
0274
BUNGIE - EXHIBIT 1002 Part 2 of 5

10

15

20

25

30

The underlying peer-to-peer communications protocol may send multiple

messages in a single message stream. The traditional technique for retrieving messages from

a stream has been to repeatedly invoke an operating system routine to retrieve the next

message in the stream. The retrieval of each message may require two calls to the operating

system: one to retrieve the size of the next message and the other to retrieve the number of

bytes indicated by the retrieved size. Such calls to the operating system can, however, be

very slow in comparison to the invocations of local routines. To overcome the inefficiencies

of such repeated calls, the broadcast technique in one embodiment, uses XDR to identify the

message boundaries in a stream of messages. The broadcast technique may request the

operating system to provide the next, for example, 1,024 bytes from the stream?“ The

broadcast technique can then repeatedly invoke the XDR routines to retrieve the messages

and use the success or failure of each invocation to determine whether another block of 1,024

bytes needs to be retrieved from the operating system. The invocation of XDR routines do

not involve system calls and are thus more efi'icient than repeated system calls.

M-Regular

In the embodiment described above, each fully connected computer has four

internal connections. The broadcast technique can be used with other numbers of internal

connections. For example, each computer could have 6, 8, or any even number of internal

connections. As the number of internal connections increase, the diameter of the broadcast

channel tends to decrease, and thus propagation time for a message tends to decrease. The

time that it takes to connect a seeking computer to the broadcast channel may, however,

increase as the number of internal connections increases. When the number of internal

connectors is even, then the broadcast channel can be maintained as m-regular and

m-connected (in the steady state). If the number of internal connections is odd, then when

the broadcast channel has an odd number of computers connected, one of the computers will

have less than that odd number of internal connections. In such a situation, the broadcast

network is neither m-regular nor m-connected. When the next computer connects to the

broadcast channel, it can again become m-regular and m-connected. Thus, with an odd

number of internal connections, the broadcast channel toggles between being and not being
m-regular and m-connected.

[03004-8001/Documa1t1268] -21- 701/00

BUNGIE - EXHIBIT 1002 P211“: 2 0f 5

0274

0275

10

l5

20

30

' channels.

Components

Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcast charmel. The above description generally assumed that there was

only one broadcast channel and that each computer had only one connection to that broadcast

channel. More generally, a network of computers may have multiple broadcast channels,

each computer may be connected to more than one broadcast channel, and each computer

can have multiple connections to the same broadcast channel. The broadcast channel is well

suited for computer processes (e.g., application programs) that execute collaboratively, such

as network meeting programs. Each computer process can connect to one or more broadcast

The broadcast channels can be identified by channel type (e. g., application

program channel instance that represents separate broadcast channels for that

channel type. When a process attempts to connect to a broadcast channel, it seeks a process

currently connected to that broadcast channel that is executing on a portal computer. The

seeking process identifies the broadcast channel by channel type and channel instance.

Computer 600 includes multiple application programs 601 executing as

separate processes. Each application program interfaces with a broadcaster component 602

for each broadcast channel to which it is connected. The broadcaster component may be

implement as an object that is instantiated within the process space of the application

program. Alternatively, the broadcaster component may execute as a separate process or

thread from the application program. In one embodiment, the broadcaster component

provides functions (e.g., methods of class) that can be invoked by the application programs.

The primary functions provided may include a connect function that an application program

invokes passing an indication of the broadcast channel to which the application program

wants to connect. The application program may provide a callback routine that the

broadcaster component invokes to notify the application program that the connection has

been completed, that is the process enters the fully connected state. The broadcaster

component may also provide an acquire message function that the application program can

invoke to retrieve the next message that is broadcast on the broadcast channel. Alternatively,

the application program may provide a callback routine (which may be a virtual function

provided by the application program) that the broadcaster component invokes to notify the

application program that a broadcast message has been received. Each broadcaster

component allocates a call-in port using the hashing algorithm. When calls are answered at
[03004-800lIDocumentl.268} -22- 7/31/00

0275

0276

10

15

20

the call-in port, they are transferred to other ports that serve as the external and internal

ports.

The computers connecting to the broadcast channel may include a central

processing unit, memory, input devices (e.g., keyboard and pointing device), output devices

(e.g., display devices), and storage devices (e.g., disk drives). The memory and storage

devices are computer-readable medium that may contain computer instructions that

implement the broadcaster component. In addition, the data structures and message

structures may be stored or transmitted via a signal transmitted on a computer-readable

media, such as a communications link.

Figure 7 is a block diagram illustrating the sub-components of the broadcaster

component in one embodiment. The broadcaster component includes a connect component

701, an external dispatcher 702, an internal dispatcher 703 for each internal connection, an

acquire message component 704 and a broadcast component 712. The application program

may provide a connect callback component 710 and a receive response component 711 that

are invoked by the broadcaster component. The application program invokes the connect

component to establish a connection to a designated broadcast channel. The connect

component identifies the external port and installs the external dispatcher for handling

messages that are received on the external port. The connect component invokes the seek

portal computer component 705 to identify a portal computer that is connected to the

broadcast channel and invokes the connect request component 706 to ask the portal computer

(if fully connected) to select neighbor processes for the newly connecting process. The

external dispatcher receives external messages, identifies the type of message, and invokes

the appropriate handling routine 707. The internal dispatcher receives the internal messages,

identifies the type of message, and invokes the appropriate handling routine 708. The

received broadcast messages are stored in the broadcast message queue 709. The acquire

The

broadcast component is invoked by the application program to broadcast messages in the

message component is invoked to retrieve messages from the broadcast queue.

broadcast channel.

The following tables list messages sent by the broadcaster components.

[03004-8001m0mmmt1168] -23- 7131/00

0276

0277

EXTERNAL MESSAGES

Message Type Description

seeking_connection_call Indicates that a seeking process would like to know whether the

receiving process is fully connected to the broadcast channel

Indicates that the sending process would like the receiving
process to initiate a connection of the sending process to the
broadcast channel

connection_request_call

 Indicates that the sending process is proposing an edge through

which the receiving process can connect to the broadcast

channel (i.e., edge pinning)

edge_proposal_call

 Indicates that the sending process is proposing a port through

which the receiving process can connect to the broadcast
channel

Indicates that the sending process is connected to the broadcast
channel

Indicates that the receiving process should disconnect from one

of its neighbors and connect to one of the processes involved in
the neighbors with empty port condition

port_connection_call

connected_stmt

condition_repair_stmt

INTERNAL MESSAGES

Indicates a message that is being broadcast through the
broadcast channel for the application programs

Indicates that the designated process is looking for a port
through which it can connect to the broadcast channel

I connection_port_search_stmt

connection_edge_search_ch Indicates that the requesting process is looking for an edge
through which it can connect to the broadcast channel

connection_edge_search_resp Indicates whether the edge between this process and the
sending neighbor has been accepted by the requesting
Party

diameter reset strnt_ _ Indicates to reset the estimated diameter to indicated
diameter

Indicates that the sending neighbor is disconnecting from
the broadcast channel

Indicates that neighbors with empty port condition have

-24-

 Message Type

I broadcast_stmt

disconnect_stmt
 condition_check_stmt

[03004-ROOI/Dounnenll168] 7/31/00

0277

0278

IO

15

20

25

 —been detected

condition_double_check_stmt Indicates that the neighbors with empty ports have the
same set of neighbors

Indicates that the broadcast channel is being shutdown

Flow Diagrams

Figures 8-34 are flow diagrams illustrating the processing of the broadcaster

component in one embodiment. Figure 8 is a flow diagram illustrating the processing of the

connect routine in one embodiment. This routine is passed a channel type (e.g., application

name) and channel instance (e. g., session identifier), that identifies the broadcast channel to

which this process wants to connect. The routine is also passed auxiliary information that

includes the list of portal computers and a connection callback routine. When the connection

is established, the connection callback routine is invoked to notify the application program.

When this process invokes this routine, it is in the seeking connection state. When a portal

computer is located that is connected and this routine connects to at least one neighbor, this

process enters the partially connected state, and when the process eventually connects to four

neighbors, it enters the fully connected state. When in the small regime, a fully connected

process may have less than four neighbors. In block 801, the routine opens the call-in port

through which the process is to communicate with other processes when establishing external

and internal connections. The port is selected as the first available port using the hashing

algorithm described above. In block 802, the routine sets the connect time to the current

time. The connect time is used to identify the instance of the process that is connected

through this external port. One process may connect to a broadcast channel of a certain

channel type and channel instance using one call-in port and then disconnects, and another

process may then connect to that same broadcast channel using the same call-in port. Before

the other process becomes fully connected, another process may try to communicate with it

thinking it is the fully connected old process. In such a case, the connect time can be used to

identify this situation. In block 803, the routine invokes the seek portal computer routine

passing the channel type and channel instance. The seek portal computer routine attempts to

locate a portal computer through which this process can connect to the broadcast channel for

the passed type and instance. In decision block 804, if the seek portal computer routine is

[03004.soomocumenuzea] -25- 7/3l/00

0278

0279

10

15

20

25

30

successful in locating a fully connected process on that portal computer, then the routine

continues at block 805, else the routine returns an unsuccessful indication. In decision block

805, if no portal computer other than the portal computer on which the process is executing

was located, then this is the first process to fully connect to-broadcast channel and the

routine continues at block 806, else the routine continues at block 808. In block 806, the

routine invokes the achieve connection routine to change the state of this process to fully

connected. In block 807, the routine installs the external dispatcher for processing messages

received through this process’ external port for the passed channel type and channel instance.

When a message is received through that external port, the external dispatcher is invoked.

The routine then returns. In block 808, the routine installs an external dispatcher. In block

809, the routine invokes the connect request routine to initiate the process of identifying

neighbors for the seeking computer. The routine then returns.

Figure 9 is a flow diagram illustrating the processing of the seek portal

computer routine in one embodiment. This routine is passed the channel type and channel

instance of the broadcast channel to which this process wishes to connect. This routine, for

each search depth (e.g., port number), checks the portal computers at that search depth. If a

portal computer is located at that search depth with a process that is fully connected to the

broadcast channel, then the routine returns an indication of success. In blocks 902-911, the

routine loops selecting each search depth until a process is located. In block 902, the routine

selects the next search depth using a port number ordering algorithm. In decision block 903,

if all the search depths have already been selected during this execution of the loop, that is

for the currently selected depth, then the routine returns a failure indication, else the routine

continues at block 904. In blocks 904-911, the routine loops selecting each portal computer

and determining whether a process of that portal computer is connected to (or attempting to

connect to) the broadcast channel with the passed channel type and channel instance. In

block 904, the routine selects the next portal computer. In decision block 905, if all the

portal computers have already been selected, then the routine loops to block 902 to select the

next search depth, else the routine continues at block 906. In block 906, the routine dials the

selected portal computer through the port represented by the search depth. In decision block

907, if the dialing was successful, then the routine continues at block 908, else the routine

loops to block 904 to select the next portal computer. The dialing will be successful if the

dialed port is the call-in port of the broadcast channel of the passed channel type and channel
[03004-800lfl)ocumnl.268] -26- 7/31/00

0279

0280

'J-

10

15

20

25

30

instance of a process executing on that portal computer. In block 908, the routine invokes a

contact process routine, which contacts the answering process of the portal computer through

the dialed port and determines whether that process is fully connected to the broadcast

channel. In block 909, the routine hangs up on the selected portal computer. In decision

block 910, if the answering process is fully connected to the broadcast channel, then the

routine returns a success indicator, else the routine continues at block 911. In block 911, the

routine invokes the check for external call routine to detenninewhether an external call has

been made to this process as a portal computer and processes that call. The routine then

loops to block 904 to select the next portal computer.

Figure 10 is a flow diagram illustrating the processing of the contact process

routine in one embodiment. This routine determines whether the process of the selected

portal computer that answered the call-in to the selected port is fully connected to the

broadcast channel. In block 1001, the routine sends an external message (i.e.,

seeking_connection_call) to the answering process indicating that a seeking process wants to

know whether the answering process is fully connected to the broadcast channel. In block

1002, the routine receives the external response message from the answering process. In

decision block 1003, if the external response message is successfully received (i.e.,

seeking_connection_resp), then the routine continues at block 1004, else the routine retums.

Wherever the broadcast component requests to receive an external message, it sets a time out

period. If the external message is not received within that time out period, the broadcaster

component checks its own call-in port to see if another process is calling it. In particular, the

dialed process may be calling the dialing process, which may result in a deadlock situation.

The broadcaster component may repeat the receive request several times. If the expected

message is not received, then the broadcaster component handles the error as appropriate. In

decision block 1004, if the answering process indicates in its response message that it is fully

connected to the broadcast channel, then the routine continues at block 1005, else the routine

continues at block 1006. In block 1005, the routine adds the selected portal computer to a

list of connected portal computers and then returns. In block 1006, the routine adds the

answering process to a list of fellow seeking processes and then returns.

Figure 11 is a flow diagram illustrating the processing of the connect request

routine in one embodiment. This routine requests a process of a portal computer that was

identified as being fully connected to the broadcast channel to initiate the connection of this
[03004-8001/Documanl168] ~27- 71'] 1/00

0280

0281

10

15

20

25

30

process to the broadcast channel. In decision block 1101, if at least one process of a portal

computer was located that is fully connected to the broadcast channel, then the routine

continues at block 1103, else the routine continues at block 1102. A process of the portal

computer may no longer be in the list if it recently disconnected from the broadcast channel.

In one embodiment, a seeking computer may always search its entire search depth and find

multiple portal computers through which it can connect to the broadcast channel. In block

1102, the routine restarts the process of connecting to the broadcast channel and returns. In

block 1103, the routine dials the process of one of the found portal computers through the

call-in port. In decision block 1104, if the dialing is successful, then the routine continues at

block 1105, else the routine continues at block 1113. The dialing may be unsuccessful if, for

example, the dialed process recently disconnected from the broadcast channel. In block

1105, the routine sends an external message to the dialed process requesting a connection to

the broadcast channel (i. e., connection_request_call). In block 1106, the routine receives the

response message (i.e., connection_request__resp). In decision block 1107, if the response

message is successfully received, then the routine continues at block 1108, else the routine

continues at block 1113. In block 1108, the routine sets the expected number of holes (i.e.,

empty internal connections) for this process based on the received response. When in the

large regime, the expected number of holes is zero. When the small regime, the expected

In block 1109, the routine sets the estimated

diameter of the broadcast channel based on the received response. In decision block 1111, if

number of holes varies from one to three.

the dialed process is ready to connect to this process as indicated by the response message,

then the routine continues at block 1112, else the routine continues at block 1113. In block

1112, the routine invokes the add neighbor routine to add the answering process as a

neighbor to this process. This adding of the answering process typically occurs when the

broadcast channel is in the small regime. When in the large regime, the random walk search

for a neighbor is performed. In block 1113, the routine hangs up the external connection

with the answering process computer and then retums.

Figure 12 is a flow diagram of the processing of the check for external call

routine in one embodiment. This routine is invoked to identify whether a fellow seeking

process is attempting to establish a connection to the broadcast channel through this process.

In block 1201, the routine attempts to answer a call on the call-in port. In decision block

1202, if the answer is successful, then the routine continues at block 1203, else the routine
[03004-8001/Documem1268] -28- 7/31/00

0281

0282

IO

15

20

30

returns. In block 1203, the routine receives the external message from the external port. In

decision block 1204, if the type of the message indicates that a seeking process is calling

(i.e., seeking_connection_call), then the routine continues at block 1205, else the routine

returns. In block 1205, the routine sends an external message (i. e., seeking_connection_resp)

to the other seeking process indicating that this process is also is seeking a connection. In

decision block 1206, if the sending of the external message is successful, then the routine

continues at block 1207, else the routine returns. In block 1207, the routine adds the other

seeking process to a list of fellow seeking processes and then returns. This list may be used

if this process can find no process that is fully connected to the broadcast channel. In which

case, this process may check to see if any fellow seeking process were successful in

connecting to the broadcast channel. For example, a fellow seeking process may become the

first process fully connected to the broadcast channel.

Figure 13 is a flow diagram of the processing of the achieve connection routine

in one embodiment. This routine sets the state of this process to fully connected to the

broadcast charmel and invokes a callback routine to notify the application program that the

In block 1301, the

routine sets the connection state of this process to fully connected. In block 1302, the

process is now fully connected to the requested broadcast channel.

routine notifies fellow seeking processes that it is fully connected by sending a connected

external message to them (i.e., connected_stmt). In block 1303, the routine invokes the

connect callback routine to notify the application program and then returns.

Figure 14 is a flow diagram illustrating the processing of the external

dispatcher routine in one embodiment. This routine is invoked when the external port

receives a message. This routine retrieves the message, identifies the external message type,

and invokes the appropriate routine to handle that message. This routine loops processing

each message until all the received messages have been handled. In block 1401, the routine

answers (e.g., picks up) the external port and retrieves an external message. In decision

block 1402, if a message was retrieved, then the routine continues at block 1403, else the

routine hangs up on the external port in block 1415 and returns. In decision block 1403, if

the message type is for a process seeking a connection (i.e., seeking_connection_call), then

the routine invokes the handle seeking connection call routine in block 1404, else the routine

continues at block 1405. In decision block 1405, if the message type is for a connection

request call (i. e., connection_request_call), then the routine invokes the handle connection
-29-|03004-800|/Documentl.268] 7/31/00

0282

0283

10

l5

20

30

request call routine in block 1406, else the routine continues at block 1407. In decision

block 1407, if the message type is edge proposal call (1'.e., edge_proposal_call), then the

routine invokes the handle edge proposal call routine in block 1408, else the routine

continues at block 1409. In decision block 1409, if the message type is port connect call

(i. e., port_c’onnect_call), then the routine invokes the handle port connection call routine in

block 1410, else the routine continues at block 1411. In decision block 1411, if the message

type is a connected statement (i.e., connected_stmt), the routine invokes the handle

connected statement in block 1112, else the routine continues at block 1212. In decision

block 1412, if the message type is a condition repair statement (i.e., condition_repair_stmt),

then the routine invokes the handle condition repair routine in block 1413, else the routine

loops to block 1414 to process the next message.”After each handling routine is invoked, the

routine loops to block 1414. In block 1414, the routine hangs up on the external port and

continues at block 1401 to receive the next message.

Figure 15 is a flow diagram illustrating the processing of the handle seeking

connection call routine in one embodiment. This routine is invoked when a seeking process

is calling to identify a portal computer through which it can connect to the broadcast channel.

In decision block 1501, if this process is currently fully connected to the broadcast channel

identified in the message, then the routine continues at block 1502, else the routine continues

at block 1503. In block 1502, the routine sets a message to indicate that this process is fully

connected to the broadcast channel and continues at block 1505. In block 1503, the routine

sets a message to indicate that this process is not fully connected. In block 1504, the routine

adds the identification of the seeking process to a list of fellow seeking processes. If this

process is not fully connected, then it is attempting to connect to the broadcast channel. In

block 1505, the routine sends the external message response (i.e., seeking_connection_resp)

to the seeking process and then returns.

Figure 16 is a flow diagram illustrating processing of the handle connection

request call routine in one embodiment. This routine is invoked when the calling process

wants this process to initiate the connection of the process to the broadcast channel. This

routine either allows the calling process to establish an internal connection with this process

(e. g., if in the small regime) or starts the process of identifying a process to which the calling

process can connect. In decision block 1601, if this process is currently fully connected to

the broadcast channel, then the routine continues at block 1603, else the routine hangs up on
[03004-800l/Documentl.268] -30- 7/31/00

0283

0284

10

15

20

25

30

the extemal port in block 1602 and returns. In block 1603, the routine sets the number of

holes that the calling process should expect in the response message. In block 1604, the

routine sets the estimated diameter in the response message. In block 1605, the routine

indicates whether this process is ready to connect to the calling process. This process is

ready to connect when the number of its holes is greater than ‘zero and the calling process is

not a neighbor of this process. In block 1606, the routine sends to the calling process an

I that is the (i.e.,
connection_request_resp). In block 1607, the routine notes the number of holes that the

connection callresponsive to requestexternal message

calling process needs to fill as indicated in the request message. In decision block 1608, if

this process is ready to connect to the calling process, then the routine continues at block

1609, else the routine continues at block 1611. In block 1609, the routine invokes the add

neighbor routine to add the calling process as a neighbor. In block 1610, the routine

decrements the number of holes that the calling process needs to fill and continues at block

1611. In block 1611, the routine hangs up on the external port. In decision block 1612, if

this process has no holes or the estimated diameter is greater than one (i.e., in the large

regime), then the routine continues at block 1613, else the routine continues at block 1616.

In blocks 1613-1615, the routine loops forwarding a request for an edge through which to

connect to the calling process to the broadcast channel. One request is forwarded for each

pair of holes of the calling process that needs to be filled. In decision block 1613, if the

number of holes of the calling process to be filled is greater than or equal to two, then the

routine continues at block 1614, else the routine continues at block 1616. In block 1614, the

routine invokes the forward connection edge search routine. The invoked routine is passed

to an indication of the calling process and the random walk distance. In one embodiment, the

distance is twice in the estimated diameter of the broadcast channel. In block 1614, the

routine decrements the holes left to fill by two and loops to block 1613. In decision block

1616, if there is still a hole to fill, then the routine continues at block 1617, else the routine

returns. In block 1617, the routine invokes the fill hole routine passing the identification of

the calling process. The fill hole routine broadcasts a connection port search statement (i.e.,

connection_port_search_stmt) for a hole of a connected process through which the calling
process can connect to the broadcast channel. The routine then returns.

Figure 17 is a flow diagram illustrating the processing of the add neighbor

routine in one embodiment. This routine adds the process calling on the external port as a
[03004-8001/Documenll .268) -3 l - 7/31/00

0284

0285

IO

15

20

30

neighbor to this process. In block‘1701, the routine identifies the calling process on the

external port. In block 1702, the routine sets a flag to indicate that the neighbor has not yet

received the broadcast messages from this process. This flag is used to ensure that there are

no gaps in the messages initially sent to the new neighbor. The external port becomes the

internal port for this connection. In decision block 1703, if this process is in the seeking

connection state, then this process is connecting to its first neighbor and the routine

continues at block 1704, else the routine continues at block 1705. In block 1704, the routine

sets the connection state of this process to partially connected. In block 1705, the routine

adds the calling process to the list of neighbors of this process. In block 1706, the routine

installs an internal dispatcher for the new neighbor. The internal dispatcher is invoked when

a message is received from that new neighbor through the internal port of that new neighbor.

In decision block 1707, if this process buffered up messages while not fully connected, then

the routine continues at block 1708, else the routine continues at block 1709. In one

embodiment, a process that is partially connected may buffer the messages that it receives

through an internal connection so that it can send these messages as it connects to new

neighbors. In block 1708, the routine sends the buffered messages to the new neighbor

through the internal port. In decision block 1709, if the number of holes of this process

equals the expected number of holes, then this process is fully connected and the routine

continues at block 1710, else the routine continues at block 1711. In block 1710, the routine

invokes the achieve connected routine to indicate that this process is fully connected. In

decision block 1711, if the number of holes for this process is zero, then the routine

continues at block 1712, else the routine returns. In block 1712, the routine deletes any

pending edges and then returns. A pending edge is an edge that has been proposed to this

process for edge pinning, which in this case is no longer needed.

Figure 18 is a flow diagram illustrating the processing of the forward

connection edge search routine in one embodiment. This routine is responsible for passing

along a request to connect a requesting process to a randomly selected neighbor of this

process through the internal port of the selected neighbor, that is part of the random walk. In

decision block 1801, if the forwarding distance remaining is greater than zero, then the

routine continues at block 1804, else the routine continues at block 1802. In decision block

1802, if the number of neighbors of this process is greater than one, then the routine

continues at block 1804, else this broadcast channel is in the small regime and the routine
[03004-800 llDocumentI.268] '3 2* 7/3IIOO

0285

0286

10

15

20

25

30

continues at block 1803. In decision block 1803, if the requesting process is a neighbor of

In blocks

1804-1807, the routine loops attempting to send a connection edge search call internal

this process, then the routine returns, else the routine continues at block 1804.

message (i. e., connection_edge_search_call) to a randomly selected neighbor. In block 1804,

the routine randomly selects a neighbor of this process. In decision block 1805, if all the

neighbors of this process have already been selected, then the routine cannot forward the

message and the routine returns, else the routine continues at block 1806. In block 1806, the

routine sends a connection edge search call internal message to the selected neighbor. In

decision block 1807, if the sending of the message is successful, then the routine continues at

block 1808, else the routine loops to block 1804 to select the next neighbor. When the

sending of an internal message is unsuccessful, then the neighbor may have disconnected

from the broadcast channel in an unplanned manner. .Whenever such a situation is detected

by the broadcaster component, it attempts to find another neighbor by invoking the fill holes

routine to fill a single hole or the forward connecting edge search routine to fill two holes. In

block 1808, the routine notes that the recently sent connection edge search call has not yet

been acknowledged and indicates that the edge to this neighbor is reserved if the remaining

forwarding distance is less than or equal to one. It is reserved because the selected neighbor

may offer this edge to the requesting process for edge pinning. The routine then returns.

Figure 19 is a flow diagram illustrating the processing of the handle edge

pr0posal call routine. This routine is invoked when a message is received from a proposing

process that proposes to connect an edge between the proposing process and one of its

neighbors to this process for edge pinning. In decision block 1901, if the number of holes of

this process minus the number of pending edges is greater than or equal to one, then this

process still has holes to be filled and the routine continues at block 1902, else the routine

continues at block 1911. In decision block 1902, if the proposing process or its neighbor is a

neighbor of this process, then the routine continues at block 1911, else the routine continues

at block 1903. In block 1903, the routine indicates that the edge is pending between this

process and the proposing process. In decision block 1904, if a proposed neighbor is already

pending as a proposed neighbor, then the routine continues at block 1911, else the routine

continues at block 1907. In block 1907, the routine sends an edge proposal response as an

external message to the proposing process (i.e., edge_proposa1_resp) indicating that the

proposed edge is accepted. In decision block 1908, if the sending of the message was
l03004-800L’Docunm1168) -33- 7/31/00

0286

0287

10

15

20

30

successful, then the routine continues at block 1909, else the routine returns. In block 1909,

the routine adds the edge as a pending edge. In block 1910, the routine invokes the add

neighbor routine to add the proposing process on the external port a neighbor. The routine

then returns. In block 1911, the routine sends an external message (r.e., edge_proposal_resp)

indicating that this proposed edge is not accepted. In decision block 1912, if the number of

holes is odd, then the routine continues at block 1913, else the routine returns. In block

1913, the routine invokes the fill hole routine and then returns.

Figure 20 is a flow diagram illustrating the processing of the handle port

connection call routine in one embodiment. This routine is invoked when an external

message is received then indicates that the sending process wants to connect to one hole of

this process. In decision block 2001, if the number of holes of this process is greater than

zero, then the routine continues at block 2002, else the routine continues at block 2003. In

decision block 2002, if the sending process is not a neighbor, then the routine continues at

block 2004, else the routine continues to block 2003. In block 2003, the routine sends a port

connection response external message (i.e., port_connection_resp) to the sending process that

indicates that it is not okay to connect to this process. The routine then returns. In block

2004, the routine sends a port connection response external message to the sending process

that indicates that is okay to connect this process. In decision block 2005, if the sending of

the message was successful, then the routine continues at block 2006, else. the routine

continues at block 2007. In block 2006, the routine invokes the add neighbor routine to add

the sending process as a neighbor of this process and then returns. In block 2007, the routine

hangs up the external connection. In block 2008, the routine invokes the connect request

routine to request that a process connect to one of the holes of this process. The routine then
returns.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in

one embodiment. This routine is passed an indication of the requesting process. If this

process is requesting to fill a hole, then this routine sends an internal message to other

processes. If another process is requesting to fill a hole, then this routine invokes the routine

to handle a connection port search request. In block 2101, the routine initializes a

connection port search statement internal message (i.e., connection_port_search_stmt). In

decision block 2102, if this process is the requesting process, then the routine continues at

block 2103, else the routine continues at block 2104. In block 2103, the routine distributes
[03004-8001/Docurnentl.268] -34- 7/31/00

0287

0288

10

15

20

25

30

the message to the neighbors of this process through the internal ports and then returns. In

block 2104, the routine invokes the handle connection port search routine and then returns.

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher

routine in one embodiment. This routine is passed an indication of the neighbor who sent the

internal message. In block 2201, the routine receives the internal message. This routine

identifies the message type and invokes the appropriate routine to handle the message. In

block 2202, the routine assesses whether to change the estimated diameter of the broadcast

channel based on the information in the received message. In decision block 2203, if this

process is the originating process of the message or the message has already been received

(i.e., a duplicate), then the routine ignores the message and continues at block 2208, else the

In decision block 2203A, if the process is partially

connected, then the routine continues at block 22038, else the routine continues at block

2204. In block 2203B, the routine adds the message to the pending connection buffer and

routine continues at block 2203A.

continues at block 2204. In decision blocks 2204-2207, the routine decodes the message

type and invokes the appropriate routine to handle the message. For example, in decision

block 2204, if the type of the message is broadcast statement (i.e., broadcast__stmt), then the

routine invokes the handle broadcast message routine in block 2205. After invoking the

appropriate handling routine, the routine continues at block 2208. In decision block 2208, if

the partially connected buffer is full, then the routine continues at block 22209, else the

routine continues at block 2210. The broadcaster component collects all its internal

messages in a buffer while partially connected so that it can forward the messages as it

connects to new neighbors. If, however, that buffer becomes full, then the process assumes

that it is now fully connected and that the expected number of connections was too high,

because the broadcast channel is now in the small regime. In block 2209, the routine invokes

the achieve connection routine and then continues in block 2210. In decision block 2210, if

the application program message queue is empty, then the routine retums, else the routine

continues at block 2212. In block 2212, the routine invokes the receive response routine

passing the acquired message and then returns. The received response routine is a callback

routine of the application program.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast

message routine in one embodiment. This routine is passed an indication of the originating

process, an indication of the neighbor who sent the broadcast message, and the broadcast
[03004-8001!Documenll.268] -35- 7/31/00

0288

0289

IO

15

20

25

30

message itself. In block 2301, the routine performs the out of order processing for this

message. The broadcaster component queues messages from each originating process until it

can send them in sequence number order to the application program. In block 2302, the

routine invokes the distribute broadcast message routine to forward the message to the

neighbors of this process. In decision block 2303, if a newly connected neighbor is waiting

to receive messages, then the routine continues at block 2304, else the routine returns. In

block 2304, the routine sends the messages in the correct order if possible for each

originating process and then returns. ‘

Figure 24 is a flow diagram illustrating the processing of the distribute

broadcast message routine in one embodiment. This routine sends the broadcast message to

each of the neighbors of this process, except for the neighbor who sent the message to this

process. In block 2401, the routine selects the next neighbor other than the neighbor who

sent the message. In decision block 2402, if all such neighbors have already been selected,

then the routine returns. In block 2403, the routine sends the message to the selected

neighbor and then loops to block 2401 to select the next neighbor.

Figure 26 is a flow diagram illustrating the processing of the handle connection

port search statement routine in one embodiment. This routine is passed an indication of the

neighbor that sent the message and the message itself. In block 2601, the routine invokes the

distribute internal message which sends the message to each of its neighbors other than the

sending neighbor. In decision block 2602, if the number of holes of this process is greater

than zero, then the routine continues at block 2603, else the routine retmns. In decision

block 2603, if the requesting process is a neighbor, then the routine continues at: block 2605,

else the routine continues at block 2604. In block 2604, the routine invokes the court

neighbor routine and then returns. The court neighbor routine connects this process to the

requesting process if possible. In block 2605, if this process has one hole, then the neighbors

with empty ports condition exists and the routine continues at block 2606, else the routine
returns.

condition_check) that includes a list of this process’ neighbors. In block 2607, the routine

sends the message to the requesting neighbor.

In block 2606, the routine generates a condition check message (i.e.,

Figure 27 is a flow diagram illustrating the processing of the court neighbor

routine in one embodiment. This routine is passed an indication of the prospective neighbor

for this process. If this process can connect to the prospective neighbor, then it sends a port
[03004-3001/Docnmmn.2ss| -3 6- 7/3 II'OO

0289

0290

l()

15

20

25

3O

connection call external message to the prospective neighbor and adds the prospective

neighbor as a neighbor. In decision block 2701, if the prospective neighbor is already a

neighbor, then the routine returns, else the routine continues at block 2702. In block 2702,

the routine dials the prospective neighbor. In decision block 2703, if the number of holes of

this process is greater than zero, then the routine continues at block 2704, else the routine

continues at block 2706. In block 2704, the routine sends a port connection call extemal

message (i. e., port_connection_call) to the prospective neighbor and receives its response

(i.e., port_connection_resp). Assuming the response is successfully received, in block 2705,

the routine adds the prospective neighbor as a neighbor of this process by invoking the add

neighbor routine. In block 2706, the routine hangs up with the prospect and then returns.

Figure 28 is a flow diagram illustrating the processing of the handle connection

edge search call routine in one embodiment. This routine is passed a indication of the

neighbor who sent the message and the message itself. This routine either forwards the

message to a neighbor or proposes the edge between this process and the sending neighbor to

the requesting process for edge pinning. In decision block 2801, if this process is not the

requesting process or the number of holes of the requesting process is still greater than or

equal to two, then the routine continues at block 2802, else the routine continues at block

2813. In decision block 2802, if the forwarding distance is greater than zero, then the

random walk is not complete and the routine continues at block 2803, else the routine

continues at block 2804. In block 2803, the routine invokes the forward connection edge

search routine passing the identification of the requesting process and the decremented

forwarding distance. The routine then continues at block 2815. In decision block 2804, if

the requesting process is a neighbor or the edge between this process and the sending

neighbor is reserved because it has already been offered to a process, then the routine

continues at block 2805, else the routine continues at block 2806. In block 2805, the routine

invokes the forward connection edge search routine passing an indication of the requesting

party and a toggle indicator that alternatively indicates to continue the random walk for one

In block 2806, the

routine dials the requesting process via the call-in port. In block 2807, the routine sends an

or two more computers. The routine then continues at block 2815.

edge proposal call external message (i.e., edge_proposal_call) and receives the response (i.e.,

edgc_proposal_resp). Assuming that the response is successfully received, the routine

continues at block 2808. In decision block 2808, if the response indicates that the edge is
[03004~8001/Douimentl.268] -37- 7/31/00

0290

0291

10

15

20

30

acceptable to the requesn'ng process, then the routine continues at block 2809, else the

routine continues at block 2812. In block 2809, the routine reserves the edge between this

process and the sending neighbor. In block 2810, the routine adds the requesting process as

a neighbor by invoking the add neighbor routine. In block 2811, the routine removes the

sending neighbor as a neighbor. In block 2812, the routine hangs up the external port and

continues at block 2815. In decision block 2813, if this process is the requesting process and

the number of holes of this process equals one, then the routine continues at block 2814, else

the routine continues at block 2815. In block 2814, the routine invokes the fill hole routine.

In block 2815, the routine sends an connection edge search response message (i.e.,

connection_edge_search_response) to the sending neighbor indicating acknowledgement and

then returns. The graphs are sensitive to parity. That is, all possible paths starting from a

node and ending at that node will have an even length unless the graph has a cycle whose

length is odd. The broadcaster component uses a toggle indicator to vary the random walk

distance between even and odd distances.

Figure 29 is a flow diagram illustrating the processing of the handle connection

edge search response routine in one embodiment. This routine is passed as indication of the

requesting process, the sending neighbor, and the message. In block 2901, the routine notes

that the connection edge search response (i.e., connection_edge_search_resp) has been

received and if the forwarding distance is less than or equal to one unreserves the edge

between this process and the sending neighbor. In decision block 2902, if the requesting

process indicates that the edge is acceptable as indicated in the message, then the routine

continues at block 2903, else the routine returns. In block 2903, the routine reserves the edge

between this process and the sending neighbor. In block 2904, the routine removes the

sending neighbor as a neighbor. In block 2905, the routine invokes the court neighbor

routine to connect to the requesting process. In decision block 2906, if the invoked routine

was unsuccessful, then the routine continues at block 2907, else the routine returns. In

decision block 2907, if the number of holes of this process is greater than zero, then the

routine continues at block 2908, else the routine returns. In block 2908, the routine invokes

the fill hole routine and then returns.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine

in one embodiment. This routine is invoked by the application program to broadcast a

message on the broadcast channel. This routine is passed the message to be broadcast. In
[oaooaaoounocumantzosp -33- 7/31/00

~0291

0292

IO

15

20

25

3O

decision block 3001, if this process has at least one neighbor, then the routine continues at

block 3002, else the routine returns since it is the only process connected to be broadcast

channel. In block 3002, the routine generates an internal message of the broadcast statement

type (i.e., broadcast -stmt). In block 3003, the routine sets the sequence number of the

message. In block 3004, the routine invokes the distribute internal message routine to

broadcast the message on the broadcast channel. The routine retinns.

Figure 31 is a flow diagram illustrating the processing of the acquire message

routine in one embodiment. The acquire message routine may be invoked by the application

program or by a callback routine provided by the application program. This routine returns a

message. In block 3101, the routine pops the message from the message queue of the

broadcast channel. In decision block 3102, if a message was retrieved, then the routine

returns an indication of success, else the routine returns indication of failure.

Figures 32-34 are flow diagrams illustrating the processing of messages

associated with the neighbors with empty ports condition. Figure 32 is a flow diagram

illustrating processing of the handle condition check message in one embodiment. This

message is sent by a neighbor process that has one hole and has received a request to connect

to a hole of this process. In decision block 3201, if the number of holes of this process is

equal to one, then the routine continues at block 3202, else the neighbors with empty ports

condition does not exist any more and the routine returns. In decision block 3202, if the

sending neighbor and this process have the same set of neighbors, the routine continues at

block 3203, else the routine continues at block 3205. In block 3203, the routine initializes a

condition double check message (i.e., condition_double_check) with the list of neighbors of

this process. In block 3204, the routine sends the message internally to a neighbor other than

sending neighbor. The routine then returns. In block 3205, the routine selects a neighbor of

the sending process that is not also a neighbor of this process. In block 3206, the routine

sends a condition repair message (i.e., condition_repair__stmt) externally to the selected

process. In block 3207, the routine invokes the add neighbor routine to add the selected

neighbor as a neighbor of this process and then returns.

Figure 33 is a flow diagram illustrating processing of the handle condition

repair statement routine in one embodiment. This routine removes an existing neighbor and

connects to the process that sent the message. In decision block 3301, if this process has no

holes, then the routine continues at block 3302, else the routine continues at block 3304. In
[03004-800l/Documcm1268] -39- 7/31/00

0292

0293

10

15

20

block 3302, the routine selects a neighbor that is not involved in the neighbors with empty

ports condition. In block 3303, the routine removes the selected neighbor as a neighbor of

this process. Thus, this process that is executing the routine now has at least one hole. In

block 3304, the routine invokes the add neighbor routine to add the process that sent the

message as a neighbor of this process. The routine then returns.

Figure 34 is a flow diagram illustrating the processing of the handle condition

double check routine. This routine determines whether the neighbors with empty ports

condition really is a problem or whether the broadcast channel is in the small regime. In

decision block 3401, if this process has one hole, then the routine continues at block 3402,

else the routine continues at block 3403. Ifthis process does not have one hole, thgn the set

of neighbors of this process is not the same as the set of neighbors of the sending process.

decision block 3402, if this process and the sending process have the same set of neighbors,

then the broadcast channel is not in the small regime and the routine continues at block 3403,

else the routine continues at block 3406. In decision block 3403, if this process has no holes,

then the routine returns, else the routine continues at block 3404. In block 3404, the routine

sets the estimated diameter for this process to one. In block 3405, the routine broadcasts a

diameter reset internal message (i. e. , diameter_reset) indicating that the estimated diameter is

one and then returns. In block 3406, the routine creates a list of neighbors of this process. In

block 3407, the routine sends the condition check message (i.e., condition_check_snnt) with

the list of neighbors to the neighbor who sent the condition double check message and then
mnnns

From the above description, it will be appreciated that although specific

embodiments of the technology have been described, various modifications may be made

without deviating from the spirit and scope of the invention. For example, the

communications on the broadcast channel may be encrypted. Also, the channel instance or

session identifier may be a very large number (e.g., 128 bits) to help prevent an unauthorized

user to maliciously tap into a broadcast channel. The portal computer may also enforce

security and not allow an unauthorized user to connect to the broadcast channel.

Accordingly, the invention is not limited except by the claims.

[03004-8001!Documeml.268| 7/31/00

0293

0294

6

CLAIMS

1. A method in a computer system for determining a diameter of a broadcast

channel, the broadcast channel having computers, each computer connected to at least three

neighbor computers, the method comprising:

receiving a message from a neighbor computer;

identifying a distance traveled from the received message;

setting an estimated diameter based on the identified distance traveled amount;

incrementing the distance traveled in the message; and

sending the message with the incremented distance traveled to a neighbor

computer.

2. The method of claim 1 wherein the setting of the estimated diameter sets the

estimated diameter to the distance traveled whenever the identified distance traveled is

greater than the current estimated diameter.

3. The method of claim 1 wherein the computers of the broadcast channel form an

m-regular and m-connected graph.

4. The method of claim 3 wherein m is 4.

5. The method of claim 1 wherein each computer is connected to its neighbor

computers via a point-to-point connections.

6. The method of claim 1 including when the estimated diameter is set,

broadcasting a message indicating the new estimated diameter.

7. The method of claim 1 including:

receiving a message indicating a new estimated diameter; and

[03004-8001/Docurnentl.268] -41- muoo

0294

0295

[\J

'vJ

when the new estimated diameter is greater than the currently estimated

diameter, setting the estimated diameter to the new estimated diameter.

8. The method of claim 1 including:

receiving a message indicated to reset the estimated diameter to a new

estimated diameter; and

setting the estimated diameter to the new estimated diameter.

9. A method of disconnecting a first computer from a second computer, the first

computer and the second computer being connected to a broadcast channel, the method

comprising:

when the first computer decides to disconnect from the second computer, the

first computer sends a disconnect message to the second computer; and

when the second computer receives the disconnect message from the first

computer, the second computer broadcasts a connection port search message to find a third

computer to which it can connect.

10. The method of claim 9 wherein the second computer receives a port connection

message indicating that the third computer is proposing that the third computer and the

second computer connect.

1 1. The method of claim 9 wherein the first computer disconnects from the second

computer after sending the disconnect message.

12. The method of claim 9 wherein the broadcast channel is implemented using the
Internet.

13. The method of claim 9 wherein each computer connected to the broadcast

channel is connected to at least three other computers.

|03004-8001’Documenll.268] -42- 7/3 IIOO

0295

0296

‘vJ

'JI

14. The method of claim 13 wherein the computers and their connections form an

m-regular graph.

15. The method of claim 9 wherein the first computer and second computer are

connected via a TCP/IP connection.

16. A method for disconnecting a first computer from a second computer, the

computers being connected to a broadcast channel, the method comprising:

connecting the first computer to a second computer;

attempting to send a message from the first computer to the second computer;

and

when the attempt to send the message is unsuccessful, broadcasting from the

first computer a connection port search message indicating that the first computer needs a

connection.

17. The method of claim l6 including:

when a third computer receives the connection port search message and the

third computer also needs a connection, sending a message from the third computer to the

first computer proposing that the first computer and third computer connect.

18. The method of claim 17 including:

when the first computer receives the message proposing that the first computer

and third computer connect, sending fiom the first computer to the third computer a message

indicating that the first computer accepts the proposal to connect the first computer to the
third computer.

19. The method of claim 16 wherein each computer connected to the broadcast

channel is connected to at least three other computers.

I03004-8001/Documem1368] -43- 7/3 uuo

0296

0297

20. The method of claim 19 wherein the computers and connections of the

broadcast channel form an m-regular graph.

21. The method of claim 19 wherein the computers and connections of the

broadcast channel form an m-connected graph.

22. The method of claim 16 wherein the broadcasting includes sending the

message to each computer to which the first computer is connected.

23. A computer-readable medium containing instructions for controlling

disconnecting of a computer from another computer, the computer and the other computer

being connected to a broadcast channel, comprising:

a component that, when the computer decides to disconnect from the other

computer, the computer sends a disconnect message to the other computer; and

a component that, when the computer receives a disconnect message from

another computer, the computer broadcasts a connection port search message to find a

computer to which it can connect.

24. The computer-readable medium of claim 23 including:

a component that, when the computer receives a connection port search

message and the computer needs to connect to another computer, sends to the computer that

sent the connection port search message a port connection message indicating that the

computer is proposing that the computer that sent the connection port search message

connect to the computer.

25. The computer—readable medium of claim 24 including:

a component that, when the computer receives a port connection message,

connecting to the computer that sent the port connection message.

[03004-8001/Documentl.268] 7/3IIOO

0297

0298

26. The computer-readable medium of claim 23 wherein each computer connected

to the broadcast channel is connected to at least three other computers.

27. The computer-readable medium of claim 23 wherein the computers and their

connections form an m-regular graph.

28. The computer-readable medium of claim 23 wherein the computers are

connected via a TCP/IP connection.

29. The computer-readable medium of claim 23 wherein the computers that are

connected to the broadcast channel are peers.

30. The computer-readable medium of claim 23 wherein the broadcast channel is

implemented using the Internet.

(03004~800l/Documeml .268] -45- 7/3 [/00

0298

0299

0300

0300

0301

0302

0303

0304

0305

0306

0307

0308

0309

0309

0310

vaJpfiuxmu.=Ay;u$.05
0310

0311

:il...l.n.lll.|intlllllI...
4.3_.svrTuscoU

0311

0312

’égewamd :-

CowP 31‘
I (QM“V\€J

CAM“d 1216me-

iflsw
DistQI‘

0312

0313

0313

0314

Prmnoe

[0/

SuiELfM—wqd1v 5:0

_ 3e . F.‘ 8 {0
0 P.

Recewcénawfl

¢v‘ssogeL

0314

0315

0315

0316

’

FV3
0316

0317

Ache...
pmdov—

22.

 no+vg3-?e“oy)
33a;k | ." .

F! a N?

0317

0318

Fagl‘}

0318

0319

0319

0320

0320

0321

0321

0322

0322

0323

0323

0324

0324

0325

IHMA leCavmq-{w
RmrfSeomxxl'

0325

0326

o5

Haul '1 (3w. 4mg

0326

0327

0327

0328

1k

Disi‘fiw

V

Bvoao

a \\ «aim
sake}

0328

0329

0329

0330

U

0330

0331

0331

0332

any n
ermvugkhor

Nessa g;

Fig 2a

0332

0333

0333

0334

03’34

0335

0335

0336

$39

0336

0337

rs 4

avqaipfcsfoé
MWWS . ‘ N m:

0337

0338

U .S.

10

15

20

25

Patent Application No. 09/629,576 mm" m. 52.40493538405
b

BROADCASTING NETWORK

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to US. Patent Application No. ,

entitled “BROADCASTING NETWORK” filed on July 31, 2000 (Attorney Docket
No. 030048001 US); US. Patent Application No. - , entitled “JOINING A

BROADCAST CHANNEL,” filed on July 31, 2000 (Attorney Docket No. 030048002 US);

US. Patent Application No. , “LEAVING A BROADCAST CHANNEL,”

filed on July 31, 2000 (Attorney Docket No. 030048003 US); US. Patent Application

No. , entitled “BROADCASTING ON A BROADCAST CHANNEL,” filed

on July 31, 2000 (Attorney Docket No. 030048004 US); US. Patent Application

No. entitled “CONTACTING A BROADCAST CHANNEL,” filed on

July 31, 2000 (Attorney Docket No. 030048005 US); US. Patent Application

No. entitled “DISTRIBUTED AUCTION SYSTEM,” filed on

July 31, 2000 (Attorney Docket No. 030048006 US); US. Patent Application

No. entitled “AN INFORMATION DELIVERY SERVICE,” filed on

July,3_1,_ZQQO_(AttomeyLDocket~No.MO30048007 US); US. Patent Application—

No. , entitled “DISTRIBUTED CONFERENCING SYSTEM,” filed on

July 31, 2000 (Attorney Docket No. 030048008 US); and US. Patent Application

No. entitled “DISTRIBUTED GAME ENVIRONMENT,” filed on

July 31, 2000 (Attorney Docket No. 030048009 US), the disclosures of which are

incorporated herein by reference.

TECHNICAL FIELD

The described technology relates generally to a computer network and more

particularly, to a broadcast channel for a subset of a computers of an underlying network.

BACKGROUND

There are a wide variety of computer network communications techniques such

as point-to-point network protocols, client/server middleware, multicasting network

[amour/swung“; -l - 7/31/00

0338

0339

10

15

20

25

30

protocols, and peer-to-peer middleware. Each. of these communications techniques have

their advantages and disadvantages, but none is particularly well suited to the simultaneous

sharing of information among computers that are widely distributed. For example,

collaborative processing applications, such as a network meeting programs, have a need to

distribute information in a timely manner to all participants who may be geographically

distributed.

The point-to-point network protocols, such as UNIX pipes, TCP/IP, and UDP,

allow processes on different computers to communicate via point-to-point connections. The

interconnection of all participants using point-to-point connections, while theoretically

possible, does not scale well as a number of participants grows. For example, each

participating process would need to manage its direct connections to all other participating

processes. Programmers, however, find it very diflicult to manage single connections, and

management of multiple connections is much more complex. In addition, participating

processes may be limited to the number of direct connections that they can support. This

limits the number of possible participants in the sharing of information.

The client/server middleware systems provide a server that coordinates the

communications between the various clients who are sharing the information. The server

functions as a central authority for controlling access to shared resources. Examples of

client/server middleware systems include remote procedure calls (“RPC”), database servers,

and the common object request broker architecture (“CORBA”). Client/server middleware

systems are not particularly well suited to sharing of information among many participants.

In particular, when a client stores information to be shared at the server, each other client

wouldneed to poll the server to determine that new information is being shared. Such,

polling places a very high overhead on the communications network. Alternatively, each

Client may register a callback with the server, which the server then invokes when new

information is available to be shared. Such a callback technique presents a performance

bottleneck because a single server needs to call back to each client whenever new

information is to be shared. In addition, the reliability of the entire sharing of information

depends upon the reliability of the single server. Thus, a failure at a single computer (i.e.,

the server) would prevent communications between any of the clients.

The multicasting network protocols allow the sending of broadcast messages to

multiple recipients of a network. The current implementations of such multicasting network
[osmsoor/swosnazas] -2-

0339

0340

protocols tend to place an unacceptable overhead on the underlying network. For example,

UDP multicasting would swamp the lntemet when trying to locate all possible participants.

1? multicasn'ng has other problems that include needing special-purpose infrastructure (e.g.,

routers) to support the sharing of information efiiciently.

5 The peer-to-peer middleware communications systems rely on a multicasting

network protocol or a graph of point-to-point network protocols. Such peer-to-peer

middleware is provided by the T.120 lntemet standard, which is used in such products as

Data Connection’s D.C.-share and Microsofi’s NetMeeting. These peer-to-peer middleware

systems rely upon a user to assemble a point-to-point graph of the connections used for

10 sharing the information. Thus, it is neither suitable nor desirable to use peer-to-peer

middleware systems when more than a small number of participants is desired. In addition,

the underlying architecture of the T. 120 lntemet standard is a tree structure, which relies on

the root node of the tree for reliability of the entire network. That is, each message must pass

through the root node in order to be received by all participants.

15 It would be desirable to have a reliable communications network that is

suitable for the simultaneous sharing of information among a large number of the processes

that are widely distributed.

‘“_BRIEF'DESCRIPTION‘OF ‘THE‘DRIALWINGS

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents a

20 broadcast channel.

Figure 2 illustrates a graph representing 20 computers connected to a broadcast

channel.

Figures 3A and 3B illustrate the process of connecting a new computer Z to the
broadcast channel.

25 Figure 4A illustrates the broadcast channel of Figurel with an added

computer.

Figure 4B illustrates the broadcast channel of Figure 4A with an added

computer.

Figure 4C also illustrates the broadcast channel of Figure 4A with an added

30 computer.

[03004-800l/Sw03728368] ~3- 7/31/00

0340

0341

10

15

Figure 5A illustrates the disconnecting of a computer from the broadcast

channel in a planned manner.

Figure SB illustrates the disconnecting of a computer from the broadcast

channel in an unplanned manner.

Figure 5C illustrates the neighbors with empty ports condition.

Figure 5D illustrates two computers that are not neighbors who now have

empty ports.

Figure 5E illustrates the neighbors with empty ports condition in the small

regime.

Figure 5F illustrates the situation of Figure 5E when in the large regime.

Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcast channel. ‘

Figure 7 is a block diagram illustrating the sub-components of the broadcaster

component in one embodiment.

Figure 8 is a flow diagram illustrating the processing of the connect routine in

one embodiment.

Figure 9 is a flow diagram illustrating the processing of the seek portal

computer routine in one embodiment.

20

25

30

Figure 10 is a flow diagram illustrating the processing of the contact process

routine in one embodiment.

Figure 11 is a flow diagram illustrating the processing of the connect request

routine in one embodiment.

Figure 12 is a flow diagram of the processing of the check for external call

routine in one embodiment.

Figure 13 is a flow diagram of the processing of the achieve connection routine

in one embodiment.

Figure 14 is a flow diagram illustrating the processing of the external

dispatcher routine in one embodiment.

Figure 15 is a flow diagram illustrating the processing of the handle seeking
connection call routine in one embodiment.

Figure 16 is a flow diagram illustrating processing of the handle connection

request call routine in one embodiment.

[osomoonswomazsa] -4- 731/00

0341

0342

10

15

Figure 17 is a flow diagram illustrating the processing of the add neighbor

routine in one embodiment. _

Figure 18 is a flow diagram illustrating the processing of the forward

connection edge search routine in one embodiment.

Figure 19 is a flow diagram illustrating the processing of the handle edge

proposal call routine.

Figure 20 is a flow diagram illustrating the processing of the handle port

connection call routine in one embodiment.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in

one embodiment.

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher

routine in one embodiment.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast

message routine in one embodiment.

Figure 24 is a flow diagram illustrating the processing of the distribute

broadcast message routine in one embodiment.

Figure 26 is a flow diagram illuStrating the processing of the handle connection

port search statement routine in one embodiment.

20

25

30

Figure 27 is a flow diagram illustrating the processing of the court neighbor

routine in one embodiment.

Figure 28 is a flow diagram illustrating the processing of the handle connection

edge search call routine in one embodiment.

Figure 29 is a flow diagram illustrating the processing of the handle connection

edge search response routine in one embodiment.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine

in one embodiment.

Figure 31 is a flow diagram illustrating the processing of the acquire message
routine in one embodiment.

Figure 32 is a flow diagram illustrating processing of the handle condition

check message in one embodiment.

Figure 33 is a flow diagram illustrating processing of the handle condition

repair statement routine in one embodiment.

[03004-8001/Sl003728268] -5- 7/3 1/00

0342

0343

10

15

20

25

30

Figure 34 is a flow diagram illustrating the processing of the handle condition

double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel overlays a point-to-point

communications network is provided. The broadcasting of a message over the broadcast

channel is effectively a multicast to those computers of the network that are currently

connected to the broadcast channel. In one embodiment, the broadcast technique provides a

logical broadcast channel to which host computers through their executing processes can be

connected. Each computer that is connected to the broadcast channel can broadcast

messages onto and receive messages off of the broadcast channel. Each computer that is

connected to the broadcast channel receives all messages that are broadcast while it is

connected. The logical broadcast channel is implemented using an underlying network

system (e.g., the Internet) that allows each computer connected to the underlying network

system to send messages to each other connected computer using each computer’s address.

Thus, the broadcast technique effectively provides a broadcast channel using an underlying

network system that sends messages on a point-to-point basis.

The broadcast technique overlays the underlying network system with a graph

of point-to-point connections (i.e., edges) between host computers (i.e., nodes) through

which the broadcast channel is implemented. In one embodiment, each computer. is

connected to four other computers, referred to as neighbors. (Actually, a process executing

on a computer is connected to four other processes executing on this or four, other

computers.) To broadcast a message, the originating computer sends the message to each of

its neighbors using its point-to-point connections. Each computer that receives the message

then sends the message to its three other neighbors using the point-to-point connections. In

this way, the message is propagated to each computer using the underlying network to effect

the broadcasting of the message to each computer over a logical broadcast channel. A graph

in which each node is connected to four other nodes is referred to as a 4-regular graph. The

use of a 4-regular graph means that a computer would become disconnected from the

broadcast channel only if all four of the connections to its neighbors fail. The graph used by

the broadcast technique also has the property that it would take a failure of four computers to

[03W001/SW03H8.268] -6— 7131/00

0343

0344

10

15

20

25

30

divide the graph into disjoint sub-graphs, that is two separate broadcast channels. This

property is referred to as being 4-connected. Thus, the graph is both 4-regular and 4-

connected.

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents

the broadcast channel. Each of the nine nodes A-I represents a computer that is connected to

the broadcast channel, and each of the edges represents an “edge” connection between two

computers of the broadcast channel. The time it takes to broadcast a message to each

computer on the broadcast channel depends on the speed of the connections between the

computers and the number of connections between the originating computer and each other

computer on the broadcast channel. The minimum number of connections that a message

would need to traverse between each pair of computers is the “distance” between the

computers (i. e., the shortest path between the two nodes of the graph). For example, the

distance between computers A and F is one because computerA is directly connected to

computer F. The distance between computers A and B is two because there is no direct

connection between computers A and B, but computer F is directly connected to computer B.

Thus, a message originating at computer A would be sent directly to computer F, and then

sent from computer F to computer B. The maximum of the distances between the computers

is the “diameter” of broadcast channel. The diameter of the broadcast channel represented

by Figure 1 is two. That is, a message sent by any computer would traverse no more than

two connections to reach every other computer. Figure 2 illustrates a graph representing 20

computers connected to a broadcast charmel. The diameter of this broadcast channel is 4. In

particular, the shortest path between computers 1 and 3 contains four connections (1-12, 12-

15, 15-18, and 18-3).

The broadcast technique includes (1) the connecting of computers to the

broadcast channel (i.e., composing the graph), (2) the broadcasting of messages over the

broadcast channel (i.e., broadcasting through the graph), and (3) the disconnecting of

computers from the broadcast channel (i. e., decomposing the graph) composing the graph.

Composing the Graph

To connect to the broadcast channel, the computer seeking the connection first

locates a computer that is currently fully connected to the broadcast channel and then

[03004-8001/Sw03728268] -7- 7/31/00

0344

'l

0345

10

15

20

25

30

establishes a connection with four of the computers that are already connected to the

broadcast channel. (This assumes that there are at least four computers already connected to

the broadcast channel. When there are fewer than five computers connected, the broadcast

channel cannot be a 4-regular graph. In such a case, the broadcast channel is considered to

be in a “small regime.” The broadcast technique for the small regime is described below in

detail. When five or more computers are connected, the broadcast channel is considered to

be in the “large regime.” This description assumes that the broadcast channel is in the large

regime, unless specified otherwise.) Thus, the process of connecting to the broadcast

channel includes locating the broadcast channel, identifying the neighbors for the connecting

computer, and then connecting to each identified neighbor. Each computer is aware of one

or more “portal computers” through which that computer may locate the broadcast channel.

A seeking computer locates the broadcast channel by contacting the portal computers until it

The found portal

computer then directs the identifying of four computers (i.e., to be the seeking computer’s

finds one that is currently fully connected to the broadcast channel.

neighbors) to which the seeking computer is to connect. Each of these four computers then

cooperates with the seeking computer to effect the connecting of the seeking computer to the

broadcast channel. A computer that has started the process of locating a portal computer, but

does not yet have a neighbor, is in the “seeking connection state.” A computer that is

connected to at least one neighbor, but not yet four neighbors, is in the “pam'ally connected

state.” A computer that is currently, or has been, previously connected to four neighbors is

in the “fully connected state.”

Since the broadcast channel is a 4-regular graph, each of the identified

computers is already connected to four computers. Thus, some connections between

computers need to be broken so that the seeking computer can connect to four computers. In

one embodiment, the broadcast technique identifies two pairs of computers that are currently

connected to each other. Each of these pairs of computers breaks the connection between

them, and then each of the four computers (two from each pair) connects to the seeking

computer. Figures 3A and 3B illustrate the process of a new computer Z connecting to the

broadcast channel. Figure 3A illustrates the broadcast channel before computer Z is

connected. The pairs of computers B and E and computers C and D are the two pairs that are

identified as the neighbors for the new computer Z. The connections between each of these

pairs is broken, and a connection between computer Z and each of computers B, C, D, and E

[03004-800USIDOJ728368] -8- 7mm

0345

0346

IO

15

20

25

30

is established as indicated by Figure SB. The process of breaking the connection between

two neighbors and reconnecting each of the former neighbors to another computer is referred

to as “edge pinning” as the edge between two nodes may be considered to be stretched and

pinned to a new node.

broadcast channel allocates five

communications ports for communicating with other computers. Four of the ports are

referred to as “intemal” ports because they are the ports through which the messages of the

broadcast channels are sent. The connections between internal ports of neighbors are

referred to as “internal” connections. Thus, the internal connections of the broadcast channel

form the 4—regular and 4-connected graph. The fifih port is referred to as an “external” port

because it is used for sending non-broadcast messages between two computers. Neighbors

Each computer connected to the

can send non-broadcast messages either through their internal ports of their connection or

through their external ports. A seeking computer uses external ports when locating a portal

computer.

In one embodiment, the broadcast technique establishes the computer

connections using the TCP/IP communications protocol, which is a point-to—point protocol,

as the underlying network. The TCP/IP protocol provides for reliable and ordered delivery

of messages between computers. The TCIZ/IP protocol provides each computer“with a “port

space” that is shared among all the processes that may execute on that computer. The ports

are identified by numbers from 0 to 65,535. The first 2056 ports are reserved for specific

applications (e.g., port 80 for HTTP messages). The remainder of the ports are user ports

that are available to any process. In one embodiment, a set of port numbers can be reserved

for use by the computer connected to the broadcast channel. In an alternative embodiment, _

the port numbers used are dynamically identified by each computer. Each computer

dynamically identifies an available port to be used as its call-in port. This call-in port is used

to establish connections with the external port and the internal ports. Each computer that is

connected to the broadcast channel can receive non-broadcast messages through its external

port. A seeking computer tries “dialing” the port numbers of the portal computers until a

portal computer “answers,” a call on its call-in port. A portal computer answers when it is

connected to or attempting to connect to the broadcast channel and its call-in port is dialed.

(In this description, a telephone metaphor is used to describe the connections.) When a

computer receives a call on its call-in port, it transfers the call to another port. Thus, the

[03004-8001/Sw03728268] ~9- 7/31/00

0346

0347

10

15

20

25

30

seeking computer actually communicates through that transfer-to port, which is the external

port. The call is transferred so that other computers can place calls to that computer via the

call-in port. The seeking computer then communicates via that external port to request the

portal computer to assist in connecting the seeking computer to the broadcast channel. The

seeking computer could identify the call-in port number of a portal computer by successively

dialing each port in port number order. As discussed below in detail, the broadcast technique

uses a hashing algorithm to select the port number order, which may result in improved

performance. '

A seeking computer could connect to the broadcast channel by connecting to

computers either directly connected to the found portal computer or directly connected to one

of its neighbors. A possible problem with such a scheme for identifying the neighbors for

the seeking computer is that the diameter of the broadcast channel may increase when each

seeking computer uses the same found portal computer and establishes a connection to the

broadcast channel direcfly through that found portal computer. Conceptually, the graph

becomes elongated in the direction of where the new nodes are added. Figures 4A-4C

illustrate that possible problem. Figure 4A illustrates the broadcast channel of Figure l with

an added computer. Computer J was connected to the broadcast channel by edge pinning

edges C-D and E-H to computer J. The diameter of this broadcast channel is still two.

Figure 43 illustrates the broadcast channel of Figure 4A with an added computer.

Computer K was connected to the broadcast channel by edge pinning edges E-J and B-C to’

computer K. The diameter of this broadcast channel is three, because the shortest path from

computer G to computer K is through edges G-A, A-E, and BK. Figure 4C also illustrates

the broadcast channel of Figure 4A with an added computer. Computer K was connected to

the broadcast channel by edge pinning edges D-G and E-J to computer K. The diameter of

this broadcast channel is, however, still two. Thus, the selection of neighbors impacts the

diameter of the broadcast channel. To help minimize the diameter, the broadcast technique

uses a random selection technique to identify the four neighbors of a computer in the seeking

connection state. The random selection technique tends to distribute the connections to new

seeking computers throughout the computers of the broadcast channel which may result in
smaller overall diameters.

[030M8001/Stho372azss] -10- 7/31/00

0347

0348

10

15

20

25

30

Broadcastin Throu the Gra b

As described above, each computer that is connected to the broadcast channel

can broadcast messages onto the broadcast channel and does receive all messages that are

broadcast on the broadcast channel. The computer that originates a message to be broadcast

sends that message to each of its four neighbors using the internal connections. When a

computer receives a broadcast message from a neighbor, it sends the message to its three

other neighbors. Each computer on the broadcast channel, except the originating computer,

will thus receive a copy of each broadcast message from each of its four neighbors. Each

computer, however, only sends the first copy of the message that it receives to its neighbors

and disregards subsequently received copies. Thus, the total number of copies of a message

that is sent between the computers is 3N+l, where N is the number‘of computers connected

to the broadcast channel. Each computer sends three copies of the message, except for the

originating computer, which sends four copies of the message.

The redundancy of the message sending helps to ensure the overall reliability

of the broadcast channel. Since each computer has four connections to the broadcast

channel, if one computer fails during the broadcast of a message, its neighbors have three

other connections through which they will receive copies of the broadcast message. Also, if

the internal connection between two computers is slow, each computer has three other

connections through which it may receive a copy of each message sooner.

Each computer that originates a message numbers its own messages

sequentially. Because of the dynamic nature of the broadcast channel and because there are

many possible connection paths between computers, the messages may be received out of

order. For example, the distance between an originating computer and a certain receiving

computer may be four. Afier sending the first message, the originating computer and

receiving computer may become neighbors and thus the distance between them changes to

one. The first message may have to travel a distance of four to reach the receiving computer.

The second message only has to travel a distance of one. Thus, it is possible for the second

message to reach the receiving computer before the first message.

When the broadcast channel is in a steady state (i.e., no computers connecting

or disconnecting from the broadcast channel), out-of-order messages are not a problem

because each computer will eventually receive both messages and can queue messages until

all earlier ordered messages are received. If, however, the broadcast channel is not in a
[03004-3001/swomszsa] -l 1- 7/31/00

0348

0349

IO

15

20

25

30

steady state, then problems can occur. In particular, a computer may connect to the

broadcast channel after the second message has already been received and forwarded on by

its new neighbors. When a new neighbor eventually receives the first message, it sends the

message to the newly connected computer. Thus, the newly connected computer will receive

the message, but will not receive the second message. If the newly connected computer

needs to process the messages in order, it would wait indefinitely for the second message.

One solution to this problem is to have each computer queue all the messages

that it receives until it can send them in their proper order to its neighbors. This solution,

however, may tend to slow down the propagation of messages through the computers of the

broadcast charmel. Another solution that may have less impact on the propagation speed is

to queue messages om7at computers who are neighbors of the newly connected computers.

Each already connected neighbor would forward messages as it receives them to its other

neighbors who are not newly connected, but not to the newly connected neighbor. The

already connected neighbor would only forward messages from each originating computer to

the newly connected computer when it can ensure that no gaps in the messages from that

originating computer will occur. In one embodiment, the already connected neighbor may

track the highest sequence number of the messages already received and forwarded on from

each originating computer. The already connected computer will send only higher numbered

messages from the originating computers to the newly connected computer. Once all lower

numbered messages have been received from all originating computers, then the already

connected computer can treat the newly connected computer as its other neighbors and

simply forward each message as it is received. In another embodiment, each computer may

queue messages and only forwards to the newly connected computer those messages as the -

gaps are filled in. For example, a computer might receive messages 4 and 5 and then receive

message 3. In such a case, the already connected computer would forward queue messages 4

and 5. When message 3 is finally received, the already connected computer will send

messages 3, 4, and 5 to the newly connected computer. If messages 4 and 5 were sent to the

newly connected computer before message 3, then the newly connected computer would

process messages 4 and 5 and disregard message 3. Because the already connected computer

queues messages 4 and 5, the newly connected computer will be able to process message 3.

It is possible that a newly connected computer will receive a set of messages from an

originating computer through one neighbor and then receive another set of message from the
[03004—3001/sw0372mss] -12- 7I3IIOO

0349

0350

10

15

20

25

30

same originating computer through another neighbor. If the second set of messages contains

a message that is ordered earlier than the messages of the first set received, then the newly

connected computer may ignore that earlier ordered message if the computer already

processed those later ordered messages.

Decomposing the Grgph

A connected computer disconnects from the broadcast channel either in a

planned or unplanned manner. When a computer disconnects in a planned manner, it sends a

disconnect message to each of its four neighbors. The disconnect message includes a list that

identifies the four neighbors of the disconnecting computer. When a neighbor receives the

disconnect message, it tries to connect to one of the computers on the list. In one

embodiment, the first computer in the list will try to connect to the second computer in the

list, and the third computer in the list will try to connect to the fourth computer in the list. If

a computer cannot connect (e.g., the first and second computers are already connected), then

‘ the computers may try connecting in various other combinations. If connections cannot be

established, each computer broadcasts a message that it needs to establish a connection with

another computer. When a computer with an available internal port receives the message, it

can then establish a connection with the computer that broadcast the message. Figures 5A-

SD illustrate the disconnecting of a computer from the broadcast channel. EigurejAn

illustrates the disconnecting of a computer from the broadcast channel in a planned manner.

When computer H decides to disconnect, it sends its list of neighbors to each of its neighbors

When

computers A and I receive the message they establish a connection between them as

indicated by the dashed line, and similarly for computers E and F.

When a computer disconnects in an unplanned manner, such as resulting fiom

(computers A, E, F and I) and then disconnects from each of its neighbors.

a power failure, the neighbors connected to the disconnected computer recognize the

disconnection when each attempts to send its next message to the now disconnected

computer. Each former neighbor of the disconnected computer recognizes that it is short one

connection (i. e. , it has a hole or empty port). When a connected computer detects that one of

its neighbors is now disconnected, it broadcasts a port connection request on the broadcast

[03004-8001/31903728368]

0350

0351

10

15

20

25

30

computer that is also short a connection receives the connection request, it communicates

with the requesting computer through its external port to establish a connection between the

two computers. Figure 5B illustrates the disconnecting of a computer from the broadcast

channel in an unplanned manner. In this illustration, computer H has disconnected in an

unplanned manner. When each of its neighbors, computers A, E, F, and I, recognizes the

disconnection, each neighbor broadcasts a port connection request indicating that it needs to

fill an empty port. As shown by the dashed lines, computers F and I and computers A and E

respond to each other’s requests and establish a connection.

It is possible that a planned or unplanned disconnection may result in two

neighbors each having an empty internal port. In such a case, since they are neighbors, they

are already connected and cannot fill their empty ports by connecting to each other. Such a

condition is referred to as the “neighbors with empty ports” condition. Each neighbor

broadcasts a port connection request when it detects that it has an empty port as described

above. When a neighbor receives the port connection request from the other neighbor, it will

recognize the condition that its neighbor also has an empty port. Such a condition may also

occur when the broadcast channel is in the small regime. The condition can only be

corrected when in the large regime._ When in the small regime, each computer will have less

than four neighbors. To detect this condition in the large regime, which would be a problem

if not repaired, the first neighbor to receive the port connection request recognizes the

condition and sends a condition check message to the other neighbor. The condition check

message includes a list of the neighbors of the sending computer. When the receiving

computer receives the list, it compares the list to its own list of neighbors. If the lists are

difierent, then this condition has occurred in the large regime and repair is needed. To repair

this condition, the receiving computer will send a condition repair request to one of the

neighbors of the sending computer which is not already a neighbor of the receiving

computer. When the computer receives the condition repair request, it disconnects from one

of its neighbors (other than the neighbor that is involved with the condition) and connects to

the computer that sent the condition repair request. Thus, one of the original neighbors

involved in the condition will have had a port filled. However, two computers are still in

need of a connection, the other original neighbor and the computer that is now disconnected

from the computer that received the condition repair request. Those two computers send out

port connection requests. If those two computers are not neighbors, then they will connect to
[03004-8001/Sw03728268] -l4- 7/31/00

0351

0352

IO

15

20

25

30

each other when they receive the requests. If, however, the two computers are neighbors.

then they repeat the condition repair process until two non-neighbors are in need of

connections.

It is possible that the two original neighbors with the condition may have the

same set of neighbors. When the neighbor that receives the condition check message

determines that the sets of neighbors are the same, it sends a condition double check message

to one of its neighbors other than the neighbor who also has the condition. When the

computer receives the condition double check message, it determines whether it has the same

set of neighbors as the sending computer. If so, the broadcast channel is in the small regime

and the condition is not a problem. If the set of neighbors are difi‘erent, then the computer

that received the condition double check message sends a condition check message to the

original neighbors with the condition. The computer that receives that condition check

message directs one of it neighbors to connect to one of the original neighbors with the

condition by sending a condition repair message. Thus, one of the original neighbors with

the condition will have its port filled.

Figure 5C illustrates the neighbors with empty ports condition. In this

illustration, computer H disconnected in an implanned manner, but computers F and I

responded to the port connection request of the other and are now connected together. The

other former neighbors of computer H, computersA and E, are already neighbors, which

gives rise to the neighbors with empty ports condition. In this example, computer E received

the port connection request from computer A, recognized the possible condition, and sent

(since they are neighbors via the internal connection) a condition check message with a list

of its neighbors to computer A. When computerA received the list, it recognized that

computer E has a different set of neighbor (i.e., the broadcast channel is in the large regime).

Computer A selected computer D, which is a neighbor of computer E and sent it a condition

repair request. When computer D received the condition repair request, it disconnected from

one of its neighbors (other than computer E), which; is computer G in this example.
Computer D then connected to computer A. Figure 5D illustrates two computers that are not

neighbors who now have empty ports. Computers E and G now have empty ports and are

not currently neighbors. Therefore, computers E and G can connect to each other.

Figures 5E and SF further illustrate the neighbors with empty ports condition.

Figure 5E illustrates the neighbors with empty ports condition in the small regime. In this
[osoouaouswonzazss] - l 5- 7/31/00

0352

0353

10

15

20

25

30

example, if computer E disconnected in an unplanned manner, then each computer

broadcasts a port connection request when it detects the disconnect. When computer A

receives the port connection request form computer B, it detects the neighbors with empty

ports condition and sends a condition check message to computer B. Computer B recognizes

that it has the same set of neighbors (computer C and D) as computer A and then sends a

condition double check message to computer C. Computer C recognizes that the broadcast

channel is in the small regime because is also has the same set of neighbors as computers A

and B, computer C may then broadcast a message indicating that the broadcast channel is in

the small regime.

Figure 5F illustrates the situation of Figure 513 when in the large regime. As

discussed above, computer C receives the condition double check message from computer B.

In this case, computer C recognizes that the broadcast channel is in the large regime because

it has a set of neighbors that is different from computer B. The edges extending up from

computer C and D indicate connections to other computers. Computer C then sends a

condition check message to computer B. When computer B receives the condition check

message, it sends a condition repair message to one of the neighbors of computer C. The

computer that receives the condition repair message disconnects from one of its neighbors,

other than computer C, and tries to connect to computer B and the neighbor from which it

disconnected ties to connect to computer A.

Port Selection

As described above, the TCP/IP protocol designates ports above number 2056

as user ports. The broadcast technique uses five user port numbers on each computer: one

external port and four internal ports. Generally, user ports carmot be statically allocated to

an application program because other applications programs executing on the same computer

may use conflicting port numbers. As a result, in one embodiment, the computers connected

to the broadcast channel dynamically allocate their port numbers. Each computer could

simply try to locate the lowest number unused port on that computer and use that port as the

call-in port. A seeking computer, however, does not know in advance the call-in port

number of the portal computers when the port numbers are dynamically allocated. Thus, a

seeking computer needs to dial ports of a portal computer starting with the lowest port

number when locating the call-in port of a portal computer. If the portal computer is

[03004—3001/sw037231681 - l 6- 7/3l/00

0353

0354

10

15

20

25

30

connected to (or attempting to connect to) the broadcast channel, then the seeking computer

would eventually find the call-in port. If the portal computer is not connected, then the

seeking computer would eventually dial every user port. In addition, if each application

program on a computer tried to allocate low-ordered port numbers, then a portal computer

may end up with a high-numbered port for its call-in port because many of the low-ordered

port numbers would be used by other application programs. Since the dialing of a port is a

relatively slow process, it would take the seeking computer a long time to locate the call-in

port of a portal computer. To minimize this time, the broadcast technique uses a port

ordering algorithm to identify the port number order that a portal computer should use when

finding an available port for its call-in port. In one embodiment, the broadcast technique

uses a hashing algorithm to identify the port order. The algorithm preferably distributes the

ordering of the port numbers randomly through out the user port number space and only

selects each port number once. In addition, every time the algorithm is executed on any

computer for a given channel type and channel instance, it generates the same port ordering.

As described below, it is possible for a computer to be connected to multiple broadcast

channels that are uniquely identified by channel type and channel instance. The algorithm

may be “seeded” with channel type and channel instance in order to generate a unique

ordering of port numbers for each broadcast channel. Thus, a seeking computer will dial the

ports of a portal computer in the same order as the portal computer used when allocating its

call-in port.

If many computers are at the same time seeking connection to a broadcast

charmel through a single portal computer, then the ports of the portal computer may be busy

when called by seeking computers. The seeking computers would typically need to keep on

redialing a busy port. The process of locating a call-in port may be significantly slowed by

such redialing. In one embodiment, each seeking computer may each reorder the first few

port numbers generated by the hashing algorithm. For example, each seeking computer

could randomly reorder the first eight port numbers generated by the hashing algorithm. The

random ordering could also be weighted where the first port number generated by the

hashing algorithm would have a 50% chance of being first in the reordering, the second port

number would have a 25% chance of being first in the reordering, and so on. Because the

seeking computers would use different orderings, the likelihood of finding a busy port is

reduced. For example, if the first eight port numbers are randomly selected, then it is
[osooa-soor/smomszss) -l7- 7/31/00

0354

0355

IO

15

20

25

30

possible that eight seeking computers could be simultaneously dialing ports in difierent

sequences which would reduce the chances of dialing a busy port.

Locatin a Portal Com uter

Each computer that can connect to the broadcast channel has a list of one or

more portal computers through which it can connect to the broadcast channel. In one

embodiment, each computer has the same set of portal computers. A seeking computer

locates a portal computer that is connected to the broadcast channel by successively dialing

the ports of each portal computer in the order specified by an algorithm. A seeking computer

could select the first portal computer and then dial all its ports until a call-in port of a

computer that is fully connected to the broadcast channel is found. If no call-in port is

found, then the seeking computer would select the next portal computer and repeat the

process until a portal computer with such a call-in port is found. A problem with such a

seeking technique is that all user ports of each portal computer are dialed until a portal

computer fully connected to the broadcast channel is found. In an alternate embodiment, the

seeking computer selects a port number according to the algoriflim and then dials each portal

computer at that port number. If no acceptable call-in port to the broadcast channel is found,

then the seeking computer selects the next port number and repeats the process. Since the

call-in ports are likely allocated at lower-ordered port numbers, the seeking computer first

dials the port numbers that are most likely to be call-in ports of the broadcast channel. The

seeking computers may have a maximum search depth, that is the number of ports that it will

dial when seeking a portal computer that is fully connected. If the seeking computer

exhausts its search depth, then either the broadcast channel has not yet been established or, if

the seeking computer is also a portal computer, it can then establish the broadcast channel .

with itself as the first fully connected computer.

When a seeking computer locates a portal computer that is itself not fully

connected, the two computers do not connect when they first locate each other because the

broadcast channel may already be established and accessible through a higher-ordered port

number on another portal computer. If the two seeking computers were to connect to each

other, then two disjoint broadcast channels would be formed. Each seeking computer can

share its experience in trying to locate a portal computer with the other seeking computer. In

particular, if one seeking computer has searched all the portal computers to a depth of eight,

[osoouoousmosnxzss] - l 8- 7/31/00

0355

0356

10

15

20

25

30

then the one seeking computer can share that it has searched to a depth of eight with another

seeking computer. If that other seeking computer has searched to a depth of, for example,

only four, it can skip searching through depths five through eight and that other seeking

computer can advance its searching to a depth of nine.

In one embodiment, each computer may have a difierent set of portal

computers and a difi'erent maximum search depth. In such a situation, it may be possible that

two disjoint broadcast channels are formed because a Seeking computer cannot locate a fully

connected port computer at a higher depth. Similarly, if the set of portal computers are

disjoint, then two separate broadcast channels would be formed.

IdentiMng Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting computer are

preferably selected randomly from the set of currently connected computers. One advantage

of the broadcast channel, however, is that no computer has global knowledge of the

broadcast channel. Rather, each computer has local knowledge of itself and its neighbors.

This limited local knowledge has the advantage that all the connected computers are peers

(as far as the broadcasting is concerned) and the failure of any one computer (actually any

three computers when in the 4-regular and 4-connect form) will not cause the broadcast

channel to fail. This local knowledge makes it difficult for a portal computer to randomly

select four neighbors for a seeking computer.

To select the four computers, a portal computer sends an edge connection

request message through one of its internal connections that is randomly selected. The

receiving computer again sends the edge connection request message through one of its

internal connections that is randomly selected. This sending of the message corresponds to a

Eventually, a

receiving computer will decide that the message has traveled far enough to represent a

random walk through the graph that represents the broadcast channel.

randomly selected computer. That receiving computer will offer the internal connection

upon which it received the edge connection request message to the seeking computer for
edge pinning. Of course, if either of the computers at the end of the offered internal

connection are already neighbors of the seeking computer, then the seeking computer cannot

connect through that internal connection. The computer that decided that the message has

[oaooasoouswosmass] -l9- 7/31/00

0356

0357

10

15

20

25

30

traveled far enough will detect this condition of already being a neighbor and send the

message to a randomly selected neighbor.

In one embodiment, the distance that the edge connection request message

travels is established by the portal computer to be approximately twice the estimated

diameter of the broadcast channel. The message includes an indication of the distance that it

is to travel. Each receiving computer decrements that distance to travel before sending the

message on. The computer that receives a message with a distance to travel that is zero is

considered to be the randomly selected computer. If that randomly selected computer cannot

connect to the seeking computer (e.g., because it is already connected to it), then that

randomly selected computer forwards the edge connection request to one of its neighbors

with a new distance to travel. In one embodiment, the forwarding computer toggles the new

distance to travel between zero and one to help prevent two computers from sending the
message back and forth between each other.

Because of the local nature of the information maintained by each computer

connected to the broadcast channel, the computers need not generally be aware of the

diameter of the broadcast charmel. In one embodiment, each message sent through the

broadcast channel has a distance traveled field. Each computer that forwards a message

increments the distance traveled field. Each computer also maintains an estimated diameter

of the broadcast channel. When a computer receives a message that has traveled a distance

that indicates that the estimated diameter is too small, it updates its estimated diameter and

broadcasts an estimated diameter message. When a computer receives an estimated diameter

message that indicates a diameter that is larger than its own estimated diameter, it updates its

own estimated diameter. This estimated diameter is used to establish the distance that an

edge connection request message should travel.

External Data Representation

The computers connected to the broadcast channel may internally store their

data in different formats. For example, one computer may use 32-bit integers, and another

computer may use 64-bit integers. ,As another example, one computer may use ASCII to

represent text and another computer may use Unicode. To allow communications between

heterogeneous computers, the messages sent over the broadcast channel may use the XDR
(“eXtemal Data Representation”) format.

[oaoouoonsmomazaal -20- 7/3 [/00

0357

0358

10

15

20

25

30

The underlying peer-to-peer communications protocol may send multiple

messages in a single message stream. The tradin'onal technique for retrieving messages from

a stream has been to repeatedly invoke an operating system routine to retrieve the next

message in the stream. The retrieval of each message may require two calls to the operating

system: one to retrieve the size of the next message and the other to retrieve the number of

bytes indicated by the retrieved size. Such calls to the operating system can, however, be

very slow in comparison to the invocations of local routines. To overcome the inefficiencies

of such repeated calls, the broadcast technique in one embodiment, uses XDR to identify the

message boundaries in a stream of messages. The broadcast technique may request the

operating system to provide the next, for example, 1,024 bytes from the stream. The

broadcast technique can then repeatedly invoke the XDR routines to retrieve the messages

and use the success or failure of each invocation to determine whether another block of 1,024

bytes needs to be retrieved from the operating system. The invocation of XDR routines do

not involve system calls and are thus more efficient than repeated system calls.

M-Regglar

In the embodiment described above, each fully connected computer has four

internal connections. The broadcast technique can be used with other numbers of internal

connections. For example, each computer could have 6, 8, or any even number of internal

connections. As the number of internal connections increase, the diameter of the broadcast

channel tends to decrease, and thus propagation time for a message tends to decrease. The

time that it takes to connect a seeking computer to the broadcast channel may, however,

increase as the number of internal connections increases. When the number of internal

connectors is even, then the broadcast channel can be maintained as m-regular and

m-connected (in the steady state). If the number of internal connections is odd, then when

the broadcast channel has an odd number of computers connected, one of the computers will

have less than that odd number of internal connections. In such a situation, the broadcast

network is neither m-regular nor m-connected. When the next computer connects to the

broadcast channel, it can again become m-regular and m-connected. Thus, with an odd

number of internal connections, the broadcast channel toggles between being and not being
m-regular and m-connected.

[03004-800]/SLDO3728.268] -21- 7/31/00

0358

0359

10

15

20

25

30

Components

Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcast channel. The above description generally assumed that there was

only one broadcast channel and that each computer had only one connection to that broadcast

channel. More generally, a network of computers may have multiple broadcast channels,

each computer may be connected to more than one broadcast channel, and each computer

can have multiple connections to the same broadcast channel. The broadcast charmel is well

suited for computer processes (e.g., application programs) that execute collaboratively, such

as network meeting programs. Each computer process can connect to one or more broadcast

The broadcast channels can be identified by channel type (e.g., application

program name) and channel instance that represents separate broadcast charmels for that

channels.

channel type. When a process attempts to connect to a broadcast channel, it seeks a process

currently connected to that broadcast channel that is executing on a portal computer. The

seeking process identifies the broadcast channel by channel type and channel instance.

Computer 600 includes multiple application programs 601 executing as

separate processes. Each application program interfaces with a broadcaster component 602

for each broadcast channel to which it is connected. The broadcaster component may be

implement as an object that is instantiated within the process space of the application

program. Alternatively, the broadcaster component may execute as a separate process or

thread from the application program. In one embodiment, the broadcaster component

provides fimctions (e.g., methods of class) that can be invoked by the application programs.
The primary functions provided may include a connect fimction that an application program

invokes passing an indication of the broadcast channel to which the application program

wants to connect. The application program may provide a callback routine that the

broadcaster component invokes to notify the application program that the connection has

been completed, that is the process enters the fully connected state. The broadcaster

component may also provide an acquire message ftmction that the application program can

invoke to retrieve the next message that is broadcast on the broadcast channel. Alternatively,

the application program may provide a callback routine (which may be a virtual ftmction

provided by the application program) that the broadcaster component invokes to notify the

application program that a broadcast message has been received. Each broadcaster

component allocates a call-in port using the hashing algorithm. When calls are answered at
[osmsoor/smosmzss] -22- 731/00

0359

0360

10

15

20

25

the call-in port, they are transferred to other ports that serve as the external and internal

ports.

The computers connecting to the broadcast channel may include a central

processing unit, memory, input devices (e.g., keyboard and pointing device), output devices

(e.g., display devices), and storage devices (e.g., disk drives). The memory and storage

devices are computer-readable medium that may contain computer instructions that

In addition, the data structures and message

structures may be stored or transmitted via a signal transmitted on a computer-readable

implement the broadcaster component.

media, such as a communications link.

Figure 7 is a block diagram illustrating the sub-components of the broadcaster

component in one embodiment. The broadcaster component includes a connect component

701, an external dispatcher 702, an internal dispatcher 703 for each internal connection, an

acquire message component 704 and a broadcast component 712. The application program

may provide a connect callback component 710 and a receive response component 711 that

are invoked by the broadcaster component. The application program invokes the connect
component to establish a connection to a designated broadcast channel. The connect

component identifies the external port and installs the external dispatcher for handling

messages that are received on the external port. The connect component invokes the seek

portal computer component 705 to identify a portal computer that is connected to the

broadcast channel and invokes the connect request component 706 to ask the portal computer

(if fully connected) to select neighbor processes for the newly connecting process. The

external dispatcher receives external messages, identifies the type of message, and invokes

the appropriate handling routine 707. The internal dispatcher receives the internal messages,

identifies the type of message, and invokes the appropriate handling routine 708. The

received broadcast messages are stored in the broadcast message queue 709. The acquire

message component is invoked to retrieve messages from the broadcast queue. The

broadcast component is invoked by the application program to broadcast messages in the
broadcast channel.

The following tables list messages sent by the broadcaster components.

[oamoor/swoanazss] ~23- 7131/00

0360

0361

EXTERNAL MESSAGES

Type
seeking_connection_call Indicates that a seeking process would like to know whether the

receiving process is fully connected to the broadcast channel

connection_request_call Indicates that the sending process would like the receiving
process to initiate a connection of the sending process to the
broadcast channel

 edge_proposal_call Indicates that the sending process is proposing an edge through
which the receiving process can connect to the broadcast

channel (i. e., edge pinning)

 port_connection_call

connected_stmt

condition_repair_stmt

Indicates that the sending process is proposing a port through
which the receiving process can connect to the broadcast
channel

Indicates that the sending process is connected to the broadcast
channel

Indicates that the receiving process should disconnect from one-

of its neighbors and connect to one of the processes involved in
the neighbors with empty port condition

r INTERNAL MESSAGES

Type
broadcast_stmt Indicates a message that is being broadcast through the

broadcast channel for the application programs

connection_port_search_stmt Indicates that the designated process is looking for a port
through which it can connect to the broadcast channel

connection_edge_search_call Indicates that the requesting process is looking for an edge
through which it can connect to the broadcast channel

connection_edge_search_resp Indicates whether the edge between this process and the
sending neighbor has been accepted by the requesting
Party

diameter_estimate_stmt Indicates an estimated diameter of the broadcast channel

diameter_reset_stmt Indicates to reset the estimated diameter to indicated
diameter

disconnect_stmt Indicates that the sending neighbor is disconnecting from
the broadcast channel

Indicates that neighbors with empty port condition have
[oaoocsoousmomszssl ~24-

0361

0362

10

15

20

25

 —
condition_double__check_stmt Indicates that the neighbors with empty ports have the

same set ofneighbors

shutdown_stmt Indicates that the broadcast channel is being shutdown

Flow Diagrams '

Figures 8-34 are flow diagrams illustrating the processing of the broadcaster

component in one embodiment. Figure 8 is a flow diagram illustrating the processing of the

connect routine in one embodiment. This routine is passed a channel type (e.g., application

name) and channel instance (e.g., session identifier), that identifies the broadcast channel to

which this process wants to connect. The routine is also passed auxiliary information that

includes the list of portal computers and a connection callback routine. When the connection

is established, the connection callback routine is invoked to notify the application program.

When this process invokes this routine, it is in the seeking connection state. When a portal

computer is located that is connected and this routine connects to at least one neighbor, this

process enters the partially connected state, and when the process eventually connects to four

neighbors, it enters the fully connected state. When in the small regime, a fully connected

process may have less than four neighbors. In block 801, the routine opens the call-in port

through which the process is to communicate with other processes when establishing external

and internal connections. The port is selected as the first available port using the hashing

algorithm described above. In block 802, the routine sets the connect time to the current

time. The connect time is used to identify the instance of the process that is connected

through this external port. One process may connect to a broadcast channel of a certain

channel type and channel instance using one call-in port and then disconnects, and another

process may then connect to that same broadcast channel using the same call-in port. Before

the other process becomes fully connected, another process may try to communicate with it

thinking it is the fully connected old process. In such a case, the connect time can be used to

identify this situation. In block 803, the routine invokes the seek portal computer routine

passing the channel type and channel instance. The seek portal computer routine attempts to

locate a portal computer through which this process can connect to the broadcast channel for

the passed type and instance. In decision block 804, if the seek portal computer routine is

[03004-800USLD03728168) -25- 7/31/00

0362

0363

10

15

20

25

30

successful in locating a fully connected process on that portal computer, then the routine

continues at block 805, else the routine returns an unsuccessful indication. In decision block

805, if no portal computer other than the portal computer on which the process is executing

was located, then this is the first process to fully connect to broadcast channel and the

routine continues at block 806, else the routine continues at block 808. In block 806, the

routine invokes the achieve connection routine to change the state of this process to fully

connected. In block 807, the routine installs the external dispatcher for processing messages

received through this process’ external port for the passed channel type and channel instance.

When a message is received through that external port, the external dispatcher is invoked.

The routine then returns. In block 808, the routine installs an external dispatcher. In block

809, the routine invokes the connect request routine to initiate the process of identifying

neighbors for the seeking computer. The routine then returns.

Figure 9 is a flow diagram illustrating the processing of the seek portal

computer routine in one embodiment. This routine is passed the channel type and channel

instance of the broadcast channel to which this process wishes to connect. This routine, for

each search depth (e.g., port number), checks the portal computers at that search depth. If a

portal computer is located at that search depth with a process that is fully connected to the

broadcast channel, then the routine returns an indication of success. In blocks 902-911, the

routine loops selecting each search depth until a process is located. In block 902, the routine

selects the next search depth using a port number ordering algorithm. In decision block 903,

if all the search depths have already been selected during this execution of the loop, that is

for the currently selected depth, then the routine returns a failure indication, else the routine

continues at block 904. In blocks 904-911, the routine loops selecting each portal computer

and determining whether a process of that portal computer is connected to (or attempting to

connect to) the broadcast channel with the passed channel type and channel instance. In

block 904, the routine selects the next portal computer. In decision block 905, if all the

portal computers have already been selected, then the routine loops to block 902 to select the

next search depth, else the routine continues at block 906. In block 906, the routine dials the

selected portal computer through the port represented by the search depth. In decision block

907, if the dialing was successful, then the routine continues at block 908, else the routine

loops to block 904 to select the next portal computer. The dialing will be successful if the

dialed port is the call-in port of the broadcast channel of the passed channel type and channel
[03004-800l/SLO03728268] -26- 7/31/00

0363

0364

10

15

20

25

30

instance of a process executing on that portal computer. In block 908, the routine invokes a

contact process routine, which contacts the answering process of the portal computer through

the dialed port and determines whether that process is fully connected to the broadcast

channel. In block 909, the routine hangs up on the selected portal computer. In decision

block 910, if the answering process is fully connected to the broadcast channel, then the

routine returns a success indicator, else the routine continues at block 911. In block 911, the

routine invokes the check for external call routine to determine whether an external call has

been made to this process as a portal computer and processes that call. The routine then

loops to block 904 to select the next portal computer.

Figure 10 is a flow diagram illustrating the processing of the contact process

routine in one embodiment. This routine determines whether the process of the selected

portal computer that answered the call-in to the selected port is fully connected to the

broadcast channel. In block 1001, the routine sends an external message (i.e.,

seeking_connection_call) to the answering process indicating that a seeking process wants to

know whether the answering process is fully connected to the broadcast channel. In block

1002, the routine receives the external response message from the answering process. In

decision block 1003, if the external response message is successfully received (1'. e.,

seeking_connection_resp), then the routine continues at block 1004, else the routine returns.

Wherever the broadcast component requests to receive an external message, it sets a time out

period. If the external message is not received within that time out period, the broadcaster

component checks its own call-in port to see if another process is calling it. In particular, the

dialed process may be calling the dialing process, which may result in a deadlock situation.

The broadcaster component may repeat the receive request several times. If the expected

message is not received, then the broadcaster component handles the error as appropriate. In

decision block 1004, if the answering process indicates in its response message that it is fully

connected to the broadcast channel, then the routine continues at block 1005, else the routine

continues at block 1006. In block 1005, the routine adds the selected portal computer to a

list of connected portal computers and then returns. In block 1006, the routine adds the

answering process to a list of fellow seeking processes and then returns.

Figure 11 is a flow diagram illustrating the processing of the connect request

routine in one embodiment. This routine requests a process of a portal computer that was

identified as being fully connected to the broadcast channel to initiate the connection of this
[03004-8001/SLOO3728368] -27- 7/3 l/OO

0364

0365

10

15

20

25

30

process to the broadcast channel. In decision block 1101, if at least one process of a portal

computer was located that is fully connected to the broadcast channel, then the routine

continues at block 1103, else the routine continues at block 1102. A process of the portal

computer may no longer be in the list if it recently disconnected from the broadcast channel.

In one embodiment, a seeking computer may always search its entire search depth and find

multiple portal computers through which it can connect to the broadcast channel. In block

1102, the routine restarts the process of connecting to the broadcast channel and returns. In

block 1103, the routine dials the process of one of the found portal computers through the

call-in port. In decision block 1104, if the dialing is successful, then the routine continues at

block 1105, else the routine continues at block 1113. The dialing may be unsuccessful if, for

example, the dialed process recently disconnected from the broadcast channel. In block

1105, the routine sends an external message to the dialed process requesting a connection to

the broadcast channel (i. e., connection_request_call). In block 1106, the routine receives the

response message (i.e., connection_requcst__resp). In decision block 1107, if the response

message is successfully received, then the routine continues at block 1108, else the routine

continues at block 1113. In block 1108, the routine sets the expected number of holes (1'. e.,

empty internal connections) for this process based on the received response. When in the

large regime, the expected number of holes is zero. When in the small regime, the expected

number of holes varies from one to three. In block 1109, the routine sets the estimated

diameter of the broadcast channel based on the received response. In decision block 1111, if

the dialed process is ready to connect to this process as indicated by the response message,

then the routine continues at block 1112, else the routine continues at block 1113. In block

1112, the routine invokes the add neighbor routine to add the answering process as a

neighbor to this process. This adding of the answering process typically occurs when the

broadcast channel is in the small regime. When in the large regime, the random walk search

for a neighbor is performed. In block 1113, the routine hangs up the external connection

with the answering process computer and then retums.

Figure 12 is a flow diagram of the processing of the check for external call

routine in one embodiment. This routine is invoked to identify whether a fellow seeking

process is attempting to establish a connection to the broadcast channel through this process.

In block 1201, the routine attempts to answer a call on the call-in port. In decision block

1202, if the answer is successful, then the routine continues at block 1203, else the routine
[03004.8001/sm037282681 -28- 7/31/00

0365

0366

10

15

20

25

30

returns. In block 1203, the routine receives the external message from the external port. In

decision block 1204, if the type of the message indicates that a seeking process is calling

(i.e., seeking_connection_call), then the routine continues at block 1205, else the routine

returns. In block 1205, the routine sends an external message (i. e., seeking_connection_resp)

to the other seeking process indicating that this process is also is seeking a connection. In

decision block 1206, if the sending of the external message is successful, then the routine

continues at block 1207, else the routine returns. In block 1207, the routine adds the other

seeking process to a list of fellow seeking processes and then returns. This list may be used

if this process can find no process that is fully connected to the broadcast channel. In which

case, this process may check to see if any fellow seeking process were successful in

connecting to the broadcast channel. For example, a fellow seeking process may become the

first process fully connected to the broadcast channel.

Figure 13 is a flow diagram of the processing of the achieve connection routine

in one embodiment. This routine sets the state of this process to fully connected to the

broadcast channel and invokes a callback routine to notify the application program that the

process is now fully connected to the requested broadcast channel. In block 1301, the

routine sets the connection state of this process to fully connected. In block 1302, the

routine notifies fellow seeking processes that it is fully connected by sending a connected

external message to them (i.e., connected_stmt). In block 1303, the routine invokes the

connect callback routine to notify the application program and then returns.

Figure 14 is a flow diagram illustrating the processing of the external

dispatcher routine in one embodiment. This routine is invoked when the external port

receives a message. This routine retrieves the message, identifies the external message type,

and invokes the appropriate routine to handle that message. This routine loops processing

each message until all the received messages have been handled. In block 1401, the routine

answers (e.g., picks up) the external port and retrieves an external message. In decision

block 1402, if a message was retrieved, then the routine continues at block 1403, else the

routine hangs up on the external port in block 1415 and returns. In decision block 1403, if

the message type is for a process seeking a connection (i.e., seeking_connection_call), then

the routine invokes the handle seeking connection call routine in block 1404, else the routine

continues at block 1405. In decision block 1405, if the message type is for a connection

request call (i.e., connection_request_call), then the routine invokes the handle connection
[oaooesoouswoanazss] -29- 7/3l/00

0366

0367

10

15

20

25

30

request call routine in block 1406, else the routine continues at block 1407. In decision

block 1407, if the message type is edge proposal call (i.e., edge_proposal_call), then the

routine invokes the handle edge proposal call routine in block 1408, else the routine

continues at block 1409. In decision block 1409, if the message type is port connect call

(i. e., port_connect_call), then the routine invokes the handle port connection call routine in ,

block 1410, else the routine continues at block 1411. In decision block 1411, if the message

type is a connected statement (i.e., connected_stmt), the routine invokes the handle

connected statement in block 1112, else the routine continues at block 1212. In decision

block 1412, if the message type is a condition repair statement (i.e., condition_repair_stmt),

then the routine invokes the handle condition repair routine in block 1413, else the routine

loops to block 1414 to process the next message. After each handling routine is invoked, the

routine loops to block 1414. In block 1414, the routine hangs up on the external port and

continues at block 1401 to receive the next message.

Figure 15 is a flow diagram illustrating the processing of the handle seeking

connection call routine in one embodiment. This routine is invoked when a seeking process

is calling to identify a portal computer through which it can connect to the broadcast channel.

In decision block 1501, if this process is currently fully connected to the broadcast channel

identified in the message, then the routine continues at block 1502, else the routine continues

at block 1503. In block 1502, the routine sets a message to indicate that this process is fully ‘

connected to the broadcast channel and continues at block 1505. In block 1503, the routine

sets a message to indicate that this process is not fully connected. In block 1504, the routine

adds the identification of the seeking process to a list of fellow seeking processes. If this

process is not fully connected, then it is attempting to connect to the broadcast channel. In -
block 1505, the routine sends the external message response (i. e., seeking_connection__resp)
to the seeking process and then returns.

Figure 16 is a flow diagram illustrating processing of the handle connection

request call routine in one embodiment. This routine is invoked when the calling process

wants this process to initiate the connection of the process to the broadcast channel. This

routine either allows the calling process to establish an internal connection with this process

(e.g., if in the small regime) or starts the process of identifying a process to which the calling

process can connect. In decision block 1601, if this process is currently fully connected to

the broadcast channel, then the routine continues at block 1603, else the routine hangs up on
losooa—soouswonzszss] -30— 7/31/00

0367

0368

10

15

20

25

30

the external port in block 1602 and returns. In block 1603, the routine sets the number of

holes that the calling process should expect in the response message. In block 1604, the

routine sets the estimated diameter in the response message. In block 1605, the routine

indicates whether this process is ready to connect to the calling process. This process is

ready to connect when the number of its holes is greater than zero and the calling process is

not a neighbor of this process. In block 1606, the routine sends to the calling process an

that is to the call

connection__request_resp). In block 1607, the routine notes the number of holes that the

connection (1'. e. ,responsive requestexternal message

calling process needs to fill as indicated in the request message. In decision block 1608, if

this process is ready to connect to the calling process, then the routine continues at block

1609, else the routine continues at block 1611. In block 1609, the routine invokes the add

neighbor routine to add the calling process as a neighbor. In block 1610, the routine

decrements the number of holes that the calling process needs to fill and continues at block

1611. In block 1611, the routine hangs up on the external port. In decision block 1612, if

this process has no holes or the estimated diameter is greater than one (i.e., in the large

regime), then the routine continues at block 1613, else the routine continues at block 1616.

In blocks 1613-1615, the routine loops forwarding a request for an edge through which to

connect to the calling process to the broadcast channel. One request is forwarded for each

pair of holes of the calling process that needs to be filled. In decision block 1613, if the

number of holes of the calling process to be filled is greater than or equal to two, then the

routine continues at block 1614, else the routine continues at block 1616. In block 1614, the

routine invokes the forward connection edge search routine. The invoked routine is passed

to an indication of the calling process and the random walk distance. In one embodiment, the

distance is twice in the estimated diameter of the broadcast channel. In block 1614, the

routine decrements the'holes left to fill by two and loops to block 1613. In decision block

1616, if there is still a hole to till, then the routine continues at block 1617, else the routine

returns. In block 1617, the routine invokes the fill hole routine passing the identification of

the calling process. The fill hole routine broadcasts a connection port search statement (i.e.,
connection_port_search_stmt) for a hole of a connected process through which the calling
process can connect to the broadcast channel. The routine then returns.

Figure 17 is a flow diagram illustrating the processing of the add neighbor
routine in one embodiment. This routine adds the process calling on the external port as a
[oaoocsom/swomszss) -3 l - 7/31/00

0368

0369

10

15

20

25

3O

neighbor to this process. In block 1701, the routine identifies the calling process on the

external port. In block 1702, the routine sets a flag to indicate that the neighbor has not yet

received the broadcast messages from this process. This flag is used to ensure that there are

no gaps in the messages initially sent to the new neighbor. The external port becomes the

internal port for this connection. In decision block 1703, if this process is in the seeking

connection state, then this process is connecting to its first neighbor and the routine

continues at block 1704, else the routine continues at block 1705. In block 1704, the routine

sets the connection state of this process to partially connected. In block 1705, the routine

adds the calling process to the list of neighbors of this process. In block 1706, the routine

installs an internal dispatcher for the» new neighbor. The internal dispatcher is invoked when

a message is received from that new neighbor through the internal port of that new neighbor.

In decision block 1707, if this process buffered up messages while not fully connected, then

the routine continues at block 1708, else the routine continues at block 1709. In one

embodiment, a process that is partially connected may buffer the messages that it receives

through an internal connection so that it can send these messages as it connects to new

neighbors. In block 1708, the routine sends the bufl'ered messages to the new neighbor

through the internal port. In decision block 1709, if the number of holes of this process

equals the expected number of holes, then this process is fully connected and the routine

continues at block 1710, else the routine continues at block 1711. In block 1710, the routine

invokes the achieve connected routine to indicate that this process is fully connected. In

decision block 1711, if the number of holes for this process is zero, then the routine

continues at block 1712, else the routine returns. In block 1712, the routine deletes any

pending edges and then retums.- A pending edge is an edge that has been proposed to this

process for edge pinning, which in this case is no longer needed.

Figure 18 is a flow diagram illustrating the processing of the forward

connection edge search routine in one embodiment. This routine is responsible for passing
along a request to connect a requesting process to a randomly selected neighbor of this
process through the internal port of the selected neighbor, that is part of the random walk. In

decision block 1801, if the forwarding distance remaining is greater than zero, then the

routine continues at block 1804, else the routine continues at block 1802. In decision block

1802, if the number of neighbors of this process is greater than one, then the routine

continues at block 1804, else this broadcast channel is in the small regime and the routine
[03004-8001lsw03728368] -3 2- 7/31/00

0369

0370

10

15

20

25

30

continues at block 1803. In decision block 1803, if the requesting process is a neighbor of

this process, then the routine returns, else the routine continues at block 1804. In blocks

1804-1807, the routine loops attempting to send a connection edge search call internal

message (i. e., connection_edge_search_call) to a randomly selected neighbor. In block 1804,

the'routine randomly selects a neighbor of this process. In decision block 1805, if all the

neighbors of this process have already been selected, then the routine cannot forward the

message and the routine returns, else the routine continues at block 1806. In block 1806, the

routine-sends a connection edge search call internal message to the selected neighbor. In

decision block 1807, if the sending of the message is successful, then the routine continues at

block 1808, else the routine loops to block 1804 to select the next neighbor. .When the

sending of an internal message is unsuccessful, then the neighbor may have disconnected.

from the broadcast channel in an unplanned manner. Whenever such a situation is detected

by the broadcaster component, it attempts to find another neighbor by invoking the fill holes

routine to fill a single hole or the forward connecting edge search routine to fill two holes. In

block 1808, the routine notes that the recently sent connection edge search call has not yet

been acknowledged and indicates that the edge to this neighbor is reserved if the remaining

forwarding distance is less than or equal to one. It is reserved because the selected neighbor

may offer this edge to the requesting process for edge pinning. The routine then returns.

Figure 19 is a flow diagram illustrating the processing of the handle edge

proposal call routine. This routine is invoked when a message is received from a proposing

process that proposes to connect an edge between the proposing process and one of its

neighbors to this process for edge pinning. In decision block 1901, if the number of holes of

this process minus the number of pending edges is greater than or equal to one, then this

process still has holes to be filled and the routine continues at block 1902, else the routine

continues at block 1911. In decision block 1902, if the proposing process or its neighbor is a

neighbor of this process, then the routine continues at block 1911, else the routine continues

at block 1903. In block 1903, the routine indicates that the edge is pending between this

process and the proposing process. In decision block 1904, if a proposed neighbor is already

pending as a proposed neighbor, then the routine continues at block 1911, else the routine

continues at block 1907. In block 1907, the routine sends an edge proposal response as an

external message to the proposing process (i.e., edge_proposa1_resp) indicating that the

proposed edge is accepted. In decision block 1908, if the sending of the message was
loaoomoouswomsass] -33- 7f! l/00

" 0370

\

0371

10

15

20

25

30

successful, then the routine continues at block 1909, else the routine returns. In block 1909,

the routine adds the edge as a pending edge. In block 1910, the routine invokes the add
neighbor routine to add the proposing process on the external port as a neighbor. The routine

then returns. In block 1911, the routine sends an external message (i. e., edge_proposal_resp)

indicating that this proposed edge is not accepted. In decision block 1912, if the number of

holes is odd, then the routine continues at block 1913, else the routine returns. In block

1913, the routine invokes the fill hole routine and then returns.

Figure 20 is a flow diagram illustrating the processing of the handle port

connection call routine in one embodiment. This routine is invoked when an external

message is received then indicates that the sending process wants to connect to one hole of

this process. In decision block 2001, if the number of holes of this process is greater than

zero, then the routine continues at block 2002, else the routine continues at block 2003. In

decision block 2002, if the sending process is not a neighbor, then the routine continues at

block 2004, else the routine continues to block 2003. In block 2003, the routine sends a port

connection response external message (i.e., port_connection_resp) to the sending process that

indicates that it is not okay to connect to this process. The routine then returns. In block

2004, the routine sends a port connection response external message to the sending process

that indicates that is okay to connect this process. In decision block 2005, if the sending of

the message was successful, then the routine continues at block 2006, else the routine

continues at block 2007. In block 2006, the routine invokes the add neighbor routine to add

the sending process as a neighbor of this process and then returns. In block 2007, the routine

hangs up the external connection. In block 2008, the routine invokes the connect request

routine to request that a process connect to one of the holes of this process. The routine then
returns.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in

one embodiment. This routine is passed an indication of the requesting process. If this

process is requesting to fill a hole, then this routine sends an internal message to other

processes. If another process is requesting to fill a hole, then this routine invokes the routine

In block 2101, the routine initializes a

connection port search statement internal message (i.e., connection_port_search_strnt). In

to handle a connection port search request.

decision block 2102, if this process is the requesting process, then the routine continues at

block 2103, else the routine continues at block 2104. In block 2103, the routine distributes
[mmxwllsmo372szsx] -34- 7/31/00

0371

0372

10

15

20

25

30

the message to the neighbors of this process through the internal ports and then returns. In

block 2104, the routine invokes the handle connection port search routine and then returns.

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher

routine in one embodiment. This routine is passed an indication of the neighbor who sent the

internal message. In block 2201, the routine receives the internal message. This routine

identifies the message type and invokes the appropriate routine to handle the message. In

block 2202, the routine assesses whether to change the estimated diameter of the broadcast

channel based on the information in the received message. In decision block 2203, if this

process is the originating process of the message or the message has already been received

(i. e., a duplicate), then the routine ignores the message and continues at block 2208, else the

routine continues at block 2203A. In decision block 2203A, if the process is partially

connected, then the routine continues at block 2203B, else the routine continues at block

2204. In block 2203B, the routine adds the message to the pending connection bufi‘er and

continues at block 2204. In decision blocks 2204-2207, the routine decodes the message

type and invokes the appropriate routine to handle the message. For example, in decision

block 2204, if the type of the message is broadcast statement (i. e., broadcast__stmt), then the

roun'ne invokes the handle broadcast message routine in block 2205. After invoking the

appropriate handling routine, the routine continues at block 2208. In decision block 2208, if

the partially connected buffer is full, then the routine continues at block 2209, else the

routine continues at block 2210. The broadcaster component collects all its internal

messages in a buffer while partially connected so that it can forward the messages as it

connects to new neighbors. If, however, that bufier becomes full, then the process assumes

that it is now fully connected and that the expected number of connections Was too high,

because the broadcast channel is now in the small regime. In block 2209, the routine invokes

the achieve connection routine and then continues in block 2210. In decision block 2210, if

the application program message queue is empty, then the routine retums, else the routine

Continues at block 2212. In block 2212, the routine invokes the receive response routine

passing the acquired message and then returns. The received response routine is a callback

routine of the application program.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast -

message routine in one embodiment. This routine is passed an indication of the originating

process, an indication of the neighbor who sent the broadcast message, and the broadcast
[oaoocsoousmomsus] -3 5- 7/3 I 1'00

0372

0373

10

15

20

25

30

message itself. In block 2301, the routine performs the out of order processing for this

message. The broadcaster component queues messages from each originating process until it

can send them in sequence number order to the application program. In block 2302, the

routine invokes the distribute broadcast message routine to forward the message to the

neighbors of this process. In decision block 2303, if a newly connected neighbor is waiting

to receive messages, then the routine continues at block 2304, else the routine returns. In

block 2304, the routine sends the messages in the correct order if possible for each

originating process and then returns.

Figure 24 is a flow diagram illustrating the processing of the distribute

broadcast message routine in one embodiment. This routine sends the broadcast message to

each of the neighbors of this process, except for- the neighbor who sent the message to this

process. In block 2401, the routine selects the next neighbor other than the neighbor who

sent the message. In decision block 2402, if all such neighbors have already been selected,

then the routine returns. In block 2403, the routine sends the message to the selected

neighbor and then loops to block 2401 to select the next neighbor.

Figure 26 is a flow diagram illustrating the processing of the handle connection

port search statement routine in one embodiment. This routine is passed an indication of the

neighbor that sent the message and the message itself. In block 2601, the routine invokes the

distribute internal message which sends the message to each of its neighbors other than the

sending neighbor. In decision block 2602, if the number of holes of this process is greater

than zero, then the routine continues at block 2603, else the routine returns. In decision

block 2603, if the requesting process is a neighbor, then the routine continues at block 2605,
else the routine continues at block 2604. In block 2604, the routine invokes the court

neighbor routine and then returns. The court neighbor routine connects this process to the

requesting process if possible. In block 2605, if this process has one hole, then the neighbors

with empty ports condition exists and the routine continues at block 2606, else the routine
returns.

condition_check) that includes a list of this process’ neighbors. In block 2607, the routine

sends the message to the requesting neighbor.

Figure 27 is a flow diagram illustrating the processing of the court neighbor

routine in one embodiment. This routine is passed an indication of the prospective neighbor

for this process. If this process can connect to the prospective neighbor, then it sends a port
[03004-8001181003728268] -36- 7/31/00

In block 2606, the routine generates a condition check message (i.e., I

0373

0374

10

15

20

25

30

connection call external message to the prospective neighbor and adds the prospective

neighbor as a neighbor. In decision block 2701, if the prospective neighbor is already a

neighbor, then the routine returns, else the routine continues at block 2702. In block 2702,

the routine dials the prospective neighbor. In decision block 2703, if the number of holes of

this process is greater than zero, then the routine continues at block 2704, else the routine

continues at block 2706. In block 2704, the routine sends a port connection call external

message (i. e., port_connection_call) to the prospective neighbor and receives its response

(i. e., port_connection__resp). Assuming the response is successfully received, in block 2705,

the routine adds the prospective neighbor as a neighbor of this process by invoking the add

neighbor routine. In block 2706, the routine hangs up with the prospect and then returns.

Figure 28 is a flow diagram illustrating the processing of the handle connection

edge search call routine in one embodiment. This routine is passed a indication of the

neighbor who sent the message and the message itself. This routine either forwards the

message to a neighbor or proposes the edge between this process and the sending neighbor to

the requesting process for edge pinning. In decision block 2801, if this process is not the

requesting process or the number of holes of the requesting process is still greater than or

equal to two, then the routine continues at block 2802, else the routine continues at block

2813. In decision block 2802, if the forwarding distance is greater than zero, then the

random walk is not complete and the routine continues at block 2803, else the routine

continues at block 2804. In block 2803, the routine invokes the forward connection edge

search routine passing the identification of the requesting process and the decremented

forwarding distance. The routine then continues at block 2815. In decision block 2804, if

the requesting process is a neighbor or the edge between this process and the sending

neighbor is reserved because it has already been offered to a process, then the routine

continues at block 2805, else the routine continues at block 2806. In block 2805, the routine

invokes the forward connection edge search routine passing an indication of the requesting
party and a toggle indicator that alternatively indicates to continue the random walk for one

or two more computers. The routine then continues at block 2815. In block 2806, the

routine dials the requesting process via the call-in port. In block 2807, the routine sends an

edge proposal call external message (i.e., edge_proposal_call) and receives the response (i.e.,
edge_pr0posa.l_resp). Assuming that the response is successfully received, the routine

continues at block 2808. In decision block 2808, if the response indicates that the edge is
[moons-soouswosnazesl -3 7- 7/31/00

0374

0375

10

15

20

25

30

acceptable to the requesting process, then the routine continues at block 2809, else the

routine continues at block 2812. In block 2809, the routine reserves the edge between this

process and the sending neighbor. In block 2810, the routine adds the requesting process as

a neighbor by invoicing the add neighbor routine. In block 2811, the routine removes the

sending neighbor as a neighbor. In block 2812, the routine hangs up the external port and

continues at block 2815. In decision block 2813, if this process is the requesting process and

the number of holes of this process equals one, then the routine continues at block 2814, else

the routine continues at block 2815. In block 2814, the routine invokes the fill hole routine.

In block 2815, the routine sends an connection edge search response message (i. e.,

connection_edge_search_response) to the sending neighbor indican'ng acknowledgement and

then returns. The graphs are sensitive to parity. That is, all possible paths starting from a

node and ending at that node will have an even length unless the graph has a cycle whose

length is odd. The broadcaster component uses a toggle indicator to vary the random walk

distance between even and odd distances.

Figure 29 is a flow diagram illustrating the processing of the handle connection

edge search response routine in one embodiment. This routine is passed as indication of the

requesting process, the sending neighbor, and the message. In block 2901, the routine notes

that the connection edge search response (i.e., connection_edge_search_resp) has been

received and if the forwarding distance is less than or equal to one unreserves the edge

between this process and the sending neighbor. In decision block 2902, if the requesting

process indicates that the edge is acceptable as indicated in the message, then the routine

continues at block 2903, else the routine returns. In block 2903, the routine reserves the edge

between this process and the sending neighbor. In block 2904, the routine removes the

sending neighbor as a neighbor. In block 2905, the routine invokes the court neighbor

routine to connect to the requesting process. In decision block 2906, if the invoked routine

was unsuccessful, then the routine continues at block 2907, else the routine returns. In

decision block 2907, if the number of holes of this process is greater than zero, then the

routine continues at block 2908, else the routine returns. In block 2908, the routine invokes
the fill hole routine and then returns.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine

in one embodiment. This routine is invoked by the application program to broadcast a

message on the broadcast channel. This routine is passed the message to be broadcast. In
[MOM-80011811103728.2681 .3 8- 7/3l/00

0375

0376

IO

15

20

25

30

decision block 3001, if this process has at least one neighbor, then the routine continues at

block 3002, else the routine returns .since it is the only process connected to be broadcast

channel. In block 3002, the routine generates an internal message of the broadcast statement

type (i.e., broadcast _strnt). In block 3003, the routine sets the sequence number of the

message. In block 3004, the routine invokes the distribute internal message routine to

broadcast the message on the broadcast channel. The routine returns.

Figure 31 is a flow diagram illustrating the processing of the acquire message

routinein one embodiment. The acquire message routine may be invoked by the application

program or by a callback routine provided by the application program. This routine returns a

message. In block 3101, the routine pops the message from the message queue of the

broadcast channel. In decision block 3102, if a message was retrieved, then the routine

returns an indication of success, else the routine returns indication of failure.

Figures 3234 are flow diagrams illustrating the processing of messages

associated with the neighbors with empty ports condition. Figure 32 is a flow diagram

illustrating processing of the handle condition check message in one embodiment. This

message is sent by a neighbor process that has one hole and has received a request to connect

to a hole of this process. In decision block 3201, if the number of holes of this process is

equal to one, then the routine continues at block 3202, else the neighbors with empty ports

condition does not exist any more and the routine returns. In decision block 3202, if the

sending neighbor and this process have the same set of neighbors, the routine continues at

block 3203, else the routine continuesat block 3205. In block 3203, the routine initializes a

condition double check message (i. e., condition_double_check) with the list of neighbors of

this process. In block 3204, the routine sends the message internally to a neighbor other than

sending neighbor. The routine then returns. In block 3205, the routine selects a neighbor of

the sending process that is not also a neighbor of this process. In block 3206, the routine

sends a condition repair message (i. e., condition_repair_stmt) externally to the selected

process. In block 3207, the routine invokes the add neighbor routine to add the selected

neighbor as a neighbor of this process and then returns.

Figure 33 is a flow diagram illustrating processing of the handle condition

repair statement routine in one embodiment. This routine removes an existing neighbor and

connects to the process that sent the message. In decision block 3301, if this process has no

holes, then the routine continues at block 3302, else the routine continues at block 3304. In
[03004-8001/SL003728.268] -39- 7/31/00

0376

0377

10

15

20

25

block 3302, the routine selects a neighbor that is not involved in the neighbors with empty

ports condition. In block 3303, the routine removes the selected neighbor as a neighbor of

this process. Thus, this process that is executing the routine now has at least one hole. In

block 3304, the routine invokes the add neighbor routine to add the process that sent the

message as a neighbor of this process. The routine then returns.

Figure 34 is a flow diagram illustrating the processing of the handle condition

double check routine. This routine determines whether the neighbors with empty ports

condition really is a problem or whether the broadcast channel is in the small regime. In

decision block 3401, if this process has one hole, then the routine continues at block 3402,

else the routine continues at block 3403. If this process does not have one hole, then the set

of neighbors of this process is not the same as the set of neighbors of the sending process. In

decision block 3402, if this process and the sending process have the same set of neighbors,

then the broadcast channel is not in the small regime and the routine continues at block 3403,

else the routine continues at block 3406. In decision block 3403, if this process has no holes,

then the routine returns, else the routine continues at block 3404. In block 3404, the routine

sets the estimated diameter for this process to one. In block 3405, the routine broadcasts a

diameter reset internal message (i. e. , diameter_reset) indicating that the estimated diameter is

one and then returns. In block 3406, the routine creates a list of neighbors of this process. In

block 3407, the routine sends the condition check message (i. e., condition_check_stmt) with

the list of neighbors to the neighbor who sent the condition double check message and then
returns.

From the above description, it will be appreciated that although specific

embodiments of the technology have been described, various modifications may be made

without deviating from the spirit and scope of the invention. For example, the

communications on the broadcast charmel may be encrypted. Also, the channel instance or

session identifier may be a very large number (e.g., 128 bits) to help prevent an unauthorized

user to maliciously tap into a broadcast channel. The portal computer may also enforce

security and not allow an unauthorized user to connect to the broadcast channel.

Accordingly, the invention is not limited except by the claims.

[osooesoouswomazss] -40- 7/31/00

0377

0378

CLAIMS

1. A computer network having a plurality of participants, each participant

having connections to at least three neighbor participants, wherein an originating participant

sends data to the other participants by sending the data through each of its connections to its

neighbor participants and wherein each participant sends data that it receives from a neighbor

participant to its other neighbor participants.

2. The computer network of claim 1 wherein each participant is connected

to 4 other participants.

3. The computer network of claim 1 wherein each participant is connected

to an even number of other participants.

4. The computer network of claim 1 wherein the network is m-regular,

where m is the number of neighbor participants of each participant.

5. The computer network of claim 4 wherein the network is m-connected,

where m is the number of neighbor participants of each participant.

6. The computer network of claim 1 wherein the network is m-regular and

m-connected, where m is the number of neighbor participants of each participant.

7. The computer network of claim 1 wherein all the participants are peers.

8. The computer network of claim 1 wherein the connections are peer-to-
peer connections.

[03004-8001/Sw037283681 ~41- 7131/00

0378

0379

2

3

9. The computer network of claim 1 wherein the connections are TCP/IP

connections.

10. The computer network of claim 1 wherein each participant is a process

executing on a computer.

11. The computer network of claim 1 wherein a computer hosts more than

one participant.

12. The computer network of claim 1 wherein each participant sends to each

of its neighbors only one copy of the data.

13. A component for controlling communications of a participant with a

broadcast channel, comprising:

a contact module that locates a portal computer and requests the located

portal computer to provide an indication of neighbor participants to which the participant can

be connected; and

a join module that receives the indication of neighbor participants and

establishes a connection between the participant and each of the indicated neighbor

participants.

14. The component of claim 13 wherein each participant is a computer
process.

15. The component of claim 13 wherein the indicated participants are

computer processes executing on different computer systems.

16. The component of claim 13 including:

a broadcast module that receives data from a neighbor participant of the

participant and transmits the received data to the other neighbor participants.

[MOM-80011813025728.2681 -42- 7/31/00

0379

0380

l

2

17. The component of claim 13 including:

a connection request module that receives a request to connect to

another participant, disconnects from a neighbor participant, and connects to the other

participant.

18. The component of claim 13 wherein the connections are established

using the TCP/IP protocol.

19. A broadcast channel for participants, comprising:

a communications network that provides peer-to-peer communications

between the participants connected to the broadcast channel; and

for each participant connected to the broadcast channel,

an indication of four neighbor participants of that

participant; and

a broadcast component that receives data from a neighbor

participant using the communications network and that sends the received data to its other

neighbor participants to effect the broadcasting of the data to each participant of the
broadcast channel.

20. The broadcast channel of claim 19 wherein the broadcast component

disregards received data that it has already sent to its neighbor participants.

21. The broadcast channel of claim 19 wherein a participant connects to the

broadcast channel by contacting a participant already connected to the broadcast channel.

22.

computer process.

The broadcast channel of claim 19 wherein each participant is a

23.

computer thread.

The broadcast channel of claim 19 wherein each participant is a

[oaoouoouswomazca] -43- 7/31/00

03%

0381

1 24. The broadcast channel of claim 19 wherein each participant is a

2 computer.

1 25. The broadcast channel of claim 19 wherein the communications network

2 uses TCP/IP protocol.

1 26. The broadcast channel of claim 19 wherein the communications network

2 is the lntemet.

1 27. The broadcast channel of claim 19 wherein the participants are peers.

1 28. A broadcast channel comprising a plurality of participants, each

2 participant being connected to neighbor participants, the participants and connections

3 between them forming an iii-regular graph, where m is greater than 2 and the number of

4 participants is greater than 111.

1 29. The broadcast channel of claim 28 'wherein the graph is m-connected.

1 30. The broadcast channel of claim 28 wherein m is even.

1 31. The broadcast channel of claim 28 wherein m is odd and the number of

2 participants is even.

1 32. The broadcast channel of claim 28 wherein the participants are
2 computer processes.

1 33. The broadcast channel of claim 28 wherein the participants are
2 computers.

1 34. The broadcast channel of claim 28 wherein the connections are

established using TCP/IP protocol.

loaom-soousmonzazss] -44~

N

7/31/00

0381

0382

l

2

35. The broadcast charmel of claim 28 wherein a message is broadcast on

the broadcast channel by an originating participant sending the message to each of its

neighbor participants and by each participant upon receiving a message from a neighbor

participant sending the message to its other neighbor participants.

36. A broadcast channel comprising a plurality of participants, each

participant being connected to neighbor participants, the participants and connections

between them form an m-regular graph, where m is greater than 2, and wherein when a

participant receives data from a neighbor participant, it sends the data to its other neighbor

participants.

37. The broadcast channel of claim 36 wherein the number of participants is

greater than m.

38. The broadcast channel of claim 36 wherein the graph is m-connected.

39. The broadcast channel of claim 36 wherein m is even.

40. The broadcast channel of claim 36 wherein m is odd and the number of

participants is even.

41. The broadcast channel of claim 36 wherein the participants are

computer processes.

42. The broadcast channel of claim 36 wherein the participants are

computers.

43. The broadcast channel

established using TCP/IP protocol.

of claim 36 wherein the connections are

[03004-8001/SL003728.268] -45- 7/31/00

0382

0383

44. A computer-readable medium containing instructions for controlling

communications of a participant of a broadcast channel, by a method comprising:

locating a portal computer;

requesting the located portal computer to provide an indication of

neighbor participants to which the participant can be connected;

receiving the indications of the neighbor participants; and

establishing a connection between the participant and each of the

indicated neighbor participants.

45. The computer-readable medium of claim 44 wherein each participant is

a computer process.

46. The computer-readable medium of claim 44 wherein the indicated

participants are computer processes executing on different computer systems.

47. The computer-readable medium of claim 44 including:

receiving data from a neighbor participant of the participant; and

transmitting the received data to the other neighbor participants.

48. The computer-readable medium of claim 44 including:

receiving a request to connect to another participant;

disconnecting from a neighbor participant; and

connecting to the other participant.

49. The computer-readable medium of claim 44 wherein the connections are

established using the TCP/IP protocol.

[osooa-soorlswoanazss) -46- 7/31/00

0383

0384

0385

0385

0386

0387

0388

0389

0390

0391

0391

0392

0393

0394

0'3 94

0395

0395

0396

4.5_.46$306.30

0396

0397

. r‘uywv-A‘ 1:14”)
- -mgflIAsf‘m.

'- Connea’fi'uxtn fa)

0397

0398

0398

0399

0399

0400

0400

0401

ng,

Md 0N.- a_<.

{snow See kar‘

0401

0402

A'JU' ‘LK
“you.

22.

S Q =' '

COn “CC.de

nahgrq pQHqu)
5 hi... . ,

0402

0403

F}EI‘1

0403

0404

0404

0405

reaJ‘“) f

H9

fiTéE—"R ‘ "—

0405

0406

0406

0407

 .rckaJvr
dis {M re MN‘Ag

0407

0408

0408

0409

0409

0410

;Ha~¢lleCavmed-y I
Po-C fSPch/x

0410

0411

01/ °$

Mill,Pznokf +193 ’3' Y Mk (Brae clad
' proadfans+" mss

std"

055 y

0411

0412

0412

0413

0413

0414

0414

0415

Z\

Eli'JH—rap

MI-SSO _~

("l

m l

06’

0415

0416

0416

0417

kthLe . 55,; ‘n
.7. ‘ .. erSAUu‘kbor

Messa“

FIE. 2’7
/.5

P

O

H COu fwfigkh’

J

‘N

0417

0418

0418

0419

0419

0420

0420

0421

0421

0422

Crank {65‘ OF
«UR

0422

0423

U. 8.
Patent Application-“NO”; 09/629,043

10

15

20

25

t EDCPRESSMAILm. 13140493530515

AN INFORMATION DELIVERY SERVICE

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to US. Patent Application No. ,

entitled “BROADCASTING NETWORK,” filed on July 31, 2000 (Attorney Docket

No. 030048001 US); US. Patent Application No. , entitled “JOINING A

BROADCAST CHANNEL,” filed on July 31, 2000 (Attorney Docket No. 030048002 US);

US. Patent Application No. , “LEAVING A BROADCAST CHANNEL,”

filed on July 31, 2000 (Attorney Docket No. 030048003 US); US Patent Application

No. , entitled “BROADCASTING ON A BROADCAST CHANNEL,” filed

on July 31, 2000 '(Attomey Docket No. 030048004 US); US Patent Application

No. , entitled “CONTACTING A BROADCAST CHANNEL,” filed on

July3l, 2000 (Attorney Docket No. 030048005 US); US. Patent

No. , entitled “DISTRIBUTED AUCTION SYSTEM,”

July 31, 2000 (Attorney Docket No. 030048006 US); US. Patent

Application

filed on

Application

No. , entitled, “AN INFORMATION DELIVERY SERVICE,” filed on

July 31, 2000 (Attorney Docket No. 030048007 US); US. Patent Application

No. , entitled “DISTRIBUTED CONFERENCING SYSTEM,” filed on

July31, 2000 (Attorney Docket No. 030048008 US); and US. Patent Application

No. entitled “DISTRIBUTED GAME ENVIRONMENT,” filed on

July 31, 2000 (Attorney Docket No. 030048009 US), the disclosures of which are

incorporated herein by reference.

TECHNICAL FIELD

The described technology relates generally to a computer network and rnore

particularly, to a broadcast channel for a subset of a computers of an underlying network.

BACKGROUND

There are a wide variety of computer network communications techniques such

as point-to-point network protocols, client/server middleware, multicasting network

fie?

[canon-Rowsmommosl - l - 7/31/00

0423

0424

10

15

20

25

3O

protocols, and peer-to-peer middleware. Each of these communications techniques have

their advantages and disadvantages, but none is particularly well suited to the simultaneous

sharing of information among computers that are , widely distributed. For example,

collaborative processing applications, such as a network meeting programs, have a need to

distribute information in a timely manner to all participants who may be geographically

distributed.

The point-to-point network protocols, such as UNIX pipes, TCP/IP, and UDP,

allow processes on different computers to communicate via point-to-point connections. The

interconnection of all participants using point-to-point connections, while theoretically

possible, does not scale well as a number of participants grows. For example, each

participating process would need to manage its direct connections to all other participating

processes. Programmers, however, find it very difficult to manage single connections, and

management of multiple connections is much more complex. In addition, participating

processes may be limited to the number of direct connections that they can support. This

limits the number of possible participants in the sharing of information.

The client/server middleware systems provide a server that coordinates the

communications between the various'clients who are sharing the information. The server

functions as a central authority for controlling access to- "shared resources. Examples of

client/server middleware systems include remote procedure calls (“RFC”), database servers,

and the common object request broker architecture (“CORBA”). Client/server middleware

systems are not particularly well suited to sharing of information among many participants.

In particular, when a client stores information to be shared at the server, each other client ,

would need to poll the server to determine that new information is being shared. Such

polling places a very'high overhead on the communications network. Alternatively, each

client may register a callback with the server, which the server then invokes when new

information is available to be shared. Such a callback technique presents a performance

bottleneck because a single server needs to call back to each client whenever new

information is to be shared. In addition, the reliability of the entire sharing of information

depends upon the reliability of the single server. Thus, a failure at a single computer (i.e.,

the server) would prevent communications between any of the clients.

The multicasting network protocols allow the sending of broadcast messages to

multiple recipients of a network. The current implementations of such multicasting network
[03004-8001/SL00373SJOS] -2-

’0'7/31100

0424

0425

10

15

20

25

30

protocols tend to place an unacceptable overhead on the'underlying network. For example,

UDP multicasting would swamp the Internet when trying to locate all possible participants.

IP multicasting has other problems that include needing special-purpose infrastructure (e.g.,

routers) to support the sharing of information efficiently.

The peer-to-peer middleware communications systems rely on a multicasting

network protocol or a graph of point-to-point network protocols. Such peer-to-peer

middleware is provided by the T.120 Internet standard, which is used in such products as

Data Connection’s D.C.-share and Microsoft’s NetMeeting. These peer-to—peer middleware

systems rely upon a user to assemble a point-to-point graph of the connections used for

sharing the information. Thus, it is neither suitable nor desirable to use peer-to-peer

middleware systems when more than a small number of participants is desired. In addition,

the underlying architecture of the T.120 Internet standard is a tree structure, which relies on

the root node of the tree for reliability of the entire network. That is, each message must pass

through the root node in order to be received by all participants.

It would be desirable to have a reliable communications network that is

suitable for the simultaneous sharing of information among a large number of the processes

that are widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents a

broadcast channel.

Figure 2 illustrates a graph representing 20 computers connected to a broadcast

channel.

Figures 3A and 3B illustrate the process of connecting a new computer Z to the

broadcast channel.

Figure 4A illustrates the broadcast channel of Figurel with an added

computer.

Figure 4B illustrates the broadcast channel of Figure 4A with an added

computer.

Figure 4C also illustrates the broadcast channel of Figure 4A with an added

computer.

[ozooa-aoouswomuos] 7/31/00

0425

0426

10

15

20

25

30

Figure 5A illustrates the disconnecting of a computer from the broadcast

channel in a planned manner. I

Figure SB illustrates the disconnecting of a computer from the broadcast

channel in an unplanned manner.

Figure 5C illustrates the neighbors with empty ports condition.

Figure 5D illustrates two computers that are not neighbors who now have

empty ports.

Figure 5E illustrates the neighbors with empty ports condition in the small

regime.

Figure 5F illustrates the situation of Figure 5E when in the large regime.

Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcast channel.

Figure 7 is a block diagram illustrating the sub-components of the broadcaster

component in one embodiment.

Figure 8 is a flow diagram illustrating the processing of the connect routine in

one embodiment.

Figure 9 is a flow diagram illustrating the processing of the seek portal

computer routine in one embodiment. I

Figure 10 is a flow diagram illustrating the processing of the contact process

routine in one embodiment.

Figure 11 is a flow diagram illustrating the processing of the connect request

routine in one embodiment.

Figure 12 is a flow diagram of the processing of the check for external call

routine in one embodiment.

Figure 13 is a flow diagram of the processing of the achieve connection routine

in one embodiment.

Figure 14 is a flow diagram illustrating the processing of the external

dispatcher routine in one embodiment.

Figure 15 is a flow diagram illustrating the processing of the handle seeking

connection call routine in one embodiment.

Figure 16 is a flow diagram illustrating processing of the handle connection

request call routine in one embodiment.

[03004-800]/SU)03731|05) -4- 7/31/00

0426

0427

10

15

20

25

30

Figure 17 is a flow diagram illustrating the processing of the add neighbor

‘ routine in one embodiment.

Figure 18 is a flow diagram illustrating the processing of the forward

connection edge search routine in one embodiment.

Figure 19 is a flow diagram illustrating the processing of the handle edge

proposal call routine.

Figure 20 is a flow diagram illustrating the processing of the handle port

connection call routine in one embodiment.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in

one embodiment.

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher

routine in one embodiment.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast

message routine in one embodiment.

Figure 24 is a flow diagram illustrating the processing of the distribute

broadcast message routine in one embodiment.

Figure '26 is a flow diagram illustrating the processing of the handle connection

port search statement routine in one embodiment.

Figure 27 is a flow diagram illustrating the processing of the court neighbor

routine in one embodiment. -

Figure 28 is a flow diagram illustrating the processingof the handle connection

edge search call routine in one embodiment.

Figure 29 is a flow diagram illustrating the processing of the handle connection

edge search response routine in one embodiment.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine

in one embodiment.

Figure 31 is a flow diagram illustrating the processing of the acquire message

routine in one embodiment.

Figure 32 is a flow diagram illustrating processing of the handle condition

check message in one embodiment.

Figure 33 is a flow diagram illustrating processing of the handle condition

repair statement routine in one embodiment.

[03004-8OOIISMO3733JOS] -5- 7/3 I IOO

0427

0428

10

15

20

25

30

Figure 34 is a flow diagram illustrating the processing of the handle condition

double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel overlays a point-to-point

communications network is provided. The broadcasting of a message over the broadcast

channel is effectively a multicast to those computers of the network that are currently

connected to the broadcast channel. In one embodiment, the broadcast technique provides a

logical broadcast channel to which host computers through their executing processes can be

connected. Each computer that is connected to the broadcast channel can broadcast

messages onto and receive messages ofi‘ of the broadcast channel. Each computer that is

connected to the broadcast channel receives all messages that are broadcast while it is

connected. The logical broadcast channel is implemented using an underlying network

system (e. g., the Internet) that allows each computer connected to the underlying network

system to send messages to each other connected computer using each computer’s address.

Thus, the broadcast technique effectively provides a broadcast channel using an underlying

network system that sends messages on a point-to-point basis.

The broadcast technique overlays the underlying network system with a graph

of point-to-point connections (i.e., edges) between host computers (i. e., nodes) through

which the broadcast channel is implemented. In one embodiment, each computer is

connected to four other computers, referred to as neighbors. (Actually, a process executing

on a computer is connected to four other processes executing on this or four other

computers.) To broadcast a message, the originating computer sends the message to each of

its neighbors using its point—to-point connections. Each computer that receives the message

then sends the message to its three other neighbors using the point-to-point connections. In

this way, the message is propagated to each computer using the underlying network to effect V

the broadcasting of the message to each computer over a logical broadcast channel. A graph

in which each node is connected to four other nodes is referred to as a 4-regular graph. The

use of a 4-regular graph means that a computer would become disconnected from the

broadcast channel only if all four of the connections to its neighbors fail. The graph used by

the broadcast technique also has the property that it would take a failure of four computers to

[03004-8001/SUJ03733JOS] -6- 7/31/00

0428

0429

10

15

20

25

30

divide the graph into disjoint sub-graphs, that is two separate broadcast charmels. This

property is referred to as being 4-connected. Thus, the graph is both 4-regular and 4-

connected.

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents

the broadcast channel. Each of the nine nodes A-I represents a computer that is connected to

the broadcast channel, and each of the edges represents an “edge” connection between two

computers of the broadcast channel. The time it takes to broadcast a message to each

computer on the broadcast channel depends on the speed of the connections between the

computers and the number of connections between the originating computer and each other

computer on the broadcast channel. The minimum number of connections that a message

would need to traverse between each pair of computers is the “distance” between the

computers (i.e., the shortest path between the two nodes of the graph). For example, the

distance between computers A and F is one because computer A is directly connected to

computer F. The distance between computers A and B is two because there is no direct

connection between computers A and B, but computer F is directly connected to computer B.

Thus, a message originating at computer A would be sent directly to computer F, and then

sent from computer F to computer B. The maximum of the distances between the computers

is the “diameter” of broadcast channel. The diameter of the broadcast channel represented

by Figure 1 is two. That is, a message sent by any computer would traverse no more than

two connections to reach every other computer. Figure 2 illustrates a graph representing 20

computers connected to a broadcast charmel. The diameter of this broadcast channel is 4. In

particular, the shortest path between computers 1 and 3 contains four connections (1-12, 12-

15, 15-18, and 18-3). _

The broadcast technique includes (1) the connecting of computers to the

broadcast charmel (i.e., composing the graph), (2) the broadcasting of messages'over the

broadcast charmel (i.e., broadcasting through the graph), and (3) the disconnecting of

computers from the broadcast charmel (i. e., decomposing the graph) composing the graph.

Composing the Grth

To connect to the broadcast channel, the computer seeking the connection first

locates a computer that is currently fully connected to the broadcast channel and then

[03004-8001ISL003733JOS] -7- 7/3ll00

0429

0430

10

15

20

25

30

establishes a connection with four of the computers that are already connected to the

broadcast charmel. (This assumes that there are at least four computers already connected to

the broadcast channel. When there are fewer than five computers connected, the broadcast

channel cannot be a 4-regular graph. In such a case, the broadcast channel is considered to

be in a “small regime.” The broadcast technique for the small regime is described below in

detail. When five or more computers are connected, the broadcast channel is considered to

be in the “large regime.” This description assumes that the broadcast channel is in the large

regime, unless specified otherwise.) Thus, the process of connecting to the broadcast

channel includes locating the broadcast channel, identifying the neighbors for the connecting

computer, and then connecting to each identified neighbor. Each computer is aware of one

or more “portal computers” through which that computer may locate the broadcast channel.

A seeking computer locates the broadcast channel by contacting the portal computers until it

The found portal

computer then directs the identifying of four computers (i.e., to be the seeking computer’s

finds one that is currently fully connected to the broadcast channel.

neighbors) to which the seeking computer is to connect. Each of these four computers then

cooperates with the seeking computer to effect the connecting of the seeking computer to the

broadcast channel. A computer that has started the process of locating a portal computer, but

does not yet have a neighbor, is in the “seeking connection state.” A computer that is

connected to at least one neighbor, but not yet four neighbors, is in the “partially connected
’3

state. A computer that is currently, or has been, previously connected to four neighbors is

in the “fully connected state.”

Since the broadcast channel is a 4-regular graph, each of the identified

computers is already connected to four computers. Thus, some .connections between

computers need to be broken so that the seeking computer can connect to four computers. In

one embodiment, the broadcast technique identifies two pairs of computers that are currently

connected to each other. Each of these pairs of computers breaks the connection between

them, and then each of the four computers (two from each pair) connects to the seeking

computer. Figures 3A and 3B illustrate the process of a new computer Z connecting to the

broadcast channel. Figure 3A illustrates the broadcast channel before computer Z is

connected. The pairs of computers B and E and computers C and D are the two pairs that are

identified as the neighbors for the new computer Z. The connections between each of these

pairs is broken, and a connection between computer Z and each of computers B, C, D, and E

[03004-8001/SL003733JOS] -8- 7/31/00

0430

0431

10

15

20

25

30

is established as indicated by Figure 3B. The process of breaking the connection between

two neighbors and reconnecting each of the former neighbors to another computer is referred

to as “edge pirming” as the edge between two nodes may be considered to be stretched and

pinned to a new node.

broadcast channel allocates fiveEach computer connected to the

communications ports for commrmicating with other computers. Four of the ports are

referred to as “internal” ports because they are the ports through which the messages of the

broadcast channels are sent. The connections between internal ports of neighbors are

referred to as “intemal” connections. Thus, the internal connections of the broadcast charmel

form the 4-regular and 4-connected graph. The fifth port is referred to as an “external” port

because it is used for sending non-broadcast messages between two computers. Neighbors

can send non-broadcast messages either through their internal ports of their connection or

through their external ports. A seeking computer uses external ports when locating a portal

computer.

In one embodiment, the broadcast technique establishes the computer

connections using the TCP/IP communications protocol, which is a point-to-point protocol,

as the underlying network. The TCP/IP protocol provides for reliable and ordered delivery

of messages between computers. The TCP/IP protocol provides each computer with a “port

space” that is shared among all the processes that may execute on that computer. The ports

are identified by numbers fiom 0 to 65,535. The first 2056 ports are reserved for specific

applications (e.g., port 80 for HTTP messages). The remainder of the ports are user ports

that are available to any process. In one embodiment, a set of port numbers can be reserved

for use by the computer connected to the broadcast channel. In an alternative embodiment,

the port numbers used are dynamically identified by each computer. Each computer

dynamically identifies an available port to be used as its call-in port. This call-in port is used

to establish connections with the external port and the internal ports. Each computer that is

connected to the broadcast channel can receive non-broadcast messages through its external

port. A seeking computer tries “dialing” the port numbers of the portal computers until a

portal computer “answers,” a call on its call-in port. A portal computer answers when it is

connected to or attempting to connect to the broadcast channel and its call-in port is dialed.

(In this description, a telephone metaphor is used to describe the connections.) When a

computer receives a call on its call-in port, it transfers the call to another port. Thus, the

[03004-800ll8w03733.105] -9- 701/00

0431

0432

10

15

20

25

3O

seeking computer actually communicates through that transfer-to port, which is the external

port. The call is transferred so that other computers can place calls to that computer via the

call-in port. The seeking computer then communicates via that external port to request the

portal computer to assist in connecting the seeking computer to the broadcast channel. The

seeking computer could identify the call-in port number of a portal computer by successively

dialing each port in port number order. As discussed below in detail, the broadcast technique

uses a hashing algorithm to select the port number order, which may result in improved

performance.

A seeking computer could connect to the broadcast channel by connecting to

computers either directly connected to the found portal computer or directly connected to one

of its neighbors. A possible problem with such a scheme for identifying the neighbors for

the seeking computer is that the diameter of the broadcast channel may increase when each

seeking computer uses the same found portal computer and establishes a connection to the

broadcast channel directly through that found portal computer. Conceptually, the graph

becomes elongated in the direction of where the new nodes are added. Figures 4A-4C

illustrate that possible problem. Figure 4A illustrates the broadcast channel of Figure 1 with

an added computer. Computer J was connected to the broadcast channel by edge pinning

edges OD and E-H to computer J. The diameter of this broadcast channel is still two.

Figure 4B illustrates the broadcast channel of Figure 4A with an added computer.

Computer K was connected to the broadcast channel by edge pinning edges E-J and B-C to

computer K. The diameter of this broadcast channel is three, because the shortest path from

computer G to computer K is through edges G-A, A-E, and E-K. Figure 4C also illustrates

the broadcast channel of Figure 4A with an added computer. Computer K was connected to

the broadcast channel by edge pinning edges 0-6 and E-J to computer K. The diameter of

this broadcast channel is, however, still two. Thus, the selection of neighbors impacts the

diameter of the broadcast channel. To help minimize the diameter, the broadcast technique

uses a random selection technique to identify the four neighbors of a computer in the seeking

connection state. The random selection technique tends to distribute the connections to new

seeking computers throughout the computers of the broadcast channel which may result in

smaller overall diameters.

[03004-8001/81003733105] -10- 7/31/00

0432

0433

10

15

20

25

3O

Broadcasting Through the Graph

As described above, each computer that is connected to the broadcast channel

can broadcast messages onto the broadcast channel and does receive all messages that are

broadcast on the broadcast channel. The computer that originates a message to be broadcast

sends that message to each of its four neighbors using the internal connections. When a

computer receives a broadcast message from a neighbor, it sends the message to its three

other neighbors. Each computer on the broadcast channel, except the originating computer,

will thus receive a copy of each broadcast message from each of its four neighbors. Each

computer, however, only sends the first copy of the message that it receives to its neighbors

and disregards subsequently received copies. Thus, the total number of copies of a message

that is sent between the computers is 3N+l, where N is the number of computers connected

to the broadcast channel. Each computer sends three copies of the message, except for the

originating computer, which sends four copies of the message.

The redundancy of the message sending helps to ensure the overall reliability

of the broadcast channel. Since each computer has four connections to the broadcast

channel, if one computer fails during the broadcast of a message, its neighbors have three

other connections through which they will receive copies of the broadcast message. Also, if

the internal connection between two computers is slow, each computer has three other

connections through which it may receive a copy of each message sooner.

Each computer that originates a message numbers its own messages

sequentially. Because of the dynamic nature of the broadcast channel and because there are

many possible connection paths between computers, the messages may be received out of

order. For example, the distance between an originating computer and a certain receiving

computer may be four. After sending the first message, the originating computer and

receiving computer may become neighbors and thus the distance between them changes to

one. The first message may have to travel a distance of four to reach the receiving computer.

The second message only has to travel a distance of one. Thus, it is possible for the second

message to reach the receiving computer before the first message.

When the broadcast channel is in a steady state (i. e., no computers connecting

or disconnecting from the broadcast channel), out-of-order messages are not a problem

because each computer will eventually receive both messages and can queue messages until

all earlier ordered messages are received. If, however, the broadcast channel is not in a

[03004-8001/SL003733JOS] -l 1- 7/31/00

0433

0434

10

15

20

25

30

steady state, then problems can occur. In particular, a computer may connect to the

broadcast channel after the second message has already been received and forwarded on by

its new neighbors. When a new neighbor eventually receives the first message, it sends the

message to the newly connected computer. Thus, the newly connected computer will receive

the first message, but will not receive the second message. If the newly connected computer

needs to process the messages in order, it would wait indefinitely for the secondgmessage.

One solution to this problem is to have each computer queue all the messages

that it receives until it can send them in their proper order to its neighbors. This solution,

however, may tend to slow down the prepagation of messages through the computers of the

broadcast channel. Another solution that may have less impact on the propagation speed is

to queue messages only at computers who are neighbors of the newly connected computers;

Each already connected neighbor would forward messages as it receives them to its other

neighbors who are not newly connected, but not to the newly connected neighbor. The

already connected neighbor would only forward messages from each originating computer to

the newly connected computer when it can ensure that no gaps in the messages from that

originating computer will occur. In one embodiment, the already connected neighbor may

track the highest sequence number of the messages already received and forwarded on from

each originating computer. The already connected computer will send only higher numbered

messages from the originating computers to the newly connected computer. Once all lower

numbered messages have been received from all originating computers, then the already

connected computer can treat the newly connected computer as its other neighbors and

simply forward each message as it is received. In another embodiment, each computer may

queue messages and only forwards to the newly connected computer those messages as the

gaps are filled in. For example, a computer might receive messages 4 and 5 and then receive

message 3. In such a case, the already connected computer would forward queue messages 4

and 5. When message 3 is finally received, the already connected computer will send

messages 3, 4, and 5 to the newly connected computer. If messages 4 and 5 were sent to the

newly connected computer before message 3, then the newly connected computer would

. process messages 4 and 5 and disregard message 3. Because the already connected computer

queues messages 4 and 5, the newly connected computer will be able to process message 3.

It is possible that a newly connected computer will receive a set of messages from an

originating computer through one neighbor and then receive another set of message from the
[03004.8001/SLAO3733JOS] -12- 7/31/00

0434

0435

10

15

20

25

30

same originating computer through another neighbor. If the second set of messages contains

a message that is ordered earlier than the messages of the first set received, then the newly

connected computer may ignore that earlier ordered message if the computer already

processed those later ordered messages.

Wane—Gran:

A connected computer disconnects from the broadcast channel either in a

planned or unplanned manner. When a computer disconnects in a planned manner, it sends a

disconnect message to each of its four neighbors. The disconnect message includes a list that

identifies the four neighbors of the disconnecting computer. When a neighbor receives the

disconnect message, it tries to connect to one of the computers on the list. In one

embodiment, the first computer in the list will try to connect to the second computer in the

list, and the third computer in the list will try to connect to the fourth computer in the list. If

a computer cannot connect (e.g., the first and second computers are already comiected), then

the computers may try connecting in various other combinations. If connections cannot be

established, each computer broadcasts a message that it needs to establish a connection with

another computer. When a computer with an available internal port receives the message, it

can then establish a connection with the computer that broadcast the message. Figures 5A-

5D illustrate the disconnecting of a computer from the broadcast channel. Figure 5A

illustrates the disconnecting of a computer from the broadcast channel in a planned manner.

When computer H decides to disconnect, it sends its list of neighbors to each of its neighbors
When

computers A and I receive the message they establish a connection between them as

(computers A, E, F and l) and then disconnects from each of its neighbors.

indicated by the dashed line, and similarly for computers E and F.

When a computer disconnects in an unplanned manner, such as resulting from

a power failure, the neighbors connected to the disconnected computer recognize the

disconnection when each attempts to send its next message to the now disconnected

computer. Each former neighbor of the disconnected computer recognizes that it is short one

connection (i.e., it has a hole or empty port). When a connected computer detects that one of

its neighbors is now disconnected, it broadcasts a port connection request on the broadcast

channel, which indicates that it has one internal port that needs a connection. The port

connection request identifies the call-in port of the requesting computer. When a connected

[03004-8001/511103733. 105] - l 3 - 7/31/00

0435

0436

10

15

20

25

30

computer that is also short a connection receives the connection request, it communicates

with the requesting computer through its external port to establish a connection between the

two computers. Figure SB illustrates the disconnecting of a computer from the broadcast

channel in an unplanned manner. In this illustration, computer H has disconnected in an

unplanned manner. When each of its neighbors, computers A, E, F, and I, recognizes the

disconnection, each neighbor broadcasts a port connection request indicating that it needs to

fill an empty port. As shown by the dashed lines, computers F and I and computers A and E

respond to each other’s requests and establish a connection.

It is possible that a planned or unplanned disconnection may result in two

neighbors each having an‘empty internal port. In such a case, since they are neighbors, they

are already connected and cannot fill their empty ports by connecting to each other. Such a

Each neighbor

broadcasts a port connection request when it detects that it has an empty port as described

condition is referred to as the “neighbors with empty ports” condition.

above. When a neighbor receives the port connection request from the other neighbor, it will

recognize the condition that its neighbor also has an empty port. Such a condition may also

occur when the broadcast channel is in the small regime. The condition can only be

corrected when in the large regime. .When in the small regime, each computer will have less

than four neighbors. To detect this. condition in the large regime, which would be a problem

if not repaired, the first neighbor to receive the port connection request recognizes the

condition and sends a condition check message to the other neighbor. The condition check

message includes a list of the neighbors of the sending computer. When the receiving

computer receives the list, it compares the list to its own list of neighbors. If the lists are

different, then this condition has occurred in the large regime and repair is needed. To repair

this condition, the receiving computer will send a condition repair request to one of the

neighbors of the sending computer which is not already a neighbor of the receiving

computer. When the computer receives the condition repair request, it disconnects from one

of its neighbors (other than the neighbor that is involved with the condition) and connects to

the computer that sent the condition repair request. Thus, one of the original neighbors

g involved in the condition will have had a port filled. However, two computers are still in

need of a connection, the other original neighbor and the computer that is now disconnected

from the computer that received the condition repair request. Those two computers send out

port connection requests. If those two computers are not neighbors, then they will connect to

[oaoocsoor/swosnz. 105] - l 4- 7/31/00

0436

0437

10

15

20

25

30

each other when they receive the requests. If, however, the two computers are neighbors,

then they repeat the condition repair process until two non-neighbors are in need of

connections.

It is possible that the two original neighbors with the condition may have the

same set of neighbors. When the neighbor that receives the condition check message

determines that the sets of neighbors are the same, it sends a condition double check message

to one of its neighbors other than the neighbor who also has the condition. When the

computer receives the condition double check message, it determines whether it has the same

set of neighbors as the sending computer. If so, the broadcast channel is in the small regime

and the condition is not a problem. If the set of neighbors are different, then the computer

that received the condition double check message sends a condition check message to the

original neighbors with the condition. The computer that receives that condition check

message directs one of it neighbors to connect to one of the original neighbors with the

condition by sending a condition repair message. Thus, one of the original neighbors with

the condition will have its port filled.

In this

illustration, computer H disconnected in an unplanned manner, but computers F and I

Figure 5C illustrates the neighbors with empty ports condition.

responded to the port connection request of the other and are now connected together. The

other former neighbors of computer H, computers A and E, are already neighbors, which

gives rise to the neighbors with empty ports condition. In this example, computer E received

the port connection request from computer A, recognized the possible condition, and sent

(since they are neighbors via the internal connection) a condition check message with a list

of its neighbors to computer A. When computerA received the list, it recognized that

computer E has a different set of neighbor (i.e., the broadcast channel is in the large regime).

Computer A selected computer D, which is a neighbor of computer E and sent it a condition

repair request. When computer D received the condition repair request, it disconnected from

one of its neighbors (other than computer E), which is computer G in this example.

Computer D then connected to computer A. Figure 5D illustrates two computers that are not

neighbors who now have empty ports. Computers E and G now have empty ports and are

not currently neighbors. Therefore, computers E and G can connect to each other.

Figures 5E and SF further illustrate the neighbors with empty ports condition.

Figure 5E illustrates the neighbors with empty ports condition in the small regime. In this

[0300+8001/SID03733. 105) -15- 7/31/00

0437

0438

10

15

20

25

30

example, if computer E disconnected in an unplanned manner, then each computer

broadcasts a port connection request when it detects the disconnect. When computer A

receives the port connection request form computer B, it detects the neighbors with empty

ports condition and sends a condition check message to computer B. Computer B recognizes

that it has the same set of neighbors (computer C and D) as computer A and then sends a

condition double check message to computer C. Computer C recognizes that the broadcast

channel is in the small regime because is also has the same set of neighbors as computers A

and B, computer C may then broadcast a message indicating that the broadcast channel is in

the small regime.

Figure 5F illustrates the situation of Figure 513 when in the large regime. As

discussed above, computer C receives the condition double check message from computer B.

In this case, computer C recognizes that the broadcast channel is in the large regime because

it has a set of neighbors that is different from computer B. The edges extending up from

computer C and D indicate connections to other computers. Computer C then sends a

condition check message to computer B. When computer B receives the condition check

message, it sends a condition repair message to one of the neighbors of computer C. The

computer that receives the condition repair message disconnects from one of its neighbors,

other than computer C, and tries to connect to computer B and the neighbor from which it A

disconnected tries to connect to computer A.

Port Selection

As described above, the TCP/IP protocol designates ports above number 2056

as user ports. The broadcast technique uses five user port numbers on each computer: one

external port and four internal ports. Generally, user ports cannot be statically allocated to

an application program because other applications programs executing on the same computer

may use conflicting port numbers. As a result, in one embodiment, the computers connected

to the broadcast channel dynamically allocate their port numbers. Each computer could

simply try to locate the lowest number unused port on that computer and use that port as the

call-in port. A seeking computer, however, does not know in advance the call-in port

number of the portal computers when the port numbers are dynamically allocated. Thus, a

seeking computer needs to dial ports of a portal computer starting with the lowest port

number when locating the call-in port of a portal computer. If the portal computer is

[03004.3001/sw03733.1051 -16- 7/31/00

0438

0439

10

15

20

25

30

connected to (or attempting to connect to) the broadcast channel, then the seeking computer

would eventually find the call-in port. If the portal computer is not connected, then the

seeking computer would eventually dial every user port. In addition, if each application

program on a computer tried to allocate low-ordered port numbers, then a portal computer

may end up with a high-numbered port for its call-in port because many of the low-ordered

port numbers would be used by other application programs. Since the dialing of a port is a

relatively slow process, it would take the seeking computer a long time to locate the call-in

port of a portal computer. To minimize this time, the broadcast technique uses a port

ordering algorithm to identify the port number order that a portal computer should use when

finding an available port for its call-in port. In one embodiment, the broadcast technique

uses a hashing algorithm to identify the port order. The algorithm preferably distributes the

ordering of the port numbers randomly through out the user port number space and only

selects each port number once. In addition, every time the algorithm is executed on any

computer for a given channel type and channel instance, it generates the same port ordering.

As described below, it is possible for a computer to be connected to multiple broadcast

channels that are uniquely identified by channel type and channel instance. The algorithm

may be “seeded” with channel type and channel instance in order to generate a unique

ordering of port numbers for each broadcast channel. Thus, a seeking computer will dial the

ports of a portal computer in the same order as the portal computer used when allocating its
call-in port. '

If many computers are at the same time seeking connection to a broadcast

channel through a single portal computer, then the ports of the portal computer may be busy

when called by seeking computers. The seeking computers would typically need to keep on

redialing a busy port. The process of locating a call-in port may be significantly slowed by

such redialing. In one embodiment, each seeking computer may each reorder the first few

port numbers generated by the hashing algorithm. For example, each seeking computer

could randomly reorder the first eight port numbers generated by the hashing algorithm. The

random ordering could also be weighted where the first port number generated by the

hashing algorithm would have a 50% chance of being first in the reordering, the second port

number would have a 25% chance of being first in the reordering, and so on. Because the

seeking computers would use different orderings, the likelihood of finding a busy port is

reduced. For example, if the first eight port numbers are randomly selected, then it is

[03004-8001/8L003733J05] - l 7- 7/31/00

0439

0440

10

15

20

25

30

possible that eight seeking computers could be simultaneously dialing ports in different

sequences which would reduce the chances of dialing a busy port.

Locating a Portal Computer

Each computer that can connect to the broadcast channel has a list of one or

more portal computers through which it can connect to the broadcast channel. In one

embodiment, each computer has the same set of portal computers. A seeking computer

locates a portal computer that is connected to the broadcast channel by successively dialing

the ports of each portal computer in the order specified by an algorithm. A seeking computer

could select the first portal computer and then dial all its ports until a call-in port of a

computer that is fully connected to the broadcast channel is found. If no call-in port is

found, then the seeking computer would select the next portal computer and repeat the

process until a portal computer with such a call-in port is found. A problem-with such a

seeking technique is that all user ports of each portal computer are dialed until a portal

computer fully connected to the broadcast channel is found. In an alternate embodiment, the

seeking computer selects a port number according to the algorithm and then dials each portal

computer at that port number. If no acceptable call-in port to the broadcast channel is found,

then the seeking computer selects the next port number and repeats the process. Since the

call-in ports are likely allocated at lower-ordered port numbers, the seeking computer first

dialsvthe port numbers that are most likely to be call-in ports of the broadcast channel. The

seeking computers may have a maximum search depth, that is the number of ports that it will

dial when seeking a portal computer that is fully connected. If the seeking computer

exhausts its search depth, then either the broadcast channel has not yet been established or, if

the seeking computer is also a portal computer, it can then establish the broadcast channel

with itself as the first fully connected computer.

When a seeking computer locates a portal computer that is itself not fully

connected, the two computers do not connect when they first locate each other because the

broadcast channel may already be established and accessible through a higher-ordered port

number on another portal computer. If the two seeking computers were to connect to each

other, then two disjoint broadcast channels would be formed. Each seeking computer can

share its experience in trying to locate a portal computer with the other seeking computer. In

particular, if one seeking computer has searched all the portal computers to a depth of eight,

[D3004—8001/SL003733JOS 1 -l 8- 7/3 1/00

0440

0441

10

15

20

25

30

then the one seeking computer can share that it has searched to a depth of eight with another

seeking computer. If that other seeking computer has searched to a depth of, for example,

only four, it can skip searching through depths five through eight and that other seeking

computer can advance its searching to a depth of nine.

In one embodiment, each computer may have ’a different set of portal

computers and a different maximum search depth. In such a situation, it may be possible that

two disjoint broadcast channels are formed because a seeking computer cannot locate a fully

connected port computer at a higher depth. Similarly, if the set of portal computers are

disjoint, then two separate broadcast channels would be formed.

Identifling Neigbors for a Seeking Computer

As described above, the neighbors of a newly connecting computer are

preferably selected randomly from the set of currently connected computers. One advantage

of the broadcast channel, however, is that no computer has global knowledge of the

broadcast channel. Rather, each computer has local knowledge of itself and its neighbors.

This limited local knowledge has the advantage that all the connected computers are peers

(as far as the broadcasting is concerned) and the failure of any one computer (actually any

three computers when in the 4-regular and 4—connect form) will not cause the broadcast

channel to fail. This local knowledge makes it difficult for a portal computer to randomly

select four neighbors for a seeking computer.

To select the four computers, a portal computer sends an edge connection

request message through one of its internal connections that is randomly selected. The

receiving computer again sends the edge connection request message through one of its

internal connections that is randomly selected. This sending of the message corresponds to a

random walk through the graph that represents the broadcast channel. Eventually, a

receiving computer will decide that the message has traveled far enough to represent a

randomly selected computer. That receiving computer will offer the internal connection

upon which it' received the edge connection request message to the seeking computer for

edge pinning. Of course, if either of the computers at the end of the offered internal

connection are already neighbors of the seeking computer, then the seeking computer cannot

connect through that internal connection. The computer that decided that the message has

[03DO4—8001/SL003733. 105] - l 9— 7/3 [/00

0441

0442

10

15

20

25

30

traveled far enough will detect this condition of already being a neighbor zmd send the

message to a randomly selected neighbor. I

In one embodiment, the distance that the edge connection request message

travels is established by the portal computer to be approximately twice the estimated

diameter of the broadcast channel. The message includes an indication of the distance that it

is to travel. Each receiving computer decrements that distance to travel before sending the

message on. The computer that receives a message with a distance to travel that is zero is

considered to be the randomly selected computer. Ifthat randomly selected computer cannot

connect to the seeking computer (e. g., because it is already connected to it), then that

randomly selected computer forwards the edge connection request to one of its neighbors

with a new distance to travel. In one embodiment, the forwarding computer toggles the new

distance to travel between zero and one to help prevent two computers from sending the

message back and forth between each other.

Because of the local nature of the information maintained by each computer

connected to the broadcast channel, the computers need not generally be aware of the

diameter of the broadcast channel. In one. embodiment, each message sent through the

broadcast channel has a- distance traveled field. Each computer that forwards a message

increments the distance traveled field. Each computer also maintains an estimated diameter

of the broadcast channel. When a computer receives a message that has traveled a distance

that indicates that the estimated diameter is too small, it updates its estimated diameter and

broadcasts an estimated diameter message. When a computer receives an estimated diameter

message that indicates a diameter that is larger than its own estimated diameter, it updates its

own estimated diameter. This estimated diameter is used to establish the distance thatan

edge connection request message should travel.

External Data Representation

The computers connected to the broadcast channel may internally store their

data in difierent formats. For example, one computer may use 32-bit integers, and another

computer may use 64-bit integers. As another example, one computer may use ASCII to

represent text and another computer may use Unicode. To allow communications between

heterogeneous computers, the messages sent over the broadcast channel may use the XDR

(“eXtemal Data Representation”) format.

[03004—800l/Sw03733J05] -20- 7/31/00

0442

0443

10

XS

20

25

30

The underlying peer-to-peer communications protocol may send multiple

messages in a single message stream. The traditional technique for retrievingmcssages from

a stream has been to repeatedly invoke an operating system routine to retrieve the next

message in the stream. The retrieval of each message may require two calls to the operating

system: one to retrieve the size of the next message and the other to retrieve the number of

bytes indicated by the renieved size. Such calls to the operating system can, however, be

very slow in comparison to the invocations of local routines. To overcome the inefficiencies

of such repeated calls, the broadcast technique in one embodiment, uses XDR to identify the

message boundaries in a stream of messages. The broadcast technique may request the

operating system to provide the next, for example, 1,024 bytes from the stream. The

broadcast technique can then repeatedly invoke the XDR routines to retrieve the messages

and use the success or failure of each invocation to determine whether another block of 1,024

bytes needs to be retrieved from the operating system. The invocation of XDR routines do

not involve system calls and are thus more efficient than repeated system calls.

M-Regglar

In the embodiment described above, each fully connected computer has four

internal connections. The broadcast technique can be used with other numbers of internal

connections. For example, each computer could have 6, 8, or any even number of internal

connections. As the number of internal connections increase, the diameter of the broadcast

channel tends to decrease, and thus propagation time for a message tends to decrease. The

time that it takes to connect a seeking computer to the broadcast channel may, however,

increase as the number of internal connections increases. When the number of internal

connectors is even, then the broadcast channel ,can be maintained as m-regular and

m-connected (in the steady state). If the number of internal connections is odd, then when

the broadcast channel has an odd number of computers connected, one of the computers will

have less than that odd number of internal connections. In such a situation, the broadcast

network is neither m-regular nor m-connected. When the next computer connects to the

broadcast channel, it can again become m-regular and m-connected. Thus, with an odd

number of internal connections, the broadcast channel toggles between being and not being

m-regular and m-connected.

[osoocsoor/smosnuos] —2] - 7/31/00

0443

0444

10

15

20

25

30

Components

Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcast channel. The above description generally assumed that there was

only one broadcast channel and that each computer had only one connection to that broadcast

channel. More generally, a network of computers may have multiple broadcast channels,

each computer may be connected to more than one broadcast channel, and each computer

can have multiple connections to the same broadcast channel. The broadcast channel is well

suited for computer processes (e. g., application programs) that execute collaboran'vely, such

as network meeting programs. Each computer process can connect to one or more broadcast

channels. The broadcast channels can be identified by channel type (e.g., application

program name) and channel instance that represents separate broadcast channels for that

channel type. When a process attempts to connect to a broadcast channel, it seeks a process

currently connected to that broadcast channel that is executing on a portal computer. The

seeking process identifies the broadcast channel by channel type and channel instance.

Computer 600 includes multiple application programs 601 executing as

separate processes. Each application program interfaces with a broadcaster component 602

for each broadcast charmel to which it is connected. The broadcaster component may be

implement as an object that is instantiated within the process space of the application

program. Alternatively, the broadcaster component may execute as a separate process or

thread from the application program. In one embodiment, the broadcaster component

provides functions (e. g., methods of class) that can be invoked by the application programs.

The primary fimctions provided may include a connect function that an application program

invokes passing an indication of the broadcast channel to which the application program

wants to connect. The application program may provide a callback routine that the

broadcaster component invokes to notify the application program that the connection has

been completed, that is the process enters the fully connected state. The broadcaster

component may also provide an acquire message function that the application program can

invoke to retrieve the next message that is broadcast on the broadcast channel. Alternatively,

the application program may provide a callback routine (which may be a virtual function

provided by the application program) that the broadcaster component invokes to notify the

application program that a broadcast message has been received. Each broadcaster

component allocates a call-in port using the hashing algorithm. When calls are answered at

l03004-800IlSlD03733JOS) -22- 7/3 l IOO

0444

0445

10

15

20

25

30

the call-in port, they are transferred to other ports that serve as the external and internal

ports.

The computers connecting to the broadcast channel may include a central

processing unit, memory, input devices (e.g., keyboard and pointing device), output devices

(e.g., display devices), and storage devices (e.g., disk drives). The memory and storage

devices are computer-readable medium that may contain computer instructions that

implement the broadcaster component. In addition, the data structures and message

structures may be stored or transmitted via a signal transmitted on a computer-readable

media, such as a communications link.

Figure 7 is a block diagram illustrating the sub-components of the broadcaster

component in one embodiment. The broadcaster component includes a connect component

701, an external dispatcher 702, an internal dispatcher 703 for each internal connection, an

acquire message component 704 and a broadcast component 712. The application program

may provide a connect callback component 710 and a receive response component 711 that

are invoked by the broadcaster component. The application program invokes the connect

component to establish a connection to a designated broadcast channel. The connect

component identifies the external port and installs the external dispatcher for handling

messages that are received on the external port. The connect component invokes the seek

portal computer component 705 to identify a portal computer that is connected to the

broadcast channel and invokes the connect request component 706 to ask the portal computer

The

external dispatcher receives external messages, identifies the type of message, and invokes

(if fully connected) to select neighbor processes for the newly connecting process.

the appropriate handling routine 707. The internal dispatcher receives the internal messages,

identifies the type of message, and invokes the appropriate handling routine 708. The

received broadcast messages are stored in the broadcast message queue 709. The acquire

The

broadcast component is invoked by the application program to broadcast messages in the

message component is invoked to retrieve messages from the broadcast queue.

broadcast channel.

An Information Deliveg Service

In one embodiment, an information delivery service application is

implemented using the broadcast channel. The information delivery service allows

[03004-8001/SUJOJ7JSJOS] -23- 7131/00

0445

0446

10

15

20

25

30

participants to monitor messages as they are broadcast on the broadcast channel. Each

participant may function as a producer of information, as a consumer of information, or both.

The producers broadcast messages on the broadcast channel, and consumers receive the

broadcast messages. For example, a sports broadcast channel may be used to disseminate the

results of sporting events. Certain organizations, such as the National Football League, may

be authorized to broadcast results of sporting events on the broadcast channel. The operators

of the broadcast channel may sell subscriptions to the broadcast channel to sports enthusiasts.

The information delivery service may be used to distribute a broad range of content including

news articles, stock prices, weather alerts, medical alerts, traffic reports, and so on.

The information delivery service may provide a directory web site

where consumers can locate and subscribe to broadcast charmels of interest. The directory

may provide a hierarchical organization of topics of the various broadcast channels. When a

user decides to subscribe to a broadcast channel, the broadcaster component and information

delivery service application program may be downloaded to the user’s computer if not

already available on the user’s computer. Also, the channel type and channel instance

associated with that broadcast channel and the identification of the portal computers for that

broadcast channel may be downloaded to the subscriber’s computer. The information

delivery service may also provide a subscriber identifier that may be used by a portal

computer to authorize access to or track who has connected to the broadcast channel.

The information delivery service web site may also allow an entity to

create new broadcast channels. For example, the NFL may want a broadcast channel

dedicated to the dissemination of information under its control. In which case, the entity

would interact with the web site to create the broadcast channel. The creation of the

broadcast channel would entail the generation of a channel type and channel instance, the

specification of security level (e.g., encrypted messages), the specification of subscriber

qualifications, and so on.

A user may subscribe to a broadcast channel for an individual topic,

which corresponds to a leaf node in the hierarchy, or a user may subscribe to a category of

topics, which corresponds to a non-leaf node in the hierarchy. For example, a user may

subscribe to a category of sports scores or subscribe to the topic of NFL scores. In one

embodiment, each topic would have its own broadcast channel. As a result, the subscribing

to a category of topics would mean subscribing to multiple broadcast channels.
[03004-8001/sw03731.105] -24- 7B IIOO

0446

0447

10

15

Alternatively, a category of t0pics may have a single broadcast channel. If a user subscribes

to just one topic in the category, the information delivery sen/ice application program

executing at the subscriber’s computer would simply disregard messages not related to the

topic.

Many different fee structures can be used by the information delivery

service. A subscriber may be charged a fixed fee per month for subscribing to a topic.

Alternatively, a subscriber may be charged based on time actually connected. For example,

when a subscriber’s computer is connected, it might broadcast an identification message

every hour or so. A billing computer could monitor the broadcast and record the connect

time based on the identification messages. If the billing computer does not receive an

identification message for a certain time period, it assumes that the subscriber’s computer has

disconnected. Also, the operator of the broadcast channel may derive revenue fiom

advertisements broadcast over the broadcast channel. The fee for advertising on a broadcast

channel may vary based on the number of subscribers connected to the broadcast channel at

the time the advertisement is broadcast.

The following tables list messages sent by the broadcaster components.

EXTERNAL MESSAGES

Message Type Description

seeking_connection_call Indicates that a seekin rocess w0uld like to know whether theI g P
i receiving process is fully connected to the broadcast channel

connection_request_call Indicates that the sending process would like the receiving
i process to initiate a connection of the sending process to the
l broadcast channel

edge_proposal_call Indicates that the sending process is proposing an edge through
which the receiving process can connect to the broadcast

channel (i.e., edge pinning)

port_connection_call

connected_stmt

condition_repair_stmt

[03004-8001/81003733J05]

Indicates that the sending process is proposing a port through
which the receiving process can connect to the broadcast
channel
Indicates that the sending process is connected to the broadcast
channel

Indicates that the receiving process should disconnect from one

of its nei ; bors and connect to one of the rocesses involved in .

-25- 7/31/00

0447

0448

10

_the neighbors with empty port condition .

INTERNAL MESSAGES

Message Type Description

Indicates a message that is being broadcast through the

broadcast channel for the application programs

[connection_port_search_stmt Indicates that the designated process is looking for a port
1 through which it can connect to the broadcast channel

connection_edge_search_call Indicates that the requesting process is looking for an edge

through which it can connect to the broadcast channel

connection_edge_search_resp Indicates whether the edge between this process and the

sending neighbor has been accepted by the requesting

party

Indicates an estimated diameter of the broadcast channel

Indicates to reset the estimated diameter to indicated

diameter

Indicates that the sending neighbor is disconnecting from
the broadcast channel

broadcast._stmt

diameter_estimate_stmt

diameter_reset_stmt

disconnect_stmt

condition_check_stmt Indicates that neighbors with empty port condition have
been detected '

Indicates that the neighbors with empty ports have the

same set of neighbors

condition_double_check_stmt

shutdowngsunt Indicates that the broadcast channel is being shutdown

Flow Diaggams

Figures 8-34 are flow diagrams illustrafing the processing of the broadcaster

component in one embodiment. Figure 8 is a flow diagram illustrating the processing of the

connect routine in one embodiment. This routine is passed a channel type (e. g., application

name) and channel instance (e.g., session identifier), that identifies the broadcast channel to

which this process wants to connect. The routine is also passed auxiliary information that

includes the list of portal computers and a connection callback routine. When the connection

is established, the connection callback routine is invoked tonotify the application program.

When this process invokes this routine, it is in the seeking connection state. When a portal

computer is located that is connected and this routine connects to at least one neighbor, this
[03004.8001/swoa7auosl -26- 7/3 1/00

0448

0449

10

15

20

25

30

process enters the partially connected state, and when the process eventually connects to four

neighbors, it enters the fully connected state. When in the small regime, a fully connected

process may have less than four neighbors. In block 801, the routine opens the call-in port

through which the process is to communicate with other processes when establishing external

and internal connections. The port is selected as the first available port using the hashing

algorithm described above. In block 802, the routine sets the connect time to the-current

time. The connect time is used to identify the instance of the process that is connected

through this external port. One process may connect to a broadcast channel of a certain

channel type and channel instance using one call-in port and then disconnects, and another

process may then connect to that same broadcast channel using the same call-in port. Before

the other process becomes fully connected, another process may try to communicate with it

thinking it is the fully connected old process. In such a case, the connect time can be used to

identify this situation. In block 803, the routine invokes the seek portal computer routine

passing the channel type and channel instance. The seek portal computer routine attempts to

locate a portal computer through which this process can connect to the broadcast channel for

the passed type and instance. In decision block 804, if the seek portal computer routine is

successful in locating a fully connected process on that portal computer, then the routine

continues at block 805, else the routine returns an unsuccessful indication. In decision block

805, if no portal computer other than the portal computer on which the process is executing

was located, then this is the first process to fully connect to broadcast channel and the,

routine continues at block 806, else the routine continues at'block 808. In block 806, the

routine invokes the achieve connection routine to change the state of this process to fully

connected. In block 807, the routine installs the external dispatcher for processing messages

received through this process’ external port for the passed channel type and channel instance.

When a message is received through that external port, the external dispatcher is invoked.

The routine then returns. In block 808, the routine installs an external dispatcher. In block

809, the routine invokes the connect request routine to initiate the process of identifying

neighbors for the seeking computer. The routine then returns.

Figure 9 is a flow diagram illustrating the processing of the seek portal

computer routine in one embodiment. This routine is passed the channel type and channel

instance of the broadcast channel to which this process wishes to connect. This routine, for

each search depth (e.g., port number), checks the portal computers at that search depth. If a
[03004-8001/SL003733JOS] -27- 70 1/00

0449

0450

10

15

20

25

30

portal computer is located at that search depth with a process that is fully connected to the

broadcast channel, then the routine returns an indication of success. In blocks 902-911, the

routine loops selecting each search depth until a process is located. In block 902, the routine

selects the next search depth using a port number ordering algorithm. In decision block 903,

if all the search depths have already been selected during this execution of the loop, that is

for the currently selected depth, then the routine returns a failure indication, else the routine

continues at block 904. In blocks 904-911, the routine loops selecting each portal computer

and determining whether a process of that portal computer is connected to (or attempting to

connect to) the broadcast channel with the passed channel type and channel instance. In

block 904, the routine selects the next portal computer. In decision block 905, if all the

portal computers have already been selected, then the routine loops to block 902 to select the

next search depth, else the routine continues at block 906. In block 906, the routine dials the

selected portal computer through the port represented by the search depth. In decision block

907, if the dialing was successful, then the routine continues at block 908, else the routine

loops to block 904 to select the next portal computer. The dialing will be successful if the

dialed port is the call-in port of the broadcast channel of the passed channel type and channel

instance of a process executing on that portal computer. In block 908, the routine invokes a

contact process routine, which contacts the answering process of the portal computer through

the dialed port and determines whether that process is frilly connected to the broadcast

channel. In block 909, the routine hangs up on the selected portal computer. In decision

block 910, if the answering process is fully connected to the broadcast channel, then the

routine returns a success indicator, else the routine continues at block 911. In block 911, the

routine invokes the check for external call routine to determine whether an external call has

been made to this process as a portal computer and processes that call. The routine then

loops to block 904 to select the next portal computer.

Figure 10 is a 'flow diagram illustrating the processing of the contact process

routine in one embodiment. This routine determines whether the process of the selected

portal computer that answered the call-in to the selected port is fully connected to the

broadcast channel. In block 1001, the routine sends an external message (i. e.,

seeking_connection_call) to the answering process indicating that a seeking process wants to

know whether the answering process is fully connected. to the broadcast channel. ln block

1002, the routine receives the external response message from the answering process. In

[03004-8001181003733JOS] —28- 7/3 “00

0450

0451

IO

15

20

25

30

decision block 1003, if the external response message is successfully received (i.e.,

seeking_connection_resp), then the routine continues at block 1004, else the routine retmns.

Wherever the broadcast component requests to receive an external message, it sets a time Out

period. If the external message is not received within that time out period, the broadcaster

component checks its own call-in port to see if another process is calling it. In particular, the

dialed process may be calling the dialing process, which may result in a deadlock situation.

The broadcaster component may repeat the receive request several times. If the expected

message is not received, then the broadcaster component handles the error as appropriate. In

decision block 1004, if the answering process indicates inits response message that it is fully

connected to the broadcast channel, then the routine continues at block 1005, else the routine

continues at block 1006. In block 1005, the routine adds the selected portal computer to a

list of connected portal computers and then returns. In block 1006, the routine adds the

answering process to a list of fellow seeking processes and then returns.

Figure 11 is a flow diagram illustrating the processing of the connect request

routine in one embodiment. This routine requests a process of a portal computer that was

identified as being fully connected to the broadcast channel to initiate the connection of this

process to the broadcast channel. In decision block 1101, if at least one process of a portal

computer was located that is fully connected to the broadcast channel, then the routine

continues at block [103, else the routine continues at block 1102. A process of the portal

computer may no longer be in the list if it recently disconnected from the broadcast channel.

In one embodiment, a seeking computer may always search its entire search depth and find

multiple portal computers through which it can connect to the broadcast channel. In block

1102, the routine restarts the process of connecting to the broadcast channel and returns. In

block 1103, the routine dials the process of one of the found portal computers through the

call-in port. In decision block 1104, if the dialing is successful, then the routine continues at

block 1105, else the routine continues at block 1113. The dialing may be unsuccessful if, for

example, the dialed process recently disconnected from the broadcast channel. In block

1105, the routine sends an external message to the dialed process requesting a connection to

the broadcast channel (i.e., connection_request_call). In block 1106, the routine receives the

response message (i.e., connection_request_resp). In decision block 1107, if the response

message is successfully received, then the routine continues at block 1108, else the routine

continues at block 1113. In block 1108, the routine sets the expected number of holes (i.e.,
[osmsoor/smommos] ~29- 7/31/00

0451

0452

10

15

20

25

30

empty internal connections) for this process based on the received response. When in the

large regime, the expected number of holes is zero. When in the small regime, the expected

number of holes varies from one to three. In block 1109, the routine sets the estimated

diameter of the broadcast channel based on the received response. In decision block 1111, if

the dialed process is ready to connect to this process as indicated by the response message,

then the routine continues at block 1112, else the routine continues at block 1113. In block

1112, the routine invokes the add neighbor routine to add the answering process as a

neighbor to this process. This adding of the answering process typically occurs when the

broadcast channel is in the small regime. When in the large regime, the random walk search

for a neighbor is performed. In block 1113, the routine hangs up the external connection

with the answering process computer and then returns.

Figure 12 is a flow diagram of the processing of the check for external call

routine in one embodiment. This routine is invoked to identify whether a fellow seeking

process is attempting to establish a connection to the broadcast channel through this process.

In block 1201, the routine attempts to answer a call on the call-in port. In decision block

1202, if the answer is successful, then the routine continues at block 1203, else the routine

returns. In block 1203, the routine receives the external message from the external port. In

decision block 1204, if the type of the message indicates that a seeking process is calling

(i.e., seeking_connection_call), then the routine continues at block 1205, else the routine

returns. In block 1205, the routine sends an external message (i. e., seeking_connection_resp)

to the other seeking process indicating that this process is also is seeking a connection. In

decision block 1206, if the sending of the external message is successful, then the routine

continues at block 1207, else the routine returns. In block 1207, the routine adds the other

seeking process to a list of fellow seeking processes and then returns. This list may be used

if this process can find no process that is fully connected to the broadcast channel. In which

case, this process may check to see if any fellow seeking process were successful in

connecting to the broadcast channel. For example, a fellow seeking process may become the

first process fully connected to the broadcast channel.

Figure 13 is a flow diagram of the processing of the achieve connection routine

in one embodiment. This routine sets the state of this process to fully connected to the

broadcast channel and invokes a callback routine to notify the application program that the

process is now fully connected to the requested broadcast channel. In block 1301, the

[03004-8001/Sm03733.l05] -30- 7/31/00

0452

0453

10

15

20

25

30

routine sets the connection state of this process to fully connected. 1n block 1302, the

routine notifies fellow seeking processes that it is fully connected by sending a connected

external message to them (i.e., connected_strnt). In block 1303, the routine invokes the

connect callback routine to notify the application program and then returns.

Figure 14 is a flow diagram illustrating the processing of the external

dispatcher routine in one embodiment. This routine is invoked when the external port

receives a message. This routine retrieves the message, identifies the external message type,

and invokes the appropriate routine to handle that message. This routine loops processing

each message until all the received messages have been handled. In block 1401, the routine

answers (e. g., picks up) the external port and retrieves an external message. In decision

block 1402, if a message was retrieved, then the routine continues at block 1403, else the

routine hangs up on the external port in block 1415 and returns. In decision block 1403, if

the message type is for a process seeking a connection (i.e., seeking_connection_call), then

the routine invokes the handle seeking connection call routine in block 1404, else the routine

continues at block 1405. In decision block 1405, if the message type is for a connection

request call (1'. e., connection_request_call), then the routine invokes the handle connection

request call routine in block 1406, else the routine continues at block 1407. In decision

block 1407, if the message type is edge proposal call (i.e., edge_proposal_call), then the

routine invokes the handle edge proposal call routine in block 1408, else the routine

continues at block 1409. In decision block 1409, if the message type is port connect call

(i. e., port_connect_call), then the routine invokes the handle port connection call routine in

block 1410, else the routine continues at block 1411. In decision block 1411, if the message

type is a connected statement (i. e., connected_stmt), the routine invokes the handle

connected statement in block 1112, else the routine continues at block 1212. In decision

block 1412, if the message type is a condition repair statement (i.e., condition_repair_smit),

then the routine invokes the handle condition repair routine in block 1413, else the routine

loops to block 1414 to process the next message. After each handling routine is invoked, the

roun'ne loops to block 1414. In block 1414, the routine hangs up on the external port and

continues at block 1401 to receive the next message.

Figure 15 is a flow diagram illustrating the processing of the handle seelcing

connection call routine in one embodiment. This routine is invoked when a seeking process

is calling to identify a portal computer through which it can connect to the broadcast channel.

[03004-3001/31003733. 1051 -3 l - “NIH/00

0453

0454

10

15

20

25

30

In decision block 1501, if this process is currently fully connected to the broadcast channel

identified in the message, then the routine continues at block 1502, else the routine continues

at block 1503. In block 1502, the routine sets a message to indicate that this process is fully

connected to the broadcast channel and continues at block 1505. In block 1503, the routine

sets a message to indicate that this process is not fully connected. In block 1504, the routine

adds the identification of the seeking process to a list of fellow seeking processes. If this

process is not fully connected, then it is attempting to connect to the broadcast channel. In

block 1505, the routine sends the external message response (i.e., seeking_connection__resp)

to the seeking process and then returns.

Figure 16 is a flow diagram illustrating processing of the handle Connection

request call routine in one embodiment. This routine is invoked when the calling process

wants this process to initiate the connection of the process to the broadcast channel. This

routine either allows the calling process to establish an internal connection with this process

(e.g., if in the small regime) or starts the process of identifying a process to which the calling

process can connect. In decision block 1601, if this process is currently fully connected to

the broadcast channel, then the routine continues at block 1603, else the routine hangs up on

the external port in block 1602 and returns. In block 1603, the routine sets the number of

holes that the calling process should expect in the response message. In block 1604, the

routine sets the estimated diameter in the response message. In block 1605, the routine

indicates whether this process is ready to connect to the calling process. This process is

ready to connect when the number of its holes is greater than zero and the calling process is

not a neighbor of this process. In block 1606, the routine sends to the calling process an

external message. that is responsive to the connection request call (i.e.,

connection_request_resp). In block 1607, the routine notes the number of holes that the

calling process needs to fill as indicated in the request message. In decision block 1608, if

this process is ready to connect to the calling process, then the routine continues at block

1609, else the routine continues at block 1611. In block 1609, the routine invokes the add

In block 1610, the routine

decrements the number of holes that the calling process needs to fill and continues at block

1611. In block 1611, the routine hangs up on the external port. In decision block 1612, if

this process has no holes or the estimated diameter is greater than one (i.e., in the large

neighbor routine to add the calling process as a neighbor.

regime), then the routine continues at block 1613, else the routine continues at block 1616.

[03004-8001/51003733JOS} -32- 7/31/00

0454

0455

10

15

20

25

30

In blocks 1613-1615, the routine loops forwarding a request for an edge through which to

connect to the calling process to the broadcast channel. One request is forwarded for each

pair of holes of the calling process that needs to be filled. In decision block 1613, if the

number of holes of the calling process to be filled is greater than or equal to two, then the

routine continues at block 1614, else the routine continues at block 1616. In block 1614, the

routine invokes the forward connection edge search routine. The invoked routine is passed

to an indication of the calling process and the random walk distance. In one embodiment, the

In block 1614, the

routine decrements the holes left to fill by two and loops to block 1613. In decision block

1616, if there is still a hole to fill, then the routine continues at block 1617, else the routine

returns. In block 1617, the routine invokes the fill hole routine passing the identification of

distance is twice in the estimated diameter of the broadcast channel.

the calling process. The fill hole routine broadcasts a connection port search statement (i.e.,

connection_port_search_stmt) for a hole of a connected process through which the calling

process can connect to the broadcast channel. The routine then returns.

Figure 17 is a flow diagram illustrating the processing of the add neighbor

routine in one embodiment. This routine adds the process calling on the external port as a

neighbor to this process. In block l701, the routine identifies the calling process on the

external port. In block 1702, the routine sets a flag to indicate that the neighbor has not yet

received the broadcast messages fiom this process. This flag is used to ensure that there are

no gaps in the messages initially sent to the new neighbor. The external port becomes the

internal port for this connection. In decision block 1703, if this process is in the seeking

connection state, then this process is connecting to its first neighbor and the routine

continues at block 1704, else the routine continues at block 1705. In block 1704, the routine

sets the connection state of this process to partially connected. In block 1705, the routine

adds the calling process to the list of neighbors of this process. In block 1706, the routine

installs an internal dispatcher for the new neighbor. The internal dispatcher is invoked when

a message is received from that new neighbor through the internal port of that new neighbor.

In decision block 1707, if this process buffered up messages while not fully connected, then

the routine continues at block 1708, else the routine continues at block 1709. In one

embodiment, a process that is partially connected may buffer the messages that it receives

through an internal connection so that it can send these messages as it connects to new

neighbors. In block 1708, the routine sends the buffered messages to the new neighbor
[osoouoouswoavnlos] -33- 7B “00

0455

0456

10

15

20

25

30

through the internal port. In decision block 1709, if the number of holes of this process

equals the expected number of holes, then this process is fully connected and the routine

continues at block 1710, else the routine continues at block 1711. In block 1710, the routine

invokes the achieve connected routine to indicate that this process is fully connected. In

decision block 1711, if the number of holes for this process is zero, then the routine

continues at block 1712, else the routine returns. In block 1712, the routine deletes any

pending edges and then returns. A pending edge is an edge that has been proposed to this

process for edge pinning, which in this case is no longer needed.

Figure 18 is a flow diagram illustrating the processing of the forward

connection edge search routine in one embodiment. This routine is responsible for passing

along a request to connect a requesting process to a randomly selected neighbor of this

process through the internal port of the selected neighbor, that is part of the random walk. In

decision block 1801, if the forwarding distance remaining is greater than zero, then the

routine continues at block 1804, else the routine continues at block 1802. In decision block

1802, if the number of neighbors of this process is greater than one, then the routine

continues at block 1804, else this broadcast channel is in the small regime and the routine

continues at block 1803. In decision block 1803, if the requesting process is a neighbor of

this process, then the routine returns, else the routine continues at block 1804. In blocks

1804-1807, the routine loops attempting to send a connection edge search call internal

message (i. e. , connection_edge_search_call) to a randomly selected neighbor. In. block 1804,

the routine randomly selects a neighbor of this process. In .decision block 1805, if all the

neighbors of this process have already been selected, then the routine cannot forward the

message and the routine returns, else the routine continues at block 1806. In block 1806, the

routine sends a connection edge search call internal message to the selected neighbor. In

decision block 1807, if the sending of the message is successful, then the routine continues at

block 1808, else the routine loops to block 1804 to select the next neighbor. When the

sending of an internal message is unsuccessful, then the neighbor may have disconnected

from the broadcast channel in an unplanned manner. Whenever such a situation is detected

by the broadcaster component, it attempts to find another neighbor by invoking the fill holes

routine to fill a single hole or the forward connecting edge search routine to fill two holes. ln

block 1808, the routine notes that the recently sent connection edge search call has not yet

been acknowledged and indicates that the edge to this neighbor is reserved if the remaining
[03004-8001/Sm03733. 105] '34- 781100

0456

0457

10

15

20

25

30

forwarding distance is less than or equal to one. It is reserved because the selected neighbor

may offer this edge to the requesting process for edge pinning. The routine then returns.

Figure 19 is a flow diagram illustrating the processing of the handle edge

proposal call routine. This routine is invoked when a message is received fiom a proposing

process that proposes to connect an edge between the proposing process and one of its

neighbors to this process for edge pinning. In decision block 1901, if the number of holes of

this process minus the number of pending edges is greater than or equal to one, then this

process still has holes to be filled and the routine continues at block 1902, else the routine

continues at block 1911. In decision block 1902, if the proposing process or its neighbor is a

neighbor of this process, then the routine continues at block 1911, else the routine continues

at block 1903. In block 1903, the routine indicates that the edge is pending between this

process and the proposing process. In decision block 1904, if a proposed neighbor is already

pending as a proposed neighbor, then the routine continues at block 1911, else the routine

continues at block 1907. In block 1907, the routine sends an edge proposal response as an

external message to the proposing process (i.e., edge_proposa]_resp) indicating that the

proposed edge is accepted. In decision block 1908, if the sending of the message was

successful, then the routine continues at block 1909, else the routine returns. In blo'ck 1909,

the routine adds the edge as a pending edge. In block 1910, the routine invokes the add

neighbor routine to add the proposing process on the external port as a neighbor. The routine

then returns. In block 1911, the routine sends an external message (i. e., edge_proposa1_resp)

indicating that this proposed edge is not accepted. In decision block 1912, if the number of

holes is odd, then the routine continues at block 1913, else the routine returns. In block

1913, the routine invokes the fill hole routine and then returns.

Figure 20 is a flow diagram illustrating the processing of the handle port

connection call routine in one embodiment. This routine is invoked when an external

message is received then indicates that the sending process wants to connect to one hole of

- this process. In decision block 2001, if the number of holes of this process is greater than

zero, then the routine continues at block 2002, else the routine continues at block 2003. In

decision block 2002, if the sending process is not a neighbor, then the routine continues at

block 2004, else the routine continues to block 2003. In block 2003, the routine sends a port

connection response external message (i.e., port_connection_resp) to the sending process that

indicates that it is not okay to connect to this process. The routine then returns. In block

[03004-8001/SL003733JOS] -35- 7/3 l/OO

0457

0458

10

15

20

25

30

2004, the routine sends a port connection response external message to the sending process

that indicates that is okay to connect this process. In decision block 2005, if the sending of

the message was successful, then the routine continues at block 2006, else the routine

continues at block 2007. In block 2006, the routine invokes the add neighbor routine to add

the sending process as a neighbor of this process and then returns. In block 2007, the routine

hangs up the external connection. In block 2008, the routine invokes the connect request

routine to request that a process connect to one of the holes of this process. The routine then

rettuns.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in

If this

process is requesting to fill a hole, then this routine sends an internal message to other

one embodiment. This routine is passed an indication of the requesu'ng process.

processes. If another process is requesting to fill a hole, then this routine invokes the routine

to handle a connection port search request. In block 2101, the routine initializes a

connection port search statement internal message (i. e., connection_port_search_strnt). In

decision block 2102, if this process is the requesting process, then the routine continues at

block 2103, else the routine continues at block 2104. In block 2103, the routine distributes

the message to the neighbors of this process through the internal ports and then returns. In

block 2104, the routine invokes the handle connection port search routine and then returns.

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher

routine in one embodiment. This routine is passed an indication of the neighbor who sent the

internal message. In block 2201, the routine receives the internal message. This routine

identifies the message type and invokes the appropriate routine to handle the message. In

block 2202, the routine assesses whether to change the estimated diameter of the broadcast

channel based on the information in the received message. In decision block 2203, if this

process is the originating process of the message or the message has already been received

(i. e., a duplicate), then the routine ignores the message and continues at block 2.208, else the

routine continues at block 2203A. In decision block 2203A, if the process is partially

connected, then the routine continues at block 2203B, else the routine continues at block

2204. In block 2203B, the routine adds the message to the pending connection bufier and

continues at block 2204. In decision blocks 2204-2207, the routine decodes the message

type and invokes the appropriate routine to handle the message. For example, in decision

block 2204, if the type of the message is broadcast statement (i. e., broadcast_stmt), then the
[03004-800l/SL003'733JOS) -36- 7/31/00

0458

0459

10

15

20

25

30

routine invokes the handle broadcast message routine in block 2205. After invoking the

appropriate handling routine, the routine continues at block 2208. In decision block 2208, if

the partially connected buffer is full, then the routine continues at block 2209, else the

routine continues at block 2210. The broadcaster component collects all its internal

messages in a buffer while partially connected so that it can forward the messages as it

connects to new neighbors. If, however, that buffer becomes full, then the process assumes

that it is now fully connected and that the expected number of connections was too high,

because the broadcast channel is now in the small regime. In block 2209, the routine invokes

the achieve connection routine and then continues in block 2210. In decision block 2210, if

the application program message queue is empty, then the routine returns, else the routine

continues at block 2212. In block 2212, the routine invokes the receive response routine

passing the acquired message and then returns. The received response routine is a callback

routine of the application program.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast

message routine in one embodiment. This routine is passed an indication of the originating

process, an indication of the neighbor who sent the broadcast message, and the broadcast

message itself. In block 2301, the routine performs the out of order processing for this

message. The broadcaster component queues messages from each originating process until it

can send them in sequence number order to the application program. In block 2302, the

routine invokes the distribute broadcast message routine to-forward the message to the

neighbors of this process. In decision block 2303, if a newly connected neighbor is waiting

to receive messages, then the routine continues at block 2304, else the routine returns. In

block 2304, the routine sends the messages in the correct order if possible for each

originating process and then returns.

Figure 24 is a flow diagram illustrating the processing of the distribute

broadcast message routine in one embodiment. This routine sends the broadcast message to

each of the neighbors of this process, except for the neighbor who sent the message to this

process. In block 2401, the routine selects the next neighbor other than the neighbor who

sent the message. In decision block 2402, if all such neighbors have already been selected,

then the routine returns. In block 2403, the routine sends the message to the selected

neighbor and then loops to block 2401 to select the next neighbor.

[03004-8001/SL003733JOS] "37' 7/31/00

0459

0460

10

15

20

25

30

Figure 26 is a flow diagram illustrating the processing of the handle connection

port search statement routine in one embodiment. This routine is passed an indication of the

neighbor that sent the message and the message itself. In block 2601, the routine invokes the

distribute internal message which sends the message to each of its neighbors other than the

sending neighbor. In decision block 2602, if the number of holes of this process is greater

than zero, then the routine continues at block 2603, else the routine returns. In decision

block 2603, if the requesting process is a neighbor, then the routine continues at block 2605,

else the routine continues at block 2604. In block 2604, the routine invokes the court

neighbor routine and then returns. The court neighbor routine connects this process to the

requesting process if possible. In block 2605, if this process has one hole, then the neighbors

with empty ports condition exists and the routine continues at block 2606, else the routine

returns. In block 2606, the routine generates a condition check message (i.e.,

condition_check) that includes a list of this process’ neighbors. In block 2607, the routine

sends the message to the requesting neighbor.

Figure 27 is a flow diagram illustrating the processing of the court neighbor

routine in one embodiment. This routine is passed an indication of the prospective neighbor

for this process. If this process can connect to the prospective neighbor, then it sends a port

connection call external message to the prospective neighbor and adds the prospective

neighbor as a neighbor. In decision block 2701, if the prospective neighbor is already a

neighbor, then the routine returns, else the routine continues at block 2702. In block 2702,

the routine dials the prospective neighbor. In decision block 2703, if the number of holes of

this process is greater than zero, then the routine continues at block 2704, else the routine

continues at block 2706. In block 2704, the routine sends a port connection call external

message (i.e., port_connection_call) to the prospective neighbor and receives its response

(1'.e., port_connection_resp). Assuming the response is successfully received, in block 2705,

the routine adds the prospective neighbor as a neighbor of this process by invoking the add

neighbor routine. In block 2706, the routine hangs up with the prospect and then returns.

Figure 28 is a flow diagram illustrating the processing of the handle connection

edge search call routine in one embodiment. This routine is passed a indication of the

neighbor who sent the message and the message itself. This routine either forwards the

message to a neighbor or proposes the edge between this process and the sending neighbor to

the requesting process for edge pinning. In decision block 2801, if this process is not the
[03004.aom/sw03733.105| —3 8- 7/3 1/00

0460

0461

10

15

20

25

30

requesting process or the number of holes of the requesting process is still greater than or

equal to two, then the routine continues at block 2802, else the routine continues at block

2813. In decision block 2802, if the forwarding distance is greater than zero, then the

random walk is not complete and the routine continues at block 2803, else the routine

continues at block 2804. In block 2803, the routine invokes the forward connection edge

search routine passing the identification of the requesting process and the decremented

forwarding distance. The routine then continues at block 2815. In decision block 2804, if

the requesting process is a neighbor or the edge between this process and the sending

neighbor is reserved because it has already been offered to a process, then the routine

continues at block 2805, else the routine continues at block 2806. In block 2805, the routine

invokes the forward connection edge search routine passing an indication of the requesting

party and a toggle indicator that alternatively indicates to continue the random walk for one

The routine then continues at block 2815. In block 2806, the

routine dials the requesting process via the call-in port. In block 2807, the routine sends an

01' tWO more computers.

edge proposal call external message (i. e., edge_proposal_call) and receives the response (i.e.,

edge_proposal__resp). Assuming that the response is successfirlly received, the routine

continues at block 2808. In decision block 2808, if the response indicates that the edge is

acceptable to the requesting process, then the routine continues at block 2809, else the

routine continues at block 2812. In block 2809, the routine reserves the edge between this

process and the sending neighbor. 1n block 2810, the routine adds the requesting process as

a neighbor by invoking the add neighbor routine. In block 2811, the routine removes the

sending neighbor as a neighbor. In block 2812, the routine hangs up the external port and

continues at block 2815, In decision block 2813, if this process is the requesting process and

the number of holes of this process equals one, then the routine continues at block 2814, else

the routine continues at block 2815. In block 2814, the routine invokes the fill hole routine.

In block 2815, the routine sends an connection edge search response message (i. e.,

connection_edge_search_response) to the sending neighbor indicating acknowledgement and

then returns. The graphs are sensitive to parity. That is, all possible paths starting from a

node and ending at that node will have an even length unless the graph has a cycle whose

length is odd. The broadcaster component uses a toggle indicator to vary the random walk

distance between even and odd distances.

-39-[03004-8001/51003733JOS] 7/31/00

0461

0462

10

15

20

25

30

Figure 29 is a flow diagram illustrating the processing of the handle connection

edge search response routine in one embodiment. This r0utine is passed as indication of the

requesting process, the sending neighbor, and the message. In block 2901, the routine notes

that the connection edge search response (i.e., connection_edge__search_resp) has been

received and if the forwarding distance is less than or equal to one unreserves‘th‘e edge

between this process and the sending neighbor. In decision block 2902, if the requesting

process indicates that the edge is acceptable as indicated in the message, then the routine

continues at block 2903, else the routine returns. In block 2903, the routine reserves the edge

between this process and the sending neighbor. In block 2904, the routine removes the

sending neighbor as a neighbor. In block 2905, the routine invokes the court neighbor

routine to connect to the requesting process. In decision block 2906, if the invoked routine

was unsuccessful, then the routine continues at block 2907, else the routine returns. In

decision block 2907, if the number of holes of this process is greater than zero, then the

routine continues at block 2908, else the routine returns. In block 2908, the routine invokes

the fill hole routine and then returns.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine

in one embodiment. This routine is invoked by the application program to broadcast a

message on the broadcast channel. This routine is passed the message to be broadcast. In

decision block 3001, if this process has at least one neighbor, then the routine continues at

block 3002, else the routine returns since it is the only process connected to be broadcast

channel. In block 3002, the routine generates an internal message of the broadcast statement

type (i. e., broadcast _stmt). In block 3003, the routine sets the sequence number of the

message. In block 3004, the routine invokes the distribute internal message routine to

broadcast the message on the broadcast channel. The routine returns.

Figure 31 is a flow diagram illustrating the processing of the acquire message

routine in one embodiment. The acquire message routine may be invoked by the application

program or by a callback routine provided by the application program. This routine retums a

message. In block 3101, the routine pops the message from the message queue of the

broadcast channel. In decision block 3102, if a message was retrieved, then the routine

returns an indication of success, else the routine returns indication of failure.

Figures 32-34 are flow diagrams illustrating the processing of messages

associated with the neighbors with empty ports condition. Figure 32 is a flow diagram
[03004-800l/SL003733JOS] -40- 7/3 1/00

0462

0463

10

15

20

25

30

illustrating processing of the handle condition check message in one embodiment. This

message is sent by a neighbor process that has one hole and has received a request to connect

to a hole of this process. In decision block 3201, if the number of holes of this process is

equal to one, then the routine continues at block. 3202, else the neighbors with empty ports

condition does not exist any more and the routine returns. In decision block 3202, if the

sending neighbor and this process have the same set of neighbors, the routine continues at

block 3203, else the routine continues at block 3205. In block 3203, the routine initializes a

condition double check message (i. e., condition_double_check) with the list of neighbors of

this process. In block 3204, the routine sends the message internally to a neighbor other than

sending neighbor. The routine then returns. In block 3205, the routine selects a neighbor of

the sending process that is not also a neighbor of this process. In block 3206, the routine

sends a condition repair message (i.e., condition_repair_stmt) externally to the selected

process. In block 3207, the routine invokes the add neighbor routine to add the selected

neighbor as a neighbor of this process and then returns.

Figure 33 is a flow diagram illustrating processing of the handle condition

repair statement routine in one embodiment. This routine removes an existing neighbor and

connects to the process that sent the message. In decision block 3301, if this process has no

holes, then the routine continues at block 3302, else the routine continues at block 3304. In

block 3302, the routine selects a neighbor that is not involved in the neighbors with empty

ports condition. In block 3303, the routine removes the selected neighbor as a neighbor of

this process. Thus, this process that is executing the routine now has at least one hole. In

block 3304, the routine invokes the add neighbor routine to add the process that sent the _

message as a neighbor of this process. The routine then returns. _

Figure 34 is a flow diagram illustrating the processing of the handle condition

double check routine. This routine determines whether the neighbors with empty ports

condition really is a problem or whether the broadcast channel is in the small regime. In

decision block 3401, if this process has one hole, then the routine continues at block 3402,

else the routine continues at block 3403. If this process does not have one hole, then the set

of neighbors of this process is not the same as the set of neighbors of the sending process. In

decision block 3402, if this process and the sending process have the same set of neighbors,

then the broadcast channel is not in the small regime and the routine continues at block 3403,

else the routine continues at block 3406. In decision block 3403, if this process has no holes,
[03004-8001/SLDO373SJOS] -4l - 7/31/00

0463

0464

10

15

then the routine returns, else the routine continues at block 3404. In block 3404, the routine

sets the estimated diameter for this process to one. In block 3405, the routine broadcasts a

diameter reset internal message (i. e., diameter_reset) indicating that the estimated diameter is

one and then returns. In block 3406, the routine creates a list of neighbors of this process. In

block 3407, the routine sends the condition check message (i. e., condition_check_stmt) with

the list of neighbors to the neighbor who sent the condition double check message and then

returns. I

From the above description, it will be appreciated that although specific

embodiments of the technology have been described, various modifications may be made

without deviating from the spirit and scope of the invention. For example, the

communica’u'ons on the broadcast channel may be encrypted. Also, the channel instance or

session identifier may be a very large number (e. g., 128 bits) to help prevent an imauthorized

user to maliciously tap into a broadcast channel. The portal computer may also enforce

security and not allow an unauthorized user to connect to the broadcast channel.

Accordingly, the invention is not limited except by the claims.

[osooa-xoovswosnsios] —42- 7/31/00

0464

0465

CLAIMS

1. A computer network for providing an information delivery service for a

plurality of parficipants, each participant having connections to at least three neighbor

participants, wherein an originating participant sends data to the other participants by

sending the data through each of its connections to its neighbor participants and wherein

each participant sends data that it receives from a neighbor participant to its other neighbor

participants.

2. The computer network of claim 1 wherein each participant is connected

to 4 other participants.

3. The computer network of claim 1 wherein each participant is connected

to an even number of other participants.

4. The computer network of claim 1 wherein the network is m-regular,

where m is the number of neighbor participants of each participant.

5. The computer network of claim 1 wherein the network is m-connected,

where m is the number of neighbor participants of each participant.

6. The computer network of claim 1 wherein the network is m-regular and

m-connected, where m is the number of neighbor participants of each participant.

7. The computer network of claim 1 wherein all the participants are peers.

8. The computer network of claim 1 wherein the connections are peer-to-

peer connections.

[03004-8001/sw03733.ios] -43- 7/31/00

0465

0466

The computer network of claim 1 wherein the connections are TCP/IP

connections.

10.

executing on a computer.

The computer network of claim 1 wherein each participant is a process

11. The computer network of claim 1 wherein a computer hosts more than

one participant.

12. The computer network of claim 1 wherein each participant sends to each

of its neighbors only one copy of the data.

13.

participants form a broadcast channel for a topic of interest.

The computer network of claim 1 wherein the interconnections of

14. A information delivery service comprising:

a plurality of broadcast channels, each broadcast channel for distributing

information relating to a topic;

means for identifying a broadcast channel for a topic of interest; and

means for connecting to the identified broadcast channel.

15.

identifying a .topic of interest includes accessing a web server that maps topics to

The information delivery service of claim 14 wherein means for

corresponding broadcast channel.

16.

is formed by subscriber computers that are each interconnected to at least three other

The information deliver service of claim 14 wherein a broadcast channel

subscriber computers.

[03004-8001/SL003733. 105] -44- 7/3l/00

0466

0467

0468

0468

0469

0470

0471

0472

0473

0474

0475

0476

0477

0477

0478

0478

0479

33_16JTvscoU

0479

0480

(" "WW—‘1 714°”,
- ;kchIAs+0vuz_

. Connca‘fiern 90>

-(%?

2 - Jr J.

- écg'égl’ffiéC “n

CMmnt\ Iasfmr‘

Insw

D: spAoLQr

0480

0481

0481

0482

Confed—

'Pfd'moc

SW

rr assoc-cg

QeceCJtékTm-md

ovossogtL

0/

0482

0483

{2’

I

l

0483

0484

Md 01m- a.$

{anew Seek-1r

0484

0485

Si‘dQZ‘
cennected

noh‘fia {’d‘oy)
~‘E ,H ‘ V.-

Fl? \§

0485

0486

F}%l‘i

0486

0487

0487

0488

0488

0489

0489

0490

0490

0491

0491

0492

0492

0493

0493

0494

0494

0495

0495

0496

YO

DisHWwJ
Bfm0

f

0496

0497

0497

0498

Z\

0498

0499

10

15

20

' V

I"XI’RISSS MAIL NO, EL404935319US

U.S.. Itaatent Application No. 09/629,023

DISTRIBUTED AUCTION SYSTEM

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to US. Patent Application No. ,

entitled “BROADCASTING NETWORK,” filed on July 31, 2000 (Attom‘ey Docket No.

030048001 US); US. Patent Application No. , entitled “JOINING A

BROADCAST CHANNEL,” filed on July 31, 2000 (Attorney Docket No. 030048002

US); Patent Application No. , “LEAVING A BROADCAST

CHANNEL,” filed on July 31, 2000 (Attorney Docket No. 030048003 US); US. Patent

, entitled “BROADCASTING ON A BROADCAST

CHANNEL,” filed on July 31, 2000 (Attorney Docket No. 030048004 US); US. Patent

No. I , , entitled “CONTACTING A BROADCAST

CHANNEL,” filed on July 31, 2000 (Attorney Docket No. 030048005 US); US. Patent

Application No. , entitled “DISTRIBUTED AUCTION SYSTEM,” filed

on July 31, 2000 (Attorney Docket No. 030048006 US); US. Patent Application

No. , entitled “AN INFORMATION DELIVERY SERVICE,” filed on

July 31, 2000 (Attorney Docket No. 030048007 US); US. Patent Application

No. , entitled “DISTRIBUTED CONFERENCING SYSTEM,” filed on

July 31, 2000 (Attorney Docket No. 030048008 US); and US. Patent Application

No. , entitled “DISTRIBUTED GAME ENVIRONMENT,” filed on

July 31, 2000 (Attorney Docket No. 030048009 US), the disclosures of which are

incorporated herein by reference.

Application No.

Application

TECHNICAL FIELD

The described system relates generally to a computer system for conducting

an auction, and more particularly to conducting auctions in a distributed environment.

[03004-8006/Documen12] -1 -

. , .-_..r.,.0499..,.

0500

10

15

20

25

‘part, upon the ease-of-use of conductng such electronic commerce.

BACKGROUND

Because it facilitates electronic communications between vendors and

purchasers, the Internet is increasingly being used to conduct “electronic commerce.”

The Internet comprises a vast number of computers and computer networks that are

interconnected through communication channels. Electronic commerce refers generally

to commercial transactions that are at least partially conducted using the computer

systems of the parties to the transactions. For example, a purchaser can use a personal

computer to connect via the Internet to a vendor’s computer. The purchaser can then

interact with the vendor’s computer to conduct the transaction. Although many of the

commercial transactions that are performed today could be performed via electronic

commerce, the acceptance and wide-spread use of electronic commerce depends, in large

If electronic

commerce can be easily conducted, then even the novice‘computer user will choose to

engage in electronic commerce. Therefore, it is important that techniques be developed

to facilitate conducting electronic commerce.

The Internet is also being used to conduct other types of commercial

transactions. For example, some server computer systems have been developed to

support the conducting of auctions electronically. To conduct an auction electronically,

the seller of an item provides a definition of the auction via web pages to a server

computer system. The definition includes a description of the item, an auction time

period, and optionally a minimum bid. The server computer system then conducts the

auction during the specified time period. Potential buyers can search the server computer

system for an auction of interest. When such an auction is found, the potential buyer can

view the bidding history for the auction and enter a bid for the item. When the auction is

closed, the server computer system notifies the winning bidder and the seller (e.g., via

electronic mail) so that they can complete the transaction.

Although such auction servers facilitate the conducting of auctions

First, the

reliability of the auction system depends upon the reliability of the auction server itself.

electronically, the conducting of such auctions has several disadvantages.

[03004.8006/Documentl 1 -2-

. .-..--.~_Q§Q.Om.

0501

VI

10

15

20

25

If the auction server were to fail, then the auctions could not be conducted. Thus, one

failure can bring the entire auction system down. Second, the auctions conducted by the

auction servers to do not closely model traditional non-computer auctions. In particular,

the electronic auctions typically close at a fixed time whereas a non-computer auction

typically closes when an auctioneer determines that no further bidding is likely. For

example, an electronic auction may advertise that it will close at 5 pm. on a certain day.

Bidders can place bids up to that time. Traditional auctions, however, may have a set

starting time, but their closing depends on bidding activity. Also, these electronic

auctions, especially when web-based, do not provide for real-time notification of bidding

activity. A bidder only finds out about being outbid in a couple of ways. The bidder may

find out by periodically accessing the auction web page to see the current high bid. Such

repeated accessing of the auction web page is cumbersome. Some auction servers may

send out electronic mail messages when someone is outbid. Such electronic mail

messages may not, however, arrive soon enough for the bidder to place a new bid.

It would be desirable to have an electronic auction system that would avoid

these disadvantages of current Server-based auction systems and more closely model

traditional non-computer auctions.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram illustrating components of the auction system in

one embodiment. '

Figure 2 is a block diagram illustrating the components of a participant’s

computer in one embodiment.

Figure 3 is a block diagram illustrating a display of current auctions.

Window 300 is displayed by the display status routine.

Figure 4 is a diagram illustrating the display all the auction-specific

window.

Figure 5 is a flow diagram of routine to request the current state of the

auctions.

[03004-8006/Documenll] -3 _

0502

10

15

20

25

Figure 6 is the flow diagram of routine that receives a current state request

message.

Figure 7 is a flow diagram of routine that receives the current state

message.

Figure 8 is a flow diagram illustrating the processing of the submit bid

routine in one embodiment.

Figure 9 is a flow diagram illustrating the processing of the receive bid

message routine in one embodiment.

Figure 10 is a flow diagram illustrating a routine that processes the

expiration of the going timer.

Figure 11 is a flow diagram illustrating a routine that processes a received

going message.

Figure 12 is a flow diagram illustrating a routine that processes the

expiration of the gone timer.

Figure 13 is a block diagram illustrating a routine that processes a received

on message.

Figure 14 is a flow diagram illustrating and auction agent in one

embodiment.

DETAILED DESCRIPTION

A method and system for conducting electronic auctions with a distributed

auctioneer is provided. In one embodiment, each participant’s computer includes an

auctioneer component for opening auctions, for accepting bids, and for closing auctions.

Thus, the auction system does not depend on a central auction server for coordinating the

bidding at an auction. The auction system is, in a sense, server-less. The auction system

uses a broadcast channel to communicate between the participants of an auction. Each

participant’s computer is connected to the broadcast channel and executes an auction

participant program. The auction participant program allows a participant to place a bid

on the item being auctioned, to receive and display bids of other participants, and to

[03004-8006/Documentl] -4-

_ . M0502...

0503

10

15

20

25

coordinate the closing of the auction. When a participant places a bid on the item being

auctioned, the auction participant program broadcasts a bid message on the broadcast

channel. Each auction participant program connected to the broadcast channel receives

the bid message and displays the current high bid to its participant. The auction

participant program whose participant submitted the high bid coordinates the closing of

the auction in accordance with closing rules. For example, when the auction participant '

program determines that its participant has not been outbid for a certain time period, then

the auctiOn participant program may broadcast a “going” message. The going message

corresponds to an auctioneer who warns participants that the auction is about to close. If

the auction participant program determines that its participant has not been outbid 'for

certain time period after sending the going message, then the auction participant program

may broadcast a “gone” message. When the auction participant programs receive the

gone message, they notify their participants that the auction is closed. The auction

participant program whose participant placed the winning bid then communicates with an

auction listing server to complete the transaction. Because the participants are connected I

through a broadcast channel, each participant receives notification of each bid as it is

placed. In addition, the auction system’s reliability is not dependent on a central auction

server. If any one of the participant’s computer fails, then the other participants can

continue on with the auction. In one embodiment, the auction system is implemented

using the broadcast channel as described in US. Patent Application No. , entitled

“A Broadcasting Network,” which is being filed concurrently and which is hereby

incorporated by reference. One skilled in the art will, however, appreciate that the

auction system can be used with other underlying communication networks.

The auction system may include an auction listing server computer, an

auction monitor computer, and participants’ computers. The auction listing server

computer may provide a web site through which sellers can list their items to be

auctioned. When an item is listed, the seller can provide a picture of the item to be

auctioned (if appropriate), the minimum bid for the item, and a start time for the auction.

Potential bidders can access web pages of the auction listing server to view the listed

[03004-8006/Documentll -S -

_ W. 0.5.03.._

0504

10

15

20

auctions. Potential bidders may also download the auction participant program from the

auction listing server to their computers. When a user wants to participate in a certain

auction, the participant runs the auction participant program which may provide a list of

the current auctions being conducted along with the status of each auction.

participant can select a certain auction and place a bid at that auction. Because the two

participants may place a bid for the same amount for an item at approximately the same

time, the auction participant program awards the bid to the participant based on a random

number generated by the bidder’s auction participant program. When a bid is placed, the

auction participant program automatically generates and includes a random number with
a bid message as it is broadcast. Whenever an auction participant program receives a bid

for the same amount as the current high bid, the auction participant program awards the

bid to the participant with the highest randomly generated number. The auction monitor

computer may also be connected to the broadcast channel. The auction monitor tracks

the status of the auction by monitoring the bids placed at the auction. The auction

monitor may provide the status of the auctions to the auction listing server and to auction

participant programs as they join the auction.

Figure 1 is a block diagram illustrating components of the auction system in

one embodiment. The auction system includes an auction listing server 101, participant

computers 102, and an auction monitor 103. Each computer may include a central

processing unit, memory, input devices (e.g., a keyboard and pointing device), output

devices (e.g., display devices), and storage devices (e. g., disk drives). The memory and

storage devices are computer-readable media that may contain computer instructions that

implement the auction system. The computer-readable media may also include computer

data transmission media, such as wire-based or wireless communications mechanisms.

The participant computers may include a browser for accessing web pages provided by

the auction listing server. The participant computers and the auction monitor are

connected to the broadcast channel 105. The participant computers, the auction monitor

computer, and the auction listing server are interconnected via the Internet 104. The

participant computers may use a browser to access auction information provided by the

[03004-8006/Documentl] - -6-

The

.-__ "0504--

0505

10

15

20

25

auction listing server. The auction listing server may include a web engine 106, a create

auction component 107, a close auction component 108, and auction database 109. The

create auction component is used by a seller to create an auction for an item. The close

auction component is used by a winning bidder to affect payment for the item being

purchased. The auction listing server may also include a component for registering

participants and a participant database. The auction database defines the auctions and

may contain the current state of the auction as provided by the auction monitor. One

skilled in the art will appreciate that various different communication mechanisms may be

used by the auction system. For example, the broadcast channel may actually be

implemented using the Internet itself. In addition, multiple auctions may be conducted

simultaneously on the broadcast channel. In such cases, each message that is broadcast

will include an auction identifier. Alternatively, each auction may have its own broadcast

The auction listing server may provide broadcast channel information

The

messages may be encrypted, or otherwise secured, to ensure that only an authorized

channel.

(e.g., application and session identifier) to each auction participant program.

auction participant program participates in an auction.

Figure 2 is a block diagram illustrating the components of a participant’s

computer in one embodiment. The participant computer includes a broadcaster

component 201, auction participant program 202, and an auction database 203. The

broadcaster component controls the connection to, broadcasting message on to, and

receiving messages off of the broadcast channel. The auction participant program

controls the participating in an auction by sending messages on to and receiving messages

off of the broadcast channel using the broadcaster component. The functions of the

broadcaster component and the broadcast channel are described in the US. Patent

Application No. , entitled “A Broadcasting Network,” which is

hereby incorporated by reference. The auction database contains current state

information for the auctions. The auction participant program includes a monitor sub-

component 105, a message handlers 106, a display state sub-component 107, and a

subunit bid sub-component 108. The monitor sub-component monitors the messages sent

[03004.8005/Documenu 1 -7-

0505.

0506

l0

[5

20

25

on the broadcast channel and invokes the appropriate message handler routine. The

display state sub-component displays the current state of the auctions. The submit bid

sub-component is invoked when a participant wants to submit a bid at an auction.

Figure 3 is a block diagram illustrating a display of currently defined

auctions. Window 300 is displayed by a display state routine. The window includes a

sub-window 301 for each auction. Each sub-window may include information describing

the auction. When a user selects a sub-window, then the display state routine displays an

auction-specific window. Figure 4 is a diagram illustrating the display of an auction-

specific window. Window 400 includes an item picture 401, an item description area

402, an auction description area 403, and a place bid button 404. The item picture area

may contain the picture of the item being auctioned. The item description area includes a

description of the item being auction. The auction description area contains information

describing the current status of the auction. For example, the actual auction state may be

the start time of the auction, an indication that the auction is in progress, an indication

that the auction is “going,” and an indication that the auction is closed. The auction

description area may also include the minimum bid, the current bid, and a suggested bid

amount which may be overridden. When the participant selects the place bid button, the

auction participant program submits the bid amount.

Figures 5-14 are flow diagrams illustrating the processing of the auction

participant program. The processing in these flow diagrams is illustrated in reference to a

single auction. One skilled in the art would appreciate that the processing could be

modified to accommodate multiple simultaneous auctions. Figure 5 is a flow diagram of

a routine to request the current state of the auction. This routine may be invoked when

the auction participant program first starts executing. When the auction participant

program starts, it may contact the auction listing serverto retrieve the current state of the

auction. Alternatively, as shown in block 501, the request current state routine may

broadcast a current state request message on the broadcast channel. The auction

participant program will receive an indication of the current state of the auction in

response. The auction participant program stores that state information in its auction

-3-[03 004-8006/Documcnt l]

. -0506 .

0507

10

IS

20

25

database. Figure 6 is the flow diagram of routine that receives and processes a current

state request message. Each auction participant program may ignore this request if the

auction monitor is configured to respond to the request. Alternatively, the auction

participant program with the current high bid at the auction may respond by broadcasting

a message that includes the current state of the auction. In decision block 601, if this

participant has the current high bid, then the routine continues at block 602, else the

routine returns. In block 602, the routine broadcasts the state of the auction and then

returns. Figure 7 is a flow diagram of_a routine that receives the current state message.

In block 701, the routine updates the auction state in the auction database and returns.

Figure 8 is a flow diagram illustrating the processing of the submit bid

routine in one embodiment. This routine validates the bid amount and then broadcasts

that bid. The routine also sets a timer to indicate when a going message should be

broadcast to notify the other participants that the auction will end if no participant places

a higher bid. In decision block 801, if the bid is'valid, then the routine continues at block

802, else the routine returns. The routine determines whether a bid is valid by ensuring

that the bid is greater than the current high bid. The reutine may also check whether the

auction is still open. The auction may have closed since the time the participant selected

the place bid button. In block 802, the routine generates a random number that is to be

included in the bid message. This random number is used by the receiving participants in

case two bids of the same amount are received by those participants. 1 If so, the

participants award the bid to the bidder with the highest random number. In block 803,

the routine creates a bid message that includes the identification of the participant, the bid

amount, and the random number. In the situation where messages for multiple auctions

are being broadcast on the broadcast channel, the bid message may also include the

auction identifier. In block 804, the routine broadcasts the bid message on the broadcast

channel. In block 805, the routine starts a timer for sending the going message. The

routine then returns.

Figure 9 is a flow diagram illustrating the processing of the receive bid

message routine in one embodiment. This routine is invoked when the auction participant

[03004-8006/Documenl 1| -9-

. -0501...

0508

10

15

20

program receives a bid message from the broadcast channel. This routine validates the

bid, updates the auction state, and clears any timers. In decision block 901, if the auction

is currently open, the routine continues at block 902, else the routine returns. In decision

block 902, if the received bid is greater than or equal to the current high bid, then the

routine continues at block 903, else the received bid has already been outbid and the

routine returns. In decision block 903, if received bid equals the current high bid, then

two participants have bid the same amount and the routine continues at block 904, else

the routine continues at block 905. In decision block 904, if the random number included

in the received bid message is greater than the random number that was included with the

bid message with the current high bid, then the bid will be awarded to the participant who

sent the bid message and the routine continues at block 905, else the routine returns. In

block 905, the routine replaces the current high bid in the auction database and may

update the display. In block 906, the routine clears any timers that may have been set to

indicate the end of the auction. The routine then returns.

Figure 10 is a flow diagram illustrating a routine that processes the

expiration of the going timer. In block 1001, the routine broadcasts a going message.

The going message may identify the participant and the current high bid. In block 1002,

the routine sets a timer for the sending of the gone message, which indicates the auction

is now closed. The routine then returns. Figure 11 is a flow diagram illustrating a

routine that processes a received going message. In decision block 1101, if the going

message corresponds to a bid that has already been superseded, then the routine returns,

else the routine continues at block 1102. In block 1102, the routine updates the state of

the auction, which may include updating the display. The routine then returns.

Figure 12 is a flow diagram illustrating a routine that processes the

expiration of the gone timer.

which may identify the participant who is sending the message along with the bid

amount. In block 1202, the routine updates the status of the auction to indicate that it is

closed. Figure 13 is a block diagram illustrating a routine that processes a received gone

message. In block 1301, the routine updates the state of the auction to indicate that it is

[03004-8006/Documentl] - l 0-

In block 1201, the routine broadcasts a gone message,

.0508.

0509

10

15

20

25

closed. In one embodiment, the auction participant program may also broadcast a

suppress message prior to broadcasting the gone message. When a participant receives a

suppress message, it can no longer submit a bid at that auction. If the participant who

broadcasted the suppress message receives no bid message from another participant for

certain period of time, it then broadcasts the gone message. If, however, a participant

after receiving the suppress message does not receive a gone message within the certain ’

period of time, it can assume that the auction is still open.

Figure 14 is a flow diagram illustrating an auction agent in one

embodiment. The auction agent is a program that allows a participant to specify a

maximum bid that they want a place for an item. The auction agent will automatically

monitor the auction and place bids on behalf of the participant up to the maximum bid.

The auction agent may use various techniques to disguise from the other participants that

it is an automated agent. For example, the auctionhagent may delay the placing of a new

bid when being outbid. The delay may be a randomly selected time period or specified in

. rules provided by the participant. In addition, the auction agent may wait until it receives 0

a going message to place the new bid. In block 1401, the routine retrieves the current

high bid from the auction database. In decision block 1402, if the current high bid is

already greater than the maximum bid that is authorized for this agent, then the routine

In block 1403, the

routine notifies the participant that the participant has been outbid'at the auction and then

continues at block 1403, else the routine continues at block 1404.

returns. In block 1404, the routine submits a bid that is the current bid plus the minimum

bid increment. The submitted bid is broadcast on the broadcast channel. In block 1405,

the routine waits for a message to be broadcast for the auction. This auction participant

program Will also broadcast going and gone messages as appropriate. In decision block

1406, if the message indicates that a new bid has been placed that is higher than the

current bid, then the routine continues at block 1407, else the routine continues at block

1408 because this auction participant program has broadcast a gone message. In block

1407, the routine optionally delays and then loops to block 1402 to submit a new bid. In

[03004-8006/Document l] - l l-

0509

0510

block 1408, the routine notifies the participant that the auction has been won and then

returns.

Based on the description, it will be .appreciated that although specific

embodiments of the invention have been described for purposes of illustration, various-

‘ modifications may be made without deviating from the spirit and scope of the invention.

Accordingly, the invention is not limited except by the appended claims.

[03004-8006/Documcntl I - 12—

0510

0511

CLAIMS

1. An auction system comprising:

an auction listing server through which an auction for an item can be defined

and information about defined auctions can be retrieved; and _

an auction participant program that executes at each participant’s computer,

that receives bid messages that are broadcast on a broadcast channel, that broadcasts bid

messages when the participant submits a bid, and that, when the participant has submitted the

highest bid, determines when the auction ends.

2.

connected to at least three other participant computers.

The auction system of claim 1 wherein a participant computer is

3.

an auction monitor computer that monitors the state of the auction based on

The auction system of claim 1 including:

messages sent on the broadcast channel.

4.

simultaneously on the broadcast channel.

The auction system of claim 1 wherein multiple auctions are conducted

5.

separate broadcast channel.

6.

includes a randomly generated number for use in awarding bids when two or more

The auction system of claim 1 wherein each broadcast bid message

participants bid the same amount.

7.

broadcasts a going message when it decides that the auction is about to end.

The auction system of claim 1 wherein the auction participant program

(03004-8006/Documentl] -13-

The auction system of claim 1 wherein each auction is conducted on a.

0.511.

0512

8. The auction system of claim 7 wherein the going message is sent by the

auction participant program that has submitted the current high bid.

9. An auction system comprising a plurality of computer systems, each

computer system capable of sending a message to each other computer system, each

computer system including a component that receives bid messages from other computer

systems, that sends bid messages to other computer systems, that sets a current high bid

based on the bid messages, and that determines when to close an auction when the computer

system has submitted the current high bid.

10. The auction system of claim 9 wherein the computer systems are

connected via a broadcast channel.

11. The auction system of claim 9 wherein the computer systems are

interconnected to form an m-regular graph, where m is 4 or larger.

12. The auction system of claim 9 wherein a computer system determines to

close an auction after it has sent a going message to the other computer systems.

13. The auction system of claim 12 wherein the determination is made a

certain time period after sending the going message.

14. The auction system of claim 12 including sending a gone message when

the computer system determines to close an auction.

15. The auction system of claim 9 wherein each computer system resolves

bids of equal amount based on a random number included with a bid message. I

16. A method in a computer system for resolving equal bids at an auction,

the method comprising:

receiving a first bid and a first tiebreaker;

[03004-8006/Document1] 14 7/31/00

05,12

0513

indicating that the first bid is the current high bid at the auction;

receiving a second bid and a second tiebreaker; and

when the first bid and the second bid are equal,

comparing the first tiebreaker to the second tiebreaker; and

indicating that the second bid is the current high bid at the auction based

on the comparison.

17.

tiebreaker are randomly generated numbers.

The method of claim 16 wherein the first tiebreaker and the second

18.

broadcast channel.

The method of claim 16 wherein the computer system is connected to a

19. The method of claim 16 wherein the auction has no central auction
server.

20.

computer system.

The method of claim 16 wherein each participant in the auction is a peer

21. The method of claim 16 wherein the second bid is indicated as the

current high bid when the second tiebreaker is larger than the first tiebreaker.

22. The method of claim 16 wherein computer systems participating in the

auction are interconnected in a m-regular graph, where m is 4 or greater.

15 7/3 1/00[03004-8006/Documem l]

05.13

0514

0514

0515

0515

0516

0516

0517

 ‘fi .

Etemn If“ DescfiPbk .

picfuve. ‘vf &;

\auuhwsm: rnProvess
mmmmbcer $ loo

(2} Curran-Jr that $15? (Mr.Sm+A)
Bad AmoMi-x s (55/-

°

- — -0517 ‘

0518

.- ., . _ ._ .. “05.1.8 ‘

0519

0520

.--.--.‘......._-...,-._..-..-_-.‘. “$15.21)w

0521

0522

. .. ._~..- -W- .-_..“.M.....-.~,_.- .--..- “£5.22.--

0523

.-_. .._--V._. -_._._‘ __ _. 0--- .._,_._0.5.2.3._

0524

__

«Wm-«~- ~-——«0§24~> ~

0525

Pig/D

-__.,--..—...--..,-._ ..-. .. @525.“
-—:«-.—n,-.

0526

Ream-t:
Go A¢

0/

m 13

0527

- _.__._.__.Q521-

0528

10

15

20

25

U.S. Patent Application No.

V No. ,

09/629 , 572 ,

EXPRESS N"'L no. m404935340us
-‘ w)

.L .‘ ‘ ‘4!

CONTACTING A BROADCAST CHANNEL

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to US. Patent Application No. ,

entitled “BROADCASTING NETWORK,” filed on July 31, 2000 (Attorney Docket

No. 030048001 US); US. Patent Application No. ~ entitled “JOINING A
BROADCAST CHANNEL,” filed on July 31, 2000 (Attorney Docket No. 030048002 US);

US. Patent Application No. , “LEAVING A BROADCAST CHANNEL,”

filed on July 31, 2000 (Attorney Docket No. 030048003 US); US. Paitent Application

No. , entitled “BROADCASTING ON A BROADCAST CHANNEL,” filed

on July 31, 2000 (Attorney Docket No. 030048004 US); US. Patent Application

No. , entitled “CONTACTING A BROADCAST CHANNEL,” filed on

July 31,2000 (Attorney Docket No. 030048005 US); US. Patent

No. , entitled “DISTRIBUTED AUCTION SYSTEiM,”

July 31, 2000 (Attorney Docket No. 030048006 US); US. Patent

No. , entitled “AN INFORMATION DELIVERY SERVICE,” filed on

July 31, 2000 (Attorney Docket No. 030048007 US); US. Patent Application

No. , entitled “DISTRIBUTED CONFERENCING SYSIIEM,” filed. on

July 31, 2000 (Attorney Docket No. 030048008 US); and US. Patent Application

entitled “DISTRIBUTED GAME ENVIRONMENT,” filed on

July 31, 2000 (Attorney Docket No. 030048009 US), the disclosures of which are

incorporated herein by reference. »

Application

filed

Application

on
TECHNICAL FIELD

The described technology relates generally to a computer 11 twork and more

particularly, to a broadcast channel for a subset of 8 computers of an underlypng network.

BACKGROUND
1

I

I

There are a wide variety of computer network communication; techniques such

[03004-8005/81003733J011 - l - 7/3 I I00

as point-to-point network protocols, client/server middleware, multifasting network
I
l

i

0528

0529

10

15

20

25

30

i
l

protocols, and pecr-to-peer middleware. Each of these communications|techniques have

. their advantages and disadvantages, but none is particularly well suited to !he simultaneous
sharing of information among computers that are widely distributed? For example,

collaborative processing applications, such as a network meeting programsi, have a need to
distribute information in a timely manner to all participants who may be geographically

distributed. ,
The point-to-point network protocols, such as UNIX pipes, TtP/IP, and UDP,

allow processes on different computers to cormnunicate via point-to-point connections. The

interconnection of all participants using point-to-point connections, while theoretically

possible, does not scale well as a number of participants grows. Fo:r example, each

participating process would need to manage its direct connections to all other participating
processes. Programmers, however, find it very difficult to manage single connections, and

management of multiple connections is much more complex. In addition, participating

processes may be limited to the number of direct connections that they can support. This

limits the number of possible participants in the sharing of information.

The client/server middleware systems provide a server thati coordinates the

communications between the various clients who are sharing the information. The server

functions as a central authority for controlling access to shared resources. Examples of

client/server middleware systems include remote procedure calls (“RPC”), database servers,

and the common object request broker architecture (“CORBA”). Client/server middleware

systems are not parficularly well suited to sharing of information among many participants.

In particular, when a client stores information to be shared at the server, each other client

would need to poll the server to determine that new information is being shared. Such

polling places a very high overhead on the communications network. Alternatively, each

client may register a callback with the server, which the server then invokes when new

information is available to be shared. Such a callback technique presents a performance

bottleneck because a single server needs to call back to each client whenever new

information is to be shared. In addition, the reliability of the entire sharing of information

depends upon the reliability of the single server. Thus, a failure at a single computer (i.e.,

the server) would prevent communications between any of the clients. E

The multicasting network protocols allow the sending of broadcast messages to

multiple recipients of a network. The current implementations of such muliicasting networkI

[03004-8005/SL003733. 101] -2- 7/31/00

0529

0530

10

15

20

25

30

protocols tend to place an unacceptable overhead on the underlying network. For example,
UDP multicasting would swamp the Internet when trying to locate all possible participants.
1? multicasting has other problems that include needing special-purpose iniirastruchrre (e.g.,
routers) to support the sharing of information efficiently.

The peer-to-peer middleware communications systems rely a multicasting
network protocol or a graph of point-to-point network protocols. Such peer-to-peer

middleware is provided by the T.120 Internet standard, which is used in isuch products as
Data Connection’s D.C.-share and Microsoft’s NetMeeting. These peer-to-beer middleware

systems rely upon a user to assemble a point-to-point graph of the conr‘gections used for
sharing the information. Thus, it is neither suitable nor desirable to use peer-to—peer

middleware systems when more than a small number of participants is desiied. In addition,
the underlying architecture of the T. 120 lntemet standard is a tree structurel which relies on

the root node of the tree for reliability of the entire network. That is, each miessage must pass
through the root node in order to be received by all participants.

It would be desirable to have a reliable communications Enetwork that is
suitable for the simultaneous sharing of information among a large numberlof the processes

that are widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS
i
|

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents al

broadcast channel. '

Figure 2 illustrates a graph representing 20 computers connectied to a broadcast

channel. I
Figures 3A and 3B illustrate the process of connecting a new omputer Z to the

broadcast channel. ;1

Figure 4A illustrates the broadcast channel of Figurel gwith ‘an added

computer. E

Figure 4B illustrates the broadcast channel of Figure 4A; with an added
computerf

Figure 4C also illustrates the broadcast channel of Figure 4A with an added
!

computer. i
i

[03004-8005/81303733J01] 7/31/00

0530

0531

10

15

20

25

30

nI

Figure 5A illustrates the disconnecting of a computer from the broadcast

channel in a planned manner.

Figure SB illustrates the disconnecting of a computer from the broadcast

channel in an unplanned manner. ;
Figure 5C illustrates the neighbors with empty ports condition.I

Figure 5D illustrates two computers that are not neighbors who now have

empty ports.

Figure 5E illustrates the neighbors with empty ports condition in the small

regime. . 1

Figure 5F illustrates the situation of Figure 5E when in the largi: regime.
Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcast channel.

Figure 7 is a block diagram illustrating the sub-components of the broadcaster

component in one embodiment.

Figure 8 is a flow diagram illustrating the processing of the connect routine in

one embodiment. I

Figure 9 is a flow diagram illustrating the processing of the seek portal

computer routine in one embodiment.

Figure 10 is a flow diagram illustrating the processing of the contact process

routine in one embodiment. ' i
Figure 11 is a flow diagram illustrating the processing of the“ connect request

routine in one embodiment.
Figure 12 is a flow diagram of the processing of the check for external call

routine in one. embodiment. ' 1

Figure 13 is a flow diagram of the processing of the achieve cdnnection routine
in one embodiment.

Figure 14 is a flow diagram illustrating the processing :of the external

dispatcher routine in one embodiment.

Figure 15 is a flow diagram illustrating the processing of the handle seeking
connection call routine in one embodiment. :

Figure 16 is a flow diagram illustrating processing of the handle connection

request call routine in one embodiment. !
[03004-8005/Sw03733J01] -4- 7/31/00

0531

0532

10

15

20

25

30

l

iI

tlie add neighbor
l1

Figure 17 is a flow diagram illustrating the processing of

routine in one embodiment. ‘ {

Figure 18 is a flow diagram illustrating the processing if the forward
connection edge search routine in one embodiment. |

Figure 19 is a flow diagram illustrating the processing of ihe handle edge

proposal call routine. I g

Figure 20 is a flow diagram illustrating the processing of the handle port

connection call routine in one embodiment.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in

one embodiment. :

Figure 22 is a flow diagram illustrating the processing of the inltemal dispatcher

routine in one embodiment.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast
message routine in one embodiment.

Figure 24 is a flow diagram illustrating the processing (if the distribute
broadcast message routine in one embodiment.

Figure 26 is a flow diagram illustrating the processing of the handle connection

port search statement routine in one embodiment.

Figure 27 is a flow diagram illustrating the processing of the court neighbor

routine in one embodiment.

Figure 28 is a flow diagram illustrating the processing of the hiandle connection
edge search call routine in one embodiment.

Figure 29 is a flow diagram illustrating the processing of the hiandle connection
edge search response routine in one embodiment.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine
in one embodiment. E

Figure 31 is a flow diagram illustrating the processing of theiacquire message
routine in one embodiment. 'i

Figure 32 is a flow diagram illustrating processing of the irandle condition
check message in one embodiment.

Figure 33 is a flow diagram illustrating processing of the handle conditionI

i
il

i

repair statement routine in one embodiment.

(03004-8005/sm03733.ior] —5- 7n 1/00

0532

0533

IO

15

20

25

30

Figure 34 is a flow diagram illustrating the processing of the handle condition
double check routine. E

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel overlaysl a point-to-point

communications network is provided. The broadcasting of a message ovfer the broadcast
channel is effectively a multicast to those computers of the network thlat are currently
connected to the broadcast channel. In one embodiment, the broadcast technique provides a

logical broadcast channel to which host computers through their executing processes can be
connected. Each computer that is connected to the broadcast channel can broadcast

messages onto and receive messages off of the broadcast channel. Each {computer that is
connected to the broadcast channel receives all messages that are broadcast while it is

connected. The logical broadcast channel is implemented using an un Ierlying network

system (e. g., the Internet) that allows each computer connected to the underlying network

system to send messages to each other connected computer using each computer’s address.

Thus, the broadcast technique effectively provides a broadcast channel usirlg an underlying
network system that sends messages on a point-to-point basis. !

The broadcast technique overlays the underlying network systhm with a graph
of point-to-point connections (i.e., edges) between host computers (i. e.,§nodes) through

which the broadcast channel is implemented. In one embodiment, edich computer is '

connected to four other computers, referred to as neighbors. (Actually, a pl'ocess execun'ng
on a computer is connected to four other processes executing on or four other

computers.) To broadcast a message, the originating computer sends the mdssage to each of

its neighbors using its point-to-point connections. Each computer that receives the message

then sends the message to its three other neighbors using the point-to-pointlconnections. In
this way, the message is propagated to each computer using the underlying network to effect
the broadcasting of the message to each computer over a logical broadcast dhannel. A graph
in which each node is connected to four other nodes is referred to as a 4-re ar graph. The

use of a 4-regular graph means that a computer would become disconnected from the
. I

broadcast channel only if all four of the connections to its neighbors fail. The graph used by

the broadcast technique also has the property that it would take a failure of fbur computers to

[03004-800513 LOO3733. 101] -6- 7/31/00
l
I _
l

l
0533

0534

10

15

20

25

30

i

divide the graph into disjoint sub-graphs, that is two separate broadcast ichannels. This

property is referred to as being 4-connected. Thus, the graph is both 4-regular and 4-
connccted.

Figure 1 illustrates a graph that is 4-rcgnlar and 4-connected which represents
the broadcast channel. Each of the nine nodes A-I represents a computer that is connected to

the broadcast channel, and each of the edges represents an “edge” connection between two
computers of the broadcast channel. The time it takes to broadcast a message to each

computer on the broadcast channel depends on the speed of the connections between the

computers and the number of connections between the originating computejr and each other
computer on the broadcast channel. The minimum number of connectionsl that a message

would need to naverse between each pair of computers is the “distan Ie” between the

computers (i.e., the shortest path between the two nodes of the graph). lTor example, the
distance between computers A and F is one because computer A is direcfly connected to

computer F. The distance between computers A and B is two because tliere is no direct
connection between computers A and B, but computer F is directly connected to computer B.

Thus, a message originating at computer A would be sent directly to com ter F, and then

sent from computer F to computer B. The maximum of the distances betwe In the computers

is the “diameter” of broadcast channel. The diameter of the broadcast chahnel represented

. by Figure 1 is two. That is, a message sent by any computer would traver'lse no more than

two connections to reach every other computer. Figure 2 illustrates a grapli representing 20

computers connected to a broadcast channel. The diameter of this broadcasti channel is 4. In
particular, the shortest path between computers 1 and 3 contains four conneictions (1-12, 12-
15, 15-18, and 18-3). 1 ,

The broadcast technique includes (1) the connecting of cbmputers to the

broadcast channel (i. e., composing the graph), (2) the broadcasting of messages over the

broadcast channel (i.e., broadcasting through the graph), and (3) the disconnecting of

computers from the broadcast channel (i. e., decomposing the graph) composing the graph.

Composing the Graph

To connect to the broadcast channel, the computer seeking the; connection first

locates a computer that is currently fully connected to the broadcast channel and then

[03004-8005/SL003733JOII -7- 781/00

II
l

. ._
ll
I
I
ix

0534

0535

10

15

20

25

30

establishes a connection with four of the computers that are already cicnnected to the

broadcast channel. (This assumes that there are at least four computers already connected to

the broadcast channel. When there are fewer than five computers connected, the broadcast
channel cannot be a 4-regular graph. In such a case, the broadcast channel! is considered to

be in a “small regime.” The broadcast technique for the small regime is deihcribed below in
detail. When five or more computers are connected, the broadcast channeli is considered to

be in the “large regime.” This description assumes that the broadcast chanriel is in the large
regime, unless specified otherwise.) Thus, the process of connecting i0 the broadcast
channel includes locating the broadcast channel, identifying the neighbors fcitr the connecting

computer, and then connecting to each identified neighbor. Each computeti is aware of one
or more “portal computers” through which that computer may locate the brioadcast channel.

A seeking computer locates the broadcast channel by contacting the portal domputers until it

finds one that is currently fully connected to the broadcast charmel. 'Iihe found portal

computer then directs the identifying of four computers (i.e., to be the seeking computer’s

neighbors) to which the seeking computer is to connect. Each of these four:L computers then

cooperates with the seeking computer to effect the connecting of the seeking: computer to the
broadcast channel. A computer that has started the process of locating a porial computer, but
does not yet have a neighbor, is in the “seeking connection state.” A computer that is

connected to at least one neighbor, but not yet four neighbors, is in the “pafnially connected
state.” A computer that is currently, or has been, previously connected to four neighbors is

in the “fully connected state.”

Since the broadcast channel is a 4-regular graph, each (if the identified
computers is already connected to four computers. Thus, some conniections between
computers need to be broken so that the seeking computer can connect to four computers. In

one embodiment, the broadcast technique identifies two pairs of computers at are currently

connected to each other. Each of these pairs of computers breaks the corinection between
them, and then each of the four computers (two from each pair) connectis to the seeking
computer. Figures 3A and 3B illustrate the process of a new computer Z connecting to the

broadcast channel. Figure 3A illustrates the broadcast channel before! computer Z is
connected. The pairs of computers B and E and computers C and D are the i 0 pairs that are

identified as the neighbors for the new computer Z. The connections between each of these

pairs is broken, and a connection between computer Z and each of computetis B, C, D, and E
-3- !I03004-8005/SL003733JOI] 7/31/00

0535

0536

10

15

20

25

30

is established as indicated by Figure 3B. The process of breaking the coninection between
two neighbors and reconnecting each of the former neighbors to another computer is referred

to as “edge pinning” as the edge between two nodes may be considered to the stretched and
pinned to a new node.

Each computer connected to the broadcast channel allocates five
communications ports for communicating with other computers. Four if the ports are
referred to as “internal” ports because they are the ports through which thei messages of the
broadcast channels are sent. The connections between internal ports (if neighbors are
referred to as “internal” connections. Thus, the internal connections of the biroadcast channel

form the 4-regular and 4-connected graph. The fifth port is referred to as “external” port
because it is used for sending non-broadcast messages between two compriters. Neighbors
can send non-broadcast messages either through their internal ports of th ir connection or

through their external ports. A seeking computer uses external ports whenWlocating a portal
computer.

In one embodiment, the broadcast technique establishes the computer

connections using the TCP/IP communications protocol, which is a point-tb—point protocol,
as the underlying network. The TCP/IP protocol provides for reliable and iordered delivery

of messages between computers. The TCP/IP protocol provides each compiuter with a “port
space” that is shared among all the processes that may execute on that computer. The ports

are identified by numbers from O to 65,535. The first 2056 ports are resdrved for specific
applications (e.g., port 80 for HTTP messages). The remainder of the poi-ts are user ports

that are available to any process. In one embodiment, a set of port numbers? can be reserved

for use by the computer connected to the broadcast channel. In an altemat:ive embodiment,
the port numbers used are dynamically identified by each computer. Each computer

dynamically identifies an available port to be used as its call-in port. This c+ll-in port is used
to establish connections with the external port and the internal ports. Eachi computer that is

connected to the broadcast channel can receive non-broadcast messages thriough its external

port. A seeking computer tries “dialing” the port numbers of the portal domputers until a
portal computer “answers,” a call on its call-in port. A portal computer ariswers when it is

connected to or attempting to connect to the broadcast channel and its call-tin port is dialed.

(In this description, a telephone metaphor is used to describe the connections.) When a

computer receives a call on its call-in port, it transfers the call to anotherg port. Thus, the

[03004-8005/SL003733JOI] -9- 7/3 1/00

0536

0537

10

15

20

25

30

ll

seeking computer actually communicates through that transfer-to port, which is the external
port. The call is transferred so that other computers can place calls to that bomputer via the
call-in port. The seeking computer then communicates via that external port to request the
portal computer to assist in connecting the seeking computer to the broadcast channel. The

seeking computer could identify the call-in port number of a portal computci by successively
dialing each port in port number order. As discussed below in detail, the broadcast technique

uses a hashing algorithm to select the port number order, which may result in improved

performance.

A seeking computer could connect to the broadcast channel by connecting to

computers either directly connected to the found portal computer or directly connected to one

of its neighbors. A possible problem with such a scheme for identifying the neighbors for

the seeking computer is that the diameter of the broadcast channel may increase when each

seeking computer uses the same found portal computer and establishes a connection to the

broadcast channel directly through that found portal computer. Conceptually, the graph

' Figures 4A-4C

illustrate that possible problem. Figure 4A illustrates the broadcast channelfof Figure l with

becomes elongated in the direction of where the new nodes are added.

an added computer. Computer J was connected to the broadcast channel iby edge pinning

edges OD and E-H to computer J. The diameter of this broadcast channel is still two.

Figure 48 illustrates the broadcast channel of Figure 4A with an added computer.

Computer K was connected to the broadcast channel by edge pinning-edges 13-1 and B—C to

computer K. The diameter of this broadcast channel is three, because the shortest path from

computer G to computer K is through edges G-A, A-E, and E-K. Figure 4C also illustrates

the broadcast channel of Figure 4A with an added computer. Computer K iavas connected to
the broadcast channel by edge pinning edges D-G and E-J to computer K. iThe diameter of

this broadcast channel is, however, still two. Thus, the selection of neighbors impacts the

diameter of the broadcast channel. To help minimize the diameter, the brtiadcast technique
' uses a random selection teclmique to identify the four neighbors of a compuier in the seeking

connection state. The random selection technique tends to distribute the copnections to new
seeking computers throughout the computers of the broadcast channel w ‘ch may result in

smaller overall diameters.

[MOM-80051810037133.1011 -lO- l 7/31/00

0537

0538

10

15

20

25

30

I

Broadcasting Through the Graph
As described above, each computer that is connected to the brpadcast channel

can broadcast messages onto the broadcast channel and does receive all nw’essages that are
broadcast on the broadcast channel. The computer that originates a message to be broadcast

sends that message to each of its four neighbors using the internal conneritions. When a
computer receives a broadcast message fiom a neighbor, it sends the mesiage to its three
other neighbors. Each computer on the broadcast channel, except the origiriating computer,
will thus receive a copy of each broadcast message from each of its four nieighbors. Each
computer, however, only sends the first copy of the message that it receivesito its neighbors
and disregards subsequently received copies. Thus, the total number of copies of a message
that is sent between the computers is 3N+1, where N is the number of computers connected

to the broadcast channel. Each computer sends three copies of the message, except for the

originating computer, which sends four copies of the message.

The redundancy of the message sending helps to ensure the overall reliability
of the broadcast channel. Since each computer has four connections ti) the broadcast

channel, if one computer fails during the broadcast of a message, its neighbors have three

other connections through which they will receive copies of the broadcast mhssage. Also, if

the internal connection between two computers is slow, each computer has three other
. ‘ . . . I

connections through which it may receive a copy of each message sooner. I

Each computer that originates a message numbers its own messages

sequentially. Because of the dynamic nature of the broadcast channel and because there are

many possible connection paths between computers, the messages may be received out of

order. For example, the distance between an originating computer and a certain receiving

computer may be four. After sending the first message, the originating computer and

receiving computer may become neighbors and thus the distance between ihem changes to
one. The first message may have to travel a distance of four to reach the rec iving computer.

The second message only has to travel a distance of one. Thus, it is possibie for the second
message to reach the receiving computer before the first message.

When the broadcast channel is in a steady state (i. e., no comp ters connecting

or disconnecting from the broadcast channel), out-of-order messages ar not a problem

because each computer will eventually receive both messages and can queu messages until

all earlier ordered messages are received. If, however, the broadcast channel is not in a

[03004-8005/SID03733JOI] -l 1- 7/31/00

I
l

g

0538

0539

10

15

20

25

3O

steady state, then problems can occur. In particular, a computer may i connect to the

broadcast channel after the second message has already been received and forwarded on by

its new neighbors. When a new neighbor eventually receives the first message, it sends the

message to the newly connected computer. Thus, the newly connected computer will receive

the first message, but will not receive the second message. If the newly coniiected computer

needs to process the messages in order, it would wait indefinitely for the second message.

One solution to this problem is to have each computer queue all the messages

that it receives until it can send them in their proper order to its neighbors. This solution,

however, may tend to slow down the propagation of messages through the computers of the

broadcast channel. Another solution that may have less impact on the propagation speed is

to queue messages only at computers who are neighbors of the newly connected computers.

Each already connected neighbor would forward messages as it receives them to its other

The

already connected neighbor would Only forward messages from each originating computer to

neighbors who are not newly connected, but not to the newly connected neighbor.

the newly connected computer when it can ensure that no gaps in the meisages from that

originating computer will occur. In one embodiment, the already connected neighbor may

track the highest sequence number of the messages already received and forwarded on from

each originating computer. The already connected computer will send only higher numbered

messages from the originating computers to the newly connected computer. Once all lower

numbered messages have been received from all originating computers, then the already

connected computer can treat the newly connected computer as its other neighbors and
simply forward each message as it is received. In another embodiment, eaclh computer may

queue messages and only forwards to the newly connected computer those messages as the

gaps are filled in. For example, a computer might receive messages 4 and 5 and then receive

message 3. In such a case, the already connected computer would forward queue messages 4

and 5. When message 3 is finally received, the already connected computer will send

messages 3, 4, and 5 to the newly connected computer. If messages 4 and 5 were sent to the

newly connected computer before message 3, then the newly connected pomputer would

process messages 4 and 5 and disregard message 3. Because the already co ected computer

queues messages 4 and 5, the newly connected computer will be able to pr cess message 3.

It is possible that a newly connected computer will receive a set of m ssages from an

originating computer through one neighbor and then receive another set of message from the

-12- I
1

1

7/31/00[03004-8005/sm03733.101 1

0539

0540

10

15

20

25

30

n
I
i

. i .
same originating computer through another neighbor. If the second set of messages contains

a message that is ordered earlier than the messages of the first set receivedi then the newly
connected computer may ignore that earlier ordered message if the cciamputer already

processed those later ordered messages.
Decomposing the Grth |

A connected computer disconnects fi'om the broadcast charlmel either in a

plarmed or unplanned manner. When a computer disconnects in a planned manner, it sends a

disconnect message to each of its four neighbors. The disconnect message includes a list that

identifies the four neighbors of the disconnecting computer. When a nei lbor receives the

disconnect message, it tries to connect to one of the computers on tlie list. In one
embodiment, the first computer in the list will try to connect to the secondicomputer in the
list, and the third computer in the list will try to connect to the fourth compliter in the list. If

a computer cannot connect (e.g., the first and second computers are already ’connected), then

the computers may try connecting in various other combinations. If connections cannot be
established, each computer broadcasts a message that it needs to establish a! connection with

another computer. When a computer an available internal port receives the message, it

can then establish a connection with the computer that broadcast the message. Figures 5A-

5D illustrate the disconnecting of a computer from the broadcast channel. Figure 5A

illustrates the disconnecting of a computer from the broadcast channel in a planned manner.

When computer H decides to disconnect, it sends its list of neighbors to eac of its neighbors

When

computers A and I receive the message they establish a connection b tween them as

(computers A, E, F and I) and then disconnects from each of its ne ghbors.

indicated by the dashed line, and similarly for computers E and F. ,

When a computer disconnects in an unplanned manner, such lis resulting from
a power failure, the neighbors connected to the disconnected comput r recognize the

disconnection when each attempts to send its next message to the n w disconnected

computer. Each former neighbor of the disconnected computer recognizes that it is short one

connection (i.e., it has a hole or empty port). When a connected computer dbtects that one of

its neighbors is now disconnected, it broadcasts a port connection request It the broadcast1

channel, which indicates that it has one internal port that needs a connjF‘tion. The portconnection request identifies the call-in port of the requesting computer. en a connected

(oaoouoos/swosm. 101] -l 3- 7/31/00

5
i

1

0540

0541

10

15

20

25

30

!

computer that is also short a connection receives the connection request, it communicates
with the requesting computer through its external port to establish a connection between the

two computers. Figure 5B illustrates the disconnecting of a computer froin the broadcast

channel in an unplanned manner. In this illustration, computer H has dis%:onnected in an
unplanned manner. When each of its neighbors, computers A, E, F, and recognizes the

disconnection, each neighbor broadcasts a port connection request indicating that it needs to
fill an empty port. As shown by the dashed lines, computers F and l and corinputers A and E

respond to each other’s requests and establish a connection. :

It is possible that a planned or unplanned disconnection maiy result in two
neighbors each having an empty internal port. In such a case, since they arei neighbors, they
are already connected and cannot fill their empty ports by connecting to eaqh other. Such a
condition is referred to as the “neighbors with empty ports” condition. Each neighbor

broadcasts a port connection request when it detects that it has an empty iort as described
above. When a neighbor receives the port connection request from the otheiineighbor, it will
recognize the condition that its neighbor also has an empty port. Such a coiidition may also

occur when the broadcast channel is in the small regime. The condition can only be

corrected when in the large regime. When in the small regime, each computer will have less

than four neighbors. To detect this condition in the large regime, which would be a problem

if not repaired, the first neighbor to receive the port connection request recognizes the

condition and sends a condition check message to the other neighbor. The condition check

message includes a list of the neighbors of the sending computer. When the receiving

If the lists are

different, then this condition has occurred in the large regime and repair is needed. To repair

computer receives the list, it compares the list to its own list of neighbors.

this condition, the receiving computer will send a condition repair request to one of the

neighbors of the sending computer which is not already a neighbor of the receiving

computer. When the computer receives the condition repair request, it disctinnects from one

of its neighbors (other than the neighbor that is involved with the condition)? and connects to
the computer that sent the condition repair request. Thus, one of the oriiginal neighbors
involved in the condition will have had a port filled. However, two computers are still in

need of a connection, the other original neighbor and the computer that is nbw disconnected

from the computer that received the condition repair request. Those two coinputers send out

port connection requests. If those two computers are not neighbors, then the will connect to
I

[osoouoos/swomaiou -14- 7/31/00

0541

0542

10

15

20

25

30

each other when they receive the requests. If, however, the two computetis are neighbors,
then they repeat the condition repair process until two non-neighbors ’are in need of
connections.

It is possible that the two original neighbors with the condiu'bn may have the

same set of neighbors. When the neighbor that receives the condition? check message
determines that the sets of neighbors are the same, it sends a condition doublfe check message

to one of its neighbors other than the neighbor who also has the condiiion. When the
computer receives the condition double check message, it determines whethle it has the same
set of neighbors as the sending computer. If so, the broadcast channel is in !he small regime
and the condition is not a problem. If the set of neighbors are different, tlien the computer

that received the condition double check message sends a condition check, message to the
. l . .

original neighbors with the condition. The computer that receives that icondrtron checki4

message directs one of it neighbors to connect to one of the original neighbors with the

condition by sending a condition repair message. Thus, one of the original] neighbors with
the condition will have its port filled.

Figure 5C illustrates the neighbors with empty ports coniiition. In this

illustration, computer H disconnected in an unplanned manner, but computers F and I

responded to the port connection request of the other and are now connectefd together. The
other former neighbors of computer H, computers A and E, are already neighbors, which

gives rise to the neighbors with empty ports condition. In this example, co iputer E received
the port connecu'on request from computer A, recognized the possible cldition, and sent
(since they are neighbors via the internal connection) a condition check mcissage with a list

of its neighbors to computer A. When computer A received the list, iti recognized that
computer E has a different set of neighbor (i.e., the broadcast channel is in the large regime).

Computer A selected computer D, which is a neighbor of computer E and sént it a condition
repair request. When computer D received the condition repair request, it lsconnected from
one of its neighbors (other than computer E), which is computer G in this example.

Computer D then connected to computer A. Figure 5D illustrates two compliters that are not

neighbors who now have empty ports. Computers E and G now have empty ports and are
not currently neighbors. Therefore, computers E and G can connect to each fother.

Figures 5E and SF further illustrate the neighbors with emptyi ports condition.
Figure SE illustrates the neighbors with empty ports condition in the smalli regime. In this

i
[03004.soos/sm03733.101] -15- 7/3 I 100

0542

0543

10

15

20

25

30

example, if computer E disconnected in an unplanned manner, then leach computer

broadcasts a port connection request when it detects the disconnect. Wlien computer A

receives the port connection request form computer B, it detects the neighljrors with empty

ports condition and sends a condition check message to computer B. Compuier B recognizes
that it has the same set of neighbors (computer C and D) as computer A and then sends a

condition double check message to computer C. Computer C recognizes thin the broadcast
channel is in the small regime because is also has the same set of neighborslas computers A

and B, computer C may then broadcast a message indicating that the broadcast channel is in
the small regime. .

Figure 5F illustrates the situation of Figure 5E when in the lairge regime. As
discussed above, computer C receives the condition double check message fr!pm computer B.
In this case, computer C recognizes that the broadcast channel is in the large! regime because

it has a set of neighbors that is different from computer B. The edges extiending up from
computer C and D indicate connections to other computers. Computer then sends a

condition check message to computer B. When computer B receives the Econdition check
message, it sends a condition repair message to one of the neighbors of cdmputer C. The
computer that receives the condition repair message disconnects from one if its neighbors,
other than computer C, and tries to connect to computer B and the neighbciir from which it
disconnected tries to connect to computer A. 5

Port Selection

As described above, the TCP/IP protocol designates ports abojve number 2056

as user ports. The broadcast technique uses five user port numbers on each computer: one

ex'temal port and four internal ports. Generally, user ports cannot be stafithlly allocated to
an application program because other applications programs executing on same computer

may use conflicting port numbers. As a result, in one embodiment, the computers connected

to the broadcast charmel dynamically allocate their port numbers. Each icomputer could

simply try to locate the lowest number unused port on that computer and us}? that port as the
call-in port. A seeking computer, however, does not know in advance [the call-in port

number of the portal computers when the port numbers are dynamically alllocated. Thus, a
seeking computer needs to dial ports of a portal computer starting withzthe lowest port

number when locating the call-in port of a portal computer. If the papal computer is

[03004-8005/5w03731l01] -16- 7/31/00

.

l
i
l
I.
I

0543

0544

10

15

20

25

30

connected to (or attempting to connect to) the broadcast channel, then the sheking computer
would eventually find the call-in port. If the portal computer is not connected, then the

seeking computer would eventually dial every user port. In addition, if Fach application

program on a computer tried to allocate low-ordered port numbers, then alportal computer
may end up with a high-numbered port for its call-in port because many of the low-ordered

port numbers would be used by other application programs. Since the dialing of a port is a

relatively slow process, it would take the seeking computer a long time to locate the call-in

port of a portal computer. To minimize this time, the broadcast technique uses a port

ordering algorithm to identify the port number order that a portal computer ishould use when

finding an available port for its call-in port. In one embodiment, the bro'adcast technique

uses a hashing algorithm to identify the port order. The algorithm preferabiy distributes the

ordering of the port numbers randomly through out the user port number: space and only
selects each port number once. In addition, every time the algorithm is executed on any

computer for a given charmel type and channel instance, it generates the satire port ordering.
As described below, it is possible for a computer to be connected to mtiltiple broadcast

channels that are uniquely identified by channel type and channel instancei. The algorithm

may be “seeded” with channel type and channel instance in order to grinerate a unique

ordering of port numbers for each broadcast channel. Thus, a seeking compiuter will dial the
ports of a portal computer in the same order as the portal computer used when allocating its

call-in port.
If many computers are at the same time seeking connectioit to a broadcast

channel through a single portal computer, then the ports of the portal comptiter may be busy
when called by seeking computers. The seeking computers would typicallyi need to keep on

redialing a busy port. The process of locating a call-in port may be significantly slowed by

such redialing. In one embodiment, each seeking computer may each reo der the first few

port numbers generated by the hashing algorithm. For example, each s eking computer

could randomly reorder the first eight port numbers generated by the hashin algorithm. The

random ordering could also be weighted where the first port number generated by the
hashing algorithm would have a 50% chance of being first in the reorderingi the second port
number would have a 25% chance of being first in the reordering, and so bn. Because the

seeking computers would use different orderings, the likelihood of a busy port is
reduced. For example, if the first eight port numbers are randomly sellpcted, then it is
[osoouooslsmoansiou -17- 7/31/00

0544

0545

10

15

20

25

30

possible that eight seeking computers could be Simultaneously dialing ports in different

sequences which would reduce the chances of dialing a busy port.

Locating a Portal Computer V

Each computer that can connect to the broadcast channel hasi a list of one or

more portal computers through which it can connect to the broadcast channel. In one

embodiment, each computer has the same set of portal computers. A seeking computer

locates a portal computer that is connected to the broadcast channel by succiessi'vely dialing

the ports of each portal computer in the order specified by an algorithm. A sieeking computer
could select the first portal computer and then dial all its ports until a citall-in port of a
computer that is fully connected to the broadcast channel is found. If rib call-in port is

found, then the seeking computer would select the next portal compute l and repeat the

process until a portal computer with such a call-in port is found. A probiem with such a

seeking technique is that all user ports of each portal computer are dialtid until a portal
computer fully connected to the broadcast channel is found. In an alternate embodiment, the
seeking computer selects a port number according to the algorithm and then 'als each portal

computer at that port number. If no acceptable call-in port to the broadcast hannel is found,

then the seeking computer selects the next port number and repeats the prticess. Since the
call-in ports are likely allocated at lower-ordered port numbers, the seeking computer first
dials the port numbers that are most likely to be call-in ports of the broadcast channel. The

seeking computers may have a maximum search depth, that is the number ofiports that it will

dial when seeking a portal computer that is fully connected. If the seeking computer

exhausts its search depth, then either the broadcast channel has not yet been established or, if
the seeking computer is also a portal computer, it can then establish the bioadcast channel

with itself as the first fully connected computer.

When a seeking computer locates a portal computer that is itself not fully

connected, the two computers do not connect when they first locate each other because the

broadcast channel may already be established and accessible through a higlher—ordered port

number on another portal computer. If the two seeking computers were tolconnect to each

other, then two disjoint broadcast channels would be formed. Each seek'uirg computer can
share its experience in trying to locate a portal computer with the other seeking computer. In

particular, if one seeking computer has searched all the portal computers to depth of eight,

[03004-8005/812003733. 101] -1 8- 70 1/00
I

i a

0545

0546

10

15

20

25

30

then the one seeking computer can share that it has searched to a depth of eight with another
seeking computer. If that other seeking computer has searched to a depthlof, for example,

only four, it can skip searching through depths five through eight and tliat other seeking
computer can advance its searching to a depth of nine. ’ I

I In one embodiment, each computer may have a difiereht set of portal

computers and a different maximum search depth. In such a situation, it may be possible that

two disjoint broadcast channels are formed because a seeking computer caniiot locate a fully

connected port computer at a higher depth. Similarly, if the set of portiil computers are

disjoint, then two separate broadcast channels would be formed.

ldentifling Neighbors for a Seeking Computer

As described above, the neighbors of a newly connccfirig computer are
preferably selected randomly from the set of currently connected computersl. One advantage
of the broadcast charmel, however, is that no computer has global knowledge of the
broadcast channel. Rather, each computer has local knowledge of itself its neighbors.

This limited local knowledge has the advantage that all the connected computers are peers
(as far as the broadcasu'ng is concerned) and the failure of any one compiiter (actually any
three computers when in the 4-regular and 4-connect form) will not caujse the broadcast

channel to fail. This local knowledge makes it difficult for a portal compirter to randomly
select four neighbors for a seeking computer.

To select the four computers, a portal computer sends an ledge connection
request message through one of its internal connections that is randomly selected. The

receiving computer again sends the edge connection request message tliiough one of its

internal connections that is randomly selected. This sending of the messageicorresponds to a
random walk through the graph that represents 'the broadcast channel; Eventually, a
receiving computer will decide that the message has traveled far enou : to represent a

randomly selected computer. That receiving computer will offer the in mal connection

upon which it received the edge connection request message to the see ' g computer for

edge pinning. Of course, if either of the computers at the end of the offered internal

1 connection are already neighbors of the seeking computer, then the seeking computer cannot

connect through that internal connection. The computer that decided that the message has

[03004-8005/Sm03733JO l] - l 9- 7/3 1/00

0546

0547

10

15

20

25

30

l

traveled far enough will detect this condition of already being a neighlior and send the

message to a randomly selected neighbor.

request messageIn one embodiment, the distance that the edge connecn‘on

travels is established by the portal computer to be approximately twice the estimated

diameter of the broadcast channel. The message includes an indication of the distance that it

is to travel. Each receiving computer decrements that distance to travel before sending the
message on. The computer that receives a message with a distance to trade] that is zero is
considered to be the randomly selected computer. If that randomly selected computer cannot

to it), then that

of its neighbors

connect to the seeking computer (e.g., because it is already connected

randomly selected computer forwards the edge connection request to one

with a new distance to travel. In one embodiment, the forwarding computer toggles the new

distance to travel between zero and one to help prevent two computers from sending the
message back and forth between each other.

Because of the local nature of the information maintained bis! each computer

connected to the broadcast channel, the computers need not generally be aware of the

diameter of the broadcast channel. In one embodiment, each message sent through the

broadcast channel has a distance traveled field. Each computer that forwards a message

increments the distance traveled field. Each computer also maintains an es ' ated diameter

of the broadcast channel. When a computer receives a message that has traveled a distance
that indicates that the estimated diameter is too small,-it updates its estimaied diameter and

broadcasts an estimated diameter message. When a computer receives an e ‘ ated diameter

message that indicates a diameter that is larger than its own estimated diam ter,_ it updates its

own estimated diameter. This estimated diameter is used to establish theldistance that an
edge connection request message should travel.

External Data Representation i
The computers connected to the broadcast channel may internally store their

data in different formats. For example, one computer may use 32-bit integers, and another

computer may use 64-bit integers. As another example, one computer m y use ASCII to

represent text and another computer may use Unicode. To allow comm cations between

heterogeneous computers, the messages sent over the broadcast channel may use the XDR

(“eXtemal Data Representation”) format.

[03004«8005/Sm03733.1011 731/00

l

E
-20.

i
g

0547

0548

10

15

20

25

30

The underlying peer-to-peer communications protocol may send multiple

messages in a single message stream. The traditional technique for retrieving messages from

a stream has been to repeatedly invoke an operating system routine to rletrieve the next
message in the stream. The retrieval of each message may require two calls to the operating

system: one to retrieve the size of the next message and the other to retriexIe the number of
bytes indicated by the retrieved size. Such calls to the operating system dart, however, be

very slow in comparison to the invocations of local routines. To overcome IihC inefficiencies
of such repeated calls, the broadcast technique in one embodiment, uses XDiR to identify the
message boundaries in a stream of messages. The broadcast technique inay request the

e stream. Thel
|I

broadcast technique can then repeatedly invoke the XDR routines to retriere the messages

operating system to provide the next, for example, 1,024 bytes from

and use the success or failure of each invocation to determine whether another block of 1,024

bytes needs to be retrieved fi'om the operating system. The invocation of l R routines do
not involve system calls and are thus more efficient than repeated system cali:D
M-Regglar i

In the embodiment described above, each fully connected coimputer has four
internal connections. The broadcast technique can be used with other nuriibers of internal

connections. For example, each computer could have 6, 8, or any even nuimbcr of internal

connections. As the number of internal connections increase, the diameteriof the broadcast
channel tends to decrease, and thus propagation time for a message tends decrease. The

time that it takes to connect a seeking computer to the broadcast channel may, however,

increase as the number of internalconnections increases. When the nuinber of internal
connectors is even, then the broadcast channel can be maintained as; m-regular and
m-connected (in the steady state). If the number of internal connections odd, then when

the broadcast channel has an odd number of computers connected, one of thie computers will
have less than that odd number of internal connections. In such a situation, the broadcast

network is neither m-regular nor m-connected. When the next computeri connects to the

broadcast channel, it can again become m-regular and m-connected. mils, with an odd
number of internal connections, the broadcast channel toggles between being and not being

m—regular and m-connected.

[03004.8005/swosmiou

l

E
|

-21- g 7/31/00

0548

0549

10

15

20

25

30

Components I

Figure 6 is a block diagram illustrating components of a ciomputer that is
connected to a broadcast channel. The above description generally assumeid that there was

only one broadcast channel and that each computer had only one connection i0 that broadcast
channel. More generally, a network of computers may have multiple broladcast channels,
each computer may be connected to more than one broadcast channel, and each computer

can have multiple connections to the same broadcast channel. The broadcas channel is well

suited for computer processes (e.g., application programs) that execute coll boratively, such

as network meeting programs. Each computer process can connect to one o more broadcast

channels. The broadcast channels can be identified by channel type (.g., application

program name) and channel instance that represents separate broadcast charmels for that

channel type. When a process attempts to connect to a broadcast channel, ii seeks a process
currently connected to that broadcast channel that is executing on a portal computer. The

seeking process identifies the broadcast channel by channel type and channe instance.

Computer 600 includes multiple application programs 6d] executing as

separate processes. Each application program interfaces with a broadcastetil component 602
for each broadcast channel to which it is connected. The broadcaster component may be»

implement as an object that is mstantlated w1tlun the process space of] the application

program. Alternatively, the broadcaster component may execute as a scriptate process or
thread from the application program. In one embodiment, the broadczister component
provides functions (e. g., methods of class) that can be invoked by the applifcation programs.
The primary functions provided may include a connect function that an application program

invokes passing an indication of the broadcast channel to which the application program
wants to connect. The application program may provide a callback ’routine that the

broadcaster component invokes to notify the application program that theg connection has
been completed, that is the process enters the fully connected state. lfhe broadcaster

‘ component may also provide an' acquire message function that the application program can
invoke to retrieve the next message that is broadcast on the broadcast channeil. Alternatively,

the application program may provide a callback routine (which may be a, virtual function
provided by the application program) that the broadcaster component invokes to notify the

application program that a broadcast message has been received. Elach broadcaster

component allocates a call-in port using the hashing algorithm. When calls are answered at

[03004-8005/Sw0373SJOl] -22- 7/31/00

0549

0550

10

15

20

25

the call-in port, they are transferred to other ports that serve as the exterinal and internal
ports. :

The computers connecting to the broadcast channel may include a central

processing unit, memory, input devices (e.g., keyboard and pointing device), output devices

(e. g., display devices), and storage devices (e.g., disk drives). The mentiory and storage
devices are computer-readable medium that may contain computer iinstructions that
implement the broadcaster component. In addition, the data structures and message
structures may be stored or transmitted via a signal transmitted on a cdmputer-readable

media, such as a conununications link. .

Figure 7 is a block diagram illustrating the sub-components oi: the broadcaster

component in one embodiment. The broadcaster component includes a corinect component
701, an external dispatcher 702, an internal dispatcher 703 for each internal connection, an
acquire message component 704 and a broadcast component 712. The application program

may provide a connect callback component 710 and a receive response component 71] that

are invoked by the broadcaster component. The application program invojkes the connect
component to establish a connection to a designated broadcast channell. The connect
component identifies the external port and installs the external dispatclier for handling

messages that are received on the extemal port. The connect component invokes the seek
portal- computer component 705 to identify a portal computer that is connected to the

broadcast channel and invokes the connect request component 706 to ask theiportal computer

(if fully connected) to select neighbor processes for the newly connecting process. The

external dispatcher receives external messages, identifies the type of message, and invokes
the appropriate handling routine 707. The internal dispatcher receives the internal messages,

identifies the type of message, and invokes the appropriate handling routine 708. The

received broadcast messages are stored in the broadcast message queue 709. The acquire

message component is invoked to retrieve messages from the broadcast queue. The

broadcast component is invoked by the application program to broadcast inessages in the
broadcast charmel.

The following tables list messages sent by the broadcaster components.

[03004‘8005/81003 733. [01] -23 - 7/31/00

0550

0551

EXTERNAL MESSAGES

Description

Indicates that a seeking process would like to knbw whether the
receiving process is fully connected to the broadhast channel

Message Type

seeking_connection_call

Indicates that the sending process would like the! receiving
process to initiate a connection of the sending priocess to the
broadcast channel

connection_request_call

Indicates that the sending process is proposing edge through
which the receiving process can connect to the biroadcast
channel (i. e., edge pinning)

edge__proposal_call

port_connection_call Indicates that the sending process is proposing aiport through
which the receiving process can connect to the biroadcast
channel

connected_stmt Indicates that the sending process is connected to the broadcast

channel ‘

condition__repair_stmt Indicates that the receiving process should discoimect from one
of its neighbors and connect to one of the processes involved in
the neighbors with empty port condition '

INTERNAL MESSAGES : -

Indicates a message that is being broadcast lthrough the
I broadcast channel for the application programs ‘

Message Type

broadcast_stmt

connection_port_search_stmt Indicates that the designated process is 100 1' g for a port
through which it can connect to the broadc st channel

connection_edge_search_call Indicates that the requesting process is 100 ' g for an edge
through which it can connect to the broadc st channel

 connection_edge_search_resp Indicates whether the edge between this pr cess and the
sending neighbor has been accepted by the - equesting
patty ;

d1ameter_estimate_stmt Indicates an estimated diameter of the broa cast channel

diameter_reset_sUnt Indicates to reset the estimated diameter to dicated '

diameter i

disconnect__stmt Indicates that the sending neighbor is disconnecting from
the broadcast channel -

condition check stmt

 Indicates that neighbors with empty port co dition have

[03004-8005/SID03733JOI] -24-

0551

0552

10

15

20

25

 been detected

Indicates that the neighbors with empty porIts have the
same set of neighbors :

Indicates that the broadcast channel is being shutdown

 condition_double_check_stmt

 shutdown_stmt

flaw—Diem .

Figures 8-34 are flow diagrams illustrating the processing of the broadcaster

component in one embodiment. Figure 8 is a flow diagram illustrating the processing of the
connect routine in one embodiment. This routine is passed a channel type :(e.g., application

name) and channel instance (e.g., session identifier), that identifies the broaidcast channel to
which this process wants to connect. The routine is also passed auxiliarylinformation that

includes the list of portal computers and a connection callback routine. Whein the connection
is established, the connection callback routine is invoked to notify the application program.

When this process invokes this routine, it is in the seeking connection statelt When a portal

computer is located that is connected and this routine connects to at least ope neighbor, this
process enters the partially connected state, and when the process eventually. connects to four

neighbors, it enters the fully connected state. When in the small regime, a: fully connected
process may have less than four neighbors. In block 801, the routine open‘ls the call-in port

a n . . I n a

through which the process 15 to commurucate With other processes when establishing external
- . c . I . n

and internal connections. The port 15 selected as the first available port uIsmg the hashing

algorithm described above. In block 802, the routine sets the connect tinie to the current

time. The connect time is used to identify the instance of the process that is connected

through this external port. One process may connect to a broadcast chaiirnel of a certain
channel type and channel instance using one call-in port and then disconn cts, and another

process may then connect to that same broadcast channel using the same call-in port. Before
the other process becomes fully connected, another process may try to comlnunicate with it
thinking it is the fully connected old process. In such a case, the connect tirrie can be used to
identify this situation. In block 803, the routine invokes the seek portal domputer routine

passing the channel type and channel instance. The seek portal computer roiitine attempts to

locate a portal computer through which this process can connect to the broadcast channel for
the passed type and instance. In decision block 804, if the seek portal computer routine is

-25-(03004-8005/SL003733. 101] 73mm

0552

0553

10

15

20

25

30

successful in locating a fully connected process on that portal computer, lthen the routine
continues at block 805, else the routine returns an unsuccessful indication. decision block

805, if no portal computer other than the portal computer on which the prohess is executing
was located, then this is the first process to fully connect to broadcast lchannel and the
routine continues at block 806, else the routine continues at block 808. Iii block 806, the

routine invokes the achieve connection routine to change the state of process to fully
connected. In block 807, the routine installs the external dispatcher for processing messages

received through this process’ external port for the passed channel type and channel instance.

When a message is received through that external port, the external dispaicher is invoked.
The routine then returns. In block 808, the routine installs an external dispzatchcr. In block
809, the routine invokes the connect request routine to initiate the procef$s of identifying
neighbors for the seeking computer. The routine then returns.

Figure 9 is a flow diagram illustrating the processing of ithe seek portal

computer routine in one embodiment. This routine is passed the channel tiype and channel
instance of the broadcast channel to which this process wishes to connect. iThis routine, for

each search depth (e. g., port number), checks the portal computers at that seiarch depth. If a
portal computer is located at that search depth with a process that is fully Econnected to the

broadcast channel, then the routine returns an indication of success. In bloicks 902-911, the
routine loops selecting each search depth until a process is located. In blocki 902, the routine

selects the next search depth using a port number ordering algorithm. In dedision block 903,
if all the search depths have already been selected during this execution ofl the loop, that is

for the currently selected depth, then the routine returns a failure indicationi else the routine
continues at block 904. In blocks 904-911, the routine loops selecting eachi portal computer
and determining whether a process of that portal computer is connected to {or attempting to
connect to) the broadcast channel with the passed charmel type and chaniiel instance. In

block 904, the routine selects the next portal computer. In decision block 905, if all the

portal computers have already been selected, then the routine loops to block :902 to select the

next search depth, else the routine continues at block 906. In block 906, thejroutine dials the

selected portal computer through the port represented by the search depth. decision block

907, if the dialing was successful, then the routine continues at block 908,; else the routine

loops to block 904 to select the next portal computer. The dialing will be successful if the

dialed port is the call-in port of the broadcast channel of the passed channel tiype and channel
[03004.soos/sm0373uor 1 -26- 7/31/00

0553

0554

10

IS

20

25

3O

instance of a process executing on that portal computer. In block 908, the ioutine invokes a
contact process routine, which contacts the answering process of the portal computer through

the dialed port and determines whether that process is fully connected 0 the broadcast

channel. In block 909, the routine hangs up on the selected portal computer. In decision

block 910, if the answering process is fully connected to the broadcast dihannel, then the
routine returns a success indicator, else the routine continues at block 911. block 911, the
routine invokes the check for external call routine to determine whether aniextemal call has
been made to this process as a portal computer and processes that call. {The routine then

loops to block 904 to select the next portal computer.
Figure 10 is a flow diagram illustrating the processing of the contact process

routine in one embodiment. This routine determines whether the procesis of the selected
portal computer that answered the call-in to the selected port is fully connected to the
broadcast channel. In block 1001, the routine sends an extemai message (i.e.,

seeking_connection_call) to the answering process indicating that a seekingiprocess wants to

know whether the answering process is fully connected to the broadcast channel. In block
1002, the routine receives the external response message from the answering process. In

decision block 1003, if the external response message is successfulliy received (i. e.,
seeking_connection_resp), then the routine continues at block 1004, else routine returns.

Wherever the broadcast component requests to receive an external message: it sets a time out
period. If the external message is not received within that time out period, the broadcaster

component checks its own call-in port to see if another process is calling it. In particular, the

dialed process may be calling the dialing process, which may result in a deadlock situation.

The broadcaster component may repeat the receive request several times. If the expected

message is not received, then the broadcaster component handles the error as appropriate. In

decision block 1004, if the answering process indicates in its response message that it is fully

connected to the broadcast channel, then the routine continues at block 1005, else the routine

continues at block 1006. In block 1005, the routine adds the selected portal computer to a

list of connected portal computers and then returns. In block 1006, thelroutine adds the
answering process to a list of fellow seeking processes and then returns.

Figure 11 is a flow diagram illustrating the processing of the connect request
routine in one embodiment. This routine requests a process of a portal computer that was

identified as being fully connected to the broadcast channel to initiate the connection of this

[MOM-80051810037313.1011 -27- 7/3 [/00

0554

0555

10

15

20

25

30

i

1
process to the broadcast charmel. In decision block 1101, if at least one process of a portal

then the routine computer was located that is fully connected to the broadcast channel,i

continues at block 1103, else the routine continues at block 1102. A pron;ress of the portal
computer may no longer be in the list if it recently disconnected from the bioadcast channel.

In one embodiment, a seeking computer may always search its entire seardh depth and find
multiple portal computers through which it can connect to the broadcast channel. In block

1102, the routine restarts the process of connecting to the broadcast channeil and returns. In -
block 1103, the routine dials the process of one of the found portal compiiters through the

call-in port. In decision block 1104, if the dialing is successful, then the militine continues at
block 1105, else the routine continues at block 1113. The dialing may be unsuccessful if, for

example, the dialed process recently disconnected from the broadcast cliannel. In block

1105, the routine sends an external message to the dialed process requesting a connection to
the broadcast channel (i. e., connection_request_call). In block 1106, the roittine receives the
response message (i. e., connection_request_resp). In decision block 1107:, if the response

message is successfully received, then the routine continues at block 1108!r else the routine
continues at block 1113. In block 1108, the routine sets the expected number of holes (i.e.,

empty internal connections) for this process based on the received responise. When in the
large regime, the expected number of holes is zero. When in the small regiine, the expected
number of holes varies from one to three. In block 1109, the routine sets the estimated

diameter of the broadcast channel based on the received response. In decisi;bn block 1111, if
the dialed process is ready to connect to this process as indicated by the response message,

then the routine continues at block 1112, else the routine continues at block 1113. In block
1112, the routine invokes the add neighbor routine to add the answe ' g process as a

neighbor to this process. This adding of the answering process typicalli'jzccurs when the
broadcast channel is in the small regime. When in the large regime, the r om walk search

for a neighbor is performed. In block 1113, the routine hangs up the external connection

with the answering process computer and then returns. 5
!

Figure 12 is a flow diagram of the processing of the check Ifor external call

routine in one embodiment. This. routine is invoked to identify whether fellow seeking

process is attempting to establish a connection to the broadcast channel thrq‘ugh this process.

In block 1201, the routine attempts to answer a call on the call-in port. I‘m decision block
1202, if the answer is successful, then the routine continues at block 12033 else the routine
[03004-8005/81003733JOI] ~28- 7/31/00

0555

0556

10

15

20

25

30

returns. In block 1203, the routine receives the external message from the iexternal port. In

decision block 1204, if the type of the message indicates that a seeking tirocess is calling
(i.e., seeking_connection_call), then the routine continues at block 1205,? else the routine

returns. In block 1205, the routine sends an external message (i.e., seeking_;connection_resp)

to the other seeking process indicating that this process is also is seeking connection. In
decision block 1206, if the sending of the external message is successfirlithen the routine

continues at block 1207, else the routine returns. In block 1207, the routirlie adds the other
seeking process to a list of fellow seeking processes and then returns. Thisllist may be used

if this process can find no process that is fully connected to the broadcast clilannel. In which

case, this process may check to see if any fellow seeking process weire successful in
connecting to the broadcast channel. For example, a fellow seeking process! may become the

first process fully connected to the broadcast channel.

Figure 13 is a flow diagram of the processing of the achieve cimnection routine
in one embodiment. This routine sets the state of this process to fully bonnected to the

broadcast channel and invokes a callback routine to notify the application program that the

block 1301, the

block 1302, the

routine notifies fellow seeking processes that it is fully connected by sending a connected

process is now fully connected to the requested broadcast channel. In

routine sets the connection state of this process to fully connected.

external message to them (i.e., connected_stmt). In block 1303, the roritine invokes the
connect callback routine to notify the application program and then returns.

Figure 14 is a flow diagram illustrating the processing if the external
dispatcher routine in one embodiment. This routine is invoked 'when I e external port

receives a message. This routine retrieves the message, identifies the external message type,

and invokes the appropriate routine to handle that message. This routine iloops processing
each message until all the received messages have been handled. In block i1401, the routine

answers (e. g., picks up) the external port and retrieves an external messiage. In decision
block 1402, if a message was retrieved, then the routine continues at block 1403, else the

routine hangs up on the external port in block 1415 and returns. In decision block 1403, if
the message type is for a process seeking a connection (i. e., seeking_connection_call), then

the routine invokes the handle seeking connection call routine in block 1404, else the routine

continues at block 1405. In decision block 1405, if the message type is for a connection

request call (i.e., connection_request_call), then the routine invokes the handle connection

[03004-8005/SL003733JOI] -29- 7/31/00

0556

0557

10

15

20

25

30

request cal] routine in block 1406, else the routine continues at block 1407. In decision

block 1407, if the message type is edge proposal cal] (i.e., edge_propos: _call), then the

routine invokes the handle edge proposal call routine in block 1408, else the routine
continues at block 1409. In decision block 1409, if the message type is i on connect call

(i.e., port_connect_call), then the routine invokes the handle port connection call routine in

block 1410, else the routine continues at block 1411. In decision block 141

type is a connected statement (i.e., connected_stmt), the routine invbkcs the handle

 1, if the message

connected statement in block 1112, else the routine continues at block 1#12. In decision
block 1412, if the message type is a condition repair statement (i. e., condition_repair_stmt),

then the routine invokes the handle condition repair routine in block 1413 else the routine
——-v

loops to block 1414 to process the next message. After each handling routine is invoked, thel

routine loops to block 1414. In block 1414, the routine hangs up on the external port and

continues at block 1401 to receive the next message.
Figure 15 is a flow diagram illustrating the processing of the handle seeking

connection call routine in one embodiment. This routine is invoked when seeking process
is calling to identify a portal computer through which it can connect to the bi'oadcast channel.

In decision block 1501, if this process is currently fully connected to the hroadcast channel
identified in the message, then the routine continues at block 1502, else the routine continues

at block 1503. In block 1502, the routine sets a message to indicate that this process is fully
connected to the broadcast channel and continues at block 1505. In block 1[1503, the routine
sets a message to indicate that this process is not fully connected. In block l1504, the roun'ne

adds the identification of the seeking process to a list of fellow seeking Tocesses. If this
process is not fully connected, then it is attempting to connect to the broa icast channel. In

block 1505, the routine sends the external message response (i.e., seeking_i:onnection_resp)

to the seeking process and then returns.
Figure 16 is a flow diagram illustrating processing of the himdle connection

request call routine in one embodiment. This routine is invoked when thi: calling process

wants this process to initiate the connection of the process to the broadcaZSt channel. This

routine either allows the calling process to establish an internal connection this process

(e.g., if in the small regime) or starts the process of identifying a process to iwhich the calling

process can connect. In decision block 1601, if this process is currently fililly connected to
the broadcast channel, then the routine continues at block 1603, else the rodtine hangs up on
[03004-8005/sw03733.101 1' ~30-

7/31/00

0557

0558

10

15

20

25

30

the external port in block 1602 and returns. In block 1603, the routine sets the number of

holes that the calling process should expect in the response message. Injblock 1604, the

routine sets the estimated diameter in the response message. In block ll605, the routine

indicates whether this process is ready to connect to the calling process. This process is
ready to connect when the number of its holes is greater than zero and the calling process is
not a neighbor of this process. In block 1606, the routine sends to the calling process an

external message that is responsive to the connection requlest call (i.e.,

connection_request_resp). In block 1607, the routine notes the number of holes that the

wmummmmmflwmmmmmwmwmmyh®m@WMm%fi
this process is ready to connect to the calling process, then the routine continues at block

1609, else the routine continues at block 1611. In block 1609, the routinei invokes the add

neighbor routine to add the calling process as a neighbor. In block 1610, the routine

decrements the number of holes that the calling process needs to fill and ceimtinues at block
1611. In block 1611, the routine hangs up on the external port. In decisidn block 1612, if

this process has no holes or the estimated diameter is greater than one (file, in the large

regime), then the routine continues at block 1613, else the routine continueils at block 1616.
In blocks 1613-1615, the routine loops forwarding a request for an edge through which to

connect to the calling process to the broadcast channel. One request is forfwarded for each
pair of holes of the calling process that needs to be filled. In decision b ock 1613, if the

number of holes of the calling process to be filled is greater than or equal to two, then the

routine continues at block 1614, else the routine continues at block 1616. I block 1614, the

routine invokes the forward connection edge search routine. The invoked :toutine is passed
to an indication of the calling process and the random walk distance. In one iembodiment, the

distance is twice in the estimated diameter of the broadcast channel. Ingblock 1614, the

routine decrements the holes left to fill by two and loops to block 1613. decision block
1616, if there is still a hole to fill, then the routine continues at block 1617?, else the routine
returns. In block 1617, the routine invokes the fill hole routine passing thei identification of

the calling process. The fill hole routine broadcasts a connection port search statement (i. e.,
connection_port_search_stmt) for a hole of a connected process through which the calling
process can connect to the broadcast channel. The routine then retums. I

Figure 17 is a flow diagram illustrating the processing of the add neighbor
routine in one embodiment. This routine adds the process calling on the elxtemal port as a
loaooa-xoos/swoam. 101 1 -31- 7/3 l/OO

0558

0559

IO

15

20

25

30

neighbor to this process. In block 1701, the routine identifies the calling: process on the
external port. In block 1702, the routine sets a flag to indicate that the neighbor has not yet
received the broadcast messages from this process. This flag is used to ensiu'e that there are

no gaps in the messages initially sent to the new neighbor. The external port becomes the

internal port for this connection. In decision block 1703, if this process in the seeking
!and the routine

continues at block 1704, else the routine continues at block 1705. In block l704, the routine

connection state, then this process is connecting to its first neighbor

sets the connection state of this process to partially connected. In block 1705, the routine

adds the calling process to the list of neighbors of this process. In block l706, the routine
installs an internal dispatcher for the new neighbor. The internal dispatcher ‘is invoked when

a message is received from that new neighbor through the internal port of that new neighbor.

In decision block 1707, if this process buffered up messages while not full connected, then

I] 1709. I In one
embodiment, a process that is partially connected may buffer the messages that it receives

the routine continues at block 1708, else the routine continues at bloc

through an internal connection so that it can send these messages as it connects to new

neighbors. In block 1708, the routine sends the buffered messages to the new neighbor

through the internal port. In decision block 1709, if the number of holes; of this process

equals the expected number of holes, then this process is fully connectedi and the routine

continues at block 1710, else the routine continues at block 1711. In block 1:710. the routine
invokes the achieve connected routine to indicate that this process is fully connected. In

decision block 1711, if the number of holes for this process is zero, ihen the routine
continues at block 1712, else the routine returns. In block 1712, the rotitine deletes any

pending edges and then returns. A pending edge is an edge that has been iproposed to this

process for edge piiming, which in this case is no longer needed. '

Figure 18 is a flow diagram illustrating the processing 10f the forward

connection edge search routine in one embodiment. This routine is responisible for passing
along a request to connect a requesting process to a randomly selected neighbor of this

process through the internal port of the selected neighbor, that is part of the iiandom walk. In
decision block 1801, if the forwarding distance remaining is greater zero, then the

routine continues at block 1804, else the routine continues at block 1802. decision block

1802, if the number of neighbors of this process is greater than one, tihen the routine
continues at block 1804, else this broadcast channel is in the small regime] and the routine
[osoouoosrsuoosns 101] -32- 7/3 l/OO

i

0559

0560

10

15

20

25

30

continues at block 1803. In decision block 1803, if the requesting process 'is a neighbor of
this process, then the routine returns, else the routine continues at block l804. In blocks
1804-1807, the routine loops attempting to send a connection edge seaich call internal

message (i. e., connection_edge_search_call) to a randomly selected neighbor}. In block 1804,
the routine randomly selects a neighbor of this process. In decision blocld 1805, if all the

neighbors of this process have .already been selected, then the routine cannot forward the

message and the routine returns, else the routine continues at block 1806. block 1806, the

routine sends a connection edge search call internal message to the selectied neighbor. In
decision block 1807, if the sending of the message is successful, then the roritine continues at

block 1808, else the routine loops to block 1804 to select the next neiglibor. When the
sending of an internal message is unsuccessful, then the neighbor may have disconnected

from the broadcast channel in an unplarmed manner. Whenever such a situiation is detected

by the broadcaster component, it attempts to find another neighbor by involciing the fill holes

routine to fill a single hole or the forward connecting edge search routine to iill two holes. In
block 1808, the routine notes that the recently sent connection edge searchi call has not yet

been acknowledged and indicates that the edge to this neighbor is reservedlif the remaining

forwarding distance is less than or equal to one. It is reserved because the sielected neighbor
may offer this edge to the requesting process for edge pinning. The routine then returns.

Figure 19 is a flow diagram illustrating the processing of the handle edge
proposal call routine. This routine is invoked when a message is received from a proposing

process that proposes to connect an edge between the proposing process and one of its

neighbors to this process for edge pinning. In decision block 1901, if the number of holes of

this process minus the number of pending edges is greater than or equal to one, then this

process still has holes to be filled and the routine continues at block 1902,; else the routine

continues at block 1911. In decision block 1902, if the proposing process 011 its neighbor is a

neighbor of this process, then the routine continues at block 1911, else the rioutine continues

at block 1903. In block 1903, the routine indicates that the edge is pending between this

process and the proposing process. In decision block 1904, if a proposed neighbor is already
pending as a proposed neighbor, then the routine continues at block 1911,] else the routine

continues at block 1907. In block 1907, the routine sends an edge proposdrl response as an
external message to the proposing process (i.e., edge_proposal_resp) indicating that the

proposed edge is accepted. In decision block 1908, if the sending of tire message was
-33- E[03004-8005/81003733. 101] 7/31/00

0560

0561

10

15

20

25

30

successful, then the routine continues at block 1909, else the routine returnsi. In block 1909,

the routine adds the edge as a pending edge. In block 1910, the routine!invokes the add
neighbor routine to add the proposing process on the external port as a neighbor. The routine

then returns. In block 1911, the routine sends an external message (i.e., edgi:_proposal_resp)
indicating that this proposed edge is not accepted. In decision block 1912, iif the number of

holes is odd, then the routine continues at block 1913, else the routine riétums. In block
1913, the routine invokes the fill hole routine and then returns.

Figure 20 is a flow diagram illustrating the processing of the handle port

connection call routine in one embodiment. This routine is invoked hen an external

message is received then indicates that the sending process wants to conne t to one hole of

this process. In decision block 2001, if the number of holes of this process is greater than

zero, then the routine continues at block 2002, else the routine continues ai block 2003. In

decision block 2002, if the sending process is not a neighbor, then the rouiiine continues at
block 2004, else the routine continues to block 2003. In block 2003, the rodtine sends a port

connection response external message (i. e., port_connection_resp) to the senting process that
indicates that it is not okay to connect to this process. The routine then rl turns. In block

2004, the routine sends a port connection response external message to the. sending process
that indicates that is okay to connect this process. In decision block 2005, if the sending of

the message was successful, then the routine continues at block 2006, else the routine

continues at block 2007. In block 2006, the routine invokes the add neighbor routine to add

the sending process as a neighbor of this process and then returns. Inblock 2007, the routine

hangs up the external connection. In block 2008, the routine invokes thei connect request
routine to request that a process connect to one of the holes of this process. iThe routine then

returns. I

Figure 21 is a flow diagram illustrating the processing of the fiill hole routine in

one embodiment. This routine is passed an indication of the requesting :[process If this

' process is requesting to fill a hole, then this routine sends an internal message to other

processes. If another process is requesting to fill a hole, then this routine invokes the routine

In block 2101, the routine initializes a

connection port search statement internal message (i.e., connection_port_$earch_stmt). In

to handle a connection port search request.

decision block 2102, if this process is the requesting process, then the routine continues at

block 2103, else the routine continues at block 2104. In block 2103, the routine distributes
[O3004—8005/SU)03733.101] -34- 701100

0561

0562

10

15

20

25

30

the message to the neighbors of this process through the intemal ports and ithen returns. In
block 2104, the routine invokes the handle connection port search routine then returns.

Figure 22 is a flow diagram illustrating the processing of the initemal dispatcher
routine in one embodiment. This routine is passed an indication of the neighbor who sent the
internal message. In block 2201, the routine receives the internal message. This routine

identifies the message type and invokes the appropriate routine to handle ihe message. In

block 2202, the routine assesses whether to change the estimated diameter .of the broadcast
channel based on the information in the received message. In decision blpck 2203, if this
process is the originating process of the message or the message has alrea y been received

(i. e., a duplicate), then the routine ignores the message and continues at bloik 2208, else the
routine continues at block 2203A. In decision block 2203A, if the pr ess is partially

connected, then the routine continues at block 2203B, else the routine c tinues at block

2204. In block 2203B, the routine adds the message to the pending conn ction buffer and

continues at block 2204. In decision blocks 2204-2207, the routine decdides the message
type and invokes the appropriate routine to handle the message. For example, in decision

block 2204, if the type of the message is broadcast statement (1'. e., broadcasit_stmt), then the
routine invokes the handle broadcast message routine in block 2205. Aiiter invoking the
appropriate handling routine, the routine continues at block 2208. In decisidjm block 2208, if
the partially connected buffer is full, then the routine continues at block 2209, else the

routine continues at block 2210. The broadcaster component collectsi all its internal
messages in a buffer while partially connected so that it can forward the messages as it

connects to new neighbors. If, however, that buffer becomes 'full, then the process assumes

that it is now fully connected and that the expected number of connections was too high,

because the broadcast channel is now in the small regime. In block 2209, the routine invokes

the achieve connection routine and then continues in block 2210. In decisicin block 2210, if
the application program message queue is empty, then the routine returns,i else the routine

continues at block 2212. In block 2212, the routine invokes the receive iresponse routine

passing the acquired message and then returns. The received response routine is a callback

. routine of the application program. ' i

Figure 23 is a flow diagram illustrating the processing of the handle broadcast

message routine in one embodiment. This routine is passed an indication of the originating
process, an indication of the neighbor who sentthe broadcast message, ariid the broadcast
[03004-800518MOS733JOI] -35- 7/31/00

0562

0563

10

IS

20

25

30

message itself. In block 2301, the routine performs the out of order prcicessing for this
message. The broadcaster component queues messages from each originating process until it

can send them in sequence number order to the application program. In block 2302, the

routine invokes the distribute broadcast message routine to forward the Imessage to the

neighbors of this process. In decision block 2303, if a newly connected neighbor is waiting
to receive messages, then the routine continues at block 2304, else the routine returns. In

block 2304, the routine sends the messages in the correct order if possible for each

originating process and then returns.
Figure 24 is a flow diagram illustrating the processing the distribute

broadcast message routine in one embodiment. This routine sends the broadcast message to

each of the neighbors of this process, except for the neighbor who sent thei message to this

process. In block 2401, the routine selects the next neighbor other than the neighbor who

sent the message. In decision block 2402, if all such neighbors have already been selected,

then the routine returns. In block 2403, the routine sends the message; to the selected
neighbor and then loops to block 2401 to select the next neighbor.

Figure 26 is a flow diagram illustrating the processing of the hijmdle connection
port search statement routine in one embodiment. This routine is passed an indication of the
neighbor that sent the message and the message itself. In block 2601, the roiitine invokes the
distribute internal message which sends the message to each of its neighbolis other than the
sending neighbor. In decision block 2602, if the number of holes of this pirocess is greater
than zero, then the routine continues at block 2603, else the routine retains. In decision

block 2603, if the requesting process is a neighbor, then the routine continuis at block 2605,
else the routine continues at block 2604. In block 2604, the routine invokes the court

neighbor routine and then returns. The court neighbor routine connects process to the
requesting process if possible. In block 2605, if this process has one hole, tlien the neighbors

with empty ports condition exists and the routine continues at block 26063 else the routine
returns.

condition_check) that includes a list of this process’ neighbors. In block 2607, the routine

In block 2606, the routine generates a condition checkf message (i. 6.,

sends the message to the requesting neighbor.

Figure 27 is a flow diagram illustrating the processing of the court neighbor

routine in one embodiment. This routine is passed an indication of the prospective neighbor

for this process. Ifthis process can connect to the prospective neighbor, then it sends a port

[03004.sooslsm03733.iou -36- 7/31/00

0563

0564

10

15

20

25

30

connection call external message to the prospective neighbor and adds! the prospective

neighbor as a neighbor. In decision block 2701, if the prospective neighzlbor is already a
neighbor, then the routine returns, else the routine continues at block 2702.? In block 2702,

the routine dials the prospective neighbor. 1n decision block 2703, if the nuimber of holes of

this process is greater than zero, then the routine continues at block 2704,; else the routine
continues at block 2706. In block 2704, the routine sends a port connection call external '

message (i.e., port_connection_call) to the prospective neighbor and receives its response

(i.e., port_connection_resp). Assuming the response is successfully received, in block 2705,
the routine adds the prospective neighbor as a neighbor of this process by invoking the add

neighbor routine. In block 2706, the routine hangs up with the prospect and lihen returns.
Figure 28 is a flow diagram illustrating the processing of the hzimdle connection

edge search call routine in one embodiment. This routine is passed a indication of the

neighbor who sent the message and the message itself. This routine either forwards the

message to a neighbor or proposes the edge between this process and the seriiding neighbor to
the requesting process for edge pinning. In decision block 2801, if this piocess is not the

requesting process or the number of holes of the requesting process is stili greater than or
equal to two, then the routine continues at block 2802, else the routine cqintinues at block
2813. In decision block 2802, if the forwarding distance is greater thaii zero, then the
random walk is not complete and the routine continues at block 2803, else the routine r

continues at block 2804. In block 2803, the routine invokes the forward iconnection edge

search routine passing the identification of the requesting process and iihe decremented
forwarding distance. The routine then continues at block 2815. In decisi block 2804, if

the requesting process is a neighbor or the edge between this process and the sending

neighbor is reserved because it has already been offered to a process, ihen the routine

continues at block 2805, else the routine continues at block 2806. In block 2805, the routine
invokes the forward connection edge search routine passing an indication the requesting

party and a toggle indicator that alternatively indicates to continue the random walk for one

or two more computers. The routine then continues at block 2815. In iblock 2806, the
routine dials the requesting process via the call-in port. In block 2807, the :routine sends an

edge proposal call external message (i.e., edge_proposal_call) and receives the response (i.e.,
edge_proposal_resp). Assuming that the response is successfully reccitiled, the routine

continues at block 2808. In decision block 2808, if the response indicates’that the edge is
[03004-8005/SL003733JOl] -3 7- 7/3 I/OOlI

Is

i

0564

0565

10

15

20

25

30

acceptable to the requesting process, then the routine continues at block 2809, else the
routine continues at block 2812. In block 2809, the routine reserves the efdge between this

process and the sending neighbor. In block 2810, the routine adds the reqriesting process as

a neighbor by invoking the add neighbor routine. In block 2811, the routine removes the

sending neighbor as a neighbor. In block 2812, the routine hangs up the external port and

continues at block 2815. In decision block 2813, if this process is the requesting process and

the number of holes of this process equals one, then the routine continues ati block 2814, else

the routine continues at block 2815. In block 2814, the routine invokes thei fill hole routine.

In block 2815, the routine sends an connection edge search responsie message (i. e.,
connection_edge_search_response) to the sending neighbor indicating aclmciiwledgement and

then returns. The graphs are sensitive to parity. That is, all possible patlis starting from a

node and ending at that node will have an even length unless the graph has a cycle whose

length is odd. The broadcaster component uses a toggle indicator to vary the random walk
distance between even and odd distances.

Figure 29 is a flow diagram illustrating the processing of the hiandk connection
edge search response routine in one embodiment. This routine is passed asiindication of the
requesting process, the sending neighbor, and the message. In block 2901, ithe routine notes

that the connection edge search response (i. e., connection__edge_searchi_resp) has been
received and if the forwarding distanceis less than or equal to one unrieserves the edge

between this process and the sending neighbor. In decision block 2902, if the requesting
process indicates that the edge is acceptable as indicated in the message,ithen the routine
continues at block 2903, else the routine returns. In block 2903, the routine i'eserves the edge

between this process and the sending neighbor. In block 2904, the routine removes the
sending neighbor as a neighbor. In block 2905, the routine invokes the court neighbor

routine to connect to the requesting process. In decision block 2906, if the; invoked routine
was unsuccessful, then the routine continues at block 2907, else the roritine returns. In

decision block 2907, if the number of holes of this process is greater zero, then the
routine continues at block 2908, else the routine returns. In block 2908, the routine invokes

the fill hole routine and then returns. _

Figure 30 is a flow diagram illustrating the processing of the broadcast routine

in one embodiment. This routine is invoked by the application program to broadcast a

message on the broadcast channel. This routine is passed the message to be broadcast. In
{030043005131.003733401] -38- 7/31/00

0565

0566

10

15

20

25

30

decision block 3001, if this process has at least one neighbor, then the routine continues at

block 3002, else the routine returns since it is the only process connected} to be broadcast

channel. In block 3002, the routine generates an internal message of the brdadcast statement

type (i.e., broadcast _stmt). In block 3003, the routine sets the sequence number of the

message. In block 3004, the routine invokes the distribute internal message routine to
broadcast the message on the broadcast channel. The routine returns.

Figure 31 is a flow diagram illustrating the processing of the lacquire message

routine in one embodiment. The acquire message routine may be invoked by the application

program or by a callback routine provided by the application program. This iroutine returns a

message. In block 3101, the routine pops the message from the message queue of the
broadcast channel. In decision block 3102, if a message was retrieved, then the routine

returns an indication of success, else the routine returns indication of failure;
Figures 32-34 are flow diagrams illustrating the processing of messages

associated with the neighbors with empty ports condition. Figure 32 is|a flow diagram

illustrating processing of the handle condition check message in one embodiment. This
message is sent by a neighbor process that has one hole and has received a reiquest to connect
to a hole of this process. In decision block 3201, if the number of holes df this process is

equal to one, then the routine continues at block 3202, else the neighbors with empty ports
condition does not exist any more and the routine returns. In decision bllock 3202, if the

sending neighbor and this process have the same set of neighbors, the routine continues at

block 3203, else the routine continues at block 3205. In block 3203, the rodtine initializes a

condition double check message (i.e., condifion_double_check) with the list of neighbors of

this process. In block 3204, the routine sends the message internally to a ne' bor other than

‘ sending neighbor. The routine then returns. In block 3205, the routine sele ts a neighbor of

the sending process that is not also a neighbor of this process. In block 3206, the routine
sends a condition repair message (i.e., condition_rcpair_stmt) extemallyi to the selected

process. In block 3207, the routine invokes the add neighbor routine to hdd the selected

neighbor as a neighbor of this process and then returns. :

Figure 33 is a flow diagram illustrating processing of the Iiiandle condition
repair statement routine in one embodiment. This routine removes an existing neighbor and
connects to the process that sent the message. In decision block 3301, if ' process has no

holes, then the routine continues at block 3302, else the routine continues at block 3304. In
[oamsoos/swosmion -39- 7/31/00

0566

0567

10

15

20

25

block 3302, the routine selects a neighbor that is not involved in the neighbors with empty

ports condition. In block 3303, the routine removes the selected neighbor is a neighbor of
this process. Thus, this process that is executing the routine now has at least one hole. In

block 3304, the routine invokes the add neighbor routine to add the proctiss that sent the
message as a neighbor of this process. The routine then returns.

Figure 34 is a flow diagram illustrating the processing of the handle condition
double check routine. This routine determines whether the neighbors with empty ports
condition really is a problem or whether the broadcast channel is in the sinall regime. In

decision block 3401, if this process has one hole, then theroutine continue at block 3402,

else the routine continues at block 3403. If this process does not have one liole, then the set
of neighbors of this process is not the same as the set of neighbors of the sending process. In
decision block 3402, ifthis process and the sending process have the same set of neighbors,

then the broadcast channel is not in the small regime and the routine confinueis at block 3403,
else the routine continues at block 3406. In decision block 3403, if this procejss has no holes,

then the routine returns, else the routine continues at block 3404. In block 3404, the routine
sets the estimated diameter for this process to one. In block 3405, the routine broadcasts a
diameter reset internal message (i. e., diameter_reset) indicating that the estiniated diameter is

I one and then returns. In block 3406, the routine creates a list of neighbors ofl this process. In

block 3407, the routine sends the condition check message (i.e., condition_dheck_stmt) with

the list of neighbors to the neighbor who sent the condition double check Iricssage and then

returns. , ,

From the above description, it will be appreciated that aithough specific
embodiments of the technology have been described, various modifications may be made

without deviating from the spirit and scope of the invention. Foi example, the
communications on the broadcast channel may be encrypted. Also, the channel instance or

l

session identifier may be a very large number (e. g., 128 bits) to help prevent‘an unauthorized

‘ user to maliciously tap into a broadcast channel. The portal computer may also enforce

security and not allow an unauthorized user to connect to the broadcast channel.I

Accordingly, the invention is not limited except by the claims.
[03004-8005/SLDO3733. ml) -40- 7/31/00

0567

0568

10

ll

CLAIMS

1. A method in a computer for locating a computer tlirough which to

connect to a network, the method comprising:
providing an identification of a portal computer, the iportal computer

having communications ports with one of the communications ports btiing enabled for
communications when the portal computer is in a state to coordinate theiconnection of a
seeking computer to the network;

repeatedly selecting a communications port of the portial computer and
attempting to communicate with the selected communications port until theicommunications
with the selected communications port is successful; and

using the selected communications port to requesti that the portal
computer coordinate the connecting of the computer to the network.

2. The method of claim 1 wherein the communications porits are selected in

an order that is the same as used by the portal computer when it selected aieommunications

port. v

3. The method of claim 1 wherein the communications ticrts are selected
based on a hashing algorithm ordering.

4. The method of claim 3 wherein the hashing algorithm drdering provides

an ordering in which each communications port is selected without re-selecting a
communications port.

5. The method of claim 3 wherein the hashing algorithm ordering is

modified to reduce conflicts with other seeking computer that use the same hashing
algorithm. a 3

[03004.soos/sw03733. 1 o u -4 1- 7/3 1 I00

0568

0569

i
i

6. The method of claim 5 wherein a number of the first kommunications

ports ordered by the hashing algorithm are reordered.

7. The method of claim 1 wherein the identification of a plurality of portal

computers is provided and when a communications port is selectedlY attempting to

communicate with each of the identified portal computers through the selected

communications port before selecting the next communications port.

8. The method of claim 1 wherein the communications piorts are TCP/IP

ports.

9. A method in a computer system for locating a comniunications port,
each communications port having a port number, the method comprising:

providing an ordering of the communications ports ithat is not port
number sequential; and

until a communications port through which a corinection can be
established is found, :

selecting the next communications port the provided

order; and I

determining whether a connection cané be established

through the selected communications port.

10. The method of claim 9 wherein the ordering is provided by a hashing

algorithm.

11. The method of claim 9 wherein the communications ports are TCP/IP
port. i

12. The method of claim 9 wherein the communications piorts are ports of
another computer.

[03004-8005/Sw03733JOl] -42- 7/31/00

0569

0570

13. The method of claim 12 wherein the other computci uses the same

provided ordering of communications ports when selecfing its communicatith port.
x
l
l

14_ portions of the

provided ordering of the communications ports.

The method of claim 9 including reordering some

15. A data structure transmitted on a communications channel comprising a

sequence of messages, each message in the sequence identifying a communications port of a

computer system, whereby a hashing algorithm is used to order the identification of the

i .

The data structure of claim 15 wherein each message requests a

communications ports in the sequence of messages.
16.

connection to a receiving computer via the identified communications port. l

17. The data structure of claim 15 wherein the messages are TCP/IP
messages.

18. The data structure of claim 15 wherein the communications channel is
the Internet.

19. The data structure of claim 15 wherein the sequence of inessages is used .
to locate a portal computer through which a sending computer can request 1% connection to a
broadcast channel.

20. A computer network having a plurality of participants,ieach participant
having connections to neighbor participants, wherein a participant locates aicommunications
port of a portal computer by repeatedly selecting a communications ptirt of the portal
computer and attempting to communicate with the selected communicatith port until the
communications with the selected communications port is successful.

[osmsoos/swosnuou -43- 7/31/00

0570

0571

21. The computer network of claim 20 wherein the sfelecting of the

communications ports is ordered according to a function.

22. The computer network of claim 21 wherein the portal computer uses the

same ftmction to order its selection of a communications port.

23. The computer network of claim 20 wherein an originating participant

sends data to the other participants by sending the data through each of its cbnnections to its

neighbor participants, wherein when each participant sends data that it receives from a

neighbor participant to its other neighbor participants.

24. The computer network of claim 20 wherein each participant is
connected to 4 other participants.

25. The computer network of claim 20 wherein each participant is

connected to an even number of other participants.

26 The computer network of claim 20 wherein the netwdrk is m-regular,

where m is the number of neighbor participants of each participant.

27. The computer network of claim 26 wherein the network is Iii-connected,

where m is the number of neighbor participants of each participant. ‘

28. The computer network of claim 20 wherein the network is m¢regular

and m-connected, where m is the number of neighbor participants of each participant.
29. The computer network of claim 20 wherein all the participants are peers.

I

30. The computer network of claim 20 wherein the connections are peer-to-

peer connections.

l03004—8005/Slfl03713JOl] ~44- muoo

0571

0572

l .
31. The computer network of claim 20 wherein the connections between

neighbor computers are point-to-point.

32. The computer network of claim 20 wherein the connectiions are TCP/IP
connections.

33. A component in a computer system for locating a comrimmications port
of a portal computer, comprising:

means for identifying the portal computer, the portal coinputer having a

dynamically selected communications port for communicating with other computers; and

means for identifying the communications port of the lidentified portal

computer by repeatedly trying to establish a connection with the identifiediportal computer
through communications ports until a connection is successfully established. i

34.

trying in an order that is the same as used by the portal computer when it dynamically selects

The component of claim 33 wherein the communications ports are

a communications port.

35.

based on a hashing algorithm ordering.

The component of claim 33 wherein the communications ports are tried

36. The component of claim 35 wherein the hashing al 'orithm ordering

provides an ordering in which each communications port is tried without re-trying a
l

commurucatrons port. -

E

37. The component of claim 35 wherein the hashing algorithm ordering is

modified to reduce conflicts with other computers that use the same hashing flgorithm.
l

38. The component of claim 37 wherein a numbeir of the first
communications ports ordered by the hashing algorithm are reordered.

[osmsoonsmoamiou -45-

ll

I 7/31/00
II

0572

0573

2

39.

portal computers through a certain communications port before txiying the next

The component of claim 33 including:

means for identifying a plurality of portal computers; ani'l
means for trying to establish a connection with each hf the identified

communications port.

40.

TCP/IP ports.

[03004-soos/sw03733.ioi 1

The component of claim 33 wherein the communications ports are

-45-

il

l

7/31/00

0573

0574

0575

0575

0576

0577

0578

0579

0580

0581

0582

0583

0584

0584

0585

0585

0586

g5_.su*uscou

0586

0587

‘_ Conncaflqfl-AXEA

(r rw TWI
@ » -mems‘m.

0!

xx

insw

0:59Ach

0587

0588

on 5&5: cw.th
Rue: ' “M '- cy‘ayanA EAQJK‘M

0588

0589

Qe cew gamma

w‘sso gfi

0589

0590

0590

0591

Fr? [2/

A“ 0N: G5

£2wa See kar‘

0591

0592

 MFR?“ pquu)
t T i r.. \ .p

0592

0593

F}El‘1
% JQfi egg-05a .Ca

' Con“QCb04/jg‘l

0593

0594

0594

