set waucovmer's

Woles-to-%pat ‘
. I " ;
é\‘r'\'a—(sas(-’a‘m%
o S/
et reo
3.‘:\ ves ::an_
| ok
o) (\ SO&*&A*‘-‘N—V\Q
wle“:idb iyl _mmzmrmbfesp o4
L__/ o¥ N&
rea&ﬁ nMgv;ba Ve
i | S 'O
Now l i N Totes e il —
%“‘P\—://;:\z l ———ll -
biond?)
/ I3 M
Seereh” :
J‘ R4
holes oSl -:Zl—
7
L= ikl
(veques L)

BUNGIE - EXHIBIT 1002 Part 3 of 5

0595

ol

Achieg) -

2

(T o Pﬂ—&
Pealges

d

0596

AL

fote (oo \/

Edce Secerin | ng

% 1N ~ —

P

0597

)

e

0598

sa«lextnaml L
(pai «:%e'

(€

0599

2t (FillHole)

e 2!

|Hond le Comaechi] Dichibd
}R&(}Seamji ;&xﬁéeggzigl

L 1

0600

'Dis‘od‘o‘uf Crx stBOf)

&
%M«p . FcC‘ LD

of

Ro~d le Beoedred
Ms §

fpok‘ue i

C owweo\\w |

0601

2 ot ¢~
\ s) 8 maichbor
me %,
ywesso
Ft;ccss ol
O X Ofd,a-r
‘)Z YW F" % 2‘5
Diski]’ G'Z
Broodcest
Rdesage |

oy

o

oy

0602

0

Dfs“ri w‘

8¢ ocadevs

of

Selech next
v\u%\n‘oo -

¢ Wbovr

£ e Ny

F- 29

0603

conds hin-Checl

o)

message ©

s»—& L:\fmaﬂ

:e(e sV

(o)

0604

2\

’ Add Wﬁgkbw

-

ob

N Bk

(rsh~)

0605

Re s oy ed ’
07., M‘NM{&G

10
Add Neaghper()

o "
Teermone,
' Kﬂﬁgkbdl’”ﬂ

—
Rorgup

=) . ——

V

0606

Hordle - Origin |

0| messaqe

Mot e Corrachr
ea:} Sareh ap—ad

0°¢ r/(% 24
edce selactady IV

Yy 93

rewen-e @
0% Leen Moaghbor

o4

o~
g-re/;:\ Nex K\\ vor

6%

Cou t‘*‘”ﬁgih’(’

0607

DisJﬂ*:bv\tL

Takapeal Messe

(o

0608

0609

/e

03 W | oS
swa '\44" 'ibb.f\
ST | ot b
| e 2T neichbor
) 0 L’ 0
Sxtserod
S"‘A Mw %‘Jsc Mh,‘
ynesso &2 _;&Lﬂcj%‘ v\‘ﬂs)\br‘
o
ndd f\)u%"\h?f‘
n)

0610

22

|7 97

Eodals neagbo
wot VY ,‘éf!

N (e~
0>

M’iﬂ)u%‘\ba«‘T

3N B
‘?‘Z‘Botg!
neA

0'-/

0611

8

crende (i5F oF
nehbors, |

il 0.’

W‘rnbwu\?

massogéfl

0612

U.S. Patent Application No. 09/629,575 EXPRESS MATI, NO. ELA404935353US

10

15

20

25

BROADCASTING ON A BROADCAST CHANNEL

CROSS-REFERENCE TO RELATED APPLICATIONS

. This application is related to U.S. Patent Application No. ,
entiled “BROADCASTING NETWORK,” filed on July 31, 2000 (Attorney Docket
No. 030048001 US); U.S. Patent Application No. ’ , entitled “JOINING A
BROADCAST CHANNEL,” filed on July 31, 2000 (Attorney Docket No. 030048002 US);
U.S. Patent Application No. » “LEAVING A BROADCAST CHANNEL,”
filed on July 31,2000 (Attorney Docket No. 030048003 US); U.S. Patent Application
No. , entitled “BROADCASTING ON A BROADCAST CHANNEL,” filed
on July 31, 2000 (Attorney Docket No. 030048004 US); U.S. Patent Application
No. ' , entitled “CONTACTING A BROADCAST CHANNEL,” filed on
July 31,2000 (Attoney Docket No. 030048005 US); U.S. Patent Application
No. , entitled “DISTRIBUTED AUCTION SYSTEM,” filed on
July 31,2000 (Attomey Docket No. 030048006 US); U.S. Patent Application
No. , entitled “AN INFORMATION DELIVERY SERVICE,” filed on
July 31, 2000 (Attomey Docket .No. 030048007 US); U.S. Patent Application
No. , entitled “DISTRIBUTED CONFERENCING SYSTEM,” filed on
July 31,2000 (Attorney Docket No. 030048008 US); and U.S. Patent Application
No. , entitted “DISTRIBUTED GAME ENVIRONMENT,” filed on
July 31, 2000 (Attomey Docket No. 030048009 US), the disclosures of which are

incorporated herein by reference.

TECHNICAL FIELD

The described technology relates generally to a computer network and more

particularly, to a broadcast channel for a subset of a computers of an underlying network.
BACKGROUND

There are a wide variety of computer network communications techniques such

as point-to-point network protocols, client/server middleware, multicasting network

[03004-8004/SL003733.100) -1- 731700

0613

10

20

25

30

protocols, and peer-to-peer middleware. Each of these communications techniques have
their advantages and disadvantages, but none is particularly well suited to the simultaneous
sharing of information among computers that are widely distributed. For example,
collaborative processing applications, such as a network meeting programs, have a need to
distribute information in a timely manner to all participants who may be geographically
distributed. '

The point-to-point network protocols, such as UNIX pipes, TCP/IP, and UDP,
allow processes on different computers to communicate via point-to-point connections. The
interconnection of all participants using point-to-point connections, while theoretically
possible, does not scale well as a number of participants grows. For example, each
participating process would need to manage its direct connections to all other participating
processes. Programmers, however, find it very difficult to manage single connections, and
management of multiple connections is much more complex. In addition, participating
processes may be limited to the number of direct connections that they can support. This
limits the number of possible participants in the sharing of information.

The client/server middleware systems provide a server that coordinates the
communications between the various clients who are sharing the information. The server
functions as a central authority for controlling access to shared resources. Examples of
client/server middleware systems include remote procedure calls (“RPC”), database servers,
and the common object request broker architecture (“CORBA”). Client/server middleware
systems are not particularly well suited to sharing of information among many participants.
In particular, when a client stores information to be shared at the server, each other client
would need to poll the server to determine that new information is being shared. Such
polling places a very high overhead on the communications network. Alternatively, each
client may register a callback with the server, which the server then invokes when new
information is available to be shared. Such a callback technique presents a performance
bottleneck because a single server needs to call back to each client whenever new
information is to be shared. In addition, the reliability of the entire sharing of information
depends upon the reliability of the single server. Thus, a failure at a single computer (i.e.,
the server) would prevent communications between any of the clients.

The multicasting network protocols allow the sending of broadcast messages to

multiple recipients of a network. The current implementations of such multicasting network

[03004-8004/5L.003733.100} -2- 731/00

0614

10

15

20

25

30

protocols tend to place an unacceptable overhead on the underlying network. For example,
UDP multicasting would swamp the Internet when tryiing to locate all possible participants.
IP multicasting has other problems that include needing special-purpose infrastructure (e.g.,
routers) to support the sharing of information efficiently.

The peer-to-peer middleware communications systems rely on a multicasting
network protocol or a graph of point-to-point network protocols. Such peer-to-peer
middleware is provided by the T.120 Internet standard, which is used in such products as
Data Connection’s D.C.-share and Microsoft’s NetMeeting. These peer-to-peer middleware
systems rely upon a user to assemble a point-to-point graph of the connections used for
sharing the information. Thus, it is neither suitable nor desirable to use peer-to-peer
middleware systems when more than a small number of participants is desired. In addition,
the underlying architecture of the T.120 Internet standard is a tree structure, which relies on
the root node of the tree for reliability of the entire network. That is, each message must pass
through the root node in order to be received by all participants.

It would be desirable to have a reliable communications network that is
suitable for the simultaneous sharing of information among a large number of the processes
that are widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents a
broadcast channel.

Figure 2 illustrates a graph representing 20 computers connected to a broadcast
channel.

Figures 3A and 3B illustrate the process of connecting a new computer Z to the
broadcast channel.

Figure 4A illustrates the broadcast channel of Figure 1 with an added

computer.

Figure 4B illustrates the broadcast channel of Figure 4A with an added
computer.

Figure 4C also illustrates the broadcast channel of Figure 4A with an added
computer.
(03004-8004/SLO03733.100] -3- 7/31/00

0615

10

15

20

25

30

Figure SA illustrates the disconnecting of a cdmputer from the broadcast
channel in a planned manner.

Figure 5B illustrates the discomnecting of a computer from the broadcast
channel in an unplanned manner.

Figure 5C illustrates the neighbors with empty ports condition.

Figure 5D illustrates two computers that are not neighbors who now have
empty ports.

Figure 5E illustrates the neighbors with empty ports condition in the small
regime.

Figure 5F illustrates the situation of Figure SE when in the large regime.

Figure 6 is a block diagram illustrating components of a computer that is
connected to a broadcast channel.

Figure 7 is a block diagram illustrating the sub-components of the broadcaster
component in one embodiment.

Figure 8 is a flow diagram illustrating the processing of the connect routine in
one embodiment.

Figure 9 is a flow diagram illustrating the processing of the seek portal
computer routine in one embodiment. |

Figure 10 is a flow diagram illustrating the processing of the contact process
routine in one embodiment.

Figure 11 is a flow diagram illustrating the processing of the connect request
routine in one embodiment.

Figure 12 is a flow diagram of the processing of the check for external call
routine in one embodiment.

Figure 13 is a flow diagram of the processing of the achieve connection routine
in one embodiment.

Figure 14 is a flow diagram illustrating the processing of the external
dispatcher routine in one embodiment.

Figure 15 is a flow diagram illustrating the processing of the handle seeking
connection call routine in one embodiment.

Figure 16 is a flow diagram illustrating processing of the handle connection

request call routine in one embodiment.

[03004-8004/SL.003733.100] -4- 7731/00

0616

10

15

20

25

30

Figure 17 is a flow diagram illustrating the processing of the add neighbor
routine in one embodiment.

Figure 18 1s a flow diagram illustrating the processing of the forward
connection edge search routine in one embodiment.

Figure 19 is a flow diagram illustrating the processing of the handle edge
proposal call routine.

Figure 20 is a flow diagram illustrating the processing of the handle port
connection call routine in one embodiment.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in
one embodiment. ,

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher
routine in one embodiment.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast
message routine in one embodiment.

Figure 24 is a flow diagram illustrating the processing of the distribute
broadcast message routine in one embodiment.

Figure 26 is a flow diagram illustrating the processing of the handle connection
port search statement routine in one embodiment.

Figure 27 is a flow diagram illustrating the processing of the court neighbor
routine in one embodiment.

Figure 28 is a flow diagram illustrating the processing of the handle connection
edge search call routine in one embodiment.

Figure 29 is a flow diagram illustrating the processing of the handle connection
edge search response routine in one embodiment.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine
in one embodiment.

Figure 31 is a flow diagram illustrating the processing of the acquire message
routine in one embodiment.

Figure 32 is a flow diagram illustrating processing of the handle condition
check message in one embodiment.

Figure 33 is a flow diagram illustrating processing of the handle condition

repair statement routine in one embodiment.

{03004-8004/5L003733.100] -5- 7131/00

0617

10

15

20

25

30

Figure 34 is a flow diagram illustrating the processing of the handle condition
double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel overlays a point-to-point
communications network is provided. The broadcasting of a message over the broadcast
channel is effectively a multicast to those computers of the network that are currently
connected to the broadcast channel. In one embodiment, the broadcast technique provides a
logical broadcast channel to which host computers through their executing processes can be
connected. Each computer that is connected to the broadcast channel can broadcast
messages onto and receive messages off of the broadcast channel. Each computer that is
connected to the broadcast channel receives all messages that are broadcast while it is
connected. The logicél broadcast channel is implemented using an underlying network
system (e.g., the Internet) that allows each computer connected to the underlying network
system to send messages to each other connected computer using each computer’s address.
Thus, the broadcast technique effectively provides a broadcast channel using an underlying
network system that sends messages on a point-to-point basis.

The broadcast technique overlays the underlying network system with a graph
of point-to-point connections (i.e., edges) between host computers (i.e., nodes) through
which the broadcast channel is implemented. In one embodiment, each computer is
connected to four other computers, referred to as neighbors. (Actually, a process executing
on a computer is connected to four other processes executing on this or four other
computers.) To broadcast a message, the originating computer sends the message to each of
its neighbors using its point-to-point connections. Each computer that receives the message
then sends the message to its three other neighbors using the point-to-point connections. In
this way, the message is propagated to each computer using the underlying network to effect
the broadcasting of the message to each computer over a logical broadcast channel. A graph
in which each node is connected to four other nodes is referred to as a 4-regular graph. The
use of a 4-regular graph means that a computer would become disconnected from the
broadcast channel only if all four of the connections to its neighbors fail. The graph used by
the broadcast technique also has the property that it would take a failure of four computers to

[03004-8004/SL003733.100) -6- 31460

0618

10

15

20

25

30

'divide the graph into disjoint sub-graphs, that is two separate broadcast channels. This

property is referred to as being 4-connected. Thus, the graph is both 4-regular and 4-
connected.

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents
the broadcast channel. Each of the nine nodes A-I represents a computer that is connected to
the broadcast channel, and each of the edges represents an “edge” connection between two
computers of the broadcast channel. The time it takes to broadcast a message to each
computer on the broadcast channel depends on the speed of the connections between the
computers and the number of connections between the originating computer and each other
computer on the broadcast channel. The minimum number of connections that a message
would need to traverse between each pair of computers is the “distance” between the
computers (i.e., the shortest path between the two nodes of the graph). For example, the
distance between computers A and F is one because computer A is directly connected to
computer F. The distance between computers A and B is two because there is no direct
connection between computers A and B, but computer F is directly connected to computer B.
Thus, a message originating at computer A would be sent directly to computer F, and then
sent from computer F to computer B. The maximuin of the distances between the computers
is the “diameter” of broadcast channel. The diameter of the broadcast channel represented
by Figure 1 is two. That is, a message sent by any computer would traverse no more than
two connections to reach every other computer. Figure 2 illustrates a graph representing 20
computers connected to a broadcast channel. The diameter of this broadcast channel is 4. In
particular, the shortest path between computers 1 and 3 contains four connections (1-12, 12-
15, 15-18, and 18-3).

The broadcast technique includes (1) the connecting of computers to the
broadcast channel (i.e., composing the graph), (2) the broadcasting of messages over the
broadcast channel (i.e., broadcasting through the graph), and (3) the disconnecting of
computers from the broadcast channel (i.e., decomposing the graph) composing the graph.

Composing the Graph

To connect to the broadcast channel, the computer seeking the connection first

locates a computer that is currently fully connected to the broadcast channel and then

[03004-8004/SL003733.100] -7- 731700

0619

10

15

20

25

30

establishes a connection with four of the computers that are already connected to the
broadcast channel. (This assumes that there are at least four computers already connected to
the broadcast channel. When there are fewer than five computers.connected, the broadcast
channel cannot be a 4-regular graph. In such a case, the broadcast channel is considered to
be in a “small regime.” The broadcast technique for the small regime is described below in
detail. When five or more computers are connected, the broadcast channel is considered to
be in the “large regime.” This description assumes that the broadcast channel is in the large
regime, unless specified otherwise.) Thus, the process of connecting to the broadcast
channel includes locating the broadcast channel, identifying the neighbors for the connecting
computer, and then connecting to each identified neighbor. Each computer is aware of one
or more “portal computers” through which that computer may locate the broadcast channel.
A seeking computer locates the broadcast channel by contacting the portal computers until it
finds one that is currently fully connected to the broadcast channel. The found portal
computer then directs the identifying of four computers (i.e., to be the seeking computer’s
neighbors) to which the seeking computer is to connect. Each of these four computers then
cooperates with the seeking computer to effect the connecting of the seeking computer to the
broadcast channel. A computer that has started the process of locating a portal computer, but
does not yet have a neighbor, is in the “seeking connection state.” A computer that is
connected to at least one neighbor, but not yet four neighbors, is in the “partially connected
state.” A computer that is currently, or has been, previously connected to four neighbors is
in the “fully connected state.”

Since the broadcast channel is a 4-regular graph, each of the identified
computers is already connected to four computers. Thus, some connections between
computers need to be broken so that the seeking computer can connect to four computers. In
one embodiment, the broadcast technique identifies two pairs of computers that are currently
connected to each other. Each of these pairs of computers breaks the connection between
them, and then each of the four computers (two from each pair) connects to the seeking
computer. Figures 3A and 3B illustrate the process of a new computer Z connecting to the
broadcast channel. Figure 3A illustrates the broadcast channel before computer Z is
connected. The pairs of computers B and E and computers C and D are the two pairs that are

- identified as the neighbors for the new computer Z. The connections between each of these

pairs is broken, and a connection between computer Z and each of computers B, C, D, and E

{03004-8004/5L003733.100} -8- 7/31/00

0620 -

10

15

20

25

30

is established as indicated by Figure 3B. The process of breaking the connection between
two neighbors and reconnecting each of the former neighbors to another computer is referred
to as “edge pinning” as the edge between two nodes may be considered to be stretched and
pinned to a new node.

Each computer connected to the broadcast channel allocates five
communications ports for communicating with other computers. Four of the ports are
referred to as “internal” ports because they are the ports through which the messages of the
broadcast channels are sent. The connections between internal ports of neighbors are
referred to as “internal” connections. Thus, the internal connections of the broadcast channel
form the 4-regular and 4-connected graph. The fifth port is referred to as an “external” port
because it is used for sending non-broadcast messages between two computers. Neighbors
can send non-broadcast messages either through their internal ports of their connection or
through their external ports. A seeking computer uses external ports when locating a portal
computer.

In one embodiment, the broadcast technique establishes the computer
connections using the TCP/IP communications protocol, which is a point-to-point protocol,
as the underlying network. The TCP/IP protocol provides for reliable and ordered delivery
of messages between computers. The TCP/IP protocol provides each computer with a “port
space” that is shared among all the processes that may execute on that computer. The ports
are identified by numbers from 0 to 65,535. The first 2056 ports are reserved for specific
applications (e.g., port 80 for HTTP messages). The remainder of the ports are user ports
that are available to any process. In one embodiment, a set of port numbers can be reserved
for use by the computer connected to the broadcast channel. In an alternative embodiment,
the port numbers used are dynamically identified by each computer. Each computer
dynamically identifies an available port to be used as its call-in port. This call-in port is used
to establish connections with the external port and the internal ports. Each computer that is
connected to the broadcast channel can receive non-broadcast messages through its external
port. A seeking computer tries “dialing” the port numbers of the portal computers until a
portal computer “answers,” a call on its call-in port. A portal computer answers when it is
connected to or attempting to connect to the broadcast channel and its call-in port is dialed.
(In this description, a telephone metaphor is used to describe the connections.) When a
computer receives a call on its call-in port, it transfers the call to another port. Thus, the

[03004-8004/SL003733.100) -9- 7731/00

0621

10

15

20

25

30

seeking computer actually communicates through that transfer-to port, which is the external
port. The call is transferred so that other computers can place calls to that computer via the
call-in port. The seeking computer then communicates via that external port to request the
portal computer to assist in connecting the seeking computer to the broadcast channel. The
seeking computer could identify the call-in port number of a portal computer by successively
dialing each port in port number order. As discussed below in detail, the broadcast technique
uses a hashing algorithm to select the port number order, which may result in improved
performance.

A seeking computer could connect to the broadcast channel by connecting to
computers either directly connected to the found portal computer or directly connected to one
of its neighbors. A possible problem with such a scheme for identifying the neighbors for
the seeking computer is that the diameter of the broadcast channel may increase when each
seeking computer uses the same found portal computer and establishes a connection to the
broadcast channel directly through that found portal computer. Conceptually, the graph
becomes elongated in the direction of where the new nodes are added. Figures 4A-4C
illustrate that possible problem. Figure 4A illustrates the broadcast channel of Figure 1 with
an added computer. Computer J was connected to the broadcast channel by edge pinning
edges C-D and E-H to computer J. The diameter of this broadcast channel is still two.
Figure 4B illustrates the broadcast channel of Figure 4A with an added computer.
Computer K was connected to the broadcast channel by edge pinning edges E-J and B-C to
computer K. The diameter of this broadcast channel is three, because the shortest path from
computer G to computer K is through edges G-A, A-E, and E-K. Figure 4C also illustrates
the broadcast channel of Figure 4A with an added computer. Computer K was connected to
the broadcast channel by edge pinning edges D-G and E-J to computer K. The diameter of
this broadcast channel is, however, still two. Thus, the selection of neighbors impacts the
diameter of the broadcast channel. To help minimize the diameter, the broadcast technique
uses a random selection technique to identify the four neighbors of a computer in the seeking
connection state. The random selection technique tends to distribute the connections to new
seeking computers throughout the computers of the broadcast channel which may result in
smaller overall diameters.

[03004-8004/S1.003733.100] -10- 731/00

0622

10

15

20

25

30

Broadcasting Through the Graph

As described above, each computer that is connected to the broadcast channel
can broadcast messages onto the broadcast channel and does receive all messages that are
broadcast on the broadcast channel. The computer that originates a message to be broadcast
sends that message to each of its four neighbors using the internal connections. When a
computer receives a broadcast message from a neighbor, it sends the message to its three
other neighbors. Each computer on the broadcast channel, except the originating computer,
will thus receive a copy of each broadcast message from each of its four neighbors. Each
computer, however, only sends the first copy of the message that it receives to its neighbors
and disregards subsequently received copies. Thus, the total number of copies of a message
that is sent between the computers is 3N+1, where N is the number of computers connected
to the broadcast channel. Each computer sends three copies of the message, except for the
originating computer, which sends four copies of the message.

The redundancy of the message sending helps to ensure the overall reliability
of the broadcast channel. Since each computer has four connections to the broadcast
channel, if one computer fails during the broadcast of a'message, its neighbors have three
other connections through which they will receive copies of the broadcast message. Also, if
the internal connection between two computers is slow, each computer has three other
connections through which it may receive a copy of each message sooner.

Each computer that originates a message numbers its own messages
sequentially. Because of the dynamic nature of the broadcast channel and because there are
many possible connection paths between computers, the messages may be received out of
ordef. For example, the distance between an originating computer and a certain receiving
computer may be four. After sending the first message, the originating computer ‘and
receiving computer may become neighbors and thus the distance between them changes to
one. The first message may have to travel a distance of four to reach the receiving computer.
The second message only has to travel a distance of one. Thus, it is possible for the second
message to reach the receiving computer before the first message.

When the broadcast channel is in a steady state (i.e., no computers connecting
or disconnecting from the broadcast channel), out-of-order messages are not a problem
because each computer will eventually receive both messages and can queue messages until

all earlier ordered messages are received. If, however, the broadcast channel is not in a
[03004-8004/SL.003733.100) -11- 7731/00

0623

10

15

20

25

30

steady state, then problems can occur. In particular, 8 computer may connect to the
broadcast channel after the second message has already been received and forwarded on by
its new neighbors. When a new neighbor eventually receives the first message, it sends the
message to the newly connected computer. Thus, the newly connected computer will receive
the first message, but will not receive the second message. If the newly connected computer
needs to process the messages in order, it would wait indefinitely for the second message.
One solution to this problem is to have each computer queue all the messages
that 1t receives until it can send them in their proper order to its neighbors. This solution,
however, may tend to slow down the propagation of messages through the computers of the
broadcast channel. Another solution that may have less impact on the propagation speed is
to queue messages only at computers who are neighbors of the newly connected computers.
Each already connected neighbor would forward messages as it receives them to its other
neighbors who are not newly connected, but not to the newly connected neighbor. The
already connected neighbor would only forward messages from each originating computer to
the newly connected computer when it can ensure that no gaps in the messages from that
originating computer will occur. In one embodiment, the already connected neighbor may
track the highest sequence number of the messages already received and forwarded on from
each originating computer. The already connected computer will send only higher numbered
messages from the originating computers to the newly connected computer. Once all lower
numbered messages have been received from all originating computers, then the already
connected computer can treat the newly connected computer as its other neighbors and
simply forward each message as it is received. In another embodiment, each computer may
queue messages and only forwards to the newly connected computer those messages as the
gaps are filled in. For example, a computer might receive messages 4 and 5 and then receive
message 3. In such a case, the already connected computer would forward queue messages 4
and 5. When message 3 is finally received, the already connected computer will send
messages 3, 4, and 5 to the newly connected computer. If messages 4 and 5 were sent to the
newly connected computer before message 3, then the newly connected computer would
process messages 4 and 5 and disregard message 3. Because the already connected computer
queues messages 4 and 5, the newly connected computer will be able to process message 3.

It is possible that a newly connected computer will receive a set of messages from an

originating computer through one neighbor and then receive another set of message from the

{03004-8004/SL003733.100] -12- 131100

0624

10

15

20

25

30

same originating computer through another neighbor. If the second set of messages contains
a message that is ordered earlier than the messages of the first set received, then the newly
connected computer may ignore that earlier ordered message if the computer already

processed those later ordered messages.

Decomposing the Graph

A connected computer disconnects from the broadcast channel either in a
planned or unplanned manner. When a computer disconnects in a planned manner, it sends a
disconnect message to each of its four neighbors. The disconnect message includes a list that
identifies the four neighbors of the disconnecting computer. When a neighbor receives the
disconnect message, it tries to connect to one of the computers on the list. In one
embodiment, the first computer in the list will try to connect to the second computer in the
list, and the third computer in the list will try to connect to the fourth computer in the list. If
a computer cannot connect (e.g., the first and second computers are already connected), then
the computers may try connecting in various other combinations. If connections cannot be
established, each computer broadcasts a message that it needs to establish a connection with
another computer. When a computer with an available internal port receives the message, it
can then establish a connection with the computer that broadcast the message. Figures 5A-
5D illustrate the disconnecting of a computer from the broadcast channel. Figure SA
illustrates the disconnecting of a computer from the broadcast channel in a planned manner.
When computer H decides to disconnect, it sends its list of neighbors to each of its neighbors
(computers A, E, F and I) and then disconnects from each of its neighbors. When
computers A and I receive the message they establish a connection between them as
indicated by the dashed line, and similarly for computers E and F.

When a computer disconnects in an unplanned manner, such as resulting from
a power failure, the neighbors connected to the disconnected computer recognize the
disconnection when each attempts to send its next message to the now disconnected
computer. Each former neighbor of the disconnected computer recognizes that it is short one
connection (i.e., it has a hole or empty port). When a connected computer detects that one of
its neighbors is now disconnected, it broadcasts a port connection request on the broadcast
channel, which indicates that it has one internal port that needs a connection. The port

connection request identifies the call-in port of the requesting computer. When a connected

{03004-8004/SL003733.100] -13- 131/00

0625

10

15

20

25

30

computer that is also short a connection receives the connection request, it communicates
with the requesting computer through its external port to establish a connection between the
two computers. Figure 5B illustrates the disconnecting of a computer from the broadcast
channel in an unplanned manner. In this illustration, computer H has disconnected in an
unplanned manner. When each of its neighbors, computers A, E, F, and I, recognizes the
disconnection, each neighbor broadcasts a port connection request indicating that it needs to
fill an empty port. As shown by the dashed lines, computers F and I and computers A and E
respond to each other’s requests and establish a connection. '

It 1s possible that a planned or unplanned disconnection may result in two
neighbors each having an empty internal port. In such a case, since they are neighbors, they
are already connected and cannot fill their empty ports by connecting to each other. Such a
condition is referred to as the “neighbors with empty ports” condition. Each neighbor
broadcasts a port connection request when it detects that it has an empty port as described
above. When a neighbor receives the port connection request from the other neighbor, it will
recognize the condition that its neighbor also has an empty port. Such a condition may also
occur when the broadcast channel is in the small regime. The condition can only be
corrected when in the large regime. When in the small regime, each computer will have less
than four neighbors. To detect this condition in the large regime, which would be a problem
if not repaired, the first neighbor to receive the port connection request recognizes the
condition and sends a condition check message to the other neighbor. The condition check
message includes a list of the neighbors of the sending computer. When the receiving
computer receives the list, it compares the list to its own list of neighbors. If the lists are
different, then this condition has occurred in the large regime and repair is needed. To repair
this condition, the receiving computer will send a condition repair request to one of the
neighbors of the sending computer which is not already a neighbor of the receiving
computer. When the computer receives the condition repair request, it disconnects from one
of its neighbors (other than the neighbor that is involved with the condition) and connects to
the computer that sent the condition repair request. Thus, one of the original neighbors
involved in the condition will have had a port filled. However, two computers are still in
need of a connection, the other original neighbor and the computer that is now disconnected
from the computer that received the condition repair request. Those two computers send out

port connection requests. If those two computers are not neighbors, then they will connect to

[03004-8004/SL003733.100] -14- 31/00

0626

10

15

20

25

30

each other when they receive the requests. If, however, the two computers are neighbors,
then they repeat the condition repair process until two non-neighbors are in need of
connections.

It is possible that the two original neighbors with the condition may have the
same set of neighbors. When the neighbor that receives the condition check message
determines that the sets of neighbors are the same, it sends a condition double check message
to one of its neighbors other than the neighbor who also has the condition. When the
computer receives the condition double check message, it determines whether it has the same
set of neighbors as the sending computer. If so, the broadcast channel is in the small regime
and the condition is not a problem. If the set of neighbors are different, then the computer
that received the condition double check message sends a condition check message to the
original neighbors with the condition. The computer that receives that condition check
message directs one of it neighbors to connect to one of the original neighbors with the
condition by sending a condition repair message. Thus, one of the original neighbors with
the condition will have its port filled.

Figure 5C illustrates the neighbors with empty ports condition. In this
illustration, computer H disconnected in an unplanned manner, but computers F and I
responded to the port connection request of the other and are now connected together. The
other former neighbors of bomputer H, computers A and E, are aiready neighbors, which
gives rise to the neighbors with empty ports condition. In this example, computer E received
the port connection request from computer A, recognized the possible condition, and sent
(since they are neighbors via the internal connection) a condition check message with a list
of its neighbors to computer A. When computer A received the list, it recognized that
computer E has a different set of neighbor (i.e., the broadcast channel is in the large regime).
Computer A selected computer D, which is a neighbor of computer E and sent it a condition
repair request. When computer D received the condition repair request, it disconnected from
one of its neighbors (other than computer E), which is computer G in this example.
Computer D then connected to computer A. Figure 5D illustrates two computers that are not
neighbors who now have empty ports. Computers E and G now have empty ports and are
not currently neighbors. Therefore, computers E and G can connect to each other.

Figures 5E and SF further illustrate the neighbors with empty ports condition.

Figure 5E illustrates the neighbors with empty ports condition in the small regime. In this
{03004-8004/5L003733.100) -15- 7131400

0627

10

15

20

25

30

example, if computer E disconnected in an unplanned manner, then each computer
broadcasts a port connection request when it detects the disconnect. When computer A
receives the port connection request form computer B, it detects the neighbors with empty
ports condition and sends a condition check message to computer B. Computer B recognizes
that it has the same set of neighbors (computer C and D) as computer A and then sends a
condition double check message to computer C. Computer C recognizes that the broadcast

channel is in the small regime because is also has the same set of neighbors as computers A

. and B, computer C may then broadcast a message indicating that the broadcast channel is in

the small regime.

Figure 5F illustrates the situation of Figure SE when in the large regime. As
discussed above, computer C receives the condition double check message from computer B.
In this case, computer C recognizes that the broadcast channel is in the large regime because
it has a set of neighbors that is different from computer B. The edges extending up from
computer C and D indicate connections to other computers. Computer C then sends a
condition check message to computer B. When computer B receives the condition check
message, it sends a condition repair message to one of the neighbors of computer C. The

computer that receives the condition repair message disconnects from one of its neighbors,

other than computer C, and tries to connect to computer B and the neighbor from which it

disconnected tries to connect to computer A.
Port Selection

As described above, the TCP/IP protocol designates ports above number 2056
as user ports. The broadcast technique uses five user port numbers on each computer: one
external port and four internal ports. Generally, user ports cannot be statically allocated to
an application program because other applications programs executing on the same computer
may use conflicting port numbers. As a result, in one embodiment, the computers connected
to the broadcast channel dynamically allocate their port numbers. Each computer could
simply try to locate the lowest number unused port on that computer and use that port as the
call-in port. A seeking computer, however, does not know in advance the call-in port
number of the portal computers when the port numbers are dynamicz_llly allocated. Thus, a
seeking computer needs to dial ports of a portal computer starting with the lowest port
number when locating the call-in port of a portal computer. If the portal computer is

(03004-8004/SL003733.100] -16- 31100

0628

10

15

20

25

30

connected to (or attempting to connect to) the broadcast channel, then the seeking computer

~ would eventually find the call-in port. If the portal computer is not connected, then the

seeking computer would eventually dial every user port. In addition, if each application
program on a computer tried to allocate low-ordered port numbers, then a portal computer
may end up with a high-numbered port for its call-in port because many of the low-ordered
port numbers would be used by other application programs. Since the dialing of a port is a
relatively slow process, it would take the seeking computer a long time to locate the call-in
port of a portal computer. To minimize this time, the broadcast technique uses a port
ordering algorithm to identify the port number order that a portal computer should use when
finding an available port for its call-in port. In one embodiment, the broadcast technique
uses a hashing algorithm to identify the port order. The algorithm preferably distributes the
ordering of the port numbers randomly through out the user port number space and only
selects each port number once. In addition, every time the algorithm is executed on any
computer for a given channel type and channel instance, it generates the same port ordering,
As described below, it is possible for a computer to be connected to multiple broadcast
Channels that are uniquely identified by channel type and channel instance. The algorithm
may be “seeded” with channel type and channel instance in order to generate a unique
ordering of port numbers for each broadcast channel. Thus, a seeking computer will dial the
ports of a portal computer in the same order as the portal computer used when allocating its
call-in port.

If many computers are at the same time seeking connection to a broadcast
channel through a single portal computer, then the ports of the portal computer may be busy
when called by seeking computers. The seeking computers would typically need to keep on
redialing a busy port. The process of locating a call-in port may be significantly slowed by
such redialing. In one embodiment, each seeking computer may each reorder the first few
port numbers generated by the hashing algorithm. For example, each seeking computer
could randomly reorder the first eight port numbers generated by the hashing algorithm. The
random ordering could also be weighted where the first port number generated by the
hashing algorithm would have a 50% chance of being first in the reordering, the second port
number would have a 25% chance of being first in the reordering, and so on. Because the
secking computers would use different orderings, the likelihood of finding a busy port is

reduced. For example, if the first eight port numbers are randomly selected, then it is
[U3004-8004/SL003733.100) -17- 731100

0629

10

15

20

25

30

possible that eight seeking computers could be simultaneously dialing ports in different
sequences which would reduce the chances of dialing a busy port.

Locating a Portal Computer

Each computer that can connect to the broadcast channel has a list of one or
more portal computers through which it can connect to the broadcast channel. In one
embodiment, each computer has the same set of portal computers. A seeking computer
locates a portal computer that is connected to the broadcast channel by successively dialing
the ports of each portal computer in the order specified by an algorithm. A seeking computer
could select the first portal computer and then dial all its ports until a call-in port of a
computer that is fully connected to the broadcast channel is found. If no call-in port is
found, then the seeking computer would select the next portal computer and repeat the
process until a portal computer with such a call-in port is found. A problem with such a
seeking technique is that all user ports of each portal computer are dialed until a portal
computer fully connected to the broadcast channel is found. In an alternate embodiment, the
seeking computer selects a port number according to the algorithm and then dials each portal
computer at that port number. If no acceptable call-in port to the broadcast channel is found,
then the seeking computer selects the next port number and repeats the process. Since the
call-in ports are likely allocated at lower-ordered port numbers, the seeking computer first
dials the port numbers that are most likely to be call-in ports of the broadcast channel. The
seeking computers may have a maximum search depth, that is the number of ports that it will
dial when seeking a portal computer that is fully connected. If the seeking computer
exhausts its search depth, then either the broadcast channel has not yet been established or, if
the seeking computer is also a portal computer, it can then establish the broadcast channel
with itself as the first fully connected computer.

When a seeking computer locates a portal computer that is itself not fully
connected, the two computers do not connect when they first locate each other because the
broadcast channel may already be established and accessible through a higher-ordered port
number on another portal computer. If the two seeking computers were to connect to each
other, then two disjoint broadcast channels would be formed. Each seeking computer can
share its experience in trying to locate a portal computer with the other seeking computer. In
particular, if one seeking computer has searched all the portal computers to a depth of eight,

103004-8004/SL003733.100] -18- 31/00

0630

10

15

20

25

30

then the one seeking computer can share that it has searched to a depth of eight with another
seeking computer. If that other seeking computer has searched to a depth of, for example,
only four, it can skip searching through depths five through eight and that other seeking
computer can advance its searching to a depth of nine.

In one embodiment, each computer may have a different set of portal
computers and a dlﬂ'erent maximum search depth. In such a situation, it may be possible that
two disjoint broadcast channels are formed because a seeking computer cannot locate a fully
connected port computer at a higher depth. Similarly, if the set of portal computers are
disjoint, then two separate broadcast channels would be formed.

Identifying Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting computer are
preferably selected randomly from the set of currently connected computers. One advantage
of the broadcast channel, however, is that no computer has global knowledge of the
broadcast channel. Rather, each computer has local knowledge of itself and its neighbors.
This limited local knowledge has the advantage that all the connected computers are peers
(as far as the broadcasting is concerned) and the failure of any one computer (actually any
three computers when in the 4-regular and 4-connect form) will not cause the broadcast
channel to fail. This local knowledge makes it difficult for a portal computer to randomly
select four neighbors for a seeking computer.

To select the four computers, a portal computer sends an edge connection
request message through one of its internal connections that is randomly selected. The
receiving computer again sends the edge connection request message through one of its
internal connections that is randomly selected. This sending of the message corresponds to a
random walk through the graph that represents the broadcast channel. Eventually, a
receiving computer will decide that the message has traveled far enough to represent a
randomly selected computer. That receiving computer will offer the internal connection
upon which it received the edge connection request message to the seeking computer for
edge pinning. Of course, if either of the computers at the end of the offered internal
connection are already neighbors of the seeking computer, then the seeking computer cannot
connect through that internal connection. The computer that decided that the message has

{03004-8004/SL003733.100] -19- 31100

0631

10

15

20

25

30

traveled far enough will detect this condition of already being a neighbor and send the
message to a randomly selected neighbor.

In one embodiment, the distance that the edge connection request message
travels is established by the portal computer to be approximately twice the estimated
diameter of the broadcast channel. The message includes an indication of the distance that it
is to travel. Each receiving computer decrements that distance to travel before sending the
message on. The computer that receives a message with a distance to travel that is zero is
considered to be the randomly selected computer. If that randomly selected computer cannot
connect to the seeking computer (e.g., because it is already connected to it), then that
randomly selected computer forwards the edge connection request to one of its neighbors
with a new distance to travel. In one embodiment, the forwarding computer toggles the new
distance to travel between zero and one to help prevent two computers from sending the
message back and forth between each other.

Because of the local nature of the information maintained by each computer
connected to the broadcast channel, the computers need not generally be aware of the
diamcter of the broadcast channel. In one embodiment, each message sent through the
broadcast channel has a distance traveled field. Each computer that forwards a message
increments the distance traveled field. Each computer also maintains an estimated diameter
of the broadcast channel. When a computer receives a message that has traveled a distance
that indicates that the estimated diameter is too small, it updates its estimated diameter and
broadcasts an estimated diameter message. When a computer receives an estimated diameter
message that indicates a diameter that is larger than its own estimated diameter, it updates its
own estimated diameter. This estimated diameter is used to establish the distance that an

edge connection request message should travel.

External Data Representation
The computers connected to the broadcast channel may internally store their

data in different formats. For example, one computer may use 32-bit integers, and another
computer may use 64-bit integers. As another example, one computer may use ASCII to
represent text and another computer may use Unicode. To allow communications between
heterogeneous computers, the messages sent over the broadcast channel may use the XDR
(“eXternal Data Representation”) format.

(03004-8004/5L003733.100) -20- 1131/00

0632

10

15

20

25

30

The underlying peer-to-peer communications protocol may send multiple
messages in a single message stream. The traditional technique for retrieving messages from
a stream has been to repeatedly invoke an operating system routine to retrieve the next
message in the stream. The retrieval of each message may require two calls to the operating
system: one to retrieve the size of the next message and the other to retrieve the number of
bytes indicated by the retrieved size. Such calls to the operating system can, however, be
very slow in comparison to the invocations of local routines. To overcome the inefficiencies
of such repeated calls, the broadcast technique in one embodiment, uses XDR to identify the
message boundaries in a stream of messages. The broadcast technique may request the
operating system to provide the next, for example, 1,024 bytes from the stream. The
broadcast technique can then repeatedly invoke the XDR routines to retrieve the messages
and use the success or failure of each invocation to determine whether another block of 1,024
bytes needs to be retrieved from the operating system. The invocation of XDR routines do
not involve system calls and are thus more efficient than repeated system calls.

M-Regular

In the embodiment described above, each fully connected computer has four
internal connections. The broadcast technique can be used with other numbers of internal
connections. For example, each computer could have 6, 8, or any even number of internal
connections. As the number of internal connections increase, the diameter of the broadcast
channel tends to decrease, and thus propagation time for a message tends to decrease. The
time that it takes to connect a seeking computer to the broadcast channel may, however,
increase as the number of internal connections increases. When the number of internal
connectors is even, then the broadcast channel can be maintained as m-regular and
m-connected (in the steady state). If the number of internal connections is odd, then when
the broadcast channel has an odd number of computers connected, one of the computers will
have less than that odd number of internal connections. In such a situation, the broadcast
network is neither m-regular nor m-connected. When the next computer connects to the
broadcast channel, it can again become m-regular and m-connected. Thus, with an odd
number of internal connections, the broadcast channel toggles between being and not being

m-regular and m-connected.

[03004-8004/SL003733.100] -21- 731/00

0633

10

15

20

25

30

Components
Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcast channel. The above description generally assumed that there was
only one broadcast channel and that each computer had only one connection to that broadcast
channel. More generally, a network of computers may have multiple broadcast channels,
each computer may be connected to more than one broadcast channel, and each computer
can have multiple connections to the same broadcast channel. The broadcast channel is well
suited for computer processes (e.g., application programs) that execute collaboratively, such
as network meeting programs. Each computer process can connect to one or more broadcast
channels. The broadcast channels can be identified by channel type (e.g., application
program name) and channel instance that represents separate broadcast channels for that
channel type. When a process httcmpts to connect to a broadcast channel, it seeks a process
currently connected to that broadcast channel that is executing on a portal computer. The
seeking process identifies the broadcast channel by channel type and channel instance.
Computer 600 includes multiple application programs 601 executing as
separate processes. Each application program interfaces with a broadcaster component 602
for each broadcast channel to which it is connected. The broadcaster component may be
implement as an object that is instantiated within the process space of the application
program. Alternatively, the broadcaster component may execute as a separate process or
thread from the application program. In one embodiment, the broadcaster component
provides functions (e.g., methods of class) that can be invoked by the application programs.
The primary functions provided may include a connect function that an application program
invokes passing an indication of the broadcast channel to which the application program
wants to connect. The application program may provide a callback routine that the
broadcaster component invokes to notify the application program that the connection has
been completed, that is the process enters the fully connected state. The broadcaster
component may also provide an acquire message function that the application program can
invoke to retrieve the next message that is broadcast on the broadcast channel. Alternatively,
the application program may provide a callback routine (which may be a virtual function
provided by the application program) that the broadcaster component invokes to notify the
application program that a broadcast message has been received. FEach broadcaster
component allocates a call-in port using the hashing algorithm. When calls are answered at

103004-8004/SL003733.100] -22- 131/00

0634

10

15

20

25

the call-in port, they are transferred to other ports that serve as the external and internal
ports.

The computers connecting to the broadcast channel may include a central
processing unit, memory, input devices (e.g., keyboard and pointing device), output devices
(e.g., display devices), and storage devices (e.g.,, disk drives). The memory and storage
devices are computer-readable medium that may contain computer instructions that
implement the broadcaster component. In addition, the data structures and message
structures may be stored or transmitted via a signal transmitted on a computer-readable
media, such as a communications link.

Figure 7 is a block diagram illustrating the sub-components of the broadcaster
component in one embodiment. The broadcaster component includes a connect component
701, an external dispatcher 702, an internal dispatcher 703 for each internal connection, an
acquire message component 704 and a broadcast component 712. The application program
may provide a connect callback component 710 and a receive response component 711 that
are invoked by the broadcaster component. The application program invokes the connect
component to establish a connection to a designated broadcast channel. The connect
component identifies the external port and installs the external dispatcher for handling
messages that are received on the external port. The connect component invokes the seek
portal computer component 705 to identify a portal computer that is connected to the
broadcast channel and invokes the connect request component 706 to ask the portal computer
(if fully connected) to select neighbor processes for the newly connecting process. The
external dispatcher receives external messages, identifies the type of message, and invokes
the appropriate handling routine 707. The internal dispatcher receives the internal messages,
identifies the type of message, and invokes the appropriate handling routine 708. The
received broadcast messages are stored in the broadcast message queue 709. The acquire
message component is invoked to retrieve messages from the broadcast queue. The
broadcast component is invoked by the application program to broadcast messages in the
broadcast channel.

The following tables list messages sent by the broadcaster components.

(03004-8004/SL003733.100| -23- 131/00

0635

EXTERNAL MESSAGES

Message Type

Description

seeking_connection_call

Indicates that a seeking process would like to know whether the
receiving process is fully connected to the broadcast channel

connection_request_call

Indicates that the sending process would like the receiving
process to initiate a connection of the sending process to the
broadcast channel

edge_proposal_call

Indicates that the sending process is proposing an edge through
which the receiving process can connect to the broadcast
channel (i.e., edge pinning)

port_connection_call

Indicates that the sending process is proposing a port through
which the receiving process can connect to the broadcast
channel

connected_stmt

Indicates that the sending process is connected to the broadcast
channel

condition_repair_stmt

Indicates that the receiving process should disconnect from one
of its neighbors and connect to one of the processes involved in
the neighbors with empty port condition

INTERNAL MESSAGES

Message Type

Description

broadcast_stmt

Indicates a message that is being broadcast through the
broadcast channel for the application programs

connection_port_search_stmt | Indicates that the designated pracess is looking for a port

through which it can connect to the broadcast channel

connection_edge_search_call | Indicates that the requesting process is looking for an edge

through which it can connect to the broadcast channel

connection_edge_search_resp | Indicates whether the edge between this process and the

sending neighbor has been accepted by the requesting
party

diameter_estimate_stmt

Indicates an estimated diameter of the broadcast channel

diameter_reset_stmt

Indicates to reset the estimated diameter to indicated
diameter

disconnect_stmt

Indicates that the sending neighbor is disconnecting from
the broadcast channel

condition_check stmt

Indicates that neighbors with empty port condition have

103004-8004/5L003733.100)

-24. 131100

0636

10

15

20

25

been detected

condition_double_check_stmt | Indicates that the neighbors with empty ports have the
same set of neighbors

shutdown_stmt Indicates that the broadcast channel is being shutdown

Flow Diagrams
Figures 8-34 are flow diagrams illustrating the processing of the broadcaster

component in one embodiment. Figure 8 is a flow diagram illustrating the processing of the
connect routine in one embodiment. This routine is passed a channel type (e.g., application
name) and channel instance (e.g., session identifier), that identifies the broadcast channel to
which this process wants to connect. The routine is also passed auxiliary information that
includes the list of portal computers and a connection callback routine. When the connection
is established, the connection callback routine is invoked to notify the application program.
When this process invokes this routine, it is in the seeking connection state. When a portal
computer is located that is connected and this routine connects to at least one neighbor, this
process enters the partially connected state, and when the process eventually connects to four
neighbors, it enters the fully connected state. When in the small regime, a fully connected
process may have less than four neighbors. In block 801, the routine opens the call-in port
through which the process is to communicate with other processes when establishing external
and internal connections. The port is selected as the first available port using the hashing
algorithm described above. In block 802, the routine sets the connect time to the current
time. The connect time is used to identify the instance of the process that is connected
through this external port. One process may connect to a broadcast channel of a certain
channel type and channel instance using one call-in port and then disconnects, and another
process may then connect to that same broadcast channel using the same call-in port. Before
the other process becomes fully connected, another process may try to communicate with it
thinking it is the fully connected old process. In such a case, the connect time can be used to
identify this situation. In block 803, the routine invokes the seek portal computer routine
passing the channel type and channel instance. The seek portal computer routine attempts to
locate a portal computer through which this process can connect to the broadcast channel for
the passed type and instance. In decision block 804, if the seek portal computer routine is

{03004-8004/5L003733.100) -25- 131/00

0637

10

15

20

25

30

successful in locating a fully connected process on that portal computer, then the routine
continues at block 805, else the routine returns an unsuccessful indication. In decision block
805, if no portal computer other than the portal computer on which the process is executing
was located, then this is the first process to fully connect to broadcast channel and the
routine continues at block 806, else the routine continues at block 808. In block 806, the
routine invokes the achieve connection routine to change the state of this process to fully
connected. In block 807, the routine installs the external dispatcher for processing messages
received through this process’ external port for the passed channel type and channel instance.
When a message is received through that external port, the external dispatcher is invoked.
The routine then retumns. In block 808, the routine installs an external dispatcher. In block
809, the routine invokes the connect request routine to initiate the process of identifying
neighbors for the seeking computer. The routine then returns.

Figure 9 is a flow diagram illustrating the processing of the seek portal
computer routine in one embodiment. This routine is passed the channel type and channel
instance of the broadcast channel to which this process wishes to connect. This routine, for
each search depth (e.g., port number), checks the portal computers at that search depth. If a
portal computer is located at that search depth with a process that is fully connected to the
broadcast channel, then the routine returns an indication of success. In blocks 902-911, the
routine loops selecting each search depth until a process is located. In block 902, the routine
selects the next search depth using a port number ordering algorithm. In decision block 903,
if all the search depths have already been selected during this execution of the loop, that is
for the currently selected depth, then the routine returns a failure indication, else the routine
continues at block 904. In blocks 904-911, the routine loops selecting each portal computer
and determining whether a process of that portal computer is connected to (or attempting to
connect to) the broadcast channel with the passed channel type and channel instance. In

block 904, the routine selects the next portal computer. In decision block 905, if all the '

portal computers have already been selected, then the routine loops to block 902 to select the
next search depth, else the routine continues at block 906. In block 906, the routine dials the
selected portal computer through the port represented by the search depth. In decision block
907, if the dialing was successful, then the routine continues at block 908, else the routine
loops to block 904 to select the next portal computer. The dialing will be successful if the
dialed port is the call-in port of the broadcast channel of the passed channel type and channel

[03004-8004/SL003733.100] -26- 31100

0638

10

15

20

25

30

instance of a process executing on that portal computer. In block 908, the routine invokes a
contact process routine, which contacts the answering process of the portal computer through
the dialed port and determines whether that process is fully connected to the broadcast
channel. In block 909, the routine hangs up on the selected portal computer. In decision
block 910, if the answering process is fully connected to the broadcast channel, then the
routine returns a success indicator, else the routine continues at block 911. In block 911, the
routine invokes the check for external call routine to determine whether an external call has
been made to this process as a portal computer and processes that call. The routine then
loops to block 904 to select the next portal computer.

Figure 10 is a flow diagram illustrating the processing of the contact process
routine in one embodiment. This routine determines whether the process of the selected
portal computer that answered the call-in to the selected port is fully connected to the
broadcast channel. In block 1001, the routine sends an external message (ie.,
seeking_connection_call) to the answering process indicating that a seeking process wants to
know whether the answering process is fully connected to the broadcast channel. In block
1002, the routine receives the external response message from the answering process. In
decision block 1003, if the external response message is successfully received (ie.,
seeking connection_resp), then the routine continues at block 1004, else the routine retums.
Wherever the broadcast component requests to receive an external message, it sets a time out
period. If the external message is not received within that time out period, the broadcaster
component checks its own call-in port to see if another process is calling it. In particular, the
dialed process may be calling the dialing process, which may result in a deadlock situation.
The broadcaster component may repeat the receive request several times. If the expected
message is not received, then the broadcaster component handles the error as appropriate. In
decision block 1004, if the answering process indicates in its response message that it is fully
connected to the broadcast channel, then the routine continues at block 1005, else the routine
continues at block 1006. In block 1005, the routine adds the selected portal computer to a
list of connected portal computers and then retuns. In block 1006, the routine adds the
answering process to a list of fellow seeking processes and then returns.

Figure 11 is a flow diagram illustrating the processing of the connect request
routine in one embodiment. This routine requests a process of a portal computer that was

identified as being fully connected to the broadcast channel to initiate the connection of this
(03004-8004/SL003733.100] -27- 7731100

0639

10

15

20

25

30

process to the broadcast channel. In decision block 1101, if at least one process of a portal
computer was located that is fully connected to the broadcast channel, then the routine
continues at block 1103, else the routine continues at block 1102. A process of the portal
computer may no longer be in the list if it recently disconnected from the broadcast channel.
In one embodiment, a seeking computer may always search its entire search depth and find
multiple portal computers through which it can connect to the broadcast channel. In block
1102, the routine restarts the process of connecting to the broadcast channel and returns. In
block 1103, the routine dials the process of one of the found portal computers through the
call-in port. In decision block 1104, if the dialing is successful, then the routine continues at
block 1105, else the routine continues at block 1113. The dialing may be unsuccessful if, for
example, the dialed process recently disconnected from the broadcast channel. In block
1105, the routine sends an external message to the dialed process requesting a connection to
the broadcast channel (i.e., connection_request_call). In block 1106, the routine receives the
response message (i.e., connection_request resp). In decision block 1107, if the response
message is successfully received, then the routine continues at block 1108, else the routine
continues at block 1113. In block 1108, the routine sets the expected number of holes (i.e.,
empty internal connections) for this process based on the received response. When in the
large regime, the expected number of holes is zero. When in the small regime, the expected
number of holes varies from one to three. In block 1109, the routine sets the estimated
diameter of the broadcast channel based on the received response. In decision block 1111, if
the dialed process is ready to connect to this process as indicated by the response message,
then the routine continues at block 1112, else the routine continues at block 1113. In block
1112, the routine invokes the add neighbor routine to add the answering process as a
neighbor to this process. This adding of the answering process typically occurs when the
broadcast channel is in the small regime. When in the large regime, the random walk search
for a neighbor is performed. In block 1113, the routine hangs up the external connection
with the answering process computer and then returns.

Figure 12 is a flow diagram of the processing of the check for external call
routine in one embodiment. This routine is invoked to identify whether a fellow seeking
process is attempting to establish a connection to the broadcast channel through this process.
In block 1201, the routine attempts to answer a call on the call-in port. In decision block
1202, if the answer is successful, then the routine continues at block 1203, else the routine

{03004-8004/SL003733.100) -28- 731/00

0640

10

15

20

25

30

returns. In block 1203, the routine receives the external message from the external port. In
decision block 1204, if the type of the message indicates that a seeking process is calling
(i.e., seeking connection_call), then the routine continues at block 1205, else the routine
returns. In block 1205, the routine sends an external message (i.e., seeking_connection_resp)
to the other seeking process indicating that this process is also is seeking a connection. In
decision block 1206, if the sending of the external message is successful, then the routine
continues at block 1207, else the routine returns. In block 1207, the routine adds the other
seeking process to a list of fellow seeking processes and then returns. This list may be used
if this process can find no process that is fully connected to the broadcast channel. In which
case, this process may check to see if any fellow seeking process were successful in
connecting to the broadcast channel. For example, a fellow seeking process may become the
first process fully connected to the broadcast channel.

Figure 13 is a flow diagram of the processing of the achieve connection routine
in one embodiment. This routine sets the state of this process to fully connected to the
broadcast channel and invokes a callback routine to notify the application program that the
process is now fully connected to the requested broadcast channel. In block 1301, the
routine sets the connection state of this process to fully connected. In block 1302, the
routine notifies fellow seeking processes that it is fully connected by sending a connected
external message to them (i.e., connected_stmt). In block 1303, the routine invokes the
connect callback routine to notify the application program and then returns.

Figure 14 is a flow diagram illustrating the processing of the external
dispatcher routine in one embodiment. This routine is invoked when the external port
receives a message. This routine retrieves the message, identifies the external message type,
and invokes the appropriate routine to handle that message. This routine loops processing
each message until all the received messages have been handled. In block 1401, the routine
answers (e.g., picks up) the external port and retrieves an external message. In decision
block 1402, if a message was retrieved, then the routine continues at block 1403, else the
routine hangs up on the external port in block 1415 and returns. In decision block 1403, if
the message type is for a process seeking a connection (i.e., seeking_connection_call), then
the routine invokes the handle seeking connection call routine in block 1404, else the routine
continues at block 1405. In decision block 1405, if the message type is for a connection

request call (i.e., connection_request_call), then the routine invokes the handle connection

{03004-8004/SL003733.100] -29- 73100

0641

10

15

20

25

30

request call routine in block 1406, else the routine continues at block 1407. In decision
block 1407, if the message type is edge proposal call (i.e., edge proposal_call), then the
routine invokes the handle edge proposal call routine in block 1408, else the routine
continues at block 1409. In decision block 1409, if the message type is port connect call
(Ze., port_connect_call), then the routine invokes the handle port connection call routine in
block 1410, else the routine continues at block 1411. In decision block 1411, if the message
type is a connected statement (i.e., connected stmt), the routine invokes the handle
connected statement in block 1112, else the routine continues at block 1212. In decision
block 1412, if the message type is a condition repair statement (i.e., condition_repair_stmt),
then the routine invokes the handle condition repair routine in block 1413, else the routine
loops to block 1414 to process the next message. After each handling routine is invoked, the
routine loops to block 1414. In block 1414, the routine hangs up on the external port and
continues at block 1401 to receive the next message.

Figure 15 is a flow diagram illustrating the processing of the handle seeking
connection call routine in one embodiment. This routine is invoked when a seeking process
is calling to identify a portal computer through which it can connect to the broadcast channel.
In decision block 1501, if this process is currently fully connected to the broadcast channel
identified in the message, then the routine continues at block 1502, else the routine continues
at block 1503. In block 1502, the routine sets a message to indicate that this process is fully
connected to the broadcast channel and continues at block 1505. In block 1503, the routine
sets a message to indicate that this process is not fully connected. In block 1504, the routine
adds the identification of the seeking process to a list of fellow seeking processes. If this
process is not fully connected, then it is attempting to connect to the broadcast channel. In
block 1505, the routine sends the external message response (i.e., seeking_connection_resp)
to the seeking process and then returns.

Figure 16 is a flow diagram illustrating processing of the handle connection
request call routine in one embodiment. This routine is invoked when the calling process
wants this process to initiate the connection of the process to the broadcast channel. This
routine either allows the calling process to establish an internal connection with this process
(e.g., if in the small regime) or starts the process of identifying a process to which the calling
process can connect. In decision block 1601, if this process is currently fully connected to

the broadcast channel, then the routine continues at block 1603, else the routine hangs up on

[03004-8004/SL003733.100] -30- 131100

0642

10

15

20

25

30

the external port in block 1602 and returns. In block 1603, the routine sets the number of
holes that the calling process should expect in the response message. In block 1604, the
routine sets the estmated diameter in the response message. In block 1605, the routine
indicates whether this process is ready to connect to the calling process. This process is
ready to connect when the number of its holes is greater than zero and the calling process is
not a neighbor of this process. In block 1606, the routine sends to the calling process an
external message that is responsive to the connection request call (ie.,
connection_request_resp). In block 1607, the routine notes the number of holes that the
calling process needs to fill as indicated in the request message. In decision block 1608, if
this process is ready to connect to the calling process, then the routine continues at block
1609, else the routine continues at block 1611. In block 1609, the routine invokes the add
neighbor routine to add the calling process as a neighbor. In block 1610, the routine
decrements the number of holes that the calling process needs to fill and continues at block
1611. In block 1611, the routine hangs up on the external port. In decision block 1612, if
this process has no holes or the estimated diameter is greater than one (i.e., in the large
regime), then the routine continues at block 1613, else the routine continues at block 1616.
In blocks 1613-1615, the routine loops forwarding a request for an edge through which to
connect to the calling process to the broadcast channel. One request is forwarded for each
pair of holes of the calling process that needs to be filled. In decision block 1613, if the
number of holes of the calling process to be filled is greater than or equal to two, then the
routine continues at block 1614, else the routine continues at block 1616. In block 1614, the
routine invokes the forward connection edge search routine. The invoked routine is passed
to an indication of the calling process and the random walk distance. In one embodiment, the
distance is twice in the estimated diameter of the broadcast channel. In block 1614, the
routine decrements the holes left to fill by two and loops to block 1613. In decision block
1616, if there is still a hole to fill, then the routine continues at block 1617, else the routine
returns. In block 1617, the routine invokes the fill hole routine passing the identification of
the calling process. The fill hole routine broadcasts a connection port search statement (i.e.,
connection_port_search_stmt) for a hole of a connected process through which the calling
process can connect to the broadcast channel. The routine then returns.

Figure 17 is a flow diagram illustrating the processing of the add neighbor
routine in one embodiment. This routine adds the process calling on the external port as a

{03004-8004/SL003733.100] -31- 731/00

0643

15

20

25

30

neighbor to this process. In block 1701, the routine identifies the calling process on the
external port. In block 1702, the routine sets a flag to indicate that the neighbor has not yet
received the broadcast messages from this process. This flag is used to ensure that there are
no gaps in the messages initially sent to the new neighbor. The external port becomes the
internal port for this connection. In decision block 1703, if this process is in the seeking
connection state, then this process is connecting to its first neighbor and the routine
continues at block 1704, else the routine continues at block 1705. In block 1704, the routine
sets the connection state of this process to partially connected. In block 1705, the routine
adds the calling process to the list of neighbors of this process. In block 1706, the routine
installs an internal dispatcher for the new neighbor. The internal dispatcher is invoked when
a message 1s received from that new neighbor through the internal port of that new neighbor.
In decision block 1707, if this process buffered up messages while not fully connected, then
the routine continues at block 1708, else the routine continues at block 1709. In one
embodiment, a process that is partially connected may buffer the messages that it receives
through an internal connection so that it can send these messages as it connects to new
neighbors. In block 1708, the routine sends the buffered messages to the new neighbor
through the internal port. In decision block 1709, if the number of holes of this process
equals the expected number of holes, then this process is fully connected and the routine
continues at block 1710, else the routine continues at block 1711. In block 1710, the routine
invokes the achieve connected routine to indicate that this process is fully connected. In
decision block 1711, if the number of holes for this process is zero, then the routine
continues at block 1712, else the routine returns. In block 1712, the routine deletes any
pending edges and then returns. A pending edge is an edge that has been proposed to this
process for edge pinning, which in this case is no ldnger needed.

Figure 18 is a flow diagram illustrating the processing of the forward
connection edge search routine in one embodiment. This routine is responsible for passing
along a request to connect a requesting process to a randomly selected neighbor of this
process through the internal port of the selected neighbor, that is part of the random walk. In
decision block 1801, if the forwarding distance remaining is greater than zero, then the
routine continues at block 1804, else the routine continues at block 1802. In decision block
1802, if the number of neighbors of this process is greater than one, then the routine
continues at block 1804, else this broadcast channel is in the small regime and the routine

[03004-8004/SL003733.100) -32- 31100

0644

10

15

20

25

30

continues at block 1803. In decision block 1803, if the requesting process is a neighbor of
this process, then the routine returns, eise the routine continues at block 1804. In blocks
1804-1807, the routine loops attempting to send a connection edge search call internal
message (i.e., connection_edge search_call) to a randomly selected neighbor. In block 1804,
the routine randomly selects a neighbor of this process. In decision block 1805, if all the
neighbors of this process have already been selected, then the routine cannot forward the
message and the routine returns, else the routine continues at block 1806. In block 1806, the
routine sends a connection edge search call internal message to the selected neighbor. In
decision block 1807, if the sending of the message is successful, then the routine continues at
block 1808, else the routine loops to block 1804 to select the next neighbor. When the
sending of an internal message is unsuccessful, then the neighbor may have disconnected
from the broadcast channel in an unplanned manner. Whenever such a situation is detected
by the broadcaster component, it attempts to find another neighbor by invoking the fill holes
routine to fill a single hole or the forward connecting edge search routine to fill two holes. In
block 1808, the routine notes that the recently sent connection edge search call has not yet
been acknowledged and indicates that the edge to this neighbor is reserved if the remaining
forwarding distance is less than or equal to one. It is reserved because the selected neighbor
may offer this edge to the requesting process for edge pinning. The routine then returns.
Figure 19 is a flow diagram illustrating the processing of the handle edge
proposal call routine. This routine is invoked when a message is received from a proposing
process that proposes to connect an edge between the proposing process and one of its
neighbors to this process for edge pinning. In decision block 1901, if the number of holes of
this process minus the number of pending edges is greater than or equal to one, then this
process still has holes to be filled and the routine continues at block 1902, else the routine
continues at block 1911. In decision block 1902, if the proposing process or its neighbor is a
neighbor of this process, then the routine continues at block 1911, else the routine continues
at block 1903. In block 1903, the routine indicates that the edge is pending between this
process and the proposing process. In decision block 1904, if a proposed neighbor is already
pending as a proposed neighbor, then the routine continues at block 191 1, else the routine
continues at block 1907. In block 1907, the routine sends an edge proposal response as an
external message to the proposing process (ie., edge_proposal _resp) indicating that the
proposed edge is accepted. In decision block 1908, if the sending of the message was

[03004-8004/SL003733.100] -33- 7131/00

0645

10

15

20

25

30

successful, then the routine continues at block 1909, else the routine returns. In block 1909,

the routine adds the edge as a pending edge. In block 1910, the routine invokes the add .

neighbor routine to add the proposing process on the external port as a neighbor. The routine
then returns. In block 1911, the routine sends an external message (i.e., edge_proposal_resp)
indicating that this proposed edge is not accepted. In decision block 1912, if the number of
holes is odd, then the routine continues at block 1913, else the routine returns. In block
1913, the routine invokes the fill hole routine and then returns.

Figure 20 1s a flow diagram illustrating the processing of the handle port
connection call routine in one embodiment. This routine is invoked when an external
message is received then indicates that the sending process wants to connect to one hole of
this process. In decision block 2001, if the number of holes of this process is greater than
zero, then the routine continues at block 2002, else the routine continues at block 2003. In
decision block 2002, if the sending process is not a neighbor, then the routine continues at
block 2004, else the routine continues to block 2003. In block 2003, the routine sends a port
connection response external message (i.e., port_connection_resp) to the sending process that
indicates that it is not okay to connect to this process. The routine then returns. In block
2004, the routine sends a port connection response external message to the sending process
that indicates that is okay to connect this process.’ In decision block 2005, if the sending of
the message was successful, then the routine continues at block 2006, else the routine
continues at block 2007. In block 2006, the routine invokes the add neighbor routine to add
the sending process as a neighbor of this process and then returns. In block 2007, the routine
hangs up the external connection. In block 2008, the routine invokes the connect request
routine to request that a process connect to one of the holes of this process. The routine then
returns.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in
one embodiment. This routine is passed an indication of the requesting process. If this
process is requesting to fill a hole, then this routine sends an internal message to other
processes. If another process is requesting to fill a hole, then this routine invokes the routine
to handle a connection port search request. In block 2101, the routine initializes a
connection port search statement internal message (i.e., connection _port_search_stmt). In
decision block 2102, if this process is the requesting process, then the routine continues at

block 2103, else the routine continues at block 2104. In block 2103, the routine distributes
[03004-8004/SLD03733.100) -34- 7131/00

0646

10

15

20

25

30

the message to the neighbors of this process through the internal ports and then returns. In
block 2104, the routine invokes the handle connection port search routine and then returns.

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher
routine in one embodiment. This routine is passed an indication of the neighbor who sent the
internal message. In block 2201, the routine receives the internal message. This routine
identifies the message type and invokes the appropriate routine to handle the message. In
block 2202, the routine assesses whether to change the estimated diameter of the broadcast
channel based on the information in the received message. In decision block 2203, if this
process is the originating process of the message or the message has already been received
(i.e., a duplicate), then the routine ignores the message and continues at block 2208, else the
routine continues at block 2203A. In decision block 2203A, if the process is partially
connected, then the routine continues ai block 2203B, else the routine continues at block
2204. In block 2203B, the routine adds the message to the pending connection buffer and
continues at block 2204. In decision blocks 2204-2207, the routine decodes the message
type and mvokes the appropriate routine to handle the message. For example, in decision
block 2204, if the type of the message is broadcast statement (i.e., broadcast_stmt), then the
routine invokes the handle broadcast message routine in block 2205. After invoking the
appropriate handling routine, the routine continues at block 2208. In decision block 2208, if
the partially connected buffer is full, then the routine continues at block 2209, else the
routine continues at block 2210. The broadcaster component collects all its internal
messages in a buffer while partially connected so that it can forward the messages as it
connects to new neighbors. If, however, that buffer becomes full, then the process assumes
that it is now fully connected and that the expected number of connections was too high,
because the broadcast channel is now in the small regime. In block 2209, the routine invokes
the achieve connection routine and then continues in block 2210. In decision block 2210, if
the application program message queue is empty, then the routine returns, else the routine
continues at block 2212. In block 2212, the routine invokes the receive response routine
passing the acquired message and then returns. The received response routine is a callback
routine of the application program.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast
message routine in one embodiment. This routine is passed an indication of the originating

process, an indication of the neighbor who sent the broadcast message, and the broadcast
[03004-8004/SL.003733.100] -35- 131/00

0647

10

15

20

25

30

meésage itself. In block 2301, the routine performs the out of order processing for this
message. The broadcaster component queues messages from each originating process until it
can send them in sequence number order to the application program. In block 2302, the
routine invokes the distribute broadcast message routine to forward the message to the
neighbors of this process. In decision block 2303, if a newly connected neighbor is waiting
to receive messages, then the routine continues at block 2304, else the routine returns. In
block 2304, the routine sends the messages in the correct order if possible for each
originating process and then returns.

Figure 24 is a flow diagram illustrating the processing of the distribute
broadcast message routine in one embodiment. This routine sends the broadcast message to
each of the neighbors of this process, except for the neighbor who sent the message to this
process. In block 2401, the routine selects the next neighbor other than the neighbor who
sent the message. In decision block 2402, if all such neighbors have already been selected,
then the routine returns. In block 2403, the routine sends the message to the selected
neighbor and then loops to block 2401 to select the next neighbor.

Figure 26 is a flow diagram illustrating the processing of the handle connection
port search statement routine in one embodiment. This routine is passed an indication of the
neighbor that sent the message and the message itself. In block 2601, the routine invokes the
distribute internal message which sends the message to each of its neighbors other than the
sending neighbor. In decision block 2602, if the number of holes of this process is greater
than zero, then the routine continues at block 2603, else the routine returns. In decision
block 2603, if the requesting process is a neighbor, then the routine continues at block 2605,
else the routine continues at block 2604. In block 2604, the routine invokes the court
neighbor routine and then returns. The court neighbor routine connects this process to the
requesting process if possible. In block 2605, if this process has one hole, then the neighbors
with empty ports condition exists and the routine continues at block 2606, else the routine
returns. In block 2606, the routine generates a condition check message (ie.,
condition_check) that includes a list of this process’ neighbors. In block 2607, the routine
sends the message to the requesting neighbor.

Figure 27 is a flow diagram illustrating the processing of the court neighbor
routine in one embodiment. This routine is passed an indication of the prospective neighbor

for this process. If this process can connect to the prospective neighbor, then it sends a port

(03004-8004/SL003733.100] -36- 7/31/00

0648

10

15

20

25

30

connection call external message to the prospective neighbor and adds the prospective
neighbor as a neighbor. In decision block 2701, if the prospective neighbor is already a
neighbor, then the routine returns, else the routine continues at block 2702. In block 2702,
the routine dials the prospective neighbor. In decision block 2703, if the number of holes of
this process is greater than zero, then the routine continues at block 2704, else the routine
continues at block 2706. In block 2704, the routine sends a port connection call external
message (i.e., port_connection_call) to the prospective neighbor and receives its response
(i.e., port_connection_resp). Assuming the response is successfully received, in block 2705,
the routine adds the prospective neighbor as a neighbor of this process by invoking the add
neighbor routine. In block 2706, the routine hangs up with the prospect and then returns.
Figure 28 is a flow diagram illustrating the processing of the handle connection
edge search call routine in one embodiment. This routine is passed a indication of the
neighbor who sent the message and the message itself. This routine either forwards the
message to a neighbor or proposes the edge between this process and the sending neighbor to
the requesting process for edge pinning. In decision block 2801, if this process is not the
requesting process or the number of holes of the requesting process is still greater than or
equal to two, then the routine continues at block 2802, else the routine continues at block
2813. In decision block 2802, if the forwarding distance is greater than zero, then the
random walk is not complete and the routine continues at block 2803, else the routine
continues at block 2804. In block 2803, the routine invokes the forward connection edge
search routine passing the identification of the requesting process and the decremented
forwarding distance. The routine then continues at block 2815. In decision block 2804, if
the requesting process is a neighbor or the edge between this process and the sending
neighbor is reserved because it has already been offered to a process, then the routine
continues at block 2805, else the routine continues at block 2806. In block 2805, the routine
invokes the forward connection edge search routine passing an indication of the requesting
party and a toggle indicator that alternatively indicates to continue the random walk for one
or two more computers. The routine then continues at block 2815. In block 2806, the
routine dials the requesting process via the call-in port. In block 2807, the routine sends an
edge proposal call external message (i.e., edge_proposal_call) and receives the response (i.e.,
edge_proposal_resp). Assuming that the response is successfully received, the routine
continues at block 2808. In decision block 2808, if the response indicates that the edge is

{03004-8004/SL003733.100] -37- 131/00

0649

10

15

20

25

30

acceptable to the requesting process, then the routine continues at block 2809, else the
routine continues at block 2812. In block 2809, the routine reserves the edge between this
process and the sending neighbor. In block 2810, the routine adds the requesting process as
a neighbor by invoking the add neighbor routine. In block 2811, the routine removes the
sending neighbor as a neighbor. In block 2812, the routine hangs up the external port and
continues at block 2815. In decision block 2813, if this process is the requesting process and
the number of holes of this process equals one, then the routine continues at block 2814, else
the routine continues at block 2815. In block 2814, the routine invokes the fill hole routine.
In block 2815, the routine sends an connection edge search response message (i.e.,
connection_edge_search_response) to the sending neighbor indicating acknowledgement and
then returns. The graphs are sensitive to parity. That is, all possible paths starting from a
node and ending at that node will have an even length unless the graph has a cycle whose
length is odd. The broadcaster component uses a toggle indicator to vary the random walk
distance between even and odd distances.

Figure 29 is a flow diagram illustrating the processing of the handle connection
edge search response routine in one embodiment. This routine is passed as indication of the
requesting process, the sending neighbor, and the message. In block 2901, the routine notes
that the connection edge search response (i.e., connection_edge search resp) has been
received and if the forwarding distance is less than or equal to one unreserves the edge
between this process and the sending neighbor. In decision block 2902, if the requesting
process indicates that the edge is acceptable as indicated in the message, then the routine
continues at block 2903, else the routine returns. In block 2903, the routine reserves the edge
between this process and the sending neighbor. In block 2904, the routine removes the
sending neighbor as a neighbor. In block 2905, the routine invokes the court neighbor
routine to connect to the requesting process. In decision block 2906, if the invoked routine
was unsuccessful, then the routine continues at block 2907, else the routine returns. In
decision block 2907, if the number of holes of this process is greater than zero, then the
routine continues at block 2908, else the routine returns. In block 2908, the routine invokes
the fill hole routine and then returns.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine
in one embodiment. This routine is invoked by the application program to broadcast a

message on the broadcast channel. This routine is passed the message to be broadcast. In

{03004-8004/SL003733.100] -38- 131/00

0650

10

15

20

25

30

decision block 3001, if this process has at least one neighbor, then the routine continues at
block 3002, else the routine returns since it is the only process connected to be broadcast
channel. In block 3002, the routine generates an internal message of the broadcast statement
type (i.e., broadcast _stmt). In block 3003, the routine sets the sequence number of the
message. In block 3004, the routine invokes the distribute internal message routine to
broadcast the message on the broadcast channel. The routine returns.

Figure 31 is a flow diagram illustrating the processing of the acquire message
routine in one embodiment. The acquire message routine may be invoked by the application
program or by a callback routine provided by the application program. This routine returns a
message. In block 3101, the routine pops the message from the message queue of the
broadcast channel. In decision block 3102, if a message was retrieved, then the routine
returns an indication of success, else the routine returns indication of failure.

Figures 32-34 are flow diagrams illustrating the processing of messages
associated with the neighbors with empty ports condition. Figure 32 is a flow diagram
illustrating processing of the handle condition check message in one embodiment. This
message is sent by a neighbor process that has one hole and has received a request to connect
to a hole of this process. In decision block 3201, if the number of holes of this process is
equal to one, then the routine continues at block 3202, else the neighbors with empty ports
condition does not exist any more and the routine returns. In decision block 3202, if the
sending neighbor and this process have the same set of neighbors, the routine continues at
block 3203, else the routine continues at block 3205. In block 3203, the routine initializes a
condition double check message (i.e., condition_double_check) with the list of neighbors of
this process. In block 3204, the routine sends the message internally to a neighbor other than
sending neighbor. The routine then returns. In block 3205, the routine selects a neighbor of
the sending process that is not also a neighbor of this process. In block 3206, the routine
sends a condition repair message (i.e., condition_repair_stmt) externally to the selected
process. In block 3207, the routine invokes the add neighbor routine to add the selected
neighbor as a neighbor of this process and then returns.

Figure 33 is a flow diagram illustrating processing of the handle condition
Tepair statement routine in one embodiment. This routine removes an existing neighbor and
connects to the process that sent the message. In decision block 3301, if this process has no
holes, then the routine continues at block 3302, else the routine continues at block 3304. In

[03004-8004/SL003733.100] -39- 731100

0651

10

15

20

25

block 3302, the routine selects a neighbor that is not involved in the neighbors with empty
ports condition. In block 3303, the routine removes the selected neighbor as a neighbor of

this process. Thus, this process that is executing the routine now has at least one hole. In -

block 3304, the routine invokes the add neighbor routine to add the process that sent the
message as a neighbor of this process. The routine then returns.

Figure 34 is a flow diagram illustrating the processing of the handle condition
double check routine. This routine determines whether the neighbors with empty ports
condition really 1s a problem or whether the broadcast channel is in the small regime. In
decision block 3401, if this process has one hole, then the routine continues at block 3402,
else the routine continues at block 3403. If this process does not have one hole, then the set
of neighbors of this process is not the same as the set of neighbors of the sending process. In
decision block 3402, if this process and the sending process have the same set of neighbors,
then the broadcast channel is not in the small regime and the routine continues at block 3403,
else the routine continues at block 3406. In decision block 3403, if this process has no holes,
then the routine returns, else the routine continues at block 3404. In block 3404, the routine
sets the estimated diameter for this process to one. In block 3405, the routine broadcasts a
diameter reset internal message (i.e., diameter_reset) indicating that the estimated diameter is
one and then returns. In block 3406, the routine creates a list of neighbors of this process. In
block 3407, the routine sends the condition check message (i.e., condition_check_stmt) with
the list of neighbors to the neighbor who sent the condition double check message and then
returns. ‘

From the above description, it will be appreciated that although specific
embodiments of the technology have been described, various modifications may be made
without deviating from the spirit and scope of the invention. For example, the
communications on the broadcast channel may be encrypted. Also, the channel instance or
session identifier may be a very large number (e.g., 128 bits) to help prevent an unauthorized
user to maliciously tap into a broadcast channel. The portal computer may also enforce
security and not allow an unauthorized user to connect to the broadcast channel.

Accordingly, the invention is not limited except by the claims.

[03004-8004/51.003733.100] -40- 71/00

0652

CLAIMS

1. A method of broadcasting data through a computer network, the method

comprising:

receiving at a computer the data from a neighbor computer;

determining whether the received data has already been transmitted
from the receiving computer to its neighbor computers;

when it is determined that the data has aiready. been transmitted,
disregarding the received data; and

when it is determined that the data has not already been transmitted,
transmitting the received data to neighbor computers of the receiving computer.

2. The method of claim 1 wherein the computer network is a 4-regular

graph.

3. The method of claim 1 wherein the computer network implements a
broadcast channel wherein the neighbor computers of the computer network are connected
using point-to-point connections.

4, The method of claim 3 wherein the connections are TCP/IP connections.

5. The method of claim 1 wherein the computer network is a broadcast
channel that is implemented using an underlying network that connects computers using

point-to-point connections.

6. The method of claim 5 wherein the underlying network is the Internet.

{03004-8004/SL.003733.100] -41- 7731/00

0653

7. A broadcaster component in a computer connected to a computer
network, comprising:

an originating module that transmits data that originates from the
computer to each of the neighbor computers;

a receiving module that receives multiple copies of data that originates
from another computer, each copy of the data being received from a different neighbor
computer; and

a forwarding module that transmits a copy of the received data to each

neighbor computer other than that neighbor computer from which the copy was received.

8. The broadcaster component of claim 7 including

a sending module that provides a copy of the received data to an

application program.

9. The broadcaster component of claim 7 wherein the computer network is

a broadcast channel implemented using an underlying point-to-point computer network.

10. The broadcaster component of claim 7 including:
a locating module for locating a portal computer that is connected to the

computer network.

11. The broadcaster component of claim 7 including:
a connecting module for connecting the computer to the computer
network.

12. The broadcaster component of claim 7 including:
a portal module for initiating joining of a requesting computer to the
computer network.

13. The broadcast component of claim 7 wherein the computer is connected

to its neighbor computer using a point-to-point connection.

{03004-8004/SL003733.100) -42- 731100

0654

14. A method of broadcasting data on a computer network, the method

compnsing: 4

establishing connections between each computer of the computer
network and at least three other computers of the computer network;

when a computer originates data, sending the data to each of the
computers to which it is connected; and

when a computer receives data, sending a first copy of the data that it
receives to each of the computers to which it is connected other than the computer from

which it received the data.

15. The method of claim 14 wherein computers and connections of the

computer network form an m-regular graph.

16. The method of claim 15 wherein each computer is connected to an even

number of computers.

17. The method of claim 14 wherein the computers and connections of the

computer network form an m-regular and m-connected graph.
18. The method of claim 17 wherein m is even.
19. The method of claim 17 wherein m is 4.

20. The method of claim 14 wherein the computers are connected using

point-to-point connections.

2]. The method of claim 14 wherein the computers are connected using the
Internet.

{03004-8004/5L003733.100) -43- 731100

0655

22. A computer-readable medium containing instructions for controlling a

computer system to broadcast data on a broadcast channel, by a method comprising:

establishing connections between each computer of the broadcast
channel and three other computers of the broadcast channel using point-to-point connections;

when a computer originates data, sending the data to each of the
computers to which it is connected; and

when a computer receives data, sending a copy of the data that it
receives to each of the computers to which it is connected other than the computer from
which it received the data.

23. The computer-readable medium of claim 22 wherein computers and

connections of the computer network form an m-regular graph.

24. The computer-readable medium of claim 23 wherein each computer is

connected to an even number of computers.

25. The computer-readable medium of claim 22 wherein the computers and
connections of the broadcast channel form an m-regular and m-connected graph.

26. The computer-readable medium of claim 25 wherein m is even.
27. The computer-readable medium of claim 25 wherein m is 4.

28. The computer-readable medium of claim 22 wherein the computers are

connected using the Internet.

{03004-8004/51003733.100) -44- 731/00

0656

ho [
Aot .»m*;¢o¢- ’ —
w3l el N B4 2dS | 7
£o =20
W
Nnas
- (:x “WEX hE ¥ /
o422) 0 .
J*P—W?W .«{/.&mmPvU .
~T
SISV .
_S0 |0
(Xds) \
\v .u?.?op J\
s SD ~3£&.ﬁw N\
slﬁ;.ah(30_ o~ L P J.v*a\sw -
21569
T |
00 PO 2 Gt peSRIaT

0657

254
..-:/Hw‘_«nu«-ﬂ. ¢ QII*SA_.«..O
~AN D |-
€ R v D)
sl
_So
e = "q
~0s 4
ho
souv#s\.. rwen -
290 S | Lloc.
.e«c*.ﬁ—d wovuo 202137 ! __
20) @ W
o |
e T ﬂdm S) Ze| o) a0 Y15

sSngny=y v

0658

SRR

Olg

Ke)

ﬂ?éxt%& \\”UV

!

T

O

S

N~ =~

34

o)
1

Q
3;—‘«.14

T2

404

21921 12977

0659

b33

w24 hqp { 407
ﬂ.w.*PQT D2Y2

wﬁfﬁ:& %

® » \Ugﬁ..N
S U..:L h A , - P D) !
3 wz...\l | ..(H‘N“Wm $SO|7
Q3 ?2Nes ; |
SR TR Ya| 2
\ O3 Vv 4$2g L

d.((ﬁdg.l

0660

ro4s
orb |§\‘:~i§.

[¥}

oL

Ori‘e_, \

| Poctmdp -

Drive

So,uvt e c\2ssS

or

rovelyos

wy

61

Receive |

L'l

Co h(‘\‘W‘GJ'l

0%

S Temsm: T
%’"ﬁﬁé’“ -

Dene

0661

U
J—ﬂ Jeoiyng
{v10g 53022 n#; rapong SQ\Q’Q..%/C Sy
£o - —

&P«agcia kmquxtm_

) e,

1 Q
QO \d—pQ:JCDb;._mﬂ_zm)zb(_t

0662

2h ﬁ\wwnm
%
a1/
/
~ ~
; ~ NE__
ht™ \
~ S—
1% bz |
S2poy ho wdl v co wdx g5 TN
€
TS~
/[
LX)
. ~.
\Nuﬂﬂ 2 VU3 3 oF ~ 1€
v
b2 ‘ ! 0
\N\V \N\ -~ ./4 :
Iz © ” |
@l s3apop 2¢ WIT re W31 Q..\ s2pond

0663

o vy,
SS20Ppd 04 A

co -1 .WM.\JQ%(?P’.:&

«mwvogod vrower

o .\(Nu/w JZQ%.H 2.44 J i.mUD

>32Mpp-f| vromen “

lo

“TNopT W4T

0664

mw,.u

P .o‘*

L

|
m
|

(A4

Pres

[

P FLF;
%3367

ot

2dS

~
_,
290D :
Jooc: —
i€ T
os 295
05
CEEN e _
_ ‘:
21.7)
2977
,. i

ol S

Q@

et a S coprcrss e 5% 71

| oy ‘..m.u._\.e.r 01} 410G T;@

g

0665

o/ °3

<o

Ty
wbthil

20 =8
owvy Ul

—

Jajiepser
' d.wq.iw_
jo

0@

0666

Buha-

oc

Selet,

Cpen us-
55 e

0667

oP%M

<2134
M
m
g
h
ho a: 1 .WH
a) /t .
4 Y X2 W41
L
.l\\..W\
\)\r.
<l
| .
2p9 Lho% — ¢
H ! z 77 2 .
i I 3 ‘
{1t r 0
o] 14
- 9 _ o1/ _ >
_ m
,QA.AQQ 20 ‘AMAX {0 BT

oo

0668

e
TR RN
1141 1o J
ldgfam*!‘_,!\ﬁu\lu\.vb 1T 1l P o =
e 1,2] iz ¥
po T AN

qqé «.. .rf:>

I "
H W.uﬂ\\hhonﬁ.\ ,o\a\:f;,,\./ :
L j

1T O% o6
20 2| R
ol

T
-

|a

0669

sete decked

PocTir

‘ "'u".‘.i eg. si {3 F) |

0670

Lo

Y e T EE: Q

N
€e
I e
rims
el
$S03D I
. h .
Y S
20 |
, A 2L SR A
ot oirers lTu FroToY
2TLw& 2)q2 92 . ..kr—cl?.ov
<0

Snelffd PN
-) *:VWM - *A.s..A.TQQ

JCI3LeGY 2
2 opect]

—

=) mg 1@

0671

Lo

90

9/ 314

1
1 — :
L.y =
" BpoN \u'll i
[- ——
A ~O
2z I \
]
P! < 0 WIT

17

2uw0) PUS fo.wdwmw.
20} W O) 35@@ 2
. L ppavuod Y c.gcu
X4 153vch .ﬂ.ﬁn w10 2
lﬁ..v“od v
. . ..L:USSO.V v, o .—)’-80 o
HfrgsyeS LS pres
299,) 41 §Vw62 109) 1 3 w:\ooi 240 Wi
al 30| %wmm
m’ \v l ‘ylil
.—/ / ~— A K
.L 0 — 1 J!\—
/ £0
A 0 Lo
S
WwiaT

0672

Yo rrovR it
Cdt (\O"_h (/\/\‘%

(e

(Doce >

F\'% 17

0673

W4T

L¢

w4z

¥ 2peqy

0674

 Proces s

info lrpor‘}‘

PQ:‘ theob P A

Avipriee N~

e

\K 0%

-.:).)A& |

dUsraom et
903 C

e b

' /\ ey
o oty .0

~ -

[y °l

(700 % 7op 2ol im

0675

0676

U.

10

15

20

25

S. Patent Application No. 09/629,024

¥
i

DISTRIBUTED CONFERENCING SYSTEM ,

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. Patent Application No. ,
entitted “BROADCASTING NETWORK,” filed on July 31, 2000 (Attorney Docket
No. 030048001 US); U.S. Patent Application No. , entitled “JOINING A
BROADCAST CHANNEL,” filed on July 31, 2000 (Attorney Docket No.| 030048002 US);
U.S. Patent Application No. , “LEAVING A BROADCAST CHANNEL,”
filed on July 31, 2000 (Attorney Docket No. 030048003 US); U.S. Pltent Application
No. , entitled “BROADCASTING ON A BROADCAST CHANNEL,” filed
on July 31, 2000 (Attorney Docket No. 030048004 US), U.S. Patent Application
No. , entitled “CONTACTING A BROADCAST CHANNEL,” filed on
July 31,2000 (Attorney Docket No. 030048005 US); U.S. Patent Application

No. , entitled “DISTRIBUTED AUCTION SYSTEM,” filed on
July 31,2000 (Attorney Docket No. 030048006 US); U.S. Patent Application
No. , entitted “AN INFORMATION DELIVERY SERVICE,” filed on
July 31,2000 (Attorney Docket No. 030048007 US); U.S. Patent Application
No.__ , entitled “DISTRIBUTED CONFERENCING SYSTEM,” filed on
July 31,2000 (Attormey Docket No. 030048008 US); and U.S. Patent Application
No. , entitled “DISTRIBUTED GAME ENVIRONMENT,” filed on

July 31,2000 (Attorney Docket No. 030048009 US), the disclosure‘? of which are

incorporated herein by reference.

TECHNICAL FIELD }
|

The described technology relates generally to a computer n:etwork and more

particularly, to a broadcast channel for a subset of a computers of an underly’ring network.
|

|
BACKGROUND !

There are a wide vaniety of computer network communications techniques such

as point-to-point network protocols, client/server middleware, multicasting network

[03004}061/81.003733 .106] -1- 7731/00

$00¥ -

EXPRESS MAIL NO. EL4049352790:

0677

10

15

20

25

30

protocols, and peer-to-peer middleware. Each of these communications

techniques have

their advantages and disadvantages, but none is particularly well suited to the simultaneous

sharing of information among computers that are widely distributed.
collaborative processing applications, such as a network meeting programs
distribute information in a timely manner to all participants who may be
distributed.

The point-to-point network protocols, such as UNIX pipes, T(

allow processes on different computers to communicate via point-to-point c¢

For example,
have a need to

> geographically

CP/IP, and UDP,

pnnections. The

interconnection of all participants using point-to-point connections, while theoretically

possible, does not scale well as a number of participants grows. For
participating process would need to manage its direct connections to all ot
processes. Programmers, however, find it very difficult to manage single ¢
management of multiple connections is much more complex. In additic
processes may be limited to the number of direct connections that they ca;
limits the number of possible participants in the sharing of information.

The client/server middleware systems provide a server that
communications between the various clients who are sharing the informat
functions as a central authority for controlling access to shared resource
client/server middleware systems include remote procedure calls (“RPC”), ¢

and the common object request broker architecture (“CORBA”). Client/se

example, each
her participating
sonnections, and
bn, participating
n support. This

coordinates the
on. The server
5. Examples of
jatabase servers,

rver middleware

systems are not particularly well suited to sharing of information among many participants.

In particular, when a client stores information to be shared at the server, ¢

rach other client

would need to poll the server to determine that new information is beinF shared. Such

polling places a very high overhead on the communications network. Alternatively, each

client may register a callback with the server, which the server then inv
information is available to be shared. Such a callback technique present

bottleneck because a single server needs to call back to each client

okes when new
s a performance

whenever new

information is to be shared. In addition, the reliability of the entire sharing of information

depends upon the reliability of the single server. Thus, a failure at a singl
the server) would prevent communications between any of the clients.

The multicasting network protocols allow the sending of broad
multiple recipients of a network. The current implementations of such mult

(03004-8001/SL003733.106) -2-

e computer (i.e.,

cast messages to

icasting network

7/31/00

0678

10

15

20

25

30

|

protocols tend to place an unacceptable overhead on the underlying network. For example,

UDP multicasting would swamp the Intemet when trying to locate all poss

ible participants.

IP multicasting has other problems that include needing special-purpose infrastructure (e.g.,

routers) to support the sharing of information efficiently.

The peer-to-peer middleware communications systems rely o
St
middleware is provided by the T.120 Internet standard, which 1s used in

network protocol or a graph of point-to-point network protocols.

Data Connection’s D.C.-share and Microsoft’s NetMeeting. These peer-to-
systems rely upon a user to assemble a point-to-point graph of the conn

sharing the information. Thus, it is neither suitable nor desirable to

n a multicasting
ich peer-to-peer
such products as
peer middleware
ections used for

use peer-to-peer

middleware systems when more than a small number of participants 1s desired. In addition,

the underlying architecture of the T.120 Internet standard is a tree structure, which relies on

the root node of the tree for reliability of the entire network. That is, each message must pass

through the root node in order to be received by all participants.

It would be desirable to have a reliable communications
suitable for the simultaneous sharing of information among a large number
that are widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

network that is

of the processes

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents a

broadcast channel.

Figure 2 illustrates a graph representing 20 computers connected to a broadcast

channel.

Figures 3A and 3B illustrate the process of connecting a new computer Z to the

broadcast channel.

Figure 4A illustrates the broadcast channel of Figure 1 {with an added
computer.

Figure 4B illustrates the broadcast channel of Figure 4A |with an added
computer. '

Figure 4C also illustrates the broadcast channel of Figure 4.‘# with an added
computer. :

[03004-8001/51L.003733.106]

731700

0679

10

15

20

25

30

|

Figure 5A illustrates the disconnecting of a computer froxh the broadcast
channel in a planned manner. :

Figure 5B illustrates the disconnecting of a computer from the broadcast
channel in an unplanned manner. ‘

Figure 5C illustrates the neighbors with empty ports condition.%

Figure 5D illustrates two computers that are not neighborsi who now have
empty ports.
Figure SE illustrates the neighbors with empty ports conditilon in the small
regime. : :

Figure SF illustrates the situation of Figure SE when in the largie regime.

Figure 6 is a block diagram illustrating components of a computer that is
connected to a broadcast channel.

Figure 7 is a block diagram illustrating the sub-components of the broadcaster
component in one embodiment.

Figure 8 is a flow diagram illustrating the processing of the cennect routine in
one embodiment.

Figure 9 is a flow diagram illustrating the processing of the seek portal
computer routine in one embodiment. ‘

Figure 10 is a flow diagram illustrating the processing of the| contact process
routine in one embodiment. ;

Figure 11 is a flow diagram illustrating the processing of the| connect request

routine in one embodiment.

Figure 12 is a flow diagram of the processing of the check for external call

routine in one embodiment. ’

Figure 13 is a flow diagram of the processing of the achleve cqnncctlon routine
in one embodiment.

Figure 14 is a flow diagram illustrating the processing #)f the external
dispatcher routine in one embodiment. !

Figure 15 is a flow diagram illustrating the processing of thc% handle seeking
connection call routine in one embodiment.

Figure 16 is a flow diagram illustrating processing of the handle connection
request call routine in one embodiment.

[03004-8001/SL003733.106) -4- § 31000

0680

10

15

20

25

30

|
Figure 17 is a flow diagram illustrating the processing of the add neighbor
routine in one embodiment.
Figure 18 is a flow diagram illustrating the processing of the forward

connection edge search routine in one embodiment.

Figure 19 is a flow diagram illustrating the processing of the handle edge
proposal call routine. |

Figure 20 is a flow diagram illustrating the processing of the handle port
connection call routine in one embodiment.

Figure 21 is a flow diagram illustrating the processing of the ﬂll hole routine in
one embodiment. '

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher
routine in one embodiment. '

Figure 23 is a flow diagram illustrating the processing of the ;handle broadcast
message routine in one embodiment. '

Figure 24 is a flow diagram illustrating the processing ¢f the distribute
broadcast message routine in one embodiment. i

Figure 26 1s a flow diagram illustrating the processing of the hkmdle connection
port search statement routine in one embodiment. ‘

Figure 27 is a flow diagram illustrating the processing of thh court nelghbor
routine in one embodiment. :

Figure 28 is a flow diagram illustrating the processing of the hbndle connection
edge search call routine in one embodiment. |

Figure 29 is a flow diagram illustrating the processing of the handle connection
edge search response routine in one embodiment. ‘

Figure 30 is a flow diagram illustrating the processing of the broadcast routine
in one embodiment.

Figure 31 is a flow diagram illustrating the processing of the|acquire message
routine in one embodiment.

Figure 32 is a flow diagram illustrating processing of the handle condition

check message in one embodiment.

Figure 33 is a flow diagram illustrating processing of the handle condition
repair statement routine in one embodiment. l

{03004-8001/5L003733.106] -5- : 13100

0681

10

15

20

25

30

Figure 34 is a flow diagram illustrating the processing of the handle condition
double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel overlayqi a point-to-point
communications network is provided. The broadcasting of a message m}er the broadcast
channel is effectively a multicast to those computers of the network tliiat are currently
connected to the broadcast channel. In one embodiment, the broadcast tech:nique provides a
logical broadcast channel to which host computers through their executing 'processes can be
connected. Each computer that is connected to the broadcast channel can broadcast
messages onto and receive messages off of the broadcast channel. Each icomputer that is
connected to the broadcast channel receives all messages that are broadcast while it is
connected. The logical broadcast channel is implemented using an underlying network
system (e.g., the Internet) that allows each computer connected to the underlying network
system to send messages to each other connected computer using each computer’s address.

Thus, the broadcast technique effectively provides a broadcast channel using an underlying

network system that sends messages on a point-to-point basis.

The broadcast technique overlays the underlying network sysiem with a graph
of point-to-point connections (i.e., edges) between host computers (i.e.,; nodes) through
which the broadcast channel is implemented. In one embodiment, eéch computer is
connected to four other computers, referred to as neighbors. (Actually, a pirocess executing
on a computer is connected to four other processes executing on thJJs or four other
computers.) To broadcast a message, the originating computer sends the mcftssage to each of
its neighbors using its point-to-point connections. Each computer that receLives the message
then sends the message to its three other neighbors using the point-to-pointi connections. In

this way, the message is propagated to each computer using the underlying network to effect

~ the broadcasting of the message to each computer over a logical broadcast channel. A graph

in which each node is connected to four other nodes is referred to as a 4-rei ar graph. The

use of a 4-regular graph means ﬂ1at a computer would become disconnected from the

broadcast channel only if all four of the connections to its neighbors fail. The graph used by

the broadcast technique also has the property that it would take a failure of i}ou: computers to
!

{03004-8001/5L003733.106] -6- 7131/00

0682

10

15

20

25

30

divide the graph into disjoint sub-graphs, that is two separate broadcasti channels. This
property is referred to as being 4-connected. Thus, the graph is both 4-regular and 4-
connected.

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents
the broadcast channel. Each of the nine nodes A-I represents a computer th;at is connected to
the broadcast channel, and each of the edges represents an “edge” connection between two
computers of the broadcast channel. The time it takes to broadcast a message to each
computer on the broadcast channel depends on the speed of the connecti;ons between the
computers and the number of connections between the originating computer and each other
computer on the broadcast channel. The minimum number of conneétion}s that a message
would need to traverse between each pair of computers is the “distante” between the
computers (i.e., the shortest path between the two nodes of the graph). For example, the
distance between computers A and F is one because computer A is direcjtly connected to
computer F. The distance between computers A and B is two because tPere 1s no direct
connection between computers A and B, but computer F is directly connected to computer B.
Thus, a message originating at computer A would be sent directly to com Juter F, and then
sent from computer F to computer B. The maximum of the distances between the computers
is the “diameter” of broadcast channel. The diameter of the broadcast channel represented
by Figure 1 is two. That is, a message sent by any computer would travei;'se no more than
two connections to reach every other computer. Figure 2 illustrates a grapth representing 20
computers connected to a broadcast channel. The diameter of this broadcasl@ channel is 4. In
particular, the shortest path between computers 1 and 3 contains four conndéctions (1-12, 12-
15, 15-18, and 18-3). |

The broadcast technique includes (1) the connecting of computers to the
broadcast channel (i.e., composing the graph), (2) the broadcasting of m%essages over the
broadcast channel (i.e., broadcasting through the graph), and (3) the éiisconnecting of
computers from the broadcast channel (i.e., decomposing the graph) composiing the graph.

Composing the Graph

To connect to the broadcast channel, the computer seeking the connection first

locates a computer that is currently fully connected to the broadcast c#lannel and then

{03004-8001/5L003733.106) -7- ' 7/31/00

0683

10

20

25

30

establishes a connection with four of the computers that are already cj:onnected to the
broadcast channel. (This assumes that there are at least four computers already connected to
the broadcast channel. When there are fewer than five computers connected, the broadcast
channe] cannot be a 4-regular graph. In such a case, the broadcast channel: is considered to
be in a “small regime.” The broadcast technique for the small regime is dt%scribed below in
detail. When five or more computers are connected, the broadcast chaxmei is considered to
be in the “large regime.” This description assumes that the broadcast cham%xel is in the large
regime, unless specified otherwise.) Thus, the process of connecting to the broadcast
channel includes locating the broadcast channel, identifying the neighbors t{or the connecting
computer, and then connecting to each identified neighbor. Each computefr 1s aware of one
or more “portal computers” through which that computer may locate the b%oadcast channel.
A seeking computer locates the broadcast channel by contacting the portal cj;omputers until it
finds one that is currently fully connected to the broadcast channel. The found portal

computer then directs the identifying of four computers (i.e., to be the seeking computer’s

neighbors) to which the seeking computer is to connect. Each of these foqfr computers then
cooperates with the seeking computer to effect the connecting of the seekiné computer to the
broadcast channel. A computer that has started the process of locating a po | computer, but
does not yet have a neighbor, is in the “seeking connection state.” Ata‘

connected to at least one neighbor, but not yet four neighbors, is in the “pzirﬁally connected

omputer that is

”

state.” A computer that is currently, or has been, previously connected to ffour neighbors is
in the “fully connected state.”

Since the broadcast channel is a 4-regular graph, each of the identified
computers is already connected to four computers. Thus, some conriections between
computers need to be broken so that the seeking computer can connect to fohr computers. In
one embodiment, the broadcast technique identifies two pairs of computers that are currently
connected to each other. Each of these pairs of computers breaks the coxfmection between
them, and then each of the four computers (two from each pair) connecfts to the seeking
computer. Figures 3A and 3B illustrate the process of a new computer Z (f:onnecting to the
broadcast channel. Figure 3A illustrates the broadcast channel before computer Z is
connected. The pairs of computers B and E and computers C and D are the two pairs that are
identified as the neighbors for the new computer Z. The connections between each of these

pairs is broken, and a connection between computer Z and each of computers B, C, D, and E

[03004-8001/SL003733.106) -8- 7/31/00

0684

10

15

20

25

30

is established as indicated by Figure 3B. The process of breaking the cm%mection between
two neighbors and reconnecting each of the former neighbors to another coxjnputer is referred
to as “edge pinning” as the edge between two nodes may be considered to/ be stretched and
pinned to a new node.

- Each computer connected to the broadcast chaxmeli allocates five
communications ports for communicating with other computers. Four !of the ports are
referred to as “internal” ports because they are the ports through which th¢ messages of the
broadcast channels are sent. The connections between internal ports ibf neighbors are
referred to as “internal” connections. Thus, the internal connections of the ﬁroadcast channel
form the 4-regular and 4-connected graph. The fifth port is referred to as an “extemal” port
because it is used for sending non-broadcast messages between two computers. Neighbors
can send non-broadcast messages either through their intemal ports of thq::ir connection or
through their external ports. A seeking computer uses external ports when% locating a portal
computer.

In one embodiment, the broadcast technique establishes the computer
connections using the TCP/IP communications protocol, which is a point-to-point protocol,
as the underlying network. The TCP/IP protocol provides for reliable and ordered delivery
of messages between computers. The TCP/IP protocol provides each computer with a “port
space” that is shared among all the processes that may execute on that computer. The ports
are identified by numbers from 0 to 65,535. The first 2056 ports are reserved for specific
applications (e.g., port 80 for HTTP messages). The remainder of the ports are user ports
that are available to any process. In one embodiment, a set of port numbers can be reserved
for use by the computer connected to the broadcast channel. In an alternative embodiment,
the port numbers used are dynamically identified by each computer. " Each computer
dynamically identifies an available port to be used as its call-in port. This call-in port is used
to establish connections with the external port and the internal ports. Each; computer that is
connected to the broadcast channel can receive non-broadcast messages ﬂ&ough its external
port. A seeking computer tries “dialing” the port numbers of the portal computers until a
portal computer “answers,” a call on its call-in port. A portal computer aﬁlswers when it is
connected to or attempting to connect to the broadcast channel and its calliin port is dialed.

(In this description, a telephone metaphor is used to describe the connections.) When a

computer receives a call on its call-in port, it transfers the call to anotheqi port. Thus, the

[03004-8001/SL003733.106] -9- | 7/31/00

i
)

0685

10

15

20

25

30

seeking computer actually communicates through that transfer-to port, which is the external
port. The call is transferred so that other computers can place calls to that lcomputer via the
call-in port. The seeking computer then communicates via that external p(i>rt to request the
portal computer to assist in connecting the seeking computer to the broadczjlst channel. The
seeking computer could identify the call-in port number of a portal computcfr by successively
dialing each port in port number order. As discussed below in detail, the bréadcast technique
uses a hashing algorithm to select the port number order, which may refsult in improved
performance. ‘

A seeking computer could connect to the broadcast channel by connecting to
computers either directly connected to the found portal computer or directly connected to one
of its neighbors. A possible problem with such a scheme for identifying t:hc neighbors for
the seeking computer is that the diameter of the broadcast channel may indrease when each
seeking computer uses the same found portal computer and establishes a connection to the
broadcast channel directly through that found portal computer. Conceptually, the graph
becomes elongated in the direction of where the new nodes are added.. Figures 4A-4C
illustrate that possible problem. Figure 4A illustrates the broadcast channel of Figure 1 with
an added computer. Computer J was connected to the broadcast channel by edge pinning
edges C-D and E-H to computer J. The diameter of this broadcast channel is still two.
Figure 4B illustrates the broadcast channel of Figure 4A with an added computer.
Computer K was connected to the broadcast channel by edge pinning edges E-J and B-C to
computer K. The diameter of this broadcast channel is three, because the shortest path from
computer G to computer K is through edges G-A, A-E, and E-K. Figure 4C also illustrates
the broadcast channel of Figure 4A with an added computer. Computer K was connected to
the broadcast channel by edge pinning edges D-G and E-J to computer K. . The diameter of
this broadcast channel is, however, still two. Thus, the selection of neighbors impacts the
diameter of the broadcast channel. ‘To help minimize the diameter, the brqiadcast technique
uses a random selection technique to identify the four neighbors of a computer in the seeking
connection state. The random selection technique tends to distribute the co?pnections to new

seeking computers throughout the computers of the broadcast channel which may result in

smaller overall diameters.

{03004-8001/SL003733.106) -10- 731700

0686

10

15

20

25

30

Broadcasting Through the Graph

As described above, each computer that is connected to the broadcast channel
can broadcast messages onto the broadcast channel and does receive all messages that are
broadcast on the broadcast channel. The computer that originates a message to be broadcast
sends that message to each of its four neighbors using the internal connéctions. When a
computer receives a broadcast message from a neighbor, it sends the mesisage to its three
other neighbors. Each computer on the broadcast channel, except the originating computer,
will thus receive a copy of each broadcast message from each of its four neighbors. Each
computer, however, only sends the first copy of the message that it receive$ to its neighbors
and disregards subsequently received copies. Thus, the total number of coéies of a message
that is sent between the computers is 3N+1, where N is the number of corﬁputers connected
to the broadcast channel. Each computer sends three copies of the message, except for the
originating computer, which sends four copies of the message.

The redundancy of the message sending helps to ensure the overall reliability
of the broadcast channel. Since each computer has four connections to the broadcast
channel, if one computer fails during the broadcast of a message, its neigp'bbors have three
other connections through which they will receive copies of the broadcast q’tessage. Also, if
the internal connection between two computers is slow, each computer: has three other
connections through which it may receive a copy of each message sooner.

Each computer that originates a message numbers its own messages
sequentially. Because of the dynamic nature of the broadcast channel and because there are
many possible connection paths between computers, the messages may be received out of
order. For example, the distance between an originating computer and a certain receiving
computer may be four. After sending the first message, the originating computer and
receiving computer may become neighbors and thus the distance between ithem changes to
one. The first message may have to travel a distance of four to reach the receiving computer.
The second message only has to travel a distance of one. Thus, it is possible for the second
message to reach the receiving computer before the first message.

When the broadcast channel is in a steady state (i.e., no computers connecting
or disconnecting from the broadcast channel), out-of-order messages are not a problem
because each computer will eventually receive both messages and can queue messages until

all earlier ordered messages are received. If, however, the broadcast channel is not in a

[03004-8001/5SL.003733.106) -11- 7/31/00

0687

10

15

20

25

30

steady state, then problems can occur. In particular, a computer may connect to the
broadcast channel after the second message has already been received and }forwarded on by
its new neighbors. When a new neighbor eventually receives the first mess;age, it sends the
message to the newly connected computer. Thus, the newly connected compf:uter will receive
the first message, but will not receive the second message. If the newly corinected computer
needs to process the messages in order, it would wait indefinitely for the secfpnd message.
One solution to this problem is to have each computer queueiall the messages
that it receives until it can send them in their proper order to its neighborst:.. This solution,
however, may tend to slow down the propagation of messages through the L:omputers of the
broadcast channel. Another solution that may have less impact on the pro;!)agation speed is
to queue messages only at computers who are neighbors of the newly conn%l:cted computers.
Each already connected neighbor would forward messages as it receives ﬁlem to its other
neighbors who are not newly connected, but not to the newly connected neighbor. The
already connected neighbor would only forward messages from each originating computer to
the newly connected computer when it can ensure that no gaps in the messages from that
originating computer will occur. In one embodiment, the already connected neighbor may
track the highest sequence number of the messages already received and fo:rwarded on from
cach originating computer. The already connected computer will send only ihighcr numbered
messages from the originating computers to the newly connected computer; Once all lower
numbered messages have been received from all originating compﬁters, then the already
connected computer can treat the newly connected computer as its other neighbors and
simply forward each message as it is received. In another embodiment, each computer may
queue messages and only forwards to the newly connected computer those messages as the
gaps are filled in. For example, a computer might receive messages 4 and 51 and then receive
message 3. In such a case, the already connected computer would forward cjueue messages 4
and 5. When message 3 is finally received, the already connected corﬁputer will send
messages 3, 4, and 5 to the newly connected computer. If messages 4 and 5 were sent to the
newly connected computer before message 3, then the newly connected :computer would
process messages 4 and 5 and disrégard message 3. Because the already connected computer
queues messages 4 and 5, the newly connected computer will be able to prbcess message 3.
It is possible that a newly connected computer will receive a set of messages from an

originating computer through one neighbor and then receive another set of message from the

(03004-8001/8L.003733.106] -12- : 7100

0688

10

15

20

25

30

same originating computer through another neighbor. If the second set of messages contains
a message that is ordered earlier than the messages of the first set received, then the newly

connected computer may ignore that earlier ordered message if the computer already

processed those later ordered messages.

Decomposing the Graph
A connected computer disconnects from the broadcast channel either in a

planned or unplanned manner. When a computer disconnects in a planned manner, it sends a
disconnect message to each of its four neighbors. The disconnect message includes a list that
identifies the four neighbors of the disconnecting computer. When a neighbor receives the
disconnect message, it tries to connect to one of the computers on the list. In one
embodiment, the first computer in the list will try to connect to the second computer in the
list, and the third computer in the list will try to connect to the fourth computer in the list. If
a computer cannot connect (e.g., the first and second computers are already connected), then
the computers may try connecting in various other combinations. If connections cannot be
established, each computer broadcasts a message that it needs to establish a connection with
another computer. When a computer with an available internal port receives the message, it
can then establish a connection with the computer that broadcast the message. Figures SA-
5D illustrate the disconnecting of a computer from the broadcast channel. Figure SA
illustrates the disconnecting of a computer from the broadcast channel in a planned manner.
When computer H decides to disconnect, it sends its list of neighbors to each of its neighbors
(computers A, E, F and I) and then disconnects from each of its neighbors. When
computers A and I receive the message they establish a connection between them as
indicated by the dashed line, and similarly for computers E and F.

When a computer disconnects in an unplanned manner, such as resulting from
a power failure, the neighbors connected to the disconnected computer recognize the
disconnection when each attempts to send its next 4message to the now disconnected
computer. Each former neighbor of the disconnected computer recognizes that it is short one

connection (i.e., it has a hole or empty port). When a connected computer detects that one of

- its neighbors is now disconnected, it broadcasts a port connection request>on the broadcast

channel, which indicates that it has one internal port that needs a connection. The port

connection request identifies the call-in port of the requesting computer. When a connected

(03004-8001/SL003733.106) -13- 31400

0689

10

15

20

25

30

computer that is also short a connection receives the connection request, lit communicates
with the requesting computer through its external port to establish a conneqition between the
two computers. Figure 5B illustrates the disconnecting of a computer fro:m the broadcast
channel in an unplanned manner. In this illustration, computer H has disfconnected In an
unplanned manner. When each of its neighbors, computers A, E, F, and I, recognizes the
disconnection, each neighbor broadcasts a port connection request indicating that it needs to
fill an empty port. As shown by the dashed lines, computers F and I and computers A and E
respond to each other’s requests and establish a connection.

It 1s possible that a planned or unplanned disconnection may result in two
neighbors each having an empty internal port. In such a case, since they are neighbors, they
are already connected and cannot fill their empty ports by connecting to each other. Such a
condition is referred to as the “neighbors with empty ports” condition. Each neighbor
broadcasts a port connection request when it detects that it has an empty port as described
above. When a neighbor receives the port connection request from the other neighbor, it will
recognize the condition that its neighbor also has an empty port. Such a condition may also
occur when the broadcast channel is in the small regime. The condition can only be
corrected when in the large regime. When in the small regime, each computer will have less
than four neighbors. To detect this condition in the large regime, which would be a problem
if not repaired, the first neighbor to receive the port connection request recognizes the
condition and sends a condition check message to the other neighbor. The condition check
message includes a list of the neighbors of the sending computer. When the receiving
computer receives the list, it compares the list to its own list of neighbors. If the lists are
different, then this condition has occurred in the large regime and repair is needed. To repair
this condition, the receiving computer will send a condition repair request to one of the
neighbors of the sending computer which is not already a neighbor of the receiving
computer. When the computer receives the condition repair request, it disconnects from one
of its neighbors (other than the neighbor that is involved with the condition): and connects to
the computer that sent the condition repair request. Thus, one of the oﬁginal neighbors
involved in the condition will have had a port filled. However, two computers are still in
need of a connection, the other original neighbor and the computer that is now disconnected

from the computer that received the condition repair request. Those two computers send out

port connection requests. If those two computers are not neighbors, then they will connect to
(03004-8001/$1.003733.106} -14- 773100

0690

10

15

20

25

30

each other when they receive the requests. If, however, the two computers are neighbors,
then they repeat the condition repair process until two non-neighbors are in need of
connections.

It is possible that the two original neighbors with the condition may have the
same set of neighbors. When the neighbor that receives the condition check message
determines that the sets of neighbors are the same, it sends a condition double check message
to one of its neighbors other than the neighbor who also has the condition. When the
computer receives the condition double check message, it determines whether it has the same
set of neighbors as the sending computer. If so, the broadcast channel is in the small regime
and the condition is not a problem. If the set of neighbors are different, then the computer
that received the condition double check message sends a condition check message to the
original neighbors with the condition. The computer that receives that condition check
message directs one of it neighbors to connect to one of the original neighbors with the
condition by sending a condition repair message. Thus, one of the original neighbors with
the condition will have its port filled.

Figure 5C illustrates the neighbors with empty ports condition. In this
illustration, computer H disconnected in an unplanned manner, but computers F and I
responded to the port connection request of the other and are now connected together. The
other former neighbors of computer H, computers A and E, are already neighbors, which
gives rise to the neighbors with empty ports condition. In this example, computer E received
the port connection request from computer A, recognized the possible condition, and sent
(since they are neighbors via the internal connection) a condition check message with a list
of its neighbors to computer A. When computer A received the list, it recognized that
computer E has a different set of neighbor (i.e., the broadcast channel is in the large regime).
Computer A selected computer D, which is a neighbor of computer E and sent it a condition
repair request. When computer D received the condition repair request, it disconnected frem
one of its neighbors (other than computer E), which is computer G in this example.
Computer D then connected to computer A. Figure 5D illustrates two computers that are not
neighbors who now have empty ports. Computers E and G now have empty ports and are
not currently neighbors. Therefore, computers E and G can connect to each other.

Figures SE and SF further illustrate the neighbors with empty ports condition.
Figure 5E illustrates the neighbors with empty ports condition in the small regime. In this

[03004-8001/SL0D3733.106) -15- 131/00

0691

10

15

20

25

30

example, if computer E disconnected in an unplanned manner, then each computer
broadcasts a port connection request when it detects the disconnect. When computer A
receives the port connection request form computer B, it detects the neighbors with empty
ports condition and sends a condition cheék message to computer B. Computer B recognizes
that it has the same set of neighbors (computer C and D) as computer A and then sends a
condition double check message to computer C. Computer C recognizes that the broadcast
channel is in the small regime because is also has the same set of neighbors as computers A
and B, computer C may then broadcast a message indicating that the broadcast channel is in
the small regime.

Figure SF illustrates the situation of Figure SE when in the large regime. As
discussed above, computer C receives the condition double check message from computer B.
In this case, computer C recognizes that the broadcast channel is in the large regime because
it has a set of neighbors that is different from computer B. The edges extending up from
computer C and D indicate connections to other computers. Computer C then sends a
condition check message to computer B. When computer B receives the condition check
message, it sends a condition repair message to one of the neighbors of computer C. The
computer that receives the condition repair message disconnects from one of its neighbors,
other than computer C, and tries to connect to computer B and the neighbor from which it
disconnected tries to connect to computer A.
Port Selection

As described above, the TCP/IP protocol designates ports above number 2056
as user ports. The broadcast technique uses five user port numbers on each computer: one
external port and four internal ports. Generally, user ports cannot be statically allocated to
an application program because other applications programs executing on the same computer
may use conflicting port numbers. As a result, in one embodiment, the computers connected
to the broadcast channel dynamically allocate their port numbers. Each computer could
simply try to locate the lowest number unused port on that computer and use that port as the
call-in port. A seeking computer, however, does not know in advance the call-in port
number of the portal computers when the port numbers are dynamically allocated. Thus, a
seeking computer needs to dial ports of a portal computer starting with the lowest port
number when locating the call-in port of a portal computer. If the portal computer is

[03004-8001/SL003733.106] -16- 7131/00

0692

10

20

25

30

connected to (or attempting to connect to) the broadcast channel, then the seeking computer

“would eventually find the call-in port. If the portal computer is not connected, then the

seeking computer would eventually dial every user port. In addition, if each application
program on a computer tried to allocate low-ordered port numbers, then a portal computer
may end up with a high-numbered port for its call-in port because many of the low-ordered
port numbers would be used by other application programs. Since the dialing of a port is a
relatively slow process, it would take the seeking computer a long time to locate the call-in
port of a portal computer. To minimize this time, the broadcast technique uses a port
ordering algorithm to identify the port number order that a portal computer should use when
finding an available port for its call-in port. In one embodiment, the broadcast technique
uses a hashing algorithm to identify the port order. The algorithm preferably distributes the
ordering of the port numbers randomly through out the user port number space and only
selects each port number once. In addition, every time the algorithm is executed on any
computer for a given channel type and channel instance, it generates the same port ordering.
As described below, it is possible for a computer to be connected to multiple broadcast
channels that are uniquely identified by channel type and channel instance. The algorithm
may be “seeded” with channel type and channel instance in order to generate a unique
ordering of port numbers for each broadcast channel. Thus, a seeking computer will dial the
ports of a portal computer in the same order as the portal computer used when allocating its
call-in port.

If many computers are at the same time seeking connection to a broadcast
channel through a single portal computer, then the ports of the portal computer may be busy
when called by seeking computers. The seeking computers would typically need to keep on
redialing a busy port. The process of locating a call-in port may be significantly slowed by
such redialing. In one embodiment, each seeking computer may each reorder the first few
port numbers generated by the hashing algorithm. For example, each secking computer
could randomly reorder the first eight port numbers generated byﬁ the hashing algorithm. The
random ordenng could also be weighted where the first port number generated by the
hashing algorithm would have a 50% chance of being first in the reordering, the second port
number would have a 25% chance of being first in the reordering, and so on. Because the
secking computers would use different orderings, the likelihood of finding a busy port is

reduced. For example, if the first eight port numbers are randomly selected, then it is

[03004-8001/SL003733.106) -17- 7131/00

0693

10

15

20

25

30

possible that eight seeking computers could be simultaneously dialing ports in different
sequences which would reduce the chances of dialing a busy port.

Locating a Portal Computer

Each computer that can connect to the broadcast channel has a list of one or

’

more portal computers through which it can connect to the broadcast channel. In one
embodiment, each computer has the same set of portal computers. A seeking computer
locates a portal computer that is connected to the broadcast channel by successively dialing
the ports of each portal computer in the order specified by an algorithm. A seeking computer
could select the first portal computer and then dial all its ports until a call-in port of a
computer that is fully connected to the broadcast channel is found. If no call-in port is
found, then the seeking computer would select the next portal computer and repeat the
process until a portal computer with such a call-in port is found. A problem with such a
seeking technique is that all user ports of each portal computer are dialed until a portal
computer fully connected to the broadcast channel is found. In an alternate embodiment, the
seeking computer selects a port number according to the algorithm and then dials each portal
computer at that port number. If no acceptable call-in port to the broadcast channel is found,
then the seeking computer selects the next port number and repeats the process. Since the
call-in ports are likely allocated at lower-ordered port numbers, the seeking computer first
dials the port numbers that are most likely to be call-in ports of the broadcast channel. The
seeking computers may have a maximum search depth, that is the number of ports that it will
dial when seeking a portal computer that is fully connected. If the seeking computer
exhausts its search depth, then either the broadcast channel has not yet been established or, if
the seeking computer is also a portal computer, it can then establish the broadcast channel
with itself as the first fully connected computer.

When a seeking computer locates a portal computer that is itself not fully
connected, the two computers do not connect when they first locate each other because the
broadcast channel may already be established and accessible through a higher-ordered port
number on another portal computer. If the two seeking computers were to connect to each
other, then two disjoint broadcast channels would be formed. Each seeking computer can
share its experience in trying to locate a portal computer with the other seeking computer. In

particular, if one seeking computer has searched all the portal computers to a depth of eight,

{03004-8001/SL003733.106} -18- 7131/00

0694

10

20

25

30

then the one seeking computer can share that it has searched to a depth of eight with another
seeking computer. If that other seeking computer has searched to a depth of, for example,
only four, it can skip searching through depths five through eight and that other seeking
computer can advance its searching to a depth of nine.

In one embodiment, each computer may have a different set of portal
computers and a different maximum search depth. In such a situation, it may be possible that
two disjoint broadcast channels are formed because a seeking computer cannot locate a fully
connected port computer at a higher depth. Similarly, if the set of portal computers are

disjoint, then two separate broadcast channels would be formed.

Identifving Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting computer are
preferably selected randomly from the set of currently connected computers. One advantage
of the broadcast channel, however, is that no computer has global knowledge of the
broadcast channel. Rather, each computer has local knowledge of itself and its neighbors.
This limited local knowledge has the advantage that all the connected computers are peers
(as far as the broadcasting is concerned) and the failure of any one computer (actually any
three computers when in the 4-regular and 4-connect form) will not cause the broadcast
chanﬁel to fail. This local lmowledge makes it difficult for a portal computer to randomly
select four neighbors for a seeking computer.

v To select the four computers, a portal computer sends an edge connection
request message through one of its internal connections that is randomly selected. The
receiving computer again sends the edge connection request message through one of its
internal connections that is randomly selected. This sending of the message corresponds to a
random walk through the graph that represents the broadcast channel. Eventually, a
receiving computer will decide that the message has traveled far enough to represent a
randomly selected computer. That receiving computer will offer the internal connection

upon which it received the edge connection request message to the seeking computer for

edge pinning. Of course, if cither of the computers at the end of the offered internal

connection are already neighbors of the seeking computer, then the seekingA computer cannot

connect through that internal connection. The computer that decided that the message has

(03004-8001/SL003733.106] -19- 7131400

0695

10

15

20

25

30

traveled far enough will detect this condition of already being a neighbor and send the

message to a randomly selected neighbor.

In one embodiment, the distance that the edge connection request message

travels is established by the portal computer to be approximately twice the estimated

diameter of the broadcast channel. The message includes an indication of the distance that it
is to travel. Each receiving computer decrements that distance to travel before sending the
message on. The computer that receives a message with a distance to travel that is zero is
considered to be the randomly selected computer. If that randomly selected computer cannot
connect to the seeking computer (e.g., because it is already connected to it), then that
randomly selected computer forwards the edge connection request to one of its neighbors
with a new distance to travel. In one embodiment, the forwarding computer toggles the new
distance to travel between zero and one to help prevent two computers from sending the
message back and forth between each other.

Because of the local nature of the information maintained by each computer
connected to the broadcast channel, the computers need not generally be aware of the
diameter of the broadcast channel. In one embodiment, each message sent through the
broadcast channel has a distance traveled field. Each computer that forwards a message
increments the distance traveled field. Each computer also maintains an estimated diameter
of the broadcast channel. When a computer receives a message that has traveled a distance
that indicates that the estimated diameter is too small, it updates its estimated diameter and
broadcasts an estimated diameter message. When a computer receives an estimated diameter
message that indicates a diameter that is larger than its own estimated diameter, it updates its
own estimated diameter. This estimated diameter is used to establish the distance that an

edge connection request message should travel.

External Data Representation

The computers connected to the broadcast channel may internally store their
data in different formats. For example, one computer may use 32-bit integers, and another
computer may use 64-bit integers. As another example, one computer may use ASCII to
represent text and another computer may use Unicode. To allow communications between
heterogeneous computers, the messages sent over the broadcast channel may use the XDR

(“eXternal Data Representation”) format.

[03004-8001/SL003733.106] -20- 7/31/00

0696

‘15

20

25

30

The underlying peer-to-peer communications protocol may send multiple
messages in a single message stream. The traditional technique for retrieving messages from
a stream has been to repeatedly invoke an operating system routine to retricve the next
message in the stream. The retrieval of each message may require two calls to the operating
system: one to retrieve the size of the next message and the other to retrieve the number of
bytes indicated by the retrieved size. Such calls to the operating system can, however, be
very slow in comparison to the invocations of local routines. To overcome the inefficiencies
of such repeated calls, the broadcast technique in one embodiment, uses XDR to identify the
message boundaries in a stream of messages. The broadcast technique may request the
operating system to provide the next, for example, 1,024 bytes from the stream. The
broadcast technique can then repeatedly invoke the XDR routines to retrieve the messages
and use the success or failure of each invocation to determine whether another block of 1,024
bytes needs to be retrieved from the operating system. The invocation of XDR routines do
not involve system calls and are thus more efficient than repeated system calls.

M-Regular

In the embodiment described above, each fully connected computer has four
internal connections. The broadcast technique can be used with other numbers of internal
connections. For example, each computer could have 6, 8, or any even number of internal
connections. As the number of internal connections increase, the diameter of the broadcast
channel tends to decrease, and thus propagation time for a message tends to decrease. The
time that it takes to connect a seeking computer to the broadcast channel may, however,
increase as the number of internal connections increases. When the number of internal
connectors is even, then the broadcast channel can be maintained as m-regular and
m-connected (in the steady state). If the number of internal connections is odd, then when
the broadcast channel has an odd number of computers connected, one of the computers will
have less than that odd number of internal connections. In such a situation, the broadcast
network 1s neither m-regular nor m-connected. When the next computer connects to the
broadcast channel, it can again become m-regular and m-connected. Thus, with an odd
number of internal connections, the broadcast channel toggles between being and not being

m-regular and m-connected.

{03004-8001/SL003733.106] -21- 731/00

0697

10

15

20

25

30

Components .
Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcast channel. The above description generally assumed that there was
only one broadcast channel and that each computer had only one connection:to that broadcast
channel. More generally, a network of computers may have multiple broadcast channels,
each computer may be connected to more than one broadcast channel, and each computer
can have multiple connections to the same broadcast channel. The broadcast channel is well
suited for computer processes (e.g., application programs) that execute collaboratively, such
as network meeting programs. Each computer process can connect to one or more broadcast
channels. The broadcast channels can be identified by channel type (e.g, application
program name) and channel instance that représents separate broadcast channels for that
channel type. When a process attempts to connect to a broadcast channel, it seeks a process
currently connected to that broadcast channel that is executing on a portal computer. The
seeking process identifies the broadcast channel by channel type and channel instance.
Computer 600 includes multiple application programs 601 executing as
separate processes. Each application program interfaces with a broadcaster component 602
for each broadcast channel to which it is connected. The broadcaster component may be
implement as an object that is instantiated within the process space of the application
program. Alternatively, the broadcaster component may execute as a separate process or
thread from the application program. In one embodiment, the broadcaster component
provides functions (e.g., methods of class) that can be invoked by the application programs.
The primary functions provided may include a connect function that an application pfogram
invokes passing an indication of the broadcast channel to which the application program
wants to connect. The application program may provide a callback routine that the
broadcaster component invokes to notify the application program that the connection has
been completed, that is the process enters the fully connected state. The broadcaster
component may also provide an acquire message function that the application program can
invoke to retrieve the next message that is broadcast on the broadcast channel. Alternatively,
the application program may provide a callback routine (which may be a virtual function
provided by the application program) that the broadcaster component invokes to notify the
application program that a broadcast message has been received. Each broadcaster

component allocates a call-in port using the hashing algorithm. When calls are answered at

(03004-8001/SL.003733.106} -22- 731/00

0698

10

15

20

25

30

the call-in port, they are transferred to other ports that serve as the external and internal
ports.

The computers connecting to the broadcast channel may include a central
processing unit, memory, input devices (e.g., keyboard and pointing device), output devices
(e.g., display devices), and storage devices (e.g., disk drives). The memory and storage
devices are computer-readable medium that may contain computer instructions that
implement the broadcaster component. In addition, the data structures and message
structures may be stored or transmitted via a signal transmitted on a computer-readable
media, such as a communications link.

Figure 7 1s a block diagram illustrating the sub-components of the broadcaster
component in one embodiment. The broadcaster component includes a connect component
701, an external dispatcher 702, an internal dispatcher 703 for each internal connection, an
acquire message component 704 and a broadcast component 712. The application program
may provide a connect callback component 710 and a receive response component 711 that
are mvoked by the broadcaster component. The application program invokes the connect
component to establish a connection to a designated broadcast channel. The connect
component identifies the external port and installs the external dispatcher for handling
messages that are received on the external port. The connect component invokes the seek
portal computer component 705 to identify a portal computer that is connected to the
broadcast channel and invokes the connect request component 706 to ask the portal computer
(if fully connected) to select neighbor processes for the newly connecting process. The
external dispatcher receives external messages, identifies the type of message, and invokes
the appropriate handling routine 707. The internal dispatcher receives the internal messages,
identifies the type of message, and invokes the appropriate handling routine 708. The
received broadcast messages are stored in the broadcast message queue 709. The acquire
message component 1s invoked to retrieve messages from the broadcast queue. The
broadcast component is invoked by the application program to broadcast messages in the

broadcast channel.

A Distnibuted Conferencing System
In one embodiment, a conferencing system is implemented using the broadcast

" channel. Each participant in a conference connects to the conference’s broadcast channel,

{03004-8001/SLD03733.106] . -23- 731/00

0699

10

20

25

30

and a participant is designated as the speaker. The conferencing application program may
include a speaker component and an attendee component. The speaker component
broadcasts the conference events on the broadcast channel. Each attendee component
receives the conference events and displays the results of the conference events. For
example, the speaker may present slides at the conference along with a description of each
slide. [Each attendee may receive an electronic copy of the slides in advance of the
conference. At the scheduled time for the conference, the speaker and each attendee joins
the conference by connecting to the broadcast channel of the conference. The speaker
component allows the speaker to indicate when to display which slide. When a new slide is
displayed, the speaker component broadcasts a new slide message. When the attendee
component receives the new slide message, it displays the new slide to the participant. Also,
the speaker component may allow the speaker to draw on a slide using a stylus or other
pointing device. The speaker component then broadcasts draw messages on the broadcast
channel so the attendee component can display the drawing to the attendees. The
conferencing system may also use speech-to-text and text-to-speech to distribute the
speaker’s comments to all attendees.

The conferencing system may provide a directory web site where
participants can locate and sign up for a conference of interest. The directory may provide a
hierarchical categorization of scheduled conferences. When a user decides to sign up for a
conference, the web server may download the broadcaster component and the conferencing
application program to the attendee’s computer, if not already stored on the attendee’s
computer. The web server will also download the channel type and channel instance
associated with the broadcast channel for the conference along with the identification of the
portal computers for the broadcast channel. The web server may also download the slides or
other content to be displayed to the attendees during the conference.

The conferencing system may allow an entity to schedule conferences
using the web site. For example, a software company may want to schedule a conference to
announce a new product. The creation of the conference would entail the generation of a
channel type and channel instancé, the specification of a security level (e.g., encrypted
messages), the specification of attendee qualifications, the providing of a description and
scheduled time of the conference, the specification of the content to be distributed to the

attendees, and so on. The speaker at a conference may not want to publicize the actual

[03004-8001/5L003733.106] -24- 731/00

0700

15

20

25

content (e.g., slides) in advance. In such a situation, the content can be encrypted when
distributed to the attendees, and a key to decrypt the content can be distributed by the
speaker during the conference. For example, each slide for the software company’s
announcement can be encrypted with a different key, and the appropriate key can be
broadcast with each new slide message.

The conferencing system may allow attendees to broadcast comments
on the broadcast channel. The times when an attendee can broadcast comments may be
controlled by the speaker. For example, the speaker component may broadcast a comments
allowed message and a comments not allowed message to delimit the times when comments
will be allowed. Comments broadcast outside those times may be ignored. Alternatively, the
attendees may be allowed to broadcast comments at any time, but the other attendees ignore
those comments until the speaker broadcasts an approval message indicating that the attendee
component can display a certain comment.

The conferencing system may allow each attendee to connect to and
disconnect from the conference broadcast channel as this wish during the conference. In
addition, the conferencing system may allow multiple speakers to share the “podium.” The
speakers can pass a speakers token between them to indicate who is currently speaking and
thus in control of the conference. An attendee who joins the conference late may be able to
synchronize with the conference by accessing a conference monitoring web server. The
monitoring web server may be connected to the conference broadcast cha:%nnel and monitor
the current state of the conference. When an attendee joins late, the monitoring web server
can provide the attendee with the current state of the conference. From then on, the attendee
can listen on the broadcast channel to follow the progress of the conference. In addition, the
attendee component may allow the attendee to view parts of the presentation other than that
which is currently being presented. In this way, an attendee can refer back to or ahead to
other portions of the presentation.

The following tables list messages sent by the broadcaster components.

EXTERNAL MESSAGES

Message Type Descniption

seeking_connection_call | Indicates that a seeking process would like to know whether the

receiving process is fully connected to the broadcast channel

(03004-8001/SL003733.106) -25- 7731/00

0701

connection_request_call

Indicates that the sending process would like the receiving
process to initiate a connection of the sending process to the
broadcast channel

edge_proposal_call

Indicates that the sending process is proposing an edge through
which the receiving process can connect to the broadcast
channel (i.e., edge pinning)

port_connection_call

Indicates that the sending process is proposing a port through
which the receiving process can connect to the broadcast
channel

connected stmt

Indicates that the sending process is connected to the broadcast
channel

condition_repair_stmt

Indicates that the receiving process should disconnect from one
of its neighbors and connect to one of the processes involved in
the neighbors with empty port condition

INTERNAL MESSAGES

Message Type

Description

broadcast_stmt

Indicates a message that is being broadcast through the
broadcast channel for the application programs

connection_port_search_stmt | Indicates that the designated process is looking for a port

through which it can connect to the broadcast channel

connection_edge search_call | Indicates that the requesting process is looking for an edge

through which it can connect to the broadcast channel

connection_edge_search_resp | Indicates whether the edge between this process and the

sending neighbor has been accepted by the requesting
party

diameter_estimate_stmt

Indicates an estimated diameter of the broadcast channel

diameter reset stmt

Indicates to reset the estimated diameter to indicated
diameter

disconnect_stmt

Indicates that the sending neighbor is disconnecting from
the broadcast channel

condition_check_stmt

Indicates that neighbors with empty port condition have
been detected

condition_double_check stmt | Indicates that the neighbors with empty ports have the

same set of neighbors

shutdown_stmt

Indicates that the broadcast channel is being shutdown

{03004-8001/8L003733.106]

-26- 31/00

0702

10

15

20

25

30

Flow Diagrams
Figures 8-34 are flow diagrams illustrating the processing of the broadcaster

component in one embodiment. Figure 8 is a flow diagram illustrating the processing of the
connect routine in one embodiment. This routine is passed a channel type (e.g., application
name) and channel instance (e.g., session identifier), that identifies the broadcast channel to
which this process wants to connect. The routine is also passed auxiliary information that
includes the list of portal computers and a connection callback routine. When the connection
is established, the connection callback routine is invoked to notify the application program.
When this process invokes this routine, it is in the seeking connection state. When a portal
computer is located that is connected and this routine connects to at least one neighbor, this
process enters the partially connected state, and when the process eventually connects to four
neighbors, it enters the fully connected state. When in the small regime, a fully connected
process may have less than four neighbors. In block 801, the routine opens the call-in port
through which the process is to communicate with other processes when establishing external
and internal connections. The port is selected as the first available port using the hashing
algorithm described above. In block 802, the routine sets the connect time to the current
time. The connect time is used to identify the instance of the process that is connected
through this external port. One process may connect to a broadcast channel of a certain
channel type and channel instance using one call-in port and then disconnects, and another
process may then connect to that same broadcast channel using the same call-in port. Before
the other process becomes fully connected, another process may try to communicate with it
thinking it is the fully connected old process. In such a case, the connect time can be used to
identify this situation. In block 803, the routine invokes the seek portal computer routine
passing the channel type and channel instance. The seek portal computer routine attempts to
locate a portal computer through which this process can connect to the broadcast channel for
the passed type and instance. In decision block 804, if the seek portal computer routine is
successful in locating a fully connected process on that portal computer, then the routine
continues at block 805, else the routine returns an unsuccessful indication. In decision block
805, if no portal computer other than the portal computer on which the process is executing
was located, then this is the first process to fully connect to broadcast channel and the
routine continues at block 806, else the routine continues at block 808. In block 806, the

routine invokes the achieve connection routine to change the state of this process to fully

[03004-8001/SL003733.106) -27- 7/31/00

0703

10

15

20

25

30

connected. In block 807, the routine installs the external dispatcher for processing messages

_ received through this process’ external port for the passed channel type and channel instance.

When a message is received through that external port, the external dispatcher is invoked.
The routine then returns. In block 808, the routine installs an external dispatcher. In block
809, the routine invokes the connect request routine to initiate the process of identifying
neighbors for the seeking computer. The routine then returns.

Figure 9 is a flow diagram illustrating the processing of the seek portal
computer routine in one embodiment. This routine is passed the channel type and channel
instance of the broadcast channel to which this process wishes to connect. This routine, for
each search depth (e.g., port number), checks the portal computers at that search depth. If a
portal cémputer 1s located at that search depth with a process that is fully connected to the
broadcast channel, then the routine returns an indication of success. In blocks 902-911, the
routine loops selecting each search depth until a process is located. In block 902, the routine
.selects the next search depth using a port number ordering algorithm. In decision block 903,
if all the search depths have already been selected during this execution of the loop, that is
for the currently selected depth, then the routine returns a failure indication, else the routine
continues at block 904. In blocks 904-911, the routine loops selecting each portal computer
and determining whether a process of that portal computer is connected to (or attempting to
connect to) the broadcast channel with the passed channel type and channel instance. In
block 904, the routine selects the next portal computer. In decision block 905, if all the
portal computers have already been selected, then the routine loops to block 902 to select the
next search depth, else the routine continues at block 906. In block 906, the routine dials the
selected portal computer through the port represented by the search depth. In decision block
907, if the dialing was successful, then the routine continues at block 908, else the routine
loops to block 904 to select the next portal computer. The dialing will be successful if the
dialed port is the call-in port of the broadcast channel of the passed channel type and channel
instance of a process executing on that portal computer. In block 908, the routine invokes a
contact process routine, which contacts the answering process of the portal computer through
the dialed port and determines whether that process is fully connected to the broadcast
channel. In block 909, the routine hangs up on the selected portal computer. In decision
block 910, if the answering procéss is fully connected to the broadcast channel, then the

routine returns a success indicator, else the routine continues at block 911. In block 91 1, the

{03004-8001/SL003733.106) .-28- 31/00

0704

10

15

20

25

30

routine invokes the check for external call routine to determine whether an external call has
been made to this process as a portal computer and processes that call. The routine then
loops to block 904 to select the next portal computer.

Figure 10 is a flow diagram illustrating the processing of the contact process
routine in one embodiment. This routine determines whether the process of the selected
portal computer thaf answered the call-in to the selected port is fully connected to the
broadcast channel. In block 1001, the routine sends an external message (i.e.,
seeking_connection_call) to the answering process indicating that a seeking process wants to
know whether the answering process is fully connected to the broadcast channel. In block
1002, the routine receives the external response message from the answering process. In
decision block 1003, if the external response message is successfully received (i.e.,
seeking connection_resp), then the routine continues at block 1004, else the routine returns.
Wherever the broadcast component requests to receive an external message, it sets a time out
period. If the external message is not received within that time out period, the broadcaster
component checks its own call-in port to see if another process is calling it. In particular, the

dialed process may be calling the dialing process, which may result in a deadlock situation.

_ The broadcaster component may repeat the receive request several times. If the expected

message is not received, then the broadcaster component handles the error as appropriate. In
decision block 1004, if the answering process indicates in its response message that it is fully
connected to the broadcast channel, then the routine continues at block 1005, else the routine
continues at block 1006. In block 1005, the routine adds the selected portal computer to a
list of connected portal computers and then returns. In block 1006, the routine adds the
answering process to a list of fellow seeking processes and then returns.

Figure 11 is a flow diagram illustrating the processing of the connect request
routine in one embodiment. This routine requests a process of a portal computer that was
identified as being fully connected to the broadcast channel to initiate the connection of this
process to the broadcast channel. In decision block 1101, if at least one process of a portal
computer was located that is fully connected to the broadcast channel, then the routine
continues at block 1103, else the routine continues at block 1102. A process of the portal
computer may no longer be in the list if it recently disconnected from the broadcast channel.
In one embodiment, a seeking computer may always search its entire search depth and find
multiple portal computers through which it can connect to the broadcast channel. In block

[03004-8001/SL003733.106] -29. 7131/00

0705

10

15

20

25

30

1102, the routine restarts the process of connecting to the broadcast channel and returns. In
block 1103, the routine dials the process of one of the found portal computers through the
call-in port. In decision block 1104, if the dialing is successful, then the routine continues at
block 1105, else the routine continues at block 1113. The dialing may be unsuccessful if, for
example, the dialed process recently disconnected from the broadcast channel. In block
1105, the routine sends an external message to the dialed process requesting a connection to
the broadcast channel (i.e., connection_request_call). In block 1106, the routine receives the
response message (i.e., connection_request_resp). In decision block 1107, if the response
message is successfully received, then the routine continues at block 1108, else the routine
continues at block 1113. In block 1108, the routine sets the expected number of holes (i.e.,
empty internal connections) for this process based on the received response. When in the
large regime, the expected number of holes is zero. When in the small regime, the expected
number of holes varies from one to three. In block 1109, the routine sets the estimated
diameter of the broadcast channel based on the received response. In decision block 1111, if
the dialed process is ready to connect to this process as indicated by the response message,
then the routine continues at block 1112, else the routine continues at block 1113. In block

1112, the routine invokes the add neighbor routine to add the answering process as a

| - neighbor to this process. This adding of the answering process typically occurs when the

broadcast channel is in the small regime. When in the large regime, the random walk search
for a neighbor i1s performed. In block 1113, the routine hangs up the external connection
with the answering process computer and then returns.

Figure 12 is a flow diagram of the processing of the check for external call
routine in one embodiment. This routine is invoked to identify whether a fellow seeking
process is attempting to establish a connection to the broadcast channel through this process.
In block 1201, the routine attempts to answer a call on the call-in port. In decision block
1202, if the answer is successful, then the routine continues at block 1203, else the routine
returns. In block 1203, the routine receives the external message from the external port. In
decision block 1204, if the type of the message indicates that a seeking process is calling
(i.e., seeking_connection_call), then the routine continues at block 1205, else the routine
returns. In block 1205, the routine sends an external message (i.e., seeking_connection_resp)
to the other seeking process indicating that this process is also is seeking a connection. In

decision block 1206, if the sending of the external message is successful, then the routine

[03004-8001/SL003733.106) -30- 31100

0706

15

20

25

30

continues at block 1207, else the routine returns. In block 1207, the routine adds the other
seeking process to a list of fellow seeking processes and then returns. This list may be used
if this process can find no process that is fully connected to the broadcast channel. In which
case, this process may check to see if any fellow seeking process were successful in
connecting to the broadcast channel. For example, a fellow seeking process may become the
first process fully connected to the broadcast channel.

Figure 13 is a flow diagram of the processing of the achieve connection routine
in one embodiment. This routine sets the state of this process to fully connected to the
broadcast channel and invokes a callback routine to notify the application program that the
process is now fully connected to the requested broadcast channel. In block 1301, the
routine sets the connection state of this process to fully connected. In block 1302, the
routine notifies fellow seeking processes that it is fully connected by sending a connected
external message to them (i.e., connected_stmt). In block 1303, the routine invokes the
connect callback routine to notify the application program and then returns.

Figure 14 is a flow diagram illustrating the processing :of the external
dispatcher routine in one embodiment. This routine is invoked when the external port
receives a message. This routine retrieves the message, identifies the external message type,
and invokes the appropriate routine to handle that message. This routine ﬂoops processing
each message until all the received messages have been handled. In block ﬂ401, the routine
answers (e.g., picks up) the external port and retrieves an external message. In decision
block 1402, if a message was retrieved, then the routine continues at block 1403, else the
routine hangs up on the external port in block 1415 and returns. In decision block 1403, if
the message type is for a process seeking a connection (i.e., seeking_connection_call), then
the routine invokes the handle seeking connection call routine in block 1404, else the routine
continues at block 1405. In decision block 1405, if the message type is for a connection
request call (i.e., connection_request_call), then the routine invokes the handle connection
request call routine in block 1406, else the routine continues at block 1407. In decision

block 1407, if the message type is edge proposal call (i.c., edge proposal _call), then the

-routine invokes the handle edge proposal call routine in block 1408, else the routine

continues at block 1409. In decision block 1409, if the message type is port connect call
(i.e., port_connect_call), then the routine invokes the handle port connection call routine in

block 1410, else the routine continues at block 1411. In decision block 141 1, if the message

[03004-8001/5L003733.106] -31- 731/00

0707

10

5

20

25

30

type is a connected statement (ie, connected_stmt), the routine invokes the handle
connected statement in block 1112, else the routine continues at block 1212. In decision
block 1412, if the message type is a condition repair statement (i.e., condition_repair_stmt),
then the routiné invokes the handle condition repair routine in block 1413, else the routine
loops to block 1414 to process the next message. After each handling routine is invoked, the
routine loops to block 1414. In block 1414, the routine hangs up on the external port and
continues at block 1401 to receive the next message.

Figure 15 is a flow diagram illustrating the processing of the handle seeking
connection call routine in one embodiment. This routine is invoked when a seeking process
is calling to identify a portal computer through which it can connect to the broadcast channel.
In decision block 1501, if this process is currently fully connected to the broadcast channel
identified in the message, then the routine continues at block 1502, else the routine continues
at block 1503. In block 1502, the routine sets a message to indicate that this process 1s fully
connected to the broadcast channel and continues at block 1505. In block 1503, the routine
sets a message to indicate that this process is not fully connected. In block 1504, the routine
adds the identification of the seeking process to a list of fellow seeking processes. If this
process is not fully connected, then it is attempting to connect to the broadcast channel. In
block 1505, the routine sends the external message response (i.e., seeking_connection_resp)
to the seeking process and then returns.

| Figure 16 is a flow diagram illustrating processing of the handle connection
request call routine in one embodiment. This routine is invoked when the calling process
wants this process to initiate the connection of the process to the broadcast channel. This
routine either allows the calling'process to establish an internal connection with this process
(e.g., if in the small regime) or starts the process of identifying a process to which the calling
process can connect. In decision block 1601, if this process is currently fully connected to
the broadcast channel, then the routine continues at block 1603, else the routine hangs up on
the external port in block 1602 and returns. In block 1603, the routine sets the number of
holes that the calling process should expect in the response message. In block 1604, the
routine sets the estimated diameter in the response message. In block 1605, the routine
indicates whether this process is ready to connect to the calling process. This process is
ready to connect when the number of its holes is greater than zero and the calling process is

not a neighbor of this process. In block 1606, the routine sends to the calling process an

{03004-8001/SL003733.106) -32- 731400

0708

10

15

20

25

30

external message that 1is responsive to the connection request call (ie.,
connection_request_resp). In block 1607, the routine notes the number of holes that the
calling process needs to fill as indicated in the request message. In decision block 1608, if
this process is ready to connect to the calling process, then the routine continues at block
1609, else the routine continues at block 1611. In block 1609, the routine invokes the add
neighbor routine to add the calling process as a neighbor. In block 1610, the routine
decrements the number of holes that the calling process needs to fill and continues at block
1611. In block 1611, the routine hangs up on the external port. In decision block 1612, if
this process has no holes or the estimated diameter is greater than one (ie., in the large
regime), then the routine continues at block 1613, else the routine continues at block 1616.
In blocks 1613-1615, the routine loops forwarding a request for an edge through which to
connect to the calling process to the broadcast channel. One request is forwarded for each
pair of holes of the calling process that needs to be filled. In decision block 1613, if the
number of holes of the calling process to be filled is greater than or equal to two, then the
routine continues at block 1614, else the routine continues at block 1616. In block 1614, the
routine invokes the forward connection edge search routine. The invoked routine is passed
to an indication of the calling process and the random walk distance. In one embodiment, the
distance is twice in the estimated diameter of the broadcast channel. In block 1614, the
routine decrements the holes left to fill by two and loops to block 1613. In decision block
1616, if there is still a hole to fill, then the routine continues at block 1617, else the routine
returns. In block 1617, the routine invokes the fill hole routine passing the identification of
the calling process. The fill hole routine broadcasts a connection port search statement (i.e.,
connection_port_search_stmt) for a hole of a connected process through which the calling
process can connect to the broadcast channel. The routine then returns.

Figure 17 is a flow diagram illustrating the processing of the add neighbor
routine in one embodiment. This routine adds the process calling on the external port as a
neighbor to this process. In block 1701, the routine identifies the cailing process on the
external port. In block 1702, the routine sets a flag to indicate that the neighbor has not yet
received the broadcast messages from this process. This flag is used to ensure that there are
no gaps in the messages initially sent to the new neighbor. The external port becomes the
internal port for this connection. In decision block 1703, if this process is in the seeking

connection state, then this process is connecting to its first neighbor and the routine

(03004-8001/SL003733.106) -33- 131109

0709

10

15

20

25

30

continues at block 1704, else the routine continues at block 1705. In block 1704, the routine
sets the connection state of this process to partially connected. In block 1705, the routine
adds the calling process to the list of neighbors of this process. In block 1706, the routine
installs an internal dispatcher for the new neighbor. The internal dispatcher is invoked when
a message is received from that new neighbor through the internal port of that new neighbor.
In decision block 1707, if this process buffered up messages while not fully connected, then
the routine continues at block 1708, else the routine continues at block 1709. In one
embodiment, a process that is partially connected may buffer the messages that it receives
through an internal connection so that it can send these messages as it connects to new
neighbors. In block 1708, the routine sends the buffered messages to the new neighbor
through the internal port. In decision block 1709, if the number of holes of this process
equals the expected number of holes, then this process is fully connected and the routine
continues at block 1710, else the routine continues at block 1711. In block 1710, the routine
invokes the achieve connected routine to indicate that this process is fully connected. In
decision block 1711, if the number of holes for this process is zero, then the routine
continues at block 1712, else the routine returns. In block 1712, the routine deletes any
pending edges and then returns. A pending edge is an edge that has been proposed to this
process for edge pinning, which in this case is no longer needed.

Figure 18 is a flow diagram illustrating the processing of the forward
connection edge search routine in one embodiment. This routine is responsible for passing
along a request to connect a requesting process to a randomly selected neighbor of this
process through the internal port of the selected neighbor, that is part of the random walk. In
decision block 1801, if the forwarding distance remaining is greater than zero, then the

routine continues at block 1804, else the routine continues at block 1802. In decision block

- 1802, if the number of neighbors of this process is greater than one, then the routine

continues at block 1804, else this broadcast channel is in the small regime and the routine
continues at block 1803. In decision block 1803, if the requesting process is a neighbor of
this process, then the routine returns, else the routine continues at block 1804. In blocks
1804-1807, the routine loops attempting to send a connection edge search call internal
message (i.e., connection_edge_search_call) to a randomly selected neighbor. In block 1804,
the routine randomly selects a neighbor of this process. In decision block 1805, if all the

neighbors of this process have already been selected, then the routine cannot forward the

[03004-8001/SL003733.106] -34- 731/00

0710

10

15

20

25

30

message and the routine returns, else the routine continues at block 1806. In block 1806, the
routine sends a connection edge search call internal message to the selected neighbor. In
decision block 1807, if the sending of the message is successful, then the routine continues at
block 1808, else the routine loops to block 1804 to select the next neighbor. When the
sending of an internal message is unsuccessful, then the neighbor may have disconnected
from the broadcast channel in an unplanned manner. Whenever such a situation is detected
by the broadcaster component, it attempts to find another neighbor by invoking the fill holes
routine to fill a single hole or the forward connecting edge search routine to fill two holes. In
block 1808, the routine notes that the recently sent connection edge search call has not yet
been acknowledged and indicates that the edge to this neighbor is reserved if the remaining
forwarding distance is less than or equal to one. It is reserved because the selected neighbor
may offer this edge to the requesting process for edge pinning. The routine then returns.
Figure 19 is a flow diagram illustrating the processing of the handle edge
proposal call routine. This routine 1s invoked when a message is received from a proposing
process that proposes to connect an edge between the proposing process and one of its
neighbors to this process for edge pinning. In decision block 1901, if the number of holes of
this process minus the number of pending edges is gréater than or equal to one, then this
process still has holes to be filled and the routine continues at block 1902, else the routine
continues at block 1911. In decision block 1902, if the proposing process or its neighbor is a
neighbor of this process, then the routine continues at block 1911, else the routine continues
at block 1903. In block 1903, the routine indicates that the edge is pending between this
process and the proposing process. In decision block 1904, if a proposed neighbor is already
pending as a proposed neighbor, then the routine continues at block 1911, else the routine
continues at block 1907. In block 1907, the routine sends an edge proposal response as an
external message to the proposing process (i.e., edge proposal resp) indicating that the
proposed edge is accepted. In decision block 1908, if the sending of the message was
successful, then the routine continues at block 1909, else the routine returns. In black 1909,
the routine adds the edge as a pending edge. In block 1910, the routine invokes the add
neighbor routine to add the proposing process on the external port as a neighbor. The routine
then returns. In block 1911, the routine sends an external message (i.e., edge_proposal_resp)
indicating that this proposed edge is not accepted. In decision block 1912, if the number of

{03004-8001/SLO03733.106] -35- 7131/00

0711

10

15

20

25

30

holes is odd, then the routine continues at block 1913, else the routine returns. In block
1913, the routine invokes the fill hole routine and then returns.

Figure 20 is a flow diagram illustrating the processing of the handle port
connection call routine in one embodiment. This routine is invoked when an external
message is received then indicates that the sending process wants to connect to one hole of
this process. In decision block 2001, if the number of holes of this prdcess is greater than
zero, then the routine continues at block 2002, else the routine continues at block 2003. In
decision block 2002, if the sending process is not a neighbor, then the routine continues at
block 2004, else the routine continues to block 2003. In block 2003, the routine sends a port
connection response external message (i.e., port_connection_resp) to the sending prbcess that
indicates that it is not okay to connect to this process. The routine then returns. In block
2004, the routine sends a port connection response external message to the sending process
that indicates that is okay to connect this process. In decision block 2005, if the sending of
the message was successful, then the routine continues at block 2006, else the routine
continues at block 2007. In block 2006, the routine invokes the add neighbor routine to add
the sending process as a neighbor of this process and then returns. In block 2007, the routine
hangs up the external connection. In block 2008, the routine invokes the connect request
routine to request that a process connect to one of the holes of this process. The routine then
returns.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in
one embodiment. This routine is passed an indication of the requesting process. If this
process 1s requesting to fill a hole, then this routine sends an internal message to other
processes. If another process 1s requesting to fill a hole, then this routine invokes the routine
to handle a connection port search request. In block 2101, the routine initializes a
connection port search statement internal message (i.e., connection port_search stmt). In
dectsion block 2102, if this process is the requesting process, then the routine continues at
block 2103, else the routine continues at block 2104. In block 2103, the routine distributes
the message to the neighbors of this process through the internal ports and then returns. In
block 2104, the routine invokes the handle connection port search routine and then returns.

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher
routine in one embodiment. This routine is passed an indication of the neighbor who sent the

internal message. In block 2201, the routine receives the internal message. This routine

(03004-8001/SL003733.106) -36- 1731/00

0712

10

15

20

25

30

identifies the message type and invokes the appropriate routine to handle the message. In
block 2202, the routine assesses whether to change the estimated diameter of the broadcast
channel based on the information in the received message. In decision block 2203, if this
process is the originating process of the message or the message has already been received
(i.e., a duplicate), then the routine ignores the message and continues at block 2208, else the
routine continues at block 2203A. In decision block 2203A, if the process is partially
connected, then the routine continues at block 2203B, else the routine continues at block
2204. In block 2203B, the routine adds the message to the pending connection buffer and
continues at block 2204. In decision blocks 2204-2207, the routine decodes the message
type and invokes the appropriate routine to handle the message. For example, in decision
block 2204, if the type of the message is broadcast statement (i.e., broadcast_stmt), then the
routine invokes the handle broadcast message routine in block 2205. After invoking the
appropriate handling routine, the routine continues at block 2208. In decision block 2208, if
the partially connected buffer is full, then the routine continues at block 2209, else the
routine continues at block 2210. The broadcaster component collects all its internal
messages in a buffer while partially connected so that it can forward the messages as it
connects to new neighbors. If, however, that buffer becomes full, then the process assumes
that it is now fully connected and that the expected number of connections was too high,
because the broadcast channel is now in the small regime. In block 2209, the routine invokes
the achieve connection routine and then continues in block 2210. In decision block 2210, if
the application program message queue is empty, then the routine returns, else the routine
continues at block 2212. In block 2212, the routine invokes the receive response routine
passing the acquired message and then returns. - The received response routine is a callback
routine of the application program.

- Figure 23 is a flow diagram illustrating the processing of the handle broadcast
message routine in one embodiment. This routine is passed an indication of the originating
process, an indication of the neighbor who sent the broadcast message, and the broadcast

message itself. In block 2301, the routine performs the out of order processing for this

-message. The broadcaster component queues messages from each originating process until it

can send them in sequence number order to the application program. In block 2302, the
routine invokes the distribute broadcast message routine to forward the message to the

neighbors of this process. In decision block 2303, if a newly connected neighbor is waiting

{03004-8001/SL.O03733.106) -37- 7131/00

0713

10

15

20

25

30

to receive messages, then the routine continues at block 2304, else the routine returns. In
block 2304, the routine sends the messages in the correct order if possible for each
originating process and then returns.

Figure 24 is a flow diagram illustrating the processing of the distribute
broadcast message routine in one embodiment. This routine sends the broadcast message to
each of the neighbors of this process, except for the neighbor who sent the message to this
process. In block 2401, the routine selects the next neighbor other than the neighbor who
sent the message. In decision block 2402, if all such neighbors have already been selected,
then the routine returns. In block 2403, the routine sends the message to the selected
neighbor and then loops to block 2401 to select the next neighbor.

Figure 26 is a flow diagram 1llustrating the processing of the handle connection
port search statement routine in one embodiment. This routine is passed an indication of the
neighbor that sent the message and the message itself. In block 2601, the routine invokes the
distribute internal message which sends the message to each of its neighbors other than the
sending neighbor. In decision block 2602, if the number of holes of this process is greater
than zero, then the routine continues at block 2603, else the routine returns. In decision
block 2603, if the requesting process is a neighbor, then the routine continues at block 2605,
else the routine continues at block 2604. In block 2604, the routine invokes the court
neighbor routine and then returns. The court neighbor routine connects this process to the
requesting process if possible. In block 2605, if this process has one hole, then the neighbors
with empty ports condition exists and the routine continues at block 2606, else the routine
returns. In block 2606, the routine generates a condition check message (ie.,
condition_check) that includes a list of this process’ neighbors. In block 2607, the foutine
sends the message to the requesting neighbor.

Figure 27 is a flow diagram illustrating the processing of the court neighbor
routine in one embodiment. This routine is passed an indication of the prospective neighbor
for this process. If this process can connect to the prospective neighbor, then it sends a port
connection call external message to the prospective neighbor and adds the prospective
neighbor as a neighbor. In decision block 2701, if the prospective neighbor is already a
neighbor, then the routine returns, else the routine continues at block 2702. In block 2702,
the routine dials the prospective neighbor. In decision block 2703, if the number of holes of

this process is greater than zero, then the routine continues at block 2704, else the routine
[03004-8001/SL003733.106] -38- 731/00

0714

10

15

20

25

30

continues at block 2706. In block 2704, the routine sends a port connection call external
message (i.e., port_connection_call) to the prospective neighbor and receives its response
(i.e., port_connection_resp). Assuming the response is successfully received, in block 2705,
the routine adds the prospective neighbor as a neighbor of this process by invoking the add
neighbor routine. In block 2706, the routine hangs up with the prospect and then retumns.
Figure 28 is a flow diagram illustrating the processing of the handle connection
edge search call routine in one embodiment. This routine is passed a indication of the
neighbor who sent the message and the message itself. This routine either forwards the
message to a neighbor or proposes the edge between this process and the sending neighbor to
the requesting process for edge pinning. In decision block 2801, if this process is not the
requesting process or the number of holes of the requesting process is still greater than or
equal to two, then the routine continues at block 2802, else the routine continues at block

2813. In decision block 2802, if the forwarding distance is greater than zero, then the

random walk is not complete and the routine continues at block 2803, else the routine

continues at block 2804. In block 2803, the routine invokes the forward connection edge
search routine passing the identification of the requesting process and the decremented
forwarding distance. The routine then continues at block 2815. In decision block 2804, if
the requesting process is a neighbor or the edge between this process and the sending
neighbor is reserved because it has already been offered to a process, then the routine
continues at block 2805, else the routine continues at block 2806. In block 2805, the routine
invokes the forward connection edge search routine passing an indication of the requesting
party and a toggle indicator that alternatively indicates to continue the random walk for one
or two more computers. The routine then continues at block 2815. In block 2806, the
routine dials the requesting process via the call-in port. In block 2807, the routine sends an
edge proposal call external message (i.e., edge proposal call) and receives the response (i.e.,
edge_proposal_resp). Assuming that the response is successfully received, the routine
continues at block 2808. In decision block 2808, if the response indicates that the edge is
acceptable to the requesting process, then the routine continues at block 2809, else the
routine continues at block 2812. In block 2809, the routine reserves the edge between this
process and the sending neighbor. In block 2810, the routine adds the requesting process as
a neighbor by invoking the add neighbor routine. In block 2811, the routine removes the
sending neighbor as a neighbor. In block 2812, the routine hangs up the external port and

{03004-8001/SL003733.106) -39- 131/00

0715

10

15

20

25

30

continues at block 2815. In decision block 2813, if this process is the requesting process and
the number of holes of this process equals one, then the routine continues at block 2814, else
the routine continues at block 2815. In block 2814, the routine invokes the fill hole routine.
In block 2815, the routine sends an connection edge search response message (ie.,
connection_edge_search_response) to the sending neighbor indicating acknowledgement and
then returns. The graphs are sensitive to parity. That is, all possible paths starting from a
node and ending at that node will have an even length unless the graph has a cycle whose
length is odd. The broadcaster component uses a toggle indicator to vary the random walk
distance between even and odd distances.

Figure 29 is a flow diagram illustrating the processing of the handle connection
edge search response routine in one embodiment. This routine is passed as indication of the
requesting process, the sending neighbor, and the message. In block 2901, the routine notes
that the connection edge search response (i.e., connection_edge search_resp) has been
received and if the forwarding distance is less than or equal to one unreserves the edge
between this process and the sending neighbor. In decision block 2902, if the requesting
process indicates that the edge is acceptable as indicated in the message, then the routine
continues at block 2903, else the routine returns. In block 2903, the routine reserves the edge
between this process and the sending neighbor. In block 2904, the routine removes the
sending neighbor as a neighbor. In block 2905, the routine invokes the court neighbor
routine to connect to the requesting process. In decision block 2906, if the invoked routine
was unsuccessful, then the routine continues at block 2907, else the routine returns. In
decision block 2907, if the number of holes of this process is greater than zero, then the
routine continues at block 2908, else the routine returns. In block 2908, the routine invokes
the fill hole routine and then returns.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine
in one embodiment. This routine is invoked by the application program to broadcast a
message on the broadcast channel. This routine is passed the message to be broadcast. In
decision block 3001, if this process has at least one neighbor, then the routine continues at
block 3002, else the routine returns since it is the only process connected to be broadcast
channel. In block 3002, the routine generates an internal message of the broadcast statement

type (i.e., broadcast _stmt). In block 3003, the routine sets the sequence number of the

{03004-8001/SL003733.106) -40- 7131/00

0716

10

15

20

25

30

message. In block 3004, the routine invokes the distribute internal message routine to
broadcast the message on the broadcast channel. The routine returns.

Figure 31 is a flow diagram illustrating the processing of the acquire message
routine in one embodiment. The acquire message routine may be invoked by the application
program or by a callback routine provided by the application program. This routine returns a
message. In block 3101, the routine pops the message from the message queue of the
broadcast channel. In decision block 3102, if a message was retrieved, then the routine
returns an indication of success, else the routine returns indication of failure.

Figures 32-34 are flow diagrams illustrating the processing of messages
associated with the neighbors with empty ports condition. Figure 32 is a flow diagram
illustrating processing of the handle condition check message in one embodiment. This
message is sent by a neighbor process that has one hole and has received a request to connect
to a hole of this process. In decision block 3201, if the number of holes of this process is
equal to one, then the routine continues at block 3202, else the neighbors with empty ports
condition does not exist any more and the routine returns. In decision block 3202, if the
sending neighbor and this process have the same set of neighbors, the routine continues at
block 3203, else the routine continues at block 3205. In block 3203, the routine initializes a
condition double check message (i.e., condition_double_check) with the list of neighbors of
this process. In block 3204, the routine sends the message internally to a neighbor other than
sending neighbor. The routine then retuns. In block 3205, the routine selects a neighbor of
the sending process that is not also a neighbor of this process. In block 3206, the routine
sends a condition repair message (i.e., condition repair stmt) externally to the selected
process. In block 3207, the routine invokes the add neighbor routine to add the selected
neighbor as a neighbor of this process and then returns.

Figure 33 is a flow diagram illustrating processing of the handle condition
repair statement routine in one embodiment. This routine removes an existing neighbor and
connects to the process that sent the message. In decision block 3301, if this process has no
holes, then the routine continues at block 3302, else the routine continues at block 3304. In
block 3302, the routine selects a neighbor that is not involved in the neighbors with empty
ports condition. In block 3303, the routine removes the selected neighbor as a neighbor of

this process. Thus, this process that is executing the routine- now has at least one hole. In

[03004-8001/SL0O03733.106] -41- 7/31/00

0717

10

15

20

25

block 3304, the routine invokes the add neighbor routine to add the process that sent the
message as a neighbor of this process. The routine then returns.

Figure 34 is.a flow diagram illustrating the processing of the handle condition
double check routine. This routine determines whether the neighbors with empty ports
condition really is a problem or whether the broadcast channel is in the small regime. In
decision block 3401, if this process has one hole, then the routine continues at block 3402,
else the routine continues at block 3403. If this process does not have one hole, then the set
of neighbors of this process is not the same as the set of neighbors of the sending process. In
decision block 3402, if this process and the sending process have the same set of neighbors,
then the broadcast channel is not in the small regime and the routine continues at block 3403,
else the routine continues at block 3406. In decision block 3403, if this process has no holes,
then the routine returns, else the routine continues at block 3404. In block 3404, the routine
sets the estimated diameter for this process to one. In block 3405, the routine broadcasts a
diameter reset internal message (i.e., diameter_reset) indicating that the estimated diameter is
one and then returns. In block 3406, the routine creates a list of neighbors of this process. In
block 3407, the routine sends the condition check message (i.e., condition_check_stmt) with

the list of neighbors to the neighbor who sent the condition double check message and then

~ returns.

From the above description, it will be appreciated that although specific
embodiments of the technology have been described, various modifications may be made
without deviating from the spirit and scope of the invention. For example, the
communications on the broadcast channel may be encrypted. Also, the channel instance or
session 1dentifier may be a very large number (e.g., 128 bits) to help prevent an unauthorized
user to maliciously tap into a broadcast channel. The portal computer may also enforce
security and not allow an unauthorized user to connect to the broadcast channel.

Accordingly, the invention is not limited except by the claims.

[03004-8001/SL003733.106) -42- 7/31/00

0718

10

11

12

13

14
15

16

17

18

CLAIMS

1. A computer network for providing a conferencing system for a plurality
of participants, each participant having connections to at least three neighbor participants,
wherein an originating participant sends data to the other participants by sending the data

through each of its connections to its neighbor participants and wherein each participant

“ sends data that it receives from a neighbor participant to its other neighbor participants.

2. The computer network of claim 1 wherein each participant is connected

to 4 other participants.

3. The computer network of claim 1 wherein each participant is con<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>