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Do antibody ecombining sites possess general properties that enable them to bind different
antigens with varying affinities and to bind novel antigens? Here, we address this question
by examining the physical and chemical characteristics most favourable for residues
involved in antigen accommodation and binding. Amphipathic amino acids could readily
tolerate the change of environment from hydrophilic to hydrophobic that occurs upon
antibody—antigen complex formation. Residues that are large and can participate in a wide
variety of van der Waals’ and electrostatic interactions would permit binding to a range of
antigens. Amino acids with flexible side-chains could generate a structurally plastic region,
i.e. a binding site possessing the ability to mould itself around the antigen to improve
complementarity of the interacting surfaces. Hence, antibodies could bind to an array of
novel antigens using a limited set of residues interspersed with more unique residues to
which greater binding specificity can be attributed. An individual antibody molecule could
thus be cross-reactive and have the capacity to bind structurally similar ligands. The
accommodation of variations in antigenie structure by modest combining site flexibility
could make an important contribution to immune defence by allowing antibody binding to
distinet but closely related pathogens.

Tyr and Trp most readily fulfil these catholic physicochemical requirements and thus
would be expected to be common in combining sites on theoretical grounds. Experimental
support for this comes from three sources, (1) the high frequency of participation by these
amino acids in the antigen binding observed in six crystallographically determined
antibody-antigen complexes, (2) their frequent, occurrence in the putative binding regions
of antibodies as determined from structural and sequence data and (3) the potential for
movement of their side-chains in known antibody binding sites and model systems. The six
bound antigens comprise two small different haptens, non-overlapping regions of the same
large protein and a 19 amino acid residue peptide. Out of a total of 85 complementarity
determining region positions, only 37 locations (plus 3 framework) are directly involved in
antigen interaction. Of these, light chain residue 91 is utilized by all the complexes
examined, whilst light chain 32, light chain 96 and heavy chain 33 are employed by five out
of the six. The binding sites in known antibody—-antigen complexes as well as the postulated
combining sites in free Fab fragments show similar characteristies with regard to the types
of amino acids present. The possible role of other amino acids is also assessed. Potential
implications for the combining regions of elass I major histocompatibility molecules and the
rational design of molecules are discussed.

t Present address: Sinsheimer Laboratory. Biology ’
Department, University of California Santa Cruz, Santa 1. Introduction
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complex; FR, framework. mentarity determining regions (CDRs§). The CDRs,
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three from each of the heavy and light chain vari-
able domains, are connected to a relatively invar-
iant fi-sheet framework (Alzari e al., 1988; Davies &
Metzger, 1983; Capra & Edmundson, 1977: Wu &
Kabat, 1970). Early analysis of a data bank of
complete and partial sequences of 415 light and 197
heavy chains demonstrated that CDRs are rich in
aromatic residues (Kabat ef al., 1977). The
combining region represents only a small part of the
antibody molecule, whose overall three-dimensional
structure is highly conserved. Although, the pairing
of light and heavy chains can generate some anti-
body diversity, most of it is generated by the
somatic recombination of variable region gene
segments (Yancopoulos & Alt, 1986: Wysocki &
Gefter, 1989). Such genetic mechanisms yield anti-
bodies exhibiting extensive diversity in hyper-
variable loop sequences. This potential repertoire is
estimated to be approximately 107 in mouse (Berek
et al., 1985). However, the initial repertoire that
confronts an antigenic challenge is smaller than the
potential repertoire, since it is restricted to the
antibody  specificities expressed on existing
immunocompetent B cells at a point in time
(Holmberg ef al., 1986). This available repertoire
can yield an apparently unlimited repertoire of
antigen binding specificities and affinities.

Although a single antibody has a unique three-
dimensional structure, biophysical and biochemical
evidence indicates that it is multispecific or cross-
reactive (Richards el al., 1975). This capacity to
combine both with its inducing antigen and with
antigens of similar or disparate structure augments
the genetically determined antigen-binding capabili-
ties of antibodies. The extent of molecular comple-
mentarity between determinants on the antigen
molecule and amino aeid residues in the combining
site determines the degree of antibody specificity.
Increased cross-reactivity, therefore, is at the
expense of specificity and affinity.

An improved understanding of both antibody
cross-reactivity and bmdmg can be obtained by a
study of antlbodv —antigen interactions at the
atomic level. The role of residues in the definition of
combining site structure and interaction with
antigen can be assessed as a function of the chemical
and structural properties of individual amino acids.
First, we examine those characteristics that appear
to be of general importance in antibody—antigen
interactions. This is followed by a detailed study of
the binding sites in six antibody-antigen complexes
and four free Fab fragments of known three-dimen-
sional structure, and the much larger database of
antibody sequences. Padlan (1990) has performed a
similar, though not identical, analysis of antibody
(‘umhining sites in general, and three anti-lysozyme
antibody—antigen complexes in particular. On the
basis of their propensity to occur in the combining
sites and their greater exposure relative to those in
the framework regions, he has suggested that these
amino acids determine specificity, Our results and
their interpretation lead us to conclude that Tyr
residues may play more generally important roles in
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binding  and

interactions.

non-specific  antibody-antigen

2. Physical and Chemical Properties
of Amino Acids

Since antibody binding sites are formed by six
hypervariable loops supported on a highly
conserved fi-sheet framework, there is likely to be a
bias towards amino acids that are generally found in
non-helical regions of proteins. Figure 1 shows the
normalized frequencies of oceurrence of amino acids
in a-helix, f-sheet and reverse turns in 66 globular
proteins comprising 31 different conformations
(Levitt, 1978). In these structures, the oecurrence of
Pro, Gly, Tyr, Ser, Thr, Asn, Val, Arg, Ile and Trp
in a-helices is less frequent than random. Leu, His,
Trp, Thr, Tyr, Phe, Ile and Val have a greater than
random probability of occurring in f-sheets; the
same is true for Thr, Tyr, Asn, Ser, Asp, Gly and
Pro in reverse turns. Arg appears to be equally
tolerated in all the secondary structures elements
considered. In general structural terms, Tyr and
Thr seem to be the most useful non-helix forming
residues, since they could be positioned in either the
strand or turn regions of the hypervariable loops.

The free energy of interaction between an anti-
body and its antigen is a function of both enthalpy
and entropy. Non-bonded forces between the inter-
acting molecules include hydrophobie, hydrogen
bond, van der Waals’ and electrostatic interactions
(for a review, see Fersht, 1985). In general terms,
antibody combining site residues need to be as
multifaceted as possible to accommodate the varied
stereochemical and electronic features of the
antigen. Hence, amino acids with non-polar (for
example Leu, Ile and Val) and charged (for example
Asp, Glu, Lys and Arg) side-chains would be of more
limited usefulness than, for example, His, which is
known to be capable of cross-linking sequentially
distant but spatially close regions of proteins (Baker
& Hubbard, 1984; I.S.M. & A.J.O., unpublished
results). Similarly, the amides Asn and Gln would be
generally more preferable than Asp and Glu, since
the former pair are both hydrogen bond donors and
acceptors whereas their charged counterparts are
only acceptors,

If a positive charge is required in the antibody
combining site, Arg would be more suitable than
Lys because of its greater functional versatility: for
example, Arg can form a larger number of hydrogen
bonds than Lys. As a consequence of its planar
nature and n-electron system, the terminal guanidi-
nium group of Arg often exhibits pseudo-aromatic
behaviour by participating in most of the inter-
actions  previously  catalogued  for  true
aromatic—aromatic interactions (LLS.M. & A.J.O.,
unpublished results). These interactions occur at the
intersubunit interfaces of a number of oligomeric
proteins, including viral coat proteins and a
membrane protein; the photosynthetic reaction
centre of Rhodopseudomonas viridis. The ability to
form hydrogen bonds, hydrophobic interactions and
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attractive electrostatic interactions between posi-
tively charged groups and aromatic rings permits
Tyr and Trp to interact with structurally diverse
antigens. Another functional advantage in locating
Tyr and Trp in antibody combining sites is that,
unlike amino acids having shorter side-chains, such
as Asn and Ser, they lack the capacity to interact
eagily with other groups on the antibody surface but
are ideally suited to interact with another molecule.

The accommodation of charged areas on the
antigen need not necessitate an antibody combining
site possessing amino acids of complementary
charge. Analysis of Arg, Lys, Glu and Asp side-

chains buried at the intermolecular interfaces of

oligomeric systems indicates that oriented dipoles
are usually preferred over countercharges in stabi-
lizing these buried residues (I.S.M. & A.J.O., unpub-
lished results). Thus, the peptide backbone and
polar side-chains of hypervariable loop residues
could be deployed to stabilize both negatively and
positively charged regions. In some instances, this
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Figure 1. Scatter diagrams showing the normalized
frequencies of occurrence of amino acids in ax-helix,
fi-sheet and reverse turns in 66 globular proteins
comprising 31 different conformations (Levitt, 1978).
(a) Probability of forming a-helix versus f-sheet.
(b) Probability of forming a-helix versus reverse turn.
(¢) Probability of forming fi-sheet versus reverse turn. The
values represent the ratio of the fraction of residues of
each amino acid that occurred in the secondary structure
element to this fraction for all residues. To eliminate a
hias towards structures that were determined more than
once, the values were each weighted by a factor of
1/(tnumber of related proteins with same conformation).
Normalized frequencies of 1 indicate random occurrence,
whilst >1 indicate more frequent occurrence than
random. The actual point is marked by the bottom left of
the 1 letter amino acid code: A, Ala: R, Arg; N, Asn;
D, Asp: C, Cys; Q, Gln; E, Glu; G, Gly; H, His; 1, Tle;
L, Leu; K, Lys; M, Met; F, Phe: 8, Ser; T, Thr; W, Trp;
Y. Tyr; and V. Val.

may be as effective as employment of formally
charged amino acids: in cases of charge-charge
interaction, the steric effects of neighbouring regions
may prevent the formation of geometrically optimal
ion-pairs such that the potentially available energy
is not fully realized.

The non-covalent association between antibody
and antigen requires the removal of water from
surfaces huried by the interacting molecules.
Antibody regions involved in this process should be
capable of tolerating both the polar and non-polar
environments that exist before complex formation
and upon antigen binding, respectively. Individual
residues exposed on the surface of the free antibody
can become completely or partially buried in the
complex. In addition to residue amphipathicity,
residue size might be a factor. There is a good
correlation between the surface area of amino acids
and their free energies of transfer from water to an
organic phase (Chothia, 1974, 1975; Gelles &
Klapper, 1978). A value of 1 A (1 A=01nm) of
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