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ABSTRACT

The traditional approach to implementing wide set-
associativity is expensive, requiring a wide tag memory (directory)
and many comparators. Here we examine alternative implementa-
tions of associativity that use hardware similar to that used to
implement a direct-mapped cache. One approach scans tags seri-
ally from most-recently used to least-recently used. Another uses a
partial compare of a few bits from each tag to reduce the number of
tags that must be examined serially. The drawback of both
approaches is that they increase cache access time by a factor of
two or more over the traditional implementation of set—
associativity, making them inappropriate for cache designs in
which a fast access time is crucial (e.g. level one caches, caches
directly servicing processor requests).

These schemes are useful, however, if (1) the low miss ratio
of wide set-associative caches is desired, (2) the low cost of a
direct—mapped implementation is preferred, and (3) the slower
access time of these approaches can be tolerated. We expect these
conditions to be true for caches in multiprocessors designed to
reduce memory interconnection traffic, caches implemented with
large. narrow memory chips, and level two (or higher) caches in a
cache hierarchy.

1. Introduction

The selection of associativity has significant impact on cache
performance and cost [Smit86] [Smit82] [HillS7] [Przy88a]. The
associativity (degree of associativity, set size) of a cache is the
number of places (block frames) in the cache where a block may
reside. Increasing associativity reduces the probability that a block
is not foundein the cache (the miss ratio) by decreasing the chance
that recently referenced blocks map to the same place [Smit78].
However, increased associativity may nonetheless result in longer
effective access times since it can increase the latency to retrieve
data on a cache hit [Hi1188,Przy88a]. When it is important to
minimize hit times direct-mapped (associativity of one) caches
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may be preferred over caches with higher associativity.
Wide associativity is important when: (i) miss times are very

long or (12) memory and memory interconnect contention delay is
significant or sensitive to cache miss ratio. These points are likely
to be true for shared memory multiprocessors. Multiprocessor
caches typically service misses via a multistage interconnect or
bus. When a multi-stage interconnect is used the miss latency can
be large whether or not contention exists. Bus miss times with low
utilizations may be small, but delays due to contention among pro-
cessors can become large and are sensitive to cache miss ratio. As
the cost of a miss increases, the reduced miss ratio of wider associ-
ativity will result in better performance when compared to direct—
mapped caches.

Associativity is even more useful for level two caches in a
two-level multiprocessor cache hierarchy. While the level one
cache must service references from the processor at the speed of
the processor, the level two cache can be slower since it services
only processor references that miss in the level one cache. The
additional hit time delay incurred by associativity in the level two
cache is not as important [Przy88b]. Reducing memory and
memory interconnect traffic is a larger concern. Wide associativity
also simplifies the maintenance of multi—level inclusion [Baer88].
This is the property that all data contained in lower level caches is
contained in their corresponding higher level caches. Multi-level
inclusion is useful for reducing coherency invalidations to level
one caches. Finally, preliminary models indicate that increasing
associativity reduces the average number of empty cache block
frames when coherency invalidations are frequentl, This implies
that wider associativity will result in better utilization of the cache.

Unfortunately. increasing associativity is likely to increase
the board area and cost of the cache relative to a direct-mapped
cache. Traditional implementations of a-way set-associative
caches read and compare all a tags of a set in parallel to determine
where (and whether) a given block resides in the cache. With 2-bit
tags, this requires a tag memory that can provide a X: bits in paral—
lel. A direct-mapped cache can use fewer, narrower, deeper chips
since it requires only a t-bit wide tag memory. Traditional imple-
mentations of associativity also use a comparators (each t-bits
wide) rather than one, wider data memory, more buffers, and more
multiplexors as compared to a direct-mapped cache. This adds to
the board area needed for wider associativity. As the size of
memory chips increases. it becomes more expensive to consume
board area with multiplexors and other logic since the same area
could hold more cache memory.

While numerous papers have examined associativity [Lipt68]
[Kapl73] [Be1174] [Stre76] [Smit78] [Smit82] [Clar83] [Agar88].
most have assumed the traditional implementation. One of the few
papers describing a cache with a non-traditional implementation of 

l A miss to rt set-associative cache can fill any empty block frame in the set, whereas. a miss
to a directen'tflpped cache can fill only a single frame. Increasing associativity increases the
Chance that on invalidated block frame will be quickly used again by making more empy
frames available for reuse on a miss.
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Figure 1. Implementing Set-Associativity.

Part (a) of this figure (top) shows the traditional implementation of
the logic to determine hit/miss in an a-way set-associative cache.
This logic uses the “SET” field of the reference to select one t-bit
tag from each of 4 banks. Each stored tag is compared to the incom-
ing tag (“TAG"). A hit is declared if a stored mg matches the in-
coming tag, a miss otherwise.
Part (b) (bottom) shows a serial implementation of the same cache ar-
chitecture. Here the a stored tags in a set are read from one bank and
compared serially (the tags are addressed with "SET" concatenated
with 0 through a — 1).

associativity is [Chan87]. It discusses a cache implemented for a
System/370 CPU that has a one-cycle hit time to the most-
recently-used (MRU) block in each set and a longer access time for
other blocks in the set, similar to the Cray-1 instruction buffers
[Cray76] and the biased set-associative translation buffer described
in [Alex86].

This paper is about lower cost implementations of associa»
tivity, implementations other than the traditional. We introduce
cache designs which combine the lower miss ratio of associativity
and the lower cost of direct—mapped caches. In the new implemen-
tations the width of the comparison circuitry and tag memory is t,
the width of one tag, instead of the a ><t required by the traditional
implementation. Implementations using tag widths of b Xt
(l < b < a) are possible and can result in intermediate costs and
performance, but are not considered here. This paper is not about
level two caches per se, but we expect these low cost schemes to be
applicable to level two caches. We organize this paper as follows.
Section 2 introduces the new approaches to implementing associa-
tivity, shows how they cost less than the traditional implementation
of associativity, and predicts how they will perform. Section 3
analyzes the approaches of Section 2 with trace-driven simulation.

2. Alternative Approaches to Implementing Set-Associativity
Let a , a power of two, be a cache's associativity and let t be

the number of bits in each address tag. During a cache reference.
an implementation must determine whether any of the a stored
tags in the set of a reference match the incoming tag. Since at most
one stored tag can match, the search can be terminated when a
match is found (a cache hit). Alla stored tags, however, must be
examined on a cache miss.
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Figure la illustrates the traditional implementation of the tag
memory and comparators for an a-way set-associative cache.
which reads and probes all tags in parallel. We define a probe as a
comparison of the incoming tag and the tag memory. If any one of
the stored tags match. a hit is declared. We concentrate only on
cache tag memory and comparators, because they are what we pro-
pose to implement differently. Additional memory (not shown) is
required by any implementation of associativity with a cache
replacement policy other than random. A direct-mapped cache
does not require this memory. The memory for the cache data (also
not shown) is traditionally accessed in parallel with the tag
memory.

Figure lb shows a naive way to do an inexpensive set-
associative lookup. It uses hardware similar to a direct-mapped
cache, but serially accesses the-stored tags of a set until a match is
found (a hit) or the tags of the set are exhausted (a miss). Note how
it requires Only a single comparator and a t-bit wide tag memory,
whereas, the traditional implementation requires 2 comparators and
an a ><t wide tag memory.

Unfortunately, the naive approach is slow in comparison to
the traditional implementation. For hits, each stored tag is equally
likely to hold the data. Half the non-matching tags are examined
before finding the tag that matches, making the average number of
probes (a —l)/2 + 1. For a miss, all a stored tags must be examined
in series, resulting in a probes. The traditional implementation
requires only a single probe in both cases.

2.1. The MRU Approach
The average number of probes needed for a hit may be

reduced from that needed by the naive approach by ordering the
stored tags so that the tags most likely to match are examined first,
One proposed order [8088] [Matt70] is from most‘recently-used
(MRU) to least-recently-used (LRU). This order is effective for
level one caches because of the temporal locality of processor
reference streams [$088] [Chan87]. We find (in Section 3) that it is
also effective for level two caches due to the temporal locality in
streams of level one cache misses.

One way to enforce an MRU comparison order is to swap
blocks to keep the most-recently—used block in block frame 0, the
second most-recently-used block in block frame 1, etc. Since tags
(and data) would have to be swapped between consecutive cache
accesses in order to maintain the MRU order, this is not a viable

implementation option for most set-associative caches.2 A better
way to manage an MRU comparison order, illustrated in Figure 2a,
is to store information for each set indicating its ordering. For-
tunately, information similar to a MRU list per set is likely to be
maintained anyway in a set-associative cache implementing a true
LRU replacement policy. lnthis case there is no extra memory
requirement to store the MRU information. We will also analyze
(in section 3) reducing the length of the MRU list. using approxi-
mate rather than full MRU searches, to further decrease memory
requirements. Unfortunately, the lookup ofMRU information must
precede the probes of the tags3_ This will lead to longer cache
lookup times than would the swapping scheme.

If we assume that the initial MRU list lockup takes about the
same time as one probe, the average number of probes required on

aacache lookup resulting in a hit using the MRU approach is 1+
21' f, where f,~ is the prObability the i-th MRU tag matches,i=1

given that one of them will match4. The MRU scheme performs
particularly poorly on cache misses, requiring l + a probes. This 7

2 While maintaining MRU order using swapping may be feasible for a 2-way
set-associative cache, Agarwal's hash-rehash cache [Agar87] can be superior to
MRU in this 2vway case.
3 While it is possible to lookup the MRU information in parallel with the level-
one~cache access, it is also possible to start level-two-cache accesses early for
any of the other implementation approaches [Bren84].
4 Each f‘ is equal to the probability of areference to LRU distance 1' divided bythe hit ratio, for a given number of sets [Smit78].
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Figure 2. Improved Implementations of Serial Set-Associativity.

Part (a) of this figure (top) shows an implementation of serial set-
associativity usin ordering information. This approach first reads
MRU ordering in onnatiorr (left) and then probes the stored tags from
the one most-likely to match to the one least-likely to match (right).
Note “+” represents concatenate.
Part (b) (bottom) shows an implementation of serial setoassociativity
using partial compares. This approach first reads k (k =L t/aJ ) bits
from each stored tag and compares them with the corresponding bits
of the incoming tag. The second step of this approach serially com-
pares all stored tags that partially matched (“PM") with the incom-
ing tag until a match is found or the tags are exhausted (right).

is one more than the naive implementation on misses since the
MRU list is uselessly consulted.

2.2. The Partial Compare Approach

We have carefully defined a probe to be the comparison of
the incoming tag and the tag memory, without requiring that all
bits of the tag memory come from the same stored tag. We now
introduce the partial compare approach that uses a two step pro—
cess to often avoid reading all r bits of each stored tag. In step one.
the partial compare approach reads t/a bits from each of a stored
tags and compares them with the corresponding bits of the incom‘
ing tag. Tags that fail this partial comparison cannot hit and need
not be examined further on a cache lockup. In step two, all stored
tags that passed step one are examined serially with t-bit (full)
compares.

The implementation of partial compares is not costly, as it
can use the same memory and comparators as the naive approach
assuming k, the partial compare width (k =L t/aj ), is a multiple
of memory chip and comparator width. Partial compares are done
with the help of a few tricks. The first trick, illustrated in Figure
2b, is to provide slightly different addresses to each k-bit wide
collection of memory chips, addressing the i-th collection with the
address of the set concatenated with logzi. The second trick is to
divide the t-bit comparator into a separate k-bit comparatorss.

5 If kxa does not equal 1 then |_ t/aJ xa bits of the tag can be used for partialcompares. with another comparator for the extra bits.
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This is straight-fonvard, since wide comparators are ofien imple-
mented by logically AND-ing the results of narrow comparators.
Note how step two of this partial compare approach uses the same
tag memory and comparators as step one, but does full tag com-
pares rather than partial compares.

The performance of this approach depends on how well the
partial compares eliminate stored tags from further consideration.
For independent tags, the average number of probes will be minim-
ized if each of the values [0, 2" — l] is equally likely for each of the
k -bit patterns on which partial compares are done. While this con-
dition may be true for physical address tags, it is unlikely to be true
for the high order tag bits of virtual addresses. Nevertheless, we
can use the randomness of the lower bits of the virtual address tag
to make the distribution of the higher ones more uniform and
independent. For example, one can transform a tag to a unique
other tag; by exclusive-oring the low-order k bits of the tag with
each of the other k -bit pieces of the tag before it is stored in the tag
memory. Incoming tags will go through the same transformation
so that the incoming tag and the stored tag will match if the
untransformed tags are the same. The original tags can be retrieved
from the tag memory for writing back blocks on replacement via
the same transformation in which they were stored (i.e. the
transformation is its own inverse). This method is used throughout
this paper to produce stored tags with better probabilistic charac-
teristics. We will also analyze using no transformation, and using a
more sophisticated one in Section 3. We make the assumption in
our analysis to follow that each of the values [0. 2“ — 1] is equally
likely and independent for each partial compare. Our trace—driven
simulation (in Section 3) tests this assumption.

The probability that an incoming tag partially-matches a
stored tag is 1/2". A false match is a partial tag match which will
not lead to a match of the full tag. Given a hit, the expected
number of false matches in step one is (a—1)/2", of which half
will be examined in step two before a hit is determined. Thus, the
expected number of probes on a hit is 1+ (a—l)/2"+l + l, where
the terms of the expression are: the probe for the partial comparison
(step one), the full tag comparisons (in step two) due to false
matches, and the full tag match which produces the hit, respec-
tively. On a miss, the expected number of probes in simply
1+ a /2*, the probe for the partial comparison and the number of
false matches, respectively.

The partial compare scheme can lead to poor performance if
many false matches are encountered in step two. Wider partial
compares could eliminate some of these false matches. The partial
compare width can be increased by partitioning the a stored tags of
a set into: s proper subsets (each containing a/s tags) and examin-
ing the subsets in seriesé, The step one and step two partial com-
pare sequence is performed for each of the subsets to determine if
there is a cache hit. The order in which the subsets are examined is

arbitrary throughout this paper. Increasing the number of subsets
will increase the partial compare width since fewer partial com-
pares are done concurrently. For example, 2 subsets could be used
in an 8-way set-associative cache, with 4 entries in each. A lockup
in this cache would proceed as two 4-way (single subset) lookups,
one after the other. With a 16-bit wide tag memory in this cache,
partitioning into 2 subsets would result in 4-bit partial compares.
This will. result in fewer false matches titan with the 2-bit partial
compares without subsets. The number of probes per access
decreases when using proper subsets if the expected number of
false matches is reduced (due to wider partial compares) by more
than the number of probes added due to the additional subsets.
Subsets may be desirable for implementation considerations in
addition to performance considerations if the memory chip or com-
parator width dictate that the partial compares be wider.

At one extreme (where s = a), partial compares with subsets
would be implemented as the naive approach, while the other 

6 Note that subsets are not useful with the naive and MRU approaches.
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Table 1. Performance of Set-Associativity Implementations.

For various methods and associativities this table gives the number of
subsets, the tag memory width, the number of probes for a hit, and,
the number for a miss. The table assumes t-bit tags (t = 16), k-bit
partial compares, and that the i-th most-recently used tag matches
with probability f,- on a hit. Note how an increase from 1 to 2 subsets
improved the predicted performance of the partial compare approach
at an associativity of 8.
 

(s =1) can lead to many false matches. An important question to
ask is: what number of subsets leads to the best performance (Le.
fewest number of probes per cache lockup) ? The next three
answers to this question vary from the most-accurate to the most
succinct. (1) One can compute the expected number of probes for
each of s = 1,2,4. ,a/2 and at using the equations for a hit and
miss (from Table 1) weighted to reflect your expected miss ratio
and choose the minimum. (2) One can ignore misses (which are
less common and never require more than twice the probes of hits).
assume variables are continuous, and find the optimum partial com-
pare width. k0 , =log21 — 1/2 for hits only. The optimum number
of subsets for iiits and misses together is likely to be the value for s
resulting from a partial compare width ofL km] or I" k0,”) . (3)
Finally, one can observe that many tags in current caches are
between 16 and 32 bits wide, implying the number of subsets that

gives at least four-bit pam‘al compares will work well.
Table 1 summarizes our analysis of the expected number of

probes required for the traditional, naive, MRU and partial compare
approaches to implementing set-associativity. Note that this table
as well as most of the trace-driven simulation assumes 16 bit tags
are used. We will examine the positive effect of increasing the tag
width on the partial compare approach in section 3.

Table 2 summarizes paper implementations of tag memory
and comparison logic for a direct-mapped cache. a traditional
implementation of set-associativity, and an implementation of set-
associativity using MRU and partial compares. We found that the
MRU and partial compare implementations have a slower access
time than the traditional implementation of associativity but
includes no implementation surprises. Most notably, the control
logic was found to be of reasonable complexity. The MRU and
partial compare implementations use hardware similar to a direct—
mapped cache and can make effective use of page—mode dynamic
RAMs, as would other serial implementations of set—associativity.
Page-mode dynamic RAMs are those in which the access time of
multiple probes to the same set can be significantly less than if the
probes were to other sets. Subsequent probes take less than half the
time of the first probe to the set. Cache cost is reduced in two ways
when using one of the alternative implementations of associativity.
First, tag memory cost is directly reduced, by 1/3 to 1/2 in our
design. Second, cache data memory cost is reduced since only 1.
rather than a words, need to be read at a time.

3. Trace-Driven Performance Comparison
This section analyzes the performance of the low-cost

schemes to implement set-associativity in level two caches using
simulation with relatively short multiprograrnming traces. We
analyze associativity in the level two cache since the low cost
implementations of associativity are more appropriate for level two
(or higher) caches than for level one caches. We concentrate on
presenting and characterizing the relative performance of the alter-
natives. We do not demonstrate the absolute utility of these
approaches to important future cache configurations (e.g. multiple
megabyte level two caches in multiprocessors) since our traces are
for a single processor and are not sufficiently long to exercise very
large caches.

The makeup of the traces and the assumed cache
configurations are indicated in Table 3. We assume a uniprocessor
system with a two level cache hierarchy (a level one cache and a
level two cache in out stud , lar e1 because the traces were 
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Table 2. Trial Set-Associativity Implementations.

This table compares paper implementations of the tag memory and comparison logic for a direct-mapped and four-way set-associative cache
holding 1 million 24-bit tags, assuming dynamic or static RAM chips housed in hybrid packages. The top half of the table summarizes the
memory packages used to implement tag memory, while the bottom half gives cache implementation numbers. The MRU implementation
assumes that the MRU list storage costs nothing extra (as it would it full LRU replacement is used). MRU access and cycles are given as-” n>
suming x IS the expected number of probes after reading the MRU information (”x" is between 1 and a for hits, a for misses) and “u” is
the probability that MRU information must be updated. Partial compare access and cycles are given assuming “y” probes in step two (“y”
is between 1 and a for hits and 0 and a for misses). The number of packages assumes some semi-custom logic and hybrid packages.
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Trace-Driven Two-Level Cache Simulation

ATUM [Agar86] virtual address traces of a multipro-
grammed operating system, described in [Hi1187]. Operat-
ing system references are included as well as references of
user-level processes. One very large trace (over 8 million
references) was constructed as a concatenation of 23 indi-
vidual ATUM traces, each of which is approximately
350,000 references. Cache flushes of the level one and
level two caches were inserted between each of the 23
traces, thus each trace starts from a “cold" cache. 

A direct-mapped write-back cache. On misses causing
replacement of a dirty block, the new block is first
obtained via a read-in request, then a write-back is issued
to the level two cache. Three level one caches are simu-
latett A 4 Kbyte cache with a 16 byte block size (4K-16);
16 Kbyte with 16 byte blocks (16K-16); and 16 Kbyte with
32 byte blocks (16K-32). The miss ratios corresponding to
these level one caches are: 0.1181, 0.0657, and 0.0513,
respectively.

An a-way set-associative write-back cache which services
read-ins and write-backs from the level one cache. We
compare different implementations of associativity in the
level two cache. The least-recently-used entry in a set is
replaced on a cache miss. We simulate five different level
two caches: a 64 Kbyte cache with 16 byte block size
(64K-16); 64 Kbyte with 32 byte blocks (64K-32); 256
Kbyte with 16 byte blocks (256K-16); 256 Kbyte with 32
byte blocks (256K-32); and 256 Kbyte with 64 byte blocks
(256K—64). While multi—level inclusion is not enforced in
this simulation, by monitoring the number of write-backs
which missed when written back to the level two cache we
were able to extrapolate that the maintenance of multi-
level inclusion would have a very small effect (in most
configurations studied, no effect) on the miss ratio of the
level two cache (and no effect on the miss ratio of the level
one cache).

 
Table 3. Detailed Information on the Trace-Driven Simulation.

uniprocessor traces. The level one cache is direct-mapped, while
the level two cache is of varying associativity. Both caches are
write-back caches, with the level two cache servicing read-in and
write-back requests from the level one cache. We chose this
write-back configuration to minimize the amount of communica-
tion between cache levels. This can be important in a shared
memory multiprocessor since the level one cache will be utilized
servicing processor references while the level two cache is servic-
ing coherency invalidations, as in [Good88]. Also, it was found in
[Shor88] that this configuration has better performance than if
either cache is write-through. Cache sizes simulated here (up to
256 Kbytes) are limited by the size of the traces. We expect future
level two (and higher) caches to be considerably larger (e.g. 4
Mbytes). Though the results presented are for “cold” caches, lim-
ited “warmer" results were found to be similar, except that the
miss ratios were smaller.

The graphs in Figure 3 show the average number of probes
versus the associativity of the level two cache for a 16K-16 (16
Kbyte capacity with 16 byte block size) level one cache and 256K-
32 (256 Kbyte with 32 byte block size) level two cache. The tag
width is 16-bits (t =16) and the partial compare width 4-bits
(k =4) in all simulations unless otherwise specified. 1, 2. and 4
subsets were used for 4, 8, and l6-way set-associative partial com-
pare implementations, respectively. The graphs indicate the gen-
eral linearly increasing relationship between the number of probes
required per search and the associativity. The number of probes
per access is expected to increase for the alternative
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implementations of associativity as the associativity increases since
there are more places where a given cache block can reside. A
cache lockup simply must look in more places on the average. For
wider associativity to be preferred, the added delay for these addi-
tional probes must be more than offset by the time saved servicing
fewer misses. One would also expect the Naive and Partial
schemes: to have a linear relationship between probes per access
and associativity. However, the fact that this relation is linear for
MRU came as a surprise. We will examine the MU and partial
schemes: more closely in subsequent figures. As will always be the
case, the traditional implementation of associativity results in the
minimum number of probes. These graphs show that the partial
compare approach performs the best of the low cost implementa-
tions. The naive scheme performs the worst, with the MRU
scheme between them.

Figure 3 also shows the performance benefit of a write-back
optimization which can be made when the multi-level inclusion
property is maintained with a cache hierarchy. The level one cache
can be certain that all write-back requests will hit in the level two
cache. it can also be certain that the block will reside in precisely
the same position in which it was loaded in the level two cache
from memory (if blocks do not change position in the level two
cache from the time they are loaded to the time they are replaced).
This implies that if the level one cache retains a logz a-bit indica-
tor of which position in the set the given cache block occupies (a is
the associativity of the level two cache), write-backs can proceed
without requiring tag probes. Note that even if multi-level inclu-
sion is not maintained, the indicators in the level one cache can be
used as hints, not always correct, where the entry resides in the
level two cache.

All the methods, Traditional, Naive, MRU. and Partial
require no probes to service a write-back request when using the
write—back optimization. Since write—backs are approximately 20%
of the requests to the level two cache (as shown in Table 4), this
can result in significant performance improvements, as indicated in
the figure. We feel the cost of implementing this optimization is
sufficiently modest (2 bits per level one cache entry for a 4—way
set-associative level two cache) to warrant its use when implement-
ing one of the reduced cost implementations of associativity, We
assume the write—back optimization is used, and all subsequent
figures contain data for read-in requests only, since the different
approaches perform the same on write~backs. Write-back requests
are still considered references as they update the MRU list, deter—
mining the replacement policy of the cache.

Table 4. presented at the end of the paper. lists the number of
probes required for various cache configurations when using the
naive, MRU, and partial schemes. Note that the data in Table 4
assumes the write-back optimization is being used. Table 4 uses
the terms global miss ratio and local miss ratio [Przy88b]. The
global miss ratio is the fraction of processor requests which miss in
both the level one and level two cache. The local miss ratio of the
level two cache is the fraction of read-ins and write-backs from the
level one cache which miss in the level two cache. Note that 8 and

16-way set-associativity did not improve the miss ratios substan-
tially over 4-way in our simulations.

The partial scheme performs best (requires the least number
of probes) for most configurations studied. However, MRU did
perform best for the configuration with the largest level two cache
block size and the largest ratio of level two to level one cache size
(4K—16 256K-64). This leads to several key observations regarding
the MRU scheme. First, MRU is a better scheme as the block size
of the level two cache increases relative to the level one cache

block size. MRU can take advantage of the larger block sizes in
the level two cache since more data spatially near the latest refer-
ence is in the MRU block. Second, its performance improves as
the size of the level one cache is decreased relative to the size of
the level two cache. The miss stream from a smaller level one

cache has more temporal locality than larger level one caches. This
locality results more often in hits to the first entry in the MRU list
of a set.
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Figure 3. Probes for Read-Ins and Write-Backs.

This figure shows the average number of probes per cache access for the Traditional, Partial, MRU, and Naive implementations of various
associativities. It also shows the usefulness of the write-back optimization in which the first level cache retains an indicator which allows it
to write-back to the second level cache without any tag comparisons (probes).
The number of probes per cache access increases with associativity for the non-traditional implementations since there are more places for a
given block to reside. Lower effective access times may nevertheless result, particularly as miss latencies are increased, since higher associa-
Livity results in lower miss ratios.

Figure 4 compares the performance of the schemes on read-in
hits and misses separately. It shows how the partial and MRU
approach are close in performance on hits, followed by the naive
approach. The partial approach is the undeniable winner on
misses, dominating the a and a+1 probes needed by the naive and
MRU approaches, respectively7. The rest of the figures in this
paper will concentrate on read—in hits for that reason. One should
keep in mind, however. that the fignrres will be biased in favor of
the MRU and naive approaches, when compared to the partial
approach.

Figure 5 looks more closely at the MRU scheme. It examines
the performance impact of shortening the MRU list to less than the
total number of entries in a set. An associative lockup with a shor-
tened MRU list proceeds by first searching the entries in the list in
order and then searching the rest of the set in an arbitrary order.
The examination shows that it is not necessary to retain the entire
MRU list to achieve close to the performance of the entire list. It
also shows that the length of the shortened MRU list must increase
linearly with associativity to achieve near the performance of a full
MRU list. For instance, a reduced MRU list of two entries per—
forms well for an associativity of 8, whereas, a reduced list of 4
entries is needed to produce comparable performance with an asso—
ciativity of 16.

The right graph in figure 5 plots the values of f,- for various
associativities in the level two cache. Lower associativities result

in a higher probability that a hit is to the first entry of the MRU list.
For instance, the probability is 75%, 60%, and 36% for 4, 8, and
l6-way associativities, respectively, in the right graph of Figure 5.
It was found in [8088] that the probability that a hit is to the first
element in the MRU list of a 4—way set-associative level one cache
is above 90% for cache sizes greater than 32 Kbytes (block size =
128 bytes). We have not seen this percentage reach 90% for the
level two cache in any of our cache configurations. The closest
was 89% with the 4K-16 level one cache and the 256K-64 4—way
set-associative level two cache.

It was previously noted that the linear relationship between
the average number ofprobes per cache access and the associativity

7 Note that the local miss ratio of large level two caches is not vanishingly small,especially with a large level one cache [Przy88b].
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of the level two cache was unexpected when using the MRU
scheme. This relationship can be explained, with some approxima-
tions, by examining the right graph of Figure 5. If the lines in the
right graph were straight lines. there would be an exponential
(more precisely, geometric) relationship between the probability of
a hit and the MRU distance. If this were the case and the slope of
these lines (ignoring the log scale of the vertical axis and consider-
ing it a linear scale) is proportional to -l/a , then, (with some
approximations) we can say that there will be a linear relationship
between probes and associativity. Since both the conditions are
roughly true, it can explain the linearity.

Figure 6 examines the partial compare approach in more
detail. It shows that wider tags improve the performance of the
partial scheme on read-in hits. The larger tag size allows for a
reduced number of subsets in the 8 and 16—way set-associative
caches and an increase in the partial compare width for the 4-way
set-associative cache. Tag widths may be larger because the sys—
tern supports a large virtual address space or may be artificially
increased for better performance. Note that the number of probes
required by the naive and MRU schemes do not change as the tag
width is changed.

Figure 6 compares the performance of the partial scheme to
the predictions of the theory of Section 2. It shows that the simple
transformation outlined in Section 2 in which the low order k bits
are exclusive-ored with each of the higher order bits performs
worse than the prediction of theory (particularly with 32 bit tags).
This is not surprising since the theory is a probabilistic lower
bound. We considered other transformations which exclusive-or a

bit with a subset of the other bits of the tag. This transformation
may be required to be efficiently invertible. If we restrict the bits
that are exclusive-cred to be from less significant fields, the result—
ing transformation produces unique and invertible tagsg. The
improved transformation passes the least significant k-bit field
unchanged, exclusive-ms the second least significant field with the

8 Taking “exclusive-or" as addition and “and" as multiplication, the set (0.1)forms a finite field, denoted by GF(2). Our hash function is a linear transforma-
tion '1‘ from GF(2)‘ to itself, given by a lower-triangular matrix with l's on the di—
agonal. It can be shown using Gaussian elimination that T is invertible. and its
inverse is lower-uiangular as well. See [Pete72] for an introduction to finite
fields and linear transformations.
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Figure 4. Probes for Read-In Hits and Misses.

This figure separates the performance of the Naive, Partial. and MRU algorithms for read-in hits (on the left) and misses. For hits, the Partial
and MRU algorithms performwell, wrth Naive considerably worse. On misses, the Partial algorithm is superior, followed by the Naive and
MRU algorithms. Both the Naive and MRU algorithms cycle through the entire set on a miss, with MRU charged an extra probe for the look-
up of the ordered list.
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Figure 5. Reduced MRU Lists and Distance Distribution.

This figure demonstrates the performance of the MRU scheme on read-in hits in more detail. The left graph compares the performance of re-
duced MRU lists. The right graph shows the MRU distance distributions for hits.
  

first, and exclusive-ors all other fields with both the first and the
second fields. The new transfomration can be implemented with
one two-input exclusive-or gate per higher order bit, the same
number required for the original transformation. Unfortunately, the
new transformation is not its own inverse, but, the inverse also
requires the same number of exclusive-or gates. The left graph of
Figure 6 shows that the new transformation results in better perfor-
mance, particularly for 32-bit tags. This indicates that the transfor-
mation should be carefully chosen. We also investigated a
transformation in which the bits of the tag are swapped so that the
low order bits of the incoming tag are always compared with the
low order bits of the stored tag. Its performance was good, near the
theory lines in Figure 6, but it is more expensive to implement.
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4. Conclusions

We have described and analyzed three methods for imple-
menting set-associative caches which retain many of the implemen-
tation advantages of direct-mapped caches while providing the
reduced miss ratio of associative cache lookups. These implemen-
tations are less expensive than the traditional approach since they
eliminate comparators and obviate the need to access cache tags
and data within the same set in parallel. Our trace—driven analysis
of these schemes for use in level two caches was done using vari-
ous level one and level two cache configurations. This allowed us
to examine the trends of the various schemes as the cache parame-
ters were varied. This is important since the traces were inadequate
to simulate the multi-megabyte level two caches we expect will be
useful in future systems.

The three low cost schemes explained in this paper are the
naive, MRU. and partial compare implementations of set-
associativity. The naive scheme uses a linear scan over all the
stored tags in a set during a cache lockup. The MRU list scheme
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Figure 6. Partial Algorithm With Larger Tags and Different Transformation.

This figure analyzes the performance of the partial scheme on read-in hits in more detail. The left graph compares its performance versus the
prediction of theory outlined in Section 2 for 16-bit (dashed lines) and 32—bit tags (solid lines). There are four lines for each tag width: the
top line is the results when using no transform (None), the next lower line is the simple transformation of Section 2 (XOR), the next lower
line the more sophisticated transformation outlined in Section 3 (XORZ), and the bottom line is the prediction of the theory, a probabilistic
lower bound (Lower).

The right graph compares the performance of the partial scheme using the more sophisticated transformation versus the MRU scheme for 16
and 32 bit tags.
 

retains an ordered list per set to search the stored tags in an “intel-
ligent” order. The partial compare scheme looks once at small
pieces of many of the stored tags of a set. It then decides whether
it should do full tag comparisons on the tags depending on the out-
come of the partial comparison. Naive and partial lockups require
the same memory and comparison logic as a direct-mapped cache,
only extra control logic is needed for associativity. The MRU
scheme may require the extra memory to hold the ordered search
list as well as extra hardware to maintain it, although the same
hardware is likely needed to implement an LRU cache replacement
policy.

The average number of probes (tag memory reads and com-
pares) per cache lockup was measured. As expected, the naive
scheme performed poorly as compared to the MRU and partial
compare schemes for associativities of 4 and above. Both the
MRU and partial compare schemes perform well on cache hits,
with perhaps a slight advantage to MRU. The partial compare
scheme achieves superior performance on cache misses since it
does not require a probe to examine each and every tag in the set.

Over the widest range of cache configurations considered, the
partial compare algorithm required the least number of probes per
cache access. However. the partial compare scheme is not the best
scheme for all cases. The MRU scheme is better when the local
miss ratio of the level two cache is small. This is true when the
ratio of level two to level one block sizes is large (4 or more) and
when the ratio of level one to level two cache sizes is large (64 or
more). The partial compare scheme is better when the tag width isincreased and when the local miss ratio of the level two cache is
increased. The local miss ratio of the level two cache increases
when the above cache and blocksize ratios decrease.

This study does not show either the MRU or partial compare
schemes to be the superior low cost implementation of associativity
for future level two caches. The optimum scheme depends on all-
the factors above, in particular: the cache size ratio, block size
ratio, and the tag width. Since we expect tag widths to be larger
than the 16 bits used in most of our study, we favor the partial
compare scheme. However, it may be true that the level two to
level one cache size ratio will be larger in the future than our simu-
lation, in which case the MRU scheme is more favorable.
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We feel that low cost implementations of associativity are
useful, particularly for level two caches. The slower access times
of the associativity implementations outlined in this paper are less
important in level two caches since the processor sees the latency
of the level two cache only on a level one cache miss. The lower
cost and board area minimization of the approaches presented in
this paper may prove to be more important than speed since we
expect future level two caches to be large (megabytes). Some
recently proposed multiprocessors [Wils87] [Good88] promise to
require many large caches. In this environment, cost can be an
extremely important consideration.
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Table 4. Data for Various Cache Configurations.

These tables show the number of probes for the different schemes in varying cache configurations, as well as the miss ratios for the
configurations. The numbers of probes are shown for hits and totals (hits and misses together). Misses are not shown for the MRU and
Naive schemes since they require associativity+1 and associativity probes, respectively. The bold entries indicate the best method for hits,
misses, and in total for the given configurations. The entries with asterisks indicate the best method in total. Write-backs from the level one
cache are assumed to require no probes due to the write-back optimization. yet they are counted as a hit and included in the averages. The
fraction of write-backs is the fraction of requests from the level one cache which are write-backs.
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