U.S. Patent No. 8,131,880
(880 Patent)

IPR2017-01409 (Intel)
IPR2017-01736 (Cavium)
IPR2018-00338 (Dell)
IPR2017-01410 (Intel)
IPR2017-1737 (Cavium)
IPR2018-0339 (Dell)

*All citations herein are to the IPR2017-01391 case unless otherwise noted.

i@ ‘ 207

880 Patent: Instituted Grounds

« 2017IPR-01409, IPR2017-01736, IPR2018-00338
« Ground 1: Thia (Ex. 1015) in view of Tanenbaum96 (Ex.1006)

« Claims 1, 5-10, 12, 14, 16, 17, 20-23, 27, 28, 45, and 55

« 2017IPR-01410, IPR2017-01737, IPR2018-00339

* Ground 1: Thia (Ex. 1015) in view of Tanenbaum96 (Ex. 1006)
« Claims 32, 34, 35, 39, 41, 42, and 43

« Ground 2: Thia (Ex. 1015) in view of Tanenbaum96 (Ex. 1006) and
Nahum (Ex. 1079)

e Claims 37 and 38

Ex. 1006 — Tanenbaum, Andrew S., Computer Networks (“Tanenbaum96”)
Ex. 1015 —Tia, Y.H., Woodside, C.M. Publication (“Thia”)
Ex. 1079 — Nahum, Erich, Professional Issues in Parallelized Network Protocols (“Nahum”)

NN & |

880 Patent: Disputes

1. A POSA would have combined Thia and
Tanenbaum96 (and Nahum)

2. Thia and Nahum are enabling

3. The prior art combinations disclose the limitations of the
challenged claims of the 880 Patent

4. Motions to Amend 880 Patent should be denied

IR # | ~

880 Patent: Disputes

1. A POSA would have combined Thia and Tanenbaum96 (and
Nahum)

a. A POSA would have understood that Thia’s teachings
are applicable to TCP/IP

b. The trend towards TCP/IP in the 1990s would motivate
combining Thia’s bypass architecture with TCP/IP

c. Tanenbaum96 does not teach away from the combination

d. It would have been obvious to combine Nahum with Thia
and Tanenbaum96

H

Both disclose a bypass/fast-path based
on TCP/IP header prediction

14

A i Ot Pt Raiem (ROPE) o 8 This paper presents a feasibility study for a new approach to hardware assistance. It

yer bypass.
'

combines the relatively simple operations needed for data transfer across multiple layers and
provides a hardware “fast path” for them, which will be efficient for bulk data transfer. It is
based on the “protocol bypass concept” [37] which is a generalization of Jacobson’s "Header
Prediction" algorithm [20] for TCP/IP. Bypass solves the problems identified above, which
may limit the use of offboard processing, by implementing an entire service through all
e layers for certain cases. This simplifies the interface between the host and the adaptor chip
R o s e and minimizes their interaction, which is supported by an access test, some DMA processing
: and a simple command protocol. The chip design based on bypassing is called ROPE, for
e e Reduced Operation Protocol Engine. The contribution of this paper is to define the host/chip
interface and the chip operation, and to report on a VHDL-based feasibility study of the
chip design. It appears to be feasible to support an end-system single-connection data rate

approaching 1 Gbps.

Ex. 1015 (Thia) at .002;
See also Paper 1 (1409 Petition) at 32-31; Paper 1 (1410 Petition) at 33-34, 36-37.

The fast path updates the connection record and copies the data to the user.
While it is copying, it also computes the checksum, eliminating an extra pass over
the data. If the checksum is correct, the connection record is updated and an
acknowledgement is sent back. The general scheme of first making a quick check
to see if the header is what is expected, and having a special procedure to handle
that case, is called header prediction. Many TCP implementations use it. When
this optimization and all the other ones discussed in this chapter are used together,
it is possible to get TCP to run at 90 percent of the speed of a local memory-to-
memory copy, assuming the network itself is fast enough.

Ex. 1006.585 (Tanenbaum96);
See also Paper 1 (1409 Petition) at 32-31; Paper 1 (1410 Petition) at 33-34, 36-37.

Thia’s teachings are not limited to OSI

14

A Reduced Operation Protocol Engine (ROPE) for a
multiple-layer bypass architecture

Y.H. Thia (*)! and C.M. Woodside (**)
s e e ol A Reduced Operation Protocol Engine (ROPE) for a
s e e o it v ot [RIUItIPlE=l@yer bypass architecture

critical functions of a multiple-layer protocol stack, based on the “byp|
path for data transfer. The motivation for identifying this separate pr
involves only a small subset of the complete protocol, which can then be implemented in

hardware. Multiple-layer bypass also eliminates some inter-layer operations such as queue
and buffer management, context switching and movement of data across layers, all of which
are a significant overhead. ROPE is intended to support high-speed bulk data transfer. The
paper describes the design of a ROPE chip for the OSI Session and Traj
using VHDL. The design is practical in terms of chip complexity and ay
array technology, and simulation shows that it can support a data rate

per second, in a connection attached to an end-system. AbStfaCt ha— T‘hc Redllced Opﬁraﬁ(}n PI'OtOCOI Engiﬂe (ROPE) prﬁsented hCI'C Ofﬂoads

Keyword codes: €22, BA1 o critical functions of a multiple-layer protocol stack, based on the “bypass concept” of a fast
Keywords: Network Protocols, Data Communications Devices
path for data transfer. The motivation for identifying this separate processing path is that it

P involves only a small subset of the complete protocol, which can then be implemented in
::;‘:;;:f,::‘;ﬁ;ieﬂ;i;;, e oo ot o e 1261 ot] Nardware. Multiple-layer bypass also eliminates some inter-layer operations such as queue

quality-of-service will reil this effect. The heavy procy . a .
Combinaon of oprating sysem overnad. rowool comlesiy. napl ANd buffer management, context switching and movement of data across layers, all of which
the data stream. To alleviate the end-system bottleneck one may consid

d software implementtion of exising powocols (5,351 pusatil] —— gre @ significant overhead. ROPE is intended to support high-speed bulk data transfer. The

[14, 21, 38], special protocol structures [15, 30] and hardware assist [2!

Pt o e Pl om0 e Ty parer ks we . paper describes the design of a ROPE chip for the OSI Session and Transport layer protocols,

The key problems associated with offboard processing include:
9 paitoning the functonaity btveen e hostnd we wapior s 4 yyging VHDL. The design is practical in terms of chip complexity and area, using current gate
offset the potential gain from offloading. For example, the buffer

may be offloaded, but this leaves the problem of control for acces| aITay tCChnOlOgy, and Simlllatiﬁn ShOWS that it Caﬂ SllppOI't a data I'ate appr()aChing 1 gigabit

pratocal logic.

T e o T T b sy per second, in a connection attached to an end-system.

1 Introduction

Ex. 1015.001 (Thia); See also Paper 1 (1409 Petition) at 24-25, Paper 42 (1409 Reply) at 9; Ex.1223.016-.017 (1409 Lin Reply
Decl.) at 1 26; Paper 1 (1410 Petition) at 25; Paper 42 (1410 Reply) at 7-8; Ex.1223.026-.027 (1410 Lin Reply Decl.) at [37.

Thia’s standard protocol stack (SPS) is
a “multi-layer” stack, not an "OSI” stack

14

A Reduced Operation Protocol Engine (ROPE) for a
multiple-layer bypass arch|

vamis ot macnweol Flgure 1 illustrates the architecture of a bypass implementation for any standard protocol.

Newbridge Networks, Inc., Ottawa, Canada (*) and
Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada (**)

Abstract — The Reduced Operation Protocol Engine (ROPE) presented here offloads

critical functions of a multiple-layer protocol stack, based on the “bypass concept” of a fast

path for data transfer. The motivation for identifying this separate processing path is that it
involves only a small subset of the complete protocol, which can then be implemented in
hardware. Multiple-layer bypass also eliminates some inter-layer operations such as queue
and buffer management, context switching and movement of data across layers, all of which
are a significant overhead. ROPE is intended to support high-speed bulk data transfer. The SPS
paper describes the design of a ROPE chip for the OSI Session and Transport layer protocols, *
using VHDL. The design is practical in terms of chip complexity and area, using current gate
array technology, and simulation shows that it can support a data rate approaching 1 gigabit Standard
per second, in a connection attached to an end-system.

Keyword codes: C.2.2, B.4.1 (muln' s
Keywords: Network Protocols, Data Communications Devices
layer)

1 Introduction YO tOCOi

‘The advent of Fibre Optic technology, which offers high bandwidth and low bit error p
rates, has shifted the p from the ications channel to the com-
munications processing in the end-points of the system [26]. Other trends such as improved StaCk
quality-of-service will reil this effect. The heavy processing load is due to a

combination of operating system overhead, protocol ity, and p ing on
the data stream. To alleviate the end-system bottleneck one may consider new protocols [10],

d software impl ion of existing p Is [5, 35], parallel processing techniques I ‘
[14, 21, 38], special protocol structures [15, 30] and hardware assist [22] by offloading all or
part of the protocol functions to an adaptor. This paper takes the latter approach.

The key problems associated wif

O Partitioning the functionality bety
lead to a complex additional pi
offset the potential gain from o
may be offloaded, but this leave|
pratocal logic.

without the bypass. The SPS may refer to a single layer or to multiple adjoining layers of a
layered protocol stack. The bypass has 4 key components:

T ‘This research was done while Dr. Thia was at C|

peed Networks IV

. Neufield ecal. (eds.), Protacols for High

ht 1995

) Springer Sciences Business Media Dord

Ex. 1015.003 (Thia); See also Paper 1 (1409 Petition) at 25, 30, 34, 35; Paper 42 (1409 Reply) at 9-
11; Paper 1 (1410 Petition) at 26, 31-32, 35, 40; Paper 42 (1410 Reply) at 7-9.

Thia teaches that its bypass offload is
for more than one multi-layer stack

14

A Reduced Operation Protocol Engine (ROPE) for a
multiple-layer bypass architecture

Y.H. Thia (*)! and C.M. Woodside (**)

Newbridge Networks, Inc., Ottawa, Canada (*) and
Dept. of Systems and Computer Engineering, Carleton University, Otty

Absiact — The Reduced Operation Prowcol Engine ®opE) pi (1 A clean separation of functionality requiring only a simple protocol to communicate

critical functions of a multiple-layer protocol stack, based on the “byp|

path for data. wansfer. The motivation for identifying this separate pref between the host and adaptor is desired, and is provided by a bypass. Its particular set of
involves only a small subset of the complete protocol, which can th . . N .

hardware. Muldple-laycr bypass also climinates some inter-layer op functions are complete in themselves and have a focussed interface with the host software
and hu-ffcr‘ ‘management, Context sv‘nn'.:hmg and movement f-)f data acrof N .

e dserib the deson of 5 ROPE <hip tor he Or Sestin et Tro at the packet entry point. There is relatively infrequent switching between the SPS and

using VHDL. The design is practical in terms of chip complexity and a

array technology, and simulation shows that it can support a data rate thc bypaSS StaCk;
per second, in a connection attached to an end-system. . . .
O Reduced non-protocol-specific processing overhead. For example the processing of ac-

Keywords: Netwark Potocel, Data Communications Devices knowledgment packets is dominated by interrupt handling, typically a few hundred in-
+ Introduction structions, rather than by the protocol processing itself. Our approach removes acknowl-

The advent of Fibre Optic technology, which offrs high bandwi edgment handling altogether from the host. Also, the bypass system can be extended to
mmuhg?h’;m i g ZL{EE‘:"' 2, Oner incorporate multiple-layer stacks and remove overhead that way;

combination of operating system overhead, protocol complexity, and p{
the data stream. To alleviate the end-system bottleneck one may consid
d software impl ion of existing p Is [5, 35], parallel processing techniques
[14, 21, 38], special protocol structures [15, 30] and hardware assist [22] by offloading all or
part of the protocol functions to an adaptor. This paper takes the latter approach.
The key problems associated with offboard processing include:

O Partitioning the functionality between the host and the adaptor is difficult and may easily
lead to a complex additional protocol between the two parts, which may cancel out or

offset the potential gain from ing. For example, the buffer task [36]
may be offloaded, but this leaves the problem of control for accessing it within the full
pratocal logic.

T ‘This research was done while Dr. Thia was at Carleton University

+. Neufield et al. (eds.), Protocols for High Speed Networks IV

) Springer Sciences Business Media Dordrecht 1995

Ex. 1015.005 (Thia); See also Paper 42 (1409 Reply) at 9;
Paper 42 (1410 Reply) at 7.

TCP/IP and OSI| were widely understood
to be very similar

UNITED STATES PATENT AND TRADEMARK OFFICE

Contrasting the OSI and the TCP/IP Models
The OSI Model The TCP/IP Model

BEFORE THE PATENT TRIAL AND APPEAL BOARD

INTEL CORPORATION
Petitioner

Application Layer

V.

Presentation Layer
ALACRITECH, INC.
Patent Owner

Application layer

V/

Session Layer

Case IPR. No. Unassigned

Tranport layer
U.S. Patent No. 8,131,880 Tranport Layer P y
Title: INTELLIGENT NETWORK INTERFACE DEVICE AND SYSTEM F
ACCELERATED COMMUNICATION
Network Layer Internet layer

DECLARATION OF BILL LIN IN SUPPORT OF PETITION
FOR INTER PARTES REVIEW OF

U.S. PATENT NO. 8,131,880 Data Layer

UNDER 37 C.F.R. § 1.68

\ Network Access
=N

Layer

Physical Layer | >
Mail Stop “PATENT BOARD”
Patent Trial and Appeal Board
U.S. Patent and Trademark Office
P.O. Box 1450

Alexandria, VA 22313-1450

INTEL Ex.1003.001

Ex. 1003.011 (IPR2017-1409 Lin Decl.); See also Paper 1 (1409 Petition) at 30-35; Ex.1003.068-.074 (1409 Lin
Decl.); Paper 1 (1410 Petition) at 31-40; Ex.1003.069-.080 (1410 Lin Decl.).

Layered protocols mean TCP/IP can be
substituted for OSI

et
o
Brondcasting

layer. Entities use protocols in order to implement their service definitions. They
are free to change their protocols at will, provided they do not change the service
visible to their users. In this way, the service and the protocol are completely
decoupled.

Ex. 1006.045-.046 (Tanenbaum96);
See also Paper 1 (1409 Petition) at 16, 34-35;
Paper 1 (1410 Petition) at 16-17, 35-36, 39-40.

880 Patent: Disputes

1. A POSA would have combined Thia and Tanenbaum96 (and
Nahum)

a. A POSA would have understood that Thia’s teachings are
applicable to TCP/IP

b. The trend towards TCP/IP in the 1990s would motivate
combining Thia’s bypass architecture with TCP/IP

c. Tanenbaum96 does not teach away from the combination

d. It would have been obvious to combine Nahum with Thia
and Tanenbaum96

H

By 1996 OSI protocol use vanished and
TCP/IP became dominant

Furthermore, the networking hardware and software have completely changed
since the second edition appeared. In 1988, nearly all networks were based on
copper wire. Now, many are based on fiber optics or wireless communication.
Proprietary networks, such as SNA, have become far less important than public
networks, especially the Internet. The OSI protocols have quietly vanished, and
the TCP/IP protocol suite has become dominant. In fact, so much has changed,
the book has almost been rewritten from scratch.

Ex. 1006.016 (Tanenbaum96);
See also Paper 1 (1409 Petition) at 28, 32-33; Paper 1 (1410 Petition) at 28, 34-35.

@’218

T

hia’s hardware offload provides

advantages over software alone

A Reduced Operation Protocol Engine (ROPE) for a
multiple-layer bypass architecture

Y.H. Thia (*)! and C.M. Woodside (**)

14

ratg

qua
conf
the
im]
[14]
par|

It can be concluded from this study that it is feasible to implement the bypass stack (at
least for the transport and session layers) in VLSI and that the performance would be at
least an order of magnitude higher than software protocol processing. The bypass system
offloads the critical protocol functions and the associated non-protocol-specific functions onto
a “Reduced Operation Protocol Engine” (ROPE). The gate count for the bypass chip can
easily fit into a commercially available gate array Integrated Circuit. Per-octet operations
are particularly efficient when performed on the chip. The host processor is relieved of a
significant proportion of protocol processing and can concentrate on the application processing.
The speed of communication processing in the host system can now match the transmission
bandwidth of high-speed networks, e.g. ATM technology, thereby increasing the application-
to-application throughput performance. (In an ATM system we assume that the segmentation

= 3 T
lead to a complex additional protocol between the two parts, which may cancel out or

Omfifz'chzf;?\:e:;flbiﬁhfifgaves l.‘ne: pmel::n cf:a;uolih:o?u:.‘:-iressing it wiihi:, lsll:c[fg'uﬁl{ EX 1 01 501 3 (Thla)’
protacal logic. See also Paper 1 (1409 Petition) at 33-34, 41;
[T s s G e Ex.1003.060, .072-.073 (1409 Lin Decl.);

Paper 1 (1410 Petition) 34-35, 37-38, 61-62;

G Neuheld ctal. {eds., Protocols for Hligh Speed Networds I Ex.1003.059-.060, .072-.074, .077-.078 (1410 Lin Decl.).

880 Patent: Disputes

1. A POSA would have combined Thia and Tanenbaum96 (and
Nahum)

a. A POSA would have understood that Thia’s teachings are
applicable to TCP/IP

b. The trend towards TCP/IP in the 1990s would motivate
combining Thia’s bypass architecture with TCP/IP

c. Tanenbaum96 does not teach away from the
combination

d. It would have been obvious to combine Nahum with Thia
and Tanenbaum96

H

Tanenbaum96 does not teach away
from a combination with Thia

Instead, it describes design
preferences and tradeoffs

A tempting way to go fast is to build fast network interfaces in hardware. The
difficulty with this strategy is that unless the protocol is exceedingly simple,
hardware just means a plug-in board with a second CPU and its own program. To
avoid having the network coprocessor be as expensive as the main CPU, it is often
a slower chip. The consequence of this design is that much of the time the main
(fast) CPU is idle waiting for the second (slow) CPU to do the critical work. It is
a myth to think that the main CPU has other work to do while waiting. Further-
more, when two general—EuggoSe CPUs communicate, race conditions can occur,
so elaborate protocols are needed between the two processors to synchronize them

correctly. Usually, the best approach is to make the protocols simple and have the
main CPU do the work.

& N TUVWUULD U THEnerivaurnios
See also Paper 42 (1409 Reply) at 7-8; Ex. 1223 013-.016 (1409 Lin Reply DecI);
Paper 42 (1410 Reply) at 5-6; Ex. 1223.023-.025 (1410 Lin Reply Decl.).

Tanenbaum96 does not discourage
offloading simple protocols

A tempting way to go fast is to build fast network interfaces in hardware. The
| difficulty with this strategy is that unless the protocol is exceedingly simple,
hardware just means a plug-in board with a second CPU and its own program. To
avoid having the network coprocessor be as expensive as the main CPU, it is often
a slower chip. The consequence of this design is that much of the time the main

Ex. 1006.588 (Tanenbaum96);
See also Paper 42 (1409 Reply) at 7; Ex. 1223.014-.015 (1409 Lin Reply Decl.);
Paper 42 (1410 Reply) at 5-6; Ex. 1223.024-.025 (1410 Lin Reply Decl.).

Tanenbaum96: Transport processing is

“straightforward” in the “normal case”
|

TPDU processing overhead has two components: overhead per TPDU and
overhead per byte. Both must be attacked. The key to fast TPDU processing is to
separate out the normal case (one-way data transfer) and handle it specially.
Although a sequence of special TPDUs are needed to get into the ESTABLISHED
state, once there, TPDU processing is straightforward until one side starts to close
the connection.

Ex. 1006.583 (Tanenbaum96);
See also Paper 42 (1409 Reply) at 7; Ex. 1223.014-.015 (1409 Lin Reply Decl.);
Paper 42 (1410 Reply) at 5-6; Ex. 1223.024-.025 (1410 Lin Reply Decl.).

The TPDU is then checked to see if it is a normal one: the state is ESTAB-
LISHED, neither side is trying to close the connection, the TPDU is a full one, no
special flags are set, and the sequence number is the one expected. These tests
take just a handful of instructions. If all conditions are met, a special fast path
TCP procedure is called.

Ex. 1006.585 (Tanenbaum96);
See also Paper 42 (1409 Reply) at 7; Ex. 1223.014-.015 (1409 Lin Reply Decl.);
Paper 42 (1410 Reply) at 5-6; Ex. 1223.024-.025 (1410 Lin Reply Decl.).

Thia also recognizes the difficulty of
offloading a complex protocol stack

A Reduced Operation Protocol Engine (ROPE) for a
multiple-layer bypass architecture

Y.H. Thia (*)! and C.M. Woodside (**)

Newbridge Networks, Inc., Ottawa, Canada (*) and
Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada (**)

Abstract — The Reduced Operation Protocol Engine (ROPE) presented here offloads
isinal Goccst " Liiala 1 1 ciacl bocad bt 2ok a g

O The choice of hardware for the adaptor depends on the complexity of the functions it
supports. In [2, 22] where the transport protocol layer 1s offloaded or in [7] where the
full protocol stack can be offloaded, general purpose microprocessors are used. Probably
because of the complexity of existing protocols, VLSI [24] implementation above the
data link layer has been disappointing so far. In [8], dedicated VLSI chips are used to
support TCP checksums. Also, some newer lightweight transport protocols are specially
designed for VLSI implementation [1, 3].

P T SOTTware Imp OT CXISUIE PIOTOCOIs [3, 30, parancr pr [Z TeCTIue
14, 21, 38], special protocol structures [15, 30] and hardware assist [22] by offloading all or LN\
part of the protocol functions to an adaptor. This paper takes the latter approach. EX 1 01 5002 (Th'a),
The key problems associated with offboard processing include: See alSO Paper 42 (1 409 Reply) at 8
’
O Partitioning the functionality between the host and the adaptor is difficult and may easily .))
lead to a complex additional protocol between the two parts, which may cancel out or EX- 1 22301 5'01 6 (1 409 L|n Reply DeCI-), Paper 42 (1 41 0 REpIy) at 6,
offset the potential gain from offloading. For the buffer task [36] i
may be offioaded, but this leaves the problem of control for accessing it within the full EX 1 223025 (141 0 Lln Reply Dec')

protocol logic.

i “This research was done while Dr. Thia was at Carleton University

Thia’s solution: “Fast path” offload
based on header prediction

14

A Reduced Operation Protocol Engine (ROPE) for a
multiple-layer bypass architecture

Y.H. Thia (*)! and C.M. Woodside (**)

Newbridge Networks, Inc., Ottawa, Canada (*) and
Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada (**)

Abstract — The Reduced Operation Protocol Engine (ROPE) presented here offloads
fiiaal fcce £ Liala L 1 csanl bocad b Sk EDVIN

This paper presents a feasibility study for a new approach to hardware assistance. It
combines the relatively simple operations needed for data transfer across multiple layers and
provides a hardware “fast path” for them, which will be efficient for bulk data transfer. It is
based on the “protocol bypass concept” [37] which is a generalization of Jacobson’s "Header
Prediction" algorithm [20] for TCP/IP. Bypass solves the problems identified above, which
may limit the use of offboard processing, by implementing an entire service through all
layers for certain cases. This simplifies the interface between the host and the adaptor chip

P T SOTTWare Imp OT EXTSUNE PTOTOCOIS [3, 351, paratrer pr ¥ TECTIMIE!
14, 21, 38], special protocol structures [15, 30] and hardware assist [22] by offloading all or . .
part of the protocol functions to an adaptor. This paper takes the latter approach. EX 1 01 5002 (Thla),

The key prablems associated with offboard processing include: A See also Paper 42 (1409 Reply) at 8; Ex. 1223.015-.016 (1409 Lin Reply Decl.);
O Partitioning the functionality between the host and the adaptor is difficult and may easily Paper 42 (1410 Rep|y) at 6, EX. 1223025 (1410 Lln Reply DeCl.).

lead to a complex additional pratocol between the two parts, which may cancel out or
offset the potential gain from offloading. For the buffer task [36]

may be offioaded, but this leaves the problem of control for accessing it within the full
protocol logic.

T This research was done while Dr. Thia was at Caricton University

Both disclose a bypass/fast-path based
on TCP/IP header prediction

14

A i Ot Pt Raiem (ROPE) o 8 This paper presents a feasibility study for a new approach to hardware assistance. It

yer bypass.
'

combines the relatively simple operations needed for data transfer across multiple layers and
provides a hardware “fast path” for them, which will be efficient for bulk data transfer. It is
based on the “protocol bypass concept” [37] which is a generalization of Jacobson’s "Header
Prediction" algorithm [20] for TCP/IP. Bypass solves the problems identified above, which
may limit the use of offboard processing, by implementing an entire service through all
e layers for certain cases. This simplifies the interface between the host and the adaptor chip
R o s e and minimizes their interaction, which is supported by an access test, some DMA processing
: and a simple command protocol. The chip design based on bypassing is called ROPE, for
e e Reduced Operation Protocol Engine. The contribution of this paper is to define the host/chip
interface and the chip operation, and to report on a VHDL-based feasibility study of the
chip design. It appears to be feasible to support an end-system single-connection data rate

approaching 1 Gbps.

Ex. 1015 (Thia) at .002;
See also Paper 1 (1409 Petition) at 32-31; Paper 1 (1410 Petition) at 33-34, 36-37.

The fast path updates the connection record and copies the data to the user.
While it is copying, it also computes the checksum, eliminating an extra pass over
the data. If the checksum is correct, the connection record is updated and an
acknowledgement is sent back. The general scheme of first making a quick check
to see if the header is what is expected, and having a special procedure to handle
that case, is called header prediction. Many TCP implementations use it. When
this optimization and all the other ones discussed in this chapter are used together,
it is possible to get TCP to run at 90 percent of the speed of a local memory-to-
memory copy, assuming the network itself is fast enough.

Ex. 1006.585 (Tanenbaum96);
See also Paper 1 (1409 Petition) at 32-31; Paper 1 (1410 Petition) at 33-34, 36-37.

880 Patent: Disputes

1. A POSA would have combined Thia and Tanenbaum96 (and
Nahum)

a. A POSA would have understood that Thia’s teachings are
applicable to TCP/IP

b. The trend towards TCP/IP in the 1990s would motivate
combining Thia’s bypass architecture with TCP/IP

Tanenbaum96 does not teach away from the combination

d. It would have been obvious to combine Nahum with
Thia and Tanenbaum96

H

PO makes no additional arguments
regarding a combination with Nahum

processing in a multi-processor host computer system. (Ex. 1079.001.) Nahum does

not cure the aforementioned deficiencies in the purported motivation to combine

Thia and Tanenbaum, nor have Petitioners alleged that it does. Accordingly, based

Paper 32 (1410 Corrected Response) at 57-58 ;
See also Paper 42 (1410 Reply) at 5.

NN & | =

880 Patent: Disputes

1. APOSA would have combined Thia and Tanenbaum96
(and Nahum)

2. Thia and Nahum are enabling

3. The prior art combinations disclose the limitations of the
challenged claims of the 880 Patent

4. Motions to Amend 880 Patent should be denied

H

PO fails to identify why Thia and Nahum
are allegedly not enabling

« Patent Owner contends that Thia is an “inoperable device” and is
therefore a non-enabling reference

Paper 32 (1409 Corrected Response) at 20-21; Paper 32 (1410 Corrected Response) at 16.

« Patent Owner’s only support that Thia and Nahum are not enabling is
Dr. Almeroth’s conclusory declaration

See Paper 42 (1409 Reply) at 3-4; Paper 42 (1410 Reply) at 2-3.

« But a non-enabling reference can be prior art “for all that it teaches”

Id. (citing Beckman Instruments v. LKB Produkter AB, 892 F.2d 1547, 1551 (Fed. Cir. 1989)).

H

Thia is not a theoretical device

4.3 First Design: Design Steps

Figure 3 shows the steps followed in this study. There were three stages, a behavioural
model, a structural or RTL model, and a gate level design. These gave us two kinds of
feasibility check, that the logic we specified will execute the protocol within the environment
we envisage, and that the design is technically feasible, for instance in a reasonable chip area.

Ex. 1015.008 (Thia).

in the semiconductor industry to design semiconductor chips. A person of ordinary
skill in the art (“POSA™) would know that a gate-level design can be fabricated

mnto a chip using well-known software tools and chip fabrication facilities. A

Ex. 1223.004-.005 (1409 Lin Reply Decl.) at q[8; see also Ex. 1223.004-.005 (1410 Lin Reply Decl.) at] 8;
See also Paper 42 (1409 Reply) at 3-4; Paper 42 (1410 Reply) at 2-3.

H

Nahum Is enabling

Appears in "Proceedings of the First Symposium on Operating Systems Design and Implementation.” Usenix Association, November 1994.

Performance Issues in Parallelized Network Protocols

Erich M. Nahum, David J. Yates, James I2 Kurose, and Don Towsley*

Department of Computer Science
University of Massachusetis
Amherst, MA 01003

Abstract

Parallel processing has been proposed as a means of
improving network protocol throughput. Several different
strategies have been taken towards parallelizing protocols.
A relatively popular approach is packei-level parallelism.
where packets are distributed across processors.

This paper provides an experimental performance study
of packet-level parallelism on a contemporary shared-
memory multiprocessor. We examine several unexplored
areas in packet-level parallelism and investigate how vari-
ous protocol structuring and implementation techniques ean
affect performance. We study TCP/P and UDP/IP protocol
stacks, implemented with a parallel version of the x-kernel
running in user space on Silicon Graphies multiprocessors.

Our results show that only limited packet-level paral-
lelism can be achieved within a single connection under
TCP. but that using multiple connections can improve avail-
able parallelism. We also demonstrate that packet ordering
playsa key role in determining single-connection TCP per-
formance, that careful use of locks is a necessity, and that
selective exploitation of caching can improve throughput.
We also describe experiments that compare parallel proto-
col performance on two generations of a parallel machine
and show how 1 1 trends can infl
performance.

1 Intreduction

Parallel processing has been proposed as a means of improv-
ing network protocol throughput. Two trends motivate the
use of parallelism in network processing. First, network
bandwidths are increasing by orders of magnitude, with
the advent of technologies such as ATM. Second, shared-
memory multiprocessors are becoming more common, as

*This rescarch supported in part by NSF under grant NCR-9206908
and ARPA under contract number F19628-92-C-0089. Ench Nahum was
supported by an ARPA Rescarch Assistantship in Parallel Processing.
David Yates is the recipient of a Motorola Codex University Partnership
in Research Grant. The authors can be reached at {nahum, yates, kurose,
towsley }@es. umass cdu

shown by recent vendor introductions [1, 8,
thus an opportunity to exploit the potential of pd
network protocol processing, and this has bec:
ing area of research.

The approach we study here is that of pack
allelism. sometimes referred to as thread-pq
p p 2 i Originally
Hutchinson and Peterson in the x-kernel [14], t
distributes packets across processors, achievi
both with multiple connections and within a sin|
tion. Packets can be processed on any procq
mizing flexibility and utilization. Other syster
approach include [3, 11].

Several other approaches to parallelism hay
proposed and are briefly described here; m
surveys can be found in [5, 11]. In lavered
protocols are assigned to specific processors
sages passed between layers through interpr]
munication
through pipelining effects. An example is for
Connection-level parallelism associates conned
single processor or thread, achieving speedup
ple connections. Multiprocessor STREAMS nf
matches this model [26, 27). Functional
decomposes functions within a single protos
signs them to processing elements. Examp
[19, 23, 25]. The relative merits of one apj]
the others depends on many factors, including|
k , the number of il whethef
mentation is in hardware or software, the thread
policies employed , and the cost of primitives s|
ing and context switching. Schmidi and Suda [2
packet-level parallelism and conneetion-level
generally perform better than layer parallelism
memory multiprocessor, due to the context-swi
head when crossing layers using layer paralleli{

Parallelism gains can be achie]

This paper provides an experimental perfor]
of packet-level parallelism using TCP/IP and

tocol stacks. We have conducted this study in|
of a multiprocessor implementation of the x-kd

2 Experimental Environment

As stated earlier, our environment 1s based on a parallelized
x-kernel, and as such, 1t 1s similar in several respects to
the platform described by Bjorkman and Gunningberg at
the Swedish Institute of Computer Science (SICS) [4. 5].
Our platform was, for the most part, developed indepen-
dently, and for a different type of machine. The exception
1s the SICS MP TCP code, which we used to guide the de-
sign of our parallel TCP. as described in Section 5.1. The
SICS platform, however, was based on the February 1992
release of the x-kernel. and ran on the Sequent Symmetry.
Our environment 1s based on the December 1993 x-kernel
release, and runs on the SGI Challenge. Given the differ-
ences in hardware, host operating systems, versions of the
x-kernel imfrastructure and protocols. a direct comparison 1s
thus not possible. Where applicable, however, we describe
differences between the systems.

INTEL Ex.1079.001

Ex. 1079.002 (Nahum);

See also Paper 42 (1410 Reply) at 5.

880 Patent: Disputes

1. APOSA would have combined Thia and Tanenbaum96
(and Nahum)

2. Thia and Nahum are enabling

3. The prior art combinations disclose the limitations of
the challenged claims of the 880 Patent

4. Motions to Amend 880 Patents should be denied

H

880 Patent: Disputes

3. The prior art combinations disclose the limitations of the
challenged claims of the 880 Patent

a. The prior art combination renders obvious “an
operation code” (claims 1, 17, 32, 34, 45)

b. Thia discloses a “re-assembler” on, or “re-assembly” by, a
network interface (claims 32, 41, 43)

c. A‘flow key” that includes a “first hop medium access control
(MAC) layer address” would have been obvious (claim 32)

d. The prior art combination discloses storing the “header
portion in a header buffer” if the *header conforms to the
TCP protocol” (claim 32)

e. The prior art combination discloses a “processor” for TCP

processing (claims 1, 32, 41, 43) M

880 Patent: Claims 1, 17, 32, 34, and 45

a2 United States Patent (10) Patent No.: US 8,131,880 B2

Boucher et al. (45) Date of Patent: *Mar. 6, 2012

1. A method of transferring a packet to a host computer
system, wherein the packet is received at a communication
device from a network, comprising:

parsing a header portion of a first packet received at a

network interface for the host computer system to deter-
mine if said first packet conforms to a TCP protocol;
generating a flow key to identify a first communication
flow that includes said first packet, wherein said flow key
includes a TCP connection for the communication flow;
associating an operation code with said first packet,
wherein said operation code indicates a status of said
first packet, including whether said packet is a candidate
for transfer to the host computer system that avoids
processing said header portion by the host computer
system in accordance with said TCP protocol; and
processing, by the network interface, said packet according
to the TCP connection, including updating a control
block representing the TCP connection on the network

32. A method of transferring a packet received at a network
interface from a network to a host computer system, compris-
ing:
receiving a packet from a network at a network interface of
a host computer system;

parsing a header portion of said packet to extract an iden-
tifier of a source entity and an identifier of a destination
entity;
generating a flow key from said source identifier and said
destination identifier to identify a communication flow
comprising said packet, wherein said flow key includes
aTCP connection for the communication flow and a first
hop medium access control (MAC) layer address;

determining whether a header in said header portion con-
forms to a pre-selected protocol;

storing said flow key in a database;

associating an operation code with said packet, wherein

said operation code identifies a status of said packet;
storing said packet in a packet memory;

if said header conforms to the TCP protocol:

storing a data portion of said packet in a re-assembly

buffer;

storing said header portion in a header buffer; and

processing, by the network interface, said packet according

to the TCP connection.

interface.

64»%_, P '] T I S
‘ : H

e mac | SLOW-PATH ! MAC |13
T 1 1

34. The method of claim 32, further comprising storing
said operation code in a control memory.

17. The method of claim 1, further comprising storing said
operation code in a control memory.

Ex. 1001 (880 Patent), Claims 1, 17, 32, 34, 45.

45. The method of claim 1, wherein said operation code
indicates whether the packet corresponds to Transport Con-
trol Protocol (TCP).

PO told the patent office that a single bit
can be an operation code

Applicants: Boucher, et al
Atty. Docket ALA QO8F

communication prolocols; and

conforms o cne of a set of |ccssomot This includes all header validation (is it IP, IPV4 or V6, is |
lm#madumemmmsmTC?Mmcmm.m]' |

|

|

said header conforms toone | (6:36-38) “The header is fully parsed by hardware and its type is

af;a‘dwmmmlm summarized in 3 status word. The checksum is aso verified
i?_;f? a flow manager configured to

assign an operation code to said
packet, wherein said operation
code:

indicates a status of said packet;
and

indicates a manner of
transferring said packet to the
host computer system;

(85:26-30) “As frames are received, they are placed into 2K-byte DRAM
buffers by the Receive hardware sequencer, along with 16 bytes of the
above frame status. A pointerto the last byte + 1 of this buffer is
queued into the Q_RECV queue. The pointer contains a bit (bit 29) that
informs the microcode if this frame is definitely not a fast-path
candidate...”

(85:38) “If bit 29 is set, this frame is going slow-path.”

indicates a status ol said packat;

| and

| indicates a manner of (85:38) “I bit 29 Is set, this frame is going slow-path”

| a packet memory conigured to

} siore sald packet; and {4k page).”

| atranster module configured to
| transfer said packet from said

| packet memory lo & host designating that the data has arrived.”

L computer sysiem in accordance

65

informs the microcode i this frame is definitely nol a fast-path

|
(14:27) "Receive data butlers are allocated in blocks of 2, 2k bytes each |
|

(14:1-3) *Data buffers are moved by DMA into the host belore the
header buffer, since the header buffer contains the status word

| The term “operation code” does
| not appear in the 880 Patent
outside the claims

Ex. 1002 (880 Patent File History) at .249;
See also Paper 1 (1409 Petition) at 49 n.11;
Paper 1 (1410 Petition) at 53 n.10.

Result of the receive bypass test
indicates if the packet is bypassable

No bypass —
Host processes
the packet A

Host Processor Bus

Presentation] DMA L // Internal
Mocdule Dual
£ Ported
B}-pass - Checksum Internal Memory
ROPE Module Registers
processes the N Protocol AD Network Interface :
imers Pr i / -. :
packet and E::‘—: og Ada;:: l;mm A pgcl\.ct 18
(e.g8. 1 or ATM) o - :
stores the data | recely c?d at the
¢ . g 3) / 14
n hOSt Reduced Operation Protocol Engine (ROPE) NI;& \t li.l .
memory Transmissiofl Medium Tl all..‘}llllSSlOll
Figure 2 Block Diagram of VLSI bypass system Medium

Ex. 1003.097 (1409 Lin Decl.);

See also Paper 1 (1409 Petition) at 48; Paper 1 (1410 Petition) at 53; Ex. 1003.102 (1410 Lin Decl.).

A POSA would know that the receive
bypass test results in an op code

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

with the TCP protocol that avoids processing by the host computer). Persons of
ordinary skill in the art would know that a test or check performed produces an

output (or result), such as a bit logically indicating true or false, that would then be
used by or in other instruction sets or commands. It would have been obvious to

indicate the result of the “receive bypass test” using an operation code (e.g., a bit
flag, which Patent Owner has argued provides the claimed operation code')
menre] 10Structing whether to process the packet on the ROPE chip or on the host. And
indeed, Thia teaches that a flag 1s set signifying that a packet can be fast-pathed:

DECLARATION OF BILL LIN IN SUPPORT OF PETITION Ex. 1003.098-.099 (1409 Lin Decl.);
FOR.INTER PARTES REVIEW OF See also Paper 1 (1409 Petition) at 49-50;
D . Ll Paper 1 (1410 Petition) at 53-54; Ex. 1003.103-.104 (1410 Lin Decl.).

UNDER 37 C.F.R. §1.68

Mail Stop “PATENT BOARD”
Patent Trial and Appeal Board
U.S. Patent and Trademark Office
P.O. Box 1450

Alexandria, VA 22313-1450

Thia's operation code: Flag used by the
“no-in-transit PDU" test

14

A Reduced Operation Protocol Engine (ROPE) for a
multiple-layer bypass architecture

Y.H. Thig

wise| 2.2 Efficient logic for the bypass test
] The "no-in-transit PDU" test can often be avoided. At the beginning of data transfer on a
moal pew connection, it is automatically satisfied. It holds as long as no packet fails a bypass test,

=w| and it is sufficient to maintain a flag to indicate this. Once a packet fails, and goes to the SPS,

«smvol then a full "no-in-transit PDU" test must be performed for each packet until the test succeeds,
after which control can go back to the flag. Token management and synchronization points of

per second,)

Keyword c
Keywords:

1 Introduction

The advent of Fibre Optic technology, which offers high bandwidth and low bit error
rates, has shifted the from the icati channel to the com-
munications processing in the end-points of the system [26]. Other trends such as improved
quality-of-service guarantees will reinforce this effect. The heavy processing load is due to a

ination of ing system , protocol ity, and per-octet ing on
the data stream. To alleviate the end-system bottleneck one may consider new protocols [10],
imp; software imp ion of existing p [5. 35], parallel processing techniques H) - -
[14, 21, 38), special protocol structures [15, 30] and hardware assist [22] by offloading all or | Thla S Iag |ndlcates the Status 0 the I I |OSt
part of the protocol functions to an adaptor. This paper takes the latter approach.

The key problems associated with offboard processing include:

© Pardioning th funcinaiy beovee the st and the dapeor i dificul and ey sy recenﬂy_received packet —i.e. whether it

lead to a complex additional protocol between the two parts, which may cancel out or
offset the potential gain from offloading. For example, the buffer management task [36]

o 4 s e o s i e will be processed on the bypass fast-path

T This research was done while De. Thia was at Careton University

INTEL Ex.1015.001

Ex.1015.004 (Thia); See also Paper 1 (1409 Petition) at 49-50; Ex. 1003.098-.099 (1409 Lin Decl.); Paper 42 (1409 Reply) at
15-16; Paper 1 (1410 Petition) at 53-54; Ex. 1003.103-.104 (1410 Lin Decl.); Paper 42 (1410 Reply) at 15.

880 Patent: Disputes

3. The prior art combinations disclose the limitations of the
challenged claims of the 880 Patent

a. The prior art combination renders obvious “an operation code” (claims 1,
17, 32, 34, 45)

b. Thia discloses a “re-assembler’” on, or “re-assembly’ by, a network
interface (claims 32, 41, 43)

c. A“flow key” that includes a “first hop medium access control (MAC) layer
address” would have been obvious (claim 32)

d. The prior art combination discloses storing the “header portion in a header
buffer” if the “header conforms to the TCP protocol” (claim 32)

e. The prior art combination discloses a “processor” for TCP processing
(claims 1, 32, 41, 43)

NN @ |

880 Patent: Claim 32

United States Patent

(12) (10) Patent No.: US 8,131,880 B2
Boucher et al. (45) Date of Patent: *Mar. 6, 2012
(54) INTELLIGE ETWORK INTERFACE (51) Int.Cl
DEVICE AN TEM FOR ACCELERATED Gog,

(75)

[eR)]
)

@n
(22)
(63)

(63)

(60)

COMMUNICATION

Inventors: lmmm.e B. Boucher, Saratoga, CA
(Us E. J. Blightman, San

: Peter K. Craft, San
_CA (US): David A. Higgen,
(US); Clive M. Philbrick,
CA (US); Daryl D. Starr,

. CA (US)

Assignee: Alacritech, Ine., San Jose, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 2126 days

This patent is subject 10 a terminal dis-
claimer.

Appl. No.: 10/601,237
Filed: Jun. 19,2003

Prior Publication Data
US 2004/0062246 Al Apr. 1.2004

Related U.S. Application Data

Continuation of application No. 10/005,536, filed on
Nov. 7. 2001, now Pat. No. 7,167,926, and a
continuation-in-part of application No. 09/514.425,
filed on Feb. 2000, now Pat. No. 6,427,171, and a
continuation-in-part of application No. 09/464,283,
filed on Dec. 15, 1999, now Pat. No. 6,427,173, and a
continuation of application No. 09/384,792, filed on
Aug. 27, 1999, now Pat. No. 6,434,620, and a
continuation-in-part of application No. 09/067.544,
filed on ‘\pr 27, 1998, now Pat. No. 6,226,680, and a
continuation-in-part of application No. 09/141,713,
filed on Aug. 28, 1998, now Pat. No. 6,389,479

Provisional application No. 60/098,296, filed on Aug.
27, 1998, provisional application No. 60/061,809,
filed an Oct. 14, 1997

(2006.01)

(52) e T09/250

(58) Fi e TOY23R,
709/250
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS
4366538 A 121952 Johnsonetal ... 364/200
(Continued)
FOREIGN PATENT DOCUMENTS

wo WO/98/19412 5/1998

(Continued)y

OTHER PUBLICATIONS

U.S. Appl. No. 60/053,240, by Jolitz et al. (listed filing date Jul. 18,
1997).

(Continued)
Primary Examiner — Jerry Dennison
(74) Attorney, Agent, or Firm — Silicon Edge Law Group
LLP; Mark A. Laver
(57) ABSTRACT

Anintelligent network interface card (INIC) or communica-
tion processing device (CPD) works wil mvmp\m.r for
data communication. The dev [ast-pa

-mmpmnmn] processing for mos

I.mL tmm IIIL]nml I lJ]lw Inm
ity

nection is dumcdwha\
headers, directly toor f

lestination or source in the host.
The context can be pmm back 10 the host for message

s s cu'
ng full duplex communication for four

ity pracessing, proy
Fast Ethemet nodes.

60 Claims, 40 Drawing Sheets

52-
50~ e 1
p3mmmmmmmmmmos ' Py cueNt g
66~ Nermios o tATH 0l [
65+ TCP : 8 : TCP -.:._15
64'4;_, P :‘ i P ’“%-«74
53»‘:.4 MAC E SLOW-PATH : MAC ’\é—u
55~ PHYSICAL H 82 ! PHYSICAL [~—59
L _l
57

hcdcwa o move (Ll\l iru of

32. A method of transferring a packet received at a network
interface from a network to a host computer system, compris-
ing:
receiving a packet from a network at a network interface of
a host computer system;

parsing a header portion of said packet to extract an iden-
tifier of a source entity and an identifier of a destination
entity;
generating a flow key from said source identifier and said
destination identifier to identify a communication flow
comprising said packet, wherein said flow key includes
a TCP connection for the communication flow and a first
hop medium access control (MAC) layer address;

determining whether a header in said header portion con-
forms to a pre-selected protocol;

storing said flow key in a database;

associating an operation code with said packet, wherein

said operation code identifies a status of said packet;
storing said packet in a packet memory;

if said header conforms to the TCP protocol:

storing a data portion of said packet in a re-assembly

buffer;

storing said header portion in a header buffer; and

processing, by the network interface, said packet according

to the TCP connection.

Ex. 1001 (880 Patent), Claim 32.

880 Patent: Claims 41 and 43

a2 United States Patent

Boucher et al.

US 8,131,880 B2
*Mar. 6, 2012

(10) Patent No.:
(45) Date of Patent:

41. An apparatus for transferring a packet to a host com-

puter system, comprising:

a traffic classifier, disposed in a network interface for the
host computer system, configured to classify a first
packet received from a network by a communication
flow that includes said first packet;

a packet memory, disposed in the network interface, con-
figured to store said first packet;

a packet batching module, disposed in the network inter-
face, configured to determine whether another packet in
said packet memory belongs to said communication
flow;

a flow re-assembler, disposed in the network interface,
configured to re-assemble a data portion of said first
packet with a data portion of a second packet in said
communication flow; and

a processor, disposed in the network interface, that main-
tains a TCP connection for the communication flow, the
TCP connection stored as a control block on the network
interface.

43. A computer system for receiving a packet from a net-
work, comprising:

a memory configured to store packets received from a
network; and

a network interface for the computer system, the network
interface configured to receive a first packet from said
network, the network interface comprising:

a parser configured to extract information from a header
portion of a first packet;

a flow manager configured to examine said information;

a flow database configured to store an identifier of a first
communication flow comprising multiple packets,
including said first packet; and

a re-assembler for storing data portions of said multiple
packets without header portions in a first portion of said
memory; and

a processor for processing said first packet and for main-
taining a TCP connection for the communication flow,
the TCP connection stored as a control block on the
network interface.

—_——— T

57

Ex. 1001 (880 Patent), Claims 41, 43.

H

Unrebutted evidence that TCP
reassembles segments into streams

Each machine supporting TCP has a TCP transport entity, either a user pro-
cess or part of the kernel that manages TCP streams and interfaces to the IP layer.
A TCP entity accepts user data streams from local processes, breaks them up into
pieces not exceeding 64K bytes (in practice, usually about 1500 bytes), and sends
each piece as a separate IP datagram. When IP datagrams containing TCP data
arrive at a machine, they are given to the TCP entity, which reconstructs the origi-
nal byte streams. For simplicity, we will sometimes use just “TCP”’ to mean the
TCP transport entity (a piece of software) or the TCP protocol (a set of rules).
From the context it will be clear which is meant. For example, in “The user gives
TCP the data,” the TCP transport entity is clearly intended.

The IP layer gives no guarantee that datagrams will be delivered properly, so
it is up to TCP to time out and retransmit them as need be. Datagrams that do
arrive may well do so in the wrong order; it 1s also up to TCP to reassemble them
into messages in the proper sequence. In short, TCP must furnish the reliability
that most users want and that [P does not provide.

Rt 10 Ex. 1006.540-.541 (Tanenbaum96);
. See also Paper 1 (1410 Petition) at 57-58;
Ex. 1003.109-.110 (1410 Lin Decl.).

Unrebutted evidence of re-assembler /
re-assembly in Thia

14

A Reduced Operation Protocol Engine (ROPE) for a
multiple-layer bypass architecture

Y.H. Thia (*)! and C.M. Woodside (**)

Newbridge Networks, Inc., Ottawa, Canada (*) and

Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada (**)

A om| transfer. The data portion of a PDU may be physically moved for the following reasons:

critical functions of a
path for data transfer.
involves only a small ”
wone el o Copying between the adaptor buffer and the host system memory;
are a significant overhy

mecseeisaced @ (Crossing protection domains (address spaces) — e.g. at the user/kernel boundary. This

using VHDL. The des!

o skon, n 3 com problem becomes more pronounced in microkernels which treats a protocol task as a
Kaymed oot C2] server process outside the kernel domain [11];

s mesusion | ¢ PET-OCtET processing like presentation conversion and checksum routines.

The advent of Fibre Optic technology, which offers high bandwidth and low bit error
rates, has shifted the p from the icati channel to the com-

ications p ing in the end-points of the system [26]. Other trends such as improved
quality-of-service guarantees will reinforce this effect. The heavy processing load is due to a

inati ing system head, protocol ity, and per-octet ing on

the data stream. To alleviate the end-system bottleneck one may consider new protocols [10],
imp: software ion of existing p [S, 35], parallel p i iq
[14, 21, 38], special protocol structures [15, 30] and hardware assist [22] by offloading all or
part of the protocol functions to an adaptor. This paper takes the latter approach.

The key problems associated with offboard processing include:

O Partitioning the functionality between the host and the adaptor is difficult and may easily
lead to a complex additional protocol between the two parts, which may cancel out or
offset the potential gain from offloading. For example, the buffer management task [36]
may be offloaded, but this leaves the problem of control for accessing it within the full
protocol logic,

T This research was done while Dr. Thia was at Casicton University

G. Neuficld ct al. (eds.), Protocols for High Speed Networks I}
© Springer Science+Business Media Dordrechr 1995

INTEL Ex.1015.001

Ex. 1015.005 (Thia); See also Paper 1 (1410 Petition) at 77;
Ex. 1003.138-.139 (1410 Lin Decl.).

"“Segmentation/reassembly” refers to
lower-layer fragmentation

14

A Reduced Operation Protocol Engine (ROPE) for a
muiltiple-layer bypass architecture

Y.H. Thia (*)! and C.M. Woodside (¥*)

The scope of functions included in a bypass may be narrowly defined, or more extended.
A bypass does not include fast connection setup but also does not interfere with it. There
is no segmentation/reassembly within the bypass path, but we do not see this as a major
restriction, as research suggests that fragmentation of PDUs should be restricted only to the
lower layers and should occur only once in the protocol stack [23]. The Segmentation and
Reassembly sublayer of the ATM adaptation layer is a good place for such functions [25].

The advent of Fibre Optic technology, which offers high bandwidth and low bit error
rates, has shifted the performance bottleneck from the communications channel to the com- .

icati ing in the end-points of the system [26]. Other trends such as improved Ex. 1015.014 (Thla)
quality-of-service guarantees will reinforce this effect. The heavy processing load is due to a
combination of operating system overhead, protocol complexity, and per-octet processing on
the data stream. To alleviate the end-system bottleneck one may consider new protocols [10],
improved software implementation of existing protocols [S, 35], parallel processing techniques
[14, 21, 38, special protocol structures [15, 30] and hardware assist [22] by offloading all or
part of the pratocol functions to an adaptor. This paper takes the latter approach.

‘The key problems associated with offboard processing include:

e e oy Thia’s disclosure is discu Ssing fragmentation

offset the potential gain from offloading. For example, the buffer management task [36)

may be offloaded, but this leaves the problem of control for accessing it within the full

LS and re-assembling those fragments at lower-
layer protocols.

G. Neufield et al. (eds.), Protecels fo

See Ex. 1223.017-.020 (1410 Lin Reply) at q[{] 24-28; see also Paper 42 (1410
Reply) at 17-18.

H

INTEL Ex.1015.001

Network layer: "Segmentation” is
“fragmentation”

| In the ATM world, fragmentation is called segmentation

Ex. 1006.426 (Tanenbaum96);
See also Ex. 1223.020 (1410 Lin Reply Decl.).

NN & |

Thia teaches lower-layer
segmentation/reassembly on the NIA

Host
Processor
No bypass —
Host processes R~
the packet AL | :
[Pres ; AD
Preseniation| DMA ”
Module
Bypass — Checksum | | [Internal
ROPE Module Registers
processes the % Protocol | AD Network Interface :
acket and imers Processing Adaptor (NIA) A packet 1S
p L Engine :
stores the data ’ (¢g.FDDIor ATM)| | received at the
in host Reduced Operation Protocol Engine (ROPE) - NIA via
memory Transmissiof Medium | | [ANSMISSion
Figure 2 Block Diagram of VLSI bypass sysiem Medlum

Ex. 1223.019-.020 (1410 Lin Reply) at [28 (excerpting and annotating Figure 2 from Ex. 1015.007 (Thia) with red, green,
blue annotations and red shading); see also Paper 42 (1410 Reply) at 17-18.

Explanation of network layer (IP)
fragmentation

- Communication in the Internet works as follows. The transport layer takes
data streams and breaks them up into datagrams. In theory, datagrams can be up
to 64 Kbytes each, but in practice they are usually around 1500 bytes. Each
datagram is transmitted through the Internet, possibly being fragmented into
smaller units as it goes. When all the pieces finally get to the destination
machine, they are reassembled by the network layer into the original datagram.
This datagram is then handed to the transport layer, which inserts it into the
receiving process’ input stream.

Ex. 1006.431 (Tanenbaum96); See also Paper 42 (1410
Reply) at 17-18; Ex.1223.017-.018 (1410 Lin Reply
Decl.).

NN @ |

Disclosure for transmitting a packet fails
to rebut disclosure of re-assembly

2) For subsequent bypassable packets, the host processor initiates the BYPASS_DMA
procedure which checks for free buffer space in the bypass chip and programs the DMA
by sending the starting address pointer where the PDU is located, and its total length.
The destination address is supplied by the bypass chip. Arbitration for the host processor
bus between the host and DMA is provided by the DMAreq and DMAack lines. DMA
transfers the PDU into the internal dual-ported SRAM (Static RAM). Buffers are pre-
allocated in fixed sizes and are accessed by a simple round robin scheme using a set of

buffer pointers.

Ex. 1015.009 (Thia).

Presentation]_ DMA AD // Internal
Module Dual
Ported

Checksum o Internal Memory
Module Registers

Protocol AD/

Timers Processing va
Engine

Reduced Operation Protocol Engine (ROPE)

Ex. 1015.007 (Thia) (Fig. 2).

See, e.g., Paper 42 (1410 Reply) at 18; Ex.1223.020-.022 (1410 Lin Reply Decl.) at 1] 29-30. intel‘ | 249

880 Patent: Disputes

3. The prior art combinations disclose the limitations of the
challenged claims of the 880 Patent

a. The prior art combination renders obvious “an operation code” (claims 1,
17, 32, 34, 45)

b. Thia discloses a “re-assembler” on, or “re-assembly” by, a network
interface (claims 32, 41, 43)

c. A “flow key” that includes a “first hop medium access control (MAC)
layer address” would have been obvious (claim 32)

d. The prior art combination discloses storing the “header portion in a header
buffer” if the “header conforms to the TCP protocol” (claim 32)

e. The prior art combination discloses a “processor” for TCP processing
(claims 1, 32, 41, 43)

H

880 Patent: Claim 32

a2 United States Patent

Boucher et al.

(10) Patent No.: US 8,131,880 B2
(45) Date of Patent: *Mar. 6, 2012

(54) INTELLIG

ETWORK INTERFACE
TEM FOR ACCELERATED
COMMUNICATION

(75) Inventors: Ianr e B. Bnuuhcr Saratoga, CA
Bli >

(US); Clive M. l’hllbricl\.
CA (US); Daryl D. Starr,
. CA (US)

(73) Assignee: Alacritech, Inc., San Jose, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 2126 days

This patent is subject 10 a terminal dis-
claimer.

(1) Appl. No.: 10/601,237
(22) Filed: Jun. 19, 2003

(65) Prior Publication Data
US 2004/0062246 Al Apr. 1.2004

Related U.S. Application Data

(63) Continuation of application No. 10/005,536, filed on
Nov. 7. 2001, now Pat. No. 7,167,926, and a
continuation-in-part of application No. 09/514.425,
filed on Feb. 2000, now Pat. No. 6,427,171, and a
continuation-in-part of application No. 09/464,283,
filed on Dec. 15, 1999, now Pat. No. 6,427,173, and a
continuation of application No. 09/384,792, filed on
Aug. 27, 1999, now Pat. No. 6,434,620, and a
continuation-in-part of application No. 09/067.544,
filed on ‘\pr 27, 1998, now Pat. No. 6,226,680, and a
continuation-in-part of application No. 09/141,713,
filed on Aug. 28, 1998, now Pat. No. 6,389,479

(60) Provisional application No. 60/098,296, filed on Aug.
27, 1998, provisional application No. 60/061,809,
filed on Oct. 14, 1997.

(51) Int.Cl
Gié,

(2006.01)

(52) e T09/250

(58) Fi e TOY23R,
709/250
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS
4366538 A 121952 Johnsonetal ... 364/200
(Continued)
FOREIGN PATENT DOCUMENTS

wo WO/98/19412 5/1998

(Continued)y

OTHER PUBLICATIONS

U.S. Appl. No. 60/053,240, by Jolitz et al. (listed filing date Jul. 18,
1997).

(Continued)
Primary Examiner — Jerry Dennison
(74) Attorney, Agent, or Firm — Silicon Edge Law Group
LLP; Mark A. Laver
(57) ABSTRACT

Anintelligent network interface card (INIC) or communica-
tion processing device (CPD) works wil mvmp\m.r for
data communication. The dev [ast-pa

mn:kpmmcn] processing for mos

1a NL me IIIL]nml I lJ]lw Inm
ity

neetion |-¢d¢1mcdwha1
headers, directly toor f lestination or source in the host
The context <an be pmnd back to the host for message

3 1nrd

S £ C a
2 foll duplex commnication for four

Fast Ethemet nodes.
60 Claims, 40 Drawing Sheets

52-
50 T
p3mmmmmmmmmmos ' Py cueNt g
66~ Nermios o tATH 0l [
65+ TCP : 8 : TCP -.:._15
64»%_, P ‘ i P ’“%-«74
53»‘:.4 MAC | SLOW-PATH : MAC ’\é—u
55~ PHYSICAL H 82 ! PHYSICAL [~—59
L _l
57

the device to move data, free of

Ex. 1001 (880 Patent), Claim 32.

32. A method of transferring a packet received at a network
interface from a network to a host computer system, compris-
ing:
receiving a packet from a network at a network interface of
a host computer system;

parsing a header portion of said packet to extract an iden-
tifier of a source entity and an identifier of a destination
entity;
generating a flow key from said source identifier and said
destination identifier to identify a communication flow
comprising said packet, wherein said flow key includes
a'TCP connection for the communication flow and a first
hop medium access control (MAC) layer address;

determining whether a header in said header portion con-
forms to a pre-selected protocol;

storing said flow key in a database;

associating an operation code with said packet, wherein

said operation code identifies a status of said packet;
storing said packet in a packet memory;

if said header conforms to the TCP protocol:

storing a data portion of said packet in a re-assembly

buffer;

storing said header portion in a header buffer; and

processing, by the network interface, said packet according

to the TCP connection.

Tanenbaum96 discloses flow key
comprising the TCP/IP socket pair

finding the connection record is easy: the VPI field can be used as an index into
the path table to find the virtual circuit table for that path and the VCI can be used
as an index to find the connection record. For TCP, the connection record can be
stored in a hash table for which some simple function of the two IP addresses and
two ports is the key. Once the connection record has been located, both addresses
and both ports must be compared to verify that the correct record has been found.

Ex. 1006.585 (Tanenbaum96);

See Paper 1 (1410 Petition) at 47-48;

Ex. 1003.093-.095 (1410 Lin Decl.);

See also Petition 1 (1410 Petition) at 30, 48.

It would be obvious to include header
iInformation relevant to the connection

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

Further, it would have been obvious to a person of ordinary skill in the art to have
wrercoreoramion | @ flow key additionally include a next-hop MAC layer address. A person of
PH ordinary skill in the art would know that a flow key can comprise any combination
anceenve. | OF characters or numbers, and that 1t would make sense to have this combination
. comprise information relevant to the connection in order to verify the flow key
against the information relevant to the connection during lookup. See Ex.1006,

Case IPR. No. Unassigned

U.S. Patent No. 8,131,880

Title: INTELLIGENT NETWORK INTERFACE DEVICE AND SYSTEM FOR
ACCELERATED COMMUNICATION

DECLARATION OF BILL LIN IN SUPPORT OF PETITION
FOR INTER PARTES REVIEW OF
U.S. PATENT NO. 8,131,880
UNDER 37 C.F.R. § 1.68

the correct record has been found.”). As explained in paragraphs 30 and 31 of my
i Sp “PATENT BOAR declaration, a next-hop MAC layer address indicates the physical location a packet

us mennd Tadenank 15 first routed on its way to its final destination for the connection and is therefore
e:;(an ria, - 2 1 . 1
Homan W= information relevant to the connection.

INTEL Ex.1003.001 |

Ex. 1003.095 (1410 Lin Decl.);

See also Paper 1 (1410 Petition) at 49. @

MAC layer address is relevant to the
connection

Ex. 1003 9930-31. Moreover. a POSA would understand that it would be useful to
store the first hop MAC layer address m the connection record in order to send
packets back out on the network. for example in the situation where

acknowledgements are sent. Before the acknowledgement can reach its destination.

however, 1t must first go through the gateway that corresponds to the first-hop
MAC layer address. Thus. the first hop MAC laver address 1s a candidate for

including mn a flow key that a POSA would have found obvious.

Ex. 1223.014-.015 (1410 Lin Decl.) at [18;
See also Paper 1 (1410 Petition) at 49;
Ex. 1003.095 (1410 Lin Decl.); Paper 42 (1410 Reply) at 10-12.

H

The pool of fields to include in a flow key
s finite and small

TCP/TP
[ustrajpdme

destination source
address address fype cats CRC
6 bytes 6 bytes 2 46-1500 bytes . 4 bytes
type
h800 IP packet
2 46-1500 bytes

Figure 4.8 Ethernet encapsulation of an IP packet.
Ex. 1013.125 (Stevens2) at Fig. 4.8;
See also Paper 42 (1410 Reply) at 10-11;

F— 3K
Ex. 1223.011-.015 (1410 Lin Reply Decl.).

The pool of fields to include in a flow key
s finite and small

0 15 16 31

4-bit |4-bit header; 8-bit type of service .8 . ?
T C]?/) version length (TOS) 16-bit total length (in bytes)
ot i 3-bit ;
16-bit identification flaps 13-bit fragment offset
ustr 3
8-bit time to live . .
8-bit protocol : 16-bit header checksum 20 bytes
(TTL)
Sl e
32-bit source IP address
32-bit destination IP address
Y
/ options (if any) ?
/ data /

Figure 3.1 [P datagram, showing the fields in the IP header.
|

Ex. 1008.058 (Stevens1) at Fig. 3.1;
See also Paper 42 (1410 Reply) at 10-11; Ex. 1223.011-.015 (1410 Lin Reply Decl.).

The pool of fields to include in a flow key
s finite and small

0 15 16 31

T C]?/) 16-bit source port number 16-bit destination port number
Illus tr 32-bit sequence number
(

32-bit acknowledgment number 20 bytes
. UJA|P[R|S|F
#bit header “Egegi‘t’;d R|C|s|s|Y|T 16-bit window size
5 G|K|H|T|N|N
16-bit TCP checksum 16-bit urgent pointer
/ options (if any) /
/ data (if any) /

Figure 17.2 TCP header.

Ex. 1008.249 (Stevens1) at Fig. 17.2;
See also Paper 42 (1410 Reply) at 10-11; Ex. 1223.011-.015 (1410 Lin Reply Decl.).

Dr. Almeroth opined that a MAC layer
address is not required to infringe

RESTRICTED — ATTORNEYS' EYES ONLY — INTEL ADDENDUM/RESTRICTED CONFIDENTIAL -
SOURCE CODE

7.11.2 Flow Identification and RSC Context
Matching)
61. Claim 32[c]: “generating a flow key from said source identifier and said destination

TCP/IP packet’s flow is identified by its four
Source / Destination TCP port numbers. Thi
Identification fields stored in the active RS
is done in two phases:

+ s comoure — sasweampee | 1dentifier to identify a communication flow comprising said packet, wherein said flow key includes
vl o ol RS cornenea. Ny
there is no valid context of the same fl

+ sutes o — rmameseiswe] @ TCP connection for the communication flow and a first hop medium access control (MAC) layer

first step with the received frame.
— A match between the two means th
— Mismatch between the two indicate

of the colliced RSC. address” After extracting the source and destination TCP ports and the source and destination IP

+ In any case of context mismatch, a ney

Section 7.11.3.
 If the packet's flow matches an active

swences e exitng e i) addresses, the accused RSC products generate a hash value based on those four tuples. That hash

(Niantic Datasheet at § 7.11.2; see also Sageville Dat
7/11.2 Brosdwell DE Datasieet i 79.2: Demverion) v alye i then used to identify an active RSC context, and is thus a flow key or ““context identifier”
through 200:19; id. 217:15-25; Sarangam Dep. Tr. 23
61. Claim 32[c]: “generating a flow key frd

as construed by the Court:

identifier to identify a communication flow comprising

a TCP connection for the communication flow and a first hop medium access control (MAC) layer
address” After extracting the source and destination TCP ports and the source and destination IP
addresses, the accused RSC products generate a hash value based on those four tuples. That hash
value is then used to identify an active RSC context, and is thus a flow key or “context identifier”

as construed by the Court:

Ex. 1249.005 (Almeroth Infrgmnt. Rpt.) at] 61; See also
Paper 42 (1410 Reply) at 13.

880 Patent: Disputes

3. The prior art combinations disclose the limitations of the
challenged claims of the 880 Patent

a. The prior art combination renders obvious “an operation code” (claims 1,
17, 32, 34, 45)

b. Thia discloses a “re-assembler” on, or “re-assembly” by, a network
interface (claims 32, 41, 43)

c. A“flow key” that includes a “first hop medium access control (MAC) layer
address” would have been obvious (claim 32)

d. The prior art combination discloses storing the “header portion in a
header buffer” if the “header conforms to the TCP protocol”’ (claim

32)

e. The prior art combination discloses a “processor” for TCP processing
(claims 1, 32, 41, 43)

H

880 Patent: Claim 32

United States Patent

(12) (10) Patent No.: US 8,131,880 B2
Boucher et al. (45) Date of Patent: *Mar. 6, 2012
(54) INTELLIGE ETWORK INTERFACE (51) Int.Cl
DEVICE AN TEM FOR ACCELERATED Gog,

(75)

[eR)]
)

@n
(22)
(63)

(63)

(60)

COMMUNICATION

Inventors: lmmm.e B. Boucher, Saratoga, CA
(Us E. J. Blightman, San

: Peter K. Craft, San
_CA (US): David A. Higgen,
(US); Clive M. Philbrick,
CA (US); Daryl D. Starr,

. CA (US)

Assignee: Alacritech, Ine., San Jose, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 2126 days

This patent is subject 10 a terminal dis-
claimer.

Appl. No.: 10/601,237
Filed: Jun. 19,2003

Prior Publication Data
US 2004/0062246 Al Apr. 1.2004

Related U.S. Application Data

Continuation of application No. 10/005,536, filed on
Nov. 7. 2001, now Pat. No. 7,167,926, and a
continuation-in-part of application No. 09/514.425,
filed on Feb. 2000, now Pat. No. 6,427,171, and a
continuation-in-part of application No. 09/464,283,
filed on Dec. 15, 1999, now Pat. No. 6,427,173, and a
continuation of application No. 09/384,792, filed on
Aug. 27, 1999, now Pat. No. 6,434,620, and a
continuation-in-part of application No. 09/067.544,
filed on ‘\pr 27, 1998, now Pat. No. 6,226,680, and a
continuation-in-part of application No. 09/141,713,
filed on Aug. 28, 1998, now Pat. No. 6,389,479

Provisional application No. 60/098,296, filed on Aug.
27, 1998, provisional application No. 60/061,809,
filed an Oct. 14, 1997

(2006.01)

(52) e T09/250

(58) Fi e TOY23R,
709/250
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS
4366538 A 121952 Johnsonetal ... 364/200
(Continued)
FOREIGN PATENT DOCUMENTS

wo WO/98/19412 5/1998

(Continued)y

OTHER PUBLICATIONS

U.S. Appl. No. 60/053,240, by Jolitz et al. (listed filing date Jul. 18,
1997).

(Continued)
Primary Examiner — Jerry Dennison
(74) Attorney, Agent, or Firm — Silicon Edge Law Group
LLP; Mark A. Laver
(57) ABSTRACT

Anintelligent network interface card (INIC) or communica-
tion processing device (CPD) works wil mvmp\m.r for
data communication. The dev [ast-pa

-mmpmnmn] processing for mos

I.mL tmm IIIL]nml I lJ]lw Inm
ity

nection is dumcdwha\
headers, directly toor f

lestination or source in the host.
The context can be pmm back 10 the host for message

s s cu'
ng full duplex communication for four

ity pracessing, proy
Fast Ethemet nodes.

60 Claims, 40 Drawing Sheets

52-
50~ e 1
p3mmmmmmmmmmos ' Py cueNt g
66~ Nermios o tATH 0l [
65+ TCP : 8 : TCP -.:._15
64'4;_, P :‘ i P ’“%-«74
53»‘:.4 MAC E SLOW-PATH : MAC ’\é—u
55~ PHYSICAL H 82 ! PHYSICAL [~—59
L _l
57

hcdcwa o move (Ll\l iru of

Ex. 1001 (880 Patent), Claim 32.

32. A method of transferring a packet received at a network
interface from a network to a host computer system, compris-
ing:
receiving a packet from a network at a network interface of
a host computer system;

parsing a header portion of said packet to extract an iden-
tifier of a source entity and an identifier of a destination
entity;
generating a flow key from said source identifier and said
destination identifier to identify a communication flow
comprising said packet, wherein said flow key includes
a'TCP connection for the communication flow and a first
hop medium access control (MAC) layer address;

determining whether a header in said header portion con-
forms to a pre-selected protocol;

storing said flow key in a database;

associating an operation code with said packet, wherein

said operation code identifies a status of said packet;
storing said packet in a packet memory;

if said header conforms to the TCP protocol:

storing a data portion of said packet in a re-assembly

buffer;

storing said header portion in a header buffer; and

processing, by the network interface, said packet according

to the TCP connection.

880 Patent: Storing said header portion
in a header buffer

«—— 32Bits ——»

STATUS
Block Address Pointer
Header Pointer Reserved
—_—
Protocol Header
Data Pointer
—_—
Reserved A buffer 1s a memory portion for the storage of data while 1t 1s being processed or
Buffer transferred. Accordingly, a person of ordmary skill in the art would understand that
Space for Data E E . ~
a buffer 1s a portion of memory. A portion of memory that stores data would be a
data buffer, a portion of memory that stores headers would be a header buffer, and
STATUS SO On.
Block Address
eader Pointr Reserved Ex. 1003.111 (1410 Lin Decl.); See also Paper 1 (1410 Petition) at 58-60.
Protocol Header
Data Pointer
—_—
Reserved
Buffer
Space for Data

Ex. 1015.011 (Thia) at Fig. 4.

H

Claims do not recite a “separate” header
buffer

C. The Combination Does Not Show or Suggest “if said header
conforms to the TCP protocol . . . storing said header portion in a

o 0] portion of memory.” (Petition, 58-60.) However, the “Protocol Header” and

Case No. IPR2017-1410
U.S. Patent No. 8,131,880

The Petition fails
suggests the limitation “if
raderporion nabeader) *“Reserved Buffer Space for Data” in Fig. 4 are, it anything, the ROPE chip’s packet
in a figure from Thia and
pen et menen 0 memory, which stores PDUs for transfer to the host via direct memory access or
“Reserved Buffer Space f
memory, which stores PIJ X
ova—ewennae] | DMA”—they are not the claimed separate “header buffer” (or “re-assembly buffer”
for that matter). (Ex. 2

e aebosrocessof - fOT that matter). (BEx. 2026, | 147; Ex. 1015.009 (“For subsequent bypassable

free buffer space in the by

address pointer where the PDU is located, and its total length.”); Petition, 55-57

(identifying the same memory locations as comprising the claimed “packet

wey']) storing said header portion in a header butter; and

Tellingly, Petitioners allege the claimed “storing said packet in a packet

memory” step is met by copying the header and data of an incoming PDU to the 880 Patent, Claim 32:
’ ’
“Protocol Header” and “Reserved Buffer Space for Data” blocks in memory shown See also Paper 42 (1 410 Reply) at 16-17.

in Fig. 4 of Thia. (/d.) The “storing said header portion in a header buffer,” however,

41

Paper 32 (1410 Response) at 41.

H

880 Patent: Disputes

3. The prior art combinations disclose the limitations of the challenged claims
of the 880 Patent

a. The prior art combination renders obvious “an operation code” (claims 1,
17, 32, 34, 45)

b. Thia discloses a “re-assembler” on, or “re-assembly” by, a network
interface (claims 32, 41, 43)

c. A“flow key” that includes a “first hop medium access control (MAC) layer
address” would have been obvious (claim 32)

d. The prior art combination discloses storing the “header portion in a header
buffer” if the “header conforms to the TCP protocol” (claim 32)

e. The prior art combination discloses a “processor’ for TCP
processing (claims 1, 32, 41, 43)

H

880 Patent: Claim 1

(12)

United States Patent

Boucher et al.

(10) Patent No.:

(45) Date of Patent:

US 8,131,880 B2
*Mar. 6, 2012

(54)

(75)

(3)

)

21y
@2)

65)

(63) Co
No

(60) P
27,

INTELLIG] TWORK INTERFACE
DEVICE A STEM FOR ACCELERATED
COMMUN TION

Inventors: Laur

Jose, CA (US); Peter K. Craft, San
Francisco, CA (US): David A. Higgen,
Saratc CA (US): Clive M. Philbrick,
San Jose, CA (US); Daryl D. Starr,
Milpitas, CA (US)

Assignee Ty T se, CA (US)
Natice: Subje e term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 2126 days.
This patent is subject to a terminal dis-
claimer.
Appl. No.: 10/601,237
Filed: Jun. 19, 2003
Prior Publication Data

US 2004/0062246 Al Apr. 1, 2004

Related US. Application Data

on No. 10/005,536, filed on
No. 7.167,926, and a

No. 09/514.425,
. 6,427,171, and a

<o
filed on Dec. 15, 1999
continuation of appli
Aug. 2 434,620, and a
No. 09/067.544,
6,226,680, and a
No. 09/141.713,
89,479

(51) Int.CL

GO6I 15/16
USs.CL
Field of

(52)
(58)

(56) Referen;

U.S. PATENT
4366538 A 121982
(Cont
FOREIGN PATE]
WO/98/19412
(Cont
‘OTHER PUE

U.S. Appl. No. 60/053,240, by Jol
1997).

WO

s52-
50~ T
— ! ! |, CLENT
FAST-PATH
66~ werBIOS J— ; ™I
| i so— |
85~ TCp | i TCP
|
64# P | ! P
|)
63— MAC | SLOW-PATH ! MAC
T T ;
55~ PHYSICAL | 82 ! PHYSICAL|
H i
| |
[- [
57

Ex. 1001 (880 Patent), Claim 1.

1. A method of transferring a packet to a host computer
system, wherein the packet is received at a communication
device from a network, comprising:

parsing a header portion of a first packet received at a

network interface for the host computer system to deter-
mine if said first packet conforms to a TCP protocol;
generating a flow key to identify a first communication
flow that includes said first packet, wherein said flow key
includes a TCP connection for the communication flow;
associating an operation code with said first packet,
wherein said operation code indicates a status of said
first packet, including whether said packet is a candidate
for transfer to the host computer system that avoids
processing said header portion by the host computer
system in accordance with said TCP protocol; and
processing, by the network interface, said packet according
to the TCP connection, including updating a control
block representing the TCP connection on the network
interface.

880 Patent: Claims 41 and 43

a2 United States Patent

Boucher et al.

(10) Patent No.: US 8,131,880 B2
(45) Date of Patent: *Mar. 6, 2012

41. An apparatus for transferring a packet to a host com-

puter system, comprising:

a traffic classifier, disposed in a network interface for the
host computer system, configured to classify a first
packet received from a network by a communication
flow that includes said first packet;

a packet memory, disposed in the network interface, con-
figured to store said first packet;

a packet batching module, disposed in the network inter-
face, configured to determine whether another packet in
said packet memory belongs to said communication
flow;

a flow re-assembler, disposed in the network interface,
configured to re-assemble a data portion of said first
packet with a data portion of a second packet in said
communication flow; and

a processor, disposed in the network interface, that main-
tains a TCP connection for the communication flow, the
TCP connection stored as a control block on the network
interface.

43. A computer system for receiving a packet from a net-
work, comprising:

a memory configured to store packets received from a
network; and

a network interface for the computer system, the network
interface configured to receive a first packet from said
network, the network interface comprising:

a parser configured to extract information from a header
portion of a first packet;

a flow manager configured to examine said information;

a flow database configured to store an identifier of a first
communication flow comprising multiple packets,
including said first packet; and

a re-assembler for storing data portions of said multiple
packets without header portions in a first portion of said
memory; and

a processor for processing said first packet and for main-
taining a TCP connection for the communication flow,
the TCP connection stored as a control block on the
network interface.

[|
Ex. 1001 (880 Patent), Claims 41, 43.

H

The prior art combination renders
obvious TCP processing

Host Host
Processor Memory
/ Host Processor Bus
AD
, A/D
Presentation DMA v Internal
Module Dual
Ported
Checksum Internal Memory
Module Registers
) Protocol AD/ Network Interface
Timers Processing 7 Adaptor (NIA)
Engine (¢.g. FDDI or ATM)
Reduced Operation Protocol Engine (ROPE)
Transmission Medium
Figure 2 Block Diagram of VLSI bypass system

Ex.1015 (Thia) at Fig. 2; See also Paper 1; (1409 Petition) 51-57; Paper 1 (1410 Petition) at 60-65.

towards TCP/IP, a POSA would have been motivated to combine Thia with the

TCP/IP protocol teachings of Tanenbaum96. See Ex.1003 q114. As described by

Paper 1 (1410 Petition) at 34. See also Paper 1 (1409 Petition) 32. intel‘ | 266

880 Patent: Disputes

1. APOSA would have combined Thia and Tanenbaum96
(and Nahum)

2. Thia and Nahum are enabling

3. The prior art combinations disclose the limitations of the
challenged claims of the 880 Patent

4. Motions to Amend 880 Patent should be denied

H

880 Patent: Motions to Amend

« 2017IPR-01409, IPR2017-01736, IPR2018-00338: Amending
all challenged claims except for claim 8, which is cancelled

« 2017IPR-01410, IPR2017-01737, IPR2018-00339: Amending
all challenged claims

I EEEEE————— .. > |

880 Patent: Disputes

4. Motions to Amend 880 Patents should be denied

a) PO has not met its burden of production under 35
U.S.C. § 316(d) due to its failure to provide
adequate written description support

b) The substitute claims are indefinite

c) The prior art combinations disclose the limitations of the
substitute claims

NN # ~

Case No. IPR2017-01410
U.S. Patent No. 8,131,880

PO only provides string citations

if said header conforms to the TCP protocol: || See, e.g.. Ex. 2025 at
storing a data portion of said packet inare- || Abstract, 4§ [0115], [0271],
assembly buffer; Fig. 2, Cl. 33.

storing said header portion in a header See, e.g., Ex. 2025 at
buffer, wherein the header buffer is separate from || Abstract, I [0115], [0271],
said packet memory; Fig. 2, Cl. 33.

re-assembling the data portion of said packetll| See, e.g., Ex. 2025 at
with a data portion of another packet in the Abstract, §§ [0115]-[0116],
communication flow; and [0271], Fig. 2, Cls. 42, 44,
59.

processing, by the network interface, said See, e.g., Ex. 2025 at
packet and said other packet according to the TCP J| Abstract,] [0013], [0074],
connection. [0080], [0082]-|0083],

[0115]. Figs. 1, 2, Cl. 44.
Proposed Claim 80

80. (proposed substitute for claim 34) The
method of claim [[32]] 79, further comprising
storing said operation code in a control memory.

See, e.g., support cited for
proposed claim 79; see also
Ex. 2025 at Cl. 35.

Proposed Claim §

81. (proposed substitute for claim 35) The
method of claim [[32]] 79, further comprising
storing a flow number of said packet in a flow
memory, wherein said flow number comprises an
index of said flow key in said database.

See, e.g., suppont cited for
proposed claim 79; see also
Ex. 2025 at Cl. 36.

Proposed Claim 8.

82 (proposed substitute for claim 37) The
method of claim [[32]] 79, wherein the host

computer system comprises multiple processors for
processing network packets in accordance with the
TCP protocol.

See, e.g., support cited for
proposed claim 79; see aiso
Ex. 2025 at Cl. 38.

Pri d Claim

P

83. (proposed substitute for claim 38) The

method of claim [[37]] 82, further comprising:
receiving a second packet at said network

interface, wherein said second packet is part of a

See, e.g., support cited for
proposed claim 79; see aiso
Ex. 2025 at Cl. 39.

second ¢ ication flow; and

identifying a processor in the host computer §| See, e.g.. suppon cited for
system to process said second packet. proposed claim 79: see also

Case No. IPR2017-01410
U.S. Patent No. 8,131,880

status of said packet:

assistance™); § 5.1 (“Design
Overview").

storing said packet in a packet memory:

See, e.g. Ex.2019at § 5.1
(“Design Overview™): p. 72
(“GENERAL
DESCRIPTION™): p. 117-18
(“FRAME RECEIVE
SEQUENCER (RcvX)™).

if said header conforms to the TCP protocol
storing a data portion of said packet in a re-
assembly buffer:

See, e.g. . Ex.2019at § 3.1
(“Receive Interface™); §
4.6.2.1 ("Receive
overview”).

storing said header portion in a header
buffer, wherein the header buffer is separate from
said packet memory:

See,e.g Ex. 2019 at § 3.1
(“Receive Interface™); §
4.6.2.1 (“Receive
overview”); § 5.1 (“Design
Overview"), p. 117-18
(“FRAME RECEIVE
SEQUENCER (RevX)").

re-assembling the data portion of said packe

with a data portion of another packet in the
communication flow: and

See, e.g. Ex. 2019 at § 3.1
(“Receive Interface™): § 5.1
(“Design Overview™).

processing, by the network interface, said
packet and said other packet according to the TCP
connection.

See, e.g. . Ex.2019 at § 2
(“Summary of the
Invention™); § 2.1.1 (“Only
Support TCP/IP™). § 2.1.3
(*Two modes of operation™);
§ 3.1 ("Receive Interface”).

Proposed Claim 80

80. (proposed substitute for claim 34) The
method of claim [[32]] 79, further comprising
storing said operation code in a control memory.

See, e.g. Ex.2019at § 2.1.5
(*TCP hardware
assistance™): § 5.1 (“Design
Overview").

Proposed Claim 8§

81. (proposed substitute for claim 35) The
method of claim [[32]] 79, further comprising
storing a flow number of said packet in a flow
memory, wherein said flow number comprises an
index of said flow key in said database.

See, e.g. Ex. 2019 at § 2.1.1
(“Only Support TCP/IP”). §
2.1.4 (“The TCP cache™). §
5.1 (“Design Overview™).

vii

Paper 20 (1410 Motion to Amend) at ii. Paper 20 (1410 Motion to Amend) at vii.

See Paper 38 (1409 Opp. to Motion to Amend) at 2-9; Paper 38 (1410 Opp. to Motion to Amend) at 2-8.

PO’s citations do not identify a "packet
memory’; just general purpose RAM

[0838] FIG. 50 is a diagram of a FRAME RECEIVE N
SEQUENCER (RevX). The receive sequencer (RevSeq) L——_.w
analyzes and manages incoming packets, stores the result in Macoatan) Ny > To amaR
DRAM buffers, then notifies the processor through the MacCtn ﬁ%%u% From Sram
receive queue (RevQQ) mechanism. The process begins when MacStatus_IN ! _’——s'iraa%—* éﬁg’;ﬁfm
a buffer descriptor is available at the output of the FreeQ. N ﬁ,% o or
RevSeq issues a request to the Qmg which responds by MachddrA —pl H*m%iwﬁ |
supplying the buffer descriptor to RcvSeq. RevSeq then MachddE] L, F.F:cEEm o s
waits for a receive packet. The Mac, network, transport and Ll N
session information is analyzed as each byte is received and N L REVSER]/
stored in the assembly register (AssyReg). When four bytes SamAck | o ALYZER]_/
of information is available, RcvSeq requests a write of the SramRdData | || FravE] A
data to the SRAM. When sufficient data has been stored in —> N
the SRAM based receive FIFO, a DRAM write request is FREEQID | || Tenseor
issued to Xwr. The process continues until the entire packet ROV.QID P,
has been received at which point RevSeq stores the results caid —»] PAYLORD |
of the packet analysis in the beginning of the DRAM buffer. PauseDelEn —pi | CONTEXT]
Once the buffer and status have both been stored, RcvSeq
issues a write-queue request to Qmg. Qmg responds by » XwiReq
storing a buffer descriptor and a status vector provided by ;;ng:‘;‘q
RevSeq. The process then repeats. If RevSeq detects the » SramReq
arrival of a packet before a free buffer is available, it ignores [Samparams
the packet and sets the FrameLost status bit for the next
received packet. FIG. 50

Ex. 2025.092 (880 App. Pub.) at] [0838]; Ex. 2025.037 (880 App. Pub.) at Fig. 50.

See Paper 50 (1409 Sur-Reply to Motion to Amend) at 2-3;
Paper 50 (1410 Sur-Reply to Motion to Amend) at 2-3.

PO’s citations do not identify a header
buffer separate from packet memory

storing said header portion in a header

See, e.g., EX. 2025 at

buffer, wherein the header buffer is separate from Abstract, Jq [0115], [0271].

said packet memory;

Fig. 2, CI. 33.

Paper 20 (1410 Motion to Amend), App’x A at ii.

[0115] As shown in FIG. 2, the fast-path flow puts a
header such as HEADER A 90 into a header buffer that is
then forwarded to the host. HEADER A contains status 92
that has been generated by the INIC and TCP/SMB headers
94 that can be used by the host to determine what further
data is following and allocate the necessary host buffers,
which are then passed back to the INIC as data buffer
descriptors 96 via a command to the INIC. The INIC then
fills these buffers from data it was accumulating on the card
and notifies the host by sending a response to the command.

[0271] Incoming packets delivered to ATCP only (not
accepted by MSTCP) include TCP, TTCP or SPX packets
destined for one of our IP addresses. This includes both
slow-path frames and fast-path frames. In the slow-path
case, the TCP frames are given in their entirety (headers
included). In the fast-path case, the ATKReceivePacket is
given a header buffer that contains status information and
data with no headers (except those above TCP).

Alternatively, the fast-path may receive a header and data
that is a complete request, but that is also too large for a
header buffer. This results in a header and data buffer being

Ex. 2025.059 (880 App. Pub.) at] [0271].

passed to the host. This latter flow is similar to the slow-path INIC HEADER HOST HEADER DATA DATA BUFFER

. s 90 92
flow of HEADER B 98, which also puts all the data into the BUFFER BUFFERS " BUEFERS DESCRIPTORS
header buffer or, if the header buffer is too small, uses a large HEADER A ™ STATUS [DATA ki
(2K) host buffer for all the data. This means that on the HEADER B TCP/SMB 04

unsolicited receive path, the host will only see either a
header buffer or a header and at most, one data buffer. Note
that data is never split between a header and a data buffer.

Ex. 2025.049 (880 App. Pub.) at] [0115].

7 HEADERS |/ DATA
98 (FAST-PATH)
DATA

storing said header portion in a header buffer; and

STATUS
DATA BUFFER DATA
(SLOW-PATH) ; 7
7 104 9%
102
FIG. 2

Ex. 2025 (880 App. Pub.) at cl. 33.

Ex. 2025.002 (880 App. Pub.) at Fig. 2.

See Paper 38 (1409 Opp. to Motion to Amend) at 5-6; Paper 50 (1409 Sur-Reply to Motion to Amend) at 4-5; Paper 38 (1410 Opp. to
Motion to Amend) at 4-5; Paper 50 (1410 Sur-Reply to Motion to Amend) at 4-5.

PO in its reply relies entirely on new

evidence for support

storing said header portion in a header
buffer, wherein the header buffer is separate from

said packet memory;

See, e.g., Ex. 2025 at
Abstract, [[0115], [0271],
Fig. 2, CI. 33.

Paper 20 (1410 Motion to Amend), App’x A at ii.

Paper 43 (1410 Motion to Amend
Reply) at 1-2;

See Paper 50 (1409 Sur-Reply to
Motion to Amend) at 4-5;

Paper 50 (1410 Sur-Reply to Motion
to Amend) at 4-5.

The 237 Application supports the limitation of storing the data portion of a
received packet in are-assembly buffer (such as a data buffer) and the header portion
in a header buffer (such as an SRAM header buffer) that is separate from the packet

memory (such as a DRAM frame buffer). See, e.g., Ex. 2025, Fig. 2 (showing

headers in header buffers and data in data buffers); § [0593] (“As frames are received
by the INIC from a network, they are placed into 2K-byte DRAM buffers
Receive frame processing involves extracting this pointer from the Receive
hardware queue, and setting up a DMA into an SRAM header buffer of the first X
bytes from the DRAM frame buffer.”). The ‘809 Provisional also supports this
limitation. See, e.g., Ex. 2019 at 17 (Figure showing headers in header buffers and
data in data buffers); 53 (“automatic movement of input frames into DRAM");
57 (“The first step in receive processing is to dma the frame header into an SRAM
header buffer.”). Ex. 2305 at 31. A POSA would understand that a SRAM is a
different type of memory from a DRAM and, thus, the SRAM header buffer is

separate from the DRAM frame buffer.

Amended limitations are not identical to
the original, as-filed claims

» “wherein the header buffer is separate from the packet
memory” (claim 61)

» “wherein the header buffer is separate from the packet
memory” (claim 79)

* ‘“wherein the header buffer is separate from said packet
memory” (claim 85)

« “wherein the header buffer is separate from the memory”
(claim 87)

ﬂ

880 Patent: Disputes

4. Motions to Amend 880 Patents should be denied

a) PO has not met its burden of production under 35
U.S.C. § 316(d) due to its failure to provide adequate
written description support

b) The substitute claims are indefinite

c) The prior art combinations disclose the limitations of the
substitute claims

H

A POSA would not know what “separate
from” means in this context

« “... could mean that the header buffer and packet memory are
located on the same memory device, but the physical
location on the memory device where the header is stored is
different from the physical location on the memory device
whether the packets are stored”

« “... could refer to the memory device itself, such that the
header buffer is on a different memory device than the packet
memory”

« “... could mean that the virtual address for the header is
separate from the virtual address for the packet”

Ex. 1210.010 (1409 Lin Opp. Decl.) at | 24; See also Paper 38 (1409 Opp. to Mot. to Amend) at 9-11; Paper 50 (1409 Sur-Reply to Mot. to
Amend) at 7-8; Paper 38 (1410 Opp. to Mot. to Amend) at 8-10, Ex. 1210.010-.011 (1410 Lin Opp. Decl.) at [24, Paper 50 (1410 Sur-Reply to
Mot. to Amend) at 7-8.

H

880 Patent: Disputes

4. Motions to Amend 880 Patents should be denied

c) The prior art combinations disclose the limitations of the
substitute claims

i. “storing said header portion in a header buffer, wherein
the header buffer is separate from the packet memory”
(substitute claims 61, 79, 85, 87)

ii. “re-assembling [said/a/the] data portion” / “re-assembler”
(substitute claims 61, 79, 85, 87)

H

Exemplary proposed claim 61

61. (proposed substitute for claim 1) A method of transferring a packet to a host
computer system, wherein the packet is received at a communication device from a
network, comprising:

storing a first packet received at a network interface for the host computer

system in a packet memory:

parsing a header portion of [[a]] said first packet received at [[a]] the
network interface for the host computer system to determine if said first packet
conforms to a TCP protocol:

generating a flow key to identify a first communication flow that includes
said first packet, wherein said flow key includes a TCP connection for the
communication flow;

associating an operation code with said first packet, wherein said operation
code indicates a status of said first packet, including whether said packet is a
candidate for transfer to the host computer system that avoids processing said
header portion by the host computer system in accordance with said TCP protocol:

and

if said first packet conforms to the TCP protocol:

storing a data portion of said first packet in a re-assembly buffer;

storing said header portion in a header buffer, wherein the header buffer is

separate from the packet memory:;

re-assembling said data portion of said first packet with a data portion of a

second packet in the communication flow; and

processing, by the network interface, said first and second packets according
to the TCP connection, including updating a control block representing the TCP

connection on the network interface.

Paper 20 (1409 Motion to Amend), App’x C at xix.

The “slower external memory” is a
“packet memory” as claimed

234 Part Five Protocols
-~ 32Bits —— ~—— 32Bits ——»
DM Stant Address | STATUS
DMA Length Block Address Pointer
Bypass chip FULL Resery
Hosl Tag Header Pointer <

retransmission strategy was used. For a large window, the on-chip buffer may not be sufficient
to hold the unacknowledged data packets for retransmission or to buffer data packets for
resequencing, and slower external memory would be needed.

o [oI o Ex. 1015.011 (Thia);
S T See Paper 38 (1409 Opp. to Motion to Amend) at 13-14, 20-22;
Tm—— Ex. 1210.025, .053 (1409 Lin Opp. Decl.); Paper 50 (1409 Sur-Reply to Motion to

ot Tog: This g s it a s comman, o BVPASS START. BYPASS DMA. Amend) at 9-10; Paper 38 (1410 Opp. to Motion to Amend) at 12, 16-17; Ex. 1210.045,
TATUS e e f b . EVPTY, PLLING, FLLED 1 CLOSED .055 (1410 Lin Opp. Decl.); Paper 50 (1410 Sur-Reply to Motion to Amend) at 9-10.

Figure 4 Organization of internal bypass chip memary
easily because the sequence number matches that of a previously received TPDU. At the
sender end, if timer T1 expires, the transport entity can retransm r the first TPDU,
or all TPDUs (Go-back-N) waiting for acknowledgment. In this gn the Go-back-N
retransmission strategy was used. For a large window, the on-chip buffer may not be sufficient
0 hold the data packets for ission or to buffer data packets for
resequencing, and slower external memory would be needed.

INTEL Ex.1015.011

H

“header buffer” in internal memory is

separate from external “packet memory”

Thia’s Internal Dual-Ported Memory

Comprising Header Buffers

Control
Block 1

Block Address
—_—

-~ 32Biss

-

DMA Stan Address

DMA Length
Bypass chip FULL
Host Tag

Sequence Number
Lower Window
Upper Window
DST-REF ficld

Class
Format Type

Options

Presentation Context_[D l

Sequence Number

Lower Window

Upper Window

Control

DST-REF ficld

Block N

Class

Format Type

Options

Presentation Context_ID

+—— 32 Bits ——»

Thia’s External
Packet Memory

STATUS
Block Address Pointer
; Reserved
Header Pointer
Protocol Header
Data Pointer
—_——
Reserved
Buffer
Space for Data
STATUS il
Block Address
. Reserved
Header Pointer
Protocol Header
Data Pointer
—_—
Reserved
Buffer
Space for Data

Header
portion

Payload

Header
portion

Payload

Ex. 1210.052-.053 (1409 Lin Opp. Decl.) (excerpting Ex. 1015 (Thia) at .011);

See also Paper 38 (1409 Opp. to Motion to Amend) at 22-23; Paper 50 (1409 Sur-Reply to Motion to Amend) at 10-11; Paper 38 (1410 Opp. to

Motion to Amend) at 17; Ex. 1210.054-.055 (1410 Lin Opp. Decl.); Paper 50 (1410 Sur-Reply to Motion to Amend) at 10-11.

@‘280

PO’s (and Its expert’s) rebuttal of
petitioner’'s obviousness argument is
based on a incorrect premise

header and data portions. Ex. 1015 at011; Ex. 2305 at [23. As for the “slow packet
memory,” Thia explains it is only used to store packets that are too large for the
packet buffer on the ROPE chip. Ex. 1015 at 011 (“For a large window, the on-chip
buffer may not be sufficient to . . . buffer data packets for resequencing, and slower

external memory would be needed.”); Ex. 2305 at 24. Thus a received packet is

Paper 43 (1410 Motion to Amend Reply) at 8;
See Paper 50 (1409 Sur-Reply to Motion to Amend) at 9-11; Paper 50 (1410
Sur-Reply to Motion to Amend) at 9-11.

EEEEE—————————. > |

A “window’ refers to the number of
bytes, not the size of packets, that can
be received

Flow control in TCP is handled using a variable-size sliding window. The
Window field tells how many bytes may be sent starting at the byte acknowledged.
A Window field of 0 is legal and says that the bytes up to and including
Acknowledgemenr number — 1 have been received, but that the receiver is
currently badly in need of a rest and would like no more data for the moment,
thank you. Permission to send can be granted later by sending a segment with the
same Acknowledgement number and a nonzero Window field.

Ex. 1006.545 (Tanenbaum96);

See Paper 50 (1409 Sur-reply to Motion to Amend) at 9-11;
Ex. 1210.056-.057 (1409 Lin Opp. Decl.);

Paper 50 (1410 Sur-reply to Motion to Amend) at 9-11;

Ex. 1210.058-.059 (1410 Lin Opp. Decl.).

EEEE——————————. > |

PO’s expert agrees that a window does
not refer to size of packets

Does — is the window referencing a TCP window?
No.
What is it referencing?

Within the GO-back-N retransmission strategy,
there is a window size. And so it’s referencing that
window size. And in that instance, it's referencing
how much data can be buffered on the receive
side....

> 0 >0

Ex. 1254 (Almeroth Depo.) at 100:15-22;
See Paper 50 (1409 Sur-reply to Motion to Amend) at 9-10;
Paper 50 (1410 Sur-reply to Motion to Amend) at 9-10.

EEEEE—————————— > | v

PO’s expert disagrees that Thia’'s
external memory is only for packets that
are too large for internal memory

Q. Is it your understanding that slower external
memory could only be needed if the packets were
larger than the on-chip buffer?

A. | dont think | would agree with the “only”
characterization. As the first part of the sentence
says, it says, “The on-chip buffer may not be
sufficient to hold the unacknowledged data

packets for retransmission.” | think there’s a
variety of scenarios under which that might be the
case....

Ex. 1254 (Almeroth, Depo.) at 105:24-106:8;
See Paper 50 (1409 Sur-reply to Motion to Amend) at 9-10;
Paper 50 (1410 Sur-reply to Motion to Amend) at 9-10.

NN & |~

PO’s rebuttal is based on a faulty
premise contradicted by its expert

Q.

So if you had a situation where the large window
encompassed, let’s just say ten packets, for example, if you
had a case where the large window encompassed ten
packets, and together, those ten packets were bigger than
the on-chip buffer, that would be another circumstance
where the slower external memory would be needed, right?

If your hypothetical asks me to assume that the ten packets
are larger than what can be stored in the on-chip buffer, then
| would agree that the slower external memory would be
needed. | think that pretty much reads straight from the
sentences we have been looking at on Page 11.

And just to be clear, that's not the individual packets are too
large to store, but together, the ten packets are too large to

store, right?

[objection omitted]

A.

If that’s part of your hypothetical, then | think that’s fine.

Ex. 1254 (Almeroth Depo.) at 107:14-108:8;
See Paper 50 (1409 Sur-reply to Motion to Amend) at 9-10; Paper
50 (1410 Sur-reply to Motion to Amend) at 9-10.

@‘285

880 Patent: Disputes

4. Motions to Amend 880 Patents should be denied

c) The prior art combinations disclose the limitations of the
substitute claims

I. “storing said header portion in a header buffer, wherein the
header buffer is separate from the packet memory” (substitute
claims 61, 79, 85, 87)

li. “re-assembling [said/a/the] data portion” / “re-assembler’
(substitute claims 61, 79, 85, 87)

NN

PO’s arguments on re-assembly/re-
assembler are not new and are similarly
wrong

28. Itis also my opinion that Thia and Tanenbaum also fail to disclose re-
Thia and Tanenbaum96 also fail to teach re-assembling data portions of two
assembly of packet data. In particular, Thia’s ROPE chip does not perform any
data packets in the communication flow. In particular, Thia’s bypass chip does not
reassembly of PDUs into large data blocks. Indeed, Thia explains at page 14 that
perform any reassembly of the PDUs into larger data blocks. Ex. 1015 at 014 Alacritech Exhibit 2305, Page 12

»

“[t]here is no segmentation/reassembly within the bypass path” In other

(*“There is no segmentation/reassembly within the bypass path”). In other

words, Thia’s bypass chip performs some of the protocol processing functions (such words, Thia’s ROPE chip performs some of the protocol processing functions

as validating checksums, decoding headers, etc.) but then provides the PDU to the (such as validating checksums, decoding headers, and the like) but then provides

host for reassembly into a larger data block. Ex. 2305 at | 28. Tanenbaum96 also the entire PDU to the host for reassembly into a larger data block.

29. Additionally, Tanenbaum does not disclose the NIC re-assemblin
does not disclose re-assembling data portions of two data packets in the same Y &

o data portions of two packets in the same communication flow.
communication flow. Id. atq 29.

Paper 43 (1410 Motion to Amend Reply) at 10. Ex. 2305.012 (Almeroth Decl. ISO Reply) at q[{] 28-29.

See Paper 50 (1409 Sur-reply to Motion to Amend) at 11-12;
Paper 50 (1410 Sur-reply to Motion to Amend) at 11-12.

The evidence PO and its expert rely on
Is for transmitting, not receiving

2) For subsequent bypassable packets, the host processor initiates the BYPASS_DMA
procedure which checks for free buffer space in the bypass chip and programs the DMA
by sending the starting address pointer where the PDU is located, and its total length.
The destination address is supplied by the bypass chip. Arbitration for the host processor
bus between the host and DMA is provided by the DMAreq and DMAack lines. DMA
transfers the PDU into the internal dual-ported SRAM (Static RAM). Buffers are pre-
allocated in fixed sizes and are accessed by a simple round robin scheme using a set of
buffer pointers.

Ex. 1015.009 (Thia).

INTEL Ex.1015.009

See Paper 50 (1409 Sur-reply to Motion to Amend) at 11-12;
Paper 50 (1410 Sur-reply to Motion to Amend) at 11-12.

intel‘ | 288

