
UNIFIED 1010

U3005914938A

Ulllted States Patent [19] [11] Patent Number: 5,914,938

Brady et al. [45 J Date of Patent: Jun. 22, 1999

[54] MAC ADDRESS TABLE SEARCH UNIT Attorney, Agent, or Firm—Blakely Sokoloff Taylor &

. Zafman LLP

[75] Inventors: David M. Brady, Cupertmo; David A. [57] ABSTRACTHead, Fremont, Suryanarayan

RamamurthyaAhmad Esmeeili, b0th A search key having a first length is presented to a universal
0f Mountain View, all Of Calif. hashing process. The search key is hashed using a universal

. . hash function to generate a bucket ID having a second

[73] Ass1gnee: Bay Networks, Inc., Santa Clara, Calif. length, smaller than the first length. The bucket ID is used
to address a table stored in a computer readable medium and

[21] Appl. No.: 08/746,963 a pointer is retrieved from an associated storage location.
. . The pointer is used to index a hash bucket containing one or

[22] Flled' NOV' 19’ 1996 more entries, each of which can be compared to the search
[51] Int. Cl.6 .. H04J 3/02 key to determine Whether any of the entries match the search

[52] US. Cl. ... 370/254; 370/401 key. For the case where the method is used in a Ethernet
[58] Field of Search 370/254 400 switch the search key may comprise a virtual LAN identi-

370/401’ 398, 474, 472, 471’ 470, 351, fication and media access control address. The table is made
352; 707/10, 7’ 8, 9, 100’ 205’ 103’ 3; up of number of hash buckets, each of which may have one

701/110, 118, 120, 122, 143 or more entries. New entries are stored in one of the hash
buckets according to the universal hash function so long as

[56] References Cited no overflows of any hash bucket would be created. If a
bucket overflow would result from the storing operation, a

US PATENT DOCUMENTS new hash function is automatically selected so that no hash

5,664,184 9/1997 Ferguson et al. 395/614 buCket OVerfiOWS W111 result When the new entry is Stored in
5,799,305 /1998 Bortvedt et al. 707/10 a new table-

Primary Examiner—Dang T011 13 Claims, 5 Drawing Sheets

10

___ #_ ./

— 16 16
To Enterpriae Router . - Backbone . To Other

Network 20 . Virtual virtual Switches
— LAN 15 LAN N.

Switch 5witch

O . End
I 14 StatlonI
I Virtual LAN 2
I

UNIFIED 1010

5,914,938Sheet 1 0f 5Jun. 22, 1999US. Patent

\.
OF

3:38

gr
gm

1...“IIIIIInNN_uN2(3EELSnZ<.__N:nL_>_.O_:ofimpmi_Em

_Onooo
_

mu_oo
__oo_oo_

onooC_ r1IIIIIII.3.mugofikmIEELSozoflumm

.IIIJ

FZ<|_Ewan—LS

{0232untagupcm0;.

US. Patent

Processor

E

16

Jun. 22, 1999 Sheet 2 0f 5

Fort Card

Bu5 '22

26

<—> Port Card

22
+——-—-—>

Fort: Controller

@
Fort Ca rd Q

DRAM

2

Fort Card
Port; Card

5,914,938

Forts

Ports

25

Ports

Porte

Ports

US. Patent Jun. 22, 1999 Sheet 3 0f5 5,914,938

Bucket O

Bucket M-i

Look UP First Entry for Bucket N
Process

Second Entry for Bucket N

O or More Entries

For Bucket N

Address

Bucket Descriptor
l/ Search Key

Universal Hash

Function

(see Fig. 4) 5‘15th
Descriptor

 ‘
V

Last Entry for Bucket N

Bucket Entry Format

Search

Key

Control Word

Bucket

Entries

First Entry for Bucket M-1

O or More Entries

For Bucket M-1

Keytags
and Last Entry for Bucket M-i

Descriptors

5,914,938Sheet 4 0f 5Jun. 22, 1999US. Patent

«2?.

93%u9-2mvmoiezmv23m-$_+E+S+€+E+E+EM?MrM,M?MrMrMQQaawMw|lflifli©|ljj,
+E332

R5332“.asp£3£859m:$35>3.suLmnm934%pcuEmom

US. Patent Jun. 22, 1999 Sheet 5 0f5 5,914,938

100

./

 Select New

156-bit Random

Number For Hash

Multiplier
l_O_4

Determine Whether New

Hash Multiplier Would
Cause Bucket Overflows

M

 Overflows ?

M

 Generate New MAC

Address Table Using
New Hash Function

m

5,914,938

1
MAC ADDRESS TABLE SEARCH UNIT

FIELD OF THE INVENTION

The present invention relates generally to computer net-
works and, more particularly, to a method and apparatus for
maintaining a forwarding table in a switching node of a
computer network.

BACKGROUND

In recent years, local area networks (LANs) have become
a common place in offices and other environments. Now,
virtual LANs are beginning to emerge as well. In a basic
sense, a switched virtual LAN is a broadcast domain that
unites any arbitrary group of LAN segments at wire speed.
As is the case with a single physical wire, broadcasts travel
to all end-stations in a virtual LAN. Asingle virtual LAN can
connect dozens, or in some cases hundreds, of LAN users.
The ability to include multiple physical LAN segments gives
virtual LANs a distinct advantage of multiple port routers. In
a effort to gain bandwidth for LAN users, network managers ,
often deploy conventional multiple port routers to segment
LANs, but each physical segment created by a multiple port
router must be treated as a separate logical sub-net. Traffic
passing between sub—nets is subjected to additional delay
because of processing by the routers.

Virtual LANs minimize this delay problem because they
bridge, rather than route, traffic destined for different seg-
ments within the same network. Multiple segments per
sub-net generally means fewer routing bottlenecks. It also
means that end—stations can be assigned to different virtual
LANs without having to reconfigure the physical network.

When virtual LANs are used to sub-divide switched traffic

into contained areas, Ethernet switching becomes a powerful
inter-networking method that greatly reduces the role of the
router. Each defined virtual LAN can include several physi-
cal segments per local sub-net. With virtual LANs, a net-
work administrator can define user groups regardless of the
physical LAN segment to which they are connected. Users
assigned to the same virtual LAN communicate at wire
speed with low latency and, generally, no routing
bottlenecks, regardless of their physical location in the
network. Virtual LANs can be extended across multiple
switches, with the switches being linked by high speed
backbones, such as FDDI, 100 MBPS fast Ethernet, or ATM.
Some switches may handle virtual LANs at the data link
level (i.e., layer two of the OSI model), leaving layer three
(network layer) functions to routers. Other switches may
handle virtual LANs at layer three, meaning that they
perform basic routing chores themselves.

Ethernet virtual LANs that function at layer two are often
defined by software that allows network administrators to
group a number switched ports together into a high
bandwidth, low latency switched work group. Under the
layer two approach, each virtual LAN is assigned a unique
number that identifies it for network management purposes.
These layer two virtual LANs are based on bridge architec-
ture’s that transmit data using media access control (MAC)
source and destination addresses. Traffic within virtual

LANs is switched according to these addresses and traffic
between virtual LANs is handled by a router that imposes
filtering, security and traffic management. The router can be
either a stand alone unit or a separate card integrated into an
Ethernet switch. Either way, the routing is handle by soft-
ware which is separate from the virtual LAN switching
logic.

Once layer two port group virtual LANs are defined, each
switch of the network reads incoming frames and learns the

10

15

40

45

60

65

2
MAC addresses associated with each virtual LAN. If an end

station sends broadcast or multicast frames, those frames are
then forwarded to all ports in that end station’s virtual LAN.
The ports can be spread across any number of switches
connected to the high speed backbone. All LAN segments in
a port group are bridged together whether they are separated
by the backbone or reside in the same switch.

Supporting layer two virtual LAN port groups on a single
switch is a straight forward process. Ethernet switches cache
MAC addresses and information about which port each
MAC address is connected to. With virtual LAN switches, a
virtual LAN number is added to a MAC address and stored

in the switch’s forwarding table. Armed with this
information, switches can direct broadcast to the appropriate
ports.

In order to provide rapid access to the forwarding tables,
some Ethernet switches use a storage system based on
hashing. Hashing is a storage system based on the antithesis
of sorting. Instead of keeping the data in an orderly pattern,
hashing staggers records throughout a storage space in a
pseudorandom function. This pseudorandom function uses
the value of a record’s key as a search key and outputs an
address within the storage space that the data can be placed
in. The storage space address is often referred to as a storage
bucket.

The function used to generate array indices from search
keys is called a hash function and the resulting array is
generally referred to as a hash table. Unfortunately, gener-
ating appropriate array indices from keys often proves to be
difficult. The reason is that if the keys for two different data
records hash to the same index value, then collisions will
occur. Collisions pose a problem because, over the course of
time, the switch will be required to locate stored data records
and, if two records have been hashed to the same location in
a hash table, one may overwrite the other, resulting in a loss
of information. Several techniques for resolving collision
problems have been used in the past.

For example, a bounded bucket size approach, where
bucket size is limited to a value less than the total number

of items being stored in the table, has been used. The benefit
of this approach is a guarantee on the maximum search time
required to search the table. The consequent problem with
such a scheme, however, is the inability of the designer to
guarantee storage of all items in the table.

Unbounded bucket size approaches where all items could
be stored in one bucket if the selected hash function pro-
duced such a result, have also been employed. While such
schemes ensure that all items can be stored, search times
cannot be guaranteed because the bucket size will vary.

Accordingly, it would be desirable to have an Ethernet
switch capable of allowing a guaranteed search time (which
is less than the search time required for an unbounded bucket
scheme) for each MAC address presented and a guarantee as
to the number of entries which can be stored in the MAC

address forwarding table.

SUMMARY OF THE INVENTION

In one embodiment, the present invention provides a
method of locating an entry in a table stored in a computer
readable medium. A search key having a first length is
presented to a search process. This search value is hashed to
generate a bucket identifier having a second length, smaller
than the first length. The bucket identifier is then used to
address a table stored in a computer readable medium and a
pointer is retrieved from an associated storage location. The
pointer is used to index a hash bucket containing one or

5,914,938

3

more entries, each of which can be compared to the search
key to determine whether any of the entries match the search
key. For the case where the table locating method is used in
an Ethernet switch, the search keys comprise a virtual LAN
identification and media access control address.

In this embodiment, the hash function applied to the
search key first segments the search key into a number of
equal segments. Each of the segments is multiplied by a
corresponding segment of a hash coefficient to create a series
of products. These products are summed and the resulting
sum is then subjected to a MOD operation with a prime
number. The result of the MOD operation is used as the
bucket identifier to address the table.

In another embodiment, the present invention provides a
computer assisted method of configuring a media access
control (MAC) address table for a switching node of a
communication network. The MAC address table is made up
of a number of hash buckets, each of which have one or
more entries. As frames are received at the switching node,
a MAC address is identified and, if not already present
within the MAC address table, stored as a new entry in one
of the hash buckets according to a hash function so long as
no overflow of any hash bucket would be created. If a bucket
overflow would result from the storing operation, a new hash
function is automatically selected so that no hash bucket
overflows will result when the new MAC address is stored
in a new MAC address table.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example
and not limitation in the figures of the accompanying
drawings in which like numeral indicate similar elements
and in which:

FIG. 1 illustrates a computer network utilizing the meth—
ods of the present invention and made up of a number of
virtual LANs;

FIG. 2 illustrates a network switch node of the computer
network shown in FIG. 1;

FIG. 3 is a graphical illustration of the structure of a MAC
address table according to one embodiment;

FIG. 4 is a graphical illustration of a hashing process
according to the methods of the present invention; and

FIG. 5 is a flow diagram illustrating the process of
selecting a new hash function in accordance with the present
invention.

DETAILED DESCRIPTION

A MAC address table search unit is described. In alter-

native embodiments, the present invention may be appli—
cable to implementations in integrated circuits or chip sets,
wireless implementations, switching systems products and
transmission system products. For purposes of this
application, the term switching systems products shall be
taken to mean private branch exchanges (PBXs), central
office switching systems that interconnect subscribers, toll/
tandem switching systems for interconnecting trunks
between switching centers, and broadband core switches
found at the center of a service provider’s network that may
be fed by broadband edge switches or access multiplexers,
and associated signaling and support systems and services.
The term transmission system products shall be taken to
mean products used by services providers to provide inter-
connection between their subscribers and their networks,
such as loop systems, and which provide multiplexing,
aggregation and transport between the service provider’s

10

15

40

45

60

65

4

switching systems, and associated signaling and support
systems and services.

FIG. 1 illustrates a computer system 10 which is made up
of a number of virtual LANs 12. Each virtual LAN 12 has

a number of end-stations 14. For clarity, only one end-station
14 is labeled in FIG. 1, however, it will be appreciated that
each of the end-stations is substantially similar. The end-
stations 14 are connected via virtual LAN switches 16. The

virtual LAN switches 16 are coupled via a high speed
backbone 18. As shown, each of the virtual LAN switches 16
may be connected to other switches within computer system
10 or a virtual LAN switch 16 may be connected to a router
20 which itself is connected to other enterprise networks.

The virtual LAN switches 16 shown in FIG. 1 may create
the various virtual LANs 12 at the data link layer (i.e., layer
two of the OSI model), leaving layer 3 (i.e., network layer)
functions to routers. Alternatively, the virtual LAN switches
16 may handle the virtual LANs 12 at layer 3, and thereby
perform basic routing chores.

FIG. 2 further illustrates a virtual LAN switch 16. Each

switch 16 includes a number of port cards 22 and a central
processor 24. The central processor 24 communicates with
each of the port cards 22 via a system bus 26. Each of the
port cards 22 supports a number of ports 28. Those skilled
in the art will appreciate that each of the ports 28 may handle
traffic from a number of end-stations 14 within each of the
virtual LANs 12.

As illustrated, each port card 22 includes a port controller
30 and an associated storage device 32. In a preferred
embodiment, each port 28 has a dedicated port controller 30
and storage device 32, however, those skilled in the art will
appreciate that other configurations may allow a single port
controller 30 and storage device 32 to be associated with
multiple ports. In one embodiment, the storage device 32
may be a DRAM.

Each port card 22 caches address and other information
about each port 28 connected thereto. It will be appreciated
that this information may be stored locally in storage devices
32 or, in some cases, may be stored in a central storage
device accessable by multiple port controllers 30 via system
bus 26. As frames of information are received across ports
28, port controller 30 examines address information within
each of frames and compares that information to address
information stored in a forwarding table stored in DRAM
32. Based on this comparison, the port controller 30 can
determine which port (if any) the incoming frame needs to
be switched to and may then pass the frame to the appro-
priate port card 22 across system bus 26. In some cases, port
controller 30 will recognize that the frame is destined for an
end-station 14 associated with the port 28 which the port
controller 30 controls. In this case, the frame is not for-
warded.

As indicated, each frame of information transmitted

across computer network 10 contains address and other
information. Those sldlled in the art will appreciate that a
typical Ethernet frame includes a destination address (DA),
a source address (SA) and a data field (DATA). The desti-
nation address and source address are each 6 bytes (48 bits)
long. The DATA is the actual payload being transmitted
within the frame. It’s length will vary depending upon the
associated application. Some Ethernet frames include an
additional header portion which specifies a virtual LAN
identifier (VLAN ID) which is two bytes (16 bits) in length.
Together, the VLAN ID and destination address (DA)
uniquely identify an end-station 14 which is to receive a
frame.

5,914,938

5

When a frame having a VLAN ID and a destination
address (DA) is received at port controller 30, the port
controller 30 can compare the VLAN ID and destination
address with those stored in it's forwarding table in order to
determine the appropriate routing within switch 16 for the
received frame. FIG. 3 further illustrates the manner in

which this process is accomplished. As illustrated, DRAM
32 contains a forwarding table which includes a bucket
descriptor portion and bucket entry portion, Those skilled in
the art will appreciate that the forwarding table has been
organized as a hash table. The bucket descriptor portion of
the forwarding table contains buckets O to M-1 and the
bucket entry portion of the table contains corresponding
entries for each of buckets O to M-l which contain entries.

Each bucket O to M-l may have one or more entries.

An exemplary format of each bucket entry is illustrated in
FIG. 3. In general, each bucket entry contains information
which corresponds to a port address for the switch 16. Once
the appropriate bucket entry has been located, the VLAN ID
and destination address search value can be compared with '
that stored in the bucket entry and, if the two match, the
corresponding port routing information can then be used by
switch 16 to route the Ethernet frame appropriately.

As further illustrated in FIG. 3, each of the bucket
descriptors contain address information. The address infor-
mation is used as a pointer in order to index the correspond-
ing bucket entries for each of the buckets. The first bit 40 of
each of the bucket tables may be used as an empty flag to
indicate whether any bucket entries exist for the correspond-
ing bucket. If bucket entries do exist, a 1 may be placed in
the first bit position 40. If no bucket entries exist, i.e.,
indicating a empty bucket, a 0 may be placed in first bit
position 40.

As shown in FIG. 3, a search key, made up of the VLAN
ID and the destination address retrieved from a received

frame, is applied to a universal hash function. Note that for
a single VLAN implementation, the VLAN ID may be
obtained from processor 24 (which would write a VLAN ID
to an appropriate register within port controller 30) rather
than from a received frame. Alternatively, a VLAN ID may
be obtained from protocol information associated with a
received frame or from a VLAN ID header within the

received frame itself. The output of the hashing process is a
bucket ID value which is used to locate the appropriate
bucket descriptor N in the bucket table. From the bucket N,
address information is obtained which then can be used by
a look-up process to index the appropriate bucket entries for
bucket N. Each of the bucket entries corresponding to bucket
N can then be compared with the original search key (i.e.,
the VLAN ID and the destination address) in order to
determine whether a match exists. If a match exists, the
Ethernet frame corresponding to the search key is routed
according to the information contained in the bucket entry.

In addition to DA lookups, SA lookups may also be
performed when a frame is received. Such operations allow
the hash table to be updated with new values for new
end-stations within a network. The SA lookups are per-
formed in the same fashion as the DA lookups described
above, except that the search key will be made up of an SA
and VLAN ID. If the SA does not correspond to any existing
bucket entry in the table, it is added as a new entry using the
techniques described below.

The hashing process used with the above described
method is further illustrated in FIG. 4. As shown, the 64-bit
search value (i.e., the VLAN ID and destination address) is
divided into eight segments, each 8 bits in length. Each one

10

15

40

45

60

65

6

of these segments is multiplied by a corresponding 17-bit
segment of a 136-bit hash coefficient. The hash coeflicient is
generated by the central processor 24 of switch 16 and
supplied to each of the port controllers 30. The manner in
which these hash coefficients are selected is discussed fur-

ther below. Each one of the products P1—P8 which result
from the above multiplication step are then added together
to produce a sum. The sum then undergoes a MOD operation
in which the divisor is a prime number M, where M equals
the number of buckets, in order to produce the bucket ID. If
the divisor M is selected to be of the form M=2P—1, where
P is an integer and M is a prime number, those skilled in the
art will recognize that the MOD circuit may be designed to
avoid a divide operation. Instead, as recognized by J.
Lawrence Carter and Mark N. Wegmen in “Universal
Classes of Hash Functions,” 18 Journal of Computer and
System Sciences, pp. 143—154 (1979), only one multiply and
a few addition, shift and Boolean operations will be
required. This may result in increased speed and a fewer
number of gates if the above operation is performed in
hardware.

The selections of the hash coefficient and the prime
number divisor for the MOD operation are governed by the
criteria that in one embodiment, a maximum of four com-
pare operations per bucket should be performed when 8K
entries are stored in the hash table. That is, after a search key
is hashed and a bucket is identified, no more than four
buckets entries should exist for each individual bucket in the

bucket table. This guarantees that a maximum of four
compare operations will need to be performed for each
Ethernet frame received over computer network 10. To
achieve this result, P is selected so that P=17. It will be

appreciated that because the number of buckets M=217=
128K, a total of 8K items may be stored in the hash table
with this embodiment, and the vast majority of the 2136 hash
functions implemented by the hash algorithm shown in FIG.
4 (where a single hash function is selected by selecting a
single value for the Hash Coefficient) will not produce an
overflow in the hash table, regardless of the values of the 8K
entries. Those skilled in the art will recognize that limiting
the number of compare operations in this fashion necessarily
allows the switch designer to guarantee a worst-case search
time.

To guarantee this criteria, a universal hashing algorithm is
used to compute the bucket identifier. This process is illus—
trated in FIG. 4. Assume that the forwarding table of FIG. 3
is configured to hold 8k entries and that close to this number
of entries are currently stored in the table. If a new address
and VLAN ID combination is received (and, hence, needs to
be stored), a bucket overflow may occur. That is, when the
destination address and VLAN ID combination are hashed,
they may hash to a bucket which already has four associated
bucket entries. In such a case, the switch 16 must change to
another hash function, and in particular, a hash function
which does not produce a overflow. The manner in which the
change is performed is illustrated in FIG. 5.

The selection process 100 begins at step 102 when a
potential overflow is recognized. This may correspond to a
condition where any hash bucket contains 3 or more entries
or another user defined condition. Processor 24 may keep
track of such information and update the hash coefficient as
appropriate. Then at step 104, the system processor 24
randomly selects a new hash multiplier value but does not
yet write that new value to the port controllers 30. Instead,
the processor 24 first determines, at step 106, whether the
new hash function will produce a potential bucket overflow
condition or other conditions necessitating that a new hash

5,914,938

7

function be selected. This is performed by calculating the
hash result for each of the addresses that need to be stored

in the forwarding table. At step 108, the processor 24
determines whether any potential overflow conditions
occurred. If so, the processor 24 repeatedly selects new hash
multiplier values until it identifies a good hash function (i.e.,
one which does not produce potential bucket overflows).
Since the probability of a random hash function not produc-
ing a bucket overflow is approximately one thousand to one
for 8K entries stored in 128K buckets of maximum size 4

(Binomial Distribution), typically the first value chosen will
yield a good hash function.

When a new hash function which does not cause any
bucket overflows is identified, process 100 moves to step
110 where a new forwarding table is generated using the new
hash function. As part of this step, the newly received VLAN
ID and address combination are stored as a new bucket

entry.

Accordingly, a new MAC address table search unit has
been described. Those skilled in the art will appreciate that
the present invention has been described with reference to '
particular embodiments thereof. However, the details of
these embodiments may not be required to implement the
features of the present invention. Accordingly, the specifi-
cation and drawings are to be regarded as illustrative only
and the present invention is to be limited only in terms of the ,
claims which follow.

What is claimed is:

1. A computer assisted method of locating an entry in a
table stored in a computer readable medium, comprising the
steps of:

(a) generating a search key having a first number of bits,
wherein said search key comprises a Virtual LAN
identification (VLAN ID) and a media access control
(MAC) address;

(b) applying a universal hash function to said search key
to generate a bucket ID having a second number of bits
less than said first number of bits, by
(i) segmenting said search key into a plurality of

segments, each of said segments having an equal
number of bits;

(ii) multiplying each of said segments by a correspond-
ing segment of a hash coefficient to create a series of
products;

(iii) summing said series of products to create a sum;
and

(iv) performing a MOD operation with said sum and a
prime number to generate said bucket ID;

(c) addressing a table stored in said computer readable
medium using said bucket ID to obtain a pointer;

(d) indexing a hash bucket using said pointer; and
(e) comparing a first entry in said hash bucket to said

search key to determine whether said first entry
matches said search key.

2. A computer assisted method of locating an entry in a
table as in claim 1 wherein said search key has 64 bits.

3. A computer assisted method of locating an entry in a
table as in claim 1 wherein said bucket ID has 17 bits.

4. A computer assisted method of locating an entry in a
table as in claim 1 wherein said prime number has the form
2P—1, where P is an integer and 2P—1 equals the number of
hash buckets comprising said table.

5. A computer assisted method of locating an entry in a
table as in claim 1 wherein said hash bucket comprises a
maximum of four entries.

6. A computer assisted method for configuring a media
access control (MAC) address table for a node of a com-
munication network, comprising the steps of:

10

15

40

45

60

65

8

receiving at said node a frame of information, said frame
including a MAC address;

generating a first value including said MAC address;
applying a universal hash function to said first value to
generate a second value by (i) segmenting said first value
into a plurality of segments, each of said segments having an
equal number of bits, (ii) multiplying each of said segments
by a corresponding segment of a hash coefficient to create a
series of products, (iii) summing said series of products to
create a sum, and (iv) performing a MOD operation with
said sum and a prime number to generate said second value,
and addressing a table using said second value to obtain a
pointer; and

storing said MAC address in a MAC address table at a
storage location indicated by said pointer.

7. A computer assisted method of configuring a MAC
address table as in claim 6 wherein said first value further

includes a virtual LAN identifier (VLAN ID).
8. A computer assisted method of configuring a MAC

address table as in claim 7 wherein said VLAN ID is
obtained from said frame.

9. A computer assisted method of configuring a media
access control (MAC) address table for a node of a com-
munication network, said MAC address table having a
number of hash buckets, each of said hash buckcts having
one or more entries, the method comprising the steps of:

receiving at said node a frame of information including a
MAC address, said MAC address being different from
each of said entries; and

storing said MAC address as an entry in one of said hash
buckets according to a universal hash function so long
as a hash bucket overflow is not created by:
(i) applying said universal hash function to said MAC

address to generate a bucket value,
(ii) addressing a table using said bucket value,
(iii) retrieving a pointer from said table at a storage

location determined by said step of addressing,
(iv) indexing a corresponding one of said hash buckets

using said pointer and determining the number of
entries in said corresponding hash bucket, and

(v) storing said MAC address as a new entry in said
corresponding hash bucket if said number of entries
is less than a threshold value;

otherwise generating a new MAC address table based on a
new hash function, selected so that no hash bucket overflows
will result when said MAC address is stored in said new
MAC address table.

10. A computer assisted method of configuring a MAC
address table as in claim 9 wherein said threshold value is
four.

11. A computer assisted method of configuring a MAC
address table as in claim 9 wherein generating said new
MAC address table comprises the steps of:

selecting a new hash multiplier value;
generating a new hash function based on said hash

multiplier value;
testing said new hash function by computing new bucket

identifiers for each entry in said MAC address table
using said new hash function and determining whether
said new hash function will create any new hash
buckets with a number of entries greater than said
threshold; and

generating said new MAC address table based on said
new hash function so long as no new hash buckcts will
have a number of entries greater than said threshold,
otherwise repeating said steps of selecting, generating
and testing until an appropriate hash function is found.

5,914,938

9

12. A table search unit, comprising:

means for generating a search key having a first number
of bits;

means for applying a universal hash function to said
search key to generate a bucket ID having a second
number of bits less than said first number of bits, said
means for applying a universal hash function including:
(i) means for segmenting said search key into a plu—
rality of segments, (ii) means for multiplying each of
said segments by a corresponding segment of a hash
coefficient to create a series of products, (iii) means for
summing said products to create a sum, and (iv) means
for performing a MOD operation With said sum and a
prime number to generate said bucket ID;

means for addressing a table stored in a computer read-
able medium using said bucket ID to obtain a pointer;

means for indexing a hash bucket using said pointer; and

10

15

10

means for comparing a first entry in said hash bucket to
said search key to determine Whether said first entry
matches said search key.

13. A communication node, comprising:
means for receiving a frame of information including a

MAC address;
means for generating a first value including a MAC

address;
means for applying a universal hash function to said first

value to generate a search value;
means for storing said MAC address at a storage location

corresponding to said search value, said means for
storing including means for addressing a table using
said search value to obtain a pointer, and means for
storing said MAC address in a MAC address table at
said storage location, said storage location being indi-
cated by said pointer.

* * * * *

