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Abstract 
We desm'be common TCP implementation pitfalls 

and provide novel solutions to solving these 
deficiencies. Ihe peformance enhancements described 
herein are implemented in Network Solutions' OPEN- 
Link TCP product. & results demonstrate signifcant 
peformance improvements over the prior release. Ihe 
techniques h c r i b e d  improve overall network 
peformance, while in some instances, also reduce CPU 
demands. m e  majority of the improvements are 
incorporated into the TCP Window Management. 
Although our study is focused specijkally on the TCP 
protocol, the lessons learned are well suited to other 
network protocols. 

1.0 Introduction 
One of the more commonly deployed network 

protocol is the Transmission Control Protocol (TCP), 
Internet Protocol (IP). Although the protocol 
specification for TCP is publicly available, 
incompatibilities between implementations still exist. 
Some of these compatibility problems are immediately 
noticeable, as error messages may be printed or the 
system may become non-functional. However, more 
subtle incompatibilities may also result in poor network 
performance. 

Our experimental study describes common TCP 
implementation pitfalls and provides solutions to 
solving these deficiencies. The TCP enhancements 
described herein are implemented in Network Solutions' 
OPEN-LinkTM TCP product. The results demonstrate 
significant performance improvements over the prior 
release. In certain areas, the performance improved by 
600 9%. Section 2.1 provides detailed comparisons 
between OPEN-Link and other vendor implementations. 
The comparisons include our original implementation as 
well as the enhanced high performance version. 

*This work was partially funded by a grant from the 
National Science Foundation under Grant Number 

'OPEN-Link is a trademark of Network Solutions Inc. 
CCR-9 109804 

Ophir Frieder' 
Dept. of Computer Science 
George Mason University 

Fairfax, Virginia 

The early TCP implementations were designed to 
operate over the ARPAnet[l4]. By its very nature, the 
ARPAnet is a low-speed, highdelay, wide area 
network. ARPAnet's limited network bandwidth 
disguised some performance pitfalls of TCP 
implementations. In today's demanding high speed 
Local Area Networks (LAN) however, TCP must 
operate in environments that require connectivity 
between desk-top computer upwards to supercomputers. 

Many TCP implementations solve this problem by 
providing configurational parameters that may be 
manually adjusted to fine tune performance. 
Configurational parameters alone are not adequate; they 
only work well for limited number of instances. 
Instead, adjustments and adaptation to real-time scenario 
requires intelligent, dynamic calculations. To be 
effective, these dynamic calculations must be performed 
with minimal latency and without the expense of 
significant CPU overhead. 

We describe techniques to improve overall network 
performance, while in some instances, also reduce CPU 
demands. The majority of the improvements are 
incorporated into the TCP Window Management. 
Additionally, we describe checksumming algorithms as 
well as header prediction techniques. Although our 
study is focused specifically on the TCP protocol, the 
lessons learned are well suited to other network 
protocols. 

2.0 Common Pitfalls 
Measurements examining interpacket latency and 

byte throughput rate are crucial to the evaluation of 
TCP performance. The interpacket delay introduced by 
the protocol layers provide needed information to reveal 
where the bottlenecks occur. To acquire performance 
measurements, we used an EX-50OOTM2 LAN analyzer. 
The EX-5000 provides time stamped packet traces 
necessary to analyze acknowledgement delays and 
interpacket latency. 

To isolate the problem areas, we conducted a series 
of tests to measure the throughput rate at various 

2EX-5000 is a trademark of Novel1 Inc. 
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network layers. We examined three distinct layers: the 
ethernet layer, (includes the operating system 
overhead), the IP layer (connectionless) and the TCP 
layer (connection oriented with flow control). The tests 
are designed to continuously send datagrams at each 
protocol layer. The datagram size, initially set to 64 
bytes (minimum ethernet frame size) is increased 10 
bytes after each test suite until the datagram size reached 
1512 bytes (maximum ethemet frame size). The 
purpose for this exercise is twofold; to determine the 
optimum packet size and to identify the protocol layer 
where bottlenecks may occur. Figure1 and Figure-2 
show the graphs of the packet and byte throughput 
rates, respectively, when varying the packet size. 
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Figure- 1 Packet Throughput Rate At Protocol Layers 
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Figure-2 Kbyte Throughput Rate At Protocol Layers 

By examining the graphs in Figure-1 and Figure-2, it 
appears that the TCP and IP layers introduce significant 
performance degradation. In Figure-1, the TCP and IP 
C U N ~ S  remain relatively flat, compared to the Ethernet 
curve which depicts a direct correlation between packet 
size, packet rate, and byte rate. This observation 
implies that regardless of the packet size, our TCP 
implementation requires the same amount of processing 
time. Intuitively, the packet size must affect the packet 
throughput rate since operations such as checksumming, 
buffer moves and CRC calculation must operate on 
larger buffers. Close observation of the Ethernet curve 
in Figure-1 validates this assumption. 

In our implementation, the ethernet Network 
Interface Module (NIM), TCP, and IP, are three 
separate processes communicating via interprocess 
communication (IPC). Suspecting the operating system 
overhead to be the limiting factor, we devised a 

modification which combined the NIM, TCP, and IP 
into one process. The results of these modifications are 
shown in Figure-3 and Figured. 

In Figure-3 and Figured, the IP curve shows 
improved throughput rates which coincides with the 
Ethernet curve. However, the TCP curve showing a 
performance increase, remains relatively flat compared 
to the Ethemet and IP curves. 
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Figure-3 Packet Rate after IPC Enhancement 
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Figure-4 Kbyte Rate after IPC Enhancement 

By examining the EX-5000 traces closely, several 
problems were diagnosed. The first occurred when 
communicating with a UNIX workstation. Independent 
of the datagram sizes, TCP eventually transmits only 
small datagrams (32-128 data bytes) resulting in the 
UNIX acknowledgements behaving erratically. 

As Clark[l] points out, many TCP implementors 
blame excessive processing overhead associated with 
TCP for poor network performance. Like many 
protocol implementors, we followed the TCP 
specifications verbatim. Our study confirms the claim 
and concludes that the performance degradation is often 
attributed to the poor protocol implementation instead 
of the protocol overhead processing or protocol 
architecture. Pitfalls in many TCP software reside in 
the acknowledgement processing. Some of these pitfalls 
include sending multiple acknowledgement packets that 
can be similarly accomplished by delaying the 
acknowledgement, compacting the information, and 
then sending one acknowledgement packet. 

TCP has a subtle trap attributed to its nature of being 
a byte sequence archtecture. A phenomenon known as 
the Silly Window Syndrome (SWS) [2] can result in 
poor performance in many TCP implementations. The 
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SWS phenomenon occurs between two dissimilar flow 
control implementations causing data transmission to 
thrash much like disk I/O on a badly fragmented disk. 
This occurrence results in data being badly fragmented 
and inefficiently transmitted in small packet sizes. 

Slate ~ y p e  NO.' NO ten Slate 
ESTABLISHD --> DATA 101 901 5 5 ESTABLIMIED 
ESIABLISHO <-- ACK 901 106 0 0 ESTABLISHED 

2.1 Performance comparisons 
Comparisons of other vendor products as well as our 

implementation and the e n h a n d  high performance 
version are presented in Table-1. Table-2 lists the 
platforms which were used for these benchmarks. 

2.5 MByte file transferred in binary mode. Measurements 
are KBytes/Second. 

Table- 1 Performance Benchmarks 

I TCP/IP I PIATFORM I MAIN I Operating I MIPS I ETHER NET^ 

Million Instructions per Second base on manufacturer 
specification, unless otherwise denoted. 

* Denotes Compute Index using Norton Utilities 

Table-2 Platform Specifications 

3.0 TCP flow control 
TCP has been well studied both in practice and in the 

literature. For brevity, we forgo a detailed description 
of TCP, referring the reader to the two volume series by 
Comer[2] and RFC 793 and 1122. This study extends 
the study by Clark[l3] by introducing techniques that 
optimize frame-fill and avoid unnecessary 
fragmentation. To better understand our efforts, a very 
brief description of TCP is provided. 

TCP provides a connection oriented transport 
service. Data delivery is guaranteed in a byte sequenced 
order. TCP implements the positive acknowledgement 
technique using acknowledgement and sequence 
numbers to synchronize datagram delivery. Similarly, 

the sliding window technique is used to manage the data 
flow control. 

TCP flow control implements the sliding window 
technique. During the connection setup, each endpoint 
advertises its maximum receive window. The receive 
window restricts the number of unacknowledged bytes 
that may be in transit at any given time. The TCP 
sequence numbers and acknowledgement numbers are 
used to manage the byte order and flow control. The 
acknowledgment number indicates the last data byte 
received by the sender of the packet. Similarly, the 
sequence number indicates the sequence in the data 
stream of the first byte in the packet. Figure-5 
illustrates an example of data transmission. 

Transmlled M a  e Stream 
-1 6 7 8 9 10 11 12 13 14 15 

)hA&kO <-- ACK 901 106 0 5 ESTABLISH4 
Figure-5 Acknowledgement Strategy & Flow Control 

Figure-5 shows that the constraint which throttles the 
flow of data is the receive window (advertised as 5 
bytes). The sender (TCP client) sends 5 bytes of data 
and fills the entire receive window. The receiver (TCP 
server) then replies with an acknowledgement that it has 
received 5 data bytes along with an updated receive 
window. The TCP receiver's buffer is full as this is 
reflected in the receive window becoming zero. 

To form the acknowledgement number the receiver 
adds the data length to the sequence number. Since the 
data are still in the server's TCP receive buffer, the 
server replies with a zero receive window to indicate 
that its receive window is full and that it is unable to 
receive additional data momentarily. 

At some later time, after the TCP receiver delivers 
the data to the recipient, (an application program such 
as file transfer), the TCP receiver sends an updated 
window to the TCP sender. In this example, data are 
being transmitted only in one direction (client to 
server). Therefore, the server's sequence number, 
(which is the counterpart of the client's 
acknowledgment number), remains unchanged. 

When the TCP receiver finally delivers the data to 
the application, the TCP receive buffer becomes 
available to receive additional data. Upon receiving the 
window update, the sender's window then slides based 
on the acknowledgement number and receive window. 
Figure-6 illustrates the sliding window concept. 

In Figure-6, the sender's send window advances 
from bytes 1-5 to bytes 6-10. For simplicity of our 
discussion, a receive window of 5 bytes is selected. 
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Realistically the receive window must be sufficiently 
large to accommodate multiple packets to allow a 
continuous transmission. For example, if ethernet is 
used, (maximum frame size 1512 bytes), and it takes 4 
packets to provide a continuous transmission stream 
then the receive window would be 6048 bytes. 

Transmilled M a  Byle Stream: 
1 2 3 4 5 1 6  7 8 9 1 4 1 1  12 13 14 15 

ESTABLISHED <-- ACK 
ESTABLISHED <-- ACK 901 111 

Figure-6 TCP Sliding Window Concept 

We revisit the TCP acknowledgment strategy in 
section 5 and describe approaches to reducing CPU 
overhead by implementing efficient algorithms. 

4.0 Round trip time (RTT) calculations 
The design of proper strategies for computing Round 

Trip Time (RTT) calculations is a highly debated topic. 
The basic concept behind RTT is to calculate the 
amount of time it takes a packet to be transmitted and 
acknowledged. While many studies have been 
published on RTT, most conclude that an efficient RTT 
approximation is one that provides the calculation 
within the specified amount of time and with an 
accuracy needed for the particular application[8,9]. 

Our requirements mandate an RTT computation of at 
least every 16ms and must provide an accuracy within 
30ms. These requirements were derived by carefully 
examining the performance of the SPARC-lm3 
workstation using an EX-5000 analyzer. The EX-5000 
analyzer provides a timestamped packet trace with an 
accuracy of 500 microseconds. The EX-5000 traces 
show two important facts. First, data packets are 
transmitted at a burst rate, (restricted by the TCP 
receive window size), with an interpacket spacing less 
than 500 microseconds, (EX-5000 timestamp 
limitation). It can be assumed that the interpacket 
spacing is not less than 9.6 microseconds[4]. Second, 
the acknowledgement turnaround occurred within 16ms 
after the end of the packet burst, (hence 16ms compute 
time). Given these known parameters, we then derived 
the accuracy requirements of 30ms, (actually 32ms, but 
system clock limitations restrict us to 30ms), which is 
influenced by two samples. At this high frequency, 
RTT computation must use minimal CPU resources. 

RTT provides the cornerstone upon which our 
acknowledgement strategy and back-off algorithms are 
based. We maintain two variables associated with RTT. 

3SPARC is a trademark of Sun Microsystems Inc. 

A rough estimate on a per-packet basis is referred to as 
simply RTT. A second variable, Smoothed Round Trip 
Time (SRTT) is maintained using a Decay Smoothing 
Algorithm[l3]. SRTT computation is necessary to 
compensate for latency abnormalities associated with the 
chaotic network behavior. SRTT provides a safety 
feature by restricting the fluctuation within a 
predetermined range. 

Our SRTT approximation is a modification of 
Kam's[9] approximation. It is our experience that using 
integer, instead of floating point, arithmetic, allows 
faster computation and less CPU overhead. Although 
floating point arithmetic yields more accurate results, 
given our limited precision requirement, the CPU 
overhead does not justify its use. 

The RTT and SRTT computations used in our 
implementation are shown in Figure-7. 

RTT = Ack-Time - Dispatch-Time 
SRTT= (RTT/Delta-W) t (SRn*( Delta-W- 1 )/Delta-W) 

Figure-7 Round Trip Time Computations 

RTT is a rough approximation. Ack-Time is the 
timestamp taken when the TCP sender receives the 
acknowledgement, and Dispatch-Time is the timestamp 
when the TCP sender queued the datagram onto a device 
independent interface. Our implementation provides a 
hardware independent interface. RTT includes the 
operating system overhead. 

SRTT is a weighted average of the previous SRTT 
and the latest RTT. The weight factor Delta-W 
determines variance for the approximation. "Choosing 
a large Delta-W makes the weighted average immune to 
changes that last for a short time (e.g., single segment 
that encounters a long delay). Choosing small Delta-W 
makes the weighted average respond to changes in delay 
very quickly. "[2, Page-1451 

Our goal in computing SRTT is to restrict the 
fluctuation to within the 25% range. This value was 
selected because the amount of buffer space allocated 
per-connection is set to 4096 bytes, (memory constraints 
to support 32 simultaneous sessions). This yields 3-4 
packets per burst. Assuming that the receiving TCP can 
accommodate the burst, the weight factor Delta-W must 
then be 8. This yields a 12.5 percent variance on a per- 
packet basis. It is necessary to acquire at least 2 
samples to interpolate; using this axiom the 12.5% 
computation then yields a 25 R variance. 

All timestamp variables in our TCP implementation 
are kept in milliseconds since midnight. One drawback 
to this technique is that a special case for midnight roll 
over must be taken into account. Since the operating 
system timer service for this function is fast, we opted 
to use this technique. 
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Given an estimation of SRTT that will guarantee our 
approximation outlined, we present the enhanced 
acknowledgment strategies to increase the overall 
network performance. 

5.0 Silly Window Syndrome (SWS) 
Flow control is an essential requirement for any 

network protocol. Regulating the flow of data ensures 
high reliability and efficient data delivery when 
implemented properly. When implemented poorly, 
network performance severely degrades! 

SWS occurrence causes poor TCP performance. The 
SWS problem is often attributed to a sender transmitting 
faster than the receiver can process the input data. SWS 
is identified by noticing that the transmission consists of 
mostly small packets when larger packets are supported. 
The transmission often exhibits thrashing much like I/O 
on a badly fragmented disk. 

SWS causes the actual user data, (data from 
applications such as file transfer), to be transmitted over 
an excessive number of fragmented packets. Because 
each packet requires protocol processing as well as 
operating system overhead, occurrence of SWS results 
in excessive overhead processing. 

To properly describe fragmentation, we must clarify 
our use of three terms: datagram, TCP segment, and 
packet. The term datagram will imply the block of data 
that the application program, e.g., file transfer, requests 
to be transmitted. The termpacket will imply the actual 
ethemet frame transmitted on the media and is recorded 
by the LAN analyzer. The term TCP segment will 
imply the data portion, (excludes TCP, IP, and Ethernet 
headers), of a packet. In our context, fragmentation 
does not imply the IP fragmentation as outlined in [ 1 11, 
but instead, describes the relationship between a 
datagram and packet. Specifically, datagrams may be 
fragmented over two or more packets. 

Figures 8-9 illustrate EX-5000 analyzer traces 
recorded during a file transfer session. A 2.5 megabyte 
image file was transferred in binary mode between 
OPEN-Link, (old version before performance 
enhancements), and a Unix workstation. The EX-5000 
traces are presented to describe SWS, inefficient 
acknowledgment, and excessive packet fragmentation. 
To describe SWS using the EX-5000 traces in Figures 
8-9, we categorize each packet as: data, ack or 
ack+ winup packets. 

Our premise, as in [l], is that bulk data transfers 
such as file transfer is the area of performance interest. 
Such applications often exhibit data transmitted only in 
one direction. As a result, the acknowledgement 
number and receive window remain unchanged in the 
data packets. The relevant TCP parameters that affect 

the data packet are sequence number, data length, and 
send window size. 

The sequence number in each data packet specifies 
the data byte offset relative to the Initial Sequence 
Number (ISN) for the first data byte in the data packet. 
The ISN in our example is 99, therefore, in Figure-8, 
data byte 1 in pkt-1 must be associated with sequence 
number 100. As data are transmitted, the sequence 
number maintains the accumulative data byte offset. 
The sequence number for pkt-2 must then be 1552 as 
shown in Figure-8. This is derived by adding the 
sequence number of pkt-1 (100) and the data byte length 
(1452 bytes) of pkt-1. 

The maximum number of data bytes that may be 
transmitted in each packet is restricted by the maximum 
TCP segment size (1452 bytes) or the amount of send 
window bytes available, the lesser of either. The send 
window is derived by subtracting the amount of 
unacknowledged data from TCP receiver's available 
window. For example, in Figure-8, when pkt-1 was 
transmitted, there were no unacknowledged data, 
therefore the send window is 4096 bytes. Unlike pkt-1, 
when pkt-2 was transmitted, pkt-1 remains 
unacknowledged. Therefore, the send window for pkt-2 
(2644 bytes) must reflect the unacknowledged data from 
pkt-1 (1452 bytes). 

I Pocket Packet Sea Ack Data Send Receive 1 
No. Type NO,' NO ten window Window 

1 DATA 100 ---  1452 4096 ---  
2 DATA 1552 ---  1452 2644 ---  
3 DATA (lraqmenl) 3004 - - -  1192 1192(full) - --  
4 ocL///-Z) - - -  3004 0 --- //92 
5 Kkfw/hUp(l-$ --- 3004 Q - - -  4096 

Figure-8 EX-5000 SWS Data Packet Traces 

As data are transmitted the send window decreases 
until window updates are received. Pkt-3 (1 192 bytes) 
in Figure-8 must be fragmented because there are only 
1192 bytes available in the send window. After 
transmitting pkt-3, the TCP sender must refrain from 
sending more data since the receive window has reached 
zero. This is denoted with the notation "@U" in the 
"Send Window" column. Transmission of the 
remaining 260 bytes must be postponed until the TCP 
receiver returns a window update. 

The acknowledgement and window update packets, 
are denoted as ack and ack+winup, respectively, in 
Figure-8. The relevant TCP parameters that affect the 
ack and ack + winup packets are the acknowledgment 
number and the receive window. 

The acknowledgement number in the ack-pkts 
specifies the last data byte received. The ack number is 
derived by adding the data packet's sequence number 
and the data byte length. The ack and ack+winup 
packets also reflect the current available receive 
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