 and 5 and disregard message 3. Because the already connected computer

queues messages 4 and 5, the newly connected computer will be able to process message 3.

It is possible that a newly connected computer will receive a set of messages from an

originating computer through one neighbor and then receive another set of message from the

[03004-8004lsw03733JOO] -12- 7/51/00

0624

0625

10

15

20

25

30

same originating computer through another neighbor. Ifthe second set of messages contains

a message that is ordered earlier than the messages of the first set received, then the newly

connected computer may ignore that earlier ordered message if the computer already

processed those later ordered messages.

Decomposing the Graph .

A connected computer disconnects from the broadcast channel either in a

planned or unplanned manner. When a computer disconnects in a planned manner, it sends a

disconnect message to each of its four neighbors. The disconnect message includes a list that

identifies the four neighbors of the disconnecting computer. When a neighbor receives the

disconnect message, it tries to connect to one of the computers on the list. In one

embodiment, the first computer in the list will try to connect to the second computer in the

list, and the third computer in the list will try to connect to the fourth computer in the list. If

a computer cannot connect (e.g., the first and second computers are already connected), then

the computers may try connecting in various other combinations. If connections cannot be

established, each computer broadcasts a message that it needs to establish a connection with

another computer. When a computer with an available internal port receives the message, it

can then establish a connection with the computer that broadcast the message. Figures 5A-

5D illustrate the disconnecting of a computer from the broadcast channel. Figure 5A

illustrates the disconnecting of a computer from the broadcaSt channel in a planned manner.

When computer H decides to disconnect, it sends its list of neighbors to each of its neighbors

When

computers A and I receive the message they establish a connection between them as

(computers A, E, F and I) and then disconnects from each of its neighbors.

indicated by the dashed line, and similarly for computers E and F.

When a computer disconnects in an unplanned manner, such as resulting from

a power failure, the neighbors connected to the disconnected computer recognize the

disconnection when each attempts to send its next message to the now disconnected

computer. Each former neighbor of the disconnected computer recognizes that it is short one

connection (i.e., it has a hole or empty port). When a connected computer detects that one of

its neighbors is now disconnected, it broadcasts a port connection request on the broadcast

channel, which indicates that it has one internal port that needs a connection. The port

connection request identifies the call-in port of the requesting computer. When a connected

[O3004-8004ISUOS733JOO] -13- 7/31/00

0625

0626

10

15

20

25

30

computer that is also short a connection receives the connection request, it communicates

with the requesting computer through its external port to establish a connection between the

two computers. Figure 5B illustrates the disconnecting of a computer from the broadcast

channel in an unplanned manner. In this illustration, computer H has disconnected in an

unplanned manner. When each of its neighbors, computers A, E, F, and I, recognizes the

disconnection, each neighbor broadcasts a port connection request indicating that it needs to

fill an empty port. As shown by the dashed lines, computers F and I and computers A and E

respond to each other’s requests and establish a connection. '

It is possible that a planned or unplanned disconnection may result in two

neighbors each having an empty internal port. In such a case, since they are neighbors, they

are already connected and cannot fill their empty ports by connecting to each other. Such a

Each neighbor

broadcasts a port connection request when it detects that it has an empty port as described

condition is referred to as the “neighbors with empty ports” condition.

above. When a neighbor receives the port connection request from the other neighbor, it will

recognize the condition that its neighbor also has an empty port. Such a condition may also

occur when the broadcast channel is in the small regime. The condition can only be

corrected when in the large regime. When in the small regime, each computer will have less

than four neighbors. To detect this condition in the large regime, which would be a problem

if not repaired, the first neighbor to receive the port connection request recognizes the

condition and sends a condition check message to the other neighbor. The condition check

message includes a list of the neighbors of the sending computer. When the receiving

computer receives the list, it compares the list to its own list of neighbors. If the lists are

different, then this condition has occurred in the large regime and repair is needed. To repair

this condition, the receiving computer will send a condition repair request to one of the

neighbors of die sending computer which is not already a neighbor of the receiving

computer. When the computer receives the condition repair request, it disconnects from one

of its neighbors (other than the neighbor that is involved with the condition) and connects to

the computer that sent the condition repair request. Thus, one of the original neighbors

involved in the condition will have had a port filled. However, two computers are sn'll in

need of a connection, the other original neighbor and the computer that is now disconnected

from the computer that received the condition repair request. Those two computers send out

port connection requests. If those two computers are not neighbors, then they will connect to
-14.[03004-8004/81003733. 100] 7/31/00

0626

0627

10

15

20

25

30

each other when they receive the requests. If, however, the two computers are neighbors,

then they repeat the condition repair process until two non-neighbors are in need of

connections.

It is possible that the two original neighbors with the condition may have the

same set of neighbors. When the neighbor that receives the condition check message

determines that the sets ofneighbors are the same, it sends a condition double check message

to one of its neighbors other than the neighbor who also has the condition. When the

computer receives the condition double check message, it determines whether it has the same

set of neighbors as the sending computer. If so, the broadcast channel is in the small regime

and the condition is not a problem. If the set of neighbors are different, then the computer

that received the condition double check message sends a condition check message to the

original neighbors with the condition. The computer that receives that condition check

message directs one of it neighbors to connect to one of the original neighbors with the

condition by sending a condition repair message. Thus, one of the original neighbors with

the condition will have its port filled.

Figure 5C illustrates the neighbors with empty ports condition. In this

illustration, computer H disconnected in an unplanned manner, but computers F and I

responded to the port connection request of the other and are now connected together. The

other former neighbors of computer H, computers A and E, are already neighbors, which

gives rise to the neighbors with empty ports condition. In this example, computer E received

the port connection request fi’om computer A, recognized the possible condition, and sent

(since they are neighbors via the internal connection) a condition check message with a list

of its neighbors to computer A. When computer A received the list, it recognized that

computer E has a different set of neighbor (i.e., the broadcast channel is in the large regime).

Computer A selected computer D, which is a neighbor of computer E and sent it a condition

repair request. When computer D received the condition repair request, it disconnected from

one of its neighbors (other than computer E), which is computer G in this example.

Computer D then connected to computer A. Figure 5D illustrates two computers that are not

neighbors who now have empty ports. Computers E and G now have empty ports and are

not currently neighbors. Therefore, computers E and G can connect to each other.

Figures 51?. and SF further illustrate the neighbors with empty ports condition.

Figure 5E illustrates the neighbors with empty ports condition in the small regime. In this
{osmsoomwomuoo} ~15- 7/31/00

0627

0628

10

15

20

25

30

example, if computer E disconnected in an unplanned manner, then each computer

broadcasts a port connection request when it detects the disconnect. When computer A

receives the port connection request form computer B, it detects the neighbors with empty

ports condition and sends a condition check message to computer B. Computer B recognizes

that it has the same set Of neighbors (computer C and D) as computer A and then sends a

condition double check message to computer C. Computer C recognizes that the broadcast

channel is in the small regime because is also has the. same set of neighbors as computers A

\ and B, computer C may then broadcast a message indicating that the broadcast channel is in

the small regime.

Figure 5F illustrates the situation of Figure 5E when in the large regime. As

discussed above, computer C receives the condition double check message fiom computer B.

In this case, computer C recognizes that the broadcast channel is in the large regime because

it has a set of neighbors that is different from computer B. The edges extending up from

computer C and D indicate connections to other computers. Computer C then sends a

condition check message to computer B. When computer B receives the condition check
message, it sends a condition repair message to one of the neighbors of computer C. The

computer that receives the condition repair message disconnects from one of its neighbors,

other than computer C, and tries to connect to computer B and the neighbor from which it

disconnected tries to connect to computer A.

Port Selection

As described above, the TCP/IP protocol designates ports above number 2056

as user ports. The broadcast technique uses five user port numbers on each computer: one

external port and four internal ports. Generally, user ports cannot be statically allocated to

an application program because other applications programs executing on the same computer

may use conflicting port numbers. As a result, in one embodiment, the computers connected

to the broadcast channel dynamically allocate their port numbers. Each computer could

simply try to locate the lowest number unused port on that computer and use that port as the

call-in port. A seeking computer, however, does not know in advance the call-in port

number of the portal computers when the port numbers are dynamically allocated. Thus, a

seeking computer needs to dial ports of a portal computer starting with the lowest port

number when locating the call-in port of a portal computer. If the portal computer is

[03004-8004/swoa733.1001 -l6- 7/3 l/OO

0628

0629

10

15

20

25

30

connected to (or attempting to connect to) the broadcast channel, then the seeking computer

i would eventually find the call-in port. If the portal computer is not connected, then the

seeking computer would eventually dial every user port. In addition, if each application

program on a computer tried to allocate low-ordered port numbers, then a portal computer

may end up with a high-nmnbered port for its call-in port because many of the low-ordered

port numbers would be used by other application programs. Since the dialing of a port is a

relatively slow process, it would take the seeking computer a long time to locate the call-in

port of a portal computer. To minimize this time, the broadcast technique uses a port

ordering algorithm to identify the port number order that a portal computer should use when

finding an available port for its call-in port. In one embodiment, the broadcast technique

uses a hashing algorithm to identify the port order. The algorithm preferably distributes the

ordering of the port numbers randomly through out the user port number space and only

selects each port number once. In addition, every time the algorithm is executed on any

computer for a given channel type and channel instance, it generates the same port ordering.

As described below, it is possible for a computer to be connected to multiple broadcast

channels that are uniquely identified by channel type and channel instance. The algorithm

may be “seeded” with channel type and channel instance in order to generate a unique

ordering of port numbers for each broadcast channel. Thus, a seeking computer will dial the

ports of a portal computer in the same order as the portal computer used when allocating its

call-in port.

If many computers are at the same time seeking connection to a broadcast

channel through a single portal computer, then the ports of the portal computer may be busy

when called by seeking computers. The seeking computers would typically need to keep on

redialing a busy port. The process of locating a call-in port may be significantly slowed by

such redialing. In one embodiment, each seeking computer may each reorder the first few

port numbers generated by the hashing algorithm. For example, each seeking computer

could randomly reorder the first eight port numbers generated by the hashing algorithm. The

random ordering could also be weighted where the first port number generated by the

hashing algoritlun would have a 50% chance of being first in the reordering, the second port

number would have a 25% chance of being first in the reordering, and so on. Because the

seeking computers would use different orderings, the likelihood of finding a busy port is

reduced. For example, if the first eight port numbers are randomly selected, then it is
[03004-8004ISL003733. 100] - I 7- 7/3 1/00

0629

0630

10

15

20

25

30

possible that eight seeking computers could be simultaneously dialing ports in different

sequences which would reduce the chances of dialing a busy port.

Locatin a Portal Com uter

Each computer that can connect to the broadcast channel has a list of one or

more portal computers through which it can connect to the broadcast channel. In one

embodiment, each computer has the same set of portal computers. A seeking computer

locates a portal computer that is connected to the broadcast channel by successively dialing

the ports of each portal computer in the order specified by an algorithm. A seeking computer

could select the first portal computer and then dial all its ports until a call-in port of a

computer that is fully connected to the broadcast channel is found. If no call-in port is

found, then the seeking computer would select the next portal computer and repeat the

process until a portal computer with such a call-in port is found. A problem with such a

seeking technique is that all user ports of each portal computer are dialed until a portal

computer fully connected to the broadcast channel is found. In an alternate embodiment, the

seeking computer selects a port number according to the algorithm and then dials each portal

computer at that port number. Ifno acceptable call-in port to the broadcast channel is found,

then the seeking computer selects the next port number and‘repeats the process. Since the

call-in ports are likely allocated at lower-ordered port numbers, the seeking computer first

dials the port numbers that are most likely to be call-in ports of the broadcast channel. The

seeking computers may have a maximum search depth, that is the number of ports that it will

dial when seeking a portal computer that is fully connected. If the seeking computer

exhausts its search depth, then either the broadcast channel has not yet been established or, if

the seeking computer is also a portal computer, it can then establish the broadcast channel

with itself as the first fully connected computer.

When a seeking computer locates a portal computer that is itself not fully

connected, the two computers do not connect when they first locate each other because the

broadcast channel may already be established and accessible through a higher-ordered port

number on another portal computer. If the two seeking computers were to connect to each

other, then two disjoint broadcast channels would be formed. Each seeking computer can

share its experience in trying to locate a portal computer with the other seeking computer. In

particular, if one seeking computer has searched all the portal computers to a depth of eight,

[oamaommwoananoo] -18- 731/00

0630

0631

10

15

20

25

30

then the one seeking computer can share that it has searched to a depth of eight with another

seeking computer. If that other seeking computer has searched to a depth of, for example,

only four, it can skip searching through depths five through eight and that other seeking

computer can advance its searching to a depth of nine.

In one embodiment, each computer may have a different set of portal

computers and a different maximum search depth. In such a situation, it may be possible that

two disjoint broadcast: channels are formed because a seeking computer cannot locate a fully

connected port computer at a higher depth. Similarly, if the set of portal computers are

disjoint, then two separate broadcast channels would be formed.

Identifign'g Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting computer are

preferably selected randomly from the set of currently connected computers. One advantage

of the broadcast channel, however, is that no computer has global knowledge of the

broadcast charmel. Rather, each computer has local knowledge of itself and its neighbors.

This limited local knowledge has the advantage that all the connected computers are peers

(as far as the broadcasting is concerned) and the failure of any one computer (actually any

three computers when in the 4-regular and 4-conneet form) will not cause the broadcast

channel to fail. This local knowledge makes it difficult for a portal computer to randomly

select four neighbors for a seeking computer.

To select the four computers, a portal computer sends an edge connection

request message through one of its internal connections that is randomly selected. The

receiving computer again sends the edge connection request message through one of its

internal connections that is randomly selected. This sending of the message corresponds to a

Eventually, a

receiving computer will decide that the message has traveled far enough to represent a

random walk through the graph that represents the broadcast channel.

randomly selected computer. That receiving computer will offer the internal connection

upon which it received the edge connection request message to the seeking computer for

edge pinning. Of course, if either of the computers at the end of the offered internal

connection are already neighbors of the seeking computer, then the seeking computer cannot

connect through that intemal connection. The computer that decided that the message has

[03004-8004ISL003733JOO] -1 9- 7/31/00

0631

0632

10

15

20

25

30

traveled far enough will detect this condition of already being a neighbor and send the

message to a randomly selected neighbor.

In one embodiment, the distance that the edge connection request message

travels is established by the portal computer to be approximame twice the estimated

diameter of the broadcast channel. The message includes an indication of the distance that it

is to travel. Each receiving computer decrements that distance to travel before sending the

message on. The computer that receives a message with a distance to travel that is zero is

considered to be the randomly selected computer. If that randomly selected computer carmot

connect to the seeking computer (e.g., because it is already connected to it), then that

randomly selected computer forwards the edge connection request to one of its neighbors

with a new distance to travel. In one embodiment, the forwarding computer toggles the new

distance to travel between zero and one to help prevent two computers from sending the

message back and forth between each other.

Because of the local nature of the information maintained by each computer

connected to the broadcast channel, the computers need not generally be aware of the

diameter of the broadcast channel. In one embodiment, each message sent through the
broadcast channel has a distance traveled field. Each computer that forwards a message

increments the distance traveled field. Each computer also maintains an estimated diameter

of the broadcast channel. When a computer receives a message that has traveled a distance

that indicates that the estimated diameter is too small, it updates its estimated diameter and

broadcasts an estimated diameter message. When a computer receives an estimated diameter

message that indicates a diameter that is larger than its own estimated diameter, it updates its

own estimated diameter. This estimated diameter is used to establish the distance that an

edge connection request message should travel.

External Data Representation

The computers connected to the broadcast channel may internally store their

data in different formats. For example, one computer may use 32-bit integers, and another

computer may use 64-bit integers. As another example, one computer may use ASCH to

represent text and another computer may use Unicode. To allow communications between

heterogeneous computers, the messages sent over the broadcast channel may use the XDR

(“eXtemal Data Representation”) format.

[03004-8004/Sw03733JOO) -20- 7mm

0632

0633

10

15

20

25

30

The underlying peer-to-peer communications protocol may send multiple

messages in a single message stream. The taditional technique for retrieving messages from

a steam has been to repeatedly invoke an operating syst routine to retieve the next

message in the steam. The retrieval of each message may require two calls to the operating

system: one to retieve the size of the next message and the other to retrieve the number of

bytes indicated by the retrieved size. Such calls to the operating system can, however, be

very slow in comparison to the invocations of local routines. To overcome the inefficiencies

of such repeated calls, the broadcast technique in one embodiment, uses XDR to identify the

message boundaries in a steam of messages. The broadcast technique may request the

operating "system to provide the next, for example, 1,024 bytes from the steam. The

broadcast technique can then repeatedly invoke the XDR routines to retieve the messages

and use the success or failure of each invocation to determine whether another block of 1,024

bytes needs to be retrieved from the operating system. The invocation of XDR routines do

not involve system calls and are thus more efficient than repeated system calls.

M-Regglar

[n the‘ embodiment described above, each fully connected computer has four

internal connections. The broadcast technique can be used with other numbers of internal

connections. For example, each computer could have 6, 8, or any even number of internal

connections. As the number of internal connections increase, the diameter of the broadcast

channel tends to decrease, and thus propagation time for a message tends to decrease. The

time that it takes to connect a seeking computer to the broadcast channel may, however,

increase as the number of internal connections increases. When the number of internal

connectors is even, then the broadcast charmel can be maintained as m-regular and

m-connected (in the steady state). If the number of internal connections is odd, then when

the broadcast channel has an odd number of computers connected, one of the computers will

have less than that odd number of internal connections. In such a situation, the broadcast

network is neither m-regular nor m-connected. When the next computer connects to the

broadcast channel, it can again become m-regular and m-connected. Thus, with an odd

number of internal connections, the broadcast channel toggles between being and not being
m-regular and m-connected.

[03004.8004ISL003733JOO] -21- 7/31/00

0633

0634

10

15

20

25

30

Components

Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcast channel. The above description generally assumed that there was

only one broadcast channel and that each computer had only one connection to that broadcast

channel. More generally, a network of computers may have multiple broadcast channels,

each computer may be connected to more than one broadcast channel, and each computer

can have multiple connections to the same broadcast channel. The broadcast channel is well

suited for computer processes (e.g., application programs) that execute collaboratively, such

as network meeting programs. Each computer process can connect to one or more broadcast

channels. The broadcast channels can be identified by channel type (e.g., application

program name) and channel instance that represents separate broadcast channels for that

channel type. When a process attempts to connect to a broadcast channel, it seeks a process

currently connected to that broadcast channel that is executing on a portal computer. The

seeking process identifies the broadcast channel by channel type and channel instance.

Computer 600 includes multiple application programs 601 executing as

separate processes. Each application program interfaces with a broadcaster component 602

for each broadcast channel to which it is connected. The broadcaster component may be

implement as an object that is instantiated within the process space of the application

program. Alternatively, the broadcaster component may execute as a separate process or

thread from the application program. In one embodiment, the broadcaster component

provides functions (e.g., methods of class) that can be invoked by the application programs.

The primary fimctions provided may include a connect function that an application program

invokes passing an indication of the broadcast channel to which the application program

wants to connect. The application program may provide a callback routine that the

broadcaster component invokes to notify the application program that the connection has

been completed, that is the process enters the fully connected state. The broadcaster

component may also provide an acquire message function that the application program can

invoke to retrieve the next message that is broadcast on the broadcast channel. Alternatively,

the application program may provide a callback routine (which may be a virtual function

provided by the application program) that the broadcaster component invokes to notify the

application program that a broadcast message has been received. Each broadcaster

component allocates a call-in port using the hashing algorithm. When calls are answered at
loaoouoowswonnioo) -22- 7/31/00

0634

0635

10

15

20

25

the call-in port, they are transferred to other ports that serve as the external and internal

ports.

The computers connecting to the broadcast channel may include a central

processing unit, memory, input devices (e.g., keyboard and pointing device), output devices

(e.g., display devices), and storage devices (e.g., disk drives). The memory and storage

devices are computer-readable medium that may contain computer instructions that

implement the broadcaster component. In addition, the data structures and message

structures may be stored or transmitted via a signal transmitted on a computer-readable

media, such as a communications link.

Figure 7 is a block diagram illustrating the sub-components _of the broadcaster

component in one embodiment. The broadcaster component includes a connect component

701, an external dispatcher 702, an internal dispatcher 703 for each internal connection, an

acquire message component 704 and a broadcast component 712. The application program

may provide a connect callback component 710 and a receive response component 711 that

are invoked by the broadcaster component. The application program invokes the connect

component to establish a connection to a designated broadcast channel. The connect

component identifies the external port and installs the external dispatcher for handling

messages that are received on the external port. The connect component invokes the seek

portal computer component 705 to identify a portal computer that is connected to the

broadcast channel and invokes the connect request component 706 to ask the portal computer

(if fully connected) to select neighbor processes for the newly connecting process. The

external dispatcher receives external messages, identifies the type of message, and invokes

the appropriate handling routine 707. The internal dispatcher receives the internal messages,

identifies the type of message, and invokes the appropriate handling routine 708. The

received broadcast messages are stored in the broadcast message queue 709. The acquire

message component is invoked to retrieve messages from the broadcast queue. The

broadcast component is invoked by the application program to broadcast messages in the
broadcast channel.

The following tables list messages sent by the broadcaster components.

[03004-8004/SL003733JOOI ~23- muoo

0635

0636

EXTERNAL MESSAGES

Indicates that a seeking process would like to know whether the

receiving process is fully connected to the broadcast channel

Indicates that the sending process would like the receiving
process to initiate a connection of the sending process to the
broadcast channel

 Message Type

seeking_connection_call

 connection_request_call

Indicates that the sending process is proposing an edge through
which the receiving process can connect to the broadcast

channel (i. e., edge pinning)

edge_proposal_call

 port_connection_call Indicates that the sending process is proposing a port through

which the receiving process can connect to the broadcast
channel

connected_stmt . Indicates that the sending process is connected to the broadcast
channel

condition_repair_stmt Indicates that the receiving process should disconnect from one
of its neighbors and connect to one of the processes involved in
the neighbors with empty port condition

INTERNAL MESSAGES

Message Type

broadcast_stmt

connection_port_search_stmt

connection_edge_search_call

connection_edge_search_resp Indicates whether the edge between this process and the
sending neighbor has been accepted by the requesting
Party

Indicates an estimated diameter of the broadcast channel

diameter_reset_stmt Indicates to reset the estimated diameter to indicated
diameter

disconnect_stmt Indicates that the sending neighbor is disconnecting from
the broadcast channel

condition_check_stmt Indicates that neighbors with empty port condition have

l03004-8004/SL003733JOO]

Description

Indicates a message that is being broadcast through the
broadcast channel for the application programs

Indicates that the desrgnated process ts looking for a port
through which it can connect to the broadcast channel

Indicates that the requesting process 15 looking for an edge
through which it can connect to the broadcast channel

-24- 7/31/00

0636

0637

10

15

20

25

 —
condition_double_check_stmt Indicates that the neighbors with empty ports have the

. same set ofneighbors

Indicates that the broadcast channel is being shutdown

Flow Diagams

Figures 8-34 are flow diagram illustrating the processing of the broadcaster

component in one embodiment. Figure 8 is a flow diagram illustrating the processing of the

connect routine in one embodiment. This routine is passed a channel type (e.g., application

name) and channel instance (e.g., session identifier), that identifies the broadcast channel to

which this process wants to connect. The routine is also passed auxiliary information that

includes the list of portal computers and a connection callback routine. When the connection

is established, the connection callback routine is invoked to notify the application program.

When this process invokes this routine, it is in the seeking connection state. When a portal

computer is located that is connected and this routine connects to at least one neighbor, this

process enters the partially connected state, and when the process eventually connects to four

neighbors, it enters the fully connected state. When in the small regime, a fully connected

process may have less than four neighbors. In block 801, the routine opens the call-in port

through which the process is to communicate with other processes when establishing external

and internal connections. The port is selected as the first available port using the hashing

algorithm described above. In block 802, the routine sets the connect time to the current

time. The connect time is used to identify the instance of the process that is connected

through this external port. One process may connect to a broadcast channel of a certain

channel type and channel instance using one call-in port and then disconnects, and another

process may then connect to that same broadcast channel using the same call-in port. Before

the other process becomes fully connected, another process may try to communicate with it

thinking it is the fully connected old process. In such a case, the connect time can be used to

locate a portal computer through which this process can connect to the broadcast channel for

the passed type and instance. In decision block 804, if the seek portal computer routine is

[03004-8004/81003733JOO] -25- 7/31/00

0637

0638

10

15

20

25

30

successful in locating a fully connected process on‘that portal computer, then the routine

continues at block 805, else the routine returns an imsuccessful indication. In decision block

805, if no portal computer other than the portal computer on which the process is executing

was located, then this is the first process to fully connect to broadcast channel and the

routine continues at block 806, else the routine continues at block 808. In block 806, the

routine invokes the achieve connection routine to change the state of this process to fully

connected. 1n block 807, the routine installs the external dispatcher for processing messages

received through this process’ external port for the passed channel type and channel instance.

When a message is received through that external port, the external dispatcher is invoked.

The routine then returns. In block 808, the routine installs an external dispatcher. In block

809, the routine invokes the connect request routine to initiate the process of identifying

neighbors for the seeking computer. The routine then returns.

Figure 9 is a flow diagram illustrating the processing of the seek portal

computer routine in one embodiment. This routine is passed the channel type and channel

instance of the broadcast channel to which this process wishes to connect. This routine, for

each search depth (e.g., port number), checks the portal computers at that search depth. If a

portal computer is located at that search depth with a process that is fully connected to the

broadcast channel, then the routine returns an indication of success. In blocks 902-911, the

routine loops selecting each search depth until a process is located. In block 902, the routine

selects the next search depth using a port number ordering algorithm. In decision block 903,

if all the search depths have already been selected during this execution of the loop, that is

for the currently selected depth, then the routine returns a failure indication, else the routine

continues at block 904. In blocks 904-911, the routine loops selecting each portal computer

and determining whether a process of that portal computer is connected to (or attempting to

connect to) the broadcast channel with the passed channel type and channel instance. In

block 904, the routine selects the next portal computer. In decision block 905, if all the I

portal computers have already been selected, then the routine loops to block 902 to select the

next search depth, else the routine continues at block 906. In block 906, the routine dials the

selected portal computer through the port represented by the search depth. In decision block

907, if the dialing was successful, then the routine continues at block 908, else the routine

loops to block 904 to select the next portal computer. The dialing will be successful if the

dialed port is the calloin port of the broadcast channel of the passed channel type and channel
[03004-8004/SL003733JOO] -26— 7/3ll00

0638

0639

10

15

20

25

30

instance of a process executing on that portal computer. In block 908, the routine invokes a

contact process routine, which contacts the answering process of the portal computer through

the dialed port and determines whether that process is fully connected to the broadcast

channel. In block 909, the routine hangs up on the selected portal computer. In decision

block 910, if the answering process is fully connected to the broadcast channel, then the

routine returns a success indicator, else the routine continues at block 911. In block 911, the

routine invokes the check for external call routine to determine whether an external call has

been made to this process as a portal computer and processes that call. The routine then

loops to block 904 to select the next portal computer.

Figure 10 is a flow diagram illustrating the processing of the contact process

routine in one embodiment. This routine determines whether the process of the selected

portal computer that answered the call-in to the selected port is fully connected to the

In block 1001, the routine sends an external message (i.e.,

seeking_connection_call) to the answering process indicating that a seeking process wants to

broadcast channel.

know whether the answering process is fully connected to the broadcast channel. In block

1002, the routine receives the external response message from the answering process. 1n

decision block 1003, if the external response message is successfully received (i. e.,

seeking_connection_resp), then the routine continues at block 1004, else the routine retmns.

Wherever the broadcast component requests to receive an external message, it sets a time out

period. If the external message is not received within that time out period, the broadcaster

component checks its own call-in port to see if another process is calling it. In particular, the

dialed process may be calling the dialing process, which may result in a deadlock situation.

The broadcaster component may repeat the receive request several times. If the expected

message is not received, then the broadcaster component handles the error as appropriate. In

decision block 1004, if the answering process indicates in its response message that it is fully

connected to the broadcast channel, then the routine continues at block 1005, else the routine

continues at block 1006. In block 1005, the routine adds the selected portal computer to a

list of connected portal computers and then returns. In block 1006, the routine adds the

answering process to a list of fellow seeking processes and then returns.

identified as being fully. connected to the broadcast channel to initiate the connection of this
[O3004-8004/SL003733JOO] -27-

0639

0640

IO

15

20

25

30

process to the broadcast channel. In decision block 1101, if at least one process of a portal

computer was located that is fully connected to the broadcast channel, then the routine

continues at block 1103, else the routine continues at block 1102. A process of the portal

computer may no longer be in the list if it recently disconnected from the broadcast channel.

In one embodiment, a seeking computer may always search its entire search depth and find

multiple portal computers through which it can connect to the broadcast channel. In block

1102, the routine restarts the process of connecting to the broadcast channel and returns. In

block 1103, the routine dials the process of one of the found portal computers through the

call-in port. In decision block 1104, if the dialing is successful, then the routine continues at

block 1105, else the routine continues at block 1113. The dialing may be unsuccessful if, for

In block

1105, the routine sends an external message to the dialed process requesting a connection to

example, the dialed process recently disconnected from the broadcast channel.

the broadcast channel (i. e., connection_request_call). In block 1106, the routine receives the

response message (i. e., connection_request_resp). In decision block 1107, if the response

message is successfully received, then the routine continues at block 1108, else the routine

continues at block 1113. In block 1108, the routine sets the expected number of holes (i. e.,

empty internal connections) for this process based on the received response. When in the

large regime, the expected number of holes is zero. When in the small regime, the expected

number of holes varies from one to three. In block 1109, the routine sets the estimated

diameter of the broadcast channel based on the received response. In decision block 1111, if

the dialed process is ready to connect to this process as indicated by the response message,

then the routine continues at block 1112, else the routine continues at block 1113. In block

1112, the routine invokes the add neighbor routine to add the answering process as a

neighbor to this process. This adding of the answering process typically occurs when the

broadcast channel is in the small regime. When in the large regime, the random walk search

for a neighbor is performed. In block 1113, the routine hangs up the external connection

with the answering process computer and then returns.

Figure 12 is a flow diagram of the processing of the check for external call

routine in one embodiment. This routine is invoked to identify whether a fellow seeking

process is attempting to establish a connection to the broadcast channel through this process.

In block 1201, the routine attempts to answer a call on the call-in port. In decision block

1202, if the answer is successful, then the routine continues at block 1203, else the routine

[03004-8004/SL003733.100] -28- 7/31/00

0640

0641

10

15

20

25

30

returns. In block 1203, the routine receives the external message Earn the external port. In

decision block 1204, if the type of the message indicates that a seeking process is calling

(i.e., seeking_connection_call), then the routine continues at block 1205, else the routine

returns. In block 1205, the routine sends an external message (i.e., seeking_connection_resp)

to the other seeking process indicating that this process is also is seeking a connection. In

decision block 1206, if the sending of the external message is successful, then the routine

continues at block 1207, else the routine returns. In block 1207, the routine adds the other

seeking process to a list of fellow seeking processes and then returns. This list may be used

if this process can find no process that is fully connected to the broadcast channel. In which

case, this process may check to see if any fellow seeking process were successful in

connecting to the broadcast channel. For example, a fellow seeking process may become the

first process fully connected to the broadcast channel.

Figure 13 is a flow diagram of the processing of the achieve connection routine

in one embodiment. This routine sets the state of this process to fully connected to the

broadcast channel and invokes a callback routine to notify the application program that the

process is now fully connected to the requested broadcast channel. In block 1301, the

routine sets the connection state of this process to fully connected. In bloCk 1302, the

routine notifies fellow seeking processes that it is fully connected by sending a connected

external message to them (i.e., connected_stmt). In block 1303, the routine invokes the

connect callback routine to notify the application program and then returns.

Figure 14 is a flow diagram illustrating the processing of the external

dispatcher routine in one embodiment. This routine is invoked when the external port

receives a message. This routine retrieves the message, identifies the external message type,

and invokes the appropriate routine to handle that message. This routine loops processing

each message until all the received messages have been handled. In block 1401, the routine

answers (e.g., picks up) the external port and retrieves an external message. In decision

block 1402, if a message was retrieved, then the routine continues at block 1403, else the

routine hangs up on the external port in block 1415 and returns. In decision block 1403, if

the message type is for a process seeking a connection (i.e., seeking_connection_call), then

the routine invokes the handle seeking connection call routine in block 1404, else the routine

continues at block 1405. In decision block 1405, if the message type is for a connection

request call (i. e., connection_request_call), then the routine invokes the handle connection
[osooezooa/swoavauool -29- 7/31/00

0641

0642

10

15

20

25

30

request call routine in block 1406, else the routine continues at block 1407. In decision

block 1407, if the message type is edge proposal call (i.e., edge_proposa1_call), then the

routine invokes the handle edge proposal call routine in block 1408, else the routine

continues at block 1409. In decision block 1409, if the message type is port connect call

(1.2., port_connect_call), then the routine invokes the handle port connection call routine in

block 1410, else the routine continues at block 1411. In decision block 1411, if the message

type is a connected statement (i. e., connected_stmt), the routine invokes the handle

connected statement in block 1112, else the routine continues at block 1212. In decision

block 1412, if the message type is a condition repair statement (i. e., condition_repair_stmt),

then the routine invokes the handle condition repair routine in block 1413, else the routine

100ps to block 1414 to. process the next message. Afier each handling routine is invoked, the

routine loops to block 1414. In block 1414, the routine hangs up on the external port and

continues at block 1401 to receive the next message.

Figure 15 is a flow diagram illustrating the processing of the handle seeking

connection call routine in one embodiment. This routine is invoked when a seeking process

is calling to identify a portal computer through which it can connect to the broadcast channel.

In decision block 1501, if this process is currently fully connected to the broadcast channel

identified in the message, then the routine continues at block 1502, else the routine continues

at block 1503. In block 1502, the routine sets a message to indicate that this process is fully

connected to the broadcast channel and continues at block 1505. In block 1503, the routine

sets a message to indicate that this process is not fully connected. In block 1504, the routine

adds the identification of the seeking process to a list of fellow seeking processes. If this

process is not fully connected, then it is attempting to connect to the broadcast channel. In

block 1505, the routine sends the external message response (i.e., seeking_connection_resp)
to the seeking process and then returns.

Figure 16 is a flow diagram illustrating processing of the handle connection

request call routine in one embodiment. This routine is invoked when the calling process

wants this process to initiate the connection of the process to the broadcast channel. This

routine either allows the calling process to establish an internal connection with this process

(e. g., if in the small regime) or starts the process of identifying a process to which the calling

process can connect. In decision block 1601, if this process is currently fully connected to

the broadcast channel, then the routine continues at block 1603, else the routine hangs up on
|03004—8004ISU)03733.100] -30- 701/00

0642

0643

IO

15

20

25

30

the external port in block 1602 and returns. In block 1603, the routine sets the number of

holes that the calling process should expect in the response message. In block 1604, the

routine sets the estimated diameter in the response message. In block 1605, the routine

indicates whether this process is ready to connect to the calling process. This process is

ready to connect when the number of its holes is greater than zero and the calling process is

not a neighbor of this process. In block 1606, the routine sends to the calling process an

that is to the call

connection_request_resp). In block 1607, the routine notes the number of holes that the

connection request (1‘. e. ,external message responsive

calling process needs to fill asindicated in the request message. In decision block 1608, if

this process is ready to connect to the calling process, then the routine continues at block

1609, else the routine continues at block 1611. In block 1609, the routine invokes the add

In block 1610, the routine

decrements the ntnnber of holes that the calling process needs to fill and continues at block

1611. In block 1611, the routine hangs up on the external port. In decision block 1612, if

neighbor routine to add the calling process as a neighbor.

this process has no holes or the estimated diameter is greater than one (i.e., in the large

regime), then the routine continues at block 1613, else the routine continues at block 1616.

In blocks 1613-1615, the routine loops forwarding a request for an edge through which to

connect to the calling process to the broadcast channel. One request is forwarded for each

pair of holes of the calling process that needs to be filled. In decision block 1613, if the

number of holes of the calling process to be filled is greater than or equal to two, then the

routine continues at block 1614, else the routine continues at block 1616. In block 1614, the

routine invokes the forward connection edge search routine. The invoked routine is passed

to an indication of the calling process and the random walk distance. In one embodiment, the

distance is twice in the estimated diameter of the broadcast channel. In block 1614, the

routine decrements the holes left to fill by two and loops to block 1613. In decision block

1616, if there is still a hole to fill, then the routine continues at block 1617, else the routine

returns. In block 1617, the routine invokes the fill hole routine passing the identification of

the calling process. The fill hole routine broadcasts a connection port search statement (i.e.,

connection_port_search_stmt) for a hole of a connected process through which the calling
process can connect to the broadcast channel. The routine then returns.

Figure 17 is a flow diagram illustrating the processing of the add neighbor

routine in one embodiment. This routine adds the process calling on the external port as a
[osmsooalsmoa'nnool -3 1- 7/3 "00

0643

0644

10

15

20

25

30

neighbor to this process. In block 1701, the routine identifies the calling process on the

external port In block 1702, the routine sets a flag to indicate that the neighbor has not yet

received the broadcast messages from this process. This flag is used to ensure that there are

no gaps in the messages initially sent to the new neighbor. The external port becomes the

internal port for this connection. In decision block 1703, if this process is in the seeking

connection state, then this process is connecting to its first neighbor and the routine

continues at block 1704, else the routine continues at block 1705. In block 1704, the routine

sets the connection state of this process to partially connected. In block 1705, the routine

adds the calling process to the list of neighbors of this process. In block 1706, the routine

installs an internal dispatcher for the new neighbor. The internal dispatcher is invoked when

a message is received from that new neighbor through the internal port of that new neighbor.

In decision block 1707, if this process bufiered up messages while not fully connected, then

the routine continues at block 1708, else the routine continues at block 1709. In one

embodiment, a process that is partially connected may bufi‘er the messages that it receives

through an internal connection so that it can send these messages as it connects to new

neighbors. In block 1708, the routine sends the bufi‘ered messages to the new neighbor

through the internal port. In decision block 1709, if the number of holes of this process

equals the expected number of holes, then this process is fully connected and the routine

continues at block 1710, else the routine continues at block 1711. In block 1710, the routine

invokes the achieve connected routine to indicate that this process is fully connected. In

decision block 1711, if the number of holes for this process is zero, then the routine

continues at block 1712, else the routine returns. In block 1712, the routine deletes any

pending edges and then returns. A pending edge is an edge that has been proposed to this

process for edge pinning, which in this case is no longer needed.

Figure 18 is a flow diagram illustrating the processing of the forward

connection edge search routine in one embodiment. This routine is responsible for passing

along a request to connect a requesting process to a randomly selected neighbor of this

process through the internal port of the selected neighbor, that is part of the random walk. In

decision block 1801, if the forwarding distance remaining is greater than zero, then the

routine continues at block 1804, else the routine continues at block 1802. In decision block

1802, if the number of neighbors of this process is greater than one, then the routine

continues at block [804, else this broadcast channel is in the small regime and the routine
[csoouowsmomuom -32- 7/31/00

0644

0645

10

15

20

25

30

continues at block 1803. In decision block 1803, if the requesting process is a neighbor of

this process, then the routine returns, else the routine continues at block 1804. In blocks

1804-1807, the routine loops attempting to send a connection edge search call internal

message (i.e., connection_edge_search_call) to a randomly selected neighbor. In block 1804,

the routine randomly selects a neighbor of this process. In decision block 1805, if all the

neighbors of this process have already been selected, then the routine cannot forward the

message and the routine returns, else the routine continues at block 1806. In block 1806, the

routine sends a connection edge search call internal message to the selected neighbor. In

decision block 1807, if the sending of the message is successful, then the routine continues at

block 1808, else the routine loops to block 1804 to select the next neighbor. When the

sending of an internal message is unsuccessful, then the neighbor may have disconnected

from the broadcast channel in an implarmed manner. Whenever such a situation is detected

by the broadcaster component, it attempts to find another neighbor by invoking the fill holes

routine to fill a single hole or the forward connecting edge search routine to fill two holes. In

block 1808, the routine notes that the recently sent connection edge search call has not yet

been acknowledged and indicates that the edge to this neighbor is reserved if the remaining

forwarding distance is less than or equal to one. It is reserved because the selected neighbor

may offer this edge to the requesting process for edge pirming. The routine then returns.

Figure 19 is a flow diagram illustrating the processing of the handle edge

proposal call routine. This routine is invoked when a message is received from a proposing

process that proposes to connect an edge between the proposing process and one of its

neighbors to this process for edge pinning. In decision block 1901, if the number of holes of

this process minus the number of pending edges is greater than or equal to one, then this

process still has holes to be filled and the routine continues at block 1902, else the routine

continues at block 1911. In decision block 1902, if the proposing process or its neighbor is a

neighbor of this process, then the routine continues at block 191], else the routine continues

at block 1903. In block 1903, the routine indicates that the edge is pending between this

process and the proposing process. In decision block 1904, if a proposed neighbor is already

pending as a proposed neighbor, then the routine continues at block 1911, else the routine

continues at block 1907. In block 1907, the routine sends an edge proposal response as an

external message to the proposing process (i.e., edge_proposal_resp) indicating that the

proposed edge is accepted. In decision block 1908, if the sending of the message was
[osoouoouswomaiool -33- 7/3 1100

0645

0646

IO

15

20

25

30

successful, then the routine continues at block 1909, else the routine returns. In block 1909,

the routine adds the edge as a pending edge. In block 1910, the routine invokes the add .

neighbor routine to add the proposing process on the external port as a neighbor. The routine

then returns. In block 1911, the routine sends an external message (1‘.e., edge_proposal_resp)

indicating that this propoSed edge is not accepted. In decision block 1912, if the number of

holes is odd, then the routine continues at block 1913, else the routine returns. In block

1913, the routine invokes the fill hole routine and then retruns.

Figure 20 is a flow diagram illustrating the processing of the handle port

connection call routine in one embodiment. This routine is invoked when an external

message is received then indicates that the sending process wants to connect to one hole of

this process. In decision block 2001, if the number of holes of this process is greater than

zero, then the routine continues at block 2002, else the routine continues at block 2003. In

decision block 2002, if the sending process is not a neighbor, then the routine continues at

block 2004, else the roufine continues to block 2003. In block 2003, the routine sends a port

connection response external message (i.e., port_connection_resp) to the sending process that

indicates that it is not okay to connect to this process. The routine then returns. In block

2004, the routine sends a port connection response external message to the sending process

that indicates that is okay to connect this process; In decision block 2005, if the sending of
the message was successful, then the routine continues at block 2006, else the routine

continues at block 2007. In block 2006, the routine invokes the add neighbor routine to add

the sending process as a neighbor of this process and then returns. In block 2007, the routine

hangs up the external connection. In block 2008, the routine invokes the connect request

routine to request that a process connect to one of the holes of this process. The routine then
returns.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in

one embodiment. This routine is passed an indication of the requesting process. If this

process is requesting to fill a hole, then this routine sends an internal message to other

processes. If another process is requesting to fill a hole, then this routine invokes the routine

In block 2101, the routine initializes a

connection port search statement internal message (i.e., connection_port__seareh_stmt). In

to handle a connection port search request.

decision block 2102, if this process is the requesting process, then the routine continues at

block 2103, else the routine continues at block 2104. In block 2103, the routine distributes
[03004-8004/SL003733. I 00] -34- 7/31/00

0646

0647

10

15

20

25

30

the message to the neighbors of this process through the internal ports and then returns. In

block 2104, the routine invokes the handle connection port search routine and then returns.

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher

routine in one embodiment. This routine is passed an indication of the neighbor who sent the

internal message. In block 2201, the routine receives the internal message. This routine

identifies the message type and invokes the appropriate routine to handle the message. In

block 2202, the routine assesses whether to change the estimated diameter of the broadcast

channel based on the information in the received message. In decision block 2203, if this

process is the originating process of the message or the message has already been received

(i. e., a duplicate), then the routine ignores the message and continues at block 2208, else the

routine continues at block 2203A. In decision block 2203A, if the process is partially

connected, then the routine continues at block 22038, else the routine continues at block

2204. In block 22033, the routine adds the message to the pending connection buffer and

continues at block 2204. In decision blocks 2204-2207, the routine decodes the message

type and invokes the appropriate routine to handle the message. For example, in decision

block 2204, if the type of the message is broadcast statement (i. e., broadcast_stmt), then the

routine invokes the handle broadcast message routine in block 2205. After invoking the

appropriate handling routine, the routine continues at block 2208. In decision block 2208, if

the partially connected buffer is full, then the routine continues at block 2209, else the

roufine continues at block 2210. The broadcaster component collects all its internal

messages in a buffer while partially connected so that it can forward the messages as it

connects to new neighbors. If, however, that bufi‘er becomes full, then the process assumes

that it is now fully connected and that the expected number of connections was too high,

because the broadcast channel is now in the small regime. In block 2209, the routine invokes

the achieve connection routine and then continues in block 2210. In decision block 2210, if

the application program message queue is empty, then the routine returns, else the routine

continues at block 2212. In block 2212, the routine invokes the receive response routine

passing the acquired message and then returns. The received response routine is a callback

routine of the application program.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast

message routine in one embodiment. This routine is passed an indication of the originating
process, an indication of the neighbor who sent the broadcast message, and the broadcast
[03004-8004ISL003733JOO] -35-

0647

0648

10

15

20

25

30

message itself. In block 2301, the routine performs the out of order processing for this

message. The broadcaster component queues messages from each originating process until it

can send them in sequence number order to the application program. In block 2302, the

routine invokes the distribute broadcast message routine to forward the message to the

neighbors of this process. In decision block 2303, if a newly connected neighbor is waiting

to receive messages, then the routine continues at block 2304, else the routine returns. In

block 2304, the routine sends the messages in the correct order if possible for each

originating process and then returns.

Figure 24 is a flow diagram illustrating the processing of the distribute

broadcast message routine in one embodiment. This routine sends the broadcast message to

each of the neighbors of this process, except for the neighbor who sent the message to this

process. In block 2401, the routine selects the next neighbor other than the neighbor who

sent the message. In decision block 2402, if all such neighbors have already been selected,

then the routine returns. In block 2403, the routine sends the message to the selected

neighbor and then loops to block 2401 to select the next neighbor.

Figure 26 is a flow diagram illustrating the processing of the handle connection

port search statement routine in one embodiment. This routine is passed an indication of the

neighbor that sent the message and the message itself. In block 2601, the routine invokes the

distribute internal message which sends the message to each of its neighbors other than the

sending neighbor. In decision block 2602, if the number of holes of this process is greater

than zero, then the routine continues at block 2603, else the routine returns. In decision

block 2603, if the requesting process is a neighbor, then the routine continues at block 2605,

else the routine continues at block 2604. In block 2604, the routine invokes the court

neighbor routine and then returns. The court neighbor routine connects this process to the

requesting process if possible. In block 2605, if this process has one hole, then the neighbors

with empty ports condition exists and the routine continues at block 2606, else the routine

returns. In block 2606, the routine generates a condition check message (i. e.,

condition_check) that includes a list of this process’ neighbors. In block 2607, the routine

sends the message to the requesting neighbor.

Figure 27 is a flow diagram illustrating the processing of the court neighbor

routine in one embodiment. This routine is passed an indication of the prospective neighbor

for this process. If this process can connect to the prospective neighbor, then it sends a port
[03004-8004/SL003733. 100] -36-

0648

0649

10

15

20

25

30

connection call external message to the prospective neighbor and adds the prospective

neighbor as a neighbor. In decision block 2701, if the prospective neighbor is already a

neighbor, then the routine returns, else the routine continues at block 2702. In block 2702,

the routine dials the prospective neighbor. In decision block 2703, if the number of holes of

this process is greater than zero, then the routine continues at block 2704, else the routine

continues at block 2706. In block 2704, the routine sends a port connection call external

message (i.e., port_connection_call) to the prospective neighbor and receives its response

(i.e., port_connection_resp). Assuming the response is successfully received, in block 2705,

the routine adds the prospective neighbor as a neighbor of this process by invoking the add

neighbor routine. In block 2706, the routine hangs up with the prospect and then returns.

Figure 28 is a flow diagram illustrating the processing of the handle connection

edge search call routine in one embodiment. This routine is passed a indication of the

neighbor who sent the message and the message itself. This routine either forwards the

message to a neighbor or proposes the edge between this process and the sending neighbor to

the requesting process for edge pinning. In decision block 2801, if this process is not the

requesting process or the number of holes of the requesting process is still greater than or

equal to two, then the routine continues at block 2802, else the routine continues at block

2813. In decision block 2802, if the forwarding distance is greater than zero, then the

random walk is not complete and the routine continues at block 2803, else the routine

continues at block 2804. In block 2803, the routine invokes the forward connection edge

search routine passing the identification of the requesting process and the decremented

forwarding distance. The routine then continues at block 2815. In decision block 2804, if

the requesting process is a neighbor or the edge between this process and the sending

neighbor is reserved because it has already been offered to a process, then the routine

continues at block 2805, else the roun'ne continues at block 2806. In block 2805, the routine

invokes the forward connection edge search routine passing an indication of the requesting

party and a toggle indicator that alternatively indicates to continue the random walk for one

or two more computers. The rouu'ne then continues at block 2815. In block 2806, the

routine dials the requesting process via the call-in port. In block 2807, the roun'ne sends an

edge proposal call external message (i. e., edge_proposal_call) and receives the response (i. e.,

edge_proposal_resp). Assuming that the response is successfully received, the routine

continues at block 2808. In decision block 2808, if the response indicates that the edge is
[03004.3004.'sm03733.iool -3 7- 7B] IOO

0649

0650

10

15

20

25

30

acceptable to the requesting process, then the routine continues at block 2809, else the

routine continues at block 2812. In block 2809, the routine reserves the edge between this

process and the sending neighbor. In block 2810, the routine adds the requesting process as

a neighbor by invoking the add neighbor routine. In block 2811, the routine removes the

sending neighbor as a neighbor. In block 2812, the routine hangs up the external port and

continues at block 2815. In decision block 2813, if this process is the requesting process and

the number of holes of this process equals one, then the routine continues at block 2814, else

the routine continues at block 2815. In block 2814, the routine invokes the fill hole routine.

In block 2815, the routine sends an connection edge search response message (i. e.,

connection_edge_3earch_response) to the sending neighbor indicating acknowledgement and

then returns. The graphs are sensitive to parity. That is, all possible paths starting from a

node and ending at that node will have an even length unless the graph has a cycle whose

length is odd. The broadcaster component uses a toggle indicator to vary the random walk

distance between even and odd distances.

Figure 29 is a flow diagram illustrating the processing of the handle connection

edge search response routine in one embodiment. This routine is passed as indication of the

requesting process, the sending neighbor, and the message. In block 2901, the routine notes

that the connection edge search response (i. e., connection_edge_search_resp) has been

received and if the forwarding distance is less than or equal to one unreserves the edge

between this process and the sending neighbor. In decision block 2902, if the requesting

process indicates that the edge is acceptable as indicated in the message, then the routine

continues at block 2903, else the routine returns. In block 2903, the routine reserves the edge

between this process and the sending neighbor. In block 2904, the routine removes the

sending neighbor as a neighbor. In block 2905, the routine invokes the court neighbor

routine to connect to the requesting process. In decision block 2906, if the invoked routine

was unsuccessful, then the routine continues at block 2907, else the routine returns. In

decision block 2907, if the number of holes of this process is greater than zero, then the

routine continues at block 2908, else the routine returns. In block 2908, the routine invokes
the fill hole routine and then returns.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine

in one embodiment. This routine is invoked by the application program to broadcast a

message on the broadcast channel. This routine is passed the message to be broadcast. In
[03004-8004/811103733JOO] -38- 7/31/00

0650

0651

10

15

20

25

30

decision block 3001, if this process has at least one neighbor, then the routine continues at

block 3002, else the routine retums since it is the only process connected to be broadcast

channel. In block 3002, the routine generates an internal message of the broadcast statement

type (i.e., broadcast _stmt). In block 3003, the routine sets the sequence number of the

message. In block 3004, the routine invokes the distribute internal message routine to

broadcast the message on the broadcast channel. The routine returns.

Figure 31 is a flow diagram illustrating the processing of the acquire message

routine in one embodiment. The acquire message routine may be invoked by the application

program or by a callback routine provided by the application program. This routine returns a

message. In block 3101, the routine pops the message fiom the message queue of the

broadcast channel. In decision block 3102, if a message was retrieved, then the routine

returns an indication of success, else the routine returns indication of failure.

Figures 32-34 are flow diagrams illustrating the processing of messages

associated with the neighbors with empty ports condition. Figure 32 is a flow diagram

illustrating processing of the handle condition check message in one embodiment. This

message is sent by a neighbor process that has one hole and has received a request to connect

to a hole of this process. In decision block 3201, if the number of holes of this process is

equal to one, then the routine continues at block 3202, else the neighbors with empty ports

condition does not exist any more and the routine returns. In decision block 3202, if the

sending neighbor and this process have the same set of neighbors, the routine continues at

block 3203, else the routine continues at block 3205. In block 3203, the routine initializes a

condition double check message (i.e., condition_double_check) with the list of neighbors of

this process. In block 3204, the routine sends the message internally to a neighbor other than

sending neighbor. The routine then returns. In block 3205, the routine selects a neighbor of

the sending process that is not also a neighbor of this process. In block 3206, the routine

sends a condition repair message (i.e., condition_repair_stmt) externally to the selected

process. In block 3207, the routine invokes the add neighbor routine to add the selected

neighbor as a neighbor of this process and then returns.

Figure 33 is a flow diagram illustrating processing of the handle condition

repair statement routine in one embodiment. This routine removes an existing neighbor and

connects to the process that sent the message. In decision block 3301, if this process has no

holes, then the routine continues at block 3302, else the routine continues at block 3304. In
[03004-8004/SL003733.100| -39- 7/3 1/00

0651

0652

10

15

20

25

block 3302, the routine selects a neighbor that is not involved in the neighbors with empty

ports condifion. In block 3303, the routine removes the selected neighbor as a neighbor of

this process. Thus, this process that is executing the routine now has at least one hole. In '

block 3304, the routine invokes the add neighbor routine to add the process that sent the

message as a neighbor of this process. The routine then returns.

Figure 34 is a flow diagram illustrating the processing of the handle condition

double check routine. This routine determines whether the neighbors with empty ports

condition really is a problem or whether the broadcast channel is in the small regime. In

decision block 3401, if this process has one hole, then the routine continues at block 3402,

else the routine continues at block 3403. If this process does not have one hole, then the set

of neighbors of this process is not the same as the set of neighbors of the sending process. In

decision block 3402, if this process and the sending process have the same set of neighbors,

then the broadcast channel is not in the small regime and the routine continues at block 3403,

else the routine continues at block 3406. In decision block 3403, if this process has no holes,

then the routine returns, else the routine continues at block 3404. In block 3404, the routine

sets the estimated diameter for this process to one. In block 3405, the routine broadcasts a

diameter reset internal message (i. e., diameter_reset) indicating that the estimated diameter is

one and then returns. In block 3406, the routine creates a list of neighbors of this process. In

block 3407, the routine sends the condition check message (i. e., condition_check_stmt) with

the list of neighbors to the neighbor who sent the condition double check message and then

returns. ‘

From the above description, it will be appreciated that although specific

embodiments of the technology have been described, various modifications may be made

without deviating from the spirit and scope of the invention. For example, the

communications on the broadcast channel may be encrypted. Also, the channel instance or

session identifier may be a very large number (e.g. , 128 bits) to help prevent an unauthorized

user to maliciously tap into a broadcast channel. The portal computer may also enforce

security and not allow an unauthorized user to connect to the broadcast charmel.

Accordingly, the invention is not limited except by the claims.

[030044004151.003733100] ~40-

0652

0653

CLAIMS

1. A method of broadcasting data through a computer network, the method

comprising:

receiving at a computer the data from a neighbor computer;

determining whether the received data has already been transmitted

from the receiving computer to its neighbor computers;

when it is determined that the data has already. been transmitted,

disregarding the received data; and .

when it is determined that the data has not already been transmitted,

transmitting the received data to neighbor computers of the receiving computer.

2. The method of claim 1 wherein the computer network is a 4—reg'ular

graph.

3. The method of claim 1 wherein the computer network implements a

broadcast channel wherein the neighbor computers of the computer network are connected

using point-to-point connections.

4. The method of claim 3 wherein the connections are TCP/IP connections.

5. The method of claim 1 wherein the computer network is a broadcast

channel that is implemented using an underlying network that connects computers using

point-to-point connections.

6. The method of claim 5 wherein the underlying network is the Internet.

[03004-8004/SL003733. 100) -41- 1mm

0653

0654

7. A broadcaster component in a computer connected to a computer

network, comprising:

an originating module that transmits data that originates from the

computer to each of the neighbor computers;

a receiving module that receives multiple copies of data that originates

from another computer, each copy of the data being received from a different neighbor

computer; and

a forwarding module that transmits a copy of the received data to each

neighbor computer other than that neighbor computer from which the copy was received.

8. The broadcaster component of claim 7 including

a sending module that provides a copy of the received data to an-

application program.

9. The broadcaster component of claim 7 wherein the computer network is

a broadcast channel implemented using an underlying point-to-point computer network.

10. The broadcaster component of claim 7 including:

a locating module for locating a portal computer that is connected to the

computer network.

1 l. The broadcaster component of claim 7 including:

a connecting module for connecting the computer to the computer

network.

12. The broadcaster component of claim 7 including:

a portal module for initiating joining of a requesting computer to the

computer network.

13.

to its neighbor computer using a point-to-point connection.

.42-

The broadcast component of claim 7 wherein the computer is connected

[03004-8004/Sm03733JOO] 7/31/00

0654

0655

14. A method of broadcasting data on a computer network, the method

comprising: 4

establishing connections between each computer of the computer

network and at least three other computers of the computer network;

when a computer originates data, sending the data to each of the

computers to which it is connected; and

when a computer receives data, sending a first copy of the data that it

receives to each of the computers to which it is connected other than the computer from

which it received the data.

15. The method of claim 14 wherein computers and connections of the

computer network form an m-regular graph.

16. The method of claim 15 wherein each computer is connected to an even

number of computers.

17. The method of claim 14 wherein the computers and connections of the

computer network form an m-regular and m-connected graph.

18. The method of claim 17 wherein m is even,

19. The method of claim 17 wherein m is 4.

20. The method of claim 14 wherein the computers are connected using
point-to-point connections.

21. The method of claim 14 wherein the computers are connected using the
Internet.

[03004-8004/sw03733.1oo) -43- 7/31/00

0655

0656

l

2

22. A computer-readable medium containing instructions for controlling a

computer system to broadcast data on a broadcast channel, by a method comprising:

establishing connections between each computer of the broadcast

channel and three other computers of the broadcast channel using point-to-point connections;

when a computer originates data, sending the data to each of the

computers to which it is connected; and

when a computer receives data, sending a copy of the data that it

receives to each of the computers to which it is connected other than the computer from

which it received the data.

23. The computer-readable medium of claim 22 wherein computers and

connections of the computer network form an m-regular graph.

24. The computer-readable medium of claim 23 wherein each computer is

connected to an even number of computers.

25. The computer-readable medium of claim 22 wherein the computers and

connections of the broadcast channel form an m-regular and m-connected graph.

26. The computer-readable medium of claim 25 wherein m is even.

27. The computer-readable medium of claim 25 wherein m is 4.

28. The computer-readable medium of claim 22 wherein the computers are

connected using the Intemet.

{03004-8004/81003733. 100] 7/31/00

0656

0657

 nUamv53816.7:23.39M43.3w-
[’yinllillllllllltlll’(.I.I,'1'.'33.5

0657

0658

 Gms3.33.232953

0658

0659

0659

0660

0660

0661

0661

0662

+<B¢wuosu9+
Q6

 80:09:09r)..mn_<$.m)73£_;

sowtfiwa9myondvvoxwMaw

0662

0663

a33‘

NQ

u...on.‘U
EuH

if

.m.

(can.

QM«vac:
\N

Qx«U15;

0663

0664

 «i433EH

0664

0665

 0.dam.IIIIIlunlllill‘lx.11.5...110...‘I:Ln:NowfE,35W

0665

0666

 E

"a--- ._.-._.._._......_.___..

0666

0667

0667

0668

 ,{mung

N0

{CH

ALE

tLH

0668

0669

0669

0670

0670

0671

 MmtiENS»;NM£2.£120

%y3?%214;«153,9

-\E:-+...:Q.\..M]\:.oU.oor\qu.1w“.[t

0671

0672

9946.»Emtow}MM.33w<13.1!.lhue».filiza:.'In_.«aVGSU_.53»L157153vcbitR13.»NOAlvd0Alva_W‘.*2‘odJaminll!Q\l4...+9.an,rL.12890Jun;«.30
0672

0673

- A,
.310”:

v 0. NOV°~ o-FI'S‘H
co r. $th.v/K'g

0673

0674

dine:.s¢9&ém_(Immidwccmwv;sat“We

0674

0675

0675

0676

0676

0677

U

10

15

20

25

.8. Patent Application No. 09/629, 024

l

DISTRIBUTED CONFERENCING SYSTEM !

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to US. Patent Application No. ,

entitled “BROADCASTING NETWORK,” filed on July 31, 2000 (lAttomey Docket

No. 030048001 US); US. Patent Application No. , entitiled “JOINING A

BROADCAST CHANNEL,” filed on July 31, 2000 (Attorney Docket No.l 030048002 US);

US. Patent Application No. , “LEAVING A BROADCAST CHANNEL,"

filed on July 31, 2000 (Attorney Docket No. 030048003 US); US. Patent Application

No. , entitled “BROADCASTING ON A BROADCAST CHANNEL,” filed

on July 31, 2000 (Attorney Docket No. 030048004 US); US. Patent Application

No. , entitled “CONTACTING A BROADCAST CHANNEL,” filed on

July 31, 2000 (Attorney Docket No. 030048005 US); US. Patent

No. , entitled “DISTRIBUTED AUCTION SYSTEM,”

July 31,2000 (Attorney Docket No. 030048006 US); US. Patent

No. , entitled “AN INFORMATION DELIVERY SERVICE,” filed on

July 31,2000 (Attorney Docket No. 030048007 US); US. Patent

No. ' entitled “DISTRIBUTED CONFERENCING SYSTEM,” filed on

July 31, 2000 (Attorney Docket No. 030048008 US); and US. Patent Application

No. entitled “DISTRIBUTED GAME ENVIRONMENT,” filed on

July 31, 2000 (Attorney Docket No. 030048009 US), the disclosures of which are

incorporated herein by reference.

Application

filed on

Applicau'on

Application

TECHNICAL FIELD

The described technology relates generally to a computer nFtwork and more

particularly, to a broadcast channel for a subset of a computers of an underlymg network.

BACKGROUND

There are a wide variety of computer network communications techniques such

as point-to-point network protocols, client/server middleware, multicasting network

[osooW/swosnuoq

yoox

-l- 7/31/00

mazes; MAIL No. 31.4049352790:

0677

0678

10

[5

2O

25

30

protocols, and peer-to-peer middleware. Each of these communications itechniques have
l .

their advantages and disadvantages, but none is particularly well suited to the snnultaneous

sharing of information among computers that are widely distributed. For example,

collaborative processing applications, such as a network meeting programs have a need to

distribute information in a timely manner to all participants who may be geographically

distributed.

v

The point-to-point network protocols, such as UNIX pipes, TCP/IP, and UDP,

allow processes on different computers to communicate via point-to-point connections. The

interconnection of all participants using point-to-point connections, while theoretically

possible, does not scale well as a number of participants grows. For example, each

participating process would need to manage its direct connections to all other participating

processes. Programmers, however, find it very difficult to manage single connections, and

management of multiple connections is much more complex. In additibn, participating

processes may be limited to the number of direct connections that they cain support. This
limits the number of possible participants in the sharing of information. I

The client/server middleware systems provide a server that coordinates the

communications between the various clients who are sharing the informauon. The server
fimctions as a central authority for controlling access to shared resourcei. Examples of

client/server middleware systems include remote procedure calls (“RPC”), database servers,

and the common object request broker architecture (“CORBA”). Client/server rniddleware

systems are not particularly well suited to sharing of information among mhny participants.

In particular, when a client stores information to be shared at the server, each other client

would need to poll the server to determine that new information is being shared. Such
polling places a very high overhead on the communications network. Aliematively, each

client may register a callback with the server, which the server then in okes when new

information is available to be shared. Such a callback technique presen a performance

bottleneck because a single server needs to call back to each client whenever new

of information

depends upon the reliability of the single server. Thus, a failure at a singl computer (1'. e.,

information is to be shared. In addition, the reliability of the entire sh

the server) would prevent communications between any of the clients.

The multicasting network protocols allow the sending of broadcast messages to
mulu'ple recipients of a network. The current implementations of such mul 'casfing network

[03004-3001/SL003733J06] -2- 7/31/00

0678

0679

10

15

20

25

30

protocols tend to place an unacceptable overhead on the underlying network For example,
UDP multicasting would swamp the Internet when trying to locate all possible participants.
IP multicasting has other problems that include needing special-purpose infrastructure (e. g.,

routers) to support the sharing of information efliciently. i
The peer-to-peer rniddleware communications systems rely on a multicasting

network protocol or a graph of point-to-point network protocols. Such peer-to-peer

rniddleware is provided by the T.'120 Internet standard, which is used in such products as

Data Connection’s D.C.-share and Microsoft’s NetMeeting. These peer-to-lpeer middleware
systems rely upon a user to assemble a point-to-point graph of the conriections used for
sharing the information. Thus, it is neither suitable nor desirable to luse peer-to-peer
middlewarc systems when more than a small number of participants is desilred. In addition,

the underlying architecture of the T. 120 Internet standard is a tree sn'ucturell which relies on
the root node of the tree for reliability of the entire network. That is, each mlessage must pass

through the root node in order to be received by all participants.
It would be desirable to have a reliable communications lnetwork that is

suitable for the simultaneous "sharing of information among a large number of the processes

that are widely distributed.
i

BRIEF DESCRIPTION OF THE DRAWINGS
I

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents a
broadcast channel.

Figure 2 illustrates a graph representing 20 computers connected to a broadcast

channel.

Figures 3A and 3B illustrate the process of connecting a new iomputer Z to the
broadcast channel.

Figure 4A illustrates the broadcast charmel of Figure] with an added

computer. I
Figure 48 illustrates the broadcast channel of Figure 4Alwith an added

computer.

Figure 4C also illustrates the broadcast channel of Figure 4A with an added
computer. i

[03004-8001/SL003733. [06] 781/00

0679

0680

10

15

20

25

30

1

Figure 5A illustrates the disconnecting of a computer from the broadcast

channel in a planned manner.
Figure 5B illustrates the disconnecting of a computer from the broadcast

channel in an unplanned manner.

Figure 5C illustrates the neighbors with empty ports condition.§

Figure 5D illustrates two computers that are not neighbors; who now have
empty ports.

Figure 5E illustrates the neighbors with empty ports condition in the small
regime.

Figure SF illustrates the situation of Figure 5E when in the large regime.

Figure 6‘ is a block diagram illustrating components of a computer that is

connected to a broadcast channel.
Figure 7 is a block diagram illustrating the sub-components of the broadcaster

component in one embodiment.

Figure 8 is a flow diagram illustrating the processing of the connect routine in
one embodiment. E

Figure 9 is a flow diagram illustrating the processing of lthe seek portal
computer routine in one embodiment.

Figure 10 is a flow diagram illustrating the processing of thel contact process

routine in one embodiment.
Figure 11 is a flow diagram illustrating the processing of theiconnect request

routine one embodiment. .

Figure 12 is a flow diagram of the processing of the check ifor external call
routine in one embodiment. .

Figure 13 is a flow diagram of the processing of the achieve etinnection routine
Iin one embodiment.

Figure 14 is a flow diagram illustrating the processing pf the external
dispatcher routine in one embodiment. !

Figure 15 is a flow diagram illustrating the processing of the handle seeking
connection call routine in one embodiment.

Figure 16 is a flow diagram illustrating processing of the handle connection
request call routine in one embodiment. :

[03004-3001/sm03733. l06] -4- 7/: mm

0680

0681

10

15

20

25

30

i

i .
Figure 17 is a flow diagram illustrating the processing of the add neighbor

routine in one embodiment.

Figure 18 is a flow diagram illustrating the proceSsing iof the forward
connection edge search routine in one embodiment.

Figure 19 is a flow diagram illustrating the processing of jthe handle edge
proposal call routine.

Figure 20 is a flow diagram illustrating the processing of ithe handle port

connection call routine in one embodiment. '

Figure 21 is a flow diagram illustrating the processing of the till hole routine in

one embodiment. '

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher

routine in one embodiment. '

Figure 23 is a flow diagram illustrating the processing of the handle broadcast
message routine in one embodiment.

Figure 24 'is a flow diagram illustrating the processing the distribute

broadcast message routine in one embodiment.
Figure 26 is a flow diagram illustrating the processing of the himdle connection

port search statement routine in one embodiment. V
Figure 27 is a flow diagram illustrating the processing of court neighbor

routine in one embodiment. 2

Figure 28 is a flow diagram illustrating the processing of the himdle’ connection

edge search call routine in one embodiment. I
Figure 29 is a flow diagram illustrating the processing of the handle connection

edge search response routine in one embodiment. ’

Figure 30 is a flow diagram illustrating the processing of the broadcast routine

in one embodiment. '

Figure 31 is a flow diagram illustrating the processing of theiacquire message
routine in one embodiment.

Figure 32 is a flow diagram illustrating processing of the handle condition
check message in one embodiment.

Figure 33 is a flow diagram illustrating processing of the lhandle condition
repair statement routine in one embodiment.
[03004-8001/SL003733JO6] -5- 7mm

0681

0682

10

15

20

25

30

i
| . . .

Figure 34 is a flow diagram illustrating the processing of the |[handle condition

double check routine.
!

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel overlaysi a point-to-point
communications network is provided. The broadcasting of a message over the broadcast

charmel is effectively a multicast to those computers of the network tlitat are currently

connected to the broadcast channel. In one embodiment, the broadcast techjnique provides a
logical broadcast channel to which host computers through their executing processes can be

connected. Each computer that is connected to the broadcast charmdl can broadcast

messages onto and receive messages off of the broadcast channel. Each {computer that is
connected to the broadcast channel receives all messages that are broadcast while it is

connected. The logical broadcast channel is implemented using an underlying network
system (e.g., the Internet) that allows each computer connected to the underlying network

system to send messages to each other connected computer using each computer’s address.

Thus, the broadcast technique effectively provides a broadcast channel usiiig an underlying
network system that sends messages on a point-to-point basis. ‘ '

The broadcast technique overlays the underlying network sysiem with a graph
of point-to-point connections (i.e., edges) between host computers (i.e. nodes) through
which the broadcast channel is irnplemented. In one embodiment, each computer is
connected to four other computers, referred to as neighbors. (Actually, a pirocess executing

on a computer is connected to four other processes executing on or four other
computers.) To broadcast a message, the originating computer sends the message to each of
its neighbors using its point-to—point connections. Each computer that receives the message

then sends the message to its three other neighbors using the point-to-pointi connections. In
this way, the message is propagated to each computer using the underlying inetwork to effect

' the broadcasting of the message to each computer over a logical broadcast zhannel. A graph

in which each node is connected to four other nodes is referred to as a 4-rel ar graph. The

use of a 4-regular graph means that a computer would become disco ected from the

broadcast channel only if all four of the connections to its neighbors fail. e graph used by

the broadcast technique also has the property that it would take a failure of iiour computers to

[03004-8001/SLDO3733.106] -6- muoo

I

0682

0683

10

15

20

25

30

divide the graph into disjoint sub-graphs, that is two separate broadcast: channels. This
property is referred to as being 4-connected. Thus, the graph is both i4-regular and 4-

connected. :

Figure 1 illustrates a graph that is 4-regular and 4-connected {which represents

the broadcast channel. Each of the nine nodes A-I represents a computer that is connected to
the broadcast channel, and each of the edges represents an “edge” connection between two

computers of the broadcast channel. The time it takes to broadcast a message to each

computer on the broadcast channel depends on the speed of the connections between the

computers and the number of connections between the originating computer and each other

computer on the broadcast channel. The minimum number of connectionis that a message
would need to traverse between each pair of computers is the “distance” between the

computers (i.e., the shortest path between the two nodes of the graph). Ilior example, the
distance between computers A and F is one because computerA is dire tly connected to

computer F. The distance between computers A and B is two because there is no direct
connection between computers A and B, but computer F is direcfly connecteid to computer B.

Thus, a message originating at computer A would be sent directly to com uter F, and then

sent from computer F to computer B. The maximum of the distances betwe n the computers

is the “diameter” of broadcast channel. The diameter of the broadcast channel represented

by Figure l is two. That is, a message sent by any computer would traveise no more than
two connections to reach every other computer. Figure 2 illustrates a graph representing 20

computers connected to a broadcast channel. The diameter of this broadcast channel is 4. In

particular, the shortest path between computers 1 and 3 contains four conneictions (1-12, 12-
15, 15-18, and 18-3). :

The broadcast technique includes (1) the connecting of ciomputers to the

broadcast channel (i.e., composing the graph), (2) the broadcasting of miessages over the

broadcast channel (i.e., broadcasting through the graph), and (3) the disconnecting of
computers from the broadcast charmel (i. e., decomposing the graph) composing the graph.

Composing the Grth

To connect to the broadcast channel, the computer seeking the connection first

locates a computer that is currently fully connected to the broadcast channel and then

[03004-800l/SL003733JO6] -7- 7/31/00

0683

0684

10

15

20

25

30

establishes a connection with four of the computers that are already connected to the

broadcast channel. (This assumes that there are at least four computers already connected to

the broadcast channel. When there are fewer than five computers connected, the broadcast

channel cannot be a 4-regular graph. In such a case, the broadcast channel is considered to

be in a “small regime.” The broadcast technique for the small regime is described below in

detail. When five or more computers are connected, the broadcast charmei is considered to
be in the “large regime.” This description assumes that the broadcast channel is in the large

regime, unless specified otherwise.) Thus, the process of connecting to the broadcast

channel includes locating the broadcast channel, identifying the neighbors for the connecting

computer, and then connecting to each identified neighbor. Each computei is aware of one
or more “portal computers” through which that computer may locate the bioadcast channel.
A seeking computer locates the broadcast channel by contacting the portal computers until it
finds one that is currently fully connected to the broadcast channel. The found portal

"computer then directs the identifying of four computers (i.e., to be the seeking computer’s

neighbors) to which the seeking computer is to connect. Each of these forir computers then
cooperates with the seeking computer to effect the connecting of the seeking computer to the

broadcast channel. A computer that has started the process of locating a po I computer, but
does not yet have a neighbor, is in the “seeking connection state.” AF
connected to at least one neighbor, but not yet four neighbors, is in the “pairtially connected

omputer that is

’3

state. A computer that is currently, or has been, previously connected to four neighbors is

in the “fully connected state.”

Since the broadcast channel is a 4-regular graph, each of the identified

computers is already connected to four computers. Thus, some connections between

computers need to be broken so that the seeking computer can connect to four computers. In

one embodiment, the broadcast technique identifies two pairs of computers that are currently

connected to each other. Each of these pairs of computers breaks the corinection between

them, and then each of the four computers (two from each pair) connecis to the seeking
computer. Figures 3A and 3B illustrate the process of a new computer Z connecting to the
broadcast channel. Figure 3A illustrates the broadcast channel before computer Z is

connected. The pairs of computers B and E and computers C and D are the two pairs that are

idenu'fied as the neighbors for the new computer Z. The connections between each of these

pairs is broken, and a connection between computer Z and each of computers B, C, D, and E
[03004-8001/SL003733. 106] '8- 7/3 1/00

0684

0685

IO

15

20

25

30

is established as indicated by Figure 3B. The process of breaking the corimection between
two neighbors and reconnecting each of the former neighbors to another computer is referred

to as “edge pinning” as the edge between two nodes may be considered to! be stretched and

pinned to a new node.

‘ Each computer connected to the broadcast channell allocates five
communications ports for communicating with other computers. Four gof the ports are

referred to as “internal” ports because they are the ports through which messages of the
broadcast channels are sent. The connections between internal ports :bf neighbors are
referred to as “internal” connections. Thus, the internal connections of the broadcast channel

form the 4-regular and 4-connected graph. The fifth port is referred to as an “external” port

because it is used for sending non-broadcast messages between two computers. Neighbors

can send non-broadcast messages either through their internal ports of their connection or
through their external ports. A seeking computer uses external ports wheni locating a portal

computer.

In one embodiment, the broadcast technique establishes the computer

connections using the TCP/IP communications protocol, which is a point-to-point protocol,

as the underlying network. The TCP/IP protocol provides for reliable andi ordered delivery

of messages between computers. The TCP/IP protocol provides each computer with a “port

space” that is shared among all the processes that may execute on that computer. The ports

are identified by numbers from 0 to 65,535. The first 2056 ports are reserved for specific

applications (e.g., port 80 for HTTP messages). The remainder of the ports are user ports

that are available to any process. In one embodiment, a set of port numbers can be reserved

for use by the computer connected to the broadcast channel. In an alternative embodiment,

the port numbers used are dynamically identified by each computer. . Each computer

dynamically identifies an available port to be used as its call-in port. This call-in port is used

to establish connections with the external port and the internal ports. Eacli computer that is
connected to the broadcast channel can receive non-broadcast messages thiough its external

port. A seeking computer tries “dialing” the port numbers of the portal computers until a

portal computer “answers,” a call on its call-in port. A portal computer answers when it is

connected to or attempting to connect to the broadcast channel and its calll-in port is dialed.

(In this description, a telephone metaphor is used to describe the connections.) When a

computer receives a call on its call-in port, it transfers the call to anotheri port. Thus, the
[03004-8001/81003733106] -9- I 7/31/00I _

I

il

0685

0686

10

15

20

25

30

seeking computer actually communicates through that transfer-to port, which is the external

port. The call is transferred so that other computers can place calls to that leomputer via the

call-in port. The seeking computer then communicates via that external pfiilrt to request the
portal computer to assist in connecting the seeking computer to the broadcast channel. The
seeking computer could identify the call-in port number of a portal computeir by successively

dialing each port in port number order. As discussed below in detail, the brtiadcast technique
uses a hashing algorithm to select the port number order, which may rebult in improved

performance. ‘

A seeking computer could connect to the broadcast channel connecting to

computers either directly connected to the found portal computer or directly iconnected to one

of its neighbors. A possible problem with such a scheme for identifying the neighbors for
the seeking computer is that the diameter of the broadcast channel may increase when each

seeking computer uses the same found portal computer and establishes a connection to the

broadcast channel directly through that found portal computer. Conceptually, the graph

becomes elongated in the direction of where the new nodes are added- Figures 4A-4C

illustrate that possible problem. Figure 4A illustrates the broadcast channel: of Figure 1 with

an added computer. Computer] was connected to the broadcast channel by edge pinning

edges OD and E-H to computer J. The diameter of this broadcast channel is still two.

Figure 4B illustrates the broadcast channel of Figure 4A with an added computer.

Computer K was connected to the broadcast channel by edge pinning edges BI and B-C to

computer K. The diameter of this broadcast channel is three, because the shortest path from

computer G to computer K is through. edges G-A, A-E, and E-K. Figure 4C also illustrates

the broadcast channel of Figure 4A with an added computer. Computer K was connected to

the broadcast channel by edge pinning edges DO and E-J to computer K. .The diameter of

this broadcast channel is, however, still two. Thus, the selection of neighbors impacts the

diameter of the broadcast channel. To help minimize the diameter, the brqadcast technique

uses a random selection technique to identify the four neighbors of a computer in the seeking
connection state. The random selection technique tends to distribute the coimections to new

seeking computers throughout the computers of the broadcast channel which may result in

smaller overall diameters.

[monsoon/51.003733. 106] -10- 7/31/00

0686

0687

10

15

20

25

30

Broadcasting Through the Grth

As described above, each computer that is connected to the broadcast channel

can broadcast messages onto the broadcast channel and does receive all messages that are

broadcast on the broadcast channel. The computer that originates a messagfe to be broadcast
sends that message to each of its four neighbors using the internal connections. When a

computer receives a broadcast message from a neighbor, it sends the message to its three

other neighbors. Each computer on the broadcast channel, except the originating computer,

will thus receive a copy of each broadcast message from each of its four neighbors. Each

computer, however, only sends the first copy of the message that it receiveis to its neighbors
and disregards subsequently received copies. Thus, the total number of copies of a message
that is sent between the computers is 3N+1, where N is the number of coniputers connected

to the broadcast channel. Each computer sends three copies of the message, except for the

originating computer, which sends four copies of the message.

The redundancy of the message sending helps to ensure the overall reliability

of the broadcast channel. Since each computer has four connections to the broadcast

channel, if one computer fails during the broadcast of a message, its neighbors have three
other connections through which they will receive copies of the broadcast ritessage. Also, if

the internal connection between two computers is slow, each computer: has three other

connections through which it may receive a copy of each message sooner.

Each computer that originates a message numbers its own messages

sequentially. Because of the dynamic nature of the broadcast channel and because there are

many possible connection paths between computers, the messages may be received out of

order. For example, the distance between an originating computer and a certain receiving

computer may be four. After sending the first message, the originating computer and

receiving computer may become neighbors and thus the distance between :them changes to

one. The first message may have to travel a distance of four to reach the receiving computer.

The second message only has to travel a distance of one. Thus, it is possible for the second

message to reach the receiving computer before the first message.

When the broadcast channel is in a steady state (1'. e., no computers connecting

or disconnecting from the broadcast channel), out-of-order messages are not a problem

because each computer will eventually receive both messages and can queue messages until

all earlier ordered messages are received. If, however, the broadcast channel is not in a

[03004-800]!SU)03733.106] -l 1- 7/31/00

0687

0688

10

15

20

25

30

steady state, then problems can occur. In particular, a computer may connect to the

broadcast channel after the second message has already been received and lforwarded on by

its new neighbors. When a new neighbor eventually receives the first message, it sends the

message to the newly connected computer. Thus, the newly connected computer will receive
the first message, but will not receive the second message. If the newly corinected computer
needs to process the messages in order, it would wait indefinitely for the secfpnd message.

One solution to this problem is to have each computer queueiall the messages
that it receives until it can send them in their proper order to its neighbors?» This solution,
however, may tend to slow down the propagation of messages through the bomputers of the

broadcast channel. Another solution that may have less impact on the propagation speed is
to queue messages only at computers who are neighbors of the newly connected computers.

Each already connected neighbor would forward messages as it receives them to its other

neighbors who are not newly connected, but not to the newly connected neighbor. The

already connected neighbor would only forward messages from each originating computer to

the newly connected computer when it can ensure that no gaps in the messages from that

originating computer will occur. In one embodiment, the already connected neighbor may

track the highest sequence number of the messages already received and forwarded on from

each originating computer. The already connected computer will send only llu'gher numbered
messages from the originating computers to the newly connected computer; Once all lower

numbered messages have been receiVed from all originating computers, then the already

connected computer can treat the newly connected computer as its other neighbors and

simply forward each message as it is received. In another embodiment, each computer may

queue messages and only forwards to the newly connected computer thosei messages as the

gaps are filled in. For example, a computer might receive messages 4 and and then receive
message 3. In such a case, the already connected computer would forward queue messages 4

and 5. When message 3 is finally received, the already connected computer will send

messages 3, 4, and 5 to the newly connected computer. If messages 4 and 5 were sent to the

newly connected computer before message 3, then the newly connected :computer would

process messages 4 and 5 and disregard message 3. Because the already connected computer

queues messages 4 and 5, the newly connected computer will be able to process message 3.

It is possible that a newly connected computer will receive a set of messages from an

originating computer through one neighbor and then receive another set of message from the

[osoocsoovsmoms 106] -12- 7Bl/OO

0688

0689

10

15

20

25'

30

same originating computer through another neighbor. If the second set of messages contains

a message that is ordered earlier than the messages of the first set received, then the newly

connected computer may ignore that earlier ordered message if the computer already

processed those later ordered messages.

Decomposing the Grth

A connected computer disconnects from the broadcast channel either in a

planned or unplanned manner. When a computer disconnects in a planned manner, it sends a

disconnect message to each of its four neighbors. The disconnect message includes a list that

identifies the four neighbors of the disconnecting computer. When a neighbor receives the

disconnect message, it tries to connect to one of the computers on the list. In one

embodiment, the first computer in the list will try to connect to the second computer in the

list, and the third computer in the list will try to connect to the fourth computer in the list. If

a computer cannot connect (e.g., the first and second computers are already connected), then

the computers may try connecting in various other combinations. If connections cannot be

established, each computer broadcasts a message that it needs to establish a connection with

another computer. When a computer with an available internal port receives the message, it

can then establish a connection with the computer that broadcast the message. Figures 5A-

SD illustrate the disconnecting of i a computer from the broadcast channel. Figure 5A

illustrates the disconnecting of a computer from the broadcast channel in a planned manner.

When computer H decides to disconnect, it sends its list of neighbors to each of its neighbors

(computers A, E, F and I) and then disconnects from each of its neighbors. When

computers A and I receive the message they establish a connection between them as

indicated by the dashed line, and similarly for computers E and F.

When a computer disconnects in an unplanned manner, such as resulting from

a power failure, the neighbors connected to the disconnected computer recognize the

disconnection when each attempts to send its next [message to the now disconnected

computer. Each former neighbor of the disconnected computer recognizes that it is short one

connection (i.e., it has a hole or empty port). When a connected computer detects that one of

- its neighbors is now disconnected, it broadcasts a port connection request'on the broadcast

channel, which indicates that it has one internal port that needs a connection. The port

connection request identifies the call-in port of the requesting computer. When a connected

[oaooa-xoousmomuos] -l3- 7/31/00

0689

0690

10

15

20

25

30

computer that is also short a connection receives the connection request, lit communicates

with the requesting computer through its external port to establish a connection between the

two computers. Figure 5B illustrates the disconnecting of a computer frdm the broadcast

channel in an unplanned manner. In this illustration, computer H has disfconnected in an
unplanned manner. When each of its neighbors, computers A, E, F, and recognizes the

disconnection, each neighbor broadcasts a port connection request indicating that it needs to

fill an empty port. As shown by the dashed lines, computers F and I and computers A and E

respond to each other’s requests and establish a connection.

It is possible that a planned or unplanned disconnection may result in two

neighbors each having an empty internal port. In such a case, since they are neighbors, they

are already connected and cannot fill their empty ports by connecting to each other. Such a

Each neighbor

broadcasts a port connection request when it detects that it has an empty port as described

condition is referred to as the “neighbors with empty ports” condition.

above. When a neighbor receives the port connection request from the other neighbor, it will

recognize the condition that its neighbor also has an empty port. Such a condition may also

occur when the broadcast channel is in the small regime. The condition can only be

corrected when in the large regime. When in the small regime, each computer will have less

than four neighbors. To detect this condition in the large regime, which would be a problem

if not repaired, the first neighbor to receive the port connection request recognizes the

condition and sends a condition check message to the other neighbor. The condition check

message includes a list of the neighbors of the sending computer. When the receiving

computer receives the list, it compares the list to its own list of neighbors. If the lists are

different, then this condition has occurred in the large regime and repair is needed. To repair

this condition, the receiving computer will send a condition repair request to one of the

neighbors of the sending computer which is not already a neighbor of the receiving

computer. When the computer receives the condition repair request, it disconnects from one

of its neighbors (other than the neighbor that is involved with the condition): and connects to
the computer that sent the condition repair request. Thus, one of the oiiginal neighbors

involved in the condition will have had a port filled. However, two computers are still in

need of a connection, the other original neighbor and the computer that is now disconnected

from the computer that received the condition repair request. Those two computers send out

port connection requests. If those two computers are not neighbors, then they will connect to
[03004-8001/81003733JOG] -14- 7/3 [1'00

0690

0691

10

15

20

25

30

each other when they receive the requests. If, however, the two computers are neighbors,

then they repeat the condition repair process until two non-neighbors are in need of

connections.

It is possible that the two original neighbors with the condition may have the

same set of neighbors. When the neighbor that receives the condition check message

determines that the sets of neighbors are the same, it sends a condition double check message

to one of its neighbors other than the neighbor who also has the condition. When the

computer receives the condition double check message, it determines whether it has the same

set of neighbors as the sending computer. If so, the broadcast channel is in the small regime

and the condition is not a problem. If the set of neighbors are different, then the computer

that received the condition double check message sends a condition check message to the

original neighbors with the condition. The computer that receives that condition check

message directs one of it neighbors to connect to one of the original neighbors with the

condition by sending a condition repair message. Thus, one of the original neighbors With

the condition will have its port filled.

In this

illustration, computer H disconnected in an unplanned manner, but computers F and I

Figure 5C illustrates the neighbors with empty ports condition.

responded to the port connection request of the other and are now connected together. The

other former neighbors of computer H, computers A and E, are already neighbors, which

gives rise to the neighbors with empty ports condition. In this example, computer E received

the port connection request from computer A, recognized the possible condition, and sent

(since they are neighbors via the internal connection) a condition check message with a list

of its neighbors to computer A. When computer A received the list, it recognized that

computer E has a different set of neighbor (i.e., the broadcast channel is in the large regime).

Computer A selected computer D, which is a neighbor of computer E and sent it a condition

repair request. When computer D received the condition repair request, it disconnected from

one of its neighbors (other than computer E), which is computer G in this example.

Computer D then connected to computer A. Figure 5D illustrates two computers that are not

neighbors who now have empty ports. Computers E and G now have empty ports and are

not currently neighbors. Therefore, computers E and G can connect to each other.

Figures 5E and SF further illustrate the neighbors with empty ports condition.

Figure 5E illustrates the neighbors with empty ports condition in the small regime. In this
[03004—8001/swosmios] ~15- 701/00

0691

0692

10

15

20

25

30

example, if computer E disconnected in an unplanned manner, then each computer

broadcasts a port connection request when it detects the disconnect. When computer A

receives the port connection request form computer B, it detects the neighbors with empty

ports condition and sends a condition check message to computer B. Computer 8 recognizes

that it has the same set of neighbors (computer C and D) as computer A and then sends a

condition double check message to computer C. Computer C recognizes that the broadcast

channel is in the small regime because is also has the same set of neighbors as computers A

and B, computer may then broadcast a message indicating that the broadcast channel is in

the small regime.

Figure 5F illustrates the situation of Figure 5E when in the large regime. As

discussed above, computer C receives the condition double check message from computer B.

In this case, computer C recognizes that the broadcast channel is in the large regime because

it has a set of neighbors that is different fi'om computer B. The edges extending up from

computer C and D indicate connections to other computers. Computer C then sends a

condition check message to computer B. When computer B receives the condition check

message, it sends a condition repair message to one of the neighbors of computer C. The

computer that receives the condition repair message disconnects from one of its neighbors,

other than computer C, and tries to connect to computer B and the neighbor from which it

disconnected tries to connect to computer ‘A. .

Port Selecfion

As described above, the TCP/IP protocol designates ports above number 2056

as user ports. The broadcast technique uses five user port numbers on each computer: one

external port and four internal ports. Generally, user ports cannot be statically allocated to

an application program because other applications programs executing on the same computer

may use conflicting port numbers. As a result, in one embodiment, the computers connected

to the broadcast channel dynamically allocate their port numbers. Each computer could

simply try to locate the lowest number unused port on that computer and use that port as the

call—in port. A seeking computer, however, does not know in advance the call-in port

number of the portal computers when the port numbers are dynamically allocated. Thus, a

seeking computer needs to dial ports of a portal computer starting with the lowest port

number when locating the call~in port of a portal computer. If the portal computer is

[03004-8001/SL003733JOG] -l6- muoo

0692

0693

10

20

25

30

connected to (or attempting to connect to) the broadcast channel, then the seeking computer

'would eventually find the call-in port. If the portal computer is not connected, then the

seeking computer would eventually dial every user port. In addition, if each application

program on a computer tried to allocate low-ordered port numbers, then a portal computer

may end up with a high-numbered port for its call-in port because many of the low-ordered

port numbers would be used by other application programs. Since the dialing of a port is a

relatively slow process, it would take the seeking computer a long time to locate the call-in

port of a portal computer. To minimize this time, the broadcast technique uses a port

ordering algorithm to identify the port number order that a portal computer should use when

finding an available port for its call-in port. In one embodiment, the broadcast technique

uses a hashing algorithm to identify the port order. The algorithm preferably distributes the

ordering of the port numbers randomly through out the user port number space and only

selects each port number once. In addition, every time the algorithm is executed on any

computer for a given channel type and channel instance, it generates the same port ordering.

As described below, it is possible for a computer to be connected to multiple broadcast

channels that are uniquely identified by charmel type and channelinstance. The algorithm

may be “seeded” with channel type and channel instance in order to generate a unique

ordering of port numbers for each broadcast channel. Thus, a seeking computer will dial the

ports of a portal computer in the same order as the portal computer used when allocating its

call-in port.

If many computers are at the same time seeking connection to a broadcast

channel through a single portal computer, then the ports of the portal computer may be busy

when called by seeking computers. The seeking computers would typically need to keep on

redialing a busy port. The process of locating a call-in port may be significantly slowed by

such redialing. In one embodiment, each seeking computer may each reorder the first few

port numbers generated by the hashing algorithm. For example, each seeking computer

could randomly reorder the first eight port numbers generated by‘ the hashing algorithm. The

random ordering could also be weighted where the first port number generated by the

hashing algorithm would have a 50% chance of being first in the reordering, the second port

number would have a 25% chance of being first in the reordering, and so on. Because the

seeking computers would use different orderings, the likelihood of finding a busy port is

reduced. For example, if the first eight port numbers are randomly selected, then it is
[monsoon/51.003733. 106) ~17- 7/3 1/00

0693

0694

10

15

20

25

30

possible that eight seeking computers could be simultaneously dialing ports in different

sequences which would reduce the chances of dialing a busy port.

Locating a Portal Computer

Each computer that can connect to the broadcast channel has a list of one or

I

more portal computers through which it can connect to the broadcast channel. In one

embodiment, each computer has the same set of portal computers. A seeking computer

locates a portal computer that is connected to the broadcast channel by successively dialing

the ports of each portal computer in the order specified by an algorithm. A seeking computer

could select the first portal computer and then dial all its ports until a call-in port of a

computer that is fully connected to the broadcast channel is found. If no call-in port is

found, then the seeking computer would select the next portal computer and repeat the

process until a portal computer with such a call-in port is found. A problem with such a

seeking technique is that all user ports of each portal computer are dialed until a portal

computer fully connected to the broadcast channel is found. In an alternate embodiment, the

seeking computer selects a port number according to the algorithm and then dials each portal

computer at that port number. If no acceptable call-in port to the broadcast channel is found,

then the seeking computer selects the next port number and repeats the process. Since the

call-in ports are likely allocated at lower-ordered port numbers, the seeking computer first

dials the port numbers that are most likely to be call-in ports of the broadcast channel. The

seeking computers may have a maximum search depth, that is the number of ports that it will

dial when seeking a portal computer that is fully connected. If the seeking computer

exhausts its search depth, then either the broadcast channel has not yet been-established or, if

the seeking computer is also a portal computer, it can then establish the broadcast channel

with itself as the first fully connected computer.

When a seeking computer locates a portal computer that is itself not fully

connected, the two computers do not connect when they first locate each other because the

broadcast channel may already be established and accessible through a higher-ordered port

number on another portal computer. If the two seeking computers were to connect to each

other, then two disjoint broadcast channels would be formed. Each seeking computer can

share its experience in trying to locate a portal computer with the other seeking computer. In

particular, if one seeking‘computer has searched all the portal computers to a depth of eight,

[03004-8001/511103733J06] ~18- 7/31/00

0694

0695

10

20

25

30

then the one seeking computer can share that it has searched to a depth of eight with another

seeking computer. If that other seeking computer has searched to a depth of, for example,

only four, it can skip searching through depths five through eight and that other seeking

computer can advance its searching to a depth of nine.

In one embodiment, each computer may have a different set of portal

computers and a different maximum search depth. In such a situation, it may be possible that

two disjoint broadcast channels are formed because a seeking computer cannot locate a fully

connected port computer at a higher depth. Similarly, if the set of portal computers are

disjoint, then two separate broadcast channels would be fortned.

Idem‘r_1g Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting computer are

preferably selected randomly from the set of currently connected computers. One advantage

of the broadcast channel, however, is that no computer has global knowledge of the

broadcast channel. Rather, each computer has local knowledge of itself and its neighbors.

This limited local knowledge has the advantage that all the connected computers are peers

(as far as the broadcasting is concerned) and the failure of any one computer (actually any

three computers when in the 4-regular and 4-connect form) will not cause the broadcast

channel to fail. This local knowledge makes it difficult for a portal computer to randomly
select four neighbors for a seeking computer.

To select the four computers, a portal computer sends an edge connection

request message through one of its internal connections that is randomly selected. The

receiving computer again sends the edge connection request message through one of its

internal connections that is randomly selected. This sending of the message corresponds to a

Eventually, a

receiving computer will decide that the message has traveled far enough to represent a

random walk through the graph that represents the broadcast channel.

randomly selected computer. That receiving computer will offer the internal connection

upon which it received the edge connection request message to the seeking computer for

edge pinning. Of course, if either of the computers at the end of the offered internal ~

connection are already neighbors of the seeking computer, then the seeking computer cannot

connect through that internal connection. The computer that decided that the message has

[osooesoor/smomuos] -l9— 7/31/00

0695

0696

10

15

20

25

30

traveled far enough will detect this condition of already being a neighbor and send the

message to a randomly selected neighbor.

In one embodiment, the distance that the edge connectiOn request message

travels is established by the portal computer to be approximately twice the estimated.

diameter of the broadcast channel. The message includes an indication of the distance that it

is to travel. Each receiving computer decrements that distance to travel before sending the

message on. The computer that receives a message with a distance to travel that is zero is

considered to be the randomly selected computer. If that randomly selected computer cannot

connect to the seeking computer (e.g., because it is already connected to it), then that

randomly selected computer forwards the edge connection request to one of its neighbors

with a new distance to travel. In one embodiment, the forwarding computer toggles the new

distance to travel between zero and one to help prevent two computers from sending the

message back and forth between each other.

Because of the local nature of the information maintained by each computer

connected to the broadcast channel, the computers need not generally be aware of the

diameter of the broadcast channel. In one embodiment, each message sent through the

broadcast channel has a distance traveled field. Each computer that forwards a message

increments the distance traveled field. Each computer also maintains an esfimated diameter

of the broadcast channel. When a computer receives a message that has traveled a distance

that indicates that the estimated diameter is too small, it updates its estimated diameter and

broadcasts an estimated diameter message; When a computer receives an estimated diameter

message that indicates a diameter that is larger than its own estimated diameter, it updates its

own estimated diameter. This estimated diameter is used to establish the distance that an

edge connection request message should travel.

External Data Representation

The computers connected to the broadcast channel may internally store their

data in different formats. For example, one computer may use 32-bit integers, and another

computer may use 64-bit integers. As another example, one computer may use ASCII to

represent text and another computer may use Unicode. To allow communications between

heterogeneous computers, the messages sent over the broadcast channel may use the XDR

(“eXtemal Data Representation”) format.

[03004-3001/sw03733.1051 -20- 7/31/00

0696

0697

10

’15

20

25

30

The underlying peer-to-peer communications protocol may send multiple

messages in a single message stream. The traditional technique for retrieving messages from

a stream has been to repeatedly invoke an operating system routine to retrieve the next

message in the stream. The retrieval of each message may require two calls to the operating

system: one to retrieve the size of the next message and the other to retrieve the number of

bytes indicated by the retrieved size. Such calls to the operating system can, however, be

very slow in comparison to the invocations of local routines. To overcome the inefliciencies

of such repeated calls, the broadcast technique in one embodiment, uses XDR to identify the

message boundaries in a stream of messages. The broadcast technique may request the

operating system to provide the next, for example, 1,024 bytes from the stream. The

broadcast technique can then repeatedly invoke the XDR routines to retrieve the messages

and use the success or failure of each invocation to determine whether another block of 1,024

bytes needs to be retrieved from the operating system. The invocation of XDR routines do

not involve system calls and are thus more efficient than repeated system calls.

M-Regglar

In the embodiment described above, each fully connected computer has four

internal connections. The broadcast technique can be used with other numbers of internal

connections. For example, each computer could have 6, 8,‘ or any even number of internal

connections. As the number of internal connections increase, the diameter of the broadcast

channel tends to decrease, and thus propagation time for a message tends to decrease. The

time that it takes to connect a seeking computer to the broadcast channel may, however,

When the number of internal

connectors is even, then the broadcast channel can be maintained as m—regular and

increase as the number of internal connections increases.

m-connected (in the steady state). If the number of internal connections is odd, then when

the broadcast channel has an odd number of computers connected, one of the computers will

have less than that odd number of internal connections. In such a situation, the broadcast

network is neither m-regular nor m-connected. When the next computer connects to the

broadcast channel, it can again become m-regular and m-connected. Thus, with an odd

number of internal connections, the broadcast channel toggles between being and not being

m-regular and m-connected.

{03004-8001/sm03m.1061 -2] - 7mm

0697

0698

10

15

20

25

30

Components

Figure 6 is a block diagram illustrating components of a camputer that is

connected to a broadcast channel. The above description generally assumed that there was

only one broadcast channel and that each computer had only one connectionzto that broadcast

channel. More generally, a network of computers may have multiple broadcast channels,

each computer may be connected to more than one broadcast channel, and each computer

can have multiple connections to the same broadcast charmel. The broadcast channel is well

suited for computer processes (e. g., application programs) that execute collaboratively, such

as network meeting programs. Each computer process can connect to one or more broadcast

channels. The broadcast channels can be identified by channel type (e.g., application

program name) and channel instance that represents separate broadcast channels for that

channel type. When a process attempts to connect to a broadcast channel, it seeks a process

currently connected to that broadcast channel that is executing on a portal computer. The

seeking process identifies the broadcast channel by channel type and channel instance.

Computer 600 includes multiple application programs 601 executing as

separate processes. Each application program interfaces with a broadcaster component 602

for each broadcast channel to which it is connected. The broadcaster component may be

implement as an object that is instantiated within the process space of the application

program. Alternatively, the broadcaster component may execute as a separate process or

thread from the application program. In one embodiment, the broadcaster component

provides functions (e. g., methods of class) that can be invoked by the application programs.

The primary fimctions provided may include a connect function that an application program

invokes passing an indication of the broadcast channel to which the application program

wants to connect. The application program may provide a callback routine that the

broadcaster component invokes to notify the application program that the connection has

been completed, that is the process enters the fully connected state. The broadcaster

component may also provide an acquire message function that the application program can

invoke to retrieve the next message that is broadcast on the broadcast channel. Alternatively,

the application program may provide a callback routine (which may be a virtual firnction

provided by the application program) that the broadcaster component invokes to notify the

application program that a broadcast message has been received. Each broadcaster

component allocates a call-in port using the hashing algorithm. When calls are answered at

[03004-8001/SL003733.IO6] -22- 7/3 1/00

0698

0699

10

15‘

20

25

30

the call-in port, they are transferred to other ports that serve as the external and internal

ports.

The computers connecting to the broadcast channel may include a central

processing unit, memory, input devices (e.g., keyboard and pointing device), output devices

(e.g., display devices), and storage devices (e.g., disk drives). The memory and storage

devices are computer-readable medium that may contain computer instructions that

implement the broadcaster component. In addition, the data structures and message

structures may be stored or transmitted via a signal transmitted on a computer-readable

media, such as a communications link.

Figure 7 is a block diagram illustrating the sub-components of the broadcaster

component in- one embodiment. The broadcaster component includes a connect component

701, an external dispatcher 702, an internal dispatcher 703 for each internal connection, an

acquire message component 704 and a broadcast component 712. The application program

may provide a connect callback component 710 and a receive response component 711 that

are invoked by the broadcaster component. The application program invokes the connect

component to establish a connection to a designated broadcast channel. The connect

component identifies the external port and installs the external dispatcher for handling

messages that are received on the external port. The connect component invokes the seek

portal computer component 705 to identify a portal computer that is connected to the

broadcast channel and invokes the connect request component 706 to ask the portal computer

(if fully connected) to select neighbor processes for the newly connecting process. The

external dispatcher receives external messages, identifies the type of message, and invokes

the appropriate handling routine 707. The internal dispatcher receives the internal messages,

identifies the type of message, and invokes the appropriate handling routine 708. The

received broadcast messages are stored in the broadcast message queue 709. The acquire

The

broadcast component is invoked by the application program to broadcast messages in the

message component is invoked to retrieve messages from the broadcast queue.

broadcast channel.

A Distributed Conferencing System

In one embodiment, a conferencing system is implemented using the broadcast

' channel. Each participant in a conference connects to the conference’s broadcast channel,

[03004.soor/sw03733Jos] -23- 7/31/00

0699

0700

10

15

20

25

30

and a participant is designated as the speaker. The conferencing application program may

include a speaker component and an attendee component. The speaker component

broadcasts the conference events on the broadcast channel. Each attendee component

receives the conference events and displays the results of the conference events. For

example, the speaker may present slides at the conference along with a description of each

slide. Each attendee may receive an electronic copy of the slides in advance of the

conference. At the scheduled time for the conference, the speaker and each attendee joins

The speaker

component allows the speaker to indicate when to displaywhich slide. When a new slide is

When the attendee

the conference by connecting to the broadcast channel of the conference.

displayed, the speaker component broadcasts a new slide message.

component receives the new slide message, it displays the new slide to the participant. Also,

the speaker component may allow the speaker to draw on a slide using a stylus or other

pointing device. The speaker component then broadcasts draw messages on the broadcast

The

conferencing system may also use speech-to-text and text—to-speech to distribute the

channel so the attendee component can display the drawing to the attendees.

speaker’s cements to all attendees.

The conferencing system may provide a directory web site where

participants can locate and sign up for a conference of interest. The directory may provide a

hierarchical categorization of scheduled conferences. When a user decides to sign up for a

conference, the web server may download the broadcaster component and the conferencing

application program to the attendee’s computer, if not already stored on the attendee’s

computer. The web server will also download the channel type and channel instance

associated with the broadcast channel for the conference along with the identification of the

portal computers for the broadcast channel. The web server may also download the slides or

other content to be displayed to the attendees during the conference.

The conferencing system may allow an entity to schedule conferences

using the web site. For example, a software company may want to schedule a conference to

announce a new product. The creation of the conference would entail the generation of a

channel type and channel instance, the specification of a security level (e.g., encrypted

messages), the Specification of attendee qualifications, the providing of a description and

scheduled time of. the conference, the specification of the content to be distributed to the

attendees, and so on. The speaker at a conference may not want to publicize the actual
[03004-8001/Sm03733JOG] -24- 731/00

0700

0701

10

15

20

25'

 sceking_connection_call

content (e.g., slides) in advance. In such a situation, the content can be encrypted when

distributed to the attendees, and a key to decrypt the content can be distributed by the

speaker during the conference. For example, each slide for the software company’s

announcement can be encrypted with a different key, and the appropriate key can be

broadcast with each new slide message.

The conferencing system may allow attendees to broadcast comments

on the broadcast channel. The times when an attendee can broadcast comments may be

controlled by the speaker. For example, the speaker component may broadcast a comments

allowed message and a comments not allowed message to delimit the times when comments

will be allowed. Comments broadcast outside those times may be ignored. Alternatively, the

attendees may be allowed to broadcast comments at any time, but the other attendees ignore

those comments until the speaker broadcasts an approval message indicating that the attendee

component can display a certain comment.

The conferencing system may allow each attendee to connect to and

disconnect from the conference broadcast channel as this wish during the conference. In

addition, the conferencing system may allow multiple speakers to share the “podium.” The

speakers can pass a speakers token between them to indicate who is currently speaking and

thus in contiol of the conference. An attendee who joins the conference late may be able to

synchronize with the conference by accessing a conference monitoring web server. The

monitoring web server may be connected to the conference broadcast channel and monitor

the current state of the conference. When an attendee joins late, the monitoring web server

can provide the attendee with the current state of the conference. From then on, the attendee

can listen on the broadcast channel to follow the progress of the conference. In addition, the

attendee component may allow the attendee to view parts of the presentation other than that

which is currently being presented. In this way, an attendee can refer back to or ahead to

other portions of the presentation.

The following tables list messages sent by the broadcaster components.

EXTERNAL MESSAGES

Indicates that a seeking process would like to know whether the

receiving process is fully connected to the broadcast channel

Message Type

[03004.8001/SLDO3733106] -25- 7/31/00

0701

0702

Indicates that the sending process would like the receiving

process to initiate a connection of the sending process to the !
broadcast channel -

connection_request_call

oi
edge_proposal_call

which the receiving process can connect to the broadcast

Indicates that the sending process is proposing an edge through

channel (i. e., edge pinning) 1
Indicates that the sending process is proposing a port through

which the receiving process can connect to the broadcast ,
channel

port_connection_call

connected_stmt Indicates that the sending process is connected to the broadcast
channel

Indicates that the receiving process should disconnect from one ‘
of its neighbors and connect to one of the processes involved in

the neighbors with empty port condition 1

condition_repair_stmt

INTERNAL MESSAGES

 Message Type

broadcast_stmt
Description

 Indicates a message that is being broadcast through the

broadcast charmel for the application programs

 connection_port__search_stmt Indicates that the designated process is looking for a port

through which it can connect to the broadcast channel

connection_edge_search_call Indicates that the requesting process is looking for an edge

through which it can connect to the broadcast channel

 connection_edge_search_resp Indicates whether the edge between this process and the

sending neighbor has been accepted by the requesting

Party

Indicates an estimated diameter of the broadcast channel

Indicates to reset the estimated diameter to indicated

diameter

 diameter_estimate_stmt

 diameter_reset_stmt

 disconnect_stmt Indicates that the sending neighbor is disconnecting from
the broadcast channel

condition_check_stmt Indicates that neighbors with empty port condition have
been detected

condition_double_check_stmt Indicates that the neighbors with empty ports have the
same set of neighbors

 shutdown_stmt Indicates that the broadcast channel is being shutdown

(03004-8001/SL003733JO6] -26- 7131/00

0702

0703

IO

15

20

25

30

Flow Diagrams

Figures 8-34 are flow diagrams illustrating the processing of the broadcaster

component in one embodiment. Figure 8 is a flow diagram illustrating the processing of the

connect routine in one embodiment. This routine is passed a channel type (e. g., application

name) and channel instance (e.g., session identifier), that identifies the broadcast channel to

which this process wants to connect. The routine is also passed auxiliary information that

includes the list of portal computers and a connection callback routine. When the connection

is established, the connection callback routine is invoked to notify the application program.

When this process invokes this routine, it is in the seeking connection state. When a portal

computer is located that is connected and this routine connects to at least one neighbor, this

process enters the partially connected state, and when the process eventually connects to four

neighbors, it enters the fully connected state. When in the small regime, a fully connected

process may have less than four neighbors. In block 801, the routine opens the call-in port

through which the process is to communicate with other processes when establishing external

and internal connections. The port is selected as the first available port using the hashing

algorithm described above. In block 802, the routine sets the connect time to the current

time. The connect time is used to identify the instance of the process that is connected

through this external port. One process may connect to a. broadcast channel of a certain

channel type and channel instance using one call-in port and then disconnects, and another

process may then connect to that same broadcast channel using the same call-in port. Before

the other process becomes fully connected, another process may try to communicate with it

drinking it is the fully connected old process. In such a case, the connect time can be used to

identify this situation. In block 803, the routine invokes the seek portal computer routine

passing the channel type and channel instance. The seek portal computer routine attempts to

locate a portal computer through which this process can connect to the broadcast channel for

the passed type and instance. In decision block 804, if the seek portal computer routine is

successful in locating a fully connected process on that portal computer, then the routine

continues at block 805, else the routine returns an unsuccessful indication. In decision block

805, if no portal computer other than the portal computer on which the process is executing

was located, then this is the first process to fully connect to broadcast channel and the

routine continues at block 806, else the routine continues at block 808. In block 806, the

routine invokes the achieve connection routine to change the state of this process to fully
[03004-8001/SUJOJ733106] -27- 7/31/00

0703

0704

10

15

20

25

30

connected. In block 807, the routine installs the external dispatcher for processing messages

. received through this process’ external port for the passed channel type and channel instance.

When a message is received through that external port, the external dispatcher is invoked.

The routine then returns. In block 808, the routine installs an external dispatcher. In block

809, the routine invokes the connect request routine to initiate the process of identifying

neighbors for the seeking computer. The routine then returns.

Figure 9 is a flow diagram illustrating the processing of the seek portal

computer routine in one embodiment. This routine is passed the channel type and channel

instance of the broadcast channel to which this process wishes to connect. This routine, for

each search depth (e.g., port number), checks the portal computers at that search depth. If a

portal computer is located at that search depth with a process that is frilly connected to the

broadcast channel, then the routine returns an indication of success. In blocks 902-911, the

routine loops selecting each search depth until a process is located. In block 902, the routine

selects the next search depth using a port number ordering algorithm. In decision block 903,

if all the search depths have already been selected during this execution of the loop, that is

for the currently selected depth, then the routine returns a failure indication, else the routine

continues at block 904. In blocks 904-911, the routine loops selecting each portal computer

and determining whether a process of that portal computer is connected to (or attempting to

connect to) the broadcast channel with the passed channel type and channel instance. In

block 904, the routine selects the next portal computer. In decision block 905, if all the

portal computers have already been selected, then the routine loops to block 902 to select the

next search depth, else the routine continues at block 906. block 906, the routine dials the

selected portal computer through the port represented by the search depth. In decision block

907, if the dialing was successful, then the routine continues at block 908, else the routine

loops to block 904 to select the next portal computer. The dialing will be successful if the

dialed port is the call-in port of the broadcast channel of the passed channel type and channel

instance of a process executing on that portal computer. In block 908, the routine invokes a

contact process routine, which contacts the answering process of the portal computer through

the dialed port and determines whether that process is fully connected to the broadcast

channel. In block 909, the routine hangs up on the selected portal computer. In decision

block 910, if the answering process is fully connected to the broadcast channel, then the

routine returns a success indicator, else the routine continues at block 911. In block 911, the
[oaowsoor/swosm. 106] ~28- 7/31/00

0704

0705

IO

15

20

25

30

routine invokes the check for external call routine to determine whether an external call has

been made to this process as a portal computer and processes that call. The routine then

loops to block 904 to select the next portal computer.

Figure 10 is a flow diagram illustrating the processing of the contact process

routine in one embodiment. This routine determines whether the process of the selected

portal computer that answered the call-in to the selected port is fully connected to the

broadcast channel. In block 1001, the routine sends an external message (i.e.,

seeking_connection_call) to the answering process indicating that a seeking process wants to

know whether the answering process is fully connected to the broadcast channel. In block

1002, the routine receives the external response message from the answering process. In

decision block 1003, if the external response message is successfully received (i.e.,

seeking_connection_resp), then the routine continues at block 1004, else the routine returns.

Wherever the broadcast component requests to receive an external message, it sets a time out

period. If the external message is not received within that time out period, the broadcaster

component checks its own call-in port to see if another process is calling it. In particular, the

dialed process may be calling the dialing process, which may result in a deadlock situation.

_ The broadcaster component may repeat the receive request several times. If the expected

message is not received, then the broadcaster component handles the error as appropriate. In

decision block 1004, if the answering process indicates in its response message that it is fully

connected to the broadcast channel, then the routine continues at block 1005, else the routine

continues at block 1006. In block 1005, the routine adds the selected portal computer to a

list of connected portal computers and then returns. In block 1006, the routine adds the

answering process to a list of fellow seeking processes and then returns.

Figure 11 is a flow diagram illustrating the processing of the connect request

routine in one embodiment. This routine requests a process of a portal computer that was

identified as being fully connected to the broadcast channel to initiate the connection of this

process to the broadcast channel. In decision block 1101, if at least one process of a portal

computer was located that is fully connected to the broadcast channel, then the routine

continues at block 1103, else the routine continues at block 1102. A process of the portal

computer may no longer be in the list if it recently disconnected from the broadcast channel.

In one embodiment, a seeking computer may always search its entire search depth and find

multiple portal computers through which it can connect to the broadcast channel. In block

[ozoouoor/swomuos] -29- 701/00

0705

0706

10

15

20

25

30

1102, the routine restarts the process of connecting to the broadcast channel and returns. In

block 1103, the routine dials the process of one of the found portal computers through the

call-in port. In decision block 1104, if the dialing is successful, then the routine continues at

block 1105, else the routine continues at block 1113. The dialing may be unsuccessful if, for

example, the dialed process recently disconnected from the broadcast charmel. In block

1105, the routine sends an external message to the dialed process requesting a connection to

the broadcast channel (i. e., connection_request_call). In block 1106, the routine receives the

response message (i.e., connection_request_resp). In decision block 1107, if the response

message is successfully received, then the routine continues at block 1108, else the routine

continues at block 1113. In block 1108, the routine sets the expected number of holes (i.e.,

empty internal connections) for this process based on the received response. When in the

large regime, the expected number of holes is zero. When in the small regime, the expected

number of holes varies from one to three. In block 1109, the routine sets the estimated

diameter of the broadcast channel based on the received response. In decision block 1111, if

the dialed process is ready to connect to this process as indicated by the response message,

then the routine continues at block 1112, else the routine continues at block 1113. In block

1112, the routine invokes the add neighbor routine to add the answering process as a

I V neighbor to this process. This adding of the answering process typically occurs when the

broadcast channel is in the small regime. When in the large regime, the random walk search

for a neighbor is performed. In block 1113, the routine hangs up the external connection

with the answering process computer and then returns. . _

Figure 12 is a flow diagram of the processing of the check for extemal call

routine in one embodiment. This routine is invoked to identify whether a fellow seeking

process is attempting to establish a connection to the broadcast charmel through this process.

In block 1201, the routine attempts to answer a call on the call-in port. In decision block

1202, if the answer is successful, then the routine continues at block 1203, else the routine

returns. In block 1203, the routine receives the external message from the external port. In

decision block 1204, if the type of the message indicates that a seeking process is calling

(i.e., seeking_connection_call), then the routine continues at block 1205, else the routine

returns. In block 1205, the routine sends an external message (i.e., seeking_connection_resp)

to the other seeking process indicating that this process is also is seeking a connection. In

decision block 1206, if the sending of the external message is successful, then the routine

[03004-800] 314003731106} -3 0.. 7/31/00

0706

0707

10

15

20

25

30

continues at block 1207, else the routine retums. In block 1207, the routine adds the other

seeking process to a list of fellow seeking processes and then returns. This list may be used

if this process can find no process that is fully connected to the broadcast channel. In which

case, this process may check to see if any fellow seeking process were successful in

connecting to the broadcast channel. For example, a fellow seeking process may become the

first process fully connected to the broadcast channel.

Figure 13 is a flow diagram of the processing of the achieve connection routine

in one embodiment. This routine sets the state of this process to fully connected to the

broadcast channel and invokes a callback routine to notify the application program that the

In block 1301, the

routine sets the connection state of this process to fully connected. 1n block 1302, the

process is now fully connected to the requested broadcast channel.

routine notifies fellow seeking processes that it is fully connected by sending a connected

external message to them (i.e., connected_stmt). In block 1303, the routine invokes the

connect callback routine to notify the application program and then returns.

Figure 14 is a flow diagram illustrating the processing éof the external

dispatcher routine in one embodiment. This routine is invoked when the external port

receives a message. This routine retrieves the message, identifies the external message type,

and invokes the appropriate routine-to handle that message. This routine loops processing
each message until all the received messages have been handled. In block 1401, the routine

answers (e.g., picks up) the external port and retrieves an external message. In decision

block 1402, if a message was retrieved, then the routine continues at block 1403, else the

routine hangs up on the external port in block 1415 and returns. In decision block 1403, if

the message type is for a process seeking a connection (i._e., seeking_connection_call), then

the routine invokes the handle seeking connection call routine in block 1404, else the routine

continues atblock 1405. In decision block 1405, if the message type is for a connection

request call (i.e., connection_request_call), then the routine invokes the handle connection

request call routine in block 1406, else the routine continues at block 1407. In decision

block 1407, if the message type is edge proposal call (Lea, edge_proposal_call), then the

.routine invokes the handle edge proposal call routine in block 1408, else the routine

continues at block 1409. In decision block 1409, if the message type is port connect call

(i.e., port_connect_call), then the routine invokes the handle port connection call routine in

block 1410, else the routine continues at block 1411. In decision block 1411, if the message

[03004-8001/SL003733. [06] -3 l - 7/31/00

0707

0708

10

15

20

25

30

type is a connected statement (i. e., connected_stmt), the routine invokes the handle

connected statement in block 1112, else the routine continues at block 1212. In decision

block 1412, if the message type is a condition repair statement (i. e., condition_repair__stmt),

then the routine invokes the handle condition repair routine in block 1413, else the routine

loops to block 1414 to process the next message. After each handling routine is invoked, the

routine loops to block 1414. In block 1414, the routine hangs up on the external port and

continues at block 1401 to receive the next message.

Figure 15 is a flow diagram illustrating the processing of the handle seeking

connection call routine in one embodiment. This routine is invoked when a seeking process

is calling to identify a portal computer through which it can connect to the broadcast channel.

In decision block 1501, if this process is currently fully connected to the broadcast channel

identified in the message, then the routine continues at block 1502, else the routine continues

at block 1503. In block 1502, the routine sets a message to indicate that this process is fully

connected to the broadcast channel and continues at block 1505. In block 1503, the routine

sets a message to indicate that this process is not fully connected. In block 1504, the routine

adds the identification of the seeking process to a list of fellow seeking processes. If this

process is not fully connected, then it is attempting to connect to the broadcast channel. In

block 1505, the routine sends the external message response (i.e., seeking_connection_resp)

to the seeking process and then returns.

Figure 16 is a flow diagram illustrating processing of the handle connection

request call routine in one embodiment. This routine is invoked when the calling process

wants this process to initiate the connection of the process to the broadcast channel. This

routine either allows the calling'process to establish an internal connection with this process

(e. g., if in the small regime) or starts the process of identifying a process to which the calling

process can connect. In decision block 1601, if this process is currently fully connected to

the broadcast channel, then the routine continues at block 1603, else the routine hangs up on

the external port in block 1602 and returns. In block 1603, the routine sets the number of

holes that the calling process should expect in the response message. In block 1604, the

routine sets the estimated diameter in the response message. In block 1605, the routine

indicates whether this process is ready to connect to the calling process. This process is

ready to connect when the number of its holes is greater than zero and the calling process is

not a neighbor of this process. In block 1606, the routine sends to the calling process an
[osmsoowswosnlios] -3 2- 7/31/00

0708

0709

10

15

20

25

30

external message that is responsive to the connection request call (1'.e.,

connection_request_re5p). In block 1607, the routine notes the number of holes that the

calling process needs to fill as indicated in the request message. In decision block 1608, if

this process is ready to connect to the calling process, then the routine continues at block

1609, else the routine continues at block 1611. In block 1609, the routine invokes the add

In block 1610, the routine

decrements the number of holes that the calling process needs to fill and continues at block

1611. In block 1611, the routine hangs up on the external port. In decision block 1612, if

neighbor routine to add the calling process as a neighbor.

this process has no holes or the estimated diameter is greater than one (i.e., in the large

regime), then the routine continues at block 1613, else the routine continues at block 1616.

In blocks 1613-1615, the routine loops forwarding a request for an edge through which to

connect to the calling process to the broadcast channel. One request is forwarded for each

pair of holes of the calling process that needs to be filled. In decision block 1613, if the

number of holes of the calling process to be filled is greater than or equal to two, then the

routine continues at block 1614, else the routine continues at block 1616. In block 1614, the

routine invokes the forward connection edge search routine. The invoked routine is passed

to an indication of the calling process and the random walk distance. In one embodiment, the

In block 1614, the

routine decrements the holes left to fill by two and loops to block 1613. In decision block

1616, if there is still a hole to fill, then the routine continues at block 1617, else the routine

returns. In block 1617, the routine invokes the fill hole routine passing the identification of

distance is twice in the estimated diameter of the broadcast channel.

the calling process. The fill hole routine broadcasts a connection port search statement (1.6.,

connection_port_search_stmt) for a hole of a connected process through which the calling

process can connect to the broadcast channel. The routine then returns.

Figure 17 is a flow diagram illustrating the processing of the add neighbor

routine in one embodiment. This routine adds the process calling on the external port as a

neighbor to this process. In block 1701, the routine identifies the calling process on the

external port. In block 1702, the routine sets a flag to indicate that the neighbor has not yet

received the broadcast messages from this process. This flag is used to ensure that there are

no gaps in the messages initially sent to the new neighbor. The external port becomes the

internal port for this connection. In decision block 1703, if this process is in the seeking

connection state, then this process is connecting to its first neighbor and the routine

[estimation/31.003733. 106] -3 3- 7/31/00

0709

0710

10

15

20

25

30

continues at block 1704, else the routine continues at block 1705. In block 1704, the routine

sets the connection state of this process to partially connected. In block 1705, the routine

adds the calling process to the list of neighbors of this process. In block 1706, the routine

installs an internal dispatcher for the new neighbor. The internal dispatcher is invoked when

a message is received from that new neighbor through the internal port of that new neighbor.

In decision block 1707, if this process buffered up messages while not fully connected, then

the routine continues at block 1708, else the routine continues at block 1709. In one

embodiment, a process that is partially connected may buffer the messages that it receives

through an internal connection so that it can send these messages as it connects to new

neighbors. 1n block 1708, the routine sends the buffered messages to the new neighbor

through'the internal port. In decision block 1709, if the number of holes of this process

equals the expected number of holes, then this process is fully connected and the routine

continues at block 1710, else the routine continues at block 1711. In block 1710, the routine

invokes the achieve connected routine to indicate that this process is fully connected. In

decision block 1711, if the number of holes for this process is zero, then the routine

continues at block 1712, else the routine returns. In block 1712, the routine deletes any

pending edges and then returns. A pending edge is an edge that has been proposed to this

process for edge pinning, which in this case is no longer needed.

Figure 18 is a flow diagram illustrating the processing of the forward

connection edge search routine in one embodiment. This routine is responsible for passing

along a request to connect a requesting process to a randomly selected neighbor of this

process through the internal port of the selected neighbor, that is part of the random walk. In
decision block 1801, if the forwarding distance remaining is greater than zero, then the

routine continues at block 1804, else the routine continues at block 1802. In decision block

. 1802, if the number of neighbors of this process is greater than one, then the routine

continues at block 1804, else this broadcast channel is in the small regime and the routine

continues at block 1803. In decision block 1803, if the requesting process is a neighbor of

this process, then the routine returns, else the routine continues at block 1804. In blocks

1804-1807, the routine loops attempting to send a connection edge search call internal

message (i.e., connection_edge_search_calI) to a randomly selected neighbor. 1n block 1804,

the routine randomly selects a neighbor of this process. In decision block 1805, if all the

neighbors of this process have already been selected, then the routine cannot forward the

[03004—8001/Sm03733JOG] -34- 7/31/00

0710

0711

10

15

20

25

30

message and the routine returns, else the routine continues at block 1806. In block 1806, the

routine sends a connection edge search call internal message to the selected neighbor. In

decision block 1807, if the sending of the message is successful, then the routine continues at

block 1808, else the routine loops to block 1804 to select the next neighbor. When the

sending of an internal message is unsuccessful, then the neighbor may have disconnected

from the broadcast channel in an unplanned manner. Whenever such a situation is detected

by the broadcaster component, it attempts to find another neighbor by invoking the fill holes

routine to fill a single hole or the forward connecting edge search routine to fill two holes. In

block 1808, the routine notes that the recently sent connection edge search call has not yet

been acknowledged and indicates that the edge to this neighbor is reserved if the remaining

forwarding distance is less than or equal to one. It is reserved because the selected neighbor

may offer this edge to the requesting process for edge pinning. The routine then returns.

Figure 19 is a flow diagram illustrating the processing of the handle edge

proposal call routine. This routine is invoked when a message is received from a proposing

process that proposes to connect an edge between the proposing process and one of its

neighbors to this process for edge pinning. In decision block 1901, if the number of holes of

this process minus the number of pending edges is greater than or equal to one, then this

process still has holes to be filled and the routine continues at block 1902, else the routine

continues at block 1911. In decision block 1902, if the proposing process or its neighbor is a

neighbor of this process, then the routine continues at block 1911, else the routine continues

at block 1903. In block 1903, the routine indicates that the edge is pending between this

process and the proposing process. In decision block 1904, if a proposed neighbor is already

pending as a proposed neighbor, then the routine continues at block 1911, else the routine

continues at block 1907. In block 1907, the routine sends an edge proposal response as an

external message to the proposing process (i.e., edge_proposal_resp) indicating that the

proposed edge is accepted. In decision block 1908, if the sending of the message was

successful, then the routine continues at block 1909, else the routine returns. In block 1909,

the routine adds the edge as a pending edge. In b10ck 1910, the routine invokes the add

neighbor routine to add the proposing process on the external port as a neighbor. The routine

then returns. In block 1911, the routine sends an external message (i.e., edge_proposal_resp)

indicating that this proposed edge is not accepted. In decision block 1912, if the number of

[03004-8001/SLDO3733JOG] -3 5- 7/31/00

0711

0712

10

15

20

25

30

holes is odd, then the routine continues at block 1913, else the routine returns. In block

1913, the routine invokes the fill hole routine and then returns.

Figure 20 is a flow diagram illustrating the processing of the handle port

connection call routine in one embodiment. This routine is invoked when an external

message is received then indicates that the sending process wants to connect to one hole of

this process. In decision block 2001, if the number of holes of this process is greater than

zero, then the routine continues at block 2002, else the routine continues at block 2003. In

decision block 2002, if the sending process is not a neighbor, then the routine continues at

block 2004, else the routine continues to block 2003. In block 2003, the routine sends a port

connection response external message (i.e., port_connection_resp) to the sending process that

indicates that it is not okay to connect to this process. The routine then returns. In block

2004, the routine sends a port connection response external message to the sending process

that indicates that is okay to connect this process. In decision block 2005, if the sending of

the message was successful, then the routine continues at block 2006, else the routine

continues at block 2007. In block 2006, the routine invokes the add neighbor routine to add

the sending process as a neighbor of this process and then returns. In block 2007,Vthe routine

hangs up the external connection. In block 2008, the routine invokes the connect request

routine to request that a process connect to one of the holes of this process. The routine then

returns.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in
If this

process is requesting to fill a hole, then this routine sends an internal message to other

one embodiment. This routine is passed an indication of the requesting process.

processes. If another process is requesting to fill a hole, then this routine invokes the routine

to handle a connection port search request. In block 2101, the routine initializes a

connection port search statement internal message (1'.e., connection_port_search_stmt). In

decision block 2102, if this process is the requesting process, then the routine continues at

block 2103, else the routine continues at block 2104. In block 2103, the routine distributes

the message to the neighbors of this process through the internal ’ports and then returns. In

block 2104, the routine invokes the handle connection port search routine and then returns.

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher

routine in one embodiment. This routine is passed an indication of the neighbor who sent the

internal message. In block 2201, the routine receives the internal message. This routine

[03004-BOOIISL003733JOG] -36- 7/3 l/OO

0712

0713

IO

15

20

25

3O

identifies the message type and invokes the appropriate routine to handle the message. In

block 2202, the routine assesses whether to change the estimated diameterof the broadcast

channel based on the information in the received message. In decision block 2203, if this

process is the originating process of the message or the message has already been received

(i. e., a duplicate), then the routine ignores the message and continues at block 2208, else the

routine continues at block 2203A. In decision block 2203A, if the process is partially

connected, then the routine continues at block 22033, else the routine continues at block

2204. In block 22033, the routine adds the message to the pending connection buffer and

continues at block 2204. In decision blocks 2204-2207, the routine decodes the message

type and invokes the appropriate routine to handle the message. For example, in decision

block 2204, if the type of the message is broadcast statement (i. e., broadcast_stmt), then the

routine. invokes the handle broadcast message routine in block 2205. After invoking the

appropriate handling routine, the routine continues at block 2208. In decision block 2208, if

the partially connected buffer is full, then the routine continues at block 2209, else the

routine continues at block 2210. The broadcaster component collects all its internal

messages in a buffer while partially connected so that it can forward the messages as it

connects to new neighbors. If, however, that buffer becomes full, then the process assumes

that it is now fully connected and that the expected number of connections was too high,

because the broadcast channel is now in the small regime. In block 2209, the routine invokes

the achieve connection routine and then continues in block 2210. In decision block 2210, if

the application program message queue is empty, then the routine retums, else the routine

continues at block 2212. In block 2212, the routine invokes the receive response routine

passing the acquired message and then returns. » The received response routine is a callback

routine of the application program.

- Figure 23 is a flow diagram illustrating the processing of the handle broadcast

message routine in one embodiment. This routine is passed an indication of the originating

process, an indication of the neighbor who sent the broadcast message, and the broadcast

message itself. In block 2301, the routine performs the out of order processing for this

1 message. The broadcaster component queues messages from each originating process until it

can send them in sequence number order to the application program. In block 2302, the

routine invokes the distribute broadcast message routine to forward the message to the

neighbors of this process. In decision block 2303, if a newly connected neighbor is waiting
[03004-8001/SLOO3733. 106] -37- 7/31/00

0713

0714

10

15

20

25

30

to receive messages, then the routine continues at block 2304, else the routine returns. In

block 2304, the routine sends the messages in the correct order if possible for each

originating process and then returns.

Figure 24 is a flow diagram illustrating the processing of the distribute

broadcast message routine in one embodiment. This routine sends the broadcast message to

each of the neighbors of this process, except for the neighbor who sent the message to this

process. In block 2401, the routine selects the next neighbor other than the neighbor who

sent the message. In decision block 2402, if all such neighbors have already been selected,

then the routine returns. In block 2403, the routine sends the message to the selected

neighbor and then loops to block 2401 to select the next neighbor.

Figure 26 is a flow diagram illustrating the processing of the handle connection

port search statement-routine in one embodiment. This routine is passed an indication of the

neighbor that sent the message and the message itself. In block 2601, the routine invokes the

distribute internal message which sends the message to each of its neighbors other than the

sending neighbor. In decision block 2602, if the number of holes of this process is greater

than zero, then the routine continues at block 2603, else the routine returns. In decision

block 2603, if the requesting process is a neighbor, then the routine continues at block 2605,

In block 2604, the routine invokes the court

neighbor routine and then returns. The court neighbor routine connects this process to the

else the routine continues at block 2604.

requesting process if possible. In block 2605, if this process has one hole, then the neighbors

with empty ports condition exists and the routine continues at block 2606, else the routine

returns. In block 2606, the routine generates a condition check. message (i.e.,

condition_check) that includes a list of this process’ neighbors. In block 2607’, the routine

sends the message to the requesting neighbor.

Figure 27 is a flow diagram illustrating the processing of the court neighbor

routine in one embodiment. This routine is passed an indication of the prospective neighbor

for this process. If this process can connect to the prospective neighbor, then it sends a port

connection call external message to the prospective neighbor and adds the prospective

neighbor as a neighbor. In decision block 270], if the prospective neighbor is already a

neighbor, then the routine returns, else the routine continues at block 2702. In block 2702,

the routine dials the prospective neighbor. In decision block 2703, if the number of holes of

this process is greater than zero, then the routine continues at block 2704, else the routine

[03004-800l/Sw03733.106] -38- 7/31/00

0714

0715

10

15

20

25

30

continues at block 2706. In block 2704, the routine sends a port connection call external

message (i. e., port_connection_call) to the prospective neighbor and receives its response

(i.e., port_connection_resp). Assuming the response is successfully received, in block 2705,

the routine adds the pr05pective neighbor as a neighbor of this process by invoking the add

neighbor routine. In block 2706, the routine hangs up with the prospect and then returns.

Figure 28 is a flow diagram illustrating the processing of the handle connection

edge search call routine in one embodiment. This routine is passed a indication of the

neighbor who sent the message and the message itself. This routine either forwards the

message to a neighbor or proposes the edge between this process and the sending neighbor to

the requesting process for edge pinning. In decision block 2801, if this process is not the

requesting process or the number of holes of the requesting process is still greater than or

equal to two, then the routine continues at block 2802, else the routine continues at block

2813. In decision block 2802, if the forwarding distance is greater than zero, then the

random walk is not complete and the routine continues at block 2803, else the routine

continues at block 2804. In block 2803, the routine invokes the forward connection edge

search routine passing the identification of the requesting process and the decremented

forwarding distance. The routine then continues at block 2815. In decision block 2804, if

the requesting process is a neighbor or the edge between this process and the sending

neighbor is reserved because it has already been offered to a process, then the routine

continues at block 2805, else the routine continues at block 2806. In block 2805, the routine

invokes the forward connection edge search routine passing an indication of the requesting

party and a toggle indicator that alternatively indicates to continue the random walk for one

The routine then continues at block 2815. In block 2806, the

routine dials the requesting process via the call-in port. In block 2807, the routine sends an

or tWO more computers.

edge proposal call external message (i. e., edge_proposal_call) and receives the response (i.e.,

edge_proposal_resp). Assuming that the response is successfully received, the routine

continues at block 2808. In decision block 2808, if the response indicates that the edge is

acceptable to the requesting process, then the routine continues at block 2809, else the

routine continues at block 2812. In block 2809, the routine reserves the edge between this

process and the sending neighbor. In block 2810, the routine adds the requesting process as

a neighbor by invoking the add neighbor routine. In block 2811, the routine removes the

sending neighbor as a neighbor. In block 2812, the routine hangs up the external port and

[03004-8001/Sw03733.l06] —3 9- 7/3l/00

0715

0716

10

15

20

25

30

continues at block 2815. In decision block 2813, if this process is the requesting process and

the number of holes of this process equals one, then the routine continues at block 2814, else

the routine continues at block 2815. In block 2814, the routine invokes the fill hole routine.

In block 2815, the routine sends an connection edge search response message (i.e.,

connection_edge_search_response) to the sending neighbor indicating acknowledgement and

then returns. The graphs are sensitive to parity. That is, all possible paths startingfrom a

node and ending at that node will have an even length unless the graph has a cycle whose

length is odd. The broadcaster component uses a toggle indicator to vary the random walk

distance between even and odd distances.

Figure 29 is a flow diagram illustrating the processing of the handle connection

edge search response routine in one embodiment. This routine is passed as indication of the

requesting process, the sending neighbor, and the message. In block 2901, the routine notes

that the connection edge search response (i. e., connection_edge_search_resp) has been

received and if the forwarding distance is less than or equal to one unreserves the edge

between this process and the sending neighbor. In decision block 2902, if the requesting

process indicates that the edge is acceptable as indicated in the message, then the routine

continues at block 2903, else the routine returns. In block 2903, the routine reserves the edge

between this process and the sending neighbor. In block 2904, the routine removes the

sending neighbor as a neighbor. In block 2905, the routine invokes the court neighbor

routine to connect to the requesting process. In decision block 2906, if the invoked routine

was unsuccessful, then the routine continues at block 2907, else the routine returns. In

decision block 2907, if the number of holes of this process is greater than zero, then the

routine continues at block 2908, else the routine returns. In block 2908, the routine invokes

the fill hole routine and then returns.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine

in one embodiment. This routine is invoked by the application program to broadcast a

message on the broadcast channel. This routine is passed the message to be broadcast. In

decision block 3001, if this process has at least one neighbor, then the routine continues at

block 3002, else the routine returns since it is the only process connected to be broadcast

channel. In block 3002, the routine generates an internal message of the broadcast statement

type (i.e., broadcast _stmt). 1n block 3003, the routine sets the sequence number of the

[acumen/31.003733. 106] -40- 7/31/00

0716

0717

10

15

20

25

30

In block 3004, the routine invokes the distribute internal message routine to

broadcast the message on the broadcast channel. The routine returns.

message.

Figure 31 is a flow diagram illustrating the processing of the acquire message

routine in one embodiment. The acquire message routine may be invoked by the application

program or by a callback routine provided by the application program. This routine returns a

message. In block 3101, the routine pops the message from the message queue of the

broadcast channel. In decision block 3102, if a message was retrieved, then the routine

returns an indication of success, else the routine returns indication of failure.

Figures 32-34 are flow diagrams illustrating the processing of messages

Figure 32 is a flow diagram

This

message is sent by a neighbor process that has one hole and has received a request to connect

associated with the neighbors with empty ports condition.

illustrating processing of the handle condition check message in one embodiment.

to a hole of this process. In decision block 3201, if the number of holes of this process is

equal to one, then the routine continues at block 3202, else the neighbors with empty ports

condition does not exist any more and the routine returns. In decision block 3202, if the

sending neighbor and this process have the same set of neighbors, the routine continues at

block 3203, else the routine continues at block 3205. In block 3203, the routine initializes a

condition double check message (i. 2., condition_double_check) with the list of neighbors of

this process. In block 3204, the routine sends the message internally to a neighbor other than

sending neighbor. The routine then returns. In block 3205, the routine selects a neighbor of

the sending process that is not also a neighbor of this process. In block 3206, the routine

sends a condition repair message (i.e., condition_repair_stmt) externally to the selected

process. In block 3207, the routine invokes the add neighbor routine to add the selected

neighbor as a neighbor of this process and then returns.

Figure 33 is a flow diagram illustrating processing of the handle condition

repair statement routine in one embodiment. This routine removes an existing neighbor and

connects to the process that sent the message. In decision block 3301, if this process has no

holes, then the routine continues at block 3302, else the routine continues at block 3304. In

block 3302, the routine selects a neighbor that is not involved in the neighbors with empty

ports condition. In block 3303, the routine removes the selected neighbor as a neighbor of

this process. Thus, this process that is executing the routine-now has at least one hole. In

[03004-8001/SL003733. 106] -4 1 - 7/31/00

0717

0718

10

15

20

25

block 3304, the routine invokes the add neighbor routine to add the process that sent the

message as a neighbor of this process. The routine then retums.

Figure 34 isa flow diagram illustrating the processing of the handle condition

double check routine. This routine determines whether the neighbors with empty ports

condition really is a problem or whether the broadcast channel is in the small regime. In

decision block 3401, if this process has one hole, then the routine continues at block 3402,

else the routine continues at block 3403. If this process does not have one hole, then the set

of neighbors of this process is not the same as the set of neighbors of the sending process. In

decision block 3402, if this process and the sending process have the same set of neighbors,

then the broadcast channel is not in the small regime and the routine continues at block 3403,

else the routine continues at block 3406. In decision block 3403, if this process has no holes,

then the routine returns, else the routine continues at block 3404. In block 3404, the routine

sets the estimated diameter for this process to One. In block 3405, the routine broadcasts a

diameter reset internal message (i.e., diameter_reset) indicating that the estimated diameter is

one and then returns. In block 3406, the routine creates a list of neighbors of this process. In

block 3407, the routine sends the condition check message (i. e., condition_check_sm1t) with

the list of neighbors to the neighbor who sent the condition double check message and then

7 returns.

From the above description, it will be appreciated that although specific

embodiments of the technology have been described, various modifications may be made

without deviating from the spirit and scope of the invention. For example, the

communications on the broadcast channel may be encrypted. Also, the channel instance or

session identifier may be a very‘ large number (e. g., 128 bits) to help prevent an unauthorized

user to maliciously tap into a broadcast charmel. The portal computer may also enforce

security and not allow an unauthorized user to connect to the broadcast channel.

Accordingly, the invention is not limited except by the claims.

[03004.8001/SL003733. 106] -42- 7/3 1/00

0718

0719

10

ll

12

l3

14

15

16

17

18

CLAIMS

1. A computer network for providing a conferencing system for a plurality

of participants, each participant having connections to at least three neighbor participants,

wherein an originating participant sends data to the other participants by sending the data

through each of its connections to its neighbor participants and wherein each participant

' sends data that it receives from a neighbor participant to its other neighbor participants.

2. The computer network of claim 1 wherein each participant is connected

to 4 other participants.

3. The computer network of claim 1 wherein each participant is connected

to an even number of other participants.

4. The computer network of claim 1 wherein the network is m-regular,

where m is the number of neighbor participants of each participant.

5. The computer network of claim 1 wherein the network is Iii-connected,

where m is the number of neighbor participants of each participant.

6. The computer network of claim 1 wherein the network is m-regular and

m-connected, where m is the number of neighbor participants of each participant.

7. The computer network of claim 1 wherein all the participants are peers.

8. The computer network of claim 1 wherein the connections are peer-to-

peer connections.

|03004-800IISL003733.106] -43- 7/31/00

0719

0720

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

9. The computer network of claim 1 wherein the connections are TCP/IP

connections.

10. The computer network of claim 1 wherein each participant is a process

executing on a computer.

11. The computer network of claim 1 wherein a computer hosts more than

one participant.

12. The computer network of claim 1 wherein each participant sends to each

of its neighbors only one copy of the data.

13. The computer network of claim 1 wherein the interconnections of

participants form a broadcast channel for a topic of interest.

14. A distributed conferencing system comprising:

a plurality of broadcast channels, each broadcast channel for conducting

a conference;

means for identifying a broadcast channel for a conference of interest;

and

means for connecting to the identified broadcast channel.

15. The distributed conferencing system of claim 14 wherein means for

identifying a conference of interest includes accessing a web server that maps conferences to

corresponding broadcast channel.

16. The distributed conferencing system of claim 14 wherein a broadcast

channel is formed by attendee computers and a speaker computer that are each

interconnected to at least three other computers.

[03004-sooi/sm03733.106] -44- 7/31/00

0720

0721

0721

0722

0722

0723

0724

0725

0726

0727

immm .m;i

0728

0729

0730

0731

0731

0732

0732

0733

4.3:SUé)!»on

0733

0734

(“ rw TW}
- -mcfllashm_

'_ Conn:c}A’MXEn Go)

Ler-l exfmzfl

035,va
 IASW

Di SMCLQ"

0734

0735

PC%

0 /

rr €550$$ F‘ 8’.. I

0 7.

Qecex‘ Jcé vim—r4

W‘s‘so ge-

0735

0736

0736

0737

Ma QTW a5

—-‘?&‘\ow Seekar‘

0737

0738

 Cohnou‘vm,
S¥6JQ=T ‘
cannectéd

0738

0739

Failci

0739

0740

0740

0741

‘ I0

I mfg-“E ’-
0741

0742

0742

0743

0743

0744

0744

0745

0745

0746

‘HMJlQCWn%H

Fb«'%SebmA~'*

0746

0747

0747 '

0748

Du‘sl‘i but;
B toor, Cos

0‘

0748

0749

 0 \\ «ask
Sal?

“‘3

0749

0750

0750

0751

0751

0752

0752

0753

{W6

0“ firw'flmfib

l
0753

0754

0754

0755

0755

0756

.514 m¢s$a (
‘pfrrfi faF’s

0756

0757

0757

0758

(flak “5" 0(—

Wfibé$ '

0758

0759

http://www.faqs.org/rfcs/rfc l 832.html 01/29/2002upage l
Internet RFC/STD/FYl/BCP Archives

RFC1832

[Index | Search | What‘s New I Cements | Help]

Network Working Group R. Srinivasan
Request for Comments: 1832 Sun Microsystems
Category: Standards Track August 1995

XDR: External Data Representation Standard

Status of this Memo

This document specifies an Internet standards track protocol for the

Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD l) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

ABSTRACT

This document describes the External Data Representation Standard
(XDR) protocol as it is currently deployed and accepted.

TABLE OF CONTENTS

1. INTRODUCTION 2
2. BASIC BLOCK SIZE 2
3. XDR DATA TYPES 3

3.1 Integer 3
3.2 Unsigned Integer 4
3.3 Enumeration 4
3.4 Boolean . 4

3.5 Hyper Integer and Unsigned Hyper Integer 4
3.6 Floating—point 5
3.7 Double-precision Floating—point 6
3.8 Quadruple—precision Floating-point 7
3.9 Fixed—length Opaque Data 8
3.10 Variable—length Opaque Data 8
3.11 String 9
3.12 Fixed-length Array 10
3.13 Variable—length Array 10
3.14 Structure 11
3.15 Discriminated Union 11
3.16 Void 12
3.17 Constant 12

3.18 Typedef 13

0759

0760

http://www.faqs.org/rfcs/rfc l 832.htm1 01/29/2002--page 2

3.19 Optional-data 14
3.20 Areas for Future Enhancement 15
4. DISCUSSION 15
5. THE XDR LANGUAGE SPECIFICATION 17
5.1 Notational Conventions 17

5.2 Lexical Notes 17

5.3 Syntax Information 18
5.4 Syntax Notes 19
6. AN EXAMPLE OF AN XDR DATA DESCRIPTION 20
7. TRADEMARKS AND OWNERS 21

APPENDIX A: ANSI/IEEE Standard 754-1985 22
APPENDIX B: REFERENCES 24

Security Considerations 24
Author's Address 24

I. INTRODUCTION

XDR is a standard for the description and encoding of data. It is
useful for transferring data between different computer
architectures, and has been used to communicate data between such
diverse machines as the SUN WORKSTATION*, VAX*, IBM—PC*, and Cray*.
XDR fits into the ISO presentation layer, and is roughly analogous in
purpose to X.409, ISO Abstract Syntax Notation. The major difference
between these two is that-XDR uses implicit typing, while X.409 uses
explicit typing.

XDR uses a language to describe data formats. The language can only
be used only to describe data; it is not a programming language.
This language allows one to describe intricate data formats in a
concise manner. The alternative of using graphical representations
(itself an informal language) quickly becomes incomprehensible when
faced with complexity. The XDR language itself is similar to the C
language [1], just as Courier [4] is similar to Mesa. Protocols such
as ONC RPC (Remote Procedure Call) and the NFS* (Network File System)
use XDR to describe the format of their data.

The XDR standard makes the following assumption: that bytes (or
octets) are portable, where a byte is defined to be 8 bits of data.
A given hardware device should encode the bytes onto the various
media in such a way that other hardware devices may decode the bytes
without loss of meaning. For example, the Ethernet* standard'
suggests that bytes be encoded in "little-endian" style [2], or least
significant bit first.

2. BASIC BLOCK SIZE

The representation of all items requires a multiple of four bytes (or
32 bits) of data. The bytes are numbered 0 through n-l. The bytes
are read or written to some byte stream such that byte m always
precedes byte m+l. If the n bytes needed to contain the data are not
a multiple of four, then the n bytes are followed by enough (0 to 3)
residual zero bytes, r, to make the total byte count a multiple of 4.

We include the familiar graphic box notation for illustration and

comparison. In most illustrations, each box (delimited by.a plus
sign at the 4 corners and vertical bars and dashes) depicts a byte.

0760

0761

http://',vww.faqs.org/rfcs/rfcl832.htrn1 01/29/2002—-page 3

Ellipses (...) between boxes show zero or more additional bytes where
required.

+ —————— ——+ —————— --+...+------ —-+--------+...+------ -—+

| byte 0 | byte 1 |...|byte n—ll 0 |...l 0 | BLOCK
+ ------- —* ------ -—+ + —————— -—+------—-+. .+ ------ ——+

|< ————————— ——n bytes ———————— -->|< ---- --r bytes ———— -—>|
|< ————————— —-n+r (where (n+r) mod 4 = 0)> ————————— -—>|

3. XDR DATA TYPES

Each of the sections that follow describes a data type defined in the
XDR standard, shows how it is declared in the language, and includes
a graphic illustration of its encoding.

For each data type in the language we show a general paradigm
declaration. Note that angle brackets (< and >) denote
variablelength sequences of data and square brackets ([and]) denote
fixed—length sequences of data. "n", "m" and "r" denote integers.
For the full language specification and more formal definitions of
terms such as "identifier" and "declaration", refer to section 5:

"The XDR Language Specification".

For some data types, more specific examples are included. A more
extensive example of a data description is in section 6: "An Example
of an XDR Data Description".

3.1 Integer

An XDR signed integer is a 32-bit datum that encodes an integer in
the range [—2147483648,2147483647]. The integer is represented in
two's complement notation. The most and least significant bytes are
0 and 3, respectively. Integers are declared as follows:

int identifier;

(MSB) (LSB)
+ —————— —+ ————— ——+ ————— ——+ ————— -—+

lbyte 0 lbyte l lbyte 2 [byte 3 l INTEGER
+ —————— —+ ————— ——+ ————— —-+ ————— —-+

< —————————— ——32 bits —————————— -->

3.2. Unsigned Integer

An XDR unsigned integer is a 32-bit datum that encodes a nonnegative
integer in the range [0,4294967295]. It is represented by an
unsigned binary number whose most and least significant bytes are 0
and 3, respectively. An unsigned integer is declared as follows:

unsigned int identifier;

(MSB) (LSB)
+ —————— —+ ----- —-+ ----- --+ ————— --+

lbyte 0 lbyte 1 [byte 2 lbyte 3 1 UNSIGNED INTEGER
+ —————— —$ ------ —+ ————— —-+ ----- --+

< ---------- --32 bits ---------- -->

0761

0762

http://WWW.faqs.org/rfcs/rfc1832.htm1 O l /29/2002--page 4

3.3 Enumeration

Enumerations have the same representation as signed integers.
Enumerations are handy for describing subsets of the integers.
Enumerated data is declared as follows:

enum { name—identifier = constant, ... } identifier;

For example, the three colors red, yellow, and blue could be
described by an enumerated type:

enum { RED = 2, YELLOW = 3, BLUE = 5 } colors;

It is an error to encode as an enum any other integer than those that
have been given assignments in the enum declaration.

3.4 Boolean

Booleans are important enough and occur frequently enough to warrant
their own explicit type in the standard. Booleans are declared as
follows:

bool identifier;

This is equivalent to:

enum { FALSE = O, TRUE 1 } identifier;

3.5 Hyper Integer and Unsigned Hyper Integer

The standard also defines 64-bit (8—byte) numbers called hyper
integer and unsigned hyper integer. Their representations are the

obvious extensions of integer and unsigned integer defined above.

They are represented in two's complement notation. The most and
least significant bytes are 0 and 7, respectively. Their
declarations:

hyper identifier; unsigned hyper identifier;

(MSB) . (LSB)
+ —————— -+ —————— —+ ————— -—+ ————— --+----- ——+ ————— ——+ ----- ——+ ————— ——+

lbyte 0 lbyte l lbyte 2 lbyte 3 lbyte 4 lbyte 5 lbyte 6 lbyte 7 |
+ ————— ——+ ————— —-+ ————— —-+ ————— ——+ ————— ——+ ————— —-+----- —-+ ————— —-+

< —————————————————————————— --64 bits —————————————————————————— —->
HYPER INTEGER
UNSIGNED HYPER INTEGER

3.6 Floating—point

The standard defines the floating-point data type "float" (32 bits or
4 bytes). The encoding used is the IEEE standard for normalized

single—precision floating-point numbers [3]. The following three
fields describe the single—precision floating-point number:

5: The sign of the number. Values 0 and 1 represent positive and
negative, respectively. One bit.

0762

0763

http://www.faqs.org/rfcs/rfc1832.htm1 01/29/2002--page 5

E: The exponent of the number, base 2. 8 bits are devoted to this
field. The exponent is biased by 127.

F: The fractional part of the number's mantissa, base 2. 23 bits
are devoted to this field.

Therefore, the floating-point number is described by:

(-l)**S * 2**(E-Bias) * l.F

It is declared as follows:

float identifier;

+ ————— --+----- ——+ ————— —-+----- --+

lbyte 0 lbyte 1)byte 2 lbyte 3 I SINGLE-PRECISION
S) E | F I FLOATING-POINT NUMBER
+ ————— ——+ ————— ——+ ————— ——+ —————— -+

1|<— 8 —>)< ----- -—23 bits ———— —->|
< —————————— ——32 bits —————————— ——>

Just as the most and least significant bytes of a number are 0 and 3,

the most and least significant bits of a single—precision floating-
point number are 0 and 31. The beginning bit (and most significant

bit) offsets of S, E, and F are 0, l, and 9, respectively. Note that
these numbers refer to the mathematical positions of the bits, and
NOT to their actual physical locations (which vary from medium to
medium).

The IEEE specifications should be consulted concerning the encoding
for signed zero, signed infinity (overflow), and denormalized numbers
(underflow) [3]. According to IEEE specifications, the "NaN" (not a
number) is system dependent and should not be interpreted within XDR
as anything other than "NaN".

3.7 Double—precision Floating—point

The standard defines the encoding for the double-precision floating-
point data type "double" (64 bits or 8 bytes). The encoding used is
the IEEE standard for normalized double-precision floating—point
numbers [3]. The standard encodes the following three fields, which
describe the double-precision floating-point number:

S: The sign of the number. Values 0 and 1 represent positive and
negative, respectively. One bit.

I?! The exponent of the number, base 2. 11 bits are devoted to

this field. The exponent is biased by 1023.

F: The fractional part of the number's mantissa, base 2. 52 bits
are devoted to this field.

Therefore, the floating-point number is described by:

(—l)'*S * 2**(E—Bias) * 1.F

0763

0764

http://www.faqs.org/rfcs/rfc l 832.html 01/29/2002—-page 6

It is declared as follows:

double identifier;

+ ———— -—+ ———— ——+ ———— ——+ ———— ——+ ———— —-+ ———— ——+ ———— ——+ ———— —-+

)byte Otbyte llbyte 2|byte 3lbyte 4|byte 5|byte 6|byte 71
SI E | F
+ ———— ——+ ———— -—+ ———— -—+ ———— —-+ ———— ——+ ———— —-+---- --+ ———— -—+

l|<——ll——>|< ——————————————— -452 bits ----------------- —->|
< ————————————————————— ——64 bits ——————————————————————— -—>

DOUBLE-PRECISION FLOATING-POINT

Just as the most and least significant bytes of a number are 0 and 3,
the most and least significant bits of a double—precision floating—
point number are 0 and 63. The beginning bit (and most significant
bit) offsets of S, E , and F are 0, 1, and 12, respectively. Note

that these numbers refer to the mathematical positions of the bits,
and NOT to their actual physical locations (which vary from medium to
medium).

The IEEE specifications should be consulted concerning the encoding
for signed zero, signed infinity (overflow), and denormalized numbers
(underflow) [3]. According to IEEE specifications, the "NaN" (not a
number) is system dependent and should not be interpreted within XDR
as anything other than "NaN".

3.8 Quadruple—precision Floating—point

The standard defines the encoding for the quadruple—precision
floating-point data type "quadruple" (128 bits or 16 bytes). The
encoding used is designed to be a simple analog of of the encoding
used for single and double-precision floating—point numbers using one
form of IEEE double extended precision. The standard encodes the
following three fields, which describe the quadruple—precision
floating—point number:

S: The sign of the number. Values 0 and 1 represent positive and
negative, respectively. One bit.

F] The exponent of the number, base 2. 15 bits are devoted to
this field. The exponent is biased by 16383.

F: The fractional part of the number's mantissa, base 2. 112 bits
are devoted to this field.

Therefore, the floating-point number is described by:

(-l)*'S ' 2**(E-Bias) * 1.?

It is declared as follows:

quadruple identifier;

; ———— -—+ ----- -+ ---- —-+ ———— --+---- ——+ ---- —-+—...--+---- ——+

[byte Olbyte llbyte Zibyte 3lbyte 4lbyte 5| ...)bytelSl

0764

0765

http://www.faqs.org/rfcs/rfc1832.html 01/29/2002--page 7

SI E I F I
+ ————— —+ ———— ——+ ———— ——+ ———— -—+ ———— ——+ ———— ——+—...-—+----——+

1I<——--15———->I< ——————————— -—112 bits ———————————————— —->I
< ————————————————————— —-128 bits ---------------------- ——>

QUADRUPLE—PRECISION FLOATING-POINT

Just as the most and least significant bytes of a number are 0 and 3,
the most and least significant bits of a quadruple—precision
floating—point number are 0 and 127. The beginning bit (and most

significant bit) offsets of S, E , and F are 0, l, and 16,
respectively. Note that these numbers refer to the mathematical

positions of the bits, and NOT to their actual physical locations
(which vary from medium to medium).

The encoding for signed zero, signed infinity (overflow), and
denormalized numbers are analogs of the corresponding encodings for
single and double-precision floating—point numbers [5], [6]. The
"NaN" encoding as it applies to quadruple-precision floating—point
numbers is system dependent and should not be interpreted within XDR
as anything other than "NaN".

3.9 Fixed-length Opaque Data

At times, fixed—length uninterpreted data needs to be passed among
machines. This data is called "opaque" and is declared as follows:

opaque identifierIn];

where the constant n is the (static) number of bytes necessary to
contain the opaque data. If n is not a multiple of four, then the n
bytes are followed by enough (0 to 3) residual zero bytes, r, to make
the total byte count of the opaque object a multiple of four.

0 l
+—————————————-——-r...+ —————— ——+ —————— -—+. + —————— -—+

I byte 0 I byte 1 I lbyte n—lI O I. | O I
+ ———————————————— —o + ------ -—+ —————— --+...+ —————— --+

I< --------- --n bytes ---------->|< ---- —-r bytes ------>|
I< ————————— ——n+r (where (n+r) mod 4 = O) ---------- ——>I

FIXED-LENGTH OPAQUE

3.10 Variable-length Opaque Data

The standard also provides for variable—length (counted) opaque data,
defined as a sequence of n (numbered 0 through n—l) arbitrary bytes
to be the number n encoded as an unsigned integer (as described
below), and followed by the n bytes of the sequence.

Byte m of the sequence always precedes byte m+l of the sequence, and
byte 0 of the sequence always follows the sequence's length (count).
If n is not a multiple of four, then the n bytes are followed by
enough (0 to 3) residual zero bytes, r, to make the total byte count
a multiple of four. Variable-length opaque data is declared in the
following way:

opaque identifier<m>;

0765

0766

http://www.faqs.org/rfcs/rfc1832.html 01/29/2002“P3ge 8

or

opaque identifier<>;

The constant m denotes an upper bound of the number of bytes that the
sequence may contain. If m is not specified, as in the second
declaration, it is assumed to be (2**32) - l, the maximum length.
The constant m would normally be found in a protocol specification.
For example, a filing protocol may state that the maximum data
transfer size is 8192 bytes, as follows:

opaque filedata<8l92>;

0 l 2 3 4 5 ...
+-————+-——--+————-+————-+-———-+—————+...+—————+—-———+...+----—+

| lengthn lbyteOlbytelI..'.l n-ll 0 I...| 0 3
+-————+—-———+—-———+———--+--———+—————+...+—————+—-———+...+——---+

|< ————— ——4 bytes ----- ——>|< ———— ——n bytes ———— ——>|<———r bytes-—->|
|<—-——n+r (where (n+r) mod 4 = O)-—-->l

VARIABLE-LENGTH OPAQUE

It is an error to encode a length greater than the maximum described
in the specification.

3.11 String

The standard defines a string of n (numbered 0 through n—l) ASCII
bytes to be the number n encoded as an unsigned integer (as described
above), and followed by the n bytes of the string. Byte m of the

_ string always precedes byte m+l of the string, and byte 0 of the

string always follows the string's length. If n is not a multiple of
four, then the n bytes are followed by enough (0 to 3) residual zero
bytes, r, to make the total byte count a multiple of four. Counted
byte strings are declared as follows:

string object<m>;
or

string object<>;

The constant m denotes an upper bound of the number of bytes that a
string may contain. If m is not specified, as in the second

declaration, it is assumed to be (2**32) - l, the maximum length.
The constant m would normally be found in a protocol specification.
For example, a filing protocol may state that a file name can be no
longer than 255 bytes, as follows:

string filename<255>;

O l 2 3 4 5 ...
+———--+ ---- -+ ———— -+—-———+-----+-———-+...+-——--+--——-+...+—————+

length n |byte0lbytelt...l n—l I 0 I...| 0
+ ———— —? ---- —+—————+----—+—————+-—-——+...+---——+-—-——+...+----—+

(< ————— --4 bytes ----- -->(< ———— —-n bytes ------>|<—--r bytes-——>l
l<————n+r (where (n+r) mod 4 = 0)—-——>i

STRING

It is an error to encode a length greater than the maximum described

0766

0767

http://www.faqs.org/rfcs/rfc l 832.html

in the specification.

3.12 Fixed—length Array

Declarations for fixed—length arrays of homogeneous elements are in
the following form:

type—name identifier[n];

Fixed—length arrays of elements numbered 0 through n—l are encoded by
individually encoding the elements of the array in their natural
order, 0 through n—l. Each element's size is a multiple of four
bytes. Though all elements are of the same type, the elements may
have different sizes. For example, in a fixed—length array of
strings, all elements are of type "string", yet each element will
vary in its length.

+ —————— —+———+ ————— ——+———+——-+———+ ..+—-—+———+-——+—-—+

I element 0 I element 1 I. | element n-l I
+———+———+———T——-+e——+—--+—--+———+...+——-+—-—+-——+-——+

|< —————————————————— —-n elements ————————————————— ——>|

FIXED-LENGTH ARRAY

3.13 Variable-length Array

Counted arrays provide the ability to encode variable—length arrays of
homogeneous elements. The array is encoded as the element count n (an

unsigned integer) followed by the encoding of each of the array's
elements, starting with element 0 and progressing through element n— 1.
The declaration for variable-length arrays follows this form:

type~name identifier<m>;
or

type—name identifier<>;

The constant m specifies the maximum acceptable element count of an
array; if m is not specified, as in the second declaration, it is
assumed to be (2**32) — l.

0 l 2 3
+——+——+—-+——+——+—-+——+—-+——+——+—-+—-+...+——+——+——+—-+

I n .‘! element 0 | element 1 |...Ielement n—lI+——+——+—-+-—+——+——+—-+——+——+-—+-—+--+...+——+——+—-+--+

I<-4 bytes->I<------------ ——n elements ——————————— ——>|
COUNTED ARRAY

It is an error to encode a value of n that is greater than the
maximum described in the specification.

3.14 Structure

Structures are declared as follows:

struct I

component—declaration-A;
component—declaration-B;

01/29/2002--page 9

0767

0768

http://www.faqs.org/rfcs/rfc1832.htm1 01/29/2002—-I3age 10

} identifier;

The components of the structure are encoded in the order of their
declaration in the structure. Each component's siZe is a multiple of
four bytes, though the components may be different sizes.

I component A I component B I... STRUCTURE
+ ——————————— ——+ ——————————— ——+...

3.15 Discriminated Union

A discriminated union is a type composed of a discriminant followed
by a type selected from a set of prearranged types according to the
value of the discriminant. The type of discriminant is either "int",
"unsigned int", or an enumerated type, such as "bool". The component
types are called "arms" of the union, and are preceded by the value

of the discriminant which implies their encoding. Discriminated
unions are declared as follows:

union switch (discriminant-declaration) {
case discriminant—value—A:

arm-declaration-A;
case discriminant—value—B:

arm—declaration—B;

default: default—declaration;
} identifier;

Each "case" keyword is followed by a legal value of the discriminant.
The default arm is optional. If it is not specified, then a valid
encoding of the union cannot take on unspecified discriminant values.
The size of the implied arm is always a multiple of four bytes.

The discriminated union is encoded as its discriminant followed by
the encoding of the implied arm.

0 l 2 3

+———+———+-——+———+———+-—-+--—+———+> .

I discriminant I implied arm I DISCRIMINATED UNION
+———+———+-——+———+———+———+—-—+—-—+

I<———4 bytes-——>I

3.16 Void

An XDR void is a 0-byte quantity. Voids are useful for describing
operations that take no data as input or no data as output. They are
also useful in unions, where some arms may contain data and others do
not. The declaration is simply as follows:

void;

Voids are illustrated as follows:

++

0768

0769

http://www.faqs.org/rfcs/rfc 1832.html 01/29/2002 --page 1 1

ll VOID
++

--><~— 0 bytes

(A) .17 Constant

The data declaration for a constant follows this form:

const name—identifier = n;

"const" is used to define a symbolic name for a constant; it does not
declare any data. The symbolic constant may be used anywhere a
regular constant may be used. For example, the following defines a
symbolic constant DOZEN, equal to 12.

const DOZEN = 12;

3.18 Typedef

"typedef" does not declare any data either, but serves to define new
identifiers for declaring data. The syntax is:

typedef declaration;

The new type name is actually the variable name in the declaration
part of the typedef. For example, the following defines a new type
called "eggbox" using an existing type called "egg":

typedef egg eggbox[DOZEN];

Variables declared using the new type name have the same type as the
new type name would have in the typedef, if it was considered a

variable. For example, the following two declarations are equivalent
in declaring the variable "fresheggs":

eggbox fresheggs; egg fresheggs[DOZEN];

When a typedef involves a struct, enum, or union definition, there is
another (preferred) syntax that may be used to define the same type.
In general, a typedef of the following form:

typedef <<struct, union, or enum definition>> identifier;

may be converted to the alternative form by removing the "typedef"
part and placing the identifier after the "struct", "union", or

"enum" keyword, instead of at the end. For example, here are the two
ways to define the type "bool":

typedef enum { /* using typedef */
FALSE = 0,
TRUE = l

} bool;

enum bool { /‘ preferred alternative */
FALSE = 0,
TRUE = l

};

0769

0770

http://www.faqs.org/rfcs/rfc l 832.htm] 0 1 /29/2002 --page 12

The reason this syntax is preferred is one does not have to wait
until the end of a declaration to figure out the name of the new
type.

3.19 Optional-data

Optional-data is one kind of union that occurs so frequently that we

give it a special syntax of its own for declaring it. It is declared
as follows:

type-name *identifier;

This is equivalent to the following union:

union switch (bool opted) {
case TRUE:

type—name element;
case FALSE:

void;
) identifier;

It is also equivalent to the following variable—length array
declaration, since the boolean "opted" can be interpreted as the
length of the array:

type-name identifier<l>;

Optional—data is not so interesting in itself, but it is very useful
for describing recursive data-structures such as linked-lists and
trees. For example, the following defines a type "stringlist" that
encodes lists of arbitrary length strings:

struct *stringlist {
string item<>;
stringlist next;

};

It could have been equivalently declared as the following union:

union stringlist switch (bool opted) {
case TRUE:

struct {

string item<>;
stringlist next;

} element;
case FALSE:

void;\
r;

or as a variable-length array:

struct stringlist<l> {

string item<>;
stringlist next;

};

0770

0771

http://www.faqs.org/rfcs/rfc1832.html

Both of theSe declarations obscure the intention of the stringlist
type, so the optional-data declaration is preferred over both of
them. The optional-data type also has a close correlation to how

recursive data structures are represented in high-level languages
such as Pascal or C by use of pointers. In fact, the syntax is the
same as that of the C language for pointers.

3.20 Areas for Future Enhancement

'any existing protocol, such as TCP.

The XDR standard lacks representations for bit fields and bitmaps,
since the standard is based on bytes. Also missing are packed (or
binary—coded) decimals.

The intent of the XDR standard was not to describe every kind of data
that people have ever sent or will ever want to send from machine to

machine. Rather, it only describes the most commonly used data—types
of high—level languages such as Pascal or C so that applications
written in these languages will be able to communicate easily over
some medium.

One could imagine extensions to XDR that would let it describe almost

The minimum necessary for this
are support for different block sizes and byte-orders. The XDR
discussed here could then be considered the 4—byte big-endian member
of a larger XDR family.

DISCUSSION

(1) Why use a language for describing data?
diagrams?

What's wrong with

There are many advantages in using a data-description language such
as XDR versus using diagrams. Languages are more formal than

diagrams and lead to less ambiguous descriptions of data. Languages
are also easier to understand and allow one to think of other issues

instead of the low—level details of bit-encoding. Also, there is a

close analogy between the types of XDR and a high—level language such
as C or Pascal. This makes the implementation of XDR encoding and
decoding modules an easier task. Finally, the language specification
itself is an ASCII string that can be passed from machine to machine
to perform on—the—fly data interpretation.

(2) Why is there only one byte—order for an XDR unit?

Supporting two byte—orderings requires a higher level protocol for
determining in which byte—order the data is encoded. Since XDR is

not a protocol, this can't be done. The advantage of this, though,
is that data in XDR format can be written to a magnetic tape, for
example, and any machine will be able to interpret it, since no
higher level protocol is necessary for determining the byte-order.

(3) Why is the XDR byte-order big—endian instead of little-endian?
Isn't this unfair to little-endian machines such as the VAX(r), which
has to convert from one form to the other?

Yes, it is unfair, but having only one byte-order means you have to

01/29/2002--page 13

0771

0772

http://www.faqs.org/rfcs/rfcl 832.html

be unfair to somebody. Many architectures, such as the Motorola
68000‘ and IBM 370*, support the big-endian byte—order.

(4) Why is the XDR unit four bytes wide?

There is a tradeoff in choosing the XDR unit size. Choosing a small
size such as two makes the encoded data small, but causes alignment
problems for machines that aren't aligned on these boundaries. A
large size such as eight means the data will be aligned on virtually
every machine, but causes the encoded data to grow too big. We chose
four as a compromise. Four is big enough to support most
architectures efficiently, except for rare machines such as the
eight-byte aligned Cray*. Four is also small enough to keep the
encoded data restricted to a reasonable size.

(5) Why must variable—length data be padded with zeros?

It is desirable that the same data encode into the same thing on all
machines, so that encoded data can be meaningfully compared or
checksummed. Forcing the padded bytes to be zero ensures this.

(6) Why is there no explicit data-typing?

Data—typing has a relatively high cost for what small advantages it
may have. One cost is the expansion of data due to the inserted type
fields. Another is the added cost of interpreting these type fields
and acting accordingly. And most protocols already know what type
they expect, so data-typing supplies only redundant information.
However, one can still get the benefits of data—typing using XDR. One
way is to encode two things: first a string which is the XDR data
description of the encoded data, and then the encoded data itself.
Another way is to assign a value to all the types in XDR, and then
define a universal type which takes this value as its discriminant
and for each value, describes the corresponding data type.

5. THE XDR LANGUAGE SPECIFICATION

.l Netational ConventionsU1

This specification uses an extended Back-Naur Form notation for
describing the XDR language. Here is a brief description of the
notation:

(l) The characters 'l', '(', ')', '[', ']', '“', and '*' are special.
(2) Terminal symbols are strings of any characters surrounded by
double quotes. (3) Non—terminal symbols are strings of non-special
characters. (4) Alternative items are separated by a vertical bar
("I"). (5) Optional items are enclosed in brackets. (6) Items are
grouped together by enclosing them in parentheses. (7) A '*'
following an item means 0 or more occurrences of that item.

For example, consider the following pattern:

"a ll "very" (II, II llvery") Ir [ll I! "and II] I! ll
("dayn I llnight")

An infinite number of strings match this pattern. A few of them are:

01/29/2002—-page 14

0772

0773

http://www.faqs.org/rfcs/rfc1832.html 01/29/2002 --page 15

a very rainy day"
"a very, very rainy day"
a very cold and rainy day"
a very, very, very cold and rainy night"

5.2 Lexical Notes

(1) Comments begin with '/*' and terminate with '*/'. (2) White
space serves to separate items and is otherwise ignored. (3) An
identifier is a letter followed by an optional sequence of letters,

digits or underbar ('_'). The case of identifiers is not ignored.
(4) A constant is a sequence of one or more decimal digits,
optionally preceded by a minus-sign ('—').

5.3 Syntax Information

declaration:

type—specifier identifier
l type—specifier identifier "[" value "1"

| type—specifier identifier "<" [value] ">"
| "opaque" identifier "[" value "1"
i "opaque" identifier "<" [value] ">"
|
|
|

"string" identifier "<" [value] ">"
type—specifier "*" identifier
"void"

value:
constant

I identifier

type—specifier:
["unsigned"] "int"

t ["unsigned"] "hyper"
1 "float"
t "double"

l "quadruple"
| "bool"

I enum—type-spec
| struct—type-spec
[union‘type-spec
I identifier

enum—type—spec:

"enum" enum—body

enum—body:
"{ll

(identifier "=" value)
("," identifier "=" value)*"V n

struct-type—spec:

"struct" struct—body

struCt-body:
"(II

0773

0774

http://www.faqs.org/rfcs/rfc l 832.htm1 01/29/2002 "page 16

(declaration ";")
(declaration ";")*

It}u

union-type-spec:
"union" union—body

union—body:
"switch" "(“ declaration ")" "(“

("case" value ":" declaration ";")
("case" value ":" declaration ";")*
["default" ":" declaration ";"

u}n

constant—def:

"const" identifier "=" constant ";"

type—def:
"typedef" declaration ";"

| "enum" identifier enum—body ";"
| "struct" identifier struct-body ";"
1 "union" identifier union-body ";"

definition:

type—def
! constant—def

specification:
definition *

5.4 Syntax Notes

(1) The following are keywords and cannot be used as identifiers:
"bool", "case", "const", "default", "double", "quadruple", "enum",
"float", "hyper", "opaque", "string", "struct", "switch", "typedef",
"union", "unsigned" and "void".

(2) Only unsigned constants may be used as size specifications for
arrays. If an identifier is used, it must have been declared
previously as an unsigned constant in a "const" definition.

(3) Constant and type identifiers within the scope of a specification
are in the same name space and must be declared uniquely within this
scope.

(4) Similarly, variable names must be unique within the scope of
struct and union declarations. Nested struct and union declarations
create new scopes.

(5) The discriminant of a union must be of a type that evaluates to
an integer. That is, "int", "unsigned int", "bool", an enumerated
type or any typedefed type that evaluates to one of these is legal.
Also, the case values must be one of the legal values of the
discriminant. Finally, a case value may not be specified more than
once within the scope of a union declaration.

6. AN EXAMPLE OF AN XDR DATA DESCRIPTION

0774

0775

http://www.faqs.0rg/rfcs/rfc1832.html

Here is a short XDR data description of a thing called a "file",
which

Suppos

might be used to transfer files from one machine to another.

const MAXUSERNAME = 32; /* max length of a user name */
const MAXFILELEN = 65535; /* max length of a file */
const MAXNAMELEN = 255; /* max length of a file name */

/7(

* Types of files:
*/

enum filekind {
TEXT = 0, /* ascii data */
DATA = l, /* raw data */
EXEC = 2 /* executable */

};

/~k

* File information, per kind of file:
*/

union filetype switch (filekind kind) {
case TEXT:

void; - /* no extra information */
case DATA:

string creator<MAXNAMELEN>; /* data creator */
case EXEC:

string interpretor<MAXNAMELEN>; /* program interpreter */
};

/i

* A complete file:
*/

struct file {

string filename<MAXNAMELEN>; /* name of file */
filetype type; /* info about file */
string owner<MAXUSERNAME>; /* owner of file */
opaque data<MAXFILELEN>; /* file data */

};

e now that there is a user named "john" who wants to store his
lisp program "sillyprog" that contains just the data "(quit)". His
file would be encoded as follows:

OFFSET HEX BYTES ASCII COMMENTS

0 00 00 00 O9 —— length of filename = 9
4 73 69 6c 6c sill -— filename characters

8 79 7O 72 6f ypro -- and more characters
12 67 00'00 00 g... -— ... and 3 zero—bytes of fill
16 00 00 00 02 —- filekind is EXEC = 2

20 00 00 00 O4 -- length of interpreter = 4
24 6c 69 73 70 lisp -- interpreter characters
28 00 00 00 04 -- length of owner = 4
32 6a 6f 68 6e john -- owner characters
36 00 00 00 06 -- length of file data = 6
40 28 71 75 69 (qui -— file data bytes
44 74 29 00 00 t).. -- and 2 zero-bytes of fill

01/29/2002--page 17

0775

0776

http://www.faqs.org/rfcs/rfc1832.html

7. TRADEMARKS AND OWNERS

SUN WORKSTATION Sun Microsystems, Inc.
VAX Digital Equipment Corporation
IBM-PC International Business Machines Corporation
Cray Cray Research
NFS Sun Microsystems, Inc.

Ethernet Xerox Corporation.
Motorola 68000 Motorola, Inc.

IBM 370 International Business Machines Corporation

APPENDIX A: ANSI/IEEE Standard 754-1985

For

The definition of NaNs, signed zero and infinity, and denormalized
numbers from [3] is reproduced here for convenience. The definitions
for quadruple—precision floating point numbers are analogs of those
for single and double—precision floating point numbers, and are
defined in [3].

In the following, '8' stands for the sign bit, 'E' for the exponent,
and 'F' for the fractional part. The symbol 'u' stands for an
undefined bit (0 or 1).

For single—precision floating point numbers:

Type S (1 bit) E (8 bits) F (23 bits)

signalling NaN u 255 (max) .Ouuuuu---u
(with at least
one 1 bit)

quiet NaN u 255 (max) .luuuuu—--u

negative infinity 1 255 (max) .000000—--O

positive infinity 0 255 (max) .000000—-—0

negative zero 1 0 .000000---0

positive zero 0 0 .000000—--0

double—precision floating point numbers:

Type S (I bit) E (ll bits) F (52 bits)

signalling NaN u 2047 (max) .0uuuuu--—u
(with at least
one 1 bit)

quiet NaN u 2047 (max) .luuuuu———u

negative infinity 1 2047 (max) .000000---0

positive infinity 0 2047 (max) .000000---0

negative zero I O .000000--—O

positive zero 0 0 .000000—--0

01/29/2002--pagc 18

0776

0777

http://www.faqs.org/rfcs/rfc1832.htm1

For quadruple—precision floating point numbers:

Type S (1 bit) E (15 bits) F (112 bits)

signalling NaN u 32767 (max) .0uuuuu—--u
(with at least
one 1 bit)

quiet NaN u 32767 (max) .1uuuuu——-u

negative infinity 1 32767 (max) .000000---O

positive infinity 0 32767 (max) .000000———0

negative zero 1 0 .000000—--0

positive zero 0 0 .000000———0

Subnormal numbers are represented as follows:

Precision Exponent Value

$.15?" 6"""’ (:i;*s * gin—126) * 0.?

Double 0 (-l)**S * 2**(—1022) * 0.F

Quadruple 0 (—1)**s * 2**(—16382) * 0.F

APPENDIX 5: REFERENCES

[3]

Brian W. Kernignan & Dennis M. Ritchie, "The C Programming
Language", Bell Laboratories, Murray Hill, New Jersey, 1978.

Danny Cohen, "On Holy Wars and a Plea for Peace", IEEE Computer,
October 1981. '

"IEEE Standard for Binary Floating-Point Arithmetic", ANSI/IEEE
Standard 754—1985, Institute of Electrical and Electronics

Engineers, August 1985.

"Courier: The Remote Procedure Call Protocol", XEROX
Corporation, XSIS 038112, December 1981.

"The SPARC Architecture Manual: Version 8", Prentice Hall,
ISBN 0—l3—825001—4.

"HP Precision Architecture Handbook", June 1987, 5954-9906.

Srinivasan, R., "Remote Procedure Call Protocol Version 2",
RFC 1831, Sun Microsystems, Inc., August 1995.

Security Considerations

Security issues are not discussed in this memo.

Author's Address

01/29/2002--pagc 19

0777

0778

http://wwwfaqs.org/rfcs/rfc l 832.html 01/29/2002 --page 20

Raj Srinivasan

Sun Microsystems, Inc.
ONC Technologies
2550 Garcia Avenue
M/S MTV-5—4O

Mountain View, CA 94043
USA

Phone: 415—336—2478
Fax: 415—336—6015

EMail: raj@eng.sun.com

[Index | Search | What's New | Comments | Help]

Comments/Questions about this archive .7 Send mail to

0778

0779

Standard

@ DataBeam._

0779 ‘

0780

A DataBeam Corporation White Paper

A PRIMER ON THE T.120 SERIES STANDARDS

Broad vendor support
means that end users
will be able to choose

from a variety of inter-
operable products.

A PRIMER ON THE T.120 STANDARD 1

The T.120 standard contains a series of communication

and application protocols and services that provide sup—

port for real-time, multipoint data communications.

These multipoint facilities are important building blocks

for a whole new range of collaborative applications,

including desktop data conferencing, multi—user applica-

tions, and multi-player gaming.

Broad in scope, T.120 is a comprehensive specification

that solves several problems that have historically slowed

market growth for applications of this nature. Perhaps

most importantly, T.120 resolves complex technological

issues in a manner that is acceptable to both the comput-

ing and telecommunications industries.

Established by the International Telecommunications

Union (ITU), T.120 is a family of open standards that

was defined by leading data communication practitioners

in the industry. Over 100 key international vendors,

including Apple, AT&T, British Telecom, Cisco Systems,

Intel, MCI, Microsoft, and PictureTel, have committed

to implementing T.120—based products and services.

While T.120 has emerged as a critical element in the data

communications landscape, the only information that

currently exists on the topic is a weighty and complicated

set of standards documents. This primer bridges this

information gap by summarizing T.120's major benefits,

fundamental architectural elements, and core capabilities.

0780

0781

KEY BENEFITS OF T.120

So why all the excitement about T.120?

The bottom line is that it provides excep-
tional benefits to end users. vendors, and

developers tasked with implementing real-

time applications. The following list is a

high—level overview of the major benefits
associated with the T. 120 standard:

Multipoint Data Delivery

T.120 provides an elegant abstraction for

developers to create and manage a

multipoint domain with ease. From an

application perspective, data is seamlessly

delivered to multiple parties in “realtime.”

Interoperability

T. 120 allows endpoint T.120 BENEFITS

A DataBeam Corporation White Paper

viding a flexible solution for mixed unicast
and multicast networks. The Multicast

Adaptation Protocol (MAP) is expected to

be ratified in early 1998.

Network Transparency

Applications are completely shielded from

the underlying data transport mechanism

being used. Whether the transport is a

high—speed LAN or a simple dial—up

modem, the application developer is only

concerned with a single, consistent set of

application services.

Platform Independence

Because the T.120 standard is completely

free from any platform dependencies. it

will readily take advantage of the
inevitable advances in

computing technology. In
applications from mumple V Multipoint Data Delivery fact, DataBeam's cus—
vendors to interoperate.

T.120 also specifies how

applications may interop-

ing products and services

that also support the T.120
standard.

V Support for Varied Topologies
Reliable Data

V Interoperability

V Reliable Data Delivery

erate with (or through) a V Multicast Enabled Delivery

Variaty 0f “thork bridg‘ V Network Transparency

V Platform Independence

V Network Independence

tomers have already ported
the T.120 source code eas-

ily from Windows to a

variety of environments,

including 03/2,
MAC/OS, several versions

of UNIX, and other pro-

prietary real-time operat—

ing systems.
V Application Independence

Denvery v Scalability Network
Error—corrected data deliv- V Co-existence with Other Independence

cry ensures that all end Standards

points will receive each “Extendabimy
data transmission.

Multicast Enabled Delivery

ln muliticast enabled networks, T.120 can

employ reliable (ordered, guaranteed) and

unreliable delivery services. Unreliable

data delivery is also available without mul-

ticast. By using multicast, the T.120 infra-

structure reduces network congestion and

improves performance for the end user.
The T.120 infrastructure can use both

unicast and multicast simultaneously, pro-

The T.120 standard sup—

ports a broad range of

transport options, includ~

ing the Public Switched Telephone

Networks (PSTN or POTS). Integrated

Switched Digital Networks (ISDN).

Packet Switched Digital Networks

(PSDN). Circuit Switched Digital

Networks (CSDN). and popular local area

network protocols (such as TCP/IP and

ll’X via reference protocol). Furthermore.

these vastly different network transports.

operating at different speeds. can easily co-

exist in the same multipoint conference.

A PRIMER ON THE T.120 STANDARD

0781

0782

A DataBeam Corporation White Paper

Support for Varied Topologies

Multipoint conferences can be set up with

virtually no limitation on network topolo—

gy. Star topologies, with a single

Multipoint Control Unit (MCU) will be

common early on. The standard also sup-

ports a wide variety of other topologies

ranging from those with multiple, cascad-

ed MCUS to topologies as simple as a

daisy-chain. In complex multipoint con-

ferences, topology may have a significant

impact on efficiency and performance.

Application Independence

Although the driving market force behind

T120 was teleconferencing, its designers

purposely sought to satisfy a much broad-

er range of application needs. Today,

T120 provides a generic, real-time com-

munications facility that can be used by

many different applications. These appli-

cations include interactive gaming. virtual

reality and simulations, real-time subscrip-

tion news feeds, and process control appli-
cations.

Scalability ’

T120 is defined to be easily scalable from

simple PC—based architectures to complex

multi-processor environments character-

ized by their high performance. Resources

for T.120 applications are plentiful, with

practical limits imposed only by the con-

fines of the specific platform running the
software.

Co-existence with Other

Standards

T120 was designed to work alone or with-

in the larger context of other ITU stan—

dards, such as the H.32x family of video

conferencing standards. T120 also sup-

ports and cross—references other important
ITU standards. such as V.series modems.

FIGURE 1: MODEL or flu T.120 SERIES ARCHITECTURE

Applicatiorus)
(Using Stdi App. Protocols)

Muttrpomt Filo transfer 1.117

Still image Exchange 7.126
l'l’U-T Standard
Appl n P oco

Generic Application
Template (GAT) T.121
F

Application“)(Using both Standard and Non-standard Application Protonots)

Node Application“)
i Controller (Using Std. App. Prmocols)

l

Protocols

Generic Application

I Template (SAT) 7.121 i

1t

Generic Conference Control (GCC)
T124

Multipoint Communication Service (MCS)
T.1 22/125

Network-specific Transport Protocols
T123

A PRIMER ON THE T.120 STANDARD

0782

0783

Extendability

The T. 120 standard can be freely extended

to include a variety of new capabilities,

such as support for new transport stacks

(like ATM or Frame Relay). improved

security measures, and new application—

level protocols.

ARCHITECTURAL OVERVIEW

The T.120 architecture relies on a multi-

layered approach with defined protocols

and service definitions between layers.

Each layer presumes that all layers exist

below. Figure 1 provides a graphical repre-
sentation of the T.120 architecture.

The lower level layers (T.122, T.123,

T.124, and T125) specify an application-

independent mechanism for providing

multipoint data communication services

to any application that can use these facil-

ities. The upper level layers (T.126 and

T.127) define protocols for specific con-

ferencing applications, such as shared

whiteboarding and multipoint file trans—

fer. Applications using these standardized
protocols can co-exist in the same confer-

ence with applications using proprietary

protocols. In fact, a single application may
even use a mix of standardized and non-

standardized protocols.

A DataBeam Corporarion White Paper

COMPONENT OVERVIEW

The following overview describes the key
characteristics and concepts behind each

individual component of the T.120 stan-
dard. This overview starts at the bottom of

the T.120 stack and progresses upward.

Transport Stacks - T.123

T.120 applications expect the underlying

transport to provide reliable delivery of its

Protocol Data Units (PDUs) and to seg-

ment and sequence that data. T.123 speci—

fies transport profiles for each of the fol-

lowing:

' Public Switched Telephone

Networks (PSTN)

' lntegrated Switched Digital

Networks (ISDN)

' Circuit Switched Digital

Networks (CSDN)

° Packet Switched Digital

Networks (PSDN)

' TCP/IP

' Novell Netware lPX

(via reference profile)

As highlighted below in Figure 2, the

T.123 layer presents a uniform OSl trans-

port interface and services (X.214/X.224)

FIGURE 2: CROSS-SECTION or T.123 TRANSPORTS (BASIC MODE PROFILES)

Transport Layer

(Layer 4)

X224 \ 0

null + SCF

PSTN ISDN

* Subset oi 0.922

Multipoint Communication Service (T.122/T.125)

X224 \ 0 X224 \ 0

null + SCF

X224 \0
RFC 1006

T.123

Platinum-specific
marine. (Wham)

TCPllP

A PRIMER ON THE T.120 STANDARD

0783

0784

A DataBeam Corporation White Paper

to the MCS layer above. The T123 layer
includes built-in error correction facilities

so application developers do not have to

rely on special hardware facilities to per—
form this function.

In a given computing environment, a

transport stack typically plugs into a local

facility that provides an interface to the

specific transport connection. For exam-

ple, in the Windows environment,

DataBeam's transport stacks

plug into COMM.DRV for
modem communications.

WINSOCKDLL for TCP/IP

and UDP/IP communications,
and NWIPXSPX. DLL for

Novell IPX communications

support.

The Multicast Adaptation Protocol

(MAP) service layer is a new extension to

MCS. MAP manages unicast— and multi-

cast-based transports. MAP can be used

with any transport where multicast is

The MCU is a logical
construct whose role

may be served by a
node on a desktop

or by special-
purpose equipment
within the network.

available, such as IP networks. While mul-

ticast provides unreliable delivery, many

applications using T120 require reliable

services. Developers can incorporate a
variety of multicast error correction

schemes into MAP, thereby selecting the

scheme most closely aligned with their

application.

In 1996, the ITU is expected to adopt
extensions to support important new

transport facilities, such as

Asynchronous Transfer Mode

(ATM) and H.324 POTS

videophone. It is necessary to

note that developers can easily

produce a proprietary transport

stack (supporting, for example,

AppleTalk) that transparently

uses the services above T123. An impor-
tant function of MCUs or T120—enabled

bridges, routers, or gateways is to provide

transparent interworking across different

network boundaries.

FIGURE 3: EXAMPLES OF VALID MCS TOPOLOGIES

TOP PROVIDER

CASCADED MCU TOPOLOGY

TOP PROVIDER

F————‘L——1

TRADITIONAL STAR TOPOLOGY

A PRIMER ON THE T.120 STANDARD

TOP PROVIDER

k
NODE

DAISY-C HAIN TOPOLOGY

0784

0785

Multipoint Communication

Service (MCS) - T.122, T.125

T.122 defines the multipoint services

available to the developer, while T.125

specifies the data transmission protocol.

Together they form MCS, the multipoint

“engine” of the T.120 conference. MCS

relies on T123 to deliver the data. (Use of

MCS is entirely independent of the actual

T.123 transport stack(s) that is loaded.)

FIGURE 4: CHANNEL DIAGRAM

MCS is a powerful tool that can be used to

solve virtually any multipoint application

design requirement. MCS is an elegant

abstraction of a complex organism.

Learning to use MCS effectively is the key
to successfully developing real-time appli—
cations.

How MCS Works

In a conference. multiple endpoints (or

MCS nodes) are logically connected

together to form what T.120 refers to as a

domain. Domains generally equate to the

concept of a conference. An application
may actually be attached to

multiple domains simulta-

neously. For example. the

 chairperson of a large Channei
online conference may

simultaneously monitor

information being dis-

cussed among several activ-

ity groups.

1 Error Control Channels Top Standard

2 Annotations High . Uniform
3

i Bitmap Images Medium 1 Uniform

4 File Transfer Low , Standard

A DataBeam Corporation White Paper

In a T. 120 conference, nodes connect up—

ward to a Multipoint Control Unit

(MCU). The MCU model in T120 pro-
vides a reliable approach that works in

both public and private networks.

Multiple MCUs may be easily chained

together in a single domain. Figure 3 illus-

trates three potential topology structures.

Each domain has a single 75;) vaider or
MCU that houses the information base

critical to the conference. If the Top
Provider either fails or leaves a conference,
the conference is terminated. If a lower

level MCU (i.e., not the Top Provider)

fails, only the nodes on the tree below that

MCU are dropped from the conference.

Because all nodes contain MCS, they are

all potentially "MCUs."

One of the critical features of the T.120

approach is the ability to direct data. This

feature allows applications to communi-

cate efficiently. MCS applications direct
data within a domain via the use of chan-

nels. An application can choose to use

multiple channels simultaneously for

whatever purposes it needs (for example,

separating annotation and file transfer
operations). Application instances choose

to obtain information by subscribing to

whichever channel(s) contains the desired

data. These channel assignments can be

dynamically changed during the life of the

conference. Figure 4 presents an overview

of multiple channels in use within a
domain.

It is the application developers responsi-

bility to determine how to use channels

TABLE 1: CHANNEL SETUP EXAMPLE

 Type Priority Routing

A PRIMER ON THE T.120 STANDARD

0785

0786

A DataBeam Corporation White Paper

within an application. For example, an

application may send control information

along a single channel and application

data along a series of channels that may

vary depending upon the type of data

being sent. The application developer may

also take advantage of the MCS concept of
private channel: to direct data to a discrete

subset of a given conference.

Data may be sent with one of four priori-

ty levels. MCS applications may also spec-

ify that data is routed along the quickest

path of delivery using the standard send

command. If the application uses the uni-
form send command. it ensures that data

from multiple senders will arrive at all des—
tinations in the same order. Uniform data

always travels all the way up the tree to the

Top Provider. Table 1 provides an example

of how a document conferencing applica-

tion could set up its channels. Reliable or

unreliable data delivery is determined by

the application.

There are no constraints on the size of the

data sent from an application to MCS.

Segmentation of data is automatically per-

formed on behalf of the application.

However, after receiving the data it is the

application's responsibility to reassemble

the data by monitoring flags provided
when the data is delivered.

75km: are the last major facility provided

by MCS. Services are provided

to grab, pass, inhibit, release,’

and query tokens. Token

resources may be used as either

exclusive (i.e., locking) or non-
exclusive entities.

Tokens can be used by an appli-

cation in a number of ways. For example,

an application may specify that only the

holder of a specific token. such as the con-

ductor, may send information in the con—
l'erence.

A PRIMER ON THE T.120 STANDARD

One of GCC‘s most

important roles is to
maintain information
about the nodes and

applications that are
in a conference.

Another popular use of tokens is to coor-
dinate tasks within a domain. For exam-

ple, suppose a teacher wants to be sure

that every student in a distance learning

session answered a particular question

before displaying the answer. Each node in

the underlying application inhibits a spe—

cific token after receiving the request to
answer the question. The token is released

by each node when an answer is provided.

In the background, the teacher's applica-

tion continuously polls the state of the
token. When all nodes have released the

token, the application presents the teacher

with a visual cue that the class is ready for
the answer.

Generic Conference Control

(GCC)-t124

Generic Conference Control provides a
comprehensive set of facilities for estab-

lishing and managing the multipoint con-
ference. It is with GCC that we first see

features that are specific to the electronic
conference.

At the heart of GCC is an- important
information base about the state of the

various conferences 'it may be servicing.

One node, which may be the MCU itself,

serves as the Top Provider for GCC infor-

mation. Any actions or requests from

lower GCC nodes ultimately filter up to

this Top Provider.

Using mechanisms in GCC,

applications create conferences,

join conferences, and invite
others to conferences. As end-

points join and leave confer—
ences, the information base in

GCC is updated and can be

used to automatically notify all endpoints
when these actions occur. GCC also

knows who is the Top Provider for the
conference. However, GCC does not con—

tain detailed topology information about

the means by which nodes from lower
branches are connected to the conference.

7

0786

0787

A DataBeam Corporation White Paper

FIGURE 5: T.121 GENERIC APPLICATION TEMPLATE

! Node Controller
!l

Every application in a conference must

register its unique application key with

GCC. This enables any subsequent join—

ing nodes to find compatible applications.

Furthermore, GCC provides robust facili-

ties for applications to exchange capabili-

ties and arbitrate feature sets. In this way. _

applications from different vendors can

readily establish whether or not they can

interoperate and at what feature level. This

arbitration facility is the mechanism used

to ensure backward compatibility between

different versions of the same application.

GCC also provides conference security.

This allows applications to incorporate

password protection or "lock" facilities to

prevent uninvited users from joining a
conference.

Another key function of CCC is its abili—

ty to dynamically track MCS resources.

Since multiple applications can use MCS

at the same time, applications rely on

GCC to prevent conflicts for MCS
resources. such as channels and tokens.

This ensures that applications do not step

on each other by attaching to the same

channel or requesting a token already in

use by another application.

User ApplicatioMs)

Generic Application Template (T.121)

Application Resource
Manager (ARM)

Generic Conference Control (GCC)
T 124

Multipoint Communication Service (MCS)
T.122I125

Application Service
Element(s) (ASE)

Finally, GCC provides capabilities for sup—

porting the concept of conductorship in a

conference. GCC allows the application to

identify the conductor and a means in
which to transfer the conductors “baton.”

The developer is free to decide how to use

these conductorship facilities within the

application.

T.124 Revised

As part of the ongoing enhancement

process for the T.120 standards, the ITU

has completed a draft revision of T124.
The new version, called T124 Revised,

introduces a number of changes to

improve scalability. The most significant
changes address the need to distribute ros—

ter information to all nodes participating

in a conference, as well as improvements

in the efficiency of sending roster refresh

information (from the Top Provider) any

time a node joins or leaves a conference.

To improve the distribution of roster

information. the concept of Node

Categories was introduced. These cate—

gories provide a way for a T.121} node to

join or leave a conference without affect—

ing the roster information that was dis-

tributed throughout a conference. In addi-

A PRIMER ON THE T.120 STANDARD

0787

0788

A DataBeam Corporation White Paper

FIGURE 6: T.126 WORKSPACE DIAGRAM

tion, the Full Roster Refresh, which was

previously sent any time a new node

joined a conference, was eliminated by

sending out roster details from the Top

Provder. These changes will not affect

backward compatibility to earlier revisions

of T.124. This revision will go to the ITU
for Decision in March of 1998.

Generic Application Template

(GAJ)-1121

1:121 provides a template for 11120

resource management that developers

should use as a guide for building applica-

tion protocols. T.121 is mandatory for

standardized application protocols and is

highly recommended for non-standard

application protocols. The template

ensures consistency and reduces the

potential for unforeseen interaction

between different protocol implementa-
tions.

A PRIMER ON THE T.120 STANDARD

Within the T121 model, CAT defines a

generic Application Resource Manager

(ARM). This entity manages CCC and

MCS resources on behalf of the applica-

tion protocol—specific functionality

defined as an Application Service Element

(ASE). Figure 5 demonstrates the CAT
model within the T120 architecture.

Simply put, CAT provides a consistent

model for managing T.120 resources

required by the application to which the

developer adds application-specific func—

tionality.

CAT'S functionality is considered to be

generic and common to all application

protocols. CAT'S services include

enrolling the application in CCC and

attaching to MCS domains. CAT also

manages channels. tokens, and capabilities

on behalf of the application. On a broad-

er scale, CAT responds to CCC indica—

9

0788

0789

A DataBeam Corporation White Paper

FIGURE 7: T.127 FILE TRANSFER MODEL

Cunenl transmitter
'souldng files A and B

| Dana Channels l. L—_— ._.....:,

Control Channel

tions and can invoke peer applications on
other nodes in the conference.

Still Image Exchange and

Annotation (SI) - T.126

T.126 defines a protocol for viewing and

annotating still images transmitted

between two or more applications. This

capability is often referred to as document

conferencing or shared whiteboarding.

An important benefit of T.126 is that it

readily shares visual information between

applications that are running on dramati-

cally different platforms. For example, a

Windows-based desktop application could

easily interoperate with a collaboration

program running on a PowerMac.

Similarly, a group-oriented conferencing

system, without a PC-style interface.
could share data with multiple users run-

ning common PC desktop software.

As Figure 6 illustrates, T.126 presents the

concept of shared virtual workspace: that

are manipulated by the endpoint applica-

tions. Each workspace may contain a col-

lection of objects that include bitmap

images and annotation primitives, such as

rectangles and freehand lines. Bitmaps
typically originate from application infor-

mation. such as a word processing docu-

ment or a presentation slide. Because of

their size. bitmaps are often compressed to

improve performance over lower-speed
communication links.

T.126 is designed to provide a minimum

set of capabilities required to share infor—

mation between disparate applications.

BecauseTlZG is simply a protocol, it does

not provide any of the API-level structures

that allow application developers to easily

incorporate shared whiteboarding into an

application. These types of facilities can

only be found in toolkit—level implemen-

tations of the standard (such as
DataBeam's Shared Whiteboard

Application Toolkit, known as SWAT).

Multipoint Binary File Transfer
-T.127

T. 1 27 specifies a means for applications to

transmit files between multiple endpoints
in a conference. Files can be transferred to

all participants in the conference or to a

specified subset of the conference.

Multiple file transfer operations may
occur simultaneously in any given confer-

ence and developers can specify priority

levels for the file delivery. Finally, T127

provides options for compressing files

before delivering the data. Figure 7 dis-

10 A PRIMER ON THE T.120 STANDARD

0789

0790

A DataBeam Corporation White Paper

FIGURE 8: NETWORK-LEVEL INTEROPERABILITY DIAGRAM

PROPRIETARY
DATA CONFERENCING

APPLICATION

G eneric
Conference

Control

MCS

Netwak
aspects

MULTIPOINT
CONTROL UNIT

PROPRIETARY
DATA CONFERENCING

APPLICATION

T.122!Tl125

Another Terminal or MCU

plays a view of conference-wide and indi-
vidual file transfers.

Node Controller

The Node Controller manages defined

GCC Service Access Points (SAPS). This

provides the node flexibility in responding
to CCC events. Most of these CCC events

relate to establishing conferences, adding

or removing nodes from a conference, and

breaking down and distributing informa-

tion. The Node Controller's primary

responsibility is to translate these events

and respond appropriately.

Some GCC events can be handled auto-

matically; for example, when a remote

party joins a conference, each local Node

Controller can post a simple message

informing the local ’user that nBill Smith

has joined the conference." Other events

may require user intervention; for exam-

ple, when a remote party issues an invita—

tion to join a conference. the local Node

Controller posts a dialog box stating that

"Mary Jones has invited you to the Design

Review conference. <Accept> <Decline>."

Node controllers can be MCU-based, ter-

minal—based, or dual-purpose. DataBeam's

application. FarSite, for example, contains

a dual—purpose Node Controller. The

range of functionality found within a

Node Controller can vary dramatically by
implementation.

Only one Node Controller can exist on an

active T. l 20 endpoint. Therefore, if multi-

ple applications need to simultaneously

use 'T.120 services, the Node Controller

needs to be accessible to each application.
The local interface to the Node Controller

is application— and vendor-specific and is
not detailed in the T120 documentation.

INTEROPERABILITY

Buyers overwhelmingly rate interoperabil-

ity as the number one purchase criteria in

their evaluation of teleconferencing prod-

ucts. For most end users. interoperability

translates to nmy application can talk to

your application"—regardless of which

vendor supplied the product or on what

platform it runs. When examining the

T120 standard closely. buyers can see that

it provides for two levels of interoperabili—

ty: application-level interoperability and

network-level interoperability.

Network-level Interoperability

Network—level interoperability means that

a given product can interwork with like

products through the infrastructure of

A PRIMER ON THE 1120 STANDARD 11

0790

0791

A DataBeam Corporation White Paper

FIGURE 9: APPLICATION-LEVEL INTEROPERABILITY DIAGRAM

DATABEAM'S OTHER STANDARDS-BASED
STANDARDS-BASED DATA CONFERENCING

APPLICATION APPUCATION

MULTIPOINT
CONTROL

UNIT
Generic

Conference
Contml

MCS

Natwu'k
aspects

network products and services that sup-

port T.120. For example, T.120-based

conferencing bridges (MCUS) that can
support hundreds of simultaneous users

are now being developed. If an application

supports only the lower layers of T.120,
customers can use these MCUS to host a

multipoint conference only if everyone in

the conference is using the exact same

product. Figure 8 displays network inter-

operability through a conference of like

products.

Application-level

Interoperability

The upper levels of T.120 specify proto-

cols for common conferencing applica-

tions, such as shared whiteboarding and

binary file transfer. Applications support-

‘ing these protocols can interoperate with

any other application that provides similar

support, regardless of the vendor or plat-

form used. For example, through T126.

users of DataBeam's FarSite application

will be able to share and mark up docu-

ments with users of group conferencing

systems. This interoperability will exist in
simple point-to-point conferences as well

as large multipoint conferences using a

conference bridge. Figure 9 represents

application—level interoperability between

two standards-based applications connect—
ed in a conference.

In the short-term, network-level interop-

erability will be the most common form of

T.120 support found in conferencing

applications. This is largely due to the fact

that the lower-level T.120 layers were rati-
fied by the ITU more than a year in

advance of the application-level layers.
However, end users will not be satisfied

with network interoperability alone. For

the market to grow, vendors will have to

deliver the same application-level interop-

erability (or endpoint interoperability)
that customers enjoy today with fax

machines and telephones.

RATIFICATION OF THE T.120

AND FUTURE T.130
STANDARDS

The Recommendations for the core

multipoint communications infrastruc-

ture components (T122, T123. T.124

and T.125) were ratified by the ITU
between March of 1993 and March of

1995. The first of the application stan-

dards (T126 and T127) was approved in

12 A PRIMER ON THE T.120 STANDARD

0791

0792

A DataBeam Corporation White Paper

March of 1995. An overview of the TIZO

series was approved in February of 1996 as

Recommendation TIZO. T.121 (CAT)

was also approved at that time. Stable
drafts of these recommendations existed

for some time prior to the ratification,

thereby providing a means for DataBeam

to actively develop products in parallel to
the standardization effort.

The existing ratified standards are being

actively discussed for possible amend-

ments and extensions. This commonly

occurs when implementation and interop-

erability issues arise.

T.130 Audio-visual Control For

Multimedia Conferencing

The T130 series of recommendations

define an architecture, a management and

control protocol, and a set of services

which together make up an Audio-Visual

Control system (AVC). This system sup-
ports the use of real-time streams and ser-

vices in a multimedia conferencing envi—

ronment. The protocol and services sec-
tion, outlined in T132, consists of two

parts: management and control. Together,

they allow Network Elements. such as the

traditional MCU, Gateway, or Conference

Server, to provide T132 audio and video

services to their endpoints. Some of the
services include Stream Identification,

On—Air Identification. Video Switching,
Audio Mixing. Remote Device Control,
and Continuous Presence.

The T130 series is built upon existing

lTU-T conferencing recommendations
such as the H.320 audio-visual conferenc-

ing series and the TIZO series for

multipoint data conferencing. The T.130

series is compatible with systems, such as
H.323, in which audio and video are

FIGURE 10: AUDIO-VISUAL CONTROL ARCHITECTURE

User Applicnions

Md. emu"
Nomi-mudmil

lTU-T Sandi"! Application Waco. Emu...Protocol Emifiu

‘-

' Gun-r6: Conny-nuControlAudio Via-o
Sin-Iris) Strum")

A PRIMER ON THE T.120 STANDARD

1.126 GCC

Mmipo'm W600 amic-
TJIZITJZS (HOS)

Newark-specific Transport
Protocol; (11123)

on.
13

0792

0793

transmitted independently Of T. 120, as

well as systems which are capable of trans-

mitting multiple media types within a

common multiplex.

Unlike other standardized methods for

managing real—time streams within a con-

ference, T130 provides some unique capa-
bilities:

' Contains a network— and platform-

independent control protocol for

managing real—time streams

' Coordinates operations across
network boundaries

° Processes and distributes media
streams within a conference

environment

' Delivers of Quality of Service (Q03)
to multimediacommunications

applications

' Provides distributed conference

management

' Leverages the functionality of existing

multimedia protocols

T.130 can be used in any conferencing
scenario where there is a need for

multipoint audio or video. T.130 relies

upon the services of GCC and MCS to
transmit control data. but the audio and

video streams are transported in indepen-

dent logical channels due to the transmis—

sion requirements of real-time data flows.

(See Figure 10).

11.130 and T.132 were determined in

March of 1997 and should be ratified in

January of 1998. T.131. which defines

network-specific mappings to allow AVC

to communicate with the underlying
Multimedia Control Protocol, such as

H.245, should be determined in the Fall
of 1997.

14

A DataBeam Corporation White Paper

VENDOR COMMUNITY

SUPPORT FOR T.120

More than 100 multinational companies

have pledged their support for the T.120

standard and more are being added to this

list every week. Public supporters OfT.120
include international market leaders. such

as Apple, AT&T, British Telecom, Cisco

Systems, Deutsche Telecom. IBM, Intel,
MCI, Microsoft, Motorola, PictureTel,
and DataBeam.

Most supporters of T.120 are also mem—
bers of the International Multimedia

Teleconferencing Consortium (IMTC).

The goals of the IMTC are to promote the

awareness and adoption of ITU telecon-

ferencing standards, including T.120 and

H.32x. The IMTC provides a forum for

interoperability testing and helps to define

Application Programming Interfaces

(APIs). DataBeam's co-founder and chief

technical officer, C. J. "Neil" Starkey,

serves as the president of the IMTC.

Previously, Starkey served for six years as

chairman of the ITU study group that
defined T.120.

NEw MARKETS FOR T.1 20

DEPLOYMENT

The teleconferencing community is the

first market segment to adopt the T.120

standard. Because the technology is broad

in scope, it can be effectively used by a

number of other application software ven-

dors and equipment providers.

The computing paradigm is rapidly

extending past today's personal productiv-

ity model. Over the next two years, we will

witness the development of a new genera-

tion of application software that incorpo-

rates multi-party collaboration.

Independent Software Vendors (ISVs)

have begun to adopt T.120 as the means in
which to incorporate real-time collabora-

A PRIMER ON THE T.120 STANDARD

0793

0794

A DataBeam Corporation White Paper

tion capabilities into common desktop

applications, such as word processing and

presentation graphics. Engineering prod-

ucts, such as Computer Aided Design

(CAD) software, are also on the migration

path to T.120 technology. Other ISVs

with a strong interest in T.120 include

developers of fax, remote control, docu-

ment imaging, and "overtime" collabora-

tion products, such as Lotus Notes.

With T.120 technology in the hands of

operating system providers and horizontal

application vendors, network equipment

providers are beginning to take notice. For

vendors of PBXs, network bridges, hubs,

routers and switches, T.120 represents an

important opportunity to provide value-

added capabilities within their network

products. In the short-term, these features

will represent an opportunity for compet-

itive advantage. However, within the next

year, T.120 support will be a required fea—
ture.

Finally, we can envision a whole range of

T.120 applications in the areas of interac-

tive video, network gaming, and simula—
tions. From Nintendo to DOOM to set—

top boxes, the need for bidirectional

multipoint data communications is acute.

The ability to use a common set of APIs

and protocols that are broadly supported

from the desktop through the network

will drive the adoption of T.120 into these

important emerging markets.

IMTC, ITU, AND T.120

Standards have played an important part

in the establishment and growth of several
consumer and telecommunications mar-

kets. By creating a basic commonality,

standards ensure compatibility among

products from different manufacturers.

This encourages companies to produce

varying solutions and encourages end

users to purchase the solutions without

fear of obsolescence or incompatibility.

A PRIMER ON THE T.120 STANDARD

The work of both the IMTC and the ITU

represents organized efforts to promote a

basic connectivity protocol that will

encourage the growth of the multimedia
telecommunications market. The

Standards First” initiative, which is sup-

ported by many industry leaders, requires

a minimum of H.320 and T.120 compli-

ance, which is enough to establish this

basic connectivityprotocol. Manufacturers

are then able to build on the basic compli-

ance by adding features to their products,

creating Standards Plus equipment.

With Standards First, the IMTC has the

end users' interests in mind. By ensuring

interoperability among equipment from

competing manufacturers, Standards First
also ensures that a customer's initial

investment is protected and future system

upgrades are possible. The IMTC is help-

ing to educate the industry and the public

about the importance, function, and sta-

tus of standards. In addition, the organiza—

tion provides a coordination point for

industry leaders to communicate their

interests to the ITU-T. As the multipoint

multimedia teleconferencing industry

continues its rapid growth. the develop-

ment and implementation of standards for

interoperability, and the work of the

IMTC, will be instrumental in securing
the market's future. '

IMPLEMENTING T.120

With the T.120 set of standards in place,

third-party developers are faced with yet

another challenge— implementation.

DataBeam's Collaborative Computing

Toolkit Series (CCTS“') has jump-started

the conferencing industry by providing
the first standards-based toolkits for devel—

oping multipoint, data-sharing applica-

tions. These toolkits encapsulate the com-

plex system—wide, multipoint communica—

tions stacks that allow application devel-

opers to rapidly embed sophisticated real-

time, data-sharing capabilities into new or

15

0794

0795

A DalaBeam Corporation White Paper

existing products. Simply stated, CCTS

provides a seamless solution for parties

developing standards-based communica—
tion solutions.

As a result, DataBeam envisions an accel-

eration in the development of software

applications and network infrastructure

products such as, PBXs, bridges, routers,
network switches, and LAN servers. that

incorporate T.120. In addition, the indus-

try will grow well beyond today's existing
paradigms and the world will begin to see

a whole range of new products and ser-

vices that incorporate T.120. Users wait-
ing for the standards dust to settle can

now feel confident that with the support
of vendors like Microsoft, DataBeam's

T.120-based Collaborative Computing
Toolkit Series is the best solution for

industry-wide interoperability.

W

16 A PRIMER ON THE T.120 STANDARD

0795

0796

T.120 INFORMATION

SOURCES

DataBeam Corporation
3191 Nicholasville Road

Lexington. Kentucky 40503
USA

Phone: (606) 245-3500

Fax: (606) 245—3528
E-Mail: info@databeam.com

Web Page: http://www.databeam.com

International Telecommunications
Union

Sales Service

Place des Nations

CPI—1211 Genéve 20

Switzerland

Phone: +41 22 730 6141

Fax: +41 22 730 5194

E-Mail: sales@itu.ch

Web Page: http://www.itu.ch

International Multimedia

Teleconferencing Consortium, Inc.

111 Deerwood Road, Suite 372

San Ramon, California 94583
USA

Phone: (510) 743-4455

Fax: (510) 743-9011
E-Mail: dkamlani@imtc.fabrik.com

Web Page: http://www.imtc.org/imtc @ DataBeam-
Copyright ©1995, 1996, 1997 DataBeam Corporation.

All Rights Reserved. Printed in the USA.

Updated May 14,1997.

This document may be reproduced.
provided such reproduction is performed in its

complete. unaltered form,

FarSite. CCTS, and DataBeam are
registered trademarks of DataBeam Corporation. All

other product and brand names are trademarks or
registered trademarks of their respective holders.

0796

0797

guns...«m5.0:o.m.o>3233:cum.EmEsoouwt....32“mam—.2m:o.3?5:900:05:o.988:ucw6.2.8:.9..2305.8232.9.5.5mm;.592.mEh

353»m..52.”..owmg--moo~a~:o

mEEmw.ummmmbmguw.8.02.2.

linge...Eamflfiwaémmflammfidmm:99?n:.w.

50.5.0mwmmmm6u<ucmQm<.m.Emwxm‘wEmzEmEod9:.M...

8:2???6525.3can...u.c....ua..d:£.m,...mu.H..o:o_.:_o>m«2...,_‘N.«111352:_05.25$thelm355.~
35:8082:32R.fimm"..._....@,§axafi.05.mo.m..oomm<E:3.33..0>30353:.w...“.252822;Eth.o53.55.2

NOON.mNBanana

Ommm

20.33.9032..v

83.3.322.x25mammfiuu.5.20ww‘_‘.....mczxcd‘.m¢d$0583.850.w.%._..,....u...¢colzmguian....mEEdflwaafidmxooim.

 I.2023.33“.
:2...

 ...twcocmu..n=m\bm5..\Eoo....~..>»33\\H.§.

0797

0798

000..0.:.0.00:0.000.00.000000...00..82900003.00.00:0.0.00E00.0.>0000.002.Hmz<mm<0....00.300.0:..00..000.0....00:00:22.30.30000.30:0.0.5.0...0.80.0.0.0.0080:00.0...0>0mkmz<am<.0:.m..o0.:0an>0000.3.0.05:00:080000:0Km;>0.mj.0.:0:..00000.0000000hmz<am<00..mwmw.00:000.>00000:.30.c..>><00:.000:06:.003hwz<mm<0:..0000:.0...00.do?.0080.00m:..Azmm.000.3020:0x0:0.0m._0m0.{0.5.0:9.02.2.0.30000>030“.0:0090000..00....000000.030201$>0c0m<0.00.0.000.0003.000c0>0<0...08...00E000D:..wj00.:.00:000.0000.000:0.-000.00::00.0.:.0..:0E..00x0000:0.500.0000.00.0.c0Et0000.m.:000:000000.0....E000E0......0.83.0:0.00.00....00000000.c...:00.30:000...:.0:0..0.00~.m0:.:0E._.09.::00:0m:.x0_a.._=E.00..m..0.0000.c..300.00:.0:0.>.0:.0.00.02000000..0030000.0000.:0..00_::EE8.050:.:0...000:_00.0.00...0.:..0.-.0..:.000.9.00:..0:.E._0_>_.:00:0000:.00.0.0000.00:00800=0.00.0000:9000000.0800.0.5.0:00.00.35.0060:.m0.>0n.0:0:930.m:.0.000<.00...0o000.003.00.m._::0.0000..0..30006.0.00.00:600:0.2...00.:.0o.>.0m.030000..0.0:03.:00:0000:_:_000..0..E.m000.000000003000.000000.0“.._<.m.:00..0..800.0:.0.0.5.0:0.000.03.0.-0:0-0.0.0..:0.05000:00.0000.50000020.00.00000m0....0.:0.0m.000New.:_000.3000.{0.5.0:.000:E06505209...:.0:000.9.02.30..:0..0A00....000:000000b0>000.50.000005.00.8000:0.....0.008:0...0.0.0::.30.00m.0...0..0.00.000.0000030.00..00.0:0003.00:.0.00:03.0:0000020.0;..o30.00000.0...60.08.30..:0..0.2080:S0000..030.00000.{0.5.0:0:0..00.::E:.000_0.:0EE0000E0:.>000.000.0.00000.00:008.0.06.0000.580000.008:0..00.::EE000.09:80:....003.0000.0...0.5...“.300.35050:0.EEO....0co..:_o>m05h.vdCam.00.00080000.5.00.3.005.0:0.050...0..0v.>0.0502:0....000.0.2005“0.0..03>0500.0%:00.3.0:0.002$233808...2.00.200.3...0:9§0:0$200.2.o.525%ES....020f05.000“.05259...00000.0....00__00x00.5.000.0.00m...0.00.0000..Emfic.0:002.0.0.2....0:0...000.ou50.0.00.....0080000:00.0:2.02.0000.0....00_m:..s..0.:.20......00.00.:0.000.8.0.....00...:0.0...00.0.0502:0....0:00.80.0.0EEO»00.0.2.52052:.o...0:00.0.0»20.055.0
.:0..0E.o.:.02.0.000.0:..0.000.300.050.300.0.90.0.0._.:.009.0.0.00:000:....000000.000...m.._~9:00:000:008.0.5.0.0.;:00.000080:00.......nEnGH0:0.0:.0.:.00..0.s0.>.0>0000.0000030...080:.0...;.000002000.0..E._..00.000000.0>0000.0.0.00000000000.0:.00:00.000.E0820.0.00.000.300.00.00.00000:0.60.:000.00.0...0.00...0.0>0m.00.00.:.0.00_.0>000.000002.....00.02.000>h:0>00:0.00050000.0.00.2000.0:.0.:.0:0EEOH.0.0005:.c0oc.:m.000.:00000000::.0.30.00.0..0:900:0.2200:00:20.2.00..0.2:00:0.00.0.9.00.09:8.0.0080:00:0...0:00.00_.0>03:00.0.50:...0:0.0.00.m0...00:00.00.0...9.0:0.0.00....0...00..0..60.:.0:0.0:.0.:_00.9:0:0.00.0000.0.00E::05000.05:<0050:0000..F

w.w..0...u.u,¢.,wum£m¢".0.m:0_um_>0._UcmmE>c0~U<um0.0.3.100,00..0E.m.:._.00.0.00.00.80.00.1000.000.00.01....md N.008-0802..o.$22.8.320.00.00.58......>§E\é:_
0798

0799

0:0000::.000.:05000:3.03:.0:50:0:....05250.3300:.50.0:0.0020:.00300:0.000.05.3000:5:0.00.000.:.
0:003:00.0.82:0:0:.:000

0.000.00200:50:.23000000:0.5005050:0:05.000_0:.:0>0200.2000:08.00:.05250.808500000.>0:00:00.05000.0900.250...hwznb0:02..0:0..0::0.:.050.0:60805500000.50....00:00:300E:o.00:509.0.0.0.:.0.0:.2.00.:_.0:0030:00-00:0:00.8000000.20203.88000:0.0:00:0.0:..05250:..000.....:00000:..0:0.30:0.30050:...:50:0:02.0:003_0_0:0EEoo0:0.000.>:00:05.05250:0020030500:05.00.00::000:50.00.00.0.000.5..0::0.:_0:.05.5805580.050020000005500:;0:0:..:0._..000:..0:0_.00_:3::E800000-:9:0:005505020030.0000:00:.5:0:0000:.0050:3.0:.0.0.00:000.000.0500.:02..3:00:03.0:050:3.0:005::3:.0000503:0:.50:0.E02..0:0.0...0:.000.000“.020:..80.:_
00:0000:3.-0mz

0:00:0..3...05.0:0_.00300:0.0.5008:00:80.000.003900..000..20039000.200.0::0.:_.0:0.00:.0:0:E3:0000:3.00.00020:..0E_..000.:000.505:30.00..00:00:1:00.0:.005202.3.0.:0.0:08.00:5.20020:..0:0...0:0:.0:.0503:00300:00020020:.0500:05:0.0.505000:00:5:05.0:0.20.:3008:0.:800500590.5:0.023.05000.20000:03.02000:0>0<.05.0:0:292:09:55..020:02:...0:..00000030000:0.83.0:.05590.0.0:00.:0_s.0.:05.0:000:8005:80:000:30003:003000:50.:0:s.0:..0000:0E-2.0:0.000.0:0..0o.:0_.0:0_s_.000.500.5..002).vvm.F.r:0.0000:00320.0.050000:;0:000.5.00:...00000.:0E002.059:05.20020:..
..:0_.00::00:0.:.

080.05:0000.8:09.:.0.0000.0.5::0:.:._:,>.2300050825:0.00:0.06000:50:00...0:20:5.000.0:0.._3E200:0.0:0:508:00:000hwzufiz2:00:030:..<..0::0.:_0:.00>000.30:0.0:5.0:.0:09.00:0:.058000:2.03.:0>000:03.0:.0:0_00:002-:0:0:0000:3.-002:.0:503.0:2.>..00::0005500:026:00.0035.:00$20020:....0030.205509%:0.0...0:.00:5:0020:1:005.0030:000030.0.:00:00<..0:.0580550.0E0.0>0030.205:0.Em.:0:00E:0..00::00:0.5:000.0:00:03.0::0:.0:0.0:08.00:000000:0.52.059500:5#020020:.00::300.83.0:0.::..0202.:0:0000~...0.:0:000E.<:0.:0.:0005:020:.0:00:0.:000308080030.0:0.00:000:3.-002:30.60:50:050.0.53.0:0:00:00:0.__3:Emz.:0..00:30...0806008:020:..000..:.
.X.ZD

Aco..3:.:.w.00:05.00>0.0v_:0m.00mm.».:0..0.:0E0.0:.:_X.ZD00.50200.020:02::0:.:0..000:0:0:00.:3E:.:000:.5:0.03.0:.0..5:50:00.:.02.0.30000:.5.000:003:030000.0:00:.0:.r0:02:020.0000:0.000:..0:0005000:0:00...0:.20....52:000.000300:5.Hmz._.>.00:00.0500:.00:00.5000000:0.:0E00.0>00::0:0000:.00::00:0.:.0.000300:5sz<0m<00:00._..0..:0:00E000:0.0.:0:00E000:5.0.5.:0000:5Hmz<0m<0:..000.:_
...m_Z<n.m<mw.....0

00:0.:00E._0:0000000:.050:0::0:0:.:3..0:0_.00_:3EEoo50:08.:0.0:30.89900:00:0:.0030.30:5050.000.305850:..0=0.0...00.00:0E0000:..000.:..809:0:E000o500000.0:00:5:0_.00...0000.o>0_:0.m:0.0:0>0.0:.65.6005.E0:.0.00:0000:0..00...00::.0:0>0000:0>0:£0::030:._0.80.0:80.0005:0...:2.0:0:5>000.003:0850050:0.0:.0.0:0005£0:.00:0.0:0>.05960:50.000..00205.00.00::0.0:2.03030.08:00:300:00.80.90.05:00:0000:0.00.0:0.0:2.03.005:;0:30.82900:.03:...000.900.0500002.0:0_.0:3.00:0.0.>:02.050.:00:0:50.0:0005:0...8290.0::0.:.0:0.005..8290.0:.:00:0_00.r:0:0:h0:.:0030000:sz<0m<0:..30:030::.00.:0E0_0E.0:0000009000:30.000.0:00:0..00_:3E::00.00:30.03:0:0:00:.30:0.000.:..000.0...0:.0.82:0:053900:.:..:s03050000..0030008.0:0.00>0:0002.:0>0:so:.0E::0>O.002..8990.0:.:00€03.020:.00:0000:55.24.00...0:.5000300:.:..89900:0..00_:3EEoo.00:-0.-.00:.0550:.:00.200mN.x0..5:0m.0.:0002.0:0..0:0.05.0:.E0c0::03E:0..0.000.5.00.>:000.0000:0..30-.00.000.0.0:0E..:000..0:0.0:..:0.00.2mm.0000:3080000.:0.5..0:00:0.0..0.:5.mm.x:0..00:0EE000m2.5.002085..5-3....2050:00:03.0:005.35.90000:00:0035003.0:00000:8230.....0:05.08.33:55:58.......>§><:0§
0799

0800

Hmz<0m<0:..0.00....000:0.£5050:.m:..:0:.:0000005{0.5.0:.0.0:E::000.5.0-0.Sam.0:20050.300.020000505500.0.00500.0003....m.z<0m<00.00.0m...::0v.0:00.895.2..:.008.005.58000050:0..0:.0.:.0:.0.00>0E0...0..0:002.0000000.0.0.0:.m:..:0.0..0E00:00:05050.....mhmz<0m<.0:.m..00:..0.05505..0.005.0.0>00.00.0:..2:00:00..0:005:050205.o.:0.>.0>000.0:.m:..::o00..050.:.0:..0500.050000.._0.85.0:ooodom:0:.0.2:m:..00::00.0.:...:0:-._0:5.0>0.:0E:00..0{0.5.0:50:030:0.00.0.0.09.50...0..050.:.0:....000.5.0::0...5:0.00:0.:0:000.2......on2.00:00:052:.0:..E0:.0.050.0094.0>.:m£05.00.0525_0:::0-.E00000.::...0.00.0.0~.>>0:05.02.Gmw......20mm.252.3555.50.0.0522::_02:05:800.5a..0:0So.:0020:5.505.050.:.2.5030..:0:00x02.0.0...000:0..00x000..{0.5.0:0:...0:..0..<0me:.02.0.0.0:5::.0000505.50000.000.0hm20mz0.:.000.c.5%003..05.0:0009.80.85..0...o.20.00:0000.c.0009.so.5.;8.5.0Ez<0m<0.:
526.0.0525.00.000.50:000:.0.50500.00..0.5...:00:0>0:0.8220.00.5005...02.0.00.00.05280.080.:0:.0.:000.00..mo.0....:002:600>0:0.020082000:.05.00“mPOZ.2:050:30...>.:0-_mo..0:.00.00:00:00:20.00.850.:0:00.w00.0...00.00090:00.:.C.w.z.5020::000.0:000.00:0.w.0.22:0....82020:.5.0...800.0.3050.>.0>_.00000.202.0..820.0.050.£05.02000.:0..00::000:.0:0.000.0000.0.8220:000:0.H.000:.2.0.8.000.0.00220.002:.0.0.950.0000.000.200.0.0:000..5:0...0000.5.5:.0:.0.00:0:..:0:00:0:205002.550.02.0.000255500.000:0052:.0:.00:0005.000....05500:00P.0>00.0.0000.0:0..00..000.wO.052.00.05.00wDOm..0000:..0.:0:0.95.00.0.800.000:000.5.02000.:.0000.0>0000.53000..E95235..:0E0o.0>0oOm.0:...0..0..00.0:.0.00:0..0>.00:o.0.0005:00000505220:000:00...0>.000:.:.50.00000x0.205.050.....o0000.:00:..0:0...0.50.0020.0:0..00::00.0.:.050.05:000.00.0:.5:05.000:50:.:.05000:0:00.:0..:.5>0500.005.00.0:000.._.00.0.520:00.0.mO6......3.2.0.00500..0000m:.:::.0:00:0:00:00:0:0.:_0>0_.0:0>>.05.?0:0.0.:00.00.000:0..000.0>>..000.00:.:00:0000:402.0002200...0.0:E:::0:00:.20:0_.0:.0005>..::EEoo:0000.....000.00:.:m:0:..0..:0E:0..>:0:000:0:..:000500:00:0505.000::0500.0>000:00:.505.0:.0.:.0:.0000030.0.0...m:..:08:5580:00:.0.:0E00.0>000.00:0...0_:.2.000000020....0:0050:00..0:0.c0550>om.0.000.0:.0.0.0020:00.0.300..000:00n.0.0>0..2:05.0...0.80.0.0.0.000:.00:...00.0.000.2:20.00.:0550>00.wj0:..>_.:0:c00::w.80000:00:0.:250:00».o00:0:0000..0:m:<5:0.80.0.0.wO00:0.0>0:0.:0506:00.00:0..00_::EEoo.0.:0..:00=0.0:.0200:05Don.0:....50500.00...00.0:0005.:00.0508:00.0.000:005.2.0.00.0.50.0:02.5..:05.:0:0...00:.0:0..:.005.0.0.020502:.:00000503.50:0050.00:0.80.0.0.mO.00000.000:0.:0E:.0>00.050:..o.0050:0Don.0:.0:55:00....000.:.

.000.5:000:0m:.0::.
0.:H..:0.0...:0-..002.0.0.055805000:0.0505.000200..00.00..02.:0>.m0.0.5000.000:2-002.:0...000:_..050.:.0:..0.0.80.0.0m:..:0.0.0:0000050:02.00...0..m..m......mmm.0...:.m.00.c..035.00.000.0.0020000.0035.0.0.058005..000:3.mmmm:0-00.000.0.0000:0mm?:_00:20:.00.50.5.5.0:0.:F.05.5:00.0.000.0.0.:00000::.-0mz0:000.420:.m:..00::00.0.:_..0.5.0:0.005002350200002000....000020.35.050:0..m

.:0_.0.000

:.00.00.000:2“52:0:.0.0>0060.0.:2m:.:00>>0:0.000_0:0.0:0m...0>502000030.0062:0:050.m:.0::.5.:00.0mz0:.:m:0:._<..0|0:1:18fl.:.0.:0.500m..0:0_>_0:.20:54000.50.29.00000...0005.02..
 v008-0803.o.....m=o..8..:=&be£<58..2.33359...

0800

0801

.mmmv

00:0>000....00E000.000000000.0000000.0000008.050.00.0m:00..0.ooom.00E0.00w0.0000008003.00..080..mz.00...0000..00.....00.00.0500.00.000000.0.000.000.0.00.0.0000.00:.00..0000.00.000000..o..0.0..0.0.E000.0000.0.00.0.=05.wz.00.000.000003...000..000.000.00.08000000..0.00000060.00.0:.0.00.000000;00.80.000.00...000.0050:0300:....0.0>000000008003000000._..0<0..0000..00..0000._wz.00.0E00:00.000_.00..90.E00.00..0.5000.0000000050.0200.88000000H.0200..0._0000000.2.0.0.00.00.0.000A.wz.400.2.0.00:sawm‘afiwz.80.0.m0...0.w.00.0.0.00.0.0000000.00.00.0.800:00.0.0.000.0.2.0.0.00H.00.0.0.00.0000000.000n:00000.000.00000.60000..00.00000.0000.00...0.000..520.80.0.608020.00.0000..0.00E0m0000.00000..00.0.000.00300..0.0.0.000000.00.00030.2.0.0.000.00.0E0040.3-00:m0__0000000.500.0000.000.20.......00E000000..03000.00_.0.0>00006.2.0.5...0.00Q..00..0E.0.0_0.0.5.02.00.0.0.00..000._..0<_..0:5000.0000.0.000:00.>000090000.000E000.0Eoo.A42$...»Sufimfilfldqauazfim...mwwfl..mfim.0.00.>0000000....0000>_.00..0.0.00003.00.00000.0.9000”:=0000.00000000.0000.00...0800.0000000002.00.0.00500200000.00.0000:.0.00.00_0>0.-00.000.0090000.0.02.0m0.0.00.00.00.0.0.0000:0.000.00.0.0.00.2.00.00000000>0.0>0..00000.00.0.00.00000.0.000.000.0.000.00.0.0..0.00.00900000.00000.00.000..0.000.0..00.0.0.00..000..0..0.0.0.0000.0.00.0.0.0.0000.0009.00._<
.00....000:0.02:020.00.00.00

.000..0N.0090.00E0E.0me00.>000.0....00.000000000000.00...0.3.50000.02000.00.0.0..000?00.30096.0.0.0m.000.00.000m0_0.00E0.0>om000.0300>00E900000.00.Amhmmo.0.00000000003.50090.5..0.:0Eoo.0.008000.0.0.00.0.00000.0..0300H..>.0.:w.0m00‘0‘000.m.0:0.0m....000_00.8.9.9.01”.00...0.00.0.0..000600.0.0.050.0.000.0.0.0..0002:0.00.5.000.>.0m.00.0.0.0.0.00000.0000.00.0H.000..0.000.00.0.0.00.3000300.00.0500A.Oam=m..._.,..010..@..mq.;M9,....0..0..dam.a.200....0..0__00H0.00.0.0.0.3:.00..o00..:.o>000.0.0000.890..000.0000.m0..oE0.000:03000000.E.0.-m00..0.0005:000000800A.m..Hm..,...0wl.dm...mag..mm.mwwmm..g..0§.00.Fo
.05..

0...o.00:00.000006...000.0.:.m<_0....0.000.05000.0..00.0.0....010fi.00.00.000.000.00.0...0003.9:.._...w.0..w..0.flamdez.0..mzm..0.o‘m.._.0011.m.mxwwm.._§m.w..EHmH.m..=0.00:0.0000000000.000.0000.0.00.0.0.00.000“Fm.00..000.0.000000005000000..00.000090000000000.00000.000.0.0.5HPm.00.00000000m...0:02.9.0260000..00w.000H....m._00.0003.000.0000..0.0.00.00000000.000.0000.0“Fm.00.0.00>.0>0.000..0~.009000.0000000.N.000w.N000m.000..000000..0>00000.0000.0000000.20.0000HPm:00.02.00.80Om..00.09.000.000...0m.00.000..00...00000000..0.0090.00k0.80.0.0000000..00...00009......)9.02.00..00.0.0.00..o00...>..00.00.0000.00..0.2.0.000000.008000>000000...00.0.02.0.05..00k.9...00..000.000000.0003.00..00000.Chm...00.0“.0.000m0..000.m0m.00.0.0.000..00.0.0.00.0000.02.00.00.0000.0000>..0..0.0.E0000.0>omfig...0..0.um...00...>..0,¢.,..0.0.0.0..00h00.00m00...>..0<.00.0.0.00..0.002.00.000.68000£90.0300030.000.000m.000000000000000.00.00000.002.03.00.90.0..000_.00.0.0_00..0.09.00.050000.0.5.0000000090.000..00.0.0..0.:0Ec.0>om-00000..Nmm—0.00.0..000,..00m_.z>.|0.100‘w.1..mm.lmw..0l.00..o

 “0.0000000.00.00.0.0.0000.09000.0090.00.0.00..0~.0.0000.0_.00E00_0>00.899060.0.00005000.000000000(0.0000000m000800.000000.00.0m0.0.0000.0m000E0...0>0>>00..00.0.0_00..0.00.5.00.0.3000.00.0..0000.00m
.00N_0090:03.00.0.000

.000....00.E669000.00500.0000.00.008000000000.00.0.0.00.0.00.0.0.00.:000.0000.00.0.000000>.0>0.0.»020.000.0..00000000.00.0.0.000.00.0.0.00.c000.0000.002.0000>.0>0.0..000300.0.0.000000.00.0.0.000
000000.55....00.0.0..20008-0803....102.008.300.000.<58.00.55509...

0801

0802

6252.ms

3EEEEEEucm._._.w,:mmum5fiaiwzzfiwuwm..qwi9:2$6363wwacwmmEwEEw>om.925”..m.:Sea.38:.mco=mc§c_385:2memco=mNEm90as.355$.39959:ucm0.2.2:.9:EumEfiEEvmvmcozmflcmmho£91.82“90.Abfiammv2me9:new0.2.259:Eum.m.m_:_Eu£$8305{9582$2.
625::me

EumEfiEEumvwm=§w>E=9583:85.3%9REE::53:>39cmsoém.9652sz.mcozmosumSum.Abfimwm855m9.:>2uQQQEEvmVmco=m~_cm90$658800“E8.o“25.9:9.588_m>w_-ao.otmcmmmu_>>-v:o>>.mEmcEmEou6?!asm53>95$26:$8:653:..=m_-2.Em_._:5:$2m_mec9:x“529mg:5829202695:59:8mg... Emw.<.mEmEoEQE

.w.:8sz.oomucwfingEoumsx8.22659:..265A.".w...3.v..,o:§ngcwDVm<.mctmmmfih

émflqwwgauw.$525wdcmmfldg602.05.EoZm6m:88.._.w_mmc_mE}ooamwmgmdquomtcon3.2SE
éwjvbfimwmmEmzEmEoDcmotmE<.mjEoo.mc_mEov__<damivmmma

.wj8:90.820¢ EmumawfidwamxmcEEEBE.tom
$5.02

«$33.usaa‘wmemzaz

dmézdfiQmmflswz8mmm1EuaamamfidfigAmumsmuggwmumgmaa@133.g.

99.2onmm.m>=u¢@wmamuvvémmadquqaqfiufiwA.an3.3mm...dwegfifizw
n.3ch

mam5559mmm6me9:5:52winan___>>newwEmvcmfiCeca.chonm:BEvan.9:memanoEmu:an5:63_o.m:muwocaoccmom_mzz<o_.mfizwam:uw~_u2uom-zz<o_=mo.8:30me___>>wEmEou90.can.6?.88.9:.2E296gflmwm855m9.:.95..9:.<.89.95..5:::2___>>ESmoi89mm.5339m>=zmQEoo9:ho_wmmca
émjv8&3meme3:963:..Amocmivacmaaaxamoflmkmocmi.:mcefiEwE:Ewan...mwm.,wo..__oc2093:559mmouA.m.3vdo...,..uG.Q,...mo.._._,w8¢“wcfiEou90.van.Bc..E8.9.:L28996566mm855mmEEmQEoo26:En..0canan2362$:82vanmmquEoow>cfir:vmocsoccmzz<o_.mmmvém__.a<:O.5an£88:ng8685860905ucm.59:mmmmmfiomn:AOmzovmemcEmEou9.62052556:8mehomamam:hoco_.m:m_c_Eumm5.25:82882$09mcoszEmmLOtoaazw_Sm>mmE5.=_>>zz<o_.tOuuswE61658:58289mm:zz<o_twangm_£he88m9:3932.63m_5E5>Ew>ozcoo9:85uwucsotsw==wcmzo£_<.wzom5LBQEEum2A<_sz...co_.w:w_£.8u¢.mozmgmmwgEdeS.maamwwmflfimofiz.mj9:E86333c255:on9:m_225..mmfl55200s8E5“.2.23.:98:52van3252umcgmw<8*5:98.60BEBE9:E389669n33mica;o.303.3339:6:53:83.

c$3-885:o...<m=o:8=€&b§_<58;2.3233;
0802

0803

f‘:

000.200:0..0:..2:.05030.000....c0.20......09.380.:0E:.0..0.:0.:0_.00.09m:.~.00:0:.000....:0.200...00.2.00.:9::.0..0.:00:0.0.3..3om:.~.09.0:.000....:0.20:0..>>>>>>9..0.00.0.0.00...>..008.50088000....c0.209:.009.9300.00000m:..0to00000:.030.20.0.0.9:....0000005030.2Es.

“00:02.0::0>00.0:0..00.09..00080.00...:9...30..003.00...:.200.3.059.80.00..00....00060:000.20.00.0:.E0:.0006.0:o...0008.30.000.00000.00.0>00.0000.0:0..0:.0.:_9...2.500.002000.000.00000300.8.80:009...09:0003000.0.008.20030...<.00...EE00ooI.0<_.0:...50.....0:..0.:.:0.000.005032:_09:0:0.0.50.0m:..0_..:80:00009:0002m:..0.o.>52...;08980>...0.9.:0009:0:26:.3000>0.0>0..:80003000>9.003.0:0..0:.0.:_0:0.0~_00.53.0:.>..>..00.0.0.0E:.800000.8..009300909...30.0.00>>59:.2=9509:02.09..:0E000:0E0:0.:0E:o.0000.:.0089.89:

:.0:329.>9:59:00039...3000:0_.9:.2:.0.0.>....:0:..0>.0..0..9.0:..0...0.0.0080£300:00:0...:09..:..oocow.0..:009.2.9.09..0.0.20.00.330.008.000:.0E009.._.m.0.03.0000-.0.0oq.0.0.0.mE..0...0.0..00:00..00:00E.29..m:.03>..0303_>_00.>>>.0>:00000000E0:NC.9.:.32000.530.0.:9:..0000.:0E.0>9..0.2:600:..>.0.0.0.0Q0080:£9.509..:00.3.0000-.0.00Q.0.0.0.0.0.0..:0Et0q00E.29..9.0.>..0303000009:0:.:0:.:.0>om0.0.09..:.09:0:59:00.00....c0.008>.0:0:00.9..0.0.0>000:0335..0830036.8...00:05...500.0.:9::.0>0m.02.838.3590.00.0:0m0.:0E:.0>om0.0.0.60...0.02.00.8.::00..00.009.60>..:3EE8.35..0.02.00.2000000E0:9..:.:....>002000.00.00.009.80....0:0..u:3n..0.:.m..>00.00”.:.00>..0...:.8.00000..8202.28:98.000:.0.0.0.0..2983.2.0:.0>.:209....Eo9:0::.9:009....03.008.908.990.008.30.099-30.0Em:->...:0E.29...009:0:03000009:0:0:9..:.00E0:.00.:005000.:0..0:2.0300.0000.00.0009..:o00~.:0m.o>.0m.0.0.c.06000:9.:.Eo0m:.v.09E:0:.:.0:0..3...0:..0:o_.003000:0.0.o.0EE8.2002.309..0.0v3.00.0:00.:.8.0:0.8.x0_>.:.0:0..3...0:..0:0..003000:0.0.0.9:E8.2002.309..0.05:500.0:0xE.E00..0...00.00.;9..0..0_.E.0$950030000300...:38>:0.>...:0>>>9...0...>03>:0:_0:.0E00030000005.5809...05:00.0>0E00...:38E9050
09:0:59:00.000.

:9000o.>...0:.30908...:0>9.8...;.A8.x02-0.z0:0__N0.m:.azm00:030..0..0.00....>..:389...o.09:9000.00.:.3.:.00....0:.30009.:.>.0>..00000..A0.Z‘m.¢.;0.z.._uu.00.mum_0<0:0MAE..Az_m<...w..00.81.z.60.0.0.0,200.0.mfiMdMHEciw9...>00000:080.000.20.00.m:_E0:o....00n.-0.0<0:060000.30.0.9.00.E0I:.0.00>>9F

.00.000.>..00.0>:0>..03.000..00:099.;0:0008>..:380c0929.:0..0.9.8>:.0>...000000:.0:0.0.9...0:.0.0:0.E0009...0...00.0.009.:3.0:0:028.0.0.2.xE2:009.$280.0...0..2.090....60000>..:38wmrmCm..0650:0.0:0.V...:m3o:._000:20.09.0.9:000AEo0m:.v.00::0.2:.0...9...000:>.0.0.0.am.0.:9..0:800..0820...9:00.0“..502.2.0...0.090.002080.0.....:_000.00_.>:0E.00.002000:00.000.00008>..:38:.0Eo00009.008Om.9.5:0000.9:0:0..o>:_>..0.0>.:00.0V..0.:9:..9.0030.09.00:0:08:959...0.00:00.$.00.0..02..0:...0>E0:00..0..03<0.>030.0m.0:.0.:.9...0000.0009..0.0.08008.2.20.~0...0:::En003:0.Mudflmdw.:.00:..000008>..:38000.03.0:.00309:0:59:00.0>0.-00..9..O.0303:09...0.0080:.00:m:..u0.00.200:..0050.350.20:80_0>0.-00.0.995509..:.:..>>SE.59:0000.0.0000<...I9..:.3.0.00..00:00.0.0.0.E8....E.E0.om9:0:.09.0.:.300.:0an.9078.08:83.00:.CE...).350:30.02::2.2099.0205.00008:0.8.52.55.0...030:.0:030.09.00:m:..00:.m:w9..:.0.39:80o.00:0.0000.0.0898.2500.:E0..0.:09:0:.00...9.:Afici0z0.0000:0.0I0.009..>000m0:0:..>.0....E.00SE..n0w0m--moo~\o~\.o.....\0:0..00.3:0\E05..28....0333kn9...
0803

0804

 0.8.0.822.“=th02:32.0..0000...__._.00.00__.00.0_.000.0002._000_0.00_200_200..0020.020.0.00.x.H00._00.00_000.0000_0000002.111+11+IIII11+11111+IIII11+||||11+lllll11+IIII11+1111+lllll11+1111111111__mm<_mH_HmzmezH1111+1111+1111+11+1111111111+11._.mmo.0000__00:.000.00000200011111+1111__--1+1-11+1+1+1-1+111111+111+1111+1111+111111+111+111111...mHm.mzzm.mzo_mom.uomcfim.mwm.mee:_0920_umnmom_0am_umcame.onH0qummm 0.0000290.:0...0000000x0000.0.2.0000.00%.0.0.0EE00.00E0.0900.000.000090800:00:30000.000.0.0.200.00.03000.2.02.0000080000600E0.0.0.00.00.0.0.200.290.000.0.a1:00000.0.5000F0.50.“.000:;x0:.8500=028#250000252.2.0:0.83000.00c.80:650.0000000:0000200000>000.0E0.0>00000.0000000-200?_.0.0.0.00._0>00.00.80.0.00:000.000.00..0>0z.E0.0>00020.00000.5.30.80.0.00:00...00:002.0000.0503ommw.v000.0.05000002.000.00.00..2.02.0.0...00000>00>0...5.0.0.00000000.0500_.0>>.E0.0>0m0..0.000x.0300.0.05020.8000300.5000.0080.0:0000.:.uo..:u.<.0029."—EEUH0.:.n
0003080..302-040000..000:0000.30.000.000600.00..0=0.00.:000.0>000.000..0.00000A..m.a0.:«002.080..3.0000000}.0E:000.0E0.>.0.00.00.0>0.00H00000000..000:00:02.00.5.2.Sm.>05.0.00280.0002.01300k

.80.0..mj0...0..00..000U.wz00..000.02.0000000:00.0000000.00.02.90.000..00..800.00:000:00.000....00.0.0000005”.0.0..060..50000.0000.000.00002:0500.02,.0:0001.00.50000..000:0000000.0.000_0>0.-000000.0050.0000.50.00000.00060.300mm0.0:.0...000009000.0OI<.00H.0.:.0.000E00.0000.00.0.0:0.>.00.00.00.;0000..0.E00.o000848035...<m=o..8.3=&b§.<58._.....>;§\\n.fi
0804

0805

+|+|+|+u+-+|+I+|+|+I+|+n+|+u+I+n+|+|+n+|+|+|+|+|+|+u+u+x+u+u+u+u+omwhmmvmmfiomwhwm0mmaomm>mmvmmaoMNNNNNNNNNNHHHHHHHHHH
Hm

 ..0:.:00.50...0.8080:00800030.0.0:0000E50:0.:_3.0.00.00.3www.mo0.0:00>08.0...00000080.080800:.0:0:000000080E080008060.00E02.0000000003.0::090:00.0:0.00.0.00.000.000080.m>m.00:0:00:.>80:.0:>:0>__000080.000.0:0000803.0:0:.00000000.00008:000.09.0.0:008.08000.003.000::2.0.5.0:0:.000.0000.200.:000:0:..mw0_:o..00::00.80:00.00000030.0E..0>0..0:03.02.m00:.0.80.02000>295:0.0.0...000.20000030.0...H.w.N...Qm..m...000.0.E.0808.0.:
:0>0._.0520.0.....~.n.zom.:0>00:88,:

:0:>>:00.50002.050:50:000.80:>00:008080608>.::00m...w.amm.0..0..m.‘mm...m..w_.«2%..0:.000.80008000.0:.00.0>00.80.0.00.0...08m:00:0..:8_0:0.00000000030.0800.000:..000.:0_.00::00w:0:0.:0:>00:00.00:8:m:_00:0....050:Em:.0:.0808.0:.0..00::000.0.0.0.....0:0.0300.00:00.>..00:_0:00..0:000.008000.080.0.nEn..0E..m:._>>0.80.0.003.000:.0020:.080.90000.0-0n..0.00m0x0000.0.2.00EEO...0.808800mos..m.:08:0..>:000.0.0:00::00000.:.m0:000.00::.00>08.000.0.008..0.00m:.>..00::.0500:0.085000.200.8290:0>0.0.5.0.000030.00.00m...0n.>08.>_0>..000m0.gigafiaumm..000..000.0E.:.0n.-0.-.:_0n.0:03.0.30%.E..m..000.0:n..0808.0::.0:0m05h.EEO...0..:0>0.0:3.030.0000:00.80.0.0000008.m:_>..00::0:..003h. 0.05.000908::00:02.m0.059.0....:_:30500030.05.00.0:..0=0:0>00000080..00:0000000008E.000800.0.000:>080:0..000880000c.0000:m:0:..<.>m0.0:r_00.803.0:00.000.2..0.000.m:.>_:00::>:0>000::0>00.0.0000.003.000:0000>0:0.80.0.0EEOE0.:
.0>0..000.88.0.3.5.020...:.2”.vmm._.2m02<coguu<.mcm>2m

.m‘>>>00.80.0.10.:...082.8.00.9.00...EEOF0:0..%.S:.Um.,m..0.0V..0.00:0>0.0.0_000w.0.»>000:050.EEO?.Cmm..__....->>0:00.>_.:0”..m>0.00.0:N.>._::00mQ.0:0«En...5::2000808038.0:0.0.000.0.n.03.00.30?..n..\n.O.>..50F...0...-00_.:0.n...0800.0>0.0\N.0S.00.Eo.<0:00.80.0.100.8080......0>EEOK8...:02.808.02.08.0.00.0.0.0.00.0000”.0.80.0.00:..0:0_.0.:080.08_0:000:.30008:08:08.00:0.00m:_0:_0:_0.50.8290000EEOE.00.00000=000:0000.0...:0...:>>:0000>0:0.00000:09.000.0.0080:090.<.m.0>0.000:.0000800.0...0.80.0.00:.0:00:00EEOF0:.:_m:0>0.0:..0:000.0§0_>:0>0.0500030.0:8.30.000:0..0000.:a00840839:.0.25:8:fiebefiéou..:_.>§><\u:§
0805

0806

.w...umE,JZe.auo..d.,m
333%9...m2.8.8c8285::.829.a..o.2.22.58<.88“Emo.o.2.no:.8.mok.A5n._>.o.25.9..20.30.559.9..E5:50Emu9...025.50.820...5.6.5sz9...5.8.9..“.8981o

.5958...an_....>5.08mx...
oo.m5m....5:0.3m:.m>..C.9..2.955%...35.5..9...5%.9:5.30.>5>m9.5.55:9..$5.;c35865.05235.0.“5.52.5m.5.09.E...5;.9.9...059:2.9..9.286;..mmmo.o50..53.9<.35:m>...-o..mE..~.52.3m.om.5Em.oc.c.5&59..8.86:..2,25..mi.5.5693.251583c..o52....s53.09...Emm..m25:55..m.o5.0mm.m...9..c..558559.0m...c.2.955..m.;..0Samoa9...5.8.9..5&5.5Emmi.

.82

5m$8.55E5.53%m..5EE.55h.co_.m.5E9w..mmmwwauzm5...;.E.Co..cwEmmi..coo5;.m..59.839;.umBEmmmmm.we:85.239...9:2.65.5255.9...9...cm5.03m.o25:59..8.9..5.8.9..0.mm:m.95_..2$5..$589...5.0.).5...5:8w..5.m...9:.>.nE5wmmw.95co..m.5Emm...o.umm:ow.<was”.o
22:535..255o:25

5.;55.085we:85.555%9...m9..>..5252.8:.55...u.mc.ow.moc9.....Emcm:9...35353m.5....53ME..55229..9.555..5......55555:952:.“5.59%..m.5on.".m5:3.53..:o..wo....5b.o.S._..>...E:co_wm_Ewcm..82:..me9..o.5.7....m59365.2352.55c.52.5mmmfim.o.9.vwm.5.93n..:m.om~.m83:..me9...25..m3..0$69..520Emu955.59.£2.9.629...5589:59....035.8.06.5.3E.£95.9...5.8.9..5.95..5.8o.>..._nm.5..o.5299....65...58555.0.“558.30520.20.9...5....535.:8.oC-83.5.38.25mm3.5%:895503.2...8.me5.6..5522.55..535;on.$95$525.835m0.mmcoamw.c..8;9.55959...35mma:8v.5:m0#9...v>n._c..68.5.59.32555a.occ96535:895:..396mg.0.8.me.0885.0.55ti.525.o..8:9:56.955£50.?.809.8.3.8.o58:o.338m.25..m.o35>mwas$6.5525..m2.cm65.00onm.559.£95.-EzEEE.<529525.8v..5mmc.525,.Emamfiu5:..o:65.9..8.8.9.5....£95..5.55...525....o_@59812d2flw2m:fi._m<z§
m...95um95v5959uwcmfimm55..m>mcm52Escco_m5>a..69...>__m:.o<“whoz..03053.5.,>5529..£2.50....sv.5...2...cm.vco.w5>w.a..oco_w5>25.509:5.09.5:..oco_m5>a.9..5:65amEo.%m>.55.mco..oc:..55ucm.535:m...:.umEmEoo$5..55.595.c.32.3ow.35.5m95.55n....35.59.n:cm.5...5.0:$5.:..o-mm5.9.6m$5555..50.comm..o.m9....m.m_.cm...o.-.5.E9.552:5:552.5Him5....5......2.55.2.8m.Exam...5....o58.0.9:.N5.39“.c.5.6%m.5&5.595;5.08a.Emma9....$53.32.....5283....322.0...~$50.".-+-+-+-+-+-+-+-+-+-+-+-+-+...muma_

+s+1+n+u+I+|+|+|+I+-+|+|+n+n+n+n+n+n+n+z+r+-+|+|+-+n+-+-+-+-+l+-+_852.8.3226an.+-+-+|+-+-+-+I+-+-+u+n+-+I+-+-+-+-+|+-+-+-+-+-+-+-+-+I+-+-+-+-+-+.mmmubvdcoHumCflummo.+-+-+|+|+I+I+I+I+I+|+I+1+-+-+-+:+-+1+-+-+-+-+-+u+-+-+-+-+x+:+x+-+_wmmuUU¢mouzom ,.+-+_538.855.38.._.88on_HS_+s+|+-+-+-+|+I+|+I+-+-+-+x+u+l+1+|+|+-+-+-+-+|+-+-+I+-+-+I+I+-+u+.pomuwoucwevmu..mmmH..coflumoflufluceuH+-+I+1+-+u+n+I+-+I+|+I+|+n+|+-+-+|+-+-+-+-+-+-+u+x+u+n+1+-+n+-+-+.space.Hmuoe_mow._azH_co.muo>_ o.mwmm--~oom\am\.om:o:mo:n.=a\b8£_>:oo.:E.>§$<.d§.
0806

0807

£92manm25E.8;2:839:8.86;295%8381:2282.8:9:.£956:wcocaflm.9:Eumm:m.2.8new.o.8836.382:589:mm>95memms.62:.3836:523395:9.92-szhe8m:m_QIHmz9.;.65259:o.8.858£95653EEOH9:$5.5229530.9sz.mEEmv.x83629;.mgwcnsmoz;253223395van389395:9.8525892;Sm33935n:.umEhou—mmeuu<n:.mmmDOE
uuln+n+u+n+||oqu<HzmzHMmmxm_H_H_H_H_uuu1n+x+u+u+n_aHlpm<uHHasz_o_a_a_fi_IIIIIIIIIIIII||+xlnnllIllnlclunlun:I»-«‘;::|ILIIIllnnnu+|+n+n+l_oHlemo:_o_H_H_

I_

 Nfmordwfiwomm_wwmfivmn:29:3<6.50%Eachmm285%.w_c0529.9:ductma>2umEmamm9mmm:_m>9:85m.333$9259:hocomm.om:_m>.mEBwum5mczcmmwafi.9883:.58hewocwscmwwmmcszs3:8539m>9:.8959“:595.Emznmm9mmwmmwiumn:
wmmwmgnuv‘E.FNd

.mEnEzz.fi0n:3..._.m,_.¢.z..$9:E0::96.9m8930n:53:38Po;mo.umuvma8___>>new.AmEQso:923ovo.a:wm:>9:.m::2609:.cozmofig236%.o@5398.38vaomqw¢mvcmwmmLoam.Exoma:36>80.vmiumma>mE£023mcoio.06m<..w:o.:QOo.6589:9.822828$“we;9:.0$9.25n:..mwm€b<202$:me..6589:mcficmw.8;as.hommeuumn:..mm9nu<850mo.Exoma9:5m5:9:55m.L88;9:38:02:0Em:25.9899:.9883:5mBflEE:cm$23.5n:.9:LmnEmEmm.mw:._o._._mw_689..n:82899:65m5ow9CeszBEmmEmo“823820\mbmml.
:&&:So~a~:o

...3:2823=&b§£_\Eoo.:E.333\\dt:
0807

0808

.mofmo—dom00n:l._.m_ZO555—050:85:500«NE;.000”.NOH.00N2:5o.3N.3N.mmm:H.03.NS.mom.3:9:525:.:0:0585:855:85:95:050:5:9::958598:50:5:55555.205:2_5E_05005:00:_c50055055::8.55::5:0555:35:550:5050:855:00:0:_0:505D0No.mmw.mmm.mmmO90.0.mmm.mmmmw0.0.0.mmN<35*050:525.555.500.5555.0
“5:59:5250.:0.5:0555:005.:50_:_:0_m0050:5:0:555565:0555:.555555050.L235?:0“..909|ka0:505:055:.55052053:0508::550:558:5005:00E:5005m:55::«5:00550h55500500:030::22:925:0355:50{055:5::5500525::505:0055:.:05:505:.5.52050.055:5:5mxmmE5:050055::500:»55m:_00.05555505_5:0=_.005:<.o.mmm.mwF.NmToddmfwmw05559005O55550mm5::0:5.o.o.rm.mt-0.0.®_‘.mt555550005m555.005500555.sz<n_m<0.0805550:50:000.0.0.0589005<$5550.5:5591sz052555”.50055:5550.205:50:.E:5505.00:508:=055.55.0500:555555505000535:5.52:0:0:0.00:5;de:_052555::5505>50mD_I._.wz_5:5>5m0505500050.0.55:5:5.0.0KNF355050.50:050505550:50:055.550000.:805m:m_590035>00.sz<000205:5:05.500=50.5:55:0:5555:0050550059055:AL-..55050050025S0.503529.5cm255:25:5:5=85:8%;0.53338=5:09'50:<0955008:00.152m5:5$90050555.05:.0.5:55::550.5005008555:00550.1:055:035:05:5o.0:055::505505:5053555052555:5=_5>>EE305m:830505m:550000n__I.FwOI<.0:_:55E565055>50:0\0:5052555:5:5m5:_5>85505555.0.55:_5.:5E_50x5:2052555:5:50:5.mmw0:500m:555505:_5>5:5£05055559005m85.00005500030.030200050020.5:5555.55.:<2355x35005300::0.89055020:650:555:500:058:05:n::8055:5:50:5.030:5vmm:555505:_5>5£05£05055E555555050555.0.5050:5522030.0205552:05:88.0:5:50:53:05:000:::565%:0:055:5:555555.0555:0050:500:_:_5E5:50:..C>.255552.5505255500.5.80859:5:8:m_oo$<=5:0.8555085820555.085550$55.03:803565:55500.90055:0.05:0_mw555559005.505..mmm0:5N055553500:0:550=05555:0050555.05:000:005:05::0005.5::50£50:admv0mm0.0:2:0555:005:500:550005.5:=5Em:250:925:5555590055550:..QIthI:050:59|th:955m5;555:0050555.0<o.8500SEE:0.0.85520:505252500.0.5959020E55.0E5x5.:5r::0_555555:005m35.0.5E05E8:0:555:005.0555.055:5500.52:005>:550550m:0:0:50:055:0:50£0505555:::5500:0_55050505555:005m555.050:emw0:5MN?:55550508::550=05555:0050555.05:0:905::50:50055::50£50:ASNV000.00000:555:005:500:5$0055:8%25:80:::0:08:955:5mmmmmsumm35.09:50:5-99:59-523-3509:$925m35.0<.

.55:0.0.0.59:5085.:2550
00.0.050:_o:_55.0855"05:0555:5505>5:55555505<35.055_>_5>=5_5m.030:5F555.50595.:50=0555555505<055.05:0:905:050.:50055::502500Avmmv05.555050.0:555:005:500:5550055:55:5.05>:o:82255:5$39005<$5.09'50:.545can9:523-:58::58:08<320<.“0.50035QIka55:0000:5.555:5555565:.:5555050:55::00:050.0:50:555:005.50::0:055:5:500:5.0.<55555.0555555555505.555555:050n:500055:35E5506505008600050:S058:8:0035..0288:5300205822.332005:

0808

0809

“:0..9:.0.:..009;.9.26:0.0:.:.0.:000.02000:.02..0>.000:.0:0.99800:.0.000.036.0::..5.00300.0200:.0:0.00:.090.0:..0..02009:0:0.0000500:00:.E.0.00:.>>.:0:...0>.00.00.0:...0.0200.00.0:..00:00..00300.0:.00.0.5.0..02009:0:.000.0:..0.:9.0>0.0:0.:0..0E.0.:.>.000000:...02009:0:0:..000:000.000.39.80.0:..00..0:.:0:9:.0.:.5.2..00300.0:.0.0:0:00.0.9:00:>9:.0200080:.000_0:...02000E0:.000.00.0:.0..00:.0...:.0:.>:009:0..00300.02009:0:0:00:0:.:00:0000:000.000n:0.00:0E9000.0000:.05990:.:0.00:0:0:>>
.0.0>.00

9:0:0>..0...o:.30000:..0:0.0.0:0:.0.:.0EA0093m0:0.90<:..00:.0E0.0:.:..>>.>._03.00:050:.:..0959.0.00:.0:390Eufimwsam.:00:.:P.:0:9:.o.:.0.:..0>00000:.0.:0000:..0:..02000E0:>.00:00000:0.000..000:0.059:00:000.:.0E000:..3000:0:9:.0.:_0990.020:00:.0.:00.0:.£9.80>.0>0.0..0>.000E0:02.9005300.09000.0.0::.05990:.:00:.0E00:0.0.:0:9:.0.:.000.000n:0:09:0:.00:m:.:.0.:0000000.0000.3:...0.000.0200:.:00.090003szo.E0.0>m9:0299:000:.1.0.5.0:0:.:009:0:.50:.00.0..00.0:.90:0:0:
0.00.0.030053.100:.:.0:30.

0:>:00.0>.:000:0memo:00:000.0:.0:..0:.0.0>00300:..500090.5.:09:0:020_000_:0:300.300.9.0.5.0:_000_0:.:00.00:.009:0:0:0:000.0.0003>__0303:m30:._00:.0.0>05:::00:30.::00.000:.exe.memo:“whoz.
.3050:920:0:.008.5600.090000.0:00.5.3:.5303.00.0.30.0000:0:0=0E0003hmz<am<0:.0::30.3009:0.030000:009s0.:...00.00:00:09:0:.00:.000.000n:0:.00020:.:0.:>>0.00::0.0.0..000:.0.:00.0:.exe.memo:00:000:..000590.9:.00:>.0>0Hmz<am<>..000:.:_.05950:..00.3.02.00980::_0E000:.000.0000.000:0.:.:_:0.00300.0.0__.0m

00000.30

0530..0.000.0009.9.5:00.0.00:00.90:0..0:.02:9:0:0:...0>030:.0300:.0..:0.:0>:000.0.:.0_.:>>.080:00:0000.000n:0..0E3:0£0:0>0:.:0:.0.00:n:.005..0060:.00::..203000.880.080.09000:0.00.05.:00..0>0:.:0.:.s0.0.00:0:..000000.0009.9.5:0:.0N..0E0E.0:000.003.09:.:.m:0_:.0::mm0.000000.000n:0_.:>>
E0.0>m9:0290:600:...0.0.0.>...:0_0:0..0N.:0m.00.0:.000.00:0.0000:>9:00000.0000.0.:3E003000:0:990:0300:.0.00:09.000:03.0:.0.0083:0:..0:0:00:0.03..0.0:0.00.09:3:000:._.0>0>>0:.0003>_00.>>000:....000:0.£90003000000000000900:.:.>..0_30:.00>000..099200530050..00E3:0.:.00:900000000.0000000.005.00:0:000009000.0000.0N00000000.000<0090mm0.02.0.0:..000.503:0:.00<>..:00E0..930.0.0900:.00500000::0000000.00000090.30..0.:0..0E.0.:.0:..30.0.0:0.08980:.:.00.090.30..0__0E0:.0:300.:0..00__00:00000.000190.0:9050.80.:.E0...030.500:0.30:0:2.023,...0:0flaw.-.000w.:.0:..0000.0190.02:33.$0500.95000009000:0000000.:0000300000.000900.60800.09:90::30.:.00.09:.9530.o0030.......:.0Eo00::o.09.30.5.ARN?5.o.NmN.mmN.mmN0.00.:6:0309:0030:0.o.redefmm:0:0odmfiwmfimm..o.mm_..mme.mm..o.wmfimw..wmv00000.0000000.0.30.0:.00:90000:.:m.E.0030_m:.00.>_0>..0:.0._<how?.0.odvmmmmmmm0:0.30300000000.000m0090.090.0:.:_:..>>0.0::30_030.>.0:.0.09.30..0.x00E0:.0::36.0::.0.o.o.mmm.mm~0:930.5.05950:.:0D...sz0:.0.0::30..0.0.00:..0::300:..00000E.:_.thwo.....:-NF0:05:15.sz0..:-v.0...ka:00:02:.00.:0Em000:.:m.E:0.:>>0.0.98:00000000.000m.00900:.00:0.0009..:m.:..0030.03me0.0”.07:00...00:060.0:0AD.I.:m.Zm.Dm..0_....:00_9.03.053002:.0.0::3001:00...0:.m:..:0c.m00>000:03.0:.006999:2:0:..000.00000000.000..0:.00.20030>9:9.0.5.0:09080.8.0“.000000000.000:0E00.0.:3E0:50.000..000000000.000099000.200300.00030:090:000x09:.05309008-9393:..0.08:8.33.09998.£232.30:

0809

0810

00:000.00.>000000:.0.0.0.0.0000._0.00.0000.:0.0.>....0.000000.00.0000...000.0.0.0>0..0.0.5.02.wO:00<Qmum0:0IE..uQmO..0:...:o~..Q..0010.0000.5080-0,0000.00.0:00..0008800$280.000.5000.>>..won..0.00...00.0..0050.500:00000000m<00H.00..0E.0.:.0m.<.0000.0000.00000000.0.0.00.0.00..0.“mkoz.0000.000o<.>.Nowmum.00.o0:0.00.00x0.6......000.000.0..02.0.0.0z...0..o.000.0005:...0.00.0.8.00000.8.......0040...00..02.0.0.0z.....0.0....000..000000.0.00.0:...>.>....<000000.0000.00000.5.0000.0000.000.>0.00m<0.s...<0000032.20.0....000...:0..0.0:...>>0.0.0.00..0000000.0000.00000200000.0000.0000.>0.000.0.5Ana/«0..am...00.0>0.o
000.0000......

0.500..00.5000.:000000000.0000.0..05000.000..000000.0000.00...00.50:000.0.5Ami/E.00...00.050.o_“00.0200..00:..00000000.00>0000.:0000.000..:.000.000.000.00.0.w..0.;0.8.0.=0.q..mm¢..0.0.0..000.0.0.0E<z<.00...0.E0...8290.000000000.:00.00.4.00000.0..2.30....:.>..00..000.0000.00000000.0m<0.5000.050.“.0<000.00004.5.0500..0...500000000.0m<000000_...5000.0000.0500..00N.00000..0...z<..00.:0:0..0.000..000.000o<.>.00.0.0000000..0.0x00000000.0000.00..00..0000...000.0050.00:00.0m<00.000.000.000000.0OS...00.00.0.0.00000.0..00..00000.0033.00....:000000.00000..0.0E.0>.0>..0.0.>._0:.000.00000.000»000.0000.0:.>.:00:..505.000.5000.000o<.>.0..0>.000.00.00.000.0000.00.000.0.000000.000030.0.30.00000000001$.829000.5.0000000.00....00..2.0.5.0:0.00000.:0.0>.000.00000.0.00..0000.000o<_>.00..505..0:>00.00000.00.0.0000000..>.0.0:::0.:D0.030..0.>0.50.00..:0.0000..0000.0000.0....00..0.000.00.0.00.._..5.0000000.0.0.5.0:.00.000000..00000..00..00000....00.0...82909.5.z<..00.0.0000.00.000.0000<s.00..00..00000.000.000000.00.0.0000.00.000.0000.00..00..00000.00:00000.0.0.002000.00000.0.00..000000.00000.5.0000.00.0.00.505..0:0.00..00..00000.000000.0.0.5.0:00.0000.:0.00....0....0000.0.0.00.00000000.00000.00..0:00>>00000.0000.000.00000..0>000.000000.000o<s.000.000o<.>.00.00.0:00.0.000000.0000000..:0.00..00.00.0.0.0.0000.00000.000.0.0.5.000.000000.000OS....0000:00..00..00000000.:000....0000.000.532..000800000005.00.:.01.0.5.0:.000.0...00.0.000z<..00.0000.00.0000:>.0>m..24....00.0.5.0:00.0.000..00.00.m.>000.00::00.0.:.00080.000.000:000.820.00.00.00:0.>..0m.
:0...:.000w.000.00...0:0mm....m.m.m.000....0800mmwzm,.0.0..000.0.0.0E

<z<.0....00...0000..30.-..0:0«0.3.000”.0.000000000.0mzo0:..0000000.000:0.0.:.0:..00.00000000000.003..0>0uwz..........>0......00H..00-000000.060004..0>.0”.O.2...000.000.0.....0>0Q250:0mZQ00:.00.00000.0.0.mzo.0:0...00<.0..000>>A.0.0.00.0.0..00:0.00:00mzo0:..:00000:00:20.0.05.

.:.00.000.0..0..0>.00..0E00.0.E00...........0:.00000.000.000000000.000800E00.......00.0.00.803220010.00:00.000000..000000.000..00.0:000.00.0000.0000.0:0.0E0000.000.0000....000.000..Eoo....0..0:..00.0.02.E00.......©.0:0E:..000.000..00.-0..00.:000..00.00000.00.0.8000<0.080000>.00.0.0.0200:00:00.0.0..0.000.0000088:00:<0.000.043.0.00.0000>.00.0..0002000E0:0>..0...00.:000.0.0..0.000..020000.0:<..0.000.-m20.000.00000.000.0000.00000E0.000..0.:.00<..0.000.-~..E000.0000.:00.00.00.00:00000.0.000.000.000:4.0.000%...E00.00-008.00.... _......m=o..8._0=0.§5.ES.......3§..0.E
0810

0811

0.5060005.08000008005:5E0505000.0.5680500::0:030:0.0509020:.503910505001.0:0EE000:505:0.2000050:000m0000E000,:.05009:0005m:_:_05:00300m23.:053>00:800...00:m:_>_000:050:0.05000:809:0282.0:0500:050050.000000Eocow:000:00.00:0:00:050:05:00.00:000:0.00.00::050:>>x00502000:0:000m0000E025.0005.500m0:0m0:0000ma02200:00E:05:20505025
0_.00::00:050:05:0.3000_“Wm—En:0030.0.0::500.500:0_550.5800:03000510:>>0:x::0_:00:00020505_:>>0:x:::00.00:000E:0_503.0::0.00:05.0500>08E0>__00-:o:05:05:0000.9.;00:000:0050::00.00:8505500005003000000:02.000050::00.060000500.02050305.082::0502508o“00205009:00000050.29005.0503:95:0005..n:.0~:0E:0:>:0000_:0=00::oo05:_E000953.0305000_602066:20:0005.;.0.:0>0_0E:0:n0.30005050.001:050:000500.50:.05n:985:00:00_NSGum:_00000000__000.0._n_0m0000265:00.052505

Q29.m.m.m500.30005000005:0000:0..050:
0_n0__0>0500005.00:00_0E0._:I:0._.0_.._._oE.0502:05E0:208:.__0.0000_0>0_080020:520:n:00.8060>00000:05:0500.000EEOP05*0:053053.n::0>00E0Em0010k:_00500000500000050:_.00m0000E00m5050.00n::0:_2.00:000:000_0:0:.05005:00000008“Ewo:<500.000n::0:_002.000_.52:_.:0E>>50:00.0000:0:_005000_000000;.0.0.<.n:0.00m0:0.nEwO.QE.00_:0:0_.0_0._6029005030:0F050E.wu,®M®Emme..m.mu=m=.0«0:0050.50,:<Z<_05605000c.0050.505:_QOm.0003005.6000fiwmdmm2:3...>..~.~.>.,..umm:_00950000_0.000.0060:00:308.03.0000:002:60.:9:0050:00:000_E0:000._o.000.$53000__00=__00:000000006:8@530:0.0000.:2050_:_E0000:03.0:00>>o=0:25:6:530:0000-3:00000000000.0YaOm503.0::0:0:=000050.050:.0300050.0.00030.00m0.00290:o.00>080.00:050=0.095095:::5.QE0x:4000.05:0_00>00:0.0600_00m0505000:530:.0505:00200:0:0E:2:_9520..0030.00.000:0_=003000060203A0>>0~0m5:008:00_$0590:0_0:0>.8991030.00.0000m0.:

5050.505:_0E0:60.00:
2200:0_:_000:0000.N:0_0:0>“EwO.0030.9:30:05:0:05:050:020.0.0x:__0::_00m:0:02:000000005:050:0.mmwo55>050250::090.0.0.0000.0.005:000_0:050:50:005050:000.005.00::0030090200.n__m:0550:00..0.0::0_.0555:00.00:500:05050E:00_.8290anov0:...501.0055:0000:.....wwmbzwmwwmeM‘M00.0:0050.505<z<_0:...0:850:0,wmz_>.x_0F0_00<,0:0>>.0z53>00.0600000005m:_0:_0:__n__m:00:000000.00z<._0.0800.:0>:0E:0.200290@530:E950530.30050:.0050:002:5:00503.0:0500.059505:0E06505>_m:_000..0:_05000000:mi.>_0.0:::0_:D.000:m:200:5:0_50000:0.0000.5000.005050500E3800:000:mi40050.0:500:05:0:0500:0:0x02.02000000:050:0:000:90:.QE55>55:00.0:0.00>.00:0.0_000:0::0:0E:0_:_050.0.530:0m:0:0x0___>>0:030:>>0:000:0000:_000:0000.AmdzmvN:0_0:0>.820585050.5mczsom0::

050005000302.0500
5:05500o.00:03:>__00:0:00000.009050005.595005:000.0050_@530:0500:6.5050:0.09:0:_5_>>:00:050:20:00:00055:50050:0.:_050003050005:550:500:003050.000:>_:0E:Q000E0:0uEmO.mOm0:0.uamo.n:«..2080:505055050:0n:5_>>00.0000003:85:000.0020595:0:00:500000::.:o=0E:0h_:_@530:5_>>00.005mESE050.03000.05.n::0:0:0£0090595:90_=5m.030.05:_8:05:2205:00000090:03:000:00.00.9:30:0:_thmzn::050:=0000.506002“08-080305...<m808_5=&b§=_>=8.:E.>§><E§

0811

0812

6:205958:09.68m:owEw.6289:90ch93:5:ton2§o§.:m\s.Ammmium:o:mc:mmu.toaco:mc:mmv.392600.58.toa850$9:27.325E9:959:co“8::ch2962:m_98:oz:cmwémacozmuEsEEoo392.059::cm.938mEB:9:95$925n:new55:89to:9:.mmmmmmmE.5330:c_5::52to:mE2v9.999m98.823353229:
em5mE

5E505mm.10:5a0:53E:>=m20m926253:2530:.wm...mco:mo__aam1:10.?9L299EEocflEwm_zm:955.:89.0.EDDV.829.”—EmfimEQEm:9:ucm.8205.9300co_mm_Ewcm:9:3:895£890.:$9:“998:cofiwmm:cmteawcm:_mO9:0.28:92039.8.9:$8205oz:mmm_ano95w.8905EEO:9:
2008953:3tonmcm:9:.06:mdmann—nm>>macawaAmm...Emm.m,%§mdq%d§dqm_.8mm:.28a>92,5838&9:5:353$8221QEB9:969i._o_mmmv_>503.._829n_659:.5:99.60:829:65:::89.__m:-8__c9n:9:25:5an33020i3525$22:62:8mg_>w_mw>>-com_uu$Exams.com=_<ucm559528m>3cgfimzmo:823020i9:9562$:30x095_m>n=Scamco:9EoE_9085”.3:253:00Emuucm{£5959m:.co:mo::m£:m.53329.2893o$2898mo_>.ww._o->=_m=cE992:53>m9;059..2toaaswBzmmo95mm?2mum$925a.9:96865c“29E9wmcmzo:omem3955.wmcmzo.869m:9:5:9.v>n=E0:co:=_o>wcmmm:mcgmm:m_w>n=.w>as_o_9.629:.mco:mo:_owqm:999:o5:83:m:cmE859:8m_w>n=:o8:35me39559:.xom:wEmucmfi9:959:SE:995mm;8?“:o:29?n:.3993c_Emmwwomc9:889.mm;n:.o:99?39..m.9:35389.mu;:.mco:mo__nam9:99539.PE659:.9::0£265maoucwEm:9:o.95.v2229,m_mom?25m9:8:6mm:5Swanmm:.9:n::o:99»;.3389:

m:22?n:.93

Emmi—ad.:0«w:929:8m9:959:<Z<_9:.9968EE8:509m893men.20..3020:9:mNEEcoim:8£8::9:0wEmEmcumEm9639::cm.mEmamE:@5389:new3:93:96%wE9m>m90E99226::09388m9:29:dammme9:E3:229:tacomm==EES:3.9me:m89::5.mmmwwmeozomm:o.5:869m$58me$9:.5meQEmemE:9.53:93;:o.uwixw5E:coszmEmm:.9:929:8289.0:mm;.9689:89:$389:5o“9:59Em:.::9:3:89.8:58659:mm;89:98m:9:$829:.fimbmmoxm.E:o
.mESmEmu9.68862:cm

8me5:3::9_E=o.9::2:9538:398mcficmtmaxmm_g.9:9863o..939m3Emm595:09:28o:mgmt:9:EbmxooEme\szm:3:053:639:BEBE.96meb.22038m.39255:98239.952me2:0599.08.9:Bocx.8;96:39:.2o:.939.oas;m38w:.82me.
.LmummI2mmaéoomass .zimsofiofiibméE8.=E.>;s<\a§

0812

0813

_umDEszucmemUmHzocxud+1+:+|+I+x+u+x+u+n+|+|+a+n+l+n+u+|+n+|+n+u+l+n+|+|+|+l+e+1+o+n+l+_uwDESZmocwswwm_+1+u+l+|+|+n+u+|+|+|+|+n+x+u+u+|+1+1+|+u+|+|+u+u+u+n+|+|+|+n+n+l+_unom:oHumCHummo_uuomwousom+1+1+|+|+v+|+|+n+n+|+|+l+n+u+|+|+u+u+u+|+|+|+|+u+|+u+|+|+u+J+|+u+ommnomwmNHomwwomwmNHomwhomwmNHo
m

H

mNNNNNNNNNNHHHHHHHHHH do»3$255835mtoamcmzmBEE9:B>o29onSamEEO...9:c_mcozmgaam9:“o.85..853855van._o:cooBo:.mEocmzcmm.2526_m:t_>mczwc_E._w.ucmmcEflEmumm.mwmwmmemczfigeL83::$33.05QB.1533:m539883.3cozmoEaEEooAugcgoéozowccoov.52633:3m$630.5.850mmEumntommv.QOH
Q0k.5md

..Ewmamz‘ummHQEHflflzfl.9:E958ma:8umcmfimm:8996;“m59863ctom.0.m:Emano<gman:0%agizzmn5:N8aézw"a:a:mien.an:0:at:an:858:a82588a92mzomosaohmmwas;at3grama9mm.msmkmobmm.928atno»a5.29.93atmopom:o:~u=nn<3039:...utom2owa--~8~a~:o...Ecofie5:529:28.3.235%;
0813

0814

.msnEaz

8&0.de.68E.m9.559:<z<_9:..mmmhomms.cm23:666.636t.96cozao6mm:2:08:5069:m55Awms:wumEmEmmm525meuwcozqo6amtm>m2569:.o.EmEgm__nm.mwc385866mm:..m:o.:qo
.EmEmmm9:5Emu

626858:6860BE9:68258mg.8.865.6m5mm:om:m5:2326>.5501.5939:.EmuEEOC:6cm66mm;9:$923.5595m53832new@5865no»68.5:$883:63:.EE5666$550:8:an5?.5:9:mE3:25-36mm69.6553mg6586565EEmuEmmi$6.61Emng.8669656mm;9:9.63.8:.55959:52c562365.5385562355$..E:wxomc0.52899:Soc688c.95.65m_693$25689.3ms65£6385596:6525::as.m_certsmum306:5:9:899:636>2:26686:5826:.8com:£062.35.589620$569:962E9835:595:08:009:9586meano65.9w:5.cmEmmm5555969.:585280no»9:6565.52658:.3392.mm“9:”:56E0.5282:85:536559.:>58flawemmmm56;.@56065602858N2569mm.26mm:meEmmm.555m55.mm555.»$8232wucmaummmeoEuSfi.o.cozomccoo10565.2.659:8655.5.3066955.nmmcmc>>“Emmy20:03:0068$0
Emu

6£6:=mem5=_Emcm=8.66m:5:o..262m55.95.636953629:5262.50M.65Emum5.656:2258552a0#8.28£535:8:an9.665%:m55;;6mm:“fwnt226:55:10
.6ch2698cozomccou

@556mmmmmmE.2:9:95:6.388..mm368:m_.6£556>m_66:55:52EmEmnmEocxu<m55359:836>9:65$6065.Ewcwc>>55$EmoEzgm66EEmEmum§026<o.29w_3.9,22..258.89:e565can9%3:25ng.8F59:.2668EwEmwm69:69:65$6065.6mcmc>>MamaEmoEtgw39¢66onEmmio66:65mum:och.cozowccoo63.;n5...9:6Eowamm53.8.26865mom:6.3<Mmmi6:200.598.668:63539:8.865.85.66:£5ucwEmwwm2.523Sun.9:9:2250a53508.3.52899:59.6283023:8:9:6.853:853mm9:$606566:2.:6666.589wmumEoiom282mm9:Eume238:2EmEmum§o§o<262538692:5:.0:96$5563no...9029685935::85:53.638EmEmmmm:9:55m.:5823m22&9..853:85:339:85m"585m235:08:00=Sm>o9:523Emu.2:35:53£5689:2:853%9:26:8023:52853%
.co=mo=aam$67.29;65m

cozowccoo65-2-659:>6552$8cozmczmmunew8589:3:56.Eon:2656mQ96tom83%
“em

Av9:9“:EmEmwmm56mez9:.5289.“ENBucmmcmmenEmwfi23or:E9:8326603m893292.::5.35a.wwmmmwwEmNEmouE6:38a9.65BE9.:o.9659:9.9:utmEmmwm62.8w_5::Emuan:9:.2253EoEmumno....vmung...I+|+|+|+|+x+1+n+u+|+|+|+|+...mumo_
+I+|+1+I+|+|+I+1+1+1+1+1+u+n+1+I+I+r+x+n+|+1+|+u+u+|+u+x+u+u+x+|+.Am:afiummv....mcofluao_+|+v+1+|+|+|+|+n+1+|+|+u+|+u+|+n+n+u+l+1+u+|+|+|+x+|+r+l+l+t+l+l+_uaucflomucomus_Esmxoozu+|+|+u+|+|+|+|+|+1+|+|+r+|+|+u+|+u+I+|+|+|+|+|+x+|+|+l+|+u+|+p+n+_SOUCflE_womam.Abo>umw0uv_uwmwuo_+|+|+|+I+|+|+1+|+n+n+1+1+|+|+n+l+1+u+»+n+u+l+|+|+|+u+1+x+a+|+n+u+

M:owa--~oo~a~:o

...<m:o:ao:psa\bfi£_>toQ.:E.>2>§\\d=;
0814

0815

.Hfiww0mm:{955:9:coE8;$50$889Go;EKOHmac2conmmmo.5m:mmc_>>o__m.8203.mcFEQ63:;m{9:52toumoEnEEoomEk.8tozm“ESEo
“25.052820.5

umm:>_coEEoo.EEEE9:9m65mmEE:ucmmcozmozaamm5togaam282953:34cozmo=aa<EEOP«E...
m:o=3=nn<in

Hmfiuucm.252m5mcfiaoccE95339:.2c2623.95:3mewEiEmmusoi..E:m«omc0.298%no:2..o595..929:$.85;£83.co=owccoo98-9-959:Hoton8:2:me9.:$5.52.951225::meo
.o0..8on>9:

newno::_.8930w.Em:m_£83:52.8589.:B868589:.m:8n5:9:35:52fol830m.65Am9:9“:Emhmmfiuan:mho$6:9:.EEo.523%an:.mmmaozI+x+|+|+n+|+n+n+n+|+|+z+x+...mumo.
+n+u+u+n+|+|+I+n+n+|+|+|+|+n+|+|+|+|+|+u+n+|+u+n+n+u+u+|+u+u+u+l+_528698_59:5_+|+|+a+u+|+|+|+n+n+|+n+r+|+|+|+x+|+|+|+|+u+u+u+u+u+u+x+I+|+|+r+|+_uuomcoHumcHummo_uuomwousom+u+n+u+n+|+|+1+n+|+|+|+n+|+u+u+u+u+z+|+|+|+|+u+|+|+u+n+n+|+n+u+u+HommnmmvmNHommnmmwmNHomwhmmvmNHommNNNNNNNNNNHHHHHHHHHH

.:o_.mu=qam9:L27868m$3052
wwmiuwn:m5282:5:tonmvum2w_cozoceEmEtawho:,coszEE.ucmEmEcm_Em.mm.526fist;o..8.m8:0:m_was.$288an:*0835m890939:293:65:89m.mmconm:new39%29:6m$62:.9:305mmcosm.wcozmeaqmmEom622mmAmwflcgomccouvEmamfic95-2-95cm$25.5E89.6me.103

QQD.NHWM2amaaoomafis...Ecocsngbee=ES.:E.>§§§;
0815

0816

.coowwEicm89386.0:___>>
9:9.5209::5635.68.9185359.:mm28.53.Ea£80.0539.:$55398..3253ucm68:83am6.8903ho23wmm_:528805cozmoEzEEShe:8m2958.o:m_5&8.6265mm::23:qumE.w<

EwEfiaw.m.n

.332,9543am“.meg03.26%8.3282w966w.238.38EA..n.w...m.~......ummamCr“:=mmz==nnew$03nanhucm8525:0BEE<..c_9588:8mcofigaam$9:B69:gm:2mafia<.30;2059m2953m::9?9.9___>>2888.9:2:99:£6.3665.09<.6398ka.
Awmmdmmsv8:9525

89:8EmEovucmmEmEouBEBEScamcoszBEhe$522355%65$25:..m§<20\2\m.6§_..mmmmmmmEocomE20.$3.30;659$386m9.5%5>8239:9.6$8:650hemamam5mcEthu2E99?9565m:mm>>o=m.9:3:2:m:890$525umxomm9:.6:50.AvmmF.__mI8:55at”:$01.2E6N.EmEmumcmEEESE9cocozbozs5xEoommqntéwWE.ucmAva?.==._->>Soos:.6”..m31336c_9.58we:8«cmemmcmEx536:ummmndzaolrucmEzzwcoSancho:.m:o_=uu<59%mm.o..3mm;N>n_s_zm*0mm:30532338388Em>om_mm._=5.mzzmc_9.6%:2m65mEmEmcowE5:83wuumA.$m.w,,..o,.m_.m_.N>n:>_zmvNCo_w.:.v>azzm185m:«96m9;can.82E833%2%?m_A.Nw=.fi.._u.lu..mmvn=>_zw.mmo_>wu€036:832.150»9639:8.mmmmnmumucosz..o_c_.cwEwmmcmEucmmwhznmooammccwu.8295EwEmmmcmEx8352295m9:...Q§2mo
.wEmEou

53>mazmmmEmcnew:9:hocozmaomwm9:mm=95mm.mwmmmfiumn:SEcozmfiowma:9:van$89.6525ho932:6w£mmccmu859mmCozuww:_Emu206$5965amazomeEmma95259:009:..mZQ..3030%:30¢a:22?E2509:$382.68.65$29.:28m:9:mzo=m9529.09:952mm9:E9:.EEumoEBou28m:flmon."523=mE-mamnewEmzéowE98:9:mem:m5333mom.th22.6mmmccwv6022.“.850Ron9:.iono.A.uumv2mm:L2quEwe;$50.0£52m9:$5522.23mm:tmwtto.aamfldm.mvmmmzmcflmcEmgeEwucwamvE-Ehotma.umwmn-__0m<cmjSPIVmmmzmcmgnet—ms..xwtmEf9:5cszs9mmmmma>>>>>>.Emtzu889:mEmnAavo;co_m_w>nth:5:5..mE2c_9:5>omm:c_9mn.th.09.29m;m:o_.m>.;>>>>>Vnw>>85>E._o>>9:558sz5:8mmcmcoxmLo.wins9:m_.820555cm;.5289»:9.:.mtIo.82.:.__m_._8:55Eh:30¢.23mm:oEoéomEES;«com9:@586..m0<mmm§kmzmmtgm»:ucm809.meBOmm/xw>=_ww_.ovmEmu<.195>9“..0EmfoémzEmmsmmwfibfix....@§.23.05mE2m>m:9:28:86:o9.088:839;.Amcoficflxm.62652:.gougingm_>__s_matummuMMWHucm.mmfl.monEucmJ9EE€02mmmmmmE:9:9:89.8%350:6mewww.de.523mo.:9:Ucww2E26__mE-wcm>>o=m2.oBEES9::0938m=mE-mcwwémn8m:m_QHEm.A.fi.m.m..:ummv.meE.9:$5:9:25:86hommcmcoxmm55.60205Emvcmfi9:m_60905$.95;:2229:59:.diam.Aggy8.565029E:5:563:25625892:.cm>:u-:cmEm95:mmtozwoam.Emu596::55329mm:m>>o=m$5.02<:9306o032850QOm:08E8h8%up“.waoE>cocm8.229:__m205325m:mm>>o=m:2:3:3:<..m.ES<...73.HQ$235.8.8;29:9.ucw.82$2288E.mzmcm:o..3:mm>>o=m.8205.Ewcm;BE9:ito
8awaéomass

 ..{£858.B:&b2£<€8.__E.333\\d§
0816

0817

.3Eumntowmu9686cCE9;~@5258“.BEBE9:.8cozmrEoE3:99.08mc_u_>oa2.850QO333QUE.mEocmEmmacmeaoouEr”:cozmctec.50>5n..mEmucEwBEEShoE._m_oEo9:32:8m>m§mFohmvan3805wEmucEm652:.9:82.8%880mm.cozmcgwmu55..cm£282.823%m53638m58.828%9m228.53.652:..665..me=0m<EmEm=m>m9m60895.wc__-comfim=m>m:8:=m9mwon—m.meEsoouan”:2:95:00.2.33chmm3.32miEN29.2396.883;6:89£23ch.326qume652:.
Eoc9.62.:2.m9map

.65259:.0808can2029.:29950::can3:55:29mmmoomc8Bumm.9:.9:cozm§2E230525.0mam.8:5mw_99:..35259:van28205EEOH9:38mcozmc:o_c_2:29.033255Ecomm;089:m7:wouhzowcozmctes.650.v

.mcozmeaam8ch9:02am:92503.2co_m_o>c8.8085.830598w:m_Amngum.>mo_oc_c.:m._wOc..mEmEc9_>cw50EE29?EmfimEKSE8mEmEcSECmz<4E638m8:8263:83%m.3953oz:9.:9:09.52me83%m55*cmm:m_Ami—2mmE5.9.:«as.20258.058.€956:newwuzs8E8.coEEoo>cm2.5m:>295>9:{036589.3.52:9:.3538:85m2;new.829.6202.mfoEmcnammcEwZQE>cm6>o022mmtoawcm:an:EEmmfiua$955n:$28.£5«a5:85.00ESmEmvucm-o_-u:mcm8339a6265«o:.mDDV.38;9.29:595.8cozomcconu.586_m:t_>652::m823510+.mEo.m>w.mcszSEEooécmo.60;E259max.a:cammcozmeaa<.EEOHho298..8205m:o_.m>9.:52289:30:29ms.95%o93mm938.2052:5.822;“=th.umanor.
Mai/gumkaIIlIIlI|+lllilnllllal_A111111-1v_Nuw:nsm_Humcasm_A......-1v.Hxuosumcnsm

_llllllllllllI:
 :owaéoomass.ézofiesaise_\E8.=E.>;§\\HQE_

0817

0818

{0362coszCDOu—wocwfiwECOszFwZu—WZ823:8“.mocwfiw.m:o..mz...wz8.2%$6:5.:00:o..mE._2:.foEmzw.>.<zo.zaccomw.6:A95.0mco....E.mgnmmws.mans..o::oowwwoom3.va:0.E2quO<S.5.0mmcozmwfifivcfim:o_.mo_::EEoom_w._.:o.:D:o..mo.::EEoum.m.r.m:o..m::w.:.H5:
228w5525009cozmufifiucsw:85.85590.m:o=m:..w.:_Om..8205.meE.a.8:0”.xmmhm:.:mm:.m:m852:.“Pm.9.909.52mmczwmcficm652:.0mm..829;wmmmwms.62:00652:.n=20.>..:o£:<28:52umcm.mm<652:.<2<.Emommm...>..o<652:.m<..822;53:9...28.8....95...mmm:m:m..germs.:8:ng.SFImEQn.:o..om::oo:m.:.2.5.96:80EwEEw>oo.wjn=moomonE.08:3:o..mE:£:.50>5”.Cr”..820553:9»2.“.at88:259mm.8595.082.”..00“.mi:20.6258.22.5339“.O<u8530.oEmEtmqwo.03DocE2369.8259:00mzo>ocwm<986:...5533.umo:m>u<mwcwfio<am<ommcmzoxw.mEQE.m.o:mEEoox5mmEEEoom>=m=:w:oo29.3.8ucmLafimflwh.mco..me.:..ono.:man.m>moEgszow3.3.8me.8291$2680690m.mom.80.).5.29..mzoco._:u:>m<.>.h<$52885:o..mE..o.:.:82:00Emucmfi:mo_:mE<..om<€02.62>ocmm<£8.65:23meowocm>n<hmz<am<.82058.5.0memmm€u<nE<

20:35.53.u:mmE>:o:u<.m

.wmo.30mCO:NE.O.E_
:oE:m>m2EB:mEmEsoou$9....08::..<.Qdmfi0mm.....m:o_.mm:OwaD559:.umocwcmaxm.uwxw<2:95:009m:m3m:<“225:...E:32.820:0cf...u:mGmflfldmfl.._m:o..mm:OLow:652:.262.vmxmm3:95:000.m:m>>m:<-m:w3m:<vcm£02320:0.>u...“mam:659:.o.592:.5.22.5:.09mm0<n.:0303...5300,ucm652:.9.:93360330u:m20w.E0:m:_m:m:.832:o:mnEJ:m:8:56:m:>9:9m:AGE.cozwmnonmxm<3.823.”.

Sowm:--moo~a~:o

.:{mcotmoznzmrfifie<58._.E.>»>§>\\dtc
0818

0819

 $0900_mgmz_mcozmo£5:05_0.80550_906m.wwu_zsu.w.._m:o_ww£9m_mes.Hiwcaamnuzuw,_w.1...__100_.<_.0580:.20.m‘muw.&..§dijz00.0wmmEmEEoo.089880.Uw>hmwwm2:95=<.oc.wm.m_oowm<=._Iroomooommmmr.wmmw.nmmvmmmrmmmr©Ewing Emhwmwxahmcggom.BBEEE.0E8_E.>>>>>>\\Ua“.mfigaw@~mmm&300_.s©.w.m:081m_.”__mE-m06:83-30-080+82%98528-2980I03.8S6.35.8.280.5029:09$2082___256.0.3..0300

39.22935.3.0

.8205E05900am:50:$980.92080d..82056:000co_mm_EwcmC50...monE.08:8$500056000::Ohm_80.05EmEmmmCmE0:03.020.08%55.2w60205003:9...:05.29:5atam83.6w8003308235.0050226onwn:0:3.mtwm53m0.520800005800001055.8205003952295:05_5.5.820500:28.058900.48555am<m.8905E_0n_-2-.c_0n_555«$5£05.wmtocm0000MEMOco=owc0022£9:2960000_wOMNawaéomaqs _...<m=o_§_saEse_>:8:E.a§\\a§_
0819

0820

The Common Object Request Broker:

Architecture and Specification

Revision 2.6
December 2001

0820

0821

Copyright 1998, 19.99, Alcatel

Copyright 1997, 1998, 1999 BEA Systems, Inc.

Copyright 1995, 1996 BNR Europe Ltd.
Copyright 1998, Borland International

Copyright 1998, Cooperative Research Centre for Distributed Systems Technology (DSTC Pty Ltd)
Copyright 2001, Concept Five Technologies

Copyright 1991, 1992, I995, 1996, Digital Equipment Corporation

Copyright 2001, Eternal Systems, Inc.

Copyright 1995, 1996, 1998, Expersoft Corporation

Copyright 1996, 1997 FUJITSU LIMITED

Copyright 1996, Genesis Development Corporation

Copyright 1989- 2001, Hewlett-Packard Company

Copyright 2001, I-IighComm

Copyright 1998, I999, Highlander Communications, L.C.

Copyright 1991, 1992, I995, I996 I-IyperDesk Corporation

Copyright 1998, 1999, lnprise Corporation

Copyright 1996 - 2001, International Business Machines Corporation
Copyright 1995, I9961CL, pIc

Copyright 1998 - 2001, lnprise Corporation

Copyright 1998, International Computers, Ltd.

Copyright 1995 - 2001, IONA Technologies, Ltd.

Copyright 1998 - 2001, Lockheed Martin Federal Systems, Inc.
Copyright 1998, 1999, 2001, Lucent Technologies, Inc.

Copyright 1996, 1997 Micro Focus Limited

Copyright 1991, 1992, 1995, 1996 NCR Corporation

Copyright 1998, NEC Corporation -
Copyright 1998, Netscape Communications Corporation
Copyright 1998, I999, Nortel Networks

Copyright 1998, 1999, Northern Telecom Corporation

Copyright 1995, 1996, 1998, Novell USG

Copyright 1991, 1992, 1995, 1996 by Object Design, Inc.

Copyright 1991- 2001 Object Management Group, Inc.

Copyright 1998, 1999, 2001, Objective Interface Systems, Inc.

Copyright 1998, 19.9.9, Object-Oriented Concepts, Inc.

Copyright I998, 2001, Oracle Corporation

Copyright 1998, PeerLogic, Inc.

Copyright 1996, Siemens Nixdorf Informationssysteme AG

Copyright 1991 - 200], Sun Microsystems, Inc.

Copyright 1995, I996, SunSoft, Inc.
Copyright 1996, Sybase, Inc.

Copyright 1998, Telefonica lnvestigacién y Desarrollo S.A. Unipersonal

Copyright 1998, TIBCO, Inc.

Copyright 1998, I999, Tri-Pacific Software, Inc.
Copyright 1996, Visual Edge Software, Ltd.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,

worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified

version. Each of the copyright holders IiSted above has agreed that no person shall be deemed to have infringed the copyright

in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

0821

0822

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an

Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT

MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF

FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the

companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the

sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or

other special designations to indicate compliance with these materials. This document contains information which is protected
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in

subdivision (c) (I) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, C085, and IIOP are trademarks of the Object Management Group, Inc.

X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

. All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to

report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page ht!p://_wwwomg.org, under Documents & Specifications, Report a Bug/Issue.

0822

08230823

0824

Contents

Preface ; . xxxvii

1. The Object Model . 1-1

1.1 Overview . 1-1

1.2 Object Semantics . ._ . 1-2
1.2.1 Objects . 1-2

1.2.2 Requests . 1-3

1.2.3 Object Creation and Destruction 1-4

1.2.4 Types . 1-4

1.2.4.1 Basic types . 14
1.2.4.2 Constructed types 1-5

1.2.5 Interfaces . 1-6

1.2.6 Value Types. 1-6
1.2.7 Abstract interfaces . 1-7

1.2.8 Operations . 1-7
1.2.8.1 Parameters . 1-8
1.2.8.2 Return Result . 1-8

1.2.8.3 Exceptions . 1-8
1.2.8.4 Contexts . 1-8
1.2.8.5 Execution Semantics 1-8

1.2.9 Attributes . 1-9

1.3 Object Implementation . 1-9

1.3.1 The Execution Model: Performing Services 1-9
1.3.2 The Construction Model . 1-10

2. CORBA Overview . 2-1

2.1 Structure of an Object Request Broker 2-1

2.1.1 Object Request Broker . 2-6
2.1.2 Clients . 2-7

2.1.3 Object implementations . 2-7

2.1.4 Object References . 2-8

December 2001 Common Object Request BrokerArchitecture (CORBA). v2.6 ' v

0824

0825

Contents

vi

2.1.5 OMG Interface Definition Language 2-8

2.1.6 Mapping of OMG IDL to Programming Languages 2-8
2.1.7 Client Stubs . 2-9

2.1.8 Dynamic Invocation Interface. 2-9

2.1.9 Implementation Skeleton 2-9

2.1.10 Dynamic Skeleton Interface 2-10

2.1.11 Object Adapters . 2-10
2.1.12 ORB Interface . 2-10

2.1.13 Interface Repository . 2-11

2.1.14 Implementation Repository. 2-11

2.2 Example ORBs . 2-ll

2.2.1 Client- and Implementation-resident ORB 2-11
2.2.2 Server-based ORB . 2-12

2.2.3 System-based ORB . 2-12

2.2.4 Library-based ORB . 2-12

2.3 Structure ofa Client . 2-12

2.4 Structure of an Object Implementation 2-13

2.5 Structure of an Object Adapter . 2-15

2.6 CORBA Required Object Adapter . 2-17

2.6.1 Portable Object Adapter . 2-17

2.7 The Integration of Foreign Object Systems 2-17

3. OMG IDL Syntax and Semantics . 3—1

3.1 Overview . 3-2

3.2 Lexical Conventions. 3-3
3.2.1 Tokens . 3-5

3.2.2 Comments . 3-6

3.2.3 Identifiers . 3-6

3.2.3.1 Escaped Identifiers 3-6

3.2.4 Keywords . 3-7
3.2.5 Literals . 3-8

3.2.5.1 Integer Literals . 3-8
3.2.5.2 Character Literals 3-9

3.2.5.3 Floating-point Literals 3-10
3.2.5.4 String Literals . .' 3-10
3.2.5.5 Fixed-Point Literals 3-11

3.3 Preprocessing .~ 3-11

3.4 OMG IDL Grammar . 3-12

3.5 OMG IDL Specification . 3-16

3.6 Module Declaration . 3-17

3.7 Interface Declaration . 3-17

3.7.1 Interface Header . 3-17

3.7.2 Interface Inheritance Specification 3-18

3.7.3 Interface Body . 3-18

Common Object Request BrnkerArchitecmre (CORBA). v2.6 December 2001

0825

0826

Contents

3.7.4 Forward Declaration . 3-19

3.7.5 Interface Inheritance . 3-19

3.8 Value Declaration . 3-24

3.8.1 Regular Value Type . 3-24
3.8.1.1 Value Header . 3-24
3.8.1.2 Value Element . 3-25

3.8.1.3 Value Inheritance Specification 3-25
3.8.1.4 State Members . 3-25
3.8.1.5 Initializers . 3-26

3.8.1.6 Value Type Example 3-26

3.8.2 Boxed Value Type . 3-26

3.8.3 Abstract Value 'Iype . 3-27
3.8.4 Value Forward Declaration 3-28

3.8.5 Valuetype Inheritance . 3-28

3.9 Constant Declaration . 3—29

3.9.1 Syntax . 3-29
3.9.2 Semantics . 3-30

3.10 Type Declaration . 3-33

3.10.1 Basic Types . 3-34

3.10.1.1 Integer Types . 3-35
3.10.1.2 Floating-Point Types 3-36
3.10.1.3 CharType .. 3-36
3.10.1.4 Wide Char Type 3-36
3.10.1.5 Boolean Type . . , 3-36
3.10.1.6 Octet Type .. 3-36
3.10.1.7 Any Type .. 3-37

3.10.2 Constructed Types 3-37
3.10.2.1 Structures . 3-37
3.10.2.2 Discriminated Unions 3-37

3.10.2.3 Constructed Recursive Types and
lForward Declarations V3-39

3.10.2.4 Enumerations' . 341

3.10.3 Template Types . 3-41

3.10.3.1 Sequences .. 3—41
3.10.3.2 Strings . 3-42
3.10.3.3 Wstrings . 3-42
3.10.3.4 Fixed Type . 343

3.10.4 Complex Declarator. 3-43
3.10.4.1 Arrays .. 3-43

3.10.5 Native Types . 3-43

3.11 Exception Declaration . 3-47

3.12 Operation Declaration . 3-47

3.12.1 Operation Attribute . 3-48
3.12.2 Parameter Declarations . 3-48

3.12.3 Raises Expressions . 3-49

3.12.4 Context Expressions . 3-49

3.13 Attribute Declaration . 3-50

3.14 CORBA Module .. 3-51

December 2001 Common Object Request BrokerArchitecture (CORBA), v2.6 vii

0826

0827

Contents

3.15 Names and Scoping . 3-52

3.15.1 Qualified Names . 3.52

3.15.2 Scoping Rules and Name Resolution 3-54

3.15.3 Special Scoping Rules for Type Names 3-57

4. ORB Interface . 4-1

4.1 Overview . 4-1

4.2 The ORB Operations . 4-2

4.2.1 ORB Identity . 4-7
4.2.1.1 id . 4-7

4.2.2 Converting Object References to Strings 4-8

4.2.2.1 object_to_string . 4-8
4.2.2.2 string_to_object . 4-8

4.2.3 Getting Service 1nformation 4-8
4.2.3.1 get_service_information 4-8

4.2.4 Thread-Related Operations. L 4-9

4.2.4.1 work_pending . 4-9
4.2.4.2 perform_work . 4-9
4.2.4.3 run . 4-10
4.2.4.4 shutdown . 4-10

4.2.4.5 destroy' .. 4-11

4.3 Object Reference Operations . 4-12

4.3.1 Determining the Object Interface 4-13

4.3.1.1 get_interface . 4-13
4.3.2 Duplicating and Releasing Copies of

Object References .. 4-14
4.3.2.1 duplicate . 4-14
4.3.2.2 release . 4-14

4.3.3 Nil Object References . 4-14
4.3.3.1 is_ni1 . 4-14

4.3.4 Equivalence Checking Operation 4-15
4.3.4.1 is_a . 4-15

4.3.5 Probing for Object Non-Existence 4-15
4.3.5.1 non_existent . 4-15

4.3.6 - Object Reference Identity 4-16
4.3.6.1 Hashing Object Identifiers 4-16
4.3.6.2 Equivalence Testing 4-16

4.3.7 Type Coercion Considerations 4-17

4.3.8 Getting Policy Associated with the Object 4-17
4.3.8.1 get_policy . 4-17
4.3.8.2 get_client_policy 4-18
4.3.8.3 get_policy_overridcs 4-19

4.3.9 Overriding Associated Policies on an

Object Reference . 4-19

4.3.9.] set_policy_overrides 4-19
4.3.10 Validating Connection . 4-20

4.3.10.1 validate_connection , . 4-20

4.3.1] Getting the Domain Managers Associated with
the Object . 4-20

4.3.11.1 get_domain_managers 4-20

4.4 ValueBase Operations . 4-21

viii Common Object RequesthkerArchilecture (CORBA). v2.6 December 2001

0827

0828

Contents

4.5 ORB and 0A Initialization and Initial References 4-21

4.5.1 ORB initialization . 4-22

4.5.2 Obtaining Initial Object References 4-23

4.5.3 Configuring lnitial Service References 4-26
4.5.3.1 ORB-specific Configuration 4-26
4.5.3.2 ORBlnitRef . 4-26

4.5.3.3 ORBDefaultlnitRef' 4-27

4.5.3.4 Configuration Effect on
resolve_initial_references 4-27

4.5.3.5 Configuration Effect on list_initial_services 4-28

4.6 Context Object . 4-28
4.6.1 Introduction . 4-28

4.6.2 Context Object Operations 4-29

4.6.2.1 get_default_context 4-30
4.6.2.2 set_one_value . 4-30
4.6.2.3 set_values . 4-30

4.6.2.4 get_va1ues . 4-31
4.6.2.5 delete_values . 4-31
4.6.2.6 create_child . 4-32
4.6.2.7 delete . 4-32

4.7 Current Object . 4-32

4.8 Policy Object . 4-33

4.8.1 Definition of Policy Object 4-33

4.8.1.1 Copy . 4-34
4.8.1.2 Destroy . 4-34
4.8.1.3 Policy_type . 4-34

4.8.2 Creation of Policy Objects 4-34

4.8.2.1 PolicyErrorCode » 4-35
4.8.2.2 PolicyError . 4-35
4.8.2.3 Create_policy . 4-35

4.8.3 Usages of Policy Objects . 4-36

4.8.4 Policy Associated with the Execution Environment 4-37

4.8.5 Specification of New Policy Objects 4-37
4.8.6 Standard Policies . 4-39

4.9 Management of Policies . 4-43

4.9.1 Client Side Policy Management 4-43

4.9.2 Server Side Policy Management' 4-43

4.9.3 Policy Management Interfaces 4-44

' 4.9.3.1 interface PolicyManager 4-44
4.9.3.2 interface PolicyCurrent 4-46

4.10 Management of Policy Domains . 4-46

4.10.1 Basic Concepts . 4-46

4.10.1.1 Policy Domain . 4-46
4.10.1.2 Policy Domain Manager 4-47
4.10.1.3 Policy Objects . 4-47
4.10.1.4 Object Membership of Policy Domains 4-47
4.10.1.5 Domains Association at Object

Reference Creation 4-48

4.10.1.6 implementor’s View of Object Creation 4—48

4.10.2 Domain Management Operations. 4-49

December 2001 Common Object Request BrnkerArchitecmre (CORBA). v2.6 ix

0828

0829

Contents

4.10.2.7 Domain Manager 4-50
4.10.2.8 Construction Policy 4-51

4.11 TypeCodes . 4-51

4.11.1 The TypeCode Interface . 4-52

4.11.2 'IypeCode Constants . 4-56

4.11.3 Creating TypeCodes . 4-57

4.12 Exceptions . 4-61
4.12.] Definition of Terms . 4-61

4.12.2 System Exceptions . 4-62

4.12.3 Standard System Exception Definitions 4-63
4.12.3.1 UNKNOWN . 4-65

4.12.3.2 BAD_PARAM 4-65
4.12.3.3 NO_MEMORY 4-65
4.12.3.41MP_L1M1T . 4-66
4.12.3.5 COMM_FA1LURE 4-66
4.12.3.6 lNV_OBJREF . 4»66
4.12.3.7 NO_PERMJSSION 4-66
4.12.3.8 INTERNAL . 4-66
4.12.3.9 MARSHAL . 4-66
4.12.3.101N1T1AL12E . 4-67

4.12.3.11 NO_1MPLEMENT 4-67
4.12.3.12 BAD_TYPECODE 4-67
4.12.3.13 BAD_OPERATION 4-67
4.12.3.14 NO_RESOURCES 4-67
4.12.3.15 NO_RESPONSE 4-67
4.12.3.16 PERSIST_STORE 4-67
4.12.3.17 BAD_lNV__ORDER 4-67
4.12.3.18 TRANSIENT . 4-68

4.12.3.19 FREE_MEM . 4-68
4.12.3.201NV_1DENT . 4-68

4.12.3.21 1NV__FLAG . ’4-68
4.12.3.22 INTF_REPOS 4-68
4.12.3.23 BAD_CONTEXT 4-68
4.12.3.24 OBJ_ADAPTER 4-68
4.12.3.25 DATA_CONVERSION 4-68
4.12.3.26 OBJECT_NOT_EXlST 4-69
4.12.3.27 TRANSACTION_REQU1RED' 4-69
4.12.3.28 TRANSACT10N_ROLLEDBACK . . 4-69
4.12.3.29 lNVAL1D_TRANSACT10N 4-69
4.12.3.301NV_POL1CY 4-69
4.12.3.31 CODESETJNCOMPATIBLE 4-69
4.12.3.32 REBJND . 4-69
4.12.3.33 TIMEOUT . 4-70

4.12.3.34 TRANSACT10N_UNAVA1LABLE . 4-70
4.12.3.35 TRANSACTION_MODE 4-70

4.12.3.36 BAD_QOS . 4-70

4.12.4 Standard Minor Exception Codes 4-70

5. Value Type Semantics . 5-1

5.1 Overview . 5—1

5.2 Architecture . 5-2

5.2.] Abstract Values . 5-3

x Common Object Request BrnkerArchiteeture (CORBA). v2.6 December 2001

0829

0830

Contents

5.2.2 Operations . 5-3

5.2.3 Value Type vs. Interfaces . 5-4

5.2.4 Parameter Passing . 5-4
5.2.4.1 Value vs. Reference Semantics ' 5-4

5.2.4.2 Sharing Semantics 5-4
5.2.4.3 Identity Semantics 54
5.2.4.4 Any parameter type 5-5

5.2.5 Substitutability Issues . 5-5

5.2.5.1 Value instance -> Interface type 5-5
5.2.5.2 Value Instance -> Abstract interface type 5-5
5.2.5.3 Value instance -> Value type 5-5

5.2.6 Widening/Narrowing . 5-6

5.2.7 Value Base Type . 5-6

5.2.8 Life Cycle issues . 5-7
5.2.8.1 Creation and Factories 5-7

5.2.9 Security Considerations . 5-7
5.2.9.1 Value as Value . 5-8

5.2.9.2 Value as Object Reference 5-8

5.3 Standard Value Box Definitions . 5-9

5.4 Language Mappings . 5-9

5.4.1 General Requirements . 5-9

5.4.2 Language Specific Marshaling 5-9

5.4.3 Language Specific Value Factory Requirements . 5-9
5.4.4 Value Method Implementation 5-10

5.5 Custom Marshaling . 5-10

_ 5.5.1 Implementation of Custom Marshaling 5-11

5.5.2 Marshaling Streams. 5-11

5.6 Access to the Sending Context Run Time 5-18

6. Abstract Interface Semantics . 6-1

6.1 Overview . 6-1

6.2 Semantics of Abstract Interfaces . 6-1

6.3 Usage Guidelines . 6-3

6.4 Example . 6-3

6.5 Security Considerations ; 6-4

6.5.1 Passing Values to Trusted Domains 6-4

7. Dynamic Invocation Interface . 7-1

7.1 Overview . ‘. . . . 7-1

7.1.1 Common Data Structures 7-2

7.1.2 Memory Usage . 7-4

7.1.3 Return Status and Exceptions 7-4

7.2 Request Operations . 7-4

7.2.1 creatc_rcquest . 7-5

7.2.2 add_arg . 7-7
7.2.3 invoke . 7-8

December 2001 Common Object Request Broker Architecture (CORBA). v2.6 xi

0830

0831

Contents

7.2.4 delete . 7-8

7.2.5 send . 7-8

7.2.6 poll_response . 7-9

7.2.7 get_response . 7-9

7.2.8 sendp . 7-10

7.2.9 prepare . 7-10
7.2.10 sendc . 7-10

7.3 ORB Operations . 7-11

7.3.1 send_multiple_requests . 7-11

7.3.2 get_next_response and poll_next_response 7-11

7.4 Polling . 7-12

7.4.1 Abstract Valuetype Pollable 7-14

7.4.1.1 is_ready . 7-14
7.4.1.2 create_pollable_set 7-14

7.4.2 Abstract Valuetype DllPollable 7-14
7.4.3 interface PollableSet . 7-14

7.4.3.1 create_dii__pollable 7-15
7.4.3.2 add_pollable . 7-15
7.4.3.3 get_ready_pollable 7-15
7.4.3.4 remove . 7-16

7.4.3.5 number_lefi . 7-16

7.5 List Operations . 7-16
7.5.1 create_list . 7-17

7.5.2 add_item . 7-17
7.5.3 free . 7-17

7.5.4 free_memory . 7-18

7.5.5 get_count . 7-18

7.5.6 create_operation_list . 7-18

8. Dynamic Skeleton Interface . 8-1

8.1 Introduction . 8-1

8.2 Overview . 8-2

8.3 ServerRequestPseudo-Object . 8-3

8.3.1 ExplicitRequest State:

ServerRequestPseudo-Object 8-3

8.4 DSI: Language Mapping . 8-4

8.4.1 ServerRequest’s Handling of Operation Parameters 8-4

8.4.2 Registering Dynamic Implementation Routines . 8-5

9. Dynamic Management of Any Values . 9-1

9.1 Overview . 9-1

9.2 DynAny APl . 9-3

9.2.1 Locality and Usage Constraints 9-9

9.2.2 Creating a DynAny Object 9-9

9.2.3 The DynAny Interface . 9-11
9.2.3.1 Obtaining the TypeCode associated

xii Common Object Requexl Broker A rch itecture (CORBA). v2. 6 December 2001

0831

0832

Contents

with a DynAny object 9-11
9.2.3.2 Initializing a DynAny object from another

DynAny object . 9-12
9.2.3.3 Initializing a DynAny object from an any

value . 9-12

9.2.3.4 Generating an any value from a DynAny
object . 9-12

9.2.3.5 Comparing DynAny values 9-12
9.2.3.6 Destroying a DynAny object 9-13
9.2.3.7 Creating a copy ofa DynAny object 9-13
9.2.3.8 Accessing a value of some basic type in

a'DynAny object 9-13
9.2.3.9 Iterating through components of a DynAny 9-15

9.2.4 The DynFixed Interface . 9-16

9.2.5 The DynEnum Interface . 9-16

9.2.6 The DynStruct Interface . 9-17

9.2.7 The DynUnion interface . 9-19

9.2.8 The DynSequence Interface 9-21

9.2.9 The DynArray Interface . 9-22

9.2.10 The DynValueCommon Interface 9-23

9.2.11 The DynValue Interface . 9-24

9.2.12 The DynValueBox Interface 9-24

9.3 Usage in C++ Language . 9-25

9.3.1 Dynamic creation of CORBAzzAny values 9-25

9.3.1.1 Creating an any that contains a struct . . . 9-25
9.3.2 Dynamic interpretation of CORBA::Any values. 9-26

9.3.2.1 Filtering ofevents-9-26

10. The Interface Repository . 10-1

10.1 ' Overview .. 10-1

10.2 Scope of an Interface Repository . 10-2

10.3 Implementation Dependencies . . .I [0-4 r
10.3.1 Managing Interface Repositories 10-4

10.4 Basics . [0-5

10.4.] Names and Identifiers . 10-6

10.4.2 Types and Tychodes . 10-6

10.4.3 Interface Repository Objects 10-6

10.4.4 Structure and Navigation of the Interface

Repository . 10-7

10.5 Interface Repository Interfaces . 10-9

10.5.1 Supporting Type Definitions 10-10

10.5.2 lRObject . 10-11
10.5.2.1 Read Interface . 10-11
10.5.2.2 Write Interface . 10-11

10.5.3 Contained . 10-11

10.5.3.1 Read Interface . 10-12
10.5.3.2 Write Interface . 10-13

10.5.4 Container . 10-14

10.5.4.1 Read Interface . 10-17

December 2001 Common Object Request BrakerArchitecture (CORBA). v2.6 xiii

0832

0833

Contents

10.5.4.2 Write Interface . 10-18

10.5.5 IDL’Iype . 10-19

10.5.6 Repository . 10-20
10.5.6.1 Read Interface . 10-21
10.5.6.2 Write Interface . 10—21

10.5.7 ModuIeDef . 10-22

10.5.8 ConstantDefV 10-22
10.5.8.1 Read Interface . 10-22
10.5.8.2 Write Interface . 10-23

10.5.9 TypedefDef . 10-23
10.5.10 StructDef . 10-23

10510.1 Read Interface 10-24
10510.2 Write Interface 10-24

10.5.11 UnionDef. 10-24

10511.1 Read Interface 10-24
10511.2 Write Interface 10-25

10.5.12 EnumDef. 10-25

10512.1 Read Interface 10-25
10512.2 Write Interface 10-25

10.5.13 AIiasDef . 10-25

10513.1 Read Interface 10-26
10513.2 Write Interface 10-26

10.5.14 PrimitiveDef . 10-26

10.5.15 StringDef . 10-26

10.5.16 WstringDef7 .-. . . . 10-27
10.5.17 FixedDef . 10-27

10.5.18 SequenceDef . 10-27
10518.1 Read Interface 10-28
10.5.18.2 Write Interface 10-28

10.5.19 ArrayDef. 10-28
10519.1 Read Interface 10-28
10.5.19.2 Write Interface 10-28

10.5.20 ExceptionDef . 10—29
10520.1 Read Interface 10-29
10520.2 Write Interface 10-29

10.5.21. AttributeDef . 10-29

10521.1 Read Interface 10-30
10521.2 Write Interface 10-30

10.5.22 OperationDef . 10-30
10522.1 Read Interface 10-31
10522.2 Write Interface 10-32

10.5.23 InterfaceDef . 10-32

10523.1 Read Interface 10-33
10523.2 Write Interface 10-34

10.5.24 AbstractInterfaceDef. -. . . 10-34

10524.1 Read Interface 10-34
10524.2 Write Interface 10-35

10.5.25 LocallnterfaceDef . 10-35

10525.1 Read Interface 10-36
10525.2 Write Interface 10-36

10.5.26 ValueMembchef . 10-37

10526.1 Read Interface 10-37
10526.2 Write Interface 10-38

xiv Common Object Request BrnkerArchitecture (CORE/1)_ v2.6 December 2001

0833

0834

Contents

December 2001

10.5.27 ValueDef . 10-38
10.5.27.1 Read Interface 10-40
10527.2 Write Interface 10-40

10.5.28 ValueBoxDef. 10-41

10.5.28.1 Read Interface 10-41
105282 Write Interface 10-41

10.5.29 NativeDef . 10-41

10.6 RepositoryIds . 10-42
10.6.1 OMG IDL Format . 10-42

10.6.2 RMI Hashed Format . 10-43

10.6.3 DCE UUlD Format . 10-44

10.6.4 LOCAL Format . 10-45

10.6.5 Pragma Directives for Repositoryld 10-45

10.6.5.1 The 1D Pragma 10-45
10.6.5.2 The Prefix Pragma 10-45
10.6.5.3 The Version Pragma 10-48
10.6.5.4 Generation of OMG IDL - Formatle . 10—49

10.6.6 For More Information . 10-50

10.6.7 Repositoryle for OMG-Specified Types... 10-50

10.7 OMG IDL for Interface Repository 10-51

11. The Portable Object Adapter . 11-1

11.1 Overview .. 11-1

11.2 Abstract Model Description . 11-2

11.2.1 Model Components . 11-2
11.2.2 Model Architecture . 11-4

11.2.3 POA Creation . - 11-6

11.2.4 Reference Creation . 11-7

11.2.5 Object Activation States . 11-8

11.2.6 Request Processing . 11-9

11.2.7 Implicit Activation . 11-10

11.2.8 Multi-threading . ll-ll
11.2.8.1 POA Threading Models 11-11
11.2.8.2 Using the Single Thread Model 11-11
11.2.8.3 Using the ORB Controlled Model 11-12
11.2.8.4 Using the Main Thread Model 11-12
1 1.2.8.5 Limitations When Using Multiple

I Threads . 11-12

11.2.9 Dynamic Skeleton Interface 11-12

11.2.10 Location Transparency . 11-14

11.3 Interfaces . 11-14

11.3.] The Servant IDL Type .. 11-15

11.3.2 POAManager Interface . 11-15
11.3.2.1 Processing States 11-16
11.3.2.2 activate . 11-18

1 1.3.2.3 hold_requests . 11-18
1 1.3.2.4 discard_requests 1 1-19
1 1.3.2.5 deactivate . 11-19

11.3.2.6 get__state . 11-20

Common Object Request BrokerArchitecture (CORBA). v2.6 xv

0834

0835

Contents

11.3.3 AdapterActivator Interface 11-20

11.3.3.1 unknown__adapter 11-20
11.3.4 ServantManager Interface 11-22

11.3.4.1 Common Information for

Servant Manager Types 11-22
11.3.5 ServantActivator Interface 11-23

11.3.5.1 incarnate .. 11-23
11.3.5.2 etherealize . 11-24

11.3.6 ServantLocator Interface 11-25

11.3.6.1 preinvoke . 11-26
11.3.6.2 postinvoke . 11-27
1 1.3.6.3 ServantLocator and Location

Determination . 1 1-27

11.3.7 POA Policy Objects . 11-28

11.3.7.1 Thread Policy . 11-28
11.3.7.2 Lifespan Policy 11-29
11.3.7.3 Object 1d Uniqueness Policy 11-29
11.3.7.4 Id Assignment Policy 11-30
11.3.7.5 Servant Retention Policy 11-30
11.3.7.6 Request Processing Policy 11-31
11.3.7.7 Implicit Activation Policy 11~32

11.3.8 POA Interface . 11-33

11.3.8.1 create_POA . 11-33
11.3.8.2 find_POA . 11-34

11.3.8.3 destroy . 11-34
1 1.3.8.4 Policy Creation Operations 11-35
11.3.8.5 the_name . 11-36

11.3.8.6 the_parent . 11-36
11.3.8.7 the_children . , . 11-36

11.3.8.8 the_POAManager 11-36
11.3.8.9 the_activator . 11-36

11.3.8.10 get_servant_manager 11-37
11.3.8.11 set_servant_manager 11-37
11.3.8.12 get_servant .. 11-37
11.3.8.13 set_servant . 11-37

11.3.8.14 activate_object 11-38
1 1.3.8.15 activate_object_with_id 11-38

1 1.3.8.16 deactivate_object 11-38
11.3.8.17 create_reference 11-39
11.3.8.18 create_reference_with_id 1 1-39
11.3.8.19 servant_to_id . 11-40
1 1.3.8.20 servant_to_reference 11-41
11.3.8.21 reference_to_servant 11-41
1 1.3.8.22 reference_to_id 11-42
11.3.8.23 id_to_servant . 11-42
1 1.3.8.24 id_to_reference 11-42
11.3.8.25 id .. 11-42

11.3.9 Current Operations . 11-43

11.3.9.1 get_POA . 11-43
1 1.3.9.2 get_object_id . 11-43
I 1.3.9.3 get_reference . 11-43
11.3.9.4 get_servant . 11-44

11.4 IDL for PortableServer Module . 11-44

11.5 UML Description of PortableServer 11-50

xvi Common Object Request BrokerArchiteclure (CORBA), v2.6 December 2001

0835

0836

Contents

11.6 Usage Scenarios . 11-52

11.6.1 Getting the Root POA . 11-52

11.6.2 Creating a POA . 11-53

11.6.3 Explicit Activation with POA-assigned Object Ids 11-53

11.6.4 Explicit Activation with User-assigned Object Ids 11-54

11.6.5 Creating References before Activation 11-55

11.6.6 Servant Manager Definition and Creation 11-55

11.6.7 Object Activation on Demand 11-57

11.6.8 Persistent Objects with POA—assigned Ids 11-59

11.6.9 Multiple Object Ids Mapping to a Single Servant 11-59

11.6.10 One Servant for All Objects 11-59

11.6.11 Single Servant, Many Objects and Types,

Using DSI . 11-62

12. Interoperability Overview . 12-1

12.1 Elements of Interoperability . 12-1

12.1.1 ORB Interoperability Architecture 12-2

12.1.2 Inter-ORB Bridge Support 12-2

12.1.3 General Inter-ORB Protocol (GlOP) 12-3

12.1.4 Internet Inter-ORB Protocol (IIOP). 12-3

12.1.5 Environment-Specific Inter-ORB Protocols

(ESIOPs) . 12-4

12.2 Relationship to Previous Versions of CORBA 12-4

12.3 Examples of Interoperability Solutions 12-5

12.3.1 Example 1 . 12-5

12.3.2 Example 2 . 12-5

12.3.3 Example 3 . 12-5

12.3.4 Interoperability Compliance 12-5

12.4 Motivating Factors . 12-8

12.4.1 ORB Implementation Diversity 12-8
12.4.2 ORB Boundaries . 12-8

12.4.3 ORBs Vary in Scope, Distance, and Lifetime. . . . 12-9

12.5 Interoperability Design Goals . 12-9
12.5.1 Non-Goals . 12-10

13. ORB Interoperability Architecture . 13-1

13.1 Overview . 13-1

13.1.1 Domains . 13-2

13.1.2 Bridging Domains . 13-2

13.2 ORBs and ORB Services . 13-3

13.2.1 The Nature of ORB Services 13-3

13.2.2 ORB Services and Object Requests 13-3
13.2.3 Selection of ORB Services 13-4

13.3 Domains . 13-5

13.3.1 Definition of a Domain . 13-5

December 2001 Common Object Request BrokerArchiteclure (CORE/1), v2.6 xvii

0836

0837

Contents

13.3.2 Mapping Between Domains: Bridging 13-6

13.4 Interoperability Between ORBs . 13-7
13.4.1 ORB Services and Domains 13-7

13.4.2 ORBs and Domains . 13-7

13.4.3 Interoperability Approaches 1348

‘ 13.4.3.1 Mediated Bridging 13-8
13.4.3.21mmediate Bridging 13-9
13.4.3.3 Location of Inter-Domain Functionality 13-9
13.4.3.4 Bridging Level . 13-10

13.4.4 Policy-Mediated Bridging 13-10

13.4.5 Configurations of Bridges in Networks 13-11

13.5 Object Addressing . 13-11

13.5.1 Domain-relative Object Referencing 13-12

13.5.2 Handling of Referencing Between Domains 13-12

13.6 An Information Model for Object References 13-14

13.6.1 What Information Do Bridges Need? 13-14

13.6.2 Interoperable Object References: lORs 13-14
13.6.3 10R Profiles . 13-15

13.6.4 Standard 10R Profiles . 13-17

13.6.4.1 The TAG_1NTERNET_10P Profile . . . 13-17
13.6.4.2 The TAG_MULT1PLE_COMPONENTS

Profile . 13-18

13.6.4.3 The TAG_SCCP_10P Profile 13-18

13.6.5 10R Components . 13-18

13.6.6 Standard 10R Components 13-19

13.6.6.1 TAG_ORB_TYPE Component 13-20
13.6.6.2 TAG_ALTERNATE_110P_ADDRESS

Component . 13-20
13.6.6.3 Other Components 13-20

13.6.7 Profile and Component Composition in lORs. . . 13-21

13.6.8 lOR Creation and Scope . 13-22

13.6.9 Stringifled Object References 13-22

13.6.10 Object URLs .. 13-23
13610.1 corbaloc URL 13-24
13610.2 corbaloczrir URL 13-25

13610.3 corbalocziiop URL 13-26
13610.4 corbaloc Server implementation 13-27
13610.5 corbaname URL 13-27
13610.6 Future corbaloc URL Protocols 13-27
13610.7 Future URL Schemes 13-27

13.7 Service Context . 13-28

13.7.1 Standard Service Contexts 13-29

13.7.2 Service Context Processing Rules 13-31

13.8 Coder/Decoderlnterfaces . 13-31

13.8.1 Codec Interface .. 13-31

13.8.1.1 Exceptions . 13-32
13.8.1.2 Operations . 13-32

13.8.2 Codec Factory . 13-33

13.8.2.1 Encoding Structure 13-34

xviii Common Object Request Broker/trchitecmre (CORE/1), v2.6 December 2001

0837

0838

Contents

13.8.2.2 CodecFactory Interface 13-34

13.9 Feature Support and GIOP Versions 13-35

13.10 Code Set Conversion , . 13-36

13.10.] Character Processing Terminology 13-36
13.1011 Character Set . 13-36
13.1012 Coded Character Set, or Code Set 13-36
13.1013 Code Set Classifications 13-37
13.1014 Narrow and Wide Characters 13-37
13.1015 Char Data and Wchar Data 13-38

13.1016 Byte-Oriented Code Set 13-38
13.1017 Multi-Byte Character Strings 13-38
13.1018 Non-Byte-Oriented Code Set 13-38
13.10. 1.9 Char and Wchar Transmission Code

Set (TCS-C and TCS-W) 13-38
13.10110 Process Code Set and File Code Set . 13-38
13.10111 Native Code Set 13-39
13.10112 Transmission Code Set 13-39

13.10113 Conversion Code Set (CCS) 13-39
l3.10.2 Code Set Conversion Framework 13-39

13.10.2.1 Requirements . 13-39
13. 10.2.2 Overview of the Conversion

Framework . 13-40
13.10.2.3 ORB Databases and Code Set

Converters . 13-41

13.10.2.4 CodeSet Component of 10R _
_ Multi-Component Profile 13-42

13.10.2.5 GIOP Code Set Service Context 13-43

13.10.2.6 Code Set Negotiation 13-44

13.10.11 Mapping to Generic Character Environments . . 13-47
13.10.3.1 Describing Generic Interfaces 13-48
13.10.32 lnteroperation 13-48

13.10.4 Example of Generic Environment Mapping 13-48
13.1041 Generic Mappings 13-49
13. 10.4.2 lnteroperation and Generic Mappings . 13-49 .

13.10.5 Relevant OSFM Registry Interfaces 13-49
13.10.5.1 Character and Code Set Registry 13-49
13. 10.5.2 Access Routines 13-50

14. Building Inter-ORB Bridges . 14-1

14.1 Introduction 14-1

14.2 In-Line and Request—Level Bridging 14-2

14.2.1 In-line Bridging . 14-3

14.2.2 Request-level Bridging . 14-3
14.2.3 Collocatcd ORBS . 14-4

14.3 Proxy Creation and Management . 14-5

14.4 Interface-specific Bridges and Generic Bridges 14-6

14.5 Building Generic Request-Level Bridges 14-6

14.6 Bridging Non-Referencing Domains 14-7

14.7 Bootstrapping Bridges . 14-7

December 2001 Common Object Request BrokerArchileclure (CORBA), v2.6 xix

0838

0839

Contents

XX

15. General Inter-ORB Protocol . 15-1

15.1 Goals of the General Inter-ORB Protocol 15-2

15.2 GIOP Overview . 15-2

15.2.1 Common Data Representation (CDR) 15-3

15.2.2 GIOP Message Overview 15-3

15.2.3 GIOP Message Transfer . 15-4

15.3 CDR Transfer Syntax . 15-4

15.3.1 Primitive Types . 15-5

15.3.1.1 Alignment .. 15-5
15.3.1.2 integer Data Types 15-6
15.3.1.3 Floating Point Data Types 15-7
15.3.1.4 Octet .. 15-10
15.3.1.5 Boolean .. 15-10

15.3.1.6 Character Types 15-10

15.3.2 OMG lDL Constructed Types 15-11

15.3.2.1 Alignment .. 15-11
15.3.2.2 Struct . 15-12
15.3.2.3 Union . 15-12

15.3.2.4 Array .. 15-12
15.3.2.5 Sequence . 15-12
15.3.2.6 Enum .. 15-12

15.3.2.7 Strings and Wide Strings 15-12
_ 15.3.2.8 Fixed-Point Decimal Type 15-13

15.3.3 Encapsulation . 15-14

15.3.4 Value Types . 15-15

15.3.4.1 Partial Type lnformation and Versioning 15-16
15.3.4.2 Example . 15-17
15.3.4.3 Scope of the lndirections 15-19
15.3.4.4 Null Values . 15-19

15.3.4.5 Other Encoding Information 15-19
15.3.4.6 Fragmentation . 15-19
15.3.4.7 Notation . 15-22
15.3.4.8 The Format . 15-22

15.3.5 Pseudo-Object Types . 15-23

15.3.5.1 TypeCode . 15-23
15.3.5.2'Any . 15~29
15.3.5.3 Principal . 15-29
15.3.5.4 Context . 15-29

15.3.5.5 Exception . 15-29
15.3.6 Object References . 15-30
15.3.7 Abstract Interfaces . 15-30

15.4 GIOP Message Formats . 15-30

15.4.] GIOP Message Header . 15-31

15.4.2 Request Message . 15-33

15.4.2.1 Request Header 15-33
15.4.2.2 Request Body . 15-36

15.4.3 Reply Message .. 15-37

15.4.3.1 Reply Header . 15-37
15.4.3.2 Reply Body . 15-38

15.4.4 CancelRequest Message . 15-40
15.4.4.1 Cancel Request Header 15-40

Common Object Request BrakerArc/zitecture (CORBA), v2.6 December 2001

0839

0840

Contents

15.4.5 LocateRequest Message . 15-41

15.4.5.1 LocateRequest Header 1541
15.4.6 LocateReply Message . 15-42

15.4.6.1 Locate Reply Header 15-42
15.4.6.2 LocateReply Body 15-43
15.4.6.3 Handling ForwardRequest Exception

from ServantLocator 15-44

15.4.7 CloseConnection Message 1544

15.4.8 MessageError Message . 15-44

15.4.9 Fragment Message . 15-44

15.5 GIOP Message Transport . 15-46

15.5.1 2 Connection Management. 15-46
15.5.1.1 Connection Closure 15-47

15.5.1.2 Multiplexing Connections 1548

15.5.2 Message Ordering .. 15-48

15.6 Object Location . 15-48

15.7 Intemet Inter-ORB Protocol (IIOP) 15-50

15.7.1 TCP/lP Connection Usage. 15-51

15.7.2 110p 10R Profiles' 15-51

15.7.3 llOP 10R Profile Components 15-54

15.8 Bi-Directional GIOP .. 15-55

15.8.1 Bi-Directional llOP . 15-57

15.8.1.1 llOP/SSL considerations 15-58

15.9 Bi-directional GIOP policy . 15-58

15.10 OMG IDL ..15-59

\ ' 15.10.] GIOP Module . '15-59

15.10.2 llOP Module .. 15-63

15.10.3 BiDirPolicy Module . 15-64

16. The DCE ESIOP . 16-1

16.1 Goals of the DCE Common Inter-ORB Protocol 16-1

16.2 DCE Common Inter-ORB Protocol Overview 16-2

16.2.1 DCE-CIOP RPC . 16-2

16.2.2 DCE-CIOP Data Representation 16-3

16.2.3 DCE-ClOP Messages ; 16—4

16.2.4 Interoperable Object Reference (10R) 16-5

16.3 DCE-CIOP Message Transport . 16-5

16.3.1 Pipe-based Interface . 16-6
16.3.1.1 lnvoke .. 16-8
16.3.1.2 Locate .. 16-8

16.3.2 Array-based Interface . 16-8
16.3.2.1 lnvoke .. 16-10
16.3.2.2 Locate . 16-11

16.4 DCE-CIOP Message Formats . 16-11

16.4.1 DCE_C10P lnvoke Request Message 16-11

16.4.1.1 lnvoke request header 16-1 1
16.4.1.2 lnvoke request body 16-12

December 2001 Common Object Request BrnkerArchitecture (CORBA), v2.6 xxi

0840

0841

Contents

16.4.2 DCE-CIOP lnvoke Response Message 16-12

16.4.2.1 lnvoke response header 16-13
16.4.2.2 lnvoke Response Body 16-13

16.4.3 DCE-CIOP Locate Request Message 16-14

16.4.3.1 Locate Request Header 16-14
16.4.4 DCE-CIOP Locate Response Message 16-15

16.4.4.1 Locate Response Header 16-15
16.4.4.2 Locate Response Body 16-16

16.5 DCE-CIOP Object References . 16-16

16.5.1 DCE-CIOP String Binding Component 16-17

16.5.2 DCE-CIOP Binding Name Component 16-18

16.5.2.1 BindingNameComponent 16-18
16.5.3 DCE-CIOP No Pipes Component 16-19

16.5.4 Complete Object Key Component 16-19

16.5.5 Endpoint 1D Position Component. 16-20

16.5.6 Location Policy Component 16-20

16.6 DCE-CIOP Object Location . 16-21
16.6.1 Location Mechanism Overview 16-22

16.6.2 Activation . 16-23

16.6.3 Basic Location Algorithm 16-23

16.6.4 Use of the Location Policy and the Endpoint 1D . 16-24

16.6.4.1 Current location policy 16-24
16.6.4.2 Original location policy 16-24
16.6.4.3 Original Endpoint 1D 16-24

16.7 OMG IDL for the DCE CIOP Module 16-25

16.8 References for this Chapter . 16—26

17. Interworking Architecture . 17-1

17.1 Purpose of the Interworking Architecture l7-2

17.1.1 Comparing COM Objects to CORBA Objects . . 17-2

17.2 Interworking Object Model . 17-3

' 17.2.1 Relationship to CORBA Object Model 17-3

17.2.2 Relationship to the OLE/COM Model_ 17-4

17.2.3 Basic Description of the lnterworking Model . . . 17-4

17.3 Interworking Mapping Issues . 17-8

17.4 Interface Mapping . 17-8
17.4.1 CORBA/COM . 17-9

17.4.2 CORBA/Automation . 17-9

17.4.3 COM/CORBA . 17-10

17.4.4 Automation/CORBA . 17-10

17.5 Interface Composition Mappings . 17-11
17.5.] CORBA/COM . l7-ll

17.5.1.1 COM/CORBA 17-12
17.5.1.2 CORBA/Automation 17-12
17.5.1.3 Automation/CORBA 17-13

17.5.2 Detailed Mapping Rules . 17-13

17.5.2.1 Ordering Rules for the CORBA->M1DL

xxii Common Object Request BrakerArchitecture (CORBA), v2.6 December 2001

0841

0842

Contents

Transformation . 17-13

17.5.2.2 Ordering Rules for the
CORBA->Automation Transformation . 17-13

17.5.3 Example of Applying Ordering Rules , . . . 17-14

17.5.4 Mapping Interface Identity 17-16
17.5.4.1 Mapping 1nterface Repository 1Ds to

COM 1105 . 17-17

17.5.4.2 Mapping COM lle to CORBA
1nterface IDs . 17-18

17.6 Object Identity, Binding, and Life Cycle 17-18

17.6.1 Object Identity Issues . 17-19

17.6.1.1 CORBA Object Identity and Reference
Properties . 17-19

17.6.1.2 COM Object Identity and Reference
Properties . 17~l9

17.6.2 Binding and Life Cycle . 17-20

17.6.2.1 Lifetime Comparison 17-20
17.6.2.2 Binding Existing CORBA Objects to

COM Views . 17-21

17.6.2.3 Binding COM Objects to CORBA Views 17-22
17.6.2.4 COM View of CORBA Life Cycle 17-22
17.6.2.5 CORBA View of COM/Automation

Life Cycle . 17-23

17.7 Interworking Interfaces . 17-23

17.7.1 SimpIeFa‘ctory 1nterface . l7-23
17.7.2 IMonikerProvider Interface and Moniker Use . . 17-23

17.7.3 ICORBAFactory 1nterface 17-24

17.7.4 lForeignObject 1nterface. 17-26

17.7.5 lCORBAObject 1nterface I7-27

17.7.6 lCORBAObjeth . 17-28

17.7.7 IORBObject Interface . 17-28

17.7.8 Naming Conventions for View Components 17-30

17.7.8.1 Naming the COM View Interface '. 17-30
17.7.8.2 Tag for the Automation Interface 1d . . . 17-30
17.7.8.3 Naming the Automation View Dispatch

1nterface . 17-30

17.7.8.4 Naming the Automation View Dual
1nterface . 17-31

17.7.8.5 Naming the Program 1d for the COM
Class . 17-31

17.7.8.6 Naming the Class 1d for the COM
Class . 17-32

17.8 Distribution .- . . . 17-32

17.8.] Bridge Locality . 17-32
17.8.2 Distribution Architecture 17-33

17.9 Interworking Targets . 17-34

17.10 Compliance t0 COM/CORBA Interworking 17-34

17.10.1 Products Subject to Compliance 17-34
17.10.1.1 Interworking solutions 17-34
17.10.].2 Mapping solutions 17-35

December 2001 Common Object Request BrnkerArchileclure (CORBA), v2.6 xxiii

0842

0843

Contents

17.10.13 Mapped components 17-35
17.10.2 Compliance Points . 17-36

18. Mapping: COM and CORBA . 18-1

18.1 Data Type Mapping . 18-1

18.2 CORBA to COM Data Type Mapping 18-2

18.2.1 Mapping for Basic Data Types 18-2

18.2.2 Mapping for Constants . 18-2

18.2.3 Mapping for Enumerators 18-3

18.2.4 Mapping for String Types 18-4

18.2.4.1 Mapping for Unbounded String Types . 18-4
18.2.4.2 Mapping for Bounded String Types . . . 18-5

18.2.5 Mapping for Struct Types 18-5

18.2.6 Mapping for Union Types 18-6

18.2.7 Mapping for Sequence Types 18-8

18.2.7.1 Mapping for Unbounded Sequence Types 18-8
18.2.7.2 Mapping for Bounded Sequence Types 18-8

18.2.8 Mapping for Array Types 18-9

18.2.9 Mapping for the any Type 18-9

18.2.10 Interface Mapping . 18-11
18210.1 Mapping for interface identifiers 18-11
18210.2 Mapping for exception types 18-11
18210.3 Mapping for Nested Types 18-21
18210.4 Mapping for Operations 18-22
18210.5 Mapping for Oneway Operations 18-24
18210.6 Mapping for Attributes 18-24
18210.7 Indirection Levels for Operation

Parameters . 18-26

18.2.11 Inheritance Mapping . 18-26

18.2.12 Mapping for Pseudo-Objects 18-29
18212.1 Mapping for TypeCode pseudo-object 18-29
18212.2 Mapping for context pseudo-object . . . 18-31
18212.3 Mapping for principal pseudo-object . 18-32

18.2.13 Interface Repository Mapping 18-32

18.3 COM to CORBA Data Type Mapping 18-33

18.3.1 Mapping for Basic Data Types 18-33

18.3.2 Mapping for Constants . 18-34

18.3.3 Mapping for Enumerators 18-34

18.3.4 Mapping for String Types 18-35

18.3.4.1 Mapping for unbounded string types . . . 18-35
18.3.4.2 Mapping for bounded string types 18-36
18.3.4.3 Mapping for Unicode Unbounded

String Types . 18-36
18.3.4.4 Mapping for unicode bound string types 18-37

18.3.5 Mapping for Structure Types 18-37

18.3.6 Mapping for Union Types 18-38

18.3.6.1 Mapping for Encapsuiated Unions 18-38
18.3.6.2 Mapping for nonencapsulated unions . . 18-39

18.3.7 Mapping for Array Types 18-40
18.3.7.1 Mapping for nonfixed arrays 18-40

xxiv Common Object Request BrakerArchiteclure (CORBA), v2.6 December 2001

0843

0844

Contents

18.3.7.2 Mapping for SAFEARRAY 1840

18.3.8 Mapping for VARIANT . 18-41

18.3.9 Mapping for Pointers . 18-43

18.3.10 Interface Mapping . 18-44

183.10.] Mapping for Interface Identifiers 18-44
18.3.10.2 Mapping for COM Errors 18-44
18.3. 10.3 Mapping of Nested Data Types 18-47
18.3.10.4 Mapping of Names 1847
18310.5 Mapping for Operations 18-47
18310.6 Mapping for Properties 1848

18.3.11 Mapping for Read-Only Attributes 18-49

18.3.12 Mapping for Read-Write Attributes 1849

18312.1 Inheritance Mapping -l8-50
18312.2 Type Library Mapping 18-52

19. Mapping: Automation and CORBA . 19-1

19.1 Mapping CORBA Objects to Automation 19-2
19.1.1 Architectural Overview . 19-2

19.1.2 Main Features of the Mapping 19-3

19.2 Mapping for Interfaces . 19-3

19.2.1 Mapping for Attributes and Operations 19-4

19.2.2 Mapping for OMG IDL Single Inheritance. 19-5

19.2.3 Mapping of OMG IDL Multiple Inheritance. . . . 19-6

19.3 Mapping for Basic Data Types . '19-9

19.3.1 Basic Automation Types . 19—9

19.3.2 Special Cases of Basic Data Type Mapping. 19-10
19.3.2.1 Converting Automation long to

CORBA unsigned long 19-10
19.3.2.2 Demoting CORBA unsigned long to

Automation long 19-11

19.3.2.3 Demoting Automation long to CORBA
unsigned short . 19-11

19.3.2.4 Converting Automation boolean to CORBA
boolean and CORBA boolean to Automation
boo1ean . 19-11

19.3.3 Mapping for Strings . 19-11

19.4 IDL t0 ODL Mapping . 19-12

19.4.1 A Complete IDL to ODL Mapping for the Basic

Data Types . 19-12

19.5 Mapping for Object References . 19-15

19.5.1 Type Mapping . 19-15

19.5.2 Object Reference Parameters and

_ lForeignObject . 19-16

19.6 Mapping for Enumerated Types . 19-17

19.7 Mapping for Arrays and Sequences 19-18

19.8 Mapping for CORBA Complex Types 19-19

19.8.] Mapping for Structure Types 19-20

19.8.2 Mapping for Union Types 19-21

December 2001 Common Object Request BrnkerArchiiecture (CORBA). v2.6 xxv

0844

0845

Contents

19.8.3 Mapping for TypeCodes . 19-22

19.8.4 Mapping for anys . 19-24

19.8.5 Mapping for Typedefs . 19-25

19.8.6 Mapping for Constants . 19-25

19.8.7 Getting Initial CORBA Object References 19-26

19.8.8 Creating Initial in Parameters for Complex Types 19-27

19.8.8.1 lTypeFactory Interface 19-29
19.8.8.2 DlObjectlnfo Interface 19-29

19.8.9 Mapping CORBA Exceptions to Automation

Exceptions . 19-30
19.8.9.1 Overview of Automation Exception

Handling . 19-30
19.8.9.2 CORBA Exceptions 19-30
19.8.9.3 CORBA User Exceptions 19-31
19.8.9.4 Operations that Raise User Exceptions . 19-32
19.8.9.5 CORBA System Exceptions 19-33
19.8.9.6 Operations that raise system exceptions 19-34

19.8.10 Conventions for Naming Components of the
Automation View . 19-36

19.8.11 Naming Conventions for Pseudo-Structs, Pseudo-

Unions, and Pseudo-Exceptions 19-36

19.8.12 Automation View Interface as a Dispatch

Interface (Nondual) . 19-36

19.8.13 Aggregation of Automation Views 19-38
19.8.14 D11 and DSl . 19-38

19.9 Mapping Automation Objects as CORBA Objects 19-38
19.9.1 Architectural Overview . 19-38

19.9.2 Main Features of the Mapping 19-39 '

19.9.3 Getting Initial Object References 19-40

19.9.4 Mapping for Interfaces . 19-40

19.9.5 Mapping for Inheritance . 19-40

19.9.6 Mapping for ODL Properties and Methods. 19-41

19.9.7 Mapping for Automation Basic Data Types. 19-42
19.9.7.1 Basic automation types 19-42

19.9.8 Conversion Errors . 19-43

19.9.9 Special Cases of Data Type Conversion 19-43
19.9.9.1 Translating COM::Currency to

Automation CURRENCY 19-43

19.9.9.2 Translating CORBA double to
Automation DATE 19-43

19.9.9.3 Translating CORBA boolean to
Automation boolean and Automation
boolean to CORBA boolean 19-43

19.9.10 A Complete OMG lDL to ODL Mapping for the Basic

Data Types . 19-44

19.9.11 Mapping for Object References 19-46

19.9.12 Mapping for Enumerated Types 19-47

19.9.13 Mapping for SafeArrays . 19-48
19.9.13.l Multidimensional SafeArrays 19-48

19.9.14 Mapping for Typcdefs . 19-48

xxvi Common Object Request BrokerArchitecmre (CORBA). v2.6 December 2001

0845

0846

Contents

19.9.15 Mapping for VARlANTs 19-48

19.9.16 Mapping Automation Exceptions to CORBA . . . 1949

19.10 Older Automation Controllers . 19-49

19.10.l Mapping for OMG IDL Arrays and Sequences
' to Collections .. 19-49

19.11 Example Mappings1 . 19-51
19.11.1 Mapping the OMG Naming Service to

Automation . 19-51

l9.ll.2 Mapping a COM Service to OMG IDL 19-51

19.11.3 Mapping an OMG Object Service to Automation 19-55

20. Interoperability with non-CORBA Systems 20-1

20.1 Introduction . 20-1

20.1.1 COM/CORBA Part A . 20-2

20.2 Conformance Issues . 20-2

20.2.1 Performance Issues . 20-3

20.2.2 Scalability Issues . 20-3
20.2.3 CORBA Clients for DCOM Servers 20—3

20.3 Locality of the Bridge . 20-4

20.4 Extent Definition . 20-5

20.4.1 Marshaling Constraints . 20-6

20.4.2 Marshaling Key 20-6
20.4.3 Extent Format . 20-7

2043J13VO_EXTENT 20s
20.4.3.2 DVO_1FACE . 20-8
20433DVOJNWLDATA 268
20.4.3.4 DVO'_BLOB . 20-8

20.5 Request/Reply Extent Semantics . 20-8

20.6 Consistency 20-9

20.6.1 IValueObject . 20-10

20.6.2 [Synchronize and DlSynchronize 20-11

20.6.2.1 Mode Property . 20-11
20.6.2.2 SyncNow Method 20-11
20.6.2.3 ReCopy Method 20-11

20.7 DCOM Value Objects . 20-11

I 20.7.1 Passing Automation Compound Types as DCOM
Value Objects .. 20-11

20.7.2 Passing CORBA-Deflned Pseudo-Objects as
DCOM Value Objects .. 20-12

20.7.3 lForeignObject . 20-12

20.7.4 DlForeignComplex'Iype . 20-12

20.7.5 DlForeignException . 20-12

20.7.6 DlSystcmException . 20-12

20.7.7 DICORBAUserException 20-13
20.7.8 DICORBAStruct . 20-13

20.7.9 DlCORBAUnion . 20-13

December 2001 Common Objecr Request Broker Architecture (CORE/i), v2.6 xxvii

0846

0847

Contents

20.7.10 DlCORBATypeCode and lCORBA’IypeCode . . . 20-13

20.7.11 DlCORBAAny . 20-14

20.7.12 lCORBAAny . 20-15

20.7.13 User Exceptions ln COM 20-15

20.8 Chain Avoidance . 20-16

‘ 20.8.1 CORBA Chain Avoidance 20-16

20.8.2 COM Chain Avoidance . 20-17

20.9 Chain Bypass . 20-19

20.9.1 CORBA Chain Bypass . 20-19

20.9.2 COM Chain Bypass_ 20-20

20.10 Thread Identification .20-21

21. Portable Interceptors . 21-1

21.1 Introduction . 21-1

21.1.1 Object Creation . 21-2

21.1.2 Client Sends Request . 21-3

21.1.3 Server Receives Request . 21-4

21.1.4 Server Sends Reply . 21-4

21.1.5 Client Receives Reply . 21-5

21.2 Interceptor Interface . 21-5

21.3 Request Interceptors . 21-6

21.3.1 Design Principles . 21-6
21.3.2 General Flow Rules . 21-7

21.3.3 The Flow Stack Visual Model 21-8

21.3.4 The Request lnterceptor Points 21-8

21.3.5 Client-Side lnterceptor . 21-9

21.3.6 Client-Side lnterception Points 21-9

21.3.6.1 send_request . 21-9
21.3.6.2 send_poll . 21-9
21.3.6.3 receive_reply . 21-10
21.3.6.4 receive_exception 21-10
21.3.6.5 receive_other . 21-11

21.3.7 Client-Side lnterception Point Flow 21-11
21.3.7.1 Client-side Flow Rules 21-11
21.3.7.2 Additional Client-side Details 21-12

21.3.7.3 Client-side Flow Examples 21-12

21.3.8 Server-Side lnterceptor . 21-14

21.3.9 Server-Side lnterception Points 21-14

21.3.9.1 receive_request_service_contexts 21-14
21.3.9.2 receive_request 21-15
21.3.9.3 send_reply . 21-15
21.3.9.4 send_exception 21-16
21.3.9.5 send_other . 21-16

21.3.10 Server-Side lnterception Point Flow 21-17
21310.1 Server-side Flow Rules 21-17
21310.2 Additional Server-side Details 21-17

21310.3 Server-side Flow Examples 21-18

21.3.11 Request information . 21-20

xxviii Common Object Request BrokerArchitecture (CORBA), v2.6 December 2001

0847

0848

Contents

21.3.12 RequestInfo Interface . 21-21
21.3.121 request_id . 21-21
21.3.122 operation . 21-21
21312.3 arguments .. 21-21
21.3.124 exceptions . 21-22
21.3.125 contexts .. 21-22

21312.6 operation_context 21-22
21312.7 result .. 21-22

21312.8 response_expected 21-23
21312.9 sync_scope . 21-23
21.3.1210 reply_status . 21-23
21.3.1211 forward_reference 21-24

21.3.1212 get_slot .. 21-24
21.3.1213 get_request_service_context 21-25
21.3.1214 get_rep1y_service_context 21-25

21.3.13 ClientRequestInfo Interface 21-25

21313.1 target .. 1-27
21.3.13.2 effective_target 21—27
21313.3 effective_profile 21-27
21313.4 received_exception 21-27
21313.5 received_exception_id 21-27
21313.6 get_effective_component 21-27
21313.7 get_effective_components 21-28
21313.8 get_request__policy 21-28
21313.9 add_request_service_context 21-28

21.3.14 ServerRequestlnfo Interface 21-29
21314.1 sending_exception 21-30
21314.2 object_id . 21-30
21314.3 adapter_id . 21-31
21.3.14.4 target_most_derived_interface 21-31
21314.5 get_server_policy 21-31
21314.6 set_slot .. 21-31

21314.7 target_is_a . 21-31
21314.8 add_reply_service_context 21-32

21.3.15 ForwardRequest Exception 21-32

21.4 Portable Interceptor Current . 21-33
21.4.1 Overview . 21-33

21.4.2 Obtaining the Portable Interceptor Current. . . . 21-33

21.4.3 Portable Interceptor Current Interface 21-33

21.4.3.1 get_slot . 21-34
21.4.3.2 set_slot . 21-34

21.4.4 Use of Portable Interceptor Current 21-34
21.4.4.1 Client-side use of PICurrent 21-34

21.4.4.2 Example of PlCurrent to Handle
Client-side Recursion L . . . 21-35

21.4.4.3 Server-side use of PlCurrent 21-36

21.4.4.4 Request Scope vs Thread Scope 21-37
21.4.4.5 Flow of PlCurrent between Scopes 21-37
21.4.4.6 Notes on PICurrent and Scopes 21-39

21.5 IOR Interceptor . 21-39
21.5.1 Overview . 21-39

21.5.2 IORInterceptor Interface 21-39

21.5.2.1 establish_components 21-40

December 2001 Common Object Request BrokerArchilecture (CORE/1). v2.6 xxix

0848

0849

Contents

21.5.3 IORInfo Interface . 21-40

21.5.3.1 get_effective_policy 21-40
21.5.3.2 add_ior_component 21-41
21.5.3.3 add_ior_component_to__proflle 21-41

21.6 PolicyFactory . 21-42

21.6.1 PolicyFactory Interface . 21-42

21.6.1.1 create_policy .. 21-42

21.7 Registering Interceptors .21-42
21.7.1 ORBInitializer Interface . 21-43

21.7.1.1 pre_init .. 21-43
21.7.1.2 post_init .. 21-43

21.7.2 ORBInitInfo Interface . 21-43

21.7.2.1 DuplicateName Exception 21-44
21.7.2.2 InvalidName Exception 21-44
21.7.2.3 arguments . 21-45
21.7.2.4 orb_id . 21-45

21.7.2.5 codec_factory . 21-45
21.7.2.6 register_initial_reference 21-45
21.7.2.7 resolve_initia1_references 21-45

21.7.2.8 add_c1ient_request_interceptor 21-45
21.7.2.9 add_server_request_interceptor 21-46
21.7.2.10 add_ior_interceptor 21-46
21.7.2.11 allocate_slot_id 21-46

21.7.2.12 register_policy_factory 2146

21.7.3 register_orb_initializer Operation 21-47

21.7.3.1 Mappings of register_orb_initializer . . . 21-47
21.7.4 Notes about Registering Interceptors 21-49

21.8 Dynamic Initial References . 21-49

21.8.1 register_initial_reference 21-49

21.9 Module Dynamic .21-50

21.9.1 N VList PIDL Represented by
ParameterList IDL . 21-50

21.9.2 ContextList PIDL Represented by
ContextList IDL . 21-50

21.9.3 ExceptionList I’IDL Represented by

ExceptionList IDL . 21-51

21.9.4 Context I’IDL Represented by

RequestContext IDL . 21-51

21.10 Portable Interceptor IDL . 21-51

22. CORBA Messaging . 22-1

22.1 Section I - Introduction . 22-2

22.2 Messaging Quality of Service . 22-2

22.2.1 Rebind Support . 22-5

22.2.1.1 typedef short RebindMode 22-5
22.2.1.2 interface RebindPolicy 22-5

22.2.2 Synchronization Scope . 22-6

22.2.2.1 typedef short SyncScope 22-6
22.2.2.2 interface SyncScopePolicy 22-7

Common Ohject Request BrokerArchilecture (CORBA), v2.6 December 2001

0849

0850

Contents

21.5.3 IORInfo Interface . 21—40

21.5.3.1 get_effective_policy 21-40
21.5.3.2 add_ior_component 21-41
21.5.3.3 add_ior_component_to_profl1e 21-41

21.6 PolicyFactory . 21-42

21.6.1 PolicyFactory Interface . 21-42

21.6.1.1 create_policy . 21-42

21.7 Registering Interceptors . 21-42
21.7.1 ORBInitiaIizer Interface . 21-43

21.7.1.1 pre_init .. 21-43
21.7.1.2 post_init .. 2143

21.7.2 ORBInitInfo Interface . 21-43

21.7.2.1 DuplicateName Exception 21-44
21.7.2.2 InvalidName Exception 21-44
21.7.2.3 arguments .. 21-45
21.7.2.4 orb_id . 21-45

21.7.2.5 codec_factory . 21-45
21.7.2.6 register_initial_reference 21-45
21.7.2.7 resolve_initia1_references 21-45

21.7.2.8 add_client_request_interceptor 21-45
21.7.2.9 add_server_request_interceptor 21-46
21.7.2.10 add_ior_interceptor 21-46
21.7.2.11 allocate_slot_id 21-46

21.7.2.12 register_policy_factory 21-46
21.7.3 register_orb_initializer Operation ,21-47

21.7.3.1 Mappings of register_orb_initializer . . . 2147
21.7.4 Notes about Registering Interceptors 21-49

21.8 Dynamic Initial References . 21-49

21.8.1 register_initial_reference 21-49

21.9 Module Dynamic . 21-50

21.9.1 NVList PIDL Represented by

ParameterList IDL . 21-50‘

21.9.2 ContextList PIDL Represented by
ContextList IDL . 21-50

21.9.3 ExceptionList PIDL Represented by

ExceptionList IDL . 21-51

21.9.4 Context PIDL Represented by

RequestContext IDL . 21-51

21.10 Portable Interceptor IDL . 21-51

22. CORBA Messaging . 22-1

22.1 Section I - Introduction . 22-2

22.2 Messaging Quality of Service . 22-2

22.2.1 Rebind Support . 22-5

22.2.1.1 typedef short RebindMode 22-5
22.2.1.2 interface RebindPolicy 22-5

22.2.2 Synchronization Scope . 22-6

22.2.2.1 typedef short SyncScope 22-6
22.2.2.2 interface SyncScopePolicy 22-7

xxx Common Object Request Broker/lrchitecmre (CORBA), v2.6 December 2001

0850

0851

Contents

22.2.3 Request and Reply Priority 22-7
22.2.3.1 struct PriorityRange 22-7
22.2.3.2 interface RequestPriorityPolicy 22-7
22.2.3.3 interface ReplyPriorityPolicy 22-8

22.2.4 Request and Reply Timeout 22-8
22.2.4.1 interface RequestStartTimePolicy 22-8
22.2.4.2 interface RequestEndTimePolicy 22-9
22.2.4.3 interface ReplyStanTimePolicy 22-9
22.2.4.4 interface ReplyEndTimePolicy 22-9
22.2.4.5 interface RelativeRequestTimeoutPolicy 22-9
22.2.4.6 interface RelativeRoundtripTimeout

Policy . 22-10

22.2.5 Routing . 22-10

22.2.5.1 typedef short RoutingType 22-10
22.2.5.2 struct RoutingTypeRange 22-10
22.2.5.3 interface RoutingPolicy 22-11
22.2.5.4 interface MaxHopsPolicy 22-11

22.2.6 Queue Ordering . 22-11

22.2.6.1 typedef short Ordering 22-11
22.2.6.2 interface QueueOrderPolicy 22-12

22.3 Propagation ofMessaging QoS .22-12
22.3.1 Structures . 22-12

22.3.2 Messaging QoS Profile Component 22-13

22.3.3 Messaging QoS Service Context 22-13

22.4 Section II - Introduction . 22-13

22.5 Running Example . 22-15

22.6 Async Operation Mapping . 22-16

22.6.1 Callback Model Signatures (sendc) 22-16

22.6.1.1 lmplied-lDL for Operations 22-16
22.6.1.2 lrnplied-lDL for Attributes 22-17
22.6.1.3 Example . 22-17

22.6.2 Polling Model Signatures (sendp) 22-18

22.6.2.1 Implied-IDL for Operations 22-18
22.6.2.2 lmplied-lDL for Attributes 22-19
22.6.2.3 Example . 22-19

22.7 Exception Delivery in the Callback Model 22-20

22.7.1 Generic Exceptionflolder Value 22-20

22.7.2 Type-Specific Exceptionflolder Mapping 22-21

22.7.3 Example . 22-21

22.8 Type-Specific ReplyHandler Mapping 22-22

22.8.] ReplyHandler Operations for

NO_EXCEPTION Replies 22-23

22.8.2 ReplyHandlerOperations for Exceptional .

Replies . 22-24

22.8.3 Example . 22-24

22.9 Generic Poller Value . 22-25

22.9.] operation_target. 22-26

22.9.2 operation_name . 22-26

22.9.3 associated_handler. . . .' . 22-26

December 2001 Common Object Request BrokerArchileclure (CORBA), v2.6 xxxi

0851

0852

Cantents

xxxii

22.9.4 is_from_poller . 22-26

22.10 Type-Specific Poller Mapping . 22-26

22.10.1 Basic Type-Specific Poller 22-27
22.10.I.1 Poller operations for Interface

operations . 22-27
22.10.12 Poller operations for Interface

attributes . 22-28

22.102 Persistent Type-Specific Poller 22-29

22.10.24 Example . 22-29

22.11 Example Programmer Usage . 22-30

22.11.l Example Programmer Usage (Examples

Mapped to C++) . 22-30

22.11.2 Client-Side C++ Example for the Asynchronous

Method Signatures . 22-31

22.11.23 Client-Side C++ Example of the Callback Model 22-32

22.11.3.1 C++ Example of Generated
ExceptionI-Iolder 22-32

22.1 1.3.2 C++ Example of Generated
ReplyHandler 22-32

22.11.33 C++ Example of User-Implemented

ReplyHandler 22-34
22.11.3.4 C++ Example of Callback Client

Program . 22-38

22.ll.4 Client-Side C-H- Example of the Polling Model. . 22-39

22.11.4.1 C++ Example of Generated Poller . . . 22-39
22.11.42 C++ Example of Polling Client

Program . 22-40
22.11.43 C++ Example of Using PollableSet

in a Client Program' 22-42
22.11.5 Server Side . 22-44

22.12 Section III - Introduction . 22-45

22.13 Routing Object References . 22-46

22.14 Message Routing . 22-47
22.14.] Structures . 22-49

22.14.1.1 MessageBody 22-49
22.14.12 RequestMessage 22-49
22.14.].3 ReplyDestination t. 22-50
22.14.].4 Requestlnfo . 22-50

22.142 Interfaces . 22-51

22.1421 ReplyHandler . 22-51
22.14.22 Router . 22-51

22.14.23 send_request . 22-51
22.1424 send_multiple_requests 22-51
22.1425 UntypedReplyHandler 22-51
22.1426 reply . 22-51
22. 14.2.7 PersistentRequest 22-52
22.1428 readonly attribute reply_avai1ab1e 22-52
22.1429 get_reply . 22-52
22.142.10 attribute associated_handler 22-52

22. 14.2.11 PersistentRequestRouter 22-53
22.142.12 create_persistent_request 22-53

Common Object Request BrnkerArchilecture (CORBA). v2.6 December 2001

0852

0853

4 Contents

22.14.23 Routing Protocol . 22-53
22.14.3.I Invoking Client 22-54
22.14.32 Initial Request Router 22-55
22.14.3.3 Request Routing Algorithm 22-55
22.14.34 Intermediate Request Router 22-56
22.14.35 Target Router . 22-56
22.14.36 Replying to a Type-specific

ReplyHandler 22-58
22. 14.3.7 Replying to an UntypedReplyI-Iandler 22-58
22.14.38 Handling of Service Contexts 22-58
22.14.39 Handling LOCATION_FORWARD

Replies .. 22-59
22.14310 Routing of Replies 22-59
22.14.3.11 UntypedReplyHandler 22-59

22.15 Router Administration .22-60

22.15.] Constants . 22-63

22.15.I.I typedef short RegistrationState 22-63
22.15.2 Exceptions . 22-64

22152.] exception InvalidState 22-64
22.15.3 Valuetypes . 22-64

22.15.3.1 RetryPolicy . 22-64
22.15.3.2 ImmediateSuspend 22-64
22.15.3.3 UnlimitedPing 22-64
22.15.3.4 LimitedPing . 22-64
22.15.3.5 DecayPolicy . 22-65
22.15.3.6 ResumePolicy 22—65

22.15.4 Interfaces . ._ . 22-65
22.15.4.I'R0uterAdmin 22-65

22.15.4.2 register_destination 22-65
22.15.4.3 suspend_destination 22-65
22.15.4.4 resume_destination 22-65

22.15.4.5 unregister_destination 22-66

23. MinimumCORBA . 23-1

23.1 Introduction . 23-2

23.2 IDL . 23-2

23.3 CORBA Omitted Features . 23-2

23.4 ORB Interface Omissions . 23-3

23.4.1 ORB . 23-3

23.4.2 Object . 23-4

23.4.3 ConstructionPoIicy . 23-4

23.5 Dynamic Invocation Interface . 23-5

23.6 Dynamic Skeleton Interface . 23-5

23.7 Dynamic Any . 23-5

23.8 Interface Repository . 23-5

' 23.8.1 TypeCodc . 23-5

23.9 Portable Object Adapter . 23-6
23.9.1 Interfaces . 23-6

23.9.1.1 POA .. 23-6

December 2001 Common Object Request Broker Architecture (CORBA), v2.6 xxxiii

0853

0854

Contents

23.9.1.2 Current . 23-6

23.9.1.3 Policy interfaces 23-7
23.9.1.4 POAManager . 23-7
23.9.1.5 AdapterActivator 23-7
23.9.1.6 ServantManagers 23-7

23.9.2 Policies . 23-7

23.9.2.1 ThreadPolicy . 23-7
23.9.2.2 LifespanPolicy . 23-8
23.9.2.3 ObjectldUniquenessPolicy 23~8
23.9.2.4 ldAssignmentPolicy 23-8
23.9.2.5 ServantRetentionPolicy 23-8
23.9.2.6 RequestProcessingPolicy 23-8
23.9.2.7 ImplicitActivationPolicy 23-9

23.10 Interoperability . 23-9

23.10.] DCE Interoperability . 23-9

23.11 COM/CORBA Interworking . 23-10

23.12 Interceptors . 23-10

23.13 Langiage Mappings . 23-l0

23.13.] C++ Mapping Specific Issues 23-10

23.13.2 Java Mapping Specific Issues 23-10

23.14 minimumCORBA OMG IDL . 23-11

23.14.] ORB Interface . 23-11

23.14.2 Dynamic Invocation Interface. 23-14

23.14.3 Dynamic Skeleton Interface 23-14

23.14.4 Dynamic Management of Any Values 23-14

‘23.14.5 Interface Repository .. 23-14

23.14.6 Portable Object Adapter . 23-22

23.14.7 Interceptors . 23-29

24. Real-Time CORBA . 24-1

24.1 Goals of the Specification . 24-2

24.2 Extending CORBA .'. 24-3

24.3 Approach to Real-Time CORBA . 24-3
24.3.1 The Nature of Real-Time . 24-3

24.3.2 Meeting Real-Time Requirements 24-4
24.3.3 activities . 24—4

24.3.4 End-to-End Predictability 24-5

24.3.5 Management of Resources 24-6

24.4 Compatibility .' . . . 24-6

24.4.1 Interoperability . 24-6

24.4.2 Portability . 24-7

24.4.3 CORBA - Real-Time CORBA lnterworking 24-7

24.5 Real-Time CORBA Architectural Overview 24-7

24.5.1 Real-Time CORBA Modules 24-8

24.5.2 Real-Time ORB . 24-8

24.5.3 Thread Scheduling . 24-9

xxxiv Common Object Request BrokerArchitecmre (CORBA), v2.6 December 2001

0854

0855

Contents

24.5.4 Real-Time CORBA Priority 24-9

24.5.5 Native Priority and PriorityMappings 24-9
24.5.6 Real-Time CORBA Current 24-9

24.5.7 Priority Models . 24-10

24.5.8 Real-Time CORBA Mutcxes and Priority Inheritance
.24-10

24.5.9 Threadpools . 24-10

24.5.10 Priority Banded Connections 24-1]

24.5.1] Non-Multiplexed Connections 24-11
24.5.12 Invocation Timeouts . 24-11

24.5.13 Client and Server Protocol Configuration 24-11

24.5.14 Real-Time CORBA Configuration 24-11

24.5.15 Scheduling Service . 24-12

24.6 Real-Time ORB .24-12

24.6.] Real-Time ORB Initialization 24-13

24.6.2 Real-Time CORBA System Exceptions 24-13

24.7 Real-Time POA . 24-14

24.8 Native Thread Priorities . 24-15

24.9 CORBA Priority . 24-16

24.10 CORBA Priority Mappings . 24-16

24.10.] C Language binding for PriorityMapping 24-17

24.10.2 C++ Language binding for PriorityMapping . . . 24-17

24.10.3 Ada Language binding for PriorityMapping. . . . 24-18

24.10.4 Java Language binding for PriorityMapping . . . 24-18
24.10.5 Semantics . 24-18

24.11 Real-Time Current .24-19

24.12 Real-Time CORBA Priority Models 24-20

24.12.] PriorityModelPolicy . 24-20

24.12.2 Scope of PriorityModelPolicy 24-2]

24.12.3 Client Propagated Priority Model 24-22

24.12.4 Server Declared Priority Model 24-23

24.12.5 Setting Server Priority on a per-Object
Reference Basis .. 24-23

24.13 Priority Transforms .24-25

24.13.] C Language Binding for PriorityTransform 24-26

24.13.2 C++ Language Binding for PriorityTransform . . 24-26

24.13.3 Ada Language binding for PriorityTransform . . 24-27

24.13.4 Java Language binding for PriorityTransform . . 24-27
24.135 Semantics . 24-27

24.14 Mutex Interface .24-28

24.15 Threadpools ..24-29
24.15.l Creation of Threadpool without Lanes 24-31

24.15.2 Creation of Threadpool with Lanes 24-32
24.l5.3 Request Buffering .. 24-32

December 2001 Common Object Request Broker Architecture (CORBA). v2.6 xxxv

0855

0856

Contents

24.15.4 Scope of ThreadpoolPolicy 24-33

24.16 Implicit and Explicit Binding . 24-33

24.17 Priority Banded Connections . 24-34

24.17.l Scope of PriorityBandedConnectionPolicy 24-35

24.17.2 Binding of Priority Banded Connection 24-36

24.18 PrivateConnectionPolicy . 24-37

24.19 Invocation Timeout . 24-38

24.20 Protocol Configuration . 24-38
24.20.l ServerProtocolPolicy . 24-39

24.20.2 Scope of ServerProtoeolPolicy 24-41

24.20.3 ClientProtocolPolicy . 24-41

24.20.4 Scope of ClientProtocolPolicy 24-42

24.20.5 Protocol Configuration Semantics 24-42

24.21 Consolidated IDL .24-43

24.22 Introduction . 24-48

24.23 IDL . 24-49

24.24 Semantics . 24-50

24.25 Example . 24-51

24.25.1 Server C++ Example Code 24-51

24.25.2 Client C++ Example Code 2'4-52

24.25.3 Explanation of Example . 24-53

25. Fault Tolerant CORBA . 25-1

25.1 'Fault Tolerant CORBA . 25-1
25.1.1 Fault Tolerance for Diverse Applications 25-1

25.1.2 Objectives . 25—2

25.1.3 Basic Concepts ; . 25-3

25.1.3.1 Replication and Object Groups 25-3
25.1.3.2 Fault Tolerance Domains 25-3

25.1.3.3 Fault Tolerance Properties 25-3
25.1.3.4 Strong Replica Consistency 25-4

25.1.4 Architectural Overview . 25-4

25.1.4.1 Fault Tolerance Property Management . 25-6
25.1.4.2 Replication Management' 25-6
25.1.4.3 Fault Detection and Notification 25-7

25.1.4.4 Logging and Recovery 25-7

25.1.5 Requirements . 25-8
25.1.6 Limitations . 25—11

25.2 Basic Fault Tolerance Mechanisms 25-12

' 25.2.1 Overview. 25-12

25.2.2 lnteroperable Object Group References 25-13

25.2.2.1 TAG_FT_GROUP Component 25-14
25.2.2.2 TAG_FT_PR1MARY Component 25-16

25.2.3 lnteroperable Object Group Reference

Operations . 25-16

xxxvi Common Object Request BrnkerArchilecture (CORBA), v2.6 December 2001

0856

0857

Contents

25.2.3.1 get_interface . 25-17
25.2.3.2 is_a . 25-17
25.2.3.3 is_nil . 25-17
25.2.3.4 non_existent . 25-17

25.2.3.5 is_equivalent . 25-17
25.2.3.6 hash . 25-18

25.2.3.7 create_request . 25-18
25.2.3.8 get_policy . 25-18
25.2.3.9 get_domain_managers 25-18
25.2.3.10 set_policy_overrides 25-18

25.2.4 Modes of Profile Addressing 25-18

25.2.4.1 Profiles That Address Object Group
Members . 25-18

25.2.4.2 Profiles That Address Gateways 25-19
25.2.4.3 Choice of Profile Addressing Mode . . . 25-19

25.2.5 Accessing Server Object Groups 25-19
25.2.5.1 Access via llOP Directly to the

Primary Member 25-20
25.2.5.2 Access via IIOP and a Gateway 25-20
25.2.5.3 Access via a Multicast Group

Communication Protocol 25-20

25.2.6 Extensions to CORBA Failover Semantics 25-21

25.2.7 Most Recent Object Group Reference 25-22
25.2.7.1 FT_GROUP_VERSION Service Context 25-22

25.2.8 Transparent Reinvocation 25-23

25.2.8.1 FT_REQUEST Service Context 25-24
25.2.8.2 Request Duration Policy 25-26
25.2.8.3 Fault Handling for G10P Messages . . . 25-26

25.2.9 Transport Heartbeats . 25-27
25.2.9.1 TAG_FT_HEARTBEAT_ENABLED

Component . 25-28
25.2.9.2 Heartbeat Policy 25-28
25.2.9.3 Heartbeat Enabled Policy 25-30

25.3 Replication Management . 25-31
25.3.1 Overview . 25-31

25.3.2 Fault Tolerance Properties 25-32

25.3.2.1 ReplicationStyle 25-32
25.3.2.2 MembershipStyle 25-33
25.3.2.3 ConsistencyStyle 25-34
25.3.2.4 FaultMonitoringStyle 25-35
25.3.2.5 FaultMonitoringGranularity 25-35
25.3.2.6 Factories . 25-36

25.3.2.7 InitialNumberReplicas 25-36
25.3.2.8 MinimumNumberReplicas 25-36

25.3.3 FaultMonitoringlntervalAndTimeout 25-37

25.3.4 Checkpointlnterval . 25-37

25.3.5 Common Types . 25-38
25.3.5.1 Identifiers . 25-40

25.3.5.2 Exceptions . 2542

25.3.6 Replication Manager . 25-44

25.3.6.1 Operations . 2544
25.3.7 PropertyManager . 25-45

25.3.7.1 Operations . 25-46

December 2001 Common Object Request BrnkerArchitecture (CORBA), v2.6 xxxvii

0857

0858

Contents

25.3.7.2 get_propeities . 2549

25.3.8 ObjectGroupManager. 25-49
25.3.8.1 Operations . 25-50

25.3.9 GenericFactory . 25-56
25.3.9.1 identifiers . 25-59

25.3.9.2 Operations . 25-59
25.3.10 Obtaining the Reference for the

Replication Manager . 25-61
25.3.11 Use Cases . 25-61

25.3 .1 1.1 lnfi'astructure-Conn'olled Membership
Style . 25-61

25.3.1 1.2 Application-Controlled Membership
Style . 25-63

25.3.1 1.3 Unreplicated Object Creation and
Deletion . 25-65

25.4 Fault Management . 25-66
25.4.] Overview . 25-66

25.4.2 Architecture . 25-67
25.4.2.1 Fault Detection 25-68
25.4.2.2 Fault Notification 25-68

25.4.2.3 Fault Analysis . 25-68
25.4.2.4 Scalability . 25-68
25.4.2.5 Deployment of Fault Detectors 25-69

25.4.3 Connecting Fault Detectors to Applications 25-70

25.4.4 Pull-Based Monitoring . .'. 25-71

25.4.4.1 PULL Fault Monitoring Style 25-71
25.4.4.2 PullMonitorable interface 25-71

25.4.5 Fault Event Types . 25-72
25.4.5.1 ObjectCrashFault 25-72

25.4.6 Fault Notifier . 25-73

25.4.6.1 identifiers . .I . 25-75
25.4.6.2 Operations . 25-75
25.4.6.3 Filtering . 25-77
25.4.6.4 Mapping of the Fault Notifier to

the CosNotification Service 25-78

25.4.7 Use Cases . 25-79
25.4.7.1 The Fault Detector as a Fault

Notification Supplier 25-79
25.4.7.2 The Replication Manager as a Fault

Notification Consumer i 25-80

25.5 Logging & Recovery Management 25-81
25.5.1 Overview . 25-81

25.5.2 Logging Mechanism. 25-81

25.5.3 Recovery Mechanism . 25-82

25.5.4 Checkpointable and Updateable Interfaces. 25-84
25.5.4.1 Identifiers . 25-85

25.5.4.2 Exceptions . 25-85
25.5.4.3 Operations . 25-86
25.5.4.4 set_update . 25-87

25.5.5 Use Case . 25-87

25.5.5.1 Infrastructure-Controlled .

Consistency Style 25-87

xxxviii Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0858

0859

Contents

26. Secure Interoperability . 26-1

26.1 Overview . 26-2

26.1.1 Assumptions . 26—3

26.2 Protocol Message Definitions . 26-4

26.2.1 The Security Attribute Service Context Element 26-4

26.2.2 SAS context_data Message Body Types 26-5
26.2.2.1 EstablishContext Message Format 26-5
26.2.2.2 ContextError Message Format 26-7
26.2.2.3 CompleteEstablishContext Message

Format . 26-7

26.2.2.4 MessagelnContext Message Format . . . 26-9
26.2.3 Authorization Token Format 26-10

26.2.3.1 Extensions of the lETF AC Profile for
CSlv2 . 26-11

26.2.4 Client Authentication Token Format 26-11

26.2.4.1 Usemame Password GSS Mechanism

(GSSUP) .. 26-12
26.2.5 Identity Token Format. .. 26-14

26.2.6 Principal Names and Distinguished Names 26-15

26.3 Security Attribute Service Protocol 26-16

26.3.1 Compound Mechanisms . 26-16
26.3.1.1 Context Validation 26-17

26.3.1.2 Legend for Request Principal
interpretations . 26-18

26.3.1.3 Anonymous Identity Assertion 26-19
26.3.1.4 Presumed Trust 26-19
26.3.1.5 Failed Trust Evaluations 26-19

26.3.1.6 Request Principal Interpretations 26-20
26.3.2 Session Semantics . 26-21

26.3.2.1 Negotiation of Statefulness 26-21
26.3.2.2 Stateful/Reusable Contexts 26-22

26.3.3 TSS State Machine. .. 26-23

26.3.3.1 TSS State Machine Actions 26-25
26.3.4 CSS State Machine .. 26-27

26.3.4.1 CSS State Machine Actions 26-30

26.3.5 ContextError Values and Exceptions' 26-30

26.4 Transport Security Mechanisms . 26-31

26.4.1 Transport Layer Interoperability 26-31

26.4.2 Transport Mechanism Configuration 26-31

26.4.2.1 Recommended SSL/TLS Ciphersuites . 26-31

26.5 Interoperable Object References . 26-32

26.5.1 Target Security Configuration 26-32

26.5.1.1 AssociationOptions Type 26-33
26.5.1.2 Transport Address 26-35
26.5.1.3 TAG_TLS_SEC_TRANS 26-35
26.5.1.4 TAG_SEC10P_SEC_TRANS 26-37
26.5.1.5 TAG_CSI_SEC_MECH_LIST 26-38
26.5.1.6 TAG_NULL_TAG 26-43

26.5.2 Client-side Mechanism Selection 26-43

26.5.3 Client-Side Requirements and Location Binding 26-44

December 2001 Common Object Request Broker Architecture (CORBA), v2.6 xxxix

0859

0860

Contents

26.5.3.1 Comments on Establishing Trust in Client 2645

26.6 Conformance Levels .- 26-45

26.6.1 Conformance Leve10 . 26-45

26.6.1.1 Transport-Layer Requirements 26-45
26.6.1.2 Service Context Protocol Requirements 26-46
26.6.1.3 Interoperable Object References (lORs) 2647

26.6.2 Conformance Level 1 . 26-47
26.6.2.1 Authorization Tokens 26-47

26.6.3 Conformance Leve12 . 26-47

26.6.3.1 Audiorization-Token-Based Delegation 26-47
26.6.4 Stateful Conformance . 26-48

26.7 Sample Message Flows and Scenarios 26-48

26.7.1 Confidentiality, Trust in Server, and Trust in Client
Established in the Connection 26-49

26.7.1.1 Sample 10R Configuration 26-50
26.7.2 Confidentiality and Trust in‘Server Established in the

Connection - Stateless Trust in Client Established in

Service Context .. 26-51

26.7.2.1 Sample 10R Configuration 26-52
26.7.3 Confidentiality, Trust in Server, and Trust in Client

Established in the Connection - Stateless Trust

Association Established in Service Context. 26-53

26.7.3.1 Sample 10R Configuration 26-54
26.7.3.2 Validating the Trusted Server 26-54
26.7.3.3 Presuming the Security of the

Connection . 26-55

26.7.4 Confidentiality, Trust in Server, and Trust in Client
‘ Established in the Connection - Stateless Forward Trust

Association Established in Service Context. 26—56

26.7.4.1 Sample 10R Configuration 26-57

26.8 References for this Chapter . 26-57

26.9 IDL .26-58

26.9.1 Module lOP . 26-58

26.9.1.1 New Types Defined for CSlv2 26-58
26.9.2 Module GSSUP - Username/Password GSSAPI

Token Formats . 26-58

26.9.3 Module CSl - Common Secure Interoperability . 26-59

26.9.4 Module CSllOP - CSlv2 10R Component

Tag Definitions . 26-63

Appendix A - OMG IDL Tags . A-l

Glossary . 1

Index . 1

x1 Common Object Request Broker Architecture (CORBA). v2.6 December 2001

0860

0861

About This Document

Preface

Under the terms of the collaboration between OMG and X/Open Co Ltd., this

document is a candidate for endorsement by X/Open, initially as a Preliminary

Specification and later as a full CAE Specification. The collaboration between OMG

and X/Open Co‘ Ltd. ensures joint review and cohesive support for emerging object-
based specifications.

X/Open Preliminary Specifications undergo close scrutiny through a review process at

X/Open before publication and are inherently stable specifications. Upgrade to full

CAE Specification, after a reasonable interval, takes place following further review by

X/Open. This further review considers the implementation experience of members and

the full implications of conformance and branding.

Object Management Group

December 2001

The Object Management Group, Inc. (OMG) is an international organization supported

by over 800 members, including information system vendors, software developers and

users. Founded in 1989, the OMG promotes the theory and practice of object-oriented

technology in software development. The organization's charter includes the

establishment of industry guidelines and object management specifications to provide a

common framework for application development. Primary goals are the reusability,

portability, and interoperability of object-based software in distributed, heterogeneous

environments. Conformance to these specifications will make it possible to develop a

heterogeneous applications environment across all major hardware platforms and

operating systems.

OMG's objectives are to foster the growth of object technology and influence its

direction by establishing the Object Management Architecture (OMA). The OMA

provides the conceptual infrastructure upon which all OMG specifications are based.

Common Object Request Broker Architecture (CORBA). v2.6 xxxvii

0861

0862

X/Open

IntendedAudience

Context ofCORBA

xxxviii

X/Open is an independent, worldwide, open systems organization supported by most of

the world's largest information system suppliers, user organizations and software

companies. Its mission is to bring to users greater value from computing, through the

practical implementation of open systems. X/Open’s strategy for achieving its mission
is to combine existing and emerging standards into a comprehensive, integrated

systems environment called the Common Applications Environment (CAE).

The components of the CAB are defined in X/Open CAE specifications. These contain,

among other things, an evolving portfolio of practical application programming

interfaces (APls), which significantly enhance portability of application programs at

the source code level. The APls also enhance the interoperability of applications by

providing definitions of, and references to, protocols and protocol profiles.

The X/Open specifications are also supported by an extensive set of conformance tests

and by the X/Open trademark (XPG brand), which is licensed by X/Open and is

carried only on products that comply with the CAB specifications.

The architecture and specifications described in this manual are aimed at sofiware

designers and developers who want to produce applications that comply with OMG

standards for the Object Request Broker (ORB). The benefit of compliance is, in

general, to be able to produce interoperable applications that are based on distributed,

interoperating objects. As defined by the Object Management Group (OMG) in the

Object Management Architecture Guide; the ORB provides the mechanisms by which

objects transparently make requests and receive responses. Hence, the ORB provides

interoperability between applications on different machines in heterogeneous

distributed environments and seamlessly interconnects multiple object systems.

The key to understanding the structure of the CORBA architecture is the Reference

Model, whichconsists of the following components:

- Object Request Broker, which enables objects to transparently make and receive

requests and responses in a distributed environment. It is the foundation for

building applications from distributed objects and for interoperability between

applications in hetero- and homogeneous environments. The architecture and

specifications of the Object Request Broker are described in this manual.

- Object Services, a collection of services (interfaces and objects) that support

basic functions for using and implementing objects. Services are necessary to

construct any distributed application and are always independent of application

domains. For example, the Life Cycle Service defines conventions for creating,

deleting, copying, and moving objects; it does not dictate how the objects are

implemented in an application. Specifications for Object Services are contained in

CORBAservices: Common Object Services Specification.

Common Objea Request Broker Architecture (CORBA). v2.6 December 2001

0862

0863

Associated Documents

December 2001

- Common Facilities, a collection of services that many applications may share,

but which are not as fundamental as the Object Services. For instance, a system

management or electronic mail facility could be classified as a common facility.
information about Common Facilities will be contained in CORBAfacilities:
Common Facilities Architecture.

0 Application Objects, which are products of a single vendor on in-house

development group that controls their interfaces. Application Objects correspond

to the traditional notion of applications, so they are not standardized by OMG.

Instead, Application Objects constitute the uppermost layer of the Reference
Model.

The Object Request Broker, then, is the core of the Reference Model. lt is like a

telephone exchange, providing the basic mechanism for making and receiving calls.

Combined with the Object Services, it ensures meaningful communication between

CORBA-compliant applications.

The CORBA documentation set includes the following books:

- Object Management Architecture Guide defines the OMG’s technical objectives

and terminology and describes the conceptual models upon which OMG

standards are based. It also provides information about the policies and

procedures of OMG, such as how standards are proposed, evaluated, and

accepted.

' CORBA: Common Object Request Broker Architecture and Specification contains

the architecture and specifications for the Object Request Broker.

- CORBAservices: Common Object Services Specification contains specifications

for the Object Services.

' CORBAfacilities: Common Facilities Architecture contains the architecture for
Common Facilities.

OMG collects information for each book in the documentation set by issuing Requests

for information, Requests for Proposals, and Requests for Cement and, with its

membership, evaluating the responses. Specifications are adopted as standards only

when representatives of the OMG membership accept them as such by vote.

To obtain books in the documentation set, or other OMG publications, refer to the

enclosed subscription card or contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201

Needham. MA 02494

USA

Tel: +1-781-444—0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

CORBA. v2.6: Associated Documents xxxix

0863

0864

Definition ofCORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the

specifications in CORBA Core and one mapping. Each additional language mapping is

a separate, optional compliance point. Optional means users aren’t required to

implement these points if they are unnecessary at their site, but if implemented, they
must adhere to the CORBA specifications to be called CORBA-compliant. For instance,

if a vendor supports C++, their ORB must comply with the OMG lDL to C++ binding

specified in the C++ Language Mapping Specification.

Interoperability and lnterworking are separate compliance points. For detailed
information about lnterworking compliance, refer to “Compliance to COM/CORBA

lnterworking” on page 17-34.

As described in the OMA Guide, the OMG’s Core Object Model consists of a core and

components. Likewise, the body of CORBA specifications is divided into core and

component-like specifications. The structure of this manual reflects that division.

The CORBA core specifications are categorized as follows:

CORBA Core, as specified in Chapters 1-11

CORBA interoperability, as specified in Chapters 12-16

CORBA lnterworking, as specified in Chapters 17-21

CORBA Quality of Service, as specified in Chapters 22-26

Note -— The CORBA Language Mappings have been separated from the CORBA Core

and each language mapping is its own separate book. Refer to CORBA Language
Mappings at the OMG Formal Document web area for this information.

Structure ofThis Manual

X]

This manual is divided into the categories of Core, Interoperability, and lnterworking.

These divisions reflect the compliance points of CORBA. ln addition to this preface,

CORBA: Common Object Request Broker Architecture and Specification contains the

following chapters:

Core

Chapter 1 - The Object Model describes.the computation model that underlies the
CORBA architecture.

Chapter 2 - CORBA Overview contains the overall structure of the ORB architecture

and includes information about CORBA interfaces and implementations.

Common Object Request Broker A rch iteclure (CORBA). v2.6 December 2001

0864

0865

December 2001

Chapter 3 - OMG lDL Syntax and Semantics details the OMG interface definition

language (OMG lDL), which is the language used to describe the interfaces that client

objects call and object implementations provide.

Chapter 4 - ORB Interface defines the interface to the ORB functions that do not

depend on object adapters: these operations are the same for all ORBs and object

implementations.

Chapter 5 - Value Type Semantics describes the semantics of passing an object by

value, which is similar to that of standard programming languages.

Chapter 6 - Abstract Interface Semantics explains an IDL abstract interface, which

provides the capability to defer the determination of whether an object is passed by
reference or by value until runtime.

Chapter 7 - The Dynamic Invocation Interface details the D11, the client’s side of

the interface that allows dynamic creation and invocation of request to objects.

Chapter 8 -- The Dynamic Skeleton Interface describes the D31, the server’s-side

interface that can deliver requests from an ORB to an object implementation that does

not have compile-time knowledge of the type of the object it is implementing. D81 is

the server’s analogue of the client’s Dynamic Invocation Interface (Dll).

Chapter 9 - Dynamic Management of Any Values details the interface for the

Dynamic Any type. This interface allows statically-typed programming languages such
as C and Java to create or receive values of type Any without compile-time knowledge

that the typer contained in the Any.

Chapter 10 - Interface Repository explains the component of the ORB that manages

and provides access to a collection of object definitions.

Chapter 11 - Portable Object Adapter defines a group of lDL interfaces than an

implementation uses to access ORB functions.

Interoperability

Chapter 12 - Interoperability Overview describes the interoperability architecture

and introduces the subjects pertaining to interoperability: inter-ORB bridges; general

and lntemet inter-ORB protocols (GIOP and 110?); and environment-specific, inter-

ORB protocols (ESlOPs).

Chapter I3 - ORB Interoperability Architecture introduces the framework of ORB

interoperability, including information about domains; approaches to inter-ORB

bridges; what it means to be compliant with ORB interoperability; and ORB Services

and Requests.

Chapter 14 - Building Inter-ORB Bridges explains how to build bridges for an

implementation of interoperating ORBs.

Chapter 15 - General Inter-ORB Protocol describes the general inter-ORB protocol

(GIOP) and includes information about the GIOP’S goals, syntax, format, transport,

and object location. This chapter also includes information about the lntemet inter-

ORB protocol (IIOP).

CORBA, v2.6: Structure ofThis Manual xli

0865

0866

xlii

Chapter 16 - DCE ESlOP - Environment-Specific Inter-ORB Protocol (ESlOP)

details a protocol for the OSF DCE environment. The protocol is called the DCE
Environment Inter-ORB Protocol (DCE ESlOP).

Interworking

Chapter 17 - lnterworking Architecture describes the architecture for
communication between two object management systems: Microsoft’s COM (including

OLE) and the OMG’s CORBA.

Chapter 18 - Mapping: COM and CORBA explains the data type and interface

mapping between COM and CORBA. The mappings are described in the context of
both Win16 and Win32 COM.

Chapter 19 - Mapping: OLE Automation and CORBA details the two-way mapping

between OLE Automation (in ODL) and CORBA (in OMG lDL).

Note: Chapter 19 also includes an appendix describing solutions that vendors might

implement to support existing and older OLE Automation controllers and an appendix

that provides an example of how the Naming Service could be mapped to an OLE

Automation interface according to the lnterworking specification.

Chapter 20 - Interoperability with non-CORBA Systems describes the effective

access to CORBA servers through DCOM and the reverse.

Chapter 21 - Portable Interceptors defines ORB operations that allow services such

as security to be inserted in the invocation path.

Quality of Service (QoS)

Chapter 22 - CORBA Messaging includes three general topics: Quality of Service,

Asynchronous Method invocations (to include Time-Independent or “Persistent”

Requests), and'the specification of interoperable Routing interfaces to support the

transport of requests asynchronously from the handling of their replies.

Chapter 23 - Minimum CORBA describes minimumCORBA, a subset of CORBA

designed for systems with limited resources.

Chapter 24 - Real-Time CORBA defines an optional set of extensions to CORBA

tailored to equip ORBs to be used as a component of a Real-Time system.

Chapter 25 - Fault Tolerant CORBA describes Fault Tolerant systems, basic fault

tolerance mechanisms, replication management, and logging and recovery -
management.

Chapter 26 - Common Secure interoperability defines the CORBA Security

Attribute Service (SAS) protocol and its use within the CSlv2 architecture to address

the requirements of CORBA security for interoperable authentication, delegation, and

privileges.

Common Object Requex! Broker Architecture (CORBA). v2.6 December 2001

0866

0867

Typographical Conventions

The type styles shown below are used in this document to distinguish programming

statements from ordinary English. However, these conventions are not used in tables or

section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the

name of a document, specification, or other publication.

Acknowledgements

The following companies submitted and/or supported parts of the specifications that

were approved by the Object Management Group to become CORBA:

- Adiron, LLC

- Alcatel

' BEA Systems, Inc.

- BNR Europe Ltd.

0 Borland International, Inc.

- Compaq Computer Corporation

0 Concept Five Technologies

' Cooperative Research Centre for Distributed Systems Technology (DSTC)

- Defense Information Systems Agency

- Digital Equipment Corporation
0 Ericsson

° Eternal Systems, Inc.

- Expersoft Corporation
' France Telecom

0 FUJITSU LIMITED

° Genesis Development Corporation

° Gensym Corporation

° Hewlett-Packard Company

' I-IighComm

- Highlander Communications, L.C.

' Humboldt-University

- HyperDesk Corporation

0 ICL, Plc.

- Inprise Corporation

0 International Business Machines Corporation

- International Computers, Inc.

December 2001 CORE/1. v2.6: Typographical Conventions xliii

0867

0868

References

inv

IONA Technologies, Plc.

Lockheed Martin Federal Systems, Inc.

Lucent Technologies, Inc.
Micro Focus Limited

MITRE Corporation

Motorola, Inc.

NCR Corporation

NEC Corporation

Netscape Communications Corporation
Nortel Networks

Northern Telecom Corporation

Novell, Inc.

Object Design, Inc.

Objective Interface Systems, Inc.

Object-Oriented Concepts, Inc.

OC Systems, Inc.

Open Group - Open Software Foundation

Oracle Corporation

PeerLogic, Inc.

Persistence Software, Inc.

Promia, Inc.

Siemens Nixdorf Informationssysteme AG

SPAWAR Systems Center

Sun Microsystems, Inc.

SunSoft, Inc.

Sybase, Inc.

Telefonica Investigacion y Desarrollo S.A. Unipersonal

TIBCO, Inc.

Tivoli Systems, Inc.

Tri-Pacific Software, Inc.

University of California, Santa Barbara

University of Rhode Island

Visual Edge Software, Ltd.

Washington University

In addition to the preceding contributors, the OMG would like to acknowledge Mark

Linton at Silicon Graphics and Doug Lea at the State University of New York at

Oswego for their work on the C++ mapping.

IDL Type Extensions RFP, March 1995. OMG TC Document 95-l-35.

Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0868

0869

The Common Object Request Broker: Architecture and Specification, Revision 2.2,

February 1998.

CORBAservices: Common Object Services Specification, Revised Edition, OMG TC
Document 95-3-31.

COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.

COBOL 85 ANSI X3.23-1985 / ISO 1989-l985.

JEEE Standard for Binary Floating-Point Arithmetic, ANlS/lEEE Std 754-1985.

XDR: External Data Representation Standard, RFC1832, R. Srinivasan, Sun Micro-

systems, August 1995. ‘

OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version), 5.

(Martin) O’Donnell, June 1994.

RPC Runtime Support For ll8N Characters — Functional Specification, OSF DCE

SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Open System Interface Definitions, issue 4 Version 2, 1995.

December 2001 CORBA, v2.6: References xlv

0869

0870

xlvi

‘3 V , H _ r m»

Common Object Request Broker Architecture (CORBA). V2.6

December 2001

0871

Interoperability Overview 12

Contents

This chapter contains the following sections.

ORB interoperability specifies a comprehensive, flexible approach to supporting

networks of objects that are distributed across and managed by multiple, heterogeneous

CORBA-compliant ORBs. The approach to “interORBability” is universal, because its

elements can be combined in many ways to satisfy a very broad range of needs.

12.] Elements oflnteroperabilily

December 2001

The elements of interoperability are as follows:

° ORB interoperability architecture

' Inter-ORB bridge support

' General and lntemet inter-ORB Protocols (GlOPs and 1101’s)

In addition, the architecture accommodates environment-specific inter-ORB protocols

(ESlOPs) that are optimized for particular environments such as DCE.

Comman Object Request Broker Architecture (CORE/1), v2.6 12-1

0871

0872

I2

12-2

12.1.1 ORB Interoperability Architecture

The ORB Interoperability Architecture provides a conceptual framework for defining

the elements of interoperability and for identifying its compliance points. It also

characterizes new mechanisms and specifies conventions necessary to achieve

interoperability between independently produced ORBs.

Specifically, the architecture introduces the concepts of immediate and mediated

bridging of ORB domains. The lntemet Inter-ORB Protocol (llOP) forms the common

basis for broad-scope mediated bridging. The inter-ORB bridge support can be used to

implement both immediate bridges and to build “half-bridges” to mediated bridge
domains.

By use of bridging techniques, ORBs can interoperate without knowing any details of

that ORB’s implementation, such as what particular lPC or protocols (such as ESlOPs)

are used to implement the CORBA specification.

The llOP may be used in bridging two or more ORBs by implementing “half bridges”

that communicate using the HOP. This approach works for both stand-alone ORBs, and
networked ones that use an ESlOP.

The llOP may also be used to implement an ORB’s internal messaging, if desired.

Since ORBs are not required to use the HOP internally, the goal of not requiring prior

knowledge of each others’ implementation is fully satisfied.

12.1.2 Inter-ORB Bridge Support

The interoperability architecture clearly identifies the role of different kinds of

domains for ORB-specific information. Such domains can include object reference

domains, type domains, security domains (e.g., the scope of a Principal identifier), a
transaction domain, and more.

Where two ORBs are in the same domain, they can communicate directly. In many

cases, this is the preferable approach. This is not always true, however, since

organizations often need to establish local control domains.

When information in an invocation must leave its domain, the invocation must traverse

a bridge. The role of a bridge is to ensure that content and semantics are mapped from

the form appropriate to one ORB to that of another, so that users of any given ORB

only see their appropriate content and semantics.

The inter-ORB bridge support element specifies ORB Al’ls and conventions to enable

the easy construction of interoperability bridges between ORB domains. Such bridge

products could be developed by ORB vendors, Sieves, system integrators, or other

third-parties.

Because the extensions required to support Inter-ORB Bridges are largely general in

nature, do not impact other ORB operation. and can be used for many other purposes

besides building bridges, they are appropriate for all ORBs to support. Other

applications include debugging, interposing of objects, implementing objects with

interpreters and scripting languages, and dynamically generating implementations.

Common Object Request BrnkerArchitecture (CORBA), v2.6 December 2001

0872

0873

12

The inter-ORB bridge support can also be used to provide interoperability with non-

CORBA systems, such as Microsoft’s Component Object Model (COM). The ease of

doing this will depend on the extent to which those systems conform to the CORBA

Object Model.

12.1.3 General Inter-ORB Protocol (GIOP)

The General Inter-ORB Protocol (GlOP) element specifies a standard transfer syntax

(low-level data representation) and a set of message formats for communications

between ORBs. The GlOP is specifically built for ORB to ORB interactions and is

designed to work directly over any connection-oriented transport protocol that meets a
minimal set of assumptions. It does not require or rely on the use of higher level RPC

mechanisms. The protocol is simple, scalable and relatively easy to implement. it is

designed to allow portable implementations with small memory footprints and

reasonable performance, with minimal dependencies on supporting software other than

the underlying transport layer.

While versions of the GlOP running on different transports would not be directly

interoperable, their commonality would allow easy and efficient bridging between such

networking domains.

12.1.4 Internet Inter-ORB Protocol (HOP)

The lntemet lnter-ORB Protocol (llOP) element specifies how GlOP messages are
exchanged using TCP/lP connections. The llOP specifies a standardized

interoperability protocol for the lntemet, providing “out of the box” interoperation

with other compatible ORBs based on the most popular product— and vendor-neutral

transport layer. lt can also be used as the protocol between half-bridges (see below).

The protocol is designed to be suitable and appropriate for use by any ORB to

interoperate in Internet Protocol domains unless an alternative protocol is necessitated

by the specific design center or intended operating environment of the ORB. 1n that

sense it represents the basic inter-ORB protocol for TCP/lP environments, a most

pervasive transport layer.

The llOP’s relationship to the GlOP is similar to that of a specific language mapping

to OMG lDL; the GlOP may be mapped onto a number of different transports, and

specifies the protocol elements that are common to all such mappings. TheGlOP by

itself, however, does not provide complete interoperability, just as lDL cannot be used

to build complete programs. The 110? and other similar mappings to difierent

transports, are concrete realizations of the abstract GlOP definitions, as shown in

Figure lZ-l on page 12-4.

December 2001 CORBA. v2. 6: Elements ofInteroperability 12—3

0873

0874

12

Mandatoryfor CORBA

CORBA/lDL

 ESiOPs I

Figure 12-1 Inter—ORB Protocol Relationships.

12.1.5 Environment-Specific Inter-ORB Protocols (ESIOPs)

This specification also makes provision for an open-ended set of Environment-Specific

inter-ORB Protocols (ESlOPs). Such protocols would be used for “out of the box”

interoperation at user sites where a particular networking or distributing computing
infrastructure is already in general use.

Because of the opportunity to leverage and build on facilities provided by the specific

environment, ESiOPs might support Specialized capabilities such as'those relating to
security and administration.

While ESiOPs may be optimized for particular environments, all ESiOP specifications

will be expected to conform to the general ORB interoperability architecture

conventions to enable easy bridging. The inter-ORB bridge support enables bridges to

be built between ORB domains that use the 110? and ORB domains that use a
particular ESIOP. I -

12.2 Relationship to Previous Versions ofCORBA

The ORB interoperability Architecture builds on Common Object Request Broker

Architecture by adding the notion of ORB Services and their domains. (ORB Services

are described in Section 13.2, “ORBs and ORB Services,” on page 13-3). The

architecture defines the problem of ORB interoperability in terms of bridging between

those domains, and defines several ways in which those bridges can be constructed.

The bridges can be intemal (in-line) and external (request-level) to ORBs.

APis included in the interoperability specifications include compatible extensions to

previous versions of CORBA to support request-level bridging:

' A Dynamic Skeleton interface (DSi) is the basic support needed for building

request-level bridges. it is the server-side analogue of the Dynamic invocation

interface and in the same way it has general applicability beyond bridging. For

information about the Dynamic Skeleton interface, refer to the Dynamic Skeleton

interface chapter.

Common Object Request BrokerArchitecture (CORBA), v2.6 December 2001

0874

0875

12

' APls for managing object references have been defined, building on the support

identified for the Relationship Service. The APls are defined in Object Reference

Operations in the ORB Interface chapter of this book. The Relationship Service is

described in the Relationship Service specification; refer to the CosObjectldenn'ty

Module section of that specification.

12. 3 Examples ofInteroperability Solutions

The elements of interoperability (Inter-ORB Bridges, General and lntemet Inter-ORB

Protocols, Environment-Specific inter-ORB Protocols) can be combined in a variety of

ways to satisfy particular product and customer needs. This section provides some

examples.

12.3.1 Example]

ORB product A is designed to support objects distributed across a network and provide

“out of the box" interoperability with compatible ORBs from other vendors. In

addition it allows bridges to be built between it and other ORBs that use environment-

specific or proprietary protocols. To accomplish this, ORB A uses the HOP and

provides inter-ORB bridge support.

12.3.2 Example 2

ORB product B is designed to provide highly optimized, very high-speed support for

objects located on a single machine. For example, to support thousands of Fresco GUl

objects operated on at near function-call speeds. In addition, some of the objects will
need to be accessible from other machines and objects on other machines will need to

be infrequently accessed. To accomplish this, ORB A provides a half-bridge to support
the lntemet 10? for communication with other “distributed” ORBs.

12.3.3 Example 3

ORB product C is optimized to work in a particular operating environment. It uses a

particular environment-specific protocol based on distributed computing services that

are commonly available at the target customer sites. In addition, ORB C is expected to

interoperate with other arbitrary ORBs from other vendors. To accomplish this, ORB C

provides inter-ORB bridge support and a companion half-bridge product (supplied by

the ORB vendor or some third-party) provides the connection to other 01185. The half-

bridge uses the 1101’ to enable interoperability with other compatible ORBs.

12.3.4 Interoperability Compliance

An ORB is considered to be interoperability-compliant when it meets the following

requirements:

December 2001 CORBA, v2.6: Examples ofInteroperability Solutions A 12-5

0875

0876

12

12-6

' In the CORBA Core part of this specification, standard APIs are provided by an

ORB to enable the construction of request-level inter-ORB bridges. APIs are

defined by the Dynamic Invocation Interface, the Dynamic Skeleton Interface, and

by the object identity operations described in the Interface Repository chapter of
this book.

° An Internet Inter-ORB Protocol (IIOP) (explained in the Building Inter-ORB

Brdiges chapter) defines a transfer syntax and message formats (described

independently as the General Inter-ORB Protocol), and defines how to transfer

messages via TCP/IP connections. The 110? can be supported nativer or via a half-
bridge.

Support for additional ESIOPs and other proprietary protocols is optional in an

interoperability-compliant system. However, any implementation that chooses to use

the other protocols defined by the CORBA interoperability specifications must adhere

to those specifications to be compliant with CORBA interoperability.

Figure 12-2 on page 12-7 shows examples of interoperable ORB domains that are

CORBA-compliant.

These compliance points support a range of interoperability solutions. For example, the

standard APIs may be used to construct “half bridges” to the 110?, relying on another

“half bridge” to connect to another ORB. The standard APIs also support construction

of “full bridges,” without using the Internet IOP to mediate between separated bridge

components. ORBs may also use the Internet IOP internally. In addition, ORBs may
use GIOP messages to communicate over other network protocol families (such as

Novell or 051), and provide transport-level bridges to the IIOP.

The GIOP is described separately from the 110? to allow future specifications to treat

it as an independent compliance point.

Common Object Request Broker Architecmre (CORBA). v2.6 December 2001

0876

0877

12

ORB Domains ORB Domains

CORBA V2.0 Interoperable

CORBA V2.0 Interoperable

IIOP

CORBA V2.0 Interoperable

'e.g. Proprietary protocol or
GIOP OSI mapping

Figure 12-2 Examples of CORBA Interoperability Compliance

December 2001 CORB/l. v2. 6: Examples ofInteroperability Solutions 12—7

0877

0878

12

12.4 Motivating Factors

12-8

This section explains the factors that motivated the creation of interoperability

specifications.

12.4.1 ORB Implementation Diversity

Today, there are many different ORB products that address a variety of user needs. A

large diversity of implementation techniques is evident. For example, the time for a

request ranges over at least 5 orders of magnitude, from a few microseconds to several

seconds. The scope ranges from a single application to enterprise networks. Some

ORBs have high levels of security, others are more open. Some ORBs are layered on a

particular widely used protocol, others use highly optimized, proprietary protocols.

The market for object systems and applications that use them will grow as object

systems are able to be applied to more kinds of computing. From application

integration to process control, from loosely coupled operating systems to the

information superhighway, CORBA-based object systems can be the common
infrastructure.

12.4.2 ORB Boundaries

Even when it is not required by implementation differences, there are other reasons to

partition an environment into difierent ORBs.

For security reasons, it may be important to know that it is not generally possible to

access objects in one domain from another. For example, an “internet ORB” may make

public information widely available, but a “company ORB” will want to restrict what

information can get out. Even if they used the same ORB implementation, these two

ORBs would be separate, so that the company could allow access to public objects

from inside the company without allowing access to private objects from outside. Even

though individual objects should protect themseIVCs, prudent system administrators

will want to avoid exposing sensitive objects to attacks from outside the company.

Supporting multiple ORBs also helps handle the diflicult problem of testing and

upgrading the object system. It would be unwise to test new infrastructure without

limiting the set of objects that might be damaged by bugs, and it may be impractical to

replace “the ORB” everywhere simultaneously. A new ORB might be tested and

deployed in the same environment, interoperating with the existing ORB until either a

complete switch is made or it incrementally displaces the existing one.

Management issues may also motivate partitioning an ORB. Just as networks are

subdivided into domains to allow decentralized control of databases, configurations,

resources, management of the state in an ORB (object reference location and

translation information, interface repositories, per-object data) might also be done by

creating sub-ORBs.

Common Object Request Broker A rch ilecture (CORB/1), v2.6 December 2001

0878

0879

I2

12.4.3 ORBs Vary in Scope, Distance, and Lifetime

Even in a single computing environment produced by a single vendor, there are reasons

Why some of the objects an application might use would be in one ORB, and others in

another ORB. Some objects and services are accessed over long distances, with more

global visibility, longer delays, and less reliable communication. Other objects are

nearby, are not accessed from elsewhere, and provide higher quality service. By

deciding which ORB to use, an implementer sets expectations for the clients of the

objects.

One ORB might be used to retain links to information that is expected to accumulate

over decades, such as library archives. Another ORB might be used to manage a

distributed chess program in which the objects should all be destroyed when the game

is over. Although while it is running, it makes sense for “chess ORB” objects to access

the “archives ORB," we would not expect the archives to try to keep a reference to the

current board position.

12.5 Interoperability Design Goals

December 200]

Because of the diversity in ORB implementations, multiple approaches to

interoperability are required. Options identified in previous versions of CORBA
include:

° Protocol Translation, where a gateway residing somewhere in the system maps

requests from the format used by one ORB to that used by another.

' Reference Embedding, where invocation using a native object reference delegates to

a special object whose job is to forward that invocation to another ORB.

’ Alternative ORBs, where ORB implementations agree to coexist in the same address

space so easily that a Client or implementation can nansparently use any of them,

and pass object references created by one ORB to another ORB without losing

functionality.

in general, there is no single protocol that can meet everyone's needs, and there is no

single means to interoperate between two different protocols. There are many

environments in which multiple protocols exist, and there are ways to bridge between

environments that share no protocols. '

This specification adopts a flexible architecture that allows a wide variety of ORB

implementations to interoperate and that includes both bridging and common protocol
elements.

The following goals guided the creation of interoperability specifications:

' The architecture and specifications should allow high-performance, small footprint,

lightweight interoperability solutions.

The design should scale, should not be unduly difficult to implement, and should

not unnecessarily restrict implementation choices.

CORBA, v2.6: Interoperability Design Goals 12-9

0879

0880

12

12-10

' Interoperability solutions should be able to work with any vendors’ existing ORB

implementations with respect to their CORBA-compliant core feature set; those

implementations are diverse.

° All operations implied by the CORBA object model (i.e., the stringify and

destringify operations defined on the CORBA:ORB pseudo-object and all the

operations on CORBA:Object) as well as type management (e.g., narrowing, as

needed by the C++ mapping) should be supported.

12.5.1 Non-Goals

The following were taken into account, bm were not goals:

' Support for security

° Support for future ORB Services

Common Object Request BrnkerArchiteclure (CORBA). v2.6 December 200l

0880

0881

ORB InterOperabiliZyArchitecture 13

Contents

This chapter contains the following sections.

“ORBs and ORB Services” 13-3

“Domains” l3-5

“lnteroperability Between ORBs” 13-7

“Object Addressing” 13-11

“An Information Model for Object References” 13-l4

“Service Context’.’ » 13-28

“Coder/Decoder Interfaces” 13-31

“Feature Support and 010? Versions” 13-35

“Code Set Conversion” l3-36

1 3.1 Overview

The original Interoperability RFP defines interoperability as the ability for a client on

ORB A to invoke an OMG lDL-defined operation on an object on ORB B, where ORB

A and ORB B are independently developed. It further identifies general requirements

including in particular:

° Ability for two vendors’ ORBs to interoperate without prior knowledge of each

other’s implementation.

December 2001 Common Object Request BrokerArchileclure (CORE/1), v2.6 l3-1

0881

0882

I3

l3-2

' Support of all ORB functionality.

' Preservation of content and semantics of ORB-specific information across ORB

boundaries (for example, security).

In effect, the requirement is for invocations between client and server objects to be

independent of whether they are on the same or different ORBs, andnot to mandate

fundamental modifications to existing ORB products.

13.1.1 Domains

The CORBA Object Model identifies various distribution transparencies that must be

supported within a single ORB environment, such as location transparency. Elements
of ORB functionality often correspond directly to such transparencies. lnteroperability

can be viewed as extending transparencies to span multiple ORBs.

In this architecture a domain is a distinct scope, within which certain common
characteristics are exhibited and cormnon rules are observed over which a disuibution

transparency is preserved. Thus, interoperability is fundamentally involved with

transparently crossing such domain boundaries.

Domains tend to be either administrative or technological in nature, and need not

correspond to the boundaries of an ORB installation. Administrative domains include

naming domains, trust groups, resource management domains and other “run-time”

characteristics of a system. Technology domains identify common protocols, syntaxes

and similar “build-time” characteristics. In many cases, the need for technology

domains derives from basic requirements of administrative domains.

Within a single ORB, most domains are likely to have similar scope to that of the ORB

itself: common object references, network addresses, security mechanisms, and more.

However, it is possible for there to be multiple domains of the same type supported by

a given ORB: internal representation on different machine types, or security domains.

Conversely, a domain may span several ORBs: similar network addresses may be used
by different ORBs, type identifiers may be shared.

13.1.2 Bridging Domains

The abstract architecture describes ORB interoperability in terms of thetranslation

required when an object request traverses domain boundaries. Conceptually, a mapping

or bridging mechanism resides at the boundary between the domains, transforming

requests expressed in terms of one domain’s model into the model of the destination
domain.

The concrete architecture identifies two approaches to inter-ORB bridging:

' At application level, allowing flexibility and portability.

' At ORB level, built into the ORB itself.

Common Object Request Broker Architecture (CORBA). v2.6 December 2001

0882

0883

13

1 3.2 ORBs and ORB Services

December 2001

The ORB Core is that part of the ORB which provides the basic representation of

objects and the communication of requests. The ORB Core therefore supports the

minimum functionality to enable a client to invoke an operation on a server object,

with (some of) the distribution transparencies required by CORBA.

An object request may have implicit attributes which affect the way in which it is

communicated - though not the way in which a client makes the request. These

attributes include security, transactional capabilities, recovery, and replication. These

features are provided by “ORB Services,” which will in some ORBs be layered as
internal services over the core, or in other cases be incorporated directly into an ORB’s

core. it is an aim of this specification to allow for new ORB Services to be defined in

the future, without the need to modify or enhance this architecture.

Within a single ORB, ORB services required to communicate a request will be

implemented and (implicitly) invoked in a private manner. For interoperability between

ORBs, the ORB services used in the ORBs, and the correspondence between them,
must be identified.

13.2.1 The Nature of ORB Services

ORB Services are invoked implicitly in the course of application-level interactions.

ORB Services range from fundamental mechanisms such as reference resolution and

message encoding to advanced features such as support for security, transactions, or

replication.

An ORB Service is often related to a particular transparency. For example, message

encoding — the marshaling and unmarshaling of the components of a request into and

out of message buffers — provides transparency of the representation of the request.

Similarly, reference resolution supports location transparency. Some transparencies,

such as security, are supported by a combination of ORB Services and Object Services

while others, such as replication, may involve interactions between ORB Services
themselves.

ORB Services differ from Object Services in that they are positioned below the
application and are invoked transparently to the application code. However, many ORB

Services include components which correspond to conventional Object Services in that

they are invoked explicitly by the application.

Security is an example of service with both ORB Service and normal Object Service

components, the ORB components being those associated with transparently

authenticating messages and controlling access to objects while the necessary

administration and management functions resemble conventional Object Services.

13.2.2 ORB Services and Object Requests

Interoperability between ORBs extends the scope of distribution transparencies and

other request attributes to span multiple ORBs. This requires the establishment of
relationships between supporting ORB Services in the different ORBS.

CORBA, v2.6: ORBs and ORB Services 13-3

0883

0884

13

13-4

In order to discuss how the relationships between ORB Services are established, it is
necessary to describe an abstract view of how an operation invocation is communicated

from client to sewer object.

1. The client generates an operation request, using a reference to the server object,

explicit parameters, and an implicit invocation context. This is processed by certain

ORB Services on the client path.

2. On the server side, corresponding ORB Services process the incoming request,

transforming it into a form directly suitable for invoking the operation on the server

object.

3. The server object performs the requested operation.

4. Any result of the operation is returned to the client in a similar manner.

The correspondence between client-side and server-side ORB Services need not be

one-to-one and in some circumstances may be far more complex. For example, if a

client application requests an operation on a replicated server, there may be multiple

server-side ORB service instances, possibly interacting with each other.

In other cases, such as security, client-side or server-side ORB Services may interact

with Object Services such as authentication servers.

13.2.3 Selection of ORB Services

The ORB Services used are determined by:

' Static properties of both client and server objects; for example, whether a server is

replicated.

' Dynamic attributes determined by a particular invocation context; for example,

whether a request is transactional.

' Administrative policies (e.g., security).

Within a single ORB, private mechanisms (and optimizations) can be used to establish

which ORB Services are required and how they are provided. Service selection might

in general require negotiation to select protocols or protocol options. The same is true

between different ORBs: it is necessary to agree which ORB Services are used, and

how each transforms the request. Ultimately, these choices become manifest as one or

more protocols between the ORBs or as transformations of requests.

In principle, agreement on the use of each ORB Service can be independent of the

others and, in appropriately constructed ORBs, services could be layered in any order

or in any grouping. This potentially allows applications to specify selective

transparencies according to their requirements, although at this time CORBA provides

no way to penetrate its transparencies.

A client ORB must be able to determine which ORB Services must be used in order to

invoke operations on a server object. Correspondingly, where a client requires dynamic

attributes to be associated with specific invocations, or administrative policies dictate,

it must be possible to cause the appropriate ORB Services to be used on client and

Common Object Request BrokerArchr'lecture (CORBA). v2.6 December 200l

0884

0885

13

13.3 Domains

server sides of the invocation path. Where this is not possible - because, for example,

one ORB does not support the full set of services required - either the interaction

cannot proceed or it can only do so with reduced facilities or transparencies.

From a computational viewpoint, the OMG Object Model identifies various

distribution transparencies which ensure that client and server objects are presented

with a uniform View of a heterogeneous distributed system. From an engineering

viewpoint, however, the system is not wholly uniform. There may be distinctions of

location and possibly many others such as processor architecture, networking

mechanisms and data representations. Even when a single ORB implementation is used

throughout the system, local instances may represent distinct, possibly optimized

scopes for some aspects of ORB functionality.

Representation Representation

Networking

Securit

Figure 13-1 Different Kinds of Damains can Coexist.

interoperability, by definition, introduces further distinctions, notably between the

scopes associated With each ORB. To describe both the requirements for

interoperability and some of the solutions, this architecture introduces the concept of

domains to describe the scopes and their implications.

informally, a domain is a set of objects sharing a common characteristic or abiding by

common rules. it is a powerful modelling concept which can simplify the. analysis and

description of complex systems. There may be many types of domains (e.g.,

management domains, naming domains, language domains, and technology domains).

13.3.1 Definition ofa Domain

December 200]

Domains allow partitioning of systems into collections of components which have

some characteristic in common. In this architecture a domain is a scope in which a

collection of objects, said to be members of the domain, is associated with some

common characteristic; any object for which the association does not exist, or is

undefined, is not a member of the domain. A domain can be modeled as an object and

may be itself a member of other domains.

It is the scopes themselves and the object associations or bindings defined within them

which characterize a domain. This information is disjoint between domains. However,

an object may be a member of several domains, of similar kinds as well as of different

kinds, and so the sets of members of domains may overlap.

CORBA, v2. 6: Domains 13-5

0885

0886

13

13-6

The concept of a domain boundary is defined as the limit of the scope in which a
particular characteristic is valid or meaningful. When a characteristic in one domain is

translated to an equivalent in another domain, it is convenient to consider it as

traversing the boundary between the two domains.

Domains are generally either administrative or technological in nature. Examples of
domains related to ORB interoperability issues are:

° Referencing domain — the scope of an object reference

' Representation domain — the scope of a message transfer syntax and protocol

° Network addressing domain — the scope of a network address

° Network connectivity domain — the potential scope of a network message

' Security domain — the extent of a particular security policy

‘. Type domain — the scope of a particular type identifier

' Transaction domain — the scope of a given transaction service

Domains can be related in two ways: containment, where a domain is contained within

another domain, and federation, where two domains are joined in a manner agreed to

and set up by their administrators.

13.3.2 Mapping Between Domains: Bridging

Interoperability between domains is only possible if there is a well-defined mapping
between the behaviors of the domains being joined. Conceptually, a mapping,

mechanism or bridge resides at the boundary between the domains, transforming

requests expressed in terms of one domain’s model into the model of the destination
domain. Note that the use of the term “bridge” in this context is conceptual and refers

only to the functionality, which performs the required mappings between distinct

domains. There are several implementation options for such bridges and these are
discussed elsewhere.

For full interoperability, it is essential that all the concepts used in one domain are

transformable into concepts in other domains with which interoperability is required,

or that if the bridge mechanism filters such a concept out, nothing is lost as far as the

supported objects are concerned. In other words, one domain may support a superior

service to others, but such a superior functionality will not be available to an

application system spanning those domains.

A special case of this requirement is that the object models of the two domains need to

be compatible. This specification assumes that both domains are strictly compliant

with the CORBA Object Model and the CORBA specifications. This includes the use of

OMG lDL when defining interfaces, the use of the CORBA Core interface Repository,
and other modifications that were made to CORBA. Variances from this model could

easily compromise some aspects of interoperability.

Common Object Request BrnkerArchileclure (CORBA). v2.6 December 2001

0886

0887

I3

13.4 Interoperability Between ORBs

December 2001

An ORB “provides the mechanisms by which objects transparently make and receive

requests and responses. In so doing, the ORB provides interoperability between

applications on different machines in heterogeneous distributed environments...” ORB

interoperability extends this definition to cases in which client and server objects on

different ORBs “transparently make and receive requests."

Note that a direct consequence of this transparency requirement is that bridging must

be bidirectional: that is, it must work as effectively for object references passed as

parameters as for the target of an object invocation. were bridging unidirectional (e.g.,

if one ORB could only be a client to another) then transparency would not have been

provided, because object references passed as parameters would not work correctly:

ones passed as “callback objects,” for example, could not be used.

Without loss of generality, most of this specification focuses on bridging in only one

direction. This is purely to simplify discussions, and does not imply that unidirectional

connectivity satisfies basic interoperability requirements.

13.4.1 ORB Services and Domains

ln this architecture, different aspects of ORB functionality - ORB Services - can be

considered independently and associated with different domain types. The architecture

does not, however, prescribe any particular decomposition of ORB functionality and

interoperability into ORB Services and corresponding domain types. There is a range

of possibilities for such a decomposition:

l. The simplest model, for interoperability, is to treat all objects supported by one

ORB (or, alternatively, all ORBs of a given type) as comprising one domain.

Interoperability between any pair of different domains (or domain types) is then

achieved by a specific all-encompassing bridge between the domains. (This is all

CORBA implies.)

2. More detailed decompositions would identify particular domain types - such as

referencing, representation, security, and networking. A core set of domain types

would be pre-determined and allowance made for additional domain types to be
defined as future requirements dictate (e.g., for new ORB Services).

13.4.2 ORBs and Domains

In many respects, issues of interoperability between ORBs are similar to those which

can arise with a single type of ORB (e.g., a product). For example:

' Two installations of the ORB may be installed in different security domains, with

different Principal identifiers. Requests crossing those security domain boundaries

will need to establish locally meaningful Principals for the caller identity, and for

any Principals passed as parameters.

' Different installations might assign different type identifiers for equivalent types,
and so requests crossing type domain boundaries would need to establish locally

meaningful type identifiers (and perhaps more).

CORE/l, v2.6: lntemperability Between ORBs 13-7

0887

0888

13

13-8

Conversely, not all of these problems need to appear when connecting two ORBS of a

different type (e.g., two different products). Examples include:

' They could be administered to share user visible naming domains, so that naming
domains do not need bridging.

‘ They might reuse the same networking infrastructure, so that messages could be

sent without needing to bridge different connectivity domains.

Additional problems can arise with ORBS of different types. In particular, they may

support different concepts or models, between which there are no direct or natural

mappings. CORBA only specifies the application level view of object interactions, and

requires that distribution transparencies conceal a whole range of lower level issues. It

follows that within any particular ORB, the mechanisms for supporting transparencies

are not visible at the application-level and are entirely a matter of implementation

choice. So there is no guarantee that any two ORBs support similar internal models or

that there is necessarily a straightforward mapping between those models.

These observations suggest that the concept of an ORB (instance) is too coarse or

superficial to allow detailed analysis of interoperability issues between ORBs. Indeed,
it becomes clear that an ORB instance is an elusive notion: it can perhaps best be
characterized as the intersection or coincidence of ORB Service domains.

13.4.3 Interoperability Approaches _

13.4.3.1

When an interaction takes place across a domain boundary, a mapping mechanism, or

bridge, is required to transform relevant elements of the interaction as they traverse the

boundary. There are essentially two approaches to achieving this: mediated bridging

and immediate bridging. These approaches are described in the following subsections.

Domain DomainDomainDomain

Mediated Bridging Immediate Bridging

Figure 13-2 Two bridging techniques, different uses of an intermediate form agreed on between
the two domains.

Mediated Bridging

With mediated bridging, elements of the interaction relevant to the domain are

transformed, at the boundary of each domain, between the internal form of that domain

and an agreed, common form.

Observations on mediated bridging are as follows:

° The scope of agreement of a common form can range from a private agreement

between two particular ORB/domain implementations to a universal standard.

Common Object Request Broker/lrchiteclure (CORBA). v2.6 December 200]

0888

0889

13

December 200]

' There can be more than one common form, each oriented or optimized for a

different purpose.

' if there is more than one possible common form, then which is used can be static

(e.g., administrative policy agreed between ORB vendors, or between system

administrators) or dynamic (e.g., established separately for each object, or on each

invocation).

' Engineering of this approach can range from in-line specifically compiled (compare

to stubs) or generic library code (such as encryption routines), to intermediate

bridges to the common form.

13.4.3.2 Immediate Bridging '

13.4.3.3

With immediate bridging, elements of the interaction relevant to the domain are

transformed, at the boundary of each domain, directly between the internal form of one
domain and the internal form of the other.

Observations on immediate bridging are as follows:

' This approach has the potential to be optimal (in that the interaction is not mediated

via a third party, and can be specifically engineered for each pair of domains) but

sacrifices flexibility and generality of interoperability to achieve this.

' This approach is often applicable when crossing domain boundaries which are

purely administrative (ie, there is no change of technology). For example, when

crossing security administration domains between similar ORBs, it is not necessary
to use a common intermediate standard.

As a general observation, the two approaches can become almost indistinguishable

when private mechanisms are used between ORB/domain implementations.

Location ofInter-Domain Functionality

Logically, an inter-domain bridge has components in both domains, whether the

mediated or immediate bridging approach is used. However, domains can span ORB

boundaries and ORBs can span machine and system boundaries; conversely, a machine

may support, or a process may have access to more than one ORB (or domain of a

given type). From an engineering viewpoint, this means that the components of an

inter-domain bridge may be dispersed or co-located, with respect to ORBs or systems.

It also means that the ‘distinction between an ORB and a bridge can be a matter of

perspective: there is a duality between viewing inter-system messaging as belonging to

ORBs, or to bridges.

For example, if a single ORB encompasses two security domains, the inter-domain

bridge could be implemented wholly within the ORB and thus be invisible as far as

ORB interoperability is concerned. A similar situation arises when a bridge between

two ORBs or domains is implemented wholly within a process or system which has

access to both. ln such cases, the engineering issues of inter-domain bridging are

CORBA. v2.6: Interoperability Between ORBs 13-9

0889

0890

13

confined, possibly to a single system or process. If it were practical to implement all

bridging in this way, then interactions between systems or processes would be solely
within a single domain or ORB.

13.4.3. 4 Bridging Level

As noted at the start of this section, bridges may be implemented both internally to an

ORB and as layers above it. These are called respectively “in-line” and “request-level”

bridges.

Request-level bridges use the CORBA APls, including the Dynamic Skeleton

interface, to receive and issue requests. However, there is an emerging class of

“implicit context” which may be associated with some invocations, holding ORB
Service information such as transaction and security context information, which is not

at this time exposed through general purpose public APls. (Those APls expose only

OMG lDL-de fined operation parameters, not implicit ones.) Rather, the precedent set

with the Transaction Service is that special purpose APls are defined to allow bridging

of each kind of context. This means that request-level bridges must be built to

specifically understand the implications of bridging such ORB Service domains, and to
make the appropriate API calls.

13.4.4 Policy-Mediated Bridging

An assumption made through most of this specification is that the existence of domain

boundaries should be transparent to requests: that the goal of interoperability is to hide

such boundaries. However, if this were always the goal, then there would be no real

need for those boundaries in the first place.

Realistically, administrative domain boundaries exist because they reflect ongoing

differences in organizational policies or goals. Bridging the domains will in such cases

require policy mediation. That is, inter-domain traffic will need to be constrained,

controlled, or monitored; fully transparent bridging may be highly undesirable.

Resource management policies may even need to be applied, restricting some kinds of

traffic during certain periods.

Security policies are a particularly rich source of examples: a domain may need to

audit external access, or to provide domain-based access control. Only a very few

objects, types of objects, or classifications of data might be externally accessible

through a “firewall.”

Such policy-mediated bridging requires a bridge that knows something about the traffic

being bridged. It could in general be an application-specific policy, and many policy-

mediated bridges could be parts of applications. Those might be organization-specific,

off-the-shelf, or anywhere in between.

Request-level bridges, which use only public ORB APls, easily support the addition of

policy mediation components, without loss of access to any other system infrastructure

that may be needed to identify or enforce the appropriate policies.

13—10 Common Object Request BrokerArchiIecmre (CORBA). v2.6 December 2001

0890

0891

13

13.4.5 Configurations ofBridges in Networks

In the case of network-aware ORBs, we anticipate that some ORB protocols will be

more frequently bridged to than others, and so will begin to serve the role of

“backbone ORBS.” (This is a role that the 110? is specifically expected to serve.) This

use of “backbone topology” is true both on a large scale and a small scale. While a

large scale public data network provider could define its own backbone ORB, on a

smaller scale, any given institution will probably designate one commercially available
ORB as its backbone.

Backbone ORB
Figure [3—3 An ORB chosen as a backbone will connect other ORBs through bridges, both full-

bridges and half-bridges.

Adopting a backbone style architecture is a standard administrative technique for

managing networks. lt has the consequence of minimizing the number of. bridges
needed, while at the same time making the ORB topology match typical network

organizations. (That is, it allows the number of bridges to be proportional to the

number of protocols, rather than combinatorial.)

In large configurations, it will be common to notice that adding ORB bridges doesn’t

even add any new “hops” to network routes, because the bridges manually fit in

locations Where connectivity was already indirect, and augment or supplant the

existing network firewalls.

13.5 Object Addressing

December 200]

The Object Model (see Chapter 1, Requests) defines an object reference as an object

name that reliably denotes a particular object. An object reference identifies the same

object each time the reference is used in a request, and an object may be denoted by

multiple, distinct references.

CORE/1. v2.6: Object Addressing 13—11

0891

0892

13

The fundamental ORB interoperability requirement is to allow clients to use such

object names to invoke operations on objects in other ORBs. Clients do not need to

distinguish between references to objects in a local ORB or in a remote one. Providing

this transparency can be quite involved, and naming models are fundamental to it.

This section discusses models for naming entities in multiple domains, and

transformations of such names as they cross the domain boundaries. That is, it presents

transformations of object reference information as it passes through networks of inter-

ORB bridges. it uses the word “ORB” as synonymous with referencing domain; this is

purely to simplify the discussion. In other contexts, “ORB” can usefully denote other
kinds of domain.

13.5.1 Domain—relative Object Referencing

Since CORBA does not require ORBs to understand object references from other

ORBs, when discussing object references from multiple ORBs one must always

associate the object reference’s domain (ORB) with the object reference. We use the

notation D0.R0 to denote an object reference R0 from domain DO; this is itself an

object reference. Thisis called “domain-relative" referencing (or addressing) and need

not reflect the implementation of object references within any ORB.

At an implementation level, associating an object reference with an ORB is only

important at an inter-ORB boundary; that is, inside a bridge. This is simple, since the

bridge knows from which ORB each request (or response) came, including any object
references embedded in it.

13.5.2 Handling ofReferencing Between Domains

When a bridge hands an object reference to an ORB, it must do so in a form

understood by that ORB: the object reference must be in the recipient ORB’s native

format. Also, in cases where that object originated from some other ORB, the bridge

must associate each newly created “proxy” object reference with (what it sees as) the

original object reference.

Several basic schemes to solve these two problems exist. These all have advantages in

some circumstances; all can be used, and in arbitrary combination with each other,

since CORBA object references are opaque to applications. The ramifications of each

scheme merits attention, with respect to scaling and administration. The schemes
include:

1. Object Reference Translation Reference Embedding: The bridge can store the

original object reference itself, and pass an entirely different proxy reference into

the new domain. The bridge must then manage state on behalf of each bridged

object reference, map these references from one ORB’s format to the other’s, and
vice versa.

13—1 2 Common Object Request Broker Architecture (CORBA). v2.6 December 2001

0892

0893

I3

2. Reference Encapsulation: The bridge can avoid holding any state at all by

conceptually concatenating a domain identifier to the object name. Thus if a

reference D0.R, originating in domain D0, traversed domains D1... D4 it could be

identified in D4 as proxy reference d3.d2.d1.a'0.R, where dn is the address of Dn
relative to Dn +1.

Figure 13-4 Reference encapsulation adds domain information during bridging.

3. Domain Reference Translation: Like object reference translation, this scheme holds

some state in the bridge. However, it supports sharing that state between multiple

object references by adding a domain-based route identifier to the proxy (which still

holds the original reference, as in the reference encapsulation scheme). it achieves

this by providing encoded domain route information each time a domain boundary

is traversed; thus if a reference D0.R, originating in domain DO, traversed domains

D]...D4 it would be identified in D4 as (d3, x3).R, and in D2 as (d1,x1).R, and so

on, where dn is the address of Dn relative to Dn+1, and xn identifies the pair (dn-I,

xn-1).

Figure 13-5 Domain Reference Translation substitutes domain references during bridging.

4. Reference Canonicalizalion: This scheme is like domain reference translation,

except that the proxy uses a “Well-known” (e.g., global) domain identifier rather

than an encoded path. Thus a reference R, originating in domain DO would be

identified iniother domains as DO.R.

Observations about these approaches to inter-domain reference handling are as follows:

° Naive application of reference encapsulation could lead to arbitrarily large

references. A “topology service” could optimize cycles within any given

encapsulated reference and eliminate the appearance of references to local objects
as alien references.

A topology service could also optimize the chains of routes used in the domain

reference translation scheme. Since the links in such chains are re-used by any path

traversing the same sequence of domains, such optimization has particularly high

leverage.

December 2001 CORR/1, v2.6: ObjectAddressing 13-13

0893

0894

I3

° With the general purpose APls defined in CORBA, object reference translation can

be supported even by ORBs not specifically intended to support efficient bridging,

but this approach involves the most state in intermediate bridges. As with reference

encapsulation, a topology service could optimize individual object references. (APls

are defined by the Dynamic Skeleton Interface and Dynamic Invocation Interface)

The chain of addressing links established with both object and domain reference

translation schemes must be represented as state within the network of bridges.

There are issues associated with managing this state.

Reference canonicalization can also be performed with managed hierarchical name

spaces such as those now in use on the Internet and X500 naming.

13. 6 An Information Modelfor Object References

13-14

This section provides a simple, powerful information model for the information found

in an object reference. That model is intended to be used directly by developers of

bridging technology, and is used in that role by the HOP, described in the General

Inter-ORB Protocol chapter, Object References section.

13. 6.1 What Information Do Bridges Need?

The following potential information about object references has been identified as

critical for use in bridging technologies:

’ Is it null? Nulls only need to be transmitted and never support operation invocation.

' What type is it? Many ORBs require knowledge of an object’s type in order to

efficiently preserve the integrity of their type systems.

What protocols are supported? Some ORBs support objrefs that in effect live in

multiple referencing domains, to allow clients the choice of the most efficient
communications facilities available.

What ORB Services are available? As noted in Section 13.2.3, “Selection of ORB

Services” on page 13-4, several different ORB Services might be involved in an

invocation. Providing information about those services in a standardized way could

in many cases reduce or eliminate negotiation overhead in selecting them.

13.6.2 Interoperable Object References: IORs

To provide the information above, an “Interoperable Object Reference,” (10R) data

structure has been provided. This data structure need not be used internally to any

given ORB, and is not intended to be visible to application-level ORB programmers. It

should be used only when crossing object reference domain boundaries, within

bridges.

This data structure is designed to be efficient in typical single-protocol configurations,

while not penalizing multiprotocol ones.

Common Object Request BrokerArchitecture (CORBA). v2.6 December 2001

0894

0895

13

December 2001

module IOP{ ll IDL

ll Standard Protocol Profile tag values

typedef unsigned long Profileld;

struct TaggedProfile {
Profileld tag;

sequence <octet> profile_data;

};

// an Interoperable Object Reference is a sequence of
// object-specific protocol profiles, plus a type ID.

struct IOR {

string type_id;

sequence <TaggedProfile> profiles;

};

II Standard way of representing multicomponent profiles.

II This would be encapsulated in a TaggedProfile.

typedef unsigned long Componentld;

struct TaggedComponent{
Componentld tag;

sequence <octet> component_data;
};

typedef sequence<TaggedComponent> TaggedComponentSeq;
}:

13.6.3 IOR Profiles

Object references have at least one lagged profile. Each profile supports one or more

protocols and encapsulates all the basic information the protocols it supports need to

identify an object Any single profile holds enough information to drive a complete

invocation using any of the protocols it supports; the content and structure of those

profile entries are wholly specified by these pretocols.

When a specific protocol is used to convey an object reference passed as a parameter

in an IDL operation invocation (or reply), an 10R which reflects, in its contained

profiles, the full protocol understanding of the operation client (or server in case of

reply) may be sent. A receiving ORB which operates (based on topology and policy

information available to it) on profiles rather than the received IOR as a whole, to

create a derived reference for use in its own domain of reference, is placing itself as a

bridge between reference domains. Interoperability inhibiting situations can arise

when an orb sends an IOR with multiple profiles (using one of its supported protocols)

CORBA. v2. 6: An Information Model/hr Object References 13-15

0895

0896

13

13-16

to a receiving orb, and that receiving orb later returns a derived reference to that object,

which has had profiles or profile component data removed or transformed from the

original 10R contents.

To assist in classifying behavior of ORBS in such bridging roles, two classes of lOR

conformance may be associated with the conformance requirements for a given ORB

interoperability protocol:

' Full lOR conformance requires that an orb which receives an [OR for an object

passed to it through that ORB interoperability protocol, shall recover the original

10R, in its entirety, for passing as a reference to that object from that orb through

that same protocol

° Limited-Profile IOR conformance requires that an orb which receives an lOR

passed to it through a given ORB interoperability protocol, shall recover all of the

standard information contained in the lOR profile for that protocol, whenever

passing a reference to that object, using that same protocol, to another ORB.

Note — Conformance to llOP versions 1.0, 1.1 and 1.2 only requires support of limited-

Profile lOR conformance, specifically for the HOP lOR profile. However, due to

interoperability problems induced by Limited-Profile lOR conformance, it is now

deprecated by the CORBA 2.4 specification for an orb to not support Full lOR

conformance. Some future llOP versions could require Full IOR conformance.

An ORB may be unable to use any of the profiles provided in an lOR for various

reasons which may be broadly categorized as transient ones like temporary network

outage, and non-transient ones like unavailability of appropriate protocol software in

the ORB. The decision about the category of outage that causes an ORB to be unable

to use any profile from an lOR is left up to the ORB. At an appropriate point, when an

ORB discovers that it is unable to use any profile in an 10R, depending on whether it
considers the reason transient or non-transient, it should raise the standard system

exception TRANSIENT with standard minor code 2, or |MP_L|M|T with the
standard minor code 1.

Each profile has a unique numeric tag, assigned by the OMG. The ones defined here

are for the 110? (see Section 15.7.3, “llOP lOR Profile Components” on page 15-54)

and for use in “multiple component profiles.” Profile tags in the range 0x80000000

through Oxffffffff are reserved for future use, and are not currently available for

assignment.

Null object references are indicated by an empty set of profiles, and by a “Null” type

ID (a string which contains only a single terminating character). Type le may only be
“Null” in any message, requiring the client to use existing knowledge or to consult the

object, to determine interface types supported. The type 1D is a Repository lD

identifying the interface type, and is provided to allow ORBS to preserve strong typing.

This identifier is agreed on within the bridge and, for reasons outside the scope of this

interoperability specification, needs to have a much broader scope to address various

problems in system evolution and maintenance. Type le support detection of type

equivalence, and in conjunction with an Interface Repository, allow processes to reason

about the relationship of the type of the object referred to and any other type.

Common Object Request Broker A rch itecrure (CORBA), v2. 6 December 2001

0896

0897

13

December 2001

The type 10, if provided by the server, indicates the most derived type that the server

wishes to publish, at the time the reference is generated. The object’s actual most

derived type may later change to a more derived type. Therefore, the type 1D in the

10R can only be interpreted by the client as a hint that the object supports at least the

indicated interface. The client can succeed in narrowing the reference to the indicated

interface, or to one of its base interfaces, based solely on the type 1D in the 10R, but

must not fail to narrow the reference without consulting the object via the “_is_a” or

“_get_interface” pseudo-operations.

ORBs claiming to support the Full-10R conformance are required to preserve all the

semantic content of any 10R (including the ordering of each profile and its

components), and may only apply nansformations which preserve semantics (e.g.,

changing Byte order for encapsulation).

For example, consider an echo operation for object references:

interface Echoer {Object echo(in Object 0);};

Assume that the method body implementing this “echo” operation simply returns its

argument. When a client application invokes the echo operation and passes an

arbitrary object reference, if both the client and server ORBs claim support to Full 10R

conformance, the reference returned by the operation is guaranteed to have not been

semantically altered by either client or server ORB. That is, all its profiles will remain

intact and in the same order as they were present when the reference was sent. This

requirement for ORBs which claim support for Full-10R conformance, ensures that,

for example, a client can safely store an object reference in a naming service and get

that reference back again later without losing information inside the reference.

13.6.4 Standard [UK Profiles

13.6.4.1

module IOP {
const Profileld

const Profileld

const Profileld

TAG_INTERNET_IOP = 0;

TAG_MULTIPLE_COMPONENTS = 1;

TAG_SCCP_|OP = 2; '

typedef sequence <TaggedComponent> MultipleComponentProfile;
l;

The TAG_INTERNET_IOP Profile

The TAG_INTERNET_IOP tag identifies profiles that support the lntemet Inter-ORB

Protocol. The ProfileBody of this profile, described in detail in Section 15.7.2, “110?

lOR Profiles" on page 15-51, contains a CDR encapsulation of a structure containing

addressing and object identification information used by 110?. Version 1.] of the

TAG_INTERNET_IOP profile also includes a sequence<TaggedComponent> that

can contain additional information supporting optional llOP features, ORB services

such as security, and future protocol extensions.

CORBA, v2. 6: An Information Modelfor Object References 13-17

0897

0898

13

13—18

13.6.4.2

13.6.4.3

Protocols other than 1101’ (such as ESlOPs and other GlOPs) can share profile

information (such as object identity or security information) with 1101’ by encoding

their additional profile information as components in the TAG_INTERNET_IOP

profile. All TAG_|NTERNET_|OP profiles support 110?, regardless of whether they

also support additional protocols. Interoperable ORBs are not required to create or

understand any other profile, nor are they required to create or understand any of the

components defined for other protocols that might share the TAG_|NTERNET_|OP
profile with llOP.

The profile_data for the TAG_|NTERNET__IOP profile is a CDR encapsulation of

the llOP::ProfileBody_1_1 type, described in Section 15.7.2, “110? lOR Profiles” on

page 15-51.

The TAG_MULTIPLE_COMPONENTS Profile

The TAG_MULT|PLE_COMPONENTS tag indicates that the value encapsulated is of

type MultipleComponentProfile. In this case, the profile consists of a list of

protocol components, the use of which must be specified by the protocol using this

profile. This profile may be used to carry 10R components, as specified in Section

13.6.5, “10R Components” on page 13-18.

The profi|e_data for the TAG_MULT|PLE_COMPONENTS profile is a CDR

encapsulation of the MultipleComponentProfile type shown above.

The TAG__SCCP_10P Profile

See the CORBA/IN lntervvorking specification (dtc/2000-02-02).

13.6.5 10R Components

TaggedComponents contained in TAG_|NTERNET_|0P and

TAG_MULT|PLE__COMPONENTS profiles are identified by unique numeric tags

using a namespace distinct form that is used for profile tags. Component tags are

assigned by the OMG.

Specifications of components must include the following information:

' Component 1D: The compound tag that is obtained from OMG.

° Structure and encoding: The syntax of the component data and the encoding rules.

If the component value is encoded as a CDR encapsulation, the lDL type that is

encapsulated and the G10? version which is used for encoding the value, if different

than 010? 1.0, must be specified as part of the component definition.

Semantics: How the component data is intended to be used.

Protocols: The protocol for which the component is defined, and whether it is

intended that the component be usable by other protocols.

At most once: whether more than one instance of this component can be included in
a profile.

Common Object Request Broker/lrchileclure (CORR/1). v2.6 December 200]

0898

0899

I3

December 2001

Specifications of protocols must describe how the components affect the protocol. In

addition, a protocol definition must specify, for each TaggedComponent, whether

inclusion of the component in profiles supporting the protocol is required

(MANDATORY PRESENCE) or not required (OPTIONAL PRESENCE). An ORB

claiming to support Full-10R conformance shall not drop optional components, once

they have been added to a profile.

13.6.6 Standard 10R Components

The following are standard lOR components that can be included in
TAG_lNTERNET_IOP and TAG_MULTIPLE_COMPONENTS profiles, and may

apply to 110?, other GlOPs, ESlOPs, or other protocols. An ORB must not drop these

components from an existing 10R.

module |0P{

};

const Componentld

const Componentld
const Componentld

const Componentld

const Componentld

const Componentld

const Componentld

const Componentld

const Componentld
const Componentld

const Componentld

const Componentld

const Componentld
const Componentld

const Componentld
const Componentld

const Componentld
const Componentld

const Componentld

const Componentld

const Componentld

const Componentld

TAG_ORB_TYPE = O;

TAG_CODE_SETS = 1;

TAG_POLICIES = 2;

TAG_ALTERNATE_||0P_ADDRESS = 3;

TAG_ASSOCIATION_OPTIONS = 13;

TAG_SEC_NAME = 14;

TAG_SPKM_1_SEC_MECH = 15;

TAG_SPKM_2_SEC_MECH = 16;

TAG_KerberosV5_SEC_MECH = 17;

TAG_CSI_ECMA_Secret_SEC_>MECH = 18;
TAG_CSI_ECMA_Hybrid_SEC_MECH = 19;
TAG_SSL_SEC_TRANS = 20;

TAG_CSI_ECMA_PubIic_SEC_MECH = 21;

TAG_ GENERIC_SEC_MECH = 22;

TAG_FIREWALL_TRANS = 23;

TAG_SCCP_CONTACT_INFO = 24;
TAG_JAVA_CODEBASE = 25;

TAG_TRANSACTION_POLICY = 26;

TAG_MESSAGE_ROUTERS = 30;

TAG_OTS_POLICY = 31;

TAG_INV_POLICY = 32;

TAG_INET_SEC_TRANS = 123;

The following additional components that can be used by other protocols are specified

in the DCE ESIOI’ chapter of this document and CORBAServices, Security Service, in

the Security Service for DCE ESlOP section:

CORBA, v2.6: An Information Made/far Object References

const-Componentld
const Componentld

const Componentld
const Componentld

const Componentld
const Componentld

TAG_COMPLETE_OBJECT_KEY = 5;

TAG_ENDPOINT_|D_POSIT|0N = 6;

TAG_LOCATION_POL|CY = 12;

TAG_DCE_STRING_BINDING = 100;

TAG_DCE_BINDING_NAME = 101;

TAG_DCE_NO_PIPES = 102;

13-19

0899

0900

13

13-20

13.6.6.1

13.6.6.2

13.6.6.3

const Componentld TAG_DCE_SEC_MECH = 103; II Security Service

TAG_ORB_TYPE Component

it is often useful in the real world to be able to identify the particular kind of ORB an

object reference is coming from, to work around problems with that particular ORB, or

exploit shared efficiencies.

The TAG_ORB_TYPE component has an associated value of type unsigned long,

encoded as a CDR encapsulation, designating an ORB type 1D allocated by the OMG

for the ORB type of the originating ORB. Anyone may register any ORB types by

submitting a short (one-paragraph) description of the ORB type to the OMG, and will

receive a new ORB type 1D in return. A list of ORB type descriptions and values will
be made available on the OMG web server.

The TAG_ORB_TYPE component can appear at most once in any IOR profile. For

profiles supporting llOP 1.1 or greater, it is optionally present.

TA G_ALTERNA TE_II0P_ADDRESS Component

In cases where the same object key is used for more than one intemet location, the

following standard 10R Component is defined for support in “GP version 1.2.

The TAG_ALTERNATE_||0P_ADDRESS component has an associated value of
type

struct {

string HostlD,
unsigned short Port

k

encoded as a CDR encapsulation.

Zero or more instances of the TAG_ALTERNATE_||0P_ADDRESS component type

may be included in a version 1.2 TAG_INTERNET_|OP Profile. Each of these

alternative addresses may be used by the client orb, in addition to the host and port

address expressed in the body of the Profile. in cases where one or more

TAG_ALTERNATE__|lOP_ADDRESS components are present in a

TAG_INTERNET_|OP Profile, no order of use is prescribed by Version 1.2 of NOR

Other Components

The following standard components are specified in various OMG specifications:

' TAG_CODE__SETS - See Section l3.lO.2.4, “CodeSet component of 10R Multi-
Component Profile" on page 1342.

° TAG_POLICIES - See CORBA Messaging - chapter 22.

° TAG_SEC_NAME - See the Security Service specification, Mechanism Tags
section. '

Common Object Request Broker A rch ilecmre (CORB/1), v2. 6 December 200]

0900

0901

I3

December 2001

TAG_ASSOCIATION_OPTIONS - See the Security Service specification, Tag

Association Options section.

TAG_SSL_SEC_TRANS - See the Security Service specification, Mechanism

Tags section.

TAG_GENERIC_SEC_MECH and all other tags with names in the form

TAG_*_SEC_MECH - See the Security Service specification, Mechanism Tags
section.

TAG_FIREWALL_SEC - See the Firewall specification (orbos/98-05-04).

TAG_SCCP_CONTACT_INFO - See the CORBA/JN lnterworking specification

(telecom/98-10-03).

TAG_JAVA_CODEBASE - See the Java to lDL Language Mapping specification

(formal/99-07-59), Codebase Transmission section.

TAG_TRANSACTION_POLICY - See the Object Transaction Service specification

(fonnal/OO-06-28).

TAG_MESSAGE_ROUTERS - See CORBA Messaging (chapter 22).

TAG_OTS_POL|CY - See the Object Transaction Service specification
(formal/OO-06-28).

TAG_INV_POL|CY - See the Object Transaction Service specification
(formal/00-06-28).

TAG_INET_SEC_TRANS - See the Security Service specification

(formal/OO-O6-25).

TAG_COMPLETE_OBJECT_KEY (See Section 16.5.4, “Complete Object Key

Component” on page 16-19).

TAG_ENDPOINT_ID_POS|TION (See Section 16.5.5, “Endpoint 1D Position

Component” on page 16-20).

TAG_LOCATION_POLICY (See Section 16.5.6, “Location Policy Component” on
page 16-20).

TAG_DCE_STRING_BINDING (See Section 16.5.1, “DCE-ClOP String Binding

Component” on page 16-17).

TAG_DCE_B|ND|NG__NAME (See Section 16.5.2, “DCE-ClOP Binding Name

Component” on page 16-18).

TAG_DCE_NO_P|PES (See Section 16.5.3, “DCE-ClOP No Pipes Component” on
page 16-19).

13.6. 7 Profile and Component Composition in IORs

The following rules augment the preceding discussion:

1. Profiles must be independent, complete, and self-contained. Their use shall not

depend on information contained in another profile.

2. Any invocation uses information from exactly one profile.

CORBA. v2. 6: An Information Mode/for Object References 13-21

0901

