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Abstract

The photoplethysmogram (PPG) obtained from pulse oximetry measures local variations of blood volume in tissues,
reflecting the peripheral pulse modulated by heart activity, respiration and other physiological effects. We propose an
algorithm based on the correntropy spectral density (CSD) as a novel way to estimate respiratory rate (RR) and heart rate
(HR) from the PPG. Time-varying CSD, a technique particularly well-suited for modulated signal patterns, is applied to the
PPG. The respiratory and cardiac frequency peaks detected at extended respiratory (8 to 60 breaths/min) and cardiac (30 to
180 beats/min) frequency bands provide RR and HR estimations. The CSD-based algorithm was tested against the
Capnobase benchmark dataset, a dataset from 42 subjects containing PPG and capnometric signals and expert labeled
reference RR and HR. The RR and HR estimation accuracy was assessed using the unnormalized root mean square (RMS)
error. We investigated two window sizes (60 and 120 s) on the Capnobase calibration dataset to explore the time resolution
of the CSD-based algorithm. A longer window decreases the RR error, for 120-s windows, the median RMS error (quartiles)
obtained for RR was 0.95 (0.27, 6.20) breaths/min and for HR was 0.76 (0.34, 1.45) beats/min. Our experiments show that in
addition to a high degree of accuracy and robustness, the CSD facilitates simultaneous and efficient estimation of RR and
HR. Providing RR every minute, expands the functionality of pulse oximeters and provides additional diagnostic power to
this non-invasive monitoring tool.
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Introduction

The ability to track multiple vital signs from a simple, low cost,

and easy to use non-invasive sensor is desirable to facilitate

physiological tele-monitoring. There is a clear need for reliable

and simple methods for tracking cardio-respiratory activity over

time to monitor patients in the intensive care environment or

patients at home with long-term disease with associated instability

in respiratory or cardiovascular function. Therefore, the remote

and automated monitoring of heart rate (HR) and respiratory rate

(RR) is an important field of research [1].

An abnormal RR is often an early sign of critical illness. For

example, an essential criterion integrated in guidelines for the

diagnosis of pneumonia in children (age 1–5 years) is the

assessment of an elevated RR (.40 breaths/min) [2]. However,

clinical measurement of RR has been shown to have poor

reliability and repeatability [3]. A reliable estimate of RR assessed

in an automated way is therefore crucial in the application of

remote tele-monitoring, where persons with no specialized training

are conducting the assessment. This would enable early support

for timely recognition and management of physiological deterio-

ration of high-risk patient groups [4].

Pulse oximetry is widely used in health facilities to monitor

physiological vital signs. It is based on the principle of

photoplethysmography (PPG), an optical technique to measure

local variations of blood volume in tissues. Two light-emitting

diodes (LEDs) illuminate the tissue and a photo detector detects

the light reflected by the tissue. The intensity of the light detected

varies with each heart beat as the blood volume changes over time

[5]. Blood oxygen saturation (SpO2) is calculated by measuring

the difference in absorption of oxygenated and deoxygenated

hemoglobin at two distinct wavelengths, red (660 nm) and infrared

(940 nm). Oxygenated blood preferably absorbs infrared light and

transmits red light and deoxygenated blood has the inverted

absorption characteristics [4].

The PPG is a complex signal composed of different but related

components. The most recognized PPG waveform component is

the peripheral pulse synchronized to each heart beat (AC

component). This AC component is superimposed and modulated

by a quasi DC component that varies slowly due to respiration,

vasomotor activity and vasoconstrictor waves [4]. In addition, an

autonomic response to respiration causes a variation of HR

synchronized with RR, referred to as respiratory sinus arrhythmia.

The PPG signal is also influenced by other mechanisms that are

not completely understood. However, it is generally accepted that
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it has potential to provide clinically useful information about the

cardio-vascular and respiratory system [6] and its SpO2 pattern

characterization has successfully applied to detect sleep apnea [7].

Well-established methods have been described for the estima-

tion of SpO2 and HR from the PPG [8], [9]. In addition, several

methods based on characterization of the PPG cycles morphology

in the time domain, using time-frequency analysis [10], [11], [12],

[13], [14], [15], [16] digital filtering [5], [17] and smart fusion [6]

have been proposed to estimate RR. However, this estimation of

RR in pulse oximetry is not yet commercially established. The

simultaneous estimation of HR and RR from the PPG signal

would provide a low processing overhead that is desirable for

simple and low cost physiological monitor. This would reduce vital

sign monitoring hardware to one peripheral sensor and one signal-

processing step.

Correntropy-based spectral density (CSD) has been found to be

particularly well suited for the characterization of modulated

signals. This method provides an improved spectral resolution

compared to conventional techniques like power spectral density

(PSD)and shows promise in the detection of modulated patterns

[18]. Correntropy is a generalized correlation function that

provides information on higher-order statistics. It is able to detect

nonlinearities that conventional techniques (based on second-order

statistics), may be unable to detect. Another attractive property of

the correntropy function is its robustness against impulsive noise

[19], [20].

In this paper we propose a novel algorithm based on CSD to

estimate both RR and HR simultaneously from the PPG signal

obtained from pulse oximetry. The initial application will be to

develop an easy-to-use portable device that measures multiple vital

signs. This algorithm is ideally suited to be implemented on the

Phone OximeterH, a mobile device that integrates a commercially

available and federal drug administration (FDA) approved pulse

oximeter (Xpod) with a mobile phone. The Phone OximeterH enables

the analysis of vital signs and intuitive display of information to

health care providers [21]. In addition, Phone Oximeter’s SpO2

characterization has been successfully applied to detect sleep

apnea [7].

This paper is organized as follows; the Materials and Methods

section describes the dataset used for the development and testing

of the newly developed algorithm to estimate RR and HR based

on CSD, and explains the algorithm with brief description of CSD

and PSD methods. The accuracy of the CSD-based algorithm is

presented in the Results section, which is followed by the

Discussion, Limitations and Conclusion sections.

Materials and Methods

CSD-based Algorithm
Conventional spectral analysis assumes a stationary signal and is

therefore unable to identify HR and RR changes over time. An

approach to account for such changes is to implement a time-

varying spectral analysis. Firstly, a sliding time window of 60 s or

120 s with 50% overlap is used to segment PPG signal into

segments assumed to be stationary and suitable for spectral

analysis. Secondly, the CSD is applied to the signal segments.

Thirdly, the HR is estimated by detecting the maximum frequency

peak within the cardiac frequency band and filtered from the

signal, and lastly the RR is estimated by detecting the maximum

frequency peak within the respiratory frequency band (see

Figure 1).

Correntropy spectral density. The CSD is a generalization

of the conventional power spectral density. It is based on the

Fourier transform of the centered correntropy function [18],

Pv(v)~
XN{1

m~{(N{1)

Vc(m):e{jvm, ð1Þ

where Vc(m) is the centered correntropy function, in which the

mean of the transformed data is subtracted so as to reduce the

effect of output DC bias. It is estimated by Vc(m)~V (m){ �VV
where Vc(m) is the correntropy function and �VV the correntropy

mean, defined as:

V (m)~
1

N{mz1

XN

n~m

k(x(n){x(n{m)), ð2Þ

V~
1

N2

XN

m~1

XN

n~m

k(x(n){x(n{m)): ð3Þ

The sigmoidal, Gaussian, polynomial, and spline kernels are the

most commonly used symmetric positive definite kernels, applied

to machine learning, function approximation, density estimation,

and support vector machine classification [22], [23]. The Gaussian

kernel function, applied in the present study, is given by

k(x(n){x(n{m))~
1ffiffiffiffiffiffi
2p
p

s
e

{
(x(n){x(n{m))2

2s2

h i
, ð4Þ

where s is the kernel parameter, here set using Silverman’s rule of

density estimation [19].

Correntropy, introduced by Santamaria et al. [19], is a

similarity measure defined in terms of inner products of vectors

in a kernel parameter space. It provides information on both the

time structure and the statistical distribution. In addition, the use

of kernel methods makes the correntropy computationally efficient

since it can be computed directly from the data.

Autoregressive (AR) spectral analysis based on the Yule-Walker

method was applied to improve spectral resolution compared to

conventional techniques [18]. The autoregressive coefficients were

estimated from the correntropy function, using the YuleWalker

equations [24]. The selection of model order is a trade-off between

the frequency resolution and the spurious peaks. The optimal

model order between 5 and 15 was selected using the minimal

description length criteria defined by Rissanen [25].

HR and RR estimation. The CSD over time shows both

respiratory and cardiac frequency peaks reflecting the RR and HR

respectively (Figure 2). These peaks can be tracked in the region of

the respiratory and cardiac frequency bands. Reference HR and

RR ranges were extracted from a review of observational studies

that used HR data from 143,346 children and RR data from 3,881

children (from 6 months to 18 years old) [26]. Based on 99th and

1st centiles for children and young adults, the HR could range

from 30 to 180 beats/min (0.5 to 3 Hz, respectively) and RR from

8 to 60 breaths/min (0.14 to 1 Hz, respectively [26]. The range in

adults is much more restricted but would be included in this range.

An extreme range may occur in critical illness, such as an elevated

HR in the presence of an arrhythmia or an elevated RR (w 40

breaths/min in children with pneumonia [2]) as an early indicator

of critical illness. However, those pathological or abnormal RR

and HR values will also be included in this extended HR and RR

ranges extracted from the review. Therefore, the maximum value
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peak frequencies in the cardiac frequency band (0.5 to 3 Hz) and

in the respiratory frequency band (0.14 to 1 Hz) were automat-

ically extracted, reflecting HR and RR, respectively.

For improved resolution around the respiratory frequency peak,

the HR was filtered using a zero-phase 5th order low pass filter

with a cutoff frequency of 0.1 Hz below the cardiac frequency. In

addition, frequency peaks close to the secondary harmonics

around HR were excluded when an elevated RR (w 45 breaths/

min) were detected. An example of the RR and HR extracted

from the time varying CSD (Figure 2) is illustrated in Figure 3.

Power spectral density. Following the same concept a PSD-

based algorithm was implemented. For a parametric PSD, the

signal x(n) was modeled through an AR model by

x(n)~{
Xp

k~1

a½k�x(n{k)ze(n), ð5Þ

where e(n) denotes zero-mean white noise with variance s2
e , a½k�

the AR coefficients and p the model order. Once the autore-

gressive coefficients and the variance s2
e have been estimated, the

PSD of an autoregressive process is computed by means of

Px(v)~
s2

e

1z
Pp

k~1 a½k�:e{j:vkT
�� ��2 , ð6Þ

being T the sampling period. As for the CSD, the optimal model

order between 5 and 15 was selected using the minimal description

length criteria defined by Rissanen [25].

Simulation Database
To show certain performance properties of the algorithm a

simulated PPG signal was first produced. Respiration has three

different effects on the PPG waveform. The first and more

predominant effect is a shift in the baseline during each breath.

The second is a change of the amplitude of the pulse beats with

each breath which implies that the PPG signal is subject to

amplitude modulation (AM) [15]. The third effect is a variation of

HR due to an autonomic response to respiration and usually

decreases with age. Based on the first 2 effects for sake of

simplicity, the PPG signal was simulated using AM and a baseline

shift as follows:

x(n)~ (1zm cos (vrn)) cos (vcn)½ �zb(n), ð7Þ

where fc~vc=2p is the cardiac frequency, fr~vr=2p is the

respiratory frequency, m [ ½0,1� is the modulation index and b(n) is

the baseline shift synchronized with fr. One hundred outliers with

values between mean + 5 standard deviation of x(n) were

randomly added to the signal to simulate noise.

Capnobase Database
Ethics statement. All subjects were studied according to a

protocol approved by the University of British Columbia and

Children’s and Women’s Health Centre of British Columbia

Research Ethics Board. Informed and written consent to be part of

the research database was obtained for all subjects. For subjects

under 16 years of age, parental/guardian written consent was

obtained. Written assent was obtained for all subjects over the age

of 11 years.

Database. Capnobase is an on-line database that contains

physiological signals collected during simultaneously elective

surgery and routine anesthesia for the purpose of development

of improved monitoring algorithms in adults and children [27].

The signals were recorded from 59 children (median age: 8.7,

range 0.8–16.5 years) and 35 adults (median age: 52.4, range

26.2–75.6 years) receiving general anesthesia at the British

Columbia Children’s Hospital and St. Paul’s Hospital, Vancouver

BC, respectively. The recordings included ECG with a sampling

frequency of 300 Hz, capnometry with a sampling frequency of 25

Hz, and PPG with a sample frequency of 100 Hz. All signals were

recorded with S/5 Collect software (Datex-Ohmeda, Finland)

using a sampling frequency of 300 Hz (PPG and capnometry with

lower sampling rates were automatically up-sampled).

Capnobase contains a benchmark dataset with forty-two 8-min

segments from 29 pediatric and 13 adults cases containing reliable

recordings of spontaneous or controlled breathing. The capno-

metric waveform was used as the reference gold standard

recording for RR. A research assistant manually labeled each

breath in the capnogram and pulse peak in the PPG and validated

the derived instantaneous reference RR and HR. The beginning

and end of all artifacts in the PPG waveforms were also manually

labeled and almost 50% of the cases contained artifacts due to

movements or similar noise. Capnobase also contains a calibration

dataset with one hundred twenty-four 2-min segments randomly

selected from the remaining 52 cases. This dataset is particularly

challenging because it includes other disturbances such as cardiac

oscillations etc., which influence the respiratory induced param-

eters and it also contains substantially more movement artifacts

than the benchmark dataset. Signals with significant apnea have

Figure 1. Overview of the CSD-based algorithm. Initially the PPG
signal is segmented into windows (60 s or 120 s) with 50% of overlap. In
the subsequent step the CSD is applied to calculate the spectrum of the
windowed signals. The HR is estimated by detecting the maximum
frequency peak within the cardiac frequency band. The signal is then
low pass filtered and the RR is estimated by detecting the maximum
frequency peak within the respiratory frequency band.
doi:10.1371/journal.pone.0086427.g001
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been excluded from the analysis. Datasets can be downloaded

from the on-line database, CapnoBase.org [27]. CSD-based

algorithm was optimized using the calibration dataset and then

validated using the benchmark dataset. Both, the calibration and

benchmark datasets with reference RR and HR have been

previously used to test RR estimation from PPG [6].

Algorithm Evaluation
The accuracy of the CSD-based algorithm was evaluated and

compared to other methods, using the un-normalized root mean

square (RMS) error. The RMS error was calculated for each

subject, considering all estimations over time:

RMS error~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i~1

(xref
i �xest

i )2

s
, ð8Þ

where n is the number of observations and xref
i and xest

i are the

reference and the estimated values, respectively. The median of

the instantaneous reference RR and HR were compared to the

estimations for each time window.

Calibration. The spectral resolution increases with longer

time-windows with a concomitant reduction in real-time perfor-

mance (clinicians are required to wait longer for each estimation).

To investigate the trade-off in window size, the accuracy of the

algorithm was evaluated with the calibration dataset, using time

windows of 60 s and 120 s with an overlap of 50%. The statistical

significance of the error with the different windows was evaluated

using Wilcoxon signed-rank test to compare related samples.

The choice of the kernel parameter (s) is trade-off between the

power of the respiratory peak and the spurious peaks. The power

of the respiratory peak and spurious harmonics decreases as s
increases [18]. The CSD-based algorithm’s sensitivity to s was

evaluated using the calibration dataset. The s calculated according

to Silverman’s rule (sSilverman) was used as a reference.

Validation. The calibrated algorithm was then validated

using the Capnobase benchmark dataset. All subjects and all signal

segments with mechanical or spontaneous breathing, including

those with artifacts, were analyzed. The median error and 1st and

3rd quartiles were calculated to account for a non-normal RMS

distribution. A Bland-Altman plot was also performed to compare

the estimated HR and RR to the reference rates.

In addition, the performance of our algorithm was compared to

previously proposed methods based on PPG cycles morphology

[6], time-frequency analysis [15], [7] and digital filtering [17],

using the Capnobase benchmark dataset. These methods have

been implemented according to the description included on these

papers.

A Wilcoxon signed-rank test for related samples using

Bonferroni correction for multiple comparisons was also applied

to evaluate the statistical significance of our algorithm’s improve-

ment. The normality of all distributions was tested using One-

Sample Kolmogorov-Smirnov test.

Results

CSD Output
The median RR error obtained with the CSD-based algorithm

applied to the calibration dataset was 4.2 breaths/min when using

60-s windows and 1.9 breaths/min when using 120-s windows.

The RMS error significantly (pv 0.05) decreased with longer

windows. A kernel size of (10sSilverman) reduced the spurious

harmonics and provided more accurate RR estimates (see Figure 4)

[19]. Therefore, a 10sSilverman was applied to the Capnobase

Benchmark dataset.

CSD shows two clear frequency peaks at HR and RR locations,

for both simulated and in-vivo signals (Figure 5 and 6). As reported

in our previous work [18], the AM effect is reflected in CSD

through a frequency peak at its true position. In comparison, the

AM in PSD is manifested as secondary harmonics surrounding the

cardiac frequency peak. Further, CSD is more robust to impulsive

Figure 2. Time-varying CSD of 8-min PPG signal. Both respiratory and cardiac frequency peaks reflect RR and HR, respectively. Respiratory
frequency peak is around 0.3 Hz (18 breaths/min) and cardiac frequency peak around 1.25 Hz (75 beats/min).
doi:10.1371/journal.pone.0086427.g002
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