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Abstract

l’oor TCP/ll’ and UDl’/ ll’ implementations have been attributed as a factor to the observed lack of
performance of remote applications given the speeds of modern communication networks. We discuss
some of the factors that cited as contributors to the protocols’ poor performance. We then discuss the fast
track architecture for UDP/IP and TCP/ lP which improves protocol performance by optimizing for the
common rather than the general case and by bypassing the operating system completely thereby reducing
any overhead that may be incurred while in the operating system. We then present our implementation of
a fast track UDP/ 11’ along with proposals for fast track TCP / ll’ implementations.

1 Introduction

Many researchers have observed that the performance of remote applications have not kept pace with
modern communication network speeds. Part of this imbalance is attributed to the protocols used by
the remote applications, namely, UDP/ IP and TCP/ IP. It is now widely believed that the problems with

these protocols are not inherent in the protocols themselves but in their particular implementations lDalt93,
Whet95]. The following factors are cited as contributors to the poor performance of UDP/IP and TCP/IP:

Multiple copying of data This is considered the biggest bottleneck. Receiving a packet requires two copies:
one copy from the network interface to the kernel and another one from the kernel to the receiving
application. Sending a packet also requires two copies: one from the sending application to the kernel

and another one from the kernel to the network interface. Measurements in [Kay93] show that moving
packet data takes up 9‘ 0 of TCP processing time and 16% of UDP processing time.

Protocol layering Layering facilitates protocol design but not implementation. it causes bad buffering deci-

sions which generate unnecessary memory traffic [lacob93]. Packets are forced to go from application
buffers to socket buffers to kernel buffers and finally to the network interface buffers. Layering also
hinders parallelism Uacob93] forcing applications to call generic routines instead of protocol-specific
ones causing a bottleneck at the generic routines.

Optimization for the general rather than the common case Because of the generality of the code, a lot of
time is spent processing packet headers, calculating checksums in the kernel and managing buffers

[Whet95]. This was acceptable due to the unreliability of the internetworks within which the proto-
cols were operating but with modern networks, most packets arrive in sequence and are error-free
Uacob93].

Checksum computation It is known that checksum calculation is expensive. In addition, it requires an

additional perusal of a packet’s header and data. Measurements in [Kaygf—E] show that checksumming
of TCP / llJ packets take up only 7% of TCP processing time while it takes up 25% of UDlJ processing
time. This is attributed to the larger sizes of UDP packets. Analysis of a FDDI network traffic in a
university LAN [Kay93] calculated a median TCP packet size of 32 bytes and a median UDP packet
size of 128 bytes.
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Kernel buffer manipulation The kernel buffers used for network packet processing are the memory buffers
(mbufs) and the socket buffers. According to [Kay93], mbuf and socket buffer processing take up 18%
of TCP processing time and 15% of UDP processing time.

Context switches A context switch involves a process blocking itself (e.g., via the sleep system call),
waking up another process and restarting it. According to Kay et. al. [Kay93], context switches take
up about 5"?) of TCP processing time and 4% of UDP processing time [Kay93].

Error checking Error checking time is largely taken up by the validation of arguments to system calls. This
takes up 5% of TCP processing time and 7% of UDP processing time.

Interrupts When a packet arrives, two interrupts are generated: a hardware interrupt generated by the
network interface to indicate that a packet has arrived and a software interrupt generated by the
network interface device driver to tell ll’ that a new packet has arrived. Generating a software

interrupt and handling the interrupt by dequeueing the incoming packet and calling IP to handle it
takes up 2% of processing time for both TCP and UDP.

ln [lNhet95], a fast track architecture for UDP/ IP and TCP/IP was proposed. Its main aim is to improve

protocol performance by optimizing for the common case and by bypassing the operating system (05)
completely, reducing any overhead that may be incurred while in the OS. Given network interface support,
the fast track can also limit the copying of data to one. The architecture distinguishes between two types
of packets: common case and non-common case (common case criteria are discussed in detail in Section 3)

and only processes the common case packets. A packet buffer is shared between the application and the
network interface device driver. When a common case packet arrives at the receiving host, the device driver

copies the packet into the packet buffer it shares with the application. This effectively demultiplexes the

packet directly to the application and bypasses the operating system completely. To send a common case
packet, the sending application directly copies the packet into the buffer it shares with the device driver
and calls a device driver routine to send the packet to its destination.

The fast track architecture is applicable to a wide range of network interfaces [Whet95] and can coexist
with other UDP/IP and TCP/IP implementations.

Section 2 discusses problems reported and solutions proposed by researchers in the area. Section

3 presents the goals of the fast track architecture. Section 4 describes the fast track implementation of
UDP/ IP along with the current UDP/ 1P implementation. Section 5 is a discussion of fast track and the
current TCP/ IP implementation. Section 6 is an analysis of the fast track UDP / 1P implementation. Section
7 presents difficulties we encountered during implementation. Section 8 presents our conclusions and
summary.

2 Previous Work

Various researchers have proposed and implemented solutions to overcome the problems with UDP/ IP
and TCP / 1P implementations discussed in Section 1. In [Part94], Craig Partridge showed ways to speed up
UDP/ 1P implementation one of which is to calculate the checksum while copying the data. Van Jacobson

Uacob93] has implemented a high performance TCP/ IP by reducing the number of interrupts generated for
each packet sent or received, by touching any piece of data exactly once, and by doing away with layering
and maximizing parallelism. His code only requires 37 instructions and 7 memory references to forward

an IP packet, and less than 60 instructions and 22 memory references to process a TCP packet.
Dalton et. al. [Dalt93] modified TCP / IP to support the Afterburner card which they designed and built.

The card provides buffers that can be directly accessed by the operating system so that data is copied only
once: from the on-card buffers to the application buffers for receiving and vice-versa for sending. They
achieved a throughput of 210 Mbps with 14 KB packets.

Brustoloni [Brust94] used exposed buffering to avoid copying of data altogether. A special area in kernel

memory is allocated specifically for these exposed buffers so that both the applications and the network
interface can share access to them. When a packet is received, it is placed directly in these buffers and the
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application reads the packet directly from them. To send a packet, the application writes into the buffers and
the network interface sends it from the same buffers. This was implemented in the Mach operating system

on a host connected to an ATM LAN. They achieved a throughput of 48.4 Mbps with 64 KB datagrams and
48.5 Mbps with 64 KB sequenced packets.

Kay et. al. [Kay93] suggested avoiding checksumming for both TCP and UDP when the communicating
hosts are on the same LAN provided the LAN supports a hardware CRC. They also stated thatreducing TCP
protocol-specific processing time is useful but will require a major modification of TCP implementation. It

is unclear whether the effort required is worth the performance improvement that will be gained.
Whetten et. al. [Whet95] proposed an implementation for a fast track receiver and sender for both

TCP / IP and UDP / IP. We initially tried to implement the fast track TCP / IP receiver but encountered
difficulties with the proposed implementation. The proposal did not take into account that for both the fast
track and non-fast track TCP/IP implementations to coexist, they must be able to share state information
about TCP/ ll’ connections. We had a few options:

0 Remove the requirement that fast track and non-fast track TCP / llJ must coexist.

This is infeasible since fast track setup requires assistance from non-fast track TCP/IP. In addition,
non-common case TCP/ IP packets will never be unprocessed.

0 Modify TCP/ IP to be able to more readily share state information with fast track TCP/ IP.

Given the complexity of TCP/ IP code, we believed this would require too much work given the
amount of time we had.

0 Implement fast track UDP / IP instead.

This is the option we eventually chose because of the simplicity of UDP / IP relative to TCP/ IP.

In the remaining sections of the paper, we first present the fast track goals for both UDP/IP and
TCP/IP and follow this with a discussion of fast track UDP/IP architecture and implementation. This

is then followed by a discussion of the fast track TCP/ ll’ architecture and a number of proposals for its
implementation. We then present an analysis of our fast track UDP/ IP implementation.

3 Fast Track Goals

For both UDl’ / 11’ and 'l‘Cl’/ ll’, the goals of the fast track architecture are to optimize for the common case
(vs. the general case), to minimize operating system overhead and to minimize data copying. A UDP/ IP
packet is considered common case for the receiver if it satisfies the following criteria:

0 It uses the correct 1P version (4).

o It has the correct header length (5).

o It is not fragmented.

o It is destined for this host.

0 It is error—free.

o A socket already exists for the packet.

The criteria for a TCP/ IP packet are identical with the following additions:

o It is not a control packet.

o It has the correct sequence number (i.e., the packet arrived in order).

o It has no variable length options.
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Figure 1: Current UDP / 1P Receiver

The criteria for a common case UDP/IP packet for the sender are:

0 N0 packets waiting to be sent.

0 No fragmentation required.

0 Already have an outgoing socket.

0 Have already resolved the outgoing link address using ARP

The criteria for sending a TCP / 1? packet are identical with the following additions:

0 Window size must be big enough and have space.

0 Must have a valid connection

Though treated separately in this paper, fast track UDP / IP and TCP/ IP can and should be combined in
one implementation. The separation was done for simplicity and clarity.

4 Fast Track UDP/IP

In this section, we will first describe the current implementation of the UDP / IP receiver and then contrast
it with the fast track implementation. This is followed by a similar discussion of the UDP/ IP sender.
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Figure 2: Fast Track UDP/IP Receiver

 
4.1 Current UDP/IP Receiver

Figure 1 shows a diagram of the current UDP/ IP receiver. When a packet arrives at the network interface, it
generates a hardware interrupt which activates the interface’s device driver. If the packet is an IP packet, the
driver puts it into the IP input queue, ipintrq, and generates a software interrupt to inform the IP interrupt
handler, ipintr, that a new IP packet has arrived. Based on the packet’s protocol type (specified in the IP
header), llJ demultiplexes the packet to the appropriate protocol. If it is a UDI’ packet, ipintr invokes the
UDP input function, udp_input, to process the incoming packet. udp_input first validates the incoming
packet by verifying its length and by calculating its checksum. udp_input then determines the packet’s
recipient application and puts the packet into that application’s socket receive buffer. Two interrupts are
generated, the hardware interrupt generated by the network interface and the software interrupt generated
by the device driver. One can clearly see the bottleneck at ipintr and udp_input due to layering.

4.2 Fast Track UDP/IP Receiver

We implemented the receiver on a HP—UX 9000/ 700 workstation running the HP-UX OS version A.09.01.
Figure 2 shows a diagram of the fast track UDP/ 1P receiver. When a packet arrives at the network

interface, it generates a hardware interrupt which activates the interface’s device driver. The driver then

calls the fast track demultiplexer, f t_demux, which determines if the packet is common case or not. If it
satisfies all the common case criteria enumerated in Section 3 above, f t_demux copies the packet from the
network interface to the appropriate application receive buffer (which replaces the socket receive buffer).
Otherwise, the packet is placed in the appropriate protocol input queue and the appropriate software

interrupt is generated. Only one interrupt is generated, the hardware interrupt generated by the network
interface. Except for the brief stay in the demultiplexer, the operating system is completely bypassed. In
addition, no bottlenecks exist.

U]
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