Chemotherapy for Advanced Renal-Cell Carcinoma: 1983-1993

Alan Yagoda, Bassam Abi-Rached, and Daniel Petrylak

RENAL-CELL CANCER (RCC), as documented in prior (1967, 1975, 1977 and 1983) reviews has been a hormonally and cytotoxic chemotherapeutically resistant tumor: It remains so today.

Since the present review spans 11 years, January 1983 through December 1993, it is of interest to examine changes in cancer incidence and death rates of 1983⁵ and 1993.⁶ While the incidence increased for all and for renal malignancies by 41.3% and 51.7%, respectively, the percent of RCCs remained rather constant at 2.1% and 2.3%, respectively (Table 1). There was no change in males (each 2.7% and only a +0.2% in females (1.6% and 1.8%, respectively).

The enormous increase in the number of prostate cases from 75,000 to 200,000 dramatically impacted on the incidence of genitourinary tumors (renal, renal pelvis, ureter, bladder, prostate, urethra, testis, and others) resulting in increase of 109.7% for such cancers; +120.4% for men compared with +37.3% for women. The percentage of kidney tumors within the genitourinary group actually decreased by -3.7% to 9.6% in 1993 from 13.3% in 1983 (Table 1), with a decrease in males by -1.8%, and an increase in females by +5.2%.

Overall cancer mortality increased from 440,000 cases in 1983 to 538,000 in 1994, a +22.3% change, yet the percentage dying from renal tumors remained about the same for all (1.9% and 2.1%, respectively) males and females (Table 1). The change in the RCC death rate between 1983 and 1993 in relationship to all cancers increased, +32.9%, (8,500 to 11,300 cases) and although all genitourinary malignancies had almost a similar increase, +36.5%, (44,290 to 60.475 cases), the change was only +1.1% for the percent of genitourinary to all cancers. The estimated death rate for patients with RCC within the genitourinary group

decreased slightly from 19.2% in 1983 to 18.7% in 1993; for men it was 11.7% to 11.2%, respectively, and for females, it was 7.5% to 7.2%, respectively. There was no definitive evidence that therapy has favorably affected survival of patients with advanced local and distant disease, and any marginal improvement in survival, in fact, might simply be due to patient selection factors—"stage migration"—because of more patients being diagnosed with lower stage disease that was treated successfully by surgery alone.

MATERIALS AND METHODS

To assure consistency in reporting results, ground rules were set when reviewing the large number of published studies. Differences in defining the categories minor response (MR) and stabilization of disease (STAB) (ie, a decrease of <50% or <25% with an increase of > 25% or > 50% in either all or selected parameters), coupled with varied patient selection (good risk factors⁷), extent of restaging used, tightening of criteria for patient entry (ie, bidimensional parameters, absence of prior systemic therapy, better performance status, exclusion of certain metastatic sites, etc), and introduction of new diagnostic tests (ie, computed tomographic (CT) scans, ultrasound), have led to more accurate documentation of the extent of tumor regression. Such refinements probably have resulted in decreasing the number of complete (CR) and partial (PR) remissions while increasing the MR/STAB group. Without more accurate immunological or biological markers for this disease, attainment of MR/ STAB may be due more to the eye of the observer, the absence of consistent restaging procedures, or the biological variation of tumor growth and cell death (so-called, "natural history").7 It remains unclear whether STAB represents a true biological effect of therapy on tumor growth, a lead-time bias, and/or intermittent periods of cell divisionapoptosis. In older trials, many investigators frequently recognized STAB as evidence of an "objective response" and thus, reported moderate to significant remission rates; others dismissed this category altogether, failed to mention MR/STAB at all, or automatically placed it into the nonresponding/progression (PROG) category. The latter view is now being questioned again because of

Seminars in Oncology, Vol 22, No 1 (February), 1995: pp 42-60

From the Medical Oncology Division, Columbia-Presbyterian Medical Center, New York, NY.

Address reprint requests to Alan Yagoda, MD, Division of Medical Oncology, Columbia-Presbyterian Medical Center, Atchley 739, 161 Fort Washington Ave, New York, NY 10032-3789.

Supported by National Cancer Institute grant no. CA 13696, and the I. Moradoff Fund.

Copyright © 1995 by W.B. Saunders Company 0093-7754/95/2201-0009\$05.00/0

CHEMOTHERAPY FOR RCC 43

	1983			1994	Change B	etween 1983 a	Males	Females	
Cancers	Total	Males	Females	Total	Males	Females	Total	(%)	(%)
				Incidence					
All:									
Number	855,000	422,500	432,500	1,208,000	632,000	576,000	+41.3	+49.6	+33.2
Male:Female		49.4%	50.6%	_	52.3%	47.7%		+2.9	-2.9
Genito-urinary:									
Number	137,350	119,800	17,550	287,200	263,100	24,100	+109.7	+120.4	+37.3
Male:Female	_	87.2%	12.8%	_	91.6%	8.4%	_	+4.4	-4.4
Of All	16.1%	28.4%	4.1%	23.8%	41.6%	4.2%	+7.7	+13.3	+0.1
Renal:									
Number	18,200	11,400	6,800	27,600	17,000	10,600	+51.7	+49.1	+55.1
Male:Female	_	62.6%	37.4%	_	61.6%	28.4%	_	-0.I	+1.0
Of All	2.1%	2.7%	1.6%	2.3%	2.7%	1.8%	+0.2	0.0	+0.2
Of Genito-urinary	13.3%	8.3%	38.8%	9.6%	6.5%	44.0%	-3.7	-1.8	+5.2
				Mortality					
All:									
Number	440,000	238,500	201,500	538,000	283,000	255,000	+22.3	+18.7	+26.6
Male:Female	_	54.2%	45.8%	_	52.6%	47.4%	Australia	+0.4	+1.6
Genito-urinary:									
Number	44,290	37,550	6,740	60,475	52,325	8,150	+36.5	+39.4	+20.9
Male:Female,	_	84.8%	15.2%	_	86.5%	13.5%	_	+1.7	-1.7
Of All	10.1%	15.7%	3.4%	11.2%	18.5%	3.2%	+1.1	+2.8	-0.2
Renal:									
Number	8,500	5,200	3,300	11,300	6,800	4,500	+32.9	+30.9	+36.4
Male:Female		61.2%	38.8%		60.2%	39.8%		-1.0	+1.0
Of All	1.9%	2.2%	1.6%	2.1%	2.4%	1.8%	+0.2	+0.2	+0.2
Of Genito-urinary	19.2%	11.7%	7.5%	18.7%	11.2%	7.4%	-0.5	-0.5	-0.1

recent prospective randomized trials, particularly with immunological agents, describing modest CR + PR rates (about 18%) yet a statistically significant increases in survival (about 2.5 times controls) for CR + PR + STAB.⁸ In the present review (Table 2), MR/STAB, although listed, are excluded from the final response rate which denotes attainment only of CR + PR. Response durations also were not reported because definitions varied (most lasted <3 to 9 months) but mixed responses always were included in the PROG category.

Many phase II trials used different initial and/or escalated dosages, as well as schedule adjustments, sometimes based on so-called "good-risk" and "poor-risk" factors usually defined by prior treatment with irradiation, immunotherapy or chemotherapy, poor performance status, renal dysfunction, anemia, metastatic sites, single versus multiple organ involvement, etc.⁷ To simplify the multitude of changes, only the initial highest planned plus the

highest escalated doses (in parenthesis) were recorded in Table 2.

Particular attention was given to trace final publications of abstracts presented before 1990; in fact, some investigators were contacted concerning manuscript status. Numerous studies, which were presented as an abstract or preliminary report initially, sometimes were summarized as part of a review of multiple drug- or disease-oriented trials within a cooperative group or institution. Except where otherwise indicated by a double reference, only the last and/or updated study result was reported.

Data are from phase II disease-oriented (not phase II drug-oriented) trials and almost all phase I pharmacokinetics/dose-finding studies were excluded because doses and schedules varied and, of more importance, response rates were absent. However, drugs evaluated in the time frame of this review that also had trials published before 1983

Reference(s)	No.	No. Inade-	No. Adequate	No. Unpre- treated	. No.		Percent of Adequate	MR/	
	Entered				CR	PR	CR + PR (95% CI)	STAB	Initial (highest) Dose
Acivicin, CI	35		2.7	22	0	1	4 (0-19)		
Elson et al ¹⁰	35	8	27	22	0	1	4	*/*	20 mg/m ² d 1-3 Q3W.
Aclarubicin (aclacino- mycin-A)	16		15	6	0	0	0 (0-18)		
Decker et al ¹¹	16	1	15	6	0	0	0	0/12	65 mg/m² weekly for 4 weeks Q6W.
Alanosine	37		36	29	J	0	3 (0-15)		
Elson et al ¹⁰	37	1	36	29	1	0	3	*/*	160 mg/m² d 1-5 QM.
Ametantrone	25		25	18	0	2	8 (1-26)		
Hansen et al ¹²	25	0	25	18	0	2	8	0/5	135 (162) mg/m ² Q2W.
Aminothiadazole	46		46	30	0	ı	2 (0-12)		, , ,
Elson et al ¹⁰	46	0	46	30	0	ŀ	2	*/*	125 mg/m ² QW + Allopurinol 300 mg QD.
Amonafide	29		24	24	0	0	0 (0-12)		0 1
Higano et al ¹³	29	5	24	24	0	0	0	0/6	300 (450) mg/m ² d 1-5 Q3W.
Ampligen	31		31	*	1	1	7 (1-21)	•	, , ,
Strayer et al ¹⁴	31	0	31	*	ı	1	7	*/*	10 (120) mg BIW, or 200 (500) mg BIW.
Amsacrine	145		140	63*	0	2	1 (0-5)		J
Schneider et al ¹⁵	21	0	21	17	0	0	0	0/0	120 (180) mg/m ² Q3W.
VanEcho et al ¹⁶	16	0	16	14	0	0	0	0/5	same (150).
Amrein et al ¹⁷	42	ō	42	11*	o	ı,	2	0/7	same (160).
Earhart et al ¹⁸	66	5	61	21*	0	i	2	*/*	120 mg/m ² QM.
5-Aza-2'Deoxycitidine	15	,	12	12	0	0	0 (0-22)	,	120 mg/m Q11.
Abele et al 19	15	3	12	12	0	0	0 (0-22)	0/2	75 mg/m ² Q8H on d 1 Q5W.
Bisantrene	140	3		12 94*	ı	5		0/2	73 Hig/III- QBH 6H d 1 Q3VV.
Scher et al ²⁰			126				5 (2-10)	0/2	3(0 (300) (2 (3)4)
	27	1 5	26	16	0	0	0	0/2	260 (300) mg/m ² Q3W.
Myers et al ²¹	42		37	33*	0	2	5	0/12	same (280).
Evans et al ²²	24	4	20	15*	0	1	5	0/4	180 mg/m² weekly for three weeks Q6W.
Spicer et al ²³	14	0	14	П	0	0	0	0/6	150 (175) mg/m ² QW.
Elson et al ²⁴	33	4	29	19	1	2	10	*/*	260 mg/m ² QM.
Carboplatin	42		37	37*	0	0	0 (0-8)		
Tait et al ²⁵	22	3	19	19*	0	0	0	0/5	450 mg/m² QM.
Trump et al ²⁶	20	2	18	18	0	0	0	*/*	400 (440) mg/m ² QM.
Cimetidine	42		38	38	2	0	5 (1-18)		
Inhorn et al ²⁷	42	4	38	38	2	0	5	0/4	600 mg QID.
Cimetidine + coumarin	202		198	172*	5	19	12 (8-17)		
Marshall et al ²⁸	45	3	42	40	3	П	33 (20-50)	0/12	300 mg Q6H daily starting d 15 + Coumarin 100 mg QD
Glynne-Jones et al ²⁹	12	Ι	Ш	11	0	0	0 (0-24)	0/2	same.
Vennok et al ³⁰	25	0	25	16*	0	0	0 (11-0)	0/5	same.
Hermann et al ³¹	31	0	31	31	0	2	7 (1-21)	0/5	same, except Cimetidine 400 mg Q8H.
Dexeus et al ³²	50	0	50	40	0	3	6 (1-17)	2/5	same (400 mg), or with Cimet dine 900 mg QD (8 cases).
Kokron et al ³³	39	0	39	34	2	3	13 (4-27)	4/6	400 mg QD + Coumarin 100 mg QD starting d 7.
Cimetidine + interferon	20		20	20	3	3	30 (12-54)		
Kotake et al ³⁴	20	0	20	20	3	3	30	0/9	200 mg QID + Interferon 5 mU IM twice in week I, three
			2.	~~	_		2 (0.17)		times in week 2, then QD.
Cyclophosphamide +	38		31	27	0	- 1	3 (0-17)		

Reference(s)	No.	No. Inade- quate	No. Adequate	No. Unpre- treated	No.		Percent of Adequate	MR/	
	Entered				CR	PR	CR + PR (95% CI)	STAB	Initial (highest) Dose
Glover et al ³⁵	38	7	31	27	0	ı	3	0/1	I.2 g/m ² + Misonidazole 5 g/m ² Q3W.
10-Deaza-aminop- terin	14		12	10	0	0	0 (0-22)		
Scher et al ³⁶	14	2	12	10	0	0	0	0/0	37.5 mg/m ² QW.
Deoxycorformycin	49		43	43	0	0	0 (0-7)		
Venner et al ³⁷	20	2	18	18	0	0	0	0/4	4 mg/m ² weekly for three weeks, then Q2W.
Witte et al ³⁸	29	4	25	25	0	0	0	*/*	4 (8) mg/m ² Q2W.
Diaziquone	132		119	88	0	2	2 (0-6)		
Nichols et al ³⁹	20	0	20	18	0	0	0	3/7	27.5 mg/m ² QM.
Hansen et al ⁴⁰	33	4	29	25	0	- 1	4	0/2	27 mg/m² QM.
Decker et al ⁴¹	22	7	15	15	0	0	0	0/8	20 mg/m² weekly for four weeks Q6W.
Stephens et al ⁴²	57	2	55	30	0	1	2	*/*	40 mg/m ² Q3W.
Didemnin-B	50		43	43	0	- 1	2 (0-12)		
Motzer et al ⁴³	23	2	21	21	0	I	5	0/0	4.2 (4.8) mg/m ² QM.
Taylor et al ⁴⁴	27	5	22	22	0	0	0	*/*	3.47 mg/m ² QM.
Echinomycin	49		47	47	0	I	2 (0-11)		
Marshall et al ⁴⁵	49	2	47	47	0	ı	2	*/*	1.25 mg/m ² QM.
Iliptinium	70		60	46*	ı	7	13 (6-25)		
Sternberg et al ⁴⁶	14	6	8	4*	0	0	` 0 (0-31)	0/0	100 mg/m² weekly for four weeks, then QOW.
Caille et al ⁴⁷ ; Droz et al ⁴⁸	40	2	38	28*	ı	7	21 (10-37)	0/18	100 mg/m ² QW.
Droz et al ⁴⁸	16	2	14	14*	0	0	0 (0-19)	*/*	80 mg/m ² d 1-3 Q3W.
Epirubicin	41		39	24*	0	0	0 (0-7)		
Fossa et al ⁴⁹	21	!	20	12*	0	0	0	0/2	75 mg/m ² Q3W.
Benedetto et al ⁵⁰	20	1	19	12	0	0	0	0/0	85 (110) mg/m ² Q3W.
Esorubicin	107		97	92*	1	2	3 (1-9)		20 (2004)
Carlson et al ⁵¹	25	ļ	24	24	0	0	0	*/*	30 mg/m ² Q3W.
VanOstrom et al ⁵²	33	6	27	27	0	0	0	0/12	same.
Kish et al ⁵³	15	0	15	15	0	1	7	0/8	same.
Braich et al ⁵⁴	13 21	1 2	12 19	7*	0 1	0 I	0 11	1/0 0/9	same (32.5).
Hurteloup et al ⁵⁵ Floxuridine, CI	363	2	330	19 273*	12			0/7	35 mg/m ² Q3W.
CIRCADIAN INFU-	290		265	227*	10		15 (11-19) 15 (11-20)		
Hrushusky et al ⁵⁶	61	5	56	47*	4	9	23 (13-36)	4/28	0.15 (0.325) mg/kg IV d I-14, or 0.25 mg/kg via hepatic artery I-14 QM at 68% of the dose between 1500-2100 hours + 15% between 2100-0300 hours + 2% between 0300- 0900 hours + 15% between
									0900-1500 hours (51 cases IV + 5 IA),
Damascelli et al ⁵⁷	45	3	42	42	3	3	14 (5-29)	0/18	same (0.20).
Dexeus et al ⁵⁸	42	2	40	33	0	4	10 (3-24)	4/7	same (0,25).
Huben et al ⁵⁹	24	3	21	21*	3	6	43 (22-66)	0/2	same.
Clark et al ⁶⁰	6	0	6	5	0	0	0 (0-39)	0/3	same (0.225).
Budd et al ⁶¹	26	0	26	26	0	2	8 (1-25)	*/*	same (20 cases), or with minor

	N	NI- I	N.I	No.	N	ο.	Percent of Adequate	MB	
Reference(s)	No. Entered	No. Inade- quate	No. Adequate	Unpre- treated	CR	PR	CR + PR (95% CI)	MR/ STAB	Initial (highest) Dose
DeMarsh et al ⁶²	7	2	5	4*	0	1	20 (1-72)	0/4	same, except minor modifica-
Merrouche et al ⁶³	20	6	14	14	0	0	0 (0-19)	0/5	same, except modified sinu- soidal peak at 1800 hours.
Wilkinson et al64	12	0	12	12*	0	0	0 (0-22)	0/0	same (0.4)
Conroy et al ⁶⁵	30	2	28	8	0	4	14 (4-33)	3/5	same (0.4), except modified with 33% between 2300- 1100 hours + 66% betwee 1100-1100 hours.
Poorter et al ⁶⁶	17	2	15	15*	0	1	7 (0-32)	0/10	0.15 (0.35) mg/kg IV d 1-14 with 70% between 2000- 0200 hours + 30% betwee 0200-2000 hours.
Constant Infu- sion	73		65	46*	2	6	12 (6-23)		
Hrushusky et al ⁵⁶	7	0	7	7*	I	1	29 (4-71)	0/0	0.15 (0.325) mg/kg d 1-14 QN (5 cases IV + 2 IA).
Richards et al ⁶⁷	37	8	29	29	0	0	0 (0-10)	0/13	0.15 (0.20) mg/kg d 1-5 QM.
Wilkinson et al ⁶⁴	29	0	29	10*	- 1	5	21 (8-40)	0/12	0.075 (0.275) mg/kg d 1-14 QM
Floxuridine + inter- feron	47		39	35*	1	8	23 (11-39)		
Falcone et al ⁶⁸	16	I	15	П	I	`4	33 (12-62)	1/6	0.075 (0.200) mg/kg d I-14 C QM + Interferon 10 mU IN TIW.
Dimopoulous et al ⁶⁹	13	0	13	13*	0	4	31 (9-61)	3/0	0.125 mg/kg circadian CI d I-14 QM + Interferon I-2 mU/m ² QD.
Soori et al ⁷⁰	18	7	П	11*	0	0	0 (0-24)	0/7	0.15 mg/kg CI d I-14 + Inter- feron 3 mU/m ² SQ TIW QM
Floxuridine + Leu- covorin	23		23	17*	0	0	0 (0-12)		
Raminski et al ⁷¹	15	0	15	15*	0	0	0	*/*	100-2000 mg/m² d 1-5 given between 1800-2100 hours + Leucovorin 200 mg/m² IV day 1-5 between 1900-2100 hours QM.
Vokes et al ⁷²	8	0	8	2	0	0	0	1/2	0.1 (0.375) mg/kg CI d 1-5 hours Q3W + Leucovorin 100 mg PO QH for four doses, then Q4H d1-5 Q3W
Floxuridine + Leu- covorin + Inter- feron	25		20	19	0	0	0 (0-14)		
Stadler et al ⁷³	25	5	20	19	0	0	0	0/0	0.1 mg/m2 CI d 1-5 + Leu- covorin 100 mg PO every four hours for 36 doses + Interferon 30xmU/m ² SC d 1-6.
Floxuridine + Vinblas- tine	14		П	П	0	2	18 (2-52)		John JC d 1-0.
Small et al ⁷⁴	14	3	П	11	0	2	18	0/4	0.075 (0.125) mg/kg Cl d 1-14 + Vinblastine 0.7 (0.8)
									mg/m ² Cl d 15-28 QM.

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

