
not

the
be

~ith

3a

24.2

TCP: Transmission Control

Protocol

Introduction

The Transmission Control Protocol, or TCP, provides a connection-oriented, reliable,
byte-stream service between the two end points of an application. This is completely
different from UDP’s connectionless, unreliable, datagram service.

The implementation of UDP presented in Chapter 23 comprised 9 functions and
about 800 lines of C code. The TCP implementation we’re about to describe comprises
28 functions and almost 4,500 lines of C code. Therefore we divide the presentation of
TCP into multiple chapters.

These chapters are not an introduction to TCP. We assume the reader is familiar
with the operation of TCP from Chapters 17-24 of Volume 1.

Code Introduction

The TCP functions appear in six C files and numerous TCP definitions are in seven
headers, as shown in Figure 24.1.

Figure 24.2 shows the relationship of the various TCP functions to other kernel
functions. The shaded ellipses are the nine main TCP functions that we coven Eight of
these functions appear in the TCP protosw structure (Figure 24.8) and the ninth is
tcp_output.

795

INTEL Ex.1013.821
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

796 TCP: Transmission Control Protocol Chapter

~le

netinet/tcp.h
netinet/tcp_debug.h
netinet/tcp_fsm.h
netinet/tcp_seq.h
netinet/tcp_timer.h
netinet/tcp_var.h
netinet/tcpip.h

netinet/tcp_debug-c
netinet/tcp_input.c
netinet/tcp_output.c
netinet/tcp_subr.c
netinet/tcp_timer.c
netinet/tcp_usrreq.c

Description

tcphdr structure definition
t cp_debug structure definition
definitions for TCP’s finite state machine
macros for comparing TCP sequence numbers
definitions for TCP timers
t cpcb (control block) and tcp s t a t (statistics) structure definitions
TCP plus IP header definition

support for SO_DEBUG socket debugging (Section 27.10)
t cp_input and ancillary functions (Chapters 28 and 29)
tcp_output and ancillary functions (Chapter 26)
miscellaneous TCP subroutines (Chapter 27)
TCP timer handling (Chapter 25)
PRU xxx request handling (Chapter 30)

Figure 24.1 Files discussed in the TCP chapters.

system initialization

socket
receive buffer

software interrupt

various
system calls

_ D

getsockopt
setsockopt

Figure 24.2 Relationship of TCP functions to rest of the kernel.

¯ Section 24

Global

Statist

INTEL Ex.1013.822
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

-~hapter 24

tions

,ckopt
ckopt

n 24.2 Code Introduction 797

}lobal Variables

Figure 24.3 shows the global variables we encounter throughout the TCP functions.

Variable

tcb
tcp_last_inpcb

tcpstat

tcp. outflags

tcp_recvspace
tcp_sendspace

tcp. iss

tcprexmtthresh

tcp_mssdflt
tcp rttdflt

tcp do rfc1323
tcp now

tcp_keepidle
tcp_keepintvl

tcp maxidle

Datatype

struct inpcb
struct inpcb *

struct tcpstat

u_char
u_long
u_long

tcp_seq

int

int
int

int
u_long

int
int

int

Description

head of the TCP Internet PCB list
pointer to PCB for last received segment: one-behind cache
TCP statistics (Figure 24.4)
array of output flags, indexed by connection state (Figure 24.16)
default size of socket receive buffer (8192 bytes)
default size of socket send buffer (8192 bytes)
initial send sequence number (ISS)
number of duplicate ACKs to trigger fast retransmit (3)
default MSS (512 bytes)
default RTT if no data (3 seconds)
if true (default), request window scale and timestamp options
500 ms counter for RFC 1323 timestamps
keepalive: idle time before first probe (2 hours)
keepalive: interval between probes when no response (75 sec)

(also used as timeout for connect)
keepalive: time after probing before giving up (10 min)

Figure 24.3 Global variables introduced in the following chapters.

Statistics

Various TCP statistics are maintained in the global structure tcpstat, described in Fig-
ure 24.4. We’ll see where these counters are incremented as we proceed through the
code.

Figure 24.5 shows some sample output of these statistics, from the netstat -s
command. These statistics were collected after the host had been up for 30 days. Since
some counters come in pairs--one counts the number of packets and the other the
number of bytes--we abbreviate these in the figure. For example, the two counters for
the second line of the table are tcps_sndpack and tcps_sndbyte.

The counter for tcps_sndbyte should be 3,722,884,824, not -22,194,928 bytes. This is an
average of about 405 bytes per segment, which makes sense. Similarly, the counter for
tcps_rcvackbyte should be 3,738,811,552, not -21,264,360 bytes (for an average of about 565
bytes per segment). These numbers are incorrectly printed as negative numbers because the
printf calls in the netstat program use %d (signed decimal) instead of %lu (long integer,
unsigned decimal). All the counters are unsigned long integers, and these two counters are
near the maximum value of an unsigned 32-bit long integer (232 - 1 = 4, 294, 967, 295).

INTEL Ex.1013.823
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

798 TCP: Transmission Control Protocol
Chapter 24

tcpstat member

tcps_accepts
tcps_closed
tcps_connattempt
tcps_conndrops
tcps_connects
tcps_delack
tcps_drops
tcps_keepdrops
tcps_keepprobe
tcps_keeptimeo
tcps_pawsdrop
tcps_pcbcachemiss
tcps_persisttimeo
tcps~redack
tcps_preddat
tcps_rcvackbyte
tcps_rcvackpack
tcps_rcvacktoomuch
tcps_rcvafterclose
tcps_rcvbadoff
tcps_rcvbadsum
tcps_rcvbyte
tcps_rcvbyteafterwin
tcps_rcvdupack
tcps_rcvdupbyte
tcps_rcvduppack
tcps_rcvoobyte
tcps_rcvoopack
tcps_rcvpack
tcps_rcvpackafterwin
tcps_rcvpartdupbyte
tcps_rcvpartduppack
tcps_rcvshort
tcps_rcvtotal
tcps_rcvwinprobe
tcps_rcv%vinupd
tcps_rexmttimeo
tcps_rttupdated
tcps_segstimed
tcps_sndacks
tcps_sndbyte
tcps_sndctrl
tcps_sndpack
tcps_sndprobe
tcps_sndrexmitbyte
tcps_sndrexmitpack
tcps_sndtotal
tcps_sndurg
tcps_sndwinup
tcps_timeoutdrop

Description

#SYNs received in LISTEN state
#connections closed (includes drops)
#connections initiated (calls to connect)
#embryonic connections dropped (before SYN received)
#connections established actively or passively
#delayed ACKs sent
#connections dropped (after SYN received)
#connections dropped in keepalive (established or awaiting SYN)
#keepalive probes sent
#times keepalive timer or connection-establishment timer expire
#segments dropped due to PAWS
~times PCB cache comparison fails
#times persist timer expires
#times header prediction correct for ACKs
#times header prediction correct for data packets
#bytes ACKed by received ACKs
#received ACK packets
#received ACKs for unsent data
#packets received after connection closed
#packets received with invalid header length
#packets received with checksum errors
#bytes received in sequence
#bytes received beyond advertised window
#duplicate ACKs received
#bytes received in completely duplicate packets
#packets received with completely duplicate bytes
#out-of-order bytes received
#out-of-order packets received
#packets received in sequence
#packets with some data beyond advertised window
#duplicate bytes in part-duplicate packets
#packets with some duplicate data
#packets received too short
total #packets received
#window probe packets received
#received window update packets
#retransmit timeouts
#times RTT estimators updated
#segments for which TCP tried to measure RTT
#ACK-only packets sent (data length = 0)
#data bytes sent
#control (SYN, FIN, RST) packets sent (data length = 0)
#data packets sent (data length > 0)
#window probes sent (1 byte of data forced by persist timer)
#data bytes retransmitted
#data packets retransmitted
total #packets sent
#packets sent with URG-only (data length = 0)
#window update-only packets sent (data length = 0)
#connections dropped in retransmission timeout

Figure 24.4 TCP statistics maintained in the tcpstat structure.

Ised by I

~N!

Section 24

~, 655,
9,17
257,
862,
229
3,45
74,9
279,

8,801,9
6,61
235,
0 ac
4,67
46,g
22 c
3,44
77,1
1,8_c

1,7[
175,
1,03
60,~
279
0 di

144,02(
92,595
126,82(
237,74[
ii0, Oil

6,363,!
114,79’

86,
i, 173]
16,419

6,8
3,2

733,13
1,266,
i, 851,

SNMP’

INTEL Ex.1013.824
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

24.2 Code Introduction 799

netstat -s output

10,655,999 packets sent
9,177,823 data packets (-22,194,928 bytes)
257,295 data packets (81,075,086 bytes) retransmitted
862,900 ack-only packets (531,285 delayed)
229 URG-only packets
3,453 window probe packets
74,925 window update packets
279,387 control packets

~,801,953 packets received
6,617,079 acks (for -21,264,360 bytes)
235,311 duplicate acks
0 acks for unsent data
4,670,615 packets (324,965,351 bytes) rcvd in-sequence
46,953 completely duplicate packets (1,549,785 bytes)
22 old duplicate packets
3,442 packets with some dup. data (54,483 bytes duped)
77,114 out-of-order packets (13,938,456 bytes)
1,892 packets (1,755 bytes) of data after window
1,755 window probes
175,476 window update packets
1,017 packets received after close
60,370 discarded for bad checksums
279 discarded for bad header offset fields
0 discarded because packet too short

144,020 connection requests
92,595 connection accepts
126,820 connections established (including accepts)
237,743 connections closed (including 1,061 drops)
110,016 embryonic connections dropped

6,363,546 segments updated rtt (of 6,444,667 attempts)
114,797 retransmit timeouts

86 connection dropped by rexmit timeout
1,173 persist timeouts
16,419 keepalive timeouts

6,899 keepalive probes sent
3,219 connections dropped by keepalive

733,130 correct ACK header predictions
1,266,889 correct data packet header predictions
1,851,557 cache misses

tcpstat members

tcps_sndtotal
tcps_snd{pack,byte}
tcps_sndrexmit{pack,byte}
tcps_sndacks,tcps_delack
tcps_sndurg
tcps_sndprobe
tcps_sndwinup
tcps_sndctrl

tcps_rcvtotal
tcps_rcvack{pack,byte]
tcps_rcvdupack
tcps_rcvacktoomuch
tcps_rcv{pack,byte)
tcps_rcvdup{pack,byte]
tcps_pawsdrop
tcps_rcvpartdup{pack,byte]
tcps_rcvoo{pack,byte}
tcps_rcv{pack,byte}afterwin
tcps_rcvwinprobe
tcps_rcvwindup
tcps_rcvafterclose
tcps_rcvbadsum
tcps_rcvbadoff
tcps_rcvshort

tcps_connattempt
tcps_accepts
tcps_connects
tcps_closed, tcps_drops
tcps_conndrops

tcps_{rttupdated, segstimed}
tcps_rexmttimeo
tcps_timeoutdrop
tcps_persisttimeo
tcps_keeptimeo
tcps_keepprobe
tcps_keepdrops

tcps_predack
tcps_preddat
tcps_pcbcachemiss

Figure 24.5 Sample TCP statistics.

SNMP Variables

Figure 24.6 shows the 14 simple SNMP variables in the TCP group and the counters
from the tcpstat structure implementing that variable. The constant values shown
for the first four entries are fixed by the Net/3 implementation. The counter
tcpCurrEstab is computed as the number of Internet PCBs on the TCP PCB list.

Figure 24.7 shows tcpTabl e, the TCP listener table.

INTEL Ex.1013.825
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

