
UNIFIED 1012

l|||||||||||||||||||||IllllIllll|||||||||||||||||I||||||||||||||||||||||i||

U5005509135A

United States Patent [19] [11] Patent Number: 5,509,135

Steely, Jr. [45] Date of Patent: Apr. 16, 1996

[54] MULTI-INDEX MULTI-WAY OTHER PUBLICATIONS
SET-ASSOCIATIVE CACHE

Liu—Xor Randomiztion in Cache Congruence Class Index-

[75] Inventor: Simon C. Steely, Jr” Hudson, NH. ing IBM Technical Disclosure Bulletin—v01. 27, No. 2. Jul.
. 1984.

[73] Assignees Digital Equipment Corporation, . _ _
Maynard, Mass. Primary Exammer—Kevm J. Teska

Assistant Examiner—Stephen J. Walder, Jr.

[21] Appl No _ 951 623 Attorney, Agent, or Finn—Dirk Brinkman; Ronald C. Hud—
. .. ,

gens; Arthur W. Fisher
[22] Filed: Sep. 25, 1992

[51] Int. C1.t3 .. G06F 13/00 _ . . .
[52] U.S. Cl. 395/474 A Plurahty 0f Indexes are PIOVIded for a multl-way 56‘-

. . associate cache of a computer system. The cache is orga-

[58] Field of Search 395,422,422de nized as a plurality of blocks for storing data which are a
copies of main memory data. Each block has an associated

[57] ABSTRACT

[56] References Cited tag for uniquely identifying the block. The blocks and the
tags are addressed by indexes. The indexes are generated by

U.S. PATENT DOCUMENTS a Boolean hashing function which converts a memory

4,860,199 8/1989 Langendorf etal. 364/200 address ‘0 “Che mdexes by combining the bus 0f the
4 942 520 7/1990 Langendorf 354/200 memory address “Sing an GXCIUSiVC 0R fimm‘m- Difiemnt
5:014:195 5/1991 Farrell et al .. 364/200 combination of bits are used to generate a plurality of
5,057,073 11/1991 Telgam et al_ 395/400 difi'erent indexes to address the tags and the associated
5,091,851 2/1992 Shelton et a1. 395/425 blocks to transfer data between the cache and the central
5,133,061 7/1992 Melton et a1. .. 395/425 processing unit of the computer system.
5,136,700 8/1992 Thacker 395/400
5,155,832 10/1992 Hunt 395/425
5,182,799 1/1993 Tamura et a]. 395/400 17 Claims, 5 Drawing Sheets

UNIFIED 1012

U.S. Patent Apr. 16,1996 Sheet 1 of 5 5,509,135

FIG. I

FIG.4

5,509,135Sheet 2 of 5Apr. 16,1996US. Patent

%—---------------E--------=------a-IEI-n-n-n-un-n'
FIG. 3

5,509,135Sheet 3 of 5Apr. 16, 1996US. Patent

Eq«0.5m.oE.vmmmNm.mEvanommnmn0mm¢mmmNm.0.¢mmmNM_m«.mmmNM3.vmmmNm_m«.mmmNmcancanown0mmvmmcanown0mmmomm9mmmWownvanowncancannmmcanown.moan_¢0m+nn_mm0_OO¢OmmOOiamuimoiN¢ommmONm¢m_o<_Eu.o1_51¢.31

US. Patent Apr. 16, 1996 Sheet 4 of 5 5,509,135

5,509,135Sheet 5 of 5Apr. 16, 1996US. Patent

\u.9“.«mmmNm_mmm¢mmmmm.mcmmmNM_mcm_mmmm_mcm...9mmmm_m¢mmmmm5U900.am.cm..5.om.2909A0900.am.W09;02am.02um.00.am.om.a!¢m¢kmmmo31iovommooow.iémmnooav.i30mmm03».mm¢m_o<_

5,509,135

1

MULTI-INDEX MULTI-WAY
SET-ASSOCIATIVE CACHE

FIELD OF THE INVENTION

This invention relates to memory buffer caches for use in
computer systems, and more particularly to a method and
apparatus which improves the hit ratio of multi-way set-
associative caches.

BACKGROUND OF THE INVENTION

In a computer system, the speed at which the central
processor unit (CPU) operates depends upon the rate at
which instructions and operands (data) are transferred
between memory and the CPU. This is particularly true for
computer systems that use multiple pages to increase the
amount of addressable memory. In an attempt to improve the
data transfer rate. between memory and the CPU, many
modern computer systems include a memory buffer cache.

A cache is a relatively small, random access memory
(RAM) used to store a copy of memory data in anticipation
of future use by the CPU. A cache may be implemented by
one or more dynamic RAM (DRAM) integrated circuits. For
very high speed caches, the RAM is usually an integral part
of the CPU chip. The data stored in a cache can be
transferred to the CPU in substantially less time than data
stored in memory. The utility of a cache arises from the fact
that a cache can take advantage of the principles of locality
of reference, which are well known in computing tech-
niques. These principles indicate that when data stored at
one location are accessed, there is a high probability that
data stored at physically adjacent locations (spatial locality)
will be accessed soon afterwards in time (temporal locality).

Thus, a cache is typically organized into a plurality of
“blocks,” wherein each block stores a copy of one or more
contiguously addressable bytes of memory data. That is,
access to memory data causes an entire block of data,
including the referenced data, to be transferred from
memory to cache, unless of course the data are already
stored in the cache.

During operation of the computer system, when the CPU
makes a memory reference, a determination is made if a
copy of the referenced data are also stored in the cache. This
is known as a “hit.” If the data are not stored in cache, this
is known as a “miss.” The hit or miss rate is an indicator of
the effectiveness of the cache.

In order to access data in the cache, the memory address
is translated to a cache address. The portion of the cache
address including the most significant bits of the memory‘
address is called the “tag” and the portion including the least
significant bits is called the “cache index.” The cache index

corresponds to the address of the block storing a copy of the
referenced data, additional bits are usually also used to
address the bytes within a block, that is, if each block has
more than one byte of data. The tag is used to uniquely
identify blocks having difl‘erent memory addresses but the
same cache index. Therefore, the cache typically includes a
data store and a tag store. The data store is used for storing
the blocks of data. The tag store, sometimes known as the
directory, is used for storing the tags of each of the blocks
of data. Both the data store and the tag store are accessed by
the cache index. The output of the data store is a block of
data, and the output of the tag store is a tag.

Since the cache address is directly computable from the
memory address, such a cache is generally known as a
direct-mapped cache. A key attribute of a direct-mapped

10

15

20

25

30

35

4o

45

50

55

60

65

2

cache is the short latency time in accessing data stored in the
cache. However, in a direct—mapped cache, any attempt to
store different blocks of data at the same cache index leads

to “thrashing.” Thrashing occurs when the CPU succes-
sively stores data having different memory addresses as
blocks having the same cache index, essentially negating the
beneficial effect of the cache, and reducing the operating
speed of the computer. Thrashing is a well known phenom-
ena in computer systems, typically due to unavoidable “hot
spots” in memory which are referenced at a very high
frequency compared to the rest of memory.

To increase the hit rate of the cache, and to reduce

thrashing, it is well known to use multi-way set-associative
mapping techniques wherein two or more concurrently
addressable RAMs provide a plurality of blocks and tags for
a single cache index. That is, in a conventional multi-way
set-associative cache, the single cache index is used to
concurrently access a plurality of blocks and tags in a set of
RAMs. The number of RAMs in the set indicates the “way”
number of a cache. For example, if the cache index is used
to concurrently access data and tags stored in two RAMs, the
cache is a two-way set-associative cache. Similarly, if the
cache index is used to concurrently access data and tags
stored in four RAMs, the cache is a four-way set-associative
cache.

During the operation of a singlenindex multi-way set-
associative cache, a memory access by the CPU causes each
of the RAMs to be examined at the corresponding cache
index location. The tag is used to distinguish the cache
blocks having the same cache index but different memory
addresses. If a tag comparison indicates that the desired data
are stored in a cache block of one of the RAMs, that RAM

is selected and the desired access is completed.
In case of a miss, a determination is made to select one of

the blocks for replacement. Methods used for implementing
a replacement strategy for data in a cache are well known in
cache design. Typically, the replacement of blocks in a cache
are done in a least recently used manner (LRU). LRU
algorithms can be implemented in any number of ways. In
general, an LRU algorithm selects particular blocks for
replacement in aged order. That is, blocks storing data which
were least recently used (LRU) are selected for replacement
before blocks storing data which were most recently used
(MRU). Used meaning any access, read or write to any data
stored in the block. If the data in the block has been

modified, that is, the data in cache is different than the copy
of the data in memory, the block to be replaced is first
written back to memory, before being overwritten by new
data. An alternative known method uses a not most recently
used (NMRU) algorithm. With an NMRU replacement strat-
egy, the block which is selected for replacement is a block
randomly selected from any block which was not most
recently used.

A multi-way set-associative cache provides the advantage
that there are two or more possible locations for storing data
in blocks having the same cache index. This arrangement
reduces thrashing due to hot spots in memory, and increases
the operating speed of the computer system, presuming that
hot spots are uniformly distributed over the blocks of the
RAMs.

However, if hot spots are not uniformly distributed,
thrashing may persist. For example, a CPU realizes
improved operating speed if related data structures are page
aligned. Most modern compilers start assigning related data
structures, such as instruction sequences, beginning anew
with each page. Also, if there is not enough room at the end

5,509,135

3

of a page to store a entire data structure, the end of the page
is left unused, rather than having a data structure split
between two pages. Therefore, the low order addresses of a
page may be disposed to be accessed at a higher rate than the
high order addresses of the page. This biased distribution of
memory hot spots will lead to thrashing in a traditional
single-index multi—way set—associative cache. In addition,
the random distribution of data and instructions may spuri-
ously generate memory hot spots.

SUMMARY OF THE INVENTION

In accordance with the invention, there are provided a
method and an apparatus to implement the method of
improving the utilization of a set-associative cache. The
method and apparatus are accomplished in general by a
computer system including a central processor unit, having
arelatively slow speed main memory and a small high speed
memory buffer cache. The cache includes a plurality of sets
of blocks for storing copies a plurality of bytes of contigu-
ously addressable main memory data. Each block is addres-
sable by a cache index.

In general, a set of address hashing functions are pro-
vided, one function for each of the sets of blocks, to
randomly distribute main memory addresses across the
blocks of the multi—way set-associative cache. The present
method randomizes access to the blocks of each set by
applying a Boolean hashing function, in particular an exclu-
sive OR, to a memory address. A diiferent hash function is
used for each of the blocks in the set. The hashing function
combines a predetermined number of bits of the tag field of
a memory address with the same number of selected bits of
the cache index to generate a different randomized cache
index for each of the blocks in a set for any one memory
address.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is block diagram of a computer system utilizing a

multi-way set-associative cache in accordance with the
present invention;

FIG. 2 is a block diagram of a main memory address;

FIG. 3 is a block diagram of the multi-way set-associative
cache of FIG. 1;

FIG. 4 is a block diagram of a cache address;

FIG. 5 is a block diagram of the distribution of blocks of
data in a multi-way set-associative cache using prior art
techniques;

FIG. 6 is a block diagram of a hashing technique as
disclosed herein; and

FIG. 7 is a block diagram of the distribution of blocks of
data in a multi-way set-associative cache using the hashing
technique of FIG. 6._

DETAILED DESCRIPTION 'OF THE
PREFERRED EMBODIMENT

Referring now to the drawings, FIG. 1 shows a computer
system 1 which includes a central processing unit (CPU) 10
communicating data with a main memory 11 and a memory
buffer cache 12 via address, data, and control lines, generally
indicated by numeral 13. The cache 12 acts as a buifer
between main memory 11 and the CPU 10 in order to
increase the operating speed of the computer system 1.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

The main memory 11 has a relatively large data storage
capacity and a relatively long data access time when com-
pared with the cache 12. The main memory 11 is partitioned
into separately addressable pages, not shown, each page
storing instructions and operands as a plurality of bytes of
data.

As shown in FIG. 2, the bytes of data in main memory 11
are accessible by a main memory address 14, which includes
a page number field 15 and a page address field 16. The
number of bits in the page number field 15 are sufficient to
address all of the pages of main memory 11. The number of
bits in the page address field 16 are determined by the page
size. For example, if the main memory includes 2048 pages,
the page number field 15 includes at least eleven bits of page
address information. And, if each page stores 512 bytes of
data, the page address field 16 includes at least nine bits of
byte address information for each page. Therefore, the main
memory address 14 is, for example, defined by a total of
twenty bits. It should be apparent to one skilled in the art,
that the invention can be practiced independent of the
number of bits used for addressing memory.

In FIG. 3, there is shown a multi—way set-associative
cache, according to the present invention. The cache 12
comprises a tag store 21 a data store 22, a comparator 23, a
selector 24, and a convertor 25. The cache 12 has as an input
a main memory address 14, and as an output cache data 20.

As is shown in FIG. 4, and as will be explained in further
detail herein, the main memory address 14 is converted to a
cache address 17 by the convertor 25. The cache address 17
is used to concurrently address the tag store 21 and the data
store 22. The cache address 17, as shown in FIG. 4, includes
a tag field 18, and a cache index 19. The number of bits in
the cache index 19 corresponds to the size of the tag and data
stores 21—22. For example, for 16K data store, the cache
index 19 includes fourteen bits. Therefore, the tag field 18
includes the remaining six bits of the main memory address
14, for a total of twenty bits of cache address 17.

Now, referring again to FIG. 3, the data store 22 includes
a plurality of, for example four, data RAMS 31—34 for
storing copies of main memory 11 data. Each data RAM
31—34 is organized into a plurality of blocks, generally
indicated by numeral 39. Each block 39 storing a copy of a
plurality of, for example, sixty-four bytes of contiguously
addressable main memory data. Therefore, it is understood
that the low order bits of the cache address 17, for example,
the low order six bits are generally used to individually
address the bytes within the blocks 39.

The tag store 21 includes tag RAMs 41—44, one respec—'
tively, for each of the data RAMs 31—34. Each tag RAM
41—44 is organized into a plurality of tags, generally indi-
cated by numeral 49, one each for each of the blocks 39 in
the corresponding data RAMs 31—34. In other words, the
first tag 49 of tag RAM 41 is for storing the tag field 18 of
the cache address 17 of the first block 39 of the data RAM

31, and so forth.

During operation of the computer system 1, references to
data stored in main memory 11, include a determination to
see if a copy of the data are stored in the cache 12. If the data
are stored in the cache 12, known as a hit, the CPU 10 uses
the data stored in the cache 12 directly. Otherwise, if the data
are not stored in cache 12, known as a mass, the data are

retrieved from the main memory 11 as a block 39, and stored
in the cache 12.

Prior to storing the retrieved data in the cache 12 as a
block 39, one of the blocks 39 is selected to be overwritten,

or replaced. Methods used for implementing a replacement

5,509,135

5

strategy for cache data are well known in cache design.
Typically, the replacement of blocks 39 in a cache 12 are
done in a least recently used manner (LRU). Known LRU
algorithms are implemented in any number of ways. In
general, known LRU algorithms selects blocks 39 for
replacement in an aged order. That is, blocks 39 storing data
which were least recently used (LRU) are selected for
replacement before blocks 39 storing data which were most
recently used (MRU). Used meaning any access, read or
write to any data stored in the block 39. If the data in the
selected block 39 was modified, or is otherwise difierent

than the data in memory, the selected block 39 to be replaced
is first written back to main memory 11 before being
overwritten by the new data. An alternative known method
uses a not most recently used (NMRU) algorithm. With an
NMRU replacement strategy the block 39 which is selected
for replacement is a block 39 selected from any block 39
which was not accessed most recently.

To access data stored in the cache 12, the main memory
address of 14 is converted to the cache address 17, by the
convertor 25. The convertor 25 maps the main memory
address 14 to the tag field 18 and cache index 19 of the cache
address 17. The cache index 19 is used to access, concur-
rently, each of the data RAMs 31—34 of the data store 22 and
each of the tag RAMs 41—44 of the tag store 21 via lines
51—54, respectively. If there is a block 39 of data stored in
any of the data RAMS 31—34 for a given cache index 19, the
data of the block 39 are output to the selector 24 via the lines

28. Also, the tag fields 18 from the corresponding tags 39 are
input to the comparator 23 via the lines 26. The comparator
23 also has as an input the referenced tag field 18, via the line
55, to uniquely identify different blocks 39 of the various

RAMs 31—34 having the same cache index 19. The output of
the comparator 23, via the line 27, is used as an input to the
selector 24, for example, a multiplexer, to select the appro-
priate RAM 31—34 storing the accessed block of data. The
output of the selector 24 is cache data 20, a copy of the data
stored at main memory address 14.

In traditional multi—way set-associative caches, bit-by-bit
direct mapping is generally used to convert the main
memory address 14 to the cache address 17. As a result, hot

addresses at the same relative page address will generally
map to blocks 39 having the same cache index 19. For
example, as shown in FIG. 5, the five different addresses
14a—14e, expressed as hexadecimal numbers “1A013432,”
“OBBFD412,” “067F3410,” “0059D400,” and “0BBF7434”
respectively, all map to the same cache index 19, and to
blocks 39a—39d in RAMs 31—34 respectively. Consequently
there are only four blocks 39a—39d, one in each of the four
RAMs 31—34, all having the same cache index 19, to store
data for five hot addresses 14a—14e, hence thrashing.

As shown in FIG. 6, in order to improve the distribution
of memory hot spots in the various blocks 39 of the data
RAMs 31—34, the convertor 25 uses Boolean hashing func-
tions in order to (pseudo) randomly generate a different
cache index 19 for each of the data RAMs 31—34 and tag
RAMs 41—44. The hash functions are accomplished by
means of, for example, exclusive ORs (XOR) 60a—60d
which combines the bits of the tag field 18a—18d with
selected bits, for example the bits generally indicated by
19x, of the index field 19 to produce randomized cache
indexes 19a—19d. The randomized cache indexes 19a—19d

depends on both the tag field 18 and the cache index 19 of
the cache address 17. The randomized cache index 19a—19d
are used to access the blocks 39 of the data RAMs 31—34 and

the tags 49 of the tag RAMs 41—44 via lines 51—54,
respectively.

10

15

20

25

30

35

40

45

50

55

60

65

6

It should be apparent to one skilled in the art, that the bits
of the tag field 18 and the bits of the cache index 19 can be
combined in numerous different ways by means of various
XOR functions, each way of combining providing a distinct
randomizing capability. As shown in FIG. 6, the cache
addresses 17a—17d having the same cache index 19 but
different tag fields 18a—18d, produce difl'erent cache indexes
19a—19d when combined by XORs 60a—60b, respectively.

As shown approximately in FIG. 7, the cache indexes
19a—19d can be used to access each of the data RAMs
31—34. For example, each of the five difierent addresses
14a—14e, “1A013432,” “0BBFD412,” “067F3410,”
“0059D400,” and “0BBF7434” maps to a different cache
index 19a—19d in each of the data RAMs 31—34. By
randomizing the distribution of the cache index 19, accord-
ing to the present invention, it is possible to have as many
as twenty possible blocks 39 for storing data from five hot
memory addresses, as compared to only four different places
when using prior art techniques, substantially improving the
hit ratio of multi-way set-associative caches.

While there has been shown and described a preferred
embodiment, it is to be understood that various other adap-
tations and modifications may be made within the spirit and
scope of the invention.

What is claimed is:

1. An apparatus for a central processing unit to address
data in a second memory, the data in the second memory
being a copy of data in a first memory, the first memory
having a plurality of bytes storing data, each byte of the first
memory addressable by a memory address, comprising:

means for storing a plurality of tags and a plurality of
blocks in the second memory, each tag associated with
one block, and each tag and said associated one block
addressable by an index;

means, connected to an input of the second memory, for
converting a selected memory address to a selected tag
and a plurality of difierent indexes, each different index
individually addressing one of said plurality of tags in
the second memory;

means, connected to said means for converting and said
means for storing said plurality of tags, for comparing
said selected tag with each of said plurality of tags
individually addressed by each of said plurality of
diiferent indexes; and

means, connected to said means for comparing and said
means for storing said plurality of blocks and respon-
sive to said selected tag being equal to one of said
plurality of tags individually addressed by each of said
different indexes, for addressing a selected block asso-
ciated with said selected tag to transfer data from the
central processing unit to the second memory.

2. The apparatus as in claim 1 whereto said means for
converting includes means for translating said selected
memory address to said selected tag and a selected index,
and a plurality of means for combining said selected tag and
said selected index to generate said plurality of diiferent
indexes.

3. The apparatus as in claim 2 wherein each of said means
for combining includes a boolean hashing function.

4. The apparatus as in claim 3 wherein said boolean
hashing function includes an exclusive OR function.

5. The apparatus as in claim 1 wherein said plurality of
tags and said plurality of blocks are organized into a
plurality of sets of tags and blocks, one set of tags and blocks
for each of said plurality of difierent indexes.

6. The apparatus as in claim 1 wherein said plurality of
tags are concurrently addressable by said plurality of dif-
ferent indexes and further comprising:

5,509,135

7

a plurality of sets of lines connecting said means for
converting, each one of said sets of lines for carrying
one of said plurality of different indexes.

7. A method for a central processing unit to address data
in a second memory, the data in the second memory being
a copy of data in a first memory, the first memory having a
plurality of bytes storing data, each byte of the first memory
addressable by a memory address, the method comprising:

organizing the second memory into a plurality of tags and
a plurality of blocks, each tag associated with one
block, and each tag and said associated one block

addressable by an index;
converting a selected memory address to a selected tag

and a plurality of different indexes, each different index
individually addressing a diiferent tag in the second
memory;

comparing said selected tag with each of said different
tags; and

addressing, as determined by said selected tag being equal
to one of said different tags, a selected block associated
with said selected tag to transfer data between the
central processing unit and the second memory.

8. The method in claim 7 wherein said step for converting
includes the step of translating said selected memory address
to said selected tag and a selected index, and a step for
combining said selected tag and said selected index to
generate said plurality of different indexes.

9. The method as in claim 8 wherein said step for
combining includes the step of hashing by a plurality of
boolean hashing functions to generate said plurality of
diiferent indexes.

10. The method as in claim 9 wherein said hashing step
includes the step of exclusive ORing.

11. The method as in claim 7 including the step of
organizing said plurality of rags and said plurality of blocks
into a plurality of sets of tags and blocks, one set of tags and
blocks for each of said different indexes.

12. The method as in claim 7 including the step of
concurrently addressing said plurality of tags by said
selected tag and addressing said selected block by said
plurality of different indexes.

13. An apparatus for a central processing unit to address
data in a second memory, the data in the second memory
being a copy of data in a first memory, the first memory

10.

15

20

25

30

35

40

8

having a plurality of bytes storing data, each byte of the first
memory addressable by a memory address, comprising:

means for storing a plurality of tags and a plurality of
blocks in the second memory, each tag associated with
one block, and each tag and said associated one block
concurrently addressable by an index, said plurality of
tags and said plurality of blocks organized into a
plurality of sets of tags and blocks, one set of tags and
blocks for each of said diiferent indexes;

means, connected to an input of the second memory, for
translating a selected memory address to a selected tag
and a selected index, said selected tag, said selected
index, and said selected memory address each having a
plurality of bits, the number of bits of said selected tag
plus the number of bits of said selected index equal to
the number of bits of said selected memory address;

a plurality of means, connected to said means for trans-
lating, for combining said bits of said selected tag and
an equal number of bits of said selected index to
generate a plurality of different indexes, each diiferent
index individually addressing a different tag in the
second memory, the number of different indexes equal
to the number of said sets into which said tags and said
associated blocks are organized;

means, connected to an output of the second memory, for
comparing said selected tag with each of said diflerent
tags; and

means, connected to said means for comparing and
responsive to said selected tag being equal to one of
said diiferent tags, for addressing a selected block
associated with said selected tag to transfer data
between the central processing unit and the second
memory.

14. The apparatus as in claim 13 wherein each of said
means for combining includes an exclusive OR function.

15. The apparatus as in claim 13 wherein said means for
comparing includes a comparator and said means for
addressing said selected block includes a multiplexer.

16. The apparatus as in claim 13 wherein the second
memory is a cache bufier memory.

17. The apparatus as in claim 13 wherein each of said sets
is a random access memory.

* * * * *

