
0595
BUNGIE - EXHIBIT 1002 Part 3 of 5

set eauveorme's

Woles-to-&y<

© Souk Ectand

Wescags

woles—toe\\ Pr hee i: LAAT esp +

vy

holes tofIl

 =i|HolFen)

BUNGIE - EXHIBIT 1002 Part 3 of 5
0595

0596

0596

0597

Fic l®

0597

0598

unM\essa

out mes Sese

Fig 14

0598

0599

cu\ler i)
not naig bbe?

=—;=
Re acer

0599

0600

0600

0601

 o3f ;

hotly vO og Po. O- '

on| type “= Y Handle Beoodred; proadcost Mss
Stetl

038 y

Jagat wees ‘
SoPande

0601

0602

0602

0603

2%

Dist buf
Broadees\

€

Frow Watch bow

Fe, 2

0603

0604

0604

0605

2\

0605

0606

0606

0607

F.l\ HolCeeles

0607

0608

0608

0609

0609

0610

0610

0611

47

0611

0612

creoke (ist of
wuighbers

0612

0613

U.S. Patent Application No. 09/629,575 EXPRESS MAIL NO, E1404935353uUS

20

25

BROADCASTING ON A BROADCAST CHANNEL

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. Patent Application No. ,

entitled “BROADCASTING NETWORK,” filed on July 31, 2000 (Attorney Docket

No. 030048001 US); U.S. Patent Application No. , entitled “JOINING A

BROADCAST CHANNEL,”filed on July 31, 2000 (Attorney Docket No. 030048002 US);

U.S. Patent Application No. , “LEAVING A BROADCAST CHANNEL,”

filed on July 31,2000 (Attorney Docket No. 030048003 US); U.S. Patent Application

No. entitled “BROADCASTING ON A BROADCAST CHANNEL,”filed

on July 31, 2000 (Attorney Docket No. 030048004 US); U.S. Patent Application

No. entitled “CONTACTING A BROADCAST CHANNEL,”filed on

July 31,2000 (Attomey Docket No. 030048005 US); U.S. Patent Application

No. , entitled “DISTRIBUTED AUCTION SYSTEM,” filed on

July 31,2000 (Attomey Docket No. 030048006 US); U.S. Patent Application

No. , entitled “AN INFORMATION DELIVERY SERVICE,” filed on
July 31, 2000 (Attorney Docket No. 030048007 US); U.S. Patent Application
No. , entitled “DISTRIBUTED CONFERENCING SYSTEM,”filed on

July 31, 2000 (Attorney Docket No. 030048008 US); and U.S. Patent Application
No. entitled “DISTRIBUTED GAME ENVIRONMENT,” filed on

July 31, 2000 (Attorney Docket No. 030048009 US), the disclosures of which are

incorporated herein by reference.

TECHNICAL FIELD

The described technology relates generally to a computer network and more

particularly, to a broadcast channel for a subset of a computersof an underlying network.

BACKGROUND

There are a wide variety of computer network communications techniques such

as point-to-poimt network protocols, client/server middleware, multicasting network

{03004-8004/S1.003733.100) -1- 713100

0613

0614

20

25

30

protocols, and peer-to-peer middleware. Each of these communications techniques have
their advantages and disadvantages, but noneis particularly well suited to the simultaneous

sharing of information among computers that are widely distributed. For example,
collaborative processing applications, such as a network meeting programs, have a need to

distribute information in a timely mannerto all participants who may be geographically
distributed.

The point-to-point network protocols, such as UNIX pipes, TCP/IP, and UDP,

allow processes on different computers to communicate via point-to-point connections. The

interconnection of all participants using point-to-point connections, while theoretically

possible, does not scale well as a number of participants grows. For example, each

participating process would need to manageits direct connectionsto all other participating

processes. Programmers, however, find it very difficult to manage single connections, and

management of multiple connections is much more complex. In addition, participating

processes may be limited to the numberof direct connections that they can support. This

limits the numberofpossible participants in the sharing of information.

The client/server middleware systems provide a server that coordinates the

communications between the various clients who are sharing the information. The server

functions as a central authority for controlling access to shared resources. Examples of
client/server middleware systems include remote procedurecalls (“RPC”), database servers,

and the common object request broker architecture (“CORBA”). Client/server middleware

systems are not particularly well suited to sharing of information among many participants.

In particular, when a client stores information to be shared at the server, each otherclient

would need to poll the server to determine that new information is being shared. Such

polling places a very high overhead on the communications network. Alternatively, each
client may register a callback with the server, which the server then invokes when new

information is available to be shared. Such a callback technique presents a performance
bottleneck because a single server needs to call back to each client whenever new

information is to be shared. In addition, the reliability of the entire sharing of information

depends uponthereliability of the single server. Thus, a failure at a single computer(i.e.,
the server) would prevent communications between anyoftheclients.

The multicasting network protocols allow the sending of broadcast messagesto
multiple recipients of a network. The current implementations of such multicasting network:
[03004-8004/SL003733.100} -2- 731/00

0614

0615

20

25

30

protocols tend to place an unacceptable overhead on the underlying network. For example,

UDP multicasting would swampthe Internet when trying to locate all possible participants.
IP multicasting has other problems that include needing special-purposeinfrastructure(e.g.,

routers) to support the sharing of informationefficiently.

The peer-to-peer middleware communications systems rely on a multicasting

network protocol or a graph of point-to-point network protocols. Such peer-to-peer

middleware is provided by the T.120 Internet standard, which is used in such products as

Data Connection’s D.C.-share and Microsoft’s NetMeeting. These peer-to-peer middleware

systems rely upon a user to assemble a point-to-point graph of the connections used for

sharing the information. Thus, it is neither suitable nor desirable to use peer-to-peer

middleware systems when more than a small numberofparticipants is desired. In addition,

the underlying architecture of the T.120 Internet standardis a tree structure, which relies on

the root node ofthetree for reliability of the entire network. That is, each message must pass

through the root nodein orderto be received by all participants.

It would be desirable to have a reliable communications network that is

suitable for the simultaneous sharing of information among a large numberofthe processes

that are widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents a
broadcast channel.

Figure 2 illustrates a graph representing 20 computers connected to a broadcast
channel.

Figures 3A and 3B illustrate the process of connecting a new computer Z to the
broadcast channel.

Figure 4A illustrates the broadcast channel of Figure 1 with an added
computer.

Figure 4B illustrates the broadcast channel of Figure 4A with an added
computer.

Figure 4C also illustrates the broadcast channel of Figure 4A with an added
computer.

[03004-8004/SL003733.100} -3- 7131/00

0615

0616

20

25

30

Figure 5A illustrates the disconnecting of a computer from the broadcast
channel in a planned manner.

Figure 5B illustrates the disconnecting of a computer from the broadcast

channel in an unplanned manner.

Figure SCillustrates the neighbors with empty ports condition.

Figure 5D illustrates two computers that are not neighbors who now have

empty ports.

Figure 5E illustrates the neighbors with empty ports condition in the small

regime.

Figure 5F illustrates the situation of Figure SE whenin the large regime.

Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcastchannel.

Figure 7 is a block diagram illustrating the sub-components of the broadcaster

component in one embodiment.

Figure 8 is a flow diagram illustrating the processing of the connectroutine in
one embodiment.

Figure 9 is a flow diagram illustrating the processing of the seek portal
computer routine in one embodiment.

Figure 10 is a flow diagram illustrating the processing of the contact process
routine in one embodiment.

Figure 11 is a flow diagram illustrating the processing of the connect request
routine in one embodiment.

Figure 12 is a flow diagram of the processing of the check for external call
routine in one embodiment.

Figure 13 is a flow diagram of the processing ofthe achieve connection routine
in one embodiment.

Figure 14 is a flow diagram illustrating the processing of the external
dispatcher routine in one embodiment.

Figure 15 is a flow diagram illustrating the processing of the handle seeking
connectioncall routine in one embodiment.

Figure 16 is a flow diagram illustrating processing of the handle connection
request call routine in one embodiment.

[03004-8004/SL003733.100) -4- 7131/00

0616

0617

20

25

30

Figure 17 is a flow diagram illustrating the processing of the add neighbor
routine in one embodiment.

Figure 18 is a flow diagram illustrating the processing of the forward

connection edge search routine in one embodiment.

Figure 19 is a flow diagram illustrating the processing of the handle edge

proposal call routine.

Figure 20 is a flow diagram illustrating the processing of the handle port
connectioncall routine in one embodiment.

Figure 21 is a flow diagram illustrating the processingofthefill hole routine in

one embodiment.

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher
routine in one embodiment.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast
message routine in one embodiment.

Figure 24 is a flow diagram illustrating the processing of the distribute
broadcast messageroutine in one embodiment.

Figure 26 is a flow diagram illustrating the processing of the handle connection
port search statementroutine in one embodiment.

Figure 27 is a flow diagram illustrating the processing of the court neighbor
routine in one embodiment.

Figure 28 is a flow diagram illustrating the processing of the handle connection
edge search call routine in one embodiment.

Figure 29 is a flow diagram illustrating the processing of the handle connection
edge search responseroutine in one embodiment.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine
in one embodiment.

Figure 31 is a flow diagram illustrating the processing of the acquire message
routine in one embodiment.

Figure 32 is a flow diagram illustrating processing of the handle condition
check message in one embodiment.

Figure 33 is a flow diagram illustrating processing of the handle condition
repair statementroutine in one embodiment.

(03004-8004/SL003733.100] -5- 7131100

“0617

0618

20

25

30

Figure 34 is a flow diagram illustrating the processing of the handle condition
double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel overlays a point-to-point

communications network is provided. The broadcasting of a message over the broadcast

channel is effectively a multicast to those computers of the network that are currently

connected to the broadcast channel. In one embodiment, the broadcast technique provides a

logical broadcast channel to which host computers through their executing processes can be
connected. Each computer that is connected to the broadcast channel can broadcast

messages onto and receive messages off of the broadcast channel. Each computer that is

connected to the broadcast channel receives all messages that are broadcast while it is

connected. The logical broadcast channel is implemented using an underlying network
system (e.g., the Internet) that allows each computer connected to the underlying network

system to send messages to each other connected computer using each computer’s address.

Thus, the broadcast technique effectively provides a broadcast channelusing an underlying
network system that sends messages on a point-to-pointbasis.

The broadcast technique overlays the underlying network system with a graph

of point-to-point connections(i.e., edges) between host computers (i.e., nodes) through
which the broadcast channel is implemented. In one embodiment, each computer is

connected to four other computers, referred to as neighbors. (Actually, a process executing
on a computer is connected to four other processes executing on this or four other

computers.) To broadcast a message, the originating computer sends the message to each of

its neighbors using its point-to-point connections. Each computer that receives the message
then sends the messageto its three other neighbors using the point-to-point connections. In
this way, the message is propagated to each computerusing the underlying network to effect
the broadcasting of the message to each computer over a logical broadcast channel. A graph
in which each node is connected to four other nodesis referred to as a 4-regular graph. The
use of a 4-regular graph means that a computer would become disconnected from the

broadcast channelonly if all four of the connections toits neighbors fail. The graph used by
the broadcast technique also has the property that it would take a failure of four computers to

(03004-8004/SL003733.100] -6- 7/31/00

0618

0619

20

25

30

divide the graph into disjoint sub-graphs, that is two separate broadcast channels. This

property is referred to as being 4-connected. Thus, the graph is both 4-regular and 4-
connected.

Figure 1 illustrates a graph that is 4-regular and 4-connected whichrepresents

the broadcast channel. Eachof the nine nodes A-I represents a computerthat is connectedto

the broadcast channel, and each of the edges represents an “edge” connection between two

computers of the broadcast channel. The time it takes to broadcast a message to each

computer on the broadcast channel depends on the speed of the connections between the

computers and the number of connections between the originating computer and each other

computer on the broadcast channel. The minimum number of connections that a message

would need to traverse between each pair of computers is the “distance” between the

computers(i.¢., the shortest path between the two nodes of the graph). For example, the

distance between computers A and F is one because computer A is directly connected to

computer F. The distance between computers A and B is two because there is no direct

connection between computers A and B, but computerF is directly connected to computer B.

Thus, a message originating at computer A wouldbesent directly to computer F, and then
sent from computer F to computer B. The maximum of the distances between the computers
is the “diameter” of broadcast channel. The diameter of the broadcast channel represented
by Figure 1 is two. That is, a message sent by any computer would traverse no more than

two connections to reach every other computer. Figure 2 illustrates a graph representing 20
computers connected to a broadcast channel. The diameterof this broadcast channel is 4. In

particular, the shortest path between computers 1 and 3 contains four connections (1-12, 12-
15, 15-18, and 18-3).

The broadcast technique includes (1) the connecting of computers to the
broadcast channel (i.e., composing the graph), (2) the broadcasting of messages over the
broadcast channel (i.e., broadcasting through the graph), and (3) the disconnecting of
computers from the broadcast channel (i.e., decomposingthe graph) composingthe graph.

Composing the Graph

To connect to the broadcast channel, the computer seeking the connectionfirst
locates a computer that is currently fully connected to the broadcast channel and then

(03004-8004/SL003733.100] -7- 7/3100

0619

0620

15

20

25

30

establishes a connection with four of the computers that are already connected to the

broadcast channel. (This assumes thatthere are at least four computers already connected to

the broadcast channel. When there are fewer than five computers connected, the broadcast
channel cannot be a 4-regular graph. In such a case, the broadcast channel is considered to

be in a “small regime.” The broadcast technique for the small regime is described below in

detail. When five or more computers are connected, the broadcast channel is considered to

be in the “large regime.” This description assumesthat the broadcast channelis in the large

regime, unless specified otherwise.) Thus, the process of connecting to the broadcast

channel includes locating the broadcast channel, identifying the neighbors for the connecting

computer, and then connecting to each identified neighbor. Each computer is aware of one

or more “portal computers” through which that computer may locate the broadcast channel.

A seeking computer locates the broadcast channelby contacting the portal computers untilit

finds one that is currently fully connected to the broadcast channel. The found portal

computer then directs the identifying of four computers(i.e., to be the seeking computer’s

neighbors) to which the seeking computer is to connect. Each of these four computers then

cooperates with the seeking computer to effect the connecting of the seeking computerto the

broadcast channel. A computer that hasstarted the process of locating a portal computer, but
does not yet have a neighbor, is in the “seeking connection state.” A computer that is
connectedto at least one neighbor, but not yet four neighbors, is in the “partially connected

state.” A computer that is currently, or has been, previously connected to four neighbors is
in the “fully connectedstate.”

Since the broadcast channel is a 4-regular graph, each of the identified

computers is already connected to four computers. Thus, some connections between

computers need to be broken so that the seeking computer can connect to four computers. In

one embodiment, the broadcast technique identifies two pairs of computersthat are currently
connected to each other. Each of these pairs of computers breaks the connection between

them, and then each of the four computers (two from each pair) connects to the seeking
computer. Figures 3A and 3B illustrate the process of a new computer Z connecting to the
broadcast channel. Figure 3A illustrates the broadcast channel before computer Z is
connected. The pairs of computers B and E and computers C andDare the two pairs that are

_ identified as the neighbors for the new computer Z. The connections between each ofthese

pairs is broken, and a connection between computer Z and each of computers B, C, D, and E
{03004-8004/SL003733.100} -8- 7/31/00

0620 ©

0621

20

25

30

is established as indicated by Figure 3B. The process of breaking the connection between

two neighbors and reconnecting eachofthe former neighbors to another computeris referred

to as “edge pinning” as the edge between two nodes may be considered to be stretched and

pinned to a new node.

Each computer connected to the broadcast channel allocates five

communications ports for communicating with other computers. Four of the ports are

referred to as “internal” ports because they are the ports through which the messages of the

broadcast channels are sent. The connections between internal ports of neighbors are

referred to as “internal” connections. Thus,the internal connections of the broadcast channel

form the 4-regular and 4-connected graph. Thefifth port is referred to as an “external” port

because it is used for sending non-broadcast messages between two computers. Neighbors

can send non-broadcast messages either through their internal ports of their connection or

through their external ports. A seeking computer uses external ports when locating a portal

computer.

In one embodiment, the broadcast technique establishes the computer

connections using the TCP/IP communications protocol, which is a point-to-point protocol,

as the underlying network. The TCP/IP protocol provides for reliable and ordered delivery

of messages between computers. The TCP/IP protocol provides each computer with a “port

space”that is shared amongall the processes that may execute on that computer. The ports

are identified by numbers from 0 to 65,535. The first 2056 ports are reserved for specific

applications (e.g., port 80 for HTTP messages). The remainder of the ports are user ports

that are available to any process. In one embodiment, a set of port numbers can be reserved

for use by the computer connected to the broadcast channel. In an alternative embodiment,

the port numbers used are dynamically identified by each computer. Each computer

dynamically identifies an available port to be used asits call-in port. This call-in port is used

to establish connections with the external port and the internal ports. Each computerthatis

connected to the broadcast channel can receive non-broadcast messages through its external

port. A seeking computer tries “dialing” the port numbers of the portal computers until a

portal computer “answers,” a call on its call-in port. A portal computer answers whenit is

connected to or attempting to connect to the broadcast channel andits call-in port is dialed.

(In this description, a telephone metaphoris used to describe the connections.) When a
computer receives a call on its call-in port, it transfers the call to another port. Thus, the
[03004-8004/SL003733.100] -9- 7131/00

0621

0622

20

25

30

seeking computer actually communicates through that transfer-to port, which is the external

port. Thecall is transferred so that other computers can place calls to that computervia the

call-in port. The seeking computer then communicates via that external port to request the

portal computerto assist in connecting the seeking computer to the broadcast channel. The

seeking computer could identify the call-in port numberof a portal computer by successively

dialing each port in port number order. As discussed below in detail, the broadcast technique

uses a hashing algorithm to select the port number order, which mayresult in improved
performance

A seeking computer could connect to the broadcast channel by connecting to

computers either directly connected to the found portal computerordirectly connected to one
of its neighbors. A possible problem with such a scheme for identifying the neighbors for
the seeking computer is that the diameter of the broadcast channel may increase when each
seeking computer uses the same found portal computer and establishes a connection to the

broadcast channel directly through that found portal computer. Conceptually, the graph
becomes elongated in the direction of where the new nodes are added. Figures 4A-4C

illustrate that possible problem. Figure 4A illustrates the broadcast channel of Figure | with
an added computer. Computer J was connected to the broadcast channel by edge pinning
edges C-D and E-H to computer J. The diameter of this broadcast channel is still two.

Figure 4B illustrates the broadcast channel of Figure 4A with an added computer.

Computer K was connected to the broadcast channel by edge pinning edges E-J and B-C to
computer K. The diameter of this broadcast channelis three, because the shortest path from
computer G to computer K is through edges G-A, A-E, and E-K. Figure 4C alsoillustrates
the broadcast channel of Figure 4A with an added computer. Computer K was connected to
the broadcast channel by edge pinning edges D-G and E-J to computer K. The diameter of
this broadcast channel is, however,still two. Thus, the selection of neighbors impacts the
diameter of the broadcast channel. To help minimizethe diameter, the broadcast technique
uses a random selection techniqueto identify the four neighbors of a computer in the seeking
connection state. The random selection technique tends to distribute the connections to new

seeking computers throughout the computers of the broadcast channel which may result in
smaller overall diameters.

{03004-8004/SL003733.100} -10- 7731/00

0622

0623

20

25

30

Broadcasting Through the Graph

As described above, each computer that is connected to the broadcast channel

can broadcast messages onto the broadcast channel and does receive all messages that are

broadcast on the broadcast channel. The computerthat originates a message to be broadcast

sends that message to each ofits four neighbors using the internal connections. When a

computer receives a broadcast message from a neighbor, it sends the messageto its three

other neighbors. Each computer on the broadcast channel, except the originating computer,

will thus receive a copy of each broadcast message from each of its four neighbors. Each

computer, however, only sends the first copy of the message that it receives to its neighbors

and disregards subsequently received copies. Thus, the total number of copies of a message

that is sent between the computers is 3N+1, where N is the number of computers connected

to the broadcast channel. Each computer sends three copies of the message, except for the

originating computer, which sends four copies of the message.

The redundancy of the message sending helps to ensure the overall reliability

of the broadcast channel. Since each computer has four connections to the broadcast

channel, if one computer fails during the broadcast of a message, its neighbors have three
other connections through which they will receive copies of the broadcast message. Also, if

the internal connection between two computers is slow, each computer has three other

connections through whichit may receive a copy of each message sooner.

Each computer that originates a message numbers its own messages
sequentially. Because of the dynamic nature of the broadcast channel and because there are

many possible connection paths between computers, the messages may bereceived out of
order, For example, the distance between an originating computer and a certain receiving
computer may be four. After sending the first message, the originating computer and
receiving computer may become neighbors and thus the distance between them changes to
one. The first message may haveto travel a distance of four to reach the receiving computer.
The second messageonly hasto travel a distance of one. Thus,it is possible for the second
messageto reach the receiving computerbeforethefirst message.

Whenthe broadcast channelis in a steadystate (i.¢., no computers connecting
or disconnecting from the broadcast channel), out-of-order messages are not a problem
because each computerwill eventually receive both messages and can queue messagesuntil
all earlier ordered messagesare received. If, however, the broadcast channel is not in a
[03004-8004/SL003733.100) -ll- 7/31/00

0623

0624

10

15

20

25

30

steady state, then problems can occur. In particular, a computer may connect to the

broadcast channelafter the second message has already been received and forwarded on by

its new neighbors. When a new neighbor eventually receives the first message, it sends the

message to the newly connected computer. Thus, the newly connected computer will receive

the first message, but will not receive the second message. If the newly connected computer

needs to process the messagesin order, it would wait indefinitely for the second message.

Onesolution to this problem is to have each computer queueall the messages

that it receives until it can send them in their proper order to its neighbors. This solution,

however, may tend to slow down the propagation of messages through the computers of the

broadcast channel. Another solution that may have less impact on the propagation speed is

to queue messages only at computers whoare neighbors of the newly connected computers.

Each already connected neighbor would forward messages as it receives them to its other

neighbors who are not newly connected, but not to the newly connected neighbor. The

already connected neighbor would only forward messages from each originating computerto

the newly connected computer when it can ensure that no gaps in the messages from that

originating computer will occur. In one embodiment, the already connected neighbor may

track the highest sequence number of the messages already received and forwarded on from

each originating computer. The already connected computerwill send only higher numbered

messages from the originating computers to the newly connected computer. Onceall lower

numbered messages have been received from all originating computers, then the already

connected computer can treat the newly connected computer as its other neighbors and

simply forward each messageas it is received. In another embodiment, each computer may

queue messages and only forwards to the newly connected computer those messages as the

gapsare filled in. For example, a computer might receive messages 4 and 5 andthen receive

message 3. In such a case, the already connected computer would forward queue messages 4

and 5. When message 3 is finally received, the already connected computer will send

messages 3, 4, and 5 to the newly connected computer. If messages 4 and 5 weresent to the

newly connected computer before message 3, then the newly connected computer would

process messages 4 and 5 and disregard message 3. Because the already connected computer
queues messages 4 and 5, the newly connected computerwill be able to process message 3.

It is possible that a newly connected computer will receive a set of messages from an
onginating computer through one neighbor and thenreceive anotherset of message from the
[03004-8004/SL003733.100] -12- 7731/00

0624

0625

20

25

30

sameoriginating computer through another neighbor. If the second set of messages contains

a message that is ordered earlier than the messages of the first set received, then the newly

connected computer may ignore that earlier ordered message if the computer already

processed thoselater ordered messages.

Decomposing the Graph

A connected computer disconnects from the broadcast channel either in a

planned or unplanned manner. When a computer disconnects in a planned manner,it sends a

disconnect messageto eachofits four neighbors. The disconnect messageincludesa list that

identifies the four neighbors of the disconnecting computer. When a neighborreceives the

disconnect message, it tries to connect to one of the computers on the list. In one

embodiment, the first computer in the list will try to connect to the second computerin the

list, and the third computer in thelist will try to connect to the fourth computerin thelist. If

a computer cannot connect (e¢.g., the first and second computers are already connected), then

the computers may try connecting in various other combinations. If connections cannot be

established, each computer broadcasts a messagethat it needs to establish a connection with

another computer. When a computer with an available internal port receives the message,it

can then establish a connection with the computer that broadcast the message. Figures 5A-

SD illustrate the disconnecting of a computer from the broadcast channel. Figure 5A
illustrates the disconnecting of a computer from the broadcast channel in a planned manner.
When computerH decides to disconnect, it sendsits list of neighbors to each ofits neighbors
(computers A, E, F and I) and then disconnects from each ofits neighbors. When
computers A and I receive the message they establish a connection between them as

indicated by the dashedline, and similarly for computers E andF.

When a computer disconnects in an unplanned manner, such as resulting from

a power failure, the neighbors connected to the disconnected computer recognize the
disconnection when each attempts to send its next message to the now disconnected
computer. Each former neighborof the disconnected computer recognizesthatit is short one

connection (i.e., it has a hole or empty port). When a connected computer detects that one of
its neighbors is now disconnected, it broadcasts a port connection request on the broadcast
channel, which indicates that it has one internal port that needs a connection. The port
connection requestidentifies the call-in port of the requesting computer. When a connected

{03004-8004/SL003733.100] -13- 7731/00

0625

0626

20

25

30

computer that is also short a connection receives the connection request, it communicates

with the requesting computer through its external port to establish a connection between the

two computers. Figure 5B illustrates the disconnecting of a computer from the broadcast

channel in an unplanned manner. In this illustration, computer H has disconnected in an

unplanned manner. Wheneach ofits neighbors, computers A, E, F, and I, recognizes the

disconnection, each neighbor broadcasts a port connection request indicating that it needs to

fill an empty port. As shown by the dashedlines, computers F and I and computers A and E

respond to each other’s requests and establish a connection. .

It is possible that a planned or unplanned disconnection may result in two

neighbors each having an empty internal port. In such a case, since they are neighbors, they

are already connected and cannotfill their empty ports by connecting to each other. Such a

condition is referred to as the “neighbors with empty ports” condition. Each neighbor

broadcasts a port connection request when it detects that it has an empty port as described

above. Whena neighborreceives the port connection request from the other neighbor,it will

recognize the condition that its neighbor also has an empty port. Such a condition may also

occur when the broadcast channel is in the small regime. The condition can only be

corrected when in the large regime. When in the small regime, each computerwill have less

than four neighbors. To detect this condition in the large regime, which would be a problem

if not repaired, the first neighbor to receive the port connection request recognizes the

condition and sends a condition check message to the other neighbor. The condition check

message includes a list of the neighbors of the sending computer. When the receiving
computerreceivesthelist, it compares the list to its own list of neighbors. If the lists are

different, then this condition has occurredin the large regime and repair is needed. To repair
this condition, the receiving computer will send a condition repair request to one of the

neighbors of the sending computer which is not already a neighbor of the receiving
computer. When the computerreceives the condition repair request, it disconnects from one

ofits neighbors (other than the neighborthat is involved with the condition) and connects to

the computer that sent the condition repair request. Thus, one of the original neighbors
involved in the condition will have had a port filled. However, two computers are still in
need of a connection, the otheroriginal neighbor and the computer that is now disconnected

from the computerthat received the condition repair request. Those two computers send out
port connection requests. If those two computers are not neighbors, then they will connectto
[03004-8004/SL003733.100] -14- 773.1100

0626

0627

20

25

30

each other when they receive the requests. If, however, the two computers are neighbors,

then they repeat the condition repair process until two non-neighbors are in need of
connections.

It is possible that the two original neighbors with the condition may have the

same set of neighbors. When the neighbor that receives the condition check message
determinesthat the sets ofneighbors are the same, it sends a condition double check message

to one of its neighbors other than the neighbor who also has the condition. When the

computerreceives the condition double check message, it determines whetherit has the same

set of neighbors as the sending computer. If so, the broadcast channelis in the small regime

and the condition is not a problem. If the set of neighbors are different, then the computer

that received the condition double check message sends a condition check message to the

original neighbors with the condition. The computer that receives that condition check

message directs one ofit neighbors to connect to one of the original neighbors with the

condition by sending a condition repair message. Thus, one of the original neighbors with
the condition will haveits port filled.

Figure 5C illustrates the neighbors with empty ports condition. In this

illustration, computer H disconnected in an unplanned manner, but computers F and I

responded to the port connection request of the other and are now connected together. The
other former neighbors of computer H, computers A and E, are already neighbors, which
gives rise to the neighbors with empty ports condition. In this example, computer E received

the port connection request from computer A, recognized the possible condition, and sent

(since they are neighbors via the internal connection) a condition check message withalist
of its neighbors to computer A. When computer A received the list, it recognized that

computer E has a different set of neighbor(i.¢., the broadcast channelis in the large regime).
Computer A selected computer D, which is a neighbor of computer E and sentit a condition

repair request. When computer D received the condition repair request, it disconnected from
one of its neighbors (other than computer E), which is computer G in this example.
Computer D then connected to computer A. Figure 5D illustrates two computers that are not
neighbors who now have empty ports. Computers E and G now have empty ports and are
not currently neighbors. Therefore, computers E and G can connectto each other.

Figures 5E and 5F furtherillustrate the neighbors with empty ports condition.
Figure 5E illustrates the neighbors with empty ports condition in the small regime. In this
{03004-8004/SL003733.100] -15- 77100

0627

0628

10

15

20

25

30

example, if computer E disconnected in an unplanned manner, then each computer

broadcasts a port connection request when it detects the disconnect. When computer A

receives the port connection request form computer B,it detects the neighbors with empty

ports condition and sends a condition check message to computer B. Computer B recognizes

that it has the same set of neighbors (computer C and D) as computer A and then sends a

condition double check message to computer C. Computer C recognizes that the broadcast

channelis in the small regime because is also has thesameset of neighbors as computers A

_ and B, computer C may then broadcast a message indicating that the broadcast channelis in

the small regime.

Figure 5F illustrates the situation of Figure 5E when in the large regime. As

discussed above, computer C receives the condition double check message from computer B.

In this case, computer C recognizes that the broadcast channelis in the large regime because

it has a set of neighborsthat is different from computer B. The edges extending up from

computer C and D indicate connections to other computers. Computer C then sends a

condition check message to computer B. When computer B receives the condition check
message, it sends a condition repair message to one of the neighbors of computer C. The

computer that receives the condition repair message disconnects from one ofits neighbors,

other than computer C, and tries to connect to computer B and the neighbor from whichit

disconnected tries to connect to computer A.

Port Selection

As described above, the TCP/IP protocol designates ports above number 2056

as user ports. The broadcast techniqueuses five user port numbers on each computer: one
external port and four internal ports. Generally, user ports cannotbestatically allocated to

an application program because other applications programs executing on the same computer
may use conflicting port numbers. Asa result, in one embodiment, the computers connected

to the broadcast channel dynamically allocate their port numbers. Each computer could
simply try to locate the lowest number unusedport on that computer andusethat port as the
call-in port. A seeking computer, however, does not know in advance the call-in port
number of the portal computers when the port numbers are dynamically allocated. Thus, a
seeking computer needs to dial ports of a portal computer starting with the lowest port
number when locating the call-in port of a portal computer. If the portal computer is

[03004-8004/SL003733.100] -16- 71/00

0628

0629

20

25

30

connected to (or attempting to connect to) the broadcast channel, then the seeking computer

~ would eventually find the call-in port. If the portal computer is not connected, then the
seeking computer would eventually dial every user port. In addition, if each application

program on a computer tried to allocate low-ordered port numbers, then a portal computer

may end up with a high-numbered port forits call-in port because many of the low-ordered

port numbers would be used by other application programs. Since the dialing of a port is a

relatively slow process, it would take the seeking computer a long timeto locate the call-in

port of a portal computer. To minimize this time, the broadcast technique uses a port

ordering algorithm to identify the port numberorder that a portal computer should use when

finding an available port forits call-in port. In one embodiment, the broadcast technique

uses a hashing algorithm to identify the port order. The algorithm preferably distributes the
ordering of the port numbers randomly through out the user port number space and only

selects each port number once. In addition, every time the algorithm is executed on any

computer for a given channel type and channel instance, it generates the sameport ordering.

As described below, it is possible for a computer to be connected to multiple broadcast

channels that are uniquely identified by channel type and channel instance. The algorithm

may be “seeded” with channel type and channel instance in order to generate a unique

ordering of port numbers for each broadcast channel. Thus, a seeking computer will dial the

ports of a portal computer in the sameorder as the portal computer used when allocatingits
call-in port.

If many computers are at the same time seeking connection to a broadcast

channel through a single portal computer, then the ports of the portal computer may be busy
when called by seeking computers. The seeking computers would typically need to keep on
redialing a busy port. Theprocess oflocating a call-in port may be significantly slowed by
such redialing. In one embodiment, each seeking computer may each reorder the first few

port numbers generated by the hashing algorithm. For example, each seeking computer
could randomlyreorderthe first eight port numbers generated by the hashing algorithm. The
random ordering could also be weighted where the first port number generated by the
hashing algorithm would have a 50% chanceofbeingfirst in the reordering, the second port
number would have a 25% chance of beingfirst in the reordering, and so on. Because the
seeking computers would use different orderings, the likelihood of finding a busy port is
reduced. For example, if the first eight port numbers are randomly selected, then it is
[03004-8004/SL003733.100] -17- T1100

0629

0630

20

25

30

possible that eight seeking computers could be simultaneously dialing ports in different

sequences which would reduce the chances ofdialing a busy port.

Locating a Portal Computer

Each computer that can connect to the broadcast channel has a list of one or

more portal computers through which it can connect to the broadcast channel. In one

embodiment, each computer has the same set of portal computers. A seeking computer

locates a portal computerthat is connected to the broadcast channel by successively dialing

the ports of each portal computerin the order specified by an algorithm. A seeking computer

could select the first portal computer and then dial all its ports until a call-in port of a

computer that is fully connected to the broadcast channel is found. If no call-in port is

found, then the seeking computer would select the next portal computer and repeat the

process until a portal computer with such a call-in port is found. A problem with such a

seeking technique is that all user ports of each portal computer are dialed until a portal
computer fully connected to the broadcast channel is found. In an alternate embodiment, the

seeking computer selects a port numberaccordingto the algorithm and then dials each portal

computerat that port number. If no acceptablecall-in port to the broadcast channelis found,

then the seeking computer selects the next port number and repeats the process. Since the

call-in ports are likely allocated at lower-ordered port numbers, the seeking computer first

dials the port numbers that are mostlikely to be call-in ports of the broadcast channel. The

seeking computers may have a maximum search depth, that is the numberofports thatit will

dial when seeking a portal computer that is fully connected. If the seeking computer
exhausts its search depth, then either the broadcast channel has not yet beenestablishedor, if
the seeking computeris also a portal computer, it can then establish the broadcast channel

with itself as the first fully connected computer.

When a seeking computer locates a portal computer thatis itself not fully
connected, the two computers do not connect when they first locate each other because the

broadcast channel may already be established and accessible through a higher-ordered port
number on another portal computer. If the two seeking computers were to connect to each
other, then two disjoint broadcast channels would be formed. Each seeking computer can
shareits experiencein trying to locate a portal computer with the other seeking computer. In
particular, if one seeking computerhas searchedall the portal computers to a depth ofeight,

[03004-8004/SL003733.100) -18- 7/31/00

0630

0631

15

20

25

30

then the one seeking computer can share that it has searched to a depth of eight with another

seeking computer. If that other seeking computer has searched to a depth of, for example,

only four, it can skip searching through depths five through eight and that other seeking

computer can advance its searching to a depth ofnine.

In one embodiment, each computer may have a different set of portal

computers and a different maximum search depth. In suchasituation, it may be possible that
two disjoint broadcast channels are formed because a seeking computer cannot locate a fully
connected port computer at a higher depth. Similarly, if the set of portal computers are

disjoint, then two separate broadcast channels would be formed.

Identifying Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting computer are

preferably selected randomly from theset of currently connected computers. One advantage

of the broadcast channel, however, is that no computer has global knowledge of the

broadcast channel. Rather, each computer has local knowledgeofitself and its neighbors.

This limited local knowledge has the advantage that all the connected computers are peers

(as far as the broadcasting is concerned) andthe failure of any one computer(actually any
three computers when in the 4-regular and 4-connect form) will not cause the broadcast

channel to fail. This local knowledge makesit difficult for a portal computer to randomly
select four neighbors for a seeking computer.

To select the four computers, a portal computer sends an edge connection

request message through one of its internal connections that is randomly selected. The
receiving computer again sends the edge connection request message through oneofits
internal connectionsthat is randomly selected. This sending of the message corresponds to a
random walk through the graph that represents the broadcast channel. Eventually, a
receiving computer will decide that the message has traveled far enough to represent a
randomly selected computer. That receiving computer will offer the internal connection

upon which it received the edge connection request message to the seeking computer for
edge pinning. Of course, if either of the computers at the end of the offered internal

connection are already neighbors of the seeking computer, then the seeking computer cannot
connect through that internal connection. The computer that decided that the message has

[03004-8004/SL003733.100} -19- 7131100

0631

0632

10

15

20

25

30

traveled far enough will detect this condition of already being a neighbor and send the

message to a randomlyselected neighbor.

In one embodiment, the distance that the edge connection request message

travels is established by the portal computer to be approximately twice the estimated

diameter of the broadcast channel. The message includes an indication of the distance thatit

is to travel. Each receiving computer decrements that distance to travel before sending the

message on. The computerthat receives a message with a distance to travel that is zero is

considered to be the randomly selected computer. If that randomly selected computer cannot

connect to the seeking computer (e.g., because it is already connected to it), then that

randomly selected computer forwards the edge connection request to one of its neighbors

with a new distanceto travel. In one embodiment, the forwarding computer toggles the new

distance to travel between zero and one to help prevent two computers from sending the
message back and forth between each other.

Because of the local nature of the information maintained by each computer

connected to the broadcast channel, the computers need not generally be aware of the
diameter of the broadcast channel. In one embodiment, each message sent through the
broadcast channel has a distance traveled field. Each computer that forwards a message
increments the distance traveled field. Each computer also maintains an estimated diameter

of the broadcast channel. When a computerreceives a message that has traveled a distance
that indicates that the estimated diameter is too small, it updates its estimated diameter and

broadcasts an estimated diameter message. When a computerreceivesan estimated diameter

message that indicates a diameterthat is larger than its own estimated diameter,it updatesits
own estimated diameter. This estimated diameter is used to establish the distance that an

edge connection request message should travel.

External Data Representation

The computers connected to the broadcast channel may internally store their
data in different formats. For example, one computer may use 32-bit integers, and another
computer may use 64-bit integers. As another example, one computer may use ASCII to
represent text and another computer may use Unicode. To allow communications between

heterogeneous computers, the messages sent over the broadcast channel may use the XDR
(“eXternal Data Representation”) format.

(03004-8004/SL003733.100) -20- 7731700

0632

0633

15

20

25

30

The underlying peer-to-peer communications protocol may send multiple

messagesin a single message stream. The traditional techniquefor retrieving messages from

a stream has been to repeatedly invoke an operating system routine to retrieve the next

messagein the stream. Theretrieval of each message may require twocalls to the operating

system: oneto retrieve the size of the next message and the otherto retrieve the number of

bytes indicated by the retrieved size. Such calls to the operating system can, however, be

very slow in comparison to the invocationsof local routines. To overcometheinefficiencies

of such repeatedcalls, the broadcast technique in one embodiment, uses XDRto identify the

message boundaries in a stream of messages. The broadcast technique may request the

operating system to provide the next, for example, 1,024 bytes from the stream. The

broadcast technique can then repeatedly invoke the XDRroutinesto retrieve the messages
and use the successor failure of each invocation to determine whether another block of 1,024

bytes needs to be retrieved from the operating system. The invocation of XDR routines do

notinvolve system calls and are thus moreefficient than repeated system calls.

M-Regular

In the embodiment described above, each fully connected computer has four
internal connections. The broadcast technique can be used with other numbers ofinternal

connections. For example, each computer could have 6, 8, or any even number ofinternal
connections. As the numberofinternal connections increase, the diameter of the broadcast

channel tends to decrease, and thus propagation time for a messagetends to decrease. The

time that it takes to connect a seeking computer to the broadcast channel may, however,
increase as the number of internal connections increases. When the numberof internal

connectors is even, then the broadcast channel can be maintained as m-regular and
m-connected (in the steady state). If the number of internal connections is odd, then when

the broadcast channel has an odd number of computers connected, one of the computers will
haveless than that odd numberofintemal connections. In suchasituation, the broadcast

network is neither m-regular nor m-connected. When the next computer connects to the
broadcast channel, it can again become m-regular and m-connected. Thus, with an odd

number of intemal connections, the broadcast channel toggles between being and not being
m-regular and m-connected.

[03004-8004/SL003733.100] -21- 7/31/00

0633

0634

15

20

25

30

Components

Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcast channel. The above description generally assumed that there was

only one broadcast channelandthat each computer had only one connection to that broadcast

channel. More generally, a network of computers may have multiple broadcast channels,

each computer may be connected to more than one broadcast channel, and each computer

can have multiple connections to the same broadcast channel. The broadcast channel is well

suited for computer processes (e.g., application programs) that execute collaboratively, such

as network meeting programs. Each computer process can connect to one or more broadcast

channels. The broadcast channels can be identified by channel type (e.g., application

program name) and channel instance that represents separate broadcast channels for that

channel type. When a process attempts to connect to a broadcast channel, it seeks a process
currently connected to that broadcast channel that is executing on a portal computer. The

seeking processidentifies the broadcast channel by channeltype and channel instance.

Computer 600 includes multiple application programs 601 executing as

separate processes. Each application program interfaces with a broadcaster component 602

for each broadcast channel to which it is connected. The broadcaster component may be

implement as an object that is instantiated within the process space of the application

program. Alternatively, the broadcaster component may execute as a separate process or

thread from the application program. In one embodiment, the broadcaster component

provides functions(e.g., methods of class) that can be invoked bythe application programs.

The primary functions provided may include a connect function that an application program
invokes passing an indication of the broadcast channel to which the application program
wants to connect. The application program may provide a callback routine that the

broadcaster component invokes to notify the application program that the connection has
been completed, that is the process enters the fully connected state. The broadcaster

component may also provide an acquire message function that the application program can
invoke to retrieve the next messagethat is broadcast on the broadcast channel. Alternatively,
the application program may provide a callback routine (which may be a virtual function
provided by the application program) that the broadcaster component invokesto notify the
application program that a broadcast message has been received. Each broadcaster

componentallocates a call-in port using the hashing algorithm. When calls are answered at
[03004-8004/SL003733.100} -22- 7131100

0634

0635

15

20

25

the call-in port, they are transferred to other ports that serve as the external and internal

ports.

The computers connecting to the broadcast channel may include a central

processing unit, memory, input devices (e.g., keyboard and pointing device), output devices

(e.g., display devices), and storage devices (e.g., disk drives). The memory andstorage

devices are computer-readable medium that may contain computer instructions that
implement the broadcaster component. In addition, the data structures and message

structures may be stored or transmitted via a signal transmitted on a computer-readable
media, such as a communications link.

Figure 7 is a block diagram illustrating the sub-components of the broadcaster

component in one embodiment. The broadcaster component includes a connect component
701, an external dispatcher 702, an internal dispatcher 703 for each internal connection, an

acquire message component 704 and a broadcast component 712. The application program
may provide a connect callback component 710 and a receive response component 711 that

are invoked by the broadcaster component. Theapplication program invokes the connect
component to establish a connection to a designated broadcast channel. The connect

component identifies the external port andinstalls the external dispatcher for handling
messages that are received on the external port. The connect component invokes the seek

portal computer component 705 to identify a portal computer that is connected to the

broadcast channel and invokes the connect request component706to ask the portal computer
(if fully connected) to select neighbor processes for the newly connecting process. The
external dispatcher receives external messages, identifies the type of message, and invokes
the appropriate handling routine 707. Theinternal dispatcher receives the internal messages,
identifies the type of message, and invokes the appropriate handling routine 708. The
received broadcast messages are stored in the broadcast message queue 709. The acquire
message component is invoked to retrieve messages from the broadcast queue. The
broadcast componentis invoked by the application program to broadcast messages in the
broadcast channel.

The following tables list messages sent by the broadcaster components.

(03004-8004/SL003733.100] -23- 7700

0635

0636

EXTERNAL MESSAGES

seekingconnection_call|Indicates that a seeking process would like to know whether the
receiving process is fully connected to the broadcast channel

connection_request_call|Indicates that the sending process would like the receiving
processto initiate a connectionofthe sending process to the
broadcast channel

Indicates that the sending process is proposing an edge through
which the receiving process can connectto the broadcast
channel(i.e., edge pinning)

edge_proposal_call

 Indicates that the sending processis proposing a port through

which the receiving process can connect to the broadcast
port_connection_call

 channel

connected_stmt .|Indicates that the sending process is connectedto the broadcast
channel

condition_repair_stmt Indicates that the receiving process should disconnect from one

ofits neighbors and connectto oneof the processes involved in
the neighbors with empty port condition

INTERNAL MESSAGES

broadcast_stmt Indicates a message that is being broadcast through the
broadcast channelfor the application programs

connection_port_searchstmt|Indicates that the designated pracess is looking for a port
through whichit can connectto the broadcast channel

connection_edge_search_call|Indicates that the requesting processis looking for an edge
through whichit can connectto the broadcast channel

connection_edge_search_resp|Indicates whether the edge betweenthis process and the
sending neighbor has been accepted by the requesting

 party

Indicates an estimated diameter of the broadcast channel

diameter_reset_stmt Indicatesto reset the estimated diameterto indicated
diameter

disconnect_stmt Indicates that the sending neighboris disconnecting from
the broadcast channel

Indicates that neighbors with empty port condition have

[03004-8004/SL003733.100] -24- 7731/00

0636

0637

20

25

 eS
condition_double_check_stmt|Indicates that the neighbors with empty ports have the

sameset ofneighbors

Indicates that the broadcast channelis being shutdown

Flow Diagrams

Figures 8-34 are flow diagrams illustrating the processing of the broadcaster

component in one embodiment. Figure 8 is a flow diagram illustrating the processing ofthe
connect routine in one embodiment. This routine is passed a channeltype(e.g., application
name) and channel instance (e.g., session identifier), that identifies the broadcast channel to

which this process wants to connect. Theroutine is also passed auxiliary information that
includesthelist of portal computers and a connection callback routine. When the connection

is established, the connection callback routine is invoked to notify the application program.
When this process invokesthis routine,it is in the seeking connection state. When a portal
computeris located that is connected and this routine connects to at least one neighbor, this
process entersthe partially connected state, and when the process eventually connects to four

neighbors, it enters the fully connected state. When in the small regime, a fully connected
process mayhaveless than four neighbors. In block 801, the routine opensthe call-in port
through which the process is to communicate with other processes when establishing external
and internal connections. The port is selected as the first available port using the hashing
algorithm described above. In block 802, the routine sets the connect time to the current

time. The connect time is used to identify the instance ofthe process that is connected
through this external port. One process may connect to a broadcast channel of a certain

channel type and channel instance using one call-in port and then disconnects, and another
process may then connectto that same broadcast channel using the samecall-in port. Before
the other process becomesfully connected, another process may try to communicate with it
thinkingit is the fully connected old process. In such a case, the connect time can be used to

identify this situation. In block 803, the routine invokes the seek portal computer routine
passing the channel type and channel instance. The seek portal computer routine attempts to
locate a portal computer through which this process can connect to the broadcast channel for

the passed type andinstance. In decision block 804,if the seek portal computer routine is

{03004-8004/SL003733.100) -25- 7831/00

0637

0638

15

20

25

30

successful in locating a fully connected process on that portal computer, then the routine

continuesat block 805, else the routine retums an unsuccessful indication. In decision block

805, if no portal computer other than the portal computer on whichthe process is executing

was located, then this is the first process to fully connect to broadcast channel and the

routine continues at block 806, else the routine continues at block 808. In block 806, the

routine invokes the achieve connection routine to change the state of this process to fully

connected. In block 807, the routine installs the external dispatcher for processing messages

received through this process’ external port for the passed channel type and channelinstance.

When a message is received through that external port, the external dispatcher is invoked.

The routine then retums. In block 808,the routineinstalls an external dispatcher. In block

809, the routine invokes the connect request routine to initiate the process of identifying
neighbors for the seeking computer. The routine then returns.

Figure 9 is a flow diagram illustrating the processing of the seek portal

computer routine in one embodiment. This routine is passed the channel type and channel

instance of the broadcast channel to which this process wishes to connect. This routine, for

each search depth (¢.g., port number), checks the portal computers at that search depth. Ifa
portal computer is located at that search depth with a process that is fully connected to the
broadcast channel, then the routine returns an indication of success. In blocks 902-911, the

routine loops selecting each search depth until a processis located. In block 902, the routine

selects the next search depth using a port numberordering algorithm. In decision block 903,

if all the search depths have already been selected during this execution of the loop, that is
for the currently selected depth, then the routine returns a failure indication, else the routine

continues at block 904. In blocks 904-911, the routine loops selecting each portal computer
and determining whether a process ofthat portal computer is connected to (or attempting to
connect to) the broadcast channel with the passed channel type and channelinstance. In

block 904, the routine selects the next portal computer. In decision block 905, if all the .
portal computers havealready been selected, then the routine loops to block 902 to select the
next search depth, else the routine continues at block 906. In block 906, the routine dials the
selected portal computer through the port represented by the search depth. In decision block
907, if the dialing was successful, then the routine continues at block 908, else the routine
loops to block 904 to select the next portal computer. The dialing will be successful if the
dialed port is the call-in port of the broadcast channel ofthe passed channel type and channel
{03004-8004/SL003733.100] -26- 7/31/00

0638

0639

15

20

25

30

instance of a process executing on that portal computer. In block 908, the routine invokes a

contact process routine, which contacts the answering process of the portal computer through

the dialed port and determines whether that process is fully connected to the broadcast

channel. In block 909, the routine hangs up on the selected portal computer. In decision
block 910, if the answering process is fully connected to the broadcast channel, then the

routine returns a success indicator, else the routine continues at block 911. In block 911, the

routine invokes the check for external call routine to determine whether an external call has

been made to this process as a portal computer and processesthat call. The routine then

loops to block 904to select the next portal computer.

Figure 10 is a flow diagram illustrating the processing of the contact process
routine in one embodiment. This routine determines whether the process of the selected

portal computer that answered thecall-in to the selected port is fully connected to the
broadcast channel. In block 1001, the routine sends an external message (i.é.,
seeking_connection_call) to the answeringprocessindicating that a seeking process wants to
know whether the answeringprocessis fully connected to the broadcast channel. In block

1002, the routine receives the external response message from the answering process. In
decision block 1003, if the extemal response message is successfully received (i.e.,
seekingconnection_resp), then the routine continues at block 1004, else the routine retums.

Whereverthe broadcast componentrequests to receive an external message,it sets a time out
period. If the external message is not received within that time out period, the broadcaster
componentchecks its own call-in port to see if another processis calling it. In particular, the
dialed process may be calling the dialing process, which mayresult in a deadlocksituation.
The broadcaster component mayrepeat the receive request several times. If the expected
messageis not received, then the broadcaster component handles the error as appropriate. In
decision block 1004,if the answering process indicatesin its response messagethatit is fully
connected to the broadcast channel, then the routine continues at block 1005, else the routine
continuesat block 1006. In block 1005, the routine addsthe selected portal computer to a
list of connected portal computers and then retums. In block 1006, the routine adds the
answering processtoalist of fellow seeking processes and then returns.

Figure 11 is a flow diagram illustrating the processing of the connect request
routine in one embodiment. This routine requests a process of a portal computer that was
identified as being fully connected to the broadcast channelto initiate the connectionof this
[03004-8004/SL003733.100] -27- 7731100

0639

0640

20

25

30

process to the broadcast channel. In decision block 1101,if at least one process of a portal

computer was located that is fully connected to the broadcast channel, then the routine

continues at block 1103, else the routine continues at block 1102. A process of the portal

computer may nolongerbein thelist if it recently disconnected from the broadcast channel.

In one embodiment, a seeking computer may always searchits entire search depth and find

multiple portal computers through which it can connect to the broadcast channel. In block

1102, the routine restarts the process of connecting to the broadcast channel and returns. In

block 1103, the routine dials the process of one of the found portal computers through the

call-in port. In decision block 1104,if the dialing is successful, then the routine continuesat

block 1105, else the routine continues at block 1113. The dialing may be unsuccessful if, for

example, the dialed process recently disconnected from the broadcast channel. In block

1105, the routine sends an external message to the dialed process requesting a connection to

the broadcast channel(i.e., connection_request_call). In block 1106, the routine receives the

response message (i.e., connection_request_resp). In decision block 1107, if the response

message is successfully received, then the routine continues at block 1108, else the routine

continues at block 1113. In block 1108, the routine sets the expected numberofholes (i.e.,

empty internal connections) for this process based on the received response. When in the

large regime, the expected number of holes is zero. When in the small regime, the expected

number of holes varies from one to three. In block 1109, the routine sets the estimated

diameter of the broadcast channel based onthe received response. In decision block 1111,if

the dialed process is ready to connect to this process as indicated by the response message,

then the routine continues at block 1112, else the routine continues at block 1113. In block

1112, the routine invokes the add neighbor routine to add the answering process as a

neighbor to this process. This adding of the answering process typically occurs when the

broadcastchannelis in the small regime. When in the large regime, the random walk search

for a neighboris performed. In block 1113, the routine hangs up the external connection

with the answering process computer and then returns.

Figure 12 is a flow diagram of the processing of the check for external call

routine in one embodiment. This routine is invoked to identify whether a fellow seeking
processis attempting to establish a connection to the broadcast channel through this process.

In block 1201, the routine attempts to answer a call on the call-in port. In decision block
1202,if the answer is successful, then the routine continues at block 1203, else the routine
{93004-8004/SL003733.100} -28- 7/31/00

0640

0641

10

15

20

25

30

returns. In block 1203, the routine receives the external message from the external port. In

decision block 1204, if the type of the message indicates that a seeking process is calling
(i.e., seeking_connection_call), then the routine continues at block 1205, else the routine

retums. In block 1205, the routine sends an external message(i.e., seeking_connection_resp)

to the other seeking process indicating that this process is also is seeking a connection. In
decision block 1206, if the sending of the external message is successful, then the routine
continues at block 1207, else the routine returns. In block 1207, the routine adds the other

seeking processtoalist of fellow seeking processes and then returns. This list may be used
if this process can find no processthat is fully connected to the broadcast channel. In which

case, this process may check to see if any fellow seeking process were successful in
connecting to the broadcast channel. For example, a fellow seeking process may becomethe
first process fully connectedto the broadcast channel.

Figure 13 is a flow diagram of the processing of the achieve connection routine

in one embodiment. This routine sets the state of this process to fully connected to the
broadcast channel and invokesa callback routine to notify the application program that the
process is now fully connected to the requested broadcast channel. In block 1301, the

routine sets the connection state of this process to fully connected. In block 1302, the

routine notifies fellow seeking processes that it is fully connected by sending a connected
external message to them (i.¢., connected_stmt). In block 1303, the routine invokes the

connect callback routine to notify the application program and then returns.

Figure 14 is a flow diagram illustrating the processing of the external

dispatcher routine in one embodiment. This routine is invoked when the external port
receives a message. This routineretrieves the message, identifies the external message type,
and invokes the appropriate routine to handle that message. This routine loops processing
each message untilall the received messages have been handled. In block 1401, the routine

answers (e.g., picks up) the external port and retrieves an external message. In decision
block 1402, if a message wasretrieved, then the routine continues at block 1403, else the
routine hangs up on the external port in block 1415 and returns. In decision block 1403, if
the message type is for a process seeking a connection(i.e., seeking_connection_call), then
the routine invokes the handle seeking connection call routine in block 1404, else the routine
continues at block 1405. In decision block 1405, if the message type is for a connection
requestcall (i.e., connection_request_call), then the routine invokes the handle connection
{03004-8004/SL003733.100] -29- 773100

0641

0642

15

20

25

30

request call routine in block 1406, else the routine continues at block 1407. In decision

block 1407, if the message type is edge proposal call (i.e., edge_proposal_call), then the

routine invokes the handle edge proposal call routine in block 1408, else the routine

continues at block 1409. In decision block 1409, if the message type is port connectcall

(i.e., port_connect_call), then the routine invokes the handle port connection call routine in

block 1410, else the routine continues at block 1411. In decision block 1411, if the message

type is a connected statement (i.e., connectedstmt), the routine invokes the handle

connected statement in block 1112, else the routine continues at block 1212. In decision

block 1412, if the message type is a condition repair statement(i.e., condition_repair_stmt),

then the routine invokes the handle condition repair routine in block 1413, else the routine

loops to block 1414 to process the next message. After each handling routine is invoked,the
routine loops to block 1414. In block 1414, the routine hangs up on the external port and

continues at block 1401 to receive the next message.

Figure 15 is a flow diagram illustrating the processing of the handle seeking

connection call routine in one embodiment. This routine is invoked when a seeking process

is calling to identify a portal computer through whichit can connectto the broadcast channel.

In decision block 1501, if this process is currently fully connected to the broadcast channel

identified in the message, then the routine continues at block 1502, else the routine continues

at block 1503. In block 1502, the routinesets a message to indicate that this processis fully
connected to the broadcast channelandcontinuesat block 1505. In block 1503, the routine

sets a message to indicate that this process is not fully connected. In block 1504, the routine

adds the identification of the seeking process to a list of fellow seeking processes. If this
processis not fully connected, then it is attempting to connect to the broadcast channel. In

block 1505, the routine sends the external message response(i.e., seekingconnection_resp)
to the seeking process and thenreturns.

Figure 16 is a flow diagram illustrating processing of the handle connection

request call routine in one embodiment. This routine is invoked when the calling process
wants this processto initiate the connection of the process to the broadcast channel. This

routine either allowsthe calling process to establish an internal connection with this process
(e.g., if in the small regime)orstarts the process of identifying a process to which thecalling
process can connect. In decision block 1601,if this process is currently fully connected to
the broadcast channel, then the routine continuesat block 1603, else the routine hangs up on
[03004-8004/SL003733.100} -30- 7/31/00

0642

0643

20

25

30

the external port in block 1602 and returns. In block 1603, the routine sets the number of

holes that the calling process should expect in the response message. In block 1604, the

routine sets the estimated diameter in the response message. In block 1605, the routine

indicates whether this process is ready to connect to the calling process. This processis

ready to connect when the number ofits holes is greater than zero and the calling processis

not a neighbor of this process. In block 1606, the routine sends to the calling process an

external message that is responsive to the connection request call (ie.,

connection_request_resp). In block 1607, the routine notes the number ofholes that the
callingprocess needs to fill as indicated in the requestmessage.Indecisionblock 1608, if

this process is ready to connect to the calling process, then the routine continues at block

1609, else the routine continues at block 1611. In block 1609, the routine invokes the add

neighbor routine to add the calling process as a neighbor. In block 1610, the routine

decrements the numberof holes that the calling process needs to fill and continues at block

1611. In block 1611, the routine hangs up on the external port. In decision block 1612,if

this process has no holes or the estimated diameter is greater than one (i.e., in the large
regime), then the routine continues at block 1613, else the routine continues at block 1616.

In blocks 1613-1615, the routine loops forwarding a request for an edge through which to

connect to the calling process to the broadcast channel. One request is forwarded for each

pair of holes of the calling process that needs to befilled. In decision block 1613, if the

number of holes of the calling process to be filled is greater than or equal to two, then the

routine continuesat block 1614,else the routine continues at block 1616. In block 1614, the

routine invokes the forward connection edge search routine. The invoked routine is passed
to an indication ofthe calling process and the random walk distance. In one embodiment, the

distance is twice in the estimated diameter of the broadcast channel. In block 1614, the
routine decrements theholesleft to fill by two and loops to block 1613. In decision block

1616, if there is still a hole to fill, then the routine continues at block 1617, else the routine

retus. In block 1617, the routine invokesthefill hole routine passingthe identification of

the calling process. The fill hole routine broadcasts a connection port search statement(i.e.,
connection_port_search_stmt) for a hole of a connected process through whichthecalling
process can connectto the broadcast channel. The routine then returns.

Figure 17 is a flow diagram illustrating the processing of the add neighbor
routine in one embodiment. This routine adds the process calling on the external port as a
[03004-8004/SL003733.100} -31- 7/31/00

0643

0644

20

25

30

neighbor to this process. In block 1701, the routine identifies the calling process on the

external port. In block 1702, the routine sets a flag to indicate that the neighbor has notyet
received the broadcast messages from this process. This flag is used to ensure that there are

no gaps in the messagesinitially sent to the new neighbor. The external port becomesthe

internal port for this connection. In decision block 1703, if this process is in the seeking

comnection state, then this process is connecting to its first neighbor and the routine

continues at block 1704, else the routine continues at block 1705. In block 1704, the routine
sets the connection state of this process to partially connected. In block 1705, the routine
adds the calling process to the list of neighbors of this process. In block 1706, the routine

installs an internal dispatcher for the new neighbor. The internal dispatcher is invoked when

a message is received from that new neighbor through the internal port of that new neighbor.

In decision block 1707, if this process buffered up messages while not fully connected, then

the routine continues at block 1708, else the routine continues at block 1709. In one

embodiment, a process that is partially connected may buffer the messages that it receives

through an internal connection so that it can send these messages as it connects to new

neighbors. In block 1708, the routine sends the buffered messages to the new neighbor

through the internal port. In decision block 1709, if the number of holes of this process

equals the expected number of holes, then this process is fully connected and the routine
continues at block 1710, else the routine continues at block 1711. In block 1710, the routine

invokes the achieve connected routine to indicate that this process is fully connected. In

decision block 1711, if the number of holes for this process is zero, then the routine

continues at block 1712, else the routine returns. In block 1712, the routine deletes any

pending edges and then returns. A pending edge is an edge that has been proposedto this
process for edge pinning, whichin this case is no longer needed.

Figure 18 is a flow diagram illustrating the processing of the forward

connection edge search routine in one embodiment. This routine is responsible for passing

along a request to connect a requesting process to a randomly selected neighbor of this
process through the internal port of the selected neighbor, that is part of the random walk. In

decision block 1801, if the forwarding distance remaining is greater than zero, then the
routine continues at block 1804, else the routine continues at block 1802. In decision block

1802, if the number of neighbors of this process is greater than one, then the routine

continues at block 1804, else this broadcast channelis in the small regime and the routine
[03004-8004/SL003733.100) -32- 781/00

0644

0645

20

25

30

continues at block 1803. In decision block 1803, if the requesting process is a neighbor of

this process, then the routine returns, else the routine continues at block 1804. In blocks

1804-1807, the routine loops attempting to send a connection edge search call internal

message(i.e., connection_edge_searchcall) to a randomly selected neighbor. In block 1804,

the routine randomly selects a neighbor of this process. In decision block 1805, if all the

neighbors of this process have already been selected, then the routine cannot forward the

message and the routine returns, else the routine continuesat block 1806. In block 1806, the

routine sends a connection edge search call internal message to the selected neighbor. In

decision block 1807, if the sending of the messageis successful, then the routine continuesat

block 1808, else the routine loops to block 1804 to select the next neighbor. When the

sending of an internal message is unsuccessful, then the neighbor may have disconnected

from the broadcast channel in an unplanned manner. Whenever sucha situation is detected

by the broadcaster component, it attempts to find another neighbor by invokingthefill holes

routine to fill a single hole or the forward connecting edge search routineto fill two holes. In

block 1808, the routine notes that the recently sent connection edge search call has not yet

been acknowledged andindicates that the edge to this neighboris reserved if the remaining

forwarding distance is less than or equal to one. It is reserved because the selected neighbor

may offer this edge to the requesting process for edge pinning. Theroutine then returns.

Figure 19 is a flow diagram illustrating the processing of the handle edge

proposal call routine. This routine is invoked when a message is received from a proposing
process that proposes to connect an edge between the proposing process and one ofits
neighborsto this process for edge pinning. In decision block 1901, if the number ofholes of

this process minus the number of pending edgesis greater than or equal to one, then this
processstill has holes to be filled and the routine continuesat block 1902, else the routine

continuesat block 1911. In decision block 1902,if the proposing processor its neighboris a
neighborofthis process, then the routine continues at block 1911, else the routine continues

at block 1903. In block 1903, the routineindicates that the edge is pending between this
process andthe proposing process. In decision block 1904,if a proposedneighboris already
pending as a proposed neighbor, then the routine continues at block 191 1, else the routine
continues at block 1907. In block 1907,the routine sends an edge proposal response as an
external message to the proposing process(ie., edge_proposal_resp) indicating that the
proposed edge is accepted. In decision block 1908, if the sending of the message was
[03004-8004/SL003733. 100] -33- 7131/00

0645

0646

15

20

25

30

successful, then the routine continues at block 1909, else the routine returns. In block 1909,

the routine adds the edge as a pending edge. In block 1910, the routine invokes the add .

neighborroutine to add the proposing process on the external port as a neighbor. The routine

then returns. In block 1911, the routine sends an external message(i.e., edge_proposal_resp)

indicating that this proposed edgeis not accepted. In decision block 1912, if the number of

holes is odd, then the routine continues at block 1913, else the routine returns. In block

1913, the routine invokesthe fill hole routine and then returns.

Figure 20 is a flow diagram illustrating the processing of the handle port

connection call routine in one embodiment. This routine is invoked when an external

message is received then indicates that the sending process wants to connect to one hole of

this process. In decision block 2001, if the number of holes of this process is greater than

zero, then the routine continues at block 2002, else the routine continues at block 2003. In

decision block 2002, if the sending process is not a neighbor, then the routine continues at

block 2004,else the routine continuesto block 2003. In block 2003, the routine sends a port

connection response external message(i.e., port_connection_resp) to the sending process that

indicates that it is not okay to connect to this process. The routine then returns. In block

2004, the routine sends a port connection response external message to the sending process
that indicates that is okay to connect this process, In decision block 2005,if the sending of
the message was successful, then the routine continues at block 2006, else the routine

continues at block 2007. In block 2006, the routine invokes the add neighbor routine to add
the sending processas a neighborofthis process and then returns. In block 2007, the routine

hangs up the external connection. In block 2008, the routine invokes the connect request
routine to request that a process connectto oneofthe holes ofthis process. The routine then
returns.

Figure 21 is a flow diagram illustrating the processingofthefill hole routine in

one embodiment. This routine is passed an indication of the requesting process. If this
process is requesting to fill a hole, then this routine sends an internal Message to other
processes. If another process is requestingtofill a hole, then this routine invokesthe routine

to handle a connection port search request. In block 2101, the routine initializes a

connection port search statement internal message (i.e., connection__port_searchstmt). In
decision block 2102, if this process is the requesting process, then the routine continuesat
block 2103, else the routine continues at block 2104. In block 2103, the routine distributes
[03004-8004/SL003733.100] -34- 7/31/00

0646

0647

20

25

30

the message to the neighbors of this process through the internal ports and then retums. In

block 2104,the routine invokes the handle connection port search routine and then retums.

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher

routine in one embodiment. This routine is passed an indication of the neighbor whosentthe

internal message. In block 2201, the routine receives the internal message. This routine

identifies the message type and invokes the appropriate routine to handle the message. In

block 2202, the routine assesses whether to change the estimated diameter of the broadcast

channel based on the information in the received message. In decision block 2203, if this

process is the originating process of the message or the message has already been received

(i.e., a duplicate), then the routine ignores the message and continues at block 2208, else the

routine continues at block 2203A. In decision block 2203A, if the process is partially
connected, then the routine continues at block 2203B, else the routine continues at block
2204. In block 2203B, the routine adds the message to the pending connection buffer and

continues at block 2204. In decision blocks 2204-2207, the routine decodes the message
type and invokes the appropriate routine to handle the message. For example, in decision

block 2204, if the type of the message is broadcast statement(i.e., broadcast_stmt), then the

routine invokes the handle broadcast message routine in block 2205. After invoking the
appropriate handling routine, the routine continues at block 2208. In decision block 2208,if

the partially connected buffer is full, then the routine continues at block 2209, else the

routine continues at block 2210. The broadcaster component collects all its internal

messages in a buffer while partially connected so that it can forward the messages as it
connects to new neighbors. If, however, that buffer becomes full, then the process assumes
that it is now fully connected and that the expected number of connections was too high,
because the broadcast channel is now in the small regime. In block 2209, the routine invokes

the achieve connection routine and then continues in block 2210. In decision block 2210, if
the application program message queue is empty, then the routine returns, else the routine
continues at block 2212. In block 2212, the routine invokes the receive response routine
passing the acquired message and then returns. The received response routine is a callback
routine of the application program.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast

message routine in one embodiment. This routine is passed an indication ofthe originating
Process, an indication of the neighbor who sent the broadcast message, and the broadcast
[03004-8004/SL003733.100] -35- 731100

0647

0648

15

20

25

30

message itself. In block 2301, the routine performs the out of order processing for this
message. The broadcaster component queues messages from eachoriginating processuntil it

can send them in sequence numberorder to the application program. In block 2302, the

routine invokes the distribute broadcast message routine to forward the message to the

neighborsof this process. In decision block 2303, if a newly connected neighboris waiting

to receive messages, then the routine continues at block 2304, else the routine returns. In

block 2304, the routine sends the messages in the correct order if possible for each

originating process and then returns.

Figure 24 is a flow diagram illustrating the processing of the distribute

broadcast message routine in one embodiment. This routine sends the broadcast messageto

each of the neighbors of this process, except for the neighbor who sent the message to this

process. In block 2401, the routine selects the next neighbor other than the neighbor who

sent the message. In decision block 2402,if all such neighbors have already been selected,
then the routine returns. In block 2403, the routine sends the message to the selected

neighbor and then loops to block 2401 to select the next neighbor.

Figure 26 is a flow diagram illustrating the processing of the handle connection

port search statementroutine in one embodiment. This routine is passed an indication of the

neighbor that sent the message and the messageitself. In block 2601, the routine invokesthe

distribute internal message which sends the message to each of its neighbors other than the

sending neighbor. In decision block 2602, if the numberof holes of this processis greater
than zero, then the routine continues at block 2603, else the routine returns. In decision

block 2603,if the requesting process is a neighbor, then the routine continues at block 2605,
else the routine continues at block 2604. In block 2604, the routine invokes the court

neighbor routine and then returns. The court neighborroutine connects this process to the
requesting processifpossible. In block 2605,if this process has one hole, then the neighbors
with empty ports condition exists and the routine continues at block 2606, else the routine

retums. In block 2606, the routine generates a condition check message (i.e.,
condition_check) that includesa list of this process’ neighbors. In block 2607,the routine
sends the message to the requesting neighbor.

Figure 27 is a flow diagram illustrating the processing of the court neighbor
routine in one embodiment. This routine is passed an indication of the prospective neighbor
for this process. If this process can connectto the prospective neighbor,then it sends a port
(03004-8004/SL003733. 100] -36- 7/31/00

0648

0649

20

25

connection call external message to the prospective neighbor and adds the prospective

neighbor as a neighbor. In decision block 2701, if the prospective neighbor is already a

neighbor, then the routine returns, else the routine continues at block 2702. In block 2702,

the routine dials the prospective neighbor. In decision block 2703, if the numberof holes of

this process is greater than zero, then the routine continues at block 2704, else the routine

continues at block 2706. In block 2704, the routine sends a port connection call external

message (i.e., port_connection_call) to the prospective neighbor and receives its response

(i.e., port_connection_resp). Assuming the response is successfully received, in block 2705,

the routine adds the prospective neighbor as a neighborof this process by invoking the add

neighbor routine. In block 2706, the routine hangs up with the prospect andthen returns.

Figure 28 is a flow diagram illustrating the processing of the handle connection

edge searchcall routine in one embodiment. This routine is passed a indication of the

neighbor who sent the message and the message itself. This routine either forwards the

messageto a neighboror proposes the edge betweenthis process and the sending neighborto

the requesting process for edge pinning. In decision block 2801, if this process is not the

requesting process or the numberof holes of the requesting processis still greater than or
equal to two, then the routine continues at block 2802, else the routine continues at block

2813. In decision block 2802, if the forwarding distance is greater than zero, then the
random walk is not complete and the routine continues at block 2803, else the routine

continues at block 2804. In block 2803, the routine invokes the forward connection edge
search routine passing the identification of the requesting process and the decremented

forwarding distance. The routine then continues at block 2815. In decision block 2804, if

the requesting process is a neighbor or the edge between this process and the sending
neighbor is reserved because it has already been offered to a process, then the routine
continuesat block 2805, else the routine continues at block 2806. In block 2805, the routine

invokes the forward connection edge search routine passing an indication of the requesting
party and a toggle indicatorthat alternatively indicates to continue the random walk for one

or two more computers. The routine then continues at block 2815. In block 2806, the
routine dials the requesting processvia the call-in port. In block 2807, the routine sends an

edge proposal call external message(i.e., edge_proposal_call) and receives the response(i.e.,
edge_proposal_resp). Assuming that the response is successfully received, the routine
continues at block 2808. In decision block 2808, if the response indicates that the edge is
{03004-8004/SL003733.100] -37- 731/00

0649

0650

20

25

30

acceptable to the requesting process, then the routine continues at block 2809, else the

routine continues at block 2812. In block 2809,the routine reserves the edge between this

process and the sending neighbor. In block 2810, the routine adds the requesting processas

a neighbor by invoking the add neighbor routine. In block 2811, the routine removes the

sending neighbor as a neighbor. In block 2812, the routine hangs up the external port and
continuesat block 2815. In decision block 2813,if this process is the requesting process and
the numberofholes of this process equals one, then the routine continuesat block 2814,else
the routine continuesat block 2815. In block 2814, the routine invokesthefill hole routine.

In block 2815, the routine sends an connection edge search response message (i.e.,
connection_edge_search_response) to the sending neighborindicating acknowledgement and
then returns. The graphs are sensitive to parity. Thatis, all possible paths Starting from a
node and ending atthat node will have an even length unless the graph has a cycle whose
length is odd. The broadcaster componentuses a toggle indicator to vary the random walk
distance between even and odddistances.

Figure 29 is a flow diagram illustrating the processing of the handle connection
edge search response routine in one embodiment. This routine is passed as indication of the
requesting process, the sending neighbor, and the message. In block 2901, the routine notes

that the connection edge search response(i.e., connectionedgesearchresp) has been
received and if the forwarding distance is less than or equal to one unreserves the edge
between this process and the sending neighbor. In decision block 2902, if the requesting
process indicates that the edge is acceptable as indicated in the message, then the routine
continues at block 2903,else the routine returns. In block 2903, the routine reserves the edge
between this process and the sending neighbor. In block 2904, the routine removes the

sending neighbor as a neighbor. In block 2905, the routine invokes the court neighbor
routine to connectto the requesting process. In decision block 2906, if the invoked routine
was unsuccessful, then the routine continues at block 2907, else the routine returns. In

decision block 2907, if the number of holes ofthis process is greater than zero, then the
routine continues at block 2908, else the routine returns. In block 2908, the routine invokes
the fill hole routine and then returns.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine
in one embodiment. This routine is invoked by the application program to broadcast a
message on the broadcast channel. This routine is passed the message to be broadcast. In
{03004-8004/SL003733.100] -38- TA1/00

0650

0651

20

25

30

decision block 3001, if this process has at least one neighbor, then the routine continuesat

block 3002, else the routine returns sinceit is the only process connected to be broadcast

channel. In block 3002, the routine generates an internal message of the broadcast statement

type (i.e., broadcast stmt). In block 3003, the routine sets the sequence number of the

message. In block 3004, the routine invokes the distribute internal message routine to

broadcast the message on the broadcast channel. Theroutinereturns.

Figure 31 is a flow diagram illustrating the processing of the acquire message

routine in one embodiment. The acquire message routine may be invoked bythe application

program or bya callback routine provided by the application program. Thisroutine returns a

message. In block 3101, the routine pops the message from the message queue of the

broadcast channel. In decision block 3102, if a message was retrieved, then the routine

returns an indication of success, else the routine returns indicationoffailure.

Figures 32-34 are flow diagrams illustrating the processing of messages

associated with the neighbors with empty ports condition. Figure 32 is a flow diagram

illustrating processing of the handle condition check message in one embodiment. This

message is sent by a neighborprocessthat has onehole and has received a request to connect

to a hole of this process. In decision block 3201, if the numberof holesofthis processis

equal to one, then the routine continues at block 3202, else the neighbors with empty ports
condition does not exist any more and the routine returns. In decision block 3202, if the

sending neighborand this process have the sameset of neighbors, the routine continuesat

block 3203, else the routine continues at block 3205. In block 3203, the routineinitializes a

condition double check message(i.e., condition_double_check) with the list of neighbors of

this process. In block 3204, the routine sends the message internally to a neighbor other than

sending neighbor. The routine then returns. In block 3205,the routine selects a neighborof
the sending process that is not also a neighborof this process. In block 3206, the routine

sends a condition repair message (i.e., condition_repair_stmt) externally to the selected
process. In block 3207, the routine invokes the add neighbor routine to add the selected
neighboras a neighborof this process and then returns.

Figure 33 is a flow diagram illustrating processing of the handle condition
repair statement routine in one embodiment. This routine removes an existing neighbor and
connects to the process that sent the message. In decision block 3301, if this process has no
holes, then the routine continues at block 3302,else the routine continuesat block 3304. In
[03004-8004/SL003733.100] -39- 731/00

0651

0652

15

20

25

block 3302, the routine selects a neighborthat is not involved in the neighbors with empty

ports condition. In block 3303, the routine removesthe selected neighbor as a neighbor of

this process. Thus,this process that is executing the routine now has at least one hole. In —

block 3304, the routine invokes the add neighbor routine to add the process that sent the

message as a neighborofthis process. The routine then returns.

Figure 34 is a flow diagram illustrating the processing of the handle condition

double check routine. This routine determines whether the neighbors with empty ports

condition really is a problem or whether the broadcast channel is in the small regime. In

decision block 3401, if this process has one hole, then the routine continues at block 3402,

else the routine continues at block 3403. If this process does not have one hole, thenthe set

of neighborsof this process is not the sameas the set of neighbors of the sending process. In

decision block 3402, if this process and the sending process have the sameset of neighbors,

then the broadcast channelis not in the small regime and the routine continuesat block 3403,

else the routine continues at block 3406. In decision block 3403, if this process has noholes,

then the routine returns, else the routine continues at block 3404. In block 3404, the routine

sets the estimated diameter for this process to one. In block 3405, the routine broadcasts a

diameterreset internal message(i.e., diameter_reset) indicating that the estimated diameteris

one and then returns. In block 3406, the routine createsalist of neighbors of this process. In
block 3407, the routine sends the condition check message(i.e., condition_check_stmt) with

the list of neighbors to the neighbor whosent the condition double check message and then
returns. .

From the above description, it will be appreciated that although specific

embodiments of the technology have been described, various modifications may be made

without deviating from the spirit and scope of the invention. For example, the

communications on the broadcast channel may be encrypted. Also, the channel instance or

session identifier may be a very large number(e.g., 128 bits) to help prevent an unauthorized

user to maliciously tap into a broadcast channel. The portal computer may also enforce
security and not allow an unauthorized user to connect to the broadcast channel.

Accordingly, the inventionis not limited except by the claims.

[03004-8004/SL003733.100] ~40- 7131/00

0652

0653

CLAIMS

1. A method of broadcasting data through a computer network, the method

comprising:

receiving at a computerthe data from a neighbor computer;

determining whether the received data has already been transmitted

from the receiving computer to its neighbor computers;

when it is determined that the data has already. been transmitted,
disregarding the received data; and

when it is determined that the data has not already been transmitted,

transmitting the received data to neighbor computersofthe receiving computer.

2. The method of claim 1 wherein the computer network is a 4-regular

graph.

3. The method of claim 1 wherein the computer network implements a

broadcast channel wherein the neighbor computers of the computer network are connected

using point-to-point connections.

4, The methodof claim 3 wherein the connections are TCP/IP connections.

5. The method of claim 1 wherein the computer network is a broadcast

channel that is implemented using an underlying network that connects computers using
point-to-point connections.

6. The method ofclaim 5 wherein the underlying network is the Internet.

{03004-8004/S1.003733.100} -41- 7AV00

0653

0654

7. A broadcaster component in a computer connected to a computer

network, comprising:

an originating module that transmits data that originates from the

computer to each of the neighbor computers;

a receiving module that receives multiple copies of data that originates

from another computer, each copy of the data being received from a different neighbor

computer; and

a forwarding module that transmits a copy of the received data to each

neighbor computer other than that neighbor computer from which the copy wasreceived.

8. The broadcaster componentof claim 7 including

a sending module that provides a copy of the received data to an:
application program.

9. The broadcaster component of claim 7 wherein the computer network is

a broadcast channel implemented using an underlying point-to-point computer network.

10. The broadcaster componentof claim 7 including:

a locating module for locating a portal computerthat is connected to the

computer network.

11. The broadcaster componentof claim7including:

a connecting module for connecting the computer to the computer
network.

12. The broadcaster component ofclaim 7 including:

a portal module forinitiating joining of a requesting computerto the
computer network.

13. The broadcast componentof claim 7 wherein the computer is connected
to its neighbor computerusing a point-to-point connection.
{03004-8004/SL003733.100) ~42- 7731100

0654

0655

14. A method of broadcasting data on a computer network, the method

compnising:

establishing connections between each computer of the computer

networkand at least three other computers of the computer network;

when a computer originates data, sending the data to each of the
computers to whichit is connected; and

when a computer receives data, sending a first copy of the data thatit

receives to each of the computers to which it is connected other than the computer from
whichit received the data.

15. The method of claim 14 wherein computers and connections of the

computer network form an m-regular graph.

16. The methodof claim 15 wherein each computeris connected to an even
number of computers.

17. The method of claim 14 wherein the computers and connectionsof the

computer network form an m-regular and m-connected graph.

18. The methodof claim 17 wherein m is even.

19. The methodof claim 17 wherein m is 4.

20. The method of claim 14 wherein the computers are connected using
point-to-point connections.

21. The method of claim 14 wherein the computers are connected using the
Internet.

{03004-8004/SL003733.100) -43- 7/31/00

0655

0656

22. A computer-readable medium containing instructions for controlling a

computer system to broadcast data on a broadcast channel, by a method comprising:

establishing connections between each computer of the broadcast

channel and three other computers of the broadcast channel using point-to-point connections;

when a computer originates data, sending the data to each of the

computers to whichit 1s connected; and

when a computer receives data, sending a copy of the data that it

receives to each of the computers to which it is connected other than the computer from
whichit received the data.

23. The computer-readable medium of claim 22 wherein computers and

connectionsof the computer network form an m-regular graph.

24. The computer-readable medium of claim 23 wherein each computeris

connected to an even numberofcomputers.

25. The computer-readable medium of claim 22 wherein the computers and

connectionsofthe broadcast channel form an m-regular and m-connectedgraph.

26. The computer-readable medium of claim 25 wherein m is even.

27. The computer-readable medium of claim 25 wherein m is4.

28. The computer-readable medium of claim 22 wherein the computers are
connected using the Internet.

{03004-8004/SL003733.100) -44- 7731/00

0656

0657

woww3Tol

aornreonSnneeeeneeeereneoatiemereene:TPOYsFPApemdaryy

0657

0658

O°?

angenyeyVed (9d8)~myferfoaDJoram,yrp—S

0658

0659

0659

0660

0660

0661

0661

0662

yeS307)Qh
Qo

404 Fo|(Oryo)ISSwwSwe)|

0662

0663

L313

nes

i

UAaT1
gespon

{

3,~ ko| a5%3|?a~\er‘, lewe ~Is
bz*,wtrm)IL.—\.

Iz >G2sapon2?VWJT -
loWAZT (t

O!5open

0663

0664

 >3pedwYOIIEY

ONSOPTWAT

0664

0665

£33

OITAf2977

|88QlWSogHYeH/2joejeyPiespony

0665

0666

__.8

neeeeaEY

epLGYco=—~4H5*8
20~}4"4aMVyPlaeS

Oo”?

0666

0667

Behe.
Arocssator

0667

0668

 -2EO

ZO

‘MAT

2)3:4
WAT

0668

0669

dowpedyrpode—~—?7:d

@4

boped“page

BlToy977ssolpry\"VHA

:SEOwerkaLo
}a

0669

0670

 cetsolebed

poet: r.
‘sate hog

feet 24:i r
i wot leche

|

|

0670

0671

 Seindoj2or"zevedajqr40

 bo

MhAQeLSSIPATENSAPerrosoyi
arenes.Szebggdean

34SWOja
pep.predJECLSTALGI:40pee4m1.

—

0671

0672

arty

Gi

BWODPASavogiesv,
Mmso}VV~yapaUseDyeypen+04Q<?eyNor)

nsconte
om3FSOpitRenee7QTpave>

eerasyes204,WATPO78?FMV
320|Fezq

L,spnHepres109)+34TSon+60
£Z

!
QBw|

—_

oP

WAT

0672

0673

and
+ wi siesta

12 rrover 2ist
Corre oO

0673

0674

fo240

oP!wedduéeid,Wen)4248J

0674

0675

0675

0676

Fig

0676

0677

U.

20

25

S. Patent Application No. 09/629,024

‘

DISTRIBUTED CONFERENCING SYSTEM

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. Patent Application No. ,

entitled “BROADCASTING NETWORK,” filed on July 31, 2000 (Attorney Docket
No. 030048001 US); U.S. Patent Application No. , entitled “JOINING A
BROADCAST CHANNEL,”filed on July 31, 2000 (Attorney Docket No./030048002 US);
U.S. Patent Application No. , “LEAVING A BROADCAST CHANNEL,”
filed on July 31, 2000 (Attorney Docket No. 030048003 US); U.S. Patent Application

No. , entitled “BROADCASTING ON A BROADCAST CHANNEL,”filed
on July 31, 2000 (Attorney Docket No. 030048004 US); U'S. Patent Application
No. , entitled “CONTACTING A BROADCAST CHANNEL,” filed on
July 31,2000 (Attorney Docket No. 030048005 US); U.S. Patent Application

No. , entitled “DISTRIBUTED AUCTION SYSTEM,” filed on

July 31,2000 (Attorney Docket No. 030048006 US); U.S. Patent Application

No. , entitled “AN INFORMATION DELIVERY SERVICE,” filed on

July 31,2000 (Attorney Docket No. 030048007 US); U.S. Patent Application

No. __ entitled “DISTRIBUTED CONFERENCING SYSTEM,” filed on

July 31,2000 (Attomey Docket No. 030048008 US); and U.S. Patent Application

No. entitled “DISTRIBUTED GAME ENVIRONMENT,” filed on
July 31, 2000 (Attorney Docket No. 030048009 US), the disclosures of which are

incorporated herein by reference.

TECHNICAL FIELD

The described technology relates generally to a computer network and more
particularly, to a broadcast channel for a subset of a computers of an underlying network.

BACKGROUND

There are a wide variety of computer network communications techniques such

as point-to-point network protocols, client/server middleware, multicasting network

(03004-g001/SL003733 -106] -|- ! 7731/00
G08

EXPRESS MAIL NO. EL404935279u:

0677

0678

20

25

30

i

protocols, and peer-to-peer middleware. Each of these communications techniques have
their advantages and disadvantages, but noneis particularly well suited to the simultaneous
sharing of information among computers that are widely distributed.|For example,

collaborative processing applications, such as a network meeting programs) have a need to

distribute information in a timely mannerto all participants who may be geographically

distributed.

Thepoint-to-point network protocols, such as UNIX pipes, TCP/IP, and UDP,

allow processes on different computers to communicate via point-to-poimt connections. The

interconnection of all participants using point-to-point connections, while theoretically

possible, does not scale well as a number of participants grows. For example, each

participating process would need to manageits direct connections to all other participating

processes. Programmers, however,find it very difficult to manage single connections, and

management of multiple connections is much more complex. In addition, participating
processes may belimited to the number of direct connections that they cah support. This!

limits the numberofpossible participants in the sharing of information. |
The client/server middleware systems provide a server that| coordinates the

communications between the various clients who are sharing the information. The server
functions as a central authority for controlling access to shared resources. Examples of
client/server middleware systems include remote procedure calls (“RPC”), database servers,

and the common object request broker architecture (“CORBA”). Client/server middleware

systems are not particularly well suited to sharing of information among many participants.
In particular, when a client stores information to be shared at the server, each other client

would need to poll the server to determine that new information is being shared. Such
polling places a very high overhead on the communications network. Alternatively, each

client may register a callback with the server, which the server then invokes when new

information is available to be shared. Such a callback technique presents a performance

bottleneck because a single server needs to call back to each client) whenever new

information is to be shared. In addition,thereliability of the entire sharing of information

depends uponthereliability of the single server. Thus, a failure at a single computer(i.e.,

the server) would prevent communications between anyoftheclients.

The multicasting network protocolsallow the sending of broadcast messages to
multiple recipients of a network. The current implementations of such multicasting network
(03004-8001/SL003733.106] -2- 7/3100

0678

0679

20

25

30

protocols tend to place an unacceptable overhead on the underlying network. For example,
UDP multicasting would swamp the Internet when trying to locate all possible participants.
IP multicasting has other problemsthat include needing special-purpose infrastructure (e.g.,
routers) to support the sharing of information efficiently. :

The peer-to-peer middleware communications systems rely on a multicasting

network protocol or a graph of point-to-point network protocols. Such peer-to-peer

middleware is provided by the T.120 Internet standard, which is used in such products as

Data Connection’s D.C.-share and Microsoft’s NetMeeting. These peer-to-peer middleware
systems rely upon a user to assemble a point-to-point graph of the connections used for
sharing the information. Thus, it is neither suitable nor desirable to use peer-to-peer

middleware systems when more than a small numberofparticipants1s desired. In addition,
the underlying architecture of the T.120 Internet standardis a tree structurel whichrelies on
the root node ofthe tree for reliability of the entire network. Thatis, each message must pass

through the root node in orderto be received by all participants. |
It would be desirable to have a reliable communications [network that is

suitable for the simultaneous sharing of information among a large number| of the processes

that are widely distributed.
BRIEF DESCRIPTION OF THE DRAWINGS |

|

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents a
broadcast channel.

Figure 2 illustrates a graph representing 20 computers connected to a broadcast
channel. :

Figures 3A and 3B illustrate the process of connecting a new lomputer Z to the
broadcast channel.

Figure 4A illustrates the broadcast channel of Figure ! jwith an added

computer.

Figure 4B illustrates the broadcast channel of Figure 4A| with an added
computer. !

Figure 4C also illustrates the broadcast channel of Figure 4A with an added
computer.

[03004-800 1/SL003733.106] -3- : 7731/00

0679

0680

15

20

25

30

|

Figure 5A illustrates the disconnecting of a computer from the broadcast
channel in a planned manner.

Figure 5B illustrates the disconnecting of a computer from the broadcast
channel in an unplanned manner. .

Figure 5C illustrates the neighbors with empty ports condition.
Figure SD illustrates two computers that are not neighbors, who now have

empty ports. |
Figure 5E illustrates the neighbors with empty ports condition in the small

regime.

Figure SFillustrates the situation of Figure SE whenin the large regime.
Figure 6 is a block diagram illustrating components of a computer that is

|

connectedto a broadcast channel. !
Figure 7 is a block diagram illustrating the sub-components a the broadcaster

component in one embodiment. |

Figure 8 is a flow diagram illustrating the processing of the connect routine in
one embodiment.

Figure 9 is a flow diagram illustrating the processing of ' seek portal
computerroutine in one embodiment. ;

Figure 10 is a flow diagram illustrating the processing of the contact process
routine in one embodiment.

Figure 11 is a flow diagram illustrating the processing of the| connect request
routine in one embodiment. |

Figure 12 is a flow diagram of the processing of the check fr external call
routine in one embodiment.

Figure 13 is a flow diagram of the processing of the achieve cnecton routine
in one embodiment.

Figure 14 is a flow diagram illustrating the processing bp the external
dispatcher routine in one embodiment.

Figure 15 is a flow diagram illustrating the processing of the handle seeking
connection call routine in one embodiment.

Figure 16 is a flow diagram illustrating processing of the handle connection
requestcall routine in one embodiment.

[03004-800 1/SL003733.106) -4- 7/31/00

0680

0681

20

25

30

Figure 17 is a flow diagram illustrating the processing of the add neighbor
routine in one embodiment.

Figure 18 is a flow diagram illustrating the processing of the forward
connection edge search routine in one embodiment. :

Figure 19 is a flow diagram illustrating the processing of the handle edge
proposal call routine. !

Figure 20 is a flow diagram illustrating the processing of:ithe handle port
connection call routine in one embodiment.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in
one embodiment. :

Figure 22 is a flow diagram illustrating the processing ofthe intemal dispatcher
routine in one embodiment.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast
message routine in one embodiment.

Figure 24 is a flow diagram illustrating the processing sf the distribute
broadcast message routine in one embodiment. |

Figure 26 is a flow diagram illustrating the processing of the handle connection
port search statement routine in one embodiment.

Figure 27 is a flow diagram illustrating the processing of he court neighbor
routine in one embodiment.

Figure 28 is a flow diagram illustrating the processing of the tanale connection
edge searchcall routine in one embodiment. .

Figure 29 is a flow diagram illustrating the processing of the handle connection

edge search response routine in one embodiment. .

Figure 30 is a flow diagram illustrating the processing of the broadcast routine
in one embodiment.

Figure 31 is a flow diagram illustrating the processing of the acquire message
routine in one embodiment. |

Figure 32 is a flow diagram illustrating processing of the pane condition
check message in one embodiment.

Figure 33 is a flow diagram illustrating processing of the handle condition
repair statement routine in one embodiment.

[03004-800 1/SL003733.106] -5- 7/31/00

0681

0682

10

20

25

30

| , we

Figure 34 is a flow diagram illustrating the processing of the handle condition
double check routine. :

|
DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel overlays a point-to-point
communications network is provided. The broadcasting of a message over the broadcast
channel is effectively a multicast to those computers of the network that are currently
connected to the broadcast channel. In one embodiment, the broadcast technique provides a
logical broadcast channel to which host computers through their executing processes can be
connected. Each computer that is connected to the broadcast channel can broadcast
messages onto and receive messages off of the broadcast channel. Each computer that is
connected to the broadcast channel receives all messages that are broadcast while it is
connected. The logical broadcast channel is implemented using an underlying network
system (e.g., the Internet) that allows each computer connected to the underlying network

system to send messages to each other connected computer using each computer’s address.

Thus, the broadcast technique effectively provides a broadcast channel using an underlying
network system that sends messages on a point-to-point basis. . |

The broadcast technique overlays the underlying network system with a graph
of point-to-point connections (i.e., edges) between host computers(i.e.,; nodes) through
which the broadcast channel is implemented. In one embodiment, each computer is
connected to four other computers, referred to as neighbors. (Actually, a process executing
on a computer is connected to four other processes executing on this or four other
computers.) To broadcast a message, the originating computer sends the message to each of
its neighbors using its point-to-point connections. Each computerthat receives the message
then sends the messageto its three other neighbors using the point-to-point connections. In
this way, the message is propagated to each computer using the underlying networktoeffect

' the broadcasting of the message to each computerovera logical broadcast bhannel A graph
in which each nodeis connected to four other nodesis referred to as a 4-regular graph. The
use of a 4-regular graph means that a computer would become disconnected from the
broadcast channel onlyif all four of the connectionsto its neighborsfail. The graph used by

the broadcast technique also has the property that it would take a failure ofme computers to
{03004-8001/SL003733.106] -6- 7/31/00

0682

0683

10

15

20

25

30

divide the graph into disjoint sub-graphs, that is two separate broadcast channels. This
property is referred to as being 4-connected. Thus, the graph is both 4-regular and 4-
connected. |

Figure | illustrates a graph that is 4-regular and 4-connected iwhich represents

the broadcast channel. Each of the nine nodes A-I represents a computer that is connected to
the broadcast channel, and each of the edges represents an “edge” connection between two

computers of the broadcast channel. The time it takes to broadcast a message to each

computer on the broadcast channel depends on the speed of the connections between the
computers and the numberof connections between the originating computer and each other
computer on the broadcast channel. The minimum number of connections that a message
would need to traverse between each pair of computers is the “distance” between the

computers(i.e., the shortest path between the two nodes of the graph). For example, the

distance between computers A and F is one because computer A is directly connected to

computer F. The distance between computers A and B is two because there is no direct
connection between computers A and B, but computerF is directly connected to computerB.
Thus, a message originating at computer A would be sent directly to com buter F, and thensent from computer F to computer B. The maximum ofthe distances ra the computers
is the “diameter” of broadcast channel. The diameter of the broadcast channel represented

by Figure 1 is two. That is, a message sent by any computer would travetse no more than
two connections to reach every other computer. Figure 2 illustrates a graph representing 20
computers connected to a broadcast channel. The diameterofthis broadcast channel is 4. In
particular, the shortest path between computers 1 and 3 contains four connections (1-12, 12-
15, 15-18, and 18-3). 2

The broadcast technique includes (1) the connecting of computers to the

broadcast channel(i.e., composing the graph), (2) the broadcasting of messages over the
broadcast channel(i.e., broadcasting through the graph), and (3) the disconnecting of.
computers from the broadcast channel(i.e., decomposing the graph) composing the graph.
Composing the Graph

To connectto the broadcast channel, the computer seeking the connection first
locates a computer that is currently fully connected to the broadcast channel and then

{03004-800 1/SL003733.106) -7- 7/31/00

0683

0684

20

25

30

establishes a connection with four of the computers that are already connected to the
broadcast channel. (This assumesthatthere are at least four computers already connected to
the broadcast channel. When there are fewer than five computers connected, the broadcast

channel cannot be a 4-regular graph. In such a case, the broadcast channel is considered to

be in a “small regime.” The broadcast technique for the small regime is described below in

detail. When five or more computers are connected, the broadcast channel is considered to
be in the “large regime.” This description assumesthat the broadcast channel is in the large
regime, unless specified otherwise.) Thus, the process of connecting to the broadcast

channelincludes locating the broadcast channel, identifying the neighbors for the connecting
computer, and then connecting to each identified neighbor. Each computef is aware of one
or more “portal computers” through which that computer may locate the broadcast channel.
A seeking computer locates the broadcast channel by contacting the portal computers until it
finds one that is currently fully connected to the broadcast channel. The found portal
computer then directs the identifying of four computers (i.e., to be the seeking computer’s

neighbors) to which the seeking computer is to connect. Each of these four computers then
cooperates with the seeking computerto effect the connecting of the seeking computer to the
broadcast channel. A computerthat hasstarted the process of locating a po | computer, butdoes not yet have a neighbor, is in the “seeking connection state.” eC
connected to at least one neighbor, but not yet four neighbors,is in the “partially comnected

omputer that is

state.” A computerthat is currently, or has been, previously connected to four neighbors is
in the “fully connected state.”

Since the broadcast channel is a 4-regular graph, each of the identified

computers is already connected to four computers. Thus, some connections between
computers need to be broken so that the seeking computer can connect to four computers. In
one embodiment, the broadcast technique identifies two pairs of computers that are currently

connected to each other. Each of these pairs of computers breaks the connection between
them, and then each of the four computers (two from each pair) connects to the seeking
computer. Figures 3A and 3B illustrate the process of a new computer Z connecting to the
broadcast channel. Figure 3A illustrates the broadcast channel before computer Z is
connected. Thepairs of computers B and E and computers C andDarethe twopairsthat are
identified as the neighbors for the new computer Z. The connections between each ofthese

pairs is broken, and a connection between computer Z and each of computers B, C, D, and E
[03004-800 1/SL003733. 106) -8- 7131100

0684

0685

10

15

20

25

30

is established as indicated by Figure 3B. The process of breaking the cofnection between
two neighbors and reconnecting each of the former neighbors to another computer is referred
to as “edge pinning” as the edge between two nodes maybe considered to! be stretched and
pinned to a new node. |

_ Each computer connected to the broadcast channel allocates five
communications ports for communicating with other computers. Four iof the ports are
referred to as “internal” ports because they are the ports through which the messages of the
broadcast channels are sent. The connections between internal ports bf neighbors are
referred to as “internal” connections. Thus, the internal connections of the broadcast channel
form the 4-regular and 4-connected graph. Thefifth port is referred to as an “external” port

because it is used for sending non-broadcast messages between two computers. Neighbors

can send non-broadcast messages either through their internal ports of their connection or
through their external ports. A seeking computer uses external ports when) locating a portal
computer.

In one embodiment, the broadcast technique establishes the computer

connections using the TCP/IP communications protocol, which is a point-to-point protocol,

as the underlying network. The TCP/IP protocol provides for reliable and! ordered delivery

of messages between computers. The TCP/IP protocol provides each computer with a “port

space” that is shared amongall the processes that may execute on that computer. The ports

are identified by numbers from 0 to 65,535. The first 2056 ports are reserved for specific

applications (e.g., port 80 for HTTP messages). The remainder of the ports are user ports

that are available to any process. In one embodiment, a set of port numbers can be reserved

for use by the computer connected to the broadcast channel. In an alternative embodiment,

the port numbers used are dynamically identified by each computer. Each computer
dynamically identifies an available port to be used asits call-in port. This call-in port is used

to establish connections with the external port and the internal ports. Each computerthat is
connected to the broadcast channel can receive non-broadcast messages thtough its external
port. A seeking computer tries “dialing” the port numbers of the portal computers until a

portal computer“answers,”a call on its call-in port. A portal computer answers when it is
connected to or attempting to connect to the broadcast channelandits call+in port is dialed.

(In this description, a telephone metaphor is used to describe the connections.) When a

computer receivesa call on its call-in port, it transfers the call to another port. Thus, the
[03004-8001 /SL003733.106] -9- | 7731/00

'
iy

0685

0686

20

25

30

seeking computer actually communicates through that transfer-to port, which is the external
port. The call is transferred so that other computers can placecalls to that icomputer via the
call-in port. The seeking computer then communicates via that external port to request the
portal computer to assist in connecting the seeking computer to the broadcast channel. The
seeking computercould identify the call-in port numberofa portal computer by successively
dialing each port in port number order. As discussed below in detail, the broadcast technique
uses a hashing algorithm to select the port number order, which may result in improved
performance. .

A seeking computer could connect to the broadcast channel by connecting to
computers either directly connectedto the found portal computeror directly connected to one

of its neighbors. A possible problem with such a scheme for identifying the neighbors for
the seeking computeris that the diameter of the broadcast channel may increase when each

seeking computer uses the same found portal computer and establishes a connection to the

broadcast channel directly through that found portal computer. Conceptually, the graph

becomes elongated in the direction of where the new nodes are added.. Figures 4A-4C
illustrate that possible problem. Figure 4Aillustrates the broadcast channelof Figure 1 with

an added computer. Computer J was connected to the broadcast channel -by edge pinning

edges C-D and E-H to computer J. The diameter of this broadcast channel is still two.

Figure 4B illustrates the broadcast channel of Figure 4A with an added computer.

Computer K was connected to the broadcast channel by edge pinning edges E-J and B-C to

computer K. The diameter of this broadcast channel is three, because the shortest path from

computer G to computer K is through edges G-A, A-E, and E-K. Figure 4C alsoillustrates
the broadcast channel of Figure 4A with an added computer. Computer K was connected to

the broadcast channel by edge pinning edges D-G and E-J to computer K. The diameter of

this broadcast channelis, however, still two. Thus, the selection of neighbors impacts the

diameter of the broadcast channel. To help minimize the diameter, the brdadcast technique
uses a random selection techniqueto identify the four neighbors of a computer in the seeking

connection state. The random selection technique tendsto distribute the cohnections to new
seeking computers throughout the computers of the broadcast channel which mayresult in
smaller overall diameters.

(03004-8001/SL003733. 106) -10- 7/31/00

0686

0687

15

20

25

30

Broadcasting Through the Graph

As described above, each computer that is connected to the broadcast channel
can broadcast messages onto the broadcast channel and does receive all messages that are

broadcast on the broadcast channel. The computer that originates a message to be broadcast
sends that message to each of its four neighbors using the internal connéctions. When a

computer receives a broadcast message from a neighbor, it sends the message to its three
other neighbors. Each computeron the broadcast channel, except the originating computer,

will thus receive a copy of each broadcast message from each ofits four neighbors. Each

computer, however, only sends the first copy of the message that it receives to its neighbors
and disregards subsequently received copies. Thus, the total number of copies of a message
that is sent between the computers is 3N+1, where N is the numberof computers connected
to the broadcast channel. Each computer sends three copies of the message, except for the
originating computer, which sendsfour copies of the message.

The redundancy of the message sending helps to ensure the overall reliability

of the broadcast channel. Since each computer has four connections to the broadcast

channel, if one computer fails during the broadcast of a message, its neighbors have three
other connections through which they will receive copies of the broadcast message. Also,if
the internal connection between two computers is slow, each computer: has three other

connections through which it may receive a copy of each message sooner.

Each computer that originates a message numbers its own messages

sequentially. Because of the dynamic nature of the broadcast channel and becausethere are

many possible connection paths between computers, the messages may be received out of

order. For example, the distance between an originating computer and a certain receiving

computer may be four. After sending the first message, the originating computer and

receiving computer may becomeneighbors and thus the distance between 'them changes to

one. The first message may haveto travel a distance of four to reach the receiving computer.

The second message only has totravel a distance of one. Thus, it is possible for the second

message to reach the receiving computerbefore thefirst message.

Whenthe broadcast channelis in a steadystate (i.e., no computers connecting

or disconnecting from the broadcast channel), out-of-order messages are not a problem

because each computer will eventually receive both messages and can queue messagesuntil
all earlier ordered messages are received. If, however, the broadcast channel is not in a

[03004-8001/SL003733.106} -11- 7/31/00

0687

0688

10

20

25

30

steady state, then problems can occur. In particular, a computer may: connect to the
broadcast channelafter the second message has already been received and forwarded on by
its new neighbors. When a new neighbor eventually receivesthe first message, it sends the
messageto the newly connected computer. Thus, the newly connected computer will receive
the first message, but will not receive the second message. If the newly connected computer
needs to process the messagesin order, it would wait indefinitely for the second message.

One solution to this problem is to have each computer queue|all the messages
that it receives until it can send them in their proper orderto its neighbors. This solution,
however, may tend to slow down the propagation of messages through the computers of the
broadcast channel. Another solution that may have less impact on the propagation speed is
to queue messagesonly at computers whoare neighbors of the newly connected computers.
Each already connected neighbor would forward messages as it receives them to its other
neighbors who are not newly connected, but not to the newly connected neighbor. The
already connected neighbor would only forward messages from each originating computer to

the newly connected computer when it can ensure that no gaps in the messages from that

originating computer will occur. In one embodiment, the already connected neighbor may
track the highest sequence numberof the messages already received and forwarded on from
each originating computer. The already connected computer will send only higher numbered
messages from the originating computers to the newly connected computer: Onceall lower

numbered messages have been received from all originating computers, then the already
connected computer can treat the newly connected computer as its other neighbors and

simply forward each messageasit is received. In another embodiment, each computer may

queue messages and only forwards to the newly connected computer those! messages as the

gapsare filled in. For example, a computer might receive messages 4 and 5 and then receive
message 3. In such a case, the already connected computer would forward queue messages 4
and 5. When message 3 is finally received, the already connected computer will send
messages 3, 4, and 5 to the newly connected computer. If messages 4 and 5 weresentto the

newly connected computer before message 3, then the newly connected :computer would

process messages 4 and 5 and disregard message 3. Because the already connected computer
queues messages 4 and 5, the newly connected computer will be able to process message 3.

It is possible that a newly connected computer will receive a set of messages from an
originating computer through one neighbor andthen receive another set of message from the
(03004-8001/SL003733.106] -12- : 731/00

0688

0689

10

20

25

30

same originating computer through anotherneighbor. If the second set of messages contains

a messagethat is ordered earlier than the messages ofthe first set received, then the newly

connected computer may ignore that earlier ordered message if the computer already

processed those later ordered messages.

Decomposing the Graph

A connected computer disconnects from the broadcast channel either in a

planned or unplanned manner. When a computer disconnects in a planned manner, it sends a

disconnect message to eachofits four neighbors. The disconnect message includesa list that

identifies the four neighbors of the disconnecting computer. When a neighbor receives the

disconnect message, it tries to connect to one of the computers on the list. In one

embodiment, the first computer in the list will try to connect to the second computerin the

list, and the third computer in thelist will try to connect to the fourth computer in thelist. If

a computer cannot connect(e.g., the first and second computers are already connected), then

the computers may try connecting in various other combinations. If connections cannot be

established, each computer broadcasts a messagethat it needs to establish a connection with

another computer. When a computer with an available internal port receives the message,it

can then establish a connection with the computer that broadcast the message. Figures 5A-
5D illustrate the disconnecting ofa computer from the broadcast channel. Figure 5A
illustrates the disconnecting of a computer from the broadcast channel in a planned manner.

When computerH decides to disconnect, it sendsits list of neighbors to each ofits neighbors

(computers A, E, F and I) and then disconnects from each of its neighbors. When

computers A and I receive the message they establish a connection between them as

indicated by the dashedline, and similarly for computers E and F.

When a computer disconnects in an unplanned manner, suchas resulting from

a power failure, the neighbors connected to the disconnected computer recognize the

disconnection when each attempts to send its next “message to the now disconnected
computer. Each former neighborofthe disconnected computer recognizesthatit is short one
connection (i.¢., it has a hole or empty port). When a connected computerdetects that one of

"its neighbors is now disconnected, it broadcasts a port connection request on the broadcast
channel, which indicates that it has one internal port that needs a connection. The port

connection request identifies the call-in port of the requesting computer. When a connected

[03004-8001/SL003733. 106) -13- TSAO

0689

0690

15

20

25

30

computer that is also short a connection receives the connection request, iit communicates
with the requesting computer through its external port to establish a connection between the
two computers. Figure 5B illustrates the disconnecting of a computer from the broadcast
channel in an unplanned manner. In thisillustration, computer H has disconnected im an
unplanned manner. Wheneachofits neighbors, computers A, E, F, and L, recognizes the
disconnection, each neighbor broadcasts a port connection request indicating that it needs to

fill an empty port. As shown by the dashed lines, computers F and I and computers A and E

respond to each other’s requests and establish a connection.

It is possible that a planned or unplanned disconnection may result in two

neighbors each having an empty internal port. In such a case, since they are neighbors, they

are already connected and cannotfill their empty ports by connecting to each other. Such a

condition is referred to as the “neighbors with empty ports” condition. Each neighbor

broadcasts a port connection request whenit detects that it has an empty port as described

above. When a neighborreceives the port connection request from the other neighbor,it will

recognize the condition that its neighbor also has an empty port. Such a condition may also

occur when the broadcast channel is in the small regime. The condition can only be

corrected whenin the large regime. When in the small regime, each computer will have less

than four neighbors. To detect this condition in the large regime, which would be a problem

if not repaired, the first neighbor to receive the port connection request recognizes the

condition and sends a condition check messageto the other neighbor. The condition check

message includes a list of the neighbors of the sending computer. When the receiving

computer receivesthelist, it compares thelist to its own list of neighbors. If the lists are

different, then this condition has occurred in the large regime and repair is needed. To repair

this condition, the receiving computer will send a condition repair request to one of the
neighbors of the sending computer which is not already a neighbor of the receiving
computer. When the computerreceives the condition repair request, it disconnects from one
of its neighbors (other than the neighborthat is involved with the condition) and connects to
the computer that sent the condition repair request. Thus, one of the original neighbors
involved in the condition will have had a port filled. However, two computersarestill in

need of a connection, the otheroriginal neighbor and the computerthat is now disconnected

from the computerthat received the condition repair request. Those two computers send out

port connection requests. If those two computersare not neighbors, then they will connectto
(03004-8001/$L003733.106} ~14- 7/31/00

0690

0691

20

25

30

each other when they receive the requests. If, however, the two computers are neighbors,

then they repeat the condition repair process until two non-neighbors are in need of

connections.

It is possible that the twooriginal neighbors with the condition may have the

same set of neighbors. When the neighbor that receives the condition check message

determinesthat the sets of neighborsare the same, it sends a condition double check message

to one of its neighbors other than the neighbor who also has the condition. When the

computer receives the condition double check message, it determines whether it has the sarne

set of neighbors as the sending computer. If so, the broadcast channelis in the small regimne

and thecondition is nota problem.Ifthe set of neighbors are different, thenthe computer

that received the condition double check message sends a condition check message to the

original neighbors with the condition. The computer that receives that condition check

message directs one of it neighbors to connect to one of the original neighbors with the

condition by sending a condition repair message. Thus, one ofthe original neighbors with

the condition will haveits port filled.

Figure 5C illustrates the neighbors with empty ports condition. In this

illustration, computer H disconnected in an unplanned manner, but computers F and I

respondedto the port connection request of the other and are now connected together. The

other former neighbors of computer H, computers A and E, are already neighbors, which

givesrise to the neighbors with empty ports condition. In this example, computerE received

the port connection request from computer A, recognized the possible condition, and sent

(since they are neighborsvia the internal connection) a condition check message withalist

of its neighbors to computer A. When computer A received thelist, it recognized that

computerE hasa different set of neighbor (i.¢., the broadcast channel is in the large regime).

Computer A selected computer D, which is a neighbor of computerE andsentit a condition

repair request. When computer D received the condition repair request, it disconnected from

one of its neighbors (other than computer E), which is computerG in this example.

Computer D then connected to computer A. Figure 5D illustrates two computersthat are not

neighbors who now have empty ports. Computers E and G now have empty ports andare
not currently neighbors. Therefore, computers E and G can connect to eachother.

Figures SE and SF furtherillustrate the neighbors with empty ports condition.

Figure 5E illustrates the neighbors with empty ports condition in the small regime. In this
[03004-8001/SL003733.106} -15- 7791/00

0691

0692

20

25

30

example, if computer E disconnected in an unplanned manner, then each computer

broadcasts a port connection request when it detects the disconnect. When computer A

receives the port connection request form computer B,it detects the neighbors with empty

ports condition and sends a condition check message to computer B. Computer B recognizes
that it has the same set of neighbors (computer C and D) as computer A and then sends a

condition double check message to computer C. Computer C recognizes that the broadcast

channel is in the small regime becauseis also has the same set of neighbors as computers A

and B, computer C may then broadcast a messageindicating that the broadcast channelis in

the small regime.

Figure SF illustrates the situation of Figure SE when in the large regime. As

discussed above, computer C receives the condition double check message from computerB.

In this case, computer C recognizes that the broadcast channelis in the large regime because

it has a set of neighbors that is different from computer B. The edges extending up from

computer C and D indicate connections to other computers. Computer C then sends a

condition check message to computer B. When computer B receives the condition check

message, it sends a condition repair message to one of the neighbors of computer C. The

computer that receives the condition repair message disconnects from one ofits neighbors,

other than computer C, and tries to connect to computer B and the neighbor from which it

disconnected tries to connect to computer A.
Port Selection

As described above, the TCP/IP protocol designates ports above number 2056
as user ports. The broadcast technique uses five user port numbers on each computer: one

external port and four internal ports. Generally, user ports cannotbe statically allocated to

an application program becauseother applications programs executing on the same computer

may use conflicting port numbers. Asa result, in one embodiment, the computers connected
to the broadcast channel dynamically allocate their port numbers. Each computer could
simply try tolocate the lowest number unusedport on that computer and use thatport as the

call-in port. A seeking computer, however, does not know in advance the call-in port
numberof the portal computers when the port numbersare dynamically allocated. Thus, a

seeking computer needs to dial ports of a portal computer starting with the lowest port

number when locating the call-in port of a portal computer. If the’ portal computer is

[03004-8001/SL003733,106} -16- 7/31/00

0692

0693

20

25

30

connected to (or attempting to connectto) the broadcast channel, then the seeking computer

’ would eventually find the call-in port. If the portal computer is not connected, then the

seeking computer would eventually dial every user port. In addition, if each application

program on a computertried to allocate low-ordered port numbers, then a portal computer

may end up with a high-numberedport forits call-in port because many of the low-ordered

port numbers would be used by other application programs. Since the dialing of a port is a

relatively slow process, it would take the seeking computer a long timeto locate the call-in

port of a portal computer. To minimize this time, the broadcast technique uses a port

ordering algorithm to identify the port number order that a portal computer should use when

finding an available port for its call-in port. In one embodiment, the broadcast technique

uses a hashing algorithm to identify the port order. The algorithm preferably distributes the

ordering of the port numbers randomly through out the user port number space and only

selects each port number once. In addition, every time the algorithm is executed on any

computer for a given channel type and channelinstance, it generates the same port ordering.

As described below, it is possible for a computer to be connected to multiple broadcast

channels that are uniquely identified by channel type and channelinstance. The algorithm
may be “seeded” with channel type and channel instance in order to generate a unique

ordering of port numbers for each broadcast channel. Thus, a seeking computerwill dial the

ports of a portal computer in the same order as the portal computer used whenallocatingits

call-in port.

If many computers are at the same time seeking connection to a broadcast

channel throughasingle portal computer, then the ports of the portal computer may be busy

whencalled by seeking computers. The seeking computers wouldtypically need to keep on

redialing a busy port. The process oflocating a call-in port may besignificantly slowed by

such redialing. In one embodiment, each seeking computer may each reorderthe first few

port numbers generated by the hashing algorithm. For example, each seeking computer

could randomly reorder the first eight port numbers generated by the hashing algonthm. The
random ordering could also be weighted where the first port number generated by the

hashing algorithm would have a 50% chance ofbeing first in the reordering, the second port

number would have a 25% chance of beingfirst in the reordering, and so on. Because the

secking computers would use different orderings, the likelihood of finding a busy port is
reduced. For example, if the first eight port numbers are randomly selected, then it is
[03004-8001/SL003733.106) ~17- 7/31/00

0693

0694

20

25

30

possible that eight seeking computers could be simultaneously dialing ports in different

sequences which would reduce the chances of dialing a busyport.

Locating a Portal Computer . .
Each computer that can connect to the broadcast channel has a list of one or

more portal computers through which it can connect to the broadcast channel. In one

embodiment, each computer has the same set of portal computers. A seeking computer

locates a portal computer that is connected to the broadcast channel by successively dialing

the ports of each portal computer in the order specified by analgorithm. A seeking computer

could select the first portal computer and then dial all its ports until a call-in port of a

computer that is fully connected to the broadcast channel is found. If nocall-in port is
found, then the seeking computer would select the next portal computer and repeat the

process until a portal computer with such a call-in port is found. A problem with such a

seeking technique is that all user ports of each portal computer are dialed until a portal

computer fully connected to the broadcast channel is found. In an alternate embodiment, the

seeking computer selects a port number according to the algorithm and then dials each portal

computerat that port number. If no acceptable call-in port to the broadcast channelis found,

then the seeking computer selects the next port number and repeats the process. Since the

call-in ports are likely allocated at lower-ordered port numbers, the seeking computerfirst

dials the port numbersthat are mostlikely to be call-in ports of the broadcast channel. The
seeking computers may have a maximum search depth, that is the numberofportsthatit will

dial when seeking a portal computer that is fully connected. If the seeking computer
exhausts its search depth, then either the broadcast channel has not yet been-established or,if

the seeking computeris also a portal computer, it can then establish the broadcast channel

with itself as the first fully connected computer.

When a seeking computer locates a portal computer that is itself not fully

connected, the two computers do not connect whentheyfirst locate each other because the

broadcast channel may already be established and accessible through a higher-ordered port
number on another portal computer. If the two seeking computers were to connect to each
other, then two disjoint broadcast channels would be formed. Each seeking computer can
share its experience in trying to locate a portal computerwith the other seeking computer. In
particular, if one seeking computer has searchedall the portal computers to a depth ofeight,

[03004-8001/SL003733.106} -18- 7131/00

}

0694

0695

20

25

30

then the one seeking computer can share that it has searched to a depth of eight with another

seeking computer. If that other seeking computer has searched to a depth of, for example,

only four, it can skip searching through depths five through eight and that other seeking

computer can advanceits searching to a depth ofnine.

In one embodiment, each computer may have a different set of portal

computers and a different maximum search depth. In such a situation, it may be possible that

two disjoint broadcast channels are formed because a seeking computer cannotlocate a fully

connected port computer at a higher depth. Similarly, if the set of portal computers are

disjoint, then two separate broadcast channels would be formed.

Identifying Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting computer are

preferably selected randomly from the set of currently connected computers. One advantage

of the broadcast channel, however, is that no computer has global knowledge of the

broadcast channel. Rather, each computer has local knowledge ofitself and its neighbors.

This limited local knowledge has the advantagethat all the connected computers are peers

(as far as the broadcasting is concerned) andthe failure of any one computer(actually any

three computers when in the 4-regular and 4-connect form) will not cause the broadcast

channel to fail. This local knowledge makesit difficult for a portal computer to randomly
select four neighbors for a seeking computer.

To select the four computers, a portal computer sends an edge connection

request message through one of its internal connections that is randomly selected. The

receiving computer again sends the edge connection request message through one ofits
internal connectionsthat is randomlyselected. This sending of the message correspondsto a

random walk through the graph that represents the broadcast channel. Eventually, a

receiving computer will decide that the message has traveled far enough to represent a
randomly selected computer. That receiving computer will offer the internal connection

upon which it received the edge connection request message to the seeking computer for
edge pinning. Of course, if either of the computers at the end of the offered internal -

connection are already neighborsof the seeking computer, then the seeking computer cannot
connect through that internal connection. The computer that decided that the message has

[03004-8001/SL003733.106] -]9- 7131/00

0695

0696

10

20

25

30

traveled far enough will detect this condition of already being a neighbor and send the

message to a randomly selected neighbor.

In one embodiment, the distance that the edge connection request message

travels is established by the portal computer to be approximately twice the estimated |

diameter of the broadcast channel. The messageincludes an indication of the distance thatit

is to travel. Each receiving computer decrements that distance to travel before sending the

message on. The computer that receives a message with a distance to travel that is zero is

consideredto be the randomly selected computer. If that randomly selected computer cannot
connect to the seeking computer (¢.g., because it is already connected to it), then that

randomly selected computer forwards the edge connection request to one of its neighbors

with a new distance to travel. In one embodiment, the forwarding computer toggles the new

distance to travel between zero and one to help prevent two computers from sending the

message back and forth between each other.

Because of the local nature of the information maintained by each computer

connected to the broadcast channel, the computers need not generally be aware of the

diameter of the broadcast channel. In one embodiment, each message sent through the

broadcast channel has a distance traveled field. Each computer that forwards a message

increments the distance traveled field. Each computer also maintains an estimated diameter

of the broadcast channel. When a computer receives a message that has traveled a distance

that indicates that the estimated diameter is too small, it updates its estimated diameter and

broadcasts an estimated diameter message. When a computerreceives an estimated diameter

message that indicates a diameter thatis larger than its own estimated diameter, it updatesits

own estimated diameter. This estimated diameteris used to establish the distance that an
edge connection request message shouldtravel.

External Data Representation

The computers connected to the broadcast channel may internally store their
data in different formats. For example, one computer may use 32-bit integers, and another

computer may use 64-bit integers. As another example, one computer may use ASCII to

represent text and another computer may use Unicode. To allow communications between

heterogeneous computers, the messages sent over the broadcast channel may use the XDR
(“eXternal Data Representation”):format.

[03004-8001/SL003733.106] -20- 7/31/00

0696

0697

‘15

20

25

30

The underlying peer-to-peer communications protocol may send multiple

messages in a single message stream. Thetraditional techniquefor retrieving messages from

a stream has been to repeatedly invoke an operating system routine to retrieve the next

message in the stream. Theretrieval of each message may require twocalls to the operating

system: oneto retrieve the size of the next message and the other to retrieve the number of

bytes indicated by the retrieved size. Such calls to the operating system can, however, be

very slow in comparison to the invocations of local routines. To overcomethe inefficiencies

of such repeated calls, the broadcast technique in one embodiment, uses XDRto identify the

message boundaries in a stream of messages. The broadcast technique may request the

operating system to provide the next, for example, 1,024 bytes from the stream. The

broadcast technique can then repeatedly invoke the XDR routines to retrieve the messages

and use the successorfailure of each invocation to determine whetheranotherblock of 1,024

bytes needs to be retrieved from the operating system. The invocation of XDR routines do

not involve system calls and are thus moreefficient than repeated system calls.

M-Regular

In the embodiment described above, each fully connected computer has four

internal connections. The broadcast technique can be used with other numbers of internal

connections. For example, each computer could have 6, 8, or any even numberofinternal

connections. As the number of internal connections increase, the diameter of the broadcast

channel tends to decrease, and thus propagation time for a message tends to decrease. The

time that it takes to connect a seeking computer to the broadcast channel may, however,

increase as the number of internal connections increases. When the number of internal

connectors is even, then the broadcast channel can be maintained as m-regular and
m-connected (in the steady state). If the numberof internal connections is odd, then when

the broadcast channel has an odd number of computers connected, one of the computerswill

have less than that odd numberofinternal connections. In such a situation, the broadcast

network is neither m-regular nor m-connected. When the next computer connects to the

broadcast channel, it can again become m-regular and m-connected. Thus, with an odd

numberof internal connections, the broadcast channel toggles between being and not being
m-regular and m-connected.

{03004-8001/SL003733.106] -21- 731/00

0697

0698

20

25

30

Components .

Figure 6 is a block diagram illustrating components of a computer thatis

connected to a broadcast channel. The above description generally assumed that there was

only one broadcast channel and that each computerhad only one connection:to that broadcast

channel. More generally, a network of computers may have multiple broadcast channels,

each computer may be connected to more than one broadcast channel, and each computer

can have multiple connections to the same broadcast channel. The broadcast channel 1s well

suited for computer processes (e.g., application programs) that execute collaboratively, such

as network meeting programs. Each computer process can connect to one or more broadcast

channels. The broadcast channels can be identified by channel type (e.g., application

program name) and channel instance that represents separate broadcast channels for that
channel type. When a process attempts to connect to a broadcast channel, it seeks a process

currently connected to that broadcast channel that is executing on a portal computer. The

seeking process identifies the broadcast channel by channel type and channelinstance.

Computer 600 includes multiple application programs 601 executing as

separate processes. Each application program interfaces with a broadcaster component 602

for each broadcast channel to which it is connected. The broadcaster component may be

implement as an object that is instantiated within the process space of the application
program. Alternatively, the broadcaster component may execute as a separate process or

thread from the application program. In one embodiment, the broadcaster component

provides functions(e.g., methods of class) that can be invoked by the application programs.

The primary functions provided mayinclude a connect function that an application program
invokes passing an indication of the broadcast channel to which the application program
wants to connect. The application program may provide a callback routine that the

broadcaster component invokes to notify the application program that the connection has

been completed, that is the process enters the fully connected state. The broadcaster

component may also provide an acquire message function that the application program can

invoketo retrieve the next message that is broadcast on the broadcast channel. Alternatively,
the application program may provide a callback routine (which may be a virtual function

provided by the application program) that the broadcaster componentinvokesto notify the

application program that a broadcast message has been received. Each broadcaster

componentallocatesa call-in port using the hashing algorithm. Whencalls are answered at
{03004-8001/SL003733.106} -22- 7/31/00

0698

0699

1S

20

25

30

the call-in port, they are transferred to other ports that serve as the external and internal

ports.

The computers connecting to the broadcast channel may include a central

processing unit, memory, input devices (e.g., keyboard and pointing device), output devices

(e.g., display devices), and storage devices (e.g., disk drives). The memory and storage

devices are computer-readable medium that may contain computer instructions that

implement the broadcaster component. In addition, the data structures and message

structures may be stored or transmitted via a signal transmitted on a computer-readable

media, such as a communicationslink.

Figure 7 1s a block diagram illustrating the sub-components of the broadcaster

component in one embodiment. The broadcaster component includes a connect component

701, an external dispatcher 702, an internal dispatcher 703 for each internal connection, an

acquire message component 704 and a broadcast component 712. The application program

may provide a connect callback component 710 and a receive response component 711 that

are invoked by the broadcaster component. The application program invokes the connect

component to establish a connection to a designated broadcast channel. The connect

componentidentifies the external port and installs the external dispatcher for handling

messages that are received on the external port. The connect component invokes the seek

portal computer component 705 to identify a portal computer that is connected to the

broadcast channel and invokes the connect request component 706to ask the portal computer

(if fully connected) to select neighbor processes for the newly connecting process. The

external dispatcher receives external messages, identifies the type of message, and invokes
the appropriate handling routine 707. The internal dispatcher receives the internal messages,

identifies the type of message, and invokes the appropriate handling routine 708. The

received broadcast messages are stored in the broadcast message queue 709. The acquire

message component is invoked to retrieve messages from the broadcast queue. The

broadcast componentis invoked by the application program to broadcast messages in the
broadcast channel.

A Distributed Conferencing System

In one embodiment, a conferencing system is implemented using the broadcast

Channel. Eachparticipant in a conference connects to the conference’s broadcast channel,

{03004-8001/SL003733. 106] . -23- 7/31/00

0699

0700

20

25

30

and a participant is designated as the speaker. The conferencing application program may

include a speaker component and an attendee component. The speaker component

broadcasts the conference events on the broadcast channel. Each attendee component

receives the conference events and displays the results of the conference events. For

example, the speaker may presentslides at the conference along with a description of each

slide. Each attendee may receive an electronic copy of the slides in advance of the

conference. At the scheduled time for the conference, the speaker and each attendee joins

the conference by connecting to the broadcast channel of the conference. The speaker

componentallows the speaker to indicate when to display. which slide. When a newslideis

displayed, the speaker component broadcasts a new slide message. When the attendee

componentreceives the new slide message, it displays the new slide to the participant. Also,

the speaker component may allow the speaker to draw on a slide using a stylus or other

pointing device. The speaker component then broadcasts draw messages on the broadcast

channel so the attendee component can display the drawing to the attendees. The

conferencing system may also use speech-to-text and text-to-speech to distribute the

speaker’s commentsto all attendees.

The conferencing system may provide a directory web site where

participants can locate andsign up for a conference of interest. The directory mayprovide a

hierarchical categorization of scheduled conferences. When a user decides to sign up for a
conference, the web server may download the broadcaster component and the conferencing

application program to the attendee’s computer, if not already stored on the attendee’s

computer. The web server will also download the channel type and channel instance

associated with the broadcast channel for the conference along with the identification of the

portal computers for the broadcast channel. The web server may also downloadthe slides or

other contentto be displayed to the attendees during the conference.

The conferencing system may allow an entity to schedule conferences

using the website. For example, a software company may wantto schedule a conference to

announce a new product. The creation of the conference would entail the generation of a

channel type and channel instance, the specification of a security level (e.g., encrypted
messages), the specification of attendee qualifications, the providing of a description and
scheduled time of. the conference, the specification of the content to be distributed to the

attendees, and so on. The speaker at a conference may not want to publicize the actual
[03004-8001/SL003733. 106] -24- 7131/00

0700

0701

20

25

content (e.g., slides) in advance. In suchasituation, the content can be encrypted when
distributed to the attendees, and a key to decrypt the content can be distributed by the

speaker during the conference. For example, each slide for the software company’s

announcement can be encrypted with a different key, and the appropriate key can be

broadcast with each new slide message.

The conferencing system may allow attendees to broadcast comments

on the broadcast channel. The times when an attendee can broadcast comments may be

controlled by the speaker. For example, the speaker component may broadcast a comments

allowed message and a comments not allowed message to delimit the times when comments

will be allowed. Comments broadcast outside those times may be ignored. Alternatively, the

attendees may be allowed to broadcast comments at any time, but the other attendees ignore

those comments until the speaker broadcasts an approval messageindicating that the attendee

component can display a certain comment.

The conferencing system may allow each attendee to connect to and

disconnect from the conference broadcast channel as this wish during the conference. In

addition, the conferencing system may allow multiple speakers to share the “podium.” The

speakers can pass a speakers token between them to indicate whois currently speaking and

thus in control of the conference. An attendee whojoins the conference late may beable to

synchronize with the conference by accessing a conference monitoring web server. The

monitoring web server may be connected to the conference broadcast channel and monitor
the currentstate of the conference. When an attendee joinslate, the monitoring web server

can provide the attendee with the current state of the conference. From then on, the attendee

can listen on the broadcast channel to follow the progress of the conference. In addition, the

attendee component mayallow the attendee to view parts of the presentation other than that

which is currently being presented. In this way, an attendee can refer back to or ahead to

otherportionsofthe presentation.

The followingtables list messages sent by the broadcaster components.

EXTERNAL MESSAGES

Indicates that a seeking process would like to know whetherthe
receiving processis fully connected to the broadcast channel

 Message Type

seekingconnection_call

[03004-8001/SL003733.106] -25- 7131100

0701

0702

Indicates that the sending process wouldlike the receiving

processto initiate a connection of the sending processto the :
broadcast channel

connection_request_call

Indicates that the sending process is proposing an edge through
which the receiving process can connectto the broadcast
channel(i.e., edge pinning)

edge_proposal_call

Indicates that the sending processis proposing a port through
which the receiving process can connectto the broadcast |
channel

port_connection_caill

connected_stmt Indicates that the sending process is connected to the broadcast
channel

Indicates that the receiving process should disconnect from one
of its neighbors and connectto one of the processes involved in
the neighbors with empty port condition |

conditionrepairstmt

INTERNAL MESSAGES

 Message Type

broadcast_stmt Description

Indicates a message that is being broadcast through the
broadcast channel for the application programs

 connection_port_searchstmt|Indicates that the designated processis looking for a port
through whichit can connect to the broadcast channel

connection_edge_search_call|Indicates that the requesting processis looking for an edge’
through which it can connectto the broadcast channel

 connection_edge_searchresp|Indicates whether the edge betweenthis process and the
sending neighbor has been accepted by the requesting
party

Indicates an estimated diameter of the broadcast channel

diameter_estimate_stmt
 Indicates to reset the estimated diameter to indicated

diameter
diameter_reset_stmt

 disconnect_stmt Indicates that the sending neighboris disconnecting from
the broadcast channel

condition_check_stmt Indicates that neighbors with empty port condition have
been detected

condition_double_check_stmt|Indicates that the neighbors with empty ports have the
sameset of neighbors

 shutdown_stmt Indicates that the broadcast channel is being shutdown

[03004-8001/SL003733.106] -26- 7/31/00

0702

0703

20

25

30

Flow Diagrams

Figures 8-34 are flow diagramsillustrating the processing of the broadcaster

componentin one embodiment. Figure 8 is a flow diagram illustrating the processing ofthe

connect routine in one embodiment. This routine is passed a channel type (e.g., application

name) and channel instance(e.g., session identifier), that identifies the broadcast channel to

which this process wants to connect. The routine is also passed auxiliary information that

includesthe list of portal computers and a connection callback routine. When the connection

is established, the connection callback routine is invoked to notify the application program.

Whenthis process invokesthis routine, it is in the seeking connection state. When a portal

computeris located that is connected and this routine connects to at least one neighbor, this

processenters the partially connected state, and when the process eventually connects to four

neighbors, it enters the fully connected state. When in the small regime, a fully connected

process may have less than four neighbors. In block 801, the routine opensthe call-in port

through which the process is to communicate with other processes when establishing external

and internal connections. The port is selected as the first available port using the hashing

algorithm described above. In block 802, the routine sets the connect time to the current

time. The connect time is used to identify the instance of the process that is connected

through this external port. One process may connect to a broadcast channel of a certain

channel type and channel instance using onecall-in port and then disconnects, and another

process may then connect to that same broadcast channel using the samecall-in port. Before

the other process becomesfully connected, another process may try to communicate with it

thinkingit is the fully connected old process. In such a case, the connect time can be used to

identify this situation. In block 803, the routine invokes the seek portal computer routine

passing the channel type and channel instance. The seek portal computer rautine attempts to

locate a portal computer through whichthis process can connectto the broadcast channel for

the passed type and instance. In decision block 804, if the seek portal computerroutineis

successful in locating a fully connected process on that portal computer, then the routine

continues at block 805, else the routine returns an unsuccessful indication. In decision block

805, if no portal computer other than the portal computer on which the process is executing

was located, then this is the first process to fully connect to broadcast channel and the

routine continues at block 806, else the routine continues at block 808. In block 806, the

routine invokes the achieve connection routine to change the state of this process to fully
[03004-8001/SL003733.106) -27- 7131/00

0703

0704

10

20

25

30

connected. In block 807, the routine installs the external dispatcher for processing messages

_ received through this process’ external port for the passed channel type and channelinstance.

When a messageis received through that external port, the external dispatcher is invoked.

The routine then returns. In block 808,the routineinstalls an external dispatcher. In block

809, the routine invokes the connect request routine to initiate the process of identifying
neighbors for the seeking computer. The routine then returns.

Figure 9 is a flow diagram illustrating the processing of the seek portal

computer routine in one embodiment. This routine is passed the channel type and channel
instance of the broadcast channel to which this process wishes to connect. This routine, for

each search depth (e.g., port number), checks the portal computers at that search depth. If a

portal computer is located at that search depth with a process that is fully connected to the
broadcast channel, then the routine returns an indication of success. In blocks 902-911, the
routine loops selecting each search depth until a processis located. In block 902, the routine

selects the next search depth using a port numberordering algorithm. In decision block 903,
if all the search depths have already been selected during this execution of the loop, that is

for the currently selected depth, then the routine returns a failure indication, else the routine

continues at block 904. In blocks 904-911, the routine loops selecting each portal computer

and determining whether a process of that portal computer is connected to (or attempting to

connect to) the broadcast channel with the passed channel type and channel instance. In
block 904, the routine selects the next portal computer. In decision block 905, if all the

portal computers have already been selected, then the routine loops to block 902 to select the

next search depth, else the routine continuesat block 906. In block 906, the routine dials the

selected portal computer through the port represented by the search depth. In decision block

907, if the dialing was successful, then the routine continues at block 908, else the routine

loops to block 904 to select the next portal computer. The dialing will be successful if the

dialed port is the call-in port of the broadcast channel of the passed channel type and channel

instance of a process executing on that portal computer. In block 908,the routine invokes a

contact process routine, which contacts the answering process of the portal computer through
the dialed port and determines whether that process is fully connected to the broadcast

channel. In block 909, the routine hangs up onthe selected portal computer. In decision
block 910, if the answering process is fully connected to the broadcast channel, then the
routine returns a successindicator, else the routine continuesat block 911. In block 91 1, the
[03004-800 1/SL003733.106) .-28- 1/31/00

0704

0705

20

25

30

routine invokes the check for external call routine to determine whether an external call has

been made to this process as a portal computer and processes that call. The routine then

loops to block 904 to select the next portal computer.

Figure 10 is a flow diagram illustrating the processing of the contact process

routine in one embodiment. This routine determines whether the process of the selected

portal computer that answered the call-in to the selected port is fully connected to the
broadcast channel. In block 1001, the routine sends an external message (i.e.,

seekingconnection_call) to the answering process indicating that a seeking process wants to

know whether the answering process is fully connected to the broadcast channel. In block

1002, the routine receives the external response message from the answering process. In

decision block 1003, if the external response message is successfully received (i.e.,

seekingconnection_resp), then the routine continues at block 1004, else the routine returns.

Whereverthe broadcast componentrequests to receive an external message, it sets a time out

period. If the external message is not received within that time out period, the broadcaster

componentchecksits own call-in port to see if another processis calling it. In particular, the

dialed process may be calling the dialing process, which mayresult in a deadlock situation.

_ The broadcaster component may repeat the receive request several times. If the expected

message is not received, then the broadcaster component handlesthe error as appropnate. In
decision block 1004, if the answering process indicatesin its response message thatit is fully

connected to the broadcast channel, then the routine continues at block 1005,else the routine

continuesat block 1006. In block 1005, the routine adds the selected portal computerto a

list of connected portal computers and then returns. In block 1006, the routine adds the

answering processtoalist of fellow seeking processes and then returns.

Figure 11 is a flow diagram illustrating the processing of the connect request

routine in one embodiment. This routine requests a process of a portal computer that was

identified as being fully connected to the broadcast channelto initiate the connection ofthis

process to the broadcast channel. In decision block 1101, if at least one process of a portal

computer was located that is fully connected to the broadcast channel, then the routine

continues at block 1103, else the routine continues at block 1102. A process of the portal
computer may nolongerbein thelist if it recently disconnected from the broadcast channel.

In one embodiment, a seeking computer mayalways search its entire search depth andfind
multiple portal computers through which it can connectto the broadcast channel. In block

[03004-8001/SL003733.106] -29- 7731/00

0705

0706

10

20

25

30

1102, the routinerestarts the process of connecting to the broadcast channel and returns. In
block 1103, the routine dials the process of one of the found portal computers through the

call-in port. In decision block 1104,if the dialing is successful, then the routine continuesat
block 1105, else the routine continues at block 1113. The dialing may be unsuccessful if, for

example, the dialed process recently disconnected from the broadcast channel. In block
1105, the routine sends an external message to the dialed process requesting a connection to

the broadcast channel (i.e., connection_request_call). In block 1106, the routine receives the

response message(i.e., connection_request_resp). In decision block 1107, if the response

message is successfully received, then the routine continues at block 1108, else the routine

continues at block 1113. In block 1108, the routine sets the expected numberofholes (i.e.,

empty internal connections) for this process based on the received response. When in the

large regime, the expected numberof holes is zero. When in the small regime, the expected

number of holes varies from one to three. In block 1109, the routine sets the estimated

diameter of the broadcast channel based on the received response. In decision block 1111, if

the dialed process is ready to connect to this process as indicated by the response message,

then the routine continues at block 1112, else the routine continues at block 1113. In block

1112, the routine invokes the add neighbor routine to add the answering process as a

| _ neighbor to this process. This adding of the answering process typically occurs when the
broadcast channelis in the small regime. When in the large regime, the random walk search

for a neighbor is performed. In block 1113, the routine hangs up the external connection
with the answering process computer andthen returns.

Figure 12 is a flow diagram of the processing of the check for external call
routine in one embodiment. This routine is invoked to identify whether a fellow seeking

processis attempting to establish a connection to the broadcast channel through this process.

In block 1201, the routine attempts to answera call on the call-in port. In decision block

1202, if the answeris successful, then the routine continues at block 1203, else the routine

retums. In block 1203, the routine receives the external message from the external port. In

decision block 1204, if the type of the message indicates that a seeking processis calling

(i.e., seeking_connection_call), then the routine continues at block 1205, else the routine
retums. In block 1205, the routine sends an external message(i.e., seeking_connection_resp)

to the other seeking process indicating that this process is also is seeking a connection. In

decision block 1206,if the sending of the external message is successful, then the routine
[03004-8001/SL003733.106) -30- 7731/00

0706

0707

15

20

25

30

continues at block 1207, else the routine returns. In block 1207, the routine adds the other

seeking processto a list of fellow seeking processes and then returns. This list may be used

if this process can find no processthatis fully connected to the broadcast channel. In which

case, this process may check to see if any fellow seeking process were successful in

connecting to the broadcast channel. For example, a fellow seeking process may becomethe

first process fully connected to the broadcast channel.

Figure 13 is a flow diagram of the processing of the achieve connection routine

in one embodiment. This routine sets the state of this process to fully connected to the

broadcast channel and invokes a callback routine to notify the application program that the

process is now fully connected to the requested broadcast channel. In block 1301, the

routine sets the connection state of this process to fully connected. In block 1302, the

routine notifies fellow seeking processes that it is fully connected by sending a connected
external message to them (i.e., connectedstmt). In block 1303, the routine invokes the

connect callback routine to notify the application program andthen returns.

Figure 14 is a flow diagram illustrating the processing ‘of the external

dispatcher routine in one embodiment. This routine is invoked when the external port

receives a message. This routine retrieves the message, identifies the external message type,

and invokes the appropriate routine to handle that message. This routine loops processing
each message until all the received messages have been handled. In block 1401, the routine
answers (é.g., picks up) the external port and retrieves an external message. In decision

block 1402, if a message wasretrieved, then the routine continues at block 1403, else the

routine hangs up on the external port in block 1415 and returns. In decision block 1403,if

the message type is for a process seeking a connection (i.e., seeking_connection_call), then

the routine invokes the handle seeking connectioncall routine in block 1404,else the routine

continues at block 1405. In decision block 1405, if the message type is for a connection

request call (i.e., connection_request_call), then the routine invokes the handle connection

request call routine in block 1406, else the routine continues at block 1407. In decision

block 1407, if the message type is edge proposalcall (i.¢., edge_proposal_call), then the
.routine invokes the handle edge proposal call routine in block 1408, else the routine

continues at block 1409. In decision block 1409, if the message type is port connect call

(.é., port_connect_call), then the routine invokes the handle port connection call routine in

block 1410, else the routine continues at block 1411. In decision block 141 1, if the message
[03004-8001/SL003733.106] -31- 7/3100

0707

0708

20

25

30

type is a connected statement (i.e., connected_stmt), the routine invokes the handle
connected statement in block 1112, else the routine continues at block 1212. In decision

block 1412, if the message type is a condition repair statement(i.e., condition_repair_stmt),

then the routine invokes the handle condition repair routine in block 1413, else the routine
loops to block 1414 to process the next message. After each handling routine is invoked, the

routine loops to block 1414. In block 1414, the routine hangs up on the external port and

continues at block 1401 to receive the next message.

Figure 15 is a flow diagram illustrating the processing of the handle seeking

connection call routine in one embodiment. This routine is invoked when a seeking process

is calling to identify a portal computer through which it can connect to the broadcast channel.

In decision block 1501, if this process is currently fully connected to the broadcast channel

identified in the message, then the routine continues at block 1502, else the routine continues

at block 1503. In block 1502, the routine sets a message to indicate that this processis fully

connected to the broadcast channel and continues at block 1505. In block 1503, the routine

sets a message to indicate that this processis not fully connected. In block 1504, the routine

adds the identification of the seeking process to a list of fellow seeking processes. If this

processis not fully connected, then it is attempting to connect to the broadcast channel. In

block 1505, the routine sends the external message response(i.¢., seekingconnection_resp)

to the seeking process and then returms.

Figure 16 is a flow diagram illustrating processing of the handle connection

request call routine in one embodiment. This routine is invoked when thecalling process

wants this process to initiate the connection of the process to the broadcast channel. This

routine either allows the calling process to establish an internal connection with this process
(e.g., if in the small regime) orstarts the process ofidentifying a process to whichthe calling

process can connect. In decision block 1601, if this process is currently fully connected to

the broadcast channel, then the routine continues at block 1603, else the routine hangs up on
the external port in block 1602 and returns. In block 1603, the routine sets the number of

holes that the calling process should expect in the response message. In block 1604, the

routine sets the estimated diameter in the response message. In block 1605, the routine

indicates whether this process is ready to connectto the calling process. This process is

ready to connect when the numberofits holes is greater than zero andthe calling processis
not a neighborof this process. In block 1606, the routine sends to the calling process an
{03004-8001/SL003733.106] -32- 730)

0708

0709

20

25

30

external message that is responsive to the connection request call (.e.,
connection_request_resp). In block 1607, the routine notes the number of holes that the
calling process needsto fill as indicated in the request message. In decision block 1608, if
this process is ready to connect to the calling process, then the routine continues at block

1609, else the routine continuesat block 1611. In block 1609, the routine invokes the add
neighbor routine to add the calling process as a neighbor. In block 1610, the routine
decrements the numberof holes that the calling process needsto fill and continues at block

1611. In block 1611, the routine hangs up on the external port. In decision block 1612, if

this process has no holes or the estimated diameter is greater than one (4.e., in the large

regime), then the routine continues at block 1613, else the routine continues at block 1616.

In blocks 1613-1615, the routine loops forwarding a request for an edge through which to

connectto the calling process to the broadcast channel. One request is forwarded for each

pair of holes of the calling process that needsto be filled. In decision block 1613, if the

numberof holes of the calling process to be filled is greater than or equal to two, then the

routine continues at block 1614, else the routine continues at block 1616. In block 1614, the

routine invokes the forward connection edge search routine. The invoked routine is passed

to an indicationofthe calling process and the random walk distance. In one embodiment, the

distance is twice in the estimated diameter of the broadcast channel. In block 1614, the

routine decrementsthe holes left to fill by two and loops to block 1613. In decision block

1616,if there is still a hole to fill, then the routine continues at block 1617, else the routine

returns. In block 1617, the routine invokesthefill hole routine passing the identification of

the calling process. The fill hole routine broadcasts a connection port search statement(i.¢.,

connection_port_search_stmt) for a hole of a connected process through which the calling

process can connectto the broadcast channel. The routine then returns.

Figure 17 is a flow diagram illustrating the processing of the add neighbor

routine in one embodiment. This routine adds the process calling on the external port as a

neighbor to this process. In block 1701, the routine identifies the calling process on the
external port. In block 1702,the routinesets a flag to indicate that the neighbor has not yet

received the broadcast messages from this process. This flag is used to ensure that there are

no gaps in the messages initially sent to the new neighbor. The external port becomesthe

internal port for this connection. In decision block 1703, if this process is in the seeking

connection state, then this process is connecting to its first neighbor and the routine
[03004-800 1/SL003733.106} -33- TAG)

0709

0710

20

25

30

continuesat block 1704, else the routine continues at block 1705. In block 1704, the routine

sets the connection state of this process to partially connected. In block 1705, the routine

adds the calling process to the list of neighbors of this process. In block 1706, the routine

installs an internal dispatcher for the new neighbor. Theinternal dispatcher is invoked when

a messageis received from that new neighbor through the internal port of that new neighbor.

In decision block 1707, if this process buffered up messages while not fully connected, then

the routine continues at block 1708, else the routine continues at block 1709. In one

embodiment, a process that is partially connected may buffer the messages that it receives

through an internal connection so that it can send these messages as it connects to new

neighbors. In block 1708, the routine sends the buffered messages to the new neighbor

through the internal port. In decision block 1709, if the number of holes of this process

equals the expected numberof holes, then this process is fully connected and the routine

continues at block 1710, else the routine continues at block 1711. In block 1710, the routine

invokes the achieve connected routine to indicate that this process is fully connected. In

decision block 1711, if the number of holes for this process is zero, then the routine

continues at block 1712, else the routine returns. In block 1712, the routine deletes any

pending edges and then returns. A pending edge is an edge that has been proposed tothis

process for edge pinning, whichin this case is no longer needed.

Figure 18 is a flow diagram illustrating the processing of the forward

connection edge search routine in one embodiment. This routine is responsible for passing

along a request to connect a requesting process to a randomly selected neighbor ofthis

process through the internal port ofthe selected neighbor,that is part of the random walk. In
decision block 1801, if the forwarding distance remaining is greater than zero, then the
routine continues at block 1804, else the routine continues at block 1802. In decision block

- 1802, if the number of neighbors of this process is greater than one, then the routine

continues at block 1804, else this broadcast channel is in the small regime and the routine

continues at block 1803. In decision block 1803, if the requesting process is a neighbor of

this process, then the routine returns, else the routine continues at block 1804. In blocks

1804-1807, the routine loops attempting to send a connection edge search call internal

message (i.€., connection_edge_search_call) to a randomly selected neighbor. In block 1804,

the routine randomly selects a neighbor of this process. In decision block 1805,if all the

neighbors of this process have already been selected, then the routine cannot forward the
[03004-800 1/SL003733.106] -34- 7131/00

0710

0711

20

25

30

message andthe routine returns, else the routine continues at block 1806. In block 1806, the
routine sends a connection edge searchcall internal message to the selected neighbor. In

decision block 1807,if the sending of the message is successful, then the routine continues at

block 1808, else the routine loops to block 1804 to select the next neighbor. When the

sending of an internal message is unsuccessful, then the neighbor may have disconnected

from the broadcast channel in an unplanned manner. Whenever sucha situation is detected

by the broadcaster component,it attempts to find another neighbor by invoking the fill holes

routine to fill a single hole or the forward connecting edge search routineto fill two holes. In

block 1808, the routine notes that the recently sent connection edge search call has not yet

been acknowledged and indicates that the edge to this neighbor is reserved if the remaining

forwarding distanceis less than or equal to one. It is reserved because the selected neighbor

may offer this edge to the requesting process for edge pinning. Theroutine then returms.

Figure 19 is a flow diagram illustrating the processing of the handle edge

proposal call routine. This routine is invoked when a messageis received from a proposing

process that proposes to connect an edge between the proposing process and one ofits

neighborsto this process for edge pinning. In decision block 1901, if the numberofholes of

this process minus the number of pending edgesis greater than or equal to one, then this
processstill has holes to be filled and the routine continues at block 1902, else the routine

continuesat block 1911. In decision block 1902, if the proposing processorits neighboris a

neighbor of this process, then the routine continues at block 1911, else the routine continues

at block 1903. In block 1903, the routine indicates that the edge is pending between this

process and the proposing process. In decision block 1904, if a proposed neighboris already

pending as a proposed neighbor, then the routine continues at block 1911, else the routine

continuesat block 1907. In block 1907, the routine sends an edge proposal response as an

external message to the proposing process (i.e., edgeproposalresp) indicating that the

proposed edge is accepted. In decision block 1908, if the sending of the message was
successful, then the routine continues at block 1909, else the routine returns. In block 1909,

the routine adds the edge as a pending edge. In block 1910, the routine invokes the add

neighborroutine to add the proposing processon the external port as a neighbor. Theroutine

then returns. In block 1911, the routine sends an external message(i.e., edge_proposal_resp)

indicating that this proposed edge is not accepted. In decision block 1912, if the number of

[03004-800 1/SL003733. 106} -35- 7131/00

0711

0712

20

25

30

holes is odd, then the routine continues at block 1913, else the routine returns. In block

1913, the routine invokes the fill hole routine and then returns.

Figure 20 is a flow diagram illustrating the processing of the handle port
connection call routine in one embodiment. This routine is invoked when an extemal

message is received then indicates that the sending process wants to connectto one hole of
this process. In decision block 2001, if the numberofholes of this process is greater than
zero, then the routine continues at block 2002, else the routine continues at block 2003. In

decision block 2002, if the sending process is not a neighbor, then the routine continues at

block 2004,else the routine continues to block 2003. In block 2003, the routine sendsa port

connection response external message(i.e., port_connection_resp) to the sending process that
indicates that it is not okay to connectto this process. The routine then returns. In block
2004, the routine sends a port connection response external message to the sending process

that indicates that is okay to connectthis process. In decision block 2005,if the sending of

the message was successful, then the routine continues at block 2006, else the routine

continues at block 2007. In block 2006, the routine invokes the add neighbor routine to add

the sending process as a neighborofthis process and then returns. In block 2007, the routine
hangs up the external connection. In block 2008, the routine invokes the connect request

routine to request that a process connectto one ofthe holes of this process. The routine then

returns.

Figure 21 is a flow diagram illustrating the processing ofthefill hole routinein
one embodiment. This routine is passed an indication of the requesting process. If this

process is requesting to fill a hole, then this routine sends an internal message to other

processes. If another processis requestingtofill a hole, then this routine invokes the routine
to handle a connection port search request. In block 2101, the routine initializes a

connection port search statement internal message (i.e., connection_portsearchstmt). In

decision block 2102, if this process is the requesting process, then the routine continues at

block 2103, else the routine continues at block 2104. In block 2103, the routine distributes

the message to the neighbors of this process through the internal ports and then returns. In

block 2104,the routine invokes the handle connection port search routine andthen returns.
Figure 22 is a flow diagram illustrating the processing of the internal dispatcher

routine in one embodiment. This routineis passed an indication of the neighbor whosentthe

internal message. In block 2201, the routine receives the internal message. This routine
[03004-8001/SL003733.106] -36- 7731100

0712

0713

10

15

20

25

30

identifies the message type and invokes the appropriate routine to handle the message. In

block 2202, the routine assesses whether to change the estimated diameter of the broadcast

channel based on the information in the received message. In decision block 2203,if this

process is the originating process of the message or the message has already been received
(i.e., a duplicate), then the routine ignores the message and continuesat block 2208, else the
routine continues at block 2203A. In decision block 2203A, if the process is partially

connected, then the routine continues at block 2203B, else the routine continues at block

2204. In block 2203B, the routine adds the message to the pending connection buffer and

continues at block 2204. In decision blocks 2204-2207, the routine decodes the message

type and invokes the appropriate routine to handle the message. For example, in decision

block 2204, if the type of the message is broadcast statement (i.e., broadcast_stmt), then the

routine invokes the handle broadcast message routine in block 2205. After invoking the

appropriate handling routine, the routine continues at block 2208. In decision block 2208,if

the partially connected buffer is full, then the routine continues at block 2209, else the

routine continues at block 2210. The broadcaster component collects all its imternal

messages in a buffer while partially connected so that it can forward the messages as it

connects to new neighbors. If, however, that buffer becomes full, then the process assumes

that it is now fully connected and that the expected number of connections was too high,
because the broadcast channel is now in the small regime. In block 2209, the routine invokes

the achieve connection routine and then continues in block 2210. In decision block 2210, if

the application program message queue is empty, then the routine returns, else the routine

continues at block 2212. In block 2212, the routine invokes the receive response routine

passing the acquired message and then returns. - The received response routine is a callback

routine of the application program.

- Figure 23 is a flow diagram illustrating the processing of the handle broadcast

message routine in one embodiment. This routine is passed an indication ofthe originating

process, an indication of the neighbor who sent the broadcast message, and the broadcast

message itself. In block 2301, the routine performs the out of order processing for this

-message. The broadcaster component queues messages from each originating process until it

can send them in sequence numberorder to the application program. In block 2302, the

routine invokes the distribute broadcast message routine to forward the message to the

neighborsofthis process. In decision block 2303, if a newly connected neighbor is waiting
(03004-8001/SL003733. 106) -37- 7131/00

0713

0714

20

25

30

to receive messages, then the routine continues at block 2304, else the routine returns. In

block 2304, the routine sends the messages in the correct order if possible for each

originating process and then returns.

Figure 24 is a flow diagram illustrating the processing of the distribute

broadcast message routine in one embodiment. This routine sends the broadcast message to

each of the neighbors of this process, except for the neighbor who sent the message to this

process. In block 2401, the routine selects the next neighbor other than the neighbor who

sent the message. In decision block 2402,if all such neighbors have already been selected,

then the routine returns. In block 2403, the routine sends the message to the selected

neighborand then loops to block 2401 to select the next neighbor.

Figure 26 is a flow diagram illustrating the processing of the handle connection

port search statementroutine in one embodiment. This routine is passed an indication ofthe

neighborthat sent the message and the messageitself. In block 2601, the routine invokes the

distribute internal message which sends the message to each ofits neighbors other than the

sending neighbor. In decision block 2602, if the number of holes of this process is greater

than zero, then the routine continues at block 2603, else the routine returns. In decision

block 2603, if the requesting process is a neighbor, then the routine continues at block 2605,

else the routine continues at block 2604. In block 2604, the routine invokes the court

neighbor routine and then returns. The court neighbor routine connects this process to the

requesting processif possible. In block 2605, if this process has one hole, then the neighbors

with empty ports condition exists and the routine continues at block 2606, else the routine

retums. In block 2606, the routine generates a condition check message (i.e.,

condition_check) that includes a list of this process’ neighbors. In block 2607, the routine
sends the messageto the requesting neighbor.

Figure 27 is a flow diagram illustrating the processing of the court neighbor

routine in one embodiment. This routine is passed an indication of the prospective neighbor

for this process. If this process can connect to the prospective neighbor,then it sends a port

connection call external message to the prospective neighbor and adds the prospective

neighbor as a neighbor. In decision block 2701, if the prospective neighbor is already a
neighbor, then the routine returns, else the routine continues at block 2702. In block 2702,

the routine dials the prospective neighbor. In decision block 2703, if the number of holes of

this process is greater than zero, then the routine continues at block 2704, else the routine
[03004-8001/SL003733.106] -38- 7131100

0714

0715

10

15

20

25

30

continues at block 2706. In block 2704, the routine sends a port connection call external

message(i.e., port_connection_call) to the prospective neighbor and receives its response

(i.e., port_connection_resp). Assuming the responseis successfully received, in block 2705,
the routine adds the prospective neighbor as a neighbor ofthis process by invoking the add

neighborroutine. In block 2706, the routine hangs up with the prospect and then retums.
Figure 28 is a flow diagram illustrating the processing of the handle connection

edge search call routine in one embodiment. This routine is passed a indication of the

neighbor who sent the message and the message itself. This routine either forwards the

message to a neighboror proposes the edge between this process and the sending neighborto

the requesting process for edge pinning. In decision block 2801,if this processis not the

requesting process or the numberofholes of the requesting process is still greater than or

equal to two, then the routine continues at block 2802, else the routine continues at block

2813. In decision block 2802, if the forwarding distance is greater than zero, then the

random walk is not complete and the routine continues at block 2803, else the routine

continues at block 2804. In block 2803, the routine invokes the forward connection edge

search routine passing the identification of the requesting process and the decremented

forwarding distance. The routine then continues at block 2815. In decision block 2804, if

the requesting process is a neighbor or the edge between this process and the sending

neighbor is reserved because it has already been offered to a process, then the routine

continues at block 2805, else the routine continues at block 2806. In block 2805, the routine

invokes the forward connection edge search routine passing an indication of the requesting

party and a toggle indicatorthat alternatively indicates to continue the random walk for one

or two more computers. The routine then continues at block 2815. In block 2806, the

routine dials the requesting process via the call-in port. In block 2807, the routine sends an

edge proposal call external message(i.e., edge_proposal_call) and receives the response(i.e.,

edgeproposal_resp). Assuming that the response is successfully received, the routine

continues at block 2808. In decision block 2808,if the response indicates that the edge is

acceptable to the requesting process, then the routine continues at block 2809, else the

routine continues at block 2812. In block 2809, the routine reserves the edge between this

process and the sending neighbor. In block 2810, the routine adds the requesting process as

a neighbor by invoking the add neighborroutine. In block 2811, the routine removes the

sending neighboras a neighbor. In block 2812, the routine hangs up the external port and
[03004-8001/SL003733. 106) -39- 7731/00

0715

0716

15

20

25

30

continues at block 2815. In decision block 2813,if this process is the requesting process and

the numberofholes of this process equals one, then the routine continues at block 2814, else

the routine continues at block 2815. In block 2814, the routine invokesthe fill hole routine.

In block 2815, the routine sends an connection edge search response message (i.e.,

connectionedge_searchresponse) to the sending neighbor indicating acknowledgement and

then returns. The graphsaresensitive to parity. Thatis, all possible paths starting from a

node and ending at that node will have an even length unless the graph has a cycle whose

length is odd. The broadcaster component uses a toggle indicator to vary the random walk

distance between even and odddistances.

Figure 29 is a flow diagram illustrating the processing of the handle connection

edge search response routine in one embodiment. This routine is passed as indication of the

requesting process, the sending neighbor, and the message. In block 2901, the routine notes
that the connection edge search response (i.e., connection_edge_search_resp) has been

teceived and if the forwarding distance is less than or equal to one unreserves the edge

between this process and the sending neighbor. In decision block 2902, if the requesting

process indicates that the edge is acceptable as indicated in the message, then the routine

continuesat block 2903, else the routine returns. In block 2903, the routine reserves the edge

between this process and the sending neighbor. In block 2904, the routine removes the

sending neighbor as a neighbor. In block 2905, the routine invokes the court neighbor

routine to connect to the requesting process. In decision block 2906, if the invoked routine

was unsuccessful, then the routine continues at block 2907, else the routine returns. In
decision block 2907, if the number of holes of this process is greater than zero, then the
routine continues at block 2908, else the routine returns. In block 2908, the routine invokes

the fill hole routine and then returns.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine

in one embodiment. This routine is invoked by the application program to broadcast a

message on the broadcast channel. This routine is passed the message to be broadcast. In

decision block 3001, if this process has at least one neighbor, then the routine continues at

block 3002, else the routine returnssinceit is the only process connected to be broadcast

channel. In block 3002,the routine generates an internal message of the broadcast statement

type (i.e., broadcast stmt). In block 3003, the routine sets the sequence numberofthe

[03004-8001/SL003733.106) -40- 7/31/00

0716

0717

20

25

30

message. In block 3004, the routine invokes the distribute internal message routine to

broadcast the message on the broadcast channel. Theroutine returns.

Figure 31 is a flow diagram illustrating the processing of the acquire message

routine in one embodiment. The acquire message routine may be invoked bythe application
program or by a callback routine provided by the application program. This routine returns a

message. In block 3101, the routine pops the message from the message queue of the

broadcast channel. In decision block 3102, if a message was retrieved, then the routine

retums an indication of success, else the routine returns indication of failure.

Figures 32-34 are flow diagrams illustrating the processing of messages

associated with the neighbors with empty ports condition. Figure 32 is a flow diagram

illustrating processing of the handle condition check message in one embodiment. This

messageis sent by a neighborprocessthat has one hole and has received a request to connect

to a hole of this process. In decision block 3201, if the number of holes of this process is

equal to one, then the routine continues at block 3202, else the neighbors with empty ports

condition does not exist any more and the routine returns. In decision block 3202, if the

sending neighbor and this process have the same set of neighbors, the routine continuesat

block 3203, else the routine continues at block 3205. In block 3203, the routine initializes a

condition double check message(i.e., condition_double_check) with the list of neighbors of

this process. In block 3204,the routine sends the message internally to a neighborother than

sending neighbor. The routine then returns. In block 3205, the routine selects a neighbor of

the sending process that is not also a neighbor of this process. In block 3206, the routine

sends a condition repair message (i.e., condition_repairstmt) externally to the selected

process. In block 3207, the routine invokes the add neighbor routine to add the selected

neighboras a neighborofthis process and then returns.

Figure 33 is a flow diagram illustrating processing of the handle condition

repair statement routine in one embodiment. This routine removes an existing neighbor and

connects to the process that sent the message. In decision block 3301, if this process has no

holes, then the routine continues at block 3302, else the routine continues at block 3304. In

block 3302, the routine selects a neighbor thatis not involved in the neighbors with empty

ports condition. In block 3303, the routine removes the selected neighbor as a neighbor of

this process. Thus, this process that is executing the routine now hasat least one hole. In

[3004-800 1/SL003733.106} -4i- 7/31/00

0717

0718

10

15

20

25

block 3304, the routine invokes the add neighbor routine to add the process that sent the

message as a neighborof this process. The routine then returns.

Figure 34 is.a flow diagram illustrating the processing of the handle condition

double check routine. This routine determines whether the neighbors with empty ports
condition really is a problem or whether the broadcast channel is in the small regime. In

decision block 3401, if this process has one hole, then the routine continues at block 3402,

else the routine continues at block 3403. If this process does not have one hole, then the set

of neighbors ofthis process is not the sameasthe set of neighbors of the sending process. In

decision block 3402, if this process and the sending process have the sameset of neighbors,

then the broadcast channelis not in the small regime and the routine continuesat block 3403,

else the routine continues at block 3406. In decision block 3403, if this process has no holes,

then the routine returns, else the routine continues at block 3404. In block 3404,the routine

sets the estimated diameter for this process to one. In block 3405, the routine broadcasts a

diameter reset internal message(i.e., diameter_reset) indicating that the estimated diameteris

one and then returns. In block 3406, the routinecreates a list of neighbors of this process. In

block 3407, the routine sends the condition check message(i.e., condition_check_stmt) with

the list of neighbors to the neighbor who sent the condition double check message and then

~ returns.

From the above description, it will be appreciated that although specific

embodiments of the technology have been described, various modifications may be made

without deviating from the spirit and scope of the invention. For example, the

communications on the broadcast channel may be encrypted. Also, the channel instance or

session identifier may be a verylarge number(e.g., 128 bits) to help prevent an unauthorized

user to maliciously tap into a broadcast channel. The portal computer may also enforce

security and not allow an unauthorized user to connect to the broadcast channel.

Accordingly,the inventionis not limited except by the claims.

[03004-8001/SL003733.106) -42- 7/31/00

0718

0719

12

13

14

15

CLAIMS

1. A computer network for providing a conferencing system for a plurality

of participants, each participant having connections to at least three neighbor participants,

wherein an originating participant sends data to the other participants by sending the data

through each of its connections to its neighbor participants and wherein each participant

‘ sends data that it receives from a neighbor participantto its other neighbor participants.

2. The computer networkof claim 1 wherein each participant is connected

to 4 other participants.

3. The computer network of claim 1 wherein each participant 1s connected

to an even numberofotherparticipants.

4. The computer network of claim 1 wherein the network is m-regular,

where m is the numberofneighborparticipants of each participant.

5. The computer network of claim 1 wherein the network is m-connected,

where m is the numberof neighborparticipants of each participant.

6. The computer network of claim 1 wherein the network is m-regular and

m-connected, where m is the numberofneighborparticipants of each participant.

7, The computer network of claim | wherein all the participants are peers.

8. The computer network of claim | wherein the connections are peer-to-

peer connections.

[03004-8001 /SL003733.106} -43- 7731/00

0719

0720

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

9. The computer network of claim 1 wherein the connections are TCP/IP
connections.

10. The computer network of claim] wherein each participant is a process

executing on a computer.

11. The computer network of claim 1 wherein a computer hosts more than

one participant.

12. The computer network of claim 1 wherein each participant sends to each

of its neighbors only one copy ofthe data.

13. The computer network of claim 1 wherein the interconnections of

participants form a broadcast channelfor a topic ofinterest.

14. _A distributed conferencing system comprising:

a plurality of broadcast channels, each broadcast channel for conducting

a conference;

means for identifying a broadcast channel for a conference of interest;

and

means for connectingto the identified broadcast channel.

15. The distributed conferencing system of claim 14 wherein means for

identifying a conference of interest includes accessing a web server that maps conferences to

corresponding broadcast channel.

16. The distributed conferencing system of claim 14 wherein a broadcast

channel is formed by attendee computers and a speaker computer that are each

interconnectedto at least three other computers.

[03004-8001/SL003733.106] -44- 731400

0720

0721

0721

0722

0722

0723

0723

0724

0725

0726

0727

0728

0729

0730

0731

 as?

0731

0732

44

(a4.

2vg7)
2“yy
99

{(2~45
wlakuoy
2

ayjavu
\?)

0732

0733

Prpdsigyeee=von

o reatomo =
')

+8
oe

Yer0009gpeeral
Zo

(¢8s

pceh,foLta‘20You
sphuvoauuo7)

yer4feayes]|power]1,0!2-9AIP}god\F
Oo

0733

0734

_ ConnecfraxTh
© |}

othce. Pete

0734

0735

Premacd
of

rr essoge Fy . fO
O24

RrecerveEtound

pressa ge

0735

0736

Add LY) eich bor

0736

0737

ReceNeEctay of
Messo ge

Add ater aS
Fellow seekar

 Fey [Zz

0737

0738

Steke = 4
connected

0738

0739

Firs If
0739

0740

0740

0741

Fig (@
C|oS Santected

W800ROCovnors Doctey
ywoles-to—-W\\ Een,02Ga MAI esp D4

Add.
necnd ~

i Ae}

| Notests Ol -—

oewoe edge!

r .

. Fil holsCree ues!)

0741

0742

Anat
0742

0743

Pe atalere
Ais teneg Te rear~f

0743

0744

unMessoge
out Mes sese

Fry (9.

0744

0745

Sovel Ex Farnol

porate ,

Add Meachbe c

0745

0746

0746

0747

| 3

pinicec=>>,
Br igineh§

o3t Sy ye
hotly y of ofoa nvedk +4 pe =~ Y Hardle Beoedred

yroed cost Mss
SteXl

0747 —

0748

0748

0749

 Dishk buf €
BeOadeus\

Crow Naaghbow

Fe 24).

& \\ ne hbo
colected

0749

0750

\>

Rowdies Oyen Neighborel See mes sag?
+

DV}

0750

0751

Court
boxe

0751

0752

0752

0753

Onn ,ao) Ue Woot

MWe ssa4

Fis 2
Y OF%

| (ecane &of BefaSto

O>

Cou AD24hbor

Fill HolCeele)
0753

0754

0754

0755

Messeee

Po p MeESSe
Cauetu

0755

0756

le Hondle vo
Ane Fig 32

Se mesSace
ithfi foe §oy

0756

0757

a7

0757

0758

creake (isto
myghberss

0758

0759

http://www.faqs.org/rfcs/rfc 1 832.html 01/29/2002--page 1
Internet RFC/STD/FYL/BCP Archives

RFC1832

[Index | Search | What's New | Comments | Help]

Network Working Group R. Srinivasan
Request. for Comments: 1832 Sun Microsystems
Category: Standards Track August 1995

XDR: External Data Representation Standard

Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

ASBSTRACT

Tnis document describes the External Data Representation Standard
(XDR) protocol as it is currently deployed and accepted.

TABLE OF CONTENTS

1. INTRODUCTION 2
2. BASIC BLOCK SIZE 2
3. XDR DATA TYPES 3

3.i Integer 3
3.2 Unsigned Integer 4
3.3 Enumeration 4
3.4 Boolean . 4

3.5 Hyper Integer and Unsigned Hyper Integer 4
3.6 Floating-point 5
3.7 Double-precision Floating-point 6
3.8 Quadruple-precision Floating~point 7
3.9 Fixed-length Opaque Data 8
3.10 Variable-iength Opaque Data 8
3.i1 String 9
3.12 Fixed-length Array 10
3.13 Variable-iength Array 10
3.14 Structure 11
3.15 Discriminated Union 11
3.16 Void 12
3.17 Constant 12

3.18 Typedef 13

0759

0760

http://www.fags.org/rfcs/rfc 1 832.html 01/29/2002--page 2

3.19 Optionali-data 14
3.20 Areas for Future Enhancement 15
4, DISCUSSION i5
5. THE XDR LANGUAGE SPECIFICATION 17
5.1 Notational Conventions 17

5.2 Lexical Notes 17

5.3 Syntax Information 18
5.4 Syntax Notes 19
6. AN EXAMPLE OF AN XDR DATA DESCRIPTION 20
7. TRADEMARKS AND OWNERS 2i

APPENDIX A: ANSI/IEEE Standard 754-1985 22
APPENDIX B: REFERENCES 24

Security Considerations 24
Author's Address 24

1. INTRODUCTION

XDR is a standard for the description and encoding of data. It is
useful for transferring data between different computer
architectures, and has been used to communicate data between such
diverse machines as the SUN WORKSTATION*, VAX*, IBM-PC*, and Cray*.
XDR fits into the ISO presentation layer, and is roughly analogous in
purpose to X.409, ISO Abstract Syntax Notation. The major difference
between these two is that. XDR uses implicit typing, while X.409 uses
explicit typing.

XDR uses a language to describe data formats. The language can only
be used only to describe data; it is not a programming language.
This language allows one to describe intricate data formats in a
concise manner. The alternative of using graphical representations
(itself an informai language) quickly becomes incomprehensible when
faced with complexity. The XDR language itself is similar to the C
language [1], just as Courier [4] is similar to Mesa. Protocols such
as ONC RPC (Remote Procedure Call) and the NFS* (Network File System)
use XDR to describe the format of their data.

Tne XDR standard makes the following assumption: that bytes (or
octets) are portable, where a byte is defined to be 8 bits of data.
A given hardware device should encode the bytes onto the various
media in sucn a way that other hardware devices may decode the bytes
without loss of meaning. For example, the Ethernet* standard
suggests that bytes be encoded in "little-endian" style [2], or least
Significant bit first.

2. BASIC BLOCK SIZE

The representation of all items requires a multiple of four bytes (or
32 bits) of data. The bytes are numbered 0 through n-1. The bytes
are read or written to some byte stream such that byte m always
precedes byte m+i. If the n bytes needed to contain the data are not
a muitipie of four, then the n bytes are followed by enough (0 to 3)
residuai zero bytes, r, to make the total byte count a multiple of 4.

We include the familiar grapnic box notation for illustration and

comparison. In most illustrations, each box (delimited bya plus
sign at tne 4 corners and vertical bars and dashes) depicts a byte.

0760

0761

http://vww.faqs.org/rfcs/rfc 1 832.html 01/29/2002--page 3

Ellipses (...) between boxes show zero or more additional bytes where
required.

tocccccntooo sec nn ti. .toccccnnn toccrccceti. teccnnn---+

| byte 0 | byte 1 |...|byte n-1] 0 Lael 0 | BLOCK
aate. tocesccnn peccon-n-Hle+

| <-----------n bytes-~--------->| <aeronn r bytes------>I
| <------- rHn+r (where (ntr) mod 4 = Q)>----------- >|

3. XDR DATA TYPES

Each of the sections that follow describes a data type defined in the
XDR standard, shows how it is declared in the language, and includes
a graphic illustration of its encoding.

For each data type in the language we show a general paradigm
declaration. Note that angle brackets (< and >) denote
variablelength sequences of data and square brackets ([{ and }) denote
fixed-length sequences of data. "n", “m" and "r" denote integers.
For the full language specification and more formal definitions of
terms such as “identifier" and "deciaration", refer to section 5:

"The XDR Language Specification".

For some data types, more specific examples are included. A more
extensive example of a data description is in section 6: "An Example
of an XDR Data Description".

3.1 Integer

An XDR signed integer is a 32-bit datum that encodes an integer in
the range [-2147483648, 2147483647]. The integer is represented in
two's complement notation. The most and least significant bytes are
0 and 3, respectively. Integers are declared as follows:

int identifier;

(MSB) (LSB)
$-------+-------po--c-nHto------ + .

|byte 0 |byte 1 |byte 2 [byte 3 | INTEGER
$-------4------- to-----Hto------ +

Ko oonnen32 bits------------>

3.2. Unsigned Integer

An XDR unsigned integer is a 32-bit datum that encodes a nonnegative
integer in the range [0,4294967295]. It is represented by an
unsigned binary number whose most and least significant bytes are 0
and 3, respectively. An unsigned integer is declared as follows:

unsigned int identifier;

(MSB) (LSB)
at-------+-------+

|lbyte 0 Ibyte 1 [byte 2 |byte 3 | UNSIGNED INTEGER
tone ---$- +--+$---=tonn-en- +

gona -n------32 bits--~--------- >

0761

0762

http://www.faqs.org/rfcs/rfc 1 832.html 01/29/2002--page 4

3.3 Enumeration

Enumerations have the same representation as signed integers.
Enumerations are handy for describing subsets of the integers.
Enumerated data is declared as follows:

enum { name-identifier = constant, ... } identifier;

For example, the three colors red, yellow, and blue could be
described by an enumerated type:

enum { RED = 2, YELLOW = 3, BLUE = 5 } colors;

It is an error to encode as an enum any other integer than those that
have been given assignments in the enum declaration.

3.4 Boolean

Booleans are important enough and occur frequently enough to warrant
their own explicit type in the standard. Booleans are declared as
foilows:

bool identifier;

This is equivalent to:

enum { FALSE = 0, TRUE = 1 } identifier;

3.5 Hyper Integer and Unsigned Hyper Integer

The standard also defines 64-bit (8-byte) numbers called hyper
integer and unsigned hyper integer. Their representations are the
obvious extensions of integer and unsigned integer defined above.

They are represented in two's complement notation. The most and
least significant bytes are 0 and 7, respectively. Their
declarations:

hyper identifier; unsigned hyper identifier;

(MSB) . (LSB)
¢e------$--$++--- 3-Ht-------+-------t-------t-------+

|lbyte 0 |byte i |byte 2 |byte 3 |byte 4 |byte 5 I|byte 6 Ibyte 7 |
+-------tornto------t-------t-------$-------¢-------+-------+

leatanette teteiateeneneeneeneiaiatala 64 bits--------------rereee>
HYPER INTEGER
UNSIGNED HYPER INTEGER

3.6 Floating-point

The standard defines the floating-point data type "float" (32 bits or
4 bytes). The encoding used is the IEEE standard for normalized

Single-precision floating-point numbers [3]. The following three
fields describe the single-precision floating-point number:

8: The sign of the number. Values 0 and 1 represent positive and
negative, respectively. One bit.

0762

0763

http://www.fags. org/rfcs/rfc 1832.htm! 01/29/2002--page 5

E: The exponent of the number, base 2. 8 bits are devoted to this
field. The exponent is biased by 127.

F: The fractional part of the number's mantissa, base 2. 23 bits
are devoted to this field.

Therefore, the floating-point number is described by:

(-1)**S * 2**(E-Bias) * 1.F

It is declared as follows:

float identifier;

t-------t-------poe----H-poocH-ne +

[byte 0 [byte 1 [byte 2 |Ibyte 3 | SINGLE-PRECISION
S} E | F | FLOATING-POINT NUMBER
tar----- toons ne-$-------te------4+

L|<- 8 ->|<-------23 bits------>|
<------------ 32 bits------------ >

Just as the most and least significant bytes of a number are 0 and 3,
the most and least significant bits of a single-precision floating-
point number are 0 and 31. The beginning bit (and most significant

bit) offsets of S, E, and F are 0, 1, and 9, respectively. Note that
tnese numbers refer to the mathematical positions of the bits, and
NOT to their actual physical locations (which vary from medium to
medium) .

The IEEE specifications should be consulted concerning the encoding
for signed zero, signed infinity (overflow), and denormalized numbers
(underflow) [3]. According to IEEE specifications, the "NaN" (not a
number) is system dependent and should not be interpreted within XDR
as anything other than "NaN".

3.7 Double-precision Floating-point

The standard defines the encoding for the double-precision floating-
point data type "double" (64 bits or 8 bytes). The encoding used is
the IEEE standard for normalized double-precision floating-point
numbers [3]. Tne standard encodes the following three fields, which
describe the doubie-precision floating-point number:

S: The sign of the number. Values 0 and.1 represent positive and
negative, respectively. One bit.

i} The exponent of the number, base 2. 11 bits are devoted to

this field. The exponent is biased by 1023.

FF: The fractional part of the number's mantissa, base 2. 52 bits
are devoted to this field.

Therefore, the floating-point number is described by:

(-i)**S * 2**(E-Bias) * 1.F

0763

0764

http://www.faqs. org/rfcs/rfc 1832.html 01/29/2002--page 6

It is declared as follows:

double identifier;

tr-----+------+------ t------+------$------ to-----to-----+

|lbyte Olbyte llbyte 2Ibyte 3|byte 4|byte 5|byte 6|byte 7]
S| E | F
t------¢------to-----+------+------to-----+------t------+

1|<--i1-->|<-----------------52 bits------------------->|
aan64 bits----9orerree>

DOUBLE-PRECISION FLOATING-POINT

Just as the most and least significant bytes of a number are 0 and 3,
the most and least significant bits of a double-precision floating-
point number are 0 and 63. The beginning bit (and most significant
bit) offsets of S, E , and F are 0, 1, and 12, respectively. Note

that these numbers refer to the mathematical positions of the bits,
and NOT to their actual physical locations (which vary from medium to
medium) .

The IEEE specifications should be consulted concerning the encoding
for signed zero, signed infinity (overflow), and denormalized numbers
(underflow) [3]. According to IEEE specifications, the "NaN" (not a
number) is system dependent and should not be interpreted within XDR
as anything other than "NaN".

3.8 Quadruple-precision Floating-point

The standard defines the encoding for the quadruple-precision
fioating-point data type "quadruple" (128 bits or 16 bytes). The
encoding used is designed to be a simple analog of of the encoding
used for single and double-precision floating-point numbers using one
form of IEEE double extended precision. The standard encodes the
following three fields, which describe the quadruple-precision
floating-point number:

S: The sign of the number. Values 0 and 1 represent positive and
negative, respectively. One bit.

tF The exponent of the number, base 2. 15 bits are devoted to
this fieid. The exponent is biased by 16383.

Fr: The fractional part of the number's mantissa, base 2. 112 bits
are devoted to this field.

Therefore, the floating-point number is described by:

(-i)**S * 2**(E-Bias) * 1.F

It is deciared as follows:

quadruple identifier;

t------$o-----4------ te----- t------+------to. cote+

{byte Olbyte ljbyte 2|byte 3lbyte 4|byte 5|] ... [bytel5|

0764

0765

http://www.faqs.org/rfes/rfc 1832.html 01/29/2002--page 7

S| E F |
po--4-HoH$o----- to-----+------t------t-,. .ccto+

L | <----15----> | <-------------112 bits------------------ >|
é--2-------------------- 128 bits------------------------>

QUADRUPLE~PRECISION FLOATING-POINT

Just as the most and least significant bytes of a number are 0 and 3,
the most and least significant bits of a quadruple-precision
floating-point number are 0 and 127. The beginning bit (and most

significant bit) offsets of S, E , and F are 0, 1, and 16,
respectively. Note that these numbers refer to the mathematical
positions of the bits, and NOT to their actual physical locations
(which vary from medium to medium).

The encoding for signed zero, signed infinity (overflow), and
denormalized numbers are analogs of the corresponding encodings for
Single and double-precision floating-point numbers [5], [6]. The
"NaN" encoding as it applies to quadruple-precision floating-point
numbers is system dependent and should not be interpreted within XDR
aS anything other than "NaN".

3.9 Fixed-iength Opaque Data

At times, fixed-length uninterpreted data needs to be passed among
machines. This data is called "opaque" and is deciared as follows:

opaque identifier{[n];

where tne constant n is the (static) number of bytes necessary to
contain the opaque data. If n is not a multiple of four, then the n
bytes are followed by enough (0 to 3) residual zero bytes, r, to make
the total byte count of the opaque object a multiple of four.

0 1
porns rnctorr rrrnme. teoe-H--- tonncceeHte. toccccce+

| byte 0 | byte 1 |...|/byte n-1| 0 J... 0 |
aeee laeleeetaetia a eStonerretec etoccceece+

| <aoccan bytesw--- +e--- >| <----3- xr bytes------>|
| <sre-oonn+r (where (nt+r) mod 4 = Q)------------ >|

FIXED-LENGTH OPAQUE

3.10 Variable-length Opaque Data

Tne standard aiso provides for variable-length (counted) opaque data,
defined as a sequence of n (numbered 0 through n-1) arbitrary bytes
to be the number n encoded as an unsigned integer (as described
below), and followed by the n bytes of the sequence.

Byte m of the sequence always precedes byte m+i of the sequence, and
byte 0 of the sequence always foilows the sequence's length (count).
If n is not a multiple of four, then the n bytes are followed by
enough (0 to 3) residual zero bytes, r, to make the total byte count
a mulitipie of four. Variabie-length opaque data is declared in the
following way:

opaque identifier<m>;

0765

0766

http://www.fags.org/rfcs/rfc 1832.html 01/29/2002--page 8

or

opaque identifier<>;

The constant m denotes an upper bound of the number of bytes that the
sequence may contain. If m is not specified, as in the second
declaration, it is assumed to be (2**32) - 1, the maximum length.
The constant m would normally be found in a protocol specification.
For example, a filing protocol may state that the maximum data
transfer size is 8192 bytes, as follows:

opaque filedata<8192>;

0 1 2 3 4 5 .
+-----est-----t-----to----+----- t+. ..tccco-t-----te. .toonne+

length n lbyteO|bytel|...| n-l | O [...] O |
+----- tonnepeort-----t-----to---- t...tocccon+-----te. etoocce+

|<------- 4 bytes-----~~>| <------ n bytes------>|<---r bytes--->|
|<----nt+r (where (n+r) mod 4 = 0)---->|

VARIABLE-LENGTH OPAQUE

It is an error to encode a length greater than the maximum described
in the specification.

3.11 String

The standard defines a string of n (numbered 0 through n-1) ASCII
bytes to be the number n encoded as an unsigned integer (as described
above), and followed by the n bytes of the string. Byte m of the

_ String always precedes byte mt+l of the string, and byte 0 of the
string always follows the string's length. If n is not a multiple of
four, then the n bytes are followed by enough (0 to 3) residual zero
bytes, xr, to make the total byte count a multiple of four. Counted
byte strings are declared as follows:

string object<m>;
or

string object<>;

The constant m denotes an upper bound of the number of bytes that a
string may contain. If m is not specified, as in the second

declaration, it is assumed to be (2**32) - 1, the maximum length.
The constant m would normally be found in a protocol specification.
For example, a filing protocol may state that a file name can be no
longer than 255 bytes, as follows:

string filename<255>;

0 1 2 3 4 5 tee
toen--eer eet arenntoneetorece+----- te. terenetennn-te. etoecn+

length n IbyteO|bytel|]...| n-1 | O [...1 0
tote on terre to- nHtooccntoont----- tia tecone toonte. etooce+

[<s------ 4 bytes------- >| <----H- n bytes------>|<---r bytes--->|
|<--~--ntr (where (n+r) mod 4 = Q)---->|

STRING

It is an error to encode a length greater than the maximum described

0766

0767

http://www.fags.org/rfces/rfc 1832.htm] 01/29/2002--page 9

in tne specification.

3.12 Fixed-length Array

Declarations for fixed-length arrays of homogeneous elements are in
the following form:

type-name identifier([n];

Fixed-length arrays of elements numbered 0 through n-1 are encoded by
individually encoding the elements of the array in their natural
order, 0 through n-i. Each element's size is a multiple of four
bytes. Though all elements are of the same type, the elements may
have different sizes. For example, in a fixed-length array of
strings, all elements are of type "string", yet each element will
vary in its length.

to --4-4$$$-$$nt penpeepeet

| element 0 | element 1 |...1 element n-1 |
Homoonpen Hp oe$eteetetenet eotttt

| <--onorncnnn elements---~--------------- >|

FIXED-LENGTH ARRAY

3.13 Variable-length Array

Counted arrays provide the ability to encode variable-length arrays of
homogeneous elements. The array is encoded as the element count n (an
unsigned integer) followed by the encoding of each of the array's
elements, starting with element 0 and progressing through element n- 1.
The declaration for variable-length arrays follows this form:

type-name identifier<m>;
or

type-name identifier<>;

Tne constant m specifies the maximum acceptable element count of an
array; if m is not specified, as in the second declaration, it is
assumed to be (2**32) - 1.

0 1 2 3
tomb c tert tontotet$et-tetint petontotint

| n . | element O | element 1 |...{element n-1!
tomtom gant to-gotntatnpentontent. tet-t--t--+

|<-4 bytes->|<-------------- n elements~------------- >|
COUNTED ARRAY

It is an error to encode a value of n that is greater than the
maximum described in the specification.

3.14 Structure

Structures are declared as follows:

struct {

component-deciaration-A;
component-declaration-B;

0767

0768

http://www.fags.org/rfcs/rfc 1832.htm! 01/29/2002--page 10

} identifier;

The components of the structure are encoded in the order of their
declaration in the structure. Each component's size is a multiple of
four bytes, though the components may be different sizes.

| component A | component B |... STRUCTURE
poco eeHHHt-------------+t...

3.15 Discriminated Union

A discriminated union is a type composed of a discriminant followed
by a type selected from a set of prearranged types according to the
value of the discriminant. The type of discriminant is either "int",
“unsigned int", or an enumerated type, such as "bool". The component
types are called "arms" of the union, and are preceded by the value

of the discriminant which implies their encoding. Discriminated
unions are declared as follows:

union switch (discriminant-declaration) {
case discriminant-value-A:

arm-declaration-A;
case discriminant-value-B:

arm-declaration-B;

default: default-declaration;
} identifier;

Each "case" keyword is followed by a legal value of the discriminant.
The default arm is optional. If it is not specified, then a valid
encoding of the union cannot take on unspecified discriminant values.
The size of the implied arm is always a multiple of four bytes.

The discriminated union is encoded as its discriminant followed by
the encoding of the implied arm.

0 i 2 3

Foc o poop tetetnpeentteent, .

| discriminant | implied arm } DISCRIMINATED UNION
to--4---4---4¢---$--- 4 -- -$ -- -$+

|<---4 bytes--->|

3.16 Void

An XDR void is a O-byte quantity. Voids are useful for describing
operations that take no data as input or no data as output. They are
also useful in unions, where some arms may contain data and others do
not. The declaration is simply as follows:

void;

Voids are iliustrated as foiiows:

++

0768

0769

http://www.fags.org/rfes/rfc 1832.html 01/29/2002--page 11

| VOID
++

-~-><-- 0 bytes

3.17 Constant

The data declaration for a constant follows this form:

const name-identifier = n;

"const" is used to define a symbolic name for a constant; it does not
declare any data. The symbolic constant may be used anywhere a
regular constant may be used. For example, the following defines a
symbolic constant DOZEN, equal to 12.

const DOZEN = 12;

3.18 Typedef

"typedef" does not declare any data either, but serves to define new
identifiers for declaring data. The syntax is:

typedef declaration;

The new type name is actually the variable name in the declaration
part of the typedef. For example, the following defines a new type
cailed "eggbox" using an existing type called "egg":

typedef egg eggbox [DOZEN];

Variables declared using the new type name have the same type as the
new type name would have in the typedef, if it was considered a
variable. For exampie, the following two declarations are equivalent
in declaring the variable "fresheggs":

eggbox fresheggs; egg fresheggs [DOZEN];

When a typedef involves a struct, enum, or union definition, there is
another (preferred) syntax that may be used to define the same type.
In general, a typedef of the following form: :

typedef <<struct, union, or enum definition>> identifier;

may be converted to the aiternative form by removing the "typedef"
part and piacing the identifier after the "struct", "union", or
"enum" keyword, instead of at the end. For example, here are the two
ways to define the type "bool":

typedef enum { /* using typedef */
FALSE = 0,
TRUE = 1

} bool;

enum bool { /* preferred alternative */
FALSE = Q,
TRUE = 1

he

0769

0770

http://www.faqs.org/rfcs/rfc 1832.html 01/29/2002--page 12

The reason this syntax is preferred is one does not have to wait
until the end of a declaration to figure out the name of the new
type.

3.19 Optional-data

Optionai-data is one kind of union that occurs so frequently that we

give it a special syntax of its own for declaring it. It is declared
as follows:

type-name *identifier;

This is equivalent to the following union:

union switch (bool opted) {
case TRUE:

type-name element;
case FALSE:

void;
} identifier;

It is also equivalent to the following variable-length array
declaration, since the boolean “opted" can be interpreted as the
length of the array:

type-name identifier<1>;

Optional-data is not so interesting in itself, but it is very useful
for describing recursive data-structures such as linked-lists and
trees. For example, the following defines a type "Stringlist” that
encodes lists of arbitrary length strings:

struct *stringlist {
string item<>;
stringlist next;

Me

It could have been equivalently declared as the following union:

union stringlist switch (bool opted) {
case TRUE:

struct {

string item<>;
stringlist next;

} element;
case FALSE:

void;}
be

or aS a variable-length array:

struct stringlist<1i> {

string item<>;
stringlist next;

he

0770

0771

http://www.fags.org/rfcs/rfc 1832html 01/29/2002--page 13

Both of these declarations obscure the intention of the stringlist
type, so the optional-data declaration is preferred over both of
them. The optional-data type also has a close correlation to how
recursive data structures are represented in high-level languages
such as Pascal or C by use of pointers. In fact, the syntax is the
same as that of the C language for pointers.

3.20 Areas for Future Enhancement

The XDR standard lacks representations for bit fields and bitmaps,
since the standard is based on bytes. Also missing are packed (or
binary-coded) decimals.

The intent of the XDR standard was not to describe every kind of data
that people have ever sent or will ever want to send from machine to

machine. Rather, it only describes the most commonly used data-types
of high-level languages such as Pascal or C so that applications
written in these languages will be able to communicate easily over
some medium.

One could imagine extensions to XDR that would let it describe almost

‘any existing protocol, such as TCP. The minimum necessary for this
are support for different block sizes and byte-orders. The XDR
discussed here could then be considered the 4-byte big-endian member
of a larger XDR family.

DISCUSSION

(1) Why use a language for describing data? What's wrong with
diagrams?

Tnere are many advantages in using a data-description language such
as XDR versus using diagrams. Languages are more formal than
diagrams and lead to less ambiguous descriptions of data. Languages
are also easier to understand and allow one to think of other issues

instead of the low-level details of bit-encoding. Also, there is a
close analogy between the types of XDR and a high-level language such
as C or Pascai. This makes the implementation of XDR encoding and
decoding modules an easier task. Finally, the language specification
itself is an ASCII string that can be passed from machine to machine
to perform on-the-fly data interpretation.

(2) Why is there only one byte-order for an XDR unit?

Supporting two byte-orderings requires a higher level protocol for
determining in which byte-order the data is encoded. Since XDR is

not a protocol, this can't be done. The advantage of this, though,
is that data in XDR format can be written to a magnetic tape, for
example, and any machine will be able to interpret it, since no
higher level protocol is necessary for determining the byte-order.

(3) Wny is tne XDR byte-order big-endian instead of little-endian?
Isn't this unfair to little-endian machines such as the VAX(r), which
has to convert from one form to the other?

Yes, it is unfair, but having only one byte-order means you have to

0771

0772

http://www.faqs.org/rfcs/rfc 1 832.html 01/29/2002--page 14

in

1

be unfair to somebody. Many architectures, such as the Motorola
68000* and IBM 370*, support the big-endian byte-order.

(4) Wny is the XDR unit four bytes wide?

There is a tradeoff in choosing the XDR unit size. Choosing a small
size such as two makes the encoded data small, but causes alignment
problems for machines that aren't aligned on these boundaries. A
large size such as eight means the data will be aligned on virtually
every machine, but causes the encoded data to grow too big. We chose
four as a compromise. Four is big enough to support most
architectures efficiently, except for rare machines such as the
eight-byte aligned Cray*. Four is also small enough to keep the
encoded data restricted to a reasonable size.

(5) Why must variable-length data be padded with zeros?

It is desirable that the same data encode into the same thing on all
machines, so that encoded data can be meaningfully compared or
checksummed. Forcing the padded bytes to be zero ensures this.

(6) Why is there no explicit data-typing?

Data-typing has a relatively high cost for what small advantages it
may have. One cost is the expansion of data due to the inserted type
fields. Another is the added cost of interpreting these type fields
and acting accordingly. And most protocols already know what type
they expect, so data-typing supplies only redundant information.
However, one can still get the benefits of data-typing using XDR. One
way is to encode two things: first a string which is the XDR data
description of the encoded data, and then the encoded data itself.
Another way is to assign a value to alli the types in XDR, and then
define a universal type which takes this value as its discriminant
and for each valiue, describes the corresponding data type.

THE XDR LANGUAGE SPECIFICATION

Notational Conventions

This specification uses an extended Back-Naur Form notation for
describing the XDR language. Here is a brief description of the
notation:

(1) The characters ‘I[', ‘'(', ")', 'f', ‘')', '"', and '*' are special.
(2) Terminal symbols are strings of any characters surrounded by
double quotes. (3) Non-terminal symbols are strings of non-special
characters. (4) Alternative items are separated by a vertical bar
CMa). (5) Optionai items are enclosed in brackets. (6) Items are
grouped together by enclosing them in parentheses. (7) A '*!
following an item means 0 or more occurrences of that item.

For example, consider the following pattern:

"a w "very" (", te “very") ww (" cold W "and "] w rainy mw
("day" | "night")

An infinite number of strings match this pattern. A few of them are:

0772

0773

http://www.fags.org/rfcs/rfc 1832.html

"a very rainy day”
"a very, very rainy day"
"a very cold and rainy day"
"a very, very, very cold and rainy night"

5.2 Lexical Notes

(1) Comments begin with '/*!' and terminate with '*/'. (2)
space serves to separate items and is otherwise ignored. (3)
identifier is a letter followed by an optional sequence of letters,

digits or underbar ('_'). The case of identifiers is not ignored.
(4) A constant is a sequence of one or more decimal digits,
optionally preceded by a minus-sign ('-").

5.3 Syntax Information

declaration:

type-specifier identifier
| type-specifier identifier "[" value "]"
| type-specifier identifier "<" [value] ">"
| “opaque” identifier "{" value "]}"
| “opaque"™ identifier "<" [value] ">"
|
|
|

"string" identifier "<" [value] ">"
type-specifier "*" identifier
"void"

value:
constant

| identifier

type-specifier:
{ "unsigned" } "int"

i { “unsigned”] "hyper"
{ "float"
{| "doubie"

| "quadrupie"
| “bool”

| enum-type-spec
| Struct-type~-spec
| union-type-spec
{ identifier

enum-type-spec:

"enum" enum-body

enum-body:
yn

(identifier "=" value)
("," identifier "=" value)*

myn

struct-type-spec:

"struct" struct-body

struct-body:
nye

01/29/2002--page 15

0773

0774

http://www.faqs. org/rfcs/rfc 1 832.html 01/29/2002--page 16

(declaration ";")
(declaration ";")*

nye

union-type-spec:
"union" union-body

union-body:
"switch" "(" declaration ")" "{"

("case" value ":" declaration ";")
("case" value ":" declaration ";")*
{ "default" ":" declaration ";"]

myn

constant-def:

“const" identifier "=" constant ";"

type-def:
"typedef" declaration ";"

| "enum" identifier enum-body ";"
| "struct" identifier struct-body ";"
{| "union" identifier union-body ";"

definition:

type-def
{ constant-def

specification:
definition *

5.4 Syntax Notes

(1) The following are keywords and cannot be used as identifiers:
"bool", "case", "const", "default", "double", "quadruple", "enum",
"fioat", "hyper", “opague", "string", "struct", "switch", "typedef",
"union", "unsigned" and "void".

(2) Only unsigned constants may be used as size specifications for
arrays. If an identifier is used, it must have been declared
previousiy as an unsigned constant in a "const" definition.

(3) Constant and type identifiers within the scope of a specification
are in the same name space and must be declared uniquely within this
scope.

(4) Similarly, variable names must be unique within the scope of
struct and union declarations. Nested struct and union declarations
create new scopes.

(S$) The discriminant of a union must be of a type that evaluates to
an integer. Tnat is, "int", “unsigned int", "bool", an enumerated
type or any typedefed type that evaluates to one of these is legal.
Also, the case values must be one of the legal values of the
discriminant. Finally, a case value may not be specified more than
once within the scope of a union declaration.

AN EXAMPLE OF AN XDR DATA DESCRIPTION

0774

0775

http://www.fags.org/rfes/rfc 1 832.html 01/29/2002--page 17

Here is a short XDR data description of a thing called a "file",
which might be used to transfer files from one machine to another.

const MAXUSERNAME = 32; /* max length of a user name */
const MAXFILELEN = 65535; /* max length of a file */
const MAXNAMELEN = 255; /* max length of a file name */

/*

* Types of files:
*/

enum filekind {
TEXT = 0, /* ascii data */
DATA = i, /* raw data */
EXEC = 2 /* executable */

};

/*

* File information, per kind of file:
*/

union filetype switch (filekind kind) {
case TEXT:

void; : /* no extra information */
case DATA:

string creator<MAXNAMELEN>; /* data creator */
case EXEC:

string interpretor<MAXNAMELEN>; /* program interpretor */
}e

/*

* A compiete file:
*/

struct file {

string filename<MAXNAMELEN>; /* name of file «f/f
filetype type; /* info about file */
string owner<MAXUSERNAME>; /* owner of file */
opaque data<MAXFILELEN>; /* file data */

}e

Suppose now that there is a user named "john" who wants to store his
lisp program "sillyprog" that contains just the data "(quit)". His
file would be encoded as follows:

OFFSET HEX BYTES ASCII COMMENTS

0 00 00 00 09 seer -- length of filename = 9
4 13 69 6¢ 6c sill -~ filename characters

8 79 70 72 6f ypro -- ... and more characters
12 67 00°00 00 g... -- ... and 3 zero-bytes of fill
16 00 00 00 02 wee -- filekind is EXEC = 2

20 00 00 00 04 cee -- length of interpretor = 4
24 6c 69 73 70 lisp -- interpretor characters
28 00 00 00 04 cae -- length of owner = 4
32 6a 6£ 68 6e john -- owner characters
36 00 00 00 06 see -- length of file data = 6
40 28 71 75 69 (qui -- file data bytes .
44 74 29 00 00 t).. -- ... and 2 zero-bytes of fill

0775

0776

http://www.fags. org/rfcs/rfc 1832.html

7.

01/29/2002--page 18

TRADEMARKS AND OWNERS

SUN WORKSTATION Sun Microsystems, Inc.
VAX Digital Equipment Corporation
IBM-PC International Business Machines Corporation
Cray Cray Research
NES Sun Microsystems, Inc.
Ethernet Xerox Corporation.
Motorola 68000 Motorola, Inc.
IBM 370 International Business Machines Corporation

APPENDIX A: ANSI/IEEE Standard 754-1985

For

The definition of NaNs, signed zero and infinity, and denormalized
numbers from [3] is reproduced here for convenience. The definitions
for quadruple-precision floating point numbers are analogs of those
for singie and double-precision floating point numbers, and are
defined in [3].

In the foliowing, 'S' stands for the sign bit, 'E'
and 'F' for the fractional part. The symbol '‘'u'
undefined bit (0 or 1).

for the exponent,
stands for an

For single-precision floating point numbers:

Type S (2 bit) E (8 bits) F (23 bits)

signalling NaN u 255 (max) -Quuuuu---u
(with at least
one 1 bit)

quiet NaN u 255 (max) .» luuuuu---u

negative infinity 1 255 (max) -000000---0

positive infinity 0 255 (max) -900000---0

negative zero 1 0 .000000---0

positive zero 0 0 -000000---0

doubie-precision floating point numbers:

Type S (i bit) E (11 bits) F (52 bits)

Signalling NaN u 2047 (max) - Quuuuu---u
(with at least
one i bit)

quiet NaN u 2047 (max) . luuuuu---u

negative infinity i 2047 (max) .000000---0

positive infinity 0 2047 (max) .000000---0

negative zero i 0 -000000---0

positive zero 0 0 -000000---0

0776

0777

http:/,www. fags.org/rfcs/rfc 1832.htm] 01/29/2002--page 19

For quadruple-precision floating point numbers:

Type S$ (1 bit) E (15 bits) F (112 bits)

Signalling NaN u 32767 (max) . Quuuuu---u
(with at least
one 1 bit)

quiet NaN u 32767 (max) » luuuuu---u

negative infinity 1 32767 (max) -000000---0

positive infinity 0 32767 (max) .000000---0

negative zero 1 0 -000000---0

positive zero 0 0 .000000---0

Subnormal numbers are represented as follows:

Precision Exponent Value

Single . (-1)**s * 2**(-126) * OF

Double 0 (-1)**S * 2** (-1022) * O.F

Quadruple 0 (-1)**§ * 2**(-16382) * O.F

APPENDIX B: REFERENCES

{1} Brian W. Kernighan & Dennis M. Ritchie, "The C Programming
Language", Bell Laboratories, Murray Hill, New Jersey, 1978.

[2] Danny Cohen, "On Holy Wars and a Plea for Peace", IEEE Computer,
Cctober 1981. |

(3] “IEEE Standard for Binary Floating-Point Arithmetic", ANSI/IEEE
Standard 754-1985, Institute of Electrical and Electronics

Engineers, August 1985.

f4] "Courier: The Remote Procedure Call Protocol", XEROX
Corporation, XSIS 038112, December 1981.

[5] "Tne SPARC Architecture Manual: Version 8", Prentice Hall,
ISBN 0-13-825001-4.

{6] “HP Precision Architecture Handbook", June 1987, 5954-9906.

{7] Srinivasan, &., "Remote Procedure Call Protocol Version 2",
RFC_ 1831, Sun Microsystems, Inc., August 1995.

Security Considerations

Security issues are not discussed in this memo.

Author's Address

0777

0778

http://www.fags.org/rfcs/rfc 1832.html 01/29/2002--page 20

Raj Srinivasan

Sun Microsystems, Inc.
ONC Technologies
2550 Garcia Avenue
M/S MTV-5-40

Mountain View, CA 94043
USA

Phone: 415-336-2478
Fax: 415-336-6015

EMail: raj@eng.sun.com

[Index | Search | What's New | Comments| Help]

Comments/Questions about this archive ? Send mail to r{c-admin@fags.org

0778

0779

oy A Primer
‘YO on the

T.120

Series

Standard

aDataBeam.

0779 —

0780

A DataBeam Corporation White Paper

A PRIMER ON THE T.120 SERIES STANDARDS

The T:120 standard contains a series of communication

and application protocols and services that provide sup-

port for real-time, multipoint data communications.

These multipointfacilities are important building blocks
for a whole new range of collaborative applications,
including desktop data conferencing, multi-user applica-

tions, and multi-player gaming.

Broad in scope, [:120 is a comprehensive specification
that solves several problems that have historically slowed
market growth for applications of this nature. Perhaps
most importantly, T.120 resolves complex technological
issues in a manner that is acceptable to both the comput-
ing and telecommunications industries.

Established by the International Telecommunications
Union (ITU), T.120 is a family of open standards that

Broad vendor support wasdefined by leading data communication practitioners
means that end users in the industry. Over 100 key international vendors,
wipe variely a‘ater. including Apple, AT&T, British Telecom, Cisco Systems,
operable products. Intel, MCI, Microsoft, and PictureTel, have committed

to implementing T:120-based products andservices.

While T.120 has emergedasa critical element in the data
communications landscape, the only information that

currently exists on the topic is a weighty and complicated
set of standards documents. This primer bridges this
information gap by summarizing T.120's major benefits,
fundamental architectural elements, and core capabilities.

A PRIMER ON THE T.120 STANDARD 1

0780

0781

Key BENEFITS oF T.120

So why all the excitement about T.120?
The bottom lineis that it provides excep-
tional benefits to end users, vendors, and

developers tasked with implementingreal-
time applications. The following list is a
high-level overview of the major benefits
associated with the T.120 standard:

Multipoint Data Delivery

T.120 provides an elegant abstraction for
developers to create and manage a
multipoint domain with ease. From an
application perspective, data is seamlessly

delivered to multiple parties in “realtime.”

Interoperability

T.120 allows endpoint

vendors to interoperate.

T.120 also specifies how
applications may interop-

ing products and services

that also support the T.120
standard.

v Support for Varied Topologies
Reliable Data

T.120 BENEFITS

applications from multiple|y Multipoint Data Delivery
v Interoperability

Y Reliable Data Delivery

erate with (or through) a_|Multicast Enabled Delivery

variety of network bridg-|y Network Transparency
v¥ Platform Independence

v Network Independence

A DataBeam Corporation White Paper

viding a flexible solution for mixed unicast
and multicast networks. The Multicast

Adaptation Protocol (MAP)is expected to
be ratified in early 1998.

Network Transparency

Applications are completely shielded from
the underlying data transport mechanism
being used. Whether the transport is a
high-speed LAN or a simple dial-up
modem, the application developer is only

concerned with a single, consistent set of
application services.

Platform Independence

Because the 1.120 standard is completely
free from any platform dependencies, it
will readily take advantage of the

inevitable advances in

computing technology. In
fact, DataBeams cus-

tomers have already ported
the T.120 source code eas-

ily from Windows to a
variety of environments,
including OS/2,
MAC/OS, severalversions

of UNIX, and other pro-
prietary real-time operat-

ing systems.
v Application Independence

Delivery v Scalability Network
Error-corrected data deliv-|wv Co-existence with Other Independence
ery ensures that all end- Standards

points will receive each v Extendability
data transmission.

Multicast Enabled Delivery

In muliticast enabled networks, 1.120 can

employ reliable (ordered, guaranteed) and
unreliable delivery services. Unreliable
data delivery is also available without mul-

ticast. By using multicast, the 1.120 infra-
structure reduces network congestion and

improves performance for the end_ user.
The 1.120 infrastructure can use both

unicast and multicast simultaneously, pro-

The T.120 standard sup-
ports a broad range of

transport options, includ-

ing the Public Switched Telephone
Networks (PSTN or POTS), Integrated
Switched Digital Networks (ISDN),
Packet Switched Digital Networks
(PSDN), Circuit Switched Digital
Networks (CSDN), and popular local area
network protocols (such as TCP/IP and
IPX via reference protocol). Furthermore,
these vastly different network transports,

operating at different speeds, can easily co-
exist in the same multipoint conference.

A PRIMER ON THE 7.120 STANDARD

0781

0782

A DataBeam Corporation White Paper

Support for Varied Topologies

Multipoint conferences can be set up with
virtually no limitation on network topolo-
gy. Star topologies, with a single
Multipoint Control Unit (MCU) will be
commonearly on. The standard also sup-
ports a wide variety of other topologies
ranging from those with multiple, cascad-
ed MCUs to topologies as simple as a
daisy-chain. In complex multipoint con-
ferences, topology may havea significant
impact on efficiency and performance.

Application Independence

Although the driving market force behind
T.120 was teleconferencing, its designers
purposely soughtto satisfy a much broad-
er range of application needs. Today,
T.120 provides a generic, real-time com-
munications facility that can be used by
manydifferent applications. These appli-
cations include interactive gaming,virtual

reality and simulations, real-time subscrip-
tion newsfeeds, and process control appli-
cations.

Scalability

T.120 is defined to beeasily scalable from
simple PC-based architectures to complex
multi-processor environments character-
ized by their high performance. Resources
for T.120 applications are plentiful, with
practical limits imposed only by the con-

fines of the specific platform running the
software.

Co-existence with Other

Standards

T.120 was designed to work aloneor with-
in the larger context of other ITU stan-
dards, such as the H.32x family of video
conferencing standards. 7.120 also sup-
ports and cross-references other important
ITU standards, such as V.series modems.

Figure 1: Mobet oF ITU T.120 Series ARCHITECTURE

Application{s) i
(Using both Standard and Non-standard Application Protocols)

Node Apptication(s)
i Controller (Using Std. App. Protocols)

Application(s)
(Using Std. App. Protocols)

Multipoint Fite Transfer ¥.127

Stilt image Exchange T.126
(TU-T Standard

Generic Application
Template (GAT) 1.121
&

Pratocols

Generic Application t
Template (GAT) T.124 1

3i

Generic Conference Control (GCC)
7.124

Multipoint Communication Service (MCS)
T.122/125

Network-specific Transport Protocols
7.4123

A PRIMER ON THE T.120 STANDARD 3

0782

0783

Extendability

The T.120 standard can be freely extended
to include a variety of new capabilities,

such as support for new transport stacks
(like ATM or Frame Relay), improved
security measures, and new application-
level protocols.

ARCHITECTURAL OVERVIEW

The T.120 architecture relies on a multi-

layered approach with defined protocols
and service definitions between layers.

Each layer presumes that all layers exist
below. Figure 1 provides a graphical repre-
sentation of the T.120 architecture.

The lower level layers (T.122, T.123,
T.124, and T:125) specify an application-
independent mechanism for providing
multipoint data communication services

to any application that can use thesefacil-
ities. The upper level layers (T.126 and
T.127) define protocols for specific con-
ferencing applications, such as shared
whiteboarding and multipoint file trans-
fer. Applications using these standardized
protocols can co-exist in the same confer-

ence with applications using proprietary

protocols. In fact, a single application may
even use a mix of standardized and non-

standardized protocols.

A DataBeam Corporation White Paper

COMPONENT OVERVIEW

The following overview describes the key
characteristics and concepts behind each

individual componentof the T.120 stan-
dard. This overview starts at the bottom of

the T.120 stack and progresses upward.

Transport Stacks - T.123

T.120 applications expect the underlying
transport to providereliable delivery ofits
Protocol Data Units (PDUs) and to seg-
ment and sequencethat data. T.123 speci-
fies transport profiles for each of the fol-
lowing:

* Public Switched Telephone
Networks (PSTN)

* Integrated Switched Digital
Networks (ISDN)

* Circuit Switched Digital
Networks (CSDN)

* Packet Switched Digital
Networks (PSDN)

* TCP/IP

* Novell Netware JPX

(via reference profile)

As highlighted below in Figure 2, the
T.123 layer presents a uniform OS] trans-
port interface and services (X.214/X.224)

Figure 2: CROSS-SECTION OF T.123 Transports (BASIC MopE PRoriLes)

Transport Layer

(Layer 4)

X.224\0

null + SCF

PSTN ISON

%* Subset of 0.922

Multipoint Communication Service (T.122/T.125)

X.224\0

 X.224\0

null + SCF

X.224\0
RFC 1006

7.123

Ptatfonn-specific
interface (Windows)

TCPAP

A PRIMER ON THE T.120 STANDARD

0783

0784

A DataBeam Corporation White Paper

to the MCSlayer above. The T.123 layer
includes built-in error correction facilities

so application developers do not have to
rely on special hardware facilities to per-
form this function.

In a given computing environment, a
transport stack typically plugs into a local
facility that provides an interface to the
specific transport connection. For exam-
ple, in the Windows environment,
DataBeam's transport stacks
plug into COMM.DRV for
modem communications,

WINSOCK.DLL for TCP/IP

and UDP/IP communications,
and NWIPXSPX. DLL for

Novell IPX communications

support.

The Multicast Adaptation Protocol
(MAP) service layer is a new extension to
MCS. MAP manages unicast- and multi-
cast-based transports. MAP can be used
with any transport where multicast is

The MCUis a logical
construct whose role

may be served by a
node on a desktop
or by special-
purpose equipment
within the network.

available, such as IP networks. While mul-

ticast provides unreliable delivery, many

applications using 1.120 require reliable
services. Developers can incorporate a
variety of multicast error correction

schemes into MAP. thereby selecting the
scheme most closely aligned with their
application.

In 1996, the ITU is expected to adopt
extensions to support important new

transport facilities, such as

Asynchronous Transfer Mode
(ATM) and H.324 POTS
videophone. It is necessary to
note that developers can easily

produce a proprietary transport
stack (supporting, for example,
AppleTalk) that transparently

uses the services above 1.123. An impor-
tant function of MCUs or T.120-enabled

bridges, routers, or gateways is to provide

transparent interworking across different

network boundaries.

FicurRe 3: EXAMPLES OF VALID MCS ToPoLoGies

TOP PROVIDER

CASCADED MCU TOPOLOGY

TOP PROVIDER

TRADITIONAL STAR TOPOLOGY

A PRIMER ON THE T.120 STANDARD

i

TOP PROVIDER

DAISY-CHAIN TOPOLOGY

0784

0785

A DataBeam Corporation White Paper

Multipoint Communication
Service (MCS)- T.122, T.125

T.122 defines the multipoint services
available to the developer, while 1.125
specifies the data transmission protocol.
Together they form MCS, the multipoint
“engine” of the T.120 conference. MCS
relies on T.123 to deliver the data. (Use of
MCSis entirely independentof the actual
T.123 transport stack(s) that is loaded.)

Figure 4: CHANNEL DIAGRAM

Privata

MCSis a powerful tool that can be used to
solve virtually any multipoint application
design requirement. MCS is an elegant
abstraction of a complex organism.
Learning to use MCSeffectively is the key
to successfully developing real-time appli-
cations,

How MCS Works

In a conference, multiple endpoints (or
MCS_nodes) are logically connected
together to form what T.120 refers to as a
domain. Domains generally equate to the
concept of a conference. An application
may actually be attached to

In a 1.120 conference, nodes connect up-
ward to a Multipoint Control Unit
(MCU). The MCU model in T.120 pro-
vides a reliable approach that works in

both public and private networks.
Multiple MCUs may be easily chained
together in a single domain.Figure3 illus-
trates three potential topology structures.
Each domain has a single Zop Provider or
MCUthat houses the information base

critical to the conference. If the Top
Provider eitherfails or leaves a conference,
the conference is terminated. If a lower

level MCU (i-e., not the Top Provider)
fails, only the nodes on the tree below that
MCUare dropped from the conference.
Because all nodes contain MCS, they are
all potentially “MCUs.”

Oneofthecritical features of the T.120

approachis the ability to direct data. This
feature allows applications to communi-
cate efficiently. MCS applications direct
data within a domain via the use of chan-

nels. An application can choose to use
multiple channels simultaneously for
whatever purposes it needs (for example,
separating annotation and file transfer
operations). Application instances choose
to obtain information by subscribing to
whichever channel(s) contains the desired
data. These channel assignments can be
dynamically changed duringthelife of the
conference. Figure 4 presents an overview
of multiple channels in use within a
domain.

It is the application developer's responsi-
bility to determine how to use channels

multiple domains simulta-

neously. For example, the

 chairperson of a_ large een
online conference may

simultaneously=monitor

information being dis-

cussed among several activ-

ity groups.

1 Error Control Channels Top Standard

2 | Annotations High =; Uniform
3 | Bitmap Images Medium | Uniform
4 File Transfer Low | Standard

TaBLe 1: CHANNEL SETUP EXAMPLE

 mee) Priority ‘Routing

A PRIMER ON THE T.120 STANDARD

0785

0786

A DataBeam Corporation White Paper

within an application. For example, an
application may send control information

along a single channel and application
data along a series of channels that may
vary depending upon the type of data
being sent. The application developer may
also take advantage of the MCSconceptof
private channels to direct data to a discrete
subset of a given conference.

Data may be sent with one of four priori-
ty levels. MCSapplications mayalso spec-
ify that data is routed along the quickest
path of delivery using the standard send

command.If the application uses the un/-
form send command,it ensures that data

from multiple senders will arrive at all des-
tinations in the same order. Uniform data

alwaystravelsall the way up thetree to the

Top Provider. Table 1 provides an example
of how a document conferencing applica-
tion could set up its channels. Reliable or
unreliable data delivery is determined by
the application.

There are no constraints on thesize of the

data sent from an application to MCS.
Segmentation of data is automatically per-
formed on behalf of the application.
However, after receiving the data it is the
application's responsibility to reassemble
the data by monitoring flags provided
whenthe data is delivered.

Tokens are the last major facility provided
by MCS.Services are provided
to grab, pass, inhibit, release,’
and query tokens. Token
resources may be used as either

exclusive (i.e., locking) or non-
exclusive entities.

Tokens can be used by an appli-
cation in a number of ways. For example,
an application may specify that only the
holder of a specific token, such as the con-
ductor, may send information in the con-
ference.

One of GCC’s most

importantroles is to
maintain information
about the nodes and

applications that are
in a conference.

Another popular use of tokens is to coor-
dinate tasks within a domain. For exam-

ple, suppose a teacher wants to be sure

that every student in a distance learning
session answered a particular question
before displaying the answer. Each node in
the underlying application inhibits a spe-
cific token after receiving the request to
answer the question. The token is released
by each node when an answeris provided.
In the background, the teacher's applica-
tion continuously polls the state of the
token. Whenall nodes have released the

token, the application presents the teacher

with a visual cue that theclass is ready for
the answer.

Generic Conference Control

(GCC)- T.124

Generic Conference Control provides a
comprehensive set of facilities for estab-

lishing and managing the multipoint con-
ference. It is with GCC that wefirst see

features that are specific to the electronic
conference.

At the heart of GCC is an. important
information base about the state of the

various conferences it may be servicing.
One node, which may be the MCUitself,
serves as the Top Provider for GCC infor-
mation. Any actions or requests from
lower GCC nodes ultimately filter up to
this Top Provider.

Using mechanisms in GCC,
applications create conferences,

join conferences, and invite
others to conferences. As end-

points join and leave confer-
ences, the information base in

GCC is updated and can be
used to automatically notify all endpoints
when these actions occur. GCC also

knows who is the Top Provider for the
conference. However, GCC does not con-

tain detailed topology information about

the means by which nodes from lower
branches are connected to the conference.

A PRIMER ON THE T.120 STANDARD 7

0786

0787

A DataBeam Corporation White Paper

Ficure 5: 7.121 GENERIC APPLICATION TEMPLATE

| Node Controller
Ii

User Application(s)

Generic Application Template {1.121}

Application Resource
Manager (ARM)

Generic Conference Control (GCC)
7.124

Multipoint Communication Service (MCS)
7.122/125

Application Service
Element(s) (ASE)

Every application in a conference must
register its unique application key with
GCC. This enables any subsequent join-
ing nodesto find compatible applications.
Furthermore, GCC provides robust facili-
ties for applications to exchange capabili-
ties and arbitrate feature sets. In this way, .
applications from different vendors can

readily establish whether or not they can
interoperate and at whatfeature level. This
arbitration facility is the mechanism used

to ensure backward compatibility between
different versions of the same application.

GCC also provides conference security.
This allows applications to incorporate
password protection or “lock” facilities to
prevent uninvited users from joining a
conference.

Another key function of GCCis its abili-
ty to dynamically track MCS resources.
Since multiple applications can use MCS
at the same time, applications rely on
GCC to prevent conflicts for MCS
resources, such as channels and tokens.

This ensures that applications do notstep
on each other by attaching to the same
channel or requesting a token already in
use by another application.

Finally, GCC providescapabilities for sup-
porting the concept of conductorship in a
conference. GCCallows the application to
identify the conductor and a means in
which to transfer the conductor's “baton.”

The developeris free to decide how to use
these conductorship facilities within the

application.

7.124 Revised

As part of the ongoing enhancement
process for the T.120 standards, the ITU
has completed a draft revision of T.124.
The new version, called 1.124 Revised,

introduces a number of changes to
improve scalability. The most significant
changes address the needto distribute ros-

ter information to all nodes participating
in a conference, as well as improvements

in the efficiency of sending roster refresh

information (from the Top Provider) any
time a node joins or leaves a conference.

To improve the distribution of roster
information, the concept of Node
Categories was introduced. These cate-
gories provide a way for a 1.124 node to
join or leave a conference without affect-

ing the roster information that was dis-
tributed throughouta conference. In addi-

A PRIMER ON THE T.120 STANDARD

0787

0788

A DataBeam Corporation White Paper

Ficure 6: T.126 Workspace DiacRaAm

' Virtual Pointer Plane
|

|

|
A

: -

tion, the Full Roster Refresh, which was

previously sent any time a new node

joined a conference, was eliminated by
sending out roster details from the Top
Provder. These changes will not affect
backward compatibility to earlier revisions

of T.124. This revision will go to the ITU
for Decision in March of 1998.

Generic Application Template
(GAT) - T.121

T.121 provides a template for T.120
resource management that developers

should use as a guide for building applica-

tion protocols. 1.121 is mandatory for
standardized application protocols and is
highly recommended for non-standard

application protocols. The template
ensures consistency and reduces the

potential for unforeseen interaction

between different protocol implementa-
tions.

[eioe

Within the T.121 model, GAT defines a

generic Application Resource Manager
(ARM). This entity manages GCC and
MCSresources on behalf of the applica-
tion protocol-specific functionality
defined as an Application Service Element
(ASE). Figure 5 demonstrates the GAT
model within the T.120 architecture.

Simply put, GAT provides a consistent
model for managing 7.120 resources
required by the application to which the

developer adds application-specific func-

tionality.

GAT's functionality is considered to be
generic and common to all application
protocols. GAT’s services include
enrolling the application in GCC and
attaching to MCS domains. GAT also
manageschannels, tokens, and capabilities
on behalfof the application. On a broad-
er scale, GAT responds to GCC indica-

A PRIMER ON THE 1.120 STANDARD 9

0788

0789

A DataBeam Corporation White Paper

FIGURE 7: 1.127 FILE TRANSFER MopeEL

Current ransmitter
* sourcing files A and B

 MCS Top MCS
Provider Provider

y tl: Oata Channels $:|1

Node that requires. Node that requires
fleA files A and B

MCS
Provider

tions and can invoke peer applications on
other nodesin the conference.

Still Image Exchange and
Annotation (SI) - T.126

T.126 defines a protocol for viewing and
annotating still images transmitted

between two or more applications. This
capability is often referred to as document

conferencing or shared whiteboarding.

An important benefit of T.126 is that it
readily shares visual information between

applications that are running on dramati-
cally different platforms. For example, a
Windows-based desktop application could
easily interoperate with a collaboration
program running on a_ PowerMac.
Similarly, a group-oriented conferencing
system, without a PC-style interface,
could share data with multiple users run-

ning common PC desktop software.

As Figure 6 illustrates, T.126 presents the
concept of shared virtual workspaces that

are manipulated by the endpoint applica-

tions. Each workspace may contain a col-
lection of objects that include bitmap
images and annotation primitives, such as

rectangles and freehand lines. Bitmaps
typically originate from application infor-

mation. such as a word processing docu-

mentor a presentation slide. Because of
their size, bitmaps are often compressed to

improve performance over lower-speed
communication links.

T.126 is designed to provide a minimum
set of capabilities required to share infor-

mation between disparate applications.

Because T.126 is simply a protocol, it does
not provide any of the AP]-level structures
that allow application developers to easily

incorporate shared whiteboarding into an
application. These types of facilities can
only be found in toolkit-level implemen-
tations of the standard (such as
DataBeam's Shared Whiteboard

Application Toolkit, known as SWAT).

Multipoint Binary File Transfer
- 7.127

T.127 specifies a meansfor applications to
transmit files between multiple endpoints
in a conference. Files can be transferred to

all participants in the conference or to a
specified subset of the conference.
Multiple file transfer operations may
occur simultaneously in any given confer-

ence and developers can specify priority
levels for the file delivery. Finally, 7.127
provides options for compressing files
before delivering the data. Figure 7 dis-

10 A PRIMER ON THE T.120 STANDARD

0789

0790

A DataBeam Corporation White Paper

Figure 8: NETWORK-LEVEL INTEROPERABILITY DIAGRAM

PROPRIETARY
DATA CONFERENCING

APPLICATION

Generic

Conference
Control

MCS T.122/T. 125

Network
aspects

MULTIPOINT
CONTROL UNIT

T.422/7. 125

PROPRIETARY
DATA CONFERENCING

APPLUCATION

 T.12207. 125

Another Terminal or MCU

plays a view of conference-wide and indi-
vidualfile transfers.

Node Controller

The Node Controller manages defined
GCC Service Access Points (SAPs). This
provides the nodeflexibility in responding
to GCC events. Most of these GCC events

relate to establishing conferences, adding
or removing nodes from a conference, and

breaking down anddistributing informa-
tion. The Node Controller's primary
responsibility is to translate these events

and respond appropriately.

Some GCCevents can be handled auto-

matically; for example, when a remote
party joins a conference, each local Node
Controller can post a simple message
informing the local user that “Bill Smith
has joined the conference.” Other events
may require user intervention; for exam-

ple, when a remote party issues an invita-

tion to join a conference, the local Node
Controller posts a dialog box stating that
“Mary Jones has invited you to the Design
Review conference. <Accept> <Decline>.”

Node controllers can be MCU-based, ter-

minal-based, or dual-purpose. DataBeam's
application, FarSite, for example, contains
a dual-purpose Node Controller. The

A PRIMER ON THE 1.120 STANDARD

range of functionality found within a
Node Controller can vary dramatically by
implementation.

Only one Node Controller can exist on an
active T.120 endpoint. Therefore, if multi-
ple applications need to simultaneously
use 1.120 services, the Node Controller

needs to be accessible to each application.
The local interface to the Node Controller

is application- and vendor-specific and is
notdetailed in the T.120 documentation.

INTEROPERABILITY

Buyers overwhelmingly rate interoperabil-
ity as the number one purchasecriteria in
their evaluation of teleconferencing prod-
ucts. For most end users, interoperability
translates to “my application can talk to
your application”"—regardless of which
vendor supplied the product or on what
platform it runs. When examining the
T.120 standard closely, buyers can see that
it provides for two levels of interoperabili-
ty: application-level interoperability and
network-level interoperability.

Network-level Interoperability

Network-level interoperability means that
a given product can interwork with like
products through the infrastructure of

11

0790

0791

A DataBeam Corporation White Paper

FIGURE 9: APPLICATION-LEVEL INTEROPERABILITY DIAGRAM

DATABEAM'S
STANDARDS-BASED

APPLICATION

Generic

Conference
Control

McS T.122/7, 125

Network
aspects

MULTIPOINT
CONTROL

UNIT

T.122/T.125

OTHER STANDARDS-BASED
DATA CONFERENCING

APPLICATION

=a
T.122/7.125

terminal or
MCU

network products and services that sup-
port 1.120. For example, T.120-based
conferencing bridges (MCUs) that can
support hundreds of simultaneous users

are now being developed. If an application
supports only the lower layers of ‘T.120,
customers can use these MCUsto host a

multipoint conference only if everyone in
the conference is using the exact same
product. Figure 8 displays network inter-
operability through a conference of dike

products.

Application-level
interoperability

The upperlevels of T.120 specify proto-
cols for common conferencing applica-
tions, such as shared whiteboarding and

binary file transfer. Applications support-
‘ing these protocols can interoperate with
any other application that provides similar

support, regardless of the vendororplat-

form used. For example, through T.126,
users of DataBeam’s FarSite application
will be able to share and mark up docu-

ments with users of group conferencing
systems. This interoperability will exist in
simple point-to-point conferences as well

as large multipoint conferences using a
conference bridge. [igure 9 represents

application-level interoperability between
two standards-based applications connect-
ed in a conference.

In the short-term, network-level interop-
erability will be the most commonform of
T.120 support found in conferencing
applications. This is largely due to the fact
that the lower-level T.120 layers were rati-
fied by the ITU more than a year in
advance of the application-level layers.
However, end users will not be satisfied

with network interoperability alone. For
the market to grow, vendors will have to

deliver the same application-level interop-
erability (or endpoint interoperability)
that customers enjoy today with fax

machines and telephones.

RATIFICATION OF THE T.120

AND FuTURE 1.130
STANDARDS

The Recommendations for the core

multipoint communications infrastruc-
ture components (7.122, 7.123, T.124
and 7.125) were ratified by the ITU
between March of 1993 and March of

1995. The first of the application stan-
dards (T.126 and T.127) was approved in

12 A PRIMER ON THE T.120 STANDARD

0791

0792

A DataBeam Corporation White Paper

March of 1995. An overview of the T.120

series was approved in February of 1996 as
Recommendation T.120. T.121 (GAT)
was also approved at that time. Stable
drafts of these recommendations existed

for some time prior to the ratification,

thereby providing a means for DataBeam
to actively develop products in parallel to
the standardization effort.

The existing ratified standards are being
actively discussed for possible amend-
ments and extensions. This commonly
occurs when implementation and interop-

erability issues arise.

T.130 Audio-visual Control For

Multimedia Conferencing

The 1.130 series of recommendations

define an architecture, a management and
control protocol, and a set of services

which together make up an Audio-Visual

Control system (AVC). This system sup-
ports the use ofreal-time streams and ser-

vices in a multimedia conferencing envi-

ronment. The protocol and services sec-
tion, outlined in 1.132, consists of two

parts: managementand control. Together,
they allow Network Elements, such as the
traditional MCU,Gateway, or Conference
Server, to provide T.132 audio and video
services to their endpoints. Some of the
services include Stream Identification,

On-Air Identification, Video Switching,
Audio Mixing, Remote Device Control,
and ContinuousPresence.

The 1.130 series is built upon existing
ITU-T conferencing recommendations
such as the H.320 audio-visual conferenc-

ing series and the T.120 series for
multipoint data conferencing. The T.130
series is compatible with systems, such as
H.323, in which audio and video are

Ficure 10: Aupbio-viSuUAL CONTROL ARCHITECTURE

User Applications

Node Controller

=eNon-standard|ITU-TStandard_____|Protocol(serserscercon|Protocol Entities

Generic Contersnce

Audio Video 5 ("eenea|Stream(s) Streams) . {i124 (GCC:
Muttipoint Communication Service

‘V.122/T.125 (MCS)

Network-specific Transport
Protocots (7.123)

Dat

A PRIMER ON THE T.120 STANDARD 13

0792

0793

A DataBeam Corporation White Paper

transmitted independently of T.120, as
well as systems which are capable of trans-

mitting multiple media types within a

common multiplex.

Unlike other standardized methods for

managing real-time streams within a con-
ference, T.130 provides some unique capa-
bilities:

* Contains a network- and platform-
independent control protocol for
managing real-time streams

* Coordinates operations across
network boundaries

* Processes and distributes media
streams within a conference

environment

* Delivers of Quality of Service (QoS)
to multimediacommunications

applications

* Provides distributed conference

management

* Leverages the functionality of existing
multimedia protocols

T.130 can be used in any conferencing
scenario where there is a need for

multipoint audio or video. T.130 relies
upon the services of GCC and MCSto
transmit control data, but the audio and

video streams are transported in indepen-

dent logical channels due to the transmis-

sion requirements of real-time data flows.

(See Figure 10).

T.130 and 1.132 were determined in

March of 1997 and should beratified in

January of 1998. 7.131, which defines
network-specific mappings to allow AVC
to communicate with the underlying
Multimedia Control Protocol, such as
H.245, should be determined in the Fall
of 1997.

VENDOR COMMUNITY
SUPPORT FOR T.120

More than 100 multinational companies
have pledged their support for the T.120
standard and more are being addedtothis
list every week. Public supporters of T.120
include international market leaders, such

as Apple, AT&T, British Telecom, Cisco
Systems, Deutsche Telecom, IBM,Intel,
MCI, Microsoft, Motorola, PictureTel,
and DataBeam.

Most supporters of 7.120 are also mem-
bers of the International Multimedia

Teleconferencing Consortium (IMTC).
The goals of the IMTCare to promote the
awareness and adoption of ITU telecon-
ferencing standards, including T.120 and
H.32x. The IMTC provides a forum for
interoperability testing and helps to define

Application Programming Interfaces
(APIs). DataBeam’s co-founder and chief
technical officer, C. J. “Neil” Starkey,
serves as the president of the IMTC.
Previously, Starkey served for six years as
chairman of the ITU study group that
defined T.120.

New MARKETS FoRT.120
DEPLOYMENT

The teleconferencing community is the
first market segment to adopt the T.120
standard. Because the technology is broad
in scope, it can be effectively used by a
numberof other application software ven-
dors and equipment providers.

The computing paradigm is rapidly
extending past today's personal productiv-
ity model. Over the next two years, we will
witness the development of a new genera-

tion of application software that incorpo-
rates multi-party collaboration.

Independent Software Vendors (ISVs)
have begun to adopt T. 120 as the means in
which to incorporate real-time collabora-

A PRIMER ON THE T.120 STANDARD

0793

0794

A DataBeam Corporation White Paper

tion capabilities into common desktop
applications, such as word processing and
presentation graphics. Engineering prod-
ucts, such as Computer Aided Design
(CAD) software, are also on the migration
path to T:120 technology. Other ISVs
with a strong interest in T:120 include
developers of fax, remote control, docu-
ment imaging, and “overtime” collabora-
tion products, such as Lotus Notes.

With T.120 technology in the hands of
Operating system providers and horizontal

application vendors, network equipment
providers are beginningto take notice. For
vendors of PBXs, network bridges, hubs,
routers and switches, 1.120 represents an
important opportunity to provide value-

added capabilities within their network

products. In the short-term, these features
will represent an opportunity for compet-
itive advantage. However, within the next
year, 1.120 supportwill be a required fea-
ture.

Finally, we can envision a whole range of
T.120 applications in the areas of interac-
tive video, network gaming, and simula-
tions. From Nintendo to DOOMtoset-

top boxes, the need for bidirectional

multipoint data communications is acute.

The ability to use a commonset of APIs
and protocols that are broadly supported
from the desktop through the network
will drive the adoption of T:120 into these
important emerging markets.

IMTC, ITU, AND T.120
Standards have played an important part

in the establishment and growth ofseveral
consumer and telecommunications mar-

kets. By creating a basic commonality,
standards ensure compatibility among

products from different manufacturers.

‘This encourages companies to produce
varying solutions and encourages end
users to purchase the solutions without

fear of obsolescence or incompatibility.

A PRIMER ON THE T.120 STANDARD

The work of both the IMTCand the ITU

represents organized efforts to promote a
basic connectivity protocol that will

encourage the growth of the multimedia
telecommunications market. The

Standards First™ initiative, which is sup-
ported by many industry leaders, requires
a minimum of H.320 and T.120 compli-
ance, which is enough to establish this
basic connectivityprotocol. Manufacturers
are then able to build on the basic compli-
ance by addingfeatures to their products,
creating Standards Plus equipment.

With Standards First, the IMTC has the

end users interests in mind. By ensuring
interoperability among equipment from
competing manufacturers, Standards First
also ensures that a customer's initial

investment is protected and future system
upgrades are possible. The IMTCis help-
ing to educate the industry and the public
about the importance, function, and sta-

tus of standards. In addition, the organiza-
tion provides a coordination point for
industry leaders to communicate their

interests to the ITU-T. As the multipoint
multimedia teleconferencing industry

continues its rapid growth, the develop-
mentand implementation of standards for

interoperability, and the work of the

IMTC,will be instrumental in securing
the market's future.

IMPLEMENTING 1.120

With the 1.120 set of standards in place,
third-party developers are faced with yet
another challenge—. implementation.

DataBeam's Collaborative Computing
Toolkit Series (CCTS™) has jump-started
the conferencing industry by providing
the first standards-based toolkits for devel-

oping multipoint, data-sharing applica-
tions. These toolkits encapsulate the com-
plex system-wide, multipoint communica-
tions stacks that allow application devel-
opers to rapidly embed sophisticated real-

time, data-sharing capabilities into new or

15

0794

0795

A DataBeam Corporation White Paper

existing products. Simply stated, CCTS
provides a seamless solution for parties

developing standards-based communica-
tion solutions.

As a result, DataBeam envisions an accel-
eration in the development of software
applications and network infrastructure

products such as, PBXs, bridges, routers,
network switches, and LAN servers, that

incorporate T.120. In addition, the indus-
try will grow well beyond today’s existing
paradigms and the world will begin to see

a whole range of new products and ser-
vices that incorporate T.120. Users wait-
ing for the standards dust to settle can

now feel confident that with the support
of vendors like Microsoft, DataBeams

T.120-based Collaborative Computing
Toolkit Series is the best solution for

industry-wide interoperability.

entterrrretrethteeheSSS ye nsTe

16 A PRIMER ON THE 7.120 STANDARD

0795

0796

T.120 INFORMATION

SOURCES

DataBeam Corporation
3191 Nicholasville Road

Lexington, Kentucky 40503
USA

Phone: (606) 245-3500
Fax: (606) 245-3528
E-Mail: info@databeam.com

Web Page: http://www.databeam.com

International Telecommunications
Union

Sales Service

Place des Nations

CH-1211 Genéve 20

Switzerland

Phone: +41 22 730 6141

Fax: +41 22 7305194

E-Mail: sales@itu.ch

Web Page: http://www.itu.ch

International Multimedia

Teleconferencing Consortium,Inc.
111 Deerwood Road, Suite 372

San Ramon, California 94583
USA

Phone: (510) 743-4455
Fax: (510) 743-9011
E-Mail: dkamlani@imtc.fabrik.com

Web Page: http://www.imtc.org/imtc aDataBeam.
Copyright ©1995, 1996, 1997 DataBeam Corporation.

All Rights Reserved. Printed in the USA.

Updated May 14,1997.

This document may be reproduced,
provided such reproduction is performedinits

complete, unaltered form.

FarSite, CCTS, and DataBeam are
registered trademarks of DataBeam Corporation. All

other product and brand namesare trademarksor
registered trademarks of their respective holders.

0796

0797

eanespedoiteeS[Od0jOlgJSAETWodsueilSyL“E'E

UdIN[OsdySsaippypileGYyVect!WSjSASSWENUieWOGSUcce

ZjsusssU]OU)PUEddlSleUMZUonsnpeljuj‘1

$}U9}U09“sadedjeu}JOUOISJ3ApayepdnuesiJUaWINDOPsil‘pesIsNHny¢guo‘ays4aydoy1134}UOpajsodpue‘5]/NJ9}U]9Yy)}0}paywiqnsAqeuiBiuiosemsadedsiyt,666Lbwdyez‘oul‘sajelsossyHHJajssay°9AiesgjaUJa}U]9Yy}pue$1090}01ddi/dDLJOMAIAJ9AQUY

Bulues]peseg-qesy/pa]sojonssu}
DRIAG}Gpasly

2002‘62Asenuer|e8ed--7007/62/10.“ysuorearqnd/Aresgi/wi09||aan//:dy SUGHEOUGNE_RISBy

4ajayesoFOsdyYONDSASSEPDOUNUOS80JNOSBYJ3UIO«SenayuonesiqndSUMFSapIpy-Sy00g-SUOHBSNGNdHPIS

0797

0798

aIeyJayUlPAEPUL]SBU}BWOdagseyJeu}|O90}OJdYJOMJOU-JESNBJOJUaWIdOJsASPBy}SEMLINVWdHyau}JOs}insalGunse|jsowayyjosuQ‘GuryoyimsjayoedOo}MauaJamJey)SjOIO}OJdJoJoquunueO}ay)aAeB|ANVduYfeulBu0ayy‘e261AqedosngojsuooauU0Opeypue1/6)Aq‘SNlejuaunuosay)pauueds|ANVdHv2)‘6961JOpuesBy}AqSapouNOYWIAA"Y19N12palleysulSEMJINVduy2u)JOapoujSiyOU}'G9GLJequajdasuj;(N@g)UEWMaNpueyaUeJEg}/0g0}yJOMjauBulyoyimsyayoedeAojdappueubisap0}}9eU0SBepapseme(Vy)AouebysjoefoigyoeasaypeoueApyoy)'g96|JequiadaqU}‘Sfau}U!SayISYoJeaselPEpuNn-GogJOsUUOIA}UI0}JUsUULadXepapuN)(GOq)esUajeqgjojUsWPedsg‘s'feseueBaqjoWa}U]WepoWeYyL“SMIOMJSUB}epjedWOUOIE‘jSeJUlINSe1AjUSPayiWsuUes)eJOBZiSOY]UOwijseddnuepueBulxajdyjnwjeoynsijeys‘joesul‘jnqssasnjeNnplAipu!O}payeolpapaqoO}JeaddeseoinosasuOHedIUNWLUOOJOMjauU‘UO!IppeUj}‘SWaf;qoldsuney-jo-juIodajGuisBurjeuiwijs‘Ajuapuadapulpayesedosjusuodwoodjeyeu)OspauBbisep@qPiNnoosyiomjauHulyoymsjaxoed‘saiaegpueueleg0}Gulpioooy‘paleoaqpjnomjeu}sunByepau)JO}JayxIedWa}OY}PSUIODpukey'fBU]LUBd!AJASJe}SOgBu}JO}¥JOMJUapUedapu!U!Bap!JesepaysebGnssaiaegpjeuog!aq04JIY‘SN84)JO}Odas&UlYOMJOUByepPIeMIOJ-PUL-BlO}S‘JUSIIYa'}SNqosepaquosap‘uoHeJOdJoDpueyoy}jo‘uelegined‘Z96|Ul‘sedunosasyOMjauJOasnjuaOIyauApyBiyuisyinseyGBuryoyimsyinouio‘(awjopowedpoys(yaaeBuynp4N390SUOISSIWSUBJ)AU}JO}SOW“9'!)suNjeuUIA}SinqSIDyes}EJeEpsowasnedag‘sueeApaipunyeApeauJoysyOMjauauoudayje}oy)yoAGojouyos)ay}‘Bulyoyimsyinowo‘Ajaweu‘Aepay)JoA6ojouyoa)yJOMjaUSUO!eolUNWLOD3|9}UOLUWWOOsowauAqpoised‘eyepAueuiqpuejx}ajdutispesiduwioopajsixeUoedUNWWOSJayndwosayWEY‘SO96}9u}0}JOU(yousaquU]94}PUR)di/dOLJOUOIINJOAZSUL“4-2‘(L661‘JaISNYISgyUOWIS)UOATyIe,]pueJaLyeHaNeyAqjousazuyay)josUIBUEayy:a}e7dyAelSspsezipyesaupue(S66|‘Aejsay,-uosippy)snjegJajeqAq““puotegpue1INYFINIOlLANVdayWolyJeyaysBuysegeuseU|ey)JOSOUO}SIYJUa{J9OX9OM}Ped)0}paBinsuesuapess'yyBisu;pueUONeUWOjU!jeEUOHIpPpeJoy‘Asojysiyau]JoawosssnosipJIMUOHDesSsiyyjpaj|GuimpajulAjayluyapJSOWaeSBVO}SIYWAU)‘JUBIYIPaveJaUJayU]BY)PUBS[ODO}OJdqi/dOLBUISIUM€JOUII}U]OY}PUL_i/dDLBeJEUM'Z
“UOHEUJOJU]PaylejapasoJO}SaduNOSJayyOAUewWoO}Bulayas‘julodBuyeyspueapin6jagesejueatwSI}‘Ss}deou00pue‘sw4a}‘AJO}SiyUOsiseydiweUBUM‘di/dOtpueyauayy}OU]JOMBIAJBAOPeQuqeSaplAoudOWsWsiy|ja0dedsJAYSjoJIU]JIaU]PayoeasBAeYSal0jSyOOGesnedsgslowazvOUNeOQ}JURJONIaJBieSJaysiqndyey)syoogyonsAueWOSaleBlau]‘SUVAJBsBAVSJSP]BU]UlBlqeyIeEAeBWOI|qaAeYJeu}SMOUSAUSASPU‘sasiNOd'sajalpe‘syoogjaUsa}UlPUBdi/dD1JOJequinuyueoyiUBisay}useqseyesnUlYyMOLBSiu}jouBisaug‘(jsiasnasuajulAyjeas10)AJUOpuke)SwaysAsJayNdWOOJoJaquuNupaywiyeUOaiqeyiereAjua1aMmaw)auyeJEU)SOlNpuesjoo})ay)Hursnase‘awyssiyyyso}AUEW‘pueyausayU]ayyBursnaveajdoedjosaquinuBuiseasouluyuoHonpoljuj‘fb

 SUONEIADIgGYpuesuAUOISY“5$3DINGSVONESWIOJU]JDUIO‘pABWIWNE"e'ssuoeSddy“FEddgnceeZe8ed--7007/62/10“yysuoneorgqnd/Areaqiwos[iyan//dpy
0798

0799

‘syedaaJ4j)S8SHdWOdaINjONSMAUSUL*JEUJa}U]DGNday}U!AjO1S,4{SNBy)eONpaloO}ade]dUljndsemUe|lde‘PEELUI
‘SSN{je0}YOMJaUau]UadO

0}S4SiASN-UOUWOJ}oINSsaidSSUBJUIPSUIEWABJ9y}‘SSOJ9YUPBAEN‘BdiAJeSBUOGYIEeJOUE}U|[elOJ@WWODeepiAoidpueajowoud0)saiGojouyoe114NNNpuke‘(1Sd)jeuoneussjujswa}skSsoUeWOPa,‘So|WO}yjeiauagAqpawsoySEM4aul‘L6GUljSJeSNei0d-pueypuediwWepedeoO}Ajaaisnjoxepabuojeqgaou0yeu)JBUIS}U]BY}JOsaijtiqedesauyjoJejnogejnoBulpuyMOU3J8MSJBSN(BlOJBWLWOOPUB‘SolasPEWJBULB}U|pue‘aniagndwoy‘|OW)peyoeuu0osAemayebjen)e‘696Ul‘JeuJa}U)ay}azZIVeIOJaLWWOD0}ainssaidpaseaoU!SemoJ94)‘UOHIppeU]‘SUOHedUNWWoDpeeds-yBiypueBuyndwodednsjoseaseayyulyQJeasadJoBulpun)ayy0}yoeq060}peajsulpayuemyng‘syompouBuipunypueSuluunsjossauisngau)UlaqO}JUMJOUPIP}!JEU)PSPlOep4SNSU)‘EBB4Ul
‘Saylspapunj-4SN

pueSUNNSU!FeEUOI}eONpaJOYsyuUlodUOND@UUODjed0]apIAOid0}(SqS])SYapiAOdBalAJesJoUIAa}U|;eUOIGaJJoJaquinuePapunyosje4SNyj‘aw!JOpoedsityBulsng“166}40pusayyAqsayeu(Sdqw9EZ'yy)EL0}BUOGYDEq1ANISNOu)JOuolisueoy)Buisiuednspue|IN4ISNeu;BulbeuewJoyajqisuodsasem'|QWpueWAIAQpetusoyAUedwodyWYoud-uoUeB(SNiv)‘OU;‘SadlAJaS9YIOMJONPeduRApY"JOWpue‘Wa!‘(UeBIUoIWJoAlissaaluA84)12poseyenbpeayyiomujeuo!balayeysueBryoiwe)wayGuisudwoswniposuoseAqpasijiednssemylomjau,pabeuew-Ayeuoissajoid,e0}uoesbIy‘6861UlSyul|(SAQWpHS'L)LL0)papesBdnAjajajduoosempuesyul|Sdqy-9gpesiidwooAyeulbuO|INASN8UL
‘(uoND9UU0I9}U}

suuayshguad¢ojUONesBiwjojeobayewiyjnayyYM)APANO@UUODJA}UIJOYPaAojdWeSEMgi/dOl‘ainyeuuljooo}OudNjnNwWAja6ie|esamsuoeoiydde13NASNAyesyGnoufy‘yeusa}u]ay)seAepo}MOU8MJe)BUOgYIeWau)BulwozaqAyjenjuanad‘syomjaujeuolias4SN-uoUpuepapunj-4SnyjogUsamjagAjIANO@UU0DaplAgidpueMOI0}panuNnuoSLANASN®8UL‘aSnyelosewWwod-uOU0}OIWes)paywi]ISNau)Aqpeuyap,AdjOgaspayeudoiddy,au)‘aioweung“SW9]SAS[ENPIAIPU!JOJWSIUBYD9WUONDBUUOIIO}U}UBSBJOU'SYJOMjSUJALYOJOYaUOGYOeeSepapuazU!AjjeulBOSem“LONASN8u)pegqqnp‘yomjauSIUL(YVON)YoueesayoWeydsowyyJo}JeJUeDJeUOHEN9)PueSud}UaOJa}ndwodednsjeuoiBalpapunj-4SNJNO}JOOUUODIAa}U!0)YIOMJaUBUOGYOReYING(4SN)UOHepuNoysoUa!DSJEUOHENBy}‘OBELUI
*XINN

(uonnquysigaemyosAgjax19g)GSdz'p‘UOHejUSWadU!X(NNSBlusoyeDJoAyisuaaiucau)JoyjausaySUOI}eolUNWLWOOBY}UIUOISNJOU!Sy!YIMgi/dOLJOAWuejndoday}ul}sooqaBnyeMesosjeJeshJEU]‘WJOMANe1eGesSuajaqau)Jowedaweseqpuedyes)AieyilAied0}pasnSem‘|QINTIpallies‘Jayjoauj‘sayso1WepedePueJUaLUdOjeAap/YyoeasSalJOSULOIDJ9}U!OFPEsnSEM‘LINVdYVPaes|iys‘UeuOdWO.BUu_‘s}JUBUOdWODOM]OFU!}IIdSSEMJANVWdHV8}'ERELUl
“LANVdHV34)JO

eoueyoduw!pueadoosay)GBuloueyuaJaypNy‘suo|eoiunWWwodjney-Buo]10)ayins[oD0}Q1dqj/dDey}BsnpjnomswayshsJayndwossay)Jo[]eJey)Pa}epuewGogBuy}‘EgELUl(GEE)JequiaceqUIpeseaja)semUO!}eoyioads‘gAq|10'gUOISIBAdi]84)‘uONIppeul)Way)Oo]palddesuoyesijipowjesaaaspeyareyy0qYBnouye‘1gE)JaquiajdasulUa}MalamAepo}SNUOWWODUBeJEU)d|PUBqO1YJOgJoSUOISIBAJEUIBLIOBUL‘di/qdo{SeAjdwis0}pauajasAyensnsi‘suoyesiddepuesjooojoJdjoUONDa]]09able]eoO}SuajasAjjenjoeYoIyM‘aysjODO}OJdBy}SN)‘;osO}Q/dajBulseseAjeuolounypauoisiauaAyeulBuo0a19M|PUBqOt‘(d])|ODOJOJgJOUIOPU]PUB(qOI])JO90JOJYjouJUODUOISSiWusURs]94)UodNpeseq‘LINVdyV24)noUBnoJY)pajuawajduypuepesodoidsemsjoooj}OJdSUONBIIUNWWODJOa}INS}sNgoJalow‘MauGe'pZ6}UY]‘peoydyyje2)yOmjouBuimos6ayyuymdnGuldaayjoajgedeou!aq0}paaoidGON‘J8AQMOY‘BWi}J8AQ(qON)JOD0]01JOJUODYWOMJSNBu}PayjeosemJINVdHYVeu}Ulpeonpoju!jooO}OJdSUOIedlUNWWOD}SOY-O}-]sOYJeNU!By‘BDIIBSGZXSudsJoWedeMouSIJaUajaL‘BuiweuasyonwJaye‘p26ul‘solA1aseJepPayoj|Ms-jax9edjeioJaWWODe‘Jauaja!VWe}s0}NGgpebe:noouaaoepaqulwPsepueys,SIYL“GZXUOepusuUOIaYy(11/99Aewoy)t-AL|‘Afaweu‘syomjaupayoymsjayoedpuesuasnueamjeq¢a8ed--7007/62/10“ysuoneorqnd/Aresqy/WosiyMavay//-dyy
0799

0800

“LANVduv3)Jo(asituappue)ymol6eu;BuyUsWnoopsdewysomjauJoJaquunuepayuid-as(OBBLJ8qO}9O‘mainaysuoneaunwiwoyJajndwog,sdewLANYdHvpeloa|as,,)Uyey8H8D‘0664Ainrulpauolssiwwosapsempuke'JBU9}U]OU}0}PBAOWTIYJes}PUBSayISSeSOK]B12]84)GulnpsayjewspueJajewsMab})ELANVdYYfeulGuoay)joyeyMpuy‘SIB@A[EJBARSJSP]BU}JO}UBEqSeyPue‘SyyUOW@AJaM}0}UB}AJeAe@zISUlBulqnopSs!jeuse}U]By]JEU}PS}EWsSesi}‘SyIOMJEUCOO'OOTUeY}ssowWBuNOeUUODIA]UI‘NoY-jeyAJGAeJUBYOe}eYOMeUMAUejNogejoajeJeyeBuimou6siyausayuyays,‘gEG)AJenuerAqsysoyajqeyoeasolfOEAueaupeyyousayu]au)‘Wey0}Bulpsoooy“ABAINSUlEWOGjSusJS}U]Jenuue-lWweseSayNquySIPS,PJEZIAAYIOMION(962135).(L661-1861)YasJauUsazU},UlpayUSWNDOpSs![GE]pue196},UsemjeqyMoIByauZayU]“YMol5enuauodxsAjjesa}!]psouaiiadxeSeyYJOMJOUBY}JEU]JOY‘9B6LU!SaysJOJeqLUNUJsepoweUMPayeRysosjeLANASN81“E86!UlWIdsSem}!as0JeqSepouQOJepuNysnfoO}MaJ6pueB96LU!SepoUsnoYIMPayeySLANVGHVeUL
YIMOIHJOUIIIU]*7'Z[9861Inogeaouis,AemesieakOm},UBEQBABYS|ODO}OJdISO‘mopuimBuipijse@joajdwexaayewninay)sjugsaidadjSCOyey}JNOpajyuiodaakysiaAsasqoAyjsnpu!BWOS:ALON]‘juawainbal,AjUO-|SO,,AY}Goppukeqi/dO1ayesodsooulpinoysqiSOjeu)peysabGnspeelul(LSIN)A6ojouyoe)pueSPJEPUEYSJO}S]NSu|JEUOeNay)WOWodae‘Ajjeuly‘AjaAyOedsal(qN1D)|Oo0jO/qJaAe7]YIOMJONSSO|UOHOBULODayypue(vd1)pSSEIOjoo0}OJgodsues,ISO9y}Apejnoiped‘sjooojoid[$COU!ayesBiw0}payejsseinjeajgq]puedOLAuewseSpyomjogJo1saqay)jnogeBungojJayja6o)YOMO}payelsSSI}TiUNWWOD[SCOpueJauWaj}y}By}‘powedawessly)BULING‘di/dD1JeAoayesado0}suoHeatidde|SOsmoyjeaieMOSAGOS]‘Geqey)JO}UOVeIBiwW(SE10}yoeoiddeueapiAoid0}OGGLUlpadojaaapsem(4QOS))JUGWUOJAUJUSWdOjaAsGqOS]eu}‘ISJI4‘JepsJOUlaseSUOHBAJaSgOJOJOQUINUB'SSBJBYVSASN‘BJEQIPdi/dOL‘SA(SO9u)U}UONIsodeaye)0)OWAWsi4}JOasodindau)JOUSI}“aJINsjoDO}O1dUODeUUOTIE}U!SWa}sAsUado}easay}‘AUeWJOSpUlWBu)Ulaweddi/ddO1alumAemesieadjoajdnooeNsaseamsyonpoldISO[LW78/9eaeq},epooBuiluunspuesnsuasuosyBnolulaasiiaqaAA‘Bunoapue‘syuapisaid‘s6uryjoalesaaa,989s9au)UOdNpeseg‘(SaISISN/WdHyvJOJaquunu|jews84]O}anpjewssemAjlunwiwoduadosiy)joszisay)yYBnoy)e)JuaWUOJIAUaUadoOUBUJNOpaleoUsaqSAeMlepeYyUSWAOJSASPdi/dOJMasyousajyu]oy)SeSOBELB12]94}GuuNppanuNuodqi/dD1Joyuawdojansp‘ayepuewsi}ayidseq“‘pepnyjourjouSemdi/dOLpuejuawWAsAcbjeJapajay}0}pjossyonpoidAqpayioddnsaqojaAeYPynoMmyey}sjooo}oldjo18s94)PEUYEp(ISON)SiOdISOJUaWUIBADD°S’Nau)‘Auanbasqns‘jnopaseydaqPINOMqI/dO1JOBSNpueOGELisnBnyAqsjooojo/d|SOssnoO}BAeYPinoOMsjonpodsuOHedUNWWODJajNdwod|eJey)payepuewGogay}‘AemesieahJoajdnooeAjuoeamsyonpold|SOpuesuOVe|deiempleypayiutjUOAjUOUes!BOUISUONN[OSAJejaidod‘wiajuluesePaMAIAMOUSEMdI/dOL‘S|090}0Jd|SCOIJdopeoO}aSOYdJUBLUUJBADD°S'f]BU}JOJSOWPUeGogau}‘ajiumMUBaW'ggELu]

"g661AqpapuaBulpuny
SIY]“JUSIOIYNS-yjasAyelorsuWODBWOdeqO}BulpunypsonpalJosuBaKBAI}UBAIB818MSqS]PEPUNJ-4SN‘UOHIPpeu|‘J@UJa]U]BU}40}SjODO}O1dHurjnosayenbapeainsuso)‘SpGiybUiGYyay,-¢‘4661ul(SdqW80'ZZ9)ZL-D09)papesidnAjajajdwossemji‘(sdqwZS'SSL)€-90JepayesadopueGEsGlU!payjeysuiSemYOMJaUSIU]‘OWAgpayesado‘S19JUSDPBPUNJ-4SNPUSGYNBy}BuNDoUUODJA}UIYOMJaUB'SSIAIDSYIOMjaNyBUOGYIeGpeadsYHiAISAau,Zz

‘uonessdo

ulOSjeB12SGN4ASN-UOUJesanes‘(°'9'q‘UuO}GulyseA,puke‘OoSIOUBIYUBS‘IO,MayK'OBeDIND)SYNYonsinoyBuipunyAjuosi4SN84)YBnou|y‘JOSUUOTS]U!pinomSq}|ENPIAIPU!B18yM‘(SGYN)S]UIOgSSIIYYIOMJON1 poded--7007/62/10“ysuoneorqndsArwigi/ui0s|Man//-dyy
0800

0801

ca

‘6664

aunrAquoljjadwoo0}pauadoaq0}seyssauisnguolje.}sibaayyUBnouye‘o00zsaquiajdag0}papuayxasemJ92U09SISN‘UOHIPpeuy“SLU2BUJOUJIMSUIEWOPasou}UISaweUJe}siBaJPjnodSJasnjeu}}NgSUIeELWOPasOU)JO}JOJesjsiuWWpeBOSBU}VIEWS[IM[SNJey)paploepsem!'QGG|49GO}90U|“SUIELWOpPBSoOY}JO}UOI}B.Ss1Ge/ay)dnyoIdpjnoysOYMSUIWJa}ap0}pal}BUOAJBASB]IUMSal]|esBABSPapus]xeSEMPUeBEEL[UdyUlJNOUeJOBjUODS,|SN‘SUIBWOpnpa’pue‘jau-‘hyo’‘woo’ayyJoyAyoyneuonesjsiBasaaisnjoxepeypue4SN94)JOyeysqUODINJa}U]ay)payesado({SNY“OU["SUOIAIGOSHIOMPSN‘egg,utBueys‘yousayUyau)UlSaGUeYSJoajdwexeaBuljsasayulueS|OINJE}U]SUL‘jauJa}U]BY)UOSaSSauppeqjpueSaWweUSOYSayjOUOIaJEU)aseqejeppaynqijsipau)‘(SNQG)weishseweNUleWwogeu]JoJUewWeBeUeWpukeUO!eU!Ps009fJeJeAOBy}JO}ajqisuodsalosjeSEMO|NJA@}U]ABUL‘SUleWOp‘S‘f-UOUBul|pUeYPLOMau)puNcUeSO[NUM‘SaweuasayyjoAyoujne|jesaa0pey(SINJ8IU])3Sj]US4VONEUTOjUHIOMSNJSUISjUjou)‘ge6eLjudyjyUN‘AjWOUINeBulWeUG7,a4)Aqpaubisseaesoweuulewog‘(YNVi)AidoginySisquinNpPabissyjauTSjUjay)AqpeBeuewusagqAyjeooysiysey(SJoquinupajejal-qi/dOL[jepue)aoedsssosppeqjoy]‘eweUjsoYpue‘(jeuUOydo)UleWopanspueUleWoOPp‘(q7L)UlewopjeAa|-do)eBulsisdwooaunjonyysBulweujesiyosesaiye@sSnsysoyyouazU]‘AJANOeJUGINOpueASJBAOJ}UODBOSJOJOe/qnsoY)S!SelUBUUIEWOp}9UJ9}U|JOJUaWUBIsseay)‘sasodindjeuo!eJedoJO}JOUJA}U]BUYJOUONBISIUIWUPeBU}0)PayejesANoeuipyouYBnoyly(sontogpue)samenUeWwog“pz
‘suojeziuebloJaquaw|Syi4ey)AqpayeppoespuepeoueyuaAyeas6siAysnoasyOMjaUJBUIA]U|‘POMay)NoYBnoU]SqS|pue‘selouebejeyUeuUIaAOG‘sajunooAuewBuijuesedas($1449)swee)ssuodsayAouebiawzysayndwoyjoJaquinue&joJO}euIpsoooeu)SiSBS]AjiINSSSPUESSUOdSSyjUSPDUjoWnidTayye‘yousayU;[EQOjGau}UIyyIMByesadosEyU!0}(SqS])SI@PIADIgBAISJOUIa}U]S|SISSEofBUSSUIBUYjSUISjUjou,"JOUIOJU]SIN}NYOU]JOUOINjOASay)0}BDUR}IOdWjoyoseasaBuyjowod‘sdnoi6yesseaW9}-Buo]josaquinuesasidwoo(4yi)S007Yse]Ysieasayjoussjujau)©

‘S3LAl

ay}0]UOIeUIPSaplAodHSI]YL‘gv!84}40ApogJayjoayysi(HSAi)dnGicyGUNSajSGULSSUibUZjauIsjujay),JousajU]SAepoyUiajoypus“punsibyseg“Ajojsi7—FTSj,uipunoyaqueosseoojdspsepueysJauUJS}U|BU)Pue+413]By]JoAJO}siypuepunosbyoeqay)‘SeinpsoojdpuesauljapinBdnos6Burysom413)ay]SequosapYay‘Apaanoadsas‘90S]pue413]ay)ueamjeqdiysuonejasau)puessedoidspuepueysALASy)Ulpaajoau!suoHeziueBioayyaquosapTEO?pueBZO~SOY“PE61JOpueay)yeApogspiepuejsBuoNeuUsayUlUBSB413]84)payipeso0eCEOS]yeu)YUBnousjueoyIUBIss}SuONeayiIoadsesayyjoyOedway]‘sjooojoldpuesuoyjeoyioadsBurumBuipnjoul‘yausezU]ay)JOSaIPANoejedUYyoe)ayJO}AyigisuodsasAuewiudaaeysdno6Buljom$,415]2uLgy}84)JOseipogAsewidomyau)JoauoSs!(44])80J04YSe]LBueaulbuyyausjyUjeuy"JQUJaJU]GY)UOSAIAHOejeoUYoe]pueannejsiuiwupesuJaAob(Gyi)PleoSSIJIAISYJSWSjUjoul“pleogSaPANOYJEWS}U;Sy}JOJSUOI}BDIUNLWWODpukeWYyBissaaosapiaoidosjeDOS]‘suonedjddepuesaiBojouyoa)Gursomjausajulsj!pue‘jeusayU]ey)JOJUOIWEUIPIOODBuipiaoiduoieziueBsojeuoieusajuljeyuswUssAOB-UOUeBSI‘ZGG]Ulpasaweyo‘(SOSj))AjsindSJSuTejuou,

 ‘queSaoUnejausayuljUeIUBISau]BuOWY‘O}8‘UONeZIPJepue]s‘jUaWdO|eAepjOD0}OJd‘Bulweu‘Bulssaippeseyons‘AjjesyusopoBeuewoqAjuouedyeu}sBuly}asou)eBeuew0}‘aAeMoOY‘JaUJa}U|SY)10}posinbs,siAysoujne(esUeoBWOS
jpaziueBojjamyeu)Ayeau

JOUSI3}BU}We]swWoOsynq‘Ayoeue0}pasedwoousagseyJausayU]BY]"JeUIa}U]9)(joUOIWOdeB)SayesadoaUOAIeASJA‘JO}eJOdOjesJUSSOUSEYJOUJa}U]BU‘JeuUsazU]BY)(JOUONJOdB)SUMOBUOAJAAa343A‘JaUMOajGulsOUSeyJaWa}U]BYL
UOHeySiUlLUpYyyOUJazU“E'Zgaded--7907/62/10“ysuoyeoignd/Aresqiwoo[pymandy

0801

0802

(SINJ}U]84)

Aqpasaysiuiwipepue[iSUnddBUIIOMjSNjeispsyj“S‘F{eu)0)peyeBajep)seloueBeyUswuseno6jesapeg“S'f)‘0B’Ayeas)jeuoyeusaju!AqpaysiqeysasuoyeziuebsCyur©(AysiBaypaseysayypueOINJA}U|94)Aqpaajysiuiupe)SUOHezIUeBIOyyOld-UON‘Bu0"(Aysibaypaseusay)pueD/NJe}U|BuyAqpeseysiuiwpe)syaplAcidYIOMJONJeu"©
(OINJ@}U|84)

Aqpaiajsiuiupe)sanisueaiunpuesabarjooseaA-p0}paywutyAyjensnAepo;yBnouyye‘suonnyysul[euoHeoNpy:npa’(AqsiBaypaseysoy)Aqpasaysiuiwpe)suoneziueBiojelnsewWwod‘w/oa’‘apnjpoulSuleWwOp[aaj-do)9ueUeBapim-PHOAA‘@WeUUIEWOP(aAd}-do}&YMpusSEWeU$}SOUJOUJa}U}*}/2]-0]-}4HWO)pealS|BWeUay]J!pOOo|SJepUNjseqS!aJNjONJjsaWeUUEWOPau] uledS)"YS‘UieWoplajt

‘STi)uOhes0dI045spusipqsi(Wopbulypau)jousayuyjenn(SHYSSA(uewUaGg)SyJeuUpegaja,

SN)YOHE1OGIODNOY (USpeMs)WasysKSUOVeUTOJUTIO”Biuojejyed)ejeuiwisy(Wopbuis/Psjiui7ySSWeNisN

(epeved)j5sii

CSA)Tsiv(S'/N)AyjsiBayeweNUleWwogUBdeWY“S$7i)WoxsuieWopiiy
(sn)suo}Vv

 (AGMION)SiSAY(epeues)AUedWO4ABOOUS|¥(SA)SU/“SAUSAYTEN6

(Wedef)payeiodiosuyHsu(€peues)siejsibsyUiewi6gjeuisjuj

‘|aseud

oyesessiba,&seaxJeW94)Ja}Ua0}BIQe9q|||IMPpueSpiepue]sUOe}}pes90eSs}!JawpeYyyeu)SatUedWODUBDYddeJeyO6ZJOISI]epaounouueosjeNNYD!‘sue.)si6a,payipasooe-NNY9d][120)pauadoaqyimSulewopBio’pue‘yau'‘wos’BuyJO)washAysibaypaseysauy‘owyeully666)‘euNr[UNUML{IMWesGoldpaqsa)Jeu;s!6a1aAnedwooau)Jo|aseyd
(S':q)WOsTSjsi6S)(eyeysny)i°(aduel4)SUBS/O/WoOssjsjS5veTje(jeuOeUsE}Uj)(SIEHSIBSYYjo[OUNG4jaiiiajuj)FYOD e(S'n)‘DuSuuBsuswy«:sulewop610°pue‘jau"‘Wood’ay)JOJWa}SASAljsiBayPaseyseaynadusooMauSy}JOWedaqO}payoajasUsaqpeysalUedWodAlyey)psoUNOUUeNNVD!‘6661‘LZdyuO(OSd)sjuswubisseJajawesedjoooj}o/dpue‘(OSy)Sesse/ppedi(OSNQ)seweuUlewopBulpnyjoul‘AyyIqisuodsaiJoseaeSs}!JoUONeNSIUILUpeBy)JO}Ad|OdayealooO}(SOS)suoneziuebiCwoddns|eJeaesWo}|IIMNNWO)‘HOddnsAyjsnpulapimpeaiaoasseyNNW9I‘(jsededsiyjJoadoosayypuokaq8MStyoIyuM)AsJ8A0JJUODBWOSUIpepuNoONsysYBnouy‘SNCsu)Je]SIUWwpeO}F(YN)UORSNSiNPYTOReWISjUjPUPSUOIES/UNWWOSaja|JEUCIEN‘S'qau;AqpayeuBlsapuoyeziueBioBu)SINNWOI‘8661J8qo}90UIpawod‘(NNYSI)SJ@qUINNpUeSoWeNPSUbissyJO}UOljEIOdIODjauTSyU]ou)sisuoyessi6a:Q716ajpueyo}Apogjsamauayy‘apumueay|

 9a8ed--7007/6Z/10““ysuoneolqnd/Areiqiuos[iyaaay/:dny
0802

0803

A

"SODIAISSUONeWIOJU;GuipiaoidsaiyyUsJO)ofUs‘SOIPANOBJUBWUIEPaUa/UO|}easI91Hulziseydwasajyyjua40}Jay’‘SalAyoRJusWUIeVJa]UapuejesnyjnoBuiziseudwesanyueJo}spe"MMM24}0}pajejassaiaqoeBuiziseydwasaiyque40)gam’‘aseyoind0}spoo6Burayosassauisng10}a/ojs"“SWUIJO‘S@SSBUISNJO}UHI,’

'$Q115meuusaasjouoHee/0BuypesodaidNHY|Sul‘2664Aenigasu|(sq716)sulewogjaae]doyjeqo|6puesauysi6e:Bujweujeqoi6jeuoiippeysijqeysa0}jesodoJdeJaAoayeqapjeuoyeusayulayy10}yuiodJed0}esejoeO}.puesanssiGulweuesau)joawossAjOsel0}pawoysem(HHY/)SSW90H

 AuieyaquedsaweuMoyjnogeAsjeAosUODpasnedeAeyasnjeuONeWaju!pue'ezisWOMjaU‘A}ANOE[eIQJeWWOOpasealouljosesnsseidau}ynq‘sieaAAuewJO}jJaMmPayJOMSeyJuUaWwebeueWpueyUaWUBisseG71JOawWaYyIsoUt“O8FTSAYulpunocyaqAewulewopsnayyjnogeUONEWJOJUBOW](JUOWWAA‘AYOPeYDU!JO}SIG[OOYDSUNOSUaPUSIYDBu}Ul[OOYDSJeJUaDayOVeYDau)O}SJajauSN'IA‘ZLyPSso’'sooulewopau}''B’a)snapoo-jejsod-ajeys"Z|JOUISIP-JOOYISjOOYyISWO}94}BuisnAyensn‘AjapimAieaueoaoedsaweuZLyaul‘(AJaJeSJIqGngJOJUBWUPed|QJUOWJBABl}O}SJUIOdsn‘j‘ajejs'sdpsweuulewopau)*’6a)Napod-jejsod-ajejsayesjuaupedapWO}ayyoye}AyjensneoedssweujUsWUaA0baje]sau}UlSewWeUUlEWOGg‘senUSjosodA}Sue8UEBJeUjoOjeBASSpUue(SN)SwiNasnw‘(g)q)selesg!(50D)s}usWUIBAOBJospounod‘(41Wis)saioue6ejUBWUBAOGajye}s(941)SJooYdsjediUYyoR}(99)SeBayjooAyrunwuWOD‘(Z|y)sjooyds10)avedssWeUaU)UIUIMpensasalosjeaesayouelgjeuoijouny‘e1ulBsiA‘uo}sayUlSEAI}EIIU;YOJeaSayJBUOIEN10}UO|JeIOdIODau)0}SJayos‘ajdwiexsJO}‘SNBA‘UO)SasUDBWeUUIBWOp34|“SNapoo-jejsod-ajejsapoo-ydesBaja}-Ayioaueu-AjyUSWIOJBy)JOSaWeUsnaoedsaweusnay]ulsaweujeoiudesBoay‘uoloun)JoAydes6oe6Josiseqay)uopeziueBloAjabse]siUlewopsnaul‘wopBbulypayuUpau)U;SUOHNNSU!FeEUOHEONpa|pukejelosetULWOd10}SEXyjNsau]aieyn-a2e°Pukeyn-Od’puke‘oo{xaj]UlSUOHNJSUFEUOH}EONpPSPueJelQBWWODJO)SAxIyjNsaU}osexwW'Np|’pueXWWOTJey)OS‘SGT84)O}JE!WISUIEWOpgnsBasnsaijunosAuey‘juemAauyey)AemAueulsulewopqnspaseq-Ayjunooayyaziue6ioAewsaiujunooJUusayIG
“SO@WEUUIBWOP290}

uisse0}AjuoujneayewiyjnaaeyYoIyM‘(Oolxay|-9/NpueiZesgUlGNYSeYyons)$i0}SQLAyjunooayyJoysowaye6a}ap*‘usnyU‘sequoyneasoyul“Ajaaqoadsal‘(S/iNdV)SINoyioed-eISypue‘Adiy‘(NIN9)SiSqNNJets]

 "‘payeoo|AjjeaisAydAjjenjoesijsoyeaJayMpueapoodAyjUNODeUBaMjeqUOeja09AueAyseSSOIOUJOUS}B19}JEU}JOUO}yueyodu!si}]‘(saye1spayiup)snpue‘(ooixay)xu‘(ueder)df‘(puejas)ay‘(jeess|)jf‘['apooAjuNod991€OSI[e!91JOueyousiHfYBnoyyepaweyeidaq0)sweeas(WopBulypau)ynGLeu;‘pesnAjaser8!g5°G11au)‘suoseasjedojsiyaos104?BLON](uieg}ea/D)g6‘(soues4)y‘(uIedsS)sa‘(AueWad)ap‘(epeued)e9aeSapodAljunooUIBWOPpaseq-99L€OS]JaujO‘Ueder‘eWEYOYOAUlAjisIaAIUL)ClayJoJUaLUedagABojouYyIaLpueBoUBIDSsu]jeSOYeSIdf‘2e‘OleyJsul‘oAWpueeyeysny0}Aemayebyausajujau)JOsSasppeau)si‘ajdwexeJOj‘ne-zoueuunu(O91€PIEPUEYSGOSiulpauyapsapooAyjunodsaya]-OM)By]BSNSaWeUUleWOP|sAaj-do}JBUIOUIBWOP|8A9j-dO}JEIOBWWOD94]UIYPM(jy)UIEWOpSa}BIoOssy{II}9uyUl(W/ajoG)soYUeoO}SIBJesWOd‘jy‘WejohaweUJsOYBY,(Npa)WIEWOpJaraj-do)jeuoHeonpeay)UIUIM‘(nuve})AsIBAIUNWRSEXe]JeJUaUedaq(|13)UONNQN)sIqje1ysnpujpueABojouyoesBuvesuibuyey]uiJayndwooe0}paubissest‘ajdwexeso}‘npanwe}y'ojueaweuysoYsy(POMSByeqSsusjaq‘spyeuAqpaBeuew)AveywspyurLesed--7907/6Z/10““ysuoneolqnd/Aleig![/wos|[tyama//dyy
0803

0804

 "yoR}sjOD0}01ddi/dOLPasduis|SYNDIS
 ||||||Aetey||{buty||FOWAVSINI|ddd|diIS|WiW|NGSIT|SGWS|owerg|SZ°X{Idqd|wexoy,|JeuTeyuaG|WHOMLANpa-st--tocnnn-to----tors-t------tareront------toonatonetonercrcen||duwldI|LANYSLNIma-$----$2¢--4¢--2+-HHponereeeHn5-5-5==|ddSOl/GWOT||aqn|dL|LYOdSNVYL-----tonne|[anntennntetetenntenncntocctocntcnnteensrcetoccteccncn||6utal|dIU!dWNS|SNd[dOd|796utaq|dSeldLLy|daws|reydoy|dLal|3euTeL!NOTLWOIIddw ‘diysuojejadslay)puesaBeyoedaeMJOsdi/dO1[B/DJeWLWODJSOW0}UOLUWODs}uaUOdWODUO}eoddepuejooojoldJofeweu;smoysjng‘sAnsneyxesueswouAqsiWesbeipsiu)‘aunjoayyoejooojoudqi/dqD1au}smoys|oinbi4‘SJUBUIBAXIU)JSOWSB[JMSE‘1N/GE/S6SMOPUIAAPUB‘COP/SO‘2/SOU!papiaoldsiyoddnsdi/d)DLadieupueAepo}swajsAsGunesedopasn-Ajapim[jeJO}ajqepleaealesjoooj}Olddi/qD]‘SSalayarony‘wayshsBuyesadoau}yimsjooojodgi/dO1BullpungpoyejysXiuGSAz'peouls‘aAogepouoluswse‘palAjjeouo}siyuaegeaeyAau)‘Ajayesedaspadojaaspayiuag‘wiaysAsBuljesedoxiuQau)YIMpayeloosseAJUOLUWODSOWSIdi/dOLBANJIOWYIIY[090}01ddi/dDLUlE

“‘yIOMaWEIyNOY|-G1156ayyapunpaysiqejsa$Je4j3S/6ayay}joWeJodnspewApogjeuoyesedoue('i6i4ayyywomoewebUipieysispufjoWnpueiowayyWlewWog[ace]dol9NeUayau}jouoeaqndayyuM266)AeWUlPpaajossipsemOHYISUL

‘8661Ul'S’N)Bu}UlJORJJUCDYSNay}JOUOISNJOUCDUOdNpaleysaqOsje18M610°pue‘jeu’‘woo’sq716Buysixaaasu)ay}‘asoueyyny“siJesjsiBasMauay}Buowepazeysaq[jmYyoiyMjoWe'Ssq76MOUBU]JapUNSeWeUUIBWOPJaAgj-puodesjyUeJBoO}peysiqeyseeqsuesyjsi6e:maugz0}dnyey)pasodoidosjeOHY!}SUL‘aunjejouswoujeucsedJojenplaipulBulysimasoy}JO}wouego8ed--7007/62/10““ysuoneorgqndAresgi|/uios[pyany/-dny

0804

0805

portetedogotototitittatpipetititeititititititititidetettgt0O6B8BLO9aSPECTCTOBEBBLISVPECPTOBBLISDECTO€2@¢eeceecee@2@2e272TTITtiIiqiIiitrq?gdiit
T€

 "|0JJUODMO}JO}LUSIUBYJEWeapiAcudyouSeopPq|‘yBueUl(S}9}90)sajAkqSes'sg0}dnaqAewjey)‘abessawejoyuewBbeyauoJo‘abessaweuiejuodswesbejepdj‘UoNSaBUoDyioMeUJO$10480)anpso]syaxoedjnogeWajsAssoypusay)AjNOuJOUAuaaijapaayuesenByouseopyiomjausu)asneseqB/QeVaIUNSEO}PI19j9JSBWIJBWOSSIBDIAJSSIU]“YJOMJOUBY)SSQJDeBolasWodsueJ)(SsejUONIeUUOD)WesbeyepeBSaplAoldg|sade]WOMAN[SO9y}O}JUaTeAINDSAjyBnosaeyey)Seo|~iassapiaoid‘(7G7O44)jooojoigyausayuSUL
4aAe7]JausazU|BYL“ZE‘(NGS|4200BuiuUrU

uaym‘6°3a)uoyesoyeUypImpuegoIWeUAppue‘swsilueyoawAjunoas‘(SjO56jO/dGdJOISi/VNau)aes)UOlOSUUODa[BuisesaA0sjooojoidajdiyjnwsnoaueynuisJoypoddnssepiaoid‘uonippeUl‘ddd‘UONOeUUODsnoUOJYyoUASeUeO}payBulague,Jayedq)Buisnyausazu|By}0)yOaUUOD‘alojaiau)‘pueJaAJasjsoYeoO}AjJOOuIPYOeyeuedJajndwooOJOWSB‘dddJOITSUI‘Sjo90jo1dOm]asay}apnjoulswayshsSsepo-DqJO}SaBeyoedsIeEMYOS_I/dD1JeloJawWwodSOW‘SjUsWWUO.AUSdn-jelpJOaul]pesea|uiSeyons‘asnulaqAewjooojodyueyepBuiApepunsayjOouaiayMSBdINESjooojoudsaAe]yueyepepiaoidoO}pasnaqAew‘Ajaanoadsas(TOS)BIG‘ddd)090}O1gJUIOg-O}-JUIOgpue(SECT95u‘dI1S)jooojosgJawa]BUI]JEUASABUL‘di/dD10}JURAR|AJApejnoedasesjooojoJdaoeyayu!HurAPapunau}JOOML‘SJayjOSNOJaLUNUSe{jamSe‘aunByayyUlUMOUSsalBojouysa}ay]Jo|/e48AO0payodsue,aquedsabessawq|‘apewaqo}paauAewsuoepolwwodsoeuleyaoYBnouyy‘AGojouyoe}ysOMjeuBaeeplMJOedo]GulAjepunAueAjieauJaA0ayesedo0)peublsepueaqeAeysjooojolddi/dOLkPULJaAe7]BDef1a}UTYOMJONSUL‘}'E(v661‘AaiseAa-UOSIPpYy)SUBAa}S
"YMAqsjoz0joldayy:|BWNjOA‘pazeSN!d/dO1pue(OPTTOI)elem(oOpueAysyoO}OD0g1Aq,JBYOINdi/dOL‘(L664‘IWH-MeQ9W)84'SAq“pa‘pug‘AjunoagqjPueQAd}YIMUONe]UaWAa;duUy]PUB‘S}OD0}Old‘AINJIANYDY‘di/dOL(LE6L‘HEH-89UaIg)JAWODqAq‘az‘aiNjoayyasypue‘sjOI0}O1g‘Sa/AjOUtd“|OA‘di/dOLYMBuryromjausa}uyO}pa9jJaJQueSlapeay‘sjOoo}OJday)JoUOHe}UaWajdU!pueasnjnogeUO|eUUOJU!paleyepBuipnjoul‘ayinsjooojold&SBqi/dO1josjoadseyesquosepyeu;uayUMUVeqgerveySuededpuesyoogjoJaquinuebie]y‘syeAe|esouyasodwodyey)sjooojoiday}puesyINS_i/dO1SU)UlSIGAB]BU)JOYORSJOMAIAIBAOJaqeApIAOid[JIMMOJ|aqSUCIIVSSUL628ed--7007/67/10“ysuonvorqndAreigi|woopyamnay//-dyy

0805

0806

‘STSQGUINN[O90}0iq
JOISTS.YNVI24)JePuno}qUeDsuBquuNujooO}OId|JOSI]BJa}dWOdY(68)4dSO40‘(Z1)ddN(9)dOL‘(L)dWOlapnjoursuondo‘yayoedayyUIpalesByepayyJOSJUa}UODJODO|OJdJaAe]JaYyBHiyayySayedIpUj-joDOJO/G«©

‘PAPJEOSipaq|jIMyaxoedBu)
Q0}S961ft‘aUAqanjea711By}JUBLUBIONp[IMJayoedSIU)SeasJey)JoNO’AJBAG“MIOMJOUOY]UIUJIMPapseosipJOJBQBye]0}pemoyesiyayedsiy}yeu;SdoyjoJequinuau}Buryesipul‘Ggz0}OWoyanjenY-(FZ4)aArT-o}-ouy©‘sayAqgJOSJUBWAIIU!UlJAS|JOBY]SBJEOIpPU![IMPjaySiyy‘syuawWHeyJUanbasqnsu!‘OQaq[JIMJeSyOay)‘Wwea|]|sjuawBeyejoyayoedysulyayyuyyexoedjewlBioau)ulyuUsUBedSiy}JoUONIsOdaU]SayeoIpulJasyoOjuewBbely

‘(0%

asskemjepue)pasnuns!jigpulu]ay),‘UOe}UaWHeySassaiddnsyoy‘1g(4q)}uawBe4},u0qey]SIIqpuooasaU‘pa|qwesseasoqUeDJeYOedBU)JEU}SMOUYJSAIQI9)JU}Jey}OSjoYOedejojUSWHeLse]aU)SyeOIPU!OFasnsipue‘yq(4IN)sjuaw6es4aJoyyay}payedSiygsueyL‘AjquasseaspueUONe}UaWBeyJO)pasnosjy:sbejy«
‘A|QUISSSe9lJO}JOYJOYORe

YIMpayeioosseaqueDUOeUI}Sapay}jeBulAiiesyuawbesjUsJayipyey)OSysOYBuljiwsuesau)AqpeubisseSiJaIIJUSP!S!y]‘JeUIE]U]@y)BulssaAe.)allysadaidJayjewsouipayuawBes}jayoedeUBYMpasn-vOoHeoyHUap]©‘(ALLIN)WunUoIssiwusues)WNuIxeW8y}O}Pay]aiesezisjeyoed‘aayoeiduj‘sajAqGEs'sgJO‘gypgSIJeYOedgjUeJOOZISWNWIXeUOY}‘PIal!}S14}JOBZISBU}USAID‘BJeppueJepeayyjoqBulpnjoul‘je49edasjUeay)Jo(S}a}90JO‘sayAqUi)UGUa]ay)Sa}eoIpul-yjbua7jejoy“Ayyiqeyjas10‘yndyBnosuy‘Aejap‘Soos9y}1e40)peziuuydoaqajynoJau)yeu)JSenbesUe.JO(7-0)AyoudaoyueseAyloedsuedpue‘soepajulaaiaiesJaAe7]yaueyUjjJeAe]WOdsuel)ay)SsQuDes}senbe,aolwas0}asuodsaiulsoyBuneuiByoay)AqyeseqUBDPjaySOLBU}‘pAd|UlAepoypayoddnsAyesaueabyouyBnouyy‘S}lWSURJ}!SJeyOeRCJO}BdIAIASJOSESSEIOJUBJaYIPySenba0}ysoYyBuyeulBuouesmojyy-(SQ{)eainsasjoadAye@(TOTO)g}SE9}JeJOonjeaeseySAeMIePjoljSIU}OS‘S}a}D0OZSiJopeayY}Bua|“WNUWIUILUY¥“SPIOM(J9}907)1GZEUlJapeayWeIBejepay)JoyBus]ou)Sayeolpul:(7H/)y;Bua7sapeayjausajuj[SiSquiriKyWOISISAAiIOISISUNG@y)88S‘'gpuepSepiseqpauBbisseuaaqsAeySJequuNUUOISJOAgjAUew‘AIENY:FLON]‘OOTOanjeaAseuiqBU}UIEPUOD{IMPJ@ySIU]OS‘fUOISIAASIgjJOUOISIBAJUaINDBy)yaxDedBU]JOUOISJIAgjBy)Saljigeds-ualsuap©:aJe‘SUOIJOUNY18)PUBapRauau]Ulpaule}UODspjayyauL‘y)Hua]Ul(SayAqOZ)SPIOMGseayjeaq|IMJapeayqjUPJEU}ajOU‘piomjig-zEe[GulsesyuasaidasMosyoeg‘QyeBulyeys‘}yGu-0}-19]Wo)pazaquunuaseSHG'O4YBU)YMJUS}SISUODs!WeJBeIpau)JoyewsO}ayy‘7BinBi4u!UMOUSSIJeWO)JapeayyeyoedgjDISeqBUL‘yeuusoyJapeay(wesbeyep)yoyoeddj‘2JNNOId—tot-t-t-4t-4-4-F-t-4+-4-4-4“seQeg|
tatetetitotitititititititatetettitetetitetititttatetiteitt|(butpped)“7ssuotido|tatatototototatatititototitateditetotatetotetctettititetototetot|ssoippyuotjeutqssaq|fototiietigobobbbbbbdtbobtedtettepiddat|ssaippywaoimnos :|totototititotitogedtititetitetetetetetidetotetetetateto¢-d-t|wunsyoayDTepesy|TodooIg|TLL|tatototototositittotoptatedtitt-tetetettttt-4-t-tettt|IeszJJOJuseuberyjsbera|UOTIEOTITIUSPItetotototrtantatototototetitet-tetatetitetetotedetetitttt|yqbuseTTeo,|SOL’|THI|uotsz3,| OLaded--7907/6Z/10 |““ysuoleotgnd/Aieiqi|/Wo0s|[ryavana//:dy

0806

0807

“yOMJUGNSEUIY}IMJSOYdisloadsoy}SA}eIIPU!Pfaygns(GQ!1SOH)JayNUaP|ISOHBYOMjaUaUOYda|a)OU}UIpasnsiepooealeJO‘apodAID‘apooAyjuNooau)seAemawesou)yYonw‘syOMjauuaamjaqBulynodjaagj-y6iyso}pasnsiG{LINey]"}eUsa}U]BU}OC}Pa}DsuUOdyOMJOUGNS_qI/dD1Bu)SayUap!PjayqnsCI”_LSN)J2ynUep)OMeBUL‘SP]ayqnsom)OJ!papiAipgnsalepuesesodindBuljnos10}[eo1yosesalyaseSassauppe|‘yuo7SSaIppYd|“€3YNSI4
onnn+5-55-eeeeeee+-+-+4+-4--diITWINSWIYgadxaITITITITI---3-Hennneeeneeeeeee|diLSVOILTAWLOltITITIsooponeeenetitepete|aILSOH1OlTITI

-|

aILSOHloitl
aILSOH "LV901291802SISSeuppeq|ajdiuesy‘jyewoappayjopSP0}pSvaja,S|UONe}OUSY}‘spoljedAqpayesedasasesanjeAay}SOUS‘Ssa}AqSSalppeSu]JOYORAjoaNjeAjewIdepau)Bunussaidal‘siaquunuJnoyjoadueNbaseBseUayUMAyjeodAyqueAeuy“(¢aunbi4)yjGue]ulstigZeaseSassauppe|

SOSSAIPPYdlLbcE

‘SISqUINNUORdGdjJO1Si/SVNV)eu)Wo.Uaxe}aiesuo|dod|-Asepunogpomeojpappedaqjimpue‘(SpioMmQL)SayAqQP0}dnasnAewjs!]uUoAdoau,‘UOPeOIpUIAyUNoasJoBunnosaounospaytoeds-sapuasseyons‘axoeduaaiBAue0}payjddeaqAewyorumsuoidojojasy‘suoido‘yaxoeday]SAladaJO}Papusju!JsOYBu)JOSSaIpped|‘sSaippyUONeUIsaq«‘yexoeday)Bulpuasjsoyay}JOSSeuppedq}‘ssauppyaaunoSe‘yey9edaijueay]Ue)JayjesJapesayOU)SHOSYOAjUOPjalSit)‘QIOJOISU)‘pueBdIAJasaqeyasuNUeSaplAoidd|1&4)Jequaweayeaj-s0UeSIJapesY|PSAl9O9JBU]JEY)BINSUDO}UONBWIOJU!SOIWED-WNSYIaYDJepesH11e8ed--7997/67/10““ysuoreorqnd/Aresqi]/wi09"[|1yaa//:dny

0807

0808

‘QOL'Z91'80ZJOCILAN9DSSeID&OFJajasYOGPZ/LT°90T*Z9T802pue0°SSZ"SSZ°SSZLT°90T*Z9T*80Z‘SNUL‘GILANOU)JO}syiqsseuppejuedyIUBisjoJaquunuay)BuyuasaidasJaquunuesesnsowoj|EWissppayopulUayMaqAewsysewyougns‘asnjel9}!|pue}xe]U09oy}UodnBulpuedagveo'sse'sse'Ss¢3OL0'0'SS2'SSca80°0'0°SSz2VvS}igJOJaQUINNysSeWJauqnssse|9D
:3J8G!LAN24)JO}SjiqssasppejueoyuBisJOJaquunupukeysewJaugnsau)‘sessauppeq{,INysSejo,JOY‘s}iqG)LINJUeDYIUBIsau)Seyeo!pulS|JoJaquinu84)puejEWIDepPaeyopU!UaRUMSIySeWyauqnsBy]‘sesodindBuiynosJoy(MIOMjoUQNSJO/pue)YOMJOUOY]SAlNUSp!Jey)SSeippeay]jouoJoday)ayedIpu!O}pasnavesyseulJauqns‘yseuJauqnsay}SI[OO}Bulsseuppejeuolppeuy‘O'SSZ'89lZ61-0'0'891261SAassaippeODSSe[D9GZay)puke‘O'O'LE'ZZ1-0OGLZL}SASsauppegSSE/DUsa}x!Sau)‘(LINVduv0}peubisseAyewo})0'0'0'0)SSauppeSSIDau}aJeSGILINPaAJasay‘sysOmjauesau)O}JOU9}U}UjJ@A0paynod9gOU{JIMS}ay9edpuesassasppeyIOMjaUayeAUd10)GLE)Dadu!pavuesesusaqeneySQ{LAN[es8AeS‘JSOYy/ed0]BU}O}S1AJa11°0'O'ZZ)SS@zppeysoyoy!oadsau)pueBuysa)yoeqdoo|10)pasnSI{Z|JOaNjeaGILANV‘JOMjaUEBUOS}soy[|e0}SJ9Jo1pUeSSauppejseapedigeSI(,,,-,SEPa}ouaposjeyng‘ajAqSaUo-||2Ue0}Bulaje!UBYM,GGZ,,UHMAjjensn)sauojjeJOQ/_LSOHV‘901'Z91'80zJOGILAN©YIMSseuppeDSSE[DBu]0}SJEJos‘UBU)‘0'901'Z91'80SS@UPpeay)>YOMpauUQnNsasUeUeO}BUJajasUaYMJapjoyevEjdesepeaseenjeaAuiuunpesi(aAogepasnse)9JOG|_LSOHv‘SulueawjeisadsaaeyJospueparsasalaseSanjeaSsaJppejeJaAas‘aSNjeJUBWEdXeJOJpanjasasaiepue'GGZpueOpzuseMjaqSNIEAeiMulBaqSassaippeJsselDSSSSIPPHYjSBSijiriWJSUTSjTJo1s]esuleyuIEWYWNYyI84)(s}soyajdiyinwOo}WesbejepajBuiseBulpuss“a'l)BuyseonjnwqjJ0JpasnoJepue‘gEzpuepZzUBeMjaqanjeAeYIMUiBaqAewSassauppeqSse|D‘s}soyjenplaipul0}peuBisseAjuowWooyouesepueAjuoSuONoUNY|e1I9edsJO}pasnaueSassejosseuppeOm}Bululewasau,(LA‘SIIE4SMO}]2g‘}ENJBAOS)0'28'86160ZPue(sayeloossyIIIH)O'ZOL'Z9L'80ZBPNjou!sajdwexsa‘(79Sssejo-qns10)9ssejDaieAepo)syomjau0}paubissesassaippesop)‘€zzpueZGueamjaqJaquinueaq|JIMSseippe2sseid@JOHIPysuyBY“yJOMJaUJadS}soy(Z-,Z)~SZ0}dnAjUOsseippeUepueSJOMJAU{JEWSJO}papuaju!sieSassolppeaseul‘G!LSOH19-8pueGILANId-1c&Seyssouppe9sse[gVye‘(aulUQBNUaWY)00°91ZSbpue(JANISEM)0'0'BELBZpnpulsejdwexejuawubissessaippegsseiD‘awl;BWOSJO}SSalppegSSe{DMaue19H0}JINOYWYIPAAAUBaqSeySI}!puednpasnBulagyimpauajeesy)ueaqGuo]seyaoedsssasppegsseiDay1“L6)puegz}UaemjaqJequinueaq|IIMSSaippegSsejdeJoWHIpyssyBY]“YLOMJaUJads}soY(4,Z)9EG°Gg0)dnssaJppeURSpueSyJOMJOUPezisayBsepowJO}papusjulaleSessaippegsse|OGILSOH19-91pueGlLAN19-1©SeySseippegsseigy(Wal)0°0'0'6pue(jaUeldN@g)0'0'0'Pepnjoulsajdwexe‘peubisseusaqaaeysassaippeyssejoMajAjOanelay‘97,pue|UBseMjeqJequunuaq||IMSessasppeyssej5ejoy16ipjsulyOU,“yIOMjauUJads}soY(,22)9L2'2412'9}0}dnssauppeuedpuesyOMjoua6ie|8A10}papuayulalesassaippeYsseid‘GI1SOH19-72pueGI)L3N19-2©seysseuppeysseigVy®:(pl@L#qnsQ{LANey)JoyjBua)eu)sisessejoau;UseMjedsoUBJEyIpPAjUOeu)pueHulssesppeSOUJO}pasnae5pue‘g'ySaSSe|D‘Sassejossauppe[CJBABSSAUIJAPq]'SYJOMJOU9ZISJUDIAIJIPaJepoOWWODIeOFZIe8ed--7007/62/10“ysuoneogqnd/Aresgiuos[pywanan//dyy

0808

0809

“uOeWUJOJU!JOSadA}Bulmoj|jO}BU)UlE}UODSIaAJESBLUE‘JOAJBSSLWEUS,UIELUOP8)0}PapPseMJO}aq[JMJSaNbasSNQ9u}pue}sOYyebse}ay)JO}JasvasaweuajedosddeueauiweyapIII‘USU)‘saAUeSJOO!BY“SJAAIGSJOO!BY}JOGUOO}JSeNbasBu]SpseMIO}JeAJOSBWeUj200]ayy‘ajgeyieaejouSIUONeWJOJU!AsessacaufI‘JaAseSBWEUAy]JePAYyOeDJOpainByuodJauy!aSiyey}UOEWOYU!YIMysenbaday}0}puodsa0}ajqeoqAewJeAsasaWeU(eI0]GUL“JaAJaSALUBU[290]E0}BU]O}JSOYJeu!By)AqapewsijsanbasSNQe‘eweusjsoyay)uodnpaseqssaJppedjSJSOY2Ule}qOO}SpeeuJaUse}U|By]UO}SOYEUBYM
‘SJBAIOS

aWeUDAE}JOUINEVSoy}jo|eJoys]BUeyUIeEW(adounypueeisyu!JepuleluasOY;YM‘Ayjenjoe“Sfau)Ulysow)aqoj68U}PUNOJeSJBATSSJOOIusayiy|“UONeLUJOJUISIy)JOAdooeBsulejUuCoosyeJeu)JaAJasalueUAJepuodasSBuO}Sea}JeSEYsjeUleWwopYoRs‘uleWOPau)JNOGeUOIFEWWOJU!payejal-GNQjieSuIejUOSyey)UIEWOpAJaAdJO}JazvasaweUaAHeyUOYjNeajBuises|asay{‘JaUJa}U;By)UOSUIBWOP|/eJO}UONEWOJUISSaippeqjpueaweujsoyBululejuooaseqejeppaynquysip&SISNGeuL‘payeasasem(SNQG)Waj}shseweTNUleWOGgay)‘yJoMjeuU84]UOSeWeUMAUJOa}e1JSe}BY}BjpueyOL[Japjo}smopuTm\:9ay}UlpuNoYaqAjjeatdA)uedpueS.LSOHpaljedSIajjOy)‘SWA}SASSMOPLIAAYOSOIIIWUO‘dIJes]SNC[290]UOUMOPjND0}YWOMjOUJED0]84}UOS]SOYJOSaweUajl2U0IeJ0}pasnAjjensnYGnouyeswaysAsxiUl]UOPUNO}|SJeSAjl}LXL*SLSOH7FLONI“MOJ6YIOMJOLBY}SEUONNIOSajqejeosBOUSEMyng‘YjMOJJoayeJMOSBpeypuejewsSEM|ANVdHvV24)alumainseawajenbepeuesemsiy)(sa)seljepue‘alweU}SOY‘SSOJPpEqd]BY}PEPNjoU!YOIYM‘s}soy|eJOSI]@PSuleEJUODJEU}LX1.°SLSOHpayeoayyepaureyulewysoyA8A8‘LAINVdYYAves9y)Uy‘JauJazU)ay)JOaiNjON)sBulweuUlewopeu)paquosepJadedsiy)ulVOIssNosipJaleq
‘sasodind

Guljnou10)ssasppeDawneOo}yOeqpayejsues}aqsnaweUay)‘JeAamoy‘ajdoedJO}yUS!IUSAUODSISIU}AIJYAA“BWeUeBpuessoJppedq]SawnueYyjogsAey‘Udy‘S}SOYqjJSOP)“SSWeU}SOYYIMB|IGeWOJWOdslowaJeajdoed‘peaysul‘yoeyeAdy}YOIYM0}S}JSOYBU)JOSaSSauppeDJeWNUSy)BZOWAwWJOUOpsJasnjsow‘y}Gus}U!S}IqZEaleSBSSE/ppedj]SIUM
wajskgaweyulewogey]‘ZF“AytjuejeuoyeziuebioajGulse0)paubisseeqAewsassasppeajdiyjnwasneoaqyausa}U|DyQnday)0}payoeRsyesyJOMjauJoJaquUINUau)JOUONIeYeand}eB}OUaeSJaquuNUasay}‘JaAsMoy‘pasnApapimosBulwooagqSIYqIDesneseg‘eseds9ssejDayyulApejnoed‘AepoyJa6se]Ajpayqnopunsisaquinusiy):peuBblsseSOSSOJPPeDSSEIDB/E'8Z]Pue‘sessalppegssejDZEQG‘sessaippeYSSEIDSE819MBleu)‘OGG,AJenuUerjosyAquaage}sajnosa6uise@ulpalpoadsaqueosassesppe3ssej_sno}10)UOeWOyU!BulynoJ‘asayajduuexeay)ul‘sajqe}8]NOJJa||EWSUlS}|NSelVONeEpyOSUODSsazppeYQIDJey}ajdwexesiyjWOSNOIAQOaqPinoys}|‘BLSpueBlétsoyulaquosap‘(4q/D)BuynoyuleWwoplajU]SsajssejDpaljeossaooidesasnSassea/ppeayepljosuodo}sajqe}GuynosutsysewJaugnsjoAsnsiy]“UletWOPsity0}Bulynod404(,,2Z/,10)O'7S7'SSzGGzASewWJauqnsay}asnpue‘O'1E1'89lZElpue0'0€L891261‘0'6Z1'89LZEL'0'8Z1:891261Sessaippe2ssej_Jnoay)peuBisseaqjyGiwsasnajBulse‘AjaAVeUay|y‘(,0Z/,40)O'OvZ'SSZ'SSzoqPjnomaoedsssasppegsse|[ZJe6se]ey)UUMS}eugNsjenpiAipul0}BulynousO}ySewWBuyalum‘(,9L/,10)0'O'SSZ'SSz9qPINOMJauJa}U)BY}UOGPLANey)0}Bulyno,JoyySeWJauqnsayy‘asedSIU)Ul“GPLSOHWq-Z)pue‘QlLANGNS1G-¢‘GILGN19-91&oyu!payususBesoqyyBiwYou0'0'91L'zz}eoedsssouppegssejDay]peubisseaqjybiwjasne‘ajdwexe104‘Gl1SOH(ualews)pue(qrLANGNS)4eyNUap|yYIOmJauqnSeWU!PyayqnsGlLSOHeu)BunuawBbesAqsxomjaujeoiGo|ajdiyjnweujap0}avedsssaippeJay}apiaipgnsAewyomjaue‘ajdwexaJO4‘saaedsssaippe[jewsajdijnsuiquiodojJoaoedsssaJppeabe]eaptAipqnsojpasnagosjeuessysewJauqns€1eded--7007/67/10ysuoneolqnd/Areiqiwoo{iymandy

0809

0810

ednBuryoo)AquoyounysiyjSuwioped|‘syayoedanol0}Ajiqisuodsasay)Seyd|‘JOD0}OJdJaAe7]YIOMJSNISOUESYdOgpue‘diy‘SdSO‘buynoydi‘¥'7'E[puewuose-dieau)Bulsnaul]pueLWLWOD(|N/86/G6SMOPUIAA1)SOGJOxluf)&Wd}paMmalAaqUBDBYORDGySUL‘UONEWWOJU!Gy}U99aBuoysayoeoeuleyulews}SOY|:JLONI‘(sseuppeOVW208AAAIueJoWoyoy)Saxe)yolym)sseippe(37)uoVeinwyNV7SI!0)ssesppeWILYSjuaidioasesdewyorum‘(qyWaT)duvuoneinwyNVT°“SJaluap!jaUUeYo/ujedjenwIALypuessauppedq]UeUaamjegBuilddewesplAoidqHVUIWLYPUBdYVWLYJalyUap!pingspenyiaABsBWeePueSSoJppeqjUeUvemjeqBHuiddewesepiaoidyorum‘(qyyul)GYBSJeAU|
sseippeOVW

UMOS}!BuIMOUyUOpasegsseJpped|S}}BUILUJa}ap0)JOSSed0ldSsa}-ySIPBSMONEYDIUM‘(dYWY)dVBSIeABY©:‘Buipnjou!‘peuijepuseqosjeeAeysasnpeooiduONNjOSesSSeippeJaWIO‘SjajowieiedGuyleJoIst]ESUIEJUIELUYN!SUL‘d}WO.[oDO}OldyUspUsdapu!URSs!GYPUBSWENY]ayjulAnoauippawiesqueaBessewqyy‘smoys|anbi4sy‘ssouppeOVWUMs}IYMasuodsayquuePuss[IMSSaJppe|UMOS}!SezIUBODe!Jey)Ni]eu}UOUOHe]sBY]“SSesppeOVWpeyeloosseay)10}sysepueSSaJppedjUoVeujsepau}sesieapejsenbasqyyau]‘ssesppe}SeOpeoigOYoy)BululeyuooaweeulyeyoedysenbeydHyueSpuasjsoyay):ajdwwyisAjaanejasAyjenjoesissaooiday,‘ssauppeqjay)AjuOBulmouyUSYyMSSaIppeOYSJaAlaoaseUses]UBDJSOY&Jey)OSWsIUeYyDeWesapiAoid'9Z8D4U!pequosap‘(qyv)[0O90}0JqUONjOSaySSeJppYysuL‘YJOMJOUSUESBY}UOJAAIB091PapUsjU!BY)JOSSAIppeOYeu)MOUYJOUABWSSed0JdqjSJapuasayy‘Ajayeunyojuy(49)no110‘AemayeBynejapay)JoSsauppeOYWau)J0Jpeaysu!yoo][MmJapuasay)YJOMJAUJOYJOUBUOS!JSOYLOHBUNSepayyJ)‘aejODO}OdOVWNy]84}ulpeoejdsissasppeOYUOeUl|Sepey)pueyax0edgj}ay)UlpacedsissauppegjUOeUNSepoy)asnedaqSISIU)‘JeAle0epapusjU!aU)JOSessaippeDYpued|au)yjyoqMouyysnwWUoHeo|ddeBulpusseu}‘yomjouales84}UOJSOYJayjOUeoO}WeiBeyepepussoO}SpasujsOYeBVEU‘sasselppegjSeBwesay]JeAeUaleSEsselppeDYY‘SseuppeOVWSulBulsnpawopadaqjouuesGuynolos‘yeolyoJeseiy-uoUaiepueU)Guauls}iq-gpaieSessaJppeOY‘SapouUO!JeUuNseppuesqinosayyjossauppe(QW)[04jU00Sse00eLUNIPaWJO‘yJOMyaUJeD0|BU]SUIe]UOOAY]eu)UOUOISsIWsUes}Kiang(NY)S¥sOMjeUBaJejed0]JoUIEUYAAgpayeuUODaU!AJUOWWODS]sOYUOUeJSUOHe}USWAa;dW!4]AUeguOHNjOSaySSaippYpueduyVE'¢c'€‘SiajaWieiedSNQJo}syesureyulewYNVI84}‘UoNIppeU“TESTpuePECLSO4YU!paquosepaseSNQ9u)JoUONeBajappue‘aunjonijs‘s}daou0day!Jajssay‘c)AQ(SNCUMOTAGGibpue(sayeiossy9Aljla4,0)NI}DpuezyqIy‘dAqGNIgpueSNGapnjoulsaquasajalSNQ[euoylppyaysqany(6M84]WOdPUNY8gUESSNQay)}NogeVOHeWJOJU!aloyy

"UIBWOPS{U}JO}JOAISSIIEBU)SIWOOslyHUWsoyay}seyioadsaseqejepsweUWoO}IyBY)UlSplOd9/-KI|SUL|}SOYOIOedse0}JUSSBqO}SeyjleWPUR‘aweuU}SOY@JOU‘aWeUUIBWOPeSISsaJppeau)JoUOIOd,WOd'I{1y,84)JEU}SION‘WoojyOjenbusny‘sseippe|jew-aJoyNeau}JOp!suos‘ajdwexeuesy‘UleWOpUaAl6eBJO}SYaAJAS|/EWWOU]S}S!]pPlodesBBueYoxea[lewY“puoval-Ky‘uleWopUeAIBeJO}(SavasSWeUBANEWWOYINEBy)S}SI|PIODS/JeAUaSaWeUY‘/pI0Ia/-SjVV‘aweujsoyB0}SSeJppeqd]uesdewpiooaayulodY:pu0del-YId‘ssalppe|ueO}aWweUjsoYesdewpiooasssaippeuy/piodau-yvlased--7007/6Z/10. :“ysuoreotqnd/Aresgi[fos[pyaan//:dyy
0810

0811

$JeyoedayyJojoedseaWOSYIMWajqgoid&paiajUNODUAJSOYJOJ8}NOJ&JEU)SEJedipu|-wajgolgsajawWe/ege“‘puewwosBulgau}Jojsiseqau)SlesaBessawesau)‘eyepawesou}BuiujeyuooAjdayoyogueyyimspuodsalsoyBulaiaoeoyu)pue‘eyepawosBululejuooAjjeuoljdo‘Jaujoay}0}aBessawOyoueSpuas|sOYBUC‘4JOMJBUBY}UOBIGeyoessSeS}sOYJaYyJaYMYOBYoO}pasngesebessewom}esay|:AjdayOyIZpukeoyog«‘Qd1AaSJO9dA}SIU}JO}ajqeydeauuN$1}SOYJOYJOMJAUOu)JO‘(jasS|Bey-4qG)pemoyjeJoujnqpauinbaus}uoVeyUswWBey‘ajqgesnun10UMOUXUNSIOdJO090}0/dau)‘'UMOUXUNJOajqeyoeewuNSs!YOMjaUJO}SOYBy]yeu]aqAewAJaAyap-UOUOy]JOJUOSeasBUY‘payoeeal@qJOUUDJSOYUONeUNSSpau]esneosqPaJaAljapaqyOUUEDJaXOedejeu)SE}edIpUj-a/qeyoeasuUOHeUSEq«‘apnjoursedAjaBessawqdPeAojdwaAjuOWWOSay‘d[JOJUBWUOJIAUSSsajUONO9UUODau]UlJUeELOdLu!Apejnoieds{jooO}O/djes9jJe}}0O9Siuy“SJUGASjeUOUejnogewes6ejep4]JOJapuasay)Sayiouyeu)dj0}OUNTpeUeSs!‘Z6ZDIU!pequoseap‘joo0}0/4abessay[ONUODJoWa}U]BU
DWISek‘palqnsoyioedssiyjuosequalejasalqeylenejsaqay]JOQUOSiEWANUeNSUYDAqjausajzuyay)UlBulnoy‘|!eJepJO[aAB]BWOSO07Bulynosg|SSNosipsaogepauoyuswSyoogdi/dD134}JOjeYBnoyyyY‘d|4aA0sjuawWBas4D)Ulpaweoae‘ainyedapje}o)eul‘saBessawqog‘wes6eyepqjueulAqooulppaiuessi‘pueyJeyyoau)uo‘abessaw4qSoOUy‘jayoeddjUBUlPavedsi‘wIN)Ul‘YOHyMweJBbeyepqqn&ulpawieosiabessewdj¥VY‘di0}ddgPuke‘4dSO‘diyJodiysuonejasjoooj}o1dayysmoys|aunbi4‘SjajSsWieIEdGHgjoisi]esuUIEJUIEWWNY|eu}‘UOHIppeUy‘yaUJa}U]BY}UlGOgJOasNsequosep8921O5Yenum127S4yUlpequosepstp-dOg‘YGIOsHoddnsosep-4Og‘Sauojed1UYyd9}UY)JayjyesSanss!dIWOUOIAJO‘je6a]‘AjNo~as‘jeoI}}odUopaseqsaloyodBuynoajyeez9O}JOJEJSIUIWIpPeS,JOMjaueBSmoyeyorum‘Bunnoleseq-Aajodsyoddnsosep-dOgOMauUUOIBUNSAapSy}O}ajnoJjenjoeay}O}sSajqeygO‘SjO90}OJdJOJOBABdUe}SIPJajO[JeJsOWyeSyxUNyNQ‘jaySyl}'|OOOJOJdJOJOBABoUe\sIpeSIGONg‘suleWOpPBuNosjaUajU|UBaMjaqUO!}eWOjUIBuiynozapiaoid0}pasnsi}!asneoeqjo20j0/dAemajebsouE}xeUeSI(p-dOg)fUOISIBA[ODOJOJgAemajes)JapsogauL

‘JOUIOU]BU]UldjyBulsejdas
Ajpidessi‘€8S]54yulpequosap‘Zuaisi8A4qSO‘Saqe}GuynosasjyjuaueU)JauyesSsNje]s,SsyUlSs}UlSaGueYOAjUOS]SEOPEOJgJB}NO!B‘4qSOUM‘SOMOJaBe]0}ajeOsoO}BjqeJayeqSipue‘U;|pIMpUegyOMjeUSSE}Selinbal'J9a}Se}SaBHJaAuOod'q]yVEU]JSNqosgowsiyeu}WYWOBHjeGuynosaye}sYul]eSI[ODO}Od(44qSO)ISJl4YdJSEVOUSUBdOsYyL.“SadA]SHESSSUIGjJojsi]ESUIEJUIEWYNYIOUL8UuDFpue'SANIA‘WeLaiddy‘aeaqleNnyimpayeioosseasou)Buipnjpu‘giyuodnpaseqaleSNSAepo}JoAuew10)sjosojoidBuynosyuaND‘YMGjoayesJS}S}iSAaNUNUODYOMpaUau]SeJaWajyU]BuyUOJUBIOauU!AjBulIseajou;aUI0Ieqseydiy‘Ajayeunwojur‘sdoy910}paylwiysiyyedepuesoos.yjedeJoSujawWay)SeyuNODdoysasndiy's9[qe}Bulynosaijuaseu)eBBueyoxeAjeoipoiadsyaynoyGuyoquBlau‘diyYAAWwuyobjeJoyoea-aouejsipeBulsnuo|ewoju!ajqe)BuijnosaHueyoxajimSiaynolMOYsaquosep‘EGF?54{yulpequosap‘(Z-diy)ZUOISIAAjODOJOIGUOHFeEUNOJU]BuyNnoyayy

‘sjooojoidskemajeb&
4OLiajulSe0}pasajasAyjeoiauabasesjooojojdaseyy‘ulewopau}JOapisu!siBulynosay)BoUIS“YIOMJOUS,gS]UBUIYJIMJOYOMyaU|yeJOdJODeUIUJIMSeYONs‘UleWOpJejnopedeUlyyIMBuyjnosapiAoid0}pasnAjlseuiidaegjypue4qSO"dO@pue‘4dSO‘dly‘Ajeweu‘yewayu|ey]pueqi}YWpayeloosseAjUOWWODsjosojoidBuynosaajy)queassay,‘YoNeWoyU!BuynosymsajqeyBuyynolayyayejndodyey;‘g|Joupue‘syosoj01dBurjnosSi1Ng“ajqeyayyUlUONeUJOJU!aU)UOpaseqBuipsenuo}pueajqe)GuynoeulGFLANdjUoHeuNsapsjayoedS|a8ed--7007/6Z/10“ysuoneorqndArig!|Auos[pyamany//:dny

0811

0812

‘@pNjOulpueUO!JO@UUODBJOapisJeNaSa)a}oUapsvequunuodumouy-jja/4‘(SSesppeUOeulsep‘odUOeUSssp‘sseippeadJnos‘odaoinos)ajdnj-snoyyyAqjaus9}U]ay)UOpayyuap!AJanbiunsisysoyom)UBEMjaqUONEDIUNWWODpUd-0]-pUS384}pUe'jey0seWO)Jay)a60}ssaJppeqjpueJaiyyjuap!oday,‘sebessowqQn/dOLu!Jaynuep!odeAq0}pauiajasavesuoneoyddesaXel-seyBiy
‘,emnbiy

ulUMOUSSB‘GNJOdOJaA0undAyjenjoesuoieolddeyonsjsowse,‘suojeojddeqi/dO1,,0}J8JaJ0}JQWOUSILW&SI}eu)anBieuedsu“(4qQN)joo0}1gwesbeyeqJaspay)puejod0j}OJqJOIJUODUOISSIUSUBI!By]paleoesesjoooj}Oldesau)‘sJaAe]UOISSaSPURPOdsuUeL||ISEay}0}AjyGNO!puodsado0oyeysjodojO/dOM,SASIdWODayINSjoOO}ONddi/dO1SUL$1090}01gJaX4e7Wodsues!ayl“c'sCia)sbeggaysu0gg(UNS)SEGGSKUONEISUSSKONGi(FSi)SbedanorBUDHOAKBug(9661‘SUOS9AaAAUYOP)SeWoY,UaydajsAqS/OD0}O1qdi/dOLAY}pueBud]‘sajssayAlesAq{JOd0}OJgJOUIajU]UONeIEUssJXONSUL“SAI,(9664‘HEH-29]U8sq)BWayINHUeNSHYDAqjo90}O/qJoUsa}U]MENOUI9AciI(9661‘Aa|sepA-vosippy)unjueyUOSsITypueJeupesg}}09SAqUOHesaUayd)xaNjoD0}]O1gJeuUtajU]‘Bud INOyOOYD‘QAqd||NOqeUOHeUOJU!BOWJOYAyenuaepiyuooeyeppue‘AyuBejuleyep‘uoyeojusyjnepoddns0}suoisua)xgesaanoelqoaolAsas-jo-AyyenbjuasayipyyMSadA}91421)JOYWoddnsJayjageSIIqZL0}8ZISSSeJppeqiay}Buiseasou,e@:0}ayeja/aGueuojoseaueAsewlg‘ebueyojeoipeseUe}JOUVE!‘pAd]WOUOINJOASUeSepaubisapSI9Ad|‘SAGWO]Guipnjou‘suoneoyioadspajejasjoJaquunuepueEggiDIUlPeUle}UODSIQAdjJOUONdOSepAewdeu]“YORI,SPIepUR}SJOUJE}U]BU}OJU!PasajyUaSEM(QAd|)9UOISJBAdq]‘SEBLaye]ul“AuesseoeuGurwooeqSeMqj]JOUCISJ@AMaueBey)peziuBooesempi‘suo}eoddeBulfiewemoupueJeuloyujay)JO.ymMos6SnOpuswWay84}0)ONG‘pUOISIOASISOGG|Aieaay)BoUISASNUlUAEqSeyJEU)djJOUOISIAAJBIDIYOBy]
gUOISIAAdf9'ZE

JedGWd|$03ssyajdwooeBsuleyulewWYNYy|euL‘s}ex9edgj]UlpateaiesaBbessawqWO!I"SyDOOJIS}BZIUOJYOUASUBDS}SOYJeu)OSLUSIUBYDaWBHulpiAoudpue‘sweJhejyepBulssaooidpueBuayjngpuadsswajshsajowesGuo;MoyjoeinseaweBulpjalA‘abessawayyul(AjuejnuesBpuooasiiwyim)dweyjsowlj&a0e)ding‘soBessowoyogou}oO}JeylLUIsquesoBessewasay|:Ajdaydwejseutspueduejsouty@“pasidxeJaw)uoVejUaWBbeyay)sl0jaqpaAleda!OUsemJayoedauljuaay}asneoaqJOQpayoeapjey71]94)esnedeqpapleosipueeqseyWesbeyepejeu)Sajeocipu|:papeaoxyTy¢‘sues6ejyepBulpseosipsipue
aoedsJayngpayiluy0)anpAjjensn)uoyseBu0lBurouaiadxesi}!Jeu)a}eoIPU!0}JB}NOJeAqJUaS-yoUaNHedINOS«©‘yemaslyay]jepayoojqaqAjjensnpinoyssebessawjoespay‘suoseasAjunoas104‘SSeippeJaujoue0}papsemso}aqPinoyssjyoxoedyey)MOUYysOYBulpuasaU]48]0}Ja}NOJJOysoYeAqpas¢-joaupaye

‘JepeeyH91e8ed--7907/67/10 —ysuoneorgnd/Areiquwos"py-mavan//:day
0812

0813

rsqunnjyuswsebpaTmouyoywtattootetitetetititit-tetitotititotiotitototettitititetetete-t—tzaqunnsouanbas
Qz0guoTIeUTIASAGI

!

+-—

|

protobipetitatetititititegantititititititetotititititetititidetetid
|

+-

270gB0mn0Sg
|

titititatotetitrtitetitetititititototototntitigetetititititit068LOSPEZTTOBBSBLODSGSVEZTOEBLIOGCPEZTO€c¢€e@¢ecete¢eeeTTItItItqIdqgIdqTtdit
Te

 ‘do.Aqpapiaoidaai~sasYodsuesajqeiyasay)J@AOayeJadOAYINSq}/dD1ayyulSUONeo|ddeay)JOSOW‘UONDe09JOapue‘o1jU00Moy‘Bulguenbas‘syinosioyenwiABuneulwue)pueBuiysijqejyse‘sebessewGulyeusoyjojsajnySapnjoulqo“‘YIOMJOUBU}SSOQIORBOIAJOSUONBDIUNWWOD(payUsIO-UONDSBUUOD)JINDIIOjenywIAeBSepiacid‘EBLD4yulpaequosap‘qol
dolEE

“STSQUINNVi6gJO1Si[SVNeu)UlpunoyaqUeopauBbisseUeegaAeyyey)SJaquuNuYodjo}sI|aJajdwooydiydandey-qdWNSdandWNS~danEAdOddoldilHdOLje6uy=dgOLJaydoyOLSNGddan/dolsjoym=OLdiWSdOLyulealdol(0.}U09diddOLJaysuesyeyepdiddoluoyeaddyjo00}0ig#Hod

LI28ed--7907/6Z/10

02Sc9lLOLOLL0862OZ€SevS¢ee40c

“ysuonvorqnd/Aseiqi/wos{pyamm//:dyy
0813

0814

‘SJSqUITIN

udidOqTWeJo1S!BeSUIEJUIELWYN]8UL‘GESJOSSIVUeO}S}/NeJap‘jUesgeJ!‘pueUONdOpasnAjUOWWOD}SOWau)SI(SSIN)ezisjuawuBasLunuwixew‘suoljdojoAjalea©ayeloBau0}yUaWIYS!|Ge}SeUONIBUUODJepasp:suoldO
‘yuawbesay)uleyep

payipadxauouJo49}90}SJlyBU)JOUOHISOdBU}SayeoIpul‘jesSs!BeyYMau)USUMPIJRA“VajUIOYUSHAeUL“eyepewJ0U,pueJapeayau)UsamjagjuaWBaseu!peoeRidsipueBuuayngqo}jewsousessedAgAjjensn‘wn}ul‘eyepsi)‘uoeajddesae]sayBiyeAqAyoud-yBiysepeysewUaeqseyyey)UOeWOJUISs!Eyepjuabunvajuiogjuabin‘(eyeppueJapeayay)Buipnjou!)yuawBesay)Jo}uooa}apJoejigAJeJUSWIPNISApPiAOg‘WNsyIeYyD‘JOAIOD9JBY)LOYjde00e0}BuljimsijuaWBassiy)JoJapuasBU]Jeu)Se}AQqPo}}iwWsuedJOJaqWUINUBY}SIYOIYMaZ/SMOPUIMBAJaDasBU}JOBNJEABu)SUIE}UOD‘[0J}UGDMOYJO}PES:mopUl/Y‘uoloaIpyoeeulJuawWBHesNI/49U0SaJinbayUONOaUUODau)BulsojoAyayajduoo‘Buieae.yS|JUeWBasSiu)UODOIIPBU}UlUOHOBUUODGO}By}JOUO!BUILUJa)[eWWJOUJsenbai0}Yas-(Niz)YsiulyoO‘Jaquunuaouanbasjeljlulay)Aveosyuau6asayyyeu)Buiyeoipul‘uolOeUUOIBYSiiqejsaoO}pasnsjuewBeasjeijulayyUl8S:(NAS)SuaquinyaouenbasaziuoiyguASoO‘UOI}IOUUODGDIPUS-0}-pusaU}SayeUILUJA)AjayeIPaWLU!JasUBUAA“(1Sy)UOHQ@UUODJesayOo
‘eyep

josjlunjewsBuyyiusues10jNJasn‘yy0}JayNgay}JO)BuyemynouyMpasayjngAjuasnosiyeu)eyepau}WWSUBA[BJEIPBWLU!OFGOLBDO)0}SjueMUOHeEDYddeBuNywusueley)UBUMPasN-(HSq)UOHOUNYYsNdOo
‘yUeWYsI}qeyseUOOeUUOS

Buunpabessewjs1yay)Bulinp}daoxe‘jasAjjensnsi1gSIU]‘pijeAS$!playsaquunyjuewUBpaymoujoyBY)UlPBUJEJUOSaNjeaau]Jeu)Se}eTIpU!‘JasUBUAA(YOY)JUeDYIUBISpjalyjuauBpajmouyoyoO‘PIEAS|aNjeApjayJayUIOgJuaGIF)BuyyeY)pueeyep(Ayod-ybiyJo)yus6unsuleyuodyuaWBasJuanay)Jeu)SAjeoipul‘JasUBUAA“(OY/N)JUeBIYIUBISpjal4JajUlOgjJuaBin©‘apnpusbeyayy‘UOI}DBUUODjeENYIAqOiOy)JOSjoedseUlepsdjo1}U0Dyey)SheyjoJesY‘sBejyjasjUCD‘y)6ua)JapeayjuetuBesou)sayeaipur‘uaU)‘pjaysiuy‘jusssiy}UlajAqeyepySul)BY)O}SJUIO,‘JasyOB/G‘JONBIOIBYWOpayoedxaa}Aq}XauBy)JOJequINUaouanbesey)SayeoipulpaySiyy‘eyepjoydiade1aBpaymouyoe0}Japuasay)Aqpaspvequinyyjuawbpajmouyoy‘AyenuenbsspazequinujouaesyuawBasqo)snonByuosulSJaquunusoUaNbas‘juNoDjuaWBHaseUeU}JaUjeyJUNODa}AqeB0}SJQJaJJaquUINUBdUaNbESaU}BoUIS‘We|Z)S@}AqUONO@UUOD{JeJBAOBU}U!B}AqE}epJsuyS,JUaWBessi)JoJaquunuaoUSENbasau]sule}UuODvaguinyyaouanbas
‘uoneayddesaAej-say6biypue

UONIBUUODPU-O}-pUaay)AjJUap!O}]SodUOReU|SeppuesdznNOsay}AJUap]“WOUOHeUSEgPueOYa21NOS
we

(peunBi4)juawBasay)jospjayayy‘JaAl9001pueJapuasUseMjaqWeedsa}AqaU)LUOSayAqJoyD0/qespuesAjasowynq‘asjad‘sabesseweziuBooajousaopqo}Jeu}JOe}By)0}ENPsisWeUau)‘jWweWHaseBPaleoSIUNeyepqOIBUuL‘yeuuoyuawiBasqo)‘pyFUNDS~tototitit-tedefeetiteet"seeq|
Fototat-4-t-ttodttttitititedetetitctetetototitetetotoget|(butTpoed)“'*+suotjadgo|titanatetotetotetetotetototitetatettit-tetitit-4-4-4-4-4-4-4-4|TaAuToOgAWushin|wnsxo3aUuDtototmtetotet-titete-t-t-t-4-4t-t-tetititititititet-4-ttt4-$-4-4|MOpUTM|sbetTa|(paaresaz)|reszzolpotatotit-t-4-4-t-t-4-4-4-4+-4-4-4-totateteditittedtitedetitetd 819d3ed--7007/62Z/10“ysuoreorgqnd/Aresqiwoo|iananan//-dy

0814

0815

($69JIU)440mjau|y}UOsjsoyJaUjOSSe00eO}SOYdi/dO.12u00}uopebBo]JasneBuimoyejooojoudjeulwe}jENPIABYomjaNyUONeIIUNUIWODA/A{JO}YOUSJauja,©
<apnyjou!sjooojoud

pasnAjuOwWOD“yeuJa}U)BuyaseyeY)SAINpuesuoNedddeau}poddnssjodojoJdJaeuoeaddydi/dOlPUL
suoeayjddy‘p'¢

‘(eyeppueJepeoyay)Buipnjoui)wesBejyepay)J0jvoNoajap101J9JIqAJeJUSWWIPNYSePIAOl-wnsy2eYyD«‘wesBeyepqQney)40yjBuayje}0)ey)sayeoipu|-yjGue7«“UOI}QBUUODPUd-O}-Pus984}JOOdUO}EUSEPaU}SayUEpP]-ogyUOHeUNSag@
9OFJasaqAew

pueqgNulyeuoyjdosipjaySiu}Joasn‘uONDeUUODSu)JOapisBoJNOSaU)yeWOdGqNBu}SayNUap|-WOYaaINOSeraze(gain6i4)wesbeyepqqneJospjayaul‘yeuuoywesbeyepdan‘saYNI4meetiot-tetotetettititn—tet“++p4qKq|
totrtetititatepetetititototetititititititet-4¢-4¢-4-4+-4+-4-4-4+-4-4-4+|wnsxo8yD|yzbuey|titotrtetettiotetetatitittitit—4-t-4+-4+-t-t-t-t-t-t-t-4t-4-4-4-4-4|210guotyeuTyssg|10gagD7NOStrtrtotamtitatatettitotitotaetetetetitititititititot-t-4+-4-4-4-4+TO68BLOSHPEZCTIOBBSBLIODSHPEZTOBBLIXESFPEZTO©e€€e¢eteceez2e7ecee¢TtTtttttTttTritqtiiqrig?

‘uoneoyddeayyJO}}ay90SeapiAaidOo}ssaJpped|84}0}JaquunuyodeppeojsiUONOUNYAeWUdS,.qqn‘UOWeUIWS)PUBJUSLWUYSI|qe}SE}INDIO(ENAO}ySO}BLU]OUS!aJay)ssneveqqfjoadiAjasWesbejepayy0}payinssayaqase‘asuodsaspueAyanbajdwiseSAjOAU!JEU}BSOU)seyons‘suojesddeawos‘adiasas(ssajuoyoeuU0s)Wes6ejyeppus-o}-puauesapiAold‘9974j3julpequosep‘yan
ddancee6193ed--7007/6Z/10“ysuoneorqnd/Aresqiuo[pyaanan//-dyy

0815

0816

‘uoosawljAueJeaddesipjou[IM
GWUJaplOau]jNg‘ayINSjOI0]O/YJaUsJa]U;BU)SBO]Paiajesalesjooojoidesau)‘Ajbuiseasou,‘saiyiynpue‘suonedyjdde‘sjooojOldJoayINseSINgSjodo}OJdUOHWeo|UNWIWODJoJedBAjaaWJOUSIF//gO1‘'UMOYSSeyUOISSNOISIPSI)SY

Asewwns‘s‘¢
‘(PIOMpue‘jduSs}Sogq‘TWLHulajqejieaeosje)psedaysarajg¥JajssayAyegAq(7S)2DIY/OEJAS).SONNNPueSJOOLdi/dDLPueJeusazU]UOJaw,Y,Ulpuno)aqVedsuoHeaddeesayjjosowBuisn0}apin6y‘JSOUS}OWS&O}BuljanesUBUMaye}[JIMS}axOedyey)BjNOJOy)SABICSIPJEU)[OO]Y‘ajnovaoes1y©

($66SAY)voneusoju
yOe}UODUIEWOPpukeSUIEWOPJaUJaj}U]INOGeUONEWIOjUI10}SBSEQEJEPYOJESSJEU)SSANIINN-JWYNOIN/SIOUM®&‘soBessawoyunqWOISeSN}so0yjeu}OC}aBessoweGunjyabulAouaje)ay)pueS]SOYJ94j}OJOSNje}SBy]SUILWIA}ap0}W9}SAsGUOyeJESNeSMOTeyey)Appine‘yadosgyauajyu]yayDe,ay‘Bulge(P66L‘HEHSONUGIgYIid)esoy‘WAq‘az‘UaWwaBeueyjauseju;0}UONONpoOIUyUY‘MOOATdWISFHLPUe(PEBL‘IIH-Mes9D9W)1124'SAqGWNSU!PUNO}aqUeDjUaWaBeUeWYOMjaUPS8Seq-di/dOLPubdINNSUOUOneWUOjUIJEUOIIDpYy‘UsSsoqO}yahseyZAdWNSJo9snpesidsapim‘xajdwooAJ@AsaseqejepuoeuWwojulJuaWwabeuewpukesainpaooidsauyapjov0}QJqJUawabeUeEWWOMaNaidwWiseUL-d/WNS@

‘SUIBWOp

UJIMSJBAJBSBWEUPUe[lewJOUOTEIOOSseSu)Se[JMSe‘Sasseppeqd]UJIMUO}eIOO0SsSeJay}PUBSeWeUJaUJa}U}JOaunjonysau}Sauyap(aAogeSeeUGIISSUIjleyapasowApyBysulpaquosap)wayshsawenNulewogay!‘SNe(O9bTS59)EdOdS!uoIsuaajuanBYLsaxoqgjewsay)aBeuew0}JBSN94}SMO|JEPUeJUAIJOSY]O}JaAJSBU]WOOL{lePEO|UMOPO}pasnSs!dOdaesjf@-8UBPUBSJEMYJOSJUSIIO[IEWSJaSNBUBaMjaqsdepojU!S|dWISBSOUYSpJODOJOJdBIOISOdBUL‘dOd*¢‘(j544)suesnsospuesjsoyJeyjojosnjyeysay)auiWUajap0)pas¢)saBbuiy©(99587354)eBenBue;buyjyewoyjuapuadapul-WJoyeld‘paseq-||OSyue‘(WLH)eBen6ueqdnyweyxayadAY3uy)ulUayqUMalesaBedAAA‘JuauNosoway)Buisq(Gp6LDAY)OLUOISIAAqiLHYM‘JeUJe]U]EU}JEAOASNUl!BJEqiLHJOSUOISIAASNOHeA“(AAMM)2MePlMPLOAAau}JBAOUOHEWOJU!JoBGUeYOXSJOJSISEqBU}SI|ODOJOIgJaysuel]XxayadAHaU‘diLH°@(E66‘HEHB2NUadYld)esoyWWAqfeyJu0NIa/9YMyOogay)BulsojD-FOVSSIWLANYALNIFHLPue(E66)‘sayeioossy¥FAjlley,0)Swepy‘YypuealyGQAqsysomjaypueBulssasppy“O%Iapnjou!swajshsewwo1U04)98/8uOSyOOgsoUaJEJay(SUOISUS)Xyfle,JaWa}U|esodindyin)WIN

 @Y)J8AOJIBDIU0}29E/aJoaHUEYOXaay]JO)[OOOQ}OJdPJePUE}Say}S!JOOO}OJgJaysues![EYarduieSUL‘idIWS@‘(QEPTOde)SalisJaujo0}syuyYM‘QIELOJU!JEWYOIeValY‘UeAP-nuaweBulsnsavoyisoda,eyepyGnosy)youeasoO}si9snSmoOlfeJey)(00)YwaydoHe‘o1do)payloadseUOSalJO}SaysG14SNOWAUOURpaseysiBas[jeYoJessoO}JasnesmoyeyeuAynYW-aryouy
(666

O3y)stajndwosjsoysjowaspuejeoo|usamjaqSaji}JaJSUeJ}O}JASNBSMO|E[ODOJOJdJOJSUEI]S|Il4OU‘diy®0zeBed--7907/62/10| “ysuoreorqnd/Aresquwoo"|piyan//:day
0816

0817

‘OSTTDuU!paquosepalesojou|A4ayy‘Ajunwiw0syawayU|Ou]JOYUOBWJOJUIpunoJ6yoeqBuipiaoudAljeoyloadsasqns444Jayjoueaesjuawnoop(|A4)UOleUJOJU]INO,104‘SpJEPUE]SJBUJO}UjJO}S!|[eINIYJOBy]SUIEJUCDSABMIe|GISpuesseo0ldspiepuR}sjaua}U)OU)sequosep§Z0cju‘UoHeuBlsap,qLs,UeYIMpayluap!‘SO4yey)JOJesqnseU!pajuaWNoOpalespsepuUe}s}OUs9}U}"JEUOJ]X9}||OSVUlBjqeyleaequejsOWpue‘au-UOayqeyleaeAjaa,yjeBeSO4Y‘s}uaUNDOp(944y)sjuewWwoOZJo}jsenbaysepaynqujsipasesyeoyn}pue‘Jowny‘soda‘spsepueys‘suoyeoyioadsyausayu|
jmousui6aqunyyeasout

‘JEUIa]U]BY)JOBdOISPuesjoo}BU)PUe;SJapUNpUeasnJaYyUN0}SS900BUBDJapeasayyJEU}UONEWIOJU!(eUOI}IPpeJoBuesapimeSIalayy‘Jausa}U[BY)PuSjOIO}O!ddqj/qD1Buy}NOgeVONeWJOJU!puno/6y9eqpaplaoidAjUOseyOWSWSIU,$99JNOGUONBUNOJU]JBWIO“PF
‘suojeoddeso/pueSyOMjaUOM)UBAMJAGUOISJ@AUCOjooo}0/dapiaoid0}pasnsiAemayebe‘ABojoulwsa}|SOU|‘SJUBWUOUAUA(SOU!WajsAsajelpauajul10S\UBWUOIAUSNv]ulvajnasepayjeoAjyjensneajaape‘syouqnsom)ay)BunoeuuOoJejyU!BolAepal)10)pasnsiAemajebwie)ayyyey)B}ON‘ABojouyoe)yJOMJOUBSESpIMJO[BIO]UOWLUODAueAyesuAojdweaAewysomjauqnsBulApapunayy‘syJomjaueaseapimpuejeoo|Bulpnjou!‘sysomjpauqnsBuluavajyulAueJBAOBdIAIaSPOdsuey(9q)wes6ejepesepiaoidq|(‘seAe]SiyyyeUOO@UUODWesBe}eppUa-o}-pusUeSeplAoid‘UMOYSyOu‘qQfN)‘s}soyOM]ay]UBAaMjaqUONDSUUODJINDIIDJENA‘ajqeljasBSaplAoidqo]‘swayshs‘BulyesiuNnWWwod-pusO‘}SOYUlApIsadSainpuesuoVedddy‘qi/dOLJOSiaXe]jooojo1dSnOUeAay,UBaMjaqgdiysUONejasayySMOUS9aINBI4‘ainjooyYyouea31NsfoD0}0Addi/dOL‘9FUND!

LSOonAYMALYD—_—_eeeoefeeeeeeee@¥TOMJauqnS|<-------->|zZqauqns|TJSuqns|<------~->|Tx7OMISUqNS--------------||-------+-------||+--+-+-+--------|<-~-9adq-->|
{ 1Zaded--7007/62/10“ysuonroyqnd/Areiqiwos|pyaan/day

0817

0818

WIOMJBNUONBPUNOYBDUBIDSJEUONENLANASNudIBpUuNOyBDUaIISjEUOHEN4ISNGBdIMASSWEUJ9}USDUONEWIOJU]WOMAN FZWYNDINpuooasJad(sjigJosuonw)syiqebaysdqwjO1JUOSsseoceR(EIpawJO)WNIpeyyOVJOJDBSUOHEZIPJEPUR}SUOHedUNWWODa|a)UOIU)UOHeOIUNWWODRIS||EUOIJEUIA}U|IniAyal90gJausayu|90s!UONHEZIPJEPUR}SJO}UONeZIUeHIO|BUONeUa}U|Osi[OD0}OJ4JOUIa}U|dl90J04yse|GBuseulGuqjausayu|43dnojg6Buyaa}sgBuvseulBugjausayu}9SJO00}0JqaBessayy[OjUODJoUsa}U]dWOlAwoyynysuequinypouBbissyjaue}y}YNVIpleogSalASYyaUIaIU|aviJO90}0JqJaJSUBs))xa}adAHdilHaBenBuejdnyeyxeyadhHIWLHBYOrdgUONOBUUOIIE}U]SUUa}SASUEdOJUBWUaADH‘S'hdiSO9SO4MJOSASSUOHEWJOJU]INOAJO4\AS[OD0}OJJAJSUBI]All4dlsBIBSByeQpaynqijsiq48q)4Teer)S}S!|SUONSANTpaysyAjyjuaenbas4DvasuajegjojuewWpPedsg‘S'NnacawajshSawenulewogSNGAouabysjefoigyoseasaypaoueapyesuajagWdyvdaBueyoxgJausayu|jeiQaWWo)XIDaa}IWWODaAeyNsuoDeuoydaja|pueydesbaja|jeuo|yeusayu;LHO9juaudojaaeqaiemyosAajayiegasgjos0jO1gAemajeJepiogdogapowJaysues,SnougyouAsyWLYaGbueydaju|uoVewWOJU{JO}BPODpsepueySUeQeWYloOSsVyOMjanAousBbysyoalolgyeaseypaosueapyJINVddvVJOD0}0/gUOI|NJOSaysseippydv
suoljelAaiqqypueswAudloy‘s

"SOOINOSUONEWIOUI
JOWUsaOo}JUIOdSjUaLUNZOpPasayyJoaaly)[IY(Z62tD4),suonsenyespjeuJeju|paouaaedxy,paysAjuOWUWOZD0}SJOMSUY‘SJBMSUYPUBSUOHSSNHuo|A4,pue(FES)DAH),SUONSENDHJasjeusaju]MAN,payseAjUOWWODoO}SiIamsUYy-SJOMSUYPUBSUOHSENDHUO[A4,:SIBSNJaUJajU|0}JSesaJU!Je;NOWedJoaleSMW4YONSsOMYsaYydoydpuejauJa}u|au}0}Aydes6odAsopueNGS!WoBul6ues‘soido)Josaquinue410}punojaqAew§}$1|(OY4)UONSEeNHpeysyAjjuenbas4ZZa8ed--7007/67/10“ysuorearqndAreiqt|/uios"|pMmayy//-dyy

0818

0819

 $i90JeD|SMAN|SUOHedGngWeIs|d}do3qING|570;s-FSBdIAISSjBUOISSSjoig|BUiIEILTPYuoIESNpS|SPPedgy|siwWi64JAOEGHSSjINGASNPUSS~sjueuwoyJosuoljsenH"panlasoy
 SIUBTYiV“Sj“S8yEIOSSYTH100Z“O00“666!“B66!“ZE61“S661“S661©IbIAdoD

€7aded--7907/6Z/10

 WEe}SS8}~/JOUJGAOSMMM//-dyYJoWooTUMMM/-dyGJOUTSACSOJENbHWAY10WOS|jiPOVENBUINY:jwew-g(xey)6ZSS-709-0€91+(@01yoBWOY)SZE€-628-Z081+9PbSOLA‘J9}S8Y4I/0DJajuagyurodyBiy901sayeloossyIIHJassay“9Aueg

ssasppys,oyyny9

joo0jo/qwesbejyeqsasndanUIBWOPjaAaj-do].aiJODO}OJdJONJUODUOISSisUeI|dolS94yJOSeasSpyepueysjausaju|aisJOD0}0JqJUaWaHeUeYW)WOMANBjdWISdWNSJOdOjO1qJaysuessEWajdwisdilWSBdINASBjeQyqebewninyypayo)imgSOWSd|8ul]JBWaSdiisS]UBWUWODJOY}Senbay944[ODO}O1gUOH}eWOU]Buynoyrhs|[O90}O14UOI]N|OSeyssaippyesisAdYduvyJODOJOIdJUIOd-O}-JUIOdddIS414Ye,IsayOYsusdQ4dSOUOISULODIa}U]SLUB}SAGUSdOIso““-ysuoneorgnd/Areiqi[woo|paaan//:dyy
0819

0820

The Common Object Request Broker:
Architecture and Specification

Revision 2.6
December2001

0820

0821

Copyright 1998, 1999, Alcatel
Copyright 1997, 1998, 1999 BEA Systems, Inc.
Copyright 1995, 1996 BNR Europe Ltd.
Copyright 1998, Borland International
Copyright 1998, Cooperative Research Centre for Distributed Systems Technology (DSTC Pty Ltd)
Copyright 2001, Concept Five Technologies
Copyright 1991, 1992, 1995, 1996, Digital Equipment Corporation
Copyright 2001, Etemal Systems, Inc.
Copyright 1995, 1996, 1998, Expersoft Corporation
Copyright 1996, 1997 FUJITSU LIMITED
Copyright 1996, Genesis Development Corporation
Copyright 1989- 2001, Hewlett-Packard Company
Copyright 2001, HighComm
Copyright 1998, 1999, Highlander Communications, L.C.
Copyright 1991, 1992, 1995, 1996 HyperDesk Corporation
Copyright 1998, 1999, Inprise Corporation
Copyright 1996 - 2001, International Business Machines Corporation
Copyright 1995, 1996 ICL,pic
Copyright 1998 - 2001, Inprise Corporation
Copyright 1998, International Computers, Ltd.
Copyright 1995 - 2001, IONA Technologies, Ltd.
Copyright 1998 - 2001, Lockheed Martin Federal Systems, Inc.
Copyright 1998, 1999, 2001, Lucent Technologies,Inc.
Copyright 1996, 1997 Micro Focus Limited
Copyright 1991, 1992, 1995, 1996 NCR Corporation
Copyright 1998, NEC Corporation ,
Copyright 1998, Netscape Communications Corporation
Copyright 1998, 1999, Nortel Networks
Copyright 1998, 1999, Northern Telecom Corporation
Copyright 1995, 1996, 1998, Novell USG
Copyright 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright 1991- 2001 Object Management Group,Inc.
Copyright 1998, 1999, 2001, Objective Interface Systems,Inc.
Copyright 1998, 1999, Object-Oriented Concepts,Inc.
Copyright 1998, 2001, Oracle Corporation
Copyright 1998, PeerLogic,Inc.
Copyright 1996, Siemens Nixdorf Informationssysteme AG
Copyright 1991 - 2001, Sun Microsystems,Inc.
Copyright 1995, 1996, SunSoft, Inc.
Copyright 1996, Sybase,Inc.
Copyright 1998, Telefonica Investigacion y Desarrollo S.A. Unipersonal
Copyright 1998, TIBCO,Inc.
Copyright 1998, 1999, Tri-Pacific Software, Inc.
Copyright 1996, Visual Edge Software, Ltd.

The companieslisted above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,royalty-free, paid up,
worldwide license to copy and distribute this documentand to modify this document and distribute copies of the modified
version. Eachof the copyright holders listed above has agreed that no person shall be deemedto have infringed the copyright
in the included material of any such copyright holder by reason of having usedthe specification set forth herein or having
conformed any computer softwareto the specification.

0821

0822

PATENT

Theattention of adoptersis directed to the possibility that compliance with or adoption of OMGspecifications may require use
ofan invention covered by patent rights. OMGshall not be responsible for identifying patents for which a license may be
required by any OMGspecification, or for conducting legal inquiries into the legal validity or scope ofthose patents that are
broughtto its attention. OMGspecifications are prospective and advisory only. Prospective users are responsible for
protecting themselvesagainstliability for infringement ofpatents.

NOTICE

The information contained in this documentis subject to change withoutnotice. The material in this document details an
Object ManagementGroup specification in accordance with the license andnotices set forth on this page. This document does
not represent a commitmentto implementanyportionofthis specification in any company's products.

WHILE THE INFORMATIONIN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT

MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTYOF ANY KIND,

EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTYOF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTYOF
FITNESS FOR PARTICULAR PURPOSE ORUSE.In no event shall The Object Management Groupor any of the
companieslisted abovebe liable for errors containedherein orfor indirect, incidental, special, consequential, reliance or cover
damages, includingloss ofprofits, revenue, data or use, incurred by anyuser or anythird party. The copyright holders listed
above acknowledge that the Object Management Group(actingitself or throughits designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designationsto indicate compliance with these materials. This documentcontains information whichis protected
by copyright. All Rights Reserved. Nopart of this work covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use,duplication, or disclosure by governmentis subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Managementare registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IOP are trademarks of the Object Management Group,Inc.
X/Openis a trademark of X/Open CompanyLtd.

ISSUE REPORTING

. All OMGspecifications are subject to continuous review and improvement.Aspart of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page Attp://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

0822

08230823

0824

Contents

Preface... . cc ccc cece cee cc cee ree een ce ser esscenes eeeee XXXVii

1. The Object Model.......... cece cece s veces sve wen ceweee 1-1

Ll Overview .. 0...ceee tenes 1-1

1.2 Object Semantics 0.0... cece cee ee eee 1-2
1.2.1 Objects 2.0... . cece ee eee e center nee eee eeeee 1-2
1.2.2 Requests ce ceccececereereeeereceee 1-3
1.2.3. Object Creation and Destruction..........+.++ 1-4
1.2.4 TypeS... cc ccecccccrvevceccssceseensevens 1-4

1.2.4.1 Basic types 0.20.0... ee eee 1-4
1.2.4.2 Constructed types-.000. 1-5

1.2.5 Interfaces ccc cece eee rece eer enees 1-6

1.2.6 Value Types........ cc ccccecerr cer ecereeees 1-6
1.2.7 Abstract Interfacesccceeereerevees 1-7

1.2.8 Operations 0... cece cece cece eee eeees 1-7
1.2.8.1 Parameters ... 0.0... 0... cece eee eee 1-8
1.2.8.2 Return Result04. 1-8

1.2.8.3 Exceptions 000000005 1-8
1.2.8.4 Contexts 0.2... cee ee eee 1-8
1.2.8.5 Execution Semantics 1-8

1.2.9 Attributes... ... ccc cece cece erect ere eees 1-9

1.3 Object Implementation.....................02 20050. 1-9
1.3.1 The Execution Model: Performing Services 1-9
1.3.2 The Construction Modele.eeeeees 1-10

2. CORBA Overview.......... ccc ecw ee eres bee e cee c cece 2-1

2.1 Structure of an Object Request Broker............... 2-1
2.1.1 Object Request Broker0eceeeeeeeees 2-6
2.1.2 Clients... . ccc cee cece ee ee ese e neces 2-7

2.1.3 Object Implementations500685 2-7
2.1.4 Object Referencescccce cee eeee eres 2-8

December 2001 Common Object Request Broker Architecture (CORBA), v2.6 , Vv

0824

0825

Contents

vi

2.1.5 OMGInterface Definition Language.......... 2-8
2.1.66 Mapping of OMG IDL to Programming Languages 2-8
2.1.7 Client Stubs ccc cece erect screenees 2-9

2.1.8 Dynamic Invocation Interface.+++6- 2-9
2.1.9 Implementation Skeleton00se0005 2-9
2.1.10 Dynamic Skeleton Interfaceseee00s 2-10
2.1.11 Object Adapters......... ccc eee e reece eeoene 2-10
2.1.12 ORB Interface 0. ccc cece c ees eeceee 2-10

2.1.13 Interface Repositoryceseseeeeeeenes 2-11
2.1.14 Implementation Repository............ee200+ 2-11

2.2 Example ORBs.............. 0... eee eee e eee eee 2-t1
2.2.1 Client- and Impiementation-resident ORB 2-11
2.2.2 Server-based ORBceccccerereernres 2-12

2.2.3 System-based ORBcceeseerecceves 2-12
2.2.4 Library-based ORB..........cc cr ececceeree 2-12

2.3. Structure ofa Client.... 0.0.0... eeeee 2-12

2.4—Structure of an Object Implementation................ 2-13

2.5 Structure of an Object Adapter...................0.. 2-15

2.6 CORBA Required Object Adapter.................... 2-17
2.6.1 Portable Object Adapter.........¢.eeceeceee 2-17

2.7. The Integration of Foreign Object Systems 2-17

3. OMG IDLSyntax and Semantics bee eeee cee e eee eees 3-1

3.1 Overview 0...ceeee eee es 3-2

3.2 Lexical Conventions. . . Levee e eee ceeds neste eens 3-3
3.2. ToKemS.... cee cece cere rete eee teer evens 3-5

3.2.2 Comment. cece ee cers cence recrecees 3-6

3.2.3 Identifiers......... cece cece ee ec ere ererees 3-6

3.2.3.1 Escaped Identifiers5. 3-6
3.2.4 Keywords cee cece cece er enccceteeeres 3-7
3.2.5 Literals... .. cece cece eee vec ee cree weeee 3-8

3.2.5.1 Integer Literals04.. 3-8
3.2.5.2 Character Literals-.. 3-9

3.2.5.3 Floating-point Literals 3-10
3.2.5.4 String Literals 0.0.0 0008- 3-10
3.2.5.5 Fixed-Point Literals 3-11

3.3. Preprocessing. 0... 2. eeeee eee 3-11

3.4 OMGIDL Grammar.............. 0.0.0. cee ee ees 3-12

3.5 OMGIDLSpecification............. 0... cee eee eee 3-16

3.6 Module Declaration 0.0.0.0. eee eee eee 3-17

3.7 Interface Declaration 0... cece eee ee 3-17

3.7.1 Interface Header 0. cere eee cere eee es 3-17

3.7.2 Interface Inheritance Specification 3-18
3.7.3 Interface Body- cece cree en ececeeeee 3-18

Common Object Request BrokerArchitecture (CORBA), v2.6 December 2001

0825

0826

Contents

3.7.4 Forward Declaration.............0.ceeeeees 3-19

3.7.5 Interface Inheritance... 0s cece eee ees 3-19

3.8 Value Declaration 0... ce eee eee 3-24

3.8.1 Regular Value Type...........e cece e ee eenee 3-24
3.8.1.1 Value Header20.-. 3-24
3.8.1.2 Value Element0005- 3-25

3.8.1.3 Value Inheritance Specification 3-25
3.8.1.4 State Members 002.000.0604 3-25
3.8.1.5 Initializers ... 2.0.02... 3-26

3.8.1.6 Value Type Example 3-26
3.8.2 Boxed Value Type...........ceceeeeeee eee 3-26
3.8.3 Abstract Value Type cere eceeerces 3-27
3.8.4 Value Forward Declaration.0..e008 3-28

3.8.5 Valuetype Inheritance...........:eeceeeeees 3-28

3.9 Constant Declaration 0.0. ee eee ee eee 3-29

3.9.1 Symtax...ccecccnceceecccersccvceereserees 3-29
3.9.2 Semantics 0... cceecc cco recsecccene 3-30

3.10 Type Declaration 0... cece eee eee 3-33
3.10.1 Basic TypeS........ccccceer ccc ercecveccves 3-34

3.10.1.1 Integer Types0...0.. 3-35
3.10.1.2 Floating-Point Types 3-36
3.10.1.3 Char Type 0.0000 0005 3-36
3.10.1.4 Wide Char Type 3-36
3.10.1.5 Boolean Type005. 3-36
3.10.1.6 Octet Type ... 6.0.2... 0. eee 3-36
3.10.1.7 Any Type 0.0... ce eee eens 3-37

3.10.2 Constructed Types..... 2... -eeeeeeeslen eeees 3-37
3.10.2.1 Structures... 0... eee eee eee 3-37
3.10.2.2 Discriminated Unions 3-37

3.10.2.3 Constructed Recursive Types and
lForward Declarations (3-39

3.10.2.4 Enumerations0.00. 3-41

3.10.3. Template Types 0. eee ce eee ee reece 3-41
3.10.3.1 Sequences0 0000-0006. 3-41
3.10.3.2 Strings «2.0... eee eee 3-42
3.10.3.3 Wstrings 0.2 -.2002 0005 3-42
3.10.3.4 Fixed Type2..0.004. 3-43

3.10.4 Complex Declarator............0 cece ce eeeee 3-43
3.10.4.1 Arrays 2.2.2.0... eee eee eee 3-43

3.10.5 Native Types........ 0. ccc cre ce ce cnencevece 3-43

3.11 Exception Declaration 0.0.0... cece ee eee 3-47

3.12 Operation Declaration 0.0.0.0 ce eee eee 3-47
3.12.1 Operation Attribute............ 0. cee eee ee 3-48
3.12.2 Parameter Declarations.-.eccceeees 3-48

3.12.3. Raises ExpressionS.......... 02 eee ccc ceneeee 3-49
3.12.4 Context Expressions00cceeeeeees 3-49

3.13 Attribute Declaration0 0.0.0... cee eee eee 3-50

3.14 CORBA Module................0 20. eee ee eee 3-51

December 2001 CommonObject Request Broker Architecture (CORBA), v2.6 vii

0826

0827

Contents

3.15 Names and Scoping 0... cece eee eee 3-52
3.15.1 Qualified NameS............ se eee cree eeeees 3-52
3.15.2. Scoping Rules and Name Resolution 3-54
3.15.3 Special Scoping Rules for Type Names......... 3-57

4. ORB Interface cece creer ee nee eeeeees 4-1

4.1 Overview... teens 4-1

4.2. The ORB Operations 0... cece eee ee ees 4-2
4.2.1 ORB Identity 0... eee cece eee eeeees 4-7

AQLid...eeeeee 4-7

4.2.2 Converting Object References to Strings....... 4-8
4.2.2.1 object_to_string00005 4-8
4.2.2.2 string_to_object0-eee eee 4-8

4.2.3 Getting Service Information............+.+4- 4-8
4.2.3.1 get_service_information 4-8

4.2.4 Thread-Related Operations.............0eeee- 4-9
4.2.4.1 work_pending 4-9
4.2.4.2 perform_work0...0005. 4-9
4.24.3 TUN 2...eeeee ees 4-10
4.2.4.4 shutdown 0000. e eee 4-10

4.2.4.5 destroy 0.0... eee eee eee 4-11

4.3 Object Reference Operations...................000- 4-12
4.3.1 Determining the Object Interface............. 4-13

4.3.1.1 get_interface 00... eee eee 4-13
4.3.2 Duplicating and Releasing Copies of

Object Referencescc eu eceees ‘wees 4-14
4.3.2.1] duplicate00.. 0.00000, 4-14
4.3.2.2 release 2...eeeee 4-14

4.3.3. Nil Object References-..cesceeeeeee 4-14
4.3.3.lisnil oo...eee 4-14

4.3.4 Equivalence Checking Operation............. 4-15
4.3.4.1 isasceeee 4-15

4.3.5 Probing for Object Non-Existence 4-15
4.3.5.1 non_existent............00...00008. 4-15

4.3.6 - Object Reference Identity...............006. 4-16
4.3.6.1 Hashing Object Identifiers 4-16
4.3.6.2 Equivalence Testing 4-16

4.3.7. Type Coercion Considerations+++. 4-17
4.3.8 Getting Policy Associated with the Object...... 4-17

4.3.8.1 get_policy0..0...02.0.. 4.17
4.3.8.2 get_client_policy2. 4-18
4.3.8.3 get_policy_overrides 4-19

4.3.9 Overriding Associated Policies on an
Object Reference 0... cee cece cree eens 4-19

4.3.9.1 set_policy_overrides 4-19
4.3.10 Validating Connection............ccceeceece 4-20

4.3.10.1 validate_connection................ 4-20

4.3.11 Getting the Domain Managers Associated with
the Object... ... ccc ccc ere eee erect ones 4-20

4.3.11.1 get_domain_managers.............. 4-20

4.4 ValueBase Operations..............-0 20 ce cece ene 4-21

Vill Common Object Request BrokerArchitecture (CORBA), v2.6 December 2001

0827

0828

Contents

4.5 ORB and OAInitialization and Initial References....... 4-21
45.1 ORB Initialization cess e cence eces 4-22

4.5.2 Obtaining Initial Object References........... 4-23
45.3 Configuring Initial Service References......... 4-26

4.5.3.1 ORB-specific Configuration 4-26
4.5.3.2 ORBinitRef 0-2... eee 4-26

4.5.3.3 ORBDefaultinitRef beeen eens 4-27

4.5.3.4 Configuration Effect on
resolve_initial_references 4-27

4.5.3.5 Configuration Effect on list_initial_services 4-28

4.6 Context Object......... 0... eee eee 4-28
4.6.1 Introduction......... 2c cece eee n nero oneness 4-28

4.6.2 Context Object Operations..............+065 4-29
4.6.2.1 get_default_context 4-30
4.6.2.2 set_one_value 0.0.0.0. 00 eee 4-30
4.6.2.3 set_values 0... cece eee eee 4-30
4.6.2.4 get_values 0.0... cece eee 4-31
4.6.2.5 delete_values ... 0... 00.00 ccc eee eee 4-31
4.6.2.6 create_child 20... 0... cece eee ees 4-32
4.6.2.7 delete ccc eee eee eee eee 4-32

4.7 Current Object 0...eee ee ees 4-32

4.8 Policy Object... 20... 0...eeeee 4-33
4.8.1 Definition of Policy Object245-- 4-33

481.1 Copy cee eee cece 4-34
4.8.1.2 Destroy 2... eee ec ee eee 4-34
4.8.1.3 Policy_type00.006. 4-34

4.8.2 Creation of Policy Objects..........0eeeeeees 4-34
4.8.2.1 PolicyErrorCode - 4-35
4.8.2.2 PolicyError 2.0.2.2... cca eee eee 4-35
4.8.2.3 Create_policy 0.0004. 4-35

4.8.3 Usages of Policy Objects 00 eeeeee 4-36
4.8.4 Policy Associated with the Execution Environment 4-37
4.8.5 Specification of New Policy Objects........... 4-37
4.8.6 Standard Policies.......... cc cceeeececenees 4-39

4.9 Management of Policies.....................00000. 4-43
4.9.1 Client Side Policy Management+.. 4-43
4.9.2 Server Side Policy Management....... eeeees © 4-43
4.9.3 Policy ManagementInterfaces 4-44

4.9.3.1 interface PolicyManager 4-44
4.9.3.2 interface PolicyCurrent 4-46

4.10 Management of Policy Domains 4-46
4.10.1 Basic Concepts... .. 0... cece eee eee en eee 4-46

4.10.1.1 Policy Domain0.. 4-46
4.10.1.2 Policy Domain Manager 4-47
4.10.1.3 Policy Objects00008. 4-47
4.10.1.4 Object Membership of Policy Domains 4-47
4.10.1.5 Domains Association at Object

Reference Creation 4-48

4.10.1.6 Implementor’s View of Object Creation 4-48
4.10.2. Domain Management Operations....,........ 4-49

December2001 Common Object Request Broker Architecture (CORBA), v2.6 ix

0828

0829

Contents

4.10.2.7 Domain Manager 4-50
4.10.2.8 Construction Policy 4-51

4.11 TypeCodes 0.2 ceceee ees 4-51
4.11.1 The TypeCode Interface0. ec eeseees 4-52
4.11.2 TypeCode Constants cs ceeceeeeeenes 4-56
4.11.3 Creating TypeCodes 0 cece eee cece 4-57

4.12 Exceptions 0.0... c eee cc cece eens 4-61
4.12.1 Definition of Terms cece ceeeecees 4-61

4.12.2 System Exceptions.... 0... ccesesececscenee 4-62
4.12.3 Standard System Exception Definitions 4-63

4.12.3.) UNKNOWN-0005- 4-65

4.12.3.2 BAD_PARAM4.. 4-65
4.12.3.3 NO_MEMORY................... 4-65
4.12.3.4 IMP_LIMIT2.-.08.8 4-66
4.12.3.5 COMM_FAILURE 4-66
4.12.3.6 INV_LOBJREF002. 4-66
4.12.3.7 NO_PERMISSION 4-66
4.12.3.8 INTERNAL00.. 4-66
4.12.3.9 MARSHAL2..-.00-- 4-66
4.12.3.10 INITIALIZE0.004. 4-67

4.12.3.11 NOLIMPLEMENT 4-67
4.12.3.12 BAD_TYPECODE 4-67
4.12.3.13 BAD_OPERATION 4-67
4.12.3.14 NO_RESOURCES 4-67
4.12.3.15 NO_RESPONSE 4-67
4.12.3.16 PERSIST_STORE 4-67
4.12.3.17 BAD_LINV_ORDER............... 4-67
4.12.3.18 TRANSIENT005. 4-68

4.12.3.19 FREE_MEM4.. 4-68
4.12.3.20 INV_IDENT2..--00-- 4-68
4.12.3.21 INV_LFLAG005. ‘4-68
4.12.3.22 INTF_REPOS04.. 4-68
4.12.3.23 BAD_CONTEXT 4-68
4.12.3.24 OBJ_LADAPTER 4-68
4.12.3.25 DATA_CONVERSION 4-68
4.12.3.26 OBJECT_NOT_LEXIST 4-69
4.12.3.27 TRANSACTION_REQUIRED"4-69
4.12.3.28 TRANSACTION_ROLLEDBACK .. 4-69
4.12.3.29 INVALID_TRANSACTION 4-69
4.12.3.30 INV_POLICY0-5. 4-69
4.12.3.31 CODESET_INCOMPATIBLE...... 4-69
4.12.3.32 REBIND-..-05 4-69
4.12.3.33 TIMEOUT-.005. 4-70

4.12.3.34 TRANSACTION_UNAVAILABLE . 4-70
4.12.3.35 TRANSACTION_MODE.......... 4-70
4.12.3.36 BAD_QOS0 0.02 4-70

4.12.4 Standard Minor Exception Codes 4-70

5. Value Type Semantics. 0... cece ee eee cere ete ee ones .. 5-1

5.1 Overview 0000ceetenet nes 5-1

5.2 Architecture. ... 0...ceeee 5-2

5.2.1 Abstract Valuesccccscesccsseccecee 5-3

Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0829

0830

Contents

December 2001

§.2.2 Operationscccer cece ee erectecneveces 5-3
5.2.3 Value Type vs. Interfaces.-. eee eee eecaee 5-4
5.2.4 Parameter Passing......-.eeecscseesenesens 5-4

5.2.4.1 Value vs. Reference Semantics 5-4

5.2.4.2 Sharing Semantics0..... 5-4
5.2.4.3 Identity Semantics04. 5-4
5.2.4.4 Any parameter type00. 5-5

§.2.5 Substitutability Issues02 cee ceeeeeee 5-5
5.2.5.1 Value instance -> Interface type 5-5
5.2.5.2 Value Instance -> Abstractinterface type 5-5
5.2.5.3 Value instance -> Value type 5-5

5.2.6 Widening/Narrowing...........ceceseeeeaee 5-6
5.2.7 Value Base Type........ccsceeccceeccnncees 5-6
§.2.8 Life Cycle issueS.........cceccc cree re cecree 5-7

5.2.8.1 Creation and Factories 5-7

5.2.9 Security Considerationseeeseeccees 5-7
§.2.9.1 Value as Value.............0.00-000- 5-8

5.2.9.2 Value as Object Reference 5-8

5.3 Standard Value Box Definitions..................... 5-9

5.4 Language Mappings.............. 0.000 e eee ee eee 5-9
5.4.1 General Requirements..........0..6se0eeees 5-9

5.4.2 Language Specific Marshaling...........+..- 5-9

5.4.3 Language Specific Value Factory Requirements. 5-9
5.4.4 Value Method Implementation............... 5-10

§.5|Custom Marshaling 0-2-0 eee eee eee 5-10
5.5.1 Implementation of Custom Marshaling........ §-11
5.5.2 Marshaling Streams.:eeceeeevseveres §-11

5.6 Access to the Sending Context Run Time 5-18

6. Abstract Interface Semantics...... vec ewer eee eneceens we. 6-1

6.1 Overview...eeeeee nee 6-1

6.2. Semantics of Abstract Interfaces0... 6-1

6.3 Usage Guidelines............. 0.0. eee ees 6-3

6.4 Example....... 0.0.0. ceece ee eens 6-3

6.5 Security Considerations 0000s eee ees 6-4
6.5.1 Passing Values to Trusted Domains 6-4

7. Dynamic Invocation Interface00. bee eee wees 7-1

7.1 OVErVIEW 20.eeetease Tel

WAA CommonData Structures0.00eeeees 7-2

7.1.2 Memory Usage... ... ccc ers ccccceeccccnces 7-4
7.13 Return Status and Exceptions.............6+. 7-4

7.2 Request Operations 0.0.0.0 c cee eens 7-4
7.2.1 Create_request 2... ccc cee cece cece eee reeees 7-5
7.2.2 Add_Arg....cerccececcccecncccvccseuseeens 7-7
7.2.3 INVOKE 0... ccc eee eee wen w recente eneeeee 7-8

Common Object Request Broker Architecture (CORBA), v2.6 xi

0830

0831

Contents

7.2.4 delete... ccc cece etter cree ee erences 7-8

PS1)iecic 7-8

7.2.6 poll_respomseseeceeseserccrrereene 7-9
7.2.7—Bet_eSPOMSe.... cece eee eect cece terre esas 7-9
7.28 SOENUP.. cc cceccc cere ccc ceterererestetcennes 7-10
7.2.9 Prepare... cc cece reece ence reste eesoneees 7-10
7.2.10 SENdC.... cece cece e eee entre eeenees 7-10

7.3. ORB Operations. 0... cece ee eee eee 7-11
7.3.1 send_multiple_requests.........ceseeevovees 7-11
7.3.2 get_next_response and poll_next_response..... 7-11

7.4 Polling 0... ceece eee eens 7-12
7.4.1 Abstract Valuetype Pollable..........+eseeeees 7-14

7.4.1.1 is_ready 2.0.0.0 c cece eee 7-14
7.4.1.2 create_pollable_set 7-14

7.4.2 Abstract Valuetype DilPollable 7-14
7.4.3 interface PollableSetececseeseceees 7-14

7.4.3.1 create_dii_pollable 7-15
7.4.3.2 add_pollable 2.0 e cece eee 7-15
7.4.3.3 get_ready_pollable0. 7-15
7.4.3.4 FEMOVE ..0.eeeee 7-16

7.4.3.5 number_left 00002000005 7-16

7.5 List Operations... 0.0.0.0... 00. eeeeee 7-16
7.5.1 create_list ... 0... cece cece eer e ete eeeeenes 7-17

7.5.2 Ce Cta||a 7-17
T5.3 FOC Le cee ce cere eee tere rere re seeeeees 7-17

7.5.4 free_MeMOryccerreecercececeeerece 7-18
7.5.5 Bet_count cece eee r ec reer eter eneeens 7-18
7.5.6 create_operation_list...... 0... cece ceeeeeeees 7-18

8. Dynamic Skeleton Interface 0... ccc ee cece ee reevnes 8-1
8.1 Introduction 0.0...ccceee 8-1

8.2 Overview .. 0...eeteenies 8-2

8.3. ServerRequestPseudo-Object...................000. 8-3
8.3.1 ExplicitRequest State:

ServerRequestPseudo-Object0.ee0s 8-3

8.4 DSI: Language Mapping-....008. 8-4
8.4.1 ServerRequest’s Handling of Operation Parameters 8-4
8.4.2 Registering Dynamic Implementation Routines. 8-5

9. Dynamic Managementof Any ValueS..........- 2s eeeeescunee 9-1

9.1 Overview... 6.ceeet eee eee 9-1

9.2 DynAnyAPI............ 0.00 eeeeee 9-3
9.2.1 Locality and Usage Constraints 9-9
9.2.2 Creating a DynAny Objecteee ee 9-9
9.2.3. The DynAny Interface. cee cece 9-11

9.2.3.1 Obtaining the TypeCode associated

xii Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0831

0832

Contents

with a DynAny object00--- 9-11
9.2.3.2 Initializing a DynAny object from another

DynAny object000- 9-12
9.2.3.3 Initializing a DynAny object from an any

value 2.6... eeeee eee 9-12

9.2.3.4 Generating an any value from a DynAny
Object...cee ees 9-12

9.2.3.5 Comparing DynAnyvalues 9-12
9.2.3.6 Destroying a DynAny object 9-13
9.2.3.7 Creating a copy of a DynAnyobject 9-13
9.2.3.8 Accessing a value of somebasic type in

aDynAnyobject065 9-13
9.2.3.9 lterating through components of a DynAny 9-15

9.2.4 The DynFixed Interfacecseeeeeeeees 9-16
9.2.5 The DynEnum Interface0ceeeees 9-16
9.2.6 The DynStruct Interface..........0.eeceuees 9-17
9.2.7. The DynUnion interface0.eeeevaee 9-19
9.2.8 The DynSequence Interface-5eeee. 9-21
9.2.9 The DynArray Interfaceceeeeeees 9-22
9.2.10 The DynValueCommonInterface............. 9-23
9.2.11 The DynValue Interface¢.eesecreees 9-24
9.2.12 The DynValueBox Interface02eeee- 9-24

9.3. Usage in C++ Language............ 00... cee eee eee 9-25
9.3.1 Dynamic creation of CORBA::Any values...... 9-25

9.3.1.1 Creating an any that contains a struct... 9-25
9.3.2 Dynamic interpretation of CORBA::Any values. 9-26

9.3.2.1 Filtering of eventseee ees 9-26

10. The Interface Repository. 0. cece eee e ce eeeeee . 10-1

10.1 Overview . 0.0...teeas 10-1

10.2 Scope of an Interface Repository0005. 10-2

10.3. Implementation Dependencies.................---05 10-4 .
10.3.1 Managing Interface Repositories 10-4

10.4 BaSicS... 0.0...ceeeee eet 10-5

10.4.1 Names and Identifiers0c cece veees 10-6

10.4.2 Types and TypeCodes eee ceereevece 10-6
10.4.3. Interface Repository Objects6..eeeee 10-6
10.4.4 Structure and Navigation of the Interface

Repository 0. ccc cece ee eee e eee 10-7

10.5 Interface Repository Interfaces.................0000. 10-9
10.5.1 Supporting Type Definitions...............-. 10-10
10.5.2 IRObject........ ccc cece cece eee c rene eeenes 10-11

10.5.2.1 Read Interface 0.00000 10-11
10.5.2.2 Write Interface-.......22. 0005. 10-1}

10.5.3 Contained.......... ccc cece ees ec cree eececs 10-11

10.5.3.1 Read Interface0004. 10-12
10.5.3.2 Write Interface 020.000, 10-13

10.5.4 Container ccc cee cece cece ere ceeee 10-14

10.5.4.1 Read Interface0 000005 10-17

December2001 Common Object Request Broker Architecture (CORBA), v2.6 xiii

0832

0833

Contents

xiv

10.5.4.2 Write Interface005- 10-18

10.5.5 IDLType cece ete e cece renee ene eeetees 10-19
10.5.6 Repository- cee cee eee eee eee neecees 10-20

10.5.6.1 Read Interface-.0-. 10-21
10.5.6.2 Write Interface000. 10-2)

10.5.7 ModuleDef 0c ccc cece eee c tere eres 10-22

10.5.8 ConstantDef........... eee twee et ee enrane 10-22
10.5.8.1 Read Interface, 10-22
10.5.8.2 Write Interface2205. 10-23

10.5.9 TypedefDef...... 0. cece reece verre ceneves 10-23
10.85.10 StructDef ccc cece ee wcrc eee nec eeees 10-23

10.5.10.1 Read Interface 10-24
10.5.10.2 Write Interface000- 10-24

10.5.11 UnionDef.0. cs ccc cc creer er eccccene 10-24

10.5.11.1 Read Interface 10-24
10.5.11.2 Write Interface05. 10-25

10.5.12 EnumDef. 0. cece ence cere ven scces 10-25

10.5.12.1 Read Interface 10-25
10.5.12.2 Write Interface0.. 10-25

10.5.13 AliasDef eee eee ere eens eaones 10-25

10.5.13.1 Read Interface0.05. 10-26
10.5.13.2 Write Interface2005- 10-26

10.5.14 PrimitiveDef.... 0... cc ccc er eee eect ven eeens 10-26

10.5.15 StringDef cc cece ce erate eens 10-26
10.5.16 WstringDef...... eee cence reece eeee-eeee 10-27
10.5.17 FixedDef..... ccc cee cece eee e enone 10-27

10.5.18 SequenceDef.......... cc cere er cee vc evccces 10-27
10.5.18.1 Read Interface04. 10-28
10.5.18.2 Write Interface-.0-. 10-28

10.5.19 ArrayDef..... 0. ccc ec cece eee eee reece eeees 10-28
10.5.19.1 Read Interface 10-28
10.5.19.2 Write Interface05. 10-28

10.5.20 ExceptionDef cece cence ee wee eeees 10-29
10.5.20.1 Read Interface2200- 10-29
10.5.20.2 Write Interface4. 10-29

10.5.21. AttributeDef..... ccc cece cece ewe wees 10-29

10.5.21.1 Read Interface200. 10-30
10.5.21.2 Write interface000005 10-30

10.5.22 OperationDef.......... 0. cece cece eee eeee 10-30
10.5.22.1 Read Interface0005 10-31
10.5.22.2 Write Interface000005 10-32

10.5.23 InterfaceDef........ ccc cee tee eee eens 10-32

10.5.23.1 Read Interface0005 10-33
10.5.23.2 Write Interface 10-34

10.5.24 AbstractinterfaceDef..........c cee eens +s. 10-34

10.5.24.1 Read Interface 10-34
10.5.24.2 Write Interface 10-35

10.5.25 LocallnterfaceDef cc eee csc ecncees 10-35

10.5.25.1 Read Interface200005 10-36
10.5.25.2 Write Interface0..00. 10-36

10.5.26 ValueMemberDef...........0ceceeeeecusves 10-37

10.5.26.1 Read interface00005. 10-37
10.5.26.2 Write Interface0000. 10-38

Cammon Object Request Broker Architecture (CORBA), v2.6 December 2001

0833

0834

Contents

10.5.27 ValueDef...... ccc cc eee reece eer eeereces 10-38
10.5.27.1 Read Interface-.......000005 10-40
10.5.27.2 Write Interface-...-.. 00 eee 10-40

10.5.28 ValueBoxDef........... ce cee eer sence erences 10-41

10.5.28.1 Read Interface-......4.. 10-41
10.5.28.2 Write interface0.004. 10-41

10.5.29 NativeDef cc cece cere eee e ee teenenes 10-41

10.6 RepositorylIds......... 0.0... cece tte eee 10-42
10.6.1 OMGIDL Format...........ceeeecceceeeee 10-42

10.6.2 RMI Hashed Formatceesecerceeees 10-43

10.6.3 DCE UUID Format cece eee eens 10-44

10.6.4 LOCAL Format..........c cece cence ee ceeee 10-45

10.6.5 Pragma Directives for Repositoryld........... 10-45
‘10.6.5.1 The ID Pragma006. 10-45
10.6.5.2 The Prefix Pragma-0006- 10-45
10.6.5.3 The Version Pragma 10-48
10.6.5.4 Generation of OMG IDL - Format IDs . 10-49

10.6.6 For More Information...........ceeeeeeesee 10-50

10.6.7. RepositoryIDs for OMG-Specified Types........ 10-50

10.7. OMG IDLfor Interface Repository 10-51

11. The Portable Object Adapter 0. cc ccccercveccccs 11-1

LLL Overview ... 2... ceeene eee eens 11-1

11.2 Abstract Model Description................000 ee aee 11-2
11.2.1 Model Components cer erececsecens 11-2
11.2.2 Model Architectureececceeccecers 11-4

11.2.3) POA Creation...cccce cece ecerercncees - 11-6

11.2.4 Reference Creation cc eecececenees 11-7

11.2.5 Object Activation Statesccecceseeeee 11-8
11.2.6 Request Processingeeeeeeeeeecceres 11-9
11.2.7 Implicit Activation....... eee seeeseececnes 11-10
11.2.8 Multi-threading 0 ccc eee ee eevees 11-11

11.2.8.1 POA Threading Models............. i]-11
11.2.8.2 Using the Single Thread Model 1}-11
1.2.8.3 Using the ORB Controlled Model 11-12
1.2.8.4 Using the Main Thread Model 11-12
11.2.8.5 Limitations When Using Multiple

/ Threads0 00. 0.00.00000. 11-12
11.2.9 Dynamic Skeleton Interface00008 11-12
11.2.10 Location Transparency0cceeceseeece 11-14

11.3 Interfaces 0... kc eeeee eee 11-14

11.3.1 The Servant IDL Type......... cece ees ee eees 11-15

11.3.2 POAManagerInterface............0sseeeuee 11-15
11.3.2.] Processing States 11-16
11.3.2.2 activate 6.2... ee ee eee 11-18

11.3.2.3 hold_requests-........-. 11-18
11.3.2.4 discard_requests 11-19
11.3.2.5 deactivate0..0.0000040. 11-19

11.3.2.6 get_state 2...eee eee. 11-20

December2001 Common Object Request Broker Architecture (CORBA), v2.6 xv

0834

0835

Contents

11.3.3 AdapterActivator Interface..........-+eeeees 11-20
11.3.3.) unknown_adapter0, 11-20

11.3.4 ServantManager Interface+-++. eee. 11-22
1].3.4.1 Common Information for

Servant Manager Types 11-22
11.3.5 ServantActivator Interface 000: e ee ees 11-23

11.3.5.] incarmate .. 0... 0. ee eee eee eee 11-23
11.3.5.2 etherealize 0.0.0.0... 0 cc eens 11-24

11.3.6 ServantLocator Interfacecce ve eeeee 11-25

11.3.6.) preinvoke 00.022 eee 11-26
11.3.6.2 postinvoke 0.00. e eee 11-27
11.3.6.3 ServantLocator and Location

Determination--..- 11-27

11.3.7. POA Policy Objectsceceeereetecs 11-28
11.3.7.1 Thread Policy00. 11-28
11.3.7.2 Lifespan Policy00. 11-29
11.3.7.3 Object ld Uniqueness Policy 11-29
11.3.7.4 1d Assignment Policy 11-30
11.3.7.5 Servant Retention Policy 11-30
11.3.7.6 Request Processing Policy........... 11-31
11.3.7.7 Implicit Activation Policy 11-32

11.3.8 POA Interface ccc rece eee c eee evene 11-33

11.3.8.1 create_POA-..-2-- 11-33
11.3.8.2 find_POA0.0.00. 0000 c eee eee 11-34
11.3.8.3 destroy 00... e ee ee eee 11-34
11.3.8.4 Policy Creation Operations 11-35
11.3.8.5 the_mame 20... .0 0c eee 11-36
11.3.8.6 the_parent0008. 11-36
11.3.8.7 the_children ... 2.0.0... .0. 0.000 aee 11-36
11.3.8.8 thePOAManager 11-36
11.3.8.9 the_activator0. 0.0.20. 0.0 cee 11-36
11.3.8.10 get_servant_manager.............. 11-37
11.3.8.1]1 set_servant_manager 11-37
11.3.8.12 get_servant.................0.0.. 11-37
11.3.8.13 set_servant 0.0.00 ee eee 11-37
11.3.8.14 activate_object208. 11-38
11.3.8.15 activate_object_with_id............ 11-38
11.3.8.16 deactivate_object EE-38
11.3.8.17 create_reference--. 11-39
11.3.8.18 create_reference_with_id 11-39
11.3.8.19 servant_to_id00000. 11-40
11.3.8.20 servant_to_reference 11-41
11.3.8.21 reference_to_servant 11-41
11.3.8.22 reference_to_id005. 11-42
11.3.8.23 id_to_servant 0.000.000 11-42
11.3.8.24 id_to_reference0, 11-42
11.3.8.25 ido...ccc ees 11-42

11.3.9 Current Operationsceseeeeeeens 11-43
11.3.9.1 get_POA 2.0.0.2... cc cece eee 11-43
11.3.9.2 get_object_Lid00.. 11-43
11,.3.9.3 pet_reference400. 11-43
11.3.9.4 get_servant..............0...0.000. 11-44

11.4 IDL for PortableServer Module0. 11-44

11.5. UML Description of PortableServer.................. 11-50

Xvi CommonObject Request Broker Architecture (CORBA), v2.6 December 2001

0835

0836

Contents

11.6 Usage Scenarios... 0.0.2.0...eenes 11-52
11.6.1 Getting the Root POA cess evenness 11-52
11.6.2 Creating aPOA ccc cece eee e rere neeees 11-53
11.6.3 Explicit Activation with POA-assigned Object Ids 11-53
11.6.4 Explicit Activation with User-assigned Object Ids 11-54
11.6.5 Creating References before Activation......... 11-55
11.6.6 Servant Manager Definition and Creation...... 11-55
11.6.7 Object Activation on Demand...........++..-- 11-57
11.6.8 Persistent Objects with POA-assigned Ids...... 11-59
11.6.9 Multiple Object lds Mapping to a Single Servant 11-59
11.6.10 One Servant for All Objects6eeeeeees 11-59

11.6.11 Single Servant, Many Objects and Types,
Using DS] «0... . eee c ccc wee ence ence ne eees 11-62

12. Interoperability Overview cece ccc cre cece eeee 12-1

12.1 Elements of Interoperability...................0004. 12-1
12.1.1 ORB Interoperability Architecture 12-2
12.1.2 Inter-ORB Bridge Support........-+.eseeeee 12-2
12.1.3. General Inter-ORB Protocol (GIOP).......... 12-3

12.1.4 Internet Inter-ORB Protocol (IIOP)........... 12-3

12.1.5 Environment-Specific Inter-ORB Protocols

(ESIOPS). 0... cece cect cence eet eeenanenes 12-4
12.2. Relationship to Previous Versions of CORBA.......... 12-4

12.3. Examples of Interoperability Solutions 12-5
12.3.1. Example lo... .. cece cee tee e cee neenes 12-5
12.3.2 Example 2......... ccc cece ev ccecucecseenes 12-5
12.3.3 Example 3...... 0c. ccc cece cee ete e ee erenee 12-5
12.3.4 Interoperability Compliance.............e00+ 12-5

12.4 Motivating Factors 02 ee ee eee 12-8
12.4.1 ORB Implementation Diversity 12-8
12.4.2) ORB Boundaries cere eee reece 12-8

12.4.3. ORBs Vary in Scope, Distance, and Lifetime.... 12-9

12.5 Interoperability Design Goals.................2.005. 12-9
12.5.1 Non-Goals........cc cece crc cteecceresceens 12-10

13. ORBInteroperability Architecture.2ceeceeeees 13-1

13.1 Overview ... 0... 0ceee ee ene 13-1

13.1.1 Domains 00. cece cee cece eee eeecees 13-2

13.1.2 Bridging Domains- esc e ee eceues 13-2

13.2. ORBs and ORB Services 0.00.0 eee ees 13-3

13.2.1. The Nature of ORB Services..........20.000. 13-3

13.2.2, ORB Services and Object Requests 13-3
13.2.3 Selection of ORB Services........-.eeeeeeeas 13-4

13.3. Domains........ 0.0.0... cece eeeee eee 13-5

13.3.1 Definition of a Domain. 00 ce ee eee 13-5

December2001 Common Object Request Broker Architecture (CORBA), v2.6 xvii

0836

0837

Contents

13.3.2. Mapping Between Domains: Bridging......... 13-6

13.4 Interoperability Between ORBs..................05.. 13-7
13.4.1 ORB Services and Domains0004- 13-7

13.4.2 ORBs and Domains...........-.. ee eceevere 13-7

13.4.3 Interoperability Approaches..............00+ 13-8
13.4.3.1 Mediated Bridging 13-8
13.4.3.2 Immediate Bridging 13-9
13.4.3.3 Location of Inter-Domain Functionality 13-9
13.4.3.4 Bridging Level.............2.0.... 13-10

13.4.4 Policy-Mediated Bridging............ceeeee- 13-10
13.4.5 Configurations of Bridges in Networks 13-11

13.5 Object Addressing 0... cece eee 13-11
13.5.1 Domain-relative Object Referencing 13-12
13.5.2 Handling of Referencing Between Domains 13-12

13.6 An Information Model for Object References 13-14
13.6.1 What Information Do Bridges Need?.......... 13-14
13.6.2 Interoperable Object References: LORs........ 13-14
13.6.3 OR Profiles cece cece eee re re ereecens 13-15

13.6.4 Standard IOR Profiles.0eeeeeee 13-17

13.6.4.1 The TAG_LINTERNET_IOPProfile ... 13-17
13.6.4.2 The TAG_MULTIPLE_COMPONENTS

Profile... 0.0.0.0... cee eee eee 13-18

13.6.4.3 The TAG_SCCP_IOP Profile 13-18

13.6.5 IOR Components... cscs cence scececes 13-18
13.6.6 Standard LOR Components0005- 13-19

13.6.6.1 TAG_ORB_TYPE Component 13-20
13.6.6.2 TAG_ALTERNATE_IIOP_ADDRESS

Component00008. 13-20
13.6.6.3 Other Components 13-20

13.6.7 Profile and Component Composition in LORs... 13-21
13.6.8 l1OR Creation and Scope...........ee ee eeeee 13-22
13.6.9 Stringified Object References...........e000% 13-22
13.6.10 Object URLS. 2.0... . ce cece cee ee cece 13-23

13.6.10.1 corbaloc URL0.00. 13-24
13.6.10.2 corbaloc:rir URL 13-25

13.6.10.3 corbaloc:ilop URL 13-26
13.6.10.4 corbaloc Server Implementation 13-27
13.6.10.5 corbaname URL 13-27
13.6.10.6 Future corbaloc URL Protocols 13-27
13.6.10.7 Future URL Schemes 13-27

13.7. Service Context 00. eee ee ee ees 13-28

13.7.1 Standard Service Contexts00005 13-29

13.7.2. Service Context Processing Rules............- 13-31

13.8 Coder/Decoder Interfaces.............. 2-000 eee eee 13-31

13.8.1 Codec Interface 0. ee eee cence eeees 13-31

13.8.1.1 Exceptions 00.0008. 13-32
13.8.1.2 Operations00.000- 13-32

13.8.2 Codec Factory cc cee n eect cece neces 13-33
13.8.2.1 Encoding Structure 13-34

XViil CommonObject Request Broker Architecture (CORBA), v2.6 December 2001

0837

0838

Contents

13.8.2.2 CodecFactory Interface 13-34

13.9 Feature Support and GIOP Versions........--.-.----- 13-35
13.10 Code Set Conversion 0.000 e eee eee eee 13-36

13.10.1 Character Processing Terminology 13-36
13.10.1.1 Character Set-....-0--2005 13-36
13.10.1.2 Coded Character Set, or Code Set 13-36
13.10.1.3 Code Set Classifications 13-37
13.10.1.4 Narrow and Wide Characters 13-37
13.10.1.5 Char Data and Wchar Data 13-38

13.10.1.6 Byte-Oriented Code Set............ 13-38
13.10.1.7 Multi-Byte Character Strings 13-38
13.10.1.8 Non-Byte-Oriented Code Set 13-38
13.10.1.9 Char and Wchar Transmission Code

Set (TCS-C and TCS-W)........... 13-38
13.10.1.10 Process Code Set and File Code Set . 13-38
13.10.1.11 Native Code Set05. 13-39
13.10.1.12 Transmission Code Set 13-39

13.10.1.13 Conversion Code Set (CCS) 13-39
13.10.2 Code Set Conversion Framework............. 13-39

13.10.2.1 Requirements-....0005 13-39
13,10.2.2 Overview of the Conversion

Framework 000020 0e 13-40
13.10.2.3 ORB Databases and Code Set

Converters 0.000. 13-41

13.10.2.4 CodeSet Component of IOR
_ Multi-Component Profile 13-42

13.10.2.5 GIOP Code Set Service Context 13-43

13.10.2.6 Code Set Negotiation.............. 13-44
13.10.3 Mapping to Generic Character Environments .. 13-47

13.10.3.1 Describing Generic Interfaces 13-48
13.10.3.2 Interoperation0.. 13-48

13.10.4 Example of Generic Environment Mapping 13-48
13.10.4.1 Generic Mappings 13-49
13.10.4.2 Interoperation and Generic Mappings . 13-49 .

13.10.5 Relevant OSFM Registry Interfaces........... 13-49
13.10.5.1 Character and Code Set Registry 13-49
13.10.5.2 Access Routines 13-50

14. Building Inter-ORB Bridges ccc cccceeceeeces 14-1
14.1 Introduction 0.00.0... eee eee eeee eae 14-1

14.2 In-Line and Request-Level Bridging 14-2
14.2.1 In-line Bridging .. 2.0.0... cere eer eee rc nees 14-3
14.2.2. Request-level Bridgingeeeeeees 14-3
14.2.3 Collocated ORBs 0... cece eee ence eee 14-4

14.3. Proxy Creation and Management.................... 14-5

14.4 Interface-specific Bridges and Generic Bridges......... 14-6

14.5 Building Generic Request-Level Bridges.............. 14-6

14.6 Bridging Non-Referencing Domains 14-7

14.7 Bootstrapping Bridges000.0.008, 14-7

December2001 Common Object Request Broker Architecture (CORBA), v2.6 xIxX

0838

0839

Contents

15. General Inter-ORB Protocol0eeeeeees ca ee ones 15-1

15.1 Goals of the General Inter-ORB Protocol.............. 15-2

15.2 GIOP Overview 0.0.2eee 15-2

15.2.1 Common Data Representation (CDR)......... 15-3
15.2.2 GIOP Message Overview2. eee cerees 15-3
15.2.3 GIOP Message Transfer2-seeeseeeee 15-4

15.3. CDR Transfer Syntax......... 0.0.0... ee eee 15-4
15.3.1 Primitive Types 0... ceceeceeceserevane 15-5

15.3.1.1 Alignment0...... 00.002. 15-5
15.3.1.2 Integer Data Types 15-6
15.3.1.3 Floating Point Data Types 15-7
15.3.1.4 Octet oo... cee eee eee 15-10
15,.3.1.5 Boolean 0.2.0.0. 15-10

15.3.1.6 Character Types-..00.- 15-10
15.3.2 OMG IDL Constructed Types............0-. 15-11

15.3.2.1 Alignment0.....000. 15-11
15.3.2.2 Struct 00...eeeeee 15-12
15.3.2.3 Union 2.00 cee eee eee 15-12

IS.3.24 Array 20...eee 15-12
15.3.2.5 Sequence0... 00000. 15-12
15.3.26 Enum 0... ee eee eee 15-12

15.3.2.7 Strings and Wide Strings 15-12
_ 1.3.2.8 Fixed-Point Decimal Type 15-13

15.3.3 Encapsulation...0ceeceeeercevcccens 15-14
15.3.4 Value Types cs ccevvcceeverrcccece 15-15

15.3.4.1 Partial Type Information and Versioning 15-16
15.3.4.2 Example 2.0... cece eee eee 15-17
15.3.4.3 Scope of the Indirections 15-19
15.3.4.4 Null Values0........00..00. 15-19

15.3.4.5 Other Encoding Information 15-19
15.3.4.6 Fragmentation04. 15-19
15.3.4.7 Notation 0.0... eee ee eee eee 15-22
15.3.4.8 The Format00. 15-22

15.3.5 Pseudo-Object Types.........ecce cece evees 15-23
15.3.5.1 TypeCode0 0.000008. 15-23
IS.3.5.2Any 2.00... cece eee eee eee 15-29
15.3.5.3 Principal. 0.00.00. 0 0000s 15-29
15.3.5.4 Context 2.0.2... 0. eee eee eee 15-29

15.3.5.5 Exception 00.0.0. c eee eee eee 15-29
15.3.6 Object References cc eer csv eccees 15-30
15.3.7 Abstract Interfaces 0. cc cceerecoes 15-30

15.4 GIOP Message Formats 0.00.0. e ee ee eee 15-30
15.4.1 GIOP Message Headerececvecccees 15-31
15.4.2 Request Message- cee ce ceeccereeace 15-33

15.4.2.1 Request Header 15-33
15.4.2.2 Request Body 00000. 15-36

15.4.3. Reply Message cece renee cece eceee 15-37
15.4.3.1 Reply Header0.....0-0.. 15-37
15.4.3.2 Reply Body00-. 15-38

15.4.4 CancelRequest Messageeeeeees 15-40
15.4.4.1 Cancel Request Header 15-40

XX Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0839

0840

Contents

15.4.5 LocateRequest Message.........c.creeeevees 15-41
15.4.5.1 LocateRequest Header.............. 15-41

15.4.6 LocateReply Message-....cseeeeeeee 15-42
15.4.6.1 Locate Reply Header 15-42
15.4.6.2 LocateReply Body 15-43
15.4.6.3 Handling ForwardRequest Exception

from ServantLocator 15-44

15.4.7. CloseConnection Message...........es00ceee 15-44

15.4.8 MessageError Messageccceeneraes 15-44
15.4.9 Fragment Message..........ceececsecceeece 15-44

15.5 GIOP Message Transport................ 0.0.0 0000, 15-46
15.5.1 - Connection Management.............ess0e. 15-46

15.5.1.1 Connection Closure 15-47

15.5.1.2 Multiplexing Connections 15-48
15.5.2 Message Orderingeceeeeeeecerees 15-48

15.6 Object Location. 1.2.0.0... eeecee 15-48

15.7 Internet Inter-ORB Protocol (IIOP) 15-50
15.7.1 TCP/IP Connection Usage.0.0ereee 15-51
15.7.2 IOP IOR Profiles00eeeee seen eee 15-51

15.7.3. MLOP 1OR Profile Components............... 15-54

15.8 Bi-Directional GIOP 0.0.00... eee ee 15-55

15.8.1 Bi-Directional IOP 2... eee eee ee ee 15-57

15.8.1.1 HOP/SSL considerations 15-58

15.9 Bi-directional GIOP policy............. 0.0... ee ees 15-58

15.10 OMGIDL........... 0... eee eee eee eee 15-59

~ 15.10.1 GIOP Module. cece eee eee ene recee 15-59

15.10.2 NOP Module ccc cc cece eee eee eneee 15-63

15.10.3 BiDirPolicy Module........... ccc eee ccceees 15-64

16. The DCE ESIOP ccc ccc ccc ccc reece cere ce enenens 16-1

16.1 Goals of the DCE CommonInter-ORB Protocol........ 16-1

16.2. DCE CommonInter-ORBProtocol Overview 16-2

16.2.1 DCE-CIOP RPC ccc cee cece cee eee 16-2

16.2.2 DCE-CIOP Data Representation 16-3
16.2.3 DCE-CIOP Messages.-cseccccvcccce 16-4

16.2.4 Interoperable Object Reference (IOR) 16-5

16.3 DCE-CIOP Message Transport-2.e0055 16-5
16.3.1 Pipe-based Interfacecece ev eceees 16-6

16.3.1.) Invoke 2.2... 0... eee eee eee 16-8
16.3.1.2 Locate... 0... kee eee eee 16-8

16.3.2 Array-based Interface.........cee eee ve cones 16-8
16.3.2.) Invoke 0... eee eee eee 16-10
16.3.2.2 Locate 0... cee eee eee 16-11

16.4 DCE-CIOP Message Formats...............00000 eee 16-11
16.4.1 DCE_CIOP Invoke Request Message.......... 16-11

16.4.1.1 Invoke request header 16-11
16.4.1.2 Invoke request body 16-12

December2001 Common Object Request Broker Architecture (CORBA), v2.6 xxi

0840

0841

Contents

16.4.2 DCE-C1OP Invoke Response Message......... 16-12
16.4.2.1 Invoke response header-.. 16-13
16.4.2.2 Invoke Response Body 16-13

16.4.3 DCE-CIOP Locate Request Message.......... 16-14
16.4.3.1 Locate Request Header 16-14

16.4.4 DCE-CIOP Locate Response Message......... 16-15
16.4.4.1 Locate Response Header 16-15
16.4.4.2 Locate Response Body 16-16

16.5 DCE-CIOP Object References............. 0.0. .4000. 16-16
16.5.1 DCE-CIOP String Binding Component........ 16-17
16.5.2 DCE-ClOP Binding Name Component........ 16-18

16.5.2.1 BindingNameComponent 16-18
16.5.3 DCE-CIOP No Pipes Component............. 16-19
16.5.4 Complete Object Key Component 16-19
16.5.5 Endpoint 1D Position Component............. 16-20
16.5.6 Location Policy Component++-. 16-20

16.6 DCE-CIOP Object Location......................-. 16-21
16.6.1 Location Mechanism Overview+.. 16-22

16.6.2 Activation.........c cece eee e cere eee eecees 16-23

16.6.3 Basic Location Algorithm-+..e008- 16-23
16.6.4 Use of the Location Policy and the Endpoint ID. 16-24

16.6.4.1 Current location policy 16-24
16.6.4.2 Original location policy 16-24
16.6.4.3 Original EndpointID............... 16-24

16.7. OMGIDLfor the DCE CIOP Module................ 16-25

16.8 References for this Chapter00.000- 16-26

17. Interworking Architecture see e cece eect eee enne 17-1

17.1 Purpose of the Interworking Architecture 17-2
17.1.1. Comparing COM Objects to CORBA Objects... 17-2

17.2 Interworking Object Model 0.0048. 17-3
17.2.1 Relationship to CORBA Object Model 17-3
17.2.2 Relationship to the OLE/COM Model......... 17-4

17.2.3. Basic Description of the Interworking Model... 17-4

17.3. Interworking Mapping Issues.................200005 17-8

17.4 Interface Mapping 00... e eee ee eee eee 17-8
17.4.1 CORBA/COM cece ccc ee cece ec en scees 17-9

17.4.2 CORBA/Automation 00s cee e ee eees 17-9

17.4.3 COM/CORBA......... 0. cece eee nee cones 17-10

17.4.4 Automation/CORBAc.c0eececceeees 17-10

17.5 Interface Composition Mappings.............-.-+0-- 17-11
17.5.1 CORBA/COM ccc coer cece eencccens 17-11

17.5.1.1 COM/CORBA2000005 17-12
17.5.1.2 CORBA/Automation 17-12
17.5.1.3 Automation/CORBA 17-13

17.5.2 Detailed Mapping Rules-.-...00002- 17-13
17.5.2.1 Ordering Rules for the CORBA->MIDL

xxii Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0841

0842

Contents

Transformation000ee06- 17-13
17.5.2.2 Ordering Rules for the

CORBA->Automation Transformation. 17-13

17.5.3 Example of Applying Ordering Rules 17-14
17.5.4 Mapping Interface Identity...........-.-++6: 17-16

17.5.4.1 Mapping Interface Repository 1Ds to
COMUIDs 0... c eee ee 17-17

17.5.4.2 Mapping COM IDs to CORBA
Interface IDs 2.0.6 e cee eee 17-18

17.6 Object Identity, Binding, and Life Cycle 17-18
17.6.1 Object Identity Issues 0.0. eee renee 17-19

17.6.1.1 CORBA ObjectIdentity and Reference
Properties02 004 e eee eee 17-19

17.6.1.2 COM Object Identity and Reference
Properties 0.0.00 eee eee eee 17-19

17.6.2 Binding and Life Cycle-.ceeeeeeeees 17-20
17.6.2.1 Lifetime Comparison 17-20
17.6.2.2 Binding Existing CORBA Objects to

COM Views .. 0... cee eee ees 17-21

17.6.2.3 Binding COM Objects to CORBA Views 17-22
17.6.2.4 COM View of CORBALife Cycle 17-22
17.6.2.5 CORBA View of COM/Automation

Life Cycle 0.0... 00 ec ee eee 17-23

17.7 Interworking Interfaces 0.0.0.0. e eee eee 17-23
17.7.1 SimpleFactory Interface-.-0+e500. 17-23
17.7.2. IMonikerProvider Interface and Moniker Use.. 17-23

17.7.3. ICORBAFactory Interface02eeee 17-24

17.7.4 1ForeignObject Interface.............seeeees 17-26
17.7.5 ICORBAObject Interface+.e eee 17-27
17.7.6 ICORBAQODJect2 ccc eee e eee eeenans 17-28
17.7.7 IlORBObject Interface. ccc cece eee ees 17-28
17.7.8 Naming Conventions for View Components 17-30

17.7.8.1 Naming the COM ViewInterface’... .. 17-30
17.7.8.2 Tag for the Automation Interface Id ... 17-30
17.7.8.3 Naming the Automation View Dispatch

Interface-..20.0 00200200 ee 17-30

17.7.8.4 Naming the Automation View Dual
Interface 0... eee eee 17-31

17.7.8.5 Naming the Program Id for the COM
Class 0... cee eee ee eee 17-31

17.7.8.6 Namingthe Class Id for the COM
Class 2... cee eee eee 17-32

17.8 Distribution 0.0.0.0... 0c ee ee ee ee eee 17-32

17.8.1 Bridge Locality.......... 0. cee e cece eneeeene 17-32
17.8.2 Distribution Architecture00.eeeeee 17-33

17.9 Interworking Targets 0.00.00 0c cee eee 17-34

17.10 Compliance to COM/CORBAInterworking............ 17-34
17,10.1 Products Subject to Compliance.............. 17-34

17.10.1.1 Interworking solutions 17-34
17.10.1.2 Mapping solutions 17-35

December2001 Cammon Object Request Broker Architecture (CORBA), v2.6 xxdil

0842

0843

Contents

17.10.1.3 Mapped components- 17-35
17.10.2, Compliance Points...........e cece ereeeoes 17-36

18. Mapping: COM and CORBAcecee eee nceereces 18-1

18.1 Data Type Mapping 0.0... ees 18-1

18.2 CORBA to COM Data Type Mapping 18-2
18.2.1 Mapping for Basic Data Types+. 18-2
18.2.2 Mapping for Constantsecerevees 18-2
18.2.3. Mapping for Enumeratorse+eesees 18-3
18.2.4 Mapping for String Types...........+-0.s0e- 18-4

18.2.4.1 Mapping for Unbounded String Types . 18-4
18.2.4.2 Mapping for Bounded String Types ... 18-5

18.2.5 Mapping for Struct Types...........0seeeeee 18-5
18.2.6 Mapping for Union Typeseeseeeeee 18-6
18.2.7 Mapping for Sequence Types6-.--2ee> 18-8

18.2.7.1 Mapping for Unbounded Sequence Types 18-8
18.2.7.2 Mapping for Bounded Sequence Types _—18-8

18.2.8 Mapping for Array TypeS........sseeseenves 18-9
18.2.9 Mapping for the any Type.........seseeevees 18-9
18.2.10 Interface Mapping........ceesscereccervons 18-11

18.2.10.1 Mapping for interface identifiers 18-1]
18.2.10.2 Mapping for exception types 18-11
18.2.10.3 Mapping for Nested Types 18-21
18.2.10.4 Mapping for Operations 18-22
18.2.10.5 Mapping for Oneway Operations 18-24
18.2.10.6 Mapping for Attributes 18-24
18.2.10.7 Indirection Levels for Operation

Parameters 0.0... eee eens 18-26

18.2.11 Inheritance Mapping..........0.sceereveves 18-26
18.2.12 Mapping for Pseudo-Objectsee05- 18-29

18.2.12.1 Mapping for TypeCode pseudo-object 18-29
18.2.12.2 Mapping for context pseudo-object ... 18-31
18.2.12.3 Mapping forprincipal pseudo-object . 18-32

18.2.13. Interface Repository Mapping+56. 18-32

18.3. COM to CORBA Data Type Mapping-. 18-33
18.3.1 Mapping for Basic Data Types-0+4- 18-33
18.3.2 Mapping for Constants ce ceeeeeenns 18-34
18.3.3 Mapping for Enumerators0+-0008. 18-34
18.3.4 Mapping for String Types.......-....ceeeees 18-35

18.3.4.1 Mapping for unboundedstring types... 18-35
18.3.4.2 Mapping for boundedstring types 18-36
18.3.4.3 Mapping for Unicode Unbounded

String Types 00.0000 eee 18-36
18.3.4.4 Mapping for unicode boundstring types 18-37

18.3.5 Mapping for Structure Types-+06. 18-37
18.3.6 Mapping for Union Typesceeeeees 18-38

18.3.6.1 Mapping for Encapsulated Unions 18-38
18.3.6.2 Mapping for nonencapsulated unions .. 18-39

18.3.7. Mapping for Array Types-.0cceeeees 18-40
18.3.7.1 Mapping for nonfixed arrays 18-40

XXIV Common Object Request BrokerArchitecture (CORBA), v2.6 December 2001

0843

0844

Contents

18.3.7.2 Mapping for SAFEARRAY 18-40
18.3.8 Mapping for VARIANT.........000.cceceeeee 18-41
18.3.9 Mapping for Pointers..........ceesceeseeres 18-43
18.3.10 Interface Mapping........-.cccerseeev eevee 18-44

18.3.10.1 Mapping for Interface Identifiers 18-44
18.3.10.2 Mapping for COM Errors 18-44
18.3.10.3 Mapping of Nested Data Types 18-47
18.3.10.4 Mapping of Names 18-47
18.3.10.5 Mapping for Operations 18-47
18.3.10.6 Mapping for Properties 18-48

18.3.11 Mapping for Read-Only Attributes 18-49
18.3.12 Mapping for Read-Write Attributes 18-49

18.3.12.1 Inheritance Mapping 18-50
18.3,12.2 Type Library Mapping 18-52

19. Mapping: Automation and CORBA-ecseeeees 19-1

19.1 Mapping CORBA Objects to Automation 19-2
19.1.1 Architectural Overview...........cecceeees 19-2

19.1.2 Main Features of the Mapping............46. 19-3

19.2. Mapping for Interfaces.................... 00.4000. 19-3
19.2.1 Mapping for Attributes and Operations 19-4
19.2.2 Mapping for OMG IDLSingle Inheritance..... 19-5
19.2.3 Mapping of OMG IDL Multiple Inheritance.... 19-6

19.3 Mapping for Basic Data Types..... 22.0.0... 0.000 eee 19-9
19.3.1 Basic Automation Typesseeseeveeee 19-9
19.3.2 Special Cases of Basic Data Type Mapping..... 19-10

19,3.2.1 Converting Automation long to
CORBAunsigned long 19-10

19.3.2.2 Demoting CORBAunsignedlong to
Automation long6.04: 19-11

19.3.2.3 Demoting Automation long to CORBA
unsigned short--.2-0 0005 19-11

19.3.2.4 Converting Automation boolean to CORBA
boolean and CORBAboolean to Automation
boolean0. 0. 02sec eee 19-11

19.3.3 Mapping for Strings cee eee ee eee 19-11

19.4 IDLto ODL Mapping................. 00-2 eee eee 19-12
19.4.1 A Complete IDL to ODL Mappingfor the Basic

Data Types 0.0... cc ccc cence reer eteereces 19-12

19.5 Mapping for Object References.................0055 19-15
19.5.1 Type Mappingceveccencerevecvce 19-15
19.5.2 Object Reference Parameters and

[ForeignObject...... 0. ccc cece eee ete e eens 19-16

19.6 Mapping for Enumerated Types..................005 19-17

19.7 Mapping for Arrays and Sequences 19-18

19.8 Mapping for CORBA Complex Types................ 19-19
19.8.1 Mapping for Structure Types06. 19-20
19.8.2 Mapping for Union Types0.000 00. 19-21

December2001 Common Object Request Broker Architecture (CORBA), v2.6 XXV

0844

0845

Contents

19.8.3 Mapping for TypeCodes0.e ee seevees 19-22
19.8.4 Mapping for anys..........0. se eee ee eceeoes 19-24
19.8.5 Mapping for Typedefs.......-.-seecereevece 19-25
19.8.6 Mapping for Constants5eeeeeeeees 19-25
19.8.7 Getting Initial CORBA Object References 19-26
19.8.8 Creating Initial in Parameters for Complex Types19-27

19.8.8.1 1TypeFactory Interface 19-29
19.8.8.2 DlObjectInfo Interface 19-29

19.8.9 Mapping CORBA Exceptions to Automation
ExceptionS cece cece cece ene teeeees 19-30

19.8.9.1 Overview of Automation Exception
Handling-... 0.002 eee 19-30

19.8.9.2 CORBA Exceptions-. 19-30
19.8.9.3 CORBA User Exceptions 19-31
19.8.9.4 Operations that Raise User Exceptions . 19-32
19.8.9.5 CORBA System Exceptions 19-33
19.8.9.6 Operationsthat raise system exceptions 19-34

19.8.10 Conventions for Naming Components of the
Automation View0eecceccereceee 19-36

19.8.11 Naming Conventions for Pseudo-Structs, Pseudo-
Unions, and Pseudo-Exceptions+. 19-36

19.8.12 Automation View Interface as a Dispatch
Interface (Nondual)...........0ccseeeveeces 19-36

19,813 Aggregation of Automation Views+.. 19-38
19.8.14 Diland DSL cc cee cee eee eect een eees 19-38

19.9 Mapping Automation Objects as CORBA Objects....... 19-38
19.9.1 Architectural Overview.0..ceeeeeee 19-38

19.9.2 Main Features of the Mapping 19-39
19.9.3 Getting Initial Object References............. 19-40
19.9.4 Mapping for Interfacescceeeeeerees 19-40
19.9.5 Mapping for Inheritance...........0seeeeees 19-40
19.9.6 Mapping for ODL Properties and Methods..... 19-41
19.9.7 Mapping for Automation Basic Data Types..... 19-42

19,9.7.1 Basic automation types 19-42
19.9.8 Conversion Errors0.cece eee r eee ceees 19-43

19.9.9 Special Cases of Data Type Conversion........ 19-43
19.9.9.1 Translating COM::Currency to

Automation CURRENCY 19-43

19.9.9.2 Translating CORBA double to
Automation DATE 19-43

19.9.9.3 Translating CORBAboolean to
Automation boolean and Automation
boolean to CORBA boolean 19-43

19.9.10 A Complete OMG IDL to ODL Mappingforthe Basic
Data Types ccc reece cece cere nce cene 19-44

19.9.11 Mapping for Object References-, 19-46
19.9.12 Mapping for Enumerated Types.............. 19-47
19.9.13 Mapping for SafeArrayS seer eeececes 19-48

19.9.13.1 Multidimensional SafeArrays 19-48
19.9.14 Mapping for Typedefs...... 0... cece cece eees 19-48

CommonObject Request Broker Architecture (CORBA), v2.6 December 2001

0845

0846

Contents

19.9.15 Mapping for VARIANTS......-.0-0- ee eee ees 19-48
19.9.16 Mapping Automation Exceptions to CORBA ... 19-49

19.10 Older Automation Controllers-2005. 19-49

19.10.1_ Mapping for OMG IDL Arrays and Sequences
, to Collections 2.0.0.2... cece cece ere rene ene 19-49

19.11 Example Mappings....... beet een teen nee ees 19-51
19.11.1 Mapping the OMG NamingService to

Automation. cece rene reece er eeeennes 19-51

19.11.2 Mapping a COM Service to OMG IDL........ 19-51
19.11.3 Mapping an OMG Object Service to Automation 19-55

20. Interoperability with non-CORBA Systems.........-.e0s005 20-1
20.1 Introduction 0.0... cee cee eee 20-1

20.1.1 COM/CORBA Part Ac cece ere ee eeees 20-2

20.2 Conformance Issues........... 00... cece eee eee 20-2
20.2.1 Performance Issues-cseeceeeecceces 20-3

20.2.2 Scalability Issues ccc cere eee e ec ceees 20-3
20.2.3. CORBA Clients for DCOM Servers........... 20-3

20.3 Locality of the Bridge 0.0... eee eee eee 20-4

20.4 Extent Definition 0... ee eee ee eee eee 20-5

20.4.1 Marshaling Constraints.ceeececevees 20-6
20.4.2 Marshaling Keysseeeeeeceeceeees 20-6
20.4.3 Extent Formatcccececcecerecncnes 20-7

20.4.3.1DVO_EXTENT0.00005 20-8
20.4.3.2 DVO_LIFACE 0.00000 005 _ 20-8
20.4.3.3 DVO_IMPLDATA-.5.. 20-8
20.4.3.4 DVO_BLOB 0.20000 aes 20-8

20.5 Request/Reply Extent Semantics 20-8

20.6 Consistency-..2.0 0.20eee tenes 20-9
20.6.1 EValueObject cee eee c cere eee eeceeee 20-10
20.6.2 ISynchronize and DiSynchronize............. 20-11

20.6.2.1 Mode Property00. 20-11
20.6.2.2 SyncNow Method 20-11
20.6.2.3 ReCopy Method 20-11

20.7 DCOM Value Objects........... 0.0.0 eee ee ee eee 20-11
20.7.1 Passing Automation Compound Types as DCOM

Valuc ObjectS...... ccc cece cece cece see ncves 20-11
20.7.2 Passing CORBA-Defined Pseudo-Objects as

DCOM Value Objects cece eee eee 20-12

20.7.3 IForeignObject..........ccccecccecevenceee 20-12
20.7.4 DlForeignComplexType0.e.eeeeere 20-12
20.7.5 DlForeignException.ccsececovene 20-12
20.7.6 DiSystemException...........ececeeceeevee 20-12
20.7.7 DICORBAUserException-00000> 20-13
20.7.8 DICORBAStruct ccc cee eer eeeece 20-13

20.7.9 DICORBAURION 0. ccc ec cece ee ceene 20-13

December 2001 Common Object Request Broker Architecture (CORBA), v2.6 XXVii

0846

0847

Contents

20.7.10 DICORBATypeCode and ICORBATypeCode... 20-13
20.7.11 DICORBAAnY........ ccc esc ee een eneenes 20-14
20.7.12 ICORBAAnY cece eee cece eer eeeres 20-15

20.7.13 User Exceptions In COMeeeeeeeres 20-15

20.8 Chain Avoidance 0.0... cece20-16

20.8.1 CORBA Chain Avoidance.........eseseeeees 20-16

20.8.2 COM Chain Avoidanceseceeeeeees 20-17

20.9 Chain Bypass........... 00. cece eee eee eee 20-19
20.9.1 CORBA Chain Bypass...........+eeeeeeeees 20-19
20.9.2 COM Chain Bypass...........-e00+ eee enone 20-20

20.10 Thread Identification 2.2... cee ee eee 20-21

21. Portable Interceptors cc cece ecw eee treet eee enes 21-1

2h.1 Introduction0 200.00... ceeee eee 21-1

21.1.1 Object Creation. 0. cs eccvevececees 21-2
21.1.2 Client Sends Request........c:ececeeseveees 21-3
21.1.3 Server Receives Requestceceeesveens 21-4
21.1.4 Server Sends Replyc.cerceecccevcnves 21-4
21.1.5 Client Receives Replycceceeceveee 21-5

21.2 Interceptor Interface........... 0.0... eee eee et 21-5

21.3 Request Interceptors............ 0... e ee eee eee 21-6
21.3.1 Design Principles..............eseeeeeeeees 21-6
21.3.2 General Flow Rules 0.000 ecnceeeees 21-7

21.3.3 The Flow Stack Visual Model.............06. 21-8

21.3.4 The Request Interceptor Points-. 21-8
21.3.5 Client-Side Interceptor0eeeeeeeees 21-9
21.3.6 Client-Side Interception Points............... 21-9

21.3.6.1 send_request0.0.- 21-9
21.3.6.2 send_poll0..000 000. 21-9
21.3.6.3 receive_reply 02.2. 2000, 21-10
21.3.6.4 receive_exception-. 21-10
21.3.6.5 receive_other-..--.--.. 21-11

21.3.7 Client-Side Interception Point Flow........... 21-11
21.3.7.1 Client-side Flow Rules 21-1)
21.3.7.2 Additional Client-side Details 21-12

21.3.7.3 Client-side Flow Examples 21-12
21.3.8 Server-Side Interceptor...00e ee eeeee 21-14
21.3.9 Server-Side Interception Points-. 21-14

21.3.9.] receive_request_service_contexts 21-14
21.3.9.2 receive_request2.-..-000. 21-15
21.3.9.3 send_reply0 000.0 c eee eee 21-15
21.3.9.4 send_exception0.- 21-16
21.3.9.5 send_other 00.2.0... 0. e eee 21-16

21.3.10 Server-Side Interception Point Flow 21-17
21.3.10.1 Server-side Flow Rules 21-17
21.3.10.2 Additional Server-side Details 21-17

21.3.10.3 Server-side Flow Examples 21-18
21.3.11 Request Informationeceeeees 21-20

XXVili Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0847

0848

Contents

21.3.12 Requestinfo Interfacec cece ee eeeee 21-21
21.3.12.1 request_id0..00. 21-21
21.3.12.2 operation0... 00. eee ee eee 21-2]
21.3.12.3 arguments 00.0000 0 21-21
21.3.12.4 exceptions00 002 21-22
21.3.12.5 contexts 00... ee eee eee eee 21-22

21.3.12.6 operation_context 21-22
21.3.12.7 result 2.0...ee eee 21-22

21.3.12.8 response_expected 21-23
21.3.12.9 sync_scope 20.0... ce ee eee eee 21-23
21.3.12.10 reply_status0..05. 21-23
21.3.12.11 forward_reference 21-24
21.3.12.12 get_slot 22... 2... eee eee 21-24
21.3.12.13 get_request_service_context 21-25
21.3.12.14 get_reply_service_context 21-25

21.3.13 ClientRequestInfo Interface ce eeees 21-25
21.3.13.1 target... eee eee 1-27
21.3.13.2 effective_target05. 21-27
21.3.13.3 effective_profile 21-27
21.3.13.4 received_exception 21-27
21.3.13.5 received_exception_id 21-27
21.3.13.6 get_effective_component 21-27
21.3.13.7 get_effectivecomponents 21-28
21.3.13.8 get_request_policy 21-28
21.3.13.9 add_request_service_context........ 21-28

21.3.14 ServerRequestInfo Interface............6505- 21-29
21.3.14.1] sending_exception 21-30
21.3.14.2 object_lid 0... e ee 21-30
21.3.14.3 adapter_id 00... c eee eee 21-31
21.3.14.4 target_most_derived_interface 21-31
21.3.14.5 get_server_policy 21-31
21.3.14.6 set_slot 0.0...eeee 21-31
21.3.14.7 target_is_a eee eee eee 21-31
21.3.14.8 add_reply_service_context 21-32

21.3.15 ForwardRequest Exception...........+-20005 21-32

21.4 Portable Interceptor Current................ 20-0000 21-33
21.4.1 Overview. cece ere cen tence ercrecence 21-33

21.4.2. Obtaining the Portable Interceptor Current.... 21-33
21.4.3 Portable Interceptor Current Interface........ 21-33

21.4.3.1 get_slot.. 02.2...eee 21-34
21.4.3.2 set_slot 2... 2... ee eee eee 21-34

21.4.4 Use of Portable Interceptor Current 21-34
21.4.4.! Client-side use of PlCurrent 21-34

21.4.4.2 Example of PlCurrent to Handle
Client-side Recursion:... 21-35

21.4.4.3 Server-side use of PlCurrent 21-36

21.4.4.4 Request Scope vs Thread Scope 21-37
21.4.4.5 Flow of PlCurrent between Scopes 21-37
21.4.4.6 Notes on PiCurrent and Scopes 21-39

21.5 IORInterceptor 0... cc eee ee ee eee 21-39
21.5.1 Overview.csccerecccrsecevrcesvcece 21-39

21.5.2. IORInterceptor Interfaceeeeeeves 21-39
21.5.2.1 establish_components 21-40

December2001 Common Object Request Broker Architecture (CORBA). v2.6 xxix

0848

0849

Contents

21.5.3 IORInfo Interface ccc ene eee we eees 21-40

21.5.3.1 get_effective_policy--. 21-40
21.5.3.2 add_ior_component-.-- 21-41
21.5.3.3 add_ior_component_to_profile 21-41

21.6 PolicyFactory... 0.0... 0... 0c cece cee ee eee ee 21-42
21.6.1 PolicyFactory Interface...........e+ ee ee eeee 21-42

21.6.1.1 create_policy 000. eee 21-42

21.7 Registering Interceptors............... 0. scene eens 21-42
21.7.1 ORBlInitializer Interface......... 00000 eeeeee 21-43

21.7.1.] pre_init.. 2...eee 21-43
21.7.1.2 post_Limit .. 0... kee eee ee 21-43

21.7.2. ORBInitInfo Interface............000eeeeees 21-43

21.7.2.1 DuplicateName Exception 21-44
21.7.2.2 InvalidName Exception 21-44
21.7.2.3 arguments 0.0.02 cee ee eee 21-45
21.7.2.40rb_id 2... cece eee eee 21-45
21.7.2.5 codec_factory0000. 21-45
21.7.2.6 register_initial_reference 21-45
21.7.2.7 resolve_initial_references 21-45
21.7.2.8 add_client_request_interceptor 21-45
21.7.2.9 add_server_request_interceptor....... 21-46
21.7.2.10 add_ior_interceptor 21-46
21.7.2.11 allocate_slot_id005. 21-46
21.7.2.12 register_policy_factory 21-46

21.7.3 register_orb_initializer Operation............ 21-47
21.7.3.1 Mappings of register_orb_initializer ... 21-47

21.7.4 Notes about Registering Interceptors.......... 21-49

21.8 Dynamic Initial References2.000. .. 21-49
21.8.1 register_initial_referenceeeeece00. 21-49

21.9 Module Dynamic 0.0 eee eee ees 21-50
21.9.1 NVList PIDL Represented by

ParameterList IDL eee cece ee ceee 21-50

21.9.2 ContextList PIDL Represented by
ContextList IDL. 0... cece ccc e eee wenes 21-50

21.9.3 ExceptionList PIDL Represented by
ExceptionList IDL... 1... ee ee eee eee eee enee 21-51

21.9.4 Context PIDL Represented by
RequestContext IDL cece ec ceeccnnee 21-51

21.10 Portable InterceptorIDL 2.00.00 e eae 21-51

22. CORBA Messaging...........cceeeescesecens cece ewer eee 22-1

22.1 Section! - Introduction 0... eee eee 22-2

22.2 Messaging Quality of Service000005 22-2
22.2.1 Rebind Support.......... cee ce ceeeccececens 22-5

22.2.1.1 typedef short RebindMode 22-5
22.2.1.2 interface RebindPolicy 22-5

22.2.2. Synchronization Scopesesee evens 22-6
22.2.2.1 typedef short SyncScope 22-6
22.2.2.2 interface SyncScopePolicy 22-7

XXX Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0849

0850

Contents

21.5.3 IORInfo Interface cece eee eee eens 21-40

21.5.3.1 get_effective_policy 21-40
21.5.3.2 add_ior_component................ 21-41
21.5.3.3 add_ior_component_to_profile 21-41

21.6 PolicyFactory......... 00.0... eee eee eee 21-42
21.6.1 PolicyFactory Interface..........0cecreeecee 21-42

21.6.1.1 create_policy 0...0004. 21-42

21.7 Registering Interceptors................0. 000000000, 21-42
21.7.1 ORBlnitializer Interface............0c scene 21-43

21.7.1.) pre_init. 2.2... ee eee eee 21-43
21.7.1.2 postLinit .. 0.20... eee ee eee 21-43

21.7.2) ORBInitInfo Interface.02 ese ceeee 21-43

21.7.2.1 DuplicateName Exception 21-44
21.7.2.2 InvalidName Exception 21-44
21.7.2.3 arguments 00.00. eee 21-45
21.7.2.4 orb_id . 2...eee 21-45
21.7.2.5 codec_factory-.....00-. 21-45
21.7.2.6 register_initial_reference 21-45
21.7.2.7 resolve_initialreferences 21-45
21.7.2.8 add_client_request_interceptor 21-45
21.7.2.9 add_server_request_interceptor 21-46
21.7.2.10 add_ior_interceptor 21-46
21.7.2.11 allocate_slot_id0.- 21-46
21.7.2.12 register_policy_factory 21-46

21.7.3. register_orb_initializer Operation............ 21-47
21.7.3.1 Mappings of register_orb_initializer ... 21-47

21.7.4 Notes about Registering Interceptors.......... 21-49

21.8 Dynamic Initial References0-00- 21-49
21.8.1 register_initial_referemnceeeeeeecees 21-49

21.9 Module Dynamic 0.0... eee eens 21-50
21.9.1 NVList PIDL Represented by

ParameterList IDL0cee eee ee ee ceeee 21-50

21.9.2 ContextList PIDL Represented by
ContextList IDL... ccc eee ee een e eens 21-50

21.9.3 ExceptionList PIDL Represented by
ExceptionList IDL... 1... cece eee rece ene 21-51

21.9.4 Context PIDL Represented by
RequestContext IDL... . ee eee ee ee eee tees 21-51

21.10 Portable InterceptorIDL-.0000. 21-51

22. CORBA Messaging... ... 0... cc ccc ce cece ence es onereeees 22-1

22.1 Section! - Introduction 0.0.00. e 22-2

22.2 Messaging Quality of Service 0.04000 22-2
22.2.1 Rebind Support0. cee ee ve creee 22-5

22.2.1.1 typedef short RebindMode 22-5
22.2.1.2 interface RebindPolicy 22-5

22.2.2 Synchronization Scope6-. eee ereee 22-6
22.2.2.1 typedef short SyncScope 22-6
22.2.2.2 interface SyncScopePolicy 22-7

XXX Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0850

0851

Contents

December 2001

22.2.3 Request and Reply Priority..........e.eeeeee 22-7
22.2.3.1 struct PriorityRange................ 22-7
22.2.3.2 interface RequestPriorityPolicy 22-7
22.2.3.3 interface ReplyPriorityPolicy 22-8

22.2.4 Request and Reply Timeout-. 22-8
22.2.4.1 interface RequestStartTimePolicy 22-8
22.2.4.2 interface RequestEndTimePolicy 22-9
22.2.4.3 interface ReplyStartTimePolicy 22-9
22.2.4.4 interface ReplyEndTimePolicy 22-9
22.2.4.5 interface RelativeRequestTimeoutPolicy 22-9
22.2.4.6 interface RelativeRoundtripTimeout

Policy 22.220. c eee eee eee 22-10
22.2.5 Routing... ce cee cen c eee eesereceneecees 22-10

22.2.5.1 typedef short RoutingType 22-10
22.2.5.2 struct RoutingTypeRange 22-10
22.2.5.3 interface RoutingPolicy 22-11
22.2.5.4 interface MaxHopsPolicy 22-1]

22.2.6 Queue Ordering.........cceeceereneevceres 22-11
22.2.6.1 typedef short Ordering.............. 22-11
22.2.6.2 interface QueueOrderPolicy 22-12

22.3. Propagation of Messaging QoS-0 00 ee 22-12
22.3.1 Structures... ... cece eee ce rere acest eeeees 22-12

22.3.2 Messaging QoS Profile Component 22-13
22.3.3 Messaging QoS Service Context-e+000+ 22-13

22.4. Section II - Introduction............ 0.00.00. e eee 22-13

22.5 Running Example............ 00.000 e ce eee eee eee 22-15

22.6 Async Operation Mapping................20e eee eee 22-16
22.6.1 Callback Model Signatures (sendc)- 22-16

22.6.1.1 Implied-IDL for Operations 22-16
22.6.1.2 Implied-IDL for Attributes 22-17
22.6.1.3 Example .. 00.00... cece cee eee 22-17

22.6.2 Polling Model Signatures (sendp)............. 22-18
22.6.2.1 Implied-IDL for Operations 22-18
22.6.2.2 Implied-IDL for Attributes 22-19
22.6.2.3 Example0...000 0200000005 22-19

22.7. Exception Delivery in the Callback Model............. 22-20
22.7.1 Generic ExceptionHolder Value.............. 22-20
22.7.2 Type-Specific ExceptionHolder Mapping 22-21
22.7.3 Exampleccs cc ecceccceerecerecenes 22-21

22.8 Type-Specific ReplyHandler Mapping................ 22-22
22.8.1 RepltyHandler Operations for

NO_EXCEPTION Repliesececeveeees 22-23
22.8.2 ReplyHandler Operations for Exceptional

Replies 2... 0. ccc ccc cece eter e renee cerns 22-24
22.8.3 Example cc cece ce eect eee eee eeecees 22-24

22.9 Generic Poller Value... 0.0.20... 0. eee eee ee 22-25

22.9.1 operation_target.......... 0. ccc ewer eve vees 22-26
22.9.2 operation_name......... cece reece vr eeees 22-26
22.9.3 associated_handler..........cccecvecccccece 22-26

Common Object Request Broker Architecture (CORBA), v2.6 XXXi

0851

0852

Contents

22.9.4 is_from_pollercce eee ee nee eeeees 22-26

22.10 Type-Specific Poller Mapping05-4- 22-26
22.10.1 Basic Type-Specific Pollereeee eee 22-27

22.10.1.1 Poller operations for Interface
operations 0.00000. 22-27

22.10.1.2 Poller operations for Interface
attributes0 0008. 22-28

22.10.2 Persistent Type-Specific Poller4.. 22-29

22.10.3 Examplec ccc ce ccc ec eee cner eee crees 22-29

22.11 Example Programmer Usage 002000. 22-30
22.11.1 Example Programmer Usage (Examples

Mapped to C+t)........ cece ce ee rete cer neee 22-30
22.11.2. Client-Side C++ Example for the Asynchronous

Method Signatures..........0.csccesceusees 22-31
22.11.3 Client-Side C++ Example of the Callback Model 22-32

22.11.3.1 C++ Example of Generated
ExceptionHolder 22-32

22.11.3.2 C++ Example of Generated
ReplyHandler 22-32

22.11.3.3 C++ Example of User-lmplemented
ReplyHandler604. 22-34

22.11.3.4 C++ Example of Callback Client
Program 2. eee eee ee ee eee 22-38

22.11.4 Client-Side C++ Example of the Polling Model... 22-39
22.11.4.1 C++ Example of Generated Poller ... 22-39
22.11.4.2 C++ Example of Polling Client

Program 2.6. cece eee eens 22-40
22.11.4.3 C++ Example of Using PollableSet

ina Client Program 22-42
22,.11.5 Server Side ccc cc ccc ee ere ewer ese reece 22-44

22.12 Section III - Introduction. 00.2002 eee 22-45

22.13 Routing Object References............. 0.00002 eeu 22-46

22.14 Message Routing 2.0.00. cece ee eee 22-47
22.14.1 Structures....... ccc cece c weer ese ereceerees 22-49

22.14.1.1 MessageBody 22-49
22.14.1.2 RequestMessage 22-49
22.14.1.3 ReplyDestination wenn ee 22-50
22.14.1.4 RequestInfo0.2..0.00. 22-50

22,14.2 Interfaces- 0. eee c eee ee eee cere e ee ens 22-51

22.14.2.1 ReplyHandler.................... 22-51
22.14.2.2 Router 0.0.0... eee 22-51

22.14.2.3 send_request 22-51
22.14.2.4 send_multiple_requests 22-51
22.14.2.5 UntypedReplyHandler 22-5)
22.14.2.6 reply... 0... ee eee eee 22-51
22.14.2.7 PersistentRequest 22-52
22.14.2.8 readonly attribute reply_available 22-52
22.14.2.9 get_reply0..0...00.00000. 22-52
22.14.2.10 attribute associated_handler 22-52
22.14.2.1] PersistentRequestRouter 22-53
22.14.2.12 create_persistent_request 22-53

XXXII CommonObject Request BrokerArchitecture (CORBA), v2.6 December 2001

0852

0853

-Contents

December2001

22.14.3, Routing Protocol ee cee renee ee eeeees 22-53
22.14.3.1 Invoking Client................., 22-54
22.14.3.2 Inittal Request Router-.. 22-55
22.14.3.3 Request Routing Algorithm 22-55
22.14.3.4 Intermediate Request Router 22-56
22,.14.3.5 Target Router00, 22-56
22.14.3.6 Replying to a Type-specific

ReplyHandler00.. 22-58
22.14.3.7 Replying to an UntypedReplyHandler 22-58
22.14.3.8 Handling of Service Contexts 22-58
22.14.3.9 Handling LOCATION_FORWARD

Replies 0.0.0.0... 0.000... e eee, 22-59
22.14.3.10 Routing of Replies 22-59
22.14.3.11 UntypedReplyHandler 22-59

22.15 Router Administration 0.0.0.0... 0c eee ee eee 22-60

22.15.1 Constants 20... 0... ccc ccc ccc c rece cee eeeees 22-63

22.15.1.1 typedef short RegistrationState 22-63
22.15.2 Exceptionscccc ese ee eter enceseeces 22-64

22.15.2.1 exception InvalidState 22-64
22.15.3 ValuetypeS 2.0... cece cece cane ren eeweronse 22-64

22.15.3.1 RetryPolicy0... 22-64
22.15.3.2 ImmediateSuspend 22-64
22.15.3.3 UnlimitedPing 22-64
22.15.3.4 LimitedPing00. 22-64
22.15.3.5 DecayPolicy 05.08 22-65
22.15.3.6 ResumePolicy-- 22-65

22.15.4 Interfaces cc eee ew eee cree es ereeee 22-65
22.15.4.) RouterAdmin066. 22-65

22.15.4.2 register_destination 22-65
22.15.4.3 suspend_destination............... 22-65
22.15.4.4 resume_destination- 22-65
22.15.4.5 unregister_destination 22-66

23. Minimum CORBA0ccscecccecece cece wee eees 23-1

23.1 Introduction 2.0.00 cece tees 23-2

23.2 IDL.eeetenes 23-2

23.3. CORBA Omitted Features0. 00005. '. 23-2

23.4 ORB Interface Omissions....................00006. 23-3

23.4.1 ORB... ccc reece rc cee c cee v ees reerenee 23-3

23.4.2 Object... cc cece cece cece cee eee erececees 23-4
23.4.3 ConstructionPolicyee cece cee eenee 23-4

23.5 Dynamic Invocation Interface00. 23-5

23.6 Dynamic Skeleton Interface...................00005 23-5

23.7) Dynamic Any......... 0... cee eee ees 23-5

23.8 Interface Repository.......... 0.0.0.0 20sec eee eee 23-5
23.8.1 TypeCode ccc cece ee eee eter en cenes 23-5

23.9 Portable Object Adapter................- 02020 ee 23-6
23.9.1 Interfaces cece ccc reece rere nesenee 23-6

23.9.1.1 POA 2...ceeee eee 23-6

Common Object Request Broker Architecture (CORBA), v2.6 XXxiii

0853

0854

Contents

XXXIV

23.9.1.2 Current... 0... eee eee 23-6

23.9.1.3 Policy interfaces 23-7
23.9.1.4 POAManager0. 00005. 23-7
23.9.1.5 AdapterActivator,...0.. 23-7
23.9.1.6 ServantManagers-. 23-7

23.9.2 Policies ccc cece cece eee cece enc enees 23-7

23.9.2.1 ThreadPolicy0.0. 23-7
23.9.2.2 LifespanPolicy0005 23-8
23.9.2.3 ObjectldUniquenessPolicy 23-8
23.9.2.4 IdAssignmentPolicy 23-8
23.9.2.5 ServantRetentionPolicy 23-8
23.9.2.6 RequestProcessingPolicy............ 23-8
23.9.2.7 ImplicitActivationPolicy 23-9

23.10 Interoperability............ 0.0... c eee eee ee 23-9
23.10.1 DCE Interoperability.......... 0... eceeeees 23-9

23.41 COM/CORBAInterworking..................-000005 23-10

23.12 Interceptors.......... 0... eee eee eee ees 23-10

23.13 Language Mappings................ 0200s eee eee 23-10
23.13.1 C++ MappingSpecific Issues 00008 23-10
23.13.2 Java Mapping Specific Issues008- 23-10

23.14 minimumCORBA OMGIDL....................4-. 23-11

23.14.1 ORB Interface ccc ccc r eee eeeeene 23-11

23.14.2 Dynamic Invocation Interface.0005 23-14
23.14.3 Dynamic Skeleton Interface0000. 23-14
23.14.4 Dynamic Management of Any Values 23-14

‘23.14.5 Interface Repository 0.0 sees er eeeees 23-14
23.14.6 Portable Object Adapter..........eeeseeeees 23-22
23.14.7 Interceptors 0. cee ce cere cree ereeeees 23-29

24. Real-Time CORBA ccc cc ccceecrceces see ceeeens 24-1

24.1 Goals of the Specification....................-. ees 24-2

24.2. Extending CORBA.................-..4. eee eee 24-3

24.3. Approach to Real-Time CORBA- 24-3
24.3.1 The Nature of Real-Time.......... ces eeeees 24-3

24.3.2 Meeting Real-Time Requirements 24-4
24.3.3 activities .. 0... ccc cece eee rene renee eens 24-4

24.3.4 End-to-End Predictability..............0000- 24-5
24.3.5 Managementof Resources2ceeeee 24-6

24.4 Compatibility...... 0.00.00.eeee 246
24.4.1 Interoperability 0.0 cece eee e eee nne 24-6
24.4.2 Portability. 0... cece cece cece nsec enees 24-7
24.4.3 CORBA- Real-Time CORBAInterworking.... 24-7

24.5 Real-Time CORBA Architectural Overview 24-7

24.5.1 Real-Time CORBA Modules.........-.0++00- 24-8

24.5.2 Real-Time ORB 00 cece cece ce cccene 24-8

24.5.3 Thread Scheduling.cceeceereseceees 24-9

Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0854

0855

Contents

24.5.4 Real-Time CORBAPriority-.-.++++e+: 24-9
24.5.5 Native Priority and PriorityMappings......... 24-9
24.5.6 Real-Time CORBA Current........+.++0000. 24-9

24.5.7 Priority Modelsccr creer creenene 24-10
24.5.8 Real-Time CORBA Mutexesand Priority Inheritance

24-10

24.5.9 Threadpools..........ccceeccereercecevees 24-10
24.5.10 Priority Banded Connections6++ee200- 24-11
24.5.11 Non-Multiplexed Connections+-.-. 24-11
24.5.12 Invocation Timeouts 0. 0c scene eenes 24-11

24.5.13 Client and Server Protocol Configuration...... 24-11
24.5.14 Real-Time CORBA Configuration 24-11
24.5.15 Scheduling Service......... 0. cceeeeneeees 24-12

24.6 Real-Time ORB 0.0... eeeees 24-12

24.6.1 Real-Time ORB lnitialization................ 24-13

24.6.2 Real-Time CORBA System Exceptions 24-13

24.7 Real-Time POA 2... cee cee ees 24-14

24.8 Native Thread Priorities...... 0... 2.0... ce eee ee ees 24-15

24.9 CORBAPriority... 0.0.0...cceee 24-16

24.10 CORBA Priority Mappings-.00000- 24-16
24,10.1 C Language binding for PriorityMapping...... 24-17
24.10.2 C++ Languagebinding for PriorityMapping ... 24-17
24.10.3 Ada Languagebinding for PriorityMapping.... 24-18
24.10.4 Java Language binding for PriorityMapping ... 24-18
24.10.5 Semantics 0... cece cence cence eeees 24-18

24.11 Real-Time Current 0.0.0... cece eee ee 24-19

24.12 Real-Time CORBAPriority Models.................. 24-20
2412.1 PriorityModelPolicyceeeeceeeeecees 24-20
24.12.2 Scope of PriorityModelPolicy.............++- 24-21
24.12.3, Client Propagated Priority Model 24-22
24.12.4 Server Declared Priority Model.............. 24-23
24.12.5 Setting Server Priority on a per-Object

Reference Basis- se ceesceesececvenece 24-23

24.13 Priority Transforms 0.0.0... e ee eee eee 24-25
24.13.1 C Language Binding for PriorityTransform 24-26
24.13.2 C++ Language Binding for PriorityTransform.. 24-26
24.13.3 Ada Language binding for PriorityTransform .. 24-27
24.13.4 Java Languagebinding for PriorityTransform.. 24-27
24.13.5 SemanticS cere cee ce eee r eee eenees 24-27

24.14 Mutex Interface 0...eens24-28

24.15 Threadpools.......... 0.0. c cece eee eee eee 24-29
24.15.1 Creation of Threadpool without Lanes 24-31

24.15.2 Creation of Threadpool with Lanes........... 24-32
24.15.3 Request Buffering cere eee cc eecreees 24-32

December 2001 Common Object Request Broker Architecture (CORBA), v2.6 XXXV

0855

0856

Contents

24.15.4 Scope of ThreadpoolPolicy+.seseeee- 24-33

24.16 Implicit and Explicit Binding................. 00005. 24-33

24.17 Priority Banded Connections 0.20085 24-34
24.17.1 Scope of PriorityBandedConnectionPolicy 24-35
24.17.2 Binding of Priority Banded Connection........ 24-36

24.18 PrivateConnectionPolicy 0... eee eee eee 24-37

24.19 Invocation Timeout... 0.0.0. ce eee 24-38

24.20 Protocol Configuration............. 0... eee eee 24-38
24.20.1 ServerProtocolPolicy..........ccerececscses 24-39
24.20.2 Scope of ServerProtocolPolicyee0- 24-41
24.20.3 ClientProtocolPolicy0.0ceeeeneeee 24-41

24.20.4 Scope of ClientProtocolPolicy..............6. 24-42
24.20.5 Protocol Configuration Semantics 24-42

24.21 Consolidated IDL.......... 0.0.0 eee ee eee 24-43

24.22 Introduction 0.0... cece eee eee eee 24-48

24.23 IDL...teeneee 24-49

24.24 Semantics.... 0.0.0... cece eee teens 24-50

24.25 Example....... 0.00. cece eee tee ees 24-51
24.25.1 Server C++ Example Code---ee005 24-51
24.25.22 Client C++ Example Code.-¢.eeeeeeeee 24-52
24,25.3, Explanation of Example-.+02eeeees 24-53

25. Fault Tolerant CORBA............-... cece eee eee ve we eee 25-1

25.1 Fault Tolerant CORBA. 26... eee ee eee eee eee 25-1
25.1.1 Fault Tolerance for Diverse Applications....... 25-1

25.1.2 Objectives... . 0... cece ec ee ere creer eee eees 25-2
25.1.3 Basic Concepts..........cceccceeerevevcees 25-3

25.1.3.1 Replication and Object Groups 25-3
25.1.3.2 Fault Tolerance Domains 25-3

25.1.3.3 Fault Tolerance Properties 25-3
25.1.3.4 Strong Replica Consistency 25-4

25.1.4 Architectural Overview............sceeceeee 25-4

25.1.4.1 Fault Tolerance Property Management . 25-6
25.1.4.2 Replication Management 25-6
25.1.4.3 Fault Detection and Notification 25-7

25.1.4.4 Logging and Recovery 25-7
25.1.5 Requirements............cceceevcccccseees 25-8
25.1.6 LimitationS...........c cc eee ccc c reece rcene 25-11

25.2 Basic Fault Tolerance Mechanisms- 25-12

: 25.2.1 Overview... cc ccccce cee cte ee secenceeeveees 25-12

25.2.2 Interoperable Object Group References 25-13
25.2.2.1 TAG_FT_GROUP Component 25-14
25.2.2.2 TAG_FT_PRIMARY Component 25-16

25.2.3. Interoperable Object Group Reference
Operations cece cece wee e nen eee 25-16

XXXVI Common Object Request BrokerArchitecture (CORBA), v2.6 December 2001

0856

0857

Contents

25.2.3.1 get_interface000005. 25-17
25.2.3.2 18A... cece eee ee eee 25-17
25.2.3.3 is_mil 0. eeeee eee 25-17
25.2.3.4 non_eXistent 0.0.0... ce ee eee eee 25-17
25.2.3.5 is_equivalent-....... 25-17
25.2.3.6 hash 2.0.0.0... cece ee ee eee 25-18

25.2.3.7 create_request.................000. 25-18
25.2.3.8 get_policy 12.2... 0.0.0... cece 25-18
25.2.3.9 get_domain_managers 25-18
25.2.3.10 set_policy_overrides 25-18

25.2.4 Modes of Profile Addressing........e.e+ee08. 25-18
25.2.4.1 Profiles That Address Object Group

Members-.--00 eee es 25-18

25.2.4.2 Profiles That Address Gateways 25-19
25.2.4.3 Choice of Profile Addressing Mode ... 25-19

25.2.5 Accessing Server Object Groups66. 25-19
25.2.5.1 Access via HOP Directly to the

Primary Member 25-20
25.2.5.2 Access via IIOP and a Gateway 25-20
25.2.5.3 Access via a Multicast Group

Communication Protocol............ 25-20

25.2.6 Extensions to CORBAFailover Semantics 25-21

25.2.7 Most Recent Object Group Reference......... 25-22
25.2.7.1 FT_GROUP_VERSIONService Context 25-22

25.2.8 Transparent Reinvocation..........+eecee0e. 25-23
25.2.8.1 FT_REQUESTService Context 25-24
25.2.8.2 Request Duration Policy 25-26
25.2.8.3 Fault Handling for GIOP Messages ... 25-26

25.2.9 Transport Heartbeats 0.00: e cee eeeeees 25-27
25.2.9.1 TAG_FT_HEARTBEAT_ENABLED

Component-.....-220005 25-28
25.2.9.2 Heartbeat Policy0... 25-28
25.2.9.3 Heartbeat Enabled Policy 25-30

25.3 Replication Management................ 00sec eee 25-31
25.3.1 Overview. cece rece coc eee en en seevetas 25-31

25.3.2 Fault Tolerance Propertieseseceeeees 25-32
25.3.2.1 ReplicationStyle005. 25-32
25.3.2.2 MembershipStyle.................. 25-33
25.3.2.3 ConsistencyStyle0005 25-34
25.3.2.4 FaultMonitoringStyle, 25-35
25.3.2.5 FaultMonitoringGranularity 25-35
25.3.2.6 Factories 2.0.00... 0. c eee eee eee es 25-36

25.3.2.7 InitialNumberReplicas 25-36
25.3.2.8 MinimumNumberReplicas........... 25-36

25.3.3 FaultMonitoringintervalAndTimeout......... 25-37
25.3.4 Checkpointinterval 0. cece eee ceeeeee 25-37
25.3.5 Common TypeS.........scccrececcsccccscer 25-38

25.3.5.1 Identifiers... 0.0.2.0... eee eee-, 25-40

25.3.5.2 Exceptions 0002 cc eae 25-42
25.3.6 Replication Mamager............cecceecreee 25-44

25.3.6.1 Operations 00 ee eee 25-44
25.3.7 PropertyManagerccccceseecrees 25-45

25.3.7.] Operations 0.0. eee 25-46

December2001 Common Object Request BrokerArchitecture (CORBA),v2.6 XXXVIi

0857

0858

Contents

25.3.7.2 get_properties 202 ee eee 25-49
25.3.8 ObjectGroupManager............ coseeevase 25-49

25.3.8.] Operations 0.0. e eee ee 25-50
25.3.9 GemericFactory ccc cece cere een ceeee 25-56

25.3.9.1 Identifiers. ... 0.0... cece eee eee 25-59

25.3.9.2 Operations2.-2000. 25-59
25.3.10 Obtaining the Reference for the

Replication Manager........-..seeeeceeeees 25-61
25.3.11 Use Cases ccc cece cece eee wceeeecccens 25-61

25.3.11.1 Infrastructure-Controlled Membership
tyleeeeeee 25-61

25.3.11.2 Application-Controlled Membership
a25-63

25.3.11.3 Unreplicated Object Creation and
Deletion 0.0. cece eee eee 25-65

25.4 Fault Management.............. 0... eee eee eee 25-66
25.4.1 Overview. cece cc cc econ cece sesevens 25-66

25.4.2 Architecture...cc cece rec ccrncucccnccves 25-67
25.4.2.1 Fault Detection0, 25-68
25.4.2.2 Fault Notification 25-68

25.4.2.3 Fault Analysis 2.0.00 0000s 25-68
25.4.2.4 Scalability000....0.2 02006 25-68
25.4.2.5 Deployment of Fault Detectors 25-69

25.4.3 Connecting Fault Detectors to Applications 25-70
25.4.4 Pull-Based Monitoringcceeeeeeeeee 25-71

25.4.4.1 PULL Fault Monitoring Style 25-71
25.4.4.2 PullMonitorable Interface 25-71

25.4.5 Fault Event Typescceeeeee cee ereee 25-72
25.4.5.1 ObjectCrashFault.................. 25-72

25.4.6 Fault Notifier ccc cece cece reece 25-73

25.4.6.1 Identifiers 00.0. eee eee 25-75
25.4.6.2 Operations 2.0.6... cee ee eee 25-75
25.4.6.3 Filtering2 00... c cee ee eee 25-77
25.4.6.4 Mapping of the Fault Notifier to

the CosNotification Service 25-78

25.4.7 Use Cases cee ec cece rece cence ceneens 25-79
25.4.7.1 The Fault Detector as a Fault

Notification Supplier 25-79
25.4.7.2 The Replication Manageras a F.ault

Notification Consumer5......- 25-80

25.5 Logging & Recovery Management.................-- 25-81
25.5.1 Overview. 0. ccc cece eee cere cence erences 25-81

25.5.2 Logging Mechanism........-.eesececrccouee 25-81
25.5.3 Recovery Mechanism............cceeceeeees 25-82

25.5.4 Checkpointable and Updateable Interfaces..... 25-84
25.5.4.1 Identifiers 0.002 eee 25-85

25.5.4.2 Exceptions-.-. 000 cee eeee 25-85
25.5.4.3 Operations 00.00: ee eee 25-86
25.5.4.4 set_update 0.00022 eee 25-87

25.5.5 Use Case... . sc rccccsscccsecscscsenseveene 25-87

25.5.5.1 Infrastructure-Controlled

Consistency Style 25-87

XXXViil Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0858

0859

Contents

26. Secure Interoperability............. cece cece eens ctv eeeee 26-1

26.1 Overview 0.0... ceeeeeens 26-2

26.1.1 Assumptions........... cece ce cen ee eee seers 26-3

26.2 Protocol Message Definitions...................0055 26-4
26.2.1 The Security Attribute Service Context Element 26-4

26.2.2 SAS context_data Message Body Types........ 26-5
26.2.2.1 EstablishContext Message Format 26-5
26.2.2.2 ContextError Message Format 26-7
26.2.2.3 CompleteEstablishContext Message

Format 2... ce eee ee ee eee 26-7

26.2.2.4 MessagelnContext Message Format ... 26-9
26.2.3 Authorization Token Format+--+s005. 26-10

26.2.3.) Extensions of the IETF AC Profile for
CSIV2 02eeeee 26-11

26.2.4 Client Authentication Token Format.......... 26-11

26.2.4.1 Username Password GSS Mechanism

(GSSUP) 20.0002 eee 26-12
26.2.5 Identity Token Format............e.eeceeees 26-14
26.2.6 Principal Names and Distinguished Names..... 26-15

26.3 Security Attribute Service Protocol 26-16
26.3.1 Compound Mechanisms0.ceeere 26-16

26.3.1.) Context Validation 26-17

26.3.1.2 Legend for Request Principal
Interpretations004. 26-18

26.3.1.3 AnonymousIdentity Assertion 26-19
26.3.1.4 Presumed Trust04. 26-19
26.3.1.5 Failed Trust Evaluations 26-19

26.3.1.6 Request Principal Interpretations 26-20
26.3.2 Session Semantics 000 cecceeevecees 26-21

26.3.2.1 Negotiation of Statefulness 26-21
26.3.2.2 Stateful/Reusable Contexts 26-22

26.3.3 TSS State Machine. 2.0: cece ceeeceeens 26-23

26.3.3.1 TSS State Machine Actions 26-25
26.3.4 CSS State Machine0e ccc eceeeeee 26-27

26.3.4.1 CSS State Machine Actions 26-30

26.3.5 ContextError Values and Exceptions..........- 26-30

26.4 Transport Security Mechanisms...................., 26-31
26.4.1 Transport Layer Interoperability............. 26-31

26.4.2 Transport Mechanism Configuration.......... 26-31
26.4.2.1 Recommended SSL/TLSCiphersuites . 26-31

26.5 Interoperable Object References005. 26-32
26.5.1. Target Security Configuration 26-32

26.5.1.1 AssociationOptions Type 26-33
26.5.1.2 Transport Address 26-35
26.5.1.3 TAG_TLS_SEC_TRANS........... 26-35
26.5.1.4 TAG_SECIOP_SEC_TRANS........ 26-37
26.5.1.5 TAG_CSI_SEC_MECH_LIST 26-38
26.5.1.6 TAG_NULL_TAG 26-43

26.5.2 Client-side Mechanism Selection 26-43

26.5.3 Client-Side Requirements and Location Binding 26-44

December2001 Common Object Request Broker Architecture (CORBA), v2.6 XXXIX

0859

0860

Contents

x]

26.5.3.1 Comments on Establishing Trustin Client 26-45
26.6 Conformance Levels..............0... 00005eee eee 26-45

26.6.1 Conformance Level 0..........c0ececeeveoes 26-45

26.6.1.1 Transport-Layer Requirements 26-45
26.6.1.2 Service Context Protocol Requirements 26-46
26.6.1.3 Interoperable Object References (IORs) 26-47

26.6.2 Conformance Level 1......... ccc ence eeeeces 26-47
26.6.2.1 Authorization Tokens 26-47

26.6.3 Conformance Level 2..........0cceeeeescees 26-47

26.6.3.1 Authorization-Token-Based Delegation 26-47
26.6.4 Stateful Conformance00eeseeee 26-48

26.7 Sample Message Flows and Scenarios................ 26-48
26.7.1 Confidentiality, Trust in Server, and Trust in Client

Established in the Connection+.- 26-49

26.7.1.1 Sample IOR Configuration 26-50
26.7.2 Confidentiality and Trust in Server Established in the

Connection - Stateless Trust in Client Established in

Service Context 0. cece cece rece eens 26-51

26.7.2.1 Sample IOR Configuration 26-52
26.7.3 Confidentiality, Trust in Server, and Trust in Client

Established in the Connection - Stateless Trust

Association Established in Service Context..... 26-53

26.7.3.1 Sample IOR Configuration 26-54
26.7.3.2 Validating the Trusted Server 26-54
26.7.3.3 Presumingthe Security of the

Connection02 00000 eee 26-55

26.7.4 Confidentiality, Trust in Server, and Trust in Client
, Established in the Connection - Stateless Forward Trust

Association Established in Service Context..... 26-56

26.7.4.1 Sample IOR Configuration........... 26-57

26.8 References for this Chapter0.00 000. 26-57

26.9 IDL...eeeeee eens 26-58

26.9.1 Module OP ccc cee eee eee ene canees 26-58

26.9.1.1 New Types Defined for CSlv2 26-58
26.9.2 Module GSSUP - Username/Password GSSAPI

Token Formats...... cc cce ses ceceeesencees 26-58

26.9.3 Module CS] - Common Secure Interoperability . 26-59
26.9.4 Module CSILOP - CSlv2 1OR Component

Tag Definitions ccc cece eee eeeene 26-63

Appendix A- OMG IDL Tags 0. ccc cee ee eee wenn ... A-l

GIOSSAFY. 2.ccc ee eee ete e a eees veeeeeee 1

Index 0.0... cece ccc cece cece ce eee es ee sence ease eens 1

Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0860

0861

About This Document

Preface

Underthe termsofthe collaboration between OMG and X/Open Co Ltd., this
documentis a candidate for endorsement by X/Open,initially as a Preliminary
Specification and later as a full CAE Specification. The collaboration between OMG
and X/Open CoLtd. ensures joint review and cohesive support for emerging object-
based specifications.

X/Open Preliminary Specifications undergoclose scrutiny through a review processat
X/Open before publication and are inherently stable specifications. Upgrade to full
CAESpecification, after a reasonable interval, takes place following further review by
X/Open. This further review considers the implementation experience of members and
the full implications of conformance and branding.

Object Management Group

December2001

The Object Management Group, Inc. (OMG)is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotesthe theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishmentofindustry guidelines and object managementspecifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformanceto these specifications will make it possible to develop a
heterogeneousapplications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influenceits
direction by establishing the Object ManagementArchitecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMGspecifications are based.

Common Object Request Broker Architecture (CORBA), v2.6 XXXVii

0861

0862

X/Open

IntendedAudience

Context ofCORBA

XXXVill

X/Openis an independent, worldwide, open systems organization supported by most of
the world's largest information system suppliers, user organizations and software
companies. Jts mission is to bring to users greater value from computing, through the
practical implementation of open systems. X/Open’s strategy for achieving its mission
is to combine existing and emerging standards into a comprehensive, integrated
systems environmentcalled the Common Applications Environment (CAE).

The componentsof the CAEare defined in X/Open CAEspecifications. These contain,
amongother things, an evolving portfolio of practical application programming
interfaces (APIs), which significantly enhance portability of application programsat
the source code level. The APIs also enhance the interoperability of applications by
providing definitions of, and references to, protocols and protocolprofiles.

The X/Openspecifications are also supported by an extensive set of conformancetests
and by the X/Open trademark (XPG brand), whichis licensed by X/Open andis
carried only on products that comply with the CAEspecifications.

The architecture and specifications described in this manual are aimed at software
designers and developers who wantto produce applications that comply with OMG
standards for the Object Request Broker (ORB). The benefit of compliance is, in
general, to be able to produce interoperable applications that are based on distributed,
interoperating objects. As defined by the Object Management Group (OMG)in the
Object Management Architecture Guide, the ORB provides the mechanisms by which
objects transparently make requests and receive responses. Hence, the ORB provides
interoperability between applications on different machines in heterogeneous
distributed environments and seamlessly interconnects multiple object systems.

The key to understanding the structure of the CORBAarchitecture is the Reference
Model, which consists of the following components:

* Object Request Broker, which enables objects to transparently make and receive
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described in this manual.

* Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains. For example, the Life Cycle Service defines conventions for creating,
deleting, copying, and moving objects; it does not dictate how the objects are
implemented in an application. Specifications for Object Services are contained in
CORBAservices: Common Object Services Specification.

Common Object Request Broker Architecture (CORBA), v2.6 December2001

0862

0863

Associated Documents

December 2001

* CommonFacilities, a collection of services that many applications may share,
but which are not as fundamental as the Object Services. For instance, a system
managementor electronic mail facility could be classified as a commonfacility.
Information about Common Facilities will be contained in CORBAfacilities:
CommonFacilities Architecture.

* Application Objects, which are products of a single vendor on in-house
development group that controls their interfaces. Application Objects correspond
to the traditional notion of applications, so they are not standardized by OMG.
Instead, Application Objects constitute the uppermost layer of the Reference
Model.

The Object Request Broker, then, is the core of the Reference Model.It is like a
telephone exchange, providing the basic mechanism for making and receiving calls.
Combined with the Object Services, it ensures meaningful communication between
CORBA-compliant applications.

The CORBA documentation set includes the following books:

* Object Management Architecture Guide defines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG
standardsare based.It also provides information about the policies and
procedures of OMG,such as how standards are proposed, evaluated, and
accepted.

* CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

* CORBAservices: Common Object Services Specification contains specifications
for the Object Services.

* CORBAfacilities: Common Facilities Architecture contains the architecture for
CommonFacilities.

OMGcollects information for each book in the documentation set by issuing Requests
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as suchby vote.

To obtain books in the documentation set, or other OMG publications, refer to the
enclosed subscription card or contact the Object Management Group,Inc.at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http:/Awww.omg.org

CORBA, v2.6: Associated Documents XXXIX

0863

0864

Definition ofCORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mapping is
a separate, optional compliance point. Optional means users aren’t required to
implementthese points if they are unnecessary attheir site, but if implemented, they
mustadhere to the CORBA specifications to be called CORBA-compliant. For instance,
if a vendor supports C++, their ORB must comply with the OMG IDL to C++ binding
specified in the C++ Language Mapping Specification.

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to “Compliance to COM/CORBA
Interworking”on page 17-34.

Asdescribed in the OMA Guide, the OMG’s Core Object Model consists of a core and
components. Likewise, the body of CORBA specifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

The CORBA core specifications are categorized as follows:

CORBACore,as specified in Chapters 1-11

CORBAInteroperability, as specified in Chapters 12-16

CORBAInterworking, as specified in Chapters 17-2]

CORBAQuality of Service, as specified in Chapters 22-26

Note — The CORBA Language Mappings have been separated from the CORBA Core
and each language mappingis its own separate book. Refer to CORBA Language
Mappings at the OMG Formal Document webareafor this information.

Structure ofThis Manual

xl

This manualis divided into the categories of Core, Interoperability, and Interworking.
These divisions reflect the compliance points of CORBA.In addition to this preface,
CORBA: Common Object Request Broker Architecture and Specification contains the
following chapters:

Core

Chapter 1 - The Object Model describes.the computation model that underlies the
CORBAarchitecture.

Chapter 2 - CORBA Overview contains the overall structure of the ORB architecture
and includes information about CORBA interfaces and implementations.

Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0864

0865

December 2001

Chapter 3 - OMG IDL Syntax and Semantics details the OMGinterface definition
language (OMGIDL), whichis the language used to describe the interfaces that client

objects call and object implementations provide.

Chapter 4 - ORB Interface defines the interface to the ORB functions that do not
depend on object adapters: these operations are the same for ali ORBs and object
implementations.

Chapter 5 - Value Type Semantics describes the semantics of passing an object by
value, which is similar to that of standard programminglanguages.

Chapter 6 - Abstract Interface Semantics explains an IDL abstract interface, which
provides the capability to defer the determination of whether an object is passed by
reference or by value until runtime.

Chapter 7 - The Dynamic Invocation Interface details the DI, the client’s side of
the interface that allows dynamic creation and invocation of request to objects.

Chapter 8 -- The Dynamic Skeleton Interface describes the DS1, the server’s-side
interface that can deliver requests from an ORB to an object implementation that does
not have compile-time knowledge of the type of the object it is implementing. DSI is
the server's analogue ofthe client’s Dynamic Invocation Interface (DII).

Chapter 9 - Dynamic Managementof Any Valuesdetails the interface for the
Dynamic Anytype. This interface allowsstatically-typed programming languages such
as C and Java to create or receive values of type Any without compile-time knowledge
that the typer contained in the Any.

Chapter 10 - Interface Repository explains the component of the ORB that manages
and provides access to a collection of object definitions.

Chapter 11 - Portable Object Adapter defines a group of IDL interfaces than an
implementation uses to access ORB functions.

Interoperability

Chapter 12 - Interoperability Overview describes the interoperability architecture
and introduces the subjects pertaining to interoperability: inter-ORB bridges; general
and Internet inter-ORB protocols (GIOP and IIOP); and environment-specific, inter-
ORBprotocols (ESIOPs).

Chapter 13 - ORB Interoperability Architecture introduces the framework of ORB
interoperability, including information about domains; approachesto inter-ORB
bridges; what it means to be compliant with ORB interoperability; and ORB Services
and Requests.

Chapter 14 - Building Inter-ORB Bridges explains how to build bridges for an
implementation of interoperating ORBs.

Chapter 15 - General Inter-ORB Protocol describes the general inter-ORB protocol
(GIOP) and includes information about the GIOP’s goals, syntax, format, transport,
and object location. This chapter also includes information about the Internetinter-
ORBprotocol (OP).

CORBA,v2.6: Structure of This Manual xli

0865

0866

xii

Chapter 16 - DCE ESIOP - Environment-Specific Inter-ORB Protocol (ESIOP)
details a protocol for the OSF DCE environment. The protocol is called the DCE
Environment Inter-ORB Protocol (DCE ESIOP).

Interworking

Chapter 17 - Interworking Architecture describes the architecture for
communication between two object managementsystems: Microsoft’s COM (including
OLE) and the OMG’s CORBA.

Chapter 18 - Mapping: COM and CORBAexplains the data type andinterface
mapping between COM and CORBA.The mappingsare described in the context of
both Win16 and Win32 COM.

Chapter 19 - Mapping: OLE Automation and CORBAdetails the two-way mapping
between OLE Automation (in ODL) and CORBA (in OMGIDL).

Note: Chapter !9 also includes an appendix describing solutions that vendors might
implementto support existing and older OLE Automation controllers and an appendix
that provides an example of how the Naming Service could be mapped to an OLE
Automation interface according to the Interworking specification.

Chapter 20 - Interoperability with non-CORBA Systemsdescribes the effective
access to CORBAservers through DCOMandthereverse.

Chapter 21 - Portabie Interceptors defines ORB operations that allow services such
as security to be inserted in the invocation path.

Quality of Service (QoS)

Chapter 22 - CORBA Messaging includes three general topics: Quality of Service,
Asynchronous Method Invocations (to include Time-Independent or “Persistent”
Requests), and the specification of interoperable Routing interfaces to support the
transport of requests asynchronously from the handling oftheir replies.

Chapter 23 - Minimum CORBAdescribes minimumCORBA,a subset of CORBA
designed for systems with limited resources.

Chapter 24 - Real-Time CORBAdefines an optional set of extensions to CORBA
tailored to equip ORBsto be used as a componentof a Real-Time system.

Chapter 25 - Fault Tolerant CORBAdescribes Fault Tolerant systems, basic fault

tolerance mechanisms,replication management, and logging and recovery -
management.

Chapter 26 - Common Secure Interoperability defines the CORBA Security
Attribute Service (SAS) protocol and its use within the CSlv2 architecture to address
the requirements of CORBA security for interoperable authentication, delegation, and
privileges.

Common Object Request Broker Architecture (CORBA), v2.6 December2001

0866

0867

Typographical Conventions

Acknowledgements

December 2001

The type styles shown below are used in this documentto distinguish programming
statements from ordinary English. However, these conventionsare not usedin tables or
section headings where nodistinction is necessary.

Helvetica bold - OMGInterface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document,specification, or other publication.

The following companies submitted and/or supported parts of the specifications that
were approved by the Object Management Group to become CORBA:

¢ Adiron, LLC

¢ Alcatel

¢ BEA Systems,Inc.

¢ BNR Europe Ltd.

¢ Borland International, Inc.

* Compaq Computer Corporation

* Concept Five Technologies

* Cooperative Research Centre for Distributed Systems Technology (DSTC)

¢ Defense Information Systems Agency

* Digital Equipment Corporation
* Ericsson

¢ Eternal Systems,Inc.

« Expersoft Corporation
« France Telecom

* FUJITSU LIMITED

* Genesis Development Corporation

¢ Gensym Corporation

¢ Hewlett-Packard Company

* HighComm

¢ Highlander Communications, L.C.

¢ Humboldt-University

* HyperDesk Corporation

* ICL, Plc.

* Inprise Corporation

* International Business Machines Corporation

* International Computers, Inc.

CORBA,v2.6: Typographical Conventions xiii

0867

0868

* IONA Technologies, Plc.

* Lockheed Martin Federal Systems, Inc.

¢ Lucent Technologies, Inc.
¢ Micro Focus Limited

¢ MITRECorporation

¢ Motorola, Inc.

* NCR Corporation

* NEC Corporation

¢ Netscape Communications Corporation
¢ Nortel Networks

* Northern Telecom Corporation

¢ Novell, Inc.

* Object Design,Inc.

¢ Objective Interface Systems, Inc.

* Object-Oriented Concepts, Inc.

« OC Systems, Inc.

* Open Group - Open Software Foundation

« Oracle Corporation

« PeerLogic, Inc.

« Persistence Software, Inc.

¢ Promia, Inc.

« Siemens Nixdorf Informationssysteme AG

* SPAWAR Systems Center

« Sun Microsystems, Inc.

« SunSoft, Inc.

* Sybase, Inc.

* Telefonica Investigacion y Desarrollo S.A. Unipersonal

¢ TIBCO,Inc.

* Tivoli Systems, Inc.

¢ Tri-Pacific Software, Inc.

* University of California, Santa Barbara
* University of Rhode Isiand

* Visual Edge Software, Ltd.

¢ Washington University

In addition to the preceding contributors, the OMG would like to acknowledge Mark
Linton at Silicon Graphics and Doug Leaat the State University of New York at
Oswego for their work on the C++ mapping.

References

IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-35.

xliv Common Object Request Broker Architecture (CORBA), v2.6 December2001

0868

0869

The Common Object Request Broker: Architecture and Specification, Revision 2.2,
February 1998.

CORBAservices: Common Object Services Specification, Revised Edition, OMG TC
Document 95-3-31.

COBOLLanguage Mapping RFP, December 1995. OMG TC document 95-12-10.

COBOL85 ANSI X3.23-1985 / ISO 1989-1985.

JEEEStandard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

XDR:External Data Representation Standard, RFC!832, R. Srinivasan, Sun Micro-
systems, August 1995. ,

OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version), 8.
(Martin) O'Donnell, June 1994.

RPC Runtime Support For 118N Characters — Functional Specification, OSF DCE
SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Open System Interface Definitions, Issue 4 Version 2, 1995.

December2001 CORBA,v2.6: References xlv

0869

0870

xIvi Common Object Request Broker Architecture (CORBA), v2.6

December 2001

0871

Interoperability Overview 12

Contents

This chapter contains the following sections.

ORB interoperability specifies a comprehensive, flexible approach to supporting
networksof objects that are distributed across and managedby multiple, heterogeneous
CORBA-compliant ORBs. The approachto ‘‘interORBability” is universal, becauseits
elements can be combined in many waysto satisfy a very broad range of needs.

12.1 Elements ofInteroperability

The elements of interoperability are as follows:

© ORBinteroperability architecture

© Inter-ORB bridge support

® General and Internet inter-ORB Protocols (GIOPs and IIOPs)

In addition, the architecture accommodates environment-specific inter-ORB protocols
(ESIOPs) that are optimized for particular environments such as DCE.

December2001 Common Object Request Broker Architecture (CORBA), v2.6 12-1

0871

0872

12

12-2

12.1.1 ORB Interoperability Architecture

The ORB Interoperability Architecture provides a conceptual framework for defining
the elements of interoperability and for identifying its compliance points. It also
characterizes new mechanismsandspecifies conventions necessary to achieve
interoperability between independently produced ORBs.

Specifically, the architecture introduces the concepts of immediate and mediated
bridging of ORB domains. The Internet Inter-ORB Protocol (HIOP) forms the common
basis for broad-scope mediated bridging. The inter-ORB bridge support can be used to
implement both immediate bridges and to build “half-bridges” to mediated bridge
domains.

By use of bridging techniques, ORBs can interoperate without knowing any details of
that ORB’s implementation, such as what particular 1PC or protocols (such as ESIOPs)
are used to implement the CORBA specification.

The IOP maybe used in bridging two or more ORBsby implementing “half bridges”
that communicate using the IIOP. This approach works for both stand-alone ORBs, and
networked ones that use an ESIOP.

The IIOP mayalso be used to implement an ORB’s internal messaging, if desired.
Since ORBsare not required to use the IOP internally, the goal of not requiring prior
knowledge of each others’ implementation is fully satisfied.

12.1.2 Inter-ORB Bridge Support

The interoperability architecture clearly identifies the role of different kinds of
domains for ORB-specific information. Such domains can include object reference
domains, type domains, security domains(e.g., the scope of a Principal identifier), a
transaction domain, and more.

Where two ORBsare in the same domain, they can communicate directly. In many
cases, this is the preferable approach. This is not always true, however, since
organizations often need to establish local control domains.

Wheninformationin an invocation mustleave its domain, the invocation musttraverse

a bridge. The role of a bridge is to ensure that content and semantics are mapped from
the form appropriate to one ORB to that of another, so that users of any given ORB
only see their appropriate content and semantics.

The inter-ORB bridge support element specifies ORB APIs and conventions to enable
the easy construction of interoperability bridges between ORB domains. Such bridge
products could be developed by ORB vendors, Sieves, system integrators, or other
third-parties.

Because the extensions required to support Inter-ORB Bridges are largely general in
nature, do not impact other ORB operation, and can be used for many other purposes
besides building bridges, they are appropriate for all ORBs to support. Other
applications include debugging, interposing of objects, implementing objects with
interpreters and scripting languages, and dynamically generating implementations.

Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0872

0873

12

The inter-ORB bridge support can also be used to provide interoperability with non-
CORBAsystems, such as Microsoft’s Component Object Model (COM). The ease of
doing this will depend on the extent to which those systems conform to the CORBA
Object Model.

12.1.3 General Inter-ORB Protocol (GIOP)

The General Inter-ORB Protocol (GIOP) element specifies a standard transfer syntax
(low-level data representation) and a set of message formats for communications
between ORBs. The GIOPis specifically built for ORB to ORB interactions and is
designed to work directly over any connection-oriented transport protocol that meets a
minimal set of assumptions. It does not require or rely on the use of higher level RPC
mechanisms. The protocol is simple, scalable and relatively easy to implement.It is
designed to allow portable implementations with smail memory footprints and
reasonable performance, with minimal dependencies on supporting software other than
the underlying transport layer.

While versions of the GIOP running on different transports would not be directly
interoperable, their commonality would allow easy and efficient bridging between such
networking domains.

12.1.4 Internet Inter-ORB Protocol (IIOP)

The Internet Inter-ORB Protocol (IIOP) element specifies how G1OP messages are
exchanged using TCP/IP connections. The l1IOP specifies a standardized
interoperability protocol for the Intemet, providing ‘out of the box” interoperation
with other compatible ORBs based on the most popular product- and vendor-neutral
transport layer. It can also be used as the protocol between half-bridges (see below).

The protocol is designed to be suitable and appropriate for use by any ORB to
interoperate in Internet Protocol domains unless an alternative protocol is necessitated
by the specific design center or intended operating environment of the ORB.In that
sense it represents the basic inter-ORB protocol for TCP/IP environments, a most
pervasive transport layer.

The IIOP’s relationship to the GIOPis similar to that of a specific language mapping
to OMG IDL; the GIOP may be mapped onto a numberofdifferent transports, and
specifies the protocol elements that are commonto al! such mappings. The.GIOP by
itself, however, does not provide complete interoperability, just as DL cannot be used
to build complete programs. The IIOP and other similar mappings to different
transports, are concrete realizations of the abstract GIOP definitions, as shown in
Figure 12-! on page 12-4.

December2001 CORBA,v2.6: Elements afInteroperability 12-3

0873

0874

12

Mandatoryfor CORBA

CORBA/IDL

 ESIOPs |

Figure 12-1 Inter-ORB Protocol Relationships.

12.1.5 Environment-Specific Inter-ORB Protocols (ESIOPs)

This specification also makes provision for an open-ended set of Environment-Specific
Inter-ORB Protocols (ESIOPs). Such protocols would be used for “out of the box”
interoperation at user sites where a particular networking or distributing computing
infrastructure is already in general use.

Because of the opportunity to leverage and build on facilities provided by the specific
environment, ESIOPs might support specialized capabilities such asthose relating to
security and administration.

While ES1OPs maybe optimized for particular environments, all ESIOP specifications
will be expected to conform to the general ORB interoperability architecture
conventions to enable easy bridging. The inter-ORB bridge support enables bridges to
be built between ORB domainsthat use the IOP and ORB domainsthat use a
particular ESJOP. :

12.2 Relationship to Previous Versions ofCORBA

The ORBInteroperability Architecture builds on Common Object Request Broker
Architecture by adding the notion of ORB Services and their domains. (ORB Services
are described in Section 13.2, “ORBs and ORB Services,” on page 13-3). The
architecture defines the problem of ORB interoperability in terms of bridging between
those domains, and defines several ways in which those bridges can be constructed.
The bridges can be internal(in-line) and external (request-level) to ORBs.

APIs included in the interoperability specifications include compatible extensions to
_previous versions of CORBA to support request-level bridging:

¢ A Dynamic Skeleton Interface (DS]) is the basic support needed for building
request-level bridges. It is the server-side analogue of the Dynamic Invocation
Interface and in the same wayit has general applicability beyond bridging. For
information about the Dynamic Skeleton Interface, refer to the Dynamic Skeleton
Interface chapter.

Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0874

0875

12

* APls for managing object references have been defined, building on the support
identified for the Relationship Service. The APIs are defined in Object Reference
Operations in the ORB Interface chapter of this book. The Relationship Service is
described in the Relationship Service specification; refer to the CosObjectldentity
Module section of that specification.

12.3 Examples ofInteroperability Solutions

The elementsofinteroperability (Inter-ORB Bridges, General and Internet Inter-ORB
Protocols, Environment-Specific Inter-ORB Protocols) can be combinedin a variety of
ways to satisfy particular product and customer needs. This section provides some
examples.

12.3.1 Example 1

ORBproduct A is designed to support objects distributed across a network and provide
“out of the box”interoperability with compatible ORBs from other vendors. In
addition it allows bridges to be built between it and other ORBs that use environment-
specific or proprietary protocols. To accomplish this, ORB A uses the HOP and
provides inter-ORB bridge support.

12.3.2 Example 2

ORB product B is designed to provide highly optimized, very high-speed support for
objects located on a single machine. For example, to support thousands of Fresco GUI
objects operated on at near function-call speeds. In addition, some of the objects will
need to be accessible from other machines and objects on other machines will need to
be infrequently accessed. To accomplish this, ORB A providesa half-bridge to support
the Intemet IOP for communication with other “distributed” ORBs.

12.3.3 Example 3

ORB product C is optimized to work in-a particular operating environment.It uses a
particular environment-specific protocol based on distributed computing services that
are commonly available at the target customersites. In addition, ORB C is expected to
interoperate with other arbitrary ORBs from other vendors. To accomplish this, ORB C
provides inter-ORB bridge support and a companion half-bridge product (supplied by
the ORB vendoror somethird-party) provides the connection to other ORBs. Thehalf-
bridge uses the IIOP to enable interoperability with other compatible ORBs.

12.3.4 Interoperability Compliance

An ORBis considered to be interoperability-compliant when it meets the following
requirements:

December2001 CORBA,v2.6: Examples ofInteroperability Solutions » 12-5

0875

0876

12

© Inthe CORBA Corepart of this specification, standard APIs are provided by an
ORB to enable the construction of request-level inter-ORB bridges. APIs are

defined by the Dynamic Invocation Interface, the Dynamic Skeleton Interface, and
by the object identity operations described in the Interface Repository chapter of
this book.

® An Internet Inter-ORB Protocol (IIOP) (explained in the Building Inter-ORB
Brdiges chapter) defines a transfer syntax and message formats (described
independently as the General Inter-ORB Protocol), and defines how to transfer
messages via TCP/IP connections. The 11OP can be supported natively orvia a half-
bridge.

Support for additional ESIOPs and other proprietary protocols is optional in an
interoperability-compliant system. However, any implementation that chooses to use
the other protocols defined by the CORBAinteroperability specifications must adhere
to those specifications to be compliant with CORBA interoperability.

Figure 12-2 on page 12-7 shows examplesof interoperable ORB domainsthat are
CORBA-compliant.

These compliance points support a range of interoperability solutions. For example, the
standard APIs may be used to construct“half bridges” to the IIOP, relying on another
“half bridge” to connect to another ORB. The standard APIs also support construction
of ‘full bridges,” without using the Internet IOP to mediate between separated bridge
components. ORBs mayalso use the Internet IOP internally. In addition, ORBs may
use GIOP messages to communicate over other network protoco! families (such as
Novell or OSI), and provide transport-level bridges to the LIOP.

The GIOP is described separately from the IIOP to allow future specifications to treat
it as an independent compliance point.

Common Object Request Broker Architecture (CORBA), v2.6 December2001

0876

0877

12

ORB Domains ORB Domains

CORBA V2.0 Interoperable

CORBA V2.0 Interoperable

IOP

CORBA V2.0 Interoperable

*e.g. Proprietary protocol or
GIOP OSI mapping

Figure 12-2 Examples of CORBA Interoperability Compliance

December 2001 CORBA, v2.6: Examples ofInteroperability Solutions 12-7

0877

0878

12

12.4 Motivating Factors

This section explains the factors that motivated the creation of interoperability
specifications.

12.4.1 ORB Implementation Diversity

Today, there are many different ORB products that address a variety of user needs. A
large diversity of implementation techniques is evident. For example, the time for a
request rangesover at least 5 orders of magnitude, from a few microsecondsto several
seconds. The scope ranges from a single application to enterprise networks. Some
ORBshavehighlevels of security, others are more open. Some ORBsare layered on a
particular widely used protocol, others use highly optimized, proprietary protocols.

The market for object systems and applications that use them will grow as object
systemsare able to be applied to more kinds of computing. From application
integration to process control, from loosely coupled operating systems to the
information superhighway, CORBA-based object systems can be the common
infrastructure.

12.4.2 ORB Boundaries

Even whenit is not required by implementation differences, there are other reasons to
partition an environmentinto different ORBs.

For security reasons, it may be important to knowthatit is not generally possible to
access objects in one domain from another. For example, an “internet ORB” may make
public information widely available, but a “company ORB” will want to restrict what
information can get out. Even if they used the same ORB implementation, these two
ORBs would be separate, so that the company could allow access to public objects
from inside the company without allowing access to private objects from outside. Even
though individual objects should protect themselves, prudent system administrators
will want to avoid exposing sensitive objects to attacks from outside the company.

Supporting multiple ORBsalso helps handle the difficult problem of testing and
upgrading the object system. It would be unwise to test new infrastructure without
limiting the set of objects that might be damaged by bugs, and it may be impractical to
replace “the ORB” everywhere simultaneously. A new ORB might be tested and
deployed in the same environment, interoperating with the existing ORB until either a
complete switch is madeorit incrementally displaces the existing one.

Managementissues may also motivate partitioning an ORB. Just as networks are
subdivided into domains to allow decentralized control of databases, configurations,
resources, managementofthe state in an ORB(object reference location and
translation information, interface repositories, per-object data) might also be done by
creating sub-ORBs.

12-8 Common Object Request Broker Architecture (CORBA), v2.6 December2001

0878

0879

12

12.4.3 ORBs Vary in Scope, Distance, and Lifetime

Even in a single computing environment produced bya single vendor, there are reasons
why someofthe objects an application might use would be in one ORB, andothers in
another ORB. Someobjects and services are accessed over long distances, with more
globalvisibility, longer delays, and less reliable communication. Other objects are
nearby, are not accessed from elsewhere, and provide higher quality service. By
deciding which ORB to use, an implementer sets expectationsfor the clients of the
objects.

One ORB mightbe usedto retain links to information that is expected to accumulate
over decades, such as library archives. Another ORB might be used to manage a
distributed chess program in which the objects should all be destroyed when the game
is over. Although while it is running, it makes sense for “chess ORB”objects to access
the “archives ORB,” we would not expect the archivesto try to keep a reference to the
current board position.

12.5 Interoperability Design Goals

December 2001

Because ofthe diversity in ORB implementations, multiple approaches to
interoperability are required. Options identified in previous versions of CORBA
include:

® Protocol Translation, where a gateway residing somewhere in the system maps
requests from the format used by one ORB to that used by another.

© Reference Embedding, where invocation using a native object reference delegates to
a special object whose job is to forward that invocation to another ORB.

© Alternative ORBs, where ORB implementationsagree to coexist in the same address
space so easily that a client or implementation can transparently use any of them,
and pass object references created by one ORB to another ORB withoutlosing
functionality.

In general, there is no single protocol that can meet everyone's needs, and there is no
single meansto interoperate between two different protocols. There are many
environments in which multiple protocols exist, and there are ways to bridge between
environments that share no protocols. ,

This specification adopts a flexible architecture that allows a wide variety of ORB
implementations to interoperate and that includes both bridging and commonprotocol
elements.

The following goals guided the creation of interoperability specifications:

© The architecture and specifications should allow high-performance, small footprint,
lightweight interoperability solutions.

© The design should scale, should not be unduly difficult to implement, and should
not unnecessarily restrict implementation choices.

CORBA, v2.6: Interoperability Design Goals 12-9

0879

0880

12

© Interoperability solutions should be able to work with any vendors’ existing ORB
implementations with respect to their CORBA-compliant core feature set; those
implementationsare diverse.

* All operations implied by the CORBA object model (i.e., the stringify and
destringify operations defined on the CORBA:ORBpseudo-object andall the
operations on CORBA:Object) as well as type management(e.g., narrowing, as
needed by the C++ mapping) should be supported.

12.5.1 Non-Goals

The following were taken into account, but were not goals:

® Support for security

* Support for future ORB Services

12-10 Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0880

0881

ORB InteroperabilityArchitecture 13

Contents

This chapter contains the following sections.

Overviewssss—s—siSYfis|1
“ORBs and ORB Services”

“Interoperability Between ORBs”
13.1 Overview

The original Interoperability RFP defines interoperability as the ability for a client on
ORB A to invoke an OMG IDL-defined operation on an object on ORB B, where ORB
A and ORBBare independently developed. It further identifies general requirements
including in particular:

® Ability for two vendors’ ORBsto interoperate without prior knowledge of each
other’s implementation.

December 2001 Common Object Request Broker Architecture (CORBA), v2.6 13-1

0881

0882

13

13-2

® Support of all ORB functionality.

* Preservation of content and semantics of ORB-specific information across ORB
boundaries (for example, security).

In effect, the requirement is for invocations between client and server objects to be
independent of whether they are on the same or different ORBs, andnot to mandate
fundamental modifications to existing ORB products.

13.1.1 Domains

The CORBA Object Model identifies various distribution transparencies that must be
supported within a single ORB environment, such as location transparency. Elements
of ORB functionality often correspond directly to such transparencies. Interoperability
can be viewed as extending transparencies to span multiple ORBs.

In this architecture a domain is a distinct scope, within which certain common
characteristics are exhibited and commonrules are observed over which a distribution

transparency is preserved. Thus, interoperability is fundamentally involved with
transparently crossing such domain boundaries.

Domainstend to be either administrative or technological in nature, and need not
correspondto the boundaries of an ORB installation. Administrative domains include
naming domains, trust groups, resource management domains andother “run-time”
characteristics of a system. Technology domains identify commonprotocols, syntaxes
and similar “‘build-time” characteristics. In many cases, the need for technology
domains derives from basic requirements of administrative domains.

Within a single ORB, most domainsare likely to have similar scope to that of the ORB
itself: common object references, network addresses, security mechanisms, and more.
However, it is possible for there to be multiple domains of the same type supported by
a given ORB: internal representation on different machine types, or security domains.
Conversely, a domain may span several ORBs: similar network addresses may be used
by different ORBs, type identifiers may be shared.

13.1.2 Bridging Domains

The abstract architecture describes ORB interoperability in terms of the translation
required when an object request traverses domain boundaries. Conceptually, a mapping
or bridging mechanism resides at the boundary between the domains, transforming
requests expressed in terms of one domain’s model into the model of the destination
domain.

The concrete architecture identifies two approaches to inter-ORB bridging:

* At application level, allowing flexibility and portability.

© At ORB level, built into the ORB itself.

Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0882

0883

13

13.2. ORBs and ORBServices

December 2001

The ORB Coreis that part of the ORB which provides the basic representation of
objects and the communication of requests. The ORB Core therefore supports the
minimum functionality to enable a client to invoke an operation on a server object,
with (some of) the distribution transparencies required by CORBA.

An object request may have implicit attributes which affect the way in whichit is
communicated - though not the way in which a client makes the request. These
attributes include security, transactional capabilities, recovery, and replication. These
features are provided by “ORB Services,” which will in some ORBsbelayered as
internal services over the core, or in other cases be incorporated directly into an ORB’s
core. It is an aim ofthis specification to allow for new ORB Servicesto be defined in
the future, without the need to modify or enhance this architecture.

Within a single ORB, ORB services required to communicate a request will be
implemented and (implicitly) invoked in a private manner. For interoperability between
ORBs,the ORB services used in the ORBs, and the correspondence between them,
mustbe identified.

13.2.1 The Nature of ORB Services

ORB Services are invoked implicitly in the course of application-level interactions.
ORBServices range from fundamental mechanismssuch as reference resolution and
message encoding to advanced features such as support for security, transactions, or
replication.

An ORB Serviceis often related to a particular transparency. For example, message
encoding — the marshaling and unmarshaling of the components of a request into and
out of message buffers — provides transparency of the representation of the request.
Similarly, reference resolution supports location transparency. Some transparencies,
such as security, are supported by a combination of ORB Services and Object Services
while others, such as replication, may involve interactions between ORB Services
themselves.

ORBServices differ from Object Servicesin that they are positioned below the
application and are invoked transparently to the application code. However, many ORB
Services include components which correspond to conventional Object Services in that
they are invoked explicitly by the application.

Security is an example of service with both ORB Service and normal Object Service
components, the ORB components being those associated with transparently
authenticating messages and controlling access to objects while the necessary
administration and managementfunctions resemble conventional Object Services.

13.2.2 ORB Services and Object Requests

Interoperability between ORBsextends the scope of distribution transparencies and
other requestattributes to span multiple ORBs. This requires the establishment of
relationships between supporting ORB Servicesin the different ORBs.

CORBA, v2.6: ORBs and ORB Services 13-3

0883

0884

13

13-4

In order to discuss how the relationships between ORB Services are established, it is
necessary to describe an abstract view of how an operation invocation is communicated
from client to server object.

1.

3.

4.

The client generates an operation request, using a reference to the server object,
explicit parameters, and an implicit invocation context. This is processed by certain
ORB Services on the client path.

Onthe server side, corresponding ORB Services process the incoming request,
transformingit into a form directly suitable for invoking the operation on the server
object.

The server object performs the requested operation.

Anyresult of the operation is returned to the client in a similar manner.

The correspondence betweenclient-side and server-side ORB Services need not be
one-to-one and in some circumstances may be far more complex. For example, if a
client application requests an operation on a replicated server, there may be multiple
server-side ORB service instances, possibly interacting with each other.

In other cases, such as security, client-side or server-side ORB Services may interact
with Object Services such as authentication servers.

13.2.3 Selection of ORB Services

The ORBServices used are determined by:

Static propertiesof both client and server objects; for example, whether a serveris
replicated.

Dynamicattributes determined by a particular invocation context; for example,
whether a requestis transactional.

Administrative policies (e.g., security).

Within a single ORB, private mechanisms (and optimizations) can be used to establish
which ORBServices are required and how theyare provided. Service selection might
in general require negotiation to select protocols or protocol options. The sameis true
between different ORBs: it is necessary to agree which ORBServices are used, and
how each transformsthe request. Ultimately, these choices become manifest as one or
more protocols between the ORBsor as transformations of requests.

In principle, agreement on the use of each ORB Service can be independentofthe
others and, in appropriately constructed ORBs, services could be layered in any order
or in any grouping. This potentially allows applications to specify selective
transparencies according to their requirements, although at this time CORBA provides
no way to penetrate its transparencies.

A client ORB must be able to determine which ORB Services must be usedin order to

invoke operations on a server object. Correspondingly, where a client requires dynamic
attributes to be associated with specific invocations, or administrative policies dictate,
it must be possible to cause the appropriate ORB Services to be used on client and

Common Object Request Broker Architecture (CORBA), v2.6 December2001

0884

0885

13

13.3 Domains

serversides of the invocation path. Where this is not possible - because, for example,
one ORB doesnot support the full set of services required - either the interaction
cannot proceedor it can only do so with reducedfacilities or transparencies.

From a computational viewpoint, the OMG Object Model identifies various
distribution transparencies which ensure that client and server objects are presented
with a uniform view of a heterogeneousdistributed system. From an engineering
viewpoint, however, the system is not wholly uniform. There may bedistinctions of
location and possibly many others such as processor architecture, networking
mechanisms and data representations. Even when a single ORB implementation is used
throughout the system, local instances may represent distinct, possibly optimized
scopes for some aspects of ORB functionality.

Representation

Figure 13-1 Different Kinds of Domains can Coexist.

Interoperability, by definition, introduces further distinctions, notably between the
scopes associated with each ORB. To describe both the requirements for
interoperability and some ofthe solutions, this architecture introduces the concept of
domains to describe the scopes and their implications.

informally, a domainis a set of objects sharing a common characteristic or abiding by
common rules. It is a powerful modelling concept which can simplify the analysis and
description of complex systems. There may be many types of domains(e.g.,
management domains, naming domains, language domains, and technology domains).

13.3.1 Definition ofa Domain

December 2001

Domainsallow partitioning of systems into collections of components which have
some characteristic in common.In this architecture a domain is a scope in which a
collection of objects, said to be membersof the domain,is associated with some
common characteristic; any object for which the association does not exist, or is
undefined, is not a memberof the domain. A domain can be modeled as an object and
maybe itself a member of other domains.

It is the scopes themselves and the object associations or bindings defined within them
which characterize a domain. This information is disjoint between domains. However,
an object may be a memberofseveral domains, of similar kinds as well as of different
kinds, and so the sets of members of domains may overlap.

CORBA,v2.6: Domains 13-5

0885

0886

13

13-6

The concept of a domain boundary is defined as the limit of the scope in which a
particular characteristic is valid or meaningful. When a characteristic in one domain is
translated to an equivalent in another domain,it is convenient to considerit as
traversing the boundary between the two domains.

Domainsare generally either administrative or technological in nature. Examples of
domains related to ORBinteroperability issues are:

® Referencing domain — the scope of an object reference

® Representation domain — the scope of a message transfer syntax and protocol

® Network addressing domain — the scope of a network address

® Network connectivity domain — the potential scope of a network message

® Security domain — the extent of a particular security policy

© Type domain — the scope of a particular type identifier

¢ Transaction domain — the scope of a given transaction service

Domainscan berelated in two ways: containment, where a domainis contained within
another domain, and federation, where two domainsare joined in a manneragreed to
and set up by their administrators.

13.3.2 Mapping Between Domains: Bridging

Interoperability between domainsis only possible if there is a well-defined mapping
between the behaviors of the domains being joined. Conceptually, a mapping
mechanism or bridge resides at the boundary between the domains, transforming
requests expressed in terms of one domain’s model into the model of the destination
domain. Note that the use of the term “bridge” in this context is conceptual and refers
only to the functionality which performs the required mappings between distinct
domains. There are several implementation options for such bridges and these are
discussed elsewhere.

For full interoperability, it is essential that all the concepts used in one domain are
transformable into concepts in other domains with which interoperability is required,
or that if the bridge mechanism filters such a concept out, nothingis lost as far as the
supported objects are concerned. In other words, one domain may support a superior
service to others, but such a superior functionality will not be available to an
application system spanning those domains.

A special case of this requirement is that the object models of the two domains need to
be compatible. This specification assumes that both domainsare strictly compliant
with the CORBA Object Model and the CORBA specifications. This includes the use of
OMGIDL whendefining interfaces, the use of the CORBACoreInterface Repository,
and other modifications that were made to CORBA. Variances from this model could

easily compromise someaspects of interoperability.

Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0886

0887

13

13.4 Interoperability Between ORBs

December 2001

An ORB“provides the mechanisms by which objects transparently make and receive
requests and responses. In so doing, the ORB provides interoperability between
applications on different machines in heterogeneousdistributed environments...” ORB
interoperability extends this definition to cases in which client and server objects on
different ORBs “transparently make and receive requests.”

Note that a direct consequence of this transparency requirementis that bridging must
be bidirectional: that is, it must work as effectively for object references passed as
parametersas for the target of an object invocation. Were bridging unidirectional(e.g.,
if one ORB could only be a client to another) then transparency would not have been
provided, because object references passed as parameters would not workcorrectly:
ones passed as “callback objects,” for example, could not be used.

Without loss of generality, most of this specification focuses on bridging in only one
direction. This is purely to simplify discussions, and does not imply that unidirectional
connectivity satisfies basic interoperability requirements.

13.4.1 ORB Services and Domains

In this architecture, different aspects of ORB functionality - ORB Services - can be
considered independently and associated with different domain types. The architecture
does not, however, prescribe any particular decomposition of ORB functionality and
interoperability into ORB Services and corresponding domain types. There is a range
of possibilities for such a decomposition:

1. The simplest model, for interoperability, is to treat all objects supported by one
ORB(or, alternatively, all ORBs of a given type) as comprising one domain.
Interoperability between any pair of different domains (or domain types)is then
achieved by a specific all-encompassing bridge between the domains.(Thisisall
CORBA implies.) .

2. More detailed decompositions would identify particular domain types - such as
referencing, representation, security, and networking. A core set of domain types
would be pre-determined and allowance made for additional domain types to be
defined as future requirements dictate (e.g., for new ORB Services).

13.4.2 ORBs and Domains

In manyrespects, issues of interoperability between ORBsare similar to those which
can arise with a single type of ORB (e.g., a product). For example:

® Twoinstallations of the ORB may beinstalled in different security domains, with
different Principal identifiers. Requests crossing those security domain boundaries
will need to establish locally meaningful Principals for the caller identity, and for
any Principals passed as parameters.

Different installations might assign different type identifiers for equivalent types,
and so requests crossing type domain boundaries would needto establish locally
meaningful type identifiers (and perhaps more).

CORBA, v2.6: Interoperability Between ORBs 13-7

0887

0888

13

13-8

Conversely, not all of these problems need to appear when connecting two ORBsof a
different type (e.g., two different products). Examples include:

© They could be administered to share user visible naming domains, so that naming
domains do not need bridging.

® They might reuse the same networking infrastructure, so that messages could be
sent without needing to bridge different connectivity domains.

Additional problems can arise with ORBsof different types. In particular, they may
support different concepts or models, between which there are no direct or natural
mappings. CORBAonlyspecifies the application level view of object interactions, and
requires that distribution transparencies conceal a whole range of lowerlevel issues.It
follows that within any particular ORB, the mechanisms for supporting transparencies
are not visible at the application-level and are entirely a matter of implementation
choice. So there is no guarantee that any two ORBs support similar internal models or
that there is necessarily a straightforward mapping between those models.

These observations suggest that the concept of an ORB(instance) is too coarse or
superficial to allow detailed analysis of interoperability issues between ORBs. Indeed,
it becomesclear that an ORBinstanceis an elusive notion: it can perhaps best be
characterized asthe intersection or coincidence of ORB Service domains.

13.4.3 Interoperability Approaches |

13.4.3.1

Whenan interaction takes place across a domain boundary, a mapping mechanism,or
bridge, is required to transform relevant elements ofthe interaction as they traverse the
boundary. There are essentially two approaches to achieving this: mediated bridging
and immediate bridging. These approachesare described in the following subsections.

Domain Domain Domain Domain

Interop
Mediated Bridging Immediate Bridging

Figure 13-2. Two bridging techniques, different uses of an intermediate form agreed on between
the two domains.

Mediated Bridging

With mediated bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of cach domain, betweenthe internal form of that domain
and an agreed, commonform.

Observations on mediated bridging are as follows:

© The scope of agreement of a common form can range from a private agreement
between two particular ORB/domain implementations to a universal standard.

Common Object Request BrokerArchitecture (CORBA), v2.6 December2001

0888

0889

13

December 2001

® There can be more than one common form, each oriented or optimized for a
different purpose.

® If there is more than one possible common form, then which is used can bestatic
(e.g., administrative policy agreed between ORB vendors, or between system
administrators) or dynamic (e.g., established separately for each object, or on each
invocation).

® Engineeringofthis approach can range from in-line specifically compiled (compare
to stubs) or generic library code (such as encryption routines), to intermediate
bridges to the commonform.

13.4.3.2 Immediate Bridging
With immediate bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of each domain, directly between the internal form of one
domain andthe internal form of the other.

Observations on immediate bridging are as follows:

® This approach hasthe potential to be optimal (in that the interaction is not mediated
via a third party, and can be specifically engineered for each pair of domains) but
sacrifices flexibility and generality of interoperability to achieve this.

® This approachis often applicable when crossing domain boundaries which are
purely administrative(i.e., there is no change of technology). For example, when
crossing security administration domains between similar ORBs,it is not necessary
to use a commonintermediate standard.

As a general observation, the two approaches can become almostindistinguishable
whenprivate mechanisms are used between ORB/domain implementations.

13.4.3.3 Location ofInter-Domain Functionality

Logically, an inter-domain bridge has components in both domains, whether the
mediated or immediate bridging approach is used. However, domains can span ORB
boundaries and ORBscan span machine and system boundaries; conversely, a machine
may support, or a process may have access to more than one ORB (or domain of a
given type). From an engineering viewpoint, this means that the components of an
inter-domain bridge may be dispersed or co-located, with respect to ORBsor systems.
It also meansthat the ‘distinction between an ORB and a bridge can be a matter of
perspective: there is a duality between viewing inter-system messaging as belongingto
ORBs,or to bridges.

For example, if a single ORB encompasses two security domains, the inter-domain
bridge could be implemented wholly within the ORB and thusbeinvisible as far as
ORB interoperability is concerned. A similar situation arises when a bridge between
two ORBsor domains is implemented wholly within a process or system which has
access to both. In such cases, the engineering issues of inter-domain bridging are

CORBA, v2.6: Interoperability Between ORBs 13-9

0889

0890

13

13-10

13.4.3.4

confined, possibly to a single system orprocess. If it were practical to implementall
bridgingin this way, then interactions between systems or processes would besolely
within a single domain or ORB.

Bridging Level

As noted at the start of this section, bridges may be implemented both internally to an
ORB andaslayers aboveit. These are called respectively “in-line” and “request-level”
bridges.

Request-level bridges use the CORBA APIs,including the Dynamic Skeleton
Interface, to receive and issue requests. However,there is an emerging class of
“implicit context” which may be associated with some invocations, holding ORB
Service information such as transaction and security context information, whichis not
at this time exposed through general purpose public APIs. (Those APls expose only
OMG IDL-defined operation parameters, not implicit ones.) Rather, the precedent set
with the Transaction Service is that special purpose APIs are definedto allow bridging
of each kind of context. This means that request-level bridges must be built to
specifically understand the implications of bridging such ORB Service domains, and to
make the appropriate APIcalls.

13.4.4 Policy-Mediated Bridging

An assumption made through mostofthis specification is that the existence of domain
boundaries should be transparentto requests: that the goalof interoperability is to hide
such boundaries. However, if this were always the goal, then there would be noreal
need for those boundariesin thefirst place.

Realistically, administrative domain boundaries exist because they reflect ongoing
differences in organizational policies or goals. Bridging the domains will in such cases
require policy mediation. That is, inter-domain traffic will need to be constrained,
controlled, or monitored; fully transparent bridging may be highly undesirable.
Resource managementpolicies may even needto be applied, restricting some kinds of
traffic during certain periods.

Security policies are a particularly rich source of examples: a domain may need to
audit external access, or to provide domain-based access control. Only a very few
objects, types of objects, or classifications of data might be externally accessible
through a “firewall.”

Such policy-mediated bridging requires a bridge that knows something aboutthetraffic
being bridged. It could in general be an application-specific policy, and many policy-
mediated bridges could be parts of applications. Those might be organization-specific,
off-the-shelf, or anywhere in between.

Request-level bridges, which use only public ORB APIs,easily support the addition of
policy mediation components, without loss of access to any other system infrastructure
that may be neededto identify or enforce the appropriate policies.

Common Object Request Broker Architecture (CORBA), v2.6 December2001

0890

0891

13

13.4.5 Configurations ofBridges in Networks

In the case of network-aware ORBs, we anticipate that some ORB protocols will be
more frequently bridged to than others, and so will begin to serve the role of
“backbone ORBs.” (Thisis a role that the IIOP is specifically expected to serve.) This
use of “backbone topology”is true both on a large scale and a small scale. While a
large scale public data network provider could define its own backbone ORB, on a
smaller scale, any given institution will probably designate one commercially available
ORBasits backbone.

Backbone ORB
Figure 13-3 An ORB chosen as a backbone will connect other ORBs through bridges, both full-

bridges and half-bridges.

Adopting a backbonestyle architecture is a standard administrative technique for
managing networks.It has the consequence of minimizing the numberofbridges
needed, while at the same time making the ORB topology match typical network
organizations. (Thatis, it allows the number of bridges to be proportionalto the
numberofprotocols, rather than combinatorial.)

In large configurations, it will be commonto notice that adding ORB bridges doesn’t
even add any new “hops” to network routes, because the bridges naturally fit in
locations where connectivity was already indirect, and augment or supplant the
existing network firewalls.

13.5 Object Addressing

December 2001

The Object Model (see Chapter 1, Requests) defines an object reference as an object
namethat reliably denotes a particular object. An object reference identifies the same
object each time the reference is used in a request, and an object may be denoted by
multiple, distinct references.

CORBA,v2.6: Object Addressing 13-11

0891

0892

13

The fundamental ORB interoperability requirement is to allow clients to use such
object names to invoke operations on objects in other ORBs. Clients do not need to
distinguish between references to objects in a local ORB or in a remote one. Providing
this transparency can be quite involved, and naming models are fundamentaltoit.

This section discusses models for naming entities in multiple domains, and
transformations of such namesas they cross the domain boundaries. Thatis, it presents
transformations of object reference information as it passes through networksofinter-
ORB bridges.It uses the word “ORB” as synonymouswith referencing domain; thisis
purely to simplify the discussion. In other contexts, “ORB” can usefully denote other
kinds of domain.

13.5.1 Domain-relative Object Referencing

Since CORBA doesnot require ORBsto understand object references from other
ORBs, whendiscussing object references from multiple ORBs one must always
associate the object reference’s domain (ORB) with the object reference. We use the
notation DO.RO to denote an object reference RO from domain DO;this is itself an
object reference. This.is called “domain-relative” referencing (or addressing) and need
notreflect the implementation of object references within any ORB.

At an implementation level, associating an object reference with an ORB is only
important at an inter-ORB boundary; thatis, inside a bridge. This is simple, since the
bridge knows from which ORB each request (or response) came, including any object
references embeddedin it.

13.5.2 Handling ofReferencing Between Domains

Whena bridge hands an object reference to an ORB, it must do so in a form
understood by that ORB: the object reference must be in the recipient ORB’s native
format. Also, in cases where that object originated from some other ORB, the bridge
must associate each newly created “proxy” object reference with (what it sees as) the
original object reference.

Several basic schemes to solve these two problemsexist. These all have advantages in
some circumstances; all can be used, and in arbitrary combination with each other,
since CORBAobject references are opaque to applications. The ramifications of each
scheme merits attention, with respect to scaling and administration. The schemes
include:

1. Object Reference Translation Reference Embedding: The bridge can store the
original object reference itself, and pass an entirely different proxy reference into
the new domain. The bridge must then managestate on behalf of each bridged
object reference, map these references from one ORB’s formatto the other’s, and
vice versa.

13-12 CommonObject Request Broker Architecture (CORBA). v2.6 December2001

0892

0893

13

2. Reference Encapsulation: The bridge can avoid holding any state atall by
conceptually concatenating a domain identifier to the object name. Thusif a
reference DO.R, originating in domain D0, traversed domains DJ... D4 it could be
identified in D4 as proxy reference d3.d2.d1.d0.R, where dn is the address of Dn
relative to Ont+J.

dd

Figure 13-4 Reference encapsulation adds domain information during bridging.

3. Domain Reference Translation: Like object reference translation, this scheme holds
somestate in the bridge. However, it supports sharing that state between multiple
object references by adding a domain-based route identifier to the proxy (whichstill
holds the original reference, as in the reference encapsulation scheme). It achieves
this by providing encoded domain route information each time a domain boundary
is traversed; thus if a reference DO.R, originating in domain DO, traversed domains
D1I...D4 it would be identified in D4 as (d3, x3).R, and in D2 as (di,x1).R, and so
on, where dn is the address of Dn relative to Dn+J, and xn identifies the pair (dn-J,
xn-1).

Figure 13-5|Domain Reference Translation substitutes domain references during bridging.

4. Reference Canonicalization: This schemeis like domain reference translation,
exceptthat the proxy uses a “well-known”(e.g., global) domain identifier rather
than an encoded path. Thus a reference &, originating in domain DO would be
identified in other domains as DO.R.

Observations about these approachesto inter-domain reference handling are as follows:

® Naive application of reference encapsulation could lead to arbitrarily large
references. A “topology service” could optimize cycles within any given
encapsulated reference and eliminate the appearance of references to local objects
as alien references.

A topology service could also optimize the chains of routes used in the domain
reference translation scheme. Since the links in such chains are re-used by any path
traversing the same sequence of domains, such optimization has particularly high
leverage.

December2001 CORBA, v2.6. Object Addressing 13-13

0893

0894

13

® With the general purpose APIs defined in CORBA, object reference translation can
be supported even by ORBs not specifically intended to support efficient bridging,
but this approach involves the moststate in intermediate bridges. As with reference
encapsulation, a topology service could optimize individual object references. (APIs
are defined by the Dynamic Skeleton Interface and Dynamic Invocation Interface)

® The chain of addressing links established with both object and domain reference
translation schemes mustbe represented as state within the network of bridges.
There are issues associated with managingthis state.

® Reference canonicalization can also be performed with managed hierarchical name
spaces such as those now in use on the Internet and X.500 naming.

13.6 An Information Modelfor Object References

13-14

This section provides a simple, powerful information model for the information found
in an object reference. That model is intended to be used directly by developers of
bridging technology, and is used in that role by the IIOP, described in the General
inter-ORB Protocol chapter, Object References section.

13.6.1 What Information Do Bridges Need?

The following potential information about object references has been identified as
critical for use in bridging technologies:

* Js it null? Nulls only need to be transmitted and never support operation invocation.

© What type is it? Many ORBsrequire knowledge of an object’s type in order to
efficiently preserve the integrity of their type systems.

® Whatprotocols are supported? Some ORBssupport objrefs that in effect live in
multiple referencing domains, to allow clients the choice of the mostefficient
communications facilities available.

© What ORB Services are available? As noted in Section 13.2.3, “Selection of ORB

Services” on page 13-4, several different ORB Services might be involved in an
invocation. Providing information about those services in a standardized way could
in many cases reduce or eliminate negotiation overhead in selecting them.

13.6.2 Interoperable Object References: IORs

To provide the information above, an “Interoperable Object Reference,” (1OR) data
structure has been provided. This data structure need not be used internally to any
given ORB, andis not intended to be visible to application-level ORB programmers.It
should be used only when crossing object reference domain boundaries, within
bridges.

This data structure is designed to be efficient in typical single-protocol configurations,
while not penalizing multiprotocol ones.

CommonObject Request Broker Architecture (CORBA), v2.6 December 2001

0894

0895

13

December 2001

module [OP { IDL

i! Standard ProtocolProfile tag values

typedef unsigned long Profileld;

struct TaggedProfile {
Profileld tag;
sequence<octet> profile_data;

}:

if an Interoperable Object Referenceis a sequence of
I! object-specific protocol profiles, plus a type ID.

struct IOR {
string type_id;
sequence <TaggedProfile>_profiles;

};

i Standard way of representing multicomponentprofiles.
if This would be encapsulated in a TaggedProfile.

typedef unsigned long Componentld;
struct TaggedComponent{

Componentld tag;
sequence <octet> component_data;

};
typedef sequence<TaggedComponent> TaggedComponentSeq;

};

13.6.3 IOR Profiles

Object references have at least one tagged profile. Each profile supports one or more
protocols and encapsulatesall the basic information the protocols it supports need to
identify an object. Any single profile holds enough information to drive a complete
invocation using any of the protocols it supports; the content and structure of those
profile entries are wholly specified by these protocols.

When a specific protocol is used to convey an object reference passed as a parameter
in an IDL operation invocation (or reply), an IOR whichreflects, in its contained
profiles, the full protocol understanding of the operation client (or server in case of
reply) may be sent. A receiving ORB which operates (based on topology and policy
information available to it) on profiles rather than the received IOR as a whole, to
create a derived reference for use in its own domain ofreference,is placing itself as a
bridge between reference domains. Interoperability inhibiting situations can arise
when an orb sends an IOR with multiple profiles (using one of its supported protocols)

CORBA,v2.6: An Information Modelfor Object References 13-15

0895

0896

13

13-16

to a receiving orb, and that receiving orb later returns a derived reference to that object,
which has hadprofiles or profile component data removed or transformed from the
original IOR contents.

To assist in classifying behavior of ORBSin such bridging roles, two classes of OR
conformance may be associated with the conformance requirements for a given ORB

interoperability protocol:

® Full JOR conformance requires that an orb which receives an IOR for an object
passed to it through that ORBinteroperability protocol, shall recover the original
1OR,in its entirety, for passing as a reference to that object from that orb through
that same protocol

© Limited-Profile IOR conformance requires that an orb which receives an IOR
passed to it through a given ORB interoperability protocol, shall recoverall of the
standard information contained in the 1OR profile for that protocol, whenever
passing a reference to that object, using that same protocol, to another ORB.

Note — Conformanceto IIOP versions 1.0, 1.1 and 1.2 only requires support oflimited-
Profile IOR conformance, specifically for the NOP IOR profile. However, due to
interoperability problems induced by Limited-Profile IOR conformance,it is now
deprecated by the CORBA 2.4 specification for an orb to not support Full IOR
conformance. Some future HOP versions could require Full IOR conformance.

An ORB maybe unableto use any ofthe profiles provided in an LOR for various
reasons which may be broadly categorized as transient ones like temporary network
outage, and non-transient ones like unavailability of appropriate protocol software in
the ORB. The decision about the category of outage that causes an ORB to be unable
to use any profile from an 1ORis left up to the ORB. At an appropriate point, when an
ORBdiscovers that it is unable to use any profile in an OR, depending on whetherit
considers the reason transient or non-transient, it should raise the standard system
exception TRANSIENTwith standard minor code 2, or IMP_LIMIT with the
standard minor code |.

Each profile has a unique numeric tag, assigned by the OMG. The ones defined here
are for the HOP (see Section 15.7.3, “IIOP IOR Profile Components” on page 15-54)
and for use in “multiple componentprofiles.” Profile tags in the range 0x80000000
through Oxffffffff are reserved for future use, and are not currently available for
assignment.

Null object references are indicated by an empty set of profiles, and by a ‘“‘Null” type
1D (a string which contains only a single terminating character). Type 1Ds may only be
“Null” in any message, requiring the client to use existing knowledge or to consult the
object, to determine interface types supported. The type 1D is a Repository ID
identifying the interface type, and is provided to allow ORBsto preserve strong typing.
This identifier is agreed on within the bridge and, for reasons outside the scope ofthis
interoperability specification, needs to have a much broader scope to address various
problems in system evolution and maintenance. Type IDs support detection of type
equivalence, and in conjunction with an Interface Repository, allow processes to reason
about the relationship of the type of the object referred to and any othertype.

Common Object Request Broker Architecture (CORBA), v2.6 December 2001

0896

0897

13

December 2001

The type ID, if provided by the server, indicates the most derived type that the server
wishes to publish, at the time the reference is generated. The object’s actual most
derived type may later change to a more derived type. Therefore, the type ID in the
1OR can only be interpreted by the client as a hint that the object supports at least the
indicated interface. The client can succeed in narrowing the referenceto the indicated
interface, or to oneofits base interfaces, based solely on the type ID in the IOR,but
mustnot fail to narrow the reference without consulting the object via the “_is_a”or
“_get_interface” pseudo-operations.

ORBsclaiming to support the Full-IOR conformanceare required to preserveall the
semantic content of any JOR (including the ordering of each profile and its
components), and may only apply transformations which preserve semantics (e.g.,
changing Byte order for encapsulation).

For example, consider an echo operation for object references:

interface Echoer {Object echo(in Object 0);};

Assumethat the method body implementingthis “echo” operation simply returnsits
argument. Whena client application invokes the echo operation and passes an
arbitrary object reference, if both the client and server ORBs claim support to Full JOR
conformance, the reference returned by the operation is guaranteed to have not been
semantically altered by either client or server ORB.Thatis, all its profiles will remain
intact and in the same order as they were present whenthe reference was sent. This
requirement for ORBs which claim support for Full-IOR conformance, ensuresthat,
for example, a client can safely store an object reference in a naming service and get
that reference back again later without losing information inside the reference.

13.6.4 Standard IOR Profiles

13.6.4.1

module IOP {
const Profileld TAG_INTERNET_IOP = 0;
constProfileld TAG_MULTIPLE_COMPONENTS= 1;
constProfileld TAG_SCCP_IOP = 2;

typedef sequence <TaggedComponent> MultipleComponentProfile;
}

The TAG_INTERNET_IOP Profile

The TAG_INTERNET_IOPtag identifies profiles that support the Internet Inter-ORB
Protocol. The ProfileBody of this profile, described in detail in Section 15:7.2, “HOP
IOR Profiles” on page 15-51, contains a CDR encapsulation ofa structure containing
addressing and object identification information used by IIOP. Version 1.1 of the
TAG_INTERNET_IOPprofile also includes a sequence<TaggedComponent>that
can contain additional information supporting optional IIOP features, ORB services
such as security, and future protocol extensions.

CORBA,v2.6: An Information Modelfor Object References 13-17

0897

0898

13

13-18

13.6.4.2

13.6.4.3

Protocols other than IIOP (such as ESIOPs and other GIOPs) can share profile
information (such as object identity or security information) with IOP by encoding
their additional profile information as components in the TAG_INTERNET_IOP
profile. All TAG_INTERNET_IOPprofiles support IIOP, regardiess of whether they
also support additional protocols. Interoperable ORBsare not required to create or
understand any otherprofile, nor are they required to create or understand any of the
components defined for other protocols that might share the TAG_INTERNET_IOP
profile with LIOP.

The profile_data for the TAG_INTERNET_IOPprofile is a CDR encapsulation of
the HOP::ProfileBody_1_1 type, described in Section 15.7.2, “HOP IOR Profiles” on
page 15-51.

The TAG_MULTIPLE_COMPONENTSProfile

The TAG_MULTIPLE_COMPONENTStagindicates that the value encapsulatedis of
type MultipleComponentProfile. In this case, the profile consists of a list of
protocol components, the use of which must be specified by the protocol using this
profile. This profile may be used to carry 1OR components, as specified in Section
13.6.5, “IOR Components” on page 13-18.

The profile_data for the TAG_MULTIPLE_COMPONENTSprofile is a CDR
encapsulation of the MultipleComponentProfile type shown above.

The TAG_SCCP_IOP Profile

See the CORBA/IN Interworking specification (dtc/2000-02-02).

13.6.5 IOR Components

TaggedComponents contained in TAG_INTERNET_IOP and
TAG_MULTIPLE_COMPONENTSprofiles are identified by unique numeric tags
using a namespace distinct form that is used for profile tags. Component tags are
assigned by the OMG.

Specifications of components mustinclude the following information:

* Component 1D: The compoundtag that is obtained from OMG.

© Structure and encoding: The syntax of the component data and the encodingrules.
If the component value is encoded as a CDR encapsulation, the IDL type that is
encapsulated and the GIOP version which is used for encoding the value, if different
than GIOP 1.0, must be specified as part of the componentdefinition.

© Semantics: How the componentdata is intended to be used.

* Protocols: The protocol for which the componentis defined, and whetherit is
intended that the component be usable by other protocols.

At most once: whether more than oneinstance of this component can be included in
a profile.

Common Object Request Broker Architecture (CORBA), v2.6 December2001

0898

0899

13

Specifications of protocols must describe how the componentsaffect the protocol. In
addition, a protocol definition must specify, for each TaggedComponent, whether
inclusion of the componentin profiles supporting the protocolis required
(MANDATORY PRESENCE)ornot required (OPTIONAL PRESENCE). An ORB
claiming to support Full-IOR conformance shall not drop optional components, once
they have been addedtoa profile.

13.6.6 Standard IOR Components

The following are standard IOR components that can be included in
TAG_INTERNET_IOP and TAG_MULTIPLE_COMPONENTSprofiles, and may
apply to IOP, other GIOPs, ESIOPs, or other protocols. An ORB must not drop these
components from an existing IOR.

module IOP {
const Componentid
const Componentlid
const Componentlid
const Componentlid

const Componentlid
const Componentld
const Componentld
const Componentld
const Componentlid
const Componentid
const Componentid
const Componentid
const Componentid
const Componentlid
const Componentld
const Componentlid
const Componentld
const Componentid
const Componentid
const Componentld
const Componentid
const Componentid

}

TAG_ORB_TYPE = 0;
TAG_CODE_SETS= 1;
TAG_POLICIES= 2;
TAG_ALTERNATE_IIOP_ADDRESS= 3;

TAG_ASSOCIATION_OPTIONS = 13;
TAG_SEC_NAME= 14;
TAG_SPKM_1_SEC_MECH = 15;
TAG_SPKM_2_SEC_MECH = 16;
TAG_KerberosV5_SEC_MECH = 17;
TAG_CSI_ECMA_Secret_SEC_MECH = 18;
TAG_CSI_ECMA_Hybrid_SEC_MECH = 19;
TAG_SSL_SEC_TRANS = 20;
TAG_CSI_ECMA_Public_SEC_MECH = 21;
TAG_ GENERIC_SEC_MECH = 22;
TAG_FIREWALL_TRANS= 23;
TAG_SCCP_CONTACT_INFO = 24;
TAG_JAVA_CODEBASE= 25;
TAG_TRANSACTION_POLICY = 26;
TAG_MESSAGE_ROUTERS= 30;
TAG_OTS_POLICY= 31;
TAG_INV_POLICY = 32;
TAG_INET_SEC_TRANS= 123;

The following additional components that can be used by other protocols are specified
in the DCE ESIOPchapterof this document and CORBAServices, Security Service, in
the Security Service for DCE ESIOPsection:

constComponentid
const Componentld
const Componentid
const Componentlid
const Componentlid
const Componentid

December 2001 CORBA, v2.6: An Information Madelfor Object References

TAG_COMPLETE_OBJECT_KEY= 5;
TAG_ENDPOINT_ID_POSITION = 6;
TAG_LOCATION_POLICY= 12;
TAG_DCE_STRING_BINDING = 100;
TAG_DCE_BINDING_NAME= 101;
TAG_DCE_NO_PIPES = 102;

13-19

0899

0900

13

13-20

13.6.6.1

13.6.6.2

13.6.6.3

const Componentid TAG_DCE_SEC_MECH = 103; // Security Service

TAG_ORB_TYPE Component

It is often useful in the real world to be able to identify the particular kind of ORB an
object reference is coming from, to work around problemswith that particular ORB,or
exploit shared efficiencies.

The TAG_ORB_TYPE componenthas an associated value of type unsignedlong,
encoded as a CDR encapsulation, designating an ORB type ID allocated by the OMG
for the ORB type of the originating ORB. Anyone may register any ORB types by
submitting a short (one-paragraph) description of the ORB type to the OMG,and will
receive a new ORBtype ID in retum.A list of ORB type descriptions and values will
be made available on the OMG webserver.

The TAG_ORB_TYPE component can appear at most once in any IORprofile. For
profiles supporting HOP 1.1 or greater, it is optionally present.

TAG_ALTERNATE_ITOP_ADDRESS Component

In cases where the same object key is used for more than one internet location, the
following standard 1OR Componentis defined for support in HOP version 1.2.

The TAG_ALTERNATE_IIOP_ADDRESScomponenthas an associated value of
type

struct {
string HostiD,
unsigned short Port

};

encoded as a CDR encapsulation.

Zero or more instances of the TAG_ALTERNATE_IIOP_ADDRESScomponenttype
may be included in a version 1.2 TAG_INTERNET_IOPProfile. Each of these
alternative addresses may be used by the client orb, in addition to the host and port
address expressed in the bodyofthe Profile. In cases where one or more
TAG_ALTERNATE_IIOP_ADDRESS componentsare present in a
TAG_INTERNET_IOPProfile, no order of use is prescribed by Version 1.2 of IOP.

Other Components

The following standard components are specified in various OMG specifications:

* TAG_CODE_SETS- See Section 13.10.2.4, “CodeSet Component of IOR Multi-
ComponentProfile” on page 13-42.

® TAG_POLICIES - See CORBA Messaging - chapter 22.

* TAG_SEC_NAME- Seethe Security Service specification, Mechanism Tags
section.

CommonObject Request Broker Architecture (CORBA), v2.6 December 2001

0900

0901

13

December 2001

TAG_ASSOCIATION_OPTIONS- See the Security Service specification, Tag
Association Options section.

TAG_SSL_SEC_TRANS- Seethe Security Service specification, Mechanism
Tags section.

TAG_GENERIC_SEC_MECHandall other tags with namesin the form
TAG_*_SEC_MECH- See the Security Service specification, Mechanism Tags
section.

TAG_FIREWALL_SEC- See the Firewall specification (orbos/98-05-04).

TAG_SCCP_CONTACT_INFO- See the CORBA/IN Interworking specification
(telecom/98-10-03).

TAG_JAVA_CODEBASE- Seethe Java to IDL Language Mapping specification
(formal/99-07-59), Codebase Transmission section.

TAG_TRANSACTION_POLICY- See the Object Transaction Service specification
(formal/00-06-28).

TAG_MESSAGE_ROUTERS- See CORBA Messaging (chapter 22).

TAG_OTS_POLICY- See the Object Transaction Service specification
(formal/00-06-28).

TAG_INV_POLICY- See the Object Transaction Service specification
(formal/00-06-28).

TAG_INET_SEC_TRANS- See the Security Service specification
(formal/00-06-25).

TAG_COMPLETE_OBJECT_KEY(See Section 16.5.4, “Complete Object Key
Component” on page 16-19).

TAG_ENDPOINT_ID_POSITION(See Section 16.5.5, “Endpoint ID Position
Component” on page 16-20).

TAG_LOCATION_POLICY (See Section 16.5.6, “Location Policy Component” on
page 16-20).

TAG_DCE_STRING_BINDING(SeeSection 16.5.1, “DCE-C1IOP String Binding
Component” on page 16-17).

TAG_DCE_BINDING_NAME (SeeSection 16.5.2, “DCE-CIOP Binding Name
Component” on page 16-18).

TAG_DCE_NO_PIPES(Sce Section 16.5.3, “DCE-CIOP No Pipes Component” on
page 16-19).

13.6.7 Profile and Component Composition in IORs

The following rules augmentthe preceding discussion:

1. Profiles must be independent, complete, and self-contained. Their use shall not
depend on information contained in anotherprofile.

2. Any invocation uses information from exactly oneprofile.

CORBA,v2.6; An Information Modelfor Object References 13-21

0901

