\overline{a} , \overline{b}

WO 91/09967 PCT/GB90/02017

 $- 33 -$

region of the variable region from the Aval site and to include the 5' residues of the human constant region up to and including a unique Narl site which had been previously engineered into the constant region.

A Bindlll site was introduced to act as a marker for insertion of the linker.

The linker was ligated to the V_L fragment and the 413 bp EcoRl-Narl adapted fragment was purified from the ligation mixture.

The constant region was isolated as an Narl-BamHl fragment from an Ml3 clone NW361 and was ligated with the variable region DNA into an EcoR1/BamH1/ClP pSP65 treated vector in a three way reaction to yield plasmid JA143. Clones were isolated after transformation into E.coli and the linker and junction sequences were confirmed by the presence of the Hindlll site and by DNA sequencing.

9.2 LIGHT CHAIN GENE CONSTRUCTION - VERSION 2 The construction of the first chimeric light chain gene produces a fusion of mouse and human amino acid sequences at the variable-constant region junction. In the case of the OKT3 light chain the amino acids at the chimera junction are: $\frac{1}{\sqrt{2}}\exp^{\frac{1}{2}(p^2)}$ ••••••••••••••Eu-Glu-Ile-<u>Asn-Arg/ -/Thr</u>-Val-Ala -Ala
VARIABLE CONSTANT

, --·-···- -,--·- ·- ··-·- This arrangement of sequence introduces a potential site for Asparagine (Asn) linked (N-linked) glycosylation at the V-C junction. Therefore, a second version of the chimeric light chain oligonucleotide adapter was designed in which the threonine (Thr), the first amino acid of the human constant region, was replaced with the equivalent amino acid from the mouse constant region, Alanine (Ala).

> PFIZER EX. 1595 Page 501

A

 \neg

 $-34 -$

An internal Hindlll site was not included in this adapter, to differentiate the two chimeric light chain genes.

The variable region fragment was isolated as a 376 bp EcoRl-Aval fragment. The oligonucleotide linker was ligated to Narl cut pNW361 and then the adapted 396bp constant region was isolated after recutting the modified pNW3 61 with EcoRl. The variable region fragment and the modified constant region fragment were ligated directly into EcoRl /ClP treated pEE6hCMVneo to yield pJA137. Initially all clones examined had the insert in the incorrect orientation. Therefore, the insert was re-isolated and recloned to turn the insert round and yield plasmid pJA141. Several clones with the insert in the correct orientation were obtained and the adapter sequence of one was confirmed by DNA sequencing

9.3. HRAVY CHAIN GENE CONSTRUCTION

9.3.1. CHOICE OF HEAVY CHAIN GENE ISOTYPE The constant region isotype chosen for the heavy chain was human IgG4.

9.3.2. GENE CONSTRUCTION

The heavy chain cDNA sequence showed a Banl site_{(SED} $_{N^{O(b)}}$) near the $3'$ end of the variable region $[Fig. 2(a)].$ The majority of the sequence of the variable region was isolated as a 4 26bp. EcoRl/ClP/Banl fragment. An oligonucleotide adapter was designated to replace the remainder of the 3' region of the variable region from the Banl site up to and including a unique HindIII site which had been previously engineered into the first two amino acids of the constant region. The linker was ligated to the $V_{\rm H}$ fragment and the EcoRl-Hindlll adapted fragment was purified from the ligation mixture.

The variable region was ligated to the constant region by cutting pJA91 with EcoRl and Hindlll removing the intron fragment and replacing it with the V_H to yield pJA142. Clones were isolated after transformation into E.coli JM101 and the linker and junction sequences were confirmed by DNA sequencing. (N.B. The Hindlll site is lost on cloning) .

10. CONSTRUCTION OF CHIMERIC EXPRESSION VECTORS

10 .1. neo AND gpt VECTORS

> The chimeric light chain (version 1) was removed from pJA143 as an EcoRl fragment and cloned into EcoRl/ClP treated pEE6hCMVneo expression vector to yield pJA145. Clones with the insert in the correct orientation were identified by restriction mapping.

The chimeric light chain (version 2) was constructed as described above.

The chimeric heavy chain gene was isolated from pJA142 as a 2 .5Kbp EcoRl / BamHl fragment and cloned into the EcoRl/Bcll/ClP treated vector fragment of a derivative of pEE6hCMVgpt to yield plasmid pJA144.

10.2. GS SEPARATE VECTORS

GS versions of pJA141 and pJA144 were constructed by replacing the neo and gpt cassettes by a BamHl/Sall/ClP treatment of the plasmids, isolation of the vector fragment and ligation to a GS-containing fragment from the plasmid pR049 to yield the light chain vector pJA179 and the heavy chain vector pJA180.

10.3. GS SINGLE VECTOR CONSTRUCTION

Single vector constructions containing the cL (chimeric light), cH (chimeric heavy) and GS genes on one plasmid in the order cL-cH-GS, or cH-cL-GS

> PFIZER EX. 1595 Page 503

and with transcription of the genes being head to tail e.g. cL>cH>GS were constructed. These plasmids were made by treating pJA179 or pJA180 with BamB1/C1P and ligating in a Bgl11/Hindl11 hCMV promoter cassette along with either the Hind111/BamB1 fragment from pJA141 into pJA180 to give the cH-cL-GS plasmid pJA182 or the Hind111/BamHl fragment from pJA144 into pJA179 to give the cL-cH-GS plasmid pJA181.

11. EXPRESSION OF CHIMERIC GENES

11.1. EXPRESSION IN COS CELLS

> The chimeric antibody plasmid pJA14S (cL) and pJA144 (cH) were co-transfected into COS cells and supernatant from the transient expression experiment was shown to contain assembled antibody which bound to the HUT 78 human T-cell line. Metabolic labelling experiments using 35s methionine showed expression and assembly of heavy and light chains. However the light chain mobility seen on reduced gels suggested that the potential glycosylation site was being glycosylated. Expression in COS cells in the presence of tunicamycin showed a reduction in size of the light chain to that shown for control chimeric antibodies and the OKT3 mouse light chain. Therefore JA141 was constructed and expressed. In this case the light chain did not show an aberrant mobility or a size shift in the presence or absence of tunicamycin. This second version of the chimeric light chain, when expressed in association with chimeric heavy (cH) chain, produced antibody which showed good binding to HUT 78 cells. In both cases antigen binding was equivalent to that of the mouse antibody.

- 11.2 EXPRESSION IN CHINESE HAMSTER OVARY (CHO) CELLS Stable cell lines have been prepared from plasmids PJA141 / pJAl44 and from pJA179/pJA180, pJA181 and pJA182 by transfection into CHO cells.
- 12. CDR-GRAFTING

The approach taken was to try to introduce sufficient mouse residues into a human variable region framework to generate antigen binding activity comparable to the mouse and chimeric antibodies.

12. 1. VARIABLE REGION ANALYSIS

> From an examination of a small database of structures of antibodies and antigen-antibody complexes it is clear that only a small number of antibody residues make direct contact with antigen. Other residues may contribute to antigen binding by positioning the contact residues *in* favourable configurations and also by inducing a stable packing of the individual variable domains and stable interaction of the light and heavy chain variable domains . The residues chosen for transfer can be identified in a number of ways:

- (a) By examination of antibody X-ray crystal structures the antigen binding surface can be predominantly located on a series of loops, three per domain, which extend from the B-barrel framework.
- (b) By analysis of antibody variable domain sequences regions of hypervariability [termed the Complementarity Determining Regions (CDRs) by Wu and Kabat (ref. 5)] can be identified. In the most but not all cases these CDRs correspond to, but extend a short way beyond, the loop regions noted above.

PFIZER EX. 1595 Page 505

(c) Residues not identified by (a) and (b) may contribute to antigen binding directly or indirectly by affecting antigen binding site topology, or by inducing a stable packing of the individual variable domains and stabilising the inter-variable domain interaction. These residues may be identified either by superimposing the sequences for a given antibody on a known structure and looking at key residues for their contribution, or by sequence alignment analysis and noting "idiosyncratic" residues followed by examination of their structural location and likely effects.

12.1.1. LIGHT CHAIN \bar{w} , \bar{w} ; \bar{b} \bar{b} and \bar{c})

Figure 3_A shows an alignment of sequences for the human framework region RE1 and the OKT3 light variable region. The structural loops (LOOP) and *A* CDRs (KABAT) believed to correspond to the antigen binding region are marked. Also marked are a number of other residues which may also contribute to antigen binding as described in $13.1 (G₂)$. Above the sequence in Figure 3, the residue type indicates the spatial location of each residue side chain, derived by examination of resolved structures from X-ray crystallography analysis. The key to this residue type designation is as follows:

- N near to CDR (From X-ray Structures)
	- B Buried Non-Packing

P - Packing $S - Surface$

 $\sqrt{3^{2}+3^{2}+4^{2}}$

 471

E Exposed

I - Interface

- * Interface
- Packing/ Part Exposed

? - Non-CDR Residues which may require to be left as Mouse sequence.

(

 $-39 \cancel{20}$, $\cancel{0}$ - 39 - 15EQ ID NO: 25 And 9)

 1 SEQ ID NO: \mathcal{P}_1 OMM Residues underlined in Figure 3, are amino acids. $($ \uparrow \uparrow \uparrow Residues underlined in Figure 3, are amino acids.
 \uparrow RE1^{(SEQ} I) w0: \uparrow and \uparrow the human framework because the light chain *is* a kappa chain and the kappa light chain is a kappa chain and the kappa variable regions show higher homology with the Variable regions show higher homology with the mouse sequences than a lambda light variable
region, e.g. KOL(SEGTLD ND:0). REI, WERE TO ND:8 And 9) preference to another kappa light chain because preference to another kappa light chain because the X-ray structure of the light chain has been determined so that a structural examination of determined so that a structural examination of individual residues could be made. individual residues cauld be made.

> 12 .1.2. HEAVY CHAIN 12.1.2. HEAVY CHAIN: $\frac{1}{2}$

Similarly Figure 4 shows an alignment of sequences γ $(SED_ID \, NID'.10)$ $(SED_ID \, NID'.7)$ for the human framework region KOL_A and the OKT3 heavy variable region. The structural loops and CORs believed to correspond to the antigen binding CDRs believed to correspond to the antigen binding region are marked. Also marked are a number of region are marked. Also marked are a number of other residues which may also contribute to other residues which may also contribute to antigen binding as described in 12.l(c). The antigen binding as described in 12.1(c). The residue type key and other indicators used in residue type key and other indicators used in Figure 4 are the same as those used in Figure 3. $(SED ~J/NO,10)$ KOL, was chosen as the heavy chain framework μ ['] KOL was chosen as the heavy chain framework
because the X-ray structure has been determined to a better resolution than, for example, NEWM and also the sequence alignment of OKT3 heavy variable
(XO_IO \\O`]
region_Ashowed a slightly better homology to KOL ightly than to NEWM. \mathcal{S} is the numan framework region \mathcal{N} and the oxi \mathcal{A} heavy variable region. The structural loops and also the seguence alignment of OKT3 heavy variable

12.2. DESIGN OF VARIABLE GENES 12.2. DESIGN OF VARIABLE GENES

> The variable region domains were designed with The variable region domains were designed with mouse variable region optimal codon usage mouse variable region optimal codon usage [Grantham and Perrin (ref. 15)] and used the B72.3 [Grantham and Perrin {ref. 15)] and used the 572.3 signal sequences [Whittle et al (ref. 13)]. The sequences were designed to be attached to the sequences were designed to be attached to the constant region in the same way as for the chimeric genes described above. Some constructs chimeric genes described above. Some constructs contained the "Kozak consensus sequence" (Kozak contained the "Kozak consensus sequence" [Kozak (ref. 16)) directly linked to the 5' of the signal (ref. 16)] directly linked to the 5' of the signal

Board Assigned Page #312 **Board Assigned Page #312** PFIZER EX. 1595 Page 507 Page 507

 $-40 -$

sequence in the gene. This sequence motif is believed to have a beneficial role in translation initiation in eukaryotes.

12.3. GENE CONSTRUCTION

> To build the variable regions, various strategies are available. The sequence may be assembled by using oligonucleotides *in* a manner similar to Jones et al (ref. 17) or by simultaneously replacing all of the CDRs or loop regions by oligonucleotide directed site specific mutagenesis in a manner similar to Verhoeyen et al (ref. 2). Both strategies were used and a list of constructions is set out in Tables 1 and 2 and
Figures 4 and 5. It was noted in several cases that the mutagenesis approach led to deletions and rearrangements in the gene being remodelled, while the success of the assembly approach was very sensitive to the quality of the oligonucleotides.

13 . CONSTRUCTION OF EXPRESSION VECTORS

Genes were isolated from Ml3 or SP65 based intermediate vectors and cloned into pEE6hCMVneo for the light chains and pEE6hCMVgpt for the heavy chains in a manner similar to that for the chimeric genes as described above.

 $\frac{1}{2}$

 $\hbox{\large\it p}$

PFIZER EX. 1595 Page 509

 \mathbf{I}

14. EXPRESSION OF CDR-GRAFTED GENES

14 .1. PRODUCTION OF ANTIBODY CONSISTING OF GRAFTED LIGHT (gL) CHAINS WITH MOUSE HEAVY (mH) OR CHIMERIC HEAVY (cH) CHAINS All gL chains, in association with mH or cH produced reasonable amounts of antibody. Insertion of the Kozak consensus sequence at a position 5' to the ATG (kgL constructs) however, led to a 2-5 fold improvement in net expression. Over an extended series of experiments expression levels were raised from approximately 200ng/ml to approximately 500 ng/ml for kgL/cH or kgL/mH combinations. When direct binding to antigen on HUT 78 cells was measured, a construct designed to include mouse sequence based on loop length (gL121) did not lead to active antibody in association with mB or cH.

A construct designed to include mouse sequence based on Kabat CDRs $(qL221)$ demonstrated some weak binding in association with mH or cH. However, when framework residues 1, 3, 46, 47 were changed from the human to the murine OKT3 equivalents based on the arguments outlined in Section 12.1 antigen binding was demonstrated when both of the new constructs, which were termed 121A and 221A were co-expressed with cH. When the effects of these residues were examined in more detail, it appears that residues 1 and 3 are not major contributing residues as the product of the gL221B gene_Ashows little detectable binding activity in association with g_{H} . The light chain product of ${}_{\text{gL221C}}^{(5\textrm{pc}\textrm{χ})}$ in which mouse sequences are present at 46 and 47, shows good binding activity in association with cH.

 α

 $2 - 1$

14. 2 PRODUCTION OF ANTIBODY CONSISTING OF GRAFTED HEAVY (GH) CHAINS WITH MOUSE LIGHT (mL) OR CHIMERIC LIGHT (cL) CHAINS Expression of the gH genes proved to be more difficult to achieve than for gL. First, inclusion of the Kozak sequence appeared to have no marked effect on expression of gH genes. Expression appears to be slightly improved but not to the same degree as seen for the grafted light chain. Also, it proved difficult to demonstrate production of expected quantities of material when the loop choice (amino acid 26-32) for CDRl is used, e.g. $qH121$, 131, 141 and no conclusions can be drawn about these constructs. $(560 \text{ T}) NQ(11)$ Moreover, co-expression of the gH341 gene, with cL or mL has been variable and has tended to produce lower amounts of antibody than the cH/cL or mH/mL

combinations. The alterations to gH341, to The alterations to gH341 $\begin{array}{|c|c|c|c|c|}\n \hline \text{procedure gH341A and gH341B lead to improved levels}\n \end{array}$ of expression. Λ Λ This may be due either to a general increase in the fraction of mouse sequence in the variable region, or to the alteration at position 63 where the residue is returned to the human amino acid Valine (Val) from Phenylalanine (Phe) to avoid possible internal packing problems with the rest of the human framework. This arrangement also occurs in gH331 and gH321. When gH321 or gH331 were expressed in association with cL, antibody was produced but antibody
binding activity was not detected. (SEQ $CD \ NQ11$) binding activity was not detected. When the more conservative gH341 gene was used antigen binding could be detected in association with cL or mL, but the activity was only

IX

 $A \rightarrow A$

B

PFIZER EX. 1595 Page 511

Board Ass gned Page #316

marginally above the background level.

When further mouse residues were substituted based on the arguments in 12.1, antigen binding could be clearly demonstrated for the antibody produced when kgB341A and kgB341B were expressed *in* association with cL.

14.3 PRODUCTION OF FULLY CDR-GRAFTED ANTIBODY The kgL221A gene was co-expressed with kgH341, kgH341A or kgH341B. For the combination kgH221A/kgH341 very little material was produced in a normal COS cell expression. For the combinations kgL221A/kgH341A or kgH221A/kgH341B amounts of antibody similar to gL/ cH was produced.

In several experiments no antigen binding activity could be detected with kgH221A/gH341 or kgH221A/kgH341 combinations, although expression levels were very low.

Antigen binding was detected when kgL221A/kgH341A or kgH221A/ kgH341B combinations were expressed. In the case of the antibody produced from the kgL221A/kgH341A combination the antigen binding was very similar to that of the chimeric antibody.

An analysis of the above results is given below.

15. DISCUSSION OF CDR-GRAFTING RESULTS

In the design of the fully humanised antibody the aim was to transfer the minimum number of mouse amino acids that would confer ant igen binding onto a human antibody framework.

15 . 1. LIGHT CHAIN

15.1.1. EXTENT OF THE CDRs

For the light chain the regions defining the loops known from structural studies of other antibodies to contain the antigen contacting residues, and

> PFIZER EX. 1595 Page 512

WO 91/09967 PCT/GB90/02017

 $- 45 -$

those hypervariable sequences defined by Kabat et al (refs. 4 and 5) as Complementarity Determining Regions (CDRs) are equivalent for CDR2. For CDR1 the hypervariable region extends from residues 24-34 inclusive while the structural loop extends (10^{-3}) from 26-32 inclusive. In the case of OKT3₄ there is only one amino acid difference between the two options, at amino acid 24, where the mouse sequence is a serine and the human framework REl has glutamine. For CDR3 the loop extends from residues 91-96 inclusive while the Kabat hypervariability extends from residues 89-97 *;q* inclusive. For OKT3 amino acids 89, 90 and 97 $_{5EQ}$ $_{7D}$ $_{8D}$ $_{8}$ $_{9}$ $_{8}$ $_{9}$ $_{9}$ are the same between OKT3 and RE1 (Fig. 3). When constructs based on the loop choice for CDR1 {gL12l) and the Kabat choice (gL221) were made and co-expressed with mH or cH no evidence for antigen binding activity could be found for gL121, but trace activity could be detected for the gL221, suggesting that a single extra mouse residue in the grafted variable region could have some detectable effect. Both gene constructs were reasonably well expressed in the transient expression system.

15.1.2. FRAMEWORK RESIDUES

The remaining framework residues were then further examined, in particular amino acids known from X-ray analysis of other ant ibodies to be close to the CDRs and also those amino acids which in OKT3 showed differences from the consensus framework for the mouse subgroup (subgroup VI) to which 0KT3 shows most homology. Four positions 1, 3, 46 and 47 were identified and their possible contribution was examined by substituting the mouse amino acid for the human amino acid at each position. Therefore gL221A (gL221 + DlQ, Q3V, L46R, L47W,

Board Assgned Page #318

 I V_2

 $-46 -$

see Figure 3 and Table 1) was made, cloned in EE6hCMVneo and co-expressed with cH (pJA144). The resultant antibody was well expressed and showed good binding activity. When the related genes $gL221B_A(gL221 + D1Q, Q3V)$ and $gL221C (gL221 + D1Q)$ L46R, L47W) were made and similarly tested, while both genes produced antibody when co-expressed with cH, only the gL221C/cH combination showed good antigen binding. When the gL121A (gL121 + DlQ, Q3V, L46R, L47W) gene was made and co-expressed with cH, antibody was produced which also bound to antigen.

- 15.2. HEAVY CHAIN
- 15. 2.1. EXTENT OF THE CDRs

For the heavy chain the loop and hypervariability analyses agree only in CDR3. For CDR1 the loop region extends from residues 26-32 inclusive whereas the Kabat CDR extends from residues 31-35 inclusive. For CDR2 the loop region is from 50-58 inclusive while the hypervariable region covers amino acids 50-65 inclusive. Therefore humanised heavy chains were constructed using the framework from antibody KOL and with various combinations of these CDR choices, including a shorter choice for CDR2 of S0-56 inclusive as there was some uncertainty as to the definition of the end point for the CDR2 loop around residues 56 to 58. The genes were co-expressed with mL or cL initially. In the case of the gH genes with loop choices for CDRl e.g. gH121, gH131, gB141 very little antibody was produced in the culture supernatants. As no free light chain was detected it was presumed that the antibody was being made and assembled inside the cell but that the heavy chain was aberrant in some way, possibly incorrectly folded, and therefore the antibody was

PFIZER EX. 1595 Page 514

Ņ

 $\omega = \frac{1}{2} \sqrt{2} \omega^2$, ω

being degraded internally. In some experiments trace amounts of antibody could be detected in $35s$ labelling studies.

As no net antibody was produced, analysis of these constructs was not pursued further.

When, however, a combination of the loop choice and the Kabat choice for CDR1 was tested (mouse amino acids 26-35 inclusive) and in which residues 31 (Ser to Arg), 33 (Ala to Thr), and 35 (Tyr to His) were changed from the human residues to the mouse residue and compared to the first series, antibody was produced for qH321, kgH331 and kqH341 when co-expressed with cL. Expression was generally low and could not be markedly improved by the insertion of the Kozak consensus sequence 5' to the ATG of the signal sequence of the gene, as distinct from the case of the gL genes where such insert ion led to a 2-5 fold increase *in* net antibody production. However, only *in* the case of gH341/mL or kgH341/cL could marginal antigen binding activity be demonstrated. When the $\frac{1}{2}D N^{C'}$. 2. $\frac{1}{2}D$ kgH341 gene was co-expressed with kgL221A $^{\circ}$ the net yield of antibody was too low to give a signal above the background level in the antigen binding assay.

15.2.2. FRAMEWORK RESIDUES

As *in* the case of the light chain the heavy chain frameworks were re-examined. Possibly because of the lower initial homology between the mouse and human heavy variable domains compared to the light chains, more amino acid positions proved to be of interest. Two genes kgH341A and kgH341B were constructed, with 11 or 8 human residues respectively substituted by mouse residues compared to gH341, and with the CDR2 residue 63 returned to the human amino acid potentially to

PFIZER EX. 1595 Page 515

 $- 48 -$

improve domain packing. Both showed antigen binding when combined with cL or kgL221A, the kgH341A gene with all 11 changes appearing to be the superior choice.

15. 3 INTERIM CONCLUSIONS

> It has been demonstrated, therefore, for 0KT3 that to transfer antigen binding ability to the humanised antibody, mouse residues outside the CDR regions defined by the Kabat hypervariability or structural loop choices are required for both the light and heavy chains. Fewer extra residues are needed for the light chain, possibly due to the higher initial homology between the mouse and human kappa variable regions.

> Of the changes seven (1 and 3 from the light chain and 6 , 23 , 71 , 73 and 76 from the heavy chain) are predicted from a knowledge of other antibody structures to be either partly exposed or on the antibody surface. It has been shown here that residues 1 and 3 in the light chain are not absolutely required to be the mouse sequence; and for the heavy chain the gH341B heavy chain in combination with the 221A light chain generated only weak binding activity. Therefore the presence of the 6, 23 and 24 changes are important to maintain a binding affinity similar to that of the murine antibody. It was important, therefore, to further study the individual contribution of othe other 8 mouse residues of the kgH341A gene compared to kgH341.

16. FURTHER CDR-GRAFTING EXPERIMENTS

Additional CDR-grafted heavy chain genes were prepared substantially as described above. With reference to Table 2 the further heavy chain genes were based upon the gh341 (plasmid pJA178) and

> PFIZER EX. 1595 Page 516

 \mathbf{A}

 \mathbb{A}

 $- 49 -$
(SEQ TO NO.12)

gH341A (plasmid pJA185), with either mouse OKT3 or human KOL residues at 6 , 23, 24, 48, 49, 63, 71, 73, 76, 78, 88 and 91, as indicated. The CDRgrafted light chain genes used in these further
experiments were gL221, gL221A, gL221B and gL221C, as described above.

TABLE 2

¢

OKT3 HEAVY CHAIN CDR GRAFTS

l. gH34l and derivatives

------~

OKT3 LIGHT CHAIN CDR GRAFTS

2. gL221 and derivatives

A

A

SAMPLE

WO 91109967 PCf/GB90/02017

The CDR-grafted heavy and light chain genes were co-expressed in COS cells either with one another in various combinations but also with the corresponding murine and chimeric heavy and light chain genes substantially as described above. The resultant antibody products were then assayed in binding and blocking assays with BPB-ALL cells as described above.

The results of the assays for various grafted heavy chains $(5)2 \text{ FQ}$ TD NO: 28 co -expressed with the gL22lC light chain are given in Figures 7 and 8 (for the JA184, JA185, JA197 and JA198 constructs - see Table 2), in Figure 9 (for the JA183, α and β , JA184, JA185 and JA197 constructs) in Figure 10^{100}_{Λ} (for the chimeric, JA185, JA199, JA204, JA205, JA207, JA208 and JA209 constructs) and in Figure 11, (for the JA183, JA184, JA185, JAl98, JA203, JA205 and JA206 constructs).

The basic grafted product without any human to murine changes in the variable frameworks, i.e. $gL221\left(\frac{SEQ+D}{D} \text{ N} 0.75\right)$
co-expressed with ch341 (111129) $(SEQ+D \text{ N} 0.11)$ co-expressed with gh341 (JA178) μ and also the "fully grafted" product, having most human to murine changes in *18*)
the grafted heavy chain framework, i.e. gL22lCA DOW.28 che graficed heavy chain framework, free assayed for co-expressed with gh341A $(JA185)$, were assayed for relative binding affinity in a competition assay against murine OKT3 reference standard, using HPB-ALL cells. The assay used was as described above in section 3.3. The results obtained are given in Figure 12 for the basic grafted product and in Figure 13 for the fully grafted product. These results indicate that the basic grafted product has neglibible binding ability as compared with the OKT3 murine reference standard; whereas the "fully grafted" product has a binding ability very similar to that of the OKT3 murine reference standard.

The binding and blocking assay results indicate the following:

 $-3 -$

The JA198 and JA207 constructs appear to have the best binding characteristics and similar binding abilities, both substantially the same as the chimeric and fully grafted gH341A products. This indicates that positions 88 and 91 and position 76 are not highly critical for maintaining the OKT3 *binding* ability; whereas at least some of positions 6, 23, 24, 48, 49, 71, 73 and 78 are more important.

This is borne out by the finding that the JA209 and JA199, although of similar binding ability to one another, are of lower binding ability than the JA198 and JA207 constructs. This indicates the importance of having mouse residues at positions 71, 73 and 78, which are either completely or partially human in the JA199 and JA209 constructs respectively.

Moreover, on comparing the results obtained for the JA205 and JA183 constructs it is seen that there is a decrease in binding going from the JA205 to the JA183 constructs. This indicates the importance of retaining a mouse residue at position 23, the only position changed between JA205 and JA163.

These and other results lead us to the conclusion that of the 11 mouse framework residues used in the gH341A (JA185) construct, it is important to retain mouse residues at all of positions 6, 23, 24, 48 and 49, and possibly for maximum binding affinity at 71, 73 and 78.

Similar Experiments were carried out to CDR-graft a number of the rodent antibodies including antibodies having specificity for CD4 (OKT4), ICAM-1 (R6-5), TAG72 (B72.3), and $TNF\propto(61E71, 101.4, hTNF1, hTNF2$ and $hTNF3)$.

EXAMPLE *2*

CDR-GRAFTING OF A MURINE ANTI-CD4 T CELL RECEPTOR ANTIBODY, OKT4A

Anti OKT4A CDR-grafted heavy and light chain genes were prepared, expressed and tested substantially as described above in Example 1 for CDR-grafted OKT3. The CDR grafting of OKT4A is described in detail in Ortho patent application PCT/GB 90........ of even date herewith entitled "Humanised Antibodies". The disclosure of this Ortho patent application PCT/GB 90 ··••.••• • • • *is* incorporated herein by reference. A number of CDR-grafted OKT4 antibodies have been prepared. Presently the CDR-grafted OKT4A of choice is the combination of the grafted light chain LCDR2 and the grafted heavy chain HCDR10.

THE LIGHT CHAIN

 $\mathcal{S}^{\mathcal{S}}$. $\mathcal{R}^{\mathcal{S}}$

The human acceptor framework used for the grafted light chains was RE $J_{\chi}^{(560~\text{TeV})}$ The preferred LCDR2 light chain has human to mouse changes at positions 33, 34, 38, 49 and 89 *in* addition to the structural loop CDRs. Of these changed positions, positions 33, 34 and 89 fall within the preferred extended CDRs of the present invention (positions 33 and 34 *in* CDRl and position 89 in CDR3). The human to murine changes at positions 38 and 49. corresponds to positions at which the amino acid residues are preferably donor murine amino acid residues in accordance with the present invention. A comparison of the amino acid sequences of the donor murine light chain variable domain and the RE1 human acceptor light chain variable further reveals that the murine and human residues are identical at all of positions 46, 48 and 71 and at all of positions 2, 4, 6, 35, 36, 44, 47, 62, 64-69, 85, 87, 98, 99 and 101 and 102. However the amino acid residue at position 58 in LCDR2 is

 A

WO 91/09967 PCT/GB90/02017

 $-54 -$

the human REl framework residue not the mouse OKT4 residue as would be preferred in accordance with the present invention.

THE HEAVY CHAIN

The human acceptor framework used for the grafted heavy $(560 \text{ D} \cdot \text{N}^{\circ} \cdot \text{N})$ chains was KOL_r

The preferred CDR graft HCDR10 heavy chain has human to mouse changes at positions 24 , 35 , 57 , 58 , 60 , 88 and 91 in addition to the structural loop CDRs.

Of these positions, positions 35 (CDR1) and positions 57, 58 and 60 (CDR2) fall within the preferred extended CDRs of the present invention. Also the human to mouse change at position 24 corresponds to a position at which the amino acid residue is a donor murine residue in accordance with the present invention. Moreover, the human to mouse changes at positions 88 and 91 correspond to positions at which the amino acid residues are optionally donor murine residues.

Moreover, a comparison of the murine OKT4A and human KOL heavy chain variable amino acid sequences reveals that the murine and human residues are identical at all of positions 23 , 49 , 71 , 73 and 78 and at all of positions 2 , 4, 6, 25 , 36, 37, 39, 47, 48, 93, 94, 103, 104, 106 and 107.

Thus the OKT4A CDR-grafted heavy chain HCDR10 corresponds to a particularly preferred embodiment according to the present invention.

> PFIZER EX. 1595 Page 522

Board Assigned Page #327

. /

...

 \cdot

R

Ŋ

EXAMPLE 3

CDR-GRAFTING OF AN ANTI-MUCIN SPECIFIC MURINE ANTIBODY, 872. 3

The cloning of the genes coding for the anti-mucin specific murine monoclonal antibody 872.3 and the preparation of B72.3 mouse-human chimeric antibodies has been described previously (ref. 13 and WO 89/01783). CDR-grafted versions of B72.3 were prepared as follows.

(a) 872.3 Light Chain

CDR-grafting of this light chain was accomplished by direct transfer of the murine CDRs into the framework of the human light chain REl. The regions transferred were:

The activity of the resulting grafted light chain was assessed by co-expression in COS cells, of genes for the combinations:

B72.3 cB/B72.3 cL and B72.3 cH/B72.3 gL

Supernatants were assayed for antibody concentration and for the ability to bind to microtitre plates coated with mucin. The results obtained indicated that, in combination with the B72.3 cH chain, B72.3 cL and B72.3 gL
had similar binding properties. $and \, d$ had similar binding properties. $(SERID$ NO:8)

Comparison of the murine B72.3 and REI Λ light chain amino acid sequences reveals that the residues are identical at positions 46, 58 and 71 but are different at position 48 •

··---·--- *r-*

.... --------·--... '

WO 91/09967 PCT/GB90/02017

 $-56 -$

Thus changing the human residue to the donor mouse residue at position 48 may further improve the binding characteristics of the CDR-grafted light chain, (B72.3 gL) in accordance with the present invention.

(b) 872 .3 heavy chain

i. Choice of framework

At the outset it was necessary to make a choice of human framework. Simply put, the question was as follows: Was it necessary to use the framework regions from an antibody whose crystal structure was known or could the choice be made on some other criteria?

For 872. 3 heavy chain, it was reasoned that, while knowledge of structure was important, transfer of the CDRs from mouse to human frameworks might be facilitated if the overall homology between the donor and receptor frameworks was maximised. Comparison of the B72.3 heavy chain sequence with those in Kabat (ref. 4) for human heavy chains showed clear $J_{\mathcal{K}_{F}}^{\text{th}}$ (UP:10) $B72.3$ had poor homology for KOL and NEWM (for which crystal structures are available) but was very homologous to the heavy chain for EU.

On this basis, EU was chosen for the CDR-grafting and the following residues transferred as CDRs.

Board Assigned Page #329

PFIZER EX. 1595 Page 524

:' . ..

Also it was noticed that the FR4 region of EU was unlike that of any other human (or mouse) antibody. Consequently, in the grafted heavy chain genes this was also · changed to produce a "consensus" human sequence. (Preliminary experiments showed that grafted heavy chain genes containing the EU FR4 sequence expressed very poorly in transient expression systems.)

ii. Results with grafted heavy chain genes Expression of grafted heavy chain genes containing all human framework regions with either gL or cL genes produced a grafted antibody with little ability to bind to mucin. The grafted antibody had about 1% the activity of the chimeric antibody. In these experiments, however, it was noted that the activity of the grafted antibody could be increased to \sim 10% of B72.3 by exposure to pHs of 2-3.5.

> This observation provided a clue as to how the activity of the grafted antibody could be improved without acid treatment. It was postulated that acid exposure brought about the protonation of an acidic residue (pKa of aspartic acid = 3.86 and of glutamine $acid = 4.25$) which in turn caused a change in structure of the CDR loops, or allowed better access of antigen. From comparison of the sequences of B72.3 $(\text{ref. } 13)$ and EU (refs. 4 and 5), it was clear that, in going from the mouse to human frameworks, only two positions had been changed in such a way that acidic residues had been introduced. These

 λ

/

positions are at residues 73 and 81, where K to E and Q to E changes had been made, respectively.

Which of these positions might be important was determined by examining the crystal structure of the KOL antibody. In KOL (SEQ $LD \wedge (0 \cdot C)$ heavy chain, position 81 is far removed
from either of the CDR loops. Position 73, however, is close to both CDRs 1 and 3 of the heavy chain and, in this position it was possible to envisage that a K to E change in this region could have a detrimental effect on antigen binding.

iii. Framework changes in B72.3 gH gene On the basis of the above analysis, E73 was mutated to a lysine (K). It was found that this change had a dramatic effect on the ability of the grafted Ab to bind to mucin. Further the ability of the grafted B72.3 produced by the mutated gH/gL combination to bind to mucin was similar to that of the B72.3 chimeric antibody.

iv. Other framework changes

In the course of the above experiments, other changes were made in the heavy chain framework regions. Within the accuracy of the assays used, none of the changes, either alone or together, appeared beneficial.

v. Other

All assays used measured the ability of the grafted Ab to bind to mucin and, as a whole, indicated that the single framework change at position 73 is sufficient to generate an antibody with similar binding properties to B72.3.

Comparison of the B72.3 murine and EU heavy chain sequences reveals that the mouse and human residues are identical at positions 23, 24, 71 and 78 .

Thus the mutated CDR-grafted B72. 3 heavy chain corresponds to a preferred embodiment of the present invention.

EXAMPLE 4

CDR-GRAFTING OF A MURINE ANTI-ICAM-1 MONOCLONAL ANTIBODY A murine antibody, R6-5-D6 (EP 0314863) having specificity' for Intercellular Adhesion Molecule 1 (ICAM-1) was CDR-grafted substantially as described above in previous examples. This work is described in greater detail in co-pending application, British Patent Application No. 9009549.8, the disclosure of which is incorporated herein by reference.

The human EU framework was used as the acceptor framework for both heavy and light chains. The CDR-grafted antibody currently of choice is provided by co-expression of grafted light chain gL221A and grafted heavy chain Λ ^{(SEC} ID NO: 26)^{*} gH341D, which has a binding affinity for ICAM 1 of about 75% of that of the corresponding mouse-human chimeric antibody.

LIGHT CHAIN

 \cdot \cdot

gL221A has murine CORs at positions 24-34 (CDR1), S0-56 (CDR2) and 89-97 (CDR3). In addition several framework residues are also the murine amino acid. These residues were chosen after consideration of the possible contribution of these residues to domain packing and stability of the conformation of the antigen binding region. The residues which have been retained as mouse are at positions 2, 3, 48 (?), 60, 84, 85 and 87. Comparison of the murine anti-ICAM 1 and human EU light chain amino acid sequences reveals that the murine and human residues are identical at positions 46, 58 and 71. HEAVY CHAIN

gH341D has murine CDRs at positions 26-35 (CDR1), 50-56 (COR2) and94-100B (CDR3). In addition murine residues were used in gH341D at positions 24, 48, 69, 71, 73, 80, 88 and 91. Comparison of the murine anti-ICAM 1 and human EU heavy chain amino acid sequences are identical at positions 23, 49 and 78.

Board Assigned Page #333

PFIZER EX. 1595 Page 528

EXAMPLE 5

CDR-Grafting of murine anti-TNFA antibodies

A number of murine anti-TNFa monoclonal antibodies were ' CDR- grafted substantially as descri bed above in previous examples. These antibodies include the murine monoclonal antibodies designated 61 E71, hTNF1, hTNF3 and 101.4 A brief summary of the CDR-grafting of each of these antibodies *is* given below.

61E71

 λ

A similar analysis as described above (Example 1, Section 12.1.) was done for 61E7l and for the heavy chain 10 residues were identified at 23, 24, 48, 49, 68, 69, 71, 73, 75 and 88 as residues to potentially retain as murine. The human frameworks chosen for CDR-grafting of this antibody, and the hTNF3 and 101.4 antibodies were RE1 for the light chain and KOL for the heavy chain . Three genes were built, the first of which contained 23, 24, 48, 49, 71 and 73 [gH341(6)] as murine residues. The second gene also had 75 and 88 as murine residues [gH341(8)] while the third gene additionally had 68, 69, 75 and 88 as murine residues [gH341(10)] . Each was co- expressed with gL221, the minimum grafted light chain (CDRs only). The gL221/gH341(6) and gL221/gH341(8) antibodies both bound as well to TNF as murine 61E71. The gL221/gB341(10) antibody did not express and this combination was not taken further. Subsequently the gL221/gH341(6) antibody was assessed in an L929 cell competition assay *in* which the antibody competes against the TNF receptor on L929 cells for binding to TNF in solution. In this assay the gL221/gH341(6) antibody was approximately 10% as active as murine 61E71.

hTNFl

hTNFl is a monoclonal antibody which recognises an epitope on human TNF- . The EU human framework was used for CDR-grafting of both the heavy and light variable domains.

Heavy Chain

In the CDR-grafted heavy chain (ghTNF1) mouse CDRs were used at positions 26-35 (CDR1), 50-65 (CDR2) and 95-102 (CDR3). Mouse residues were also used in the frameworks at positions 48, 67, 69, 71, 73, 76, 69, 91, *94* and 108. Comparison of the TNF1 mouse and EU human heavy chain residues reveals that these are identical at positions 23, 24, 29 and 78.

Light Chain

In the CDR-grafted light chain (gLhTNF1) mouse CDRs wre used at positions 24-34 (CDR1), 50-56 (CDR2) and 89-97 (CDR3). In addition mouse residues were used in the frameworks at positions 3, 42, 48, 49, 83, 106 and 108. Comparison of the hTNF1 mouse and EU human light chain residues reveals that these are identical at positions 46, 58 and 71.

The grafted hTNF1 heavy chain was co-expressed with the chimeric light chain and the binding ability of the product compared with that of the chimeric light chain/chimeric heavy chain product in a TNF binding assay. The grafted heavy chain product appeared to have binding ability for TNF slightly better than the fully chimeric product.

Similarly, a grafted heavy chain/ grafted light chain product was co-expressed and compared with the fully chimeric product and found to have closely similar binding properties to the latter product.

Board Assigned Page #335

/ . *)*

hTNF3

hTNF3 recognises an epitope on human TNF- χ . The sequence of hTNF3 shows only 21 differences compared to 61E71 in the light and heavy chain variable regions, 10 in the light chain (2 in the CDRs at positions 50, 96 and 8 in the framework at 1, 19, 40, 45, 46, 76, 103 and 106) and 11 in the heavy chain (3 in the CDR regions at positions 52, 60 and 95 and 8 in the framework at 1, 10, 38, 40, 67, 73, 87 and 105). The light and heavy chains of the 61E71 and hTNF3 chimeric antibodies can be exchanged without loss of activity in the direct binding assay. However 61E71 is an order of magnitude less able to compete with the TNF receptor on L929 cells for TNF-a compared to hTNF3. Based on the 61E71 CDR grafting data gL221 and gH341(+23, 24, 48, 49 71 and 73 as mouse) genes have been built for hTNF3 and tested and the resultant grafted antibody binds well to TNF-a, but competes very poorly in the L929 assay. It is possible that in this case also the framework residues identified for OKT3 programme may improve the competitive binding ability of this antibody.

101.4

 \bigwedge

101.4 *is* a further murine monoclonal antibody able to recognise human TNF-a. The heavy chain of this antibody shows good homology to KOL and so the CDR-grafting has been based on RE1 for the light chain and KOL for the heavy chain. Several grafted heavy chain genes have been constructed with conservative choices for the CDR's (gH341), and which have one or a small number of non-CDR residues at positions 73, 78 or 77-79 inclusive, as the mouse amino acids. These have been co-expressed with cL or gL221. In all cases binding to TNF equivalent to the chimeric antibody is seen and when co-expressed with cL the resultant antibodies are able to compete well in the L929 assay. However, with gL221 the resultant antibodies

PFIZER EX. 1595 Page 531

 \mathcal{L}

are at least an order of magnitude less able to compete for TNF against the TNF receptor on L929 cells.

Mouse residues at other positions in the heavy chain, for example, at 23 and 24 together or at 76 have been demonstrated to provide no improvement to the competitive ability of the grafted antibody *in* the L929 assay.

A number of other antibodies including antibodies having specificity for interleukins e.g. ILl and cancer markers such as carcinoembryonic antigen (CEA) e.g. the monoclonal antibody A5B7 (ref. 21), have been successfully CDR-grafted according to the present invention. It will be appreciated that the foregoing examples are given by way of illustration only and are not intended to limit the scope of the claimed invention. Changes and modifications may be made to the methods described whilst still falling within the spirit and scope of the invention. WO 91/09967 PCT/GB90/02017

 $-65 -$

References

- 2. Chatenoud et al, (1986), J. Immunol. 137, 830-838.
- 3. Jeffers et al, (1986) , Transplantation, 41 , 572-578.

4. Begent et al, Br. J. Cancer 62: 487 (1990).

- 5. Verhoeyen et al, Science, 239, 1534-1536, 1988.
- 6. Riechmann et al, Nature, 332, 323-324, 1988.
- 7. Kabat, E.A., Wu, T.T., Reid-Miller, M., Perry, H.M., Gottesman, K.S., 1987, *in* Sequences of Proteins of Immunological Interest, us Department of Health and Human Services, NIH, USA.
- 8. Wu, T.T., and Kabat, &.A., 1970, J. Exp. Med. 132 211-250.
- 9. Queen et al, (1989), Proc. Natl. Acad. *Sci.* USA, 86, 10029-10033 and WO 90/07861
- 10. Maniatis et al, Molecular Cloning, Cold Spring Harbor, New York, 1989.
- 11. Primrose and Old, Principles of Gene Manipulation, Blackwell, Oxford, 1980.
- 12. Sanger, F., Nicklen, S., Coulson, A.R., 1977, Proc. Natl. Acad. Sci. USA, 74 5463

- 13. Kramer, W., Drutsa, V., Jansen, H.-W., Kramer, B., Plugfelder, M., Fritz, H.-J., 1984, Nucl. Acids Res. 12, 9441
- 14. Whittle, N., Adair, J., Lloyd, J.C., Jenkins, E., Devine, J., Schlom, J., Raubitshek, A., Colcher, D., Bodmer, M., 1987, Protein Engineering 1 , 499.
- 15. Sikder, S.S., Akolkar, P.N., Kaledas, P.M., Morrison, S.L., Kabat, E.A., 1985, J. Immunol. 135, 4215.
- 16. Wallick, S.c., Kabat, E.A., Norrison, S.L., 1988, J. Exp. Med. 168, 1099
- 17. Bebbington, C.R., Published International Patent Application WO 89/01036.
- 18. Granthan and Perrin 1986, Immunology Today 7, 160.
- 19. Kozak, M., 1987, J. Mol. Biol. 196, 947 .
- 20. Jones, T.P., Dear, P.H ., Foote, J,, Neuberger, M.S., Winter, G., 1986, Nature, 321, 522
- 21. Harwood et al, Br. J. Cancer, 54, 75-82 (1986).

i-.

 τ

' '

., .

,· · : •• P •"""l .· ·

 \ddot{i} .

CLAIMS

- 1. A CDR-grafted antibody heavy chain having a variable region domain comprising acceptor framework and donor antigen binding regions wherein the framework comprises donor residues at at least one of positions 6, 23 and/or 24, 48 and/or 49, 71 and/or 73, 75 and/or 76 and/or 78 and 88 and/or 91.
- 2. A CDR-grafted heavy chain according to Claim 1 comprising donor residues at positions 23, 24, 49, 71, 73 and 78, or at positions 23, 24 and 49.
- 3. A CDR-grafted heavy hain according to Claim 2 comprising donor residues at positions 2, 4, 6, 25, 36 , 37, 39, 47, 48, 94, 103, 104, 106 and 107.
- 4. A CDR-grafted heavy chan according to Claim 2 or 3, comprising donor resudues at one, some or all of positions: 1 and 3, 69 (if 48 is different between donor and acceptor), 38 and 46 (if 48 is the donor residue), 67, 82 and 18 (if 67 is the donor residue), 91, and any one or more of 9, $|11, 41, 87, 108, 110$ and 112 .
- A CDR-grafted heavy chain according to any of the 5. preceding comprising donor CDRs at positions 26-35, 7 50~65 and 95-100.
- 6. A CDR-grafted antibody light chain having a variable region domain comprising acceptor framework and donor antigen binding regions wherein the framework comprises donor residues at at least one of positions 1 and/or 3 and 46 and/or 47.
- 7. A CDR-grafted light chain according to Claim 6 comprising donor residues at positions 46 and 47.
- 8. A CDR-grafted antibody light chain having a variable region domain comprising acceptor framework and donor antigen binding regions wherein the framework \ comprises donor residues at at least one of positions 46, 48, 58 and 71.
- 9. A CDR-grafted light chain according to Claim 8 comprising donor residues at positions 46, 48, 58 and 71.
- 10. A CDR-grafted light \mathcal{L}_{map} according to Claim 8 or 9, comprising donor restates at positions 2, 4, 6, 35, 36, 38, 44, 47, 49, 62, 64-69, 85, 87, 98, 99, 101 and 102.
- 11. A CDR-grafted light ghain according to Claim 9 or 10, comprising donor residues at one, some or all of positions: 1 and 3, 63, 60 (if 60 and 54 are able to form a potential saltbridge), 70 (if 70 and 24 are able to form a potential saltbridge), 73 and 21 (if 47 is different between donor and acceptor), 37 and 45 (if 47 if different between donor and acceptor), and any one or more of 10, 12, 40, 83, 103 and 105.
- 12. A CDR-grafted light chain according to any one of Claims 6-11, comprising donor CDRs at positions $24 - 34$, 50-56 and 89-97.

PFIZER EX. 1595 Page 536
- 13. A CDR-grafted antibody molecule comprising at least one CDR-grafted heavy chain according to any one of Claims $1-5$ and at least one CDR-grafted light chain according to any one of Claims 6-12.
- 14. A CDR-grafted antibody molecule according to Claim 13, which is a site-specific antibody molecule.
- 15. A CDR-grafted antibody molecule according to Claim 13 which has specificity for an interleukin, hormone or other biologically active compound or a receptor therefor.
- 16. A CDR-grafted antibody heavy or light chain or molecule according $t \notin \overline{$ any one of the preceding claims comprising human acqeptor residues and non-human donor residues.
- 17. A DNA sequence which codes for a CDR-grafted heavy chain according to $C \lambda$ aim 1 or a CDR-grafted light chain according to Claim 6 or Claim 8.
- 18. A cloning or expression vector containing a DNA sequence according to Claim 17.
- 19. A host cell transformed with a DNA sequence according to Claim 17.
- 20. A process for the production of a CDR-grafted antibody sequence according to Claim 17 in a transformed host cell.

21. A process for producing a CDR-grafted antibody product comprising:

i .

(a) producing in an expression vector an operon having a DNA sequence which encodes an antibody heavy chain according to Claim 1;

and/ or

- (b) producing in an expression vector an operon having a DNA sequence which encodes a complementary antibody light chain according to Claim 6 or Claim 8;
- (c) transfecting a host cell with the or each vector; and
- (d) culturing the transfected cell line to produce the CDR-grafted antibody product.
- 22. A therapeutic or diagnostic composition comprising a $CDR-gradiented$ antibody heavy chain according to $Claim$ 1, or a CDR-grafted light chain according to Claim 6 or Claim 8, or a CDR-grafted antibody molecule according to Claim 13 \sin combination with a pharmaceutically acceptable carrier, diluent or excipient .
- 23. A method of therapy on diagnosis comprising administering an effective amount of a CDR-grafted heavy chain according to Claim 1, or a CDR-grafted light chain according to Claim 6 or Claim 8, or a CDR-grafted antibody molecule according to Claim 13 to a human or animal subject.

 $1 \text{ add } A'$

Board Ass gned Page #343

ABSTRACT ABSTRACT

 0893569

 \bullet

CDR-grafted antibody heavy and light chains CDR—grafted antibody heavy and light chains comprise acceptor framework and donor antigen binding comprise acceptor framework and donor antigen binding regions, the heavy chains comprising donor residues at at

- 5 least.one of positions (6, 23) and/or (24, 48) and/or (49, 71) and/or (73, 75) and/or (76) and/or (78) and (88) and/or (91) . The CDR -grafted light chains comprise donor residues (91). The CDR—grafted light chains comprise donor residues at at least one of positions (1) and/or (3) and (46) and/or (47) or at at least one of positions $(46, 48, 58)$ and (71) .
- 10 The CDR-grafted antibodies are preferably humanised 10 The CUR-grafted antibodies are preferably humanised antibodies, having non human, e.g. rodent, donor and human acceptor frameworks, and may be used for in *vivo* therapy and acceptor frameworks. and may be used for in vivo therapy and diagnosis. A generally applicable protocol is disclosed for \ obtaining CDR-grafted antibodies. acceptor frameworks, and may be used for in vivo therapy and
diagnosis. A generally applicable protocol is disologed for
obtaining CDR-grafted antibodies.

A containing CDR-grafted antibodies.

Board Assigned Page 4344 PFI

 ℓ ¹

 \mathbb{Z}

/,

sioslly Fi

 $Fig. 1(a)$

1 MDFOVOIFSF LLISASVIIS RGQIVLTQSP AIMSASPGEK VTMTCSASSS 51 VSYMNWYQQK SGTSPKRWIY DTSKLASGVP AHFRGSGSGT SYSLTISGME 101 AEDAATYYCQ QWSSNPFTFG SGTKLEINRA DTAPTVSIFP PSSEQLTSGG 151 ASVVCFLNNF YPKDINVKWK IDGSERQNGV LNSWTDQDSK DSTYSMSSTL 201 TLTKDEYERH NSYTCEATHK TSTSPIVKSF NRNEC*

Fig. 1(b)

SUBSTITUTE SHEET

nica –

As UTISINALly Filed ?

Ì,

Ì

j. Í J.

1.
R

 \mathbf{r} .

 $Fig. 2(a)$

SUBSTITUTE SHEET

PFIZER EX. 1595 Page 541

 7.1

OKT 3 HEAVY CHAIN PROTEIN SEQUENCE DEDUCED FROM DNA SEQUENCE

56

185

N NN RES TYPE *IsiPpIeesessSBEsePsPSBSSEsPspsPsseesSPePb Okt3vl SPKRWIYDTSKLASGVPAHFRGSGSGTSYSLTISGMEAEDAAT REI APKLLIYEASNLQAGVPSRFSGSGSGTDYTTTISSLQPEDIAT $7 37$ $7⁷$ CDR2 (LOOP/KABAT)

> 102 108

SUBSTITUTE SHEET

¥.

" As Originally File

PCT/GB90/02017 18/303569

 $4/15$

NN N 23 26 32 35 N39 43 RES TYPE SESPS SBssS sSSsSpSpSPSPSEbSBssBePiPIpiesss Okt3h QVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQ KOL QVQLVESGGGYVQPGRSLRLSCSSSGFIFSSYAMYWVRQAPGK ? $-.77$

> CDR1 (LOOP) ** CDR1 (KABAT)

 $52a$ 60 65 NN N 89 82abc RES TYPE IIeIppp^ssssssss'ps^pSSsbSpseSsSseSp^pSpsSBssS^ePb Okt3vh GLEWIGYINPSRGYTNTNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAV KOL GLEWVAIIWDDGSDQHYADSVKGRFTISRDNSKNTLELQMDSLRPEDTGV ?? 7777 $\overline{\mathbf{z}}$ CDR2 (LOOP) CDR2 (KABAT) ***

Fig. 4

SUBSTITUTE SHEET :

 ~ 25

Board Assigned Page #348

PFIZER EX. 1595 Page 543

SUBSTITUTE SHEET

Fig. 5(i)

1. gh341 and derivatives

 \ ~ **Odita4UJ ru....-.w·** ... >·' . **... 3 !! 55 !1 &SSG!** .~~· : ~ .. ,~:

...

ï.

OKT 3 HEAVY CHAIN CDR GRAFTS

 -1.13329

5/15

PCT/GB90/02017
OS/303569

 $\sim 150\mu m$

6/15

 x x and y . We set

 $\left\langle \cdot,\cdot\right\rangle$

 \sim

$Fig. 5(ii)$

SUBSTITUTE SHEET

PFIZER EX. 1595 Page 545

Board Assigned Page #350

PFIZER EX. 1595 Page 546

Board Assigned Page #351

SUBSTITUTE SHEET

x.

y si

 $\frac{3}{2} \frac{3}{2}$.

 $\bar{\alpha}$

Fig. 5(iii)

 $\left\vert \begin{array}{c} 12 \\ 14 \\ \end{array} \right\vert$ 84

¥.

As Originally Filed !!

***140052-1** PCT/GB90/02017
08/303569

 $\begin{array}{lllllllllll} \alpha & \beta & \beta & \beta \\ \beta & \beta & \beta & \beta \\ \gamma & \delta & \delta & \gamma \end{array}$

 $\frac{1}{2}$

 $7/15$

PC1/GB90/02017 08/303569

×.

γ.

8/15

OKTJ LIGHT CHAIN CDR GRAFTING

1. gL221 and derivatives

ntitraith

 $\mathbf{I}^{\mathbf{t}}$

 $\bar{\mathcal{L}}$

CDR'S ARE UNDERLINED

FRAMEWORK RESIDUES INCLUDED IN THE GENE ARE DOUBLE UNDERLINED

Fig. 6

SUBSTITUTE SHEET 18 Ren's PCT/PTO $\mathcal{H} \times \mathcal{H} \times \mathcal{H}$

PFIZER EX. 1595 Page 548 and Series Arrestation over

The Property

 $9/15$

Odjasser

お願いいいいつ

Board Assigned Page #353

SUBSTITUTE SHEET

٠

PFIZER EX. 1595 Page 549

 $\begin{array}{c}\n\hline\n\text{if } \mathbf{u} \text{ is the function } \mathbf{u} \text{ and } \mathbf{u} \text{ is the function of } \mathbf{u} \text{ and } \mathbf{u} \text{ is the function of } \mathbf{u} \text{ and } \mathbf{u} \text{ is the function of } \mathbf{u} \text{ and } \mathbf{u} \text{ is the function of } \mathbf{u} \text{ and } \mathbf{u} \text{ is the function of } \mathbf{u} \text{ and } \mathbf{u} \text{ is the function of } \mathbf{u} \text{ and } \mathbf{u} \text{ is the function of } \mathbf{u} \text{ and } \mathbf{$

 \geq

10/15

10/203567

ま言てないたい

 $\frac{1}{\sqrt{2}}$

53

Board Assigned Page #354

 $11/15$

Fig. 9

SUBSTITUTE SHEET

SUBSTITUTE SHEET

 \mathcal{A}

PFIZER EX. 1595 Page 552 $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$

PFIZER EX. 1595 Page 553

 $31/71$

PET/GB90/02017
08/202569

a $\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ (x) $\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ (x)

PFIZER EX. 1595 Page 554

 $9/5$

RAGBOO.0207

 $'$ **NGV VITTIU** \cdot **VLI** u

 $\tilde{\textbf{A}}$

 $\sim_{\rm g}$

Board Assigned Page #360

 $\frac{1}{2}$

 $\frac{1}{2}$.

J.

 $\frac{1}{2}$

DOCKET NO.: CARP-0009

PATENT

COMBINED DECLARATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name; and

I verily believe that I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled: HUMANISED ANTIBODIES

the specification of which:

is attached hereto.

21 December 1990 was filed on as Application Serial No. PCT/GB90/ 020 And was amended International on (if applicable)

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with 37 CFR $$1.56(a)$.

I hereby claim foreign priority benefits under 35 U.S.C. § 119 of any foreign application(s) for patent or
inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of any application on which priority is claimed:

 $PTO-19$

38 Nec'd PCT/PTO 17 SEP 1991

 $\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac$

10. 1289年第1章

à,

 \overline{a}

Board Assigned Page #363

PFIZER EX. 1595 Page 558

I hereby claim the benefit under 35 U.S.C. § 120 of any United States application(s) listed below and, insofar as the United States applicationts) listed below and, insofar as the subject matter of each of the claims of this application is not subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner disclosed in the prior United States application in the manner provided by the first paragraph of 35 U.S.C. § 112, I acknowledge provided by the first paragraph of ³⁵ U.S.C. § 1121' I acknowledge the duty to disclose material information as defined in 37 CFR the duty to disclose material information as defined in 37 CFR the duty to disclose material information as defined in 37 CFR
§ 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of application and the national or PCT international filing date of this application: this application:

agent(s) to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith: ^Ihereby appoint the following attorney(s} and/or I hereby appoint the following attorney(s) and/or Francis A. Paintin

Registration Nos. 19,386 Registration Nos. **The Mood Communist Communister Communist Co** Liberty Place- 46th Floor, Philadelphia, Pennsylvania 19103, and Liberty Place - 45th Floor, Philadelphia, Pennsylvania 19103, and

> Address all telephone calls and correspondence .to: Address all telephone calls and correspondence .to: Francis A. Paintin ggancis A. Paintin

I hereby declare that all statements made herein of my I hereby declare that all statements made herein of my own knowledge are true and that all statements made on own knowledge are true and that all statements made on information and belief are believed to be true; and further that information and belief are belieVed to be true; and further that these statements were made with the knowledge that willful false these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or statements and the like so made. are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the imprisonment, or both, under Section 1001 of Title ¹⁸ of the

 $PTO-19$ -2 $-$

I \cdot 1 \cdot

â

· \ $^{\circ}$

i I I

 \mathbf{r}

 $\overline{}$

 \dot{r}

2.

17 SEP 1991

Board Assigned Page #365

PFIZER EX. 1595 Page 560 $\frac{1}{4}$

 \mathcal{L}_{c}

United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

ř

 \mathcal{X}

PTO-19

计联合线 经货

Board Assigned Page #366

 $\mathbf{3}$

18 Rec'd PCT/PTO

1922年19

S.

143325

17 SEP 1991,

Board Assigned Page #367

PFIZER EX. 1595 Page 562

(12) United States Patent Carter et al.

US 6,407,213 B1 (10) Patent No.: (45) Date of Patent:

Jun. 18, 2002

METHOD FOR MAKING HUMANIZED (54) **ANTIBODIES**

- Inventors: Paul J. Carter, Leonard G. Presta, (75) both of San Francisco, CA (US)
- (73) Assignee: Genentech, Inc., South San Francisco, CA (US)
- $($ *) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 08/146,206
- (22) PCT Filed: Jun. 15, 1992
- (86) PCT No.: PCT/US92/05126

 $$371 (c)(1),$ (2) , (4) Date: Nov. 17, 1993

Related U.S. Application Data

- Confiniation-in-part of application No. 07/715,272, filed on Jun. 14, 1991, now abandoned. (63)
-
- 435/70.21; 435/91; 536/23.53; 424/133.1
- (58) Field of Search 435/69.6, 69.7, 435/70.21, 91, 172.2, 240.1, 240.27, 252.3, 320.1, 328; 536/23.53; 424/133.1; 530/387.3

References Cited

 (56)

U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS

OTHER PUBLICATIONS

Riechmann et al. [Nature 332:323-327 (1988)].*

Queen et al. [Proc. Natl. Acad. Sci. 86:10029-10033 $(1989)!$

Roitt [Immunology, published 1985, by Gower Medical Publishing Ltd. (London, England) p. 5.5].*

Tramontano et al. [J. Mol. Biol. 215:175-182 (1990)].*

"Biosym Technologies" in New Products, Chemical Design Automation 3 (Dec. 1988)

"Polygen Corporation" in New Products, Chemical Design Automation 3 (Nov. 1988).

Adair et al., "Humanization of the murine anti-human CD3 monoclonal antibody OKT3" Hum. Antibod. Hybridomas 5:41-47 (1994).

Chothia et al., "Principles of protein-protein recognition"
Nature 256:705-708 (1975).

Chothia et al., "Transmission of conformational change in insulin[®] Nature 302:500-505 (1983).

Corti et al., "Idiotope Determining Regions of a Mouse Monoclonal Antibody and Its Humanized Versions" J. Mol. Biol. 235:53-60 (1994).

(List continued on next page.)

Primary Examiner-Anthony C. Caputa

Assistant Examiner-Minh-Tam Davis

(74) Attorney, Agent, or Firm-Wendy M. Lee

 (57) **ABSTRACT**

Variant immunoglobulins, particularly humanized antibody polypeptides are provided, along with methods for their preparation and use. Consensus immunoglobulin sequences and structural models are also provided.

82 Claims, 9 Drawing Sheets

Carter Exhibit 2001 Carter v. Adair

PFIZER EX. 1595 Page 563

OTHER PUBLICATIONS

Couto et a!., "Anti-BA46 Monoclonal Antibody Mc3 Humanization Using a Novel Positional Consensus and in Vivo and in Vitro Characterization" *Cancer Research* Supplement **55:1717-1722** (1995).

Couto et a!., "Humanization of KC4G3, an Anti-Human Carcinoma Antibody" Hybridoma 13:215-219 (1994).

Ellis et al., "Engineered Anti- CD38 Monoclonal Antibodies for Immunotherapy of Multiple Myeloma" *The Journal of Immunology* pp. 925-937 (1995).

Hieter et al., "Evolution of Human Immunoglobulin K J Region Genes" *The Journal of Biological Chemistry* 257:1516-1522 (1982).

Lesk, Arthur M., "How Different Amino Acid Sequences Determine Similar Protein Structures: The Structure and Evolutionary Dynamics of the Globins" *J. Mol. Bioi.* 135:225-270 (1980).

Matsumura et al., "Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of lle 3" *Nature* 334:406-410 (1988).

Morrison, S. L., "Transfectomas Provide Novel Chimeric Antibodies" *Science* 229:1202- 1207 (Sep. 20, 1985).

Nakatani et al., "Humanization of mouse anti-human II.-2 re.ceptor antibody B- B10" *Protein Engineering* 7:435-443 (1994).

Ohtomo et al., "Humanization of Mouse ONS-M21 Antibody with the Aid of Hybrid Variable Regions" *Molecular Immunology* 32:407-416 (1995).

Rodrigues et a!., "Engineering a humanized bispecific F(ab')z fragment for improved binding to T cells" *Inl.* J. *Cancer* (Suppl.) 7:45-50 (1992).

Sha et al., "A Heavy-Chain Grafted Antibody that Recognizes the Tumor- Associated TAG72 Antigen" *Cancer Riotherapy* 9:341-349 (1994).

Tempest et al., "Identification of framework residues required to restore antigen binding during reshaping of a monoclonal antibody against the glycoprotein gB of human cytomegalovirus" *Int. J . Bioi. Macromol.* 17:37-42 (1995). Tramontano, "Structural Determinants of the Conformations of Medium-sized Loops in Proteins" *Proteins* 6:382- 394 (1989).

Uchiyama et a!., "A Monoclonal Antibody (Anti- Tac) Reactive with Activated and Functionally Mature Human T Cells" *Journal of Immunology* 126:1393-1397 (1981).

Vincenti et al., "Interleukin-2-Receptor Blockade with Daclizumab to Prevent Acute Rejection in Renal Transplantation" *New Engl.* J. *Med.* 338:161- 165 (1998).

Vitetta et a!., "Redesigning Nature's Poisons to Create Anti-Tumor Reagents" Science 238:1098-1104 (1987).

Waldmann et a!., "lnterleukin 2 Receptor (Tac Antigen) Expression in HTLV-1-associated Adult T-Cell Leukemia" *Cancer Research* 45:4559s-4562s (1985).

Waldmann, Thomas A., "The Structure, Function, and Expression of Interleukin-2 Receptors on Normal and Malignant Lymphocytes" *Science* 232:727- 732 (1986).

Wu et al., "An Analysis of the Sequences of the Variable Regions of Bence Jones Proteins and Myeloma Light Chains and Their Implications for Antibody Complementarity" *Journal of Experimental Medicine* 132:211-250 (1970).

Rhodes, P., "Recombinant antibodies from CHO cells" *Abstr Pap Am Chem Soc* (Abstract No. 60 from the 199th American Chemical Society National Meeting held in Boston, MA Apr. 22-27, 1990) 199(1-2):BIOT 60 (Apr. 1990).

Amzel and Poljak, "Three-dimensional structure of immunoglobulins" Ann. Rev. Biochem. **48:961-967** (1979).

Biodon et al., "Human monoclonal IgG isotypes differ in complement activating function at the level of C4 as well as C1q" Journal of Experimental Medicine 168(1):127-142 (Jul. 1988).

Boulianne, G. L. et al., "Production of functional chimaeric mouse/human antibody" *Nature* 312(5995):643-646 (Dec. 1984).

Brown et al., "Anti-Tac-H, a humanized antibody to the interleukin 2 receptor, prolongs primate cardiac allograft survival" *Proc. Nat!. Acad. Sci. USA* 88:2663-2667 (1991). Bruccoleri, "Structure of antibody hypervariable loops reproduced by a conformational search algorithm" *Nawre* (erratum to article in Nature 335(6190):564-568 and) 336:266 (1988).

Bruggemann, M. et al., "Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies" *Journal of Experimental Medicine* 166:1351- 1361 (1987).

Burgess et a!., "Possible Dissociation of the Heparin-binding and Mitogenic Activities of Heparin-binding (Acidic Fibroblast) Growth Factor-1 from Its Receptor-binding Activities by Site-directed Mutagenesis of a Single Lysine Residue" *Joumal of Cell Biology* 111:2129-2138 (1990).

Carter et al., "Humanization of an anti-p185HER2 antibody for human cancer therapy'' *Proc. Nat!. Acad. Sci.* 89:4285-4289 (1992).

Cheetham, J., ''Reshaping the antibody combining site by CDR replacement-tailoting or tinkering to fit?" *Protein Engineering* 2(3):170-172 (1988).

Chothia and Lesk, "Canonical Structures for the Hypervariable Regions" *J. Mol. Biol.* 196:901-917 (1987).

Chotbia et a!., "The predicted structure of immunoglobulin D1.3 and its comparison with the crystal structure" *Science* 233:755- 758 (Aug. 15, 1986).

Chotbia, C. et al., "Conformations of immunoglobulin hypervariable regions" *Nature* 342(6252):877-883 (1989). Chothia, Cyrus, "Domain association in immunoglobulin molecules: The packing of variable domains" *J . Mol. Bioi.* 186:651-663 (1985).

Clark et al., "The improved lytic function and in vivo efficacy of monovalent monoclonal CD3 antibodies" *European Journal of Immunology* 19:381-388 (1989).

Co et al., "Humanized antibodies for antiviral therapy" *Proc. Natl. Acad. Sci. USA 88:2869-2873 (1991).*

Coussens el al., "Tyrosine Kinase Receptor with Extensive Homology to EGF Receptor Sbares Chromosomal Location with neu Oncogene" *Science* 230:1132- 1139 (1985).

Daugherty, BL et al., "Polymerase chain reaction facilitates the cloning, CDR-grafting, and rapid expression of a murine monoclonal antibody directed against the CD18 component of leukocyte integrins" *Nucleic Acids Research* 19(9):2471-2476 (May 11, 1991).

Davies, D. R. et al., "Antibody-Antigen Complexes" Ann. *Rev. Biochem.* 59:439-473 (1990).

Epp et al., "The molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI refined at 2.0-A resolution" *Biochemistry* 14(22):4943-4952 (1975).

Fendly et al., "Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product" *Cancer Research.* 50:1550-1558 (1990).

Furey et al., "Structwe of a novel Bence-Jones protein (Rhe) fragment at 1.6 A resolution" *J. Mol. Bioi.* 167(3):661-692 (Jul. 5, 1983).

Gorman, SD et al., "Reshaping a therapeutic CD4 antibody" *Proc. Natl. Acad. Sci. USA* 88(10):4181-4185 (May 15, 1991).

Gregory et al., ''The solution conformations of the subclasses of human IgG deduced from sedimentation and small angle X-ray scattering studies" *Molecular Immunology* 24(8):821-829 (Aug. 1987).

Hale et al., "Remission induction in non-hodgkin lymphoma with reshaped human monoclonal antibody campath- 1H" *Lancet* 1:1394-1399 (1988).

Harris and Emery, "Therapeutic antibodies-the coming of age" *Tibtech* 11:42-44 (Feb. 1993).

Huber et al., "Crystallographic structure studies of an IgG molecule and an Fe fragmenf' *Nature* 264:415-420 (Dec. 2, 1976).

Hudziak et al., "p185^{HER2} Monoclonal Antibody Has Antiproliferative Effects In Vitro and Sensitizes Human Breast Tumor Cells to Tumor Necrosis Factor" *Molecular* & *Cellulor Biology* 9(3):1165-1172 (1989).

Jaffers, G. J. et al., "Monoclonal antibody therapy. Anti-idiotypic and non-anti- idiotypic antibodies to OKT3 arising despite intense immunosuppression" *Transplantation* 41(5):572-578 (May 1986).

Jones, P. T. et al., "Replacing the complementarity- determining regions in a human antibody with those from a mouse" Nature 321(6069):522-525 (1986).

Junghans et al., "Anti-Tac-H, a humanized antibody to the interleukin 2 receptor with new features for immunotherapy in malignant and immune disorders" *Cancer Research* 50(5):1495- 1502 (Mar. 1, 1990).

Kabat et al. *Sequences of Proteins of lmmunological lnter*est, Bethesda, MD: National Institutes of Health pp. iii-xxvii, 41-176 (1987).

King et al., "Amplification of a Novel v-erbB-Related Gene in a Human Mammary Carcinoma" *Science* 229:974-976 (1985).

Lazar et al., "Transforming Growth Factor α : Mutation of Aspartic Acid 47 and Leucine 48 Results in Different Biological Activities" *Molecular* & *Cellular Biology* 8(3):1247- 1252 (1988).

Love et al, "Recombinant antibodies possessing novel effector functions" *Methods in Enzymology* 178:515-527 (1989). Lupu et al., "Direct interaction of a ligand for the erbB2 oncogene product with the EGF receptor and p185erbBz" *Science* 249:1552- 1555 (1990).

Margni RA and Binaghi RA, "Nonprecipitating asymmetric antibodies" Ann. Rev. Immunol. 6:535-554 (1988).

Margolies et al., "Diversity of light chain variable region sequences among rabbit antibodies elicited by the same antigens." *Proc. Nat/. Acad. Sci. USA* 72:2180-84 (Jun. 1975).

Marquart et al., "Crystallographic refinement and atomic models of the intact immunoglobulin molecule Kol and its antigen-binding fragment at 3.0 A and 1.0 A resolution" J. *Mol. Bioi.* 141(4):369-391 (Aug. 25, 1980).

Mian, IS et al., "Structure, function and properties of antibody binding sites'·' *J. Mol. Bioi.* 217(1):133-151 (Jan. 5, 1991).

Miller, R. et al., "Monoclonal antibody therapeutic trials in seven patients with T-cell lymphoma" *Blood* 62:988-995 (1983).

Morrison, S. L. et al., "Chimeric human antibody molecules: mouse antigen-binding domains with human constant
region domains" Proc. Natl. Acad. Sci. USA region domains" *Proc. Nat/. Acad. Sci. USA* 81(21):6851-6855 (Nov. 1984).

Neuberger et al., "Recombinant antibodies possessing novel effector functions" *Nature* 312(5995):604-608 (Dec. 1984). Neuberger, M. S. et al., "A hapten-specific chimaeric IgE antibody with human physiological effector function'' *Nature* 314(6008):268- 270 (Mar. 1985).

Novotny and Haber, "Structural invariants of antigen binding: comparison of immunoglobulin $V_L - V_H$ and $V_L - V_L$
domain dimers" *Proc. Natl. Acad. Sci. USA* Proc. Natl. Acad. Sci. USA 82(14):4592-4596 (Jul. 1985).

Pluckthun, Andreas, "Antibody engineering: advances from the use of *Escherichia coli* expression systems" Biotechnol*ogy* 9:545-51 (1991).

Queen, M. et al., "A humanized antibody that binds to the interleukin 2 receptor" *Proc. Nat/. Acad. Sci. USA* 86:10029-10033 (1989).

Riecbmann, L. et al., "Reshaping human antibodies for therapy" *Nature* 332:323-327 (1988).

Roitt et al. *Immunology* (Gower Medical Publishing Ltd., London, England) pp. 5.5 (1985).

Saul et al., "Preliminary refinement and structural analysis of the Fab fragment from human immunoglobulin new at 2.0 A resolution" *Journal of Biological Chemistry* 253(2):585- 597 (Jan. 25, 1978).

Schroff, R. et al., "Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy" *Cancer Research* 45:879-885 (1985).

Segal et al., "The three-dimensional structure of a phosphorylcholine-binding mouse immunoglobulin Fab and the nature of the antigen binding site" *Proc. Nat/. Acad. Sci. USA* 71(11):4298-4302 (Nov. 1974).

Shalaby et al., "Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 protooncogene" *.Tournai of Experimental Medicine* 175(1):217- 225 (Jan. 1, 1992).

Shepard and Lewis, "Resistance of tumor cells to tumor necrosis factor" *J. Clin. Immunol.* 8(5):333-395 (1988).

Sheriff et al., "Three-dimensional structure of an antibodyantigen complex" *Proc. Nail. Acad. Sci. USA* 84(22):8075-8079 (Nov. 1987).

Sherman et al., "Haloperidol binding to monoclonal antibodies" Journal of Biological Chemistry 263:4064-4074 (1988).

Silverton et al., "Three-dimensional structure of an intact human immunoglobulin" *Proc. Nat/. Acad. Sci. USA* 74:5140-5144 (1977).

Slamon et al., "Human Breast Cancer: Correlation of Relapse and Survival with Amplification of the HER-2/neu Oncogene" *Science* 235:177- 182 (1987).

Slamon et al., "Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer" *Science* 244:707-712 (1989).

Snow and Amzel, "Calculating three-dimensional changes in protein structure due to amino-acid substitutions: the variable region of immunoglobulins" *Protein: Structure,* Function, and Genetics, Alan R. Liss, Inc. vol. 1:267-279 (1986).

Sox et al., "Attachment of carbohydrate to the variable region of myeloma immunoglubulin light chains" *Proc. Nat/. Acad. Sci. USA* 66:975- 82 (Jul. 1970).

Spiegelberg et al., "Localization of the carbohydrate within the variable region of light and heavy chains of human yG myeloma proteins" *Biochemistry 9:4217-23* (Oct. 1970).

Takeda et al., "Construction of chimaeric processed immunoglobulin genes containing mouse variable and human constant region sequences" Nature 314(6010):452-454 (Apr. 1985).

Tao et al., "Role of Carbohydrate in the Structure and Effector Functions Mediated by the H uman IgG Constant Region" *J. lmmunol.* 143(8):2595-2601 (1989).

Tramontano et al., "Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the VH domains of immunoglobulins" *J- Mol- Biol* 215(1):175- 182 (Sep. 5, 1990).

Verboeyeo, M. et al., "Reshaping human antibodies: grafting an antilysozyme activity" *Science* 239(4847):1534-1536 (Mar. 25, 1988).

Waldmann, T, "Monoclonal antibodies in diagnosis and therapy" *Science* 252:1657-1662 (1991).

Wallick et al., "Glycosylation of a VH residue of a monoclonal antibody against alpha $(1 - 6)$ dextran increases its affinity for antigen" *Journal of Experimental Medicine* 168(3):1099-1109 (Sep. 1988).

Winter and Milstein, "Mao-made antibodies" *Nature* 349(6307):293-299 (Jan. 24, 1991).

Yamamoto et al., "Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor" Nature 319:230-34 (1986).

Carter et al., "High level *escherichia coli* expression and production of a bivalent humanized antibody fragment" *Bio/Teclmology* 10: 163-167 (1992).

Foote et al., "Antibody Framework Residues Affecting the Conformation of the Hypervariable Loops" *J. Mol. Biol.* 224:487-499 (1992).

Foote, J., "Humanized Antibodies'' *Nova acta Leopoldina* 61(269):103- 110 (1989).

Kabat et al., "Sequences of Proteins of Immunological Interest", Bethesda, MD:National Institute of Health pp. 14-32 (1983).

Kettleborough et al., "Humanization of a Mouse Monoclonal Antibody by CDR-grafting: the Importance of Framework Residues on Loop Conformation" *Protein Engi*neering $4(7)$:773-783 (1991).

Maeda et al., "Construction of Reshaped Human Antibodies with HIV-neutralizing Activity" Hum. Antibod. Hybrido*mas* 2:124-134 (Jul. 1991).

Riechmano et a!, "Expression of an Antibody Fv Fragment in Myeloma Cells" *J. Mol. Bioi.* 203:825-828 (1988).

Routledge et al., "A Humanized Monovalent CD3 Antibody which Can Activate Homologous Complement" *European Journal of Immunology* 21:2717-2725 (1991).

Shearman et al., "Construction, Expression and Characterization of Humanized Antibodies Directed Against the Human α/β T Cell Receptor" J. *Immunol.* 147(12):4366-4373 (Dec. 15, 1991).

Tempest et al., "Reshaping a Human Monoclonal Antibody to Inhibit Human Respiratory Syncytial Virus Infection In Vivo" *Bio/Technology* 9:266-271 (Mar. 1991).

Brown, Jr. et al., "Anti-Tac-H, a humanized antibody to the interleukin 2 receptor, prolongs primate cardiac allograft survival" *Proc. Natl. Acad. Sci. USA 88:2663-2667 (1991)*. Casale et al., "Use of an aoti-IgE humanized monoclonal antibody in ragweed-induced allergic rhinitis" J. *Allergy Clin. Immunol.* 100:110-121 (1997).

Fahy et al., "The Effect of an Aoti-IgE Monoclonal Antibody on the Early- and Late-Phase Responses to Allergen Inhalation in A~tbmatic Subjects" *Am J. Respir. Grit. Care Med* 155:1828-1834 (1997).

Mathieson et al., "Monoclonal-Antibody Therapy in Systemic Vasculitis" New England J. of Medicine pp. 250-254 (Jul. 1990).

Presta et al., "Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders" *Cancer Research* 57(20):4593-4599 (Oct. 15, 1997).

Amit et al., "Three-Dimensional Structure of an Antigen- Antibody Complex at 2.8 A Resolution" *Science* 233:747-753 (Aug. 1986).

Amzel et al., "The Three Dimensional Structure of a Combining Region-Ligand Complex of Immunglobulin New at 3.5- A Resolution" *Proc. Nat/. Acad. Sci. USA* 71(4):1427-1430 (Apr. 1974).

Baselga et al., "Phase II Study of Weekly Intravenous Recombinant Humanized Anti-p185/HER2 Monoclonal Antibody in Patients With HER2/neu-Overexpressing Metastatic Breast Cancer" J. Clin. Oncol. 14(3):737-744 (1996).

Beverley & Ca!lard, "Distinctive functional charcteristics of human "T" lymphocytes defined by E rosetting or a monoclonal anti-T cell antibody" European Journal of Immunol*ogy* 11:329- 334 (1981).

Bird et al., "Single-chain antigen-binding proteins" Science 242:423-426 (Oct. 1988).

Brennan et al., "Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G₁ fragments" *Science* 229:81-83 (Jul. 1985).

Bruccoleri et al., "Structure of antibody hypervariable loops reproduced by a conformational search algorithm" *Nature* 335:564-568 (Oct. 1988).

Caron et al., "Biological and Immunological Features of Humanized M195 (Anti-CD33) Monoclonal Antibodies" *Cancer Research 52:6761-6767 (Dec. 1992)*.

Chothia & Lesk, "The relation between the divergence of sequence and structure in proteins" *EMBO Journal* 5(4):823-826 (1986).

Co & Queen, "Humanized antibodies for therapy" *Nature* 351:501-502 (Jun. 1991).

Co et al., "Chimeric and Humanized Antibodies with Specificity for the CD33 Antigen" J. *of Immunology* 148(4):1149-1154 (Feb. 1992).

Co et a!., "Humanized Anti- Lewis Y Antibodies: In Vitro Properties and Pharmacokinetics in Rhesus Monkeys" *Cancer Research* 56:1118-1125 (Mar. 1996).

Colman et a!., "Crystal and Molecular Structure of the Dimer of Variable Domains of the Bence-Jones Protein ROY" J. *Mol. Biol.* 116:73-79 (1977).

Colman et al., "Three-dimensional structure of a complex of antibody with influenza virus neuraminidase" *Nature* 326:358-363 (Mar. 1987).

Cook et al., "A map of the human immunoglbulin V_H locus completed by analysis of the telometric region of chromosome 14q" *Nature Genetics 7:162-168* (Jun. 1994).

Darsley & Rees, "Nucleotide sequences of five anti-lysozyme monoclonal antibodies" *EMBO Journal* 4(2):393-398 (1985).

Davies & Metzger, "Structural Basis of Antibody Function" Ann. Rev. Immunol. 1:87-117 (1983).

Davies et al., "Antibody- Antigen Complexes" *Journal of Biological Chemistry* 263(22): 10541- 10544 (Aug. 1988).

Eigenbrot et al., "X-Ray Structures of Fragments From Binding and Nonbinding Versions of a Humanized Anti-CD18 Antibody: Structural Indications of the Key Role of V_H Residues 59 to 65" *Proteins* 18:49–62 (1994). Eigenbrot et al., "X-ray structures of the antigen-binding domains from three variants of humanized anti-p185HER2 antibody 4D5 and comparison with molecular modeling" *.J. Mol. Biol.* 229:969-995 (1993).

Ellison et al., "The nucleotide sequence of a human immu-
noglobulin C_{y1} gene" *Nucleic Acids Research* noglobulin Cy1 gene" *Nucleic Acids Research* 10(13):4071-4079 (1982).

Emery & Adair, "Humanised monoclonal antibodies for therapeutic applications" *Exp. Opin. Invest. Drugs* 3(3):241-251 (1994).

Epp et al., "Crystal and Molecular Structure of a Dimer Composed of the Variable Portions of the Bence-Jones Protein REI" *European.Joumal of Biochemistry* 45:513-524 (1974).

Fanger et al., "Bispecific antibodies and targeted cellular cytotoxicity" *Immunology Today* 12(2):51-54 (1991).

Fanger et al., ''Cytotoxicity mediated by human Fe receptors for IgG" *Immunology Today* 10(3):92-99 (1989).

Feldmann et al., "A Hypothetical Space-Filling Model of the V-Regions of the Galactan-Binding Myeloma Immunoglobulin .T539" *Molecular Immunology* 18(8):683-698 (1981).

Fendley et al., "The Extracellular Domain of HER2/neu Is a Potential Immunogen for Active Specific Immunotherapy of Breast Cancer" *J. Bioi. Resp. Mod.* 9:449-455 (1990).

Glennie et al., "Preparation and Performance of Bispecific F(ab'γ)₂ Antibody Containing Thioether-Linked Fab'γ Fragments" *J. Immunol.* 139(7):2367-2375 (Oct. 1, 1987).

Gonzalez et al., "Humanization of Murine 6G425:An Anti-IL8 Monoclonal Antibody Which Blocks Binding of IL8 to Human Neutrophils" *1996 Keysrone Symposia on Exploring and Exploiting Antibody and Ig Superfamily Combining Sites (Poster) pp. 1-21 (Feb. 1996).*

Gussow & Seemann, "Humanization of Monoclonal Antibodies" *Meth. Enzymology,* Academic Press, Inc. vol. 203:99- 121 (1991).

Hieter et al., "Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments" *Cell* 22 (Part 1):197-207 (1980).

Houghton, A., "Building a better monoclonal antibody'' *Immunology Today* 9(9):265-267 (1988).

Huston et al., "Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-cbaio Fv analogue produced in *Escherichia coli" Proc. Nat!. Acad. Sci. USA* 85:5879-5883 (Aug. 1988).

Isaacs eta!., "Humanised Monoclonal Antibody Therapy for Rheumatoid Arthritis" *Lancet* 340:748-752 (Sep. 26, 1992). Johnson et al., "Biological and Molecular Modeling Studies Comparing Murine Monoclonal Antibodies with Their Engineered Chimeric and Humanized Counterparts" J. *Cell. Biochem. Suppl 0 (13 Part* A) (18th Ann. UCLA Syrup on Mol. & Cell. Biol., Park City, UT Jan. 17-22, 1989) pp. 87 (1989).

Kabat E., "Origins of Antibody Complementarity and Specificity- Hypervariable Regions and the Minigenen Hypothesis" J. *of Immunology* 125(3):961-969 (Sep. 1980).

Kabat et al. *Sequences of Proreins of Immunological Inrer*est, U.S. Dept. of Health and Human Services, NIH, 5th edition vol. 1:103-108, 324-331 (1991).

Kindt & Capra *The Anribody Enigma,* New York: Plenum Press pp. 79-86 (1984).

Lesk & Chothia, "Evolution of Proteins Formed by ~-sheets" J. *Mol. Biol.* 160:325- 342 (1982).

Lesk & Chothia, "The response of protein structures to amino-acid sequence changes" Phil. Trans. R. Soc. Lond. A 317:345-356 (1986).

Mariuzza et al., "The Structure Basis of Antigen- Antibody Recognition" *Ann. Rev. Biophys. Biophys. Chern.* 16:139-159 (1987).

Nadler et al., "Immunogenicity of Humanized and Human Monoclonal Antibodies'' *Clin. Plumnacology* & *Therapeutics* pp. 180 (Feb. 1994).

Nelson, H., "Targeted Cellular Immunotherapy with Bifunctional Antibodies" *Cancer Cells* 3:163-172 (1991).

Neuberger et al., "Antibody Engineering'' *Proceedings 8th Intl. Biotech. Symp., Paris II:792-799 (1988).*

Newmark, P., "Making Chimeric Antibodies Even More Human" *Bio!Technology* 6:468 (May 1988).

Nishimura et al., "Human c-erbB-2 Proto-Oncogene Product as a Target for Bispecific- Antibody- Directed Adoptive Tumor Immunotherapy" *Int. J. Cancer* 50:800-804 (1992).

Nitta et al., "Preliminary trial of specific targeting therapy against malignant glioma" *Lancet* 335(8686):368-371 (Feb. 17, 1990).

Nitta, T. et al., "Bispecific $F(ab')_2$ monomer prepared with anti-CD3 and anti-tumor monoclonal antibodies is most potent in induction of cytolysis of human T cells" *European* Journal of Immunology 19:1437-1441 (1989).

Nolan et al., "Bifunctional antibodies: concept, production and applications" *Biochimica et Biophysica Acta* 1040:1-11 (1990).

O'Connor et al., "Calcium Dependence of an Anti- Protein C Humanized Antibody Involves Framework Residues" (manuscript).

Orlandi et a!., "Cloning Immunoglobulin Variable Domains for Expression by the Polymerase Chain Reaction" *Proc. Narl. Acad. Sci. USA* 86:3833-3837 (May 1989).

Orlandi et al., "Cloning of eDNA Corresponding to Heavy and Light Chain Immunoglobulin Variable Domains" *Prorein and Pharmaceurical Engineering* pp. 90 (1989).

Ostberg & Queen, "Human and humanized monoclonal antibodies: preclinical studies and clinical experience'' *Biochem.* Soc. *Tranmcrions* pp. 1038-1043 (1995).

Pedlan et al., "Model-building Studies of Antigen-binding Sites:The Hapten-binding Site of MOPC-315" Cold *Springs Harbor Symposia On Quantitative Biology* XLI:627-637 (1977).

Padlan, E., "Anatomy of the Antibody Molecule" *Molecular Immunology* 31(3):169-217 (1994).

Padlan, E., "Evaluation of the Structural Variation Among Light Chain Variable Domains" *Molecular Immunology* 16:287-296 (1979).

Palm & Hilschmann, "Primary structure of a crystalline monoclonal immunoglobulin K- type I.-chain, subgroup I (Bence-Jones preotin Rei); isolation & characterization of the tryptic peptides: \therefore " Hoppes-Seyler's Z. Physiol. the tryptic peptides: .. " *Hoppes-Seyler's* Z. *Physiol.* Chem. 356:167-191 (Feb. 1975).

Palm & Hilschmann, "The primary structure of a crystalline, monoclonal immunoglobulin-L-chain of the x-type, subgroup I (Bence-Jooes Protein Rei): a contribution to tbe elucidation of the three-dimensional structure of the immunoglobulins'' *Hoppe-Seyler's Z. Physiol. Chem.* 354:1651- 1654 (Dec. 1973).

Panka et al., "Variable region framework differences result in decreased or increased affinity of variant anti-digoxin antibodies" *Proc. Nat/. Acad. Sci. USA* 85:3080-3084 (May 1988).

Presta et al., "Humanization of an Antibody Directed Against IgE" J. *Immunol.* 151(5):2623-2632 (Sep. 1, 1993). Preval & Fougereau, "Specific Interaction between V_H and V, Regions of Human Monoclonal Immunoglobulins" J. *Mol. Biol.* 102:657-678 (1976).

Queen et al., "Construction of Humanized Antibodies and Testing in Primates" J. *Cell. Biochem. Suppl. 15 (Part E)* (20th Ann. Mtg. Keystone Syrup. Denver, CO Mar. 10-16, 1991) pp. 137 (1991).

Queen et al., "Humanised antibodies to the lL-2 receptor" *Protein Eng. Antibody Mol. Prophyl. Ther. Appl. Man,* Clark, M., Nottingham, UK:Academic Titles pp. 159-170 (1993).

Rhodes & Birch, "Large-Scale Production of Proteins from Mammalian Cells" *Bio/Technology* 6:518, 521, 523 (May 1988).

Riecbmann, "Humanizing of Recombinant Antibodies" (Intl. Symp. on Clin. Appl. of Monoclonal Antibodies, Guildford, England) pp. 33-34 (Sep. 1987).

Riecbmann & Winter, "Recombinant Antibodies" (U. of London Royal Postgraduate Medical School, Wolfson Institute, Abstract) (May 1987).

Riechmann et al. *Alignment of VL Sequences* (1988).

Roberts & Rees, "Generation of an antibody with enhanced affinity and specificity for its antigen by protein engineering" *Narure* 328:731- 734 (Aug. 1987).

Rostapshov et al., "Effective method for obtaining long nucleotide chains on partially complementary templates" *FEES Letters* 249(2):379-382 (Jun. 1989).

Schneider et al., "The Anti-Idiotypic Response by Cynomolgus Mondkeys to Humanized Anti-Tac Is Primarily Directed to Complementarity- Determining Regions H1, H2, and L3" J. of Immunology 150:3086-3090 (Apr. 1993).

Sedlacek et al., "Monoclonal Antibodies in Tumor Therapy", Karger pp. 119-126, 133-179 (1988).

Shields et al., " Inhibition of Allergic Reactions with Antibodies to JgE" *International Archives of Allergy and Immu*nology 107(1-3):308-312 (May 1995).

Sims et a!., "A Humanized CD18 Antibody Can Block Function Without Cell Destruction" *The Journal of Immunology* 151(4):2296-2308 (Aug. 1993).

Smith-Gill et a!., "A Three-dimensional Model of an Anti-lysozyme Antibody" Mol. Biol. 194:713-724 (1987). Songsivilai et al., "Bispecific antibody: a tool for diagnosis and treatment of disease" *Clin. Exp. Immunol.* 79:315-321 (1990).

Stanford, "A Predictive Method for Determining Possible Three-dimensional Foldings of Immunoglobulin Backbones Around Antibody Combining Sites" *Theor. Bioi.* 88:421-439 (1981).

Stickney et al., "Bifunctional Antibody: ZCE/CHA^{III}Indium BLEDTA-IV Clinical Imaging in Colorectal Carcinoma" *Antibody, Immuno Radiopharm* 2:1- 13 (1989).

Tighe et al., "Delayed Allograft Rejection in Primates Treated with Anti-IL-2 Receptor Monoclonal antibody Campath-6" *Transplanration* 45(1):226-228 (Jan. 1988).

Verhoeyen & Riechmann, "Engineering of Antibodies'' *BioEssays* 8(2):74-78 (Feb./Mar. 1988).

Verhoeyen et al., "Grafting Hypervariable Regions in Antibodies" *Protein Structure, Folding, and Design 2* (Proc. DuPont-UCLA Symp. Streamboat Springs, CO, Apr. 4-11, 1987), Dale L. Oxender, New York:Alan R. Liss, Inc. pp. 501- 502 (1987).

Verhoeyen et al., "Humanising Mouse Antibodies: A Protein Engineering Approach" *Soc. for Analytical Cytology* (Xllth Inti. Mtg. for the Soc. for Analytical Cytology, Cambridge, UK) pp. 22 and slide presented at mtg.

Verhoeyen et al., "Re-shaped human anti-PLAP antibodies" *Monoclonal Antibodies Applications in clinical oncology,* Epenetos, 1st edition, Chapman & Hall Medical pp. 37-43 (1991).

Ward et a!., "Expression and Secretion of Repertoires of VH Domains in *Escherichia coli:* Isolation of Antigen Binding Activites" Progress in Immunology (7th Intl. Congress Immunol. Berlin, W. Germany), F. Melchers vol. VII:1144-1151 (1989).

Ward, E.S. et al., "Binding activities of a repertoire of single immunoglobulin variable domains secreted from *Escherichia coli'' Nature* 341:544- 546 (1989).

Werther et al., "Humanization of an Anti-Lymphocyte Function- Associated Antigen (LFA)-1 Monoclonal Antibody and Reengineering of the Humanized Antibody for Binding to Rhesus LFA- 1" J. *of Jmmurwlogy* pp. 4986-4995 (1996). Whittle et a!., "Construction and Expression of A

CDR- Grafted Anti-TNF Antibody" *J. Cell Biochem. Suppl. 0* (Symp. on Protein and Pharm. Eng. Mol. and Cell. Bioi. Park City, Utah)13 Part A:96 (1989).

Winter & Neuberger, "Restructuring Enzymes and Antibodies" *Investigation and Exploitation of Antibody Combining Siles,* Eric Reid, Plenum Press pp. 139- 140 (1985).

Winter el al., "Protein Engineering by Site Directed Mutagenesis" *Chemical Synthesis in Molecular Biology,* H. Blocker et al., VCH pp. 189-197 (1987).

Winter G., "Antibody Engineering" *Phil. Trans. R. Soc.* Land. B 324:99-109 (1989).

Woodle et al., ''Humanized OKT3 Antibodies: Successful Transfer of Immune Modulating Properties and ldiotype Expression" J. of Immunology 148(9):2756-2763 (May 1992).

* cited by examiner

U.S. Patent

Jun. 18, 2002

Sheet 1 of 9

US 6,407,213 B1

 V_L -CDR1

 $\{\ddagger\ddagger\}$

30

40

FIG. 1A

20

10

1111

4D5

HU4D5

 HUV_LKI

Board Ass gned Page #416

PFIZER EX. 1595 Page 569

PFIZER EX. 1595 Page 570

Board Ass gned Page #417

HU4D5 GQGTLVTVSS **HUV_HIII** GQGTLVTVSS

- $4D5$ GQGASVTVSS
- 110
- V_H -CDR2 V_H -CDR1 60 70 80 ABC 90 100ABC GYTRYDPKFQDKATITADTSSNTAYLQVSRLTSEDTAVYYCSRWGGDGFYAMDYW 4D5 88 B 11111111 **HU4D5** GYTRYADSVKGRFTISA DTSKNTAYLOMNSLRAEDTAVYYCSRWGGDGFYAMDVW $1 - 11$ HUV_HIII SDTYYADSVKGRFTISRDDSKNTLYLQMNSLRAEDTAVYYCARDRGGAVSYFDVW
- 10 20 30 40 50 \mathbf{A} EVQLQQSGPELVKPGASLKLSCTASGFNIKDTYIHWVKQRPEQGLEWIGRIYPTN $4D5$ HU4D5 EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARIYPTN EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYAMSWVRQAPGKGLEWVAVIS **HUV_HIII**
- FIG. 1B

U.S. Patent

Jun. 18, 2002

 V_H -CDR3

Board Ass gned Page #418 Page 571 PFIZER EX. 1595 PFIZER EX. 1595 Page 571

FIG. 3 FIG. 3

FIG. 4

PFIZER EX. 1595 Page 573

Board Ass gned Page #420

 $\bm{\mathrm{v}}_\text{L}$ muxCDJ huxCD3Vl hukI 10 20 30 40 DIQMTQTTSSLSASLGDRVTISCRASQDIRNYLNWYQQKP
DIQMTQSPSSLSASVGDRVTITCRASQDIRNYLNWYQQKP
- "DIQMTQSPSSLSASVGDRVTITCRASQDIRNYLNWYQQKP DIQMTQSPSSLSASVGDRVTITCRASQSISNYLAWYQQKP6 $\hat{c}\hat{c}\hat{r}$ $\hat{c}\hat{i}$

muxCDJ huxCD3v1 hUKI 50 60 70 80 DGTVKLLIYYTSRLHSGVPSKFSGSGSGTDYSLTISNLEQ **** * * * * ** GKAPKLLIYYTSRLESGVPSRFSGSGSGTDYTLTISSLQP *## # #* GKAPKLLIYAASSLESGVPSRFSGSGSGTDFTLTISSLQP CDR-L2

 $v_{\rm H}$ muxCDJ huxCD3v1 huIII $10 \t 20 \t 30 \t 40$ EVQLQQSGPELVKPGASMKISCKASGYSFTGYTMNWVKQS EVQLVESGGGLVQPGGSLRLSCAASGYSFTGYTMNWVRQA *## ## # #* EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQA $\frac{1}{2}$

muxCD3 huxCDJvl HuIII 50 60 70 HGKNLEWMGLINPYKGVSTYNQKFKDKATLTVDKSSSTAY
PGKGLEWVALINPYKGVTTYADSVKGRFTISVDKSKNTAY *## #### # # # # #* PGKGLEWVS<u>VISGDGGSTYYADSVKG</u>RFTISRDNSKNTLY ^{AA}CDR-H₂

muxCDJ huxCD3v1 huIII 80 abc 90 **100abcde** 110 MELLSLTSEDSAVYYCARSGYYGDSDWYFDVWGAGTTVTVSS L QMNSLRAEDTAVYYCARSGYYGDSDWYFDVWGQGTLVTVSS LQMNSLRAEDTAVYYCARGRVGYSLSGLYDYWGQGTLVTVSS D E T S **AAAAAAAAAAA** CDR-HJ

FIG. 5

Board Ass gned Page #422

<u>م</u> \cong =

c=

(J) $\overline{}$ \overline{u} $^{0.10}$

 $\overline{\bullet}$

2002

 \mathbf{c} Ξ . 'N **1-1** $\bf \Xi$

FIG. BA-2

Board Ass gned Page #423

 \subset

• \overline{z}

=

N g N

 \sim $\frac{1}{2}$ ∞ ¢ -.

 σ

7,213

 \mathbf{E}

FIG. 68

Board Ass gned Page #424

 \mathbf{C} <u>م</u> \cong =

 \mathbf{c}

 Ξ . \mathbf{z}_1

t::d **1-1**

25

METHOD FOR MAKING HUMANIZED **ANTIBODIES**

CROSS REFERENCES

This application is a continuation-in-part of U.S. application Ser. No. 07/715,272 filed Jun. 14, 1991 (abandoned) which application is incorporated herein by reference and to which application priority is claimed under 35 USC §120.

FIELD OF THE INVENTION

This invention relates to methods for the preparation and use of variant antibodies and finds application particularly in the fields of immunology and cancer diagnosis and therapy.

BACKGROUND OF THE INVENTION

Naturally occurring antibodies (immunoglobulins) comprise two heavy chains linked together by disulfide bonds and two light chains, one light chain being linked to each of the heavy chains by disulfide bonds. Each heavy chain bas at one end a variable domain (V_H) followed by a number of constant domains. Each light chain bas a variable domain (V_L) at one end and a constant domain at its other end, the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with tbe variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light and heavy chain variable domains, see e.g. Chothia et al., J. *Mol. Bioi.* 186:651-663 (1985); Novotny and Haber, Proc. Natl. Acad. Sci. USA 82:4592-4596 (1985).

The constant domains are not involved directly in binding the antibody to an antigen, but are involved in various effector functions, such as participation of the antibody in antibody-dependent cellular cytotoxicity. The variable domains of each pair of light and heavy chains are involved directly in binding the antibody to the antigen. The domains of natural light and heavy chains have tbe same general structure, and each domain comprises four framework (FR) regions, whose sequences are somewhat conserved, connected by three hyper-variable or complementarity determining regions (CDRs) (see Kabat, E. A eta., *Sequences of* Proteins of Immunological Interest, National Institutes of Health, Bethesda, Md., (1987)). The four framework regions largely adopt a β -sheet conformation and the CORs form loops connecting, and in some cases forming part of, the β -sheet structure. The CDRs in each chain are held in close proximity by the framework regions and, with the CDRs from the other chain, contribute to the formation of the antigen binding site.

Widespread use has been made of monoclonal antibodies, particularly those derived from rodents including mice, however they are frequently antigenic in human clinical use. For example, a major limitation in the clinical use of rodent 55 monoclonal antibodies is an anti-globulin response during therapy (Miller, R. A. et al., *Blood* 62:988-995 (1983); Schroff, R. W. et al., *Cancer Res.* 45:879-885 (1985)).

The art has attempted to overcome this problem by constructing "chimeric" antibodies in which an animal 60 *Proc. Nat/. Acad. Sci. USA* 86:10029- 10033 (1989)) frameantigen-binding variable domain is coupled to a human constant domain (Cabilly et al., U.S. Pat. No. 4,816,567; Morrison, S. L. et al., Proc. Natl. Acad. Sci. USA 81:6851- 6855 (1984); Boulianne, G. L. et al., *Namre* 312:643- 646 (1984); Neuberger, M. S. et al., *Nature* 314:268- 270 (1985)). The term "chimeric" antibody is used herein to describe a polypeptide comprising at least the

antigen binding portion of an antibody molecule linked to at least part of another protein (typically an immunoglobulin constant domain).

The isotype of the human constant domain may be selected to tailor the chimeric antibody for participation in antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (see e.g. Bruggemann, M. et al., J. *Exp. Med.* 166:1351-1361 (1987); Riecbmann, L. et al., *Nawre* 332:323- 327 (1988); Love et al., *Methods* tO in *Enzymology* 178:515- 527 (1989); Bindon et al., J. *Exp.* Med. 168:127-142 (1988).

In tbe typical embodiment, such chimeric antibodies contain about one third rodent (or other non-human species) sequence and thus are capable of eliciting a significant anti-globulin response in humans. For example, in the case of the murine anti-CD3 antibody, OKT3, much of the resulting anti-globulin response is directed against the variable region rather than the constant region (Jafters, G. J. et a., *Transplantation* 41:572-578 (1986)).
²⁰ In a further effort to resolve the antigen binding functions

of antibodies and to minimize the use of heterologous sequences in human antibodies, Winter and colleagues (Jooes, P. T. et a!., *Nature* 321:522- 525 (1986); Riechmann, L. et al., *Nature* 332:323-327 (1988); Verhoeyen, M. et al., *Science* 239:1534-1536 (1988)) have substituted rodent CDRs or CDR sequences for the corresponding segments of a human antibody. As used herein, the term "humanized" antibody is an embodiment of chimeric antibodies wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a noo-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues ₃₅ from analogous sites in rodent antibodies.

The therapeutic promise of this approach is supported by the clinical efficacy of a humanized antibody specific for the CAMPAfH-1 antigen with two non-Hodgkin lymphoma patients, one of whom had previously developed an antiglobulin response to the parental rat antibody (Riechmann, L. et al., Nature 332:323-327 (1988); Hale, G. et al., *Lancet* $i:1394-1399$ (1988)). A murine antibody to the interleukin 2 receptor bas also recently been humanized (Queen, C. et al., *Proc. Nat!. Acad. Sci. USA* 86:10029-10033 (1989)) as a 45 potential immunosuppressive reagent. Additional references related to humanization of antibodies include Co et al., *Proc. Nail. Acad. Sci. USA* 88:2869- 2873 (1991); Gorman et al., *Proc. Nat!. Acad. Sci. USA* 88:4181-4185 (1991); Daugherty et al., *Nucleic Acids Research* 19(9):2471- 2476 (1991); 50 Brown et al., *Proc. Natl. Acad. Sci. USA 88*:2663-2667 (1991); Junghans et al., *Cancer Research* 50:1495-1502 (1990).

In some cases, substituting CDRs from rodent antibodies for the human CDRs in human frameworks is sufficient to *transfer high antigen binding affinity (Jones, P. T. et al., Nature* 321:522- 525 (1986); Verhoeyen, M. et al., *Science* 239:1534-1536 (1988)), whereas in other cases it has been necessary to additionally replace one (Riechmann, L. et al., *Nature* 332:323-327 (1988)) or several (Queen, C. et al., work region (FR) residues. See also Co et al., supra.

For a given antibody a small number of FR residues are anticipated to be important for antigen binding. Firstly for example, certain antibodies have been shown to contain a 65 few FR residues wbicb directly contact antigen in crystal structures of antibody-antigen complexes (e.g., reviewed in Davies, D. R. et al., Ann. Rev. Biochem. 59:439-473 (1990)).

Secondly, a number of FR residues have been proposed by Chothia, Lesk and colleagues (Chothia, C. & Lesk, A M.,J. *Mol. Biol.* 196:901-917 (1987); Chothia, C. et al., *Nature* 342:877-883 (1989); Tramontano, A et al., *J . Mol. Bioi.* 215:175-182 (1990)) as critically affecting the conformation 5 of particular CDRs and thus their contribution to antigen binding. See also Margolies et a!., *Proc. Nat!. Acad. Sci. USA* 72:2180-2184 (1975).

It is also known that, in a few instances, an antibody variable domain (either V_H or V_L) may contain glycosyla- ₁₀ lion sites, and that this glycosylation may improve or abolish antigen binding, Pluckthun, *Biotechnology* 9:545-51 (1991); Spiegelberg et al., *Biochemistry* 9:4217-4223 (1970); Wallic et al., *J. Exp. Med.* 168:1099-1109 (1988); Sox et al., *Proc. Nail. Acad. Sci. USA* $66:975-982$ (1970); Margni et al., *Ann. Rev. Immunol* 6:535-554 (1988). Ordinarily, however, glycosylation has no influence on the antigen-binding properties of an antibody, Pluckthun, supra, (1991).

The three-dimensional structure of immunoglobulin $_{20}$ chains bas been studied, and crystal structures for intact immunoglobulins, for a variety of immunoglobulin fragments, and for antibody-antigen complexes have been published (see e.g., Saul et al., *Journal of Biological Chemistry* 25:585-97 (1978); Sheriff et al., *Proc. Natl. Acad. Sci.* 25 *USA* 84:8075- 79 (1987); Segal et *al.,Proc. Nat/. Acad. Sci. USA* 71:4298-4302 (1974); Epp et al., *Biochemistry* 14(22) :4943-4952 (1975); Marquart et al., *J. Mol. Bioi.* 141:369- 391 (1980); Furey et ai.,.J. *Mol Bioi.* 167:661-692 (1983); Snow and Amzel, *Protein: Structure, Function, and* ₃₀ Genetics 1:267-279, Alan R. Liss, Inc. pubs. (1986); Chothia and Lesk, *J. Mol. Bol.* 196:901-917 (1987); Chothia et al., *Nature* 342:877-883 (1989); Chothia et a!., *Science* 233:755- 58 (1986); Huber et al., *Nature* 264:415-420 (1976); Bruccoleri et a!., *Nature* 335:564- 568 (1988) and 35 *Nature* 336:266 (1988); Sherman et al., *Journal of Biological ChemisTry* 263:4064-4074 (1988); Amzel and Poljak, *Ann. Rev. Biochem.* 48:961- 67 (1979); Silverton et *al.,Proc. Nat!. Acad. Sci. USA* 74:5140-5144 (1977); and Gregory et a!., *Molecular Immunology* 24:821-829 (1987). It is known 40 following description and the appended claims. that the function of an antibody is dependent on its three dimensional structure, and that amino acid substitutions can change the three-dimensional structure of an antibody, Snow and Amzel, supra. It has previously been shown that the antigen binding affinity of a humanized antibody can be 45 increased by mutagenesis based upon molecular modelling (Riechmann, L. et al., *Nature* 332:323- 327 (1988); Queen, C. et a!., *Proc. Nat/. Acad. Sci. USA* 86:10029- 10033 (1989)).

Humanizing an antibody with retention of high affinity for ϵ_0 antigen and other desired biological activities is at present difficult to achieve using currently available procedures. Methods are needed for rationalizing the selection of sites for substitution in preparing such antibodies and thereby increasing the efficiency of antibody humanization. *55*

The proto-oncogene HER2 (human epidermal growth factor receptor 2) encodes a protein tyrosine kinase $(n185^{HER2})$ that is related to and somewhat homologous to the human epidermal growth factor receptor (see Coussens, L. et al., *Science* 230:1132-1139 (1985); Yamamoto, T. et 60 al., *Nature* 319:230-234 (1986); King, C. R. et al., *Science* 229:974-976 (1985)). HER2 is also known in the field as c-erbB-2, and sometimes by the name of the rat homolog, neu. Amplification and/or overexpression of HER2 is associated with multiple human malignancies and appears to be 65 integrally involved in progression of 25-30% of human breast and ovarian cancers (Slamon, D. J. et a!., *Science*

235:177- 182 (1987), Slamon, D. J. et al., *Science* 244:707-712 (1989)). Furthermore, the extent of amplification is inversely correlated with the observed median patient survival time (Slamon, supra, Science 1989).

The murine monoclonal antibody known as muMAb4D5 (Fendly, B. M. et al., *Cancer Res.* 50: 1550-1558 (1990)), directed against the extracellular domain (ECD) of p185HERZ, specifically inhibits the growth of tumor cell lines overexpressing $p185^{HER2}$ in monolayer culture or in soft agar (Hudziak, R. M. et al., *Malec. Cell. Bioi* 9:1165-1172 (1989); Lupu, R. et a!., *Science* 249:1552- 1555 (1990)). MuMAb4D5 also has the potential of enhancing tumor cell sensitivity to tumor necrosis factor, an important effector molecule in macrophage-mediated tumor cell cytotoxicity (Hudziak, supra, 1989; Shepard, H. M. and Lewis, G. D. *J. Clinical Immunology 8:333-395 (1988)*). Thus muMAb4D5 bas potential for clinical intervention in and imaging of carcinomas in which $p185^{HER2}$ is overexpressed. The muMAb4D5 and its uses are described in PCf application WO 89/06692 published Jul. 27, 1989. This murine antibody was deposited with the ATCC and designated ATCC CRL 10463. However, this antibody may be immunogenic in humans.

It is therefore an object of this invention to provide methods for the preparation of antibodies which are less antigenic in humans than non-human antibodies but have desired antigen binding and other characteristics and activities.

It is a further object of this invention to provide methods for the efficient humanization is of antibodies, i.e. selecting non-human amino acid residues for importation into a human antibody background sequence in such a fashion as to retain or improve the affinity of the non-human donor antibody for a given antigen.

It is another object of this invention to provide humanized antibodies capable of binding *p185HERz.*

Other objects, features, and characteristics of the present invention will become apparent upon consideration of the

SUMMARY OF THE INVENTION

The objects of this invention are accomplished by a method for making a humanized antibody comprising amino acid sequence of an import, non-human antibody and a human antibody, comprising the steps of:

- a. obtaining the amino acid sequences of at least a portion of an import antibody variable domain and of a consensus variable domain;
- b. identifying Complementarity Determining Region (CDR) amino acid sequences in the import and the human variable domain sequences;
- c. substituting an import CDR amino acid sequence for the corresponding human CDR amino acid sequence;
- d. aligning the amino acid sequences of a Framework Region (FR) of the import antibody and the corresponding FR of the consensus antibody;
- e. identifying import antibody FR residues in the aligned FR sequences that are non-homologous to the corresponding consensus antibody residues;
- f. determining if the non-homologous import amino acid residue is reasonably expected to have at least one of the following effects:
	- 1. non-covalently binds antigen directly,
	- 2. interacts with a CDR; or
	- 3. participates in the $V_t V_H$ interface; and

g. for any non-homologous import antibody amino acid residue which is reasonably expected to have at least one of these effects, substituting that residue for the corresponding amino acid residue in the consensus antibody FR sequence.

Optionally, the method of this invention comprises the additional steps of determining if any non-homologous residues identified in step (e) are exposed on the surface of the domain or buried within it, and if the residue is exposed but bas none of the effects identified in step (1), retaining the consensus residue.

Additionally, in certain embodiments the method of this invention comprises the feature wherein the corresponding consensus antibody residues identified in step (e) above are selected from the group consisting of 4L, 35L, 36L, 38L, 43L, 44L, 46L, 58L, 62L, 63L, 64L, 65L, 66L, 67L, 68L, 69L, 70L, 71 L, 73L, 8SL, 87L, 98L, 2H, 4H, 24H, 36H, 37H, 39H, 43H, 4SH, 49H, 58H, 60H, 67H, 68H, 69H, 70H, 73H, 74H, 75H, 76H, 78H, 91H, 92H, 93H, and 103H (utilizing the numbering system set forth in Kabat, E. A et al., *Sequences of Proteins of Immunological Interest* 20 the non-human antibody from which the non-human CDR (National Institutes of Health, Bethesda, Md., 1987)).

In certain embodiments, the method of this invention other than those set forth in this group has been substituted. comprises the additional steps of searching either or both of the import, non-human and the consensus variable domain sequences for glycosylation sites, determining if the glyco- $_{25}$ homology with the following sequences. sylation is reasonably expected to be important for the desired antigen binding and biological activity of the antibody (i.e., determining if the glycosylation site binds to antigen or changes a side chain of an amino acid residue that binds to antigen, or if the glycosylation enhances or weakens 30 antigen binding, or is important for maintaining antibody affinity). If the import sequence bears the glycosylation site, it is preferred to substitute that site for the corresponding residues in the consensus human if the glycosylation site is reasonably expected to be important. If only the consensus 35 sequence, and not the import, bears the glycosylation site, it is preferred to eliminate that glycosylation site or substitute therefor the corresponding amino acid residues from the import sequence.

Another embodiment of this invention comprises aligning 40 import antibody and the consensus antibody FR sequences, identifyiog import antibody FR residues which are nonhomologous with the aligned consensus FR sequence, and for each such non-homologous import antibody FR residue, determining if the corresponding consensus antibody resi- ⁴⁵ sequences are provided: due represents a residue which is highly conserved across all species at that site, and if it is so conserved, preparing a humanized antibody which comprises the consensus antibody amino acid residue at that site.

Certain alternate embodiments of the methods of this 50 invention comprise obtaining the amino acid sequence of at least a portion of an import, non-human antibody variable domain having a CDR and a FR, obtaining the amino acid sequence of at least a portion of a consensus antibody variable domain having a CDR and a FR, substituting the *55* non-human CDR for the human CDR in the consensus antibody variable domain, and then substituting an amino acid residue for the consensus amino acid residue at at least one of the following sites:

- a. (in the FR of the variable domain of the light chain) 4L, 60 3SL, 36L, 38L, 43L, 44L, 58L, 46L, 62L, 63L, 64L, 65L, 66L, 67L, 68L, 69L, 70L, 71L, 73L, 85L, 87L, 98L, or
- b. (in the FR of the variable domain of the heavy chain) 2H, 4H, 24H, 36H, 37H, 39H, 43H, 45H, 49H, 58H, 65 60H, 67H, 68H, 69H, 70H, 73H, 74H, 75H, 78H, 91H, 92H, 93H, and 103H.

In preferred embodiments, the non-CDR residue substituted at the consensus FR site is the residue found at the corresponding location of the non-human antibody.

Optionally, this just-recited embodiment comprises the additional steps of following the method steps appearing at the beginning of this summary and determining whether a particular amino acid residue can reasonably be expected to have undesirable effects.

This invention also relates to a humanized antibody 10 comprising the CDR sequence of an import, non-human antibody and the FR sequence of a human antibody, wherein an amino acid residue within the buman FR sequence located at any one of the sites 4L, 3SL, 36L, 38L, 43L, 44L, 46L, 58L, 62L, 63L, 64L, 65L, 66L, 67L, 68L, 69L, 70L, 1s 2H, 4H, 24H, 36H, 37H, 39H, 43H, 45H, 49H, 58H, 60H, 67H, 68H, 69H, 70H, 73H, 74H, 75H, 76H, 78H, 91H, 92H, 93H, and 103H has been substituted by another residue. In preferred embodiments, the residue substituted at the human FR site is the residue found at the corresponding location of was obtained. In other embodiments, no human FR residue

This invention also encompasses specific humanized antibody variable domains, and isolated polypeptides having

- 1. SEQ. ID NO. 1, which is the light chain variable domain of a humanized version of muMAb4D5: DIQMTOSPSSLSASVGDRVTITCRASQD-VNTAVAWYQQKPGKAPKLLIYSASFLES-G VPS RFS GS RS GTD FTLTISS LQPED FA-TYYCQQHYITPPTFGQGTKVEIKRT
- 2. SEQ. ID NO. 2, which is the heavy chain variable domain of a humanized version of muMAb4D5): EVQLVESGGGLVOPGGSLRLSCAASGFNIK DTYIHWVRQAPGKGLEWVARIYPTNGYTRY ADSVKGRFTISADTSKNTAYLQMNSLRAED TAVYYCSRWGGDGFYAMDVWGQGTLVTVSS

In another aspect, this invention provides a consensus antibody variable domain amino acid sequence for use in the preparation of humanized antibodies, methods for obtaining, using, and storing a computer representation of such a consensus sequence, and computers comprising the sequence data of such a sequence. In one embodiment, the following consensus antibody variable domain amino acid

- SEQ. ID NO. 3 (light chain): DDIOMTQSPSSLSAS-VGDRVTITCRASQDVSSYLAWYQQKPGKAPKLL IYAASSLESGVPSRFSGSGSGTD FTLTISSLQP EDFATYYCQQYNSLPYfFGQGTKVEIKRT, and
- SEQ. ID NO. 4 (heavy chain): EVQLVESGGGLVQPG GSLRLSCAASGFTFSDYAMSWVRQAPGKGL EWVAVISENGGYfRYADSVKGRFTISADTSKNT AYLQMNSLRAEDTAWYCSRWGGDGFYAMD **VWGQGTLVTVSS**

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A shows the comparison of the V_L domain amino acid residues of muMAb4D5, huMAb4D5, and a consensus sequence (FIG. 1A, SEQ,ID NO. 5, SEQ. ID NO. 1 and SEQ. ID NO.3, respectively). FIG. 1B shows the comparison between the V_H domain amino acid residues of the muMAb4D5, huMAb4D5, and a consensus sequence (FIG. l B, SEQ. ID NO. 6, SEQ. ID NO. 2 and SEQ. ID NO. 4, respectively). Both FIGS. 1A and 1B use the generally accepted numbering scheme from Kabat, E. A, et al., *Sequences of Proteins of Immunological /merest* (National Institutes of Health, Bethesda, Md. (1987)). In both FIG. 1A

Board Ass gned Page #427

and FIG. 1B, the CDR residues determined according to a standard sequence definition (as in Kabat, E. A. et al., *Sequences of Proteins of Immunological Interest* (National Institutes of Health, Bethesda, Md., 1987)) are indicated by residues determined according to a structural definition (as in Chothia, C. & Lesk, A. M., J. *Mol. Biol.* 196:901-917 (1987)) are indicated by the second, lower underlines. The mismatches between genes are shown by the vertical lines.

 V_I and V_H by gene conversion mutagenesis.

PIG. 3 shows the inhibition of SK-BR-3 proliferation by MAb4D5 variants. Relative cell proliferation was determined as described (Hudziak, R. M. eta!., *Malec. Cell. Biol.* 9:1165-1172 (1989)) and data (average of triplicate determinations) are presented as a percentage of results with $_{15}$ untreated cultures for muMAb4D5 (\bullet), huMAb4D5-8 (\circ) and huMAb4D5-1 $($ $\Box)$.

FIG. 4 shows a stereo view of α -carbon tracing for a \qquad a non-human immunoglobulin. model of huMAb4D5-8 V_L and V_H . The CDR residues (Kabat, E. A. et al., *Sequences of Proteins of Immunological lnleresl* (National Institutes of Health, Bethesda, Md., 1987)) are shown in bold and side chains of V_H residues A71, T73, A78, S93, Y102 and V_L residues Y55 plus R66 (see Table 3) are shown.

FIG. 5 shows an amino acid sequence comparison of V_I (top panel) and V_H (lower panel) domains of the murine $_{25}$ anti-CD3 monoclonal Ab UCHT1 (muxCD3, Shalaby et al., J. *Exp. Med.* 175, 217–225 (1992) with a humanized variant of this antibody (huxCD3v1). Also shown are consensus sequences (most commonly occurring residue or pair of residues) of the most abundant human subgroups, namely V_L \ltimes 1 and V_H III upon which the humanized sequences are based (Kabat, E. A. et al., *Sequences of Proteins of immunological Interest,* $5th$ edition, National Institutes of Health, muxCD3, huxCD3v1 and huKI-correspond to SEQ.ID. NOs 16, 17, and 18, respectively. The heavy chain sequences—muxCD3, huxCD3v1 and huxl—correspond to SEQ.ID.NOs 19, 26, and 21, respectively. Residues which differ between muxCD3 and huxCD3v1 are identified by an asterisk (*), whereas those which differ between humanized and consensus sequences are identified by a sharp sign (#). A bullet $(•)$ denotes that a residue at this position has been found to contact antigen in one or more crystallographic structures of antibody/antigen complexes (Kabat et al., 1991; Mian, I. S. et al., *J. Mol. Biol* 217, 133-151 (1991)). The location of CDR residues according to a sequence definition (Kabat et al., 1991) and a structural definition 45 (Chothia and Lesk, supra 1987) are shown by a line and carats $($) beneath the sequences, respectively.

PIG. 6A compares murine and humanized amino acid sequences for the heavy chain of an anti-CD18 antibody. H52H4-160 (SEQ. ID. NO. 22) is the murine sequence, and $652-8.0$ (SEQ. ID. NO. 22) is the humanized heavy chain 50 sequence. pH52-8.0 residue 143S is the final amino acid in the variable heavy chain domain V_H, and residue 144A is the first amino acid in the constant heavy chain domain C_{H1} .

PIG. 6B compares murine and humanized amino acid sequences for the light chain of an anti-CD18 antibody. H52L6-158 (SEQ. ID. NO. 24) is the murine sequence, and pH52-9.0 (SEQ. ID. NO. 25) is the humanized light chain sequence. pH52-9.0 residue 128T is the final amino acid in the light chain variable domain V_L , and residue 129V is the first amino acid in the light chain constant domain C_L . 60 those of the parental FR and CDR sequences, more often

DETAILED DESCRIPTION OF THE INVENTION

Definitions

In general, the following words or phrases have the 65 indicated definitions when used in the description, examples, and claims:

The murine monoclonal antibody known as muMAb4D5 (Fendly, B. M. et al., *Cancer Res.* 50:1550-1558 (1990)) is directed against the extracellular domain (ECD) of $p185$ ^{HER2}. The muMAb4D5 and its uses are described in PCT application WO 89/06692 published Jul. 27, 1989. This murine antibody was deposited with the ATCC and designated ATCC CRL 10463. In this description and claims, the terms muMAb4D5, chMAb4D5 and huMAb4D5 represent FIG. 2 shows a scheme for humanization of muMAb4D5 murine, chimerized and humanized versions of the mono-
and V_{12} by gene conversion mutagenesis.

> A humanized antibody for the purposes herein is an immunoglobulin amino acid sequence variant or fragment thereof which is capable of binding to a predetermined antigen and which comprises a FR region having substantially the amino acid sequence of a human immunoglobulin and a CDR having substantially the amino acid sequence of

Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is 20 non-human. These non-human amino acid residues are referred to herein as "import'' residues, which are typically taken from an "import" antibody domain, particularly a variable domain. An import residue, sequence, or antibody has a desired affinity and/or specificity, or other desirable antibody biological activity as discussed herein.

In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains (Fab, Fab', F(ab')₂, Fabc, Fv) in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fe), typically that of a human immunoglobulin. Ordinarily, the antibody will contain both the light chain as well as at least the variable domain of a heavy chain. The antibody also may include the CH1, hinge, CH2, CH3, and CH4 regions of the heavy chain.

The humanized antibody will be selected from any class of immunoglobulins, including IgM, IgG, IgD, lgA and IgE, and any isotype, including lgG1, lgG2, lgG3 and lgG4. Usually the constant domain is a complement fixing constant domain where it is desired that the humanized antibody exhibit cytotoxic activity, and the class is typically $\lg G_1$. Where such cytotoxic activity is not desirable, the constant domain may be of the $\lg G_2$ class. The humanized antibody may comprise sequences from more than one class or isotype, and selecting particular constant domains to optimize desired effector functions is within the ordinary skill in the art.

The FR and CDR regions of the humanized antibody need not correspond precisely to the parental sequences, e.g., the import CDR or the consensus FR may be mutagenized by substitution, insertion or deletion of at least one residue so that the CDR or FR residue at that site does not correspond to either the consensus or the import antibody. Such mutations, however, will not be extensive. Usually, at least 75% of the humanized antibody residues will correspond to 90%, and most preferably greater than 95%.

In general, humanized antibodies prepared by the method of this invention are produced by a process of analysis of the parental sequences and various conceptual humanized products using three dimensional models of the parental and humanized sequences. Three dimensional immunoglobulin models are commonly available and are familiar to those

Board Ass gned Page #428

skilled in the art. Computer programs are available which illustrate and display probable three dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen.

Residues that influence antigen binding are defined to be residues that are substantially responsible for the antigen affinity or antigen specificity of a candidate immunoglobulin, in a positive or a negative sense. The invention is directed to the selection and combination of FR residues from the consensus and import sequence so that the desired immunoglobulin characteristic is achieved. Such desired characteristics include increases in affinity and greater specificity for the target antigen, although it is conceivable that in some circumstances the opposite effects might be desired. In general, the CDR residues are directly and most substantially involved in influencing antigen binding (although not all CDR residues are so involved and therefore need not be substituted into the consensus sequence). However, FR residues also have a significant effect and can exert their influence in at least three ways: effect and can exert their immence in at least time ways.
They may noncovalently directly bind to antigen, they may 25 measures interactions are selected for substitution into the interact with CDR residues and they may affect the interface between the heavy and light chains.

A residue that noncovalently directly binds to antigen is one that, by three dimensional analysis, is reasonably expected to noncovalently directly bind to antigen. 30 Typically, it is necessary to impute the position of antigen from the spatial location of neighboring CDRs and the dimensions and structure of the target antigen. In general, only those humanized antibody residues that are capable of forming salt bridges, hydrogen bonds, or hydrophobic interactions are likely to be involved in non-covalent antigen binding, however residues which have atoms which are separated from antigen spatially by 3.2 Angstroms or Jess may also non-covalently interact with antigen. Such residues typically are the relatively larger amino acids having the side $_{40}$ chains with the greatest bulk, such as tyrosine, arginine, and lysine. Antigen-binding FR residues also typically will have side chains that are oriented into an envelope surrounding the solvent oriented face of a CDR which extends about 7 Angstroms into the solvent from the CDR domain and about 45 7 Angstroms on either side of the CDR domain, again as visualized by three dimensional modeling.

A residue that interacts with a CDR generally is a residue that either alfects the conformation of the CDR polypeptide backbone or forms a noncovalent bond with a CDR residue 50 side chain. Conformation-affecting residues ordinarily are those that change the spatial position of any CDR backbone atom (N, Ca, C, O, C β) by more than about 0.2 Angstroms. Backbone atoms of CDR sequences are displaced for example by residues that interrupt or modify organized structures such as beta sheets, helices or loops. Residues that can exert a profound affect on the conformation of neighboring sequences include proline and glycine, both of which are capable of introducing bends into the backbone. Other residues that can displace backbone atoms are those that are 60 capable of participating in salt bridges and hydrogen bonds.

A residue that interacts with a CDR side chain is one that is reasonably expected to form a noncovalent bond with a CDR side chain, generally either a salt bridge or hydrogen bond. Such residues are identified by three dimensional 65 positioning of their side chains. A salt or ion bridge could be expected to form between two side chains positioned within

about 2.5-3.2 Angstroms of one another that bear opposite charges, for example a lysinyl and a glutamyl pairing. A hydrogen bond could be expected to form between the side chains of residue pairs such as seryl or threonyl with aspartyl or glutamyl (or other hydrogen accepting residues). Such pairings are well known in the protein chemistry art aod will be apparent to the artisan upon three dimensional modeling of the candidate immunoglobulin.

Immunoglobulin residues that affect the interface between 10 heavy and light chain variable regions ("the V_L-V_H interface") are those that affect the proximity or orientation of the two chains with respect to one another. Certain residues involved in interchain interactions are already known and include V_L residues 34, 36, 38, 44, 46, 87, 89, 91, 96, and 98 and V_H residues 35, 37, 39, 45, 47, 91, 93, 95, 100, and 103 (utilizing the nomenclature setforth in Kabat et al., Sequences of Proteins of immunological Interest (National Institutes of Health, Bethesda, Md., 1987)). Additional residues are newly identified by the inventors herein, 20 and include 43L, 85L, 43H and 60H. While these residues are indicated for IgG only, they are applicable across species. In tbe practice of tbis invention, import antibody residues that are reasonably expected to be involved in consensus sequence. It is believed that heretofore no humanized antibody has been prepared with an intrachain -affecting residue selected from an import antibody sequence.

Since it is not entirely possible to predict in advance what the exact impact of a given substitution will be it may be necessary to make the substitution and assay the candidate antibody for the desired characteristic. These steps, however, are per se routine and well within the ordinary skill of the art.

₃₅ CDR and FR residues are determined according to a standard sequence definition (Kabat et al., *Sequences of Pmteins of Immunological Interest,* National Institutes of Health, Bethesda Md. (1987), and a structural definition (as in Chothia and Lesk, J. Mol. Biol. 196:901-917 (1987). Where these two methods result in slightly different identifications of a CDR, the structural definition is preferred, but the residues identified by the sequence definition method are considered important FR residues for determination of which framework residues to import into a consensus sequence.

Throughout this description, reference is made to the numbering scheme from Kabat, E. A, et al., *Sequences of ProTeins of Immunological /merest* (National Institutes of Health, Bethesda, Md. (1987) and (1991). In these compendiums, Kabat lists many amino acid sequences for antibodies for each subclass, and lists the most commonly occurring amino acid for each residue position in that subclass. Kabat uses a method for assigning a residue number to each amino acid in a listed sequence, and this *⁵⁵*method for assigning residue numbers has become standard in the field. The Kabat numbering scheme is followed in this description.

For purposes of this invention, to assign residue numbers to a candidate antibody amino acid sequence which is not included in the Kabat compendium, one follows the following steps. Generally, the candidate sequence is aligned with any immunoglobulin sequence or any consensus sequence in Kabat. Alignment may be done by hand, or by computer using commonly accepted computer programs; an example 65 of such a program is the Align 2 program discussed in this description. Alignment may be facilitated by using some amino acid residues which are common to most Fab sequences. For example, the light and heavy chains each typically have two cysteines which have the same residue numbers; in V_L domain the two cysteines are typically at residue numbers 23 and 88, and in the V_H domain the two cysteine residues are typically numbered 22 and 92. Framework residues generally, but not always, have approximately the same number of residues, however the CDRs will vary in size. For example, in the case of a CDR from a candidate sequence which is longer than the CDR in the sequence in Kabat to which it is aligned, typically suffixes are added to 10 be immunogenic in an individual than less abundant subthe residue number to indicate the insertion of additional residues (see, e.g. residues 100abcde in FIG. 5). For candidate sequences which, for example, align with a Kabat sequence for residues 34 and 36 but have no residue between them to align with residue 35, the number 35 is simply not 15 domains. assigned to a residue.

Thus, in humanization of an import variable sequence, where one cuts out an entire human or consensus CDR and replaces it with an import CDR sequence, (a) the exact number of residues may be swapped, leaving the numbering the same, (b) fewer import amino acid residues may be introduced than are cut, in which case there will be a gap in the residue numbers, or (c) a larger number of amino acid residues may be introduced then were cut, in which case the numbering will involve the use of suffixes such as lOOabcde.

The terms "consensus sequence" and "consensus antibody" as used herein refers to an amino acid sequence which comprises the most frequently occurring amino acid residues at each location in all immunoglobulins of any particular 30 subclass or subunit structure. The consensus sequence may be based on immunoglobulins of a particular species or of many species. A "consensus" sequence, structure, or antibody is understood to encompass a consensus human sequence as described in certain embodiments of this 35 invention, and to refer to an amino acid sequence which comprises the most frequently occurring amino acid residues at each location in all human immunoglobulins of any particular subclass or subunit structure. This invention provides consensus human structures and consensus structures $\frac{40}{10}$ of placing the information in a form suitable for manipula-
which consider other species in addition to human.

The subunit structures of the live immunoglobulin classes in humans are as follows:

 $\binom{8}{4}$ may equal 1, 2, or 3)

In preferred embodiments of an IgGyl human consensus *⁵⁵* sequence, the consensus variable domain sequences are derived from the most abundant subclasses in the sequence compilation of Kabat et a!., *Sequences of Proteins of Immunological Interest*, National Institutes of Health, Bethesda Md. (1987), namely V_L κ subgroup I and V_H group III. In $_{60}$ such preferred embodiments, the V_t consensus domain has the amino acid sequence:

DIOMTOS PSSLSAS V G DRVTITCRAS OD -VSSY L AWY Q Q K PGK APKLLIYAASSLES-GVPSRFSGSGSGTDFTLTISSLQPEDFA-TYYCQQYNSLPYTFGQGTKVEIKRT (SEQ. ID NO. 3);

the V_H consensus domain has the amino acid sequence:

EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYAMSW VRQAPGKGLEWVAVISENGGYTRYADSVKGRFT ISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGD GFYAMDVWGQGTLVTVSS (SEQ. ID NO. 4).

These sequences include consensus CDRs as well as consensus FR residues (see for example in FIG. 1).

While not wishing to be limited to any particular theories, it may be that these preferred embodiments are Jess likely to classes. However, in other embodiments, the consensus sequence is derived from other subclasses of human immunoglobulin variable domains. In yet other embodiments, the consensus sequence is derived from human constant

Identity or homology with respect to a specified amino acid sequence of this invention is defined herein as the percentage of amino acid residues in a candidate sequence that are identical with the specified residues, after aligning 20 the sequences and introducing gaps, if necessary, to achieve the maximum percent homology, and not considering any conservative substitutions as part of the sequence identity. None of N-terminal, C-terminal or internal extensions, deletions, or insertions into the specified sequence shall be 25 construed as a!Iecting homology. All sequence alignments called for in this invention are such maximal homology alignments. While such alignments may be done by hand using conventional methods, a suitable computer program is the "Align 2" program for which protection is being sought from the U.S. Register of Copyrights (Align 2, by Genentech, Inc., application filed Dec. 9, 1991).

'Non-homologous" import antibody residues are those residues which are not identical to the amino acid residue at the analogous or corresponding location in a consensus sequence, after the import and consensus sequences are aligned.

The term "computer representation" refers to information which is in a form that can be manipulated by a computer. The act of storing a computer representation refers to the act tion by a computer.

45 bodies are sometimes collectively referred to herein as 50 tide sequence: This invention is also directed to novel polypeptides, and in certain aspects, isolated novel humanized anti- $p185$ ^{HER2} antibodies are provided. These novel anti- $p185^{HER2}$ antihuMAb4D5, and also sometimes as the light or heavy chain variable domains of huMAb4D5, and are defined herein to be any polypeptide sequence which possesses a biological property of a polypeptide comprising the following polypep-

DIOMTOSPSSLSASVGDRVTITCRASODVNTAVAWY QQKPGKAPKLLIYSASFLESGVPSRFSGSRSGT DFTLTISSLQPEDFATYYCQQHYTTPPTFGQGTK VEIKRT (SEQ. ID NO. 1, which is the light chain variable domain of huMAb4D5); or

EVQLVESGGGLVOPGGSLRLSCAASGFNIKDTYIHW VRQAPGKGLEWVARIYPTNGYTRYADSVKGRFT ISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGD GFYAMDVWGQGTLVTVSS (SEQ. ID NO. 2, which is the heavy chain variable domain of huMAb4D5).

"Biological property", as relates for example to anti $p185^{HER2}$, for the purposes herein means an in vivo effector or antigen-binding function or activity that is directly or indirectly performed by huMAb4D5 (whether in its native or 65 denatured conformation). Effector functions include $p185^{HER2}$ binding, any hormonal or hormonal antagonist activity, any mitogenic or agonist or antagonist activity, any

cytotoxic activity. An antigenic function means possession of an epitope or antigenic site that is capable of crossreacting with antibodies raised against the polypeptide sequence of huMAb4D5.

Biologically active huMAb4D5 is defined herein as a polypeptide that shares an effector function of huMAb4D5. A principal known effector function of huMAb4D5 is its ability to bind to $p185^{HER}$

Thus, the biologically active and antigenically active huMAb4D5 polypeptides that are the subject of certain embodiments of this invention include the sequence of the entire translated nucleotide sequence of huMAb4D5; mature huMAb4D5; fragments thereof having a consecutive sequence of at least 5, 10, 15, 20, 25, 30 or 40 amino acid residues comprising sequences from muMAb4D5 plus residues from the human FR of huMAb4D5; amino acid sequence variants of huMAb4D5 wherein an amino acid residue has been inserted N- or C-terminal to, or within, huMAb4D5 or its fragment as defined above; amino acid sequence variants of huMAb4D5 or its fragment as defined above wherein an amino acid residue of huMAb4D5 or its 20 sodium pyrophosphate, 5xDenhardt's solution, sonicated fragment as defined above has been substituted by another residue, including predetermined mutations by, e.g., sitedirected or PCR mutagenesis; derivatives of huMAb4D5 or its fragments as defined above wherein huMAb4D5 or its fragments have been covalent modified, by substitution, 25 chemical, enzymatic, or other appropriate means, with a moiety other than a naturally occurring amino acid; and glycosylation variants of huMAb4D5 (insertion of a glycosylation site or deletion of any glycosylation site by deletion, insertion or substitution of suitable residues). Such frag- 30 ments and variants exclude any polypeptide heretofore identified, including muMAb4D5 or any known polypeptide fragment, which are anticipatory order 35 U.S.C. 102 as well as polypeptides obvious thereover under 35 U.S.C. 103.

been identified and separated and/or recovered from a component of its natural environment. Contaminant components systems sequenator Model 470, 477, or 473), or (3) to 50 gous to the cell but in a position within the host cell nucleic of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteina- 40 ceous or nonproteinaceous solutes. In preferred embodiments, for example, a polypeptide product comprising huMAb4D5 will be purified from a cell culture or other synthetic environment (1) to greater than 95% by weight of preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a gas- or liquid-phase sequenator (such as a commercially available Applied Biohomogeneity by SDS-PAGE under reducing or nooreducing conditions using Coomassie blue or, preferably, silver stain. Isolated huMAb4D5 includes huMAb4D5 in situ within recombinant cells since at least one component of the huMAb4D5 natural environment will not be present. *55* and "transformed cells" include the primary subject cell and Ordinarily, however, isolated huMAb4D5 will be prepared by at least one purification step.

In accordance with this invention, huMAb4D5 nucleic acid is RNA or DNA containing greater than ten bases that encodes a biologically or antigenically active huMAb4D5, is 60 complementary to nucleic acid sequence encoding such huMAb4D5, or hybridizes to nucleic acid sequence encoding such huMAb4D5 and remains stably bound to it under stringent conditions, and comprises nucleic acid from a muMAb4D5 CDR and a human FR region.

Preferably, the huMAb4D5 nucleic acid encodes a polypeptide sharing at least 75% sequence identity, more preferably at least 80%, still more preferably at least 85%, even more preferably at 90%, and most preferably 95%, with the huMAb4D5 amino acid sequence. Preferably, a nucleic acid molecule that hybridizes to the huMAb4D5 nucleic acid contains at least 20, more preferably 40, and most preferably 90 bases. Such hybridizing or complementary nucleic acid, however, is further defined as being novel under 35 U.S.C. 102 and unobvious under 35 U.S.C. 103 over any prior art nucleic acid.

Stringent conditions are those that (1) employ low ionic strength and high temperature for washing, for example, 0.015 M NaCl/0.0015 M sodium citrate/0/1% NaDodSO₄ at 50" C.; (2) employ during hybridization a denaturing agent such as formamide, for example, 50% (vol/vol) formamide with 0.1% bovine serumalbumin/0/1% Ficoll/0/1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM NaCl, 75 mM sodium citrate at 42° C.; or (3) employ 50% formamide, SxSSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% salmon sperm DNA (50 g/ml), 0.1% SDS, and 10% dextran sulfate at 42 C., with washes at 42 C. in 0.2×SSC and 0.1% SDS.

The term "control sequences" refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, a ribosome binding site, and possibly, other as yet poorly understood sequences. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

An "isola ted" polypeptide means polypeptide which has 35 operably linked to DNA for a polypeptide if it is expressed Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous and, in the case of a secretory leader, contiguous and in reading phase. However enhancers do not have to be contiguous. Linking is accomprotein as determined by the Lowry method, and most 45 plished by ligation at convenient restriction sites. If such sites do not exist, then synthetic oligonucleotide adaptors or linkers are used in accord with conventional practice.

> An "exogenous" element is defined herein to mean nucleic acid sequence that is foreign to the cell, or homoloacid in which the element is ordinarily not found.

> As used herein, the expressions "cell," "cell line," and "cell culture" are used interchangeably and all such designations include progeny. Thus, the words "transformants" cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Mutant progeny that have the same function or biological activity as screened for in the originally transformed cell are included. Where distinct designations are intended, it will be clear from the context.

''Oligonucleotides" are short-length, single- or doublestranded polydeoxynucleotides that are chemically synthe-65 sized by known me thods (such as phosphotriester, phosphite, or phosphoramidite chemistry, using solid phase techniques such as described in EP 266,032 published May

4, 1988, or via deoxynucleoside H-phosphonate intermediates as described by Froehler et a!., *Nucl. Acids Res.,* 14: 5399-5407 [1986]). They are then purified on polyacrylamide gels.

The technique of "polymerase chain reaction," or "PCR," as used herein generally refers to a procedure wherein minute amounts of a specific piece of nucleic acid, RNA and/or DNA, are amplified as described in U.S. Pat. No. 4,683,195 issued Jul. 28, 1987. Generally, sequence information from the ends of the region of interest or beyond needs to be available, such that oligonucleotide primers can 10 be designed; these primers will be identical or similar in sequence to opposite strands of the template to be amplified. The 5' terminal nucleotides of the two primers may coincide with the ends of the amplified material. PCR can be used to amplify specific RNA sequences, specific DNA sequences 15
from total genomic DNA, and cDNA transcribed from total cellular RNA, bacteriophage or plasmid sequences, etc. See generally Mullis et a!., *Cold Spring Harbor Symp. Quant. Bioi.,* 51 : 263 (1987); Erlich, ed., *PCR Technology,* (Stockton Press, N.Y., 1989). As used herein, PCR is considered to be one, but not the only, example of a nucleic acid 20 polymerase reaction method for amplifying a nucleic acid test sample, comprising the use of a known nucleic acid (DNA or RNA) as a primer and utilizes a nucleic acid polymerase to amplify or generate a specific piece of nucleic acid or to amplify or generate a specific piece of nucleic acid 25 which is complementary to a particular nucleic acid.

Suitable Methods for Practicing the Invention

Some aspects of this invention include obtaining an **Intervention include** below.
Some aspects of this invention was built in five steps as described below. import, non-human antibody variable domain, producing a desired humanized antibody sequence and for humanizing ³⁰ Step 1 an antibody gene sequence are described below. A particularly preferred method of changing a gene sequence, such as gene conversion from a non-human or consensus sequence into a humanized nucleic acid sequence, is the cassette mutagenesis procedure described in Example 1.³⁵ Additionally, methods are given for obtaining and producing antibodies generally, which apply equally to native nonhuman antibodies as well as to humanized antibodies.

Generally, the antibodies and antibody variable domains of this invention are conventionally prepared in recombinant

cell culture, as described in more detail below. Recombinant synthesis is preferred for reasons of safety and economy, but it is known to prepare peptides by chemical synthesis and to purify them from natural sources; such preparations are included within the definition of antibodies herein.

Molecular Modeling

An integral step in our approach to antibody humanization is construction of computer graphics models of the import and humanized antibodies. These models are used to determine if the six complementarity-determining regions (CDRs) can be successfully transplanted from the import framework to a human one and to determine which framework residues from the import antibody, if any, need to be incorporated into the humanized antibody in order to maintain CDR conformation. In addition, analysis of the sequences of the import and humanized antibodies and reference to the models can help to discern which framework residues are unusual and thereby might be involved in antigen binding or maintenance of proper antibody structure.

All of the humanized antibody models of this invention are based on a single three-dimensional computer graphics structure hereafter referred to as the consensus structure. This consensus structure is a key distinction from the approach of previous workers in the field, who typically begin by selecting a human antibody structure which bas an amino acid sequence which is similar to the sequence of their import antibody.

The consensus structure of one embodiment of this inven-

Seven Fab X-ray crystal structures from the Brookhaven Protein Data Bank were used (entries 2FB4, 2RHE, 3FAB, and 1 REI which are human structures, and 2MCP, 1 FBJ, and 2HFL which are murine structures). For each structure, protein mainchain geometry and hydrogen bonding patterns were used lo assign each residue to one of three secondary structure types: alpha-helix, beta-strand or other (i.e. nonhelix and non-strand). The immunoglobulin residues used in superpositioning and those included in the consensus structure are shown in Table 1.

TABLE I

	Immunoglobulin Residues Used in Superpositioning and Those Included in the Consensus Structure									
lg ^a	2FA4	2RHE	2MCP	3FAB	1FBJ	2HFL	1REI	Consensus ^b		
				V _r K domain						
								$2 - 11$		
	$18 - 24$	$18 - 24$	$19 - 25$	$18 - 24$	$19 - 25$	$19 - 25$	$19 - 25$	$16 - 27$		
	$32 - 37$	$34 - 39$	$39 - 44$	$32 - 37$	$32 - 37$	$32 - 37$	$33 - 38$	$33 - 39$		
								$41 - 49$		
	$60 - 66$	$62 - 68$	$67 - 72$	$53 - 66$	$60 - 65$	$60 - 65$	$61 - 66$	$59 - 77$		
	$69 - 74$	$71 - 76$	$76 - 81$	$69 - 74$	$69 - 74$	$69 - 74$	$70 - 75$			
	84-88	86-90	$91 - 95$	$84 - 88$	84-88	84-88	$85 - 89$	$82 - 91$		
								$101 - 105$		
RMS ^e		0,40	0.60	0.53	0.54	0.48	0.50			
				V _{El} domain						
								$3 - 8$		
	$18 - 25$		$18 - 25$	$18 - 25$	$18 - 25$	$18 - 25$		$17 - 23$		
	$34 - 39$		34-39	$34 - 39$	$34 - 39$	34-39		$33 - 41$		
	$46 - 52$		$46 - 52$	$46 - 52$	$46 - 52$	$46 - 52$		$45 - 51$		
	$57 - 61$		$59 - 63$	$56 - 60$	$57 - 51$	$57 - 61$		$57 - 61$		
	$68 - 71$		$70 - 73$	$67 - 70$	$68 - 71$	$68 - 71$		$66 - 71$		
	78-84		$80 - 86$	$77 - 83$	$78 - 84$	$78 - 84$		$75 - 82$		
	92-99		94-101	$91 - 98$	$92 - 99$	$92 - 99$		88-94		
								$102 - 108$		

J5

'Four-leiter code for Protein Data Bank file.

^bResidue numbers for the crystal structures are taken from the Protein Data Bank files. Residue

numbers for the consensus structure are according to Kabat et al.
^eRoot-mean-square deviation in A for (N, Ca, C) atoms superimposed on 2FB4.

 d Root-mean-square deviation in Å for (N, Ca, C) atoms superimposed on 2HFL.

Step 2

Having identified the alpha-helices and beta-strands in each of the seven structures, the structures were superimposed on one another using the INSIGHT computer program (Biosym Technologies, San Diego, Calif.) as follows: The 2FB4 structure was arbitrarily chosen as the template (or reference) structure. The 2FB4 was held fixed in space and the other six structures rotated and translated in space so that their common secondary structural elements (i.e. alphahelices and beta-strands) were oriented such that these common elements were as close in position to one another 25 as possible. (This superpositioning was performed using accepted mathematical formulae rather than actually physically moving the structures by hand.) 20

Step 3

With the seven structures thus superimposed, for each 30 each residue position in the sequence. Such a table is 35 residue in the template (2FB4) Fab one calculates the distance from the template alpha-carbon atom $(C\alpha)$ to the analogous Ca atom in each of the other six superimposed structures. This results in a table of Ca -C α distances for necessary in order to determine which residue positions will be included in the consensus model. Generally, is if all C α -C α distances for a given residue position were ≤ 1.0 Å, that position was included in the consensus structure. If for a given position only one Fab crystal structure was >1.0 Å, \approx the position was included but the outlying crystal structure was not included in the next step (for this position only). In general, the seven β -strands were included in the consensus structure while some of the loops connecting the β -strands, included in view of Ca divergence.

Step 4

For each residue which was included in the consensus structure after step 3, the average of the coordinates for individual mainchain N, C α , C, O and C β atoms were 50 calculated. Due to the averaging procedure, as well as variation in bond length, bond angle and dihedral angle among the crystal structures, this "average" structure contained some bond lengths and angles which deviated from standard geometry. For purposes of this invention, "standard ⁵⁵ geometry" is understood to include geometries commonly accepted as typical, such as the compilation of bond lengths and angles from small molecule structures in Weiner, S. J. et. a!., J. *Amer. Chem. Soc.,* 106: 765- 784 (1984).

In order to correct these deviations, the final step was to subject the "average" structure to 50 cycles of energy minimization (DISCOVER program, Biosym Technologies) using the AMBER (Weiner, S. J. et. *al.,J. Amer. Chem. Soc.,* 106: 765- 784 (1984)) parameter set with only the Ca 65 coordinates fixed (i.e. all other atoms are allowed to move) (energy minimization is described below). This allowed any

deviant bond lengths and angles to assume a standard (chemically acceptable) geometry. See Table II.

11\.BLE **ll**

	V_{τ} K before (\mathbf{A})	V_1K after (A)	V_H before (A)	V_{H} after (Å)	Stan- dard Geo- metry (A)
$N - Ca$	1.459(0.012)	1.451(0.004)	1.451(0.023)	1.452(0.004)	1,449
$Ca-C$	1.515(0.012)	1.523(0.005)	1.507(0.033)	1.542(0.005)	1,522
$O-C$	1.208(0.062)	1.229(0.003)	1.160(0.177)	1.231(0.003)	1.229
$c - x$	1.288(0.049)	1.337(0.002)	1.282(0.065)	1.335(0.004)	1.335
$Ca-CB$	1.508(0.026)	1.530(0.002)	1.499(0.039)	1.530(0.002)	1.526
	*	$(*)$	$(*)$	$($ [*])	$(*)$
$C-N-C\alpha$	123.5(4.2)	123.8(1.1)	125.3(4.6)	124.0(1.1)	121.9
$N - Ca-C$	110.0(4.0)	109.5(1.9)	110.3(2.8)	109.5(1.6)	110.1
$Ca-C-N$	116.6(4.0)	116, 6(1, 2)	117.6(5.2)	116.6(0.8)	116.6
$O-C-N$	123.1(4.1)	123.4(0.6)	122.2(4.9)	123.3(0.4)	122.9
$N - Ca - CB$	110.3(2.1)	109.8(0.7)	110.6(2.5)	109.8(0.6)	109.5
$C\beta$ -C α -C	111.4(2.4)	111.1(0.7)	(11.2(2.2)	111.1(0.6)	111.1

e.g. complementarity-determining regions (CDRs), were not 45 dard geometry values are from the AMBER forcefield as Values in parentheses are standard deviations. Note that while some bond length and angle averages did not change appreciably after energy-minimization, the corresponding standard deviations are reduced due to deviant geometries assuming standard values after energy-minimization. Stanimplemented in DISCOVER (Biosym Technologies).

> The consensus structure might conceivably be dependent upon which crystal structure was chosen as the template on which the others were superimposed. As a test, the entire procedure was repeated using the crystal structure with the worst superposition versus 2FB4, i.e. the 2HFL Fab structure, as the new template (reference). The two consensus structures compare favorably (root-mean-squared deviation of 0.11 Å for all N, C α and C atoms).

Note that the consensus structure only includes mainchain $(N, Ca, C, O, C\beta)$ atoms) coordinates for only those residues which are part of a conformation common to all seven X-ray crystal structures. For the Fab structures, these include the common β -strands (which comprise two β -sheets) and a few Step 5 60 non-CDR loops which connect these β -strands. The consensus structure does not include CDRs or sidechains, both of which vary in their conformation among the seven structures. Also, note that the consensus structure includes only the V_L and V_H domains.

> This consensus structure is used as the archetype. It is not particular to any species, and has only the basic shape without side chains. Starting with this consensus structure

the model of any import, human, or humanized Fab can be constructed as follows. Using the amino acid sequence of the particular antibody V_L and V_H domains of interest, a computer graphics program (such as INSIGHT, Biosym Technologies) is used to add sidechains and CDRs to the *5* consensus structure. When a sidechain is added, its conformation is chosen on the basis of known fab crystal structures (see the Background section for publications of such crystal structures) and rotamer libraries (Ponder, J. W. & Richards, F. M., *J. Mol. Biol.* 193: 775-791 (1987)). The 10 model also is constructed so that the atoms of the sidechain are positioned so as to not collide with other atoms in the Fab.

plus side chains) as follows. The size (i.e. number of amino acids) of each import CDR is compared to canonical CDR structures tabulated by Chothia et al., *Nature*, 342:877-883 (1989)) and wbicb were derived from Fab crystals. Each CDR sequence is also reviewed for the presence or absence of certain specific amino acid residues which are identified by Chothia as structurally important: e.g. light chain residues 29 (CDR!) and *95* (CDR3), and heavy chain residues 26, 27, 29 (CDRl) and *55* (CDR2). For light chain CDR2, and heavy chain CDR3, only the size of the CDR is compared to the Chothia canonical structure. If the size and sequence (i.e. inclusion of the specific, structurally important residues as denoted by Cbothia et al.) of the import CDR agrees in size and has the same structurally important residues as those of a canonical CDR, then the mainchain conformation of the import CDR in the model is taken to be 30 the same as that of the canonical CDR. This means that the import sequence is assigned the structural configuration of the canonical CDR, which is then incorporated in the evolving model.

for the import CDR, then one of two options can be exercised. First, using a program such as INSIGHT(Biosym Technologies), the Brookhaven Protein Data Bank can be searched for loops with a similar size to that of the import CDR and these loops can be evaluated as possible confor- 40 mations for the import CDR in the model. Mimmally, such loops must exhibit a conformation in which no loop atom overlaps with other protein atoms. Second, one can use available programs which calculate possible loop conformations, assuming a given loop size, using methods 45 such as described by Bruccoleri et al., *Nature* 335: 564-568 (1988).

When all CDRs and sidechains have been added to the consensus structure to give the final model (import, human or humanized), the model is preferably subjected to energy 50 minimization usiog programs which are available commercially (e.g. DISCOVER, Biosym Technologies). This technique uses complex mathematical formulae to refine the model by performing such tasks as checking that all atoms are within appropriate distances from one another and 55 checking that bond lengths and angles are within chemically acceptable limits.

Models of a humanized, import or human antibody sequence are used in the practice of this invention to understand the impact of selected amino acid residues of the 60 activity of the sequence being modeled. For example, such a model can show residues which may be important in antigen binding, or for maintaining the conformation of the antibody, as discussed in more detail below. Modeling can also be used to explore the potential impact of changing any 65 amino acid residue in the antibody sequence.

Methods for Obtaining a Humanized Antibody Sequence

In the practice of this invention, the first step in humanizing an import antibody is deriving a consensus amino acid sequence into which to incorporate the import sequences. Next a model is generated for these sequences using the methods described above. In certain embodiments of this invention, the consensus human sequences are derived from the most abundant subclasses in the sequence compilation of Kabat et al. (Kabat, E. A. et al, *Sequences of Proteins of immunological Interest* (National Institutes of Health, Bethesda, Md., 1987)), namely V_L K subgroup I and V_H group Ill, and have the sequences indicated in the definitions above.

While these steps may be taken in different order, typically a structure for the candidate humanized antibody is CDRs are added to the model (now having the backbone created by transferring the at least one CDR from the non-human, import sequence into the consensus human structure, after tbe entire corresponding human CDR bas been removed. The humanized antibody may contain human replacements of the non-human import residues at positions within CDRs as defined by sequence variability (Kabat, E. A. et al., *Sequences of Proteins of Immunological Interest* (National Institutes of llcalth, Bethesda, Md., 1987)) or as defined by structural variability (Chothia, C. & Lesk, A. M., J. *Mol. Biol.* 196:901-917 (1987)). For example, huMAb4D5 contains human replacements of the 25 muMAb4D5 residues at three positions within CDRs as defined by sequence variability (Kabat, E. A. et al., Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md., 1987)) but not as defined by structural variability (Chothia, C. & Lesk, A. M., J. *Mol Bol.* 196:901-917 (1987)): V_t-CDR1 K24R, V_L -CDR2 R54L and V_L -CDR2 T56S.

Diffe rences between the non-human import and the human consensus framework residues are individually investigated to detennine their possible influence on CDR However, if no matching canonical CDR can be assigned 35 conformation and/or binding to antigen. Investigation of such possible influences is desirably performed through modeling, by examination of the characteristics of the amino acids at particular locations, or determined experimentally through evaluating the effects of substitution or mutagenesis of particular amino acids.

> In certain preferred embodiments of this invention, a humanized antibody is made comprising amino acid sequence of an import, non-human antibody and a human antibody, utilizing the steps of:

- a. obtaining the amino acid sequences of at least a portion of an import antibody variable domain and of a consensus human variable domain;
- b. identifying Complementarity Determining Region (CDR) amino acid sequences in the import and the human variable domain sequences;
- c. substituting an import CDR amino acid sequence for the corresponding human CDR amino acid sequence;
- d. aligning tbe amino acid sequences of a Framework Region (FR) of the import antibody and the corresponding FR of the consensus antibody;
- e. identifying import antibody FR residues in the aligned FR sequences that are non-homologous to the corresponding consensus antibody residues;
- f. determining if the non-homologous import amino acid residue is reasonably expected to have at least one of tbe following effects:
	- 1. non-covale ntly binds antigen directly,
	- 2. interacts with a CDR; or
- 3. participates in the V_L-V_H interface; and
- g. for any non-homologous import antibody amino acid residue which is reasonably expected to have at least

21 one of these effects, substituting that residue for the corresponding amino acid residue in the consensus antibody FR sequence.

Optionally. one determines if any non-homologous residues identified in step (e) are exposed on the surface of the domain or buried within it, and if the residue is exposed but bas none of the effects identified in step (f), one may retain the consensus residue.

consensus antibody residues identified in step (e) above are $_{10}$ any buried residues which are reasonably expected to affect Additionally, in certain embodiments the corresponding selected from the group consisting of 4L, 35L, 36L, 38L, 43L, 44L, 46L, 58L, 62L, 63L, 64L, 65L, 66L, 67L, 68L, 69L, 70L, 71 L, 4H, 24H, 36H, 37H, 39H, 43H, 45H, 49H, 58H, 60H, 67H, 68H, 69H, 70H, 73H, 74H, 75H, 76H, 78H, 91H, 92H, 9311, and l03H (utilizing the numbering system 1s set forth in Kabat, E. A. et al., *Sequences of Proteins of Jmmunologicnl /merest* (National Institutes of Health, Bethesda, Md., 1987)).

In preferred embodiments, the method of this invention comprises the additional steps of searching either or both of 20 desired to evaluate the effects of other amino acids. For the import, non-human and the consensus variable domain sequences for glycosylation sites, determining if the glycosylation is reasonably expected to be important for the desired antigen binding and biological activity of the antibody (i.e., determining if the glycosylation site binds to $_{25}$) antigen or changes a side chain of an amino acid residue that binds to antigen, or if the glycosylation enhances or weakens antigen binding, or is important for maintaining antibody affinity). if the import sequence bears the glycosylation site, affinity), if the import sequence bears the glycosylation site, Antibodies it is preferred to substitute that site for the corresponding $\frac{30}{40}$ Certain. residues in the consensus human sequence if the glycosylation site is reasonably expected to be important. If only the consensus sequence, and not the import, bears the glycosylation site, it is preferred to eliminate that glycosylation site lation site, it is preferred to eliminate that glycosylation site houghout this description to the use of monoclonal anti-
or substitute therefor the corresponding amino acid residues 35 bodies are intended to include the from the import sequence.

Another preferred embodiment of the methods of this invention comprises aligning import antibody and the coosensus antibody FR sequences, identifying import antibody FR residues which are non-homologous with the aligned $_{40}$ consensus FR sequence, and for each such non-homologous import antibody FR residue, determining if the corresponding consensus antibody residue represents a residue which is highly conserved across all species at that site, and if it is so conserved, preparing a humanized antibody which com- 45 conserved, preparing a humanized antibody which com- as obtained by routine screening. Polyclonal antibodies to an prises the consensus antibody amino acid residue at that site. antigen generally are raised in animals by m

In certain alternate embodiments, one need not utilize the modeling and evaluation steps described above, and may instead proceed with the steps of obtaining the amino acid sequence of at least a portion of an import, non-human 50 antibody variable domain having a CDR and a FR, obtaining the amino acid sequence of at least a portion of a consensus human antibody variable domain having a CDR and a FR, substituting the non-human CDR for the human CDR in the consensus human antibody variable domain, and then sub- 55 stituting an amino acid residue for the consensus amino acid residue at at least one of the following sites:

- a. (in the FR of the variable domain of the light chain) 4L, 35L, 36L, 38L, 43L, 44L, 58L, 46L, 62L, 63L, 64L, 65L, 66L, 67L, 68L., 69L, 70L, 71L, 73L, 85L, 87L, 98L, or
- b. fin the FR of the variable domain of the heavy chain) 2H, 4H, 24H, 36H, 37H, 39H, 43H, 45H, 49H, 58H, 60H, 67H, 68H, 69H, 70H, 73H, 74H, 75H, 76H, 78H, 91H, 92H, 93H, and 103H.

Preferably, the non-CDR residue substituted at the consensus FR site is tbe residue found at the corresponding location of the non-human antibody. If desired, one may utilize the other method steps described above for determining whether a particular amino acid residue can reasonably be expected to have undesirable effects, and remedying those effects.

If after making a humanized antibody according to the steps above and testing its activity one is not satisfied with the humanized antibody, one preferably reexamines the potential effects of the amino acids at the specific locations recited above. Additionally, it is desirable to reinvestigate the $V_t - V_{tt}$ interface but may not directly affect CDR conformation. It is also desirable to reevaluate the humanized antibody utilizing the steps of the methods claimed herein.

In certain embodiments of this invention, amino acid residues in the consensus human sequence are substituted for by other amino acid residues. In preferred embodiments, residues from a particular non-human import sequence are example, if after making a humanized antibody according to the steps above and testing its activity one is not satisfied with the humanized antibody, one may compare the sequences of other classes or subgroups of human antibodies, or classes or subgroups of antibodies from the particular non-human species, and determine which other amino acid side chains and amino acid residues are found at particular locations and substituting such other residues.

Certain aspects of this invention are directed to natural antibodies and to monoclonal antibodies, as illustrated in the Examples below and by antibody hybridomas deposited with the ATCC (as described below). Thus, the references antibodies as well as humanized and chimeric antibodies. As used herein, the term "antibody" includes the antibody variable domain and other separable antibody domains unless spccificaiJy excluded.

In accordance with certain aspects of this invention, antibodies to be humanized (import antibodies) are isolated from continuous hybrid cell lines formed by the fusion of antigen-primed immune lymphocytes with myeloma cells. in certain embodiments, the antibodies of this invention are antigen generally are raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the antigen and an adjuvant. It may be useful to conjugate the antigen or a fragment containing the target amino acid sequence to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobeozoyl sulfosuccinim ide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic is anhydride, SOC12, or $R^1N=$ C=NR, where R and R^1 are different alkyl groups.

The route and schedule of the host animal or cultured antibody-producing cells therefrom are generally in keeping with established and conventional techniques for antibody stimulation and production. While mice are frequently employed as the test model, it is contemplated that any mammalian subject including human subjects or antibodyproducing cells obtained therefrom can be manipulated according to the processes of this invention to serve as the basis for production of mammalian, including human, hybrid cell lines.

Animals are typically immunized against the immunogenic conjugates or derivatives by combining 1 mg or 1 μ g of conjugate (for rabbits or mice, respectively) with 3 volumes of Freund's complete adjuvant and injecting the solution intradermally at multiple sites. One month later the animals are boosted with $1/5$ to $1/10$ the original amount of conjugate in Freund's complete adjuvant (or other suitable adjuvant) by subcutaneous injection at multiple sites. 7 to 14 days later animals are bled and the serum is assayed for antigen titer. Animals are boosted until the titer plateaus. Preferably, the animal is boosted with the conjugate of the same antigen, but conjugated to a dilferent protein and/or through a different cross-linking agent. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are used to enhance the immune response.

After immunization, monoclonal antibodiesare prepared by recovering immune lymphoid cells-typically spleen cells or lymphocytes from lymph node tissue-from immunized animals and immortalizing the cells in conventional fashion, e.g. by fusion with myeloma cells or by Epstein- 20 Barr (EB)-virus transformation and screening for clones expressing the desired antibody. The hybridoma technique described originally by Kohler and Milstein, *Eur. J. Immuno/.* 6:511 (1976) has been widely applied to produce hybrid cell lines that secrete high levels of monoclonal antibodies against many specific antigens.

It is possible to fuse cells of one species with another. However, it is preferable that the source of the immunized antibody producing cells and the myeloma be from the same species.

The hybrid cell lines can be maintained in culture in vitro in cell culture media. The cell lines of this invention can be selected and/or maintained in a composition comprising the continuous cell line in hypoxanthine-aminopterin thymidine (HAT) medium. In fact, once the hybridoma cell line is 35 or altering the intra-cellular location of the target polypepestablished, it can be maintained on a variety of nutritionally adequate media. Moreover, the hybrid cell lines can be stored. and preserved in any number of conventional ways, including freezing and storage under liquid nitrogen. Frozen cell lines can be revived and cultured indefinitely with resumed synthesis and secretion of monoclonal antibody. The secreted antibody is recovered from tissue culture supernatant by conventional methods such as precipitation, Ion exchange chromatography, affinity chromatography, or the like. The antibodies described herein are also recovered 45 from hybridoma cell cultures by conventional methods for same or a different class adjacent to the located site, or purification of IgG or IgM as the case may be that heretofore have been used to purify these immunoglobulins from pooled plasma, e.g. ethanol or polyethylene glycol precipitation procedures. The purified antibodies are sterile filtered, so and optionally are conjugated to a detectable marker such as an enzyme or spin label for use in diagnostic assays of the antigen in test samples.

While routinely rodent monoclonal antibodies are used as the source of the import antibody, the invention is not 55 limited to any species. Additionally, techniques developed for the production of chimeric antibodies (Morrison et al., *Proc. Nat!. Acad.* Sci., 81:6851 (1984); Neuberger et al., *Nature* 312:604 (1984); Takeda et al., *Nature* 314:452 (1985)) by splicing the genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity (such as ability to activate human complement and mediate ADCC) can be used; such antibodies are within the scope of this invention.

Techniques for creating recombinant DNA versions of the antigen-binding regions of antibody molecules (known as

Fab fragments) which bypass the generation of monoclonal antibodies are encompassed within the practice of this invention. One extracts antibody-specific messenger ANA molecules from immune system cells taken from an immunized animal, transcribes these into complementary DNA (eDNA), and clones tbe CDNA into a bacterial expressions system. One example of such a technique suitable for the practice of this invention was developed by researchers at Scripps/Stratagene, and incorporates a proprietary bacte-10 riophage lambda vector system which contains a leader sequence that causes the expressed Fab protein to migrate to the periplasmic space (between the bacterial cell membrane and the cell wall) or to be secreted. One can rapidly generate and screen great numbers of functional FAb fragments for those which bind the antigen. Such FAb fragments with specificity for the antigen are specifically encompassed within the term "antibody" as it is defined, discussed, and claimed herein.

Amino Acid Sequence Variants

Amino acid sequence variants of the antibodies and polypeptides of this invention (referred to in herein as the target polypeptide) are prepared by introducing appropriate nucleotide changes into the DNA encoding the target polypeptide, or by in vitro synthesis of the desired target polypeptide. Such variants include, for example, humanized variants of non-human antibodies, as well as deletions from, or insertions or substitutions of, residues within particular amino acid sequences. Any combination of deletion, insertion, and substitution can be made to arrive at the final 30 construct, provided that the final construct possesses the desired characteristics. The amino acid changes also may alter post-translational processes of the target polypeptide, such as changing the number or position of glycosylation sites, altering any membrane anchoring characteristics, and/ tide by inserting, deleting, or otherwise affecting any leader sequence of the native target polypeptide.

In designing amino acid sequence variants of target polypeptides, the location of the mutation site and the nature of the mutation will depend on the target polypeptide characteristics) to be modified. The sites for mutation can be modified individually or in series, e.g., by (1) substituting first with conservative amino acid choices and then with more radical selections depending upon the results achieved, (2) deleting the target residue, or (3) inserting residues of the $combinations of options $1-3$. In certain embeddings, these$ choices are guided by the methods for creating humanized sequences set forth above.

A useful method for identification of certain residues or regions of the target polypeptide that are preferred locations for mutagenesis is called "alanine scanning mutagenesism" as described by Cunningham and Wells *(Science,* 244: 1081- 1085 (1989). Here, a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with the surrounding aqueous environment in or outside the cell. Those 60 domains demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at or for the sites of substitution. Thus, while the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined. For example, to optimize the performance of a mutation at a given site, ala scanning or random mutagenesis may be conducted at the target codon or region and the expressed target polypeptide variants are screened for tbe optimal combination of desired activity.

There are two principal variables in the construction of amino acid sequence variants: the location of the mutation site and the nature of the mutation. In general, the location 5 and nature of the mutation chosen will depend upon the target polypeptide characteristic to be modified.

Amino acid sequence deletions of antibodies are generally not preferred, as maintaining the generally configuration of an antibody is believed to be necessary for its activity. Any 10 deletions will be selected so as to preserve the structure of the target antibody.

Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, 15 as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence insertions (i.e., insertions within the target polypeptide sequence) may range generally from about 1 to 10 residues, more preferably 1 to 5, most preferably 1 to 3. Examples of terminal insertions 20 substituted, generally with serine, to improve the oxidative include the target polypeptide with an N-terminal methionyl residue, an artifact of the direct expression of target polypeptide in bacterial recombinant cell culture, and fusion of a heterologous N-terminal signal sequence to the N-terminus of the target polypeptide molecule to facilitate the secretion ²⁵ of the mature target polypeptide from recombinant host cells. Such signal sequences generally will be obtained from, and thus homologous to, the intended host cell species. Suitable sequences include STII or Ipp for *E. coli,* alpha factor for yeast, and viral signals such as herpes gD for 30 mammalian cells.

Other insertional variants of the target polypeptide include the fusion to the N- or C-terminus of the target polypeptide of immunogenic polypeptides, e.g., bacterial polypeptides such as beta-lactamase or an enzyme encoded 35 by the E. *coli* trp locus, or yeast protein, and C-terminal fusions with proteins having a long half-life such as immunoglobulin constant regions (or other immunoglobulin regions), albumin, or ferritin, as described in WO 89/02922 published Apr. 6, 1989. 40 hybridizing an oligonucleotide encoding the desired muta-

Another group of variants are amino acid substitution variants. These variants have at least one amino acid residue in the target polypeptide molecule removed and a different residue inserted in its place. The sites of greatest interest for substitutional mutagenesis include sites identified as the 45 active site(s) of the target polypeptide, and sites where the amino acids found in the target polypeptide from various species are substantially different in terms of side-chain bulk, charge, and/or hydrophobicity. Other sites for substisubstitution of the antigen binding, affinity and other characteristics of a particular target antibody.

Other sites of interest are those in which particular residues of the target polypeptides obtained from various species are identical. These positions may be important for *55* the biological activity of the target polypeptide. These sites, especially those falling within a sequence of at least three other identically conserved sites, are substituted in a relatively conservative manner. If such substitutions result in a change in biological activity, then other changes are intro- 60 duced and the products screened until the desired effect is obtained.

Substantial modifications in function or immunological identity of the target polypeptide are accomplished by selecting substitutions that differ significantly in their effect 65 on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or

helical conformation, lb) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side chain properties:

(1) hydrophobic: norleucine, met, ala, val, leu, ile;

(2) neutral hydrophilic: cys, ser, thr;

(3) acidic: asp, glu;

(4) basic: asn, gin, his, lys, arg;

(5) residues that influence chain orientation: gly, pro; and (6) aromatic: trp, tyr, phe.

Non-conservative substitutions will entail exchanging a member of one of these classes for another. Such substituted residues may be introduced into regions of the target polypeptide that are homologous with other antibodies of the same class or subclass, or, more preferably, into the nonhomologous regions of the molecule.

Any cysteine residues not involved in maintaining the proper conformation of target polypeptide also may be stability of the molecule and prevent aberrant crosslinking.

DNA encoding amino acid sequence variants of the target polypeptide is prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the target polypeptide. A particularly preferred method of gene conversion mutagenesis is described below in Example 1. These techniques may utilized target polypeptide nucleic acid (DNA or RNA), or nucleic acid complementary to the target polypeptide nucleic acid.

Oligonucleotide-mediated mutagenesis is a preferred method for preparing substitution, deletion, and insertion variants of target polypeptide DNA. This technique is well known in the art as described by Adelman et *ai. ,DNA,* 2: 183 (1983). Briefly, the target polypeptide DNA is altered by tion to a DNA template, where the template is the singlestranded form of a plasmid or bacteriophage containing the unaltered or native DNA sequence of the target polypeptide. After hybridization, a DNA polymerase is used to synthesize an entire second complementary strand of the template that will thus incorporate the oligonucleotide primer, and will code for the selected alteration in the target polypeptide DNA.

tution are described infra, considering the effect of the so length are used. An optimal oligonucleotide will have 12 to Generally, oligonucleotides of at least 25 nucleotides in 15 nucleotides that are completely complementary to the template on either side of the nucleotide(s) coding for the mutation. This ensures that the oligonucleotide will hybridize properly to the single-stranded DNA template molecule. The oligonucleotides are readily synthesized using techniques known in the art such as that described by Crea et al. *(Proc. Nat!. Acad. Sci. USA,* 75: 5765 [1978D.

> Single-stranded DNA template may also be generated by denaturing double-stranded plasmid (or other) DNA using standard techniques.

> For alteration of the native DNA sequence (to generate amino acid sequence variants, for example), the oligonucleotide is hybridized to the single-stranded template under suitable hybridization conditions. A DNA polymerizing enzyme, usually the Klenow fragment of DNA polymerase 1, is then added to synthesize the complementary strand of the template using the oligonucleotide as a primer for

synthesis. A heteroduplex molecule is thus formed such that one strand of DNA encodes the mutated form of the target polypeptide, and the other strand (the original template) encodes the native, unaltered sequence of the target polypeptide. This heteroduplex molecule is then transformed into a suitable host cell, usually a prokaryote such as E. coli JM101. Mter the cells are grown, they are plated onto agarose plates and screened using the oligonucleotide primer radiolabeled with 32-phosphate to identify the bacterial colonies that contain the mutated DNA. The mutated region 10 is then removed and placed in an appropriate vector for protein production, generally an expression vector of the type typically employed for transformation of an appropriate host.

The method described immediately above may be modi- 15 fied such that a homoduplex molecule is created wherein both strands of the plasmid contain the mutation(s). The modifications are as follows: The single-stranded oligonucleotide is annealed to the single-stranded template as described above. A mixture of three deoxyribonucleotides, 20 deoxyriboadenosine (dATP), deoxyriboguanosine (dGTP), and deoxyribotbymidine (dTTP), is combined with a modified thio-deoxyribocytosine called dCfP-(aS) (which can be obtained from Amersham Corporation). This mixture is added to the template-oligonucleotide complex. Upon addi- 25 lion of DNA polymerase to this mixture, a strand of DNA identical to the template except for the mutated bases is generated. In addition, this new strand of DNA will contain dCTP-(aS) instead of dCTP, which serves to protect it from restriction endonuclease digestion. 30 by the primer, and possibly at other positions, as template

After the template strand of the double-stranded hetero- copying is somewhat error-prone. duplex is nicked with an appropriate restriction enzyme, the template strand can be digested with ExoIII nuclease or another appropriate nuclease past the region that contains the site(s) to be mutagenized. The reaction is then stopped to 35 replace the corresponding region in the plasmid that served leave a molecule that is only partially single-stranded. A complete double-stranded DNA homoduplex is then formed using DNA polymerase in the presence of all four deoxyribonucleotide triphosphates, ATP, and DNA ligase. This homoduplex molecule can then be transformed into a suitable host cell such as *E. coli* JM101, as described above.

DNA encoding target polypeptide variants with more than one amino acid to be substituted may be generated in one of several ways. If the amino acids are located close together neously using one oligonucleotide that codes for all of the desired amino acid substitutions. If, however, the amino acids are located some distance from each other (separated by more than about ten amino acids), it is more difficult to generate a single oligonucleotide that encodes all of the so Calif.), and 25 pmole of each oligonucleotide primer, to a desired changes. Instead, one of two alternative methods may be employed.

In the first method, a separate oligonucleotide is generated for each amino acid to be substituted. The oligonucleotides are then annealed to the single-stranded template DNA *55* from Perkin-Elmer Cetus, Norwalk, Coon. and Emeryville, simultaneously, and the second strand of DNA that is synthesized from the template will encode all of the desired amino acid substitutions.

The alternative method involves two or more rounds of mutagenesis to produce the desired mutant. The first round 60 is as described for the single mutants: wild-type DNA is used for the template, an oligonucleotide encoding the first desired amino acid substitution(s) is annealed to this template, and the heteroduplex DNA molecule is then generated. The second round of mutagenesis utilizes the 65 mutated DNA produced in the first round of mutagenesis as the template. Thus, this template already contains one or

more mutations. The oligonucleotide encoding the additional desired amino acid substitution(s) is then annealed to this template, and the resulting strand of DNA now encodes mutations from both the first and second rounds of mutagenesis. This resultant DNA can be used as a template in a third round of mutagenesis, and so on.

PCR mutagenesis is also suitable for making amino acid variants of target polypeptide. While the following discussion refers to DNA, it is understood that the technique also finds application with RNA The PCR technique generally refers to the following procedure (see Erlich, supra, the chapter by R. Higuchi, p. 61-70): When small amounts of template DNA are used as starting material in a PCR, primers that differ slightly in sequence from the corresponding region in a template DNA can be used to generate relatively large quantities of a specific DNA fragment that differs from the template sequence only at the positions where the primers differ from the template. For introduction of a mutation into a plasmid DNA, one of the primers is designed to overlap the position of the mutation and to contain the mutation; the sequence of the other primer must be identical to a stretch of sequence of the opposite strand of the plasmid, but this sequence can be located anywhere along the plasmid DNA It is preferred, however, that the sequence of the second primer is located within 200 nucleotides from that of the first, such that in the end the entire amplified region of DNA bounded by the primers can be easily sequenced. PCR amplification using a primer pair like the one just described results in a population of DNA fragments that differ at the position of the mutation specified

If the ratio of template to product material is extremely low, the vast majority of product DNA fragments incorporate the desired mutation(s). This product material is used to as PCR template using standard DNA technology. Mutations at separate positions can be introduced simultaneously by either using a mutant second primer, or performing a second PCR with different mutant primers and ligating the two resulting PCR fragments simultaneously to the vector fragment in a three (or more)-part ligation.

in the polypeptide chain, they may be mutated simulta- 45 the plasmid DNA outside of the region to be amplified. Of In a specific example of PCR mutagenesis, template plasmid DNA $(1 \mu g)$ is linearized by digestion with a restriction endonuclease that has a unique recognition site in this material, 100 ng is added to a PCR mixture containing PCR buffer, which contains the four deoxynucleotide triphosphates and is included in the GeneAmp® kits (obtained from Perkin-Elmer Cetus, Norwalk, Coon. and Emeryville, final volume of 50 u l. The reaction mixture is overlayed with $35 \mu l$ mineral oil. The reaction is denatured for 5 minutes at 100° C., placed briefly on ice, and then 1 *,ul Thermus aquaticus* (Taq) DNA polymerase (5 units/ul, purchased Calif.) is added below the mineral oil layer. The reaction mixture is then inserted into a DNA Thermal Cycler (purchased from Perkin-Elmer Cetus) programmed as follows: 2 min. at 55° C., then 30 sec. at 72° C., then 19 cycles of the following: 30 sec. at 94° C., 30 sec. at 55° C., and 30 sec. at 72° C.

> At the end of the program, the reaction vial is removed from the thermal cycler and the aqueous phase transferred to a new vial, extracted with phenol/chloroform (50:50:vol), and ethanol precipitated, and the DNA is recovered by standard procedures. This material is subsequently subjected to the appropriate treatments for insertion into a vector.

Another method for preparing variants, cassette mutagenesis, is based on the technique described by Wells et al. (Gene, 34: 315 [1985]). The starting material is the plasmid (or other vector) comprising the target polypeptide DNA to be mutated. The codon(s) in the target polypeptide DNA to be mutated are identified. There must be a unique restriction endonuclease site on each side of the identified mutation site(s). If no such restriction sites exist, they may be generated using the above-described oligonucleotidemediated mutagenesis method to introduce them at appropriate locations in the target polypeptide DNA. After the restriction sites have been introduced into the plasmid, the plasmid is cut at these sites to linearize it. A double-stranded oligonucleotide encoding the sequence of the DNA between the restriction sites but containing the desired mutation(s) is synthesized using standard procedures. The two strands are synthesized separately and then hybridized together using standard techniques. This double-stranded oligonucleotide is referred to as the cassette. This cassette is designed to have 3' and 5' ends that are compatible with the ends of the 20 example, a vector is cloned in E. *coli* and then the same linearized plasmid, such that it can be directly ligated to the plasmid. This plasmid now contains the mutated target polypeptide DNA sequence.

Insertion of DNA into a Cloning Vehicle

The eDNA or genomic DNA encoding the target polypeptide is inserted into a replicable vector for further cloning (amplification of the DNA) or for expression. Many vectors are available, and selection of the appropriate vector wiU depend on 1) whether it is to be used for DNA amplification 30 genome and insertion of the target polypeptide DNA. or for DNA expression, 2) the size of the DNA to be inserted 30 genome and insertion of the target polypeptide DNA. into the vector, and 3) the host cell to be transformed with the vector. Each vector contains various components depending on its function (amplification of DNA or expression of DNA) and the host cell for which it is compatible. The vector components generally include, but are not lim- ³⁵ ited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence.

(a) Signal Sequence Component

ln general, the signal sequence may be a component of the vector, or it may be a part of the target polypeptide DNA that is inserted into the vector.

The target polypeptides of this invention may be 45 expressed not only directly, but also as a fusion with a heterologous polypeptide, preferably a signal sequence or other polypeptide having a specific cleavage site at the N-terrninus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the target polypeptide DNA that is inserted into the vector. Included within the scope of this invention are target polypeptides with any native signal sequence deleted and replaced with a heterologous signal sequence. The heterologous signal sequence selected should be one that is recognized and processed (i.e. cleaved by a signal peptidase) by the host cell. For prokaryotic host cells that do not recognize and process the native target polypeptide signal sequence, the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the 60 group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin 11 leaders. For yeast secretion the native target polypeptide signal sequence may be substituted by the yeast invertase, alpha factor, or acid phosphatase kinase. The mammalian cell transformants are placed under leaders. In mammalian cell expression the native signal 65 sequence is satisfactory, although other mammalian signal sequences may be suitable.

(b) Origin of Replication Component

Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Generally, in cloning vectors this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid $pBR322$ is suitable for most Gram-negative bacteria, the 2μ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (the SV40 origin may typically be used only because it contains the early promoter).

Most expression vectors are "shuttle" vectors, i.e. they are capable of replication in at least one class of organisms but can be transfected into another organism for expression. For vector is transfected into yeast or mammalian cells for expression even though it is not capable of replicating independently of the host cell chromosome.

DNA may also be amplified by insertion into the host 25 genome. This is readily accomplished using Bacillus species as hosts, for example, by including in the vector a DNA sequence tbat is complementary to a sequence found in Bacillus genomic DNA. Transfection of Bacillus with this vector results in homologous recombination with the However, the recovery of genomic DNA encoding the target polypeptide is more complex than that of an exogenously replicated vector because restriction enzyme digestion is required to excise the target polypeptide DNA.

(c) Selection Gene Component

Expression and cloning vectors should contain a selection gene, also termed a selectable marker. This gene encodes a protein necessary for the survival or growth of transformed host cells grown in a selective culture medium. Host cells 40 not transformed with the vector containing the selection gene will not survive in the culture medium. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g. ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g. the gene encoding D-alanine racemase for Bacilli.

One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully so transformed with a heterologous gene express a protein conferring drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin (Southern et a!., *J. Malec. Appl. Genet.,* 1: 327 [1982]), mycophenolic acid (Mulligan et a!., *Science- :* 1422 [1980]) or hygromycin (Sugden et al., *Mol. Cell. Biol.*, 5: $410-413$ [1985]). The three examples given above employ bacterial genes under eukaryotic control to convey resistance to the appropriate drug G418 or neomycin (geneticin), xgpt (mycophenolic acid), or hygromycin, respectively.

Another example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the target polypeptide nucleic acid, such as dihydrofolate reductase (DHFR) or thymidine selection pressure which only the transformants are uniquely adapted to survive by virtue of having taken up the marker. Selection pressure is imposed by culturing the transformants

under conditions in which the concentration of selection agent in the medium is successively changed, thereby leading to amplification of both the selection gene and the DNA that encodes the target polypeptide. Amplification is the process by which genes in greater demand for the production of a protein critical for growth are reiterated in tandem within the chromosomes of successive generations of recombinant cells. Increased quantities of the target polypeptide are synthesized from the amplified DNA.

For example, cells transformed with the DHFR selection to gene are first identified by culturing all of the transformants in a culture medium that contains methotrexate (Mtx), a competitive antagonist of DHFR. An appropriate host cell when wild-type DHFR is employed is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity, prepared and propagated as described by Urlaub and Chasin, *Proc. Natl. Acad. Sci. USA,* 77: 4216 [1980). The transformed cells are then exposed to increased levels of methotrexate. 1bis leads to the synthesis of multiple copies of the DHFR gene, and, concomitantly, multiple copies of other DNA 20 for use in bacterial systems also generally will contain a comprising the expression vectors, such as the DNA encoding the target polypeptide. This amplification technique can be used with any otherwise suitable host, e.g., *ATCC* No. CCL61 CHO-K1, notwithstanding the presence of endogenous DHFR if, for example, a mutant DHFR gene that is highly resistant to Mtx is employed (EP 117,060). Alternatively, host cells (particularly wild-type hosts that contain endogenous DHFR) transformed or co-transformed with DNA sequences encoding the target polypeptide, wildtype DHFR protein, and another selectable marker such as 30 aminoglycoside 3' phosphotransferase (APH) can be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g., kanamycin, neomycin, or G418. See U.S. Pal. No. 4,965,199.

A suitable selection gene for use in yeast is the trp1 gene present in the yeast plasmid YRp7 (Stinchcomb et al., *Nature,* 22: 39 [1979); Kingsman et al., *Gene,* 7: 141 [1979); or Tschemper et al., *Gene*, 10: 157 [1980]). The trp1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 (Jones, *Genetics,* 5: 12 [1977)). The presence of the trp1 lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan. Similarly, 45 all eukaryotic genes have an AT-rich region located approxi-Leu2-deficient yeast strains (ATCC 20,622 or 38,626) are complemented by known plasmids bearing the Leu2 gene.

(d) Promoter Component

Expression and cloning vectors usually contain a promoter that is recognized by the host organism and is oper-so end of most eukaryotic genes is an AATAAA sequence that ably linked to the target polypeptide nucleic acid. Promoters are untranslated sequences located upstream (5') to the start codon of a structural gene (generally within about 100 to 1000 bp) that control the transcription and translation of a particular nucleic acid sequence, such as that encoding the 55 target polypeptide, to which they are operably linked. Such promoters typically fall into two classes, inducible and constitutive. Inducible promoters are promoters that initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, 60 e.g. the presence or absence of a nutrient or a change in temperature. At this time a large number of promoters recognized by a variety of potential host cells are well known. These promoters are operably linked to DNA encoding the target polypeptide by removing the promoter from 65 host cell systems. the source DNA by restriction enzyme digestion and inserting the isolated promoter sequence into the vector. Both the

native target polypeptide promoter sequence and many heterologous promoters may be used to direct amplification and/or expression of the target polypeptide DNA. However, heterologous promoters are preferred, as they generally permit greater transcription and higher yields of expressed target polypeptide as compared to the native target polypeptide promoter.

Promoters suitable for use with prokaryotic hosts include the β -lactamase and lactose promoter systems (Chang et al., *Nature*, 281: *Nature*, 281: *544* [1979]), alkaline phosphatase, a tryptophan (trp) promoter system (Goedde!, *Nucleic Acids Res.,* 8: 4057 [1980] and EP 36,776) and hybrid promoters such as the tao promoter (deBoer et al., *Proc. Nat/. Acad. Sci, USA,* 80: 21-25 [1983]). However, other known bacterial promoters are suitable. Their nucleotide sequences have been published, thereby enabling a skilled worker operably to ligate them to DNA encoding the target polypeptide (Siebenlist et al., *Cell*, 20: 269 [1980]) using linkers or adaptors to supply any required restriction sites. Promoters Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding the target polypeptide.

Suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase 25 (Hitzeman et al.,J. *Bioi. Chem.,* 255: 2073 [1980D or other glycolytic enzymes (Hess et ai.,J. *Adv. Enzyme Reg.,* 2: 149 [1968); and Holland, *Biochemistry,* 17: 4900 [1978)), such asenolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.

Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled 35 by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in Hitzeman et al., EP 73,657A. Yeast enhancers also ate advantageously used with yeast promoters.

Promoter sequences are known for eukaryotes. Virtually mately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CXCAAT region where X may be any nucleotide. At the 3' may be the signal for addition of the poly A tail to the 3' end of the coding sequence. All of these sequences are suitably inserted into mammalian expression vectors.

Target polypeptide transcription from vectors in mamma-*55* !ian host cells is controlled by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published JuL 5, 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g. the actin promoter or an immunoglobulin promoter, from heat-shock promoters, and from the promoter normally associated with the target polypeptide sequence, provided such promoters are compatible with the

The early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that

also contains the SV40 viral origin of replication. Fiers et al., *Nature,* 273:113 (1978); Mulligan and Berg, *Science,* 209: 1422- 1427 (1980); Pavlakis et a!., *Proc. Nat/. Acad. Sci. USA*, 78: 7398-7402 (1981). The immediate early promoter of the human cytomegalovirus is conveniently obtained as a Hindlll E restriction fragment. Greenaway et a!., *Gene,* 18: 355- 360 (1982). A system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. Pat. No. 4,419,446. A modification of this system is described in U.S. Pat. No. 4,601,978. See also 10 Gray et a!., *Nature,* 29: 503- 508 (1982) on expressing eDNA encoding immune interferon in monkey cells;, Reyes et al., *Naiure,* 297: 598-601 (1982) on expression of human β -interferon cDNA in mouse cells under the control of a thymidine kinase promoter from herpes simplex virus, Canaani and Berg, *Proc. Nat/. Acad. Sci. USA,* 79: 5166-5170 (1982) on expression of the human interferon β 1 gene in cultured mouse and rabbit cells, and Gorman et al., *Proc. Nat/. Aced. Sci. USA,* 79: 6777-6781 (1982) on expression of bacterial CAT sequences in CV-1 monkey 20 tion for purposes of identifying analogs and variants of the kidney cells, chicken embryo fibroblasts, Chinese hamster ovary cells, HeLa cells, and mouse NIH-3T3 cells using the Rous sarcoma virus long terminal repeat as a promoter.

(e) Enhancer Element Component

Transcription of DNA encoding the target polypeptide of 25 this invention by higher eukaryotes is often increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10-300 bp, that act on a promoter to increase its transcription. Enhancers are relatively orientation and position independent having been found 5' (Laimins et al., *Proc. Natl. Acad. Sci. USA,* 78: 993 [1981]) and 3' (Lusky et *al.,Mol. Cell Bio.* 3: 1108 [1983]) to the transcription unit, within an intron (Banerji et al., *Cell,* 33: 729 [1983]) as well as within the 1293 [1984]). Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α -fetoprotein and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv, *Nawre,* 297: 17- 18 (1982) on enhancing elements for activation of eukaryotic promoters. The enhancer may be spliced into the 45 vector at a position 5' or 3' to the target polypeptide DNA, but is preferably located at a site 5' from the promoter.

(t) Transcription Termination Component

Expression vectors used in eukaryotic host cells (yeast, other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3' untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain 55 nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding the target polypeptide. The 3' untranslated regions also include transcription termination sites.

the above listed components the desired coding and control sequences employs standard ligation techniques. Isolated plasmids or DNA fragments are cleaved, tailored, and religated in the form desired to generate the plasrnids required.

For analysis to confirm correct sequences in plasmids 65 constructed, the ligation mixtures are used to transform E. *coli* K.l2 strain 294 (ATCC 31,446) and successful transfer-

mants selected by ampicillin or tetracycline resistance where appropriate. Plasmids from the transformants are prepared, analyzed by restriction endonuclease digestion, and/or sequenced is by the method of Messing et al., *Nucleic Acids Res.*, 9: 309 (1981) or by the method of Maxam et al., *Merhods in Enzynwlogy* 65: 499 (1980).

Particularly useful in the practice of this invention are expression vectors that provide for the transient expression in mammalian cells of DNA encoding the target polypeptide. In general, transient expression involves the use of an expression vector that is able to replicate efficiently io a host cell, such that the host cell accumulates many copies of the expression vector and, in turn, synthesizes high levels of a desired polypeptide encoded by the expression vector. Transient expression systems, comprising a suitable expression vector and a host cell, allow for the convenient positive identification of polypeptides encoded by cloned DNAs, as well as for the rapid screening of such polypeptides for desired biological or physiological properties. Thus, transient expression systems are particularly useful in the inventarget polypeptide that have target polypeptide-like activity.

Other methods, vectors, and host cells suitable for adaptation to the synthesis of the target polypeptide in recombinant vertebrate cell culture are described in Gething et al., 25 *Nature,* 293: 620-625 [1981]; Mantei et al., *Nature,* 281: 40-46 [1979]; Levinson et a!.,; EP 117,060; and EP 117,058. A particularly useful plasmid for mammalian cell culture expression of the target polypeptide is pRKS (EP pub. no. 307,247) or pSVI6B.

Selection and Transformation of Host Cells

coding sequence itself (Osborne et al., *Mol. Cell Bio.*, 4: 35 example, *E. coli*, Bacilli such as *B. subtilis*, Pseudomonas Suitable host cells for cloning or expressing the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above. Suitable prokaryotes include eubacteria, such as Gram-negative or Gram-positive organisms, for species such as P. *aeruginosa, Salmonella typhimurium*, or *Serratia marcescans.* One preferred£. *coli* cloning host is£. *coli* 294 (ATCC 31,446), although other strains such as E . *coli* B, *E. coli* X1776 (ATCC 31,537), and *E. coli* W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting. Preferably the host cell should secrete minimal amounts of proteolytic enzymes. Alternatively, in vitro methods of clooing, e.g. PCR or other nucleic acid polymerase reactions, are suitable.

In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable hosts for target polypeptide-encoding vectors. *Saccharomyces cerevisiae,* or common baker's yeast, is tbe most commonly used among lower eukaryotic host microorganisms. However, a number fungi, insect, plant, animal, human, or nucleated cells from 50 of other genera, species, and strains are commonly available Construction of suitable vectors containing one or more of 60 *Natl. Acad. Sci. USA*, 76: 5259-5263 (1979)], and filamenand useful herein, such as *Schizosaccharomyces pombe* [Beach and Nurse, *Nature,* 290: 140 (1981); EP 139,383 published May 2, 1985], Kluyveromyces hosts (U.S. Pat. No. 4,943,529) such as, e.g.,K. *lacris* [Louvencourt et al.,J. *55 Bacieriol.,* 737 (1983)], K. *fragilis,* K. *bulgaricus,* K. *lhermotolerans,* and K. *marxianus,* yarrowia [EP 402,226], *Pichia pasroris* [EP 183,070; Sreekrishna et al., *J. Basic Microbiol.,* 28: 265- 278 (1988)], Candida, *Trichoderma reesia* [EP 244,2341), *Neurospora crassa* [Case et al., *Proc.* tous fungi such as, e.g, Neurospora, Peoicillium, 1olypocladium [WO 91/00357 published Jan. 10, 1991], and Aspergillus hosts such as *A. nidulans* [Ballance et al., *Biochem. Biophys. Res. Commun.* 112: 284-289 (1983); Tilburn et al., 65 *Gene,* 26: 205- 221 (1983); Yelton et a!., *Proc. Nat/. Acad. Sci. USA,* 81: 1470-1474 (1984)] and *A. niger* [Kelly and Hynes, *EMBO* J., 4: 475-479 (1985)].

Suitable host cells for the expression of glycosylated target polypeptide are derived from multicellular organisms. Such bost cells are capable of complex processing and glycosylation activities. In principle, any higher eukaryotic cell culture is workable, whether from vertebrate or invertebrate culture. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as *Spodoptera fntgiperda* (caterpillar), *Aedes aegypti nogaster* (fruitfly), and *Bombyx mori* host cells have been identified. See, e.g., Luckow et al., *Bio/Technologvy* 6: 47- 55 (1988); Miller et al., in *Genetic Engineering* Setlow, J. K. et a., eds., Vol. 8 (Plenum Publishing, 1986), pp. 277-279; and Maeda et al., *Nature*, 315: 592-594 (1985). A variety of such viral strains are publicly available, e.g., the L-1 variant of *Aurographa califomica* NPV and the Bm-5 strain of *Bombyx mori* NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of *Spodoprera frugiperda* cells. Plant cell cutures of cotton, corn, potato, soybean, petunia, 20 tomato, and tobacco can be utilized as hosts. Typically, plant cells are transfected by incubation with certain strains of the bacterium *Agrobacterium tumefaciens*, which has been previously manipulated to contain the target polypeptide DNA. During incubation of the plant cell culture with *A.* ²⁵ *tumefaciens,* the DNA encoding target polypeptide is transferred to the plant cell host such that it is transfected, and will, under appropriate conditions, express the target polypeptide DNA. In addition, regulatory and signal sequences compatible with plant cells are available, such as 30 Culturina the Host Cells the nopaline synthase promoter and polyadenylation signal sequences. Depicker et ai.,J. *Mol.Appl. Gen.,* 1:561 (1982). In addition, DNA segments isolated from the upstream region of the T-DNA 780 gene are capable of activating or recombinant DNA-containing plant tissue. See EP 321,196 published Jun. 21, 1989.

However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure in recent years *[Tissue 40] Culture,* Academic Press, Kruse and Patterson, editors (1973)). Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or ham et al., *J. Gen Virol.*, 36: 59 [1977]); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin, *Proc. Naif. Acad.* Sci. USA, 77: 4216 [1980]); mouse sertoli cells (TM4, cells (CV1 ATCC CCL 70); African green monkey kidney cells (VER0-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL *55* 75); human liver cells (Hep G2, HS 8065); mouse mammary tumor (MMT 060562, ATCC CCLS1); TRI cells (Mather et al., *Annals N.Y. Acad. Sci.,* 383: 44-68 [1982]); MRC 5 cells; FS4 cells; and a human hepatoma cell line (Hep G2). Preferred host cells are human embryonic kidney 293 and 60 Chinese hamster ovary cells.

Host cells are transfected and preferably transformed with the above-described expression or cloning vectors of this invention and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting 65 transform ants, or amplifying the genes encoding the desired sequences.

Transfection refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaPO₄ and electroporation. Successful transfection is generally recognized wben any indication of the operation of this vector occurs within the host cell.

Transformation means introducing DNA into an organism so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integrant. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in section 1.82 of Sambrook et al., supra, is generally used for prokaryotes or other cells that contain substantial cell-wall barriers. Infection with *Agrobacteriwn tumefaciens* is used for transformation of certain plant cells, as described by Shaw et al., *Gene,* 23: 315 (1983) and WO 89/05859 published Jun. 29, 1989. For mammalian cells without such cell walls, the calcium phosphate precipitation method described in sections 16.30-16.37 of Sambrook et al., supra, is preferred. General aspects of mammalian cell host system transformations have been described by Axel in U.S. Pat. No. 4,399,216 issued Aug. 16, 1983. Transformations into yeast are typically carried out according to the method of Van Solingen et al., J. *Bact.,* 130: 946 (1977) and Hsiao et al., *Proc. Nat/. A cad. Sci.* (USA), 76: 3829 (1979). However, other methods for introducing DNA into cells such as by nuclear injection, electroporation, or protoplast fusion may also be used.

Prokaryotic cells used to produce the target polypeptide of this invention are cultured in suitable media as described generally in Sambrook et al., supra.

increasing transcription levels of plant-expressible genes in 35 polypeptide of Ibis invention may be cultured in a variety of 293 cells subcloned for growth in suspension culture, Gra- 45 media for the host cells. Any of these media may be Mather, *Bioi. Reprod.,* 23: 243-251 [1980]); monkey kidney so nucleosides (such as adenosine and thymidine), antibiotics The mammalian host cells used to produce the target media. Commercially available media such as Ham's FlO (Sigma), Minimal Essential Medium ([MEM], Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ([DMEM], Sigma) are suitable for culturing the host cells. In addition, any of the media described in Ham and Wallace, *Meth. Enz.,* 58: 44 (1979), Barnes and Sato, *Anal. Biochem.* 102: 255 (1980), U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; or 4,560,655; WO 90/03430; WO 87/00195; U.S. Pat. No. Re. 30,985, may be used as culture supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (sucb as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), (such as Gentamycin[™] drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

The host cells referred to in this disclosure encompass cells in in vitro culture as well as cells that are within a host animal.

It is further envisioned that the target polypeptides of this invention may be produced by homologous recombination, or with recombinant production methods utilizing control elements introduced into cells already containing DNA encoding the target polypeptide currently in use in the field. For example, a powerful promoter/enhancer element, a suppressor, or an exogenous transcription modulatory element is inserted in the genome of the intended host cell in proximity and orientation sufficient to influence the transcription of DNA encoding the desired target polypeptide. The control element does not encode the target polypeptide of this invention, but the DNA is present in the host cell genome. One next screens for cells making the target polypeptide of this invention, or increased or decreased levels of expression, as desired. to the sepharose columns to remove contaminants such as IgG.

Detecting Gene Amplification/Expression

Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, northern blotting to quantitate the transcription of mRNA (Thomas, *Proc. Natl. Acad. Sci. USA*, 77: 5201-5205 [1980]), dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Various labels may be employed, most commonly radioisotopes, particularly ³²P. However, other techniques may also be employed, such as 20 lmmunoaffinity columns such as a rabbit polyclonal antiusing biotin-modified nucleotides for introduction into a polynucleotide. The biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionuclides, fluorescers, enzymes, or the like. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of 30 duplex on the surface, the presence of antibody bound to tbe duplex can be detected.

Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical fluids, to quantitate directly the expression of gene product. With immunohistochemical staining techniques, a cell sample is prepared, typically by dehydration and fixation, followed by reaction with labeled antibodies specific for tbe gene product coupled, where the labels are usually visually detectable, such as enzymatic labels, fluorescent labels, luminescent labels, and the like. A particularly sensitive staining technique suitable for use in the present invention is described by Hsu et al., *Am. J. Clin. Path., 75: 734-738* (1980).

Antibodies useful for immunohistochemical staining and/ C-terminal residues. or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native target polypeptide or against a synthetic peptide based on the DNA sequences provided herein as described further in Section 4 below.

Purification of the Target Polypeptide

The target polypeptide preferably is recovered from the culture medium as a secreted polypeptide, although it also *55* may be recovered from host cell lysates when directly expressed without a secretory signal.

When the target polypeptide is expressed in a recombinant cell other than one of human origin, the target polypeptide is completely free of proteins or polypeptides of human 60 origin. However, it is necessary to purify the target polypeptide from recombinant cell proteins or polypeptides to obtain preparations that are substantially homogeneous as to the target polypeptide. As a first step, the culture medium or lysate is centrifuged to remove particulate cell debris. The 65 membrane and soluble protein fractions are then separated. The target polypeptide may then be purified from the soluble

protein fraction and from the membrane fraction of the culture lysate, depending on whether the target polypeptide is membrane bound. The following procedures are exemplary of suitable purification procedures: fractionation on immunoaffinity or ion-exchange columns; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; and protein A

Target polypeptide variants in which residues have been deleted, inserted or substituted are recovered in the same fashion, taking account of any substantial changes in properties occasioned by the variation. For example, preparation of a target polypeptide fusion with another protein or polypeptide, e.g. a bacterial or viral antigen, facilitates purification; an immunoaffinity column containing antibody to the antigen (or containing antigen, where the target polypeptide is an antibody) can be used to adsorb the fusion. target polypeptide column can be employed to absorb the target polypeptide variant by binding it to at least one remaining immune epitope. A protease inhibitor such as phenyl methyl sulfonyl fluoride (PMSF) also may be useful to inhibit proteolytic degradation during purification, and antibiotics may be included to prevent the growth of adventitious contaminants. One skilled in the art will appreciate that purification methods suitable for native target polypeptide may require modification to account for changes in the character of the target polypeptide or its variants upon expression in recombinant cell culture.

Covalent Modifications of Target Polypeptides

Covalent modifications of target polypeptides are included within the scope of this invention. One type of staining of tissue sections and assay of cell culture or body 35 covalent modification included within the scope of this invention is a target polypeptide fragment. Target polypeptide fragments having up to about 40 amino acid residues may be conveniently prepared by chemical synthesis, or by enzymatic or chemical cleavage of the full-length target polypeptide or variant target polypeptide. Other types of covalent modifications of the target polypeptide or fragments thereof are introduced into the molecule by reacting specific amino acid residues of the target polypeptide or fragments thereof with an organic derivatizing agent that is 45 capable of reacting with selected side chains or the N- or

> Cysteinyl residues most commonly are reacted with α -haloacetates (and corresponding amines), such as chloroacetic acid or chloroacetamide, to give carboxymethyl or 50 carboxyamidomethyl derivatives. Cysteinyl residues also are derivatized by reaction with bromotrifluoroacetone, o. bromo 5-imidozoyl)propionic acid, chloroacetyl phosphate, N-alkylmaleimides,3-nitro-2-pyridyl disulfide, met hy 12-pyridy !disulfide, p-chloromercuribenzoa te, 2-chloromercuri-4-nitrophenol, or chloro-7-nitrobenzo-2 oxa-1,3-diazole.

Histidyl residues are derivatized by reaction with diethylpyrocarbonate at pH $5.5-7.0$ because this agent is relatively specific for the histidyl side chain. Parabromophenacyl bromide also is useful; the reaction is preferably performed in O.lM sodium cacodylate at pH 6.0.

Lysinyl and amino terminal residues are reacted with succinic or other carboxylic acid anhydrides. Derivatization with these agents bas the effect of reversing the charge of the lysinyl residues. Other suitable reagents for derivatizing a-amino-containing residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; cbloroborobydride; trinitrobenzenesulfonic acid; 0-metbylisourea; 2,4-pentanedione; and transaminasecatalyzed reaction with glyoxylate.

Arginyl residues are modified by reaction with one or several conventional reagents, among them phenylglyoxal, 2,3-butanedione, 1,2-cyclobexanedione, and ninhydrin. Derivatization of arginine residues requires that the reaction be performed in alkaline conditions because of the high pK_a of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as the 10 glycosylation refers to the attachment of one of the sugars arginine epsilon-amino group.

The specific modification of tyrosyl residues may be made, with particular interest in so introducing spectral labels into tyrosyl residues by reaction with aromatic diazonium compounds or tetranitromethane. Most commonly, 15 N-acetylimidizole and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively. Tyrosyl residues are iodinated using ¹²⁵I or ¹³¹I to prepare labeled proteins for use in radioimmunoassay, the chloramine T method described above being suitable. 20 or substitution by, one or more serine or theonine resides to

Carboxyl side groups (aspartyl or glutamyl) are selectively modified by reaction with carbodiimides (R'- N=C=N-R'), where R and R' are different alkyl groups, such as 1-cyclohexyl-3-(2-morpholinyl-4-ethyl) carbodiimide or 1-etbyl-3-(4-azonia-4,4-dimetbylpentyl) carbodiim- 25 ide. Furthermore, aspartyl and glutamyl residues are converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.

Derivatization with bifunctional agents is useful for crosslinking target polypeptide to a water-insoluble support 30 matrix or surface for use in the method for purifying anti-target polypeptide antibodies, and vice versa. Commonly used crosslinking agents include, e.g., 1,1-bis (diazoacetyl)-2-phenvlethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 35 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-ditbiobis (succinimidylpropionate), and bifunctional maleimides such as bis-N-maleimido-1,8-octane. Derivatizing agents such as methyl-3-[(p-azidopbenyl)dithio]propiointidate yield photo- 40 activatable intermediates that are capable of forming crosslinks in the presence of light. Alternatively, reactive water-insoluble matrices such as cyanogen bromideactivated carbohydrates and the reactive substrates described in U.S. Pat. Nos. 3,969,287; 3,691,016; 4,195, 45 128; 4,247,642; 4,229,537; and 4,330,440 are employed for protein immobilization.

Glutamioyl and asparaginyl residues are frequently deamidated to the corresponding glutamyl and aspartyl midated under mildly acidic conditions. Either form of these residues falls within the scope of this invention.

Other modification include hydroxylation of proline and lysine, phopborylation of hydroxyl groups of seryl or tbreonyl resides, methylation of the α-amino groups of lysine, *55* arginine, and histidine side chains, (T. E. Creighton, Protein: *Structure and Molecular Properties,* W. H. Freeman & Co., Sao Francisco, pp. 79-86 [1983]), acetylation of the N-terminal amine, and amidaatioon of any C-terminal car-

Another type of covalent modification of the target polypeptide included within the scope of this invention comprises altering the native glucosylatuion pattern of the polypeptide. By altering is meant deleting one or more carbohydrate moieties found in the native target 65 polypeptide, and/or adding one or more glycosylation sites that are not present in the native target polypeptide.

Gylcosylation of polypeptides is typically either N-linked or 0-linked refers to the attachment of the carbonbydrate moiety to the side chain of an asparagine reisdue. The tri-peptide sequences asparagine-X-resine and asparagioe-X-threonine, where X is any aminoe acid except proline, are the recoginition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tri-peptide sequences in a polypeptide creates a potential glycosylation site. 0 -linked N-acetylgactosamine, galactose, or xylose, to a hydroxyamino acid, most commonly serine or threonine, although 5-bydroxyproline or 5-bydroxylysine may also be used.

Addition of glycosylation sites to the target polypeptide is conveniently accomplished by altering the amino acid sequence such that it contains one or more of bte abovedescribed tri-peptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, the native target polypeptide sequence (for 0 -linked glycosylation sites). For ease, the target polypeptide amino acid sequences is preferably altered through changes at the DNA level, particularly by mutating the DNA encoding the target polypeptide at preselected bases such that condons are generated that will translate into the desired amino acids. The DNA mutation(s) may be made using methods described above under the beading of "Amino Acid Sequence Variants of Target Polypeptide".

Another means of increasing the number of carbohydrate moieties on the target polypeptide is by chemical or enzymatic coupling glycosides to the polypeptides. These procedures are advantageous in that they do not require production of the polypeptide in a host cell that bas glycosylation capabilities for N- or 0-lioked glycosylation. Depending on the couple mode used, the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine. These methods are described in WO 87/05330 published Sep. 11, 1987, and in Aplin and Wriston *(CRC Crit. Rev. Biochem., pp. 259-306 [1981]).*

residues, respectively. Alternatively, these residues are dea- 50 the cleavage of most or all sugars except the linking sugar Removal of carbohydrate moieties present on the native target polypeptide may be accomplished chemically or enzymatically. Chemical deglycosylation requires exposure of the polypeptide to the compound trifiuorometbanesulfonic acid, or an equivalent compound. This treatment results in (N-acetylglucosamine or N-acetylgalactosamine), while leaving the polypeptide intact. Chemical deglycosylation is described by Hakimuddin et al. *(Arch. Biochem. Biophys.,* 259:52 [1987]) and by Edge et al. *(Anal. Biochem.,* 118:131 [1981]). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endoand exo-glycosidases as described by Thotakura et al. *(Meth.. Enzymol.* 138:350 [1987D.

Glycosylation at potential glycosylation sites may be boxyl group. 60 prevented by the use of the compound tunicamycin as described by Duskin et al. (J. Biol. Chem., 257:3105 [1982]). Tunicamycin blocks the formation of protein-Nglycoside linkages.

> Another type of covalent modification of the target polypeptide comprises linking the target polypeptide to various nonproteinaceous polymers, e.g. polyethylene glycol, polypropylene glycol or polyoxyalkylenes, io the

41
manner set forth in U.S. Pat. Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.

The target polypeptide also may be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatin-microcapsules and poly-[methylmethacylate]microcapsules, respectively), in colloidal drug deliverysystems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules), or in macroemulsions. Such techniques are 10 and bacterial luciferase (U.S. Pat. No. 4,737,456), luciferin, disclosed in *Reminaton's Pharmaceutical Sciences,* 16th edition, Osol, A., Ed., (1980).

Target polypeptide preparations are also useful in generating antibodies, for screening for binding partners, as standards in assays for the target polypeptide (e.g. by JS dehydrogenase, heterocyclic oxidases such as uricase and labeling the target polypeptide for use as a standard in a radioimmunoassay, enzyme-linked immunoassay, or radioreceptor assay), in affinity purification techniques, and in competitive-type receptor binding assays when labeled with radioiodine, enzymes, fluorophores, spin labels, and the 20 like. like.

Since it is often difficult to predict in advance the characteristics of a variant target polypeptide, it will be appreciated that some screening of the recovered variant will be needed to select the optimal variant. For example, a change in the immunological character of the target polypeptide molecule, such as affinity for a given antigen or antibody, is measured by a competitive-type immunoassay. The variant is assayed for changes in the suppression or enhancement of its activity by comparison to the activity observed for the 30 13: 1014-1021 (1974); Pain eta!., *I. Immunol. Methods,* 40: target polypeptide in the same assay. Other potential modifications of protein or polypeptide properties such as redox or thermal stability, hydrophobicity, susceptibility to proteolytic degradation, stability in recombinant cell culture or multimers are assayed by methods well known in the art. Diagnostic and Related Uses of the Antibodies

The antibodies of this invention are useful in diagnostic assays for antigen expression in specific cells or tissues. The antibodies are detectably labeled and/or are immobilized on 40 an insoluble matrix.

The antibodies of this invention find further use for the affinity purification of the antigen from recombinant cell culture or natural sources. Suitable diagnostic assays for the antigen and its antibodies depend on the particular antigen or 45 ner from any analyte that remains free in solution. This antibody. Generally, such assays include competitive and sandwich assays, and steric inhibition assays. Competitive and sandwich methods employ a phase-separation step as an integral part of the method while steric inhibition assays are conducted in a single reaction mixture. Fundamentally, the 50 lent coupling (for example, using glutaraldehyde crosssame procedures are used for the assay of the antigen and for substances that bind the antigen, although certain methods will be favored depending upon the molecular weight of the substance being assayed. Therefore, the substance to be tested is referred to herein as an analyte, irrespective of its 55 mercial diagnostics industry. status otherwise as an antigen or antibody, and proteins that bind to the analyte are denominated binding partners, whether they be antibodies, cell surface receptors, or antigens.

Analytical methods for the antigen or its antibodies all use one or more of the following reagents: labeled analyte analogue, immobilized analyte analogue, labeled binding partner, immobilized binding partner and steric conjugates. The labeled reagents also are known as "tracers."

The label used (and this is also useful to label antigen 65 nucleic acid for use as a probe) is any detectable functionality that does not interfere with the binding of analyte and

its binding partner. Numerous labels are known for use in immunoassay, examples including moieties that may be detected directly, such as fluorochrome, chemiluminescent, and radioactive labels, as well as moieties, such as enzymes, that must be reacted or derivatized to be detected. Examples of such labels include the radioisotopes ^{32}P , ^{14}C , ^{125}I , ^{3}H , and ¹³¹₁. fluorophores such as rare earth chelates or fluorescein and its derivatives, rhodamine and its derivatives, dansyl, umbelliferone, luceriferases, e.g., firefly luciferase 2,3-dihydrophthalazinediones, horseradish peroxidase (HRP) , alkaline phosphatase, β -galactosidase, glucoamylase, lysozyme, saccharide oxidases, e.g., glucose oxidase, galactose oxidase, and glucose-6-phosphate xanthine oxidase, coupled with an enzyme that employs hydrogen peroxide to oxidize a dye precursor such as HRP, lactoperoxidase, or microperoxidase, biotintavidin, spin labels, bacteriophage labels, stable free radicals, and the

Conventional methods are available to bind these labels covalenily to proteins or polypeptides. For instance, coupling agents such as dialdehydes, carbodiimides, dimaleimides, bis-imidates, bis-diazotized benzidine, and the like may be used to tag the antibodies with the abovedescribed fluorescent, chemiluminescent, and enzyme labels. See, for example, U.S. Pat. No. 3,940,475 (fluorimetry) and U.S. Pat. No. 3,645,090 (enzymes); Hunter et al., *Nature,* 144: 945 (1962); David et a!., *Biochemistry,* 219-230 (1981); and Nygren, J. Histochem. and Cytochem., 30: 407-412 (1982). Preferred labels herein are enzymes such as horseradish peroxidase and alkaline phosphatase.

in plasma, or the tendency to aggregate with carriers or into 35 the antibody is a standard manipulative procedure for one of The conjugation of such label, including the enzymes, to ordinary skill in immunoassay techniques. See, for example, O'Sullivan et al., "Methods for the Preparation of Enzymeantibody Conjugates for Use in Enzyme Immunoassay," in *Merhods in in Enzymology,* ed. J. J. Langone and H. Van Vunakis, Vol. 73 (Academic Press, New York, N.Y., 1981), pp. 147-166. Such bonding methods are suitable for use with the antibodies and polypeptides of this invention.

> Immobilization of reagents is required for certain assay methods. Immobilization entails separating the binding partconventionally is accomplished by either insolubilizing the binding partner or analyte analogue before the assay procedure, as by adsorption to a water-insoluble matrix or surface (Bennich et al., U.S. Pat. No. 3,720,760), by covalinking), or by insolubilizing the partner or analogue afterward, e.g., by immunoprecipitatioo.

Other assay methods, known as competitive or sandwich assays, are well established and widely used in the com-

Competitive assays rely on the ability of a tracer analogue to compete with the test sample analyte for a limited number of binding sites on a common binding partner. The binding partner generally is insolubilized before or after the competition and then the tracer and analyte bound to the binding partner are separated from the unbound tracer and analyte. This separation is accomplished by decanting (where the binding partner was preinsolubilized) or by centrifuging (where the binding partner was precipitated after the competitive reaction). The amount of test sample analyte is inversely proportional to the amount of bound tracer as measured by the amount of marker substance. Doseresponse curves with known amounts of analyte are prepared and compared with the test results to quantitatively determine the amount of analyte present in the test sample. These assays are called ELISA systems when enzymes are used as the detectable markers.

Another species of competitive assay, called a "homogeneous" assay, does not require a phase separation. Here, a conjugate of an enzyme with the analyte is prepared and used such that when anti-analyte binds to the analyte the presence of the anti-analyte modifies the enzyme activity. In 10 this case, the antigen or its immunologically active fragments are conjugated with a bifunctional organic bridge to an enzyme such as peroxidase. Conjugates are selected for use with antibody so that binding of the antibody inhibits or potentiates the enzyme activity of the label. This method per se is widely practiced under the name of EMIT.

Steric conjugates are used in steric hindrance methods for homogeneous assay. These conjugates are synthesized by covalently linking a low-molecular-weight hapten to a small analyte so that antibody to hapten substantially is unable to 20 discussed herein. Commonly known crosslinking reagents bind the conjugate at the same time as anti-analyte. Under tbis assay procedure the analyte present in the test sample will bind anti-analyte, thereby allowing anti-hapten to bind the conjugate, resulting in a change in the character of the infected cell surface, are conjugated to ricin A chain. Most conjugate hapten, e.g., a change in fluorescence when the 25 hapten is a fluorophore.

Sandwich assays particularly are useful for the determination of antigen or antibodies. In sequential sandwich assays an immobilized binding partner is used to adsorb test sample analyte, the test sample is removed as by washing, 30 the bound analyte is used to adsorb labeled binding partner, and bound material is then separated from residual tracer. The amount of bound tracer is directly proportional to test sample analyte. In "simultaneous" sandwich assays the test sample is not separated before adding the labeled binding 35 partner. A sequential sandwich assay using an anti-antigen monoclonal antibody as one antibody and a polyclonal anti-antigen antibody as the other is useful in testing samples for particular antigen activity.

The foregoing are merely exemplary diagnostic assays for 40 the import and humanized antibodies of this invention. Other methods now or hereafter developed for the determination of these analytes are included within the scope hereof, including the bioassays described above.

Immunotoxins

This invention is also directed to immunochemical derivatives of the antibodies of this invention such as immunotoxins (conjugates of the antibody and a cytotoxic moiety). Antibodies which carry the appropriate effector functions, such as with their constant domains, are also used to induce 50 size these fragments can better penetrate tissue to reach lysis through the natural complement process, and to interact with antibody dependent cytotoxic cells normally present.

For example, purified, sterile filtered antibodies are optionally conjugated to a cytotoxin such as ricin for use in AIDS therapy. U.S. patent application Ser. No. 07/350,895 *55* Antibody Dependent Cellular Cytotoxicity illustrates methods for making and using immunotoxins for the treatment of HIV infection. The methods of this invention, for example, are suitable for obtaining humanized antibodies for use as immunotoxins for use in AIDS therapy.

The cytotoxic moiety of the immunotoxin may be a 60 cytotoxic drug or an enzymatically active toxin of bacterial, fungal, plant or animal origin, or an enzymatically active fragment of such a toxin. Enzymatically active toxins and fragments thereof used are diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from 65 Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, *Aleurites fordii* proteins,

dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin and the tricothecenes. In another embodiment, the antibodies are conjugated to small molecule anticancer drugs such as cis-platin or SFU. Conjugates of the monoclonal antibody and such cytotoxic moieties are made using a variety of bifunctional protein coupling agents. Examples of such reagents are SPDP, IT, bifunctional derivatives of imidoesters such as dimethyl adipimidate HCI, active esters such as disuccinimidyl suberate, aldehydes such as glutaraldehyde, bis-azido compounds such as bis (p-azidobenzoyl) hexanediamine, bisdiawnium derivatives such as bis-(p-diawniumbenzoyl) ethylenediamine, diisocyanates such as tolylene 2,6diisocyanate and bis-active fluorine compounds such as 1,5-difluoro-2,4-dinitrobenzene. The lysing portion of a toxin may be joined to the Fab fragment of the antibodies.

Immunotoxins can be made in a variety of ways, as can be used to yield stable conjugates.

Advantageously, monoclonal antibodies specifically binding the domain of the antigen which is exposed on the advantageously the ricin A chain is deglycosylated and produced through recombinant means. An advantageous method of making the ricin immunotoxin is described in Vitetta et al., *Science* 238:1098 (1987).

When used to kill infected human cells in vitro for diagnostic purposes, the conjugates will typically be added to the cell culture medium at a concentration of at least about 10 oM. The formulation and mode of administration for in vitro use are not critical. Aqueous formulations that are compatible with the culture or perfusion medium will normally be used. Cytotoxicity may be read by conventional techniques.

Cytotoxic radiopharmaceuticals for treating infected cells may be made by conjugating radioactive isotopes (e.g. I, Y, Pr) to the antibodies. Advantageously alpha particleemitting isotopes are used. The term "cytotoxic moiety" as used herein is intended to include such isotopes.

In a preferred embodiment, ricin A chain is deglycosylated or produced without oligosaccharides, to decrease its clearance by irrelevant clearance mechanisms (e.g., the 45 liver). In another embodiment, whole ricin (A chain plus B chain) is conjugated to antibody if the galactose binding property of B-chain can be blocked ("blocked ricin").

In a further embodiment toxin-conjugates are made with Fab or $F(ab')_2$ fragments. Because of their relatively small infected cells.

In another embodiment, fusogenic liposomes are filled with a cytotoxic drug and the liposomes are coated with antibodies specifically binding the particular antigen.

Certain aspects of this invention involve antibodies which are (a) directed against a particular antigen and (b) belong to a subclass or isotype that is capable of mediating the lysis of cells to which the antibody molecule binds. More specifically, these antibodies should belong to a subclass or isotype that, upon complexing with cell surface proteins, activates serum complement and/or mediates antibody dependent cellular cytotoxicity (ADCC) by activating effector cells such as natural killer cells or macrophages.

Biological activity of antibodies is known to be determined, to a large extent, by the constant domains or Fe region of the antibody molecule (Uananue and Benacerraf,

Texrbook of Immunology, 2nd Edition, Williams & Wilkins, p. 218 (1984)). This includes their ability to activate complement and to mediate antibody-dependent cellular cytotoxicity (ADCC) as effected by leukocytes. Antibodies of different classes and subclasses differ in this respect, as do antibodies from the same subclass but different species; according to the present invention, antibodies of those classes having the desired biological activity are prepared. Preparation of these antibodies involves the selection of humanized antibody by known technique. For example, mouse immunoglobulins of the IgG3 and lgG2a class are capable of activating serum complement upon binding to the target cells which express the cognate antigen, and therefore humanized antibodies which incorporate IgG3 and IgG2a 15 effector functions are desirable for certain therapeutic applications.

In general, mouse antibodies of the lgG2a and lgG3 subclass and occasionally lgGl can mediate ADCC, and antibodies of the IgG3, IgG2a, and IgM subclasses bind and 20 81:216 (1984)) relating to such antigens could be used to activate serum complement. Complement activation generally requires the binding of at least two IgG molecules in close proximity on the target cell. However, the binding of only one IgM molecule activates serum complement.

The ability of any particular antibody to mediate lysis of 25 the target cell by complement activation and/or AOCC can be assayed. The cells of interest are grown and labeled in vitro; the antibody is added to the cell culture in combination with either serum complement or immune cells which may be activated by the antigen antibody complexes. Cytolysis of 30 the target cells is detected by the release of label from the lysed cells. In fact, antibodies can be screened using the patient's own serum as a source of complement and/or immune cells. The antibody that is capable of activating complement or mediating ADCC in the in vitro test can then 35 the description of preparation of polypeptides for be used therapeutically in that particular patient.

This invention specifically encompasses consensus Fe antibody domains prepared and used according to the teachings of this invention.

1berapeutic and Other Uses of the Antibodies

When used in vivo for therapy, the antibodies of the subject invention are administered to the patient in therapeutically effective amounts (i.e. amounts that have desired therapeutic effect). They will normally be administered the degree of the infection, the characteristics of the particular antibody or immunotoxin used, e.g., its therapeutic index, tbe patient, and tbe patient's history. Advantageously the antibody or immunotoxin is administered continuously vasculature and subcutaneously and intraperitoneally to treat regional lymph nodes. Optionally, the administration is made during the course of adjunct therapy such as combined cycles of radiation, chemotherapeutic treatment, or administration of tumor necrosis factor, interferon or other cytoprotective or immunomodulatory agent.

For parenteral administration the antibodies will be formulated in a unit dosage injectable form (solution, suspension, emulsion) in association with a pharmaceutically acceptable parenteral vehicle. Such vehicles are inherently nontoxic, and non-therapeutic. Examples of such vehicles are water, saline, Ringer's solution, dextrose solution, and *5%* human serum albumin. Nonaqueous vehicles such as fixed oils and ethyl oleate can also be used. Liposomes may be used as carriers. The vehicle may contain minor amounts of additives such as substances that enhance isotonicity and chemical stability, e.g., bull'ers and preser-

vatives. The antibodies will typically be formulated in such vehicles at concentrations of about 1 mg/ml to 10 mg/ml.

Use of IgM antibodies may be preferred for certain applications, however IgG molecules by being smaller may be more able than IgM molecules to localize to certain types of infected cells.

antibody constant domains are their incorporation in the 10 macrophages (Uananue and Benecerraf, *Textbook of* There is evidence that complement activation in vivoleads to a variety of biological effects, including the induction of an inflammatory response and the activation of *Immunology,* 2nd Edition, Williams & Wilkins, p. 218 (1984)). The increased vasodilation accompanying inflammation may increase the ability of various agents to localize in infected cells. Therefore, antigen-antibody combinations of the type specified by this invention can be used therapeutically in many ways. Additionally, purified antigens (Hakomori, *Ann. Rev. Immunol.* 2: 103 (1984)) or antiidiotypic antibodies (Nepom et a!., *Proc. Nat/. Acad. Sci.* 81:2864 (1985); Koprowski et al., *Proc.* Narl. Acad. Sci. induce an active immune response in human patients. Such a response includes the formation of antibodies capable of activating human complement and mediating ADCC and by such mechanisms cause infected cell destruction.

> Optionally, the antibodies of this invention are useful in passively immunizing patients, as exemplified by the admin-

> The antibody compositions used in therapy are formulated and dosages established in a fashion consistent with good medical practice taking into account the disorder to be treated, the condition of the individual patient, the site of delivery of the composition, the method of administration and other factors known to practitioners. The antibody compositions are prepared for administration according to administration, infra.

Deposit of Materials

As described above, cultures of the muMAb4D5 have been deposited with the American Type Culture Collection, 40 10801 University Blvd., Mauassas, Va., USA (ATCC).

parenterally. The dose and dosage regimen will depend upon 45 maintenance of viable cultures for 30 years from the date of over a period of 1-2 weeks, intravenously to treat cells in the 50 eny of the cultures to the public upon issuance of the This deposit was made under the provisions of the Budapest Treaty on the international Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures the deposit. The organisms will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures permanent and unrestricted availability of the progpertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures' availability of the progeny to one determined by the U.S. Commissioner of Patents and Trademarks *55* to be entitled thereto according to 35 USC §122 and the Commissioner's rules pursuant thereto (including 37 CFR §1.12 with particular reference to 886 OG 638).

> In respect of those designations in which a European patent is sought, a sample of the deposited microorganism 60 will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample. (Rule 28(4) EPC)

The assignee of the present application has agreed that if the cultures on deposit should die or be lost or destroyed

when cultivated under suitable conditions, they will be promptly replaced on notification with a viable specimen of the same culture. Availability of the deposited strain is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws.

The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by the constructs deposited, since the deposited embodi- 10 *Methods Enzymol.* 153:3-11 (1987)) and five clones for each ments are intended to illustrate only certain aspects of the invention and any constructs that are functionally equivalent are within the scope of this invention. The deposit of material herein does not constitute an admission that the written description herein contained is inadequate to enable the practice of any aspect of the invention, including the best mode thereof, nor is it to be construed as limiting the scope of the claims to the specific illustrations that they represent. Indeed, various modifications of the invention in addition to those skilled in the art from the foregoing description and fall within the scope of the appended claims.

It is understood that the application of the teachings of the present invention to a specific problem or situation will be within the capabilities of one having ordinary skill in the art in light of the teachings contained herein. Examples of the products of the present invention and representative processes for their isolation, use, and manufacture appear below, but should not be construed to limit the invention.

EXAMPLES

Example 1

Humanization of muMAb405

Here we report the chimerization of muMAb4D5 (chMAb4D5) and the rapid and simultaneous humanization of heavy (V_H) and light (V_L) chain variable region genes using a novel "gene conversion mutagenesis" strategy. Eight humanized variants (huMAb4D5) were constructed to probe the importance of several FR residues identified by our molecular modeling or previously proposed to be critical to the conformation of particular CDRs (see Chothia, C. & Lesk, A. M., *J. Mol. Biol.* 196:901-917 (1987); Chothia, C. et al., *Nature* 342:877-883 (1989); Tramontano, A. et al., J. 45 *Mol. Biol.* 215:175-182 (1990)). Efficient transient expression of humanized variants in non-myeloma cells allowed us to rapidly investigate the relationship between binding affinity for p185^{HER2} ECD and anti-proliferative activity against p185^{HER2} overexpressing carcinoma cells.

Materials and Methods

Cloning of Variable Region Genes. The muMAb4D5 V_H and V_L genes were isolated by polymerase chain reaction (PCR) amplification of mRNA from the corresponding hybridoma (Fendly, B. M. et a!., *Cancer Res.* 50:1550-1558 (1990)) as described by Orlandi et al. (Orlandi, R. et al., *Proc. Nat!. Acad. Sci. USA* 86:3833-3837 (1989)). Amino terminal sequencing of muMAb4D5 V_L and V_H was used to design the sense strand PCR primers, whereas the anti-sense 60 PCR primers were based upon consensus sequences of murine framework residues (Orlandi, R. et al., *Proc. Natl. Acad. Sci. USA* 86:3833- 3837 (1989); Kabat, E. A. et al., *Sequences of PrOieins of Immunological In1erest* (National Institutes of Health, Bethesda, Md., 1987)) incorporating 65 *Inrerest* (National Institutes of Health, Bethesda, Md., restriction sites for directional cloning shown by underlining and listed after the sequences: V_L sense, 5'-TCC

GATATCCAGCTGACCCAGTCTCCA-3' (SEQ. ID NO. 7), EcoRV; V_L anti-sense, 5'-GTTTGATCTCCAGCTT $GGTACCUSCOCGAA-3'$ (SEQ. ID NO. 8), Asp718; V_H sense, 5'-AGGTSMARCTGCAGSAGTCWGG-3' (SEQ. lD NO. 9), PstI and V_H anti-sense, 5'-TGAGGAGAC GGTGACCGTGGTCCCTTGGCCCCAG-3' (SEQ. ID. NO. 10), BstEll; where H=A or Cor T, S=C or G, D=A or G or T, M=A or C, R=A or G and W=A or T. The PCR products were cloned into pUC119 (Vieira, J. & Messing, J., variable domain sequenced by the dideoxy method (Sanger, F. et al., *Proc. Nat!. A cad. Sci. USA* 74:5463-5467 (1977)).

those shown and described herein will become apparent to 20 additional structures were then superimposed upon this Molecular Modelling. Models for muMAb4D5 V_H and V_L domains were constructed separately from consensus 15 coordinates based upon seven Fab structures from the Brookhaven protein data bank (entries 1FB4, 2RHE, 2MCP, 3FAB, 1FBJ, 2HFL and lREI). The Fab fragment KOL (Marquart, M. et al., *J. Mol. Biol.* 141:369-391 (1980)) was first chosen as a template for V_L and V_H domains and structure using their main chain atom coordinates (INSIGHT program, Siosym Technologies). The distance from the template C α to the analogous C α in each of the superimposed structures was calculated for each residue position. If all (or nearly all) Ca — Ca distances for a given residue were ≤ 1 Å, then that position was included in the consensus structure. In most cases the β -sheet framework residues satisfied these criteria whereas the CDR loops did not. For each of these selected residues the average coordinates for individual N, C α , C, O and C β atoms were calculated and then corrected for resultant deviations from non-standard bond geometry by 50 cycles of energy minimization using the DISCOVER program (Biosym Technologies) with the AMBER forcefield (Weiner, S. J. et al., *J. Amer. Chem. Soc.* 35 $106:765-784$ (1984)) and C α coordinates fixed. The side chains of highly conserved residues, such as the disulfidebridged cysteine residues, were then incorporated into the resultant consensus structure. Next the sequences of muMAb4D5 V_L and V_H were incorporated starting with the CDR residues and using the tabulations of CDR conformations from Chothia et al. (Chothia, C. et al., *Nature* 342:877-883 (1989)) as a guide. Side-chain conformations were chosen on the basis of Fab crystal structures, rotamer libraries (Ponder, J. W. & Richards, F. M., *J. Mol. Biol.* 193:775-791 (1987)) and packing considerations. Since V_{H} -COR3 could not be assigned a definite backbone conformation from these criteria, two models were created from a search of similar sized loops using the INSIGHT program. A third model was derived using packing and solvent so exposure considerations. Each model was then subjected to 5000 cycles of energy minimization.

> Ia humanizing muMAb4D5, consensus human sequences were first derived from the most abundant subclasses in the sequence compilation of Kabat et al. (Kabat, E. A. et a!., *55 Sequences of Proteins of Immunological Interest* (National Institutes of Health, Bethesda, Md., 1987)), namely V_L K: subgroup I and V_H group III, and a molecular model generated for these sequences using the methods described above. A structure for huMAb4D5 was created by transferring the CDRs from the muMAb4D5 model into the consensus human structure. All huMAb4D5 variants contain human replacements of muMAb4D5 residues at three positions within CDRs as defined by sequence variability (Kabat, E. A. eta!., *Sequences of ProTeins of Immunological* 1987)) but notas defined by structural variability (Chothia, C. & Lesk, A. M., *J. Mol. Biol.* 196:901-917 (1987)):

 V_1 -CDR1 K24R, V_2 -CDR2 R54L and V_2 -CDR2 T56S. Differences between muMAb4D5 and the human consensus framework residues (FIG. 1) were individually modeled to investigate their possible iofiuence on CDR conformation and/or binding to the p185^{HER2} ECD.

Construction of Chimeric Genes. Genes encoding chMAb4D5 light and heavy chains were separately assembled in previously described phagemid vectors containing ihe human cytomegalovirus enhancer and promoter, a 5' intron and SV40 polyadenylation signal (Gorman, C. M. 10 1991)). The resultant phagemid DNA pool was enriched first et al., *DNA* & *Prot. Engin. Tech.* 2:3-10 (1990)). Briefly, gene segments encoding muMAb4D5 V_L (FIG. 1A) and REI human K₁ light chain C_L (Palm, W. & Hilschmann, N., Z. *Physiol. Chem.* 356:167-191 (1975)) were precisely joined as were genes for muMAb4D5 V_H (FIG. 1B) and human $\gamma 1$ constant region (Capon, D. J. et al., *Nature* 337:525-531 (1989)) by simple subcloning (Boyle, A., in *Current Protocols in Molecular Biology,* Chapter 3 (F. A. Ausubel et al., eds., Greene Publishing & Wiley-Interscience, New York, 1990)) and site-directed mutagenesis (Carter, P., in 20 *Mutagenesis: A Practical Approach, Chapter 1 (IRL Press,* Oxford, UK 1991)). The γ 1 isotype was chosen as it has been found to be the preferred human isotype for supporting ADCC and complement dependent cytotoxicity using matched sets of chimeric (Bruggemann, M. et al., *J. Exp. Med.* 166:1351-1361 (1987)) or humanized antibodies (Riecbmann, L. et al., *Nature* 332:323-327 (1988)). The PCR-generated V_L and V_H fragments (FIG. 1) were subsequently mutagenized so that they faithfully represent the sequence of muMAb4D5 determined at the protein level: V_H 30 Q1E, V_L , V_{total} and T109A (variants are denoted by the amino acid residue and number followed by the replacement amino acid). The human γ 1 constant regions are identical to those reported by Ellison et a!. (Ellison, J. W. et at., *Nucleic Acids Res.* 13:4071-4079 (1982)) except for the mutations E359D and M361L (Eu numbering, as in Kabat, E. A. et al., *Sequences* of *Proteins* of *Jnummological /merest* (National Institutes of Health, Bethesda, Md., 1987)) which we installed to convert the antibody from the naturally rare A allotype to the much more common non-A allotype 40 (Tramontano, A. et al., J. *Mol. Biol.* 215:175-182 (1990)). This was an attempt to reduce the risk of anti-allotype antibodies interfering with therapy.

Construction of Humanized Genes. Genes encoding chMAb4D5 light chain and heavy chain Fd fragment $(V_H 45)$ and C_H1 domains) were subcloned together into pUC119 (Vieira , J. & Messing, J., *Methods Enzymol.* 153:3-11 (1987)) to create pAKL and simultaneously humanized in a single step (FIG. 2). Briefly, sets of 6 contiguous oligonucleotides were designed to humanize V_H and V_L (FIG. 1). 50 These oligonucleotides arc 28 to 83 nucleotides in length, contain zero to 19 mismatches to the murine antibody template and are constrained to have 8 or 9 perfectly ma tched residues at each end to promote efficient annealing and ligation of adjacent oligonucleotides. The sets of V_H and 55 V_r humanization oligonucleotides (5 pmol each) were phosphorylated with either ATP or γ -³²P-ATP (Carter, P. *Methods Enzymol.* 154: 382-403 (1987)) and separately annealed with 3.7 pmol of pAK1 template in 40 μ l 10 mM Tris-HCl (pH 8.0) and 10 mM $MgCl₂$ by cooling from 100° C. to 60 room temperature over -30 min. The annealed oligonucleotides were joined by incubation with T4 DNA ligase (12 units; New England Biolabs) in the presence of 2μ 1.5 mM ATP and 2 $/$ d 0.1 M DTT for 10 min at 14 \degree C. After electrophoresis on a 6% acrylarnide sequencing gel the 65 assembled oligonucleotides were located by autoradiography and recovered by electroelution. The assembled oligo-

nucleotides (-0.3 pmol each) were simultaneously annealed to 0.15 pmol single-stranded deoxyuridine-containing pAK1 prepared according to Kunkel et al. (Kunkel, T. A. et al., *Methods Enzymol.* 154:367-382 (1987)) in 10 pi 40 mM Tris-HCl (pH 7.5) and 16 mM MgCl₂ as above. Heteroduplex DNA was constructed by extending the primers with T7 DNA polymerase and transformed into£. *coli* BMH 71-18 mulL as previously described (Carter, P., in *Mutagenesis: A Practical Approad1,* Chapter 1 (IRL Press, Oxford, UK for $h u V$, by restriction purification using Xhol and then for $h u V_H$ by restriction selection using Stul as described in Carter, P., in *Mwagenesis: A Practical Approach,* Chapter 1 (IRL Press, Oxford, UK 1991); and in Wells, J.A. et al., Phil. JS *Trans. R. Soc. Lond., A* 317:415-423 (1986). Resultant clones containing both huV_L and huV_H genes were identified by nucleotide sequencing (Sanger, F. et al., *Proc. Nat/.* Acad. Sci. USA 74:5463-5467 (1977)) and designated pAK2. Additional humanized variants were generated by site-directed mutagenesis (Carter, P., in *Mutagenesis: A Practical Approach,* Chapter 1 (IRL Press, Oxford, UK 1991)). The muMAb4D5 V_L and V_H gene segments in the transient expression vectors described above were then precisely replaced with their humanized versions.

25 Expression and Purification of MAb4D5 Variants. Appropriate MAb4D5 light and heavy chain cDNA expression vectors were co-transfected into an adenovirus transformed human embryonic kidney cell line, 293 (Graham, F. L. et al., J. *Gen. Virol.* 36:59-72 (1977)) using a high efficiency procedure (Gorman, C. M. et al., *DNA & Prot. Engin. Tech.* 2:3-10 (1990); Gorman, C., in *DNA Cloning,* vol II, pp 143-190 (D. M. Glover, ed., IRL Press, Oxford, UK 1985)). Media were harvested daily for up to *5* days and the ceUs rc-fed with serum free media. Antibodies were recovered from the media and affinity purified on protein A sepharose CL-4B (Pharmacia) as described by the manufacturer. The eluted antibody was buffer-exchanged into phosphatebuffered saline by G25 gel filtration, concentrated by ultrafiltration (Centriprep-30 or Centricon-100, Amicon), sterilefiltered (Millex-GV, Millipore) and stored at 4° C. The concentration of antibody was determined by using both total immunoglobulin and antigen binding ELISAs. The standard used was huMAb4D5-5, whose concentration had been determined by amino acid composition analysis.

Cell Proliferation Assay. The effect of MAb4D5 variants upon proliferation of the human mammary adenocarcinoma cell line, SK-BR-3, was investigated as previously described (Fendly, B. M. et al., *Cancer Res.* 50:1550-1558 (1990)) using saturating MAb405 concentrations.

Affinity Measurements. The antigen binding affinity of MAb4D5 variants was determined using a secreted form of the p185^{HER2} ECD prepared as described in Fendly, B. M. et al., *J. Biol. Resp. Mod.* 9:449-455 (1990). Briefly, antibody and $p185^{HLR2}$ ECD were incubated in solution until equilibrium was found to be reached. The concentration of free antibody was then determined by ELISA using immobilized p185 HER2 ECD and used to calculate affinity (K₄) according to Friguet et al. (Friguet, B. et al., J. *lmmunol.* Methods 77:305-319 (1985)).

Results

Humanization of muMAb4D5. The muMAb4D5 V_L and V_H gene segments were first cloned by PCR and sequenced (FIG. 1). The variable genes were then simultaneously humanized by gene conversion mutagenesis using preassembled oligonucleotides (FIG. 2). A 311-mer oligonucleotide containing 39 mismatches to the template directed 24 simultaneous amino acid changes required to humanize muMAb4D5 V_L. Humanization of muMAb4D5 V_H required 32 amino acid changes which were installed with a 361-mer containing *59* mismatches to the muMAb4D5 template. Two out of 8 clones sequenced precisely encode huMAb4D5-5, although one of these clones contained a single nucleotide imperfection. 1be 6 other clones were essentially humanized but contained a small number of errors: <3 nucleotide changes and <1 single nucleotide deletion per kilobase. Additional humanized variants (Table 3) were constructed by site-directed mutagenesis of huMAb4D5-5.

Expression levels of huMAb4D5 variants were in the range of 7 to 15 μ g/ml as judged by ELISA using immobilized p185HER2 ECD. Successive harvests of five 10 cm plates allowed 200μ g to 500 mg of each variant to be produced in a week. Antibodies affinity purified on protein A gave a single band on a Coomassie blue stained SDS polyacrylamide gel of mobility consistent with the expected M_r of \sim 150 kDa. Electrophoresis under reducing conditions σ_0 gave 2 bands consistent with the expected M, of free heavy (48 kDa) and light (23 kDa) chains (not shown). Amino terminal sequence analysis (10-cycles) gave the mixed sequence expected (see FIG. 1) from an equimolar combination of light and heavy chains (not shown).

huMAb4DS Variants. ln general, the FR residues were chosen from consensus human sequences (Kabat, E. A et al., Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md., 1987)) and CDR residues from muMAb4D5. Additional variants were constructed by replacing selected human residues in huMAb4D5-1 with their muMAb4D5 counterparts. These are V_H residues 71, 73, 78, 93 plus 102 and V_L residues 55 plus 66 identified by our molecular modeling. V_H residue 71 bas previously been proposed by others (Tramontano, A. et al., J. *Mol. Bioi.* 215:175-182 (1990)) to be critical to the conformation of V_H -CDR2. Amino acid sequence differences between huMAb4D5 variant molecules are shown in Table 3, together with their p185 HER2 ECD binding affinity and maximal anti-proliferative activities against SK-BR-3 cells. Very similar K_d values were obtained for binding of MAb4D5 variants to either SK-BR-3 cells or to p185^{HER2} ECD (Table 3). However, K_d estimates derived from binding of MAb4D5 variants to $p185^{HER2}$ ECD were more reproducible with smaller standard errors and consumed much $_{45}$ smaller quantities of antibody than binding measurements with whole cells.

The most potent humanized variant designed by molecube selective for cell types which overexpress p185HER2. lar modeling, huMAb40 5-8, contains *5* FR residues from muMAb4D5. This antibody binds the $p185^{HER2}$ ECD 3-fold so more tightly than does muMAb405 itself (Table 3) and has comparable anti-proliferative activity with SK-BR-3 cells (FIG. 3). In contrast, huMAb405-1 is the most humanized but least potent muMAb4D5 variant, created by simply installing the muMAb4D5 CDRs into the consensus human sequences. huMAb4D5-1 binds the p185^{HER2} ECD 80-fold less tightly than does the murine antibody and has no detectable anti-proliferative activity at the highest antibody concentration investigated (16 μ g/ml).

The anti-proliferative activity of huMAb4D5 variants 60 against p185HER2 overexpressing SK-BR-3 cells is not simply correlated with their binding affinity for the p185HER2 ECD. For example, installation of three murine residues into the V_H domain of huMAb4D5-2 (D73T, L78A and A93S) to create buMAb4DS-3 does not change the antigen binding *65* affinity but does confer significant anti-proliferative activity (Table 3).

The importance of V_H residue 71 (Tramontano, A. et al., J. *Mol. Bioi.* 215:175-182 (1990)) is supported by the observed 5-fold increase in affinity for $p185^{HER2}$ ECD on replacement ofR71 in huMAb4D5-1 with the corresponding murine residue, alanine (huMAb4D5-2). In contrast, replacing V_H L78 in huMAb4D5-4 with the murine residue, alanine (huMAb4D5-5), does not significantly change the affinity for the $p185^{HER2}$ ECD or change anti-proliferative activity, suggesting that residue 78 is not of critical functional significance to huMAb4D5 and its ability to interact properly with the extracellular domain of p185HER2.

 V_L residue 66 is usually a glycine in human and murine ^Kchain sequences (Kabat, E. A et al., *Sequences of Proteins* of Immunological Interest (National Institutes of Health, 15 Bethesda, Md., 1987)) but an arginine occupies this position in the muMAb4D5 κ light chain. The side chain of residue 66 is likely to affect the conformation of V_L -CDR1 and V_t -CDR2 and the hairpin turn at 68-69 (FIG. $\overline{4}$). Consistent with the importance of this residue, the mutation V_L G66R $(huMAb4D5-3\rightarrow huMAb4D5-5)$ increases the affinity for the p185^{HER2} ECD by 4-fold with a concomitant increase in anti-proliferative activity.

From molecular modeling it appears that the tyrosyl side chain of muMAb4D5 V_L residue 55 may either stabilize the conformation of V_H -CDR3 or provide an interaction at the $V_r - V_{rr}$ interface. The latter function may be dependent upon the presence of V_H Y102. In the context of huMAb4D5-5 the mutations V_L *E55Y* (huMAb4D5-6) and V_H V102Y (huMAb4D5-7) individually increase the affinity for p185^{HER2} ECD by 5-fold and 2-fold respectively, whereas together (buMAb405-8) they increase the affinity by 11-fold. This is consistent with either proposed role of V_L Y55 and V_H Y102.

Secondary Immune Function of huMAb4D5-8. ³⁵ MuMAb4D5 inhibits the growth of human breast tumor cells which overexpress $p185^{HER2}$ (Hudziak, R. M. et al., *Molec. Cell. Bioi.* 9:1165-1172 (1989)). The antibody, however, does not offer the possibility of direct tumor cytotoxic effects. This possibility does arise in huMAb4D5-8 as a result of its high affinity (Kd_a=0.1 μ M) and its human $\lg G_1$ subtype. Table 4 compares the ADCC mediated by huMAb4D5-8 with muMAb4D5 on a normal lung epithelial cell line, WI-38, which expresses a low level of $p185^{HER2}$ and on SK-BR-3, which expresses a high level 45 of p185 $HER2$. The results demonstrate that: (1) huMAb4D5 has a greatly enhanced ability to carry out ADCC as compared with its murine parent; and (2) that this activity may be selective for cell types which overexpress $p185^{\text{HER2}}$.

Discussion

MuMAb405 is potentially useful for human therapy since it is cytostatic towards human breast and ovarian tumor lines overexpressing the HER2-encoded $p185^{HER2}$ receptor-like tyrosine kinase. Since both breast and ovarian carcinomas are chronic diseases it is anticipated that the optimal MAb4D5 variant molecule for therapy will have low immunogenicity and will be cytotoxic rather than solely cytostatic in effect. Humanization of muMAb4D5 should accomplish these goals. We have identified 5 different huMAb4D5 variants which bind tightly to p185 $^{\prime$ HER² ECD (K_J \leq 1 nM) and which have significant anti-proliferative activity (Table 3). Furthermore huMAb4DS-8 but not muMAb4DS mediates ADCC against human tumor cell lines overexpressing $p185^{HER2}$ in the presence of human effector cells (Table 4) as anticipated for a human γ 1 isotype (Breuggemann, M. et al.,J. *Exp. Med.* 166:1351- 1361 (1987); Riechmann, L. et al., *Nature* 332:323- 327 (1988)).

Rapid humanization of huMAb4D5 was facilitated by the gene conversion mutagenesis strategy developed here using long preassembled oligonucleotides. This method requires less than half the amount of synthetic DNA as does total gene synthesis and does not require convenient restriction 5 sites in the target DNA. Our method appears to be simpler

direct cytotoxic activity of the humanized molecule in the presence of human effector cells. The apparent selectivity of the cytotoxic activity for cell types which overexpress $p185$ ^{HER2} allows for the evolution of a straightforward clinic approach to those human cancers characterized by overexpression of the HER2 protooncogene.

TABLE 3

	V _v Residue*				V ₁ Residue*				
MAb4D5 cell Variant proliferation ⁴	71 FR3	73 FR3	78 FR3	93 FR3	102 CDR3	55 CDR ₂	56 FR3	К, пM	Relative
$buMAb4D5-1$	R	Đ				F	G	25	102
huMAb4D5-2	Ala	Đ		А		F	G	4.7	101
huMAb4D5-3	Ala	Thr	Alx	Ser		Е	G	4.4	66
huMAb4D5-4	Ala	Thr		Ser		E	Arg	0.82	56
huMAb4D5-5	Ala	Thre	Ala	Ser			Arg	1.1	48
huMAb4D5-6	Ala	Thr	Ala	Ser	v	Tvr	A12	0.22	51
huMAb4D5-7	Ala	Thr.	Ala	Ser	Tyr	Ε	Ang	0.62	53
huMAb4D5-8	Ala	Thr	Ala	Ser	Tyr	Tvr	Arg	0.10	54
muMAb4D5	Ala	Thr	Ala	Ser	Tyr	Tvr	Arg	0.30	37

*Human and murine residues are shown in one letter and three letter amino acid code respectively.
[†]K_d values for the p185^{HER2} ECD were determined using the method of Friguet et al. (43) and the

standard error of each estimate is ≤ ± 10%.
[†] Prohieration of SK-BR-3 cells incubated for 96 hr with MAb4D5 variants shown as a percentage of the untreated control as described (Hudziak, R. M. et al., Molec. Cell. Biol. 9: 1165-1172 (1989)). Data represent the maximal anti-proliferative effect for each variant (see FIG. 3A) calculated as the mean of triplicate determinations at a MAb4D5 concentration of 8 µg/ml. Data are all taken from the same experiment with an estimated standard error of $\leq \pm 15\%$.

and more reliable than a variant protocol recently reported (Rostapshov, V. M. et al., *FEBS Lett.* 249: 379-382 (1989)). Transient expression of huMAb4D5 in human embryonic kidney 293 cells permitted the isolation of a few hundred 35 micrograms of huMAb4D5 variants for rapid characterization by growth inhibition and antigen binding affinity assays. Furthermore, different combinations of light and heavy chain were readily tested by co-transfection of corresponding cDNA expression vectors.

The crucial role of molecular modeling in the humanization of muMAb4D5 is illustrated by the designed variant huMAb4D5-8 which binds the $p185^{HER2}$ ECD 250-fold more tightly than the simple CDR loop swap variant, huMAb4D5-1. It has previously been shown that the antigen 45 binding affinity of a humanized antibody can be increased by mutagenesis based upon molecular modelling (Riechmann, L. et al., Nature 332:323-327 (1988); Queen, C. et al., Proc. Natl. Acad. Sci. USA 86:10029-10033 (1989)). Here we have extended this earlier work by others with a designed humanized antibody which binds its antigen 3-fold more tightly than the parent rodent antibody. While this result is gratifying, assessment of the success of the molecular modeling must await the outcome of X-ray structure determination. From analysis of huMAb4D5 variants (Table 3) it is *⁵⁵* apparent that their anti-proliferative activity is not a simple function of their binding affinity for p185HER2 ECD. For example the buMAb4D5-8 variant binds $p185^{HER2}$ 3-fold more tightly than muMAb4DS but the humanized variant is slightly less potent in blocking the proliferation of SK-SR-3 60 cells. Additional huMAb4D5 variants are currently being constructed in an attempt to identify residues triggering the anti-proliferative activity and in an attempt to enhance this activity.

In addition to retaining tight receptor binding and the *65* ability to inhibit cell growth, the huMAb4D5-8 also confers a secondary immune function (ADCC). This allows for

TABLE 4

Effect- tor:Target		WI-38*	SK-BR-3		
ration		muMAb4D5 huMAb4D5-8 muMAb4D5 huMAb4D5-8			
A^{π}					
25:1	21.0	9.3	7.5	40.6	
12.5:1	0.15	11.1	4.7	36.8	
6.25:1	<1.0	8.9	0.9	35.2	
3.13:1	< 1.0	8.5	4.6	19.6	
45 Β.					
25:1	2.0	3.1	6.1	33.4	
12.5:1	0.15	1.7	5.5	26.2	
6.25:1	1.3	2.2	2.0	21.0	
3.13:1	<1.0	0,8	2.4	13.4	

•sensilivity lo ADCC of two human cell lines (WI-38, normal lung epithelium; and SK-BR-3, human breast tumor cell line) are compared. WI-38 expresses a low level of p185^{HER2} (0.6 pg per *µg* cell protein) and SK-BR-3 expresses a high level of p185^{HER2} (64 pg p185^{HER2} per *µg* cell protein), as determined by ELISA (Fendly et al., J. Biol. Resp. Mod.

9:449-455 (1990)).
"ADCC assays were carried out as described in Bruggemann et al., J. Exp. Med. 166:1351-1361 (1987). Effector to larget ratios were of IL-2 activated human peripheral blood lymphocyles to either WI-38 fibroblasts or SK-BR-3 tumor cells in 96-well microtiter plates for 4 hours at 37° C. Values given represent percent specific cell lysis as determined by ⁵¹Cr
release. Estimated standard error in these quadruplicate determinations was $+10%$

⁷Monoclonal antibody concentrations used were 0.1 µg/mJ (A) and 0.1 μ g/ml (B).

Example 2

Schematic Method for Humanizing an Antibody Sequence

This example illustrates one stepwise elaboration of the methods for creating a humanized sequence described

above. It will be understood that not all of these steps are essential to the claimed invention, and that steps may be taken in different order.

- 1. ascertain a consensus human variable domain amino acid sequence and prepare from it a consensus structural 5 model.
- 2. prepare model of import (the non-human domain to be humanized) variable domain sequences and note structural differences with respect to consensus human model.
- 3. identify CDR sequences in human and in import, both by 10 using Kabat (supra, 1987) and crystal structure criteria. If there is any difference in CDR identity from the different criteria, use of crystal structure definition of the CDR, but retain the Kabat residues as important framework residues to import.
- 4. substitute import CDR sequences for human CDR sequences to obtain initial "humanized" sequence.
- 5. compare import non-CDR variable domain sequence to the humanized sequence and note divergences.
- 6. Proceed through the following analysis for each amino $_{20}$ acid residue where the import diverges from the humanized.
	- a. If the humanized residue represents a residue which is generally highly conserved across all species, use the residue in the humanized sequence. If the residue is not 25 conserved across all species, proceed with the analysis described in 6b.
	- b. If the residue is not generally conserved across all species, ask if the residue is generally conserved in h umans. 30
		- i. If the residue is generally conserved in humans but the import residue differs, examine the structural models of the import and human sequences and determine if the import residue would be likely to affect the binding or biological activity of the CDRs 35 by considering I) could it bind antigen directly and 2) could it affect the conformation of the CDR. If the conclusion is that an affect on the CDRs is likely, substitute the import residue. If the conclusion is that a CDR affect is unlikely, leave the humanized resi- 40 due unchanged.
		- *ii.* If the residue is also not generally conserved in humans, examine the structural models of the import and human sequences and determine if the import residue would be likely to affect the binding or 45 biological activity of the CDRs be considering 1) could it bind antigen directly and 2) could it affect the conformation of the CDR. If the conclusion is that an affect on the CDRs is likely, substitute the import residue. If the conclusion is that a CDR affect 50 is unlikely, proceed to the next step.
			- a) Examine the structural models of the import and human sequences and determine if the residue is exposed on the surface of the domain or is buried within. If the residue is exposed, use the residue in 55 the humanized sequence. If the residue is buried, proceed to the next step.
				- (i) Examine the structural models of the import and human sequences and determine if the residue is likely to affect the $V_L - V_H$ interface. 60 Residues involved with the interface include: 34 L, 36L, 38L, 43L, 33L, 36L, 85L, 87L, 89L, 911, 961, 981, 35H, 37H, 39H, 43H, 45H, 47H, 60H, 91H, 93H, 95H, lOOH, and 103H. If no effect is likely, use the residue in the human- 65 ized sequence. If some affect is likely, substilute the import residue.
- 7. Search the import sequence, the consensus sequence and the humanized sequence for glycosylation sites outside the CDRs, and determine if this glycosylation site is likely to have any a[ect on antigen binding and/or biological activity. If no effect is likely, use the human sequence at that site; if some affect is likely, eliminate the glycosylation site or usc the import sequence at that site.
- 8. After completing the above analysis, determine the planned humanized sequence and prepare and test a sample. If the sample does not bind well to the target antigen, examine the particular residues listed below, regardless of the question of residue identity between the import and humanized residues.
	- a. Examine particular peripheral (non-CDR) variable domain residues that may, due to their position, possibly interact directly with a macromolecular antigen, inclucliog tbe following residues (where the • indicates residues which have been found to interact with antigen based on crystal structures):
		- i. Variable light domain: 36, 46, 49⁻, 63-70
		- ii. Variable heavy domain: 2, 47⁻, 68, 70, 73-76.
	- b. Examine particular variable domain residues which could intenact with, or otherwise affect, the conforma tion of variable domain CDRs, including the following (not including CDR residues themselves, since it is assumed that, because the CDRs interact with one another, any residue in ooe CDR could potentially affect tbe conformation of another CDR residue) (L=LIGHT, H=HEAVY, residues appearing in bold are indicated to be structurally important according the Chothia et al., Nature 342:877 (1989), and residues appearing in italic were altered during humanization by Queen et al. (POL), Proc. Natl. Acad. Sci. USA 86:10029 (1989) and Proc. Natl. Acad. Sci. USA 88:2869 (1991).):
		- i. Variable Light domain:
			- a) CDR-1 (residues 24L-34L): 2L, 4L, 66L-69L, 71L
			- b) CDR-2 (residues 50L-56L): 35L, 46L, 47L, 48L, 49L, 58L, 62L, 64L-66L, 71L, 73L
			- c) CDR-3 (residues 89L-97L): 2L, 4L, 36L, 98L, 37H, 45H, 47H, 58H, 60H
		- ii. Variable heavy domain:
			- a) CDR-1 (residues 26H-35H): 2H, 4H, 24H, 36H, 7lH, 73H, 76H, 78H, 92H, 94H
			- b) CDR-2 (residues 50H-55H): 49H, 69H, 69H, 7111, 7311, 7811
		- c) CDR-3 (residues 95H-102H): examine all residues as possible interaction partners with this loop, because this loop varies in size and conformation much more than the other CDRs.

9. If after step 8 the humanized variable domain still is lacking in desired binding, repeat step 8. In addition, re-investigate any buried residues which might affect the $V_L - V_H$ interface (but which would not directly affect CDR conformation). Additionally, evaluate the accessibility of non-CDR residues to solvent.

Example 3

Engineering a Humanized Bisnecific F(ab'), Fragment

This example demonstrates the construction of a humanized bispecific antibody $(BsF(ab')₂v1$ by separate E . coli expression of each Fab' arm followed by directed chemical coupling in vitro. BsF(ab')₂v1 (anti-CD3/anti-p185^{HER2}) was demonstrated to retarget the cytotoxic activity of human

CD3+CTL in vitro against the human breast tumor cell line, SK-BR-3, which overexpresses the p185^{HER2} product of the protooncogene HER2. This example demonstrates the minimalistic humanization strategy of installing as few murine residues as possible into a human antibody in order to recruit antigen-binding affinity and biological properties comparable to that of the murine parent antibody. This strategy proved very successful for the anti-p185^{HER2}arm of BsF (ab')₂v1. In contrast $BsF(ab')_2$ v1 binds to T cells via its anti-CD3 arm much less efficiently than does the chimeric $BsF(ab')$, which contains the variable domains of the murine parent anti-CD3 antibody. Here we have constructed additional BsF(ab')₂ fragments containing variant anti-CD3 arms with selected murine residues restored in an attempt to improve antibody binding to T cells. One such variant, Ss $F(ab')$ ₂v9, was created by replacing six residues in the second hypervariable loop of the anti-CD3 heavy chain variable domain of $BsF(ab')$ ₂v1 with their counterparts from the murine parent anti-CD3 antibody. $BsF(ab')$ -v9 binds to T cells (Jurkat) much more efficiently than does $BsF(ab')_2v1_{20}$ and almost as efficiently as the chimeric $BsF(ab')_2$. This improvement in the efficiency of T cell binding of the humanized $BsF(ab')_z$ is an important step in its development as a potential therapeutic agent for the treatment of $\frac{G_{\text{cines}}}{25}$ The p185^{*HER2*}-overexpressing cancers.

Bispecific antibodies (BsAbs) with specificities for tumor-associated antigens and surface markers on immune effector cells have proved effective for retargeting effector cells to kill tumor targets both in vitro and in vivo (reviewed by Fanger, M. W. et al., *Immunol. Today* 10: 92-99 (1989); 30 Fanger, M. W. et al., *Immunol. Today* 12: 51-54 (1991); and Nelson, H., *Cancer Cells 3*: 163-172 (1991)). BsF(ab')₂ fragments have often been used in preference to intact BsAbs in retargeted cellular cytotoxicity to avoid the risk of the antibody. An additional advantage of BsF(ab')₂ over intact BsAbs is that they are generally much simpler to prepare free of contaminating monospecific molecules (reviewed by Songsivilai, S. and Lachmann, P. J., *Clin. Exp. Immunol.* 79: 315-321 (1990) and Nolan, O. and O' Kennedy, R., *Biochim. Biophys. Acta* 1040: 1- 11 (1990)).

BsF(ab'), fragments are traditionally constructed by directed chemical coupling of Fab' fragments obtained by limited proteolysis plus mild reduction of the parent rodent monoclonal Ab (Brennan, M. et al., *Science* 229, 81-83 45 (1985) and Glennie, M. J. et al., J. *Immunol.* 139: 2367-2375 (1987)). One such $BsF(ab)_2$ fragment (antiglioma associated antigen/anti-CD3) was found to have clinical efficacy in glioma patients (Nitta, T. et al., *Lancet* 335: 368-371 (1990) and another BsF(ab')₂ (anti-indium 50 chelate/anti-carcinoembryonic antigen) allowed clinical imaging of colorectal carcinoma (Stickney, D. R. et al., Antibody, Immunoconj. Radiopharm. 2: 1-13 (1989)). Future SsF(ab')₂ destined for clinical applications are likely to be constructed from antibodies which are either human or *55* at least "humanized" (Riechmann, L. et al., *Nature* 332: 323-327 (1988) to reduce their immunogenicity (Hale, G. et al., *Lancet i:* 1394-1399 (1988)).

fragment designed for tumor immunotherapy bas been demonstrated (Sbalaby, M. R. et al., *J. Exp. Med.* 175: 217-225 (1992)). This approach involves separate£. *coli* expression of each Fab' arm followed by traditional directed chemical coupling in vitro to form the $\text{BsF}(ab')_2$. One arm of the BsF(ab')₂ was a humanized version (Carter, P. et al., Proc. 65 *Natl. Aced. Sci. USA* (1992a) and Carter, P., et al., *Bio*/ *Technology* 10: 163-167 (1992b)) of the murine monoclonal

Ab 4D5 which is directed against the $p185^{HER2}$ product of the prolooncogene HER2 (c-erbB-2) (Fendly, B. M. et al. *Cancer Res.* 50: 1550-1558 (1989)). The humanization of the antibody 4D5 is shown in Example 1 of this application. The second arm was a minimalistically humanized anti-CD3 antibody (Shalaby et al. supra) which was created by installing the CDR loops from the variable domains of the murine parent monoclonal Ab UCHTl (Beverley, P. C. L. and Callard, R. *E.,Eur.* J. *Immunol.* 11: 329- 334 (1981)) into the humanized anti-p185^{HER2} antibody. The BsF(ab')₂ fragment containing the most potent humanized anti-CD3 variant (v1) was demonstrated by flow cytometry to bind specifically to a tumor target overexpressing p185^{HER2} and to human peripheral blood mononuclear cells carrying CD3. In addition, $BsF(ab')_2v1$ enhanced the cytotoxic effects of activated human CTL 4-fold against SK-SR-3 tumor cells overexpressing $p185^{HER2}$. The example descries efforts to improve the antigen binding affinity of the humanized anti-CD3 arm by the judicious recruitment of a small number of additional murine residues into the minimalistically humanized anti-CD3 variable domains.

Materials and Methods

Construction of Mutations in the Anti-CD3 Variable Region

The construction of genes encoding humanized anti-CD3 killing innocent bystander cells binding to the Fc region of 35 Corresponding coding changes are denoted by the starting variant 1 (v1) variable light (V_1) and heavy (V_H) chain domains in phagemid pUC119 bas been described (Shalaby et al. supra). Additional anti-CD3 variants were generated using an efficient site-directed mutagenesis method (Carter, P., *Mutagenesis: a practical approach,* (M. J. McPherson, Ed.), Chapter 1, IRL Press, Oxford, UK (1991)) using mismatched oligonucleotides which either install or remove unique restriction sites. Oligonucleotides used are listed below using lowercase to indicate the targeted mutations. amino acid in one Jetter code followed by the residue numbered according to Kabat, E. A. et al., *Sequences of* Proteins of Immunological Interest, 5th edition, National Institutes of Health, Bethesda, Md., USA (1991), then the replacement amino acid and finally the identity of the anti-CD3 variant:

HX11, 5' GTAGATAAATCCtctAACACAGC-CTAtCTGCAAATG 3' (SEQ.ID. NO. 11) V_HK75S , v6;

HX12, 5' GTAGATAAATCCAAAtctACAGC-CTAtCTGCAAATG 3' (SEQ.ID. NO. 12) V_H N76S, v7;

HX13, 5' GTAGATAAATCCtcttctACAGC-CTAtCTGCAAATG 3' (SEQ.ID. NO. 13) V_H K75S:N76S, v8;

X14, 5' CTTATAAAGGTGTTtCcACCTATaaCcAgAaatTCAAGGatCGTTTCACgATAtc-CGTAGATAAATCC 3' (SEO.ID.NO. 14) V_H T57S:A60N:D61Q:S62K:V63F:G65D, v9;

LX6, 5' CTATACCTCCCGTCTgcatTCTGGAGTCCC 3' (SEQ.ID. NO. 15) V_L E55H, v11.

Oliconucleotides HXll, HX12 and HX13 each remove a site for BspMI, whereas LX6 removes a site for Xhol and HX14 installs a site for EcoRV (bold). Anti-CD3 variant vlO was constructed from v9 by site-directed mutagenesis using Recently a facile route to a fully humanized $\text{BsF}(ab')_2$ oligonucleotide HX13. Mutants were verified by dideoxy-60 nucleotide sequencing (Sanger, F. et al., *Proc. Nat/. Acad, Sci. USA* 74: 5463-5467 (1977)).

E. coli Expression of Fab' Fragments

The expression plasmid, pAK19, for the co-secretion of light chain and heavy chain Fd' fragment of the most preferred humanized anti-p185^{HER2} variant, HuMAb4D5-8, is described in Carter et a!., 1992b, supre. Briefly, the Fab' expression unit is bicistronic with both chains under the

transcriptional control of the oboA promoter. Genes encoding humanized V_L and V_H domains are precisely fused on their 5' side to a gene segment encoding the heat-stable enterotoxin II signal sequence and on their 3' side to human k_1 C_L and IgGlC_HI constant domain genes, respectively. The C_H lgene is immediately followed by a sequence encoding the binge sequence CysAlaAla and followed by a bacteriophage λ t_o transcriptional terminator. Fab' expression plasmids for chimeric and humanized anti-CD3 variants (v1 to v4, Shalaby et al., supra; v6 to v12, this study) were created from pAK19 by precisely replacing anti-p185HER2 V_L and V_H gene segments with those encoding murine and corresponding humanized variants of the anti-CD3 antibody, respectively, by sub-cloning and site-directed mutagenesis. The Fab' expression plasmid for the most potent humanized anti-CD3 variant identified in this study (v9) is designated p AK22. The anti-p185 HER2 Fab' fragment was secreted from *E. coli* K12 strain 25F2 containing plasmid pAK19 grown for 32 to 40 hr at 37° C. in an aerated 10 liter fermentor. The final cell density was 120-150 *ODsso* and the titer of soluble and functional anti-p185 HER2 Fab' was 1-2 g/liter as judged by antigen binding ELISA (Carter et al., 1992b, suora). Anti-CD3 Fab' variants were secreted from E. *coli* containing corresponding expression plasmids using very similar fermentation protocols. The highest expression titers of chimeric and humanized anti-CD3 variants were 200 mgaliter and 700 mgaliter, respectively, as judged by total immunoglobulin ELISA.

Construction of $BsF(ab')_2$ Fragments

Fab' fragments were directly recovered from E. *coli* fermentation pastes in the free thiol form (Fab'-SH) by affinity purification on Streptococcal protein G at pH 5 in the presence of EDTA (Carter et al., 1992b supra). Thioether linked BsF(ab')₂ fragments (anti-p185^{HER2}/anti-CD3) were 35 constructed by the procedure of Glennie et al. supra with the following modifications. Anti-p185^{HERZ} Fab'-SH in 100 mM Tris acetate, 5 mM EDTA (pH 5.0) was reacted with 0.1 vol of 40 mM N,N'-1,2-phenylenedimalemide (o-PDM) in dim-
CD3 v8: K75S:N76S. V_H residues 75 and 76 are located in ethyl formamide for -1.5 hr at 20° C. Excess o-PDM was removed by protein G purification of the Fab' maleimide derivative (Fab'-mal) followed by buffer exchange into 20 mM sodium acetate, 5 mM EDTA (pH 5.3) (coupling buffer) using centriprep-30 concentrators (Amicon). The total concentration of Fab' variants was estimated from the measured 45 absorbance at 280 nm (HuMAb4D5-8 Fab' $e^{0.1}\%$ =1.56, Carter et al., 1992b, supra). The free thiol content of Fab' preparations was estimated by reaction with 5,5' -dithiobis (2-nitrobenzoic acid) as described by Creighton, T. E., *Protein structure: a practical approach,* (T. E. Creighton, Ed.), Chapter 7, IRL Press, Oxford, UK (1990). Equimolar amounts of anti-p 185^{HER2} Fab'-mal (assuming quantitative reaction of Fab'-SH with o-PDM) and each anti-CD3 Fab'- SH variant were coupled together at a combined concentration of 1 to 2.5 mg/ml in the coupling buffer for 14 to 48 br at 4° C. The coupling reaction was adjusted to 4 mM cysteine at pH 7.0 and incubated for 15 min at 20 ° C. to reduce any unwanted disulfide-linked F(ab'), formed. These reduction conditions are sufficient to reduce inter-heavy chain disulfide bonds with virtually no reduction of the 60 Fab' by size exclusion chromatography as shown for a disulfide between light and heavy chains. Any free thiols generated were then blocked with 50 mM iodoacetamide. $BsF(ab')$, was isolated from the coupling reaction by S100-HR (Pbarmacia) size exclusion chromatography (2.5 $cmx100 cm$) in the presence of PBS. The BsF(ab')₂ samples 65 were passed through a 0.2 mm filter flash frozen in liquid nitrogen and stored at -70° C.

Flow Cytometric Analysis of F(ab')₂Binding to Jurkat Cells The Jurkat human acute T cell leukemia cell line was purchased from the American Type Culture Collection (Manassas Va.) (ATCC TIB 152) and grown as. recommended by the ATCC. Aliquots of 10⁶ Jurkat cells were incubated with appropriate concentrations of BsF(ab)_{2} $\frac{1}{2}$ (anti-p185^{HER2}/anti-CD3 variant) or control mono-specific anti-p185 1125 F(ab'), in PBS plus 0.1% (w/v) bovine serum albumin and 10 mM sodium azide for 45 min at 4° C. The cells were washed and then incubated with fluoresceinconjugated goat anti-human F(ab')₂ (Organon Teknika, West Chester, Pa.) for 45 min at 4° C. Cells were washed and analyzed on a FACScan® (Becton Dickinson and Co., Mountain View, Calif.). Cells (8×10^3) were acquired by list mode and gated by forward light scatter versus side light scatter excluding dead cells and debris.

Results

Design of Humanized anti-CD3 Variants

The most potent humanized anti-CD3 variant previously identified, vl, differs from the murine parent antibody, UCHT1 at 19 out of 107 amino acid residues within V_L and at 37 out of 122 positions within V_H (Shalaby et al.,supra) 1992). Here we recruited back additional murine residues into anti-CD3 v1 in an attempt to improve the binding 25 affinity for CD3. The strategy chosen was a compromise between minimizing both the number of additional murine residues recruited and the number of anti-CD3 variants to be analyzed. We focused our attentions on a few CDR residues which were originally kept as human sequences in our 30 minimalistic humanization regime. Thus human residues in V_H CDR2 of anti-CD3 v1 were replaced en bloc with their murine counterparts to give anti-CD3 v9: T57S:A60N:D61Q:S62K:V63F:G65D (SEQ ID N0:20). Similarly, the human residue E55 in V, CDR2 of anti-CD3 $v₁$ was replaced with histidine from the murine anti-CD3 antibody to generate anti-CD3 v11. In addition, V_H framework region (FR) residues 75 and 76 in anti-CD3 v1 were also replaced with their murine counterparts to create antia loop close to V_H CDR1 and CDR2 and therefore might influence antigen binding. Additional variants created by combining mutations at these three sites are described below.

Preparation of $BsF(ab)₂$ Fragments

Soluble and functional anti-p185HER2 and anti-CD3 Fab' fragments were recovered directly from corresponding *E. coli* fermentation pastes with the single hinge cysteine predominantly in the free thiol form (75- 100% Fab'-SH) by affinity purification on Streptococcal protein Gat pH 5 in the so presence of EDTA (Carter et al., 1992b, supra). Tbioetberlinked BsF(ab)_2 fragments were then constructed by directed coupling using o-PDM as described by Glennie et al., supra. One arm was always the most potent humanized anti-p185^{HER2} variant, HuMAb4D5-8 (Carter et al., 1992a, *55* supra) and the other either a chimeric or humanized variant of the anti-CD3 antibody. Anti-p185HER2 Fab'-SH was reacted with o-PDM to form the maleimide derivative (Fab'-mal) and then coupled to the Fab'-SH for each anti-CD3 variant. $F(ab')$, was then purified away from unreacted representative preparation (BsF(ab'), v8) in data not shown. The $F(ab')$ ₂ fragment represents -54% of the total amount of antibody fragments (by mass) as judged by integration of the chromatograph peaks.

SDS-PAGE analysis of this BsF(ab')₂v8 preparation under non-reducing conditions gave one major band with the expected mobility $(M, -96 kD)$ as well as several very minor bands (data not shown). Amino-terminal sequence analysis of the major band after electroblotting on to polyvinylidene difluoride 76 are located in a loop close to V_H CDR1 and CDR2 and therefore might membrane Matsudaira, P., J. *Biol. Chem.* 262: 10035-10038 (1987) gave the expected mixed sequence from a stoichiometric 1:1 mixture of light and heavy chains $(V_L/V_H; D/E, I/V, Q/D, M/L, T/V, D/E,$ S/S) expected for BsF(ab)_2 . The amino terminal region of both light chains are identical as are both heavy chains aod correspond to consensus human FR sequences. We have to previously demonstrated that $F(ab)$ ₂ constructed by directed chemical coupling carry both anti-pl85^{HER2} and anti-CD3 antigen specificities (Shalaby et al., supra). The level of contamination of the $BsF(ab)$, with monospecific $F(ab)$, iS likely to be very low since mock coupling reactions with 15 either anti-p185 $HER2$ w Fab'-mal or anti-CD3 Fab'-SH alone did not yield detectable quantities of $F(ab')_2$. Furthermore the coupling reaction was subjected to a mild reduction step followed by alkylation to remove trace amounts of disulfidelinked F(ab')₂ that might be present. SDS-PAGE of the 20 terparts: T57S:A60N:D61Q:S62K:V63F:G65D (anti-CD3 purified $F(ab')_2$ under reducing conditions gave two major bands with electrophoretic mobility and amino terminal sequence anticipated for free light chain and thioether-linked heavy chain dimers.

light and heavy chain sequences and their electrophoretic 30 residues in the C-terminal part of V_H CDR2 are at least Scanning LASER densitometry of a o-PDM coupled 25 $F(ab')_2$ preparation suggest that the minor species together represent -10% of the protein. These minor contaminants were characterized by amino terminal sequence analysis and were tentatively identified on the basis of stoichiometry of mobility (data not shown). These data are consistent with the minor contaminants including imperfect $F(ab)_2$ in which the disulfide bond between light and heavy chains is missing in one or both arms, trace amounts of Fab' and heavy chain thioether-linked to light chain. 35 supra, not shown).

Binding of $BsF(ab')_2$ to Jurkat Cells

Binding of BsF(ab')₂ containing different anti-CD3 variants to Jurkat cells (human acute T cell leukemia) was investigated by flow cytometry (data not shown). BsF(ab') *²*v9 binds much more efficiently to Jurkat cells than does our 40 starting molecule, BsF(ab')₂vl, and almost as efficiently as the chimeric BsF(ab)_2 . Installation of additional murine residues into anti-CD3 v9 to create v10 (V _HK75S:N76S) and v12 (V_H K75S:N76S plus V_L E55H) did not further improve binding of corresponding BsF(ab')₂to Jurkat cells. 45 Nor did recruitment of these murine residues into anti-CD3 v1 improve Jurkat binding: V_HK75S (v6), V_HN76S (v7), $V_HK75S:N76S$ (V8), V_LES5H (v11) (not shown). BsF(ab') ₂v9 was chosen for future study since it is amongst the most efficient variants in binding to Jurkat cells and contains so BsF(ab')_z preparation such as intra-hinge disulfide formation fewest murine residues in the humanized anti-CD3 arm. A monospecific anti-p 185 ^{HEE2} F(ab')₂ did not show significant binding to Jurkat cells consistent with the interaction being mediated through the anti-CD3 arm.

Discussion

A minimalistic strategy was chosen to humanize the anti-p185HER2 (Carter et al., 1992a, supra) and anti-CD3 arms (Shalaby et al., supra) of the $BsF(ab')_2$ in this study in an attempt to minimize the potential immunogenicity of the 60 resulting humanized antibody in the clinic. Thus we tried to install the minimum number of murine CDR and FR residues into the context of consensus human variable domain sequences as required to recruit antigen-binding affinity and biological properties comparable to the murine parent antibody. Molecular modeling was used firstly to predict the murine FR residues which might be important to antigen

binding and secondly to predict the murine CDR residues that might not be required. A small number of humanized variants were then constructed to test these predictions.

Our humanization strategy was very successful for the anti-p185 HER2 antibody where one out of eight humanized variants (HuMAb4D5-8, IgG1) was identified that bound the $p185$ ^{HER2} antigen \sim 3-fold more tightly than the parent murine antibody (Carteret al., 1992a, supra). HuMAb4D5-8 contains a total of five murine FR residues and nine murine CDR residues, including V_H CDR2 residues 60-65, were discarded in favor of human counterparts. In contrast, BsF $(ab')₂v1$ containing the most potent humanized anti-CD3 variant out of four originally constructed (Shalaby et al., supra) binds J6 cells with an affinity (K_d) of 140 nM which is \sim 70-fold weaker than that of the corresponding chimeric $BsF(ab')_2$.

Here we have restored T cell binding of the humanized anti-CD3 close to that of the chimeric variant by replacing six human residues in V_H CDR2 with their murine counv9, FIG. 5). It appears more likely that these murine residues enhance antigen binding indirectly by influencing the conformation of residues in the N-terminal part of V_H CDR2 rather than by directly contacting antigen. Firstly, only N-terminal residues in V_H CDR2 (50-58) have been found to contact antigen in one or more of eight crystallographic structures of antibody/antigen complexes (Kabat et al., supra; and Mian, I. S. et al., J. *Mol. Bioi* 217: 133-151 (1991), FIG. 5). Secondly, molecular modeling suggests that partially buried (FIG. 5). $BsF(ab')_2v9$ binds to SK-BR-3 breast tumor cells with equal efficiency to $BsF(ab')$, v1 and chimeric $BsF(ab')_2$ as anticipated since the anti-p185^{HER2} arm is identical in all of these molecules (Shalaby et al.,

Our novel approach to the construction of $BsF(ab)$, fragments exploits an E. *coli* expression system which secretes humanized Fab' fragments at gram per liter titers and permits their direct recovery as Fab'-SH (Carter et al., 1992b, supra). Traditional directed chemical coupling of Fab'-SH fragments is then used to form BsF(ab')_2 in vitro (Brennan et al., supra; and Glennie et al., supra). This route to Fab'-SH obviates problems which are inherent in their generation from intact antibodies: differences in susceptibility to proteolysis and nonspecific cleavage resulting in heterogeneity, low yield as well as partial reduction that is not completely selective for the hinge disulfide bonds. The strategy of using $E.$ coli-derived Fab'-SH containing a single hinge cysteine abolishes some sources of heterogeneity in and contamination with intact parent antibody whilst greatly diminishes others, eg. formation of $F(ab')_3$ fragments.

BsF(ab')2 fragments constructed here were thioetherlinked as originally described by Glennie et a!., supra with *⁵⁵*future in vivo testing of these molecules in mind. Thioether bonds, unlike disulfide bonds, are not susceptible to cleavage by trace amounts of thiol, which led to the proposal that thioether-linked F(ab'), may be more stable than disulfidelinked $F(ab')_2$ in vivo (Glennie et al., supra). This hypothesis is supported by our preliminary pharmacokinetic experiments in normal mice which suggest that thioether-linked $BsF(ab')$ ₂ v1 has a 3-fold longer plasma residence time than $BsF(ab')$, v1 linked by a single disulfide bond. Disulfide and thioether-linked chimeric $BsF(ab)$ ₂ were found to be indis-65 tioguishable in their efficiency of cell binding and in their retargeting of CTL cytotoxicity, which suggests that o-PDM directed coupling does not compromise binding of the
BsF(ab')₂ to either antigen (not shown). Nevertheless the Example 4 nature of the linkage appears not to be critical since a disulfide-linked BsF(ab')₂ (murine anti-p185 $^{HER2}/$ murine anti-CD3) was recently shown by others (Nishimura et al., Int. J. Cancer 50: 800-804 (1992) to have potent anti-tumor 5 activity in nude mice. Our previous study (Shalaby et al., supra) together with this one and that of Nishimura, T. et al., supra improve the potential for using $\text{BsF}(ab')_2$ in targeted immunotherapy of $p185^{HER2}$ -overexpressing cancers in humans.

63 64

Humanization of an anti-CD18 Antibody

A murine antibody directed against the leukocyte adhesion receptor β -chain (known as the H52 antibody) was humanized following the methods described above. FIGS. 6A and 6B provide amino acid sequence comparisons for the murine and humanized antibody light chains and heavy chains.

Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser $\frac{65}{70}$

 $1 \t05$

PFIZER EX. 1595 Page 610

(2) INFORMATION FOR SEQ ID NO:S : (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 109 amino acids (B) TYPE : Amino Acid (D) TOPOLOGY : Linea r (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: Asp Ile Val Met Thr Gln Ser His Lys Phe Met Ser Thr Ser Val 15 Gly Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asp Val Asn $\frac{20}{10}$ Thr Ala Val Ala Trp Tyr Gln Gln Lys Pro Gly His Ser Pro Lys 35 40 Leu Leu I le Tyr Ser Ala Ser Phe Arg Tyr Thr Gly Val Pro Asp 50 55 60 Arg Phe Thr Gly Asn Arg Ser Gly Thr Asp Phe Thr Phe Thr II e 65 70 75 Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln Gln 80 80 His Tyr Thr Thr Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu
95 1 00 1 05 Ile Lys Arg Ala 109 (2) INFORMATION FOR SEQ ID N0:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 120 amino acids
(B) TYPE: Amino Acid (D) TOPOLOGY: Linear (xi) SEQUENCE DESCRIPTION: SEQ ID N0:6: Glu Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly 15 15 Ala Ser Leu Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys $\frac{20}{25}$ 30 Asp Thr Tyr Ile His Trp Val Lys Gln Arg Pro Glu Gln Gly Leu 35 40 Glu Trp Ile Gly Arg Ile Tyr Pro Thr Asn Gly Tyr Thr Arg Tyr 50 55 60 Asp Pro Lys Phe Gln Asp Lys Ala Thr Ile Thr Ala Asp Thr Ser 65 70 75 Ser Asn Thr Ala Tyr Leu Gln Val Ser Arg Leu Thr Ser Glu Asp 80 Thr Ala Val Tyr Tyr Cys Ser Arg Trp Gly Gly Asp Gly Phe Tyr $\begin{array}{c} 95 \\ 1 \end{array}$ 00 1 05 Ala Met Asp Tyr Trp Gly Gln Gly Ala Ser Val Thr Val Ser Ser 110 115 (2) INFORMATION FOR SEQ ID N0: 7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 base pairs (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Sing le
- (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

TCCGATATCC AGCTGACCCA GTCTCCA

27

-continued

-continued

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 68 base pairs

(B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

CTTATAAAGG TGTTTCCACC TATAACCAGA AATTCAAGGA TCGTTTCACG

ATATCCGTAG ATAAATCC 68

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 30 base pairs (B) TYPE: Nucleic Acid

(C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

CTATACCTCC CGTCTGCATT CTGGAGTCCC

 30_o

 $50.$

(2) INFORMATION FOR SEQ ID NO:16:

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 107 amino acids (B) TYPE: Amino Acid (D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu Ser Ala Ser Leu 10 15 Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Arg 20 25 30 Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr Val Lys 35 40 45 Leu Leu Ile Tyr Tyr Thr Ser Arg Leu His Ser Gly Val Pro Ser 50 Lys Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr 11e 65 70 75 Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln 80 85 90 Gly Asn Thr Leu Pro Trp Thr Phe Ala Gly Gly Thr Lys Leu Glu 1 05 95 1 00

Ile Lys 107

(2) INFORMATION FOR SEQ ID NO:17:

(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 107 amino acids (B) TYPE: Amino Acid (D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val 10 15 Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile Arg

 $20 -$ 25 30

Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys

ser ser 122

(2) INFORMATION FOR SEQ ID N0:22:

```
(1) SEQUENCE CHARACTERISTICS:<br>
(A) LENGTH: 454 amino acids<br>
(B) TYPE: Amino Acid<br>
(D) TOPOLOGY: Linear
```
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly
15 Ala Ser Val Lys Ile Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr $\frac{20}{30}$ Glu Tyr Thr Met His Trp Met Lys Gln Ser His Gly Lys Ser Leu 35 40 Glu Trp Ile Gly Gly Phe Asn Pro Lys Asn Gly Gly Ser Ser His 50 60 Asn Gln Arg Phe Met Asp Lys Ala Thr Leu Ala Val Asp Lys Ser 65 70 75 Thr Ser Thr Ala Tyr Met Glu Leu Arg Ser Leu Thr Ser Glu Asp $\frac{1}{2}$ as $\frac{1}{2}$ as Ser Gly Ile Tyr Tyr Cys Ala Arg Trp Arg Gly Leu Asn Tyr Gly
⁹⁵ ^{1 00} ^{1 05} Phe Asp Val Arg Tyr Phe Asp Val Trp Gly Ala Gly Thr Thr Val 110 120 Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu 125 130 Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly
150 150 Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 155 160 165 Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 170 180 Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val 185
195 190 195 Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn 200 205 210 His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys 215 220 Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu
230 240 Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys 245 255 Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val 260 270 val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Ash Trp Tyr
285 280 285 Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
290 295 300 Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val 305 310 315 Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val 320 330

val Val Thr Val Thr Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr 215 225 Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr 230 240 val Glu Arg Lys cys cys val Glu cys Pro Pro cys Pro Ala Pro 245 250 255 Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys 260 200 Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val 235
285 280 285 280 val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr 290 295 Val Asp Gly Met Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
305 310 315 Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr Val 320 330 Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val 335 340 Ser Asn Lys Gly Leu Pro Ala Pro Jle Glu Lys Thr Ile Ser Lys 350 360 Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro 375 Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 380 390 Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 395 405 Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu 410 420 Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 425 430 Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met 440 450 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 465 Ser Pro Gly Lys 469

(2) INFORMATION FOR SEQ ID N0:24:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 214 amino acids (B) TYPE: Amino Acid (D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Asp Val Gln Met Thr Gln Thr Thr Ser Ser Leu Ser Ala Ser Leu 1 Gly Asp Arg Val Thr Ile Asn Cys Arg Ala Ser Gln Asp Ile Asn 20 25 30 Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asn Gly Thr Val Lys 35 Leu Leu I le Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser 50 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile $\frac{65}{76}$

We claim:

1. A humanized antibody variable domain comprising non-human Complementarity Determining Region (CDR) 45 amino acid residues which bind an antigen incorporated into a human antibody variable domain, and further comprising a Framework Region (FR) amino acid substitution at a site selected from the group consisting of: 4L, 38L, 43L, 44L, 58L, 62L, 65L, 66L, 67L, 68L, 69L, 73L, 85L, 98L, 2H, 4H, 36H, 39H, 43H, 45H, 69H, 70H, 74H, and 92H, utilizing the numbering system set forth in Kabat.

2. The humanized variable domain of claim 1 wherein the substituted residue is the residue found at the corresponding location of the non-human antibody from which the nonhuman CDR amino acid residues are obtained.

3. The humanized variable domain of claim 1 wherein no human Framework Region (FR) residue other than those set forth in the group has been substituted.

4. The humanized variable domain of claim 1 wherein the human antibody variable domain is a consensus human 60 variable domain.

5. The humanized variable domain of claim 1 wherein the residue at site 4L has been substituted.

6. The humanized variable domain of claim 1 wherein the residue at site 38L has been substituted.

7. The humanized variable domain of claim 1 wherein the residue at site 43L has been substituted.

8. The humanized variable domain of claim 1 wherein the residue at site 44L has been substituted.

9. The humanized variable domain of claim 1 wherein the residue at site 58L has been substituted.

10. The humanized variable domain of claim 1 wherein the residue at site 62L bas been substituted.

11. The humanized variable domain of claim 1 wherein
the residue at site 65L has been substituted.

the residue at site 65L has been substituted.
12. The humanized variable domain of claim 1 wherein the residue at site 66L has been substituted.

13. The humanized variable domain of claim 1 wherein the residue at site 67L has been substituted.

14. The humanized variable domain of claim 1 wherein *55* the residue at site 68L bas been substituted.

15. The humanized variable domain of claim 1 wherein the residue at site 69L has been substituted.

16. The humanized variable domain of claim 1 wherein the residue at site 73L has been substituted.

17. The humanized variable domain of claim 1 wherein the residue at site 85L has been substituted.

18. The humanized variable domain of claim 1 wherein the residue at site 98L has been substituted.

19. The humanized variable domain of claim 1 wherein 65 the residue at site 2H has been substituted.

20. The humanized variable domain of claim 1 wherein the residue at site 4H has been substituted.

21. The humanized variable domain of claim 1 wherein the residue at site 36H has been substituted.

22. The humanized variable domain of claim 1 wherein the residue at site 39H bas been substituted.

23. The humanized variable domain of claim 1 wherein the residue at site 43H has been substituted.

24. The humanized variable domain of claim 1 wherein the residue at site 45H has been substituted.

25. The humanized variable domain of claim 1 wherein the residue at site 69H has been substituted.

26. The humanized variable domain of claim 1 wherein the residue at site 70H has been substituted.

27. The humanized variable domain of claim 1 wherein the residue at site 74H has been substituted.

28. The humanized variable domain of claim 1 wherein the residue at site 92H has been substituted. J5

29. An antibody comprising the humanized variable domain of claim 1.

ized antibody variable domain comprises non-human 20 75H has been substituted. 30. An antibody which binds $p185^{HER2}$ and comprises a humanized antibody variable domain, wherein the human-Complementarity Determining Region (CDR) amino acid residues which bind $p185^{HER2}$ incorporated into a human antibody variable domain, and further comprises a Framework Region (FR) amino acid substitution at a site selected from the group consisting of: 4L, 38L, 43L, 44L, 46L, 58L, 25 62L, 65L, 66L, 67L, 68L, 69L, 73L, 85L, 98L, 2H, 4H, 36H, 39H, 43H, 45H, 69H, 70H, 74H, 75H, 76H, 78H and 92H, utilizing the numbering system set forth in Kabat.

residue is the residue found at the corresponding location of 30 the non-human antibody from which the non-human CDR amino acid residues are obtained.

32. The antibody of claim 30 wherein no human Framework Region (FR) residue other than those set forth in the group has been substituted.

33. The antibody of claim 30 wherein the human antibody variable domain is a consensus human variable domain.

34. The antibody of claim 30 wherein the residue at site 4L has been substituted.

35. The antibody of claim 30 wherein the residue at site 40 38L has been substituted.

36. The antibody of claim 30 wherein the residue at site 43L bas been substituted.

37. The antibody of claim 30 wherein the residue at site 44L has been substituted.

38. The antibody of claim 30 wherein the residue at site 46L has been substituted.

39. The antibody of claim 30 wherein the residue at site 58L bas been substituted.

40. The antibody of claim 30 wherein the residue at site 50 62L bas been substituted.

41. The antibody of claim 30 wherein the residue at site 65L has been substituted.

42. The antibody of claim 30 wherein the residue at site 66L bas been substituted.

43. The antibody of claim 30 wherein the residue at site 67L has been substituted.

44. The antibody of claim 30 wherein the residue at site 68L has been substituted.

45. The antibody of claim 30 wherein the residue at site 60 69L bas been substituted.

46. The antibody of claim 30 wherein the residue at site 73L has been substituted.

47. The antibody of claim 30 wherein the residue at site 85L has been substituted.

48. The antibody of claim 30 wherein the residue at site 98L has been substituted.

49. The antibody of claim 30 wherein the residue at site 2H has been substituted.

50. The antibody of claim 30 wherein the residue at site 4H has been substituted.

51. The antibody of claim 30 wherein the residue at site 36H bas been substituted.

52. The antibody of claim 30 wherein the residue at site 39H has been substituted.

53. The antibody of claim 30 wherein the residue at site tO 43H bas been substituted.

54. The antibody of claim 30 wherein the residue at site 45H has been substituted.

55. The antibody of claim 30 wherein the residue at site 69H has been substituted.

56. The antibody of claim 30 wherein the residue at site 70H bas been substituted.

57. The antibody of claim 30 wherein the residue at site 74H has been substituted.

58. The antibody of claim 30 wherein the residue at site

59. The antibody of claim 30 wherein the residue at site 76H bas been substituted.

60. The antibody of claim 30 wherein the residue at site 78H has been substituted.

61. The antibody of claim 30 wherein the residue at site 92H has been substituted.

62. A humanized antibody variable domain comprising non-human Complementarity Determining Region (CDR) 31. The antibody of claim 30 wherein the substituted amino acid residues which bind an antigen incorporated into a consensus human variable domain, and further comprising an amino acid substitution at a site selected from the group consisting of: 4L, 38L, 43L, 44L, 46L, 58L, 62L, 65L, 66L, 67L, 68L, 69L, 73L, 85L, 98L, 2H, 4H, 36H, 39H, 43H, 45H, 69H, 70H, 74H, 75H, 76H, 78H and 92H, utilizing the 35 numbering system set forth in Kabat.

> 63. A humanized antibody which lacks immunogenicity compared to a non-human parent antibody upon repeated administration to a human patient in order to treat a chronic disease in that patient, wherein the humanized antibody comprises non-human Complementarity Determining Region (CDR) amino acid residues which bind an antigen incorporated into a human antibody variable domain, and further comprises an amino acid substitution at a site selected from the group consisting of: 4L, 38L, 43L, 44L, 45 46L, 58L, 62L, 65L, 66L, 67L, 68L, 69L, 73L, 85L, 98L, 2H, 4H, 36H, 39H, 43H, 45H, 69H, 70H, 74H, 75H, 76H, 78H and 92H, utilizing the numbering system set forth in Kabat.

> 64. A humanized variant of a non-human parent antibody which binds an antigen and comprises a human variable domain comprising the most frequently occurring amino acid residues at each location in all human immunoglobulins of a human heavy chain immunoglobulin subgroup wherein amino acid residues forming Complementarity Determining *55* Regions (CDRs) thereof comprise non-human antibody amino acid residues, and further comprises a Framework Region (FR) substitution where the substituted FR residue: (a) noncovalently binds antigen directly; (b) interacts with a CDR; (c) introduces a glycosylation site which affects the antigen binding or affinity of the antibody; or (d) participates in the $V_L - V_H$ interface by affecting the proximity or orientation of the V_L and V_H regions with respect to one another.

> 65. The humanized variant of claim 63 which binds the antigen up to 3-fold more in the binding affinity than the 65 parent antibody binds antigen.

66. A humanized antibody heavy chain variable domain comprising non-human Complementarity Determining

 \mathbf{s}

Region (CDR) amino acid residues which bind antigen incorporated into a human antibody variable domain, and further comprising a Framework Region (FR) amino acid substitution at a site selected from the group consisting of: 24H, 73H, 76H, 78H, and 93H, utilizing the numbering system set forth in Kabat.

67. The humanized variable domain of claim 66 wherein the substituted residue is the residue found at the corresponding location of the non-human antibody from which the non-human CDR amino acid residues are obtained. 10 numbering system set forth in Kabat.

68. The humanized variable domain of claim 66 wherein no human Framework Region (FR) residue other than those set forth in the group has been substituted.

69. The humanized variable domain of claim 66 wherein the human antibody variable domain is a consensus human 15 substituted FR residue:
variable domain. (a) noncovalently bin

70. The humanized variable domain of claim 66 wherein the residue at site 24H has been substituted.

71. The humanized variable domain of claim 66 wherein the residue at site 73H has been substituted. 20

72. The humanized variable domain of claim 66 wherein the residue at site 76H has been substituted.

73. The humanized variable domain of claim 66 wherein the residue at site 78H has been substituted.

74. The humanized variable domain of claim 66 wherein ²⁵ the residue at site 93H has been substituted.

75. The humanized variable domain of claim 66 which further comprises an amino acid substitution at site 71H.

76. The humanized variable domain of claim 66 which further comprises amino acid substitutions at sites 71H and 30 73H.

77. The humanized variable domain of claim 66 which further comprises amino acid substitutions at sites 71H, 73H and 78H.

78. An antibody comprising the humanized variable domain of claim 66.

79. A humanized variant of a non-human parent antibody which binds an antigen, wherein the humanized variant comprises Complementarity Determining Region (CDR) amino acid residues of the non-human parent antibody incorporated into a human antibody variable domain, and further comprises Framework Region (FR) substitutions at heavy chain positions 71H, 73H, 78H and 93H, utilizing the

80. A humanized antibody variable domain comprising non-human Complementarity Determining Region (CDR) amino acid residues which bind an antigen incorporated into a human antibody variable domain, and further comprising a Framework Region (FR) amino acid substitution where the

(a) noncovalently binds antigen directly;

(b) interacts with a CDR; or

(c) participates in the $V_L - V_H$ interface by affecting the proximity or orientation of the V_L and V_H regions with respect to one another, and wherein the substituted FR residue is at a site selected from the group consisting of:
4L, 38L, 43L, 44L, 58L, 62L, 65L, 66L, 67L, 68L, 69L, 4L, 38L, 43L, 44L, 58L, 62L, 65L, 66L, 67L, 68L, 69L, 73L, 85L, 98L, 2H, 4H, 24H, 36H, 39H, 43H, 4SH, 69H, 70H, 73H, 74H, 76H, 78H, 92H and 93H, utilizing the numbering system set forth in Kabat.

81. The humanized variable domain of claim 80 wherein the substituted residue is the residue found at the corresponding location of the non-human antibody from which the non-human CDR amino acid residues are obtained.

82. The humanized variable domain of claim 80 wherein no human Framework Region (FR) residue other than those set forth in the group has been substituted.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE **CERTIFICATE OF CORRECTION**

PATENT NO. $: 6,407,213$ B1 : June 18, 2002 **DATED** INVENTOR(S) : Carter et al.

Page 1 of 1

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 88,

Line 63, please delete "63" and insert therefor $-79 -$,

Signed and Sealed this

Third Day of December, 2002

DATE FILED: 05/28/2010
DOCUMENT NO: 34

Carter Exhibit 2002 Carter v. Adair PFIZER EX. 1595 Page 624

application to me to be used to the way depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this build be child from the Child Mother of

If you need assistance in completing this form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.