DEC-TR-593

A Comparison of
Hashing Schemes for Address Lookup

in Computer Networks

Raj Jain

Digital Equipment Corporation
550 King St. (LKG1-2/A19)
Littleton, MA 01460

Network Address: Jain%Erlang. DEC@DECWRL.DEC.COM

February 1989
This report has been released for external distribution.
Copyright (©1989 Digital Equipment Corporation. All rights Reserved

UNIFIED 1022

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

A Comparison of Hashing Schemes for Address Lookup in Computer
Networks

Raj Jain
Distributed Systems Architecture & Performance
Digital Equipment Corp.
550 King St. (LKG 1-2/A19)
Littleton, MA 01460
ARPAnet: Jain%Erlang. DEC@DECWRL.DEC.COM

DEC-TR-593
Copyright©1989, Digital Equipment Corporation. All rights reserved.
Version: April 12, 1989

Abstract

The trend toward networks becoming larger and faster, and addresses increasing in size, has impelled a need to
explore alternatives for fast address recognition. Hashing is one such alternative which can help minimize the
address search time in adapters, bridges, routers, gateways, and name servers.

Using a trace of address references, we compared the efficiency of several different hashing functions and found
that the cyclic redundancy checking (CRC) polynomials provide excellent hashing functions. For software imple-
mentation, Fletcher checksum provides a good hashing function. Straightforward folding of address octets using
the exclusive-or operation is also a good hashing function. For some applications, bit extraction from the address
can be used. Guidelines are provided for determining the size of hash mask required to achieve a specified level

of performance.

1 INTRODUCTION

The trend toward networks becoming larger and
faster, addresses becoming larger, has impelled a need
to explore alternatives for fast address recognition.
DECnet Phase IV currently allows upto 64,000 nodes
and DEC’s internal network called EasyNet [21] al-
ready has more than 30,000 nodes. Such large net-
works obviously need more efficient address lookups.
The size of the addresses themselves is also grow-
ing. HDLC, a commonly used datalink protocol stan-
dard, was designed with 8-bit addresses. All IEEE
802 LAN protocols and Ethernets support 48-bit ad-
dresses while the ISO/OSI network layer requires 160-
bit (20 octets) addresses. This increased length of the
search key has also necessitated a need to find efficient
ways to look up addresses. Finally, because networks
are becoming faster, network routers, which previ-
ously handled a few hundred packets per second are
now expected to handle 8000 to 16,000 packets per
second. This fast handling requires squeezing every
cycle out of the frame forwarding code.

The organization of this paper is as follows. In the

DOCKET

_ ARM

next section, we describe a number of problems in
networking design that require searching through a
large database. In Section 3, we discuss a number
of possible solutions including caching and hashing.
In a companion paper [13], we compared the perfor-
mance of various cache replacement algorithms. One
of the unexpected results of this analysis was that in
some cases, caching could be harmful in the sense that
the performance would be better without caching.
We, therefore, tried hashing as a possible solution
to the problem of fast searching through the address
database. After a brief introduction to hashing con-
cepts, we develop a metric to compare various hash-
ing functions. We then use the trace data to compare
several different hashing functions.

2 A General Problem

One of the performance problems encountered repeat-
edly in computer systems design is that of search-
ing through a large information base. Simply stated,
the problem is that of finding the information asso-
ciated with a given key. High performance access to

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

information is particularly interesting if the number
of keys is large or if the time to access the main infor-
mation base is long as is the case if the information
is located remotely. Some of the areas in the design
and implementation of computer networks where this
problem is encountered are as follows:

Datalink adapters on local area networks (LAN) need
to recognize the destination addresses of frames on
the LAN. Most adapters have only one physical ad-
dress, which can be easily recognized. However, each
station also accepts a number of multicast addresses
and the adapter must quickly decide whether to re-
ceive a multicast frame. In some token ring networks,
e.g., Fiber Distributed Data Interface (FDDI) [6,22],
stations need to set an address recognized flag in the
frame. For the smallest size frames this means that
the address has to be recognized within 13 octets
(1.04 ws). This puts an upper bound on the time
within which end stations have to recognize the mul-
ticast addresses they want to listen to.

Bridges, used to interconnect two or more LANSs, have
to recognize the destination addresses of every frame
and decide quickly whether to receive the frame for
forwarding. In order to learn the relative locations
of stations, transparent learning bridges [7] need to
recognize source addresses also.

Routers in wide area networks (WAN) have to look
through a large forwarding database to decide the
output link for a given destination address.

Several high-speed networks simplify the problem of
address lookup by using a hierarchical address for-
mat that allows the forwarding path to be looked up
directly. Although it does make the routing fast, asso-
ciation of a destination’s unique identifier (generally a
48-bit physical address) to its hierarchical address at
the originating station still requires searching through
a large address database.

Name servers have the ultimate responsibility for as-
sociating names to characteristics. Among all the
applications listed here, name servers probably have
the largest information base and the problem is most
acute.

In all of the above applications, time to search
through a large information base has a significant
impact on the overall performance and an analysis
similar to that presented here would be helpful in im-
proving the performance.

DOCKET

_ ARM

3 Possible Solutions

The time to access information is a function of several
parameters, including the following:

1. Size of the information base
2. Usage pattern

3. Key structure

4. Storage structure

5. Storage location

6. Access method

To make the access more efficient we need to consider
changing each one of the above six parameters. The
first parameter, the size of the information base, is
really not under the control of the system designers.
In the future, the size is only going to grow and make
the problem worse. We, the system designers, have
only indirect control, if any, over the second param-
eter, the usage pattern. By rewarding certain usage
patterns, for example, by providing a faster response
to these patterns, we can encourage users to follow
certain patterns. The key to efficient access lies in
the remaining four parameters.

By properly organizing key structures, e.g., with hier-
archical addresses, we can partition the information
base into manageable chunks. Most large networks
have several levels of hierarchy. DECnet Phase IV,
for example, has two levels of hierarchy. The network
consists of several areas each with up to 1024 end
stations.

The second way to solve the problem is to organize
the storage into several levels of hierarchy. For exam-
ple, most frequently used addresses could be kept in
a cache. Addresses not found in the cache would be
looked up in the full database. This is a two-level hi-
erarchy. An obvious extension is an n-level hierarchi-
cal storage structure in which addresses not found in
tth level are then looked up in (3+1)th level. Caching
is particularly helpful if the reference pattern has a
locality property [11].

In some cases, the problem is solved by locating dif-
ferent levels of the storage hierarchy at successively
more remote locations. For example, the clients of a
name server could keep a local copy of the frequently
used names. This is also called caching. In this case,
the difference between access time to local copy and

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

remote database is so different that caching can be
justified even if there is very little locality in the us-
age pattern.

Finally, the time to access can be reduced by devising
efficient search strategies. Various searching meth-
ods, such as tree and trie search strategies, have been
developed to efficiently find a key in a table of keys
[25]. One method, which we analyze in this paper,
is hashing. If properly designed, a hashing algorithm
can allow a very large information base to be searched
in constant time. In fact, hashing is already being
used in an existing LAN adapter to recognize multi-
cast addresses.

4 Measured Environment

In order to compare various hashing strategies, we
used a trace of destination addresses observed on
an extended local area network in use at Digital’s
King Street, Littleton facility. The network consists
of several Ethernet LANSs interconnected via bridges.
The network is a part of Digital’s company-wide net-
work called EasyNet [21], which has more than 30,000
nodes. The building itself has approximately 1200
stations on several Ethernet LANs interconnected via
approximately 80 bridges. A number of routers con-
nect the extended LAN to the rest of the Easynet.
There are 30 Level 1 routers and 6 Level 2 routers
in the building. A promiscuous monitor attached to
one of the Ethernet LANs produced a time-stamped
reference string of 2.046 million frames observed over
a period of 1.09 hours. A total of 495 distinct sta-
tion addresses were observed in the trace, of which
296 were seen in the destination field. Due to bridge
filtering, only those frames whose desinations have a
short path through the monitored segment are seen
on the segment.

There are several advantages and disadvantages to
using a trace. A trace is more credible than refer-
ences generated randomly using a distribution. On
the other hand, traces taken on one system may not
be representative of the workload on another system.
We hope that others will find the methodology pre-
sented here useful and will apply it to traces taken in
environments relevant to their applications.

DOCKET

_ ARM

A n1
1

1
2
/ ’—{ Ty
/ i |
h(Addr)
_a s
Hash cells Subtables

Figure 1: Hashing concepts.

5 Hashing: Concepts

Webster’s dictionary defines the word ‘hash’ as a verb
“to chop (as meat and potatoes) into small pieces”
[31]. Strange as it may sound, this is correct. Basi-
cally, hashing allows us to chop up a big table into
several small subtables so that we can quickly find the
information once we have determined the subtable to
search for. This determination is made using a math-
ematical function, which maps the given key to hash
cell 7, as shown in Figure 1. The cell ¢ could then
point us to the subtable. We will use n; to denote the
size of the :th subtable and M to denote the number
of hash cells. Ideally, one would like to use a hashing
function so that each subtable has only one entry so
that no further searching or subtables are required.
For most hashing functions, the size of subtables n;
decreases as the size of the hash table M increases.
For an very large number of hash cells, one is almost
guaranteed to be able to find the desired key without
further search.

For finite hash tables, two or more keys may map to
the same hash table location leading to a collision.
Most of the hashing literature is about what to do
after a collision. If the hash table size is larger then
or equal to the total number of keys, one does not
need subtables and use the hash table itself to store
the keys and other information. Several techniques,
such as linear probing and double hashing, have been
devised to resolve the collisions in as few attempts
as possible. Dynamic hashing schemes allow the ta-
ble size to increase dynamically as the number of en-
tries grows [4,16]. Perfect hashing schemes also ex-
ist, which cause no collisions [3,30]. Minimal perfect
hashing functions not only avoid collisions, but also

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

leave no empty space in the hash table [1,2,10,23].
For surveys of various hashing schemes and issues see
[14,15,17,18,19,20,25,27].

If the hash table size is less than the total number
of keys, collisions are unavoidable. We would like
the hashing function to be such that the addresses
which are looked up more often are in smaller subta-
bles. It is desirable to minimize the average number
of lookups required for the trace. To compute this,
we define the following symbols:

R = Number of frames in the trace
N = Number of distinct addresses in the trace
M = Number of hash cells
= Number of subtables
n; = Number of addresses that hash to ith cell
dini =N
r; = Number of frames that hash to zth cell
d.imi =R
p; = Fraction of addresses that hash to ith cell
g = F]Yraction of frames that hash to #th cell

— Ti

= ®
If we perform a regular binary search through all N
addresses, we need to perform 1+log,(N) orlog,(2N)
lookups per frame. Given an address that hashes to
ith cell, we have to search through a subtable of n;
entries. Using a binary search, we would need only
log,(2n;) lookups. The total number of lookups is:

Number of lookups for the trace = Z ri(log,(2n;))

%

1
Number of lookups per frame = 7 Z ri(log,(2n;))

Compared to log,(2N) lookups per frame, the net
saving due to hashing is:

Lookups saved per frame

= (logy(2)) — 3 (logy(2n:))
=X 7 log, (%)
=D —giloga(pi) (1)

Here, g; and p; are probabilities such that >~.¢; =1
and >, p; = 1. The goal of a hashing function is to
maximize the quantity) —g;log,(p;). Notice that
p; and g; are not related. In the special case of all
addresses being equally likely to be referenced, g¢; is

DOCKET

_ ARM

Table 1: Computing Information in the Last Two
Bits

Bits F#of #Hof g pi —gilogypi
Frames Addr.

00 1252479 239 0.61 0.48 0.65

01 219989 71 0.11 0.14 0.31

10 148725 55 0.07 0.11 0.22

11 424807 130 0.21 0.26 0.41

E 2046000 496 1.00 1.00 1.59

equal to p; and the expression Y —p;log,(p;) would
be called the entropy of the hashing function. It is
because of this similarity that we will call the quantity
>~ —qilog,(pi) the entropy or information content
of the hashing function. It is measured in units of
‘bits.” We illustrate its computation using a simple
example.

Hashing is usually performed in two steps. In the
first step, an address A is converted to a hash value
f(A4). In the second step, some m bits of f(A) are
extracted so that the total number of hash cells is 2™.
For example, one could take the last m bits of f(A):

h(4) = Mod{f(4),2"}

Here, f(A) is usually a complex operation. In the
simplest case, we could have f(4) = A and take
the last two bits, for instance, of the address as our
hashing function. This will break the address table
into four subtables. The number of address entries in
these four subtables and the corresponding number of
frames refering to these subtables using our measured
trace are shown in Table 1. The ratio of the number
of frames that refer a subtable and the total number
of frames gives the probability g;. Similarly, the ratio
of the number of addresses in a subtable to the total
number of addresses gives the probability p;. The in-
formation entropy for each subtable is then computed
and added to give the total entropy for this hashing
function. For our trace, we found that the last two
bits of the address have an entropy of 1.59 bits. In
other words, if we use the last two bits of the address
to decide which subtable to search, we would save
1.59 lookups per frame.

We do not have to limit ourselves to the last two
bits. We could use any two consecutive bits 7 and
i+ 1. The resulting information as a function of ¢ is
shown in Figure 2. Here, the most significant bit of
the address is denoted as the Oth bit, and the least

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

