
On Systems Integration:
Tuning the Performance of a Commercial TCP Implementation

D. Leon Guerrero
Network Solutions Inc.

Herndon, Virginia

Abstract
We desm'be common TCP implementation pitfalls

and provide novel solutions to solving these
deficiencies. Ihe peformance enhancements described
herein are implemented in Network Solutions' OPEN-
Link TCP product. & results demonstrate signifcant
peformance improvements over the prior release. Ihe
techniques h c r i b e d improve overall network
peformance, while in some instances, also reduce CPU
demands. m e majority of the improvements are
incorporated into the TCP Window Management.
Although our study is focused specijkally on the TCP
protocol, the lessons learned are well suited to other
network protocols.

1.0 Introduction
One of the more commonly deployed network

protocol is the Transmission Control Protocol (TCP),
Internet Protocol (IP). Although the protocol
specification for TCP is publicly available,
incompatibilities between implementations still exist.
Some of these compatibility problems are immediately
noticeable, as error messages may be printed or the
system may become non-functional. However, more
subtle incompatibilities may also result in poor network
performance.

Our experimental study describes common TCP
implementation pitfalls and provides solutions to
solving these deficiencies. The TCP enhancements
described herein are implemented in Network Solutions'
OPEN-LinkTM TCP product. The results demonstrate
significant performance improvements over the prior
release. In certain areas, the performance improved by
600 9%. Section 2.1 provides detailed comparisons
between OPEN-Link and other vendor implementations.
The comparisons include our original implementation as
well as the enhanced high performance version.

*This work was partially funded by a grant from the
National Science Foundation under Grant Number

'OPEN-Link is a trademark of Network Solutions Inc.
CCR-9 109804

Ophir Frieder'
Dept. of Computer Science
George Mason University

Fairfax, Virginia

The early TCP implementations were designed to
operate over the ARPAnet[l4]. By its very nature, the
ARPAnet is a low-speed, highdelay, wide area
network. ARPAnet's limited network bandwidth
disguised some performance pitfalls of TCP
implementations. In today's demanding high speed
Local Area Networks (LAN) however, TCP must
operate in environments that require connectivity
between desk-top computer upwards to supercomputers.

Many TCP implementations solve this problem by
providing configurational parameters that may be
manually adjusted to fine tune performance.
Configurational parameters alone are not adequate; they
only work well for limited number of instances.
Instead, adjustments and adaptation to real-time scenario
requires intelligent, dynamic calculations. To be
effective, these dynamic calculations must be performed
with minimal latency and without the expense of
significant CPU overhead.

We describe techniques to improve overall network
performance, while in some instances, also reduce CPU
demands. The majority of the improvements are
incorporated into the TCP Window Management.
Additionally, we describe checksumming algorithms as
well as header prediction techniques. Although our
study is focused specifically on the TCP protocol, the
lessons learned are well suited to other network
protocols.

2.0 Common Pitfalls
Measurements examining interpacket latency and

byte throughput rate are crucial to the evaluation of
TCP performance. The interpacket delay introduced by
the protocol layers provide needed information to reveal
where the bottlenecks occur. To acquire performance
measurements, we used an EX-50OOTM2 LAN analyzer.
The EX-5000 provides time stamped packet traces
necessary to analyze acknowledgement delays and
interpacket latency.

To isolate the problem areas, we conducted a series
of tests to measure the throughput rate at various

2EX-5000 is a trademark of Novel1 Inc.

509 0-8186-269'7492 $03.00 Q 1992IEEE

7- ___ ~~~~ 7-

INTEL EX. 1241.001f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

network layers. We examined three distinct layers: the
ethernet layer, (includes the operating system
overhead), the IP layer (connectionless) and the TCP
layer (connection oriented with flow control). The tests
are designed to continuously send datagrams at each
protocol layer. The datagram size, initially set to 64
bytes (minimum ethernet frame size) is increased 10
bytes after each test suite until the datagram size reached
1512 bytes (maximum ethemet frame size). The
purpose for this exercise is twofold; to determine the
optimum packet size and to identify the protocol layer
where bottlenecks may occur. Figure1 and Figure-2
show the graphs of the packet and byte throughput
rates, respectively, when varying the packet size.

pkt.Rec v. Pkl size
- e t h a r n e t
- l P L a y a r

I 1 5 0

s 1 0 0

e 10

C O
32 64 1 2 1 2 6 1 5 1 2 1 0 2 4 1 2 1 0

Packet Byte Size

Figure- 1 Packet Throughput Rate At Protocol Layers

K
b
Y
t
e

I
S
e

S

C

KBytesW vs Pkl Size

- l P L.Y.1

52 5 4 lam ass s i 2 i o 2 1 1 2 1 0

I Packet Byte Size I
1 I

Figure-2 Kbyte Throughput Rate At Protocol Layers

By examining the graphs in Figure-1 and Figure-2, it
appears that the TCP and IP layers introduce significant
performance degradation. In Figure-1, the TCP and IP
C U N ~ S remain relatively flat, compared to the Ethernet
curve which depicts a direct correlation between packet
size, packet rate, and byte rate. This observation
implies that regardless of the packet size, our TCP
implementation requires the same amount of processing
time. Intuitively, the packet size must affect the packet
throughput rate since operations such as checksumming,
buffer moves and CRC calculation must operate on
larger buffers. Close observation of the Ethernet curve
in Figure-1 validates this assumption.

In our implementation, the ethernet Network
Interface Module (NIM), TCP, and IP, are three
separate processes communicating via interprocess
communication (IPC). Suspecting the operating system
overhead to be the limiting factor, we devised a

modification which combined the NIM, TCP, and IP
into one process. The results of these modifications are
shown in Figure-3 and Figured.

In Figure-3 and Figured, the IP curve shows
improved throughput rates which coincides with the
Ethernet curve. However, the TCP curve showing a
performance increase, remains relatively flat compared
to the Ethemet and IP curves.

$1 0 4 1 1 8 ¶SO S 1 1 1 0 1 4 1 1 0 0

Packet Byte Size

Figure-3 Packet Rate after IPC Enhancement

KElytes/Sec vs Pkt Size

- l P L a y 8 r

' 50
S
e o

5 2 1 4 1 2 1 2 5 5 5 1 2 1 0 2 4 1 2 1 0

Packet Byte Size

Figure-4 Kbyte Rate after IPC Enhancement

By examining the EX-5000 traces closely, several
problems were diagnosed. The first occurred when
communicating with a UNIX workstation. Independent
of the datagram sizes, TCP eventually transmits only
small datagrams (32-128 data bytes) resulting in the
UNIX acknowledgements behaving erratically.

As Clark[l] points out, many TCP implementors
blame excessive processing overhead associated with
TCP for poor network performance. Like many
protocol implementors, we followed the TCP
specifications verbatim. Our study confirms the claim
and concludes that the performance degradation is often
attributed to the poor protocol implementation instead
of the protocol overhead processing or protocol
architecture. Pitfalls in many TCP software reside in
the acknowledgement processing. Some of these pitfalls
include sending multiple acknowledgement packets that
can be similarly accomplished by delaying the
acknowledgement, compacting the information, and
then sending one acknowledgement packet.

TCP has a subtle trap attributed to its nature of being
a byte sequence archtecture. A phenomenon known as
the Silly Window Syndrome (SWS) [2] can result in
poor performance in many TCP implementations. The

510

INTEL EX. 1241.002f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

SWS phenomenon occurs between two dissimilar flow
control implementations causing data transmission to
thrash much like disk I/O on a badly fragmented disk.
This occurrence results in data being badly fragmented
and inefficiently transmitted in small packet sizes.

Slate ~ y p e NO.' NO ten Slate
ESTABLISHD --> DATA 101 901 5 5 ESTABLIMIED
ESIABLISHO <-- ACK 901 106 0 0 ESTABLISHED

2.1 Performance comparisons
Comparisons of other vendor products as well as our

implementation and the e n h a n d high performance
version are presented in Table-1. Table-2 lists the
platforms which were used for these benchmarks.

2.5 MByte file transferred in binary mode. Measurements
are KBytes/Second.

Table- 1 Performance Benchmarks

I TCP/IP I PIATFORM I MAIN I Operating I MIPS I ETHER NET^

Million Instructions per Second base on manufacturer
specification, unless otherwise denoted.

* Denotes Compute Index using Norton Utilities

Table-2 Platform Specifications

3.0 TCP flow control
TCP has been well studied both in practice and in the

literature. For brevity, we forgo a detailed description
of TCP, referring the reader to the two volume series by
Comer[2] and RFC 793 and 1122. This study extends
the study by Clark[l3] by introducing techniques that
optimize frame-fill and avoid unnecessary
fragmentation. To better understand our efforts, a very
brief description of TCP is provided.

TCP provides a connection oriented transport
service. Data delivery is guaranteed in a byte sequenced
order. TCP implements the positive acknowledgement
technique using acknowledgement and sequence
numbers to synchronize datagram delivery. Similarly,

the sliding window technique is used to manage the data
flow control.

TCP flow control implements the sliding window
technique. During the connection setup, each endpoint
advertises its maximum receive window. The receive
window restricts the number of unacknowledged bytes
that may be in transit at any given time. The TCP
sequence numbers and acknowledgement numbers are
used to manage the byte order and flow control. The
acknowledgment number indicates the last data byte
received by the sender of the packet. Similarly, the
sequence number indicates the sequence in the data
stream of the first byte in the packet. Figure-5
illustrates an example of data transmission.

Transmlled M a e Stream
-1 6 7 8 9 10 11 12 13 14 15

)hA&kO <-- ACK 901 106 0 5 ESTABLISH4
Figure-5 Acknowledgement Strategy & Flow Control

Figure-5 shows that the constraint which throttles the
flow of data is the receive window (advertised as 5
bytes). The sender (TCP client) sends 5 bytes of data
and fills the entire receive window. The receiver (TCP
server) then replies with an acknowledgement that it has
received 5 data bytes along with an updated receive
window. The TCP receiver's buffer is full as this is
reflected in the receive window becoming zero.

To form the acknowledgement number the receiver
adds the data length to the sequence number. Since the
data are still in the server's TCP receive buffer, the
server replies with a zero receive window to indicate
that its receive window is full and that it is unable to
receive additional data momentarily.

At some later time, after the TCP receiver delivers
the data to the recipient, (an application program such
as file transfer), the TCP receiver sends an updated
window to the TCP sender. In this example, data are
being transmitted only in one direction (client to
server). Therefore, the server's sequence number,
(which is the counterpart of the client's
acknowledgment number), remains unchanged.

When the TCP receiver finally delivers the data to
the application, the TCP receive buffer becomes
available to receive additional data. Upon receiving the
window update, the sender's window then slides based
on the acknowledgement number and receive window.
Figure-6 illustrates the sliding window concept.

In Figure-6, the sender's send window advances
from bytes 1-5 to bytes 6-10. For simplicity of our
discussion, a receive window of 5 bytes is selected.

5 1 I

INTEL EX. 1241.003f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Realistically the receive window must be sufficiently
large to accommodate multiple packets to allow a
continuous transmission. For example, if ethernet is
used, (maximum frame size 1512 bytes), and it takes 4
packets to provide a continuous transmission stream
then the receive window would be 6048 bytes.

Transmilled M a Byle Stream:
1 2 3 4 5 1 6 7 8 9 1 4 1 1 12 13 14 15

ESTABLISHED <-- ACK
ESTABLISHED <-- ACK 901 111

Figure-6 TCP Sliding Window Concept

We revisit the TCP acknowledgment strategy in
section 5 and describe approaches to reducing CPU
overhead by implementing efficient algorithms.

4.0 Round trip time (RTT) calculations
The design of proper strategies for computing Round

Trip Time (RTT) calculations is a highly debated topic.
The basic concept behind RTT is to calculate the
amount of time it takes a packet to be transmitted and
acknowledged. While many studies have been
published on RTT, most conclude that an efficient RTT
approximation is one that provides the calculation
within the specified amount of time and with an
accuracy needed for the particular application[8,9].

Our requirements mandate an RTT computation of at
least every 16ms and must provide an accuracy within
30ms. These requirements were derived by carefully
examining the performance of the SPARC-lm3
workstation using an EX-5000 analyzer. The EX-5000
analyzer provides a timestamped packet trace with an
accuracy of 500 microseconds. The EX-5000 traces
show two important facts. First, data packets are
transmitted at a burst rate, (restricted by the TCP
receive window size), with an interpacket spacing less
than 500 microseconds, (EX-5000 timestamp
limitation). It can be assumed that the interpacket
spacing is not less than 9.6 microseconds[4]. Second,
the acknowledgement turnaround occurred within 16ms
after the end of the packet burst, (hence 16ms compute
time). Given these known parameters, we then derived
the accuracy requirements of 30ms, (actually 32ms, but
system clock limitations restrict us to 30ms), which is
influenced by two samples. At this high frequency,
RTT computation must use minimal CPU resources.

RTT provides the cornerstone upon which our
acknowledgement strategy and back-off algorithms are
based. We maintain two variables associated with RTT.

3SPARC is a trademark of Sun Microsystems Inc.

A rough estimate on a per-packet basis is referred to as
simply RTT. A second variable, Smoothed Round Trip
Time (SRTT) is maintained using a Decay Smoothing
Algorithm[l3]. SRTT computation is necessary to
compensate for latency abnormalities associated with the
chaotic network behavior. SRTT provides a safety
feature by restricting the fluctuation within a
predetermined range.

Our SRTT approximation is a modification of
Kam's[9] approximation. It is our experience that using
integer, instead of floating point, arithmetic, allows
faster computation and less CPU overhead. Although
floating point arithmetic yields more accurate results,
given our limited precision requirement, the CPU
overhead does not justify its use.

The RTT and SRTT computations used in our
implementation are shown in Figure-7.

RTT = Ack-Time - Dispatch-Time
SRTT= (RTT/Delta-W) t (SRn*(Delta-W- 1)/Delta-W)

Figure-7 Round Trip Time Computations

RTT is a rough approximation. Ack-Time is the
timestamp taken when the TCP sender receives the
acknowledgement, and Dispatch-Time is the timestamp
when the TCP sender queued the datagram onto a device
independent interface. Our implementation provides a
hardware independent interface. RTT includes the
operating system overhead.

SRTT is a weighted average of the previous SRTT
and the latest RTT. The weight factor Delta-W
determines variance for the approximation. "Choosing
a large Delta-W makes the weighted average immune to
changes that last for a short time (e.g., single segment
that encounters a long delay). Choosing small Delta-W
makes the weighted average respond to changes in delay
very quickly. "[2, Page-1451

Our goal in computing SRTT is to restrict the
fluctuation to within the 25% range. This value was
selected because the amount of buffer space allocated
per-connection is set to 4096 bytes, (memory constraints
to support 32 simultaneous sessions). This yields 3-4
packets per burst. Assuming that the receiving TCP can
accommodate the burst, the weight factor Delta-W must
then be 8. This yields a 12.5 percent variance on a per-
packet basis. It is necessary to acquire at least 2
samples to interpolate; using this axiom the 12.5%
computation then yields a 25 R variance.

All timestamp variables in our TCP implementation
are kept in milliseconds since midnight. One drawback
to this technique is that a special case for midnight roll
over must be taken into account. Since the operating
system timer service for this function is fast, we opted
to use this technique.

512

INTEL EX. 1241.004f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Given an estimation of SRTT that will guarantee our
approximation outlined, we present the enhanced
acknowledgment strategies to increase the overall
network performance.

5.0 Silly Window Syndrome (SWS)
Flow control is an essential requirement for any

network protocol. Regulating the flow of data ensures
high reliability and efficient data delivery when
implemented properly. When implemented poorly,
network performance severely degrades!

SWS occurrence causes poor TCP performance. The
SWS problem is often attributed to a sender transmitting
faster than the receiver can process the input data. SWS
is identified by noticing that the transmission consists of
mostly small packets when larger packets are supported.
The transmission often exhibits thrashing much like I/O
on a badly fragmented disk.

SWS causes the actual user data, (data from
applications such as file transfer), to be transmitted over
an excessive number of fragmented packets. Because
each packet requires protocol processing as well as
operating system overhead, occurrence of SWS results
in excessive overhead processing.

To properly describe fragmentation, we must clarify
our use of three terms: datagram, TCP segment, and
packet. The term datagram will imply the block of data
that the application program, e.g., file transfer, requests
to be transmitted. The termpacket will imply the actual
ethemet frame transmitted on the media and is recorded
by the LAN analyzer. The term TCP segment will
imply the data portion, (excludes TCP, IP, and Ethernet
headers), of a packet. In our context, fragmentation
does not imply the IP fragmentation as outlined in [1 11,
but instead, describes the relationship between a
datagram and packet. Specifically, datagrams may be
fragmented over two or more packets.

Figures 8-9 illustrate EX-5000 analyzer traces
recorded during a file transfer session. A 2.5 megabyte
image file was transferred in binary mode between
OPEN-Link, (old version before performance
enhancements), and a Unix workstation. The EX-5000
traces are presented to describe SWS, inefficient
acknowledgment, and excessive packet fragmentation.
To describe SWS using the EX-5000 traces in Figures
8-9, we categorize each packet as: data, ack or
ack+ winup packets.

Our premise, as in [l], is that bulk data transfers
such as file transfer is the area of performance interest.
Such applications often exhibit data transmitted only in
one direction. As a result, the acknowledgement
number and receive window remain unchanged in the
data packets. The relevant TCP parameters that affect

the data packet are sequence number, data length, and
send window size.

The sequence number in each data packet specifies
the data byte offset relative to the Initial Sequence
Number (ISN) for the first data byte in the data packet.
The ISN in our example is 99, therefore, in Figure-8,
data byte 1 in pkt-1 must be associated with sequence
number 100. As data are transmitted, the sequence
number maintains the accumulative data byte offset.
The sequence number for pkt-2 must then be 1552 as
shown in Figure-8. This is derived by adding the
sequence number of pkt-1 (100) and the data byte length
(1452 bytes) of pkt-1.

The maximum number of data bytes that may be
transmitted in each packet is restricted by the maximum
TCP segment size (1452 bytes) or the amount of send
window bytes available, the lesser of either. The send
window is derived by subtracting the amount of
unacknowledged data from TCP receiver's available
window. For example, in Figure-8, when pkt-1 was
transmitted, there were no unacknowledged data,
therefore the send window is 4096 bytes. Unlike pkt-1,
when pkt-2 was transmitted, pkt-1 remains
unacknowledged. Therefore, the send window for pkt-2
(2644 bytes) must reflect the unacknowledged data from
pkt-1 (1452 bytes).

I Pocket Packet Sea Ack Data Send Receive 1
No. Type NO,' NO ten window Window

1 DATA 100 --- 1452 4096 ---
2 DATA 1552 --- 1452 2644 ---
3 DATA (lraqmenl) 3004 - - - 1192 1192(full) - --
4 ocL///-Z) - - - 3004 0 --- //92
5 Kkfw/hUp(l-$ --- 3004 Q - - - 4096

Figure-8 EX-5000 SWS Data Packet Traces

As data are transmitted the send window decreases
until window updates are received. Pkt-3 (1 192 bytes)
in Figure-8 must be fragmented because there are only
1192 bytes available in the send window. After
transmitting pkt-3, the TCP sender must refrain from
sending more data since the receive window has reached
zero. This is denoted with the notation "@U" in the
"Send Window" column. Transmission of the
remaining 260 bytes must be postponed until the TCP
receiver returns a window update.

The acknowledgement and window update packets,
are denoted as ack and ack+winup, respectively, in
Figure-8. The relevant TCP parameters that affect the
ack and ack + winup packets are the acknowledgment
number and the receive window.

The acknowledgement number in the ack-pkts
specifies the last data byte received. The ack number is
derived by adding the data packet's sequence number
and the data byte length. The ack and ack+winup
packets also reflect the current available receive

513

INTEL EX. 1241.005f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

