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and Rules of Thumb 

Definitions 

Big Endian: the byte with the binary address "x ... xOO" is in the most significant position 
("big end") of a 32-bit word (page 95). 

Clock rate: inverse of clock cycle time, usually measured in MHz (page 36). 
CPI: clock cycles per instruction (page 36). 
Hit rate: fraction of memory references found in the cache, equal to 1-Miss rate (page 404). 
Hit time: memory-access time for a cache hit, including time to determine if hit or miss (page 405). 
Instruction count: number of instructions executed while running a program (page 36). 
Little Endian: the byte with the binary address "x ... xOO" is in the least significant position 

("little end") of a 32-bit word (page 95). 
MIMD: (multiple instruction stream, multiple data stream) a multiprocessor or multicomputer 

(page 572). 
Miss penalty: time to replace a block in the top level of a cache system with the corresponding block 

from the lower level (page 405). 
Miss rate: fraction of memory references not found in the cache, equal to 1 - Hit rate (page 404 ). 
N112: the vector length needed to reach one-half of R00 (page 384). 
Nv: the vector length needed so that vector mode is faster than scalar mode (page 384). 
R

00
: the megaflop rate of an infinite-length vector (page 384). 

RAW data hazard: (read after write) instruction tries to read a ~ource before a prior instruction writes 
it; so it incorrectly gets the old value (page 264). 

SIMD: (single instruction stream, multiple data stream) an array processor (page 572). 
SISD: (single instruction stream, single data stream) a uniprocessor (page 572). 
Spatial locality: (locality in space) if an item is referenced, nearby items will tend to be referenced 

soon (page 403). 
Temporal locality: (locality in time) if an item is referenced, it will tend to be referenced again soon 

(page 403). 
WAR data hazard: (write after read) instruction tries to write a destination before it is read by a prior 

instruction, so prior instruction incorrectly gets the new value (page 264). 
WAW data hazard: (write after write) instruction tries to write an operand before it is written by a 

prior instruction. The writes are performed in the wrong order, incorrectly leaving the value of 
the prior instruction in the destination (page 264). 

Trivia 

Byte order of machines (page 95) 

Big Endian: IBM 360, MIPS, Motorola, SPARC, DLX 
Little Endian: DEC VAX, DEC RISC, Intel 80x86 

Year and User Address Size of Generations of IBM and Intel Computer Families 

Year Model User address size Year Model User address size 
~ 

1964 IBM360 24 1978 Intel 8086 4+16 

1971 IBM370 24 1981 Intel 80186 4+16 

1983 IBM370-XA 31 1982 Intel 80286 16+16 

1986 IBMESA/370 16+31 1985 Intel 80386 16+32 or 32 

1989 Intel 80486 16+32 or 32 
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Formulas 

1 
1. Amdahl's Law: Speedup=---------------

. Fractionenhanced 
(page 8) 

( l-Fract10nenhanced) + S d 
pee UPenhanced 

2. CPU time= Instruction count* Clock cycles per instruction* Clock cycle time (page 36) 

3 Average memory-access time = Hit time + Miss rate * Miss penalty (page 405) 

4. Means-arithmetic(AM), weighted arithmetic(W AM), harmonic(HM) and weighted harmonic(WHM): 
n n 

AM= l L,Timei, WAM = L,Weighti * Timei, HM= n , WHM = l 
n. 1 . 1 n n 

l= l= 
~ 1 ~Weighti 
~Ratei ..£...J Ratei 
i=l i=l 

where Timei is the execution time for the ith program of a total of n in the workload, W eighti is the 
weighting of the ith program in the workload, and Ratei is a function of l!fimei (page 51). 

C .-r . d . . _ Cost of die + Cost of testing die + Cost of packaging (page 
55

) 
5. ost o1 integrate circuit - p· 1 t t · ld ma es y1e 

6 D . . Id W .c • ld { 1 Defects per unit area * Die area }--ex . ie yie = aier y1e * + a 

where Wafer yield accounts for wafers that are so bad they need not be tested and a corresponds 
to the number of masking levels critical to die yield (usually a 2:: 2.0, page 59). 

p . 
1
. d _ Clock cycle timen0 pipelining * Ideal CPI * Pipeline depth 

7 · ipe me spee up - Clock cycle timepipelined Ideal CPI + Pipeline stall cycles per instruction 

where Pipeline stall cycles accounts for clock cycles lost due to pipeline hazards (page 258). 

8. System performance: 
. Timecpu Timeuo Time0 verlap 

T1meworkload = S d + S d M · (S d S d pee upcpu pee up1;0 ax1mum pee upcpu, pee up11o) 

where Timecpu means the time the CPU is busy, Time1;0 means the time the I/0 system is busy, 
and Timeoverlap means the time both are busy. This formula assumes the overlap scales linearly 
with speedup (page 506). 

Rules of Thumb 

1. Amdahl/Case Rule: A balanced compu,ter system need~ about 1 megabyte of main memory 
capacity and 1 megabit per second of I/0 bandwidth per MIPS of CPU performance (page 17). 

2. 90110 Locality Rule: A program executes about 90% of its instructions in 10% of its code (pages 
11-12). 

3. DRAM-Growth Rule: Density increases by about 60% per year, quadrupling in 3 years (page 17). 
4. Disk-Growth Rule: Den~ity increases by about 25% per year, doubling in 3 years (page 17). 
5. Address-Consumption Rule: The memory needed by the average program grows by about a factor 

of 1.5 to 2 per year; thus, it consumes between 1/2 and 1 address bit per year (page 16). 
6. 90150 Branch-Taken Rule: About 90% of backward-going branches are taken while about 50% of 

forward-going branches are taken (page 108). 
7. 2:1 Cache Rule: The miss rate of a direct-mapped cache of size Xis about the same as a 2-way­

set-associative cache of size X/2 (page 421). 
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Foreword 
by C. Gordon Bell 

I am delighted and honored to write the foreword for this landmark book. 
The authors have gone beyond the contributions of Thomas to Calculus and 

Samuelson to Economics. They have provided the definitive text and reference 
for computer architecture and design. To advance computing, I urge publishers 
to withdraw the scores of books on this topic so a new breed of architect/ 
engineer can quickly emerge. This book won't eliminate the complex and 
errorful microprocessors from semicomputer companies, but it will hasten the 
education of engineers who can design better ones. 

The book presents the critical tools to analyze uniprocessor computers. It 
shows the practicing engineer how technology changes over time and offers the 
empirical constants one needs for design. It motivates the designer about func­
tion, which is a welcome departure from the usual exhaustive shopping list of 
mechanisms that a naive designer might attempt to include in a single design. 

The authors establish a baseline for analysis and comparisons by using the 
most important machine in each class: mainframe (IBM 360), mini (DEC VAX), 
and micro/PC (Intel 80x86). With this foundation, they show the coming 
mainline of simpler pipelined and parallel processors. These new technologies 
are shown as variants of their pedagogically useful, but highly realizable, 
processor (DLX). The authors stress technology independence by measuring 
work done per clock (parallelism), and time to do work (efficiency and latency). 
These methods should also improve the quality of research on new architectures 
and parallelism. 

Thus, the book is required understanding for anyone working with architec­
ture or hardware, including architects, chip and computer system engineers, and 
compiler and operating system engineers. It is especially useful for software 
engineers writing programs for pipelined and vector computers. Managers and 
marketers will benefit by knowing the Fallacies and Pitfalls sections of the book. 
One can lay the demise of many a computer-and, occasionally, a company--on 
engineers who fail to understand the subtleties of computer design. 

The first two chapters establish the essence of computer design through 
measurement and the understanding of price/performance. These concepts are 
applied to the instruction set architecture and how it is measured. They discuss 
the implementation of processors and include extensive discussions of tech­
niques for designing pipelined and vector processors. Chapters are also devoted 
to memory hierarchy and the often-neglected input/output. The final chapter 

ix 
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x Foreword 

presents the opportunities and questions about machines and directions of the 
future. Now, we need their next book on how to build these machines. 

The reason this book sets a standard above all others and is unlikely to be 
superseded in any foreseeable future is the understanding, experience, taste, and 
uniqueness of the authors. They have stimulated the major change in architecture 
by their work on RISC (Patterson coined the word). Their university research 
leading to product development at MIPS and Sun Microsystems established 
important architectures for the 1990s. Thus, they have done the analysis, 
evaluated the trade-offs, worked on the compilers and operating systems, and 
seen their machines achieve significance in use. Furthermore, as teachers, they 
have seen that the book is pedagogically sound (and have solicited opinions 
from others through the unprecedented Beta testing program). I know this will 
be the book of the decade in computer systems. Perhaps its greatest 
accomplishment would be to stimulate other great architects and designers of 
higher-level systems (databases, communications systems, languages and 
operating systems) to write similar books about their domains. 

I've already enjoyed and learned from the book, and surely you will too. 

-C. Gordon Bell 
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Preface 

I started in 1962 to write a single book with this sequence of chapters, but soon 
found that it was more important to treat the subjects in depth rather than to 
skim over them lightly. The resulting length has meant that each chapter by itself 
contains enough material for a one semester course, so it has become necessary 
to publish the series in separate volumes ... 

Why We Wrote This Book 

Donald Knuth, The Art of Computer Programming, 
Preface to Volume 1 (of 7) (1968) 

Welcome to this book! We're glad to have the opportunity to communicate with 
you! There are so many exciting things happening in computer architecture, but 
we feel available materials just do not adequately make people aware of this. 
This is not a dreary science of paper machines that will never work. No! It's a 
discipline of keen intellectual interest, requiring balance of marketplace forces 
and cost/performance, leading to glorious failures and some notable successes. 
And it is hard to match the excitement of seeing thousands of people use the 
machine that you designed. 

Our primary goal in writing this book is to help change the way people learn 
about computer architecture. We believe that the field has changed from one that 
can only be taught with definitions and historical information, to one that can be 
studied with real examples and real measurements. We envision this book as 
suitable for a course in computer architecture as well as a primer or reference for 
professional engineers and computer architects. This book embodies a new 
approach to demystifying computer architecture-it emphasizes a quantitative 
approach to cost/performance tradeoffs. This does not imply an overly formal 
approach, but simply one that is grounded in good engineering design. To 
accomplish this, we've included lots of data about real machines, so that a reader 
can understand design tradeoffs in a quantitative as well as qualitative fashion. A 
significant component of this approach can be found in the problem sets at the 
end of every chapter, as well as the software that accompanies the book. Such 
exercises have long formed the core of science and engineering education. With 
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the emergence of a quantitative basis for teaching computer architecture, we feel 
the field has the potential to move toward the rigorous quantitative foundation of 
other disciplines. 

Topic Selection and Organization 

We have a conservative approach to topic selection, for there are many 
interesting ideas in the field. Rather than attempting a comprehensive survey of 
every architecture a reader might encounter today in practice or in the literature, 
we've chosen the core concepts of computer architecture that are likely to be 
included in any new machine. In making these decisions, a key criterion has 
been to emphasize ideas that have been sufficiently examined to be discussed in 
quantitative terms. For example, we concentrate on uniprocessors until the final 
chapter, where a bus-oriented, shared-memory multiprocessor is described. We 
believe this class of computer architecture will increase in popularity, but despite 
this perception it only met our criteria by a ·slim margin. Only recently has this 
class of architecture been examined in ways that allow us to discuss it 
quantitatively; a short time ago even this wouldn't have been included. Although 
large-scale parallel processors are of obvious importance to the future, it is our 
feeling that a firm basis in the principles of uniprocessor design is necessary 
before any practicing engineer tries to build a better computer of any 
organization; especially one incorporating multiple uniprocessors. 

Readers familiar with our research might expect this book to be only about 
reduced instruction set computers (RISCs). This is a mistaken judgment about 
the content of this book. Our hope is that design principles and quantitative data 
in this book will restrict discussions of architecture styles to terms like "faster" 
or "cheaper," unlike previous debates. 

The material we have selected has been stretched upon a consistent structure 
that is followed in every chapter. After explaining the ideas of a chapter, we 
include a "Putting It All Together" section that ties these ideas together by 
showing how they are used in a real machine. This is followed by a section, 
entitled "Fallacies and Pitfalls," that lets readers learn from the mistakes of 
others.We show examples of common misunderstandings and architectural 
traps that are difficult to avoid even when you know they are lying in wait for 
you. Each chapter ends with a "Concluding Remarks" section, followed by a 
"Historical Perspective and References" section that attempts to give proper 
credit for the ideas in the chapter and a sense of the history surrounding the 
inventions, presenting the human drama of computer design. It also supplies 
references that the student of architecture may want to pursue. If you have time, 
we recommend reading some of the classic papers in the field that are mentioned 
in these sections. It is both enjoyable and educational to hear the ideas from the 
mouths of the creators. Each chapter ends with Exercises, over 200 in total, 
which vary from one-minute reviews to term projects. 
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A glance at the Table of Contents shows that neither the amount nor the depth 
of the material is equal from chapter to chapter. In the early chapters, for 
example, we have more basic material to ensure a common terminology and 
background. In talking with our colleagues, we found widely varying opinions 
of the backgrounds readers have, the pace at which they can pick up new 
material, and even the order in which ideas should be introduced. Our 
assumption is that the reader is familiar with logic design, and has had some 
exposure to at least one instruction set and basic software concepts. The pace 
varies with the chapters, with the first half gentler than the last half. The 
organizational decisions were formed in response to reviewer advice. The final 
organization was selected to conveniently suit the majority of courses (beyond 
Berkeley and Stanford!) with only minor modifications. Depending on your 
goals, we see three paths through this material: 

Introductory coverage: Chapters 1, 2, 3, 4, 5, 6.1-6.5, 8.1-8.5, 9.1-9.5, 10, 
and A.1-A.3. 

Intermediary coverage: Chapters 1, 2, 3, 4, 5, 6.1-6.6, 6.9-6.12, 8.1-8.7, 8.9-
8.12, 9, 10, A (except skip division in Section A.9), 
and E. 

Advanced coverage: Read everything, but Chapters 3 and 5 and Sections 
A.1-A.2 and 9.3-9.4 may be largely review, so read 
them quickly. 

Alas, there is no single best order for the chapters. It would be nice to know 
about pipelining (Chapter 6) before discussing instruction sets (Chapters 3 and 
4 ), for example, but it is difficult to understand pipelining without understanding 
the full set of instructions being pipelined. We ourselves have tried a few 
different orders in earlier versions of this material, and each has its strengths. 
Thus, the material was written so that it can be covered in several ways. The 
organization proved sufficiently flexible for a wide variety of chapter sequences 
in the Beta test program at 18 schools, where the book was used successfully. 
Some of these syllabi are reproduced in the accompanying Instructor's Manual. 
The only restriction is that some chapters .should be read in sequence: 

Chapters 1 and 2 

Chapters 3 and 4 

Chapters 5, 6, and 7 

Chapters 8 and 9 

Readers should start with Chapters 1 and 2 and end with Chapter 10, but the rest 
can be covered in any order. The only proviso is that if you read Chapters 5, 6, 
and 7 before Chapters 3 and 4, you should first skim Section 4.5, as the 
instruction set in this section, DLX, is used to illustrate the ideas found in those 
three chapters. A compact description of DLX and the hardware description 
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notation we use can be found on the inside back cover. (We selected a modified 
version of C for our hardware description language because of its compactness, 
because of the number of people who know the language, and because there is 
no common description language used in books that could be considered 
prerequisites.) 

We urge everyone to read Chapters 1 and 2. Chapter 1 is intentionally easy to 
follow so that it can be read quickly, even by a beginner. It gives a few 
important principles that act as themes guiding the tradeoffs in later chapters. 
While few would skip the performance section of Chapter 2, some might be 
tempted to skip the cost section to get to the "technical issues" in the later 
chapters. Please don't. Computer design is almost always balancing cost and 
performance, and few understand how price is related to cost, or how to lower 
cost and price by 10% in a way that minimizes performance loss. The 
foundations laid in the cost section of Chapter 2 allow cost/performance to be 
the basis of all tradeoff s in the last half of the book. On the other hand, some 
subjects are probably best left as reference material. If the book is part of a 
course, lectures can show how to use the data from these chapters in making 
decisions in computer design. Chapter 4 is probably the best example of this. 
Depending on your background, you already may be familiar with some of the 
material, but we try to include a few new twists for each subject. The section on 
microprogramming in Chapter 5 will be review for many, for example, but the 
description of the impact of interrupts on control is rarely found in other books. 

We also invested special effort in making this book interesting to practicing 
engineers and advanced graduate students. Advanced topics sections are found 
in: 

Chapter 6 on pipelining (Sections 6.7 and 6.8, which are about half the 
chapter) 

Chapter 7 on vectors (the whole chapter) 

Chapter 8 on memory-hierarchy design (Section 8.8, which is about a third of 
Chapter 8) 
Chapter 10 on future directions (Section 10.7, about a quarter of that chapter) 

Those under time pressure might want to skip some of these sections. To make 
skipping easier, the Putting It All Together sections of Chapters 6 and 8 are 
independent of the advanced topics. 

You might have noticed that floating point is covered in Appendix A rather 
than in a chapter. Since it is largely independent of the other material, our 
solution was to include it as an appendix as our surveys indicated that a 
significant percentage of the readers would be exposed to floating point 
elsewhere. 

The remaining appendices are included both for reference purposes for the 
computer professional and for the Exercises. Appendix B contains the 
instruction sets of three classic machines: the IBM 360, Intel 8086, and the DEC 
VAX. Appendices C and D give the mix of instructions in real programs for 
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these machines plus DLX, either measured by instruction frequency or time 
frequency. Appendix E offers a more detailed comparative survey of several 
recent architectures. 

Exercises, Projects, and Software 

The optional nature of the material is also reflected in the Exercises. Brackets for 
each question (<chapter.section>) indicate the text sections of primary relevance 
to answering the question. We hope this helps readers to avoid exercises for 
which they haven't read the corresponding section, as well as providing the 
source for review. We have adopted Donald Knuth's technique of rating the 
Exercises. The ratings give an estimate of how much effort a problem might 
take: 

[ 1 O] 1 minute (read and understand) 

[20] 15-20 minutes for full answer 

[25] 1 hour for full written answer 

[30] Short programming project: less than 1 full day of programming 

[ 40] Significant programming project: 2 weeks of elapsed time 

[50] Term project (2-4 weeks by two people) 

[Discussion] Topic for discussion with others interested in computer 
architecture 

To facilitate the use of this book in the college curriculum, the book is also 
accompanied by an Instructor's Manual and software. The software is a UNIX 
tar tape that includes benchmarks, cache traces, cache and instruction set 
simulators, and a compiler. Readers interested in obtaining the software will find 
it available by anonymous FTP via Internet from max.stanford.edu. Copies may 
also be obtained by contacting Morgan Kaufmann at (415) 578-9911 
(duplication and handling charges will apply on these orders). 

Concluding Remarks 

You might see a masculine adjective or pronoun in a paragraph. Since English 
does not have gender-neutral pronouns or adjectives, we found ourselves in the 
unfortunate position of choosing among .the standard, consistent use of the 
masculine, alternating between feminine and masculine, and the grammatically 
unworkable third person plural. We tried to reduce the occurrence of this 
problem, but when a pronoun is unavoidable we alternate gender chapter by 
chapter. Our experience is this practice hurts no one, unlike the standard 
solution. 

If you read the following acknowledgement section you will see that we went 
to great lengths to correct mistakes. Since a book goes through many printings, 
we have the opportunity to make even more corrections. If you uncover any 
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remammg resilient bugs, please contact the publisher by electronic mail 
(bugs2@vsop.stanford.edu) or low-tech mail using the address found on the 
copyright page. The first reader to report an error that is incorporated in a future 
printing will be rewarded with a $1.00 bounty. 

Finally, this book is unusual in that there is no strict ordering of the authors' 
names. About half the time you will see Hennessy and Patterson, both in this 
book and in advertisements, and half the time you will see Patterson and 
Hennessy. You'll even find it listed both ways in bibliographic publications such 
as Books in Print. (When we reference the book, we will alternate author order.) 
This reflects the true collaborative nature of this book: Together, we 
brainstormed about the ideas and method of presentation, then individually 
wrote one-half of the chapters and acted as reviewer for every draft of the other. 
(In fact, the final page count suggests each of us wrote exactly the same number 
of pages!) We could think of no fair way to reflect this genuine cooperation 
other than to hide in ambiguity-a practice that may help some authors but 
confuses librarians. Thus, we equally share the blame for what you are about to 
read. 

John Hennessy David Patterson 
January 1990 
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1.1 

Fundamentals of 
Computer Design 

Introduction 

Computer technology has made incredible progress in the past half century. In 
1945, there were no stored-program computers. Today, a few thousand dollars 
will purchase a personal computer that has more performance, more main mem­
ory, and more disk storage than a computer bought in 1965 for a million dollars. 
This rapid rate of improvement has come both from advances in the technology 
used to build computers and from innovation in computer designs. The increase 
in performance of machines is plotted in Figure 1.1. While technological 
improvements have been fairly steady, progress arising from better computer 
architectures has been much less consistent. During the first 25 years of elec­
tronic computers, both forces made a major contribution; but for the last 20 
years, computer designers have been largely dependent upon integrated circuit 
technology. Growth of performance during this period ranges from 18% to 35% 
per year, depending on the computer class. 

More than any other line of computers, mainframes indicate a growth rate due 
chiefly to technology-most of the organizational and architectural innovations 
were introduced into these machines many years ago. Supercomputers have 
grown both via technological enhancements and via architectural enhancements 
(see Chapter 7). Minicomputer advances have included innovative ways to 
implement architectures, as well as the adoption of many of the mainframe's 
techniques. Performance growth of microcomputers has been the fastest, partly 
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because these machines take the most direct advantage of improvements in 
integrated circuit technology. Also, since 1980, microprocessor technology has 
been the technology of choice for both new architectures and new implemen­
tations of older architectures. 

Two significant changes in the computer marketplace have made it easier 
than ever before to be commercially successful with a new architecture. First, 
the virtual elimination of assembly language programming has dramatically 
reduced the need for object-code compatibility. Second, the creation of stan­
dardized, vendor-independent operating systems, such as UNIX, has lowered the 
cost and risk of bringing out a new architecture. Hence, there has been a 
renaissance in computer design: There are many new companies pursuing new 
architectural directions, with new computer families emerging-mini­
supercomputers, high-performance microprocessors, graphics supercomputers, 
and a wide range of multiprocessors-at a higher rate than ever before. 

1000 

100 

Performance 

10 

1965 1970 1975 1980 1985 1990 

FIGURE 1.1 Different computer classes and their performance growth shown over 
the past ten or more years. The vertical axis shows relative performance and the 
horizontal axis is year of introduction. Classes of computers are loosely defined, primarily 
by their cost. Supercomputers are the most expensive-from over one million to tens of 
millions of dollars. Designed mostly for scientific applications, they are also the highest 
performance machines. Mainframes are high-end, general-purpose machines, typically 
costing more than one-half million dollars and as much as a few million dollars. Mini­
computers are midsized machines costing from about 50 thousand dollars up to ten times 
that much. Finally, microcomputers range from small personal computers costing a few 
thousand dollars to large powerful workstations costing 50 thousand or more. The 
performance growth rates for supercomputers, minicomputers, and mainframes have been 
just under 20% per year, while the performance growth rate for microprocessors has been 
about 35% per year. 
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Starting in 1985, the computer industry saw a new style of architectures tak­
ing advantage of this opportunity and initiating a period in which performance 
has increased at a much more rapid rate. By bringing together advances in inte­
grated circuit technology, improvements in compiler technology, and new archi­
tectural ideas, designers were able to create a series of machines that improved 
in performance by a factor of almost 2 every year. These ideas are now 
providing one of the most significant sustained performance improvements in 
over 20 years. This improvement was only possible because a number of 
important technological advances were brought together with a much better 
empirical understanding of how computers were used. From this fusion has 
emerged a style of computer design based on empirical data, experimentation, 
and simulation. It is this style and approach to computer design that are reflected 
in this text. 

Sustaining the improvements in cost and performance of the last 25 to 50 
years will require continuing innovations in computer design, and the authors 
believe such innovations will be founded on this quantitative approach to com­
puter architecture. Hence, this book has been written not only to document this 
design style, but also to stimulate the reader to contribute to this field. 

Definitions of Performance 

To familiarize the reader with the terminology and concepts of this book, this 
chapter introduces some key terms and ideas. Examples of the ideas mentioned 
here appear throughout the book, and several of them-pipelining, memory 
hierarchies, CPU performance, and cost measurement-are the focus of entire 
chapters. Let's begin with definitions of relative performance. 

When we say one computer is faster than another, what do we mean? The 
computer user may say a computer is faster when a program runs in less time, 
while the computer center manager may say a computer is faster when it com­
pletes more jobs in an hour. The computer user is interested in reducing 
response time-the time between the start and the completion of an event-also 
referred to as execution time or latency. The computer center manager is 
interested in increasing throughput-the total amount of work done in a given 
time-sometimes called bandwidth. Typically, the terms "response time," "exe­
cution time," and "throughput" are used when an entire computing task is 
discussed. The terms "latency" and "bandwidth" are almost always the terms of 
choice when discussing a memory system. All of these terms will appear 
throughout the text. 

Do the following system performance enhancements increase throughput, 
decrease response time, or both? 

1. Faster clock cycle time 
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2. Multiple processors for separate tasks (handling the airlines reservations 
system for the country, for example) 

3. Parallel processing of scientific problems 

Decreasing response time usually improves throughput. Hence, both 1 and 3 
improve response time and throughput. In 2, no one task gets work done faster, 
so only throughput increases. 

Sometimes these measures are best described with probability distributions 
rather than constant values. For example, consider the response time to complete 
an 1/0 operation to disk. The response time depends on a number of nondeter­
ministic factors, such as what the disk is doing at the time of the 1/0 request and 
how many other tasks are waiting to access the disk. Because these values are 
not fixed, it makes more sense to talk about the average response time of a disk 
access. Likewise, the effective disk throughput-how much data actually goes to 
or from the disk per unit time-is not a constant value. For most of this text, we 
will treat response time and throughput as deterministic values, though this will 
change in Chapter 9 when we discuss 1/0. 

In comparing design alternatives, we often want to relate the performance of 
two different machines, say X and Y. The phrase "X is faster than Y" is used 
here to mean that the response time or execution time is lower on X than on Y 
for the given task. In particular, "Xis n% faster than Y" will mean 

Execution timey n 
-----~=1+-
Execution timex 100 

Since execution time is the reciprocal of performance, the following relationship 
holds: 

1 
n Execution timey Performancey Performancex 

1+-= =-----
100 Execution timex 1 Perf ormancey 

Performancex 

Some people think of a performance increase, n, as the difference between the 
performance of the faster and slower machine, divided by the performance of the 
slower machine. This definition of n is exactly equivalent to our first definition, 
as we can see: 

(
Performancex - Performancey) 

n= 100 
Performancey 
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n Performancex 
100 Performancey 

1 

n Performancex Execution timey 
1+-= -~-~-~-

100 Performancey Execution timex 

The phrase "the throughput of X is 30% higher than Y" signifies here that the 
number of tasks completed per unit time on machine Xis 1.3 times the number 
completed on Y. 

If machine A runs a program in 10 seconds and machine B runs the same 
program in 15 seconds, which of the following statements is true? 

• A is 50% faster than B. 

• A is 33% faster than B. 

Machine A is n% faster than machine B can be expressed as 

or 

Thus, 

Execution timeB n 
------=-= 1 + -
Execution time A 100 

Execution timeB - Execution time A 
n= . . *100 

Execution time A 

15 - 10 * 100 = 50 
10 

A is therefore 50% faster than B. 

To help prevent misunderstandings-and because of the lack of consistent 
definitions for "faster than" and "slower than"-we will never use the phrase 
"slower than" in a quantitative comparison of performance. 

Because performance and execution time are reciprocals, increasing perfor­
mance decreases execution time. To help avoid confusion between the terms 
"increasing" and "decreasing," we usually say "improve performance" or 
"improve execution time" when we mean increase performance and decrease 
execution time. 
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Throughput and latency interact in a variety of ways in computer designs. 
One of the most important interactions occurs in pipelining. Pipelining is an 
implementation technique that improves throughput by overlapping the 
execution of multiple instructions; pipelining is discussed in detail in Chapter 6. 
Pipelining of instructions is analogous to using an assembly line to manufacture 
cars. In an assembly line it may take eight hours to build an entire car, but if 
there are eight steps in the assembly line, a new car is finished every hour. In the 
assembly line, the latency to build one car is not affected, but the throughput 
increases proportionally to the number of stages in the line if all the stages are of 
the same length. The fact that pipelines in computers have some overhead per 
stage increases the latency by some amount for each stage of the pipeline. 

1.3 J Quantitative Principles of Computer Design 

This section introduces some important rules and observations that arise. time 
and again in designing computers. 

Make the Common Case Fast 

Perhaps the most important and pervasive principle of computer design is to 
make the common case fast: In making a design tradeoff, favor the frequent case 
over the infrequent case. This principle also applies when determining how to 
spend resources since the impact on making some occurrence faster is higher if 
the occurrence is frequent. Improving the frequent event, rather than the rare 
event, will obviously help performance, too. In addition, the frequent case is 
often simpler and can be done faster than the infrequent case. For example, 
when adding two numbers in the central processing unit (CPU), we can expect 
overflow to be a rare circumstance and can therefore improve performance by 
optimizing the more common case of no overflow. This may slow down the case 
when overflow occurs, but if that is rare, then overall performance will be 
improved by optimizing for the normal case. 

We will see many cases of this principle throughout this text. In applying this 
simple principle, we have to decide what the frequent case is and how much per­
formance can be improved by making that case faster. A fundamental law, called 
Amdahl's Law, can be used to quantify this principle. 

Amdahl's Law 

The performance gain that can be obtained by improving some portion of a 
computer can be calculated using Amdahl's Law. Amdahl's Law states that the 
performance improvement to be gained from using some faster mode of execu­
tion is limited by the fraction of the time the faster mode can be used. 
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Amdahl's Law defines the speedup that can be gained by using a particular 
feature. What is speedup? Suppose that we can make an enhancement to a 
machine that will improve performance when it is used. Speedup is the ratio 

S d _ Performance for entire task using the enhancement when possible 
pee up - Performance for entire task without using the enhancement 

Alternatively: 

S d _ Execution time for entire task without using the enhancement 
pee up - Execution time for entire task using the enhancement when possible 

Speedup tells us how much faster a task will run using the machine with the 
enhancement as opposed to the original machine. 

Consider the problem of going from Nevada to California over the Sierra 
Nevada mountains and through the desert to Los Angeles. You have several 
types of vehicles available, but unfortunately your route goes through ecolog­
ically sensitive areas in the mountains where you must walk. Your walk over the 
mountains will take 20 hours. The last 200 miles, however, can be done by high­
speed vehicle. There are five ways to complete the second portion of your 
journey: 

1. Walk at an average rate of 4 miles per hour. 

2. Ride a bike at an average rate of 10 miles per hour. 

3. Drive a Hyundai Excel in which you average 50 miles per hour. 

4. Drive a Ferrari Testarossa in which you average 120 miles per hour. 

5. Drive a rocket car in which you average 600 miles per hour. 

How long will it take for the entire trip using these vehicles, and what is the 
speedup versus walking the entire distance? 

Hours for second Speedup in the Hours for entire Speedup for 
portion of trip desert trip entire trip 

50.00 1.0 70.00 1.0 

20.00 2.5 40.00 1.8 

4.00 12.5 24.00 2.9 

1.67 30.0 21.67 3.2 

0.33 150.0 20.33 3.4 

FIGURE 1.2 The speedup ratios obtained for different means of transport depend heavily on the fact that we 
have to walk across the mountains. The speedup in the desert-once we have crossed the mountains-is equal to the 
rate using the designated vehicle divided by the walking rate; the final column shows how much faster our entire trip is 
compared to walking. 
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We can find the answer by determining how long the second part of the trip will 
take and adding that time to the 20 hours needed to cross the mountains. Figure 
1.2 shows the effectiveness of using the enhanced mode of transportation. 

Amdahl's Law gives us a quick way to find speedup, which depends on two 
factors: 

1. The fraction of the computation time in the original machine that can be 
converted to take advantage of the enhancement. In the example above, the 

fraction is ~~ . This value, which we will call Fractionenhanced• is always less 

than or equal to 1. 

2. The improvement gained by the enhanced execution mode; that is, how 
much faster the task would run if only the enhanced mode were used. In the 
above example this value is given in the column labeled "speedup in the 
desert." This value is the time of the original mode over the time of the 
enhanced mode and is always greater than 1. We call this value 
SpeedUPenhanced· 

The execution time using the original machine with the enhanced mode will be 
the time spent using the unenhanced portion of the machine plus the time spent 
using the enhancement: 

. . . . ( . FractiOilenhanced ) 
Execut10n tlmenew = Execution tlme0 1d * ( 1-Fractlonenhanced) + S d 

pee UPenhanced 

The overall speedup is the ratio of the execution times: 

Execution timeold 1 
Speedupoverall = Execut1"on ti'menew = Fract1'on . enhanced 

(l-Fract1onenhanced) + S d 
pee UPenhanced 

Suppose that we are considering an enhancement that runs 10 times faster than 
the original machine but is only usable 40% of the time. What is the overall 
speedup gained by incorporating the enhancement? 

Fractionenhanced = 0.4 

Speedup enhanced = 10 

= 
1 1 

0 6 
0.4 = 0.64 z 1.56 

. +10 
SpeeduPoverall 
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Amdahl's Law expresses the law of diminishing returns: The incremental 
improvement in speedup gained by an additional improvement in the perfor­
mance of just a portion of the computation diminishes as improvements are 
added. An important corollary of Amdahl's Law is that if an enhancement is 
only usable for a fraction of a task, we can't speed up the task by more than the 
reciprocal of 1 minus that fraction. 

A common mistake in applying Amdahl's Law is to confuse "fraction of time 
converted to use an enhancement" and "fraction of time after enhancement is in 
use." If, instead of measuring the time that could use the enhancement in a com­
putation, we measure the time after the enhancement is in use, the results will be 
incorrect! (Try Exercise 1.8 to see how wrong.) 

Amdahl's Law can serve as a guide to how much an enhancement will 
improve performance and how to distribute resources to improve cost/perfor­
mance. The goal, clearly, is to spend resources proportional to where time is 
spent. 

Suppose we could improve the speed of the CPU in our machine by a factor of 
five (without affecting 1/0 performance) for five times the cost. Also assume 
that the CPU is used 50% of the time, and the rest of the time the CPU is waiting 
for 1/0. If the CPU is one-third of the total cost of the computer, is increasing the 
CPU speed by a factor of five a good investment from a cost/performance 
viewpoint? 

The speedup obtained is 

1 1 
Speedup = 0.5 = 0.6 = 1.67 

0.5+5 

The new machine will cost 

~ * 1 + } * 5 = 2.33 times the original machine 

Since the cost increase is larger than the performance improvement, this change 
does not improve cost/performance. 

Locality of Reference 

While Amdahl's Law is a theorem that applies to any system, other important 
fundamental observations come from properties of programs. The most impor­
tant program property that we regularly exploit is locality of reference: Programs 
tend to reuse data and instructions they have used recently. A widely held rule of 
thumb is that a program spends 90% of its execution time in only 10% of the 
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code. An implication of locality is that based on the program's recent past, one 
can predict with reasonable accuracy what instructions and data a program will 
use in the near future. 

To examine locality, several programs were measured to determine what per­
centage of the instructions were responsible for 80% and for 90% of the instruc­
tions executed. The data are shown in Figure 1.3, and the programs are described 
in detail in the next chapter. 

Locality of reference also applies to data accesses, though not as strongly as 
to code accesses. There are two different types of locality that have been 
observed. Temporal locality states that recently accessed items are likely to be 
accessed in the near future. Figure 1.3 shows one effect of temporal locality. 
Spatial locality says that items whose addresses are near one another tend to be 
referenced close together in time. We will see these principles applied later in 
this chapter, and extensively in Chapter 8. 

14% 

12% 

10% 

8% 

6% 

4% 

2% 

0% 
GCC Spice TeX 

90% of all 
references 

80% of all 
references 

FIGURE 1.3 This plot shows what percentage of the instructions are responsible for 
80% and for 90% of the instruction executions. For example, just under 4% of Spice's 
program instructions (also called the static instructions) represent 80% of the dynamically 
executed instructions, while just under 10% of the static instructions account for 90% of the 
executed instructions. Less than half the static instructions are executed even once in any 
one run-in Spice only 30% of the instructions are executed one or more times. Detailed 
descriptions of the programs and their inputs appear in Figure 2.17 (page 67). 
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1 .4 I The Job of a Computer Designer 

A computer architect designs machines to run programs. If you were going to 
design a computer, your task would have many aspects, including instruction set 
design, functional organization, logic design, and implementation. The imple­
mentation may encompass integrated circuit (IC) design, packaging, power, and 
cooling. You would have to optimize a machine design across these levels. This 
optimization requires familiarity with a very wide range of technologies, from 
compilers and operating systems to logic design and packaging. 

Some people have used the term computer architecture to refer only to 
instruction set design. They refer to the other aspects of computer design as 
"implementation," often insinuating that implementation is uninteresting or less 
challenging. The authors believe this view is not only incorrect, but is even 
responsible for mistakes in the design of new instruction sets. The architect's or 
designer's job is much more than instruction set design, and the technical hur­
dles in the other aspects of the project are certainly as challenging as those 
encountered in doing instruction set design. 

In this book the term instruction set architecture refers to the actual pro­
grammer-visible instruction set. The instruction set architecture serves as the 
boundary between the software and hardware, and that topic is the focus of 
Chapters 3 and 4. The implementation of a machine has two components: 
organization and hardware. The term organization includes the high-level 
aspects of a computer's design, such as the memory system, the bus structure, 
and the internal CPU design. For example, two machines with the same instruc­
tion set architecture but different organizations are the VAX-11/780 and the 
VAX 8600. Hardware is used to refer to the specifics of a machine. This would 
include the detailed logic design and the packaging technology of the machine. 
This book focuses on instruction set architecture and on organization. Two 
machines with identical instruction set architectures and nearly identical organi­
zations that differ primarily at the hardware level are the V AX-11/780 and the 
11/785; the 11/785 used an improved integrated circuit technology to obtain a 
faster clock rate and made some small changes in the memory system. In this 
book the word "architecture" is intended to cover all three aspects of computer 
design. 

Functional Requirements 

Computer architects must design a computer to meet functional requirements as 
well as price and performance goals. Often, they also have to determine what the 
functional requirements are, and this can be a major task. The requirements may 
be specific features, inspired by the market. Application software often drives 
the choice of certain functional requirements by determining how the machine 
will be used. If a large body of software exists for a certain instruction set 
architecture, the architect may decide that a new machine should implement an 
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existing instruction set. The presence of a large market for a particular class of 
applications might encourage' the designers to incorporate requirements that 
would make the machine competitive in that market. Figure 1.4 (see page 15) 
summarizes some requirements that need to be considered in designing a new 
machine. Many of these requirements and features will be examined in depth in 
later chapters. 

Many of the requirements in Figure 1.4 represent a minimum level of sup­
port. For example, modem operating systems use virtual memory and protection. 
This requirement establishes a minimum level of support, without which the 
machine would not be viable. Any additional hardware above such thresholds 
can be evaluated from the viewpoint of cost/performance. 

Most of the attributes of a computer-hardware support for different data 
types, performance of different functions, and so on--can be evaluated on the 
basis of cost/performance for the intended marketplace. The next section dis­
cusses how one might make these tradeoffs. 

Balancing Software and Hardware 

Once a set of functional requirements has been established, the architect must try 
to optimize the design. Which design choices are optimal depends, of course, on 
the choice of metrics. The most common metrics involve cost and performance. 
Given some application domain, one can try to quantify the performance of the 
machine by a set of programs that are chosen to represent that application 
domain. (We will see how to measure performance and what aspects affect cost 
and price in the next chapter.) Other measurable requirements may be important 
in some markets; reliability and fault tolerance are often crucial in transaction 
processing environments. 

Throughout this text we will focus on optimizing machine cost/performance. 
This optimization is largely a question of where is the best place to implement 
some required functionality? Hardware and software implementations of a 
feature have different advantages. The major advantages of a software imple­
mentation are the lower cost of errors, easier design, and simpler upgrading. 
Hardware offers performance as its sole advantage, though hardware imple­
mentations are not always faster-a superior algorithm in software can beat an 
inferior algorithm implemented in hardware. Balancing hardware and software 
will lead to the best machine for the applications of interest. 

Sometimes a specific requirement may effectively necessitate the inclusion of 
hardware support. For example, a machine that is to run scientific applications 
with intensive floating-point calculations will almost certainly need hardware for 
floating-point operations. This is not a question of functionality, but rather of 
performance. Software-based floating point could be used, but it is so much 
slower that the machine would not be competitive. Hardware-supported floating 
point is a de facto requirement for the scientific marketplace. By comparison, 
consider building a machine to support commercial applications written in 
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Application area 

Special purpose 

General purpose 

Scientific 

Commercial 
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Typical features required or supported 

Target of computer 

Higher performanc~ for specific applications (Ch. 10) 

Balanced performance for a range of tasks 

High-performance floating point (Appendix A) 

Support for COBOL (decimal arithmetic), support for data bases and 
transaction processing 

15 

Level of software compatibility Determines amount of existing software for machine (Ch. 10) 

Most flexible for designer, need new compiler At programming language 

Object code or binary compatible Architecture is completely defined-little flexibility-but no investment 
needed in software or porting programs 

Operating system (OS) requirements 

Size of address space 

Necessary features to support chosen OS 

Very important feature (Ch. 8); may limit applications 

Memory management 

Protection 

Context switch 

Interrupts and traps 

Standards 

Floating point 

I/0.bus 

Operating systems 

Networks 

Required for modern OS; may be flat, paged, segmented (Ch. 8) 

Different OS and application needs: page vs. segment protection (Ch. 8) 

Required to interrupt and restart program; performance varies (Ch. 5) 

Types of support impact hardware design a.I}d OS (Ch. 5) 

Certain standards may be required by marketplace 

Format and arithmetic: IEEE, DEC, IBM (Appendix A) 

For I/O devices: VME, SCSI, NuBus, Futurebus (Ch. 9) 

UNIX, DOS or vendor proprietary 

Programming languages 

Support required for different networks: Ethernet, FDDI (Ch. 9) 

Languages (ANSI C, FORTRAN 77, ANSI COBOL) affect instruction set 

FIGURE 1.4 Summary of some of the most important functional requirements an architect faces. The left-hand 
column describes the class of requirement, while the right-hand column gives examples of specific features that might be 
needed. We will look at these design requirements in more detail in later chapters. 

COBOL. Such applications make heavy use of decimal and string operations; 
thus, many architectures have included instructions for these functions. Other 
machines have supported these functions using a combination of software and 
standard integer and logical operations. This is a classic example of a tradeoff 
between hardware and software implementation, and there is no single correct 
solution. 

In choosing between two designs, one factor that an architect must consider is 
design complexity. Complex designs take longer to complete, prolonging time to 
market. This means a design that takes longer will need to have higher perfor­
mance to be competitive. In general, it is easier to deal with complexity in soft­
ware than in hardware, chiefly because it is easier to debug and change software. 
Thus, designers may choose to shift functionality from hardware to software. On 
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the other hand, design choices in the instruction set architecture and in the 
organization can affect the complexity of the implementation as well as the 
complexity of compilers and operating systems for the machine. The architect 
must be constantly aware of the impact of his design choices on the design time 
for both hardware and software. 

Designing to Last Through Trends 

If an architecture is to be successful, it must be designed to survive changes in 
hardware technology, software technology, and application characteristics. The 
designer must be especially aware of trends in computer usage and in computer 
technqlogy. After all, a successful new instruction set architecture may last tens 
of years-the core of the IBM 360 has been in use since 1964. An architect must 
plan for technology changes that can increase the lifetime of a successful 
machine. 

To plan for the evolution of a machine, the designer must be especially aware 
of rapidly occurring changes in implementation technology. Figure 1.5 shows 
some of the most important trends in hardware technology. In writing this book, 
the emphasis is on design principles that can be applied with new technologies 
and on accounting for ongoing technology trends. 

These technology changes are not continuous but often occur in discrete 
steps. For example, DRAM (dynamic random-access memory) sizes are always 
increased by factors of 4 due to the basic design structure. Thus, rather than 
doubling every year or two, DRAM technology quadruples every three or four 
years. This stepwise change in technology leads to thresholds that can enable an 
implementation technique that was previously impossible. For example, when 
MOS technology reached the point where it could put between 25,000 and 
50,000 transistors on a single chip, it became possible to build a 32-bit 
microprocessor on a single chip. By eliminating chip crossings within the CPU, 
a dramatic decrease in cost/performance was possible. This design was simply 
infeasible until the technology reached a certain point. Such technology 
thresholds are not rare and have a significant impact on a wide variety of design 
decisions. 

The architect will also need to be aware of trends in software and how pro­
grams will use the machine. One of the most important software trends is the 
increasing amount of memory used by programs and their data. The amount of 
memory needed by the average program has grown by a factor of 1.5 to 2 per 
year! This translates to a consumption of address bits at a rate of 1/2 bit to 1 bit 
per year. Underestimating address-space growth is often the major reason why 
an instruction set architecture must be abandoned. (For a further discussion, see 
Chapter 8 on memory hierarchy.) 

Another important software trend in the past 20 years has been the 
replacement of assembly language by high-level languages. This trend has 
resulted in a larger role for compilers and in the redirection of architectures 

INTEL Ex.1035.048



Fundamentals of Computer Design 17 

toward the support of the compiler. Compiler technology has been steadily im­
proving. A designer must understand this technology and the direction in which 
it is evolving since compilers have become the primary interface between user 
and machine. We will talk about the effects of compiler technology in Chapter 3. 

A fundamental change in the way programming is done may demand changes 
in an architecture to efficiently support the programming model. But the 
emergence of new programming models occurs at a much slower rate than 
improvements in compiler technology: As opposed to compilers, which improve 
yearly, significant changes in programming languages occur about once a 
decade. 

Technology Density and performance trend 

IC logic technology Transistor count on a chip increases by about 25% per year, 
doubling in three years. Device speed increases nearly as 
fast. 

Semiconductor DRAM Density increases by just under 60% per year, quadrupling 
in three years. Cycle time has improved very slowly, 
decreasing by about one-third in ten years. 

Disk technology Density increases by about 25% per year, doubling in three 
years. Access time has improved by one-third in ten years. 

FIGURE 1.5 Trends in computer implementation technologies show the rapid 
changes that designers must deal with. These changes can have a dramatic impact on 
design!'lrs when they affect long-term decisions, such as instruction set architecture. The 
cost per transistor for logic and the cost per bit for semiconductor or disk memory decrease 
at very close to the rate at which density increases. Cost trends are considered in more 
detail in the next chapter. In the past, DRAM (dynamic random-access memory) technology 
has improved faster than logic technology. This difference has occurred because of 
reductions in the number of transistors per DRAM cell and the creation of specialized 
technology for DRAMs. As the improvement from these sources diminishes, the density 
growth in logic technology and memory technology should become comparable. 

When an architect has understood the impact of hardware and software trends 
on machine design, he can then consider the question of how to balance the 
machine. How much memory do you need to plan for the targeted CPU speed? 
How much 1/0 will be required? To try to give some idea of what would consti­
tute a balanced machine, Case and Amdahl coined two rules of thumb that are 
now usually combined. The combined rule says that a 1-MIPS (million 
instructions per second) machine is balanced when it has 1 megabyte of memory 
and I-megabit-per-second throughput of 1/0. This rule of thumb provides a 
reasonable starting point for designing a balanced system, but should be refined 
by measuring the system performance of the machine when it is executing the 
intended applications. 
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1.5 Putting It All Together: The Concept of Memory Hierarchy 

Putting It All Together: 
The Concept of Memory Hierarchy 

In the "Putting It All Together" sections that appear near the end of every chap­
ter, we show real examples that use the principles in that chapter. In this first 
chapter, we discuss a key idea in memory systems that will be the sole focus of 
our attention in Chapter 8. 

To begin this section, let's look at a simple axiom of hardware design: 
smaller is faster. Smaller pieces of hardware will generally be faster than larger 
pieces. This simple principle is particularly applicable to memories for two 
different reasons. First, in high-speed machines, signal propagation is a major 
cause of delay; larger memories have more signal delay and require more levels 
to decode addresses. Second, in most technologies one can obtain smaller 
memories that are faster than larger memories. This is primarily because the 
designer can use more power per memory cell in a smaller design. The fastest 
memories are generally available in smaller numbers of bits per chip at any point 
in time, but they cost substantially more per byte. 

Increasing memory bandwidth and decreasing the latency of memory access 
are both crucial to system performance, and many of the organizational 
techniques we discuss will focus on these two metrics. How can we improve 
these two measures? The answer lies in combining the principles we discussed 
in this chapter together with the rule that smaller is faster. 

The principle of locality of reference says that the data most recently used is 
likely to be accessed again in the near future. Favoring accesses to such data will 
improve performance. Thus, we should try to keep recently accessed items in 
the fastest memory. Because smaller memories will be faster, we want to use 
smaller memories to try to hold the most recently accessed items close to the 
CPU and successively larger (and slower) memories as we move further away 

c Memory 
a bus 1/0 bus 
c Memory 
h 
e 

Register Cache Memory Disk 
reference reference reference l/Odevices memory 

reference 

FIGURE 1.6 These are the levels in a typical memory hierarchy. As we move further 
away from the CPU, the memory in the level becomes larger and slower. 
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from the CPU. This type of organization is called a memory hierarchy. In Figure 
1.6, a typical multilevel memory hierarchy is shown. Two important levels of 
the memory hierarchy are the cache and virtual memory. 

A cache is a small, fast memory located close to the CPU that holds the most 
recently accessed code or data. When the CPU does not find a data item it needs 
in the cache, a cache miss occurs, and the data is retrieved from main memory 
and put into the cache. This usually causes the ,CPU to pause until the data is 
available. 

Likewise, not all objects referenced by a program need to reside in main 
memory. If the computer has virtual memory, then some objects may reside on 
disk. The address space is usually broken into fixed-size blocks, called pages. At 
any time, each page resides either in main memory or on disk. When the CPU 
references an item within a page that is not present in the cache or main 
memory, a page fault occurs, and the entire page is moved from the disk to main 
memory. The cache and main memory have the same relationship as the main 
memory and disk. 

1 2 3 4 

Registers Cache Main memory Disk storage 

< 1 KB < 512KB <512MB > 1 GB 

10 20 100 20,000,000 

800 200 133 4 

Compiler Hardware Operating system Operating 
system/user 

Cache Main memory Disk Tape 

FIGURE 1.7 The typical levels in the hierarchy slow down and get larger as we move away from the CPU. Sizes 
are typical for a large workstation or minicomputer. The access time is given in nanoseconds. Bandwidth is given in MB 
per second, assuming 32-bit paths between levels in the memory hierarchy. As we move to lower levels of the hierarchy, 
the access times increase, making it feasible to manage the transfer less responsively. The values shown are typical in 
1990 and will no doubt change over time. 

Machine Register size Register Cache size Cache 
access time access time 

VAX-11/780 16 32-bit lOOns 8KB 200ns 

VAXstation 16 32-bit 40 ns 1 KB on chip, 125 ns 
3100 64 KB off chip 

DECstation 32 32-bit integer; 30 ns 64 KB instruction; 60ns 
3100 16 64-bit floating 64 KB data 

point 

FIGURE 1.8 Sizes and access times for the register and cache levels of the 
hierarchy vary dramatically among three different machines. 
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1.5 Putting It All Together: The Concept of Memory Hierarchy 

Typical sizes of each level in the memory hierarchy and their access times are 
shown in Figure 1.7. While the disk and main memory are usually configurable, . 
the register count and cache size are typically fixed for an implementation. 
Figure 1.8 shows these values for three machines discussed in this text. 

Because of locality and the higher speed of smaller memories, a memory 
hierarchy can substantially improve performance. 

Suppose we have a computer with a small, high-speed memory that holds 2000 
instructions. Assume that 10% of the instructions are responsible for 90% of the 
instruction accesses and that the accesses to that 10% are uniform. (That is, each 
of the instructions in the heavily used 10% is executed an equal number of 
times.) If we have a program with 50,000 instructions and we know which 10% 
of the program is most heavily used, what fraction of the instruction accesses 
can be made to go to high-speed memory? 

Ten percent of 50,000 is 5000. Hence, we can fit 2/5 of the 90%, or 36% of the 
instructions fetched. 

How significant is the impact of memory hierarchy? Let's do a simplified 
example to illustrate its impact. Though we will evaluate memory hierarchies in 
a much more precise fashion in Chapter 8, this rudimentary example illustrates 
the potential impact. 

Suppose a cache is five times faster than main memory, and suppose that the 
cache can be used 90% of the time. How much speedup do we gain by using the 
cache? 

This is a simple application of Amdahl's Law. 

1 
Speedup = · 01 • h 

(1 01 f · h b d) w of time cac e can be used 
-w o time cac e can e use + S d . h pee up usmg cac e 

1 
Speedup = 0_

9 
(1-0.9) + 5 

1 
Speedup = 

0
_28 ""' 3.6 

Hence, we obtain a speedup from the cache of about 3.6 times. 
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1.& I Fallacies and Pitfalls 

The purpose of this section, which will be found in every chapter, is to explain 
some commonly held misbeliefs or misconceptions that one could acquire. We 
call such misbeliefs fallacies. When discussing a fallacy, we try to give a 
counterexample. We also discuss pitfalls-easily made mistakes. Often pitfalls 
are generalizations of principles that are true in a limited context. The purpose of 
these sections is to help you avoid making these errors in machines that you 
design. 

Pitfall: Ignoring the inexorable progress of hardware when planning a new · 
machine. 

Suppose you plan to introduce a machine in three years, and you claim the 
machine will be a terrific seller because it's twice as fast as anything available 
today. Unfortunately, the machine will probably not sell well, because the per­
formance growth rate for the industry will yield machines of the same perfor­
mance. For example, assuming a 25% yearly growth rate in performance, a 
machine with performance x today can be expected to have performance 
l.25 3x=l.95x in three years. Your machine would have essentially no 
performance advantage! Many projects within computer companies are 
canceled, either because they do not pay attention to this rule or because the 
project slips and the performance of the delayed machine is below the industry 
average. While this phenomenon can occur in any industry, the rapid 
improvements in cost/performance make this a major concern in the computer 
industry. 

Fallacy: Hardware is always faster than software. 

While a hardware implementation of a well-defined and necessary feature is 
faster than a software implementation, the functionality provided by the hard­
ware is often more general than the needs of the software. Thus, a compiler may 
be able to choose a sequence of simpler instructions that accomplishes the 
required work more efficiently than the more general hardware instruction. A 
good example is the MVC (move character) instruction in the IBM 360 architec­
ture. This instruction is very general and will move up to 256 bytes of data 
between two arbitrary addresses. The source and destination may begin at any 
byte address-and may even overlap. In the worst case, the hardware must move 
one byte at a time; determining whether the worst case exists requires significant 
analysis when the instruction is decoded. 

Because the MVC instruction is very general, it incurs overhead that is often 
unnecessary. A software implementation can be faster if it can eliminate this 
overhead. Measurements have shown that nonoverlapped moves are 50 times 
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more frequent than overlapped moves and that the average nonoverlapped move 
is only 8 bytes long. In fact, more than half of the nonoverlapped moves move 
only a single byte! A two-instruction sequence that loads a byte into a register 
and then stores it in memory is at least twice as fast as MVC when moving a 
single byte. This illustrates the rule of making the frequent case fast. 

1 • 7 I Concluding Remarks 

The task the computer designer faces is a complex one: Determine what 
attributes are important for a new machine, then design a machine to maximize 
performance while staying within cost constraints. Performance can be measured 
as either throughput or response time; because some environments favor one 
over the other, this distinction must be borne in mind when evaluating alterna­
tives. Amdahl's Law is a valuable tool to help determine what performance 
improvement an architectural enhancement can have. In the next chapter we will 
look at how to measure performance and what properties have the biggest 
impact on cost. 

Knowing what cases are the most frequent is critical to improving perfor­
mance. In Chapters 3 and 4, we will look at instruction set design and use, 
watching for common properties of instruction set usage. Based on measure­
ments of instruction sets, tradeoffs can be made by deciding which instructions 
are the most important and what cases to try to make fast. 

In Chapters 5 and 6 we will examine the fundamentals of CPU design, start­
ing with a simple sequential machine and moving to pipelined implementations. 
Chapter 7 focuses on applying these ideas to high-speed scientific computation 
in the form of vector machines. Amdahl's Law will be our guiding light through­
out Chapter 7. 

We ·have seen how a fundamental property of programs-the principle of 
locality--can help us build faster computers by allowing us to make effective 
use of small, fast memories. In Chapter 8, we will return to memory hierarchies, 
looking in depth at cache design and support for virtual memory. The design of 
high-performance memory hierarchies has become a key component of modern 
computer design. Chapter 9 deals with a closely allied topic-1/0 systems. As 
we saw when using Amdahl's Law to evaluate a cost/performance tradeoff, it is 
not sufficient to merely improve CPU time. To keep a balanced machine, we 
must also boost I/0 performance. 

Finally, in Chapter 10, we will look at current research directions focusing on 
parallel processing. How these ideas will affect the kinds of machines designed 
and used in the future is not yet clear. What is clear is that an empirical and 
experimental approach to designing new computers will be the basis for contin­
ued and dramatic performance growth. 
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1.8 I Historical Perspective and References 

If ... history ... teaches us anything, it is that man in his quest for knowledge and 
progress, is determined and cannot be deterred. 

John F. Kennedy, Address at Rice University, September 12, 1962. 

A section of historical perspectives closes each chapter in the text. This section 
provides some historical background on some of the key ideas presented in the 
chapter. The authors may trace the development of an idea through a series of 
machines or describe some important projects. This section will also contain 
references for the reader int~rested in examining the initial development of an 
idea or machine or interested in further reading. 

The First Electronic Computers 

J. Presper Eckert and John Mauchly at the Moore School of the University of 
Pennsylvania built the world's first electronic general-purpose computer. This 
machine, called ENIAC (Electronic Numerical Integrator and Calculator), was 
funded by the United States Army and became operational during World War II, 
but was not publicly disclosed until 1946. ENIAC was a general-purpose 
machine used for computing artillery firing tables. One hundred feet long by 
eight-and-a-half feet high and several feet wide, the machine was enormous-far 
beyond the size of any computer built today. Each of the 20, 10-digit registers 
was two feet long. In total, there were 18,000 vacuum tubes. 

While the size was two orders of magnitude bigger than machines built today, 
it was more than three orders of magnitude slower, with an add taking 200 
microseconds. The ENIAC provided conditional jumps and was programmable, 
which clearly distinguished it from earlier calculators. Programming was done 
manually by plugging up cables and setting switches. Data was provided on 
punched cards. Programming for typical calculations required from a half-hour 
to a whole day. The ENIAC was a general-purpose machine limited primarily by 
a small amount of storage and tedious programming. 

In 1944, John von Neumann was attracted to the ENIAC project. The group 
wanted to improve the way programs were entered and discussed storing pro­
grams as numbers; von Neumann helped crystalize the ideas and wrote a memo 
proposing a stored-program computer called EDV AC (Electronic Discrete 
Variable Automatic Computer). Herman Goldstine distributed the memo and put 
von Neumann's name on it, much to the dismay of Eckert and Mauchly, whose 
names were omitted. This memo has served as the basis for the commonly used 
term "von Neumann computer." The authors and several early inventors in the 
computer field believe that this term gives too much credit to von Neumann, 
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who wrote up the ideas, and too little to the engineers, Eckert and Mauchly, who 
worked on the machines. For this reason, this term will not appear in this book. 

In 1946, Maurice Wilkes of Cambridge University visited the Moore School 
to attend the latter part of a series of lectures on developments in electronic 
computers. When he returned to Cambridge, Wilkes decided to embark on a 
project to build a stored-program computer named EDSAC, for Electronic Delay 
Storage Automatic Calculator. The EDSAC became operational in 1949 and was 
the world's first full-scale, operational, stored-program computer [Wilkes, 
Wheeler, and Gill 1951; Wilkes 1985]. (A small prototype called the Mark I, 
which was built at the University of Manchester and ran in 1948, might be called 
the first operational stored-program machine.) The EDSAC was an accumulator­
based architecture. This style of machine remained popular until the early 1970s, 
and the instruction se.ts looked remarkably similar to the EDSAC. (Chapter 3 
starts with a brief summary of the EDSAC instruction set.) 

In 1947, Eckert and Mauchly applied for a patent on electronic computers. 
The dean of the Moore School, by demanding the patent be turned over to the 
university, may have helped Eckert and Mauchly conclude they should leave. 
Their departure crippled the EDV AC project, which did not become operational 
until 1952, 

Goldstine left to join von Neumann at the Institute for Advanced Study at 
Princeton in 1946. Together with Arthur Burks, they issued a report (1946) 
based on the memo written earlier. The paper led to the IAS machine. built by 
Julian Bigelow at Princeton's Institute for Advanced Study. It had a total of 
1024, 40-bit words and was roughly 10 times faster than ENIAC. The group 
thought about uses for the machine, published a set of reports, and encouraged 
visitors. These reports and visitors inspired the development of a number of new 
computers. The paper by Burks, Goldstine, and von Neumann was incredible for 
the period. Reading it today, one would never guess this landmark paper was 
written more than 40 years ago, as most of the architectural concepts seen in 
modem computers are discussed there. 

Recently, there has been some controversy about John Atanasoff, who built a 
small-scale electronic computer in the early 1940s [Atanasoff 1940]. His ma­
chine, designed at Iowa State University, was a special-purpose computer that 
was never completely operational. Mauchly briefly visited Atanasoff before he 
built ENIAC. The presence of the Atanasoff machine, together with delays in 
filing the ENIAC patents (the work was classified and patents could not be filed 
until after the war) and the distribution of von Neumann's EDVAC paper, were 
used to break the Eckert-Mauchly patent [Larson 1973]. Though controversy 
still rages over Atanasoff's role, Eckert and Mauchly are usually given credit for 
building the first working, general-purpose, electronic computer [Stem 1980]. 
Another early machine that deserves some credit was a special-purpose machine 
built by Konrad Zuse in Germany in the late 1930s and early 1940s. This ma­
chine was electromechanical and, due to the war, was never extensively pursued. 

In the same time period as ENIAC, Howard Aiken was building an electro­
mechanical computer called the Mark-I at Harvard. He followed the Mark-I by a 
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relay machine, the Mark-II, and a pair of vacuum tube machines, the Mark-III 
and Mark-IV. The Mark-III and Mark-IV were being built after the first stored­
program machines. Because they had separate memories for instructions and 
data, the machines were regarded as reactionary by the advocates of stored-pro­
gram computers. The term Harvard architecture was coined to describe this type 
of machine. Though clearly different from the original sense, this term is used 
today to apply to machines with a single main memory but with separate 
instruction and data caches. · 

The Whirlwind project [Redmond and Smith 1980) was begun at MIT in 
1947 and was aimed at applications in real-time radar signal processing. While it 
led to several inventions, its overwhelming innovation was the creation of 
magnetic core memory. Whirlwind had 2048, 16-bit words of magnetic core. 
Magnetic cores served as the main memory technology for nearly 30 years. 

Commercial Developments 

In December 1947, Eckert and Mauchly formed Eckert-Mauchly Computer 
Corporation. Their first machine, the BINAC, was built for Northrop and was 
shown in August 1949. After some financial difficulties, they were acquired by 
Remington-Rand, where they built the UNIV AC I, designed to be sold as a 
general-purpose computer. First delivered in June 1951, the UNIVAC I sold for 
$250,000 and was the first successful commercial computer-48 systems were 
built! Today, this early machine, along with many other fascinating pieces of 
computer lore, can be seen at the Computer Museum in Boston, Massachusetts. 

IBM, which earlier had been in the punched card and office automation 
business, didn't start building computers until 1950. The first IBM computer, the 
IBM 701, shipped in 1952 and eventually sold 19 units. In the early 1950s, many 
people were pessimistic about the future of computers, believing that the market 
and opportunities for these "highly sp~cialized" machines were quite limited. 

Several books describing the early days of computing have been written by 
the pioneers [Wilkes 1985; Goldstine 1972). There are numerous independent 
histories, often built around the people involved [Slater 1987; Shurkin 1984), as 
well as a journal, Annals of the History of Computing, devoted to the history of 
computing. 

The history of some of the computers invented after 1960 can be found in 
Chapters 3 and 4 (the IBM 360, the DEC VAX, the Intel 80x86, and the early 
RISC machines), Chapter 6 (the pipelined processors, including the CDC 6600), 
and Chapter 7 (vector processors including the TI ASC, CDC Star, and Cray 
processors). 

Computer Generations-
A Capsule Summary of Computer History 

Since 1952, there have been thousands of new computers, using a wide range of 
technologies and having widely varying capabilities. In an attempt to get a per-
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Generation Dates 

1 1950-1959 

2 1960-1968 

3 1969-1977 

4 1978-199? 

5 199?-

1.8 Historical Perspective and References 

spective on the developments, the industry has tended to group computers into 
generations. This classification is often based on the implementation technology 
used in each generation, as shown in Figure 1.9. Typically, each computer 
generation is eight to ten years in length, though the length and start times­
especially of recent generations-is debated. By convention, the first generation 
is taken to be commercial electronic computers, rather than the mechanical or 
electromechanical machines that preceded them. 

Technology Principal new product New companies and 
machines 

Vacuum tubes Commercial, electronic computer IBM 701, UNIVAC I 

Transistors Cheaper computers Burroughs 6500, NCR, 
CDC 6600, Honeywell 

Integrated circuit Minicomputer 50 new companies: DEC 
PDP-11, Data General 
Nova 

LSI and VLSI Personal computers and Apple II, Apollo 
workstations DN 300, Sun 2 

Parallel processing? Multiprocessors? ?? 

FIGURE 1.9 Computer generations are usually determined by the change in dominant implementation 
technology. Typically, each generation offers the opportunity to create a new class of computers and tor new computer 
companies to be created. Many researchers believe that parallel processing using high-performance microprocessors will 
be the basis for the fifth computer generation. 

Development of Principles 
Discussed in This Chapter 

What is perhaps the most basic principle was originally stated by Amdahl [1967] 
and concerned the limitations on speedup in the context of parallel processing: 

A fairly obvious conclusion which can be drawn at this point is that the effort 
expended on achieving high parallel processing rates is wasted unless it is 
accompanied by achievements in sequential processing rates of very nearly the 
same magnitude. [p. 485] 

Amdahl stated his law focusing on the implications of speeding up only a por­
tion of the computation. The basic equation can be used as a general technique 
for measuring the speedup and cost-effectiveness of any enhancement. 

Virtual memory first appeared on a machine called Atlas, designed in 
England in 1962 [Kilburn, et al. 1982]. The IBM 360/85, introduced in the late 
1960s, was the first commercial machine to use a cache, but it seems that the 
idea was discussed for several machines being built in England in the early 
1960s (see the discussion in Chapter 8). 
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Knuth [1971] published the original observations about program locality: 

Programs typically have a very jagged profile, with a few sharp peaks. As a very 
rough approximation, it appears that the nth most important statement of a pro­
gram from the point of view of execution time accounts for about ( a-1 )a-n of the 
running time.for some 'a' and for small 'n'. We also found that less than 4 per 
cent of a program generally accounts for more than half of its running time. 
[p. 105] 
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EXERCISES 

1.1 [10/10/10/12/12/12] <1.1,1.2> Here are the execution times in seconds for the 
Linpack benchmark and 10,000 iterations of the Dhrystone benchmark (see Figure 2.5, 
page 47) on VAX models: 

Model Year shipped Linpack execution Dhrystone execution 
time (seconds) time (10,000 iterations) 

(seconds) 

VAX-11/780 1978 4.90 5.69 

VAX 8600 1985 1.43 1.35 

VAX8550 1987 0.695 0.96 

a. [1 O] How much faster is the 8600 than the 780 using Linpack? How about using 
Dhrystone? 

b. [10] How much faster is the 8550 than the 8600 using Linpack? How about using 
Dhrystone? 

c. [10] How much faster is the 8550 than the 780 using Linpack? How about using 
Dhrystone? 

d. [12] What is the average performance growth per year between the 780 and the 8600 
using Linpack? How about using Dhrystone? 

e. [12] What is the average performance growth per year between the 8600 and the 
8550 using Linpack? How about using Dhrystone? 

f. [12] What is the average performance growth per year between the 780 and the 8550 
using Linpack? How about using Dhrystone? 

1.2-1.5 For the next four questions, assume that we are considering enhancing a 
machine by adding a vector mode to it. When a computation is run in vector mode it is 
20 times faster than the normal mode of execution. We call the percentage of time that 
could be spent using vector mode the percentage of vectorization. 

1.2 [20] <1.3> Draw a graph that plots the speedup as a percentage of the computation 
performed in vector mode. Label the y axis "Net Speedup" and label the x axis "Percent 
Vectorization." 

1.3 [10] <1.3> What percent of vectorization is needed to achieve a speedup of 2? 

1.4 [10] <1.3> What percentage of vectorization is needed to achieve one-half the 
maximum speedup attainable from using vector mode? 

1.5 [15] <1.3> Suppose you have measured the percentage of vectorization for programs 
to be 70%. The hardware design group says they can double the speed of the vector rate 
with a significant additional engineering investment. You wonder whether the compiler 
crew could increase the use of vector mode as another approach to increasing 
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performance. How much of an increase in the percentage of vectorization (relative to 
current usage)·would you need to obtain the same performance gain? Which investment 
would you recommend? 

1.6 [ 12/12] < 1.1, 1.4> There are two design teams at two different companies. The 
smaller and more aggressive company's management demands a two-year design cycle 
for their products. The larger and less aggressive company's management settles for a 
four-year design cycle. Assume that today the market they will be selling to demands 25 
times the performance of a VAX-11/780. 

a. [12] What should the performance goals for each product be, if the growth rates need 
to be 30% per year? 

b. [12] Suppose that the companies have just switched to using 4-megabit DRAMS. 
Assuming the growth rates in Figure 1.5 (page 17) hold, what DRAM sizes should be 
planned for use in these projects? Note that DRAM growth is discrete, with each 
generation being four times larger than the previous generation. 

1.7 [12] <1.3> You are considering two alternative designs for an instruction memory: 
using expensive and fast chips or cheaper and slower chips. If you use the slow chips you 
can afford to double the width of the memory bus and fetch two instructions, each one 
word long, every two clock cycles. (With the more expensive fast chips, the memory bus 
can only fetch one word every clock cycle.) Due to spatial locality, when you fetch two 
words you often need both. However, in 25% of the clock cycles one of the two words 
you fetched will be useless. How do the memory bandwidths of these two systems 
compare? 

1.8 [15/10] <1.3> Assume-as in the Amdahl's Law example at the bottoin of page 10-
that we make an enhancement to a computer that improves some mode of execution by a 
factor of 10. Enhanced mode is used 50% of the time, measured as a percentage of the 
execution time when the enhanced mode is in use, rather than as defined in this chapter: 
the percentage of the running time without the enhancement. 

a. [15] What is the speedup we have obtained from fast mode? 

b. [10] What percentage of the original execution time has been converted to fast mode? 

1.9 [15/15] <1.5> Assume we are building a machine with a memory hierarchy for 
instructions (don't worry about data accesses!). Assume that the program follows the 90-
10 rule and that accesses within the top 10% and bottom 90% are uniformly distributed; 
that is, 90% of the time is spread evenly over 10% of the code and the other 10% of the 
time is spread evenly over the other 90% of the code. You have three types of memory 
for use in your memory hierarchy: 

Memory type Access time Cost per word 

Local, fast 1 clock cycle $0.10 

Main 5 clock cycles $0.01 

Disk 5,000 clock cycles $0.0001 
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You have exactly 100 programs, each is 1,000,000 words, and all the programs must fit 
on disk. Assume that only one program runs at a time, and that the whole program must 
be loaded in main memory. You can spend $30,000 dollars on the memory hierarchy. 

a. [15] What is the optimal way to allocate your budget assuming that each word must 
be statically placed in fast memory or main memory? 

b. [15] Ignoring the time for the first loading from disk, what is the average number of 
cycles for a program to make a memory reference in your hierarchy? (This important 
measure is called the average memory-access time in Chapter 8.) 

1.10 [30] <l.3,1.6> Find a machine that has both a fast and slow implementation of a 
feature-for example, a system with and without hardware floating point. Measure the 
speedup obtained when using the faster implementation with a simple loop that uses the 
feature. Find a real program that makes some use of the feature and measure the speedup. 
Using this data, compute the percentage of the time the feature is used. 

1.11 [Discussion] <l.3,1.4> Often ideas for speeding up processors take advantage of 
some special properties that certain classes of applications have. Thus, the speedup 
obtained by an enhancement may be available to only certain applications. How would 
you decide to make such an enhancement? What factors would be most relevant in the 
decision? Could these factors be measured or estimated reasonably? 
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2.1 

Performance and Cost 

Introduction 

Why do engineers design different computers? Why do people use them? How 
do customers decide on one computer versus another? Is there a rational basis 
for their decisions? If so, can engineers use that basis to design better comput­
ers? These are some of the questions this chapter addresses. 

One way to approach these questions is to see how they have been used in 
another design field and then apply those solutions by analogy to our own. The 
automobile, for example, can provide a useful source of analogies for explaining 
computers: We could say that CPUs are like engines, supercomputers are like 
exotic race cars, and fast CPUs with slow memories are like hot engines in poor 
chassis. 

·Standard measures of performance provide a basis for comparison, leading to 
improvements of the object measured. Races helped determine which car and 
driver were faster, but it was hard to separate the skills of the driver from the 
performance of the car. A few standard performance tests eventually evolved, 
such as 

• Time until the car reaches a given speed, typically 60 miles per hour 

• Time to cover a given distance, typically 1/4 mile 

• Top speed on a level surface 
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Make and model 

Chevrolet Corvette 

Ferrari Testarossa 

Ford Escort 

Hyundai Excel 

Lamborghini Countach 

MazdaMiata 

2.1 Introduction 

Standard measures allow designers to select between alternatives quantitatively, 
which enables orderly progress in a field. 

Month Price Sec Sec Top Brake Skid pad Fuel 
tested (as tested) (0-60) (1/4 mi.) speed (80-0) g MPG 

2-88 $34,034 6.0 14.6 158 225 0.89 17.5 

10-89 $145,580 6.2 14.2 181 261 0.87 12.0 

7-87 $5,765 11.2 18.8 95 286 0.69 37.0 

10-86 $6,965 14.0 19.4 80 291 0.73 29.9 

3-86 $118,000 5.2 13.7 173 252 0.88 10.0 

7-89 $15,550 9.2 16.8 116 270 0.83 25.5 

FIGURE 2.1 Quantitative automotive cost/performance summary. These data were taken from the October 1989 
issue of Road and Track, page 26. "Road Test Summary" is found in every issue of the magazine. 

Cars proved so popular that magazines were developed to feed the interest in 
new cars and to help readers decide which car to purchase. While these 
magazines have always carried articles describing the impressions of driving a 
new car-the qualitative experience--over time they have expanded the quanti­
tative basis for comparison, as Figure 2.1 illustrates. 

Performance, cost of purchase, and cost of operation dominate these sum­
maries. Performance and cost also form the rational basis for deciding which 
computer to select. Thus, computer designers must understand both performance 
and cost if they want to design computers people will consider worth selecting. 

Just as there is no single target for car designers, so there is no single target 
for computer designers. At one extreme, high-performance design spares no cost 
in achieving its goal. Supercomputers from Cray as well as sports cars from 
Ferrari and Lamborghini fit into this category. At the other extreme is low-cost 
design, where performance is sacrificed to achieve lowest cost. Computers like 
the IBM PC clones along with their automotive equivalents, such as the Ford 
Escort and the Hyundai Excel, belong here. In between these extremes is 
cost/performance design where the designer balances cost versus performance. 
Examples from the minicomputer or workstation industry typify the kinds of 
tradeoffs with which designers of the Corvette and Miata would feel 
comfortable. 

It is on this middle ground, where neither cost nor performance is neglected, 
that we will focus our discussion. We begin by looking at performance, the mea­
sure of the designer's dream, before going on to describe the accountant's 
agenda--cost. · 

.l 
INTEL Ex.1035.066



2.2 

Performance and Cost 35 

Performance 

Time is the measure of computer performance: the computer that performs the 
same amount of work in the least time is the fastest. Program execution time is 
measured in seconds per program. Performance is frequently measured as a rate 
of some number of events per second, so that lower time means higher per­
formance. We tend to blur this distinction and talk about performance as either 
time or a rate, reporting refinements as improved performance rather than using 
adjectives higher (for rates) or lower (for time). 

But time can be defined in different ways depending on what we count. The 
most straightforward definition of time is called wall-clock time, response time, 
or elapsed time. This is the latency to complete a task, including disk accesses, 
memory accesses, input/output activities, operating system overhead-every­
thing. However, since with multiprogramming the CPU works on another 
program while waiting for I/0 and may not necessarily minimize the elapsed 
time of one program, there needs to be a term to take this activity into account. 
CPU time recognizes this distinction and means the time the CPU is computing 
not including the time waiting for 1/0 or running other programs. (Clearly the 
response time seen by the user is the elapsed time of the program, not the CPU 
time.) CPU time can be further divided into the CPU time spent in the program, 
called user CPU time, and the CPU time spent in the operating system 
performing tasks requested by the program, called system CPU time. 

These distinctions are reflected in the UNIX time command, which returned 
the following: 

90.7u 12.9s 2:39 65% 

User CPU time is 90.7 seconds, system CPU time is 12.9 seconds, elapsed time 
is 2 minutes and 39 seconds (159 seconds), and the percentage of elapsed time 
that is CPU time is (90.7+ 12.9)/159 or 65%. More than a' third of the elapsed 
time in this example was spent waiting for I/0 or running other programs or 
both. Many measurements ignore system CPU time because of the inaccuracy of 
operating systems' self-measurement and the inequity of including system CPU 
time when comparing performance between machines with differing system 
codes. On the other hand, system code on some machines is user code on others 
and no program runs without some operating system running on the hardware, 
so a case can be made for using the sum of user CPU time and system CPU time. 

In the present discussion, a distinction is maintained between performance 
based on elapsed time and that based on CPU time. The term system pe1f or­
mance is used to refer to elapsed time on an unloaded system, while CPU 
performance refers to user CPU time. We will concentrate on CPU performance 
in this chapter. 
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CPU Performance 

Most computers are constructed using a clock running at a constant rate. These 
discrete time events are called ticks, clock ticks, clock periods, clocks, cycles, or 
clock cycles. Computer designers refer to the time of a clock period by its length 
(e.g., 10 ns) or by its rate (e.g., 100 MHz). 

CPU time for a program can then be expressed two ways:. 

CPU time = CPU clock cycles for a program * Clock cycle time 
or 

CPU 
. CPU clock cycles for a program 

time= 
Clock rate 

Note that it wouldn't make sense to show elapsed time as a function of CPU 
clock cycle time since the latency for 1/0 devices is normally independent of the 
rate of the CPU clock. 

In addition to the number of clock cycles to execute a program, we can also 
count the number of instructions executed-the instruction path length or 
instruction count. If we know the number of clock cycles and the instruction 
count we can calculate the average number of clock cycles per instruction (CPI): 

CPI = CPU clock cyc~es for a program 
Instruction count 

This CPU figure of merit provides insight into different styles of instruction sets 
and implementations. 

By transposing instruction count in the above formula, clock cycles can be 
defined as instruction count * CPI. This allows us to use CPI in the execution 
time formula: 

CPU time = Instruction count * CPI * Clock cycle time 
or 

Instruction count * CPI 
CPU time = Cl k oc rate 

Expanding the first formula into the units of measure shows how the pieces fit 
together: 

Instructions Clock cycles Seconds Seconds CPU . * - * = = time Program Instruction Clock cycle Program 

As this formula demonstrates, CPU performance is dependent upon three 
characteristics: clock cycle (or rate), clock cycles per instruction, and instruction 
count. You can't change one of these in isolation from others because the basic 
technologies involved in changing each characteristic are also interdependent: 
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Performance and Cost 

Clock rate-Hardware technology and organization 

CPI-Organization and instruction set architecture 

Instruction count-Instruction set architecture and compiler technology 

37 

Sometimes it is useful in designing the CPU to calculate the number of total 
CPU clock cycles as 

n 

CPU clock cycles= L(CPii *Ii) 
i=l 

where Ii represents number of times instruction i is executed in a program and 
CPii represents the average number of clock cycles for instruction i. This form 
can be used to express CPU time as 

n 
CPU time= L,(CPii *Ii) *Clock cycle time 

i=l 

and overall CPI as 

n 

L(CPii * Ii) n 
i=l ~ ( Ii . ) 

CPI= Instruction count= .£..i CPii *-In-s-tru-ct-io~n-co_u_n_t 
i=l 

The latter form of the CPI calculation multiplies each individual CPii by the 
fraction of occurrences in a program. 

CPii should be measured and not just calculated from a table in the back of a 
reference manual since it must include cache misses and any other memory 
system inefficiencies. 

Always bear in mind that the real measure of computer performance is time. 
Changing the instruction set to lower the instruction count, for example, may 
lead to an organization with a slower clock cycle time that offsets the improve­
ment in instruction count. When comparing two machines, you must look at all 
three components to understand relative performance. 

Suppose we are considering two alternatives for our conditional branch instruc­
tions, as follows: 

CPU A. A condition code is set by a compare instruction and followed by a 
branch that tests the condition code. 

CPU B. A compare is included in the branch. 
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Answer 

Example 

Answer 

2.2 Performance 

On both CPUs, the conditional branch instruction takes 2 cycles, and all other 
instructions take 1 clock cycle. (Obviously, if the CPI is 1.0 for everything but 
branches in this simple example we are ignoring losses due to the memory sys­
tem in this decision; see the fallacy on page 72.) On CPU A, 20% of all instruc­
tions executed are conditional branches; since every branch needs a compare, 
another 20% of the instructions are compares. Because CPU A does not have the 
compare included in the branch, its clock cycle time is 25% faster than CPU B's. 
Which CPU is faster? 

Since we are ignoring all systems issues, we can use the CPU performance for­
mula: CPIA is ((.20*2) + (.80* 1)) or 1.2 since 20% are branches taking 2 clock 
cycles and the rest take 1. Clock cycle timeB is 1.25 *Clock cycle timeA since A 
is 25% faster. The performance of CPU A is then 

CPU timeA =Instruction countA * 1.2 *Clock cycle timeA 

= 1.20 *Instruction countA *Clock cycle timeA 

Compares are not executed in CPU B, so 20%/80% or 25% of the instructions 
are now branches, taking 2 clock cycles, and the remaining 75% of the in~truc­
tions take 1. CPIB is then ((.25*2) + (.75*1)) or 1.25. Because CPU B doesn't 
execute compares, Instruction countB is .80*Instruction countA. The perfor­
mance of CPU B is 

CPU timeB = (.80*Instruction countA) * 1.25 * (1.25*Clock cycle timeA) 

= 1.25 *Instruction countA *Clock cycle timeA 

Under these assumptions, CPU A, with the shorter clock cycle time, is faster 
than CPU B, which executes fewer instructions. 

After seeing the analysis, a designer realized that by reworking the organization 
the difference in clock cycle times can easily be reduced to 10%. Which CPU is 
faster now? 

The only change from the answer above is that Clock cycle timeB is now 1.10 * 
Clock cycle timeA since A is just 10% faster. The performance of CPU A is still 

CPU timeA = 1.20 *Instruction countA *Clock cycle timeA 

The performance of CPU B is now 

CPU timeB = (.80*Instruction countA) * 1.25 * (l.lO*Clock cycle timeA) 

= 1.10 *Instruction countA *Clock cycle timeA 

With this improvement CPU B, which executes fewer instructions, is now faster. 
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Suppose we are considering another change to an instruction set. The machine 
initially has only loads and stores to memory, and then all operations work on 
the registers. Such machines are called load/store machi1:1.es (see Chapter 3). 
Measurements of the load/store machine showing the frequency of instfuctions, 
called an instruction mix, and clock cycle counts per instruction are given in 
Figure 2.2. 

Operation Frequency Clock cycle count 

ALU ops 43% 1 

Loads 21% 2 

Stores 12% 2 

Branches 24% 2 

FIGURE 2.2 An example of instruction frequency. The CPI for each class of instruction 
is also given. (This frequency comes from the GCC column of Figure C.4 in Appendix C, 
rounded up to account for 100% of the instructions.) 

Let's assume that 25% of the arithmetic logic unit (ALU) operations directly 
use a loaded operand that is not used again. 

We propose adding ALU instructions that have one source operand in mem­
ory. These new register-memory instructions have a clock cycle count of 2. 
Suppose that the extended instruction set increases the clock cycle count for 
branches by 1, but it does not affect the clock cycle time. (Chapter 6, on pipelin­
ing, explains why adding register-memory instructions might slow down 
branches.) Would this change improve CPU performance? 

The question is whether the new machine is faster than the old machine. We use 
the CPU performance formula since we are again ignoring systems issues. The 
original CPI is calculated by multiplying together the two columns from Figure 
2.2: 

CPI0 1a = (.43*1 + .21*2 + .12*2 + .24*2) = 1.57 

The performance of CPU0 1a is then 

CPU time0 1ct = Instruction count01a * 1.57 * Clock cycle time0 1a 

= 1.57 * Instruction count0 1a * Clock cycle time0 1a 

Let's give the formula for CPinew first and then explain the components: 

CPinew = 

(.43 - (.25*.43))*1 + (.21 - (.25*.43))*2 + (.25*.43)*2 + .12*2 + .24*3 
1 - (.25*.43) 
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25% of ALU instructions (which are 43% of all instructions executed) become 
register-memory instructions, changing the first 3 components of the numerator. 
There are (.25*.43) fewer ALU operations, (.25*.43) fewer loads, and (.25*.43) 
new register-memory ALU instructions. The rest of the numerator remains the 
same except the branches take 3 clock cycles instead of 2. We divide by the new 
instruction count, which is .25*43% smaller than the old one. Simplifying this 
equation: 

1.703 
CPinew = .893 = 1.908 

Since the clock cycle time is unchanged, the performance of the new CPU is 

CPU timenew = (.893 * Instruction count0 1ct) * 1.908 * Clock cycle time0 1ct 

= 1.703 *Instruction count0 1ct *Clock cycle time0 1ct 

Using these assumptions, the answer to our question is no: It's a bad idea to 
add register-memory instructions, because they do not offset the increased exe­
cution time of slower branches. 

MIPS and What Is Wrong with Them 

A number of popular measures have been adopted in the quest for a standard 
measure of computer performance, with the result that a few innocent terms 
have been shanghaied from their well-defined environment and forced into a 
service for which they were never intended. The authors' position is that the 
only consistent and reliable measure of performance is the execution time of real 
programs, and that all proposed alternatives to time as the metric or to real pro­
grams as the items measured have eventually led to misleading claims or even 
mistakes in computer design. The dangers of a few popular alternatives to our 
advice are shown first. 

One alternative to time as the metric is MIPS, or million instructions per 
second. For a given program, MIPS is simply 

MIPS = Instruction count = Clock rate 
Execution time * 106 CPI * 106 

Some find this rightmost form convenient since clock rate is fixed for a machine 
and CPI is usually a small number, unlike instruction count or execution time. 
Relating MIPS to time, 

E 
. . Instruction count 

xecut10n time = MIPS * 106 

Since MIPS is a rate of operations per unit time, performance can be specified as 
the inverse of execution time, with faster machines having a higher MIPS rating. 

j 

1 
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The good news about MIPS is that it is easy to understand, especially by a 
customer, and faster machines means bigger MIPS, which matches intuition. 
The problem with using MIPS as a measure for comparison is threefold: 

• MIPS is dependent on the instruction set, making it difficult to compare 
MIPS of computers with different instruction sets; 

• MIPS varies between programs on the same computer; and most importantly, 

• MIPS can vary inversely to performance! 

The classic example of the last case is the MIPS rating of a machine with 
optional floating-point hardware. Since it generally takes more clock cycles per 
floating-point instruction than per integer instruction, floating-point programs 
using the optional hardware instead of software floating-point routines take less 
time but have a lower MIPS rating. Software floating point executes simpler 
instructions, resulting in a higher MIPS rating, but it executes so many more that 
overall execution time is longer. 

We can even see such anomalies with optimizing compilers. 

Assume we build an optimizing compiler for the load/store machine described in 
the previous example. The compiler discards 50% of the ALU instructions, 
although it cannot reduce loads, stores, or branches. Ignoring systems issues and 
assuming a 20-ns clock cycle time (50-MHz clock rate), what is the MIPS rating 
for optimized code versus unoptimized code? Does the ranking of MIPS agree 
with the ranking of execution time? 

From the example above CPiunoptimized = 1.57, so 

50MHz 
MIPSunoptimized = 

5 0
6 = 31.85 

1. 7*1 

The performance. of unoptimized code is 

CPU timeunoptimized = Instruction countunoptimized * 1.57 * (20* 1 o-9) 

= 31.4* 1 o-9 * Instruction countunoptimized 

For optimized code 

(.43/2)*1 + .21*2 + .12*2 + .24*2 .215 + .42 + .24 + .48 
CPloptimized = l _ (.43/2) = .785 = 1.73 

since half the ALU instructions are discarded (.43/2) and the instruction count is 
reduced by the missing ALU instructions. Thus, 
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50MHz 
MIPSoptimized = 6 = 28.90 

1.73 * 10 

The performance of optimized code is 

CPU timeoptimized = (.785 *Instruction countunoptimized) * 1.73 * (20 * 10-9) 

= 27 .2 * 10-9 * Instruction countunoptimized 

Optimized code is 13% faster, but its MIPS rating is lower! 

As examples such as this one show, MIPS can fail to give a true picture of 
performance in that it does not track execution time. To compensate for this 
weakness, another alternative to execution time is to use a particular machine, 
with an agreed-upon MIPS rating, as a reference point. Relative MIPS-as 
distinguished from the original form, called native MIPS-is then calculated as 
follows: 

. Timereference 
Relative MIPS = T' * MIPSreference 

1meunrated 

where 

Time reference= execution time of a program on the reference machine 

Time unrated = execution time of the same program on machine to be rated 

MIPS reference= agreed-upon MIPS rating of the reference machine 

Relative MIPS only tracks execution time for the given program and input. 
Even when they are identified, it becomes harder to find a reference machine on 
which to run programs as the machine ages. (In the 1980s the dominant refer­
ence machine was the VAX-11/780, which was called a 1-MIPS machine; see 
pages 77-78 in Section 2.7.) The question also arises whether the older machine 
should be run with the newest release of the compiler and operating system, or 
whether the software should be fixed so the reference machine does not get 
faster over time. There is also the temptation to generalize from a relative MIPS 
rating using one benchmark to relative execution time, even though there can be 
wide variations in relative performance. 

In summary, the advantage of relative MIPS is small since execution time, 
program, and program input still must be known to have meaningful informa­
tion. 

i 
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MFLOPS and What Is Wrong with Them 

Another popular alternative to execution time is million floating-point opera­
tions per second, abbreviated megaFLOPS or MFLOPS but always pronounced 
"megaflops." The formula for MFLOPS is simply the definition of the acronym: 

MFLOPS = Number of floating-point operations in a program 
Execution time * 106 

Clearly, a MFLOPS rating is dependent on the machine and on the program. 
Since MFLOPS were intended to measure floating-point performance, they are 
not applicable outside that range. Compilers, as an extreme example, have a 
MFLOPS rating near nil no matter how fast the machine since compilers rarely 
use floating-point arithmetic. 

This term is less innocent than MIPS. Based on operations rather than instruc­
tions, MFLOPS is intended to be a fair comparison between different machines. 
The belief is that the same program running on different computers would exe­
cute a different number of instructions but the same number of floating-point 
operations. Unfortunately, MFLOPS is not dependable because the set of float­
ing-point operations is not consistent across machines. For example, the CRAY-
2 has no divide instruction, while the Motorola 68882 has divide, square root, 
sine, and cosine. Another perceived problem is that the MFLOPS rating changes 
not only on the mixture of integer and floating-point operations but also on the 
mixture of fast and slow floating-point operations. For example, a program with 
100% floating-point adds will have a higher rating than a program with 100% 
floating-point divides. The solution for both problems is to give a canonical 
number of floating-point operations in the source-level program and then divide 
by execution time. Figure 2.3 shows how the authors of the "Livermore Loops" 
benchmark calculate the number of normalized floating-point operations per 
program according to the operations actually found in the source code. Thus, the 
native MFLOPS rating is not the same as the normalized MFLOPS rating 
reported in the supercomputer literature, which has come as a surprise to a few 
computer designers. 

Real FP operations Normalized FP operations 

ADD, SUB, COMPARE, MULT 1 

DIVIDE, SQRT 4 

EXP, SIN, ... 8 

FIGURE 2.3 Real versus normalized floating-point operations. The number of normal­
ized floating-point operations per real operation in a program used by the authors of the 
Livermore FORTRAN Kernels, or "Livermore Loops," to calculate MFLOPS. A kernel with 
one ADD, one DIVIDE, and one SIN would be credited with 13 normalized floating-point 
operations. Native MFLOPS won't give the results reported for other machines on that 
benchmark. 
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The Spice program runs on the DECstation 3100 in 94 seconds (see Figures 2.16 
to 2.18 for more details on the program, input, compilers, machine, and so on). 
The number of floating-point operations executed in that program are listed 
below: 

ADDD 25,999,440 

SUBD 18,266,439 

MULD 33,880,810 

DIVD 15,682,333 

COMPARED 9,745,930 

NEGD 2,617,846 

ABSD 2,195,930 

CONVER TD 1,581,450 

TOTAL 109,970,178 

What is the native MFLOPS for that program? Using the conversions in Figure 
2.3, what is the normalized MFLOPS? 

Native MFLOPS is easy to calculate: 

Native MFLOPS 
= Number of floating-point operations in a program 

Execution time* 106 

The only operation in Figure 2.3 that is changed for normalized MFLOPS and is 
in the list above is divide, raising the total of (normalized) floating-point opera­
tions, and therefore MFLOPS, almost 50%: 

. 157M 
Normalized MFLOPS ""

94
*106 "" 1.7 

Like any other performance measure, the MFLOPS rating for a single pro­
gram cannot be generalized to establish a single performance metric for a com­
puter. Since normalized MFLOPS is really just a constant divided by execution 
time for a specific program and specific input (like relative MIPS), MFLOPS is 
redundant to execution time, our principal measure of performance. And unlike 
execution time, it is tempting to characterize a machine with a single MIPS or 
MFLOPS rating without naming the program. Finally, MFLOPS is not a useful 
measure for all programs. 

r 
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Choosing Programs to Evaluate Performance 

Dhrystone does not use floating point. Typical programs don't ... 

RICK RICHARDSON, Clarification of Dhrystone, 1988 

This program is the result of extensive research to determine the instruction mix 
· of a typical FORTRAN program. The results of this program on different 

machines should give a good indication of which machine performs better under 
a typical load of FORTRAN programs. The statements are purposely arranged 
to defeat optimizations by the compiler. 

Anonymous, from comments in the Whetstone benchmark 

A computer user who runs the same programs day in and day out would be the 
perfect candidate to evaluate a new computer. To evaluate a new system he 
would simply compare the execution time of his workload-the mixture of 
programs and operating system commands that users run on a machine. Few are 
in this happy situation, however. Most must rely on other methods to evaluate 
machines and often other evaluators, hoping that these methods will predict per­
formance for their usage of the new machine. There are four levels of programs 
used in such circumstances, listed below in decreasing order of accuracy of pre­
diction. 

1. (Real) Programs-While the buyer may not know what fraction of time is 
spent on these programs, he knows that some users will run them to solve real 
problems. Examples are compilers for C, text-processing software like TeX, and 
CAD tools like Spice. Real programs have input, output, and options that a user 
can select when running the program. 

2. Kernels-Several attempts have been made to extract small, key pieces 
from real programs and use them to evaluate performance. Livermore Loops and 
Linpack are the best known examples. Unlike real programs, no user would run 
kernel programs, for they exist solely to evaluate performance. Kernels are best 
used to isolate performance of individual features of a machine to explain the 
reasons for differences in performance of real programs. 

3. (Toy) Benchmarks-Toy benchmarks are typically between 10 and 100 lines 
of cod~ and produce a result the user already knows before he runs the toy 
program. Programs like Sieve of Erastosthenes, Puzzle, and Quicksort are 
popular because they are small, easy to type, and run on almost any computer. 
The best use of such programs is beginning programming assignments. 

4. Synthetic Benchmarks-Similar in philosophy to kernels, synthetic 
benchmarks try to match the average frequency of operations and operands of a 
large set of programs. Whetstone and Dhrystone are popular synthetic 
benchmarks. (Figures 2.4 and 2.5 on pages 46 and 47 show pieces of the bench­
marks.) Like their cousins, the kernels, no user runs synthetic benchmarks 

INTEL Ex.1035.077



46 2.2 Performance 

because they don't compute anything a user could use. Synthetic benchmarks 
are, in fact, even further removed from reality because kernel code is extracted 
from real programs, while synthetic code is created artificially to match an aver­
age execution profile. Synthetic benchmarks are not even pieces of real pro­
grams, while all the others might be. 

If you 're not sure how to classify a program, first check to see if there is any 
input or very much output. A program without input calculates the same result 
every time it is invoked. (Few buy computers to act as copying machines.) 
While some programs, notably simulation and numerical analysis applications, 
use negligible input, every real program has some input. 

I = ITER 

NS = S99 * I 

Nll = 93 * I 

x 1. 0 
y = 1. 0 
z = 1. 0 
IF (NS) S9,S9,Sl 

Sl DO SS I = 1, NS, 1 
SS CALL P3(X,Y,Z) 
S9 CONTINUE 

x = 0.75 
IF (Nl1) 119, 119, 111 

111 DO llS I = 1, Nll, 1 
llS X = SQRT(EXP(ALOG(X)/Tl)) 
119 CONTINUE 

SUBROUTINE P3 (X,Y,Z) 
COMMON T, Tl, T2 
Xl X 
Yl Y 
Xl T * (Xl + Yl) 
Yl T * (Xl + Yl) 
Z = (Xl + Yl) I T2 
RETURN 
END 

FIGURE 2.4 Two loops of the Whetstone synthetic benchmark. Based on the fre­
quency of Algol statements in programs submitted to a university batch operating system in 
the early 1970s, a synthetic program was created to match that profile. (See Curnow and 
Wichmann [1976].) The statements at the beginning (e.g., N8 = 899*1) control the number 
of iterations of each of the 12 loops (e.g., the DO loop at line 81 ). The program was later 
converted to FORTRAN and became a popular benchmark in marketing literature. (The 
line labeled 118 is the subject of a fallacy on pages 73-74 in Section 2.5.) 

f 
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Because computer companies thrive or go bust depending on price/perfor­
mance of their products relative to others in the marketplace, tremendous 
resources are available to improve performance of programs widely used in 
evaluating performance. Such pressures can skew hardware and software engi­
neering efforts to add optimizations that improve performance of synthetic pro­
grams, toy programs, or kernels, but not real programs. 

An extreme instance of such targeted engineering employed compiler opti­
mizations that were benchmark sensitive. Rather than perform the analysis so 
that the compiler could properly decide if the optimization could be applied, a 
person at one startup company used a preprocessor that scanned the text for 
keywords to try to identify benchmarks by looking for the name of the author 
and the name of a key subroutine. If the scan confirmed that this program was on 
a predefined list, the special optimizations were performed. This machine made 

for(Run Index= 1; Run_Index<=Number_Of_Runs; ++Run_Index) 
{ 

Proe_5(); 
Proe 4 () ; 
Int 1 Loe = 2; 
Int_2_Loe = 3; 
strepy(Str_2_Loe,"DHRYSTONE PROGRAMS, 2'ND STRING"); 

Proe 4 () 

Boolean Bool_Loe; 

Bool Loe = Chl 1 Glob == 'A'; 
Bool Glob = Bool Loe I Bool_Glob; 
Chl 2 Glob = 'B' ; 

} /* Proe 4 */ 

Proe 5 () 

Chl 1 Glob = 'A'; 
Bool Glob = false; 

} /* Proe 5 */ 

FIGURE 2.5 A section of the Dhrystone synthetic benchmark. Inspired by Whetstone, 
this program was an attempt to characterize CPU and compiler performance for a typical 
program. It was based on the frequency of high-level language statements from a variety of 
publications. The program was originally written in Ada and later converted to C and Pascal 
(see Weicker [1984]). Note the small size and simple-minded nature of these procedures 
makes it trivial for an optimizing compiler to avoid procedure-call overhead by expanding 
them inline. The strcpy () on the eighth line is the subject of a fallacy on pages 73-74 in 
Section 2.5. 

INTEL Ex.1035.079



48 2.2 Performance 

a sudden jump in performance-at least according to those benchmarks. Yet 
these optimizations were not only invalid to programs not on the list, they were 
useless to the identical code with a few name changes. 

The small size of programs in the last three categories makes them vulnerable 
to such efforts. For example, despite the best intentions, the initial SPEC 
benchmark suite (page 79) includes a small program. 99% of the execution time 
of Matrix300 is in a single line (see SPEC [1989]). A minor enhancement of the 
MIPS FORTRAN compiler (which improved the induction variable elimination 
optimization-see Section 3.7 in Chapter 3) resulted in a performance increase 
of 56% on a M/2000 and 117% on an RC 6280. This concentration of execution 
time led Apollo down the path of temptation: The performance of the DN 10000 
is quoted with this line changed to a call to a hand-coded library routine. If the 
industry adopts real programs to compare performance, then at least resources 
expended to improve performance will help real users. 

So why doesn't everyone run real programs to measure performance? Kernels 
and toy benchmarks are attractive when beginning a design since they are small 
enough to easily simulate, even by hand. They are especially tempting when 
inventing a new machine because compilers may not be available until much 
later. Small benchmarks are also more easily standardized while large programs 
are difficult, hence there are numerous published results for small benchmark 
performance but few for large ones. 

While there are rationalizations for use early in the design, there is no current 
valid rationale for using benchmarks and kernels to evaluate working computer 
systems. In the past, programming languages were inconsistent among 
machines, and every machine had its own operating system; so real programs 
could not be ported without pain and agony. There was also a lack of important 
software whose source code was freely available. Finally, programs had to be 
small because the architecture simulator had to run on an old, slow machine. 

The popularity of standard operating systems like UNIX and DOS, freely dis­
tributed software from universities and others, and faster computers available 
today remove many of these obstacles. While kernels, toy benchmarks, and syn­
thetic benchmarks were an attempt to make fair comparisons among different 
machines, use of anything less than real programs after initial design studies is 
likely to give misleading results and lead the designer astray. 

Reporting Performance Results 

The guiding principle of reporting performance measurements should be 
reproducibility-list everything another experimenter would need to duplicate 
the results. Let's compare descriptions of computer performance found in ref­
ereed scientific journals to descriptions of car performance found in magazines 
sold at supermarkets. Car magazines, in addition to supplying 20 performance 
metrics, list all optional equipment on the test car, the types of tires used in the 
performance test, and the date the test was made. Computer journals may have 

.l 
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only seconds of execution labeled by the name of the program and the name and 
model of the computer-Spice takes 94 seconds on a DECstation 3100. Left to 
the reader's imagination are program input, version of the program, version of 
compiler, optimizing level of compiled code, version of operating system, 
amount of main memory, number and types of disks, version of the CPU-all of 
which make a difference in performance. 

Car magazines have enough information about the measurement to allow 
readers to duplicate results or to question the options selected for measurements, 
but computer journals often do not. 

Co~paring and Summarizing Performance 

Comparing performance of computers is rarely a dull event, especially when the 
designers are involved. Charges and countercharges fly across an electronic 
network; one is accused of underhanded tactics and the other of misleading 
statements. Since careers sometimes depend on the results of such performance 
comparisons, it is understandable that the truth is occasionally stretched. But 
more frequently discrepancies can be explained by differing assumptions or lack 
of information. 

We would like to think that if we can just agree on the programs, the experi­
mental environments, and the definition of "faster," then misunderstandings will 
be avoided, leaving the networks free for scholarly intercourse. Unfortunately, 
the outcome is not such a happy one, for battles are then fought over what is the 
fair way to summarize relative performance of a collection of programs. For 
example, two articles on summarizing performance in the same journal took 
opposing points of view. Figure 2.6, taken from one of the articles, is an exam­
ple of the confusion that can arise. 

Computer A Computer B ComputerC 

Program 1 (secs) 1 10 20 

Program 2 (secs) 1000 100 20 

Total time (secs) 1001 110 40 

FIGURE 2.6 Execution times of two programs on three machines. Taken from Figure I 
of Smith [1988]. 

Using our definition in Chapter 1 (page 6), the following statements hold: 

A is 900% faster than B for program 1. 

B is 900% faster than A for program 2. 

A is 1900% faster than C for program 1. 

C is 4900% faster than A for program 2. 

INTEL Ex.1035.081



50 2.2 Performance 

B is 100% faster than C for program 1. 

C is 400% faster than B for program 2. 

Taken individually, any one of these statements may be of use. Collectively, 
however, they present a confusing picture-the relative performance of comput­
ers A, B, and C is unclear. 

Total Execution Time: A Consistent Summary 
Measure 

The simplest approach to summarizing relative performance is to use total exe­
cution time of the two programs. Thus 

B is 810% faster than A for programs 1 and 2. 

C is 2400% faster than A for programs 1 and 2. 

C is 175% faster than B for programs 1 and 2. 

This summary tracks execution time, our final measure of performance. If the 
workload consisted of running programs 1 and 2 an equal number of times, the . 
statements above would predict the relative execution times for the workload on 
each machine. 

An average of the execution times that tracks total execution time is the 
arithmetic mean 

1 n 
- L,Timei 
n . 1 l= 

where Timei is the execution time for the ith program of a total of n in the 
workload. If performance is expressed as a rate (such as MFLOPS), then the 
average that tracks total execution time is the harmonic mean 

n 
n 

LR~ei 
i=l 

where Ratei is a function of l{fimei, the execution time for the ith of n programs 
in the workload. 
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Weighted Execution Time 

The question arises what is the proper mixture of programs for the workload: 
Are programs 1 and 2 in fact run equally in the workload as assumed by the 
arithmetic mean? I_f not, then there are two approaches that have been tried for 
summarizing performance. The first approach when given a nonequal mix of 
programs in the workload is to assign a weighting factor Wi to each program to 
indicate the relative frequency of the program in that workload. If, for example, 
20% of the tasks in the workload were program 1 and 80% of the tasks in the 
workload were program 2, then the weighting factors would be 0.2 and 0.8. 
(Weighting factors add up to 1.) By summing the products of weighting factors 
and execution times, a clear picture of performance of the workload is obtained. 
This is called the weighted arithmetic mean: 

n 
L, Weigh ti * Timei 
i=l 

where Weighti is the frequency of the ith program in the workload and Timei is 
the execution time of that program. Figure 2.7 shows the data from Figure 2.6 
with three different weightings, each proportional to the execution time of a 
workload with a given mix. The weighted harmonic mean of rates will show the 
same relative performance as the weighted arithmetic means of execution times. 
The definition is 

A B 

1.00 10.00 

1000.00 100.00 

500.50 55.00 

91.82 18.18 

2.00 10.09 

1 
n 

~Weighti 
.£..J Ratei 
i=l 

c W(l) 

20.00 0.50 

20.00 0.50 

20.00 

20.00 

20.00 

W(2) W(3) 

0.909 0.999 

0.091 0.001 

FIGURE 2. 7 Weighted arithmetic mean execution times using three weightings. W(1) equally weights the pro­
grams, resulting in a mean (row 3) that is the same as the nonweighted arithmetic mean. W(2) makes the mix of programs 
inversely proportional to the execution times on machine B; row 4 shows the arithmetic mean for that weighting. W(3) 
weights the programs in inverse proportion to the execution times of the two programs on machine A; the arithmetic mean 
is given in the last row. The net effect of the second and third weightings is to "normalize" the weightings to the execution 
times of programs running on that machine, so that the running time will be spent evenly between each program for that 
machine. For a set of n programs each taking Tj time on one machine, the equal-time weightings on that machine are 

1 
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Program 1 

Program 2 

Arithmetic mean 

Geometric mean 

Total time 

2.2 Performance 

Normalized Execution Time and the Pros and 
Cons of Geometric Means 

A second approach to nonequal mixture of programs in the workload is to nor­
malize execution times to a reference machine and then take the average of the 
normalized execution times, similar to the relative MIPS rating discussed above. 
This measurement gives a warm fuzzy feeling, because it suggests that perfor­
mance of new programs can be predicted by simply multiplying this number 
times its performance on the reference machine. 

Average normalized execution time can be expressed as either an arithmetic 
or geometric mean. The formula for the geometric mean is 

n 
IJExecution time ratioi 
i=l 

where Execution time ratioi is the execution time, normalized to the reference 
machine, for the ith program of a total of n in the workload. Geometric means 
also have the nice property that 

Geometric mean(Xi) _ . (Xi) 
G . (Y ) - Geometnc mean -y eometnc mean i i 

meaning that taking either the ratio of the means or the means of the ratios gets 
the same results. In contrast to arithmetic means, geometric means of normalized 
execution times are consistent no matter which machine is the reference. Hence, 
the arithmetic mean should not be used to average normalized execution times. 
Figure 2.8 shows some variations using both arithmetic and geometric means of 
normalized times. 

Normalized to A Normalized to B Normalized to C 
A B c A B c A B c 

100% 1000% 2000% 10% 100% 200% 5% 50% 100% 

100% 10% 2% 1000% 100% 20% 5000% 500% 100% 

100% 505% 1001% 505% 100% 110% 2503% 275% 100% 

100% 100% 63% 100% 100% 63% 158% 158% 100% 

100% 11% 4% 910% 100% 36% 2503% 275% 100% 

FIGURE 2.8 Execution times from Figure 2.6 normalized to each machine. The arithmetic mean performance varies 
depending on which is the reference machine-column 2 says B's execution time is 5 times longer than A's while column 
4 says just the opposite; column 3 says C is slowest while column 9 says C is fastest. The geometric means are 
consistent independent of normalization-A and B have the same performance, and the execution time of C is 63% of A 
or B (100%/158% is 63%). Unfortunately total execution time of A is 9 times longer than B, and B in turn is about 3 times 
longer than C. As a point of interest, the relationship between the means of the same set of numbers is always harmonic 
mean::; geometric mean::; arithmetic mean. 
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Because weightings of weighted arithmetic means are set proportionate to 
execution times on a given machine, as in Figure 2.7, they are influenced not 
only by frequency of use in the workload, but also by the peculiarities of a par­
ticular machine and the size of program input. The geometric mean of normal­
ized execution times, ·on the other hand, is independent of the running times of 
the individual programs, and it doesn't matter which machine is used to normal­
ize. If a situation arose in comparative performance evaluation where the pro­
grams were fixed but the inputs were not, then competitors could rig the results 
of weighted arithmetic means by making their best performing benchmark have 
the largest input and therefore dominate execution time. In such a situation the 
geometric mean would be less misleading than the arithmetic mean. 

The strong drawback to geometric means of normalized execution times is 
that they violate our fundamental principle of performance measurement-they 
do not predict execution time. The geometric means from Figure 2.8 suggest that 

· for programs 1 and 2 the performance of machines A and B is the same, yet this 
would only be true for a workload that ran program 1 100 times for every occur­
rence of program 2 (see Figure 2.6 on page 49). The total execution time for 
such a workload suggests that machines A and B are about 80% faster than 
machine C, in contrast to the geometric mean, which says machine C is faster 
than A and B ! In general there is no workload for three or more machines that 
will match the performance predicted by the geometric means of normalized 
execution times. Our original reason for examining geometric means of 
normalized performance was to avoid giving equal emphasis to the programs in 
our workload, but is this solution an improvement? 

The ideal solution is to measure a real workload and weight the programs 
according to their frequency of execution. If this can't be done, then normalizing 
so that equal time is spent on each program on some machine at least makes the 
relative weightings explicit and will predict execution time of a workload with 
that mix (see Figure 2. 7 on page 51). The problem above of unspecified inputs is 
best solved by specifying the inputs when comparing performance. If results 
must be normalized to a specific machine, first summarize performance with the 
proper weighted measure and then do the normalizing. Section 2.4 gives an 
example. 

Cost 

While there are computer designs where costs tend to be ignored-specifically 
supercomputers--cost-sensitive designs are of growing importance. Textbooks 
have ignored the cost half of cost/performance because costs change, thereby 
dating books. Yet an understanding of cost is essential for designers to be able to 
make intelligent decisions about whether or not a new feature should be included 
in designs where cost is an issue. (Imagine architects designing skyscrapers 
without any information on costs of steel beams and concrete.) We therefore 
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cover in this section. fundamentals of cost that will not change for the life of the 
book and provide specific examples using costs that, though they may not hold 
up over time, demonstrate the concepts involved. 

The rapid change in cost of electronics is the first of several themes in cost­
sensitive designs. This parameter is changing so fast that good designers are bas­
ing decisions not on costs of today, but on projected costs at the time the product 
is shipped. The underlying principle that drives costs down is the learning 
curve-manufacturing costs decrease over time. The learning curve itself is best 
measured by change in yield-the percentage of manufactured devices that sur­
vive the testing procedure. Whether it is a chip, a board, or a system, designs 
that have twice the yield will have basically half the cost. Understanding how 
the learning curve will improve yield is key to projecting costs over the life of 
the product. 

Lowering cost, however, does not necessarily lower price; it may just 
increase profits. But when the product is available from multiple sources and 
demand does not exceed supply, competition does force prices to fall with costs. 
For the remainder of this discussion we assume that normal competitive forces 
are at work with a reasonable balance between supply and demand. 

As an example of the learning curve in action, the cost per megabyte of 
DRAM drops over the long term by 40% per year. A more dramatic version of 
the same information is shown in Figure 2.9, where the cost of a new DRAM 
chip is depicted over its lifetime. Between the start of a project and the shipping 
of a product, say two years, the cost of a new DRAM drops by nearly a factor of 
four. Since not all component costs change at the same rate, designs based on 
projected costs result in different cost-performance tradeoffs than those using 
current costs. 

A second important theme in cost-sensitive designs is the impact of packag­
ing on design decisions. A few years ago the ·advantages of fitting a design on a 
single board meant there was no backplane, no card cage, and a smaller and 
cheaper box-all resulting in much lower costs and even higher performance. In 
a few years it will be possible to integrate all the components of a system, except 
main memory, onto a single chip. The overriding issue will be making the sys­
tem fit on the chip, thereby avoiding the speed and cost penalties of having mul­
tiple chips, which means more interfaces, more pins to interfaces, larger boards, 
and so forth. The density of integrated circuits and packaging technology deter­
mine the resources available at each cost threshold. The designer must know 
where these thresholds are-or blindly cross them. 

Cost of an Integrated Circuit 

Why would a computer architecture book have a section on integrated circuit 
costs? In an increasingly competitive computer marketplace where standard 
parts-disks, DRAMs, and so on-are becoming a significant portion of any 
system's cost, integrated circuit costs are becoming a greater portion of the cost 
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that varies between machines, especially in the high volume, cost-sensitive por­
tion of the market. Thus computer designers must understand the costs of chips 
to understand the costs of current computers. We follow here the American ac­
counting approach to the cost of chips. 

While the costs of integrated circuits have dropped exponentially, the basic 
procedure of silicon manufacture is unchanged: A wafer is still tested and 
chopped into dies that are packaged (see Figures 2. lOa, b, and c ). Thus the cost 
of a packaged integrated circuit is 

C f 
. d . . _ Cost of die + Cost of testing die + Cost of packaging 

ost o mtegrate circmt - p· 1 · Id 
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FIGURE 2.9 Prices of four generations of DRAMs over time, showing the learning 
curve at work. While the longer average is 40% improvement per year, each generation 
drops in price by nearly a factor of ten over its lifetime. The DRAMs drop to about $1 to $2 
per chip over time, independent of capacity. Prices are not adjusted for inflation-if they 
were the graph would show an even greater drop in cost. For a time in 1987-1988, prices 
of both 256Kb and 1 Mb DRAMs were higher than indicated by earlier learning curves due 
to what seems to have been a temporary excess of demand relative to available supply. 
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FIGURE 2.1 Oa Photograph of a 6-inch wafer containing Intel 80486 microprocessors. There are 80 1.6 cm x 1.0 cm 
dies, although four dies are so close to the edge that they may or may not be fully functional. There are no separate test 
dies; instead, the electrical and parametric test circuits are placed between the dies. The 80486 includes a floating point 
unit, a small cache, and a memory management unit in addition to the integer unit. 

' 
L 
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FIGURE 2.10b Photograph of a 6-inch wafer containing Cypress CY7C601 microprocessors. There are 246 full 
0.8 cm x 0.7 cm dies, although again tour dies are so close to the edge it is hard to tell it they are complete. Like Intel, 
Cypress places the electrical and parametric test circuits between the dies. These test circuits are removed when the 
water is diced into chips. In contrast to the 80486, the CY7C601 contains the integer unit only. 
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FIGURE 2.1 Oc At the top left is the Intel 80486 die, and the Cypress CY7C601 die is on the right, shown at their 
actual sizes. Below the dies are the packaged versions of each microprocessor. Note that the 80486 has three rows of 
pins (168 total) while the 601 has four rows (207 total). The bottom row shows a close-up of the two dies, shown in proper 
relative proportions. 
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Cost of Dies 

To learn how to predict the number of good chips per wafer requires first learn­
ing how many dies fit on a wafer and then how to predict the percentage of those 
that will work. From there it is simple to predict cost: 

C f d
. _ Cost of wafer 

ost o le - D' .c D" . ld les per wa1er * le y1e 

The most interesting feature of this first term of the chip cost equation is its sen­
sitivity to die size, shown below. 

The number of dies per wafer is basically the area of the wafer divided by the 
area of the die. It can be more accurately estimated by 

7t *(Wafer diameter/2)2 7t *Wafer diameter 
Dies per wafer = D' - ~ 1 Test dies per wafer 

le area v 2 * Die area 

The first term is· the ratio of wafer area (7tr2) to die area. The second compen­
sates for the "square peg in a round hole" problem-rectangular dies near the per­
iphery of round wafers. Dividing the circumference (nd) by the diagonal of a 
square die is approximately the number of dies along the edge. The last term is 
for test dies that must be strategically placed to control manufacturing. For 
example, a I5-cm (::::::6-inch) diameter wafer with 5 test dies produces 3.I4*225/4 

- 3.I4*I5/TI - 5 or 138 I-cm-square dies. Doubling die area-the parameter 
that a computer designer controls-would cut dies per wafer to 59. 

But this only gives the maximum number of dies per wafer, and the critical 
question is what is the fraction or percentage of good dies on a wafer number, or 
the die yield. A simple model of integrated circuit yield assumes defects are 
randomly distributed over the wafer: 

{ 
Defects per unit area * Die area }-a. 

Die yield = Wafer yield * I + 
a 

where wafer yield accounts for wafers that are completely bad and so need not 
be tested and a is a parameter that corresponds roughly to the number of mask­
ing levels critical to die yield. a depends upon the manufacturing process. 
Generally a = 2.0 for simple MOS processes and higher values for more com­
plex processes, such as bipolar and BiCMOS. As an example, wafer yield is 
90%, defects per unit area is 2 per square centimeter, and die area is I square 
centimeter. Then die yield is 90%*(1 + (2*I)/2.or2·0 or 22.5%. 

The bottom line is the number of good dies per wafer, which comes from 
multiplying dies per wafer by die yield. The examples above predict 138*.225 or 
3I good I-cm-square dies per I5-cm wafer. As mentioned above, both dies per 
wafer and die yield are sensitive to die size-doubling die area knocks die yield 
down to 10% and good chips per wafer to just 59*.10, or 6! Die size depends on 
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the technology and gates required by the function on the chip, but it is also lim­
ited by the number of pins that can be placed on the border of a square die. 

A 15-cm-diameter wafer processed in two-level metal CMOS costs a semi­
conductor manufacturer about $550 in 1990. The cost for a 1-cm-square die with 
two defects per square cm on a 15-cm wafer is $550/(138*.225) or $17 .74. 

What should a computer designer remember about chip costs? The manufac­
turing process dictates the wafer cost, wafer yield, a, and defects per unit area, 
so the .sole control of the designer is die area. Since a is usually 2 or larger, die 
costs are proportional to the third (or higher) power of the die area: 

Cost of die= f (Die area3) 

The computer designer affects die size, and hence cost, both by what functions 
are included on or excluded from the die and by the number of 1/0 pins. 

Cost of Testing Die and Cost of Packaging 

Testing is the second term of the chip-cost equation, and the success rate of test­
ing (die yield) affects the cost of testing: 

C f 
. d' _ Cost of testing per hour * Average die test time 

ost o testmg 1e - n· . ld 1e y1e 

Since bad dies are discarded, die yield is in the denominator in the equation-the 
good must shoulder the costs of testing those that fail. Testing costs about $150 
per hour in 1990 and die tests take about 5 to 90 seconds on average, depending 
on the simplicity of the die and the provisions to reduce testing time included in 
the chip. For example, at $150 per hour and 5 seconds to test, the die test cost is 
$0.21. After factoring in die yield for a 1-cm-square die, the costs are $0.93 per 
good die. As a second example, let's assume testing takes 90 seconds. The cost 
is $3.75 per untested die and $16.67 per good die. The bill so far for our 1-cm­
square die is $18.67 to $34.41, depending on how long it takes to test. These two 
testing-time examples illustrate the importance of reducing testing time in reduc­
ing costs. 

Cost of Packaging and Final Test Yield 

The cost of a package depends on the material used, the number of pins, and the 
die area. The cost of the material used in the package is in part determined by 
the ability to dissipate power generated by the die. For example, a plastic quad 
flat pack (PQFP) dissipating less than one watt, with 208 or fewer pins, and 
containing a die up to one cm on a side costs $3 in 1990. A ceramic pin grid 
array (PGA) can handle 300 to 400 pins and a larger die with more power, but it 
costs $50. In addition to the cost of the package itself is the cost of the labor to 
place a die in the package and then bond the pads to the pins. We can assume 
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that costs $2. Bum-in exercises the packaged die under power for a short time to 
catch chips that would fail early. Bum-in costs about $0.25 in 1990 dollars. 

We are not finished with costs until we have figured in failure of some chips 
during assembly and bum-in. Using the estimate of 90% for final test yield, the 
successful must again pay for the cost of those that fail, so our costs are $26.58 
to $96.29 for the 1-cm-square die. 

While these specific cost estimates may not hold, the underlying models will. 
Figure 2.11 shows the dies per wafer, die yield, and their product against the die 
area for a typical fabrication line, this time using programs that more accurately 
predict die per wafer and die yield. Figure 2.12 plots the change in area and cost 
as one dimension of a square die changes. Changes to small dies make little cost 
difference while 30% increases to large dies can double costs. The wise silicon 
designer will minimize die area, testing time, and pins per chip and understand 
the costs of projected packaging options when considering using more power, 
pins, or area for higher performance. 

Cost of a Workstation 

To put the costs of silicon in perspective, Figure 2.13 shows the approximate 
costs of components in a 1990 workstation. Costs of a component can be halved 
going from low volume to high volume; here we assume high-volume purchas­
ing of 100,000 units. While costs for units like DRAMs will surely drop over 
time from those in Figure 2.13, units whose prices have already been cut, like 
displays and cabinets, will change very little. 

The processor, floating-point unit, memory-management unit, and cache are 
only 12% to 21 % of the cost of the CPU board in Figure 2.13. Depending on the 
options included in the system-number of disks, color monitor, and so on-the 
processor components drop to 9% and 16% of the cost of a system, as Figure 
2.14 illustrates. In the future two questions will be interesting to consider: What 
costs can an engineer control? And what costs can a computer engineer control? 

Cost Versus Price-Why They Differ and by How Much 

Costs of components may confine a designer's desires, but they are still far from 
representing what the customer must pay. But why should a computer architec­
ture book contain pricing information? Cost goes through a number of changes 
before it becomes price, and the computer designer must understand these to 
determine the impact of design choices. For example, changing cost by $1,000 
may change price by $4,000 to $5,000. Without understanding the relationship 
of cost to price the computer designer may not understand the impact on price of 
adding, deleting, or replacing components. 
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Area Side (cm) Die/ Die yield/ Cost of die Cost to test Packaging Total cost after 
(sq. cm) wafer wafer die costs final test 

0.06 0.25 2778 79.72% $0.25 $0.63 $5.25 $6.81 

0.25 0.50 656 57.60% $1.46 $0.87 $5.25 $8.42 

0.56 0.75 274 36.86% $5.45 $1.36 $5.25 $13.40 

1.00 1.00 143 22.50% $17.09 $2.22 $5.25 $27.29 

1.56 1.25 84 13.71% $47.76 $3.65 $52.25 $115.18 

2.25 1.50 53 8.52% $121.80 $5.87 $52.25 $199.91 

3.06 1.75 35 5.45% $288.34 $9.17 $52.25 $388.62 

4.00 2.00 23 3.60% $664.25 $13.89 $52.25 $811.54 

FIGURE 2.11 Costs for several die sizes. Costs for a working chip are shown in columns 5 through 7. Column 8 is the 
sum of columns 5 through 7 divided by the final test yield. Figure 2.12 presents this information graphically. This figure 
assumes a 15.24-cm (6-inch) wafer costing $550, with 5 test die per wafer. The wafer yield is 90%, the defect density is 
2.0 per square cm, and a is 2.0. It takes 12 seconds on average to test a die, the tester costs $150 per hour, and the final 
test yield is 90%. (The numbers differ a little from the text for a 1-cm-square die because the wafer size is calculated at 
the full 15.24 cm rather than rounded to 15 cm and because of the difference in testing time.) 

$900 

$811 
$800 

$700 

$600 

• Final test yield 

$500 
0Packaging 

Final 
cost D Testing cost 

$400 
.Die cost 

$300 

$200 

$100 

$7 $8 
$0 

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

Length of side of a square die (cin) 

FIGURE 2.12 The costs of a chip from Figure 2.11 presented graphically. Using the 
parameters given in the text, packaging is a major percentage of the cost of dies of size 
1.25-cm square and smaller, with die cost dominating final costs for larger dies. 
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Rule of Lower %Mono Higher % Color 
thumb cost ws cost ws 

CPU cabinet Sheet metal, plastic $50 2% $50 1% 

Power supply and fans $0.80/watt $55 3% $55 1% 

Cables, nuts, bolts $30 1% $30 1% 

Shipping box, manuals $10 0% $10 0% 

Subtotal $145 7% $145 3% 

CPU board IU, FPU, MMU, cache $200 9% $800 16% 

DRAM $150/MB $1200 56% $2400 48% 

Video logic (frame buffer, Mono $100 5% 
DAC, mono/color) 

Color $500 10% 

I/O interfaces (SCSI, Ethernet, floppy, $100 5% $100 2% 
PROM, time-of-day clock) 

Printed circuit board 8 layers 
$1.00/sq. in. 

6 layers $50 2% $50 1% 
$0.50/sq. in. 

4 layers 
$0.25/sq. in. 

Subtotal $1650 77% $3850 76% 

1/0 devices Keyboard, mouse $50 2% $50 1% 

Display monitor Mono $300 14% 

Color $1,000 20% 

Hard disk lOOMB $400 

Tape drive 150MB $400 

Mono (8 MB, Mono logic & display, $2,145 100% $2,745 
workstation keyboard, mouse, diskless) 

Color (16 MB, Color logic & display, $4,445 $5,045 100% 
workstation keyboard, mouse, diskless) 

File server (16 MB, 6 disks+tape drive) $5,595 $6,195 

FIGURE 2.13 Estimated cost of components in a 1990 workstation assuming 100,000 units. IU refers to integer unit 
of the processor, FPU to floating-point unit, and MMU to memory-management unit. The lower cost column refers to the 
least expensive options, listed as a Mono workstation in the third row from the bottom. The higher cost column refers to 
the more expensive options, listed as a Color workstation in the second row from the bottom. Note that about half the cost 
of the systems is in the DRAMs. Courtesy of Andy Bechtolsheim of Sun Microsystems, Inc. 
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File server ~~~~~~~~~~~~~ $2,800 
1/0 devices Color WS 

MonoWS 

File server ~~~~~~~~~~~~~$2~,6~5.2._0 ---~ 
CPU board Color WS 

MonoWS 

File server 

CPU cabinet Color WS 
MonoWS 

$0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 $3,500 $4,000 

FIGURE 2.14 The costs of each machine in Figure 2.13 divided into the three main 
categories, assuming the lower cost estimate. Note that 1/0 devices and amount of 
memory account for major differences in costs. 

The categories that make up price can be shown either as a tax on cost or as a 
percentage of the price. We will look at the information both ways. Figure 2.15 
shows the increasing price of a product from left to right as we add each kind of 
overhead. 

Direct costs refer to the costs directly related to making a product. These 
include labor costs, purchasing components, scrap (the leftover from yield), and 
warranty, which covers the costs of systems that fail at the customer's site dur­
ing the warranty period. Direct cost typically adds 25% to 40% to component 
cost. Service or maintenance costs are not included because the customer typ­
ically pays those costs. 

The next addition is called the gross margin, the company's overhead that 
cannot be billed directly to one product. This can be thought of as indirect cost. 
It includes the company's research and development (R&D), marketing, sales, 
manufacturing equipment maintenance, building rental, cost of financing, pretax 
profits, and taxes. When the component costs are multiplied by the direct cost 
and gross margin we reach the average selling price-ASP in the language of 
MBAs-the money that comes directly to the company for each product sold. 
The gross margin is typically 45% to 65% of the average selling price. 

List price and average selling price are not the same. One reason for this is 
that companies offer volume discounts, fowering the average selling price. Also, 
if the product is to be sold in retail stores, as personal computers are, stores want 
to keep 40% of the list price for themselves. Thus, depending on the distribution 
system, the average selling price is typically 60% to 75% of the list price. The 
formula below ties the four terms together: 

. . Cost * (1 + Direct costs) 
List pnce = . . 

. (1-Average discount)* (1- Gross margm) 
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Figure 2.16 demonstrates the abstract concepts of Figure 2.15 using dollars and 
cents by turning the costs of Figure 2.13 into prices. This is done using two 
business models. Model A assumes 25% (of cost) direct costs, 50% (of ASP) 
gross margin, and a 33% (of list price) average discount. Model B assumes 40% 
direct costs, 60% gross margin, and the average discount is dropped to 25%. 

Pricing is sensitive to competition. A company striving for market share can 
therefore adjust to average discount or profits, but must live with its component 
cost and direct cost, plus the rest of the costs in the gross margin. 

Many engineers ·are surprised to find that most companies spend only 8% to 
15% of their income on R&D, which includes all engineering (except for manu­
facturing and field engineering). This is a weli-established percentage that is 
reported in companies' annual reports and tabulated in national magazines, so 
.this percentage is unlikely to change over time. 

The information above suggests that a company uniformly applies fixed­
overhead percentages to tum cost into price, and this is true for many com­
panies. But another point of view is R&D should be considered an investment, 
and so an investment of 8% to 15% of income means every $1 spent on R&D 
must generate $7 to $13 in sales. This alternative point of view then suggests a 
different gross margin for each product depending on number sold and the size 

List--. 
price 

25%- Average 
40% discount 

Average 
selling 

price 

45%- Gross 34%- Gross 
65% margin 39% margin 

20%- Direct 11%- Direct 8%- Direct 
29% costs 10% costs 6% costs 

100% Component 80%- Component 44%- Component 33%- Component 
costs 71% costs 25% costs 15% costs 

l ! ! 

"--Add 25% to __.) \.___Add 82% to _) \___Add 33% to _) 
40% for direct 186%for 66% for 

costs gross margin average discount 

FIGURE 2.15 Starting with component costs, the price increases as we allow for 
direct costs, gross margin, and average discount, until we arrive at the list price. 
Each increase is shown along the bottom as a tax on the prior price. On the left of each 
column are shown the percentages of the new price for all elements. 
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2.4 

2.3 Cost 

Model A As% As% of Model B As% As% of 
of costs list price of costs list price 

Component costs $2,145 100% 27% $2,145 100% 21% 

Component costs $2,681 125% 33% $3,003 140% 30% 
+ direct costs 

Average selling $5,363 250% 67% $7,508 350% 75% 
price (adds gross 
margin) 

List price $8,044 375% 100% $10,010 467% 100% 

FIGURE 2.16 The diskless workstation in Figure 2.13 priced using two different 
business models. For every dollar of increased component cost the average selling price 
goes up between $2.50 and $3.50, and the list price increases between $3.75 and $4.67. 

of the investment. Large expensive machines generally cost more to develop-a 
machine costing 10 times as much to manufacture may cost many times as much 
to develop. Since large expensive machines generally do not sell as well as small 
ones, the gross margin must be greater on the big machines for the company to 
maintain a profitable return on its investment. This investment model places 
large machines in double jeopardy-because there are fewer sold and they 
require larger R&D costs-and gives one explanation for a higher ratio of price 
to cost versus smaller machines. 

Putting It All Together: Price/Performance of 
Three Machines 

Having covered performance and costs, the next step is to measure performance 
of real programs on real machines and list the costs of those machines. Alas, 
costs are hard to come by so prices are used instead. We start with the more con­
troversial half of price/performance. 

Figure 2.17 lists the programs chosen by the authors for performance mea­
surement in this book. Two of the programs have almost no floating-point 
operations, and one has a moderate amount of floating-point operations. All 
three programs have input, output, and options-what you would expect from 
real programs. Each program has, in fact, a large user community that cares how 
fast these programs run. (In measuring performance of machines we would like 
to have a larger sample, but we keep the limit at three throughout the book to 
make tables and graphs legible.) 
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Lines 

Options 

Input 

Lines/bytes of input 

Lines/bytes of output 

% floating-point operations 
(on the DECstation 3100) 

Programming language 

Purpose 
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Figure 2.18 shows the characteristics of three machines we measure, includ­
ing the list price as tested and the relative performance as calculated by 
marketing. 

Figure 2.19 (page 69) shows the CPU time and elapsed time measured for 
these programs. We include total times and several weighted averages, with the 
weights shown in parentheses. The first weighted arithmetic mean is assuming a 
workload of just the integer programs (GCC and TeX). The second is the 
weightings for a floating-point workload (Spice). The next three weighted means 
give three workloads for equal time spent on each program on one of the 
machines (see Figure 2.7 on page 51). The only means that are significantly 
different are the integer and floating-point means for V AXstation 2000. The rest 
of the means for each machine are within 10% of each other, as can be seen in 
Figure 2.20 on page 69, which plots the weighted means. 

Gnu C Compiler Common TeX Spice 
for 68000 

L26 2.9 2G6 

79,409 23,037 18,307 

-0 '&latex/lplain' transient analysis, 200 ps 
steps, for 40 ns 

i*.C bit-set.tex, compiler. digsr - digital shift 
tex,. .. register 

28,009/373,688 10,992/698,914 233/1294 

47 ,553/664,4 79 758/524,728 656/4172 

0.01% 0.05% 13.58% 

c c FORTRAN66 

Publicly licensed, portable, Document formatting Computer-aided circuit 
optimizing C compiler analysis 

FIGURE 2.17 Programs used in this book for performance measurements. The Gnu C compiler is a product of 
the Free Software Foundation and, for reasons not limited to its price, is preferred by some users over the compilers 
supplied by the manufacturer. Only 9,540 of the 79,409 lines are specific to the 68000, and versions exist for the 
VAX, SPARC, 88000, MIPS, and several other instruction sets. The input for GCC are the source files of the compiler 
that begin with the letter "i." Common TeX is a C version of the document-processing program originally written by 
Prof. Donald Knuth of Stanford. The input is a set of manual pages for the Stanford SUIF compiler. Spice is a 
computer-aided circuit-analysis package distributed by the University of California at Berkeley. (These programs and 
their inputs are available as part of the software package associated with this book. The Preface mentions how to get a 
copy.) 
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V AXstation 2000 VAXstation 3100 DECstation 3100 

Year of introduction 1987 1989 1989 

Version of CPU/FPU µVAX II CVAX MIPS R2000A/R2010 

Clock rate 5MHz 11.11 MHz 16.67 MHz 

Memory size 4MB 8MB 8MB 

Cache size none 1 KB on chip, 64-KB 128 KB (split 64-KB 
second level instruction and 64-KB 

data) 

TLB size 8 entries fully associative 28 entries fully 64 entries fully associative 
associative 

Base list price $4,825 $7,950 $11,950 

Optional equipment 19" monitor, extra 10 MB (model 40) extra 8 MB 19" monitor, extra 8 MB 

List price as tested $15,425 $14,480 $17,950 

Performance according 0.9 MIPS 3.0 MIPS 12 MIPS 
to marketing 

Operating system Ultrix 3.0 Ultrix 3.0 Ultrix 3.0 

C compiler version Ultrix and VMS Ultrix and VMS 1.31 

Options for C compiler -0 -0 -02 -Olimit 1060 

C library libc libc libc 

FORTRAN 77 compiler version fort (VMS) fort (VMS) 1.31 

Options for FORTRAN 77 -0 -0 -02 -Olimit 1060 
compiler 

FORTRAN 77 library lib*77 lib*77 lib*77 

FIGURE 2.18 The three machines and software used to measure performance in Figure 2.19. These machines are 
all sold by Digital Equipment-in fact, the DECstation 3100 and VAXstation 3100 were announced the same day. All three 
are diskless workstations and run the same version of the UNIX operating system, called Ultrix. The VMS compilers 
ported to Ultrix were used for TeX and Spice on the VAXstations. We used the native Ultrix C compiler for GCC because 
GCC would not run using the VMS C compiler. The compilers for the DECstation 3100 are supplied by MIPS Computer 
Systems. (The "-Olimit 1060" option for the DECstation 3100 tells the compiler not to try to optimize procedures longer 
than 1060 lines.) 

The bottom line for many computer customers is the price they pay for per­
formance. This is graphically depicted in Figure 2.21 (page 70), where arith­
metic means of CPU time are plotted against price of each machine. 
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V AXstation 2000 V AXstation 3100 DECstation 3100 

CPU Elapsed CPU Elapsed CPU Elapsed 
time time time time time time 

Gnu C Compiler for 68000 985 1108 291 327 90 159 

Common TeX 1264 1304 449 479 95 137 

Spice 958 973 352 395 94 132 

Arithmetic mean 1069 1128 364 400 93 143 

Weighted AM-integer only 1125 1206 370 403 93 148 
(50% GCC, 50% TeX, 0% Spice) 

Weighted AM-floating point only 958 973 352 395 94 132 
(0% GCC, 0% TeX, 100% Spice) 

Weighted AM-equal CPU time on V2000 1053 1113 357 394 93 143 
(35.6% GCC, 27.8% TeX, 36.6% Spice) 

Weighted AM-equal CPU time on V3100 1049 1114 353 390 93 144 
(40.4% GCC, 26.2% TeX, 33.4% Spice) 

Weighted AM-equal CPU time on 03100 1067 1127 363 399 93 143 
(34.4% GCC, 32.6% TeX, 33.0% Spice) 

FIGURE 2.19 Performance of the programs in Figure 2.17 on the machines in Figure 2.18. The weightings 
correspond to integer programs only, and then equal CPU time running on each of the three machines. For example, if the 
mix of the three programs were proportionate to the weightings in the row "equal CPU time on 03100," the DECstation 
3100 would spend a third of its CPU time running Gnu C Compiler, a third running TeX, and a third running Spice. The 
actual weightings are in parentheses, calculated as shown in Figure 2.7 on page 51. 

1250 

1000 

.»---~--~ ----V2000 ET 
~----+----... ---V2000 CPU 

FIGURE 2.20 Plot of means of CPU time and elapsed time from Figure 2.19. 
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FIGURE 2.21 Price versus performance of VAXstation 2000, VAXstation 3100, and 
DECstation 3100 for Gnu C Compiler, TeX, and Spice. Based on Figures 2.18-2.19, this 
figure plots the list price as tested of a machine versus performance, where performance is 
the inverse of the ratio to the arithmetic mean of CPU time on a VAXstation 2000. The lines 
through the three machines show lines of constant price/performance. For example, a 
machine at the right end of the VAXstation 3100 line costs $20,000. Since it would cost 
30% more, it must have 30% more performance than the VAXstation 3100 to have the 
same price performance. 

Fallacies and Pitfalls 

Cost/performance fallacies and pitfalls have ensnared many computer architects, 
including ourselves. For this reason, more space is devoted to the warning sec­
tion in this chapter than in other chapters of this text. 

Fallacy: Hardware-independent metrics predict performance. 

Because accurately predicting performance is so difficult, the folklore of com­
puter design is filled with suggested shortcuts. These are frequently employed 
when comparing different instruction sets, especially instruction sets that are 
paper designs. 

One such shortcut is "Code Size= Speed," or the architecture with the small­
est program is fastest. Static code size is important when memory space is at a 
premium, but it is not the same as performance. As we shall see in Chapter 6, 
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larger programs composed of instructions that are easily fetched, decoded, and 
executed may run faster than machines with extremely compact instructions that 
are difficult to decode. "Code Size=Speed" is especially popular with compiler 
writers, for while it can be difficult to decide if one code sequence is faster than 
another, it is easy to see which is shorter. 

Evidence of the "Code Size=Speed" fallacy can be found on the cover of the 
book Assessing the Speed of Algol 60 in Figure 2.22. The CDC 6600's programs 
are over twice as big, yet the CDC machine runs Algol 60 programs almost six 
times faster than the Burroughs B5500, a machine designed for Algol 60. 

Pitfall: Comparing computers using only one or two of three performance 
metrics: clock rate, CPI, and instruction count. 

The CPU performance equation shows why this can mislead. One example is 
that given in Figure 2.22: The CDC 6600 executes almost 50% more instructions 
than the Burroughs B5500, yet it is 550% faster. Another example comes from 
increasing the clock rate so that some instructions execute fast-sometimes 
called peak performance-but making design decisions that also result in a high 
overall CPI that offsets the clock rate advantage. The Intergraph Clipper ClOO 
has a clock rate of 33 MHz and a peak performance of 33 native MIPS. Yet the 
Sun 4/280, with half the clock rate and half the peak native MIPS rating, runs 
programs faster [Hollingsworth, Sachs, and Smith 1989, 215]. Since the 
Clipper's instruction count is about the same as Sun's, the former machine's CPI 
must be more than double that of the latter. 

Time Instructions Size 

B 
5500 

FIGURE 2.22 As found on the cover of Assessing the Speed of Algol 60 by B. A. 
Wichmann, the graph shows relative execution time, instruction count, and code size 
of programs written in Algol 60 for the Burroughs 85500 and the CDC 6600. The 
results are normalized to a reference machine, with a higher number being worse. This 
book had a profound effect on one of the authors (DP). Seymour Cray, the designer of the 
CDC 6600, may not even have known of the existence of this programming language, while 
Robert Barton, architect of the 85500, designed the instruction set specifically for Algol 60. 
While the CDC 6600 executes 50% more instructions and has 220% larger code, the CDC 
6600 is 550% faster than the 85500. 
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Fallacy: When calculating relative MIPS, the versions of the .compiler and 
operating system of the reference machine make little difference. 

Figure 2.19 shows the V AXstation 2000 taking 958 seconds of CPU time when 
running Spice with a standard input. Instead of Ultrix 3.0 with the VMS F77 
compiler, many systems use Ultrix 3.0 with the standard UNIX F77 compiler. 
This compiler increases Spice CPU time to 1604 seconds. Using the standard 
evaluation of 0.9 relative MIPS for the VAXstation 2000, the DECstation 3100 
is either 11 or 19 relative MIPS for Spice depending on the compiler of the 
reference machine. 

Fallacy: CPI can be calculated from the instruction mix and the execution 
times of instructions found in the manual. 

Current machines are too complicated to estimate performance from a manual. 
For example, in Figure 2.19 Spice takes 94 seconds of CPU time on the 
DECstation 3100. If we calculate the CPI from the DECstation 3100 manual­
ignoring memory hierarchy and pipelining inefficiencies for this Spice instruc­
tion mix-we get 1.41 for the CPI. When multiplied by the instruction count and 
clock rate we get only 73 seconds. The missing 25% of CPU time is due to the 
estimate of CPI based only on the manual. The actual measured value, including 
all memory-system inefficiencies, is 1.87 CPI. 

Pitfall: Summarizing performance by translating throughput into execution 
time. 

The SPEC benchmarks report performance by measuring the elapsed time of 
each of 10 benchmarks. The sole dual processor workstation in the initial 
benchmark report ran these benchmarks no faster since the compilers didn't 
automatically parallelize the code across the two processors. The benchmarker's 
solution was to run a copy of each benchmark on each processor and record 
elapsed time for the two copies. This would not have helped if the SPEC release 
had only summarized performance using elapsed times, since the times were 
slower due to interference of the processors on memory accesses. The loophole 
was the initial SPEC release reported geometric means of performance relative 
to a VAX-11/780 in addition to elapsed times, and these means are used to graph 
the results. This innovative benchmarker interpreted ratio of performance to a 
VAX-11/780 as a thro·ughput measure, so doubled his measured ratios to the 
VAX! Figure 2.23 shows the plots as found in the report for the uniprocessor 
and the multiprocessor. This technique almost doubles the geometric means of 
ratios, suggesting the mistaken conclusion that a computer that runs two copies 
of a program simultaneously has the same response time to a user as a computer 
that runs a single program in half the time. . 
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FIGURE 2.23 Performance of uniprocessor and multiprocessor as reported in SPEC 
Benchmark Press Release. Performance is plotted relative to a VAX-11/780. The ratio for 
the multiprocessor is really the ratio of elapsed time multiplied by the number of processors. 

Fallacy: Synthetic benchmarks predict performance. 

The best known examples of such benchmarks are Whetstone and Dhrystone. 
These are not real programs and, as such, may not reflect program behavior for 
factors not measured. Compiler and hardware optimizations can artificially 
inflate performance of these benchmarks but not of real programs. The other 
side of the coin is that because these benchmarks are not natural programs, they 
don't reward optimizations of behavior that occur in real programs. Here are 
some examples: 

• Optimizing compilers can discard 25% of the Dhrystone code; examples 
include loops that are only executed once, making the loop overhead instruc­
tions unnecessary. To address these problems the authors of the benchmark 
"require" both optimized and unoptimized code to be reported. In addition, 
they "forbid" the practice of inline-procedure expansion optimization. 
(Dhrystone' s simple procedure structure allows elimination of all procedure 
calls at almost no increase in code size; see Figure 2.5 on page 4 7.) 

• All Whetstone floating-point loops make optimizations via vectorization 
essentially useless. (The program was written before computers with vector 
instructions were popular. See Chapter 7.) 
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• Dhrystone has a long history of optimizations that skew its performance. The 
most recent comes from a C compiler that appears to include optimizations 
just for Dhrystone (Figure 2.5). If the proper option flag is set at compile 
time, the compiler turns the portion of the C version of this bencpmark that 
copies a variable length string of bytes (terminated by an end-of-string sym­
bol) into a loop that transfers a fixed number of words assuming the source 
and destination of the string is word-aligned in memory. Although it is esti­
mated that between 99.70% to 99.98% of typical string copies could not use 
this optimization, this single change can make a 20% to 30% improvement in 
overall performance-if Dhrystone is your measure. 

• Compilers can optimize a key piece of the Whetstone loop by noting the rela­
tionship between square root and exponential, even though this is very 
unlikely to occur in real programs. For example, one key loop contains the 
following FORTRAN code (see Figure 2.4 on page 46): 

X =SQRT( EXP(ALOG(X)/Tl) 

It could be compiled as if it were 

X =EXP( ALOG(X)/(2*Tl) 

since 

2 

SQRT (EXP (X)) = Y = eX/2 = EXP (X/2) 

It would be surprising if such optimizations were ever invoked except in this 
synthetic benchmark. (Yet one reviewer of this book found several compilers 
that performed this optimization!) This single change converts all calls to the 
square root function in Whetstone into multiplies by 2, surely improving per­
formance-if Whetstone is your measure. 

Fallacy: Peak performance tracks observed performance. 

One definition of peak performance is performance a machine is "guaranteed not 
to exceed." The gap between peak performance and observed performance is 
typically a factor of 10 or more in supercomputers. (See Chapter 7 on vectors for 
an explanation.) Since the gap is so large, peak performance is not useful in pre­
dicting observed performance unless the workload consists of small programs 
that normally operate close to the peak. 

As an example of this fallacy, a small code segment using long vectors ran on 
the Hitachi S810/20 at 236 MFLOPS and on the CRAY X-MP at 115 MFLOPS. 
Although this suggests the S810 is 105% faster than the X-MP, the X-MP runs a 
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CRAY Hitachi Performance 
X-MP S810/20 

A(i)=B(i)*C(i)+D(i)*E(i) (vector length 2.6 secs 1.3 secs Hitachi 
1000 done 100,000 times) 105% faster 

Vectorized FFf 3.9 secs 7.7 secs CRAY 
(vector lengths 64, 32, ... ,2) 97% faster 

FIGURE 2.24 Measurements of peak performance and actual performance for the 
Hitachi S810/20 and the CRAY X-MP. From Lubeck, Moore, and Mendez [1985, 18-20). 
Also see the pitfall in the Fallacies and Pitfalls section of Chapter 7. 

Machine PeakMFLOPS Harmonic mean Percent of peak 
rating MFLOPS of the MFLOPS 

Perfect benchmarks 

CRAY X-MP/416 940 14.8 1% 

IBM 3090-600S 800 8.3 1% 

NEC SX/2 1300 16.6 1% 

FIGURE 2.25 Peak performance and harmonic mean of actual performance for the 
Perfect Benchmarks. These results are for the programs run unmodified. When tuned by 
hand performance of the three machines moves to 24.4, 11.3, and 18.3 MFLOPS, 
respectively. This is still 2% or less of peak performance. 

program with more typical vector lengths 97% faster than the S810. These data 
are shown in Figure 2.24. 

Another good example comes from a benchmark suite called the Perfect Club 
(see page 80). Figure 2.25 shows the peak MFLOPS rating, harmonic mean of 
the MFLOPS achieved for 12 real programs, and the percentage of peak perfor­
mance for three large computers. They achieve only 1 % of peak performance. 

While the use of peak performance has been rampant in the supercomputer 
business, recently this metric spread to microprocessor manufacturers. For 
example, in 1989 a microprocessor was announced as having the performance of 
150 million "operations" per second ("MOPS"). The only way this machine can 
achieve this performance is for one integer instruction and one floating-point 
instruction to be executed each clock cycle and for the floating-point instruction 
to perform both a multiply operation and an add. For this peak performance to 
predict observed performance a real program would have to have 66% of its 
operations be floating point and no losses for the memory system or pipelining. 
In contrast to claims, typical measured performance of this microprocessor is 
under 30 "MOPS." 

The authors hope that peak performance can be quarantined to the super­
computer industry and eventually eradicated from that domain; but in any case, 
approaching supercomputer performance is not an excuse for adopting dubious 
supercomputer marketing habits. 
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2.6 

2.6 Concluding Remarks 

Concluding Remarks 

Having a standard of performance reporting in computer science journals as high 
as that in car magazines would be an improvement in current practice. 
Hopefully, that will be the case as the industry moves toward basing perfor­
mance evaluation on real programs. Perhaps arguments about performance will 
even subside. 

Computer designs will always be measured by cost and performance, and 
finding the best balance will always be the art of computer design. As long as 
technology continues to rapidly improve, the alternatives will look like the 
curves in Figure 2.26. Once a designer selects a technology, he can't achieve 
some performance levels no matter how much he pays and, conversely, no mat­
ter how much he cuts performance there is a limit to how low the cost can go. It 
would be better in either case to change technologies. 

As a final remark, the number of machines sold is not always the best mea­
sure of cost/performance of computers, nor does cost/performance always pre­
dict number sold. Marketing is very important to sales. It is easier, however, to 
market a machine with better cost/performance. Even businesses with high gross 
margins need to be sensitive to cost/performance, otherwise the company cannot 
lower prices when faced with stiff competition. Unless you go into marketing, 
your job is to improve cost/performance! 

A 

$/MIPS 

Performance 

FIGURE 2.26 The cost per MIPS goes up on they axis, and system performance 
increases on the x axis. A, B, and C are three technologies, let us say three different 
semiconductor technologies, to build a processor. Designs in the flat part of the curves can 
offer varieties of performance at the same cost/performance. If performance goals are too 
high for a technology it becomes very expensive, and too cheap a design makes the per­
formance too low (cost per MIPS expensive for low MIPS). At either extreme it is better to 
switch technologies. 
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Historical Perspective and References 

The anticipated degree of overlapping, buffering, and queuing in the [IBM 360) 
Model 85 [first computer with a cache] appeared to largely invalidate conven­
tional performance measures based on instruction mixes and program kernels. 

Conti, Gibson, and Pitkowsky [1968] 

In the earliest days of computing, designers set performance goals-ENIAC was 
to be 1000 times faster than the Harvard Mark I, and the IBM Stretch (7030) was 
to be 100 times faster than the fastest machine in existence. What wasn't clear, 
though, was how this performance was to be measured. In looking back over the 
years, it is a consistent theme that each generation of computers obsoletes the 
performance evaluation techniques of the prior generation. 

The original measure of performance was time to perform an individual 
operation, such as addition. Since most instructions took the same execution 
time, the timing of one gave insight into the others. As the execution. times of 
instructions in a machine became more diverse, however, the time for one opera­
tion was no longer useful for comparisons. To take these differences into 
account, an instruction mix was calculated by measuring the relative frequency 
of instructions in a computer across many programs. The Gibson mix [1970] 
was an early popular instruction mix. Multiplying the time for each instruction 
times its weight in the mix gave the user the average instruction execution time. 
(If measured in clock cycles, average instruction execution time is the same as 
average CPI.) Since instruction sets were similar, this was a more accurate 
comparison than add times. From average instruction execution time, then, it 
was only a small step to MIPS (as we have seen, the one is the inverse of the 
other). MIPS has the virtue of being easy for the layman to understand, hence its 
popularity. 

As CPUs became more sophisticated and relied on memory hierarchies and 
pipelining, there was no longer a single execution time per instruction; MIPS 
could not be calculated from the mix and the manual. The next step was bench­
marking using kernels and synthetic programs. Curnow and Wichmann [1976] 
created the Whetstone synthetic program by measuring scientific programs 
written in Algol 60. This program was converted to FORTRAN and was widely 
used to characterize scientific program performance. An effort with similar goals 
to Whetstone, the Livermore FORTRAN Kernels, was made by McMahon 
[1986] and researchers at Lawrence Livermore Laboratory in an attempt to 
establish a benchmark for supercomputers. These kernels, however, consisted of 
loops from real programs. 

The notion of relative MIPS came along as a way to resuscitate the easily 
understandable MIPS rating. When the VAX-11/780 was ready for announce­
ment in 1977, DEC ran small benchmarks that were also run on an IBM 
370/158. IBM marketing referred to the 370/158 as a 1-MIPS computer, and 

INTEL Ex.1035.109



78 2.7 Historical Perspective and References 

since the programs ran at the same speed, DEC marketing called the VAX-
11/780 a 1-MIPS computer. (Note that this rating included the effectiveness of 
the compilers on both machines at the moment the comparison was made.) The 
popularity of the VAX-11/780 made it a popular reference machine for relative 
MIPS, especially since relative MIPS for a 1-MIPS computer is easy to calcu­
late: If a machine was five times faster than the VAX-11/780, for that bench­
mark its rating would be 5 relative MIPS. The 1-MIPS rating was unquestioned 
for four years until Joel Erner of DEC measured the V AX-11/780 under a time­
sharing load. He found that the VAX-11/780 native MIPS rating was 0.5. 
Subsequent VAXes that run 3 native MIPS for some benchmarks were therefore 
called 6-MIPS machines because they run 6 times faster than the V AX-11/780. 

Although other companies followed this confusing practice, pundits have 
redefined MIPS as "Meaningless Indication of Processor Speed" or "Meaning­
less Indoctrination by Pushy Salespersons." At the present time, the most com­
mon meaning of MIPS in marketing literature is not native MIPS but "number of 
times faster than the VAX-11/780" and frequently includes floating-point pro­
grams as well. The exception is IBM, which defines MIPS relative to the 
"processing capacity" of an IBM 370/158, presumably running large system 
benchmarks (see Henly and McNutt, [1989, 5]). In the late 1980s DEC began 
using VAX units of performance (VUP), meaning ratio to VAX-11/780, so 6 
relative MIPS became 6 VUPs. 

The 1970s and 1980s marked the growth of the supercomputer industry, 
which was defined by high performance on floating-point-intensive programs. 
Average instruction time and MIPS were clearly inappropriate metrics for this 
industry, and hence the invention of MFLOPS. Unfortunately customers quickly 
forget the program used for the rating, and marketing groups decided to start 
quoting peak MFLOPS in the supercomputer performance wars. 

A variety of means have been proposed for averaging performance. 
McMahon [1986] recommends the harmonic mean for averaging MFLOPS. 
Flemming and Wallace [1986] assert the merits of the geometric mean in gen­
eral. Smith's reply [1988] to their article gives cogent arguments for arithmetic 
means of time and harmonic means of rates. (Smith's arguments are the ones 
followed in "Comparing and Summarizing Performance" under Section 2.2, 
above.) 

As the distinction between architecture and implementation pervaded the 
computing community (see Chapter 1), the question arose whether the perfor­
mance of an architecture itself could be evaluated, as opposed to an implementa­
tion of the architecture. A study of this question performed at Carnegie-Mellon 
University is summarized in Fuller and Burr [1977]. Three quantitative measures 
were invented to scrutinize architectures: 

S Number of bytes for program code 

M Number of bytes transferred between memory and the CPU during pro­
gram execution for code and data (S measures size of code at compile 
time, while M is memory traffic during program execution.) 

INTEL Ex.1035.110



Gnu C Compiler 

Common TeX 

Spice 

Performance and Cost 79 

R Number of bytes transferred between registers in a canonical model of a 
CPU 

Once these measures were taken, a weighting factor was applied to them to 
determine which architecture was "best." Yet there has been no formal effort to 
see if these measures really matter-do the implementations of an architecture 
with superior S, M, and R measures outperform implementations of lesser archi­
tectures? The VAX architecture was designed in the height of popularity of the 
Carnegie-Mellon study, and by those measures it does very well. Architectures 
created since 1985, however, have poorer measures than the VAX, yet their 
implementations do well against the VAX implementations. For example, Figure 
2.27 compares S, M, and CPU time for the V AXstation 3100, which uses the 
VAX instruction set, and the DECstation 3100, which doesn't. The DECstation 
3100 is 200% to almost 400% faster even though its S measure is 35% to 70% 
worse and its M measure is 5% to 15% worse. The effort to evaluate architecture 
independent of impl~mentation was a valiant one, it seems, if not a successful 
one. 

s M CPU Time 
(code size in bytes) (megabytes code + data (in seconds) 

transferred) 
VAX3100 DEC 3100 VAX 3100 DEC 3100 VAX3100 DEC 3100 

409,600 688,128 18 21 291 90 

158,720 217,088 67 78 449 95 

223,232 372,736 99 106 352 94 

FIGURE 2.27 Code size and CPU time of the VAXstation 3100 and DECstation 3100 for Gnu C Compiler, TeX, and 
Spice. The programs and machines are described in Figures 2.17 and 2.18. Both machines were announced the same 
day by the same company and run the same operating system. The difference is in the instruction sets, compilers, clock 
cycle time, and organization. The M measure comes from Figure 3.33 (page 123) for smaller inputs than those in Figure 
2.17 (page 67), but the relative performance is unchanged. Code size includes libraries. 

A promising development in performance evaluation is the formation of the 
System Performance Evaluation Cooperative, or SPEC, group in 1988. SPEC 
contains representatives of many computer companies-the founders being 
Apollo/Hewlett-Packard, DEC, MIPS, and Sun-who have agreed on a set of 
real programs and inputs that all will run. It is worth noting that SPEC couldn't 
have happened before portable operating systems and the popularity of high­
level languages. Now compilers, too, are accepted as a proper part of the 
performance of computer systems and must be measured in any evaluation. (See 
Exercises 2.8-2.10 on pages 83-84 for more on SPEC benchmarks.) 

History teaches us that while the SPEC effort is useful with current comput­
ers, it will not be able to meet the needs of the next generation. An effort similar 
to SPEC, called the Perfect Club, binds together universities and companies 
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interested in parallel computation [Berry et al. 1988]. Rather than being forced 
to run the existing sequential programs' code, the Perfect Club includes both 
programs and algorithms, and allows members to write new programs in new 
languages, which may be needed for the new architectures. Perfect Club mem­
bers may also suggest new algorithms to solve important problems. 

While papers on performance are plentiful, little is available on computer 
cost. Fuller [ 197 6] wrote the first paper comparing price and performance for the 
Annual International Symposium on Computer Architecture. This was also the 
last price/performance paper at this conference. Phiste;r's book [1979] on costs 
of computers is exhaustive, and Bell, Mudge, and McNamara [1978] describe 
the computer construction process from DEC's perspective. In contrast, there is 
a good deal of information on die yield. Strapper [1989] surveys the history of 
yield modeling, while technical details on the die-yield model used in this chap­
ter are found in Strapper, Armstrong, and Saji [1983]. 
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EXERCISES 

2.1 [20] <2.2> After graduating, you are asked to become the lead computer designer. 
Your study of usage of high-level-language constructs suggests that procedure calls are 
one of the most expensive operations. You have invented a scheme that reduces the loads 
and stores normally associated with procedure calls and returns. The first thing you do is 
run some experiments with and without this optimization.Your experiments use the same 
state-of-the-art optimizing compiler that will be used with either version of computer. 

Your experiments reveal the following information: 

• The clock cycle time of the unoptimized version is 5% faster. 

• 30% of the instructions in the nonoptimized version are loads or stores. 

• The optimized version executes 1/3 fewer loads and stores than the nonoptimized 
version. For all other instructions the dynamic execution counts are unchanged. 

• All instructions (including load and store) take one clock cycle. 

Which is faster? Justify your decision quantitatively. 

2.2 [15/15/10] <2.2> Assume the two programs in Figure 2.6 on page 49 each execute 
100,000,000 floating-point operations during execution. 

a. [15] Calculate the (native) MFLOPS rating of each program. 

b. [15] Calculate the arithmetic, geometric, and harmonic mean (native) MFLOPS for 
each machine. 

c. [10] Which of the three means matches the relative performance of total execution 
time? 
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Questions 2.3-2.7 require the following information. 

The Whetstone benchmark contains 79,550 floating-point operations, not including the 
floating-point operations performed in each call to the following functions: 

• arctangent, invoked 640 times 

• sine, invoked 640 times 

• cosine, invoked 1920 times 

• square root, invoked 930 times 

• exponential, invoked 930 times 

• and logarithm, invoked 930 times 

The basic operations for a single iteration (not including floating-point operations to 
perform the above functions) are broken down as follows: 

Add 
Subtract 
Multiply 
Divide 
Convert integer to fp 
TOTAL 

37,530 
3,520 

22,900 
11,400 
4,200 

79,550 

The total number of floating-point operations for a single iteration can also be calculated 
by including the floating-point operations needed to perform the functions arctangent, 
sine, cosine, square root, exponential, and logarithm: 

Add 
Subtract 
Multiply 
Divide 
Convert integer to fp 
Compare 
TOTAL 

82,014 
8,229 

73,220 
21,399 
6,006 
4,710 

195,578 

Whetstone was run on a Sun 3/75 using the F77 compiler with optimization turned on. 
The Sun 3/75 is based on a Motorola 68020 running at 16.67 MHz, and it includes a 
floating-point Goprocessor. (Assume the coprocessor does not include arctangent, sine, 
cosine, square root, exponential, and logarithm as instructions.) The Sun compiler allows 
the floating-point to be calculated with the coprocessor or using software routines, 
depending on compiler flags. A single iteration of Whetstone took 1.08 seconds using the 
coprocessor and 13.6 seconds using software. Assume that the CPI using the coprocessor 
was measured to be 10 while the CPI using software was measured to be 6. 

2.3 [15] <2.2> What is the (native) MIPS rating for both runs? 

2.4 [15] <2.2> What is the total number of instructions executed for both runs? 

2.5 [8] <2.2> On the average, how many integer instructions does it take to perf onn each 
floating-point operation in software? 
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GCC 

Espresso 

Spice 2g6 

DOD UC 

NASA7 

Li 

Eqntott 

Matrix300 

FPPPP 

TOMCATV 

Geometric mean 
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2.6 [18] <2.2> What is the native and normalized MFLOPS for the Sun 3/75 with the 
floating-point coprocessor running Whetstone? (Assume convert counts as a single 
floating-point operation and use Figure 2.3 for normalized operations.) 

2.7 [20] <2.2> Figure 2.3 on page 43 suggests how many floating-point operations it 
takes to perform the six functions above (arctangent, sine, and so on). From the data 
above you can calculate the average number of floating-point operations per function. 
What is the ratio between the estimates in Figure 2.3 and the floating-point operation 
measurements for the Sun 3? Assume the coprocessor implements only Add, Subtract, 
Multiply, Divide, and Convert. 

Questions 2.8-2.10 require the information in Figure 2.28. 

The SPEC Benchmark Release 1.0 Summary [SPEC 89] lists performance as shown in 
Figure 2.28. 

VAX-111780 DECstation 3100 Delta Series 8608 SPARCstation 1 
Time Time Ratio Time Ratio Time Ratio 

1482 145 10.2 193 7.7 138.9 10.7 

2266 194 11.7 197 11.5 254.0 8.9 

23951 2500 9.6 3350 7.1 2875.5 8.3 

1863 208 9.0 295 6.3 374.1 5.0 

20093 1646 12.2 3187 6.3 2308.2 8.7 

6206 480 12.9 458 13.6 689.5 9.0 

1101 99 11.1 129 8.5 113.5 9.7 

4525 749 6.0 520 8.7 409.3 11.1 

3038 292 10.4 488 6.2 387.2 7.8 

2649 260 10.2 509 5.2 469.8 5.6 

3867.7 381.4 10.1 496.5 7.8 468.5 8.3 

FIGURE 2.28 SPEC performance summary 1.0. The four integer programs are GCC, Espresso, Li, and Eqntott, with 
the rest relying on floating-point hardware.The SPEC report does not describe the version of the 'compilers or operating 
system used for the VAX-11/780. The DECstation 3100 is described in Figure 2.18 on page 68. The Motorola Delta 
Series 8608 uses a 20-MHz MC88100, 16-KB instruction cache, and 16-KB data cache using two M88200s (see Exercise 
8.6 in Chapter 8), the Motorola Sys. V/88 R32V1 operating system, the C88000 1.8.4m14 C compiler, and the Absoft 
SysV88 2.0a4 FORTRAN compiler. The SPARCstatiori 1 uses a 20-MHz MB8909 integer unit and 20-MHz WTL3170 
floating-point unit, a 64-KB unified cache, SunOS 4.0.3c operating system and C compiler, and Sun 1.2 FORTRAN 
compiler. The size of main memory in these three machines is 16 MB. 

2.8 [12/15] <2.2> Compare the relative performance using total execution times for the 
10 programs versus using geometric means of ratios of the speed of the VAX-11/780. 

a. [12] How do the results differ? 

b [15] Compare the geometric mean of the ratios of the four integer programs (GCC, 
Espresso, Li, and Eqntott) versus the total execution time for these four programs. 
How do the results differ from each other and from the summaries of all ten 
programs? 
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Microprocessor 

Cypress CY7C601 

Intel 80486 

Intel 860 

MIPS R3000 

Motorola 88100 

Exercises 

2.9 [15/20/12/10] <2.2> Now let's compare performance using weighted arithmetic 
means. 

a. [ 15] Calculate the weights for a workload so that running times on the V AX-11/780 
will be equal for each of the ten programs (see Figure 2.7 on page 51). 

b. [20] Using those weights, calculate the weighted arithmetic means of the execution 
times of the ten programs. 

c. [12] Calculate the ratio of the weighted means of the VAX execution times to the 
weighted means for the other machines. 

d. [10] How do the geometric means of ratios and the ratios of weighted arithmetic 
means of execution times differ in summarizing relative performance? 

2.10 [Discussion] <2.2> What is an interpretation of the geometric means of execution 
times? What do you think are the advantages and disadvantages of using total execution 
times versus weighted arithmetic means of execution times using equal running time on 
the V AX-11/780 versus geometric means of ratios of speed to the V AX-11/780? 

Questions 2.11-2.12 require the information in Figure 2.29. 

Size (cm) Pins Package Clock rate List price Year available 

0.8 x 0.7 207 Ceramic PGA 33MHz $500 1988 

1.6 x 1.0 168 Ceramic PGA 33MHz $950 1989 

1.2 x 1.2 168 Ceramic PGA 33MHz $750 1989 

0.8 x 0.9 144 Ceramic PGA 25MHz $300 1988 

0.9 x 0.9 169 Ceramic PGA 25MHz $695 1989 

FIGURE 2.29 Characteristics of microprocessors. List prices were quoted as of 7/15/89 at quantity 1000 purchases. 

2.11 [15] <2.3> Pick the largest and smallest microprocessors from Figure 2.29, and use 
the values found in Figure 2.11 (page 62) for yield parameters. How many good chips do 
you get per wafer? 

2.12 [15/10/10/15/15] <2.3> Let's calculate costs and prices of the largest and smallest 
microprocessors from Figure 2.29. Use the assumptions on manufacturing found in 
Figure 2.11 (page 62) unless specifically mentioned otherwise. 

a. [ 15] There are wide differences in defect densities between semiconductor 
manufacturers. What are the costs of untested dies assuming: (1) 2 defects per square 
cm; and (2) 1 defect per square cm. 

b. [ 1 OJ Assume that testing costs $150 per hour and the smaller chip takes 10 seconds to 
test and the larger chip takes 15 seconds, what is the cost of testing each die? 

c. [10] Making the assumptions on packaging in Section 2.3, what is the cost of 
packaging and burn-in? 

d. [ 15] What is the final cost? 
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e. [15) Given the list price and the calculated cost from the questions above, calculate 
the gross margin. Assume the direct cost is 40% and average selling discount is 33%. 
What percentage of the average selling price is the gross margin for both chips? 

2.13-2.14 A few companies claim they are doing so well that the defect density is 
vanishing as the reason for die failures, making wafer yield responsible for the vast 
majority. For example, Gordon Moore of Intel said in a talk at MIT in 1989 that defect 
density is improving to the point that some companies have been quoted as producing a 
100% yield over the whole. run. In fact, he has a 100% yield wafer on his desk. 

2.13 [20) <2.3> To understand the impact of such claims, list the costs of the largest and 
smallest dies in Figure 2.29 for defect densities per square centimeter of 3, 2, 1, and 0. 
For the other parameters use the values found in Figure 2.11 (page 62). Ignore the costs 
of testing time, packaging, and final test. 

2.14 [Discussion] <2.3> If the statement above becomes true for most semiconductor 
manufacturers, how would that change the options for the computer designer? 

2.15 [10/15) <2.3,2.4> Figure 2.18 (page 68) shows the list price as tested of the 
DECstation 3100 workstation. Start with the costs of the "higher cost" model in Figure 
2.13 on page 63, (assuming a color), workstation but change the cost of DRAM to 
$100/MB for the full 16 MB of the 3100. 

a. [ 1 OJ Using the average discount and overhead percentages of Model B in Figure 2.16 
on page 66, what is the gross margin on the DECstation 3100? 

b. [15) Suppose you replace the R2000 CPU of the DECstation 3100 with the R3000, 
and that this change makes the machine 50% faster. Use the costs in Figure 2.29 for 
the R3000, and assume the R2000 costs a third as much. Since the R3000 does not 
require much more power, assume that both the power supply and the cooling of the 
DECstation 3100 are satisfactory for the upgrade. What is the cost/performance of a 
diskless black-and-white (mono) workstation with an R2000 versus one with an 
R3000? Using the business model from the. answer to part a, how much must the 
price of the R3000-based machine be increased? 

2.16 [30) <2.2,2.4> Pick two computers and run the Dhrystone benchmark and the Gnu C 
Compiler. Try running the programs using no optimization and maximum optimization. 
(Note: GCC is a benchmark, so use the appropriate C compiler to compile both programs. 
Don't try to compile GCC and use it as your compiler!) Then calculate the following 
performance ratios: 

1. Unoptimized Dhrystone on machine A versus unoptimized Dhrystone on machine B. 

2. Unoptimized GCC on A versus unoptimized GCC on B. 

3. Optimized Dhrystone on A versus optimized Dhrystone on B. 

4. Optimized GCC on A versus optimized GCC on B. 

5. Unoptimized Dhrystone versus optimized Dhrystone on machine A. 

6. Unoptimized GCC versus optimized GCC on A. 

7. Unoptimized Dhrystone versus optimized Dhrystone on B. 
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8. Unoptimized GCC versus optimized GCC on B. 

The benchmarking question is how well the benchmark predicts performance of real 
programs. 

If benchmarks do predict performance, then the following equations should be true 
about the ratios: 

(1) = (2) and (3) = (4) 

If compiler optimizations work equally as well on real programs as on benchmarks, 
then 

(5) = (6) and (7) = (8) 

Are these equations true? If not, try to find the explanation. Is it the machines, the 
compiler optimizations, or the programs that explain the answer? 

2.17 [30] <2.2,2.4> Perform the same experiment as in question 2.16, except replace 
Dhrystone by Whetstone and replace GCC by Spice. 

2.18 [Discussion] <2.2> What are the pros and cons of synthetic benchmarks? Find 
quantitative evidence-such as data supplied by answering questions 2.16 and 2.17-as 
well as listing the qualitative advantages and disadvantages. 

2.19 [30] <2.2,2.4> Devise a program in C or Pascal that gets the peak MIPS rating for a 
computer. Run it on two machines to calculate the peak MIPS. Now run GCC and TeX on 
both machines. How well do peak MIPS predict performance of GCC and TeX? 

2.20 [30] <2.2,2.4> Devise a program in C or FORTRAN that gets the peak MFLOPS 
rating for a computer. Run it on two machines to calculate the peak MFLOPS. Now run 
Spice on both machines. How well do peak MFLOPS predict performance of Spice? 

2.21 [Discussion] <2.3> Use the cost information in Section 2.3 as a basis for the merits 
of timesharing a large computer versus a network of workstations. (To determine the 
potential value of workstations versus timesharing, see Section 9 .2 in Chapter 9 on user 
productivity.) 
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A n Add the number in storage location n into the 
accumulator 

H n Transfer the number in storage location n into the 
multiplier register. 

E n If the number in the accumulator is greater than or 
equal to zero execute next the order which stands in 
storage location n; otherwise proceed serially. 

I n Read the next row of holes on tape and place the 
resulting 5 digits in the least significant places of 
storage location n. 

Z Stop the machine and ring the warning bell. 

Selection from the list of 18 machine instructions for the 
EDSAC from Wilkes and Renwick [1949] 
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3.1 

Instruction Set Design: 
Alternatives and 
Principles 

Introduction 

In this chapter and the next we will concentrate on instruction set architecture­
the portion of the machine visible to the programmer or compiler writer. This 
chapter introduces the wide variety of design alternatives with which the instruc­
tion set architect is presented. In particular, this chapter focuses on three topics. 
First, we present a taxonomy of instruction set alternatives and give some quali­
tative assessment of the advantages and disadvantages of various approaches. 
Second, we present and analyze some instruction set measurements that are 
largely independent of a specific instruction set. Finally, we address the issue of 
languages and compilers and their bearing on instruction set architecture. Before 
we discuss how to classify architectures, we need to say something about the 
instruction set measurement. 

Throughout this chapter and the next, we will be examining a wide variety of 
architectural measurements. These measurements depend on the programs mea­
sured and on the compilers used in making the measurements. The results should 
not be interpreted as absolute, and you might see different data if you did the 
measurement with a different compiler or a different set of programs. The 
authors believe that the measurements shown in these chapters are reasonably 
indicative of a class of typical applications. The measurements are presented 
using a small set of benchmarks so that the data can be reasonably displayed, 
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90 3.1 Introduction 

and so that the differences among programs can be seen. An architect for a new 
machine would want to analyze a much larger collection of programs to make 
his architectural decisions. All the measurements shown are dynamic-that is, 
the frequency of a measured event is determined by the number of times that 
event occurs during execution of the measured program rather than the number 
of static occurences in the code. 

Now, we will begin exploring how instruction set architectures can be 
classified and analyzed. 

3.2 I Classifying Instruction Set Architectures 

Instruction sets can be broadly classified along the five dimensions described in 
Figure 3.1, which are roughly ordered by the role they play in distinguishing 
instruction sets. 

The type of internal storage in the CPU is the most basic differentiation, so 
we will focus on the alternatives for this portion of the architecture in this 
section. As shown in Figure 3.2, the major choices are a stack, an accumulator, 
or a set of registers. Operands may be named explicitly or implicitly: The 
operands in a stack architecture are implicitly on the top of the stack; in an 

Operand storage in Where are operands kept other than in memory? 
the CPU 

Number of explicit How many operands are named explicitly in a typical instruc-
operands named ti on? 
per instruction 

Operand location Can any ALU instruction operand be located in memory or 
. must some or all of the operands be in internal storage in the 

CPU? If an operand is located in memory, how is the memory 
location specified? 

Operations What operations are provided in the instruction set? 

Type and size of What is the type and size of each operand and how is it 
operands specified? 

FIGURE 3.1 A set of axes for alternative design choices in instruction sets. The type 
of storage provided for holding operands in the CPU, as opposed to in memory, is the major 
distinguishing factor among instruction set architectures. (All architectures known to the 
authors provide some temporary storage within the CPU.) The type of operand storage in 
the CPU sometimes dictates the number of operands explicitly named in an instruction. In 
one class of machines, the number of explicit operands may vary. Among recent instruction 
sets, the number of memory operands per instruction is another significant differentiating 
factor. The choice of what operations will be supported in instructions interacts less with 
other aspects of the architecture. Finally, specifying the data type and the size of an 
operand is largely independent of other instruction set choices. 
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accumulator architecture one operand is implicitly the accumulator. General­
purpose register architectures have only explicit operands-either registers or 
memory locations. Depending on the architecture, the explicit operands to an 
operation may be accessed directly from memory or they may need to be first 
loaded into temporary storage, depending on the class of instruction and choice 
of specific instruction. 

Temporary Examples Explicit oper- De~tination Procedure for 
storage pro- ands per ALU for results accessing ex-
vided instruction plicit operands 

Stack B5500, 0 Stack Push and pop 
HP 3000/70 onto or from 

the stack 

Accumulator PDP-8, 1 Accumulator Load/store 
Motorola 6809 accumulator 

Register set IBM360, DEC 2 or 3 Registers or Load/store of 
VAX memory registers, or 

memory 

FIGURE 3.2 Some alternatives for storing operands within the CPU. Each alternative 
means that a different number of explicit operands is needed for an instruction with two 
source operands and a result operand. Instruction sets are usually classified by this internal 
state as stack machine, accumulator machine, or general-purpose register machine. While 
most architectures fit cleanly into one or another class, some architectures are hybrids of 
different approaches. The Intel 8086, for example, is halfway between a general-purpose 
register machine and an accumulator machine. 

Figure 3.3 shows how the code sequence C =A+ B would typically appear 
on these three classes of instruction sets. The primary advantages and 
disadvantages of each of these approaches are listed in Figure 3.4 (page 92). 

While most early machines used stack or accumulator-style architectures, 
.every machine designed in the past ten years and still surviving uses a general­
purpose register architecture. The major reasons for the emergence of general­
purpose register machines are twofold. First, registers-like other forms of 

Stack Accumulator Register 

PUSH A LOAD A LOAD Rl,A 

PUSH B ADD B ADD Rl,B 

ADD STORE c STORE C, Rl 

POP c 

FIGURE 3.3 The code sequence for C = A + B for three different instruction sets. It is 
assumed that A, B, and C all belong in memory and that the values of A and B cannot be 
destroyed. 
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92 3.2 Classifying Instruction Set Architectures 

Machine type Advantages Disadvantages 

Stack Simple model of expression evalua- A stack cannot be randomly accessed. This limitation 
tion (reverse polish). Short instruc- makes it difficult to generate efficient code. It's also 
tions can yield good code density. difficult to implement efficiently, since the stack 

becomes a bottleneck. 

Accumulator Minimizes internal state of machine. Since accumulator is only temporary storage, 
Short instructions. memory traffic is highest for this approach. 

Register Most general model for code genera- All operands must be named, leading to longer 
ti on. instructions. 

FIGURE 3.4 Primary advantages and disadvantages of each class of machine. These advantages and disadvan­
tages are related to three issues: How well the structure matches the needs of a compiler; how efficient the approach is 
from an implementation viewpoint; and what the effective code size is relative to other approaches. 

storage internal to the CPU-are faster than memory. Second, registers are 
easier for a compiler to use and can be used more effectively than other forms of 
internal storage. Because general-purpose register machines so dominate 
instruction set architectures today-. and it seems unlikely that this will change in 
the future-it is only these architectures that we will consider from this point on. 
Yet even with this limitation, there is a large number of design alternatives to 
consider. Some designers have proposed the extension of the register concept to 
allow additional buffering of multiple sets of registers in a stack-like fashion. 
This additional level of memory hierarchy is examined in Chapter 8. 

3.3 I Operand Storage in Memory: Classifying 
General-Purpose Register Machines 

The key advantages of general-purpose register machines arise from effective· 
use of the registers by a compiler, both in computing expression values and, 
more globally, in using registers to hold variables. Registers permit more flex­
ible ordering in evaluating expressions than do either stacks or accumulators. 
For example, on a register machine the expression (A*B) - (C*D)- (E*F) may 
be evaluated by doing the multiplications in any order, which may be more 
efficient due to the location of the operands or because of pipelining concerns 
(see Chapter 6). But on a stack machine the expression must be evaluated left to 
right, unless special operations or swaps of stack positions are done. 

More important, registers can be used to hold variables. When variables are 
allocated to registers, the memory traffic is reduced, the program is sped up 
(since registers are faster than memory), and the code density improves (since a 
register can be named with fewer bits than can a memory location). Compiler 
writers would prefer that all registers be equivalent and unreserved. Many 
machines compromise this desire-especially older machines with many dedi­
cated registers-effectively decreasing the number of general-purpose registers. 
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If the number of truly general-purpose registers is too small, trying to allocate 
variables to registers will not be profitable. Instead, the compiler will reserve all 
the uncommitted registers for use in expression evaluation. 

How many registers are sufficient? The answer of course depends on how 
they are used by the compiler. Most compilers reserve some registers for 
expression evaluation, use some for parameter passing, and allow the remainder 
to be allocated to hold variables. To understand how many registers are 
sufficient, we really need to examine what variables can be allocated to registers 
and the allocation algorithm used. We deal with these in our discussion of 
compilers in Section 3.7 and examine measurements of register usage in that 
section. 

There are two major instruction set characteristics that divide general-purpose 
register, or GP R, architectures. Both characteristics concern the nature of 
operands for a typical arithmetic or logical instruction, or ALU instruction. The 
first concerns whether an ALU instruction has two or three operands. In the 
three-operand format, the instruction contains a result and two source operands. 
In the two-operand format, one of the operands is both a source and a destination 
for the operation. The second distinction among GPR architectures concerns 
how many of the operands may be memory addresses in ALU instructions. The 
number of memory operands supported by a typical ALU instruction may vary 
from none to three. All possible combinations of these two attributes are shown 
in Figure 3.5, with examples of machines. While there are seven possible com­
binations, three serve to classify nearly all existing machines: register-register 
(also called load/store), register-memory, and memory-memory. 

The advantages and disadvantages of each of these alternatives are shown in 
Figure 3.6 (page 94). Of course, these advantages and disadvantages are not 
absolutes. A GPR machine with memory-memory operations can easily be 
subsetted by the compiler and used as a register-register machine. The 

Maximum number of Examples 
operands allowed for a 
typical ALU instruction 

2 IBM RT-PC 

3 SPARC, MIPS, HP Precision Architecture 

2 PDP-10, Motorola 68000, IBM 360 

3 Part of IBM 360 (RS instructions) 

2 PDP-11, National 32x32, part of IBM 360 (SS instructions) 

3 

3 VAX (also has two-operand formats) 

FIGURE 3.5 Possible combinations of memory operands and total operands per ALU instruction with examples 
of machines. Machines with no memory reference per ALU instruction are called load/store or register-register 

. machines. Instructions with multiple memory operands per typical ALU instruction are called register-memory or memory­
memory, according to whether they have one or more than one memory operand. 
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94 3.3 Operand Storage in Memory: Classifying General-Purpose Register Machines 

Type Advantages Disadvantages 

Register- Simple, fixed-length instruction encoding. Higher instruction count than architectures with 
register Simple code generation model. Instructions take memory references in instructions. Some 

(0,3) similar numbers of clocks to execute (see instructions are short and bit encoding may be 
Chapter 6). wasteful. 

Register- Data can be accessed without loading first. Operands are not equivalent since a source 
memory Instruction format tends to be easy to encode operand in a binary operation is destroyed. 

(1,2) 
and yields good density. Encoding a register number and a memory 

address in each instruction may restrict the 
number of registers. Clocks per instruction varies 
by operand location. 

Memory- Most compact. Doesn't waste registers for Large variation in instruction size, especially for 
memory temporaries. three-operand instructions. Also, large variation in 

(3,3) work per instruction. Memory accesses create 
memory bottleneck. 

FIGURE 3.6 Advantages and disadvantages of the three most common types of general-purpose register 
machines. The notation (m, n) means m memory operands and n total operands. In general, machines with fewer 
alternatives make the compiler's task simpler since there are fewer decisions for the compiler to make. Machines with a 
wide variety of flexible instruction formats reduce the number of bits required to encode the program. A machine that 
uses a small number of bits to encode the program is said to have good instruction density-a smaller number of bits do 
as much work as a larger number on a different architecture. The number of registers also affects the instruction size. 

advantages and disadvantages listed in the figure deal primarily with the impact 
both on the compiler and on the implementation. These advantages and 
disadvantages are qualitative and their actual impact depends on the compiler 
and implementation strategy. One of the most pervasive architectural impacts is 
on instruction encoding and the number of instructions needed to perform a task. 
In other chapters, we will see the impact of these architectural alternatives on 
various implementation approaches. 

3.4 I Memory Addressing 

Independent of whether the architecture is register-register (also called 
load! store) or allows any operand to be a memory reference, it must define how 
memory addresses are interpreted and how they are specified. We will deal with 
these two topics in this section. The measurements presented here are largely, 
but not completely, machine independent. In some cases the measurements are 
significantly affected by the compiler technology. These measurements have 
been made using an optimizing compiler since compiler technology is playing 
an increasing role. The measurements will probably reflect what we will be see­
ing in the future rather than what has been so in the past. 
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Interpreting Memory Addresses 

How is a memory address interpreted? That is, what object is accessed as a 
function of the address and the length? All the machines discussed in this and 
the next chapter are byte addressed and provide access for bytes (8 bits), half­
words (16 bits), and words (32 bits). Most of the machines also provide access 
for doublewords (64 bits). 

There are two different conventions for ordering the bytes within a word, as 
shown in Figure 3. 7. Little Endian byte order puts the byte whose address is 
"x ... xOO" at the least significant position in the word (the little end). Big Endian 
byte order puts the byte whose address is "x ... xOO" at the most significant posi­
tion in the word (the big end). In Big Endian addressing, the address of a datum 
is the address of the most significant byte; while in Little Endian, the address of 
a datum is the least significant byte. When operating within one machine, the 
byte order is often unnoticeable-only programs that access the same locations 
as both words and bytes can notice the difference. However, byte order is a 
problem when exchanging data among machines with different orderings. (The 
byte orders used by a number of different machines are listed inside the front 
cover.) 

Word address 

0 

4 

Little Endian 

Word address 

0 

4 

Big Endian 

FIGURE 3.7 The two different conventions for ordering bytes within a word. The 
names "Big Endian" and "Little Endian" come from a famous paper by Cohen [1981). The 
paper draws an analogy between the argument over which end to number the bytes from 
and the argument in Gulliver's Travels over which end of an egg to open. The DEC PDP-
11 /VAX and Intel 80x86 follow the Little Endian model, while the IBM 360/370 and Motorola 
680x0, and others follow the Big Endian model. This numbering applies to bit positions as 
well, though only a few architectures supply instructions to access bits by their numbered 
position. 

In some machines, accesses to objects larger than a byte must be aligned. An 
access to an object of size s bytes at byte address A is aligned if A mod s = 0. 
Figure 3.8 shows the addresses at which an access is aligned or misaligned. 
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96 3.4 Memory Addressing 

Object addressed Aligned at byte offsets Misaligned at byte offsets 

byte O,l,2,3,4,5,6,7 (never) 

halfword 0,2,4,6 1,3,5,7 

word 0,4 1,2,3,5,6,7 

doubleword 0 1,2,3,4,5,6,7 

FIGURE 3.8 Aligned and misaligned accesses of objects. The byte offsets are speci­
fied for the low-order three bits of the address. 

Why would someone design a machine with alignment restrictions? 
Misalignment causes hardware complications, since the memory is typically 
aligned on a word boundary. A misaligned memory access will, therefore, take 
multiple aligned memory references. Figure 3.9 shows what happens when an 
access occurs to a misaligned word in a system with a 32-bit-wide bus to mem­
ory: Two accesses are required to get the word. Thus, even in machines that 
allow misaligned access, programs with aligned accesses run faster. 

Misaligned word reference 

32 32 
32 bits ___ ....._ _____ ,__ ____ ....._ __ _ 

32 

To CPU 

FIGURE 3.9 A word reference is made to a halfword (16-bit) boundary in a memory 
system that has a 32-bit access path. The CPU or memory system has to perform two 
separate accesses to get the upper and lower halfword. The two halfwords are then 
merged to obtain the entire word. With memory organized as independent byte-wide 
modules it is possible to access only the needed data, but this requires more complex 
control to supply a different address to each module to select the proper byte. 

Even if data is aligned, supporting byte and halfword accesses requires an 
alignment network to align bytes and halfwords in registers. Depending on the 
instruction, the machine may also need to sign extend the quantity. On some 
machines a byte or halfword does not affect the upper portion of a register. For 
stores only the affected bytes in memory may be altered. Figure 3.10 shows the 
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alignment network for loading or storing a byte from a word in memory into a 
register. While all the machines discussed in this chapter and the next permit 
byte and halfword accesses to memory, only the VAX and the Intel 8086 support 
ALU operations on register operands with a size shorter than a word. 

Byte in register 

0 2 I 3 I 
Alignment network ;/] 

0 2 I 3 I 
Word in memory 

FIGURE 3.10 · The alignment network to load or store a byte. The memory system is 
assumed to be 32 bits wide, and four alignment paths are required for bytes. Accessing 
aligned halfwords would require two additional paths to move either byte 0 or byte 2 in 
memory to byte 2 in the register. A 64-bit memory system would require twice as many 
alignment paths for bytes and halfwords, as well as two 32-bit alignment paths for word 
accesses. The alignment network only positions the bytes for a store-additional control 
signals are used to ensure that only the correct byte positions are written in memory. 
Rather than an alignment network, some machines use a shifter and shift the data only in 
those cases where alignment is required. This makes the access of a nonword object con­
siderably slower, but eliminating the alignment network speeds up the more common case 
of accessing a word. 

Addressing Modes 

We now know what bytes to access in memory given an address. In this section 
we will look at addressing modes-how architectures specify the address of an 
object they will access. In GPR machines, an addressing mode can specify a 
constant, a register, or a location in memory. When a memory location is used, 
the actual memory address specified by the addressing mode is called the 
effective address. 

Figure 3 .11 shows all the data addressing modes that arise in the machines 
discussed in the following chapter. Immediates or literals are usually considered 
a memory addressing mode (even though the value they access is in the instruc­
tion stream), while registers are often separated. We have kept addressing modes 
that depend on the program counter, called PC-relative addressing, separate. 
PC-relative addressing is used primarily for specifying code addresses in control 
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Addressing 
mode 

Register 

Immediate or 
literal 

Displacement 
or based 

Register defer-
red or indirect 

Indexed 

Direct or 
absolute 

Memory indi-
rector mem-
ory deferred 

Auto-
increment 

Auto-
decrement 

Scaled or 
index 

3.4 Memory Addressing 

transfer instructions. The use of PC-relative addressing in control instructions is 
discussed in Section 3 .5. 

Figure 3 .11 shows the most common names for the addressing modes, though 
the names differ among architectures. In this figure and throughout the book, we 
will use an extension of the C programming language as a hardware description 
notation. In this figure, only two non-C features are used. First, the left arrow 
( ~) is used for assignment. Second, the array M is used as the name for memory. 

Example instruction Meaning When used 

Add R4,R3 R4f-R4+R3 When a value is in a register. 

Add R4,#3 R4f-R4+3 For constants. In some machines, 
literal and immediate are two 
different addressing modes. 

Add R4,100(Rl) R4f-R4+M [ lOO+Rl] Accessing local variables. 

Add R4, (Rl) R4f-R4+M [Rl] Accessing using a pointer or a 
computed address. 

Add R3, (Rl + R2) R3f-R3+M [Rl+R2] Sometimes useful in array ad-
dressing-Rl=base of array; 
R2=index amount. 

Add Rl I ( 1001) Rlf-Rl+M[lOOl] Sometimes useful for accessing static 
data; address constant may need to be 
large. 

Add Rl,@(R3) Rlf-Rl +M [M [R3]] If R3 is the address of a pointer p, 
then mode yields *P· 

Add Rl, (R2)+ Rlf-Rl +M [R2] Useful for stepping through arrays 
within a loop. R2 points to start of 

R2f-R2+d array; each reference increments R2 
by size of an element, d. 

Add Rl, - (R2) R2f-R2-d Same use as autoincrement. 
Autoincrement/decrement can also be 

Rlf-Rl +M [R2] used to implement a stack as push 
and pop. 

Add Rl,100(R2) [R3] Rlf- Used to index arrays. May be applied 
Rl+M[100+R2+R3*d] to any base addressing mode in some 

machines. 

FIGURE 3.11 Selection of addressing modes with examples, meaning, and usage. The extensions to C used in the 
hardware descriptions are defined above. In autoincrement/decrement and scaled or index addressing modes, the 
variable d designates the size of the data item being accessed (i.e., whether the instruction is accessing 1, 2, 4, or 8 
bytes); this means that these addressing modes are only useful when the elements being accessed are adjacent in 
memory. In our measurements, we use the first name shown for each mode. A few machines, such as the VAX, encode 
some of these addressing modes as PC-relative. 
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Thus, M [ Rl J refers to the contents of the memory location whose address is 
given by the contents of RI. Later, we will introduce extensions for accessing 
and transferring data smaller than a word. 

Addressing modes have the ability to significantly reduce instruction counts; 
they also add to the complexity of building a machine. Thus, the usage of vari­
ous addressing modes is quite important in helping the architect choose what to 
include. While many measurements of addressing mode usage are machine 
dependent, others are largely independent of the machine architecture. Some of 
the more important machine-independent measurements will be examined in this 
chapter. But, before we look at this type of measurement, let's look at how often 
these various memory addressing modes are used. 

Figure 3.12 shows the results of measuring addressing mode usage patterns in 
our benchmarks-Gnu C Compiler (GCC), Spice, and TeX-on the VAX, 
which supports all the modes shown in Figure 3.11. We will look at further 
measurements of addressing mode usage on the VAX in the next chapter. 

As Figure 3.12 shows, immediate and displacement addressing dominate 
addressing mode usage. Let's look at some properties of these two heavily used 
modes. 

TeX 

Memory indirect Spice 6% 
GCC 

TeX 

Scaled Spice 16% 
GCC 6% 

TeX 24% 
Register deferred Spice 

GCC 11% 

TeX 43% 

Immediate Spice 17% 
GCC 39% 

TeX 32% 

Displacement Spice 55% 
GCC 40% 

0% 10% 20% 30% 40% 50% 60% 

Frequency of the addressing mode 

FIGURE 3.12 Summary of use of memory addressing modes (including immediates). 
The data were taken on a VAX using our three benchmark programs. Only the addressing 
modes with an average frequency of over 1 % are shown. The PC-relative addressing 
modes, which are used almost exclusively for branches, are not included. Displacement 
mode includes all displacement lengths (8-, 16-, and 32-bit). Register modes, which are not 
counted, account for one-half of the operand references, while memory addressing modes 
(including immediate) account for the other half. The memory indirect mode on the VAX can 
use displacement, autoincrement, or autodecrement to form the initial memory address; in 
these programs, almost all the memory indirect references use displacement mode as the 
base. Of course, the compiler affects what addressing modes are used; we discuss this 
further in Section 3.7. These major addressing modes account for all but a few percent (0% 
to 3%) of the memory-accesses. 
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Displacement or Based Addressing Mode 

The major question that arises for a displacement-style addressing mode is that 
of the range of displacements used. Based on the use of various displacement 
sizes, a decision of what sizes to support can be made. Choosing the displace­
ment field sizes is important because they directly affect the instruction length. 
Measurements taken on the data access on a load/store architecture using our 
three benchmark programs are shown in Figure 3.13. We will look atbranch off­
sets in the next section-data accessing patterns and branches are so different, 
little is gained by combining them. 

30% 

25% 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Number of bits needed for a displacement value 

j -o- TeX -+- Spice -x- GCC. 

FIGURE 3.13 Displacement values are widely distributed. Though there is a large 
number of small values, there is also a fair number of large values. The wide distribution of 
displacement values is due to multiple storage areas for variables and different 
displacements used to access them. The different storage areas and their access patterns 
are discussed further in Section 3. 7. The chart shows only the magnitude of the 
displacement and not the sign, which is heavily affected by the storage layout. The entry 
corresponding to 0 on the x axis shows the percentage of displacements of value 0. The 
vast majority of the displacements are positive, but a majority of the largest displacements 
(14+ bits) are negative. Again, this is due to the overall addressing scheme used by the 
compiler and might change with a different compilation scheme. Since this data was 
collected on a machine with 16-bit displacements, it cannot tell us anything about accesses 
that might want to use a longer displacement. Such accesses are broken into two separate 
instructions-the first of which loads the upper 16 bits of a base register. By counting the 
frequency of these "load immediate" instructions, which have limited use for other 
purposes, we can bound the number of accesses with displacements potentially larger than 
16 bits. Such an analysis indicates GCC, Spice, and TeX may actually require a 
displacement longer than 16 bits for up to 5%, 13%, and 27% of the memory references, 
respectively. Furthermore, if the displacement is larger than 15 bits, it is likely to be quite a 
bit larger since most constants being loaded are large, as shown in Figure 3.15 (page 
102).To evaluate the choice of displacement length, we might also want to examine a 
cumulative distribution, as shown in Exercise 3.3 (see Figure 3.35 on page 133). 
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Immediate or Literal Addressing Mode 

lmmediates can be used in arithmetic operations, in comparisons (primarily for 
branches), and in moves in which a constant is wanted in a register. The last case 
occurs for constants written in the code, which tend to be small, and for address 
constants, which can be large. For the use of immediates it is important to know 
whether they need to be supported for all operations or for only a subset. The 
chart in Figure 3.14 shows the frequency of immediates for the general classes 
of operations in an instruction set. 

TeX 

Loads Spice 
GCC 

TeX 

Compares Spice 
GCC 

ALU operations 

38% 
26% 

23% 

83% 
92% 

84% 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Percentage of the operations that use immediates 

FIGURE 3.14 We see that for ALU operations about half the operations have an 
immediate operand, while for compares more than 85% of the occurrences use an 
immediate operand. (For ALU operations, shifts by a constant amount are included as 
operations with immediate operands.) For loads, the load immediate instructions load 16 
bits into either half of a 32-bit register. These load immediates are not loads in a strict 
sense because they do not reference memory. In some cases, a pair of load 
immediates may be used to load a 32-bit constant, but this is rare. The compares 
include comparisons against zero that are done in conditional branches based on this 
comparison. These measurements were taken on a MIPS R2000 architecture with full 
compiler optimization. The compiler attempts to use simple compares against zero for 
branches whenever possible because these branches are efficiently supported in the 
architecture. 

Another important instruction set measurement is the range of values for im­
mediates. Like displacement values, the sizes of immediate values affect instruc­
tion lengths. As Figure 3.15 shows, immediate values that are small are most 
heavily used. However, large immediates are sometimes used, most likely in ad­
dressing calculations. The data in Figure 3.15 was taken on a VAX, which pro­
vides many instructions that have zero as an implicit operand. These include in­
structions to compare against zero and to store zero into a word. Because of the 
use of these instructions, the measurements show relatively infrequent use of 
zero. 
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0 4 8 12 16 20 24 28 32 
Number of bits needed for an immediate value 

-+- GCC -a- Spice -x-TeX 

FIGURE 3.15 The distribution of immediate values is shown. The x axis shows the 
number of bits needed to represent the magnitude of an immediate value-a means the 
immediate field value was 0. The vast majority of the immediate values are positive: 
Overall, less than 6% of the immediates are negative.These measurements were taken on 
a VAX, which supports a full range of immediates and sizes as operands to any instruction. 
The measured programs are the standard set-GCC, Spice, and TeX. 

Encoding of Addressing Modes 

How the addressing modes of operands are encoded depends on the range of 
addressing modes and the degree of independence between opcodes and modes. 
For a small number of addressing modes or opcode/addressing mode combina­
tions, the addressing mode can be encoded in the opcode. This works for the 
IBM 360 with only five addressing modes and most operations offered in only 
one or two modes. For a large number of combinations, typically a separate 
address specifier is needed for each operand. The address specifier tells what 
addressing mode the operand is using. In Chapter 4, we will see how these two 
types of encodings are used in several real instruction formats. 

When encoding the instructions, the number of registers and the number of 
addressing modes both have a significant impact on the size of instructions. This 
is because the addressing mode field and the register field may appear many 
times in a single instruction. In fact, for most instructions many more bits are 
consumed encoding addressing modes and register fields than in specifying the 
opcode. The architect must balance several competing forces when encoding the 
instruction set: 

1. The desire to have as many registers and addressing modes as possible. 
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2. The impact of the size of the register and addressing mode fields on the 
average instruction size and hence on the average program size. 

3. A desire to have instructions encode into lengths that will be easy to handle 
in the implementation. As a minimum, the architect wants instructions to be 
in multiples of bytes, rather than an arbitrary length. Many architects have 
chosen to use a fixed-length instruction to gain implementation benefits 
while sacrificing average code size. 

S!nce the addressing modes and register fields make up such a large percent­
age of the instruction bits, their encoding will significantly affect how easy it is 
for an implementation to decode the instructions. The importance of having 
easily decoded instructions is discussed in Chapters 5 and 6. 

Operations in the Instruction Set 

The operators supported by most instruction set architectures can be categorized, 
as in Figure 3.16. In Section 3.8, we look at the use of operations in a general 
fashion (e.g. memory references, ALU operations, and branches). In Chapter 4, 
we will examine the use of various instruction operations in detail for four dif­
ferent architectures. Because the instructions used to implement control flow are 
largely independent of other instruction set choices and because the measure­
ments of branch and jump behavior are also fairly independent of other mea­
surements, we examine the use of control-flow instructions next. 

Examples 

Integer arithmetic and logical operations: add, and, subtract, or 

Loads/stores (move instructions on machines with memory addressing) 

Branch, jump, procedure call and return, traps 

Operating system call, virtual memory management instructions 

Floating-point operations: add, multiply 

Decimal add, decimal multiply, decimal-to-character conversions 

String move, string compare, string search 

FIGURE 3.16 Categories of instruction operators and examples of each. All machines generally provide a full set of 
operations for the first three categories. The support for system functions in the instruction set varies widely among 
architectures, but all machines must have some instruction support for basic system functions. The amount of support in 
the instruction set for the last three categories may vary from none to an extensive set of special instructions. Floating­
point instructions will be provided in any machine that is intended for use in an application that makes much use of floating 
point. These instructions are sometimes part of an optional instruction set. Decimal and string instructions are sometimes 
primitives, as in the VAX or the IBM 360, or may be synthesized by the compiler from simpler instructions. Examples of 
instruction sets appear in Appendix 8, while Appendix C contains measurements of typical usage. We will examine four 
different instruction sets and their usage in detail in Chapter 4. 
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Instructions for Control Flow 

As Figure 3 .17 shows, there is no consistent terminology for instructions that 
change the flow of control. Until the IBM 7030, control-flow instructions were 
typically called transfers. Beginning with the 7030, the name branch began to be 
used. Later, machines introduced additional names. Throughout this book we 
will use jump when the change in control is unconditional and branch when the 
change is tonditional. 

Machine Year "Branch" "Jump" 

IBM7030 1960 All control transfers-
addressing is PC-relative 

IBM 360/370 1965 All control transfers-no 
PC-relative 

DEC PDP-11 1970 PC-relative only, All addressing modes; 
conditional and unconditional only 
unconditional 

; 

Intel 8086 1978 All transfers are jumps; 
conditional jumps are PC-
relative only 

DEC VAX 1978 Same as PDP-11 Same as PDP-11 

MIPS R2000 1986 Conditional control Unconditional jumps and 
transfer, always PC- call instructions 
relative 

FIGURE 3.17 Machines, dates, and the names associated with control transfers in 
their architectures. These names vary widely based on whether the transfer is conditional 
or unconditional and on whether it is PC-relative or not. The VAX, PDP-11, and MIPS 
R2000 architectures allow only PC-relative addressing for branches. 

We can distinguish four different types of control-flow change: 

1. Conditional branches 

2. Jumps 

3. Procedure calls 

4. Procedure returns 

We want to know the relative frequency of these events, as each event is differ­
ent, may use different instructions, and may have different behavior. The fre­
quencies of these control-flow instructions for a load/store machine running 04r 
benchmarks is shown in Figure 3.18. 

The destination address of a branch must always be specified. This destina­
tion is specified explicitly in the instruction in the vast majority of cases-pro-
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cedure return being the major exc;:eption-since for return the target is not 
known at compile time. The most common way to specify the destination is to 
supply a displacement that is added to the program counter, or PC. Branches of 
this sort are called PC-relative branches. PC-relative branches are advantageous 
because the branch target is often near the current instruction, and specifying the 
position relative to the current PC requires fewer bits. Using PC-relative 
addressing also permits the code to run independent of where it is loaded. This 
property, called position-independence, can eliminate some work when the 
program is linked and is also useful in programs linked during execution. 

Call/return 

Jump 

Conditional 

TeX 16% 
Spice 13% 
GCC 10% 

TeX " 18% 
Spice 12% 
GCC 12% 

TeX 66% 

Spice·················75% GCC 78% 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Frequency of a branch of this type 

FIGURE 3.18 Breakdown of branches into three classes. Each branch is counted in 
one of three bars. Conditional branches clearly dominate. On average 90% of the jumps 
are PC-relative. 

To implement returns and indirect branches in which the target is not known 
at compile time, a method other than PC-relative addressing is required. Here, 
there must be a way to specify the target dynamically, so that it can change at 

· run-time. This may be as simple as naming a register that contains the target ad­
dress. Alternatively, the branch may permit any addressing mode to be used to 
supply the target address. 

A key question concerns how far branch targets are from branches. Knowing 
the distribution of these displacements will help in choosing what branch offsets 
to support and thus will affect the instruction length and encoding. Figure 3.19 
(page 106) shows the distribution of displacements for PC-relative branches in 
instructions. About 75% of the branches are in the forward direction. 

Since most changes in control flow are branches, deciding how to specify the 
branch condition is important. The three primary techniques. in use and their ad­
vantages and disadvantages are shown in Figure 3.20 (page 106). 
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Name 

Condition 
code (CC) 

Condition 
register 

Compare and 
branch 

3.5 Operations in the Instruction Set 

30% 

25% 

20% 

15% 

10% 

5% 

0% 
2 3 4 5 6 7 8 9 10 11 12 13 14 

Log2 of the branch distance in instructions 

....... Tex o Spice • GCC I 
FIGURE 3.19 Branch distances in terms of number of instructions between the 
target and the branch instruction.The most frequent branches in Spice are to targets that 
are 8 to 15 instructions away (24

). The weighted-arithmetic-mean branch target distance is 
86 instructions (2\ This tells us that short displacement fields often suffice for branches 
and that the designer can gain some encoding density by having a shorter instruction with a 
smaller branch displacement. These measurements were taken on a load/store machine 
(MIPS R2000 architecture). An architecture that requires fewer instructions for the same 
program, such as a VAX, would have shorter branch distances. Similarly, the number of 
bits needed for the displacement may change if the machine allows instructions to be 
arbitrarily aligned. A cumulative distribution of this branch displacement data is shown in 
Exercise 3.3 (see Figure 3.35 on page 133). 

How condition is tested Advantages Disadvantages 

Special bits are set by ALU Sometimes condition is CC is extra state. Condition codes 
operations, possibly under set for free. constrain t.he ordering of instructions 
program control. since they pass information from one 

instruction to a branch. 

Set arbitrary register with the Simple. Uses up a register. 
result of a comparison. 

Compare is part of the branch. One instruction rather May be too much work per 
Often compare is limited to subset. than two for a branch. instruction. 

FIGURE 3.20 The major methods for evaluating branch conditions, their advantages, and disadvantages. 
Although condition codes can be set by ALU operations that are needed for other purposes, measurements on programs 
show that this rarely happens. The major implementation problems with condition codes arise when the condition code is 
set by a large or haphazardly chosen subset of the instructions, rather than being controlled by a bit in the instruction. 
Machines with compare and branch often limit the set of compares and use a condition register for more complex 
compares. Often, different techniques are used for branches based on floating-point comparison versus those based on 
integer comparison. This is reasonable since the number of branches that depend on floating-point comparisons is much 
smaller than the number depending on integer comparisons. 
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One of the most noticeable properties of branches is that a large number of 
the comparisons are simple equality or inequality tests, and a large number are 
comparisons with zero. Thus, some architectures choose to treat these compar­
isons as special cases, especially if a compare and branch instruction is being 
used. Figure 3.21 shows the frequency of different comparisons used for condi­
tional branching. The data in Figure 3 .14 said that a large percentage of the 
branches had an immediate operand (86% ), and while not shown, 0 was the most 
heavily used immediate (83% of the immediates in branches). When we 
combine this with the data in Figure 3.21 we can see that a significant 
percentage (over 50%) of the compares in branches are simple tests for equality 
with zero. 

LT/GE 

GT/LE 

EQ/NE 

TeX 25% 
Spice 
GCC 11% 

TeX 
Spice 25% 
GCC 

TeX ···········••R.z72% 
_Spice 75% 
GCC················-89% 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Frequency of comparison types in branches 

FIGURE 3.21 Frequency of different types of compares in conditional branches. This 
includes both the integer and floating-point compares in branches. Floating-point compar­
isons constitute 13% of the branch comparisons in Spice. Remember that earlier data in 
Figures 3.14 indicate that most comparisons are against an immediate operand. This 
immediate value is usually 0 (83% of the time). 

Program Percentage of Percentage taken Percentage of all 
backward branches control instructions 
branches that actually branch 

GCC 26% 54% 63% 

Spice 31% 51% 63% 

TeX 17% 54% 70% 

Average 25% 53% 65% 

FIGURE 3.22 Branch direction, branch-taken frequency, and frequency that the PC 
is changed. The first column shows what percentage of all branches (both taken and 
untaken) are backward-going. The second column shows what percentage of all branches 
(remember that a branch is always conditional) are taken. The final column shows what_ 
percentage of all control-flow instructions actually cause a nonsequential transfer in the 
flow. This last column is computed by combining data from the second column and the data 
in Figure 3.18 (page 105). 
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Example 

Answer 

· 3.5 Operations in the Instruction Set 

We will say that a branch is taken if the condition tested by the branch is true 
and the next instruction to be executed is the target of the branch. All jumps, 
therefore, are taken. Figure 3.22 shows the branch-direction distribution, the 
frequency of taken (conditional) branches, and the percentage of control-flow 
instructions that change the PC. Most backward-going branches are loop 
branches, and typically loop branches are taken with about 90% probability. 

Many programs have.a higher percentage of loop branches, thus boosting the 
frequency of taken branches over 60%. Overall, branch behavior is application­
dependent and sometimes compiler-dependent. Compiler dependencies arise 
because of changes to the control flow made by optimizing compilers to improve 
the execution time of loops. 

Assuming that 90% of the backward-going branches are taken, find the 
probability that a forward-going branch is taken using the averaged data in 
Figure 3.22. 

The average frequency of taken branches is the sum of the backward-taken and 
forward-taken times their respective frequencies: 

% taken branches = (%taken backward*% backward)+ 
(%taken forward*% forward) 

53% = (90% * 25%) +(%taken forward* 75%) 

53%-22.5% % taken forward = -----
75% 

% taken forward = 40.7% 

It is not unusual to see the majority of forward branches be untaken. The behav­
ior of forward-going branches often varies among programs. 

Procedure calls and returns include control transfer and possibly some state 
saving; at a minimum the return address must be saved somewhere. Some archi­
tectures provide a mechanism to save the registers, while others require the 
compiler to generate instructions. There are two basic conventions in use to save 
registers. Caller-saving means that the calling procedure must save the registers 
that it wants preserved for access after the call. Callee-saving means that the 
called procedure must save the registers it wants to use. There are times when 
caller save must be used due to access patterns to globally visible variables in 
two different procedures. For example, suppose we have a procedure Pl that 
calls procedure P2, and both procedures manipulate the global variable x. If Pl 
had allocated x to a register it must be sure to save x to a location known by P2 
before the call to P2. A compiler's ability to discover when a called procedure 
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may access register-allocated quantities is complicated by the possibility of 
separate compilation, and situations where P2 may not touch x, but P2 can call 
another procedure, P3, that may access x. Because of these complications, most 
compilers will conservatively caller save any variable that may be accessed dur­
ing a call. 

In the cases where either convention could be used, some will be more opti­
mal with callee-save and some will be more optimal with caller-save. As a 

t'fesult, the most sophisticated compilers use a combination of the two mecha­
nisms, and the register allocator may choose which register to use for a variable 
based on the convention. Later in this chapter we will examine how well more 
sophisticated instructions match the needs of the compiler for this function, and 
in Chapter 8 we will look at hardware buffering schemes for supporting register 
save and restore. 

3.6 I Type and Size of Operands 

How is the type of an operand designated? There are two primary alternatives: 
First, the type of an operand may be designated by encoding it in the opcode­
this is the method used most often. Alternatively, the data can be annotated with 
tags that are interpreted by the hardware. These tags specify the type of the 
operand, and the operation is chosen accordingly. Machines with tagged data, 
however, are extremely rare. The Burroughs' architectures are the most exten­
sive example of tagged architectures. Symbolics also built a series of machines 
that used tagged data items for implementing LISP. 

Usually the type of an operand-for example, integer, single-precision 
floating point, character-effectively gives its size. Common operand types 
include character (one byte), halfword (16 bits), word (32 bits), single-precision 
floating point (also one word), and double-precision floating point (two words). 
Characters are represented as either EBCDIC, used by the IBM mainframe 
architectures, or ASCII, used by everyone else. Integers are almost universally 
represented as two's complement binary numbers. Until recently, most computer 
manufacturers chose their own floating-point representation. However, in the 
past few years, a standard for floating point, the IEEE standard 754, has become 
the choice of most new computers. The IEEE floating-point standard is dis­
cussed in detail in Appendix A. 

Some architectures provide operations on character strings, although such 
operations are usually quite limited and treat each byte in the string as a single 
character. Typical operations supported on character strings are comparisons and 
moves. 

For business applications, some architectures support a decimal format, usu­
ally called packed decimal. Packed decimal is binary-coded decimal-four bits 
are used to encode the values 0-9, and two decimal digits are packed into each 
byte. Numeric character strings are sometimes called unpacked decimal, and 
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operations-called packing and unpacking-are usually provided for converting 
back and forth between them. 

Our benchmarks use byte or character, halfword (short integer), word 
(integer), and floating-point data types. Figure 3.23 shows the dynamic distribu­
tion of the sizes of objects referenced from memory for these programs. The fre­
quency of access to different data types helps in deciding what types are most 
important to support efficiently. Should the machine have a 64-bit access path, 
or would taking two cycles to access a doubleword be satisfactory? How 
important is it to support byte accesses as primitives, which, as we saw earlier, 
require an alignment network? In Figure 3.23, memory references are used to 
examine the types of data being accessed. In some architectures, objects in 
registers may be accessed as bytes or halfwords. Howev_yr, such access is very 
infrequent-on the VAX, it accounts for no more than 12% of register 
references, or roughly 6% of all operand accesses in these programs. 

TeX 
Doubleword Spice 

GCC 

TeX 
Word Spice 

GCC 

TeX 
Halfword Spice 

GCC 

TeX 
Byte Spice 

GCC 

0% 
66% 

0% 

89% 
34% 

91% 

11% 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Frequency of the reference 

FIGURE 3.23 Distribution of data accesses by size for the benchmark programs. 
Access to the major data type (word or doubleword) clearly dominates. Reads outnumbered 
writes of data items by a factor of 1.6 for TeX to a factor of 2.5 for Spice. The doubleword 
data type is used solely for double-precision floating point in Spice. Spice makes only small 
use of single-precision floating point; most word references in Spice are to integers. These 
measurements were taken on the memory traffic generated on a load/store architecture. 

In the next chapter we will look extensively at the differences in instruction 
mix and other architectural measurements on four very different machines. But 
before we do that, it will be helpful to take a brief look at modern compiler 
technology and its effect on program properties. 
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Today most programming is done in high-level languages. This means that since 
most instructions executed are the output of a compiler, an instruction set archi­
t~cture is essentially a compiler target. In earlier times, architectural decisions 
were often made to ease assembly language programming. Because performance 
of a computer will be significantly affected by the compiler, understanding 
compiler technology today is critical to designing and efficiently implementing 
an instruction set. In earlier days it was popular to try to isolate the compiler 
technology and its effect on hardware performance from the architecture and its 
peiformance, just as it was popular to try to separate an architecture from its 
implementation. This is extremely difficult, if not impossible, with today's com­
pilers and architectures. Architectural choices affect the quality of the code that 
can be generated for a machine and the complexity of building a good compiler 
for it. Isolating the compiler from the hardware is likely to be misleading. In this 
section we will discuss the critical goals in the instruction set primarily from the 
compiler viewpoint. What features will lead to high-quality code? What makes it 
easy to write efficient compilers for an architecture? 

The Structure of Recent Compilers 

To begin, let's look at what optimizing compilers are like today. The structure of 
recent compilers is shown in Figure 3.24. 

A compiler writer's first goal is correctness-all valid programs must be 
compiled correctly. The second goal is usually speed of the compiled code. 
Typically, a whole set of other goals follow these first two, including fast 
compilation, debugging support, and interoperability among languages. 
Normally, the passes in the compiler transform higher-level, more abstract 
representations into progressively lower-level representations, eventually 
reaching the instruction set. This structure helps manage the complexity of the 
transformations and makes writing a bug-free compiler easier. 

The complexity of writing a correct compiler is a major limitation on the 
amount of optimization that can be done. Although the multiple-pass structure 
helps reduce compiler complexity, it also means that the compiler must order 
and perform some transformations be\ore others. In the diagram of the. optimiz­
ing compiler in Figure 3.24, we can see that certain high-level optimizations are 
performed long before it is known what the resulting code will look like in 
detail. Once such a transformation is made, the compiler can't afford to go back 
and revisit all steps, possibly undoing transformations. This would be pro­
hibiti_ve, both in compilation time and in complexity. Thus, compilers make 
assumptions about the ability of later steps to deal with certain problems. For 
example, compilers usually have to choose which procedure calls to expand 
inline before they know the exact size of the procedure being called. Compiler 
writers call this problem the phase-ordering problem. 
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Dependencies 
Language dependent; 
machine independent 

Somewhat language dependent, 
largely machine independent 

Small language dependencies; 
machine dependencies slight 
(e.g., register counts/types) 

Highly machine dependent; 
language independent 

Intermediate 
representation 

Function 
Transform language to 
common intermediate form 

For example, procedure inlining 
and loop transformations 

Including global and local 
optimizations + register 
allocation 

Detailed instruction selection 
and machine-dependent 
optimizations; may include 
or be followed by assembler 

FIGURE 3.24 Current compilers typically consist of two to four passes, with 
more highly optimizing compilers having more passes. A pass is simply one phase in 
which the compiler reads and transforms the entire program. (The term "phase" is often 
used interchangeably with "pass.") The optimizing passes are designed to be optional and 
may be skipped when faster compilation is the goal and lower quality code is acceptable. 
This structure maximizes the probability that a program compiled at various levels of 
optimization will produce the same output when given the same input. Because the 
optimizing passes are also separated, multiple languages can use the same optimizing and 
code-generation passes. Only a new .front end is required for a new language. The high­
level optimization mentioned here, procedure inlining, is also called procedure integration. 

How does this ordering of transformations interact with the instruction set 
architecture? A good example occurs with the optimization called global com­
mon subexpression elimination. This optimization finds two instances of an 
expression that compute the same value and saves the value of the first computa­
tion in a temporary. It then uses the temporary value, eliminating the second 
computation of the expression. For this optimization to be significant, the tem­
porary must be allocated to a register. Otherwise, the cost of storing the tempo­
rary in memory and later reloading it may negate the savings gained by not 
recomputing the expression. There are, in fact, cases where this optimization 
actually slows down code when the temporary is not register allocated. Phase 
ordering complicates this problem, because register allocation is typically done 
near the end of the global optimization pass, just before code generation. Thus, 
an optimizer that performs this optimization must assume that the register 
allocator will allocate the temporary to a register. 
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Because of the central role that register allocation plays, both in speeding up 
the code and in making other optimizations useful, it is one of the most impor­
tant-if not the most important-optimizations. Recent register allocation algo­
rithms are based on a technique called graph coloring. The basic idea behind 
graph coloring is to construct a graph representing the possible candidates for 
allocation to a register and then to use the graph to allocate registers. As shown 
in Figure 3.25, each candidate for a register corresponds to a node in the graph, 
called an interference graph. The arcs between the nodes show where the ranges 
of usage for variables (called live ranges) overlap. The compiler then tries to 
color the graph using a number of colors equal to the number of registers avail­
able for allocation. In a graph coloring, no adjacent nodes may have the same 
color. This restriction is equivalent to saying that no two variables with over­
lapping uses may be allocated to the same register. However, nodes that are not 
connected by an arc may have the same color, allowing variables whose uses do 
not overlap to use the same register. Thus, a coloring of the graph corresponds to 
an allocation of the active variables to registers. For example, the four nodes in 
Figure 3.25 can be colored with two colors, meaning the code only needs two 
registers for allocation. Although the problem of coloring a graph is NP-com­
plete, there are heuristic algorithms that work well in practice. 

a. Program fragment 

A= 
B= 

... 8 ... 
C= 
... A .. . 
D= .. . 
... D .. . 
... c .. . 

c. Colored graph 

b. Interference graph 

d. Register­
allocated code 

R1 = 
R2= 

... R2 ... 
R2= 
... R1 .. . 
R1= .. . 
... R1 .. . 
... R2 .. . 

FIGURE 3.25 Graph coloring is used to allocate registers by constructing an 
interference graph that is colored heuristically using a number of colors 
corresponding to the register count. Part b shows the interference graph corresponding 
to the code fragment shown in part a. Each variable corresponds to a node, and the arcs 
show the overlap of the active ranges of the variables. The graph can be colored with two 
colors, as shown in part c, and this corresponds to the register allocation of part d. 
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Optimization name 

High-level 

Procedure integration 

Local 

Common subexpression 
elimination 

Constant propagation 

Stack height reduction 

Global 

.Global common 
subexpression elimination 

Copy propagation 

·Code motion 

Induction variable elimina-
ti on 

Machine-dependent 

Strength reduction 

Pipeline scheduling 

Branch offset optimization 

3.7 The Role of High-Level Languages and Compilers 

Graph coloring works best when there are at least 16 (and preferably more) 
general-purpose registers available for global allocation for integer variables and 
additional registers for floating point. Unfortunately, graph coloring does not 
work very well when the number of registers is small because the heuristic 
algorithms for coloring the graph are likely to fail. The emphasis in the approach 
is to achieve 100% allocation of active variables. 

Optimizations performed by modern compilers can be classified by the style 
of the transformation, as follows: 

1. High-level optimizations-often done on the source with output fed to later 
optimization passes. 

Explanation Percent of the total number 
of optimizing transforms 

At or near the source level; machine-independent 

Replace procedure call by procedure body N.M. 

Within straightline code 

Replace two instances of the same computation by single copy 18% 

Replace all instances of a variable that is assigned a constant with the 22% 
constant 

Rearrange expression tree to minimize resources needed for expression N.M. 
evaluation 

Across a branch 

Same as local, b,ut this version crosses branches 13% 

Replace all instances of a variable A that has been assigned X (i.e., A=X) 11% 
withX 

Remove code from a loop that computes same value each iteration of the loop 16% 

Simplify/eliminate array-addressing calculations within loops 2% 

Depends on machine knowledge 

Many examples, such as replace multiply by a constant with adds and shifts N.M. 

Reorder instructions to improve pipeline performance N.M. 

Choose the shortest branch displacement that reaches target N.M. 

FIGURE 3.26 Major types of optimizations and examples in each class. The third column lists the static frequency 
with which some of the common optimizations are applied in a set of 12 small FORTRAN and Pascal programs. The 
percentage is the portion of the static optimizations that are of the specified type. These data tell us about the relative fre­
quency of occurrence of various optimizations. There are nine local and global optimizations done by the compiler 
included in the measurement. Six of these optimizations are covered in the figure, and the remaining three account for 
18% of the total static occurrences. The abbreviation "N.M." means that the number of occurrences of that optimization 
was not measured. Machine-dependent optimizations are usually done in a code generator, and none of those were 
measured in this experiment. The data are from Chow [1983], and were collected using the Stanford UCODE compiler. 
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2. Local optimizations-optimize code only within a straightline code fragment 
(called a basic block by compiler people). 

3. Global optimizations-extend the local optimizations across branches and 
introduce a set of transformations aimed at optimizing loops. 

4. Register allocation. 

5. Machine-dependent optimizations-attempt to take advantage of specific 
architectural knowledge. 

It is sometimes difficult to separate some of the simpler optimizations-local 
and machine-dependent optimizations-from transformations done in the code 
generator. Examples of typical optimizations are given in Figure 3.26. The last 
column of Figure 3.26 indicates the frequency with which the listed optimizing 

. transforms. were applied to the source program. Data on the effect of various 
optimizations on program run-time are shown in Figure 3.27. The data in Figure 
3.27 demonstrate the importance of register allocation, which adds the largest 
single improvement. We will look at the overall effect of optimization on our 
three benchmarks later in this section. 

Optimizations performed Percent faster 

Procedure integration only 10% 

Local optimizations only 5% 

Local optimizations + register allocation 26% 

Global and local optimizations 14% 

Local and global optimizations + register allocation 63% 

Local and global optimizations + procedure integration + 81% 
register allocation 

FIGURE 3.27 Performance effects of various levels of optimization. Performance 
gains are shown as what percent faster the optimized programs were compared to the 
unoptimized programs. When register allocation is turned off, data are loaded into, or 
stored from, the registers on every individual use. These measurements are also from 
Chow [1983] and are for 12 small FORTRAN and Pascal programs. 

The Impact of Compiler Technology on the 
Architect's Decisions 

The interaction of compilers and high-level languages significantly affects how 
programs use an instruction set. To better understand this interaction, three 
important questions to ask are: 

1. How are variables allocated and addressed? How many registers are needed 
to allocate variables appropriately? 

2. What is the impact of optimization techniques on instruction mixes? 
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3. What control structures are used and with what frequency? 

To address the first questions, we must look at the three separate areas in which 
current high-level languages allocate their data: 

• The stack-used to allocate local variables. The stack is grown and shrunk on 
procedure call or return; respectively. Objects on the stack are addressed rela­
tive to the stack pointer and are primarily scalars (single variables) rather than 
arrays. The stack is used for activation records, not as a stack for evaluating 
expressions. Hence values are almost never pushed or popped on the stack. 

• The global data area-used to allocate statically declared objects, such as 
global variables and constants. A large percentage of these objects are arrays 
or other aggregate data structures. 

• The heap-used to allocate dynamic objects that do not adhere to a stack 
discipline. Objects in the heap are accessed with pointers and are typically not 
scalars. 

Register allocation is much more effective for stack-allocated objects than for 
global variables, and register allocation is essentially impossible for heap­
allocated objects because they are accessed with pointers. Global variables and 
some stack variables are impossible to allocate because they are aliased, which 
means that there are multiple ways to refer to the address of a variable making it 
illegal to put it into a register. (All heap variables are effectively aliased.) For 
example, consider the following code sequence (where & returns the address of a 
variable and * dereferences a pointer): 

p = &a 

a = 
*P = .. . 
. . . a .. . 

gets address of a in p 

assigns to a directly 

uses p to assign to a 

accesses a 

The variable "a" could not be register allocated across the assignment to * p 
without generating incorrect code. Aliasing causes a substantial problem because 
it is often difficult or impossible to decide what objects a pointer may refer to. A 
compiler must be conservative; many compilers will not allocate any local vari­
ables of a procedure in a register when there is a pointer that may refer to one of 
the local variables. 

After register allocation, memory traffic consists of five types of references: 

1. Unallocated reference-a potentially allocatable memory reference that was 
not assigned to a register. 

2. ·Global scalar-a reference to a global scalar variable not allocated to a regis­
ter. These variables are usually sparsely accessed and thus rarely allocated. 

3. Save/restore memory reference-a memory reference made to save or 
restore a register (during a procedure call) that contains an allocated variable 
and is not aliased. 
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4. A required stack reference-a reference to a stack variable that is required 
due to aliasing possibilities. For example, if the address of the stack variable 
were taken, then that variable cannot usually be register allocated. Also 
included in this category are any data items that were caller saved due to 
aliasing behavior-such as a potential reference by a called procedure. 

5. A computed reference-any heap reference or any reference to a stack vari­
able via a pointer or array index. 

Figure 3.28 shows how these classes of memory traffic contribute to total 
memory traffic for GCC and TeX benchmark programs run with an optimizing 
compiler on a load/store machine and varying the number of registers used. The 
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FIGURE 3.28 The percentage of memory references made to different types of 
variables as the register count increases. This data is averaged between TeX and GCC, 
which use only integer variables. The decreasing percentage represented by the top bar is 
the set of references that are candidates for allocation but are not actually allocated with 
the indicated number of registers. This data was collected for the DLX load/store machine 
described in the next chapter. The register allocator has 27 integer registers; the first seven 
integer registers capture about half of the references that can be allocated to registers. 
While each of the other four components contributes something to the remaining memory 
traffic, the dominant contribution is computed references to heap-based objects and array 
elements, which cannot be register allocated. Some small percentage of the required stack 
references may be contributed when the register allocator runs out of registers; however, 
from other measurements on the register allocator we know that this contribution is very 
small [Chow and Hennessy, 1990]. 
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number of memory references to objects in categories 2 through 5 above is con­
stant because they can never be allocated to registers by this compiler. (The 
save/restore references were measured with the full set of registers.) The number 
of allocatable references that are unallocated drops as the register count 
increases. References to objects that could be allocated but that are accessed 
only once are allocated by the code generator using a set of temporary registers. 
These references will be counted as required stack references; other allocation 
strategies might cause them to be treated as save/restore traffic. 

The data in Figure 3.28 shows only the integer registers. The percentage of 
allocatable references with a given register count is computed by examining the 
frequency of access to registers with a compiler that generally tries to. use as 
small a number of registers as possible. The percentage of the references cap­
tured in a given number of registers depends intimately on the compiler and its 
register-allocation strategy. This compiler cannot use more than the 27 integer 
registers available for allocating variables; additionally, some registers have a 
preferred use (such as those used for parameters). We cannot predict from this 
data how well the compiler might be able to use 100 registers. Given a substan­
tially larger number of registers, the compiler could use the registers to reduce 
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FIGURE 3.29 The percentage of references captured by the integer and floating­
point register files for Spice increases to almost 50% with a full register set. Each. 
increment on the x axis adds one integer register and one single-precision (SP), floating­
point (FP) register. Thus, the point corresponding to a register count of 12 stands for 12 
integer and 12 SP FP registers. Remember that most of the Spice FP data is double 
precision, which requires two FP registers per datum. As in Figure 3.28, about seven 
integer registers capture half of the integer references, but only about five registers are 
needed to capture half the FP references. 

INTEL Ex.1035.150



Instruction Set Design: Alternatives and Principles 119 

the save/restore memory references and the references for global scalars. How­
ever, neither class of memory references can be completely eliminated. In the 
past, compiler technology has made steady progress in its ability to use ever 
larger register sets, and we can probably expect this to continue, although the 
percentage of allocatable references may bound the value of larger register sets. 

Figure 3 .29 shows the same type of data, but this time for Spice, which uses 
both the integer and floating-point registers. The effect of register allocation is 
very different for Spice compared to GCC and TeX. First, the percentage of 
remaining memory traffic is smaller. This probably arises because the absence of 
pointers in FORTRAN makes register allocation more effective for Spice than 
for programs in C (i.e., GCC and TeX). Second, the amount of save/restore traf­
fic is much lower. In addition to these differences, we can see that it takes fewer 
registers to capture the allocatable floating-point references. This is probably 
because a far smaller percentage of the FP references are allocatable, since the 
majority are to arrays. 

Our second question concerns how an optimizer affects the mix of instruc­
tions executed. Figures 3.30 and 3.31 address this issue for the benchmarks used 
here. The data was taken on a load/store machine using full global optimization 
that includes all of the global and local optimizations listed in Figure 3.26 (page 

Branches 12 
TeX optimized Loads/stores 30 

ALU operations 41 

Branches 13 
TeX unoptimized Loads/stores 45 

ALU operations 50 

Branches 

Spice optimized Loads/stores 31 
ALU operations 38 

Branches 

Spice unoptimized Loads/stores 52 
ALU operations 59 

Branches 26 
GCC optimized Loads/stores 53 

ALU operations 69 

Branches 28 
GCC unoptimized Loads/stores 70 

ALU operations 81 

0 10 20 30 40 50 60 70 80 90 

Millions or tens of millions of 
instructions executed 

FIGURE 3.30 The effects of optimization in absolute instruction counts. The x axis is 
the number of instructions executed in millions for GCC and TeX and in tens of millions for 
Spice. The unoptimized programs execute 21 %, 58%, and 30% more instructions for GCC, 
Spice, and TeX, respectively. This data was taken on a DECstation 3100 using -02 opti­
mization, as was the data in Figure 3.31. Optimizations that do not affect instruction count, 
but may affect instruction cycle counts, are not measured here. 
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114). Differences between optimized and unoptimized code are shown in both 
absolute and relative terms. The most obvious effect of optimization-besides 
decreasing the total instruction count-is to increase the relative frequency of 
branches by decreasing the number of memory references and ALU operations 
more rapidly than the number of branches (which are decreased only slightly). 
We show an example of how optimized and unoptimized code differ on a VAX 
in the Fallacies and Pitfalls section. 

Finally, with what frequency are various control structures used? These are 
important numbers because branches are among the hardest instructions to make 
go fast and are very difficult to reduce with the compiler. The data in Figures 
3.30 and 3.31 give us a good idea of the branch frequency-from 6.5 to 18 
instructions are executed between two branches or jumps (including the branch 
or jump itself). Procedure calls occur about 12 to 13 times less frequently than 
branches, or in the range of once every 87 to 200 instructions for our programs. 
Spice has both the lowest percentage of branches and the fewest procedure calls 
per instruction by nearly a factor of two. 

Branches 14% 
TeX optimized Loads/stores 36% 

ALU operations 49% 

Branches 12% 
TeX unoptimized Loads/stores 42% 

ALU operations 46% 

Branches 6% 
Spice optimized Loads/stores 42% 

ALU operations 52% 

Branches 5% 
Spice unoptimized Loads/stores 45% 

ALU operations 50% 

Branches 18% 
GCC optimized Loads/stores 36% 

ALU operations 46% 

Branches 16% 
GCC unoptimized Loads/stores 39% 

ALU operations 45% 

0% 10% 20% 30% 40% 50% 60% 

Frequency of operation type 

FIGURE 3.31 The effects of optimization on the relative mix of instructions for the 
data in Figure 3.30. 

How the Architect Can Help the Compiler Writer 

Today, the complexity of a compiler does not come from translating simple 
statements like A = B + C. Most programs are "locally simple," and simple 
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translations work fine. Rather, complexity arises because programs are large and 
globally complex in their interactions, and because the structure of.compilers 
means that decisions must be made about what code sequence is best, one step at 
a time. 

Compiler writers often are working under their own corollary of a basic 
principle in architecture: "Make the frequent cases fast and the rare case cor­
rect." That is, if we know which cases are frequent and which are rare, and if 
generating code for both is straightforward, then the quality of the code for the 
rare case may not be very important-but it must be correct! 

Some instruction set properties help the compiler writer. These properties 
should not be thought of as hard and fast rules, but rather as guidelines that will 
make it easier to write a compiler that will generate efficient and correct code. 

1. Regularity. Whenever it makes sense, the three primary components of an 
instruction set-the operations, the data types, and the addressing modes­
should be orthogonal. Two aspects of an architecture are said to be orthogonal if 
they are independent. For example, the operations and addressing modes are 
orthogonal if for every operation to which a certain addressing mode can be 
applied, all addressing modes are applicable. This helps simplify code genera­
tion and is particularly important when the decision about what code to generate 
is split into two passes in the compiler. A good counterexample of this property 
is restricting what registers can be used for a certain class of instructions. This 
can result in the compiler finding itself with lots of available registers, but none 
of the right kind! 

2. Provide primitives, not solutions. Special features that "match" a language 
construct are often unusable. Attempts to support high-level languages may 
work only with one language, or do more or less than is required for a correct 
and efficient implementation of the language. Some examples of how these 
attempts have failed are given in Section 3.9. 

3. Simplify tradeoffs among alternatives. One of the toughest jobs a compiler 
writer has is figuring out what instruction sequence will be best for every seg­
ment of code that arises. In earlier days, instruction counts or total code size 
might have been good metrics, but-as we saw in the last chapter-this is no 
longer true. With caches and pipelining, the tradeoffs have become very 
complex. Anything the designer can do to help the compiler writer understand 
the costs of alternative code sequences would help improve the code. One of the 
most difficult instances of complex tradeoffs occurs in a memory-memory 
architecture in deciding how many times a variable should be referenced before 
it is cheaper to load it into a register. This threshold is hard to compute and, in 
fact, may vary among models of the same architecture. 

4. Provide instructions that bind the quantities known at compile time as con­
stants. A compiler writer hates the thought of the machine interpreting at run 
time a value that was known at compile time. Good counterexamples of this 
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principle include instructions that interpret values that were fixed at compile 
time. For instance, the VAX procedure call instruction (CALLS) dynamically 
interprets a mask saying what registers to save on a call, but the mask is fixed at 
compile time, though in some cases it may not be known by the caller if separate 
compilation is used. 

3.8 I Putting It All Together: How Programs Use 
Instruction Sets 

What do typical programs do? This section will investigate and compare the 
behavior of our benchmark programs running on a load/store architecture and on 
a memory-memory architecture. The compiler technology for these two differ­
ent architectures differs and these differences affect the overall measurements. 

Branches 

Moves 

ALU operations 

TeX,m-m 
TeX, l/s 

Spice, m-m 
Spice, l/s 

GCC, m-m 
GCC,l/s 

TeX,m-m 
TeX, l/s 

Spice, m-m 
Spice, l/s 

GCC,m-m 
GCC,l/s 

TeX;m-m 
TeX, l/s 

Spice, m-m 
Spice, l/s 

GCC, m-m 
GCC,l/s 

0% 10% 20% 30% 40% 50% 60% 70% 

Total dynamic count 

FIGURE 3.32 The instruction distributions for our benchmarks differ in straight 
forward ways when run on a load/store architecture {l/s) and on a memory-memory 
architecture {m-m). On the load/store machine, moves are loads or stores. On the mem­
ory-memory machine, moves include transfers between two locations; either of the 
operands may be a register or a memory location. However, the majority of the moves 
involve one register and a memory location. The load/store machine exhibits a higher per­
centage of moves because it is a load/store machine-for data to be operated on it must be 
moved into the registers. The lower relative frequency of branches is primarily a function of 
the load/store machine's use of more instructions in the other two classes. This data was 
measured with optimization on a VAXstation 3100 for the memory-memory machine and 
on DLX, which we discuss in detail in the next chapter, for the load/store machine. The 
input used is smaller than that in Chapter 2 to make it possible to collect the data on the 
VAX. 
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We can examine the behavior of typical programs by looking at-the frequency 
of three basic operations: memory references, ALU operatio~s, and control-flow 
instructions (branches and jumps). Figure 3.32 does this for a load/store architec­
ture with one addressing mode (a hypothetical machine called DLX that we 
define in the next chapter) and for a memory-memory architecture with many 
addressing modes (the VAX). The load/store architecture has more registers, and 
its compiler places more emphasis on reducing memory traffic. Considering the 
enormous differences in the instruction sets of these two machines, the results 
are rather similar. 

The same machines and programs are used in Figure 3.33, but the data repre­
sent absolute counts of instructions executed, instruction words, and data refer­
ences. This chart shows a clear difference in instruction count: The load/store 
machine requires more instructions. Recall that this difference does not imply 
anything about the relative performance of machines based on these 
architectures. 

Data references 

Instruction words 

executed 

Instruction count 

TeX,m-m 
TeX, l/s 

Spice, m-m 
Spice, l/s 

GCC, m-m 
GCC, l/s 
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Spice, 1/s 
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Millions of instructions, words, or references 

FIGURE 3.33 Absolute counts for dynamic events on a load/store and memory­
memory machine. The counts are (from bottom to top) dynamic instructions, instruction 
words (instruction bytes divided by four), and data references (these may be byte, word, or 
doubleword). Each reference is counted once. Differences in the size of the register set and 
the compiler probably explain the large difference in the number of data references. In the 
case of Spice, the large difference in the total number of registers available for allocation is 
probably the basic reason for the large difference in total data accesses. This data was col­
lected for the same programs, inputs, and machines as the data in Figure 3.32. 

This chart also shows the number of data references made by each machine. 
From the data in Figure 3.32 and the instruction counts, we might guess that the 
total number of memory accesses made by the memory-memory machine would 
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be much lower than the number made on the load/store machine. But the data in 
Figure 3.33 indicate that this hypothesis is false. The large difference in data ref­
erences balances the difference in instruction references between the architec­
tures, so that the load/store machine uses about the same memory bandwidth at 
the architectural level. This difference in data references probably arises because 
the load/store machine has many more registers, and its compiler does a better 
job of register allocation. For allocating integer quantities, the load/store 
machine has more than twice as many registers available. In total for integer and 
floating-point variables, more than four times as many registers are available for 
the compiler to use on the load/store architecture. This gap in register count 
combined with compiler differences is the most likely basis for the difference in 
data bandwidth. 

We have seen how architectural measures can run counter to the designer's 
intuition, and that some of these measures do not directly relate to performance. 
In the next section we will see that architects' attempts to model machines 
directly after high-level software features can go awry. 

Fallacies and Pitfalls 

Time and again architects have tripped on common, but erroneous, beliefs. In 
this section we look at a few of them. 

Pitfall: Designing a "high-level" instruction set feature specifically oriented 
to supporting a high-level language structure. 

Attempts to incorporate high-level language features in the instruction set have 
led architects to provide powerful instructions with a wide range of flexibility. 
But often these instructions do more work than is required in the frequent case or 
don't match the requirements of the language exactly. Many such efforts have 
been aimed at eliminating what in the 1970s was called the "seman_tic gap." 
While the idea is to supplement the instruction set with additions that bring the 
hardware up to the level of the language, the additions can generate what Wulf 
[1981] has called a "semantic clash": 

... by giving too much semantic content to the instruction, the machine designer 
made it possible to use the instruction only in limited contexts. [p. 43] 

More often the instructions are simply overkill-they are too general for the 
most frequent case, resulting in unneeded work and a slower instruction. Again, 
the VAX CALLS is a good example. CALLS uses a callee-save strategy (the 
registers to be saved are specified by the callee) but the saving is done by the 
call instruction in the caller. The CALLS instruction begins with the arguments 
pushed on the stack, and then takes the following steps: 

1. Align the stack if needed. 
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2. Push the argument count on the stack. 

3. Save the registers indicated by the procedure call mask on the stack (as men­
tioned in Section 3.7). The mask is kept in the called procedure's code-this 
permits callee-save to be done by the caller even with separate compilation. 

4. Push the return address on the stack, then push the top and base of stack 
pointers for the activation record. 

5. Clear the condition codes, which sets the trap enables to a known state. 

6. Push a word for status information and a zero word on the stack. 

7. Update the two stack pointers. 

8. Branch to the first instruction of the procedure. 

The vast majority of calls in real programs do not require this amount of 
overhead. Most procedures know their argument counts and a much faster link­
age convention can be established using registers to pass arguments rather than 
the stack. Furthermore, the call instruction forces two registers to be used for 
linkage, while many languages require only one linkage register. Many attempts 
to support procedure call and activation stack management have failed to be 
useful either because they do not match the language needs or because they are 
too general, and hence too expensive to use. 

The VAX designers provided a simpler instruction, JSB, that is much faster 
since it only pushes the return PC on the stack and jumps to the procedure (see 
Exercise 3.11). However, most VAX compilers use the more costly CALLS 

instructions. The call instructions were included in the architecture to 
standardize the procedure linkage convention. Other machines have standardized 
their calling convention by agreement among compiler writers and without 
requiring the overhead of a complex, very general procedure call instruction. 

Fallacy: It costs nothing to provide a level of functionality that exceeds what 
is required in the usual case. 

A far more serious architectural pitfall than the previous one was encountered by 
a few machines, such as the Intel 432, that provided only a high-overhead call 
instruction that handled the most rare cases. The call instruction on the Intel 432 
always creates a new, protected context, and thus is fairly costly (see Chapter 8 
for a further discussion on memory protection). However, most calls are within 
the same module and do not require a protected call. If a simpler call mechanism 
were available and used when possible, Dhrystone would run 20% faster on the 
432 (see Colwell, ·et al. [1985]). When architects choos.e to have only a general 
and expensive instruction, compiler writers have no choice but to use the costly 
instruction, and suffer the unneeded overhead. A discussion of the experience of 
designers with providing fine-grain protection domains in hardware appears in 
the historical section of Chapter 8; the discussion further illustrates this fallacy. 
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Pitfall: Using a nonoptimizing compiler to measure the instruction set usage 
made by an optimizing compiler. 

The instruction set usage of an optimizing and nonoptimizing compiler may be 
quite different. We saw some examples in Figure 3.31 (page 120). Figure 3.34 
shows the differences in the use of addressing modes on a VAX for Spice, when 
it is compiled with the nonoptimizing UNIX F77 compiler and when it is 
compiled with DEC's optimizing FORTRAN compiler. 
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FIGURE 3.34 The address mode usage by an optimizing and nonoptimizing 
compiler can differ significantly. These measurements show the use of VAX addressing 
modes by Spice when it is compiled using a nonoptimizing compiler (f77) and an optimizing 

, compiler (fort). In particular, the use of scaled mode is much higher for the optimizing 
compiler. The other VAX addressing modes account for the remaining 2-3% of the data 
memory references. 

3.1 0 I Concluding Remarks 

The earliest architectures were limited in their instruction sets by the hardware 
technology of that time. As soon as the hardware technology permitted, archi­
tects began looking for ways to support high-level languages. This search led to 
three distinct periods of thought about how to support programs efficiently. In 
the 1960s, stack architectures became popular. They were viewed as being a 
good match for high-level languages-and they probably were, given the com­
piler technology of the day. In the 1970s, the main concern of architects was 
how to reduce software costs. This concern was met primarily by replacing 
software with hardware, or by providing high-level architectures that could 
simplify the task of software designers. The result was both the high-level-lan­
guage computer architecture movement and powerful architectures like the 
VAX, which has a large number of addressing modes, multiple data types, and a 
highly orthogonal architecture. In.the 1980s, more sophisticated compiler tech-
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nology and a renewed emphasis on machine performance has seen a return to 
simpler architectures, based mainly on the load/store style of machine. Continu­
ing changes in how we program, the compiler technology we use, and the under­
lying hardware technology will no doubt make another direction more attractive 
in the future. 

Historical Perspective and References 

One'·s eyebrows should rise whenever a future architecture is developed with a 
stack- or register-oriented instruction set. 

Meyers [1978, 20] 

The earliest computers, including the UNIV AC I, the EDSAC, and the IAS 
machines, were accumulator-based machines. The simplicity of this type of 
machine made it the natural choice when hardware resources were very con­
strained. The first general-purpose register machine was the Pegasus, built by 
Ferranti, Ltd. in 1956. The Pegasus had eight general-purpose registers, with RO 
always being zero. Block transfers loaded the eight registers from the drum. 

In 1963, Burroughs delivered the B5000. The B5000 was perhaps the first 
machine to seriously consider software and hardware-software tradeoffs. Barton 
and the designers at Burroughs made the B5000 a stack architecture (as 
described in Barton [1961]). Designed to support high-level languages such as 
ALGOL, this stack architecture used an operating system (MCP) written in a 
high-level language. The B5000 was also the first machine from a US manufac­
turer to support virtual memory. The B6500, introduced in 1968 (and discussed 
in Hauck and Dent [1968]), added hardware-managed activation records. In both 
the B5000 and B6500, the top two elements of the stack were kept in the CPU 
and the rest of the stack was kept in memory. The stack architecture yielded 
good code density, but only provided two high-speed storage locations. The 
authors of both the original IBM 360 paper [Amdahl et al. 1964] and the original 
PDP-11 paper [Bell et al. 1970] argue against the stack organization. They cite 
three major points in their arguments against stacks: 

1. Performance is derived from fast registers, not the way they are used. 

2. The stack organization is too limiting and requires many swap and copy 
operations. 

3. The stack has a bottom, and when placed in slower memory there is a perfor­
mance loss. 

Stack-based machines fell out of favor in the late 1970s and essentially dis­
appeared in the 1980s. 

The term "computer architecture" was coined by IBM in 1964 for use with 
the IBM 360. Amdahl, Blaauw, and Brooks [1964] used the term to refer to the 
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programmer-visible portion of the instruction set. They believed that a family of 
machines of the same architecture should be able to run the same software. 
Although this idea may seem obvious to us today, it was quite novel at that time. 
IBM, even though it was the leading company in the industry, had five different 
architectures before the 360. Thus, the notion of a company standardizing on a 
single architecture was a radical one. The 360 designers hoped that six different 
divisions of IBM could be brought together by defining a common architecture. 
Their definition of architecture was 

... the structure of a computer that a machine language programmer must 
understand to write a correct (timing independent) program for that machine. 

The term "machine language programmer" meant that compatibility would hold, 
even in assembly language, while "timing independent" allowed different 
implementations. 

The IBM 360 was the first machine to sell in large quantities with both byte­
addressing using 8-bit bytes and general purpose registers. The 360 also had 
register-memory and limited memory-memory instructions. 

In 1964, Control Data delivered the first supercomputer, the CDC 6600. As 
discussed in Thornton [1964], he, Cray, and the other 6600 designers were the 
first to explore pipelining in depth. The 6600 was the first general-purpose, 
load/store machine. In the 1960s, the designers of the 6600 realized the need to 
simplify architecture for the sake of efficient pipelining. This interaction 
between architectural simplicity and implementation was largely neglected dur­
ing the 1970s by microprocessor and minicomputer designers, but was brought 
back in the 1980s. 

In the late 1960s and early 1970s, people realized that software costs were 
growing faster than hardware costs. McKeeman [1967] argued that compilers 
and operating systems were getting too big and too complex and taking too long 
to develop. Because of inferior compilers and the memory limitations of 
machines, most systems programs at the time were still written in assembly 
language. Many researchers proposed alleviating the software crisis by creating 
more powerful, software-oriented architectures. Tanenbaum [1978] studied the 
properties of high-level languages. Like other researchers, he found that most 
programs are simple. He then argued that architectures should be designed with 
this in mind and should optimize program size and ease of compilation. Tanen­
baum proposed a stack machine with frequency-encoded instruction formats to 
accomplish these goals. However, as we have observed, program size does not 
translate directly to cost/performance, and stack machines faded out shortly after 
this work. 

Strecker's article [1978] discusses how he and the other architects at DEC 
responded to this by designing the VAX architecture. The VAX was designed to 
simplify compilation of high-level languages. Compiler writers had complained 
about the lack of complete orthogonality in the PDP-11. The VAX architecture 
was designed to be highly orthogonal and to allow the mapping of a high-level-
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language statement into a single VAX instruction. Additionally, the VAX 
designers tried to optimize code size because compiled programs were often too 
large for available memories. When it was introduced in 1978, the VAX was the 
first machine with a true memory-memory architecture. 

While the VAX was being designed, a more radical approach, called High­
Level Language Computer Architecture (HLLCA), was being advocated in the 
research community. This movement aimed to eliminate the gap between high­
level languages and computer hardware-what Gagliardi [1973] called the 
"semantic gap"-by bringing the hardware "up to" the level of the programming 
language. Meyers [1982] provides a good summary of the arguments and a his-

. tory of high-level-language computer architecture projects. 
Smith, Rice, and their colleagues [1971] discuss the SYMBOL Project they 

started at Fairchild. SYMBOL became the largest and most famous of the 
HLLCA attempts. Its goal was to build a high-level-language, timesharing 
machine that would dramatically reduce programming time. The SYMBOL 
machine interpreted programs, written in its own new programming language, 
directly; the compiler and operating system were built into the hardware. The 
programming language was very dynamic-there were no variable declarations 
because the hardware interpreted every statement dynamically. 

SYMBOL suffered from many problems, the most important of wQ.ich were 
inflexibility, complexity, and performance. The SYMBOL hardware included 
the programming language, the operating system, and even the text editor. Pro­
grammers had no choice in what programming language they used, so subse­
quent advances in operating systems and programming languages could not be 
incorporated. The machine was also complicated to design and to debug. 
Because hardware was used for everything, rare and complex cases needed to be 
handled completely in hardware, as well as the simpler, more common cases. 

Ditzel [1980] observed that SYMBOL had enormous performance problems. 
While exotic cases ran relatively fast, simple and common cases often ran 
slowly. Many memory references were needed to interpret a simple statement in 
a program. While the goal of eliminating the semantic gap seemed like a worthy 
one, any one of the three problems faced by SYMBOL would have been enough 
to doom the approach. 

HLLCA never had a significant commercial impact. The increase in memory 
size on machines and the use of virtual memory eliminated the code-size prob­
lems arising from high-level languages and operating systems written in high­
level languages. The combination of simpler architectures together with software 
offered greater performance and more flexibility at lower cost and lower 
complexity. 

Studies of instruction set usage began in the late 1950s. The Gibson mix, 
described in the last chapter, was derived as a study of instruction usage on the 
IBM 7090. There were several studies in the 1970s of instruction set usage. 
Among the best known are Foster et al. [1971] and Lunde [1977]. Most of these 
early studies used small programs because the techniques used to collect data 
were expensive. Starting in the late 1970s, the area of instruction set measure-
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ment and analysis became very active. Because we use data from most of these 
papers in the next chapter, we will review the contributions there. 

Other studies in the 1970s examined the usage of programming-language 
features. Though many of these studied only static properties, papers by Alexan­
der and Wortman [1975] and Elshoff [1976] studied the dynamic properties of 
HLL programs. Interest in compiler utilization of instruction sets and interaction 
between compilers and architecture grew in the 1980s. A conference focusing o.n 
the interaction between software systems and hardware systems, called 
Architectural Support for Programming Languages and Operating Systems 
(ASPLOS), was created. Many papers on instruction set measurement and 
interaction between compilers and architectures have been published in this · 
biannual conference. 

In the early 1980s, the direction of computer architecture began to swing 
away from providing high-level hardware support for languages. Ditzel and Pat­
terson [1980] analyzed the difficulties encountered by the high-level-language 
architectures and argued that the answer lay in simpler architectures. In another 
paper [Patterson and Ditzel 1980], these authors first discussed the idea of 
reduced instruction set computers (RISC) and presented the argument for sim­
pler architectures. ':fheir proposal was rebutted by Clark and Strecker [1980]. We 
will talk more about the effect of these ideas in the next chapter. 

About the same time, other researchers published papers that argued for a 
closer coupling of architectures and compilers, rather than attempts to supple­
ment compilers. These included Wulf [1981], and Hennessy and his colleagues 
[1982]. 

The early compiler technology developed for FORTRAN was quite good. 
Many of the optimization techniques in use in today's compilers were developed 
and implemented by the late 1960s or early 1970s (see Cocke and Schwartz 
[1970]). Because FORTRAN had to compete with assembly language, there was 
tremendous pressure for efficiency in FORTRAN compilers. However, once the 
benefits of HLL programming were obvious, focus shifted away from optimiz­
ing technology. Much of the optimization work in the 1970s was theoretically 
oriented rather than experimental. In the early 1980s, there was a new focus on 
developing optimizing compilers. As this technology stabilized, several 
researchers wrote papers examining the impact of various compiler optimiza­
tions on program execution time. Cocke and Markstein [ 1980] describe the 
measurements using the IBM PL.8 compiler; Chow [1983] describes the gain 
obtained with the Stanford UCODE compiler for a variety of machines. As we 
saw in this chapter, register allocation is the backbone of modern optimizing 
compilers. The formulation of register allocation as a graph-coloring problem 
was originally done by Chaitin and his colleagues [1982]. Chow and Hennessy 
[1984, 1990] extended the algorithm to use priorities in choosing the quantities 
to allocate. The progress in optimization and register allocation has led to more 
widespread use of optimizing compilers, and the impact of compiler technology 
on architectural tradeoffs has increased considerably in the past decade. 
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EXERCISES 

3.1 [15/10] <3.7> Use the data in Figures 3.30 and 3.31 (pages 119-120) for GCC for this 
problem. Assume the following CPis: 

ALU operation 

Load/store 

Branch 

1 

3 

5 

a. [15] Find the CPI for the optimized and unoptimized versions of GCC. 

b. [10] How much faster is the optimized program than the unoptimized program? 

3.2 [15/15/10] <3.8> Use the data in Figure 3.33 (page 123), in this problem. Assume that 
each instruction word and each data reference require one memory access. 

a. [15] Determine t~e percentage of memory accesses that are for instructions for each 
of the three benchmarks on the load/store machine. 

b. [15] Determine the percentage of memory accesses that are for instructions for each 
of the three benchmarks on the memory-memory machine. 

c. [10] What is the ratio of total memory accesses on the load/store machine versus the 
memory-memory machine for each benchmark? 
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3.3 [20115110] <3.3, 3.8> We are designing instruction set formats for a load/store archi­
tecture and are trying to decide whether it is worthwhile to have multiple offset lengths 
for branches and memory references. We will use average measurements for the three 
benchmarks to make this decision. We have decided that the offsets will be the same for 
these two classes of instructions. The length of an instruction would be equal to 16 bits+ 
offset length in bits. ALU instructions will be 16 bits. Figure 3.35 contains the data from 
Figures 3.13 (page 100) and 3.19 (page 106) averaged and put in cumulative form. 
Assume an additional bit is needed for the sign on the offset. 

For instruction set frequencies, use the data from the average of the three benchmarks for 
the load/store machine in Figure 3.32 (page 122). 

Offset bits Cumulative data Cumulative branches 
references 

0 " 16% 0% :/ 

1 16% 0% 

2 / 21% 10% 

3 29% 27% 

4 ! 32% 47% 

5 / 
44% 66% 

6 55% 79% 

7 / 62% 89% / 

8 66% 94% 

9 / 68% 97% 

10 73% 99% 

11 78% 100% 

12 80% 100% 

13 86% 100% 

14 87% 100% 

15 100% 100% 

( (, 

FIGURE 3.35 The second and third columns contain the cumul~tive percentage of 
the data references and branches, respectively, that can be accommodated with the 
corresponding number of bits of magnitude in the displacement (i.e., the sign-bit is 
not included). This data is derived by averaging and accumulating the data in Figures 3.13 
and 3.19. 

a. [20] Suppose offsets were permitted to be 0, 8, or 16 bits in length including the sign­
bit. Based on the dynamic statistics in Figure 3.32, what is the average length of an 
executed instruction? 

b. [15] Suppose we wanted a fixed-length instruction and we chose a 24-bit instruction 
length (for everything, including ALU instructions). For every offset of longer than 8 
bits, an additional instruction is required. Determine the number of instruction bytes 
fetched in this machine with fixed instruction size versus those fetched with a 
variable-sized instruction. 
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c. [10] What if the offset length were 16 and we never required an additional. 
instruction? How would instruction bytes fetched compare to the choice of only an 8-
bit offset? Assume ALU instructions will be 16 bits. 

3.4 [15/10] <3.2> Several researchers have suggested that adding a register-memory 
addressing mode to a load/store machine might be useful. The idea is to replace 
sequences of 

by 

LOAD Rl, 0 (Rb) 
ADD R2,R2,Rl 

ADD R2,0(Rb) 

Assume the new instruction will cause the clock cycle to increase by 10%. Use the 
instruction frequencies for the GCC benchmark on the load/store machine from Figure 
3.32 (page 122) and assume that two-thirds of the moves are loads and the rest are stores. 
The new instruction affects only the clock speed and not the CPL 

a. [15] What percentage of the loads must be eliminated for the machine with the new 
instruction to have at least the same performance? 

b. [12] Show a situation in a multiple instruction sequence where a load of Rl followed 
immediately by a use of Rl (with some type of opcode) could not be replaced by a 
single instruction of the form proposed, assuming that the same opcode exists. 

3.5 [ 15/20] <3.1-3.3> For the next two parts of this question, your task is to compare the 
memory efficiency of four different styles of instruction sets for two code sequences. The 
architecture styles are: 

Accumulator 

Memory-Memory-All three operands of each instruction are in memory. 

Stack-All operations occur on top of the stack. Only push and pop access memory, 
and all other instructions remove their operands from stack and replace them with 
the result. The implementation uses a stack for the top two entries; accesses that use 
other stack positions are memory references. 

Load/store-All operations occur in registers, and register-to-register instructions 
have three operands per instruction. There are 16 general-purpose registers, and 
register specifiers are 4 bits long. 

To measure memory efficiency, make the following assumptions about all four instruc­
tion sets: 

• The opcode is always 1 byte (8 bits). 

• All memory addresses are 2 bytes (16 bits). 

• All data operands are 4 bytes (32 bits). 

• All instructions are an integral number of bytes in length. 
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There are no other optimizations to reduce memory traffic, and the variables A, B, C, and 
D are initially in memory. 

Invent your own assembly language mnemonics and write the best equivalent assembly 
language code for the high-level-language fragments given. 

a. [15) Write the four code sequences for 

A = B + C; 

For each code sequence, calculate the instruction bytes fetched and the memory-data 
bytes transferred. Which architecture is most efficient as measured by code size? 
Which architecture is most efficient as measured by total memory bandwidth 
required (code+ data)? 

b. [20) Write the four code sequences for 

A B + C; 

B A + C; 

D A - B; 

For each code sequence, calculate the instruction bytes fetched and the memory-data 
bytes transferred (read or written). Which architecture is most efficient as measured 
by code size? Which architecture is most efficient as measured by total memory 
bandwidth required (code+ data)? If the answers are different from part a, why are 
they different? 

3.6 [20] <3.4> Supporting byte and halfword access requires an alignment network, as in 
Figure 3.10 (page 97). Some machines have only word accesses, so that a load of a byte 
or halfword takes two instructions (a load and an extract), and a partial word store takes 
three instructions (load, insert, store). Use the data for the TeX benchmark from Figure 
3.23 (page 110) to determine what percentage of the accesses are to byte or halfwords, 
and use the data from TeX on the load/store machine from Figure 3.32 (page 122) to find 
the frequency of data transfers. Assume that loads are twice as frequent as stores 
independent of the data size. If all instructions on the machine take one cycle, what 
increase in the clock rate must we obtain to make eliminating partial word accesses a 
good tradeoff? 

3.7 [20) <3.3> We have a proposal for three different machines, Mo, Mg, and Mi6, that 

differ in their register count. All three machines have three operand instructions, and any 
operand can be either a memory reference or a register. The cost of a memory operand on 
these machines is six cycles and the cost of a register operand is one cycle. Each of the 
three operands has equal probability of being in a register. 

The differences among the machines are described in the following table. The execution 
cycles per operation are in addition to the cost of operand access. The probability of an 
operand being in a register applies to each operand individually and is based on Figures 
3.28 (page 117) and 3.29 (page 118). 
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Machine Register count Execution cycles per Probability of an operand 
operation ignoring being in a register as 
operand accesses opposed to memory 

Mo 0 4cycles 0.0 

Mg 8 5 cycles 0.5 

Mi6 16 6 cycles 0.8 

What is the cycle count for an average instruction on each machine? 

3.8 [15/10/10] <3.3, 3.7> One place where an architect can drive a compiler writer crazy 
is in making it difficult to tell if a compiler "optimization" may slow down a program on 
the machine. 

Consider an access to A[i], where A is an array of integers and i is an integer offset in a 
register. We wish to generate code to use the value of A[i] as a source operand 
throughout this problem. Assume that all instructions take one clock cycle plus the cost of 
the memory addressing mode: 

• Indexed addressing costs four clock cycles for the memory reference (for a total of 
five clock cycles for the instruction). 

• Register indirect addressing costs three clock cycles for the memory reference (for a 
total of four clock cycles). 

• Register-register instructions have no memory access cost, requiring only one cycle. 

Assume that the value A[i] must be stored in memory at the end of the code sequence and 
that the base address of A is already in Rl and the value of i is in R2. 

a. [15] Assume that the array element A[i] cannot be kept in a register, but the address 
of A[i] may be kept in a register once computed. Then, there are two different 
methods to access A[i]: 

(1) compute the address of A[i] into a register and use register indirect, and 

(2) use the indexed addressing mode. 

Write the code sequence for both methods. How many references to A[i] must occur 
for method 1 to be better? 

b. [10] Suppose you choose method 1, but you ran out of registers and had to save the 
address of A[i] on the stack and restore it. How many references must occur now for 
method 1 to be better? 

c. [10] Suppose that the value A[i] can be kept in a register (versus just the address of 
A[i]). How many references must occur to make this the best approach versus using 
method 2? 

3.9 [Discussion] <3.2-3.8> What are the economic arguments (i.e., more machines sold) 
for and against changing instruction set architecture? 
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3.10 [25] <3.1-3.3> Find an instruction set manual for some older machine (libraries and 
private bookshelves are good places to look). Summarize the instruction set with the dis­
criminating characteristics used in Figures 3.1 and 3.5 (pages 90 and 93). Does the 
machine fit nicely into one of the categories shown in Figures 3.4 and 3.6 (pages 92 and 
94)? Write the code sequence for this machine for the statements in both parts of 
Exercise 3.5. 

3.11 [30] <3.7, 3.9> Find a machine that has a powerful instruction set feature, such as 
the CALLS instruction on the VAX. Replace the powerful instruction with a simpler 
sequence that accomplishes what is needed. Measure the resultant running time. How do 
the two compare? Why might they be different? In the early 1980s, engineers at DEC did 
a quick experiment to evaluate the impact of replacing CALLS. They found a 30% 
improvement in run time on a very call-intensive program when the CALLS was simply 
replaced (parameters remained on the stack). How do your results compare? 
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The emphasis on per/ ormance rather than aesthetics is 
deliberate. Without an interest in performance the study of 
architecture is a sterile exercise, since all computable 
problems can be solved using trivial architectures, given 
enough time. The challenge is to design computers that make 
the best use of available technology; in doing so we may be 
assured that every increase in processing speed can be used 
to advantage in current problems or will make previously 
impractical problems tractable. 

Leonard J. Shustek, Analysis and Performance of 
Computer Instruction Sets (1978) 
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4 

4.1 

Instruction Set 
Examples and 
Measurements 
of Use 

Instruction Set Measurements: 
What and Why 

In this chapter we will be examining some specific architectures and then 
detailed measurements 9f the architectures. Before doing so, however, let's 
discuss what we might want to measure and why, as well as how to measure it. 

To understand performance, we are usually most interested in dynamic 
measurements-measurements that are made by counting the number of 
occurrences of an event during execution. Some measurements, such as code 
size, are inherently static measurements, which are made on a program 
independent of execution. Static and dynamic measurements may differ 
dramatically, as shown in Figure 4.1-using only the static data for this program 
would be significantly misleading. Throughout this text the data given is 
dynamic, unless otherwise specified. Exceptions are when only static 
measurements make sense (as with code size-the most important use of static 
measurement) and when it is interesting to compare static and dynamic 
measurements. As we will see in Fallacies and Pitfalls and the Exercises, the 
dynamic frequency of occurrence of two instructions and the time spent on those 
two instructions can sometimes be very different. 

Our primary focus in this chapter will be on introducing the architectures and 
measuring instruction usag'e for each architecture. Although this suggests a 
concentration on opcodes, we will also examine addressing mode and instruction 
format usage. 
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Static 
Floating-point 

operations 
Dynamic 

Branches 
Static 

Dynamic 

ALU operations 
Static 

Dynamic 61% 

Memory reference Static 

instructions Dynamic 

0% 10% 20% 30% 40% 50% 60% 70% 

FIGURE 4.1 Data from a measurement of the IBM 360 FORTRAN benchmark, which we 
describe in detail in Section 4.6. The top 20 dynamically executed instructions have been 
broken into four wide classes, showing how different the static and dynamic occurrences 
can be. In the case of the dynamic measurements, these 20 instructions account for nearly 
100% of the instruction executions, but only 75% of the static instruction occurrences. 

The instruction set measurements in Section 4.6 can be used in two ways. At 
a high level, the measurements allow one to form broad approximations of the 
instruction usage patterns within each architectural approach. For example, we 
will see that "PC-changing" instructions for a powerful instruction set like the 
VAX average nearly 25% of all instruction executions. This tells us that 
techniques that try to optimize the fetching of the next sequential instruction 
(instruction prefetch buffers-discussed in Section 8.7 of Chapter 8) will be 
significantly limited because every fourth instruction is a branch. The data on 
the IBM 360 will show that the use of decimal and string instructions is almost 
nonexistent in programs written in languages other than COBOL. This leads us 
to conclude that support for such operations need not be included in a machine 
targeted at the scientific market. Measurements of the frequency of memory 
operands-about 40% of the operands on the 8086-<:an be used in the design of 
both the pipeline and the cache. This type of high-level, general measurement is 
background data that a computer architect will use on an almost daily basis. 

The other purpose of such measurements is to serve as the know ledge data 
base that an architect would use in making detailed design tradeoffs. Such 
tradeoffs would be required in choosing what to include in an instruction set and 
what to omit, or in implementing a defined instruction set and choosing what 
cases to try to make fast. For example, the low frequency of use for the memory­
indirect addressing modes on the VAX might encourage the architect to omit 
this addressing mode from a new architecture. If he was implementing a VAX, 
he would know that the performance penalty for disfavoring this complex 
addressing mode would be small. Another example that would use detailed 
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information might be the evaluation of branching based on condition codes. By 
looking at the frequency of conditional branches and instructions whose only 
function is to set the condition code, we can evaluate the frequency with which 
the condition code is set implicitly (about 35% of the occurrences on the VAX). 
We could use this value to decide what kind of conditional branches to design in 
a new architecture, or we could use the data to optimize the implementation of 
conditional branches in a.VAX. In this chapter and subsequent ones we will see 
many examples of how this data is applied to specific design problems. 

We have chosen four machines to examine: the DEC VAX, the IBM 360, the 
Intel 8086, and a generic load/store machine called DLX. These architectures 
play a dominant role in the computer marketplace, and each has a set of unique 
and interesting characteristics. The Intel 8086 is the most popular general­
purpose computer in the world; tens of millions of machines containing this 
microprocessor have been sold. The IBM 360 and DEC VAX represent 
architectures that have existed for long periods of time (25+ and 10+ years, 
respectively) and have each sold hundreds of thousands of units. DLX is 
representative of a new breed of machines that has become very popular since 
the late 1980s. These machines are also very different in architectural style, as 
we will see. 

To try to simplify the reader's task, a common format is used for the syntax 
of instructions. This format puts the destination of a multiple-operand instruction 
first, followed by the first and second source operands. So, an instruction that 
subtracts R3 from R2 and puts the result in Rl is written as: 

SUB Rl,R2,R3 

This format follows the convention used on the Intel 8086, and is close to the 
convention on the 360. The only significant difference on the 360 is for store 
instructions, which place the source register first. While the VAX syntax always 
puts the source operands first and the destination last, we will show VAX code 
in our common format. Of course, this ordering is purely a syntactic convention 
and the architecture defines the encoding of operands in the binary instruction 
format. 

The next four sections are summaries of the four architectures. Although 
these summaries are concise, the important attributes and most heavily used 
features are all discussed. Tables containing all the operations in the instruction 
sets are contained in Appendix B. To describe these architectures accurately, we 
need to introduce a few additional extensions to our C description language to 
explain the functions of the instructions. The additions are as follows: 

• A subscript is appended to the symbol f- whenever the length of the datum 
being assigned might not be clear. Thus, f- n means transfer an n-bit 
quantity. 

• A subscript is used to indicate selection of a bit from a field. Bits are labeled 
from the most significant bit starting at 0. The subscript may be a single digit 
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(e.g., R4o yields the sign bit of R4) or a subrange (e.g., R324 .. 31 yields the 
least significant byte of R3). 

• A superscript is used to replicate a field (e.g., 024 yields a field of zeros of 
length 24 bits). 

• The variable M is used as an array that stands for main memory. The array is 
indexed by a byte address and may transfer any number of bytes. 

• The symbol ## is used to concatenate two fields and may appear on either 
side of a data transfer. 

A summary of the entire description language appears on the page preceding the 
back inside cover. As an example, assuming that RB and Rl O are 32-bit 
registers: 

R1016 .. 31 f--16 (M[RB]o) 8 ## M[RB] 

means that the byte at the memory location addressed by the contents of RB is 
sign-extended to form a 16-bit quantity that is stored into the lower half of Rl 0. 
(The upper half of Rl 0 is unchanged.) 

Following the instruction set architecture summaries in the next four sections, 
we examine and contrast dynamic use measurements of the four architectures. 

4.2 I The VAX Architecture 

The DEC VAX was introduced with its first model, the V AX-11/780, in 1977. 
The VAX was designed to be a 32-bit extension of the PDP-11 architecture. 
Among the goals of the VAX, two stand out as both important and having had a 
substantial impact on the VAX architecture. -

First, the designers wanted to make the existing PDP-11 customer base feel 
comfortable with the VAX architecture and view it as an extension of the PDP-
11. This motivated the name V AX-11/780, the use of a very similar assembly 
language syntax, inclusion of the PDP-11 data types, and emulation support for 
the PDP-11. Second, the designers wanted to ease the task of writing compilers 
and operating systems. This translated to a set of goals that included defining 
interfaces between languages, the hardware, and OS; and supporting a highly 
orthogonal architecture. 

In terms of addressing modes and operations supported in instructions, the 
other architectures discussed in this chapter are largely subsets of the VAX. For 
this reason our discussion begins with the VAX, which will serve as a basis for 
comparison. The reader should be aware that there are entire books devoted to 
the VAX architecture as well as a number of papers reporting instruction set 
measurements. Our summary of the VAX instruction set-like the other 
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· instruction set summaries in this chapter-focuses on the general principles of 
the architecture and on the portions of the architecture most relevant to 
understanding the measurements examined here. A list of the full VAX 
instruction set is included in Appendix B. 

The VAX is a general-purpose register machine with a large orthogonal 
instruction set. Figure 4.2 shows the data types supported. The VAX uses the 
name "word" to refer to 16-bit quantities, while in this text we use the 
convention that a word is 32 bits. Be careful when reading the VAX instruction 
mnemonics, as they often refer to the names of the VAX data types. Figure 4.2 
shows the conversion between the data type names used in this text and the 
VAX names. In addition to the data types in Figure 4.2, the VAX provides 
support for fixed- and variable-length bit strings, up to 32 bits in length. 

The VAX provides 16 general-purpose registers, but four registers are 
effectively claimed by the instruction set architecture. For example, R14 is the 
stack pointer and R15 is the PC (program counter). Hence, R15 cannot be used 

Bits Data type Our name DEC's name 

8 Integer Byte Byte 

16 Integer Halfword Word 

32 Integer Word Longword 

32 Floating point Single precision F _floating 

64 Integer Doubleword Quad word 

64 Floating point Double D_floating or G_floating 
precision 

128 Integer Quadword Octa word 

128 Floating point Huge H_floating 

8n Character string Character Character 

4n Binary-coded Packed Packed 
decimal 

8n Numeric string Unpacked Numeric strings: Trailing and 
leading separate 

FIGURE 4.2 VAX data types, their lengths, and names. The first letter of the DEC type 
(B, W, L, F, Q, D, G, 0, H, C, P, T, S) is often used to complete an opcode name. As 
examples, the move opcodes include MOVB, MOVW, MOVL, MOVF, MOVQ, MOVD, MOVG, MOVO, 

MOVH, MOVC3, MOVP. Each move instruction transfers an operand of the data type indicated 
by the letter following MOV. (There is no difference between moves of character and 
numeric strings, so only move character operations are needed.) The length fields that 
appear as Xn indicate that the length may be any multiple of X in bits. The packed data 
type is special in that the length for operations on this type is always given in digits, each of 
which is four bits. The packed objects are still allocated and addressed in units of bytes. 
For any string data type the starting address is the low-order address of the string. 
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as a general-purpose register, and using R14 is very difficult because it interferes 
with instructions that manipulate the stack frame. Condition codes are used for 
branching and are set by all arithmetic and logical operations and by the move 
instruction. The move instruction transfers data between any two addressable 
locations and subsumes load, store, register-register moves, and memory­
memory moves as special cases. 

VAX Addressing Modes 

The addressing modes include most of those we discussed in Chapter 3: literal, 
register (operand is in a register), register deferred (register indirect), autodecre­
ment, autoincrement, autoincrement deferred, byte/word/long displacement, 
byte/word/long displacement deferred, and scaled (called "indexed" in the VAX 
architecture). Scaled addressing mode may be applied to any general addressing 
mode except register or literal. Register is an addressing mode no different from 
any other in the VAX. Thus, a 3-operand VAX instruction may include from 
zero to three operand memory references, each of which may be any of the 
memory addressing modes. Since the memory indirect modes require an 
additional memory access, up to 6 memory accesses may be required for a 3-
operand instruction. When the addressing modes are used with R15 (the PC), 
only a few are defined, and their meaning is special. The defined addressing 
modes with R15 are as follows: 

• Immediate-an immediate value is in the instruction stream; this mode is 
encoded as autoincrement on PC. 

• Absolute-a 32-bit absolute address is in the instruction stream; this mode is 
encoded as autoincrement deferred with PC as the register. 

• Byte/word/long displacement-the same as the general mode, but the base is 
the PC, giving PC-relative addressing. 

• Byte/word/ long displacement deferred-the same as the general mode, but 
the base is the PC, giving addressing that is indirect· through a memory 
location that is PC-relative. 

A VAX instruction consists of an opcode followed by zero or more operand 
specifiers. The opcode is almost always a single byte that specifies the operation, 
the data type, and the operand count. Almost all operations are fully orthogonal 
with respect to addressing modes-any combination of addressing modes works 
with nearly every opcode, and many operations are supported for all possible 
data types. 

Operand specifiers may vary in length from one byte to many, depending on 
the information to be conveyed. The first byte of each operand specifier consists 
of two 4-bit fields: the type of address specifier and a register that is part of the 
addressing mode. If the operand specifier requires additional bytes to specify a 
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displacement, additional registers, or an immediate value, it is extended in 1-
byte increments. The name, assembler syntax, and number of bytes for each 
operand specifier are shown in Figure 4.3. The total instruction length and 
format are easy to state: Simply add up the sizes of the operand specifiers and 
include one byte (or rarely two) for the opcode. 

How long is the following instruction? 

ADDL3 Rl,737(R2),#456 

The opcode length is 1 byte, as is the first operand specifier (Rl). The second 
operand specifier has two parts: the first part is a byte that specifies the 
addressing mode and base register; the second part is the 2-byte long 
displacement. The third operand specifier also has two parts: the first byte 
specifies immediate mode, and the second part contains the immediate. Because 
the data type is long (ADDL3), the immediate value takes 4 bytes. 

Thus, the total length of the instruction is 1 + 1 + (1+2) + (1 +4) = 10 bytes. 

Addressing mode Syntax Length in bytes 

Literal #value 1 (6-bit signed value) 

Immediate #value 1 + length of the immediate 

Register Rn 1 

Register deferred (Rn) 1 

Byte/word/long Displacement (Rn) 1 + length of the displacement 
displacement 

Byte/word/long @displacement (Rn) 1 + length of the displacement 
displacement deferred 

Scaled (Indexed) Base mode [Rx] 1 + length of base addressing 
mode 

Autoincrement (Rn)+ 1 

Autodecrement -(Rn) 1 

Autoincrement deferred @(Rn)+ 1 

FIGURE 4.3 Length of the VAX operand specifiers. The length of each addressing 
mode is 1 byte plus the length of any displacement or immediate field that is in the mode. 
Literal mode uses a special 2-bit tag and the remaining 6 bits encode the constant value. 
The data we examined in Chapter 3 on constants showed the heavy use of small 
constants; the same observation motivated this optimization. The length of an immediate is 
dictated by the data type indicated in the opcode, not the value of the immediate. 
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Type Example Instruction meaning 

Data transfers Move data between byte, halfword, word, or 
doubleword operands; * is the data type 

MOV* Move between two operands 

MOVZB* Move a byte to a halfword or word, extending it with 
zeroes 

MOVA* Move address of operand; data type is last 

PUSH* Push operand onto stack 

Arithmetic, Operations on integer or logical bytes, halfwords (16 
logical bits), words (32 bits); *is the data type 

ADD* Add with 2 or 3 operands -
CMP* Compare and set condition codes 
TST* Compare to zero and set condition codes 
ASH* Arithmetic shift 

CLR* Clear 
CVTB* Sign extend byte to size of data type 

Control Conditional and unconditional branches 
BEQL,BNEQ Branch equal/not equal 
BCS, BCC Branch carry set, branch carry clear 
BRB,BRW Unconditional branch with an 8-bit or 16-bit offset 

JMP Jump using any addressing mode to specify target 
AOBLEQ Add one to operand; branch if result ::; second operand 
CASE Jump based on case selector 

Procedure Call/return from procedure 
CALLS Call procedure with arguments on stack (see Section 3.9) 

CALLG Call procedure with FORTRAN-style parameter list 
JSB Jump to subroutine, saving return address 

RET Return from procedure call 

Bit-field character Operate on variable-length bit fields, character 
decimal strings, and decimal strings, both in character and 

BCD format 
EXTV Extracts a variable-length bit field into a 32-bit word 

MOVC3 Move a string of characters for given length 

CMPC3 Compare two strings of characters for given length 

MOVCS Move string of characters with truncation or filling 

ADDP4 Add decimal string of the indicated length 

CVTPT Convert packed-decimal strin_g to character strin_g 

Floating point Floating-point operations on D, F, G, and H formats 
ADDD Add double-precision D-format floating numbers -
SUBD Subtract double-precision D-format floating numbers -
MULF Multiply single-precision F-format floating point -
POLYF Evaluate a polynomial using table of coefficients in F 

format 

System Change to system mode, modify protected registers 

CHMK,CHME · Change mode to kernel/executive 

REI Return from exception or interrupt 

Other Special operations 

CRC Calculate cyclic redundancy check 

INSQUE Insert a queue entry into a queue 

INTEL Ex.1035.178



Instruction Set Examples and Measurements of Use 147 

FIGURE 4.4 (Adjoining page) Classes of VAX instructions with examples. The 
asterisk stands for multiple data types-B, W, L, and usually D, F, G, H, and Q; remember 
how these VAX data types relate to the names used in the text (see Figure 4.2 on page 
143). For example, a MOVW moves the VAX data-type word, which is 16 bits and is called a 
halfword in this text. The underline, as in ADDO_, means there are 2-operand (ADDD2) and 3-
operand (ADDD3) forms of this instruction. The operand count is explicit in the opcode. 

Operations on the VAX 

What types of operators does the VAX provide? VAX operations can be divided 
into classes, as shown in Figure 4.4. (Detailed lists of the VAX instructions are 
included in Appendix B.) Figure 4.5 gives examples of typical VAX instructions 
and their meanings. Most instructions set the VAX condition codes according to 
their result; instructions without results, such as branches, do not. The condition 
codes are N (Negative), Z (Zero), V (oVerflow), and C (Carry). 

Example assembly instruction Length Meaning 

MOVL @40(R4),30(R2) 5 M[M[40+R4] Jf-32 M[30+R2] 

MOVAW R2, (R3) [R4] 4 R2~ 32 R3+ (R4*2) 

ADDL3 RS, (R6)+, (R6)+ 4 i~M[R6];R6~R6+4; R5~i+M[R6]; R6~R6+4 

CMPL -(R6),#100 7 R6~R6-4; Set the condition code using: M [ R 6 J -' 1 O O 

CVTBW RlO, (RB) 3 
8 

Rl016 .. 3lf--16 (M[R8) o) ## M[R8) 

BEQL name 2 if equal(CC) {PC~name} 

PC-128 :::; name < PC+l28 

BRW name 3 PC~name 

PC-32768 :::; name < PC+32768 

EXTZV (R8),R5,R6,-564(R7) 7 t~40 M[R7-564+(R5>>3)]; 
i~R5 & 7; j~if R6>=32 then 32 else if 
R6<0 then 0 else R6; 

M[R8]~32 
32-. 

0 J ## t39-i--i+l. .39-ii 

MOVC3 @36 (R9), (RlO), 35 (Rll) 6 Rl~35+Rll; R3~M[36+R9); 

for (RO~M[RlO];RO!=O;RO--) 

{M[R3J~aM[Rl); Rl++; R3++} 

R2=0; R4=0; R5=0 

ADDD3 R0,R2,R4 4 (RO##Rl) ~64 (R2##R3) + (R4##R5) 

register contents are type D floating point. 

FIGURE: 4.5 Some examples of typical VAX instructions. VAX assembly language syntax puts the result operand 
last; we have put it first for consistency with other machines. Instruction length is given in bytes. The condition equal (cc) 
is true if the condition-code setting reflects equality after a compare. Remember that most instructions set the condition 
code; the only function of compare instructions is to set the condition code. The names t, i, j are used as a temporaries 
in the instruction descriptions; tis 40 bits in length, while i and j are 32 bits. The EXTZV instruction may appear mysterious. 
Its purpose is to extract a variable-length field (Oto 32 bits) and zero extend it to 32 bits. The source operands to the 
EXTZV are the starting bit position (which may be any distance from the starting byte address), the length of the field, and 
the starting address of the bit string to extract the field from. The VAX numbers its bits from low order to high order, but we 
number bits in the reverse order. Thus, the subscripts adjust the bit offsets accordingly (which makes EXTV look more 
mysterious!). Although the result of the variable bit string operations are always 32 bits, the MOVC3 changes the values of 
registers RO through RS as shown (although any of RO, R2, R4, and RS could be used to hold the count). A discussion of 
why Movc3 uses the GPRs as working registers appears in Section S.6 of the next chapter. 
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4.3 I The 360/370 Architecture 

The IBM 360 was introduced in 1964. Its official goals included the following: 

1. Exploit storage-large main storage, storage hierarchies (ROM used for 
microcode). 

2. Support concurrent 1/0-up to 5 MB/second with a standard interface on all 
·machines. 

3. Create a general-purpose machine with new OS facilities and many data . . 

types. 

4. Maintain strict upward and downward machine-language compatibility. 

The System/370, first introduced in 1970, was a successor to System/360. 
System/370 is fully upward compatible with System/360, even in system mode. 
The major extensions over the 360 included 

• Virtual memory and dynamic address translation (see Chapter 8, Section 8.5) 

• A few new instructions: synchronization support, long string instructions 
(long move and long compare), additional instructions for manipulating bytes 
in registers, and some additional decimal instructions 

• Removal of data alignment requirements 

In addition, several important implementation differences were introduced in the 
370 implementations, including MOS main memory rather than core, and 
writeable control store (see Chapter 5). 

In 1983, IBM introduced 370-XA, the eXtended Architecture. Until this 
extension, first used in the 3080 series, the 360/370 architecture had a 24-bit 
address space. Additional bits were added to the program status word so that the 
program counter could be extended. Unfortunately, it was common program­
ming practice on the 360 to use the high-order byte of an address for status. 
Thus, old 24-bit programs cannot be run in 32-bit mode (actually a 31-bit 
address), while new and recompiled programs can take advantage of the larger 
address space. The I/0 structure was also changed to permit higher levels of 
multiprocessing. 

The latest extension to the architecture was ESA/370, introduced with the 
3090 model in 1986. ESA/370 added additional instructiqn formats, called the 
Extended formats, with 16-bit opcodes. ESA/370 includes support for a Vector 
Facility (including a set of vector registers) and an extended (128-bit) floating­
point format. The address space was extended by adding segments on top of the 
31-bit address space (see Chapter 8, Sections 8.5 and 8.6); a new and more 
powerful protection model was added as well. 

The remainder of this section surveys the IBM 360 architecture and presents 
measurements for the workload. First, let's examine the basics of the 360 
architecture, then look at the instruction set formats and some sample 
instructions. 
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The 360/370 Instruction Set Architecture 

The IBM System/360 is a 32-bit machine with byte addressability and support 
for a variety of data types: byte, halfword (16 bits), word (32 bits), doubleword 
(double-precision real), packed decimal, and unpacked character strings. The 
System/360 had alignment restrictions, which were removed in the System/370 
architecture. 

The internal state of the 360 has the following components: 

• Sixteen 32-bit, general-purpose registers; register 0 is special when used in an 
addressing mode, where a zero is always substituted. 

• Four double-precision (64-bit) floating-point registers. 

• Program status word (PSW) holds the PC, some control flags, and the 
condition codes. 

Later versions of the architecture extended this state with additional control 
registers. 

Addressing Modes and Instruction Formats 

The 360/370 has five instruction formats. Each format is associated with a single 
addressing mode and has a set of operations defined for that format. While some 
operations are defined in multiple formats, most are not. The instruction formats 
are shown in Figure 4.6 (page 150). While many instructions follow the 
paradigm of operating on sources and putting the result in a destination, other 
instructions (such as the control instructions BAL, BALR, BC) do not follow 
this paradigm, but use the same fields for other purposes. The associated 
addressing modes are a~ follows. 

RR (register-register )-Both operands are simply contents of registers. The 
first source operand is also the destination. 

RX (register~indexed)-The first operand and destination are a register. The 
second operand is the contents of the memory location given by the sum of a 12-
bit displacement field D2, the contents of the register B2, and the contents of the 
register X2. This format is used when an index register is needed (and for most 
loads and stores). 

RS (register-storage)-The first operand is a register that is the destination. 
The third operand is a register that is used as the second source. The second 
operand is the contents of the memory location given by the sum of the 12-bit 
displacement field D2 and the contents of the register B2. RS mode differs from 
RX in that a 3-operand form is supported, but the index register is eliminated. 
This instruction format is used for only a small number of instructions. 
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SI (storage-immediate)-The destination is a memory operand given by the 
sum of the contents of register B 1 and the value of displacement D 1. The second 
operand, an 8-bit immediate field, is the source. 

SS (storage-storage)-The addresses of the two memory operands are the sum 
of the contents of a base register Bi and a displacement Di. The first operand is 
the destination. This storage-to-storage operation is used for decimal operations 
and for character strings. The length field can specify a single length of 1 to 256, 
or two lengths, each from 1 to 16. A single length is used for string instructions, 
while decimal instructions specify a length for each operand. 

The displacement in the RS, RX, SI, and SS formats is 12 bits and is unsigned. 

RR format 
Register­
Register 

RX format 
Register­
Indexed 

RS format 
Register­
Storage 

SI format 
Storage-­
Immediate 

SS format 
Storage-­
Storage 

Instruction bytes 
2 3 4 5 6 

R1 +- R1 op M[X2 + 82 + 02) 

R1 +- M[B2 + 02) op R3 

M[B1 + 01) ... immediate 

M[B1 + 01] -+M[B1 + 01) op M[B2 + 02] 

FIGURE 4.6 The 360/370 instruction formats. The possible instruction operands are a 
register (R1, R2, or R3), an 8-bit immediate, or a memory location. The opcode specifies 
where the operands reside and the addressing mode. The effective addresses for memory 
operands are formed using the sum of one or two registers (called 81, 82, or X2) and a 12-
bit unsigned displacement field (called 01 or 02). In addition, the storage-storage 
instructions, which are all string-oriented, specify an 8-bit length field. Other instruction 
formats have been added in later architectural extensions. These formats allowed the 
opcode space to be extended and new data types to be added. For loads, stores, and 
moves only one source operand is used and the operation only moves the data (see Figure 
4.8 on page 152). For SS instructions, the length is one greater than the value in the 
instruction. 
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Operations on the 360/370 

Just as on the VAX, the instructions on the 360 can be divided into classes. Four 
basic types of operations on data are supported: 

1. Logical operations on bits, character strings, and fixed words. These are 
mostly RR and RX formats with a few RS instructions. 

2. Decimal or character operations on strings of characters or decimal digits. 
These are SS format instructions. 

3. Fixed-point binary arithmetic. This is supported in both RR and RX formats. 

4. Floating-point arithmetic. This is supported primarily with RR and RX in­
structions. 

Branches use the RX instruction format with the effective address specifying 
the branch target. Since branches are not PC-relative, a base register may need to 
be loaded to specify the branch target. This has a rather substantial impact: in 
general, it means that there must be registers that point to every region contain­
ing a branch target. The condition codes are set by all arithmetic and logical 
operations. Conditional branches test the condition codes under a mask to deter­
mine whether or not to branch. 

Some example instructions and their formats are shown in Figure 4.7. When 
an operation is defined for more than one format, separate opcodes are used to 
specify the instruction format. For example, the opcode AR (add register) says 
that the instruction type is RR; thus, the operands are in registers. The opcode A 

(add) says the format is RX; thus, one operand is in memory, accessed with the 
RX addressing mode. Figure 4.8 (page 152) has a longer listing of 0perations, 
including all the most common ones; a full table of instructions appears in 
Appendix B. 

Type Instruction example Meaning 

RR AR R4,RS ' R4~ R4+RS 

RX A R4,10(RS,R6) R4~ R4+M[RS+R6+10] 

RX BC Mask, 20 (RS, R6) if (CC & Mask) ! =0 {PC~ 20+RS+R6} 

RS STM 20(Rl4),R2,R8 for(i=2;i<=8;i++) 
{M[Rl4+20+ (i-2) *4] ~ 32 Ri} 

SI MVI 20 (RS), #40 . M[RS+20]~8 40 

SS MVC 10(R2),Len,20(R6) for{i=O;i<Len+l;i++) 
{M[R2+10+i]~8 M[R6+20+i]} 

FIGURE 4.7 Typical IBM 360 instructions with their meanings. The MVC instruction is 
shown with the length as the second operand. The length field is a constant in the 
instruction; standard 360 assembly language syntax includes the length with the first 
operand. The variable i used in the MVC and STM is a temporary. 
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Class or Format Instruction meaning 
instruction 

Control Change the PC 

BC RX,RR Test the condition and conditionally branch 
-

BAL RX,RR Branch and link (address of next instruction is placed in -
R15) 

Arithmetic, logical Arithmetic and logical operations 

A RX,RR Add 
-

s RX,RR Subtract -
SLL RS Shift left logical; shifts a register by an immediate 

amount 
LA RX Load address-put effective address into destination 
CLI SI Compare storage byte against immediate 
NI SI AND immediate into storage byte 
c RX,RR Compare and set condition codes -
TM RS Test under mask-perform a logical AND of the 

operand and an immediate field; set condition codes 
based on the result 

MH RX Multiply halfword 

Data transfer Moves between registers or register and memory 

L 
-

RX,RR Load a register from memory or another register 
MVI SI Store an immediate byte in memory 
ST RX Store a register 
LD RX Load a double-precision floating-point register 
STD RX Store a double-precision floating-point register 
LPDR RR Move a double-precision floating-point register to 

another 
LH RX Load a halfword from memory into a register 
IC RX Insert a memory byte into low-order byte of a register 
LTR RR Load a register and set condition codes 

Floating point Floating-point operations 

AD - RX,RR Double-precision floating-point add 
MD - RX,RR Double-precision FP multiply 

Decimal, string Operations on decimal and character strings 

MVC SS Move characters 
AP SS Add packed-decimal strings, replacing first with sum 
ZAP SS Zero and add packed-replace destination with source 
CVD RX Convert a binary word to decimal doubleword 
MP SS Multiply two packed-decimal strings 
CLC SS Compare two character strings 
CP SS Compare two packed-decimal strings 
ED SS Edit--convert packed-decimal to character string 

FIGURE 4.8 Most frequently used IBM 360 instructions. The underline means that the 
opcode is two distinct opcodes with an RX format and an RR format. For example A_ 

stands for AR and A. The full instruction set is shown in Appendix B. 
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4.4 I The 8086 Architecture 

The Intel 8086 architecture was announced in 1978 as an upward-compatible 
extension of the then-successful 8080. Whereas th~ 8080 was a straightforward 
accumulator machine, the 8086 extended the architecture with additional 
registers. The 8086 fails to be a truly general-purpose register machine, 
however, because nearly every register has a dedicated use. Thus, its architecture 
falls somewhere between an accumulator machine and a general-purpose 
register machine. The 8086 is a 16-bit architecture; all internal registers are 16 
bits. To obtain addressability greater than 16 bits the designers added segments 
to the architecture. This allowed a 20-bit address space, broken into 64-KB 
fragments. Chapter 8 discusses segmentation in detail, while this chapter will 
focus only on the implications for a compiler. 

The 80186, 80286, 80386, and 80486 are "compatible" extensions of the 
8086 architecture and are collectively referred to as the 80x86 processors. They 
are compatible in the sense that they all belong to the same architectural family. 
There are more instances of this architectural family than of any other in the 
world. The 80186 added a small number of extensions (about 16) to the 8086 
architecture in 1981. The 80286, introduced in 1982, extended the 80186 
architecture by creating an elaborate memory-mapping and protection model and 
by extending the address space to 24 bits (see Chapter 8, Section 8.6). Because 
8086 programs needed to be binary compatible, the 80286 offered a real 
addressing mode to make the machine look just like an 8086. 

The 80386 was introduced in 1985. It is a true 32-bit machine when running 
in native mode. Like the 80286, a real addressing mode is provided for 8086 
compatibility. There is also a virtual 8086 mode that provides for multiple 20-bit 
8086 address partitions within the 80386's memory. In addition to a 32-bit 
architecture with 32-bit registers and a 32-bit address space, the 80386 has a new 
set of addressing modes and additional operations. The added instructions make 
the 80386 nearly a general-purpose register machine-. for most operations any 
register can be used as an operand. The 80386 also provides paging support (see 
Chapter 8). The 80486 was introduced in 1989 and added only a few new 
instructions, while substantially increasing performance. 

Since 8086 compatibility mode is the dominant use of all 80x86 processors, 
we will take a detailed look in this section at the 8086 architecture. We will 
begin by summarizing the architecture and then discuss its usage by typical 
programs. 

8086 Instruction Set Summary 

The 8086 provides support for both 8-bit (byte) and 16-bit (called word) data 
types. The data type distinctions apply to register operations as well as memory 
accesses. 
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The address space on the 8086 is a total of 20 bits; however, it is broken into 
64-KB segments addressable with 16-bit offsets. A 20-bit address is formed by 
taking a 16-bit effective address-as an offset within a segment-and adding it 
to a 16-bit segment base address. The segment base address is obtained by 
shifting the contents of a 16-bit segment register 4 bits to the left. 

Class Register Purposes of class or register 

Data Used to hold and operate on data 

AX Used for multiply, divide, and l/0; sometimes an implicit 
operand; AH and AL also have dedicated uses in byte 
multiply, divide, decimal arithmetic 

BX Can also be used as address-base register 

ex Used for string operations and loop instructions; CL is the 
dynamic shift count 

DX Used for multiply, divide, and I/0 

Address Used to form 16-bit effective memory addresses 
(within segment) 

"\ 
SP Stack pointer 

BP Base register-used in based-addressing mode 

SI Index register, and also used as string source base register 

DI Index register, and also used as string destination base 
register 

Segment Used to form 20-bit real memory addresses 

cs Code segment-used with instruction access 

SS Stack segment-used for stack references (SP) or when 
BP is base register 

DS Data segment-used when a reference is not for code (CS 
used), to the stack (SS used), or a string destination (ES 
used) 

ES Extra segment-used when operand is string destination 

Control Used for status and program control 

IP Instruction pointer-provides the offset of the currently 
executing instruction (this is the lower 16-bits of the 
effective PC) 

FLAGS Contains six condition code bits-carry, zero, sign, 
borrow, parity, and overflow-and three status control 
bits 

FIGURE 4.9 The 14 registers on the 8086. The table divides them into four classes that 
have restricted uses. In addition, many of the individual registers are required for certain 
instructions. The data registers have an upper and lower half: xL refers to lower byte and 
xH to upper byte of register x. 
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The 8086 provides a total of 14 registers broken into four groups-data 
registers, address registers, segment registers, and control registers-as shown in 
Figure 4.9. The segment register for a memory access is usually implied by_ the 
base register used to form the effective address within the segment. 

The addressing modes for data on the 8086 use the segment registers implied 
by the addressing mode or specified in the instruction with an override of the 
default mode. We will discuss how branches and jumps deal with segmentation 
in the section on operations. 

Addressing Modes 

Most of the addressing modes for forming the effective address of a data 
operand are among those discussed in Chapter 3. The arithmetic, logical, and 
data-transfer instructions are two-operand instructions that allow the com­
binations shown in Figure 4.10. · 

Source/destination operand type Second source operand 

Register Register 

Register Immediate 

Register Memory 

Memory Register 

Memory Immediate 

FIGURE 4.10 Instruction types for the arithmetic, logical, and data-transfer 
instructions. The 8086 allows the combinations shown. lmmediates may be 8 or 16 bits in 
length; a register is any one of the 12 major registers in Figure 4.9 (not one of the control 
registers). The only restriction is the absence of memory-memory mode. 

The memory addressing modes supported are absolute (16-bit absolute 
address), register indirect, based, indexed, and based indexed with displacement 
(not mentioned in Chapter 3). Although a memory operand can use any 
addressing mode, there are restrictions on wh.at registers can be used in a mode. 
The registers usable in specifying the effective address are as follows: 

• Register indirect-BX, SI, DI. 

• Based mode with 8-bit or 16-bi.t displacement-BP, BX, SI, DI. (Intel gives 
two names to this addressing mode, Based and Indexed, but they are 
essentially identical and we combine them.) 

• Indexed-address is sum of two registers. The allowable combinations are 
BX+SI, BX+DI, BP+SI, and BP+DI. This mode is called Based Indexed on 
the 8086. 
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• Based indexed with 8-bit or 16-bit displacement-the address is sum of 
displacement and contents of two registers. The same restrictions on registers 
apply as in indexed mode. 

Operations on the 8086 

The 8086 operations can be divided into four major classes: 

I. Data movement instructions, including move, push, and pop 

2. Arithmetic and logic instructions, including logical operations, test, shifts, 
and integer and decimal arithmetic operations 

3. Control flow, including conditional and unconditional branches, calls, and 
returns 

4. String instructions, including string move and string compare 

Instruction Function 

JE name if equal(CC) { I Pf-name } ; 

IP-128 ~ name < IP+l28 

JMP name I Pf-name 

CALLF name,seg SPf-SP-2; M[SS:SP]f-CS; SPf-SP-2; 

M[SS:SP]f-IP+5; IPf-name; CSf-seg; 

MOVW BX, [DI+45] BXf-15M [DS: DI+45] 

PUSH SI SPf-SP-2; M[SS: SP] f-SI 

POP DI Dif-M[SS:SP]; SPf-SP+2 

ADD AX,#6765 AXf-AX+ 67 6 5 

SHL BX, 1 BXf-BXi. .15 ## 0 

TEST DX,#42 Set CC flags with DX & 42 

MOVSB M[ES:DI]f-9M[DS:SI]; 

Dif-DI+l; Sif-SI+l 

FIGURE 4.11 Some typical 8086 instructions and their functions. A list of the most 
frequent operations appears in Figure 4.12 (page 158). We use the abbreviation SR:X to 
indicate the formation of an address with segment register SR and offset X. This effective 
address corresponding to SR:X is (SR«4)+X. The CALLF saves the IP of the next 
instruction and the current CS on the stack. 
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In addition, there is a repeat prefix that may precede any string instruction, 
which says that the instruction should be repeated using the value in the ex 
register for the number of repetitions. Figure 4.11 shows some typical 8086 
instructions and their functions. 

Control-flow instructions must be able to address destinations in another 
segment. This is handled by having two types of control-flow instructions: 
"near" for intrasegment (within a segment) and "far" for intersegment (between 
segments) transfers. In far jumps, which must be unconditional, two 16-bit 
quantities follow the opcode. One of these is used as the instruction pointer, 
while the other is loaded into CS and becomes the new code segment. Calls and 
returns work similarly-a far call pushes the return instruction pointer and return 
segment on the stack and loads both the instruction pointer and code segment. A 
far return pops both the instruction pointer and the code segment from the stack. 
Programmers or compiler writers must be sure to always use the same type of 
call and return for a procedure-a near return does not work with a far call, and 
vice versa. 

Figure 4.12 (page 158) summarizes the most popular 8086 instructions. Many 
of the instructions are available in both byte and word formats. A full listing of 
instructions appears in Appendix B. 

The encoding of instructions in the 8086 is complex, and there are many 
different instruction formats. Instructions may vary from one byte, when there 
are no operands, up to six bytes, when the instruction contains a 16-bit imme­
diate and uses 16-bit displacement addressing. Figure 4.13 (page 159) shows the 
instruction format for several of the example instructions in Figure 4.11 (page 
156). The opcode byte usually contains a bit saying whether the instruction is a 
word or byte instruction. For some instructions the opcode may include the 
addressing mode and the register; this is true in many instructions that have the 
form "registerf-register op immediate." For other instructions a "postbyte" or 
extra opcode byte contains the addressing mode information. This postbyte is 
used for many of the instructions that address memory. The encoding of the 
postbyte is shown in Figure 4.14 (page 160). Finally, there is a byte prefix that is 
used for three diffen:mt purposes. It can override the default-segment usage of 
instructions, and it can be used to repeat a string instruction by a count provided 
in CX. (This latter function is useful for string instructions that operate on a 
single byte or word at a time and use autoincrement addressing.) Third, it can be 
used to generate an atomic memory access for use in implementing 
synchronization. 
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Instruction 

Control 

JNZ, JZ 

JMP, JMPF 

CALL, CALLF 

RET, RETF 

LOOP 

Data transfer 

MOV 

PUSH 

POP 

LES 

Arithmetic, 
logical 

ADD 

SUB 

CMP 

SHL 

SHR 

RCR 

CBW 

TEST 

INC 

DEC 

OR 

XOR 

String 
instructions 

MOVS 

LODS 

4.4 The 8086 Architecture 

Meaning 

Conditional and unconditional branches 

Jump if condition to IP+ 8-bit offset; JNE (for JNZ), JE (for JZ) are alternative names 

Unconditional jump-8-bit or 16-bit offset intrasegment (near), and intersegment (far) 
versions 

Subroutine call-16-bit offset; return address pushed; near and far versions 

Pops return address from stack and jumps to it; near and far versions 

Loop branch-decrement CX; jump to IP + 8-bit displacement if CX :;t:O 

Move data between registers or between register and memory 

Move between two registers or between register and memory 

Push source operand on stack 

Pop operand from stack top to a register 

Load ES and one of the GPRs from memory 

Arithmetic and logical operations using the data registers and memory 

Add source to destination; register-memory format 

Subtract source from destination; register-memory format 

Compare source and destination; register-memory format 

Shift left 

Shift logical right 

Rotate right with Carry as fill 

Convert byte in AL to word in AX 

Logical AND of source and destination sets flags 

Increment destination; register-memory format 

Decrement destination; register-memory format 

Logical OR; register-memory format 

Exclusive OR; register-memory format 

Move between string operands; length given by a repeat prefix 

Copies from string source to destination; may be repeated 

Loads a byte or word of a string into the A register 

FIGURE 4.12 Some typical operations on the 8086. Many operations use register-memory format, where either the 
source or the destination may be memory and the other may be a register or immediate operand. 
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4. 4 8 

a. JE PC + displacement 

8 16 16 

b. CALLF 

6 2 8 8 

c. MOV BX, [DI + 45] 

5 3 

d. PUSH SI 

4 3 1 16 

e. ADD AX, #6765 

6 2 8 

f. SHL BX, 1 

7 a· 8 

g. TEST DX, #42 

FIGURE 4.13 Typical 8086 instruction formats. The encoding of the postbyte is shown 
in Figure 4.14. Many instructions contain the 1-bit field w, which says whether the operation 
is a byte or word. Fields of the form v/w or d/w are a d-field or v-field followed by the w-field. 
The d-field in Mov is used in instructions that may move to or from memory and shows the 
direction of the move. The field V in the SHL instruction indicates a variable-length shift; 
variable-length shifts use a register to hold the shift count. The ADD instruction shows a 
typical optimized short encoding usable only when the first operand is AX. Overall 
instructions may vary from one to six bytes in length. 

INTEL Ex.1035.191



160 4.4 The 8086 Architecture 

2 3 3 

I 00 I ,, r1 
···•,·;I 

Mem Indirect 

2 3 3 8 

I 01 I ,r1 .. •, l Mel)1 I I' 
Displac~lllen( ;I 

8-bit 
•, 

displacement -;c 

2 3 3 16 
'/'' ,''·' 

10 r1 • ME\ITI . • . ·' .• ·. • IJisp1~6~fn~nt •• • .. ' • 

I I 0. ~' ,·' I J I · i • •116-bit 
, displacement 

~-·-·.'~·;:~··~~~~~~~~~~~. 

2 3 3 

r~tJ;,;~ .r1 •• J~.i( r~· .• 1 register-register 

FIGURE 4.14 There are four postbyte encodings on the 8086 designated by a 2-bit 
tag. The first three indicate a register-memory instruction, where Mem is the base register. 
The fourth form is register-register. 

4.5 I The DLX Architecture 

In many places throughout this book we will have occasion to refer to a 
computer's "machine language." The machine we use is a mythical computer 
called "MIX." MIX is very much like nearly every computer in existence, except 
that is, perhaps, nicer ... MIX is the world's first polyunsaturated computer. 
Like most machines, it has an identifying number-the 1009. This number was 
found by taking 16 actual computers which are very similar to MIX and on 
which MIX can be easily simulated, then averaging their number with equal 
weight: 

[(360 + 650 + 709 + 7070 + U3 + SS80 + 1107 + 1604 + G20 + B220 + 
S2000 + 920 + 601 + H800 + PDP-4+11)116)=1009. 

The same number may be obtained in a simpler way by taking Roman numerals. 

Donald Knuth, The Art of Computer Programming. Volume I: Fundamental Algorithms 
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In this section we will describe a simple load/store architecture called DLX 
(pronounced "Deluxe"). The authors believe DLX to be the world's second 
polyunsaturated computer-the average of a number of recent experimental and 
commercial machines that are very similar in philosophy to DLX. Like Knuth, 
we derived the name of our machine from an average expressed in Roman 
numerals: 

(AMD 29K, DECstation 3100, HP 850, IBM 801, Intel i860, MIPS M/120A, 
MIPS M/1000, Motorola 88K, RISC I, SGI 4D/60, SPARCstation-I, Sun-4/110, 
Sun-4/260) I 13 = 560 = DLX. 

The architecture of DLX was chosen based on observations about the most 
frequently used primitives in programs. More sophisticated (and less 
performance-critical) functions are implemented in software with multiple 
instructions. In Section 4.9 we discuss how and why these architectures became 
popular. 

Like most recent load/store machines, DLX emphasizes 

• A simple load/store instruction set 

• Design for pipelining efficiency (discussed in Chapter 6) 

• An easily decoded instruction set 

• Efficiency as a compiler target 

DLX provides a good architectural model for study, not only because of the 
recent popularity of this type of machine, but also because it is an easy 
architecture to understand. 

DLX-Our Generic Load/Store Architecture 

In this section, the DLX instruction set is defined. We will use this architecture 
again in Chapters 5 through 7, and it forms the basis for a number of exercises 
and programming projects. 

• The architecture has thirty-two 32-bit general-purpose registers (GPRs); the 
value of RO is always 0. Additionally, there are a set of floating-point 
registers (FPRs), which can be used as 32 single-precision (32-bit) registers, 
or as even-odd pairs holding double-precision values. Thus, the 64-bit 
floating-point registers are named FO, F2, ... , F28, F30. Both single- and 
double-precision operations .are provided. There are a set of special registers 
used for accessing status information. The FP status register is used for both 
compares and FP exceptions. All movement to/from the status register is 

,_ through the GPRs; there is a branch that tests the comparison bit in the FP 
status register. 
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Example instruction 

LW Rl,30(R2) 

LW Rl,lOOO(RO) 

LB Rl,40(R3) 

LBU Rl,40(R3) 

LH Rl,40(R3) 

LHU Rl,40(R3) 

LF F0,50(R3) 

LD F0,50(R2) 

SW 500(R4),R3 

SF 40(R3),F0 

SD 40(R3),FO 

SH 502 (R2), R3 

SB 41 (R3) I R2 

4.5 The DLX Architecture 

• Memory is byte addressable in Big Endian mode with a 32-bit address. All 
memory references are through loads or stores between memory and either 
the GPRs or the FPRs. Accesses involving the GPRs can be to a byte, to a 
halfword, or to a word. The FPRs may be loaded and stored with single­
precision or double-precision words (using a pair of registers for DP). All 
memory accesses must be aligned. There are also instructions for moving 
between a PPR and a GPR. 

• All instructions are 32 bits and must be aligned. 

• There are also a few special registers that can be transferred to and from the 
integer registers. An example is the floating-point status register, used to hold 
information about the results of floating-point operations. 

Operations 

There are four classes of instructions: loads and stores, ALU operations, 
branches and jumps, and floating-point operations. 

Instruction name Meaning 

Load word Rlt-32 M [ 30+R2] 

Load word Rlt-32 M[lOOO+O] 

Load byte RH--32 (M[40+R3] o) 24 ## M[40+R3] 

Load byte unsigned Rlt-32 024 ## M[40+R3] 

Load halfword Rlt-32 (M[40+R3] o) 16 ##M[40+R3] ##M[41+R3] 

Load halfword Rlt-32 Q16 ##M[40+R3] ##M[41+R3] 
unsigned 

Load float FOt-32 M[50+R3] 

Load double FO##Flf-64 M[50+R2] 

Store word M [ 500+R4] f-32. R3 

Store float M [ 40+R3] f-32 FO 

Store double M [ 40+R3] f-32 FO; M[44+R3]f-32 Fl 

Store half M [ 502+R2] f-16 R316 .. 31 

Store byte M[4l+R3]f-g R224 .. 31 

FIGURE 4.15 The load and store instructions in DLX. All use a single addressing mode and require that the memory 
value be aligned. Of course, both loads and stores are available for all the data types shown. 
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Any of the general-purpose or floating-point registers may be loaded or 
stored; except that loading RO has no effect. There is a single addressing mode, 
base register + 16-bit signed offset. Halfword and byte loads place the loaded 
object in the lower portion of the register. The upper portion of the register is 
filled with either the sign extension of the loaded value or zeros, depending on 
the opcode. Single-precision floating-point numbers occupy a single floating­
point register, while double-precision values occupy a pair. Conversions 
between single and double precision must be done explicitly. The floating-point 
format is IEEE 754 (see Appendix A). Figure 4.15 gives an example of the load 
and store instructions. A complete list of the instructions appears in Figure 4.18 
(page 165). 

All ALU instructions are register-register instructions. The operations 
include simple arithmetic and logical operations: add, subtract, AND, OR, XOR, 
and shifts. Immediate forms of all these instructions, with a 16-bit sign-extended 
immediate, are provided. The operation LHI (load high immediate) loads the top 
half of a register, while setting the lower half to 0. This allows a full 32-bit 
constant to be built in two instructions. (We sometimes use the mnemonic LI, 
standing for Load Immediate, as an abbreviation for an add immediate where 
one of the source operands is RO; likewise, the mnemonic MOV is sometimes 
used for an ADD where one of the sources is RO.) 

There are also compare instructions, which compare two registers 
(=,:;t:,<,>,~.~). If the condition is true, these instructions place a 1 in the 
destination register (to represent true); otherwise they place the value 0. Because 
these operations "set" a register they are called set-equal, set-not-equal, set-less­
than, and so on. There are also immediate forms of these compares. Figure 4.16 
gives some examples of the arithmetic/logical instructions. 

Control is handled through a set of jumps and a set of branches. The four 
jump instructions are differentiated by the two ways to specify the destination 
address and by whether or not a link is made. Two jumps use a 26-bit signed 
offset added to the program counter (of the instruction sequentially following the 
jump) to determine the destination address; the other two jump instructions 
specify a register that contains the destination address. There are two flavors of 
jumps: plain jump, and jump and link (used for procedure calls). The latter 
places the return address in R31. 

Example instruction Instruction name Meaning 

ADD Rl,R2,R3 Add Rl~R2+R3 

ADDI Rl,R2,#3 Add immediate Rl~R2+3 

LHI Rl,#42 Load high immediate Rl~42##0 16 

SLLI Rl,R2,#5 Shift left logical Rl~R2<<5 

SLT . Rl, R2, R3 Set less than if (R2<R3) Rl~l 
.. 

else Rl~O 

FIGURE 4.16 Examples of arithmetic/logical instructions on DLX, both with and 
without immediates. 
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Example instruction Instruction name Meaning 

J name Jump PC~name; ( (PC+4) -2 25 ) s name < 
( (PC+4) +2 25

) 

JAL name Jump and link R31~PC+4; PC~name; 

( (PC+4) -2 25
) s name < ( (PC+4) +2 25

) 

JALR R2 Jump and link register R31~PC+4; PC~R2 

JR R3 Jump register PC~R3 

BEQZ R4,name Branch equal zero if (R4==0) PC~name; 

( (PC+4)-2 15
) :S name < ( (PC+4) +2 15

) 

BNEZ R4,name Branch not equal zero if (R4 ! =0) PC~name; 

( (PC+4) -2 15
) :S name < ( (PC+4) +2 15

) 

FIGURE 4.17 Typical control-flow instructions in DLX. All control instructions, except jumps to an address in a 
register, are PC-relative. If the register operand is RO, the branch is unconditional, but the compiler will usually prefer to 
use a jump with a longer offset over this "unconditional branch." 

All branches are conditional. The branch_ condition is specified by the in­
struction, which may test the register source for zero or nonzero; this may be a 
data value or the result of a compare. The branch target address is specified with 
a 16-bit signed offset that is added to the program counter. Figure 4.17 gives 
some typical branch and jump instructions. 

Floating-point instructions manipulate the floating-point registers and 
indicate whether the operation to be performed is single or double precision. 
Single-precision operations can be applied to any of the registers, while double­
precision operations apply only to an even-odd pair (e.g., F4, F5), which is 
designated by the even register number. Load and store instructions for the 
floating-point registers move data between the floating-point registers and 
memory both in single and double precision. The operations MOVF and MOVD 

copy a single-precision (MOVF) or double-precision (MOVD) floating-point 
register to another register of the same type. The operations MOVFP 2 I and 
MOVI 2FP move data between a single floating-point register and an integer 
register; moving a double-precision value to two integer registers require two 
instructions. Integer multiply and divide that work on 32-bit floating-point 
registers are also provided, as are conversions from integer to floating point and 
vice versa. 

The floating-point operations are add, subtract, multiply, and divide; a suffix 
D is used for double precision and a suffix F is used for single precision (e.g., 
ADDD, ADDF, SUBD, SUBF, MU LTD, MULTF, D IVD, D IVF). Floating-point 
compares set a bit in the special floating-point status register that can be tested 
with a pair of branches: BFPT and BFPF, branch floating point true and branch 
floating point false. 

Figure 4.18 contains a list of all operations and their meaning. 

INTEL Ex.1035.196



Instruction Set Examples and Measurements of Use 165 

Instruction type I opcode Instruction meaning 

Data transfers Move data between registers and memory, or between the integer and FP or 
special registers; only memory address mode is 16-bit displacement + contents of 

.. aGPR 

LB,LBU,SB Load byte, load byte unsigned, store byte 

LH,LHU,SH Load halfword, load halfword unsigned, store halfword 

LW, SW Load word, store word (to/from integer registers) 

LF,LD,SF,SD Load SP float, load DP float, store SP float, store DP float 

MOVI2S, MOVS2I Move from/to GPR to/from a special register 

MOVF, 1'10VD r Copy one floating-point register or a DP pair to another register or pair 

MOVFP2I,MOVI2FP Move 32 bits from/to FP registers to/from integer registers 

Arithmetic I Logical Operations on integer or logical data in GPRs; signed arithmetics trap on 
overflow 

ADD,ADDI,ADDU,ADDUI Add, add immediate (all immediates are 16 bits); signed and unsigned 

SUB,SUBI,SUBU,SUBUI Subtract, subtract immediate; signed and unsigned 

MULT,MULTU,DIV,DIVU Multiply and divide, signed and unsigned; operands must be floating-point registers; 
all operations take and yield 32-bit values 

AND,ANDI And, and immediate 

OR,ORI,XOR,XORI Or, or immediate, exclusive or, exclusive or immediate 

LHI Load high immediate-loads upper half of register with immediate 

SLL, SRL, SRA, SLLI, SRLI, Shifts: both immediate (S_I) and variable form (S_) ; shifts are shift left logical, 
SRAI right logical, right arithmetic 

s 's I Set conditional: "_"may be LT' GT' LE' GE' EQ' NE 

Control Conditional branches and jumps; PC-relative or through register 

BEQZ,BNEZ Branch GPR equal/not equal to zero; 16-bit offset from PC+4 

BFPT,BFPF Test comparison bit in the FP status register and branch; 16-bit offset from PC+4 

J, JR Jumps: 26-bit offs~t from PC (J) or target in register (JR) 

JAL, JALR Jump and link: save PC+4 to R31, target is PC-relative (JAL) or a register (JALR) 

TRAP Transfer to operating system at a vectored address; see Chapter 5 

RFE Return to user code from an exception; restore user mode; see Chapter 5 

Floating point Floating-point operations on DP and SP formats 

ADDD,ADDF Add DP, SP numbers 

SUBD,SUBF Subtract DP, SP numbers 

MULTD,MULTF Multiply DP, SP floating point 

DIVD,DIVF Divide DP, SP floating point 

CVTF2D, CVTF2I, CVTD2F, Convert instructions: CVTx2y converts from type x to type y, where x and y are one 
CVTD2I, CVTI2F, CVTI2D of I (Integer), D (Double precision), or F (Single precision). Both operands are in the 

FP registers 

D, F DP and SP compares: "_" may be LT, GT, LE, GE, EQ, NE; sets comparison bit in FP -- --
status register 

FIGURE 4.18 Complete list of the instructions in DLX. The formats of these instructions are shown in Figure 4.19. 
This list can also be found in the back inside cover. 
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Instruction Format 

All instructions are 32 bits with a 6-bit primary opcode. Figure 4.19 shows the 
instruction layout. 

I - type instruction 
6 5 5 16 

Encodes: Loads and stores of bytes, words, half-words 
All immediates (rd .... rs1 op immediate) 

Conditional branch instructions (rs1 is register, rd unused) 
Jump register, Jump and link register 

· (rd = 0, rs = destination, immediate = 0) 

R - type instruction 
6 5 5 5 11 

Register-register ALU operations: rd .... rs1 func rs2 
Function encodes the data path operation: Add, Sub , ... 
Read/write special registers and moves 

J - type instruction 
6 

Jump and jump and link 
Trap and RFE 

26 

FIGURE 4.19 Instruction layout for DLX. All instructions are encoded in one of three types. 

Machines Related to DLX 

Between 1985 and 1990 many load/store machines were announced that are 
similar to DLX. Figure 4.20 describes the major features of these machines. All 
have 32-bit instructions and are load/store architectures; the figure lists their 
differences. These machines are all very similar-if you 're not convinced, try 
making a table such as this one comparing these machines to the VAX or 8086. 

DLX bears a close resemblance to all the other load/store machines shown in 
Figure 4.20. (See Appendix E for a detailed description of four load/store 
machines closely related to DLX.) Thus, the measurements in the next section 
will be reasonable approximations of the behavior of any of the machines. In 
fact, some studies suggest that compiler differences are more significant than 
architectural differences among these machines. 
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Machine Registers Addressing modes Operations 

DLX 32 integer; 16-bit displacement; See Figure 4.18. 
16 DP or 32 SP FP 16-bit immediates 

AMD29000 192 integer with stack Register deferred only; Integer multiply/divide trap to software. 
cache; 8-bitimmediates Branches =,=t- 0 only. 

8DPFP 

HP Precision 32GPRs 5-bit, 14-bit, and 32-bit Every ALU operation can skip the next in-

Architecture 32DP displacements; scaled struction. Many special bit-manipulation 

or64 SPFP 
mode (load only); instructions. 32-bit immediates; decimal-
autoincrement; support instructions: integer multiply/divide 
autodecrement not single instructions. Stores of partial word. 

64-bit addresses possible through 
segmentation. 

Intel i860 32 integer; 16-bit displacement; Branch compares two registers for equality. 

16 DP or 32 SP FP indexed mode; Conditional traps are supported. FP 
autoincrement; reciprocal rather than divide. Some support 
16-bit immediates for 128-bit loads and stores. 

MIPS R2000/ 32 integer; 16-bit displacement; Floating-point load/store moves 32 bits to 
R3000 16FP 16-bit immediates upper or lower half of FP register. Branch 

condition can compare two registers. Integer 
multiply/divide in GPRs. Special instructions 
for partial word load/store. 

Motorola 32 GPRs 16-bit displacement; Special bit-manipulation instructions. 
88000 indexed mode Branches can test for zero and also test bits 

set by compares. 

SPARC Register windows 13-bit offset and 13-bit Branches use condition code, set selectively 
with 32 integer immediates; indexed by instructions. Integer multiply/divide not 
registers available per addressing mode instructions. No moves between integer and 
procedure; FP registers. 
16 DP or 32 SP FP 

FIGURE 4.20 Comparison of the major features of a variety of recent load/store architectures. All the machines 
have a basic instruction size of 32 bits, though some provisions for shorter or longer are supported. For example, the 

'Precision Architecture uses 2-word instructions for long immediates. Register windows and stack caches, which are used 
in the SPARC and AMD 29000 architectures, are discussed in Chapter 8. The MIPS R2000 is used in the DECstation 
3100, the machine benchmarked in Chapter 2, and used as the load/store machine in Chapter 3. The number of double­
precision floating-point registers is indicated if they are separate from the integer registers. Appendix E has a detailed 
comparative description of DLX, the MIPS R2000, SPARC, the i860, and the 88000 architectures. Both the MIPS and 
SPARC architectures have extensions that were not supported in hardware in the first implementation. These are 
discussed in Appendix E. In several of these machines RO=O, so they really have one less register available. 

4.6 I Putting It All Together: Measurements of 
Instruction Set Usage 

In this section we examine the dynamic use of the four instruction sets presented 
in this chapter. All instructions responsible for 1.5% or more of the instruction 
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executions in a set of benchmarks are included in measurements of each 
architecture. In the interest of conciseness, fractional percents are rounded so 
that all entries in the graphs of opcode frequency will be at least 2% .. 

To facilitate comparisons among dynamic instruction set measurements, the 
measurements are organized by class of application. Figure 4.21 shows these 
application classes and the programs used to obtain instruction-use data on each 
of the machines discussed. We sometimes compare data for different 
architectures running the same type of application (e.g., a compiler) but 
different programs. The reader is cautioned that such comparisons must be made 
cautiously and with substantial limitations. Despite the fact that both programs 
may be the same type of application, differences in programming language, 
coding style, compilers, and so on, could substantially affect the results. 

Machines Compilers Floating point General Business 
integer data 

processing 

VAX GCC Spice TeX COBOLX 

360 PL/I FORTGO PLIGO COBOLGO 

8086 Turbo C Assembler Lotus 1-2-3 

DLX GCC Spice TeX US Steel 

FIGURE 4.21 Programs used for reporting information about instruction mixes. 
There are four types of workloads, and each workload type has a representation program­
except that there is no floating-point program for the 8086. The inputs to GCC, Spice, and 
TeX used for the VAX were purposely shortened because the measurement process is very 
time intensive. (Readers who obtain measurements for the 360 or 8086 running GCC, 
Spice, or TeX and who are willing to share their data are asked to contact the publisher.) 

In this section we present the instruction-mix measurements using a chart for 
each machine. The chart shows the average use of an instructiori across the 
programs measured for that architecture. The detailed individual measurements 
for each program can be found in Appendix C. This appendix will be needed as 
a reference to do the exercises and examples in the chapter. 

Remember that these measurements depend on the benchmarks chosen and 
the compiler technology used. While the authors feel that the measurements in 
this section are reasonably indicative of the usage of these four architectures, 
other programs may behave differently from any of the benchmarks liere, and 
different compilers may yield different results. In doing a real instruction set 
study, the architect would want to have a much larger set of benchmarks, 
spanning as wide an application range as possible. He would also want to 
consider the operating system and its usage of the instruction set. Single-user 
benchmarks like those measured here do not necessarily behave in the same 
fashion as the operating system. 
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VAX Instruction Set Measurements 

The data on VAX instruction set usage in this section come primarily from 
measurements on our three benchmark programs. We add the data reported in 
another study for COBOL when we discuss opcode distributions. For these 
measurements, Spice and TeX were compiled with the globally optimizing 
versions of the VAX compilers originally developed for VMS (called VCC and 
fort). GCC cannot be compiled by the vcc compiler and hence uses the standard 
VAX 'cc compiler, which performs only peephole optimization. Once compiled, 
these programs were run with the Trace bit turned on. This causes the program 
to trap on every instruction execution, allowing a measurement program to 
collect data. Because this slows the program down by a factor of between 1,000 
and 10,000 times, smaller inputs were used for the programs GCC, TeX, and 
Spice. 

Addressing Mode Usage 

Let's begin by looking at the VAX addressing modes, since the choice 
addressing modes and operations are orthogonal. First, we break the references 
into three broad classes: register, immediate (including short literal), and 
memory addressing modes. Figure 4.22 shows the breakdown into these three 
classes for our benchmarks. In all three programs, more than half the operand 
references are to registers. 

About one-third of the operands on the VAX are memory references. How 
are those memory locations specified? The VAX memory addressing modes fall 

TeX 25% 
Memory Spice 39% 

GCC 30% 

TeX 18% 
Immediate Spice 8% 

GCC 19% 

TeX 57% 
Register Spice 53% 

GCC 51% 

0% 10% 20% 30% 40% 50% 60% 

FIGURE 4.22 Breakdown of basic operand types for the three benchmarks on the 
VAX. The frequencies are very similar across programs, except for the low usage of 
imrriediates by Spice and its correspondingly higher use of memory operands. This 
probably arises because few floating-point constants are stored as immediates, but are 
instead accessed from memory. An operand is counted by the number of times it appears 
in an instruction, rather than by the number of references. Thus, the instruction ADDL2 

Rl, 45 (R2) counts as one memory reference and one register reference. The memory 
address modes in Figure 4.23 are counted in the same fashion. Wiecek [1982] reports that 
about 90% of the operand accesses are either a read or a write, and only about 10% of the 
accesses both read and write the same operand (such as Rl in the ADDL2). 
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Auto increment TeX 1% 
Spice ~3% 
GCC 4% 

Displacement TeX 2% 

deferred Spice 7% 
GCC 2% 

TeX 0% 
Scaled Spice 

GCC ,..9% 

Register TeX 
deferred Spice I 4% 

GCC t 

---=::-:----'I 20% 

••••••• 41% 

•••• 18% 

TeX 56% 
Displacement Spice 

GCC • ••••••••••••• 166% 67% 

0% 10% 20% 30% 40% 50%' 60% 70% 80% 

FIGURE 4.23 Use of VAX memory addressing modes, which account for about 31% 
of the operand references, in the three programs. Spice again stands out because of 

the low frequency of register deferred. In Spice, nonzero displacement values occur much 
more frequently. The use of arrays rather than pointers probably influences this. Likewise, 
Spice uses the scaled mode to access array elements. The displacement deferred mode is 
used to access actual parameters in a FORTRAN subroutine. Remember that PC-based 
addressing is not included here-use of PC-based addressing can be measured by branch 
frequency. 

into three separate classes: PC-based addressing, scaled addressing, and the 
other addressing modes (sometimes called the general addressing modes). The 
primary use of PC-based addressing is to specify branch targets, rather than data 
operands; thus, we do not include this addressing mode here. Scaled mode is 
counted as a separate addressing mode, and the. based mode on which it is built 
is counted as well. Figure 4.23 shows the use of addressing modes in the three 
benchmark programs. Not surprisingly, displacement mode dominates. Taken 
together, displacement and register deferred, which is essentially a special case 
of displacement with a zero constant value, constitute from 70% to 96% of the 
dynamically occurring addressing modes. 

The size of a VAX instruction is almost always one byte for the opcode plus 
the number of bytes in the addressing modes. From these data the average size 
of an instruction can be estimated. Architects often do this type of estimating 
when they do not have exact measurements available. This is particularly true 
when data collection is expensive. Collecting the VAX data in this chapter, for 
example, took from one to several days of running time for each program. 

The average VAX instruction has 1.8 operands. Use this fact and the data on 
displacement sizes in Figure 3.13 (on page 100 of Chapter 3) to estimate the 
average size of a VAX instruction. Such an estimate is useful for determining 
memory bandwidth per instruction, a critical design parameter. 
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From the above data we know that literal and register modes, which each take 1 
byte, dominate the mix. The most heavily used addressing mode, displacement 
mode, can vary from 2 bytes to 5 bytes-the register byte plus 1 or more offset 
bytes. Based on the length information in Figure 3.13 we guess that the average 
displacement is 1.5 bytes, for a total size of 2.5 bytes for the addressing mode. 
For this example, we assume that literal, register, and displacement modes make · 
up all the accesses. 
' This means there is 1 byte for the opcode, 1 byte for register or literal mode, 
and about 2.5 bytes for displacement mode. Using 1.8 operands per instruction 
and the average frequencies of accesses from Figure 4.22 (page 169), we obtain 
1 + 1.8 * (0.54 + 0.15 + 0.31 * 2.5) or 3.64 bytes7 

Wiecek [1982] measured 3.8 bytes per instruction. Direct measurements of 
our three programs showed the average sizes to be 3.6, 4.9, and 4.2 for GCC, 
Spice, and TeX, respectively. 

Instruction Mixes 

Now let's look at the distribution for instruction operations, using our three 
benchmarks plus the COBOLX program from the study published by Clark and 
Levy [1982]. COBOLX is a synthetic, internal DEC benchmark that was 
compiled by the VAX VMS COBOL compiler and uses decimal instructions. 
However, the new DEC compilers for the VAX avoid using the decimal 
instruction set, since most of that portion of the architecture is emulated in 
software-and is therefore much slower--on the newer VLSI-based VAXes. 

The data in this section are presented in chart form, but detailed tables for 
each machine and benchmark appear in Appendix C. The data here focus on 
instruction frequency, but frequency distributions and time distributions do not 
always match. We will see an example of this in the next section. Appendix D 
contains a set of detailed measurements based on time-distribution 
measurements. 

Figure 4.24 shows all instructions responsible for more than .1.5% of the 
dynamic instruction executions across all the benchmarks. Each complete bar. 
shows an average instruction mix over the four programs, and how the programs 
make up that mix. 

GCC and TeX are very similar in behavior; the largest difference is the higher 
frequency of data transfers in TeX. Spice and COBOLX look very different. 
Each of these executes more than 20% of its instructions using a portion of the 
instruction set that is essentially unused by the other benchmarks. Both 
COBOLX and Spice do many fewer integer arithmetic operations, instead using 
decimal or floating-point operations. COBOLX makes small use of the data 
transfer instructions ( 4% versus an average of 20%. for the other three 
programs); instead, 38% of the instructions it executes are decimal or string 
instructions. 

These 27 instructions in Figure 4.24 correspond to an average of 88% of the 
instructions executed in the four benchmarks. However, the tail of the 
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Decimal, 
string 

Floating 
point 

Data 
transfer 

Arithmetic, 
logical 

Control 
Procedure 

CMPC3 
CMPP_ 
ADDP4 
MOVC3, MOVC5 
CVTTP,CVTPT 

CMPD 
DIVD 
ADDO_ 
SUBD_ 
MULD_ 

MOVZ*L 
MOVQ 
PUSHL 
MOVL 

MULL_ 
ASHL 
CVT*L 
sus·_ 
CLRL 
TSTL 
MOVA* 
INCL 
ADDL_ 
CMP* 

JMP 
RET 
CALLS, CALLG 
BRB, BRW 
Conditional Branch - - 5% 

---- 17% 

~ 8 ~RR 1~ 18 1~18 18 

• GCC 0 Spice • TeX Ill COBOLX ~ 

FIGURE 4 .. 24 The VAX instruction frequencies combined graphically. The total size of 
each bar shows the behavior that would be seen on a machine that ran these four 
programs with equal frequency. The segments of the bar show what percentage of the 
usage of that instruction would come from each of the programs. This illustrates that some 
portions of the instruction set need to be there for only one class of applications. Overall, 
only a small number of instructions outside of the control, data transfer, and integer 
arithmetic instructions are heavily used. 

distribution is long and there are many instructions executed with a frequency of 
1/2 to 1 %. In Spice, for example, the top 15 instructions make up 90% of the 
executions, and the top 26 make up 95%. However, there are 149 different VAX 
instructions executed at least once! 

Measurements of 360 Instruction Set Usage 

The measurements in this section are taken from those made by Shustek in his 
Ph.D. thesis [1978]. His work includes a study of the dynamic characteristics of 

INTEL Ex.1035.204



Instruction Set Examples and Measurements of Use 173 

seven large programs on the IBM 360 architecture. He collected his data by 
building an interpreter for the 360 architecture. The four programs described in 
Figure 4.25 are used in this section to examine characteristics of 360 instruction 
set usage. 

Program Benchmark class Instruction count Program function 

COBOLGO Business D.P. 3,559,533 COBOL usage report 
formatter 

PLIGO General integer 23,863,497 PL/I computer usage 
accounting 

FORTGO Floating point 11,719,853 FORTRAN linear 
systems solver 

PLIC Compiler 24,338,101 PL/I compile 

FIGURE 4.25 Four programs used to measure the IBM 360. The suffix "GO" indicates 
an execution of a program, while the suffix "C" indicates a compile. We chose the PUI 
compiler because it is the largest and most representative; it is also written in PUI. 
Shustek's thesis used two FORTRAN executions. We chose to use LINSYS2 to represent 
the FORTRAN execution, since it is a more typical FORTRAN program; we refer to the 
execution of LINSYS2 as FORTGO. 

Addressing Modes and Instruction Types 

Figure 4.26 shows the frequency of data accesses by addressing mode. The 
COBOL program has a very high frequency of data accesses. Movements of 
character data and use of decimal data, which always reside in memory, 
probably account for this. FORTGO has a substantially lower number of 
memory references. This may arise because of allocation of variables to registers 
in the tight inner loops of the program. 

COBOL GO 79% 

Memory PUGO 
FORTGO 
PUC 

COBOLGO 
Immediate PUGO 

FORTGO 
PUC 

COBOLGO 
Register PUGO 

FORTGO 81% 
PUC 62% 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 

FIGURE 4.26 Distribution of operand accesses made by 360 instructions. Limited 
support for immediates is the chief reason that immediates see so little use. 
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There an~ only two memory addressing modes on the 360: base register + 
displacement (RS format, SI format, and SS format) and base register + 
displacement + index register (RX format). However, the operations available in 
the instructions that address memory typically appear in only one format. 
Therefore, it is probably most useful to look at instruction format usage, as 
shown in Figure 4.27. Most instructions are RX format with RR following 
behind that. The high usage of RX format should not lead .you to conclude that 
the displacement + base register + index register addressing mode is heavily 
used, because in 85% of the RX instructions the index register is zero. COBOL 
displays a high percentage of SS-format instructions, and this is to be expected 
because the decimal and string instructions are all SS format. The FORTRAN 
execution displays a large percentage of RR format, 2-byte instructions. This 
makes sense in a program that makes heavy use of registers in its optimized 
inner loops. 

FIGURE 4.27 Percentage of 6-, 4-, and 2-byte instructions for the four 360 programs. 
The majority of the instructions are 4 bytes, and almost none are 6 bytes, except when 
running COBOLGO. 

Given th,e data in Figure 4.27 compute the average instruction length for the 
PLIGO program. 

The average instruction length is 

6 * % SS + 4 * (% RX + % RS + % SI) + 2 * % RR 

= 0 + 4 * (0.63+ 0.04+0.17) + 2 * 0.16 = 3.68 bytes 

Across all the four programs the average measured length is 3.7 bytes. 
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ED 0% 
CP 

CLC 
Decimal, MP 

strin~ CVD 
ZAP 

AP 
MVC 3% 

Floating MDR 
point AD 

LTR 
IC 

LH 
Data LPDR 

transfer STD 
LD 
ST 3% 

MVI 5% 
L,LR 19% 

MH 
TM 
c 3% 

Arithmetic, NI 
logical CLI 

LA 
SLL 
SR 

A,AR 10% 

Control, BAL, BALR 
procedure BC, BCR 15% 

~ 8 ~RR 1~ 181~18 18~ 

• PUC D FORTGO D PLIGO • COBOLGO I 

FIGURE 4.28 Combined data for the four programs on the 360. Compare this with 
Figure 4.24, where the data for the VAX are graphed. 

Instruction Mixes 

175 

Now let's examine the data for the instruction mixes. Figure 4.28 shows the 
most heavily used instructions in the four 360 benchmarks. As Figure 4.28 
illustrates, variations among the programs are very large. The PL/I compiler has 
an extraordinarily large number of branches, while the PL/I execution has very 
few. The use of arithmetic and logical operators is fairly uniform with the 
exception of the COBOL program, which uses decimal operations instead. 

Cqmparing these programs to the VAX, the much lower frequency of 
branches~J6% on the 360 versus 23% on the VAX-stands out. The number of 
branches in a program is largely fixed by the program, except for some 
architectural anomalies and possible compiler optimizations (such as loop 
unrolling-discussed in Chapter 6-but not used by these compilers). Thus, the 
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percentage of branches is an indirect measure of instruction power or density, 
since it says how many other instructions are required for each branch. We 
would expect the VAX with its more powerful addressing modes and multiple 
memory operands per instruction to have a high instruction density and a higher 
branch frequency. We see further evidence of greater instruction density of the 
VAX in the higher frequency of data transfers on the 360-more data is moved 
explicitly on the 360 rather than used as memory operands, as on the VAX. 
However, we cannot draw any specific quantitative conclusions about 
instruction density because the measured programs and compilers are different. 

Also very different is the percentage of character and string operations used 
by the 360 versus the VAX for the two COBOL applications. Finally, the 
FORTRAN execution uses a much larger number of integer operations on the 
360; this may be traceable to differences arising when the VAX uses an 
addressing mode but the 360 must use explicit instructions for address calcula­
tions. 

As we have seen, the differences in instruction usage on the 360 and VAX are 
fairly significant. The next two architectures differ from these first two even 
more dramatically. 

Measurements of 8086 Usage 

The data in this section were collected by Adams and Zimmerman [1989] in a 
study of seven programs running on an IBM PC under MS DOS 3.1. They 
collected the data by single.-stepping the programs and collecting data after 
every instruction execution, just as was done for the VAX. The three programs 

. used here, a brief description, and the number of instructions executed are shown 
in Figure 4.29. As with the VAX and 360, we will begin by examining operand 
access and addressing modes, and then progress to instruction mixes. 

Addressing Modes and Instruction Length 

Our first measurement on the 8086, shown in Figure 4.30, graphs the origins of 
operands. Immediates play a small role, while register access slightly dominates 
memory access. Compared to the VAX, these programs on the 8086 use a higher 
frequency of memory operands. The limited register set of the 8086 probably 

Program Benchmark class Instruction count Program function 

Lotus Business 2,904,931 Lotus 1-2-3 calculating a 128-
cell worksheet four times 

MASM General integer 2,365,711 Microsoft Macro Assembler 
assembling a 500-line program 

Turbo C Compiler 1,806,143 Turbo C compiling Dhrystone 

FIGURE 4.29 Three programs used for 8086 measurements. The benchmarks are 
written in a combination of 8086 Assembler and in C. 
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plays a role in increasing the memory traffic, which substantially exceeds that of 
the 360, if we ignore the COBOL program (which must use SS instructions) on 
the 360. 

Lotus 43% 
Memory Assembler 37% 

Turbo C 43% 

Lotus 
Immediate Assembler 7% 

Turbo C 11 % 

Lotus 52% 
Register Assembler 55% 

Turbo C 46% 

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 

FIGURE 4.30 Three classes of basic operand access on the 8086 and their 
distribution. The implied use of the accumulator register (AX), which occurs in a number of 
instructions, is counted as a register access. 

In the above programs 41 % of the operand references are memory accesses. 
Figure 4.31 shows the distribution of addressing modes for these memory 
references. 

Lotus 15% 
Indirect Assembler 

Turbo C 

Lotus 34% 
Absolute Assembler 36% 

Turbo C 18% 

Lotus 51% 
Displacement Assembler 52% 

Turbo C 73% 

0% 10% 20% 30% 40% 50% 60% 70% 80% 

FIGURE 4.31 The 8086 memory addressing modes shown in this graph account for. 
almost all the memory references in the three programs. Memory addressing modes 
indexed and based have been combined, since their effective address calculations are the 
same. Register indirect mode is in effect based with a zero offset, equivalent to the VAX 
register-deferred mode. If register indirect were counted as a based mode with zero offset, 
about two-thirds of the memory references would be displacement mode. The other two 
remaining modes are essentially unused in the three programs. 

The variable-length instructions, use of implicit registers, and small size of 
the register specifier combine to yield a fairly short average instruction. For 
these three programs the average instruction length is approximately 2.5 bytes. 
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Instruction Mixes on the 8086 

The instructions responsible for greater than 1.5% of the executions for the 8086 
running the three programs are shown graphically in Figure 4.32. The displayed 
subset of the instruction set accounts for a higher proportion of all instruction 
executions (90%) than it does on the VAX or 360. As we might suspect, the 
architectures with smaller instruction repertoires use a higher percentage of their 
opcodes. 

The major distinguishing characteristic among the programs is the shift from 
data transfer instructions to control instructions in Lotus. Lotus makes heavy use 
of the LOOP instruction, which may account for that shift. 

The overall frequency of move instructions is much larger on the 8086 than 
on the VAX. This difference probably arises because the 8086 has fewer 
general-purpose registers. Other possible explanations include the use of string 
instructions that generate a sequence of move in.structions, and explicit 
movement of data among segments to ease processing. The total branch 
frequency is not very different between the 8086 and VAX, though the 
distribution of different types of control instructions is very different. The 
percentage of arithmetic operations on the 8086 is much smaller, due at least 
partially to the larger number of move instructions. 

POP_.____, 

Datas PUSH ••CJll 
transfer LES 

MOV ............ c:::::=:::::=:::::=:::::=:::::=:::Jliiil!lil!lli'll!IJ27% 

TEST 

CBW 

SUB 

Arithmetic, INC, DEC 
logical OR, XOR 

ADD 

SAL, SHR, RCR 

CMP 

JMP 

Control, LOOP 

procedure RET,RETF 
call CALL, CALLF 

Conditional Jump 10% 

0% 5% 10% 15% 20% 25% 30% 

• Turbo C 0 MASM Ill Lotus i 

FIGURE 4.32 Distribution of instruction frequencies on the 8086 shown in the same 
format used for the VAX and 360. · 

INTEL Ex.1035.210



Example 

Answer 

Instruction Set Examples and Measurements of Use 179 

In this and the preceding two sections we saw machines designed in the 
1960s (the 360) and the 1970s (the VAX and the 8086). In the next section we 
will talk about a machine typical of those designed in the 1980s and its usage. 

Instruction Set Usage Measurements on DLX 

As with the other architectures we have looked at thus far, we start our 
examination of instruction set usage on DLX with measurements of operand 
location and move from there to instruction mixes. The DLX data throughout the 
book was measured using the MIPS R2000/3000 architecture and adjusting the 
data to reflect the differences between DLX and the MIPS architecture. The 
MIPS compiler technology with optimization level 2, which does full global 
optimization with register allocation, was used to compile the programs. A 
special program called pixie was used to instrument the object module. The 
instrumented object module produces a monitoring file that is used to produce 
detailed execution statistics. 

Addressing Mode Usage 

Operand usage is shown in Figure 4.33. This data is very uniform across the 
applications on DLX. Compared to the VAX, a much higher percentage of the 
operand references are to registers: On the VAX, only about half the references 
are to registers, while roughly three-quarters are on DLX. This probably occurs 
because of the larger number of registers available on DLX and greater emphasis 
on register allocation by the DLX compiler. 

Since D1=-X has only a single addressing mode, it makes no sense to ask what 
the distribution of addressing modes is. However, we noticed earlier that on the 
VAX and 8086 the deferred addressing mode, which is equivalent to 
displacement addressing with a zero displacement, was the second or third most 
popular. Would it be useful to add this mode to DLX? 

Using the data on offset values from Figure 3.13 .on page 100, determine how 
often on average deferred mode would be used for the three programs if the case 
of a zero-offset displacement were made a special mode. In particular, what 
percentage of the memory references would use it? How much memory band­
width would be saved if we had a 16-bit instruction for this addressing mode? 

The frequencies of zero-off set displacement values are 

GCC: 27% 

Spice: 4% 

TeX: 17% 
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The average frequency for a zero-offset value is then (27% + 4% + 17% )/3 = 
16%. Thus, the mode would be used by 16% of the loads and stores, which 
average 17..% of the executions. The decrease in instruction bandwidth would be 

1 
about 2 * 32% * 16%, or about 3%. 

TeX 18% 
Memory Spice 16% 

GCC 16% 

TeX 
Immediate Spice 

GCC 

TeX 73% 
Register Spice 78% 

GCC 75% 

0% 10% 20% 30% 40% 50% 60% 70% 80% 

FIGURE 4.33 Distribution of operand accesses for the three benchmarks on DLX. 
Only accesses for operands-not for effective address calculations-are included. The fact 
that DLX has only 3-operand register formats probably increases the frequency of register 
operand access slightly, since some instructions probably have only two unique register 
operands and use one register as both a source and destination. On a machine like the 
VAX, such an operation might use a 2-operand instruction and thus be counted as having 
only 2 register operands. This effect has not been measured. 

The other two addressing modes used with some frequency are scaled on the 
VAX and absolute on the 8086. Scaled addressing mode is synthesized on DLX 
with a separate add; the presence of this address mode is significantly affected 
by the compiler technology. Better optimizers use the indexed mode less often 
because the optimization of induction variable elimination obviates the need for 
indexed addressing and for scaling (see the discussion in Section 3.7). The 
direct mode is synthesized by dedicating a register to point to a global area and 
accessing variables with a displacement from that register. Because only scalar 
variables (i.e., not structures or arrays) need to be accessed in this way, this 
works very well for most programs. 

Instruction Mixes on DLX 

Figure 4.34 shows the instruction mixes for our three programs plus the U.S. 
Steel COBOL benchmark-the most widely employed COBOL benchmark. The 
benchmark is a synthetic program of about 1,000 lines in length. It is included 
here because its behavior is substantially different from FORTRAN and C 
programs. Measurements on COBOL are also interesting because they reflect 
what changes in instruction set usage occur when decimal arithmetic is not 
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directly supported by decimal instructions. Let's first look at the differences 
among the programs before we consider how these mixes compare to the VAX. 

The significant differences among these programs are surprising. Both Spice 
and TeX stand out as having very low branch frequency. The effect of 
translating the decimal arithmetic of COBOL into binary arithmetic is clearly 
seen in the large percentage of arithmetic operations in US Steel. Shifts, logical 
operators, and load immediates, which are all used to do fast decimal-binary 
conversion, occur in significant frequencies. US Steel's low frequency of data 
transfer is certainly affected by this increase in arithmetic and logical operations. 
Interestingly, only the call frequency of US Steel is high enough to account for 
more than 1 % of the instruction executions (the frequency of JAL is about 1 % 
for the other three benchmarks). 

Floating 
point 

Data 
transfer 

Arithmetic, 
logic 

DIVD 

SUBD 

ADDO 

MULD 

MOV* 

SD 

LD 

LBU 

SW 

LW 

OR,ORI 

SRA 

AND.ANDI 

S--,S--1 ·-· 

4% 

LI •••• 4% 

SLL 4% 

LHI ~:::J-•ill 5% 

7% 

13% 

ADDU, ADDUI ····====-••••&llllillillillilli/I 20% 

Control, 
procedure call 

JR 

JAL 

J 

B--Z !!!!!!!!!~~~~~~~~1:,.:1o/c~o _, ____ _ 

0% 5% 10% 15% - 20% 

Total Dynamic Count 

• GCC D Spice • TeX Ill US Steel • 

FIGURE 4.34 The DLX instruction mix visible over four programs with breakdown 
showing each program's contribution. What is remarkable is how a small number of 
instructions-conditional branch, add, load, and store-dominate across all four programs. 
The opcode LI is really an ADDUI with RO as an operand; the high frequency of ADDU and 
ADDUI is discussed below. 
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4.6 Putting It All Together: Measurements of Instruction Set Usage 

These mixes differ dramatically from the VAX (or other machines in this 
section). One difference is the very high percentage of ADDU and ADDUI 

instructions. These instructions are used for a variety of purposes where the 
other machines may use a different instruction or a more powerful addressing 
mode or instruction. Among the most frequent uses for ADDU and ADDUI are: 
register-register copies (coded as ADDU with RO), synthesizing an address mode 
such as scaled, and incrementing the stack pointer on a procedure call. 

It is interesting to compare the branch frequency between DLX and the 
VAX, since the absolute branch count should be approximately equal (for 
reasons discussed earlier), and the ratio of branch frequencies should be about 
the same as the ratio of overall instruction counts. However, the compilers may 
affect the type of branch used-conditional branch versus jump-so we need to 
combine all the branches and jumps, except those used in procedure calls, to 
make a comparison. 

Find the ratio of absolute branches on the VAX versus DLX for the three 
common benchmarks. The ratio of instruction counts, measured in Section 3.8 is 

InstructionsDLX = 2.0 
Instructions VAX 

Use the data in Appendix C for exact percentages of branches. 

From Appendix C, we find that the average branch frequency on DLX is 
19%+2%+7% . . . 

3 
= 9.3%, while the average for the VAX is 17.3%. Thus, the ratio 

of the branch counts is 

BranchesnLX 9.3% * lnstructionsnLx 
= 

BranchesvAX 17.3% * InstructionsvAX 

9.3 * 2.0 * Instructionsv AX 
= 17 .3 * Instructionsv AX 

= 18.6 = 1 08 
17.3 . 

So DLX does about 8% more branches. 

In the arithmetic and logical instructions, GCC and US Steel are the most 
different between the VAX and DLX. We know US Steel differs because of the 
absence of decimal instructions-it would be interesting to see what the 
instruction mix on such a program would look like with the new VAX compilers 
that avoid the decimal instructions. Another major difference between the two 
machines is the lower frequency of compare instructions and test instructions on 
DLX. The use of compare with zero in the branch instruction is responsible for 
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this. Because the set instructions are also used to set logical variables, we cannot 
know exactly what percentage of conditional branches on DLX do not need a 
compare, but we can guess that it is between 75% and 80%. 

The difference in data transfers has been discussed extensively at the end of 
Chapter 3 (for a machine very close to DLX) and in the previous subsection. We 
know that the larger number of registers (at least twice as many) and more am­
bitious register allocator mean that the load and store frequency is lower on 
DLX than on the VAX. 

We have now seen instruction mixes for four very different machines. In 
Appendix D we can see how these mixes differ when we look at time 
distributions rather than frequency of occurrence, and in the next section we will 
review some of our key observations and point out some additional pitfalls using 
data we have examined in this and earlier sections. 

4. 7 I Fallacies and Pitfalls 

Fallacy: There is such a thing as a typical program. 

Many people would like to believe that there is a single "typical" program that 
could be used to design an optimal instruction set. For example, see the synthetic 
benchmarks discussed in Section 2.2. The data in this chapter clearly show that 
programs can vary significantly in how they use an instruction set. For example, 
the frequency of control-flow instructions on DLX varied from 5% to 23%. The 
variations are even larger on an instruction set that has specific features for 
supporting a class of applications, such as decimal or floating-point instructions 
that are unused by other applications. There is a related pitfall. 

Pitfall: Designing an architecture on the basis of small benchmarks or large 
benchmarks from a restricted application domain when the machine is intended 
to be general purpose. 

Many programs exhibit somewhat biased behavior or do not use a particular 
aspect of an architecture. Obviously, choosing TeX or GCC benchmarks to 
design the instruction set might result in a machine that wouldn't do well on a 
program like Spice or COBOLX. A more subtle example arises when choosing a 
representative, but synthetic, benchmark. For example, Dhrystone (see Section 
2.2) does a procedure call approximately every 40 instructions on a machine like 
DLX-the number of procedure calls is more than half the number of 
conditional branches!. By comparison, in GCC a call occurs about once every 
100 instructions, and branches are 15 times more frequent than procedure calls. 

Faltacy: An architecture with flaws cannot be successful. 

The IBM 360 is often criticized in the literature-the branches are not PC­
relative, and the offset is too small in based addressing. Yet, the machine has 
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been an enormous success because it did several new things properly. First, the 
architecture has a big enough address space. Second, it is byte addressed and 
handles bytes well. Third, it is a general-purpose register machine. Finally, it is 
simple enough that it can be efficiently implemented across a wide performance 
and cost range. 

The 8086 provides an even more dramatic example. The 8086 architecture is 
the only widespread architecture in existence today that is not truly a general­
purpose register machine. Furthermore, the segmented address space of the 8086 
causes major problems both for programmers and compiler writers. Despite 
these major difficulties, the 8086 architecture-because of its selection as the 
microprocessor in the IBM PC-has been enormously successful. 

Fallacy: One can design a flawless architecture. 

All architecture design involves tradeoffs made in the context of a set of 
hardware and software technologies. Over time those technologies are likely to 
change, and decisions that may have been correct at the time they were made 
look like mistakes. For example, in 1975 the VAX designers overemphasized 
the importance of code-size efficiency and underestimated how important ease 
of decoding and pipelining would be ten years later. Almost all architectures 
eventually succumb to the lack of sufficient address space. However, avoiding 
this problem in the·long run would probably mean compromising the efficiency 
of the architecture in the short run. 

Fallacy: In instruction mixes, time distribution and frequency distribution 
will be close. 

Appendix D shows the time distributio11s for our benchmark programs and 
compares the time and frequency distributions. A simple example of where these 
distributions are very different is in the COBOLGO program on the 360. Figure 
4.35 shows the top instructions by frequency and by time. The two highest 
occurring instructions are responsible for 33% of the instruction executions in · 
COBOLGO, but only 4% of the execution time! Remember that time 
distributions are dependent on both the architecture and the implementation 
used for the measurement. Hence, time distributions may differ from model to 
model, while frequency distributions will be the same, provided neither the 
software nor the program changes. This large difference between time and 
frequency distributions does not exist for simpler load/store architectures, such 
asDLX. 

Pitfall: Examining only the worst-case or average behavior of an instruction 
as design input. 

The best example of this comes from the use of MVC on an IBM 360. The 
instruction can move overlapped fields of characters, but this occurs less than 
1 % of the time, and then usually to clear a field. The average length of a move 
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as measured by Shustek was ten bytes, but more than three-quarters of the 
moves were either one byte or four bytes in length. Assuming worst-case 
behavior (overlapping strings) or average length can each lead to suboptimal 
design decisions. 

Top instructions by Frequency Top instructions by Percentage 
frequency time distribution of time 

L, LR 19% ZAP 16% 

BC, BCR 14% AP 16% 

AP 11% MP 13% 

ZAP 9% MVC 9% 

MVC 7% CVD 5% 

FIGURE 4.35 The top five instructions by frequency and by time for the COBOLGO 
benchmark run on the 360. The actual frequency or percentage of time is also shown. 
Further data appears in Appendix D. 

4.8 I Concluding Remarks 

We have seen that instruction sets can vary quite dramatically, both in how they 
access operands and in the operations that can be performed by a single 
instruction. The comparison of opcode usage across architectures by instruction 
frequency is summarized in Figure 4.36. This figure shows that even very 
different architectures behave similarly in their use of instruction classes. 
However, this should also remind us that performance may be only distantly 
related to instruction usage-the execution-time distributions for these 
architectures in Appendix D look very different indeed. 

Dramatic though the variation in instruction usage is across architectures, it is 
equally dramatic across applications. We have seen that floating-point programs, 
COBOL programs, and C systems programs differ in how they use a machine. 
Large segments of the instruction set are unused by some programs. When such 
application-specific features are not part of the instruction set-for example, the 
absence of decimal instructions in DLX-the impact is a shift in the use of other 
parts of the instruction. Even across two programs written in the same 
language-GCC and TeX, or PLIC and PLIGO-the differences in instruction 
usage can be significant. 

Instruction-usage data are an important input for the architect, but they do not 
.necessarily tell us what are the most time-consuming instructions. The next 
several chapters will help explain why the difference arises by quantifying the 
CPI difference among instructions and machines. 
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Machine Program Control Arithmetic, Data Floating Decimal, Totals 
logical transfer point string 

VAX GCC 30% 40% 19% 89% 

VAX Spice 18% 23% 15% 23% 79% 

VAX TeX 30% 33% 28% 91% 

VAX COBOLX 25% 24% 4% 38% 91% 

360 PLIC 32% 29% 17% 4% 82% 

360 FORTGO 13% 35% 40% 7% 95% 

360 PLIGO 5% 29% 56% 90% 

360 COBOLGO 16% 9% 20% 40% 85% 

8086 Turbo C 21% 23% 49% 93% 

8086 MASM 20% 24% 46% 90% 

8086 Lotus 32% 26% 30% 88% 

DLX GCC 24% 35% 27% 86% 

DLX Spice 4% 29% 35% 15%( 83% 

DLX TeX 10% 41% 33% 84% 

DLX US Steel 23% 49% 10% 82% 

FIGURE 4.36 The frequency of instruction distribution for each benchmark broken into five classes of 
instructions. Because only instructions with frequencies greater than 1.5% have been included in previous figures, the 
totals are less than 100%. 

Historical Perspective and References 

Although a large number of machines have been developed in the same time 
frames as the four machines covered in this chapter, the discussion here is 
confined to these machines and measurements of them. 

The IBM 360 was introduced in 1964 with six models and a 25:1 per­
formance ratio. Amdahl, Blaauw, and Brooks [1964] discuss the architecture of 
the IBM 360 and the concept of permitting multiple object-code-compatible 
implementations. The notion of an instruction set architecture as we understand 
it today was the most important aspect of the 360. The architecture also 
introduced several important innovations, now in wide use: 

1. 32-bit architecture 

2. Byte-addressable memory with 8-bit bytes 

3. 8-, 16-, 32-, and 64-bit data sizes 

In 1971, IBM shipped the first System/370 (models 155 and 165), which in­
cluded a number of significant extensions of the 360, as discussed by Case and 
Padegs [1978], who also discuss the early history of System/360. The most 
important addition was virtual memory, though virtual memory 370s did not 
ship until 1972 when a virtual-memory operating system was ready. By 1978, 
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the high-end 370 was several hundred times faster than the low-end 360s 
shipped ten years earlier. In 1984, the 24-bit addressing model built into the 
IBM 360 needed to be abandoned, and the 370-XA (eXtended Architecture) was 
introduced. While old 24-bit programs could be supported without change, 
several instructions could not function in the same manner when extended to a 
32-bit addressing model (31-bit addresses supported) because they would not 
produce 31-bit addresses. Converting the operating system, which was written 
mostly in assembly language, was no doubt the biggest task. 

Several studies of the IBM 360 and instruction measurement have been made. 
Shustek's thesis [1978] is the best known and most complete study of the 
360/370 architecture. He made several observations about instruction set 
complexity that were not fully appreciated until some years later. Another 
important study of the 360 is the Toronto study by Alexander and Wortman 
[1975] done on an IBM 360 using 19 XPL programs. 

In the mid-1970s, DEC realized that the PDP-11 was running out of address 
space. The 16-bit space had been extended in several creative ways. However, as 
Strecker and Bell [1976] observed, the small address space was a problem that 
could not be overcome, but only postponed. 

In 1978, DEC introduced the VAX. Strecker [1978] described the architecture 
and called the VAX "a Virtual Address eXtension of the PDP-11." One of 
DEC's primary goals was to keep the installed base of PDP-11 customers. Thus, 
the customers were to think of the VAX as a 32-bit successor to the PDP-11. A 
32-bit PDP-11 was possible-there were three designs-but Strecker reports 
that they were "overly compromised in terms of efficiency, functionality, 
programming ease." The chosen solution was to design a new architecture and 
include a PDP-11 compatibility mode that would run PDP-11 programs without 
change. This mode also allowed PDP-11 compilers to run and to continue to be 
used. The VAX-11/780 was made similar to the PDP-11 in many ways. These 
are among the most important: 

1. Data types and formats are mostly equivalent to those on the PDP-11. The 
F and D floating formats came from the PDP-11. G and H formats were 
added later. The use of the term "word" to describe a 16-bit quantity was 

'J carried from the PDP-11 to the VAX. 

2. The assembly language was made similar to the PDP-11 's. 

3. The same buses were supported (Unibus and Massbus). 

4. The operating system, VMS, was "an evolution" of the RSX-1 lM/IAS OS 
(as opposed to the DECsystem 10/20 OS, which was a more advanced sys­
tem). 

5. The file system was basically the same. 
·~ 

The VAX-11/780 was the first machine announced in the VAX series. It is 
one of the most successful and heavily studied machines ever built. The 
cornerstone of DEC's strategy was a single architecture, VAX, running a single 
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operating system, VMS. This strategy worked well for over ten years. The large 
number of papers reporting instruction mixes, implementation measurements, 
and analysis of the VAX make it an ideal case study. 

Wiecek [1982] reported on the use of various architectural features in running 
a workload consisting of six compilers. Erner did a set of measurements 
(reported by Clark and Levy [1982]) on the instruction set utilization of the 
v_ AX when running four very different programs and when running the 
operating system. A good detailed description of the architecture, including 
memory management and an examination of several of the VAX 
implementations, can be found in Levy and Eckhouse [1989]. 

The first microprocessors were produced late in the first half of the 1970s. 
The Intel 4004 and 8008 were extremely simple 4-bit and 8-bit accumulator­
style machines. Morse et al. [1980] describe the evolution of the 8086 from the 
8080 in the late 1970s in an attempt to provide a 16-bit machine with better 
throughput. At that time almost all programming for microprocessors was done 
in assembly language-both memory and compilers were in1short supply. Intel 
wanted to keep its base of 8080 users, so the 8086 was designed to be 
"compatible" with the 8080. The 8086 was never object-code compatible with 
the 8080, but the machines were close enough that translation of assembly 
language programs could be done automatically. 

In early 1980, IBM selected a version of the 8086 with an 8-bit external bus, 
called the 8088, for use in the IBM PC. (They chose the 8-bit version to reduce 
the cost of the machine.) This choice, together with the tremendous success of 
the IBM PC and its clones (made possible because IBM opened the architecture 
of the PC), has made the 8086 architecture ubiquitous. While the 68000 was 
chosen for the popular Macintosh, the Macintosh was never as pervasive as the 
PC (partly because Apple did not allow clones), and the 68000 did not acquire 
the same software leverage that the 8086 enjoys. The Motorola 68000 may have 
been more significant technically than the 8086, but the impact of the selection 
by IBM and IBM's open architecture strategy dominated the technical 
advantages of the 68000 in the market. As discussed in Section 4.4, the 80186, 
80286, 80386, and 80486 have extended the architecture and provided a series of 
performance enhancements. 

There are numerous descriptions of the 80x86 architecture that have been 
published-Wakerly's [1989] is both concise and easy to understand. Crawford 
and Gelsinger [1988] is a thorough description of the 80386. The work of 
Adams and Zimmerman [ 1989] represents the first detailed, published study of 
the dynamic use of the architecture that we are aware of; the data on the 8086 
used in this book come from their study. 

The simple load/store machines from which DLX is derived are commonly 
called RISC (reduced instruction set computer) architectures. The roots of RISC 
architectures go back to machines like the 6600, where Thornton, Cray, and 
others recognized the importance of instruction set simplicity in building a fast 
machine. Cray continued his tradition of keeping machines simple in the CRAY-
1. However, DLX and its close relatives are built primarily on the work of three 
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research projects: the Berkeley RISC processor, the IBM 801, and the Stanford 
MIPS processor. These architectures have attracted enormous industrial interest 
because of claims of a performance advantage of anywhere from two to five 
times over other machines·using the same technology. 

Begun in the late 1970s, the IBM project was the first to start but was the last 
to become public. The IBM machine was designed as an ECL minicomputer, 
while the university projects were both MOS-based microprocessors. John 
Cocke is considered to be the father of the 801 design. He received both the 
Eckert-Mauchly and Turing awards in recognition of his contribution. Radin 
[1982] describes the highlights of the 801 architecture. The 801 was an 
experimental project, but was never designed to be a product. In fact, to keep 
down cost and complexity, the machine was built with only 24-bit registers. 

In 1980, Patterson and his colleagues at Berkeley began the project that was 
to give this architectural approach its name (see Patterson and Ditzel [1980]). 
They built two machines called RISC-I and RISC-II. Because the IBM project 
was not widely known or discussed, the role played by the Berkeley group in 
promoting the RISC approach was critical to the acceptance of the technology. 
In addition to a simple load/store architecture, this machine introduced register 
windows-an idea that has been adopted by several commercial RISC machines 
(this concept is discussed further in Chapter 8). The Berkeley group went on to 
build RISC machines targeted toward Smalltalk, described by Ungar et al. 
[1984], and LISP, described by Taylor et al. [1987]. 

In 1981, Hennessy and his colleagues at Stanford published a description of 
the Stanford MIPS machine. Efficient pipelining and compiler-assisted 
scheduling of the pipeline were both key aspects of the original MIPS design. 
· These three early RISC machines had much in common. Both the university 

projects were interested in designing a simple machine that could be built in 
"VLSI within the university environment. All three machines-the 801, MIPS, 
and RISC-II-used a simple load/store architecture, fixed-format 32-bit 
instructions, and emphasized efficient pipelining. Patterson [1985] describes the 
three machines and the basic design principles that have come to characterize 
what a RISC machine is. Hennessy [1984] is another view of the same ideas, as 
well as other issues in VLSI processor design. 

In 1985, Hennessy published an explanation of the RISC performance 
advantage and traced its roots to a substantially lower CPI-under two for a 
RISC machine and over ten for a VAX-11/780 (though not with identical 
workloads). A paper by Erner and Clark [1984] characterizing VAX-11/780 
performance was instrumental in helping the RISC researchers understand the 
source of the performance advantage seen by their machines. 

Since the university projects finished up, in the 1983-84 timeframe, the 
technology has been widely embraced by industry. Many of the early computers 
(before 1986) laid claim to being RISC machines. However, these claims were 
often born more of marketing ambition than of engineering reality. 

In 1986, the computer industry began to announce processors based on the 
technology explored by the three RISC research projects. Moussoris et al. [1986] 
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describe the MIPS R2000 integer processor; while Kane [1987] is a complete 
description of the architecture. Hewlett-Packard converted their existing 
minicomputer line to RISC architectures; the HP Precision Architecture is 
described by Lee [1989]. IBM never directly turned the 801 into a product. 
Instead, the ideas were adopted for a new, low-end architecture that was 
incorporated in the IBM RT-PC and is described in a collection of papers 
[Waters 1986]. In 1990, IBM announced a new RISC architecture (the RS 
6000), which is the first super scalar RISC machine (see chapter 6). In 1987, Sun 
Microsystems began delivering machines based on the SP ARC architecture, a 
derivative of the Berkeley RISC-II machine; SPARC is described in Garner et 
al. [ 1988]. Starting in 1987, semiconductor manufacturers began to become 
suppliers of RISC microprocessors. With its announcement of the AMD 29000, 
AMD was the first major semiconductor manufacturer to deliver a RISC 
machine. In 1988, Motorola announced the availability of its RISC machine, the 1 

88000. 
Prior to the RISC architecture movement, the major trend had been highly 

microcoded architectures aimed at reducing the semantic gap. DEC, with the 
VAX, and Intel, with the iAPX 432, were among the leaders in this approach. In 
1989, DEC and Intel both announced RISC products-the DECstation 3100 
(based on the MIPS Computer Systems R2000) and the Intel i860, a new RISC 
microprocessor. With these announcements (and the IBM RS6000), RISC 
technology has achieved very broad acceptance. In 1990 it is hard to find a 
computer company without a RISC product. 
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EXERCISES 

In these exercises you will often need to know the frequency of individual instructions in 
a mix. Figures C.1 through C.4 supply the data corresponding to Figures 4.24, 4.28, 4.32, 
and 4.34. Additionally, some problems involve the execution-time distribution rather than 
the frequency distribution. The information on instruction-time distribution appears in 
Appendix D; problems that require data from Appendices C or D include the letter C or D 
within the brackets, e.g., <C,D>. 
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In doing these exercises you will need to work with measurements that may not total 
100%. In some cases you will need to normalize the data to the actual total. For example, 
if we were asked to find the frequency of MOV _ instructions in Spice running on the 
VAX, we would proceed as follows (using data from Figure C.1): 

Frequency of measured MOV _in table = 9% + 6% = 15% 

Fraction of all instructions executed included in Figure C.1 for Spice = 79% 

We now normalize the 15%. This is equivalent to assuming that the unmeasured 21 % of 
the instruction mix behaves the way as the measured portion. Since there are unmeasured 
MOV _ instructions this is the most logical approach. 

Frequency of MOV _ in Spice on VAX = ~~: = 19% 

If, however, we were asked to find the frequency of MOVL in Spice, we know that it is 
exactly 9%, since we have a complete measurement for this instruction type. 

4.1 [20/20] <4.2,4.6,C> You are being interviewed by Digital Equipment Corporation for 
a job as lead computer designer of future VAX computers. To see if you know what you 
are talking about, before they hire you they want to ask you a few questions. They have 
allowed you to bring your notes, including Section 4.6 and Appendix C. 

You remember an example in Chapter 4 where you were told that the average VAX 
instruction had 1.8 operands. You also recall that opcodes are almost always 1 byte long. 

a. [20] They ask you to derive the average size of a VAX instruction for the TeX 
benchmark. Use the addressing-mode frequency data in 4.22 and 4.23, the 
information on sizes of displacements in Figure 3.35 (page 133), the information on 
immediate sizes in Figure 3.15 (page 102), and the length of the VAX addressing 
modes shown in Figure 4.3. (This should be a more accurate estimate than the 
example that appears on page 170, but ignore addressing modes that account for less 
than 5% of the occurences.) · 

b. [20] They then ask you to evaluate the performance of their new machine with a 100-
MHz clock. They tell you that the average CPI for everything except instruction fetch 
and operand fetch is 3 clocks. They also tell you that 

• each data memory specifier and access takes an additional 2 clocks, and 

• every 4 bytes of instructions fetched by the instruction fetch unit take one clock. 

Can you find the effective native MIPS? 

4.2 [20/22/22] <4.2,4.3,4.5> Consider the following fragment of C code: 

for (i=l; i<=lOO; i++) 
{A[i] = B[i] + C;} 

Assume that A are B are arrays of 32-bit integers, and C and i are 32-bit integers. Assume 
that all data values are kept in memory (at addresses 0, 5000, 1500, and 2000 for A, B, C, 
and i, respectively) except when they are operated on. 

a. [20] Write the code for DLX; how many instructions are required dynamically? How 
many memory data references will be executed? What is the code size? 

INTEL Ex.1035.224



Instruction Set Examples and Measurements of Use 193 

b. [22] Write the code for the VAX; how many instructions are required dynamically? 
How many memory data references will be executed? What is the code size? 

c. [22] Write the code for the 360; how many instructions are required dynamically? 
How many memory data references will be executed? What is the code size? For 
simplicity, you may assume that register RI contains the address of the first 
instruction in the ioop. 

4.3 [20/22/22] <4.2,4.3,4.5> For this question use the code sequence of problem 4.2, but 
put the scalar data-the value of i and the address of the array variables (but not the 
actual array)-in registers and keep them there whenever possible. 

a. [20] Write the code for DLX; how many instructions are required dynamically? How 
many memory-data references will be executed? What is the code size? 

b. [22] Write the code for the VAX; how many instructions are required dynamically? 
How many memory data references will be executed? What is the code size? 

c. [22] Write the code for the 360; how many instructions are required dynamically? 
How many memory data references will be executed? What is the code size? 
Assume RI is set-up as in Exercise 4.2 part C. 

4.4 [15] <4.6> When designing memory systems it becomes useful to know the frequency 
of memory reads versus writes and also accesses for instructions versus data. Using the 
average instruction-mix information for DLX in Appendix C, find 

• the percentage of all memory accesses that are for data 

• the percentage of data accesses that are reads 

• the percentage of all memory accesses that are reads 

Ignore t]le size of a datum when counting accesses. 

4.5 [15] <4.3,4.6> Due to the lack of a PC-relative branch, a branch on a 360 often 
requires two instructions. This has been a major criticism of the architecture. Let's figure 
out what this omission costs, assuming that an extra instruction is always needed for a 
conditional branch on the 360, but that the extra instruction would not be necessary with 
PC-relative branches. Using the average data from Figure 4.28 (page I 75) for branches, 
determine how many more instructions the standard 360 executes than a 360 with PC­
relative branches. (Remember that the only branches are BC and BCR.) 

4.6 [I5] <4.2,4.6> We are interested in adding an instruction to the VAX architecture that 
compares an operand to zero and branches. Assume that 

• only instructions that set the condition code for a conditional branch could be 
eliminated, 

• 80% of the conditional branches require an instruction whose only purpose is to set 
the condition, and · 

• 90% of all branches that have an instruction that just sets the condition (i.e., the just­
mentioned 80%) are based on a compare against 0. 
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Using the average VAX data from Figure 4.24 (page 172) what percentage more 
instructions would a standard VAX execute compared to the VAX with the compare-and­
branch instruction added? 

4.7 [18] <4.5,4.6> Compute the effective CPI for DLX. Suppose we have made the 
following measurements of average CPI for instructions: 

All R-R instructions 1 clock cycle 

Loads/stores 1.4 clock cycles 

Conditional branches 

taken 2.0 clock cycles 

not taken 1.5 clock cycles 

Jumps 1.2 clock cycles 

Assume that 60% of the conditional branches are taken. Average the instruction 
frequencies of GCC and TeX to obtain the instruction mix. 

4.8 [15] <4.2,4.5> Rather than have immediates supported for many instruction types, 
some architectures, such as the 360, collect immediates in memory (in a literal pool) and 
access them from there. Suppose the VAX didn't have immediate-mode addressing, but 
instead put immediates in memory and accessed them using displacement-mode 
addressing. What would be the increase in the frequency that displacement mode was 
used? Use the average of the measurements in Figures 4.22 and 4.23 for this problem. 

4.9 [20/10] <4.5,4.6> Consider adding a new index addressing mode to DLX. The 
addressing mode adds two registers and an 11-bit signed offset to get the effective 
address. 

Our compiler will be changed so that code sequences of the form 

ADD Rl, Rl, R2 
LW Rd, 0 (Rl) (or store) 

will be replaced with a load (or store) using the new addressing mode. Use the overall 
average instruction frequencies in evaluating this addition. 

a. [20] Assume that the addressing mode can be used for 10% of the displaceme:r..t 
loads and stores (accounting for both the frequency of this type of address 
calculation and the shorter offset). What is the ratio of instruction count on the 
enhanced DLX compared to the original DLX? 

b. [10] If the new addressing mode lengthens the clock cycle by 5%, which machine 
will be faster and by how much? 

4.10 [12] <4.2,4.5,D> Assume the average number of instructions involved in a call and 
return on DLX is 8. The average frequency of a JAL instruction in the benchmarks is 1 %. 
If all instructions on DLX take the same number of cycles, how does the percentage of 
cycles in calls and returns on DLX compare to the percentage of cycles in CALLS and 
RET on the VAX? 

( 
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4.11 [22/22] <4.2,4.3,4.6,D> Some people believe that the most frequent instructions are 
also the simplest, while others have pointed out that the most time-consuming 
instructions are often not the most frequent. 

a. [22] Using the data in Figure D.l, find the CPI of the five most time-consuming 
instructions on the VAX that have an average execution frequency of at least 2%. 
Assume the overall VAX CPI is 10. 

b. [22] Find the CPI for the five most time-consuming instructions on the 360 that have 
at least a 3% average frequency, using the data in Figure D.2. Assume the overall 
360 CPI is 4. 

4.12 [20/20/10] <4.4, 4.6,D> You have been hired to try to convert the 8086 architecture 
to be more register-register oriented. To do this, you will_ need more registers, and hence 
more encoding space, since the encodings are already tight. Assume that you have 
determined that eliminating the PUSH and POP instructions can yield the encoding space 
needed. Suppose that increasing the number of registers reduces the frequency of each of 
the memory-referencing instructions (PUSH, POP, LES, and MOV) by 25%, but that each 
remaining PUSH or POP instruction must be replaced by a two-instruction sequence. Use 
the average data from Figures 4.30-4.32 (pages 177-178), the average CPI of 14.1, and 
Figure D.5 to answer the following questions about this new machine-the RR8086-
versus the 8086. 

a. [20] Which machine executes more instructions and by how much? 

b. [20] Using the information in Appendix D, determine which machine has a higher 
CPI and by how much? 

c. [10] Assuming the clock rates are identical, which machine is faster and by how 
much? 

4.13 [25/15] <4.2-4.5> Find a C compiler and compile the code shown in Exercise 4.2 
for a load/store machine or one of the machines covered in this chapter. Compile the code 
both optimized and unoptimized. 

a. [25] Find the instruction count, dynamic instruction bytes fetched, and data accesses 
done for both the optimized and unoptimized versions. 

b. [15] Try to improve the code by hand, and compute the same measures as in Part a 
for your hand-optimized version. 

4.14 [30] <4.6> If you have access to a VAX, compile the code for Spice and try to 
determine why it makes much smaller use of immediates than programs like GCC and 
TeX (see Figure 4.22 on page 169). 

4.15 [30] <4.6> If you have access to an 8086-based machine, compile some programs 
and look at the frequency of MOV instructions. How does it correspond to the frequency in 
Figure 4.32 (page 178). By examining the code, can you find some reasons why the 
frequency of MOVs is so high? 

4.16 [30/30] <4.6, 4.7> Small synthetic benchmarks can be very misleading when used 
for measuring instruction mixes. This is particularly true when these benchmarks are 
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optimized. In these exercises we want to explore these differences. These programming 
exercises can be done with a VAX, any load/store machine, or using the DLX compiler 
and simulator. 

a. [30] Compile Whetstone with optimization for a VAX, or a load/store machine 
similar to DLX (e.g., a DECstation or a SPARCstation), or the DLX simulator. 
Compute the instruction mix for the top twenty instructions. How do the optimized 
and unoptimized mixes compare? How does the optimized mix compare to the mix 
for Spice on the same or a similar machine? 

b. [30] Compile Dhrystone with optimization for a VAX, or a load/store machine 
similar to DLX (e.g., a DECstation or a SPARCstation), or the DLX simulator. 
Compute the instruction mix for the top twenty instructions. How do the optimized 
and unoptimized mixes compare? How does the optimized mix compare to the mix 
for TeX on the same or a similar machine? 

4.17 [30] <4.6> Many computer manufacturers now include tools or simulators that allow 
you to measure the instruction set usage of a user program. Among the methods in use are 
machine simulation, hardware-supported trapping, and a compiler technique that 
instruments the object-code module by inserting counters. Find a processor available to 
you that includes such a tool. Use it to measure the instruction set mix for one of TeX, 
GCC, or Spice. Compare the results to those shown in this chapter. 

4.18 [30] <4.5,4.6> DLX has only three operand formats for its register-register 
operations. Many operations might use the same destination register as one of the 
sources. We could introduce a new instruction format into DLX called R2 that has only 
two operands and is a total of 24 bits in length. By using this instruction type whenever 
an operation had only two different register operands, we could reduce the instruction 
bandwidth required for a program. Modify the DLX simulator to count the frequency of 
register-register operations with only two different register operands. Using the 
benchmarks that come with the simulator, determine how much more instruction 
bandwidth DLX requires than DLX with the R2 format. 

4.19 [35] <D> Devise a method to measure the CPI of a machine-preferably one of the 
machines discussed in this chapter or a relative of DLX. Using the instruction-mix data, 
choose the top ten instructions and measure their CPI. How does the frequency ranking 
compare to the time taken? How do your measurements compare to the numbers shown 
in Appendix D? Try to explain any differences in both time-versus-frequency ranking and 
any differences between your measures and those in Appendix D. 

4.20 [35] <4.5,4.6> What are the benefits of more powerful addressing modes? Assume 
that three VAX addressing modes-autoillcrement, displacement deferred, and scaled­
were added to DLX. Change the C compiler to incorporate the use of these modes. 
Measure the change in instruction count with these new modes for several benchmark 
programs. Compare the instruction mixes with those for standard DLX. How do the usage 
patterns compare to those for the VAX shown in Figure 4.23 (page 170)? 
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4.21 [35/35/30] <4.5,4.6> How much does the flexibility of memory-memory 
instructions reduce instruction count compared to a load/store machine? This program­
ming assignment will help you find out. 

a. [35] Assume DLX has an instruction format that allows one of the source operands 
to be in memory. Modify the C code generator for DLX so that it uses this new 
instruction type. Use several C programs to measure the effectiveness of your 
change. How many more instructions does DLX require versus this new machine 
that appears to be closer to the 360? How often is the r~gister-memory format used? 
How do the instruction mixes differ from those in Section 4.6? 

b. [35] Assume that DLX has instruction formats that allow any operand (or all three) 
to be memory references. Modify the C code generator for DLX so that it uses these 
new instruction formats. Use several programs to measure the usage of these 
instructions. How many more instructions does DLX require versus this new 
machine that appears to be closer to the VAX? How do the instruction mixes differ 
from those in Section 4.6? How many memory operands does the average 
instruction have? 

c. [30] Design an instruction format for the machines described in Parts a and b; 
compare the dynamic instruction bandwidth required for these two machines versus 
DLX. 

4.22 [ 40] <4.6> Some manufacturers have not yet seen the value of measuring instruction 
set mixes. Maybe you can help them. Pick a machine for which such a tool is not widely 
available. Construct one for that machine. If the machine has a single-step mode-as in 
the VAX or 8086-you can use it to create your tool. Otherwise, an object code 
translation, as used in the MIPS compiler system [Cho)V 1986] might be more 
appropriate. If you measure the activity of a machine using the benchmarks in this text 
(GCC, Spice, and TeX), and are willing to share the results, please contact the publisher .. 

f' 4.23 [25] <E> How much do the instruction set variations among the RISC machines 
discussed in Appendix E affect performance. Choose at least three small programs (e.g., a 
sort), and code these programs in DLX and two other assembly languages. What is the 
resulting difference in instruction count? 

4.24 [ 40] <E> Choose one of the machines discussed in Appendix E. Modify the DLX 
code generator and DLX simulator to generate code for and simulate the machine you 
chose. Using as many benchmarks as practical, measure the instruction count differences 
seen between DLX and the machine you chose. 
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In analyzing the functions of the contemplated device, certain 
classificatory distinctions suggest themselves immediately ... 
First: Since the device is primarily a computer it will have to 
perf9rm the elementary operations of arithmetic most 
frequently ... a central arithmetic part of the device will 
probably have to exist ... Second: The logical control of the 
device, that is the proper sequencing of its operations, can be 
most efficiently carried out by a central control organ. 

John von Neumann, First Draft of a Report on the EDVAC (1945) 
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5.1 

Basic Processor 
Implementation 
Techniques 

Introduction 

Architecture shapes a building, but carpentry determines the quality of its 
construction. The carpentry of computing is implementation, which sets two of 

.. three performance components: CPI (clock cycles per instruction) and clock 
cycle time. 

In the four decades of constructing computers, much has been learned about 
s- implementation-certainly more than can fit in one chapter. Our goal in this 

chapter will be to lay the foundations of processor implementation, with 
emphasis on control and interrupts. (Floating point is ignored in this chapter; 
readers are referred to Appendix A.) While some material is simple, Chapters 6 

.. and 7 build on this foundation and show the road to faster computers. (If this is a 
review, go quickly over Sections 5.1to5.3 and then take a look at the examples 
in Section 5.7, which compare performance of hardwired versus micropro­
grammed control for DLX.) 

The computer was divided into basic components by von Neumann, and these 
components still remain today: The CPU, or the processor, is the core of the 
computer and contains everything except the memory, input, and output. The 
processor is further divided into computation and control. 
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ALU output options: 
81 +82 81-82 
81 & 82 81I82 
81 A 82 81 « 82 
81 » 82 81 »a 82 

81 82 
0 1 

--------------, 
I 
I 
I 
t 

--,------r------, 
I I 
T I 

Register 
file 

Temp 

--------, 
PC 

IAR 

MAR 

I 
t 

IAR - interrupt address register 
MAR - memory address register 
MDR - memory data register 

IR- instruction register 
PC - program counter 
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5.2 I Processor Datapath 

Today the "arithmetic" organ of von Neumann is called the datapath. It consists 
of execution units, such as arithmetic logic units (ALUs) or shifters, the 
registers, and the communication paths between them, as Figure 5.1 illustrates. 
From the programmer's perspective, the datapath contains most of the state of 
the processor-the information that must be saved for a program to be 
suspended and then restored for execution to continue. In addition to the user­
visible general-purpose registers, the state includes the program counter (PC), 
the interrupt address register (IAR), and the program status register; the latter 
contains all the status flags for a machine, such as interrupt enable, condition 
codes, and so forth. 

Because an implementation is created for a specific hardware technology, it is 
the implementation that sets the clock cycle time. The clock cycle time in tum is 
determined py the slowest circuits that operate during a clock cycle period­
within the processor, the datapath frequently has that honor. The datapath will 
also dominate the cost of the processor, typically requiring half the transistors 
and half the processor area. While it does all the computation, affects 
performance, and dominates cost, the datapath is the simplest portion of the 
processor to desigri. 

Some have held the large quantity of papers on ALU designs and fast-carry 
schemes responsible for the loss of our rain forests, with papers on circuit 
designs for registers with multiple read and write ports only slightly less 
culpable. While this is surely an exaggeration, there are numerous options. (See 
Appendix A, Section A.8, for a few carry schemes.) Given the resources 
available and the desired goals of cost and performance, it is the designer's job 
to select the best style of ALU, the proper number of ports in the register file, 
and then march onward. 

FIGURE 5.1 (See adjoining page.) A typical processor, divided into control and 
datapath, plus memory. The paths for control are in dashed lines and the paths for data 
transfer are in solid lines. The processor uses three buses: S1, S2, and Dest. The 
fundamental operation of the datapath is reading operands from the register file, operating 
on them in the ALU, and then storing the result back. Since the register file does not need 
to be read and written every clock cycle, most designers follow the advice of making the 
frequent case fast by breaking this sequence into multiple clock cycles and making the 
clock cycle shorter. Thus, in this datapath there are latches on the two outputs of the 
register file (called A and B) and a latch on the input (C). The register file contains the 32 
general-purpose registers of DLX. (Register O of the register file always has the value O, 
matching the definition of register 0 in the DLX instruction set.) The program counter (PC) 
and interrupt address register (IAR) are also part of the state of the machine. There are 
also registers, not part of the state, used in the execution of instructions: memory address 
register (MAR), memory data register (MDR), instruction register (IR), and temporary 
register (Temp). The Temp register is a scratch register that is available for temporary 
storage for control to perform some DLX instructions. Note that the only path from the S1 
and S2 buses to the Dest bus is through the ALU. 
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5.3 I Basic Steps of Execution 

Before discussing control, let's first review the steps of instruction execution. 
For the DLX instruction set (excluding floating point), all instructions can be 
broken into five basic steps: fetch, decode, execute, memory-access, and write­
result. Each step may take one or several clock cycles in the processor shown in 
Figure 5.1 (page 200). Here are the five steps (see the page facing the inside 
back cover for a review of the register transfer language notation): 

1. Instruction fetch step: / 

MAR f- PC; IR f- M [MAR] 

Operation: Send out the PC and fetch the instruction from memory into the 
instruction register. PC is transferred to MAR because it has a connection to 
the memory address in Figure 5.1, but PC doesn't. 

2. Instruction decode/register fetch step: 

A f- Rsl; B f- Rs2; PC f- PC + 4 

Operation: Decode the instruction and access the register fiie .to read the 
registers. Also, increment the PC· to point to the next instruction. 

Decoding can be done in parallel with reading registers, which means that 
two registers' values are sent to the A and B latches before the instruction is 
decoded. How this is possible can be seen by glancing at the DLX instruction 
format (Figure 4.19 on page 166), which shows that the source registers are 
always at the same location in an instruction. Thus, registers can be read b.ecause 
the register specifiers are unambiguous. (This technique is known as fixed-field 
decoding.) Since the immediate portion of an instruction is also identical in 
every DLX format, the sign-extended immediate is also calculated during this 
step in case it is needed in the next step. 

3. Execution/effective address step: 

The ALU is operating on the operands prepared in the prior step, performing 
one of three functions depending on the DLX instruction type. 

Memory reference: 

MAR f- A + (IR16) 16##IR16 .. 31 ; MDR f- Rd 

Operation: The ALU is adding the operands to form the effective address, 
and the MDR is loaded for a store. 

INTEL Ex.1035.234



Basic Processor Implementation Techniques 203 

ALU instruction: 

ALUoutput f- A op (B or (IR16 ) 16##IR16 .. 31 ) 

Operation: The ALU is performing the operation specified by the opcode on 
the value in A (Rsl) and on the value in B or the sign-extended immediate. 

Branch/Jump: 

ALUoutputf- PC+ (IR16) 16##IR16 .. 31 ; condf- (A op 0) 

Operation: The ALU is adding the PC to the sign-extended immediate value 
( 16-bit for branch and 26-bit for jump) to compute the address of the branch 
target. For conditional branches, a register, which has been read in the prior 
step, is checked to decide if this address should be inserted into the PC. The 
comparison operation op is the relational operator determined by the opcode; 
for example, op is"==" for the instruction BEQZ. 

The load/store architecture of DLX means that effective address and 
execution steps can be combined into a single step, since no instruction needs to 
both calculate an address and perform an operation on the data. Other integer 
instructions not included above are JAL and TRAP. These are similar to jumps, 
except JAL stores the return address in R31 and TRAP stores it in IAR. 

4. Memory access/branch completion step: The only DLX instructions active in 
this step are loads, stores, branches, and jumps. 

Memory reference: · 

MDR f- M [MAR] or M [MAR] f- MDR 

Operation: Access memory if needed. If instruction is a load, data returns 
from memory; if it is a store, then the data writes into memory. In either case 
the address used is the one computed during the prior step. 

Branch: 

if (cond) PC ~ ALUoutput (branch) 

Operation: If the instruction branches, the PC is replaced with the branch 
destination address. For jumps the condition is always true. 

5. Write-back step: 

Rd f- ALUoutput or MDR 

Operation: Write the result into the register file, whether coming from the 
memory system or from the ALU. 
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5.3 Basic Steps of Execution 

Now that we have had an overview of the work that must be performed to 
execute an instruction, we are ready to look at the two main techniques for 
implementing control. 

Hardwired Control 

If the datapath design is simple, then some part of processor design must be 
difficult, and that part is control. Specifying control is on the critical path· of any 
computer project; and it is where most errors are found when a new computer is 
debugged. Control can be simplified-the easiest way is to simplify the 
instruction set-but that is the subject of Chapters 3 and 4 .. 

Given an instruction set description, such as the. description of DLX in 
Chapter 4, and a datapath design, such as Figure 5.1 (page 200), the next step is 
defining the control unit. The control unit tells the datapath what to do every 
clock cycle during the execution of instructions. This is typically specified~py a 
finite-state diagram. Every state corresponds to one clock cycle, and the 
operations to be performed during the clock cycle are written within the state. 
Each instruction takes several clock cycles to complete; Chapter 6 shows how to _ 
overlap execution to reduce the clock cycles per instruction to as low as one. 

Figure 5.2 shows a portion of a finite-state diagram for the first two steps of 
instruction execution in DLX. The first step is spread over all three states: The· 
memory-address register is loaded from PC during the first state, the instruction 
register is loaded from memory during the second state, and the PC is 
incremented in the third state. This third state also performs step 2, loading the 
two register operands, Rsl and Rs2, into the A and B registers for use in the later 
states. In Section 5.7 the full finite-state diagram for DLX is shown. 

Turning a state diagram into hardware is the next step. The alternatives for 
doing this depend on the implementation technology. One way to bound the 
complexity of control is by the product 

States * Control inputs * Control outputs 

where 

States = the number of states in the finite-state machine controller; 

Control inputs = the number of signals examined by the control unit; 

Control outputs = the number of control outputs generated for the hardware, 
including bits to specify the next state. 

/ 
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Memory access not complete 

FIGURE 5.2 The top level of the DLX finite-state diagram. The first two steps of 
instruction execution, instruction fetch and instruction decode/register fetch, are shown. The 
second state repeats until the instruction is fetched from memory. The last three steps of 
instruction execution-execution/effective address, memory access, and write back-are 
found in Section 5.7. 

Figure 5.3 shows an organization for control of DLX. Let's say the DLX 
finite-state diagram contains 50 states, requiring 6 bits to represent the state. 
Thus, the control inputs must include these 6 bits, some number of bits (say 3) to 
select conditions from the datapath and memo!)'. interface unit, plus instruction 
bits. Register specifiers and immediates are sent directly to the hardware, so 
there is no need to send all 32 bits of DLX instructions as control inputs. The 
DLX opcode is 6 bits, and only 6 bits of the extended opcode (the "func" field) 
are used, making a total of 12 instruction bits for control inputs. Given those 
inputs, control can be specified as a big table. Each row of the table contains the 
values of the control lines to perform the operations required by that state and 
supplies the next state number. Let's assume there are 40 control lines. 

Reducing Hardware Costs of Hardwired Control 

The straightforward implementation of a table is with a read only memory 
(ROM). In this example, 221 words, each 40 bits wide (10 MB of ROM!), would 
be required. It will be a long time before we can afford this much hardware for 
control. Fortunately, little of this table has unique information, so its size can be 
reduced by keeping only the rows with unique information-at the cost of more 
complicated address decoding. Such a hardware construct is called a 
programmed logic array (PLA). This essentially reduces the hardware from 221 

words to 50 words while increasing address decoding logic. Computer-aided 
design programs can reduce the hardware requirements even further by 
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40 
bits 

wide 

2 (12+3+5) = 2 21 entries 

c=: 
o­
n­
t--r_ 

\'"f----J~o -
1--1--i_ 
n­
e­
s--

Datapath 

FIGURE 5.3 Control specified as a table for a simple instruction set. The control 
inputs consist of 6 input lines for the 50 states (log2 50=5.6), 3 inputs from the datapath, 
and 12 instruction bits (the 6-bit opcode plus 6 bits of the extended opcode). The number of 
control lines is assumed to be 40. 

minimizing the number of "minterms," which is essentially the number of 
unique rows. In real machines, even a single PLA is sometimes prohibitive 
because its size grows as the product of the unique rows times the sum of the 
inputs and outputs. In such a case, a large table is factored into several smaller 
PLAs, whose outputs are multiplexed to choose the correct control. 

Oddly enough, the numbering of the states in the finite-state diagram can 
make a difference in the size of the PLA. The idea here is to try to assign similar 
state numbers to states that perform similar operations. Differentiating the bit 
patterns that represent the state number by only one bit-say 010010 and 
010011-make the inputs close for the same output. There are also computer­
aided design programs to help with this state-assignment problem. 

Since the instruction bits are also inputs to the control PLA, they can affect 
the complexity of the PLA just as numbering of the states does. Thus, care 
should be taken when selecting opcodes since it may affect the cost of control. 

Readers interested in taking this design further are referred to the many 
excellent texts on logic design. 
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Performance of Hardwired Control 

When designing the detailed control for a machine, we want to minimize the 
average CPI, the clock cycle, the amount of hardware to specify control, and the 
time to develop a correct controller. Minimizing CPI means reducing the 
average number of states along the path of execution of an instruction, since 

,, each clock cycle corresponds to a state. This is typically done by making 
changes to the datapath to combine or eliminate states. 

Let's change the hardware so that the PC can be used directly to address 
memory without going through MAR first. How should the state diagram be 
changed to take advantage of this improvement, and what would be the change 
in performance? 

From Figure 5.2 (page 205) we see that the first state copies PC into MAR. This 
proposed hardware change makes that state unnecessary, and Figure 5.4 shows 
the appropriately modified state diagram. This change saves one clock cycle 
from every instruction. Suppose the average number of CPI was originally 7. 
Provided there was no impact on clock cycle time, this change would make the 
machine 17 % faster. 

Memory access not complete 

FIGURE 5.4 Figure 5.2 modified to remove the loading of MAR from PC in the first state 
and to use the PC value directly to address memory. 
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5.5 I Microprogrammed Control 

After constructing the first full-scale, operational, stored-program computer in 
1949, Maurice Wilkes reflected on the process. 1/0 was easy-teletypewriters 
could just be purchased directly from the telegraph company. Memory and the 
datapath were highly repetitive, and that made things simpler. But control was 
neither easy nor repetitive, so Wilkes set out to discover a better way to design 
control. His solution was to turn the control unit into a miniature computer by 
having a table to specify control of the datapath and a second table to determine 
control flow at the micro level. Wilkes called his invention microprogramming 
and attached the prefix "micro" to traditional terms used at the control level: 
microinstruction, microcode, microprogram, and so on. (To avoid confusion the 
prefix "macro" is sometimes used to describe the higher level, e.g., 
macroinstruction and macroprogram.) Microinstructions specify all the control 
signals for the datapath, plus the ability to conditionally decide which micro-

-c-
o-

Microprogram n -
memory t --r -

I - Datapath 

-
I --i -n -e --s -

FIGURE 5.5 A basic microcoded engine. Unlike Figure 5.3 (page 206), there is an 
incrementer and special logic to select the next microinstruction. There are two approaches 
to specifying the next microinstruction: use a microinstruction program counter, as shown 
above, or include a next microinstruction address in every microinstruction. Microprogram 
memory is sometimes called ROM because most early machines use ROM for control 
stores. 
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instruction should be executed next. As the name "microprogramming" suggests, 
once the datapath and memory for the microinstructions are designed, control 
becomes essentially a programming task; that is, the task of writing an inter­
preter for the instruction set. The invention of microprogramming enabled the 
instruction set to be changed by altering the contents of control store without 
touching the hardware. As we will see in Section 5.10, this ability played an 
important role in the IBM 360 family-one that was a surprise to its designers. 

,Figure 5 .5 shows an organization for a simple microprogrammed control. The 
structure of a microprogram is very similar to the state diagram, with a 
microinstruction for each state in the diagram. 

ABCs of Microprogramming 

While it doesn't matter to the hardware how the control lines are grouped within 
a microinstruction, control lines performing related functions are traditionally 
placed next to each other for ease of understanding. Groups of related control 
lines are calledfields and are given names in a microinstruction format. Figure 
5.6 shows a microinstruction format with eight fields, each named to reflect its 
function. Microprogramming can be thought of as supplying the proper bit 
pattern in each field, much like assembly language programming of 
"macroinstructions." 

FIGURE 5.6 Example microinstruction with eight fields (used for DLX in 
Section 5. 7). 

A program counter can be used to supply the next microinstruction, as shown 
in Figure 5.5, but some computers dedicate a field in every microinstruction to 
the address of the next instruction. Some even provide multiple next-address 
fields to handle conditional branches. 

While conditional branches could be used to decode an instruction by testing 
the opcode one bit at a time, this tedious approach is too slow in practice. The 
simplest fast instruction decoding scheme is to jam the macroinstruction opcode 
into the middle of the address of the next microinstruction, similar to an indexed 
jump instruction in assembly language. A more refined approach is to use the 
opcode to index a table containing microinstruction addresses that supply the 
next address, similar to a jump table in assembly code. 
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The microprogram memory, or control store, is the most visible and easily 
measured hardware in microprogrammed control; hence, it is the focus of 
techniques to reduce hardware costs. Techniques to trim control-store size 
include reducing the number of microinstructions, reducing the width of each 
microinstruction, or both. Just as cost is traditionally measured by control-store 
size, performance is traditionally measured by .CPI. The wise microprogrammer 
knows the frequency of macroinstructions by using statistics like those in 
Chapter 4, and hence knows where and how time is best spent-instructions 
demanding the largest part of execution time are optimized for speed, and the 
others are optimized for space. 

In four decades of microprogramming history there have been a wide variety 
of terms and techniques for microprogramming. In fact, a workshop has met 
annually on this subject since 1968. Before looking at a few examples, let us 
remember that control techniques-whether hardwired or microcoded-are 
judged by their impact on hardware cost, clock cycle time, CPI, and 

') 
development time. In the next two sections we will examine how hardware costs 
can be lowered by reducing control-store size. First we look at two techniques to . 
reduce the width of microinstructions, then one technique to reduce the number 
of microinstructions. 

Reducing Hardware Costs by Encoding Control Lines 

The ideal approach to reducing control store is to first write the complete 
microprogram in a symbolic notation and then measure how control lines are set 
in each microinstruction. By taking measurements we are able to recognize 
control bits that can be encoded into a smaller field. If no more than one of, say, 
8 lines is set simultaneously in the same microinstruction, then they can be 
encoded into a 3-bit field (log2 8 = 3). This change saves 5 bits in every 
microinstruction and does not hurt CPI, though it does mean the extra hardware 
cost of a 3-to-8 decoder needed to generate the original 8 control lines. 
Nevertheless, shaving 5 bits off control-store width will usually overcome the 
cost of the decoder. 

This technique of reducing field width is called encoding. To further save 
space, control lines may be encoded together if they are only occasionally set in 
the same microinstruction; two microinstructions instead of one are then 
required when both must be set. As long as this doesn't happen in critical 
routines, the narrower microinstruction may justify a few extra words of control 
store. 

There are dangers to encoding. For example, if an encoded control line is on 
the critical timing path, or if the hardware it controls is on the critical path, then 
the clock cycle time will suffer. A more subtle danger is that a later revision of 
the microcode might encounter situations where control lines would be set in the 
same microinstruction, either hurting performance or requiring changes to the 
hardware that could lengthen the development cycle. 
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Assume we want to encode the three fields that specify a register on a bus­
Destination, Sourcel, and Source2-in the DLX microinstruction format in 
Figure 5.6. How many bits of control store can be saved versus unencoded 
fields? 

Figure 5.7 lists the registers for each source and destination of the datapath in· 
Figure 5.1(page200). Note that the destination field must be able to specify that 
nothing is modified. Without encoding, the 3 fields require 7 + 9 + 9, or 25 bits. 
Since log2 7 ,,,. 2.8 and log2 9 ,,,. 3.2, the encoded fields require 3 + 4 + 4, or 11 
bits. Thus, encoding these 3 fields saves 14 bits per microinstruction. 

Number Destination Sourcel/Source2 

0 (None) A!B 

1 c Temp 

2 Temp PC 

3 PC IAR 

4 IAR MAR 

5 MAR MDR 

6 MDR IR (16-bit imm) 

7 --- IR (26-bit imm) 

8 --- Constant 

FIGURE 5.7 The sources and destinations specified in the three fields of Figure 5.6 
from the datapath description in Figure 5.1. A and B are not separate entries because A 
can only transfer on the S1 bus and B can only transfer on the S2 bus (see Figure 5.1 on 
pages 200-201 ). The last entry in the third column, Constant, is used by control to specify a 
constant needed in an ALU operation (e.g., 4). See Section 5.7 for its use. 

Reducing Hardware Costs with Multiple 
Microinstruction Formats 

Microinstructions can be made narrower still if they are broken into different 
formats and given an opcode or format field to distinguish them. The format 
field gives all the unspecified control lines their default values, so as not to 
change anything else in the machine, and is similar to the opcode of a 
macroinstruction. 

Reducing hardware costs by using format fields has its own performance 
cost-namely, executing more microinstructions. Generally, a microprogram 
using a single microinstruction format can specify any combination of 
operations in a datapath and will take fewer clock cycles than a microprogram 
made up of restricted microinstructions. Narrower machines are cheaper because 
memory chips are also narrow and tall: It takes many fewer chips for a 16K 
word by 24-bit memory than for a 4K word by 96-bit memory. (When control 
memory is on the processor chip, this hardware advantage_ is no longer true.) 
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This narrow but tall approach is often called vertical microcode, while the 
wide but short approach is called horizontal microcode. It should be noted that 
the terms "vertical miocrocode" and "horizontal microcode" have no universal 
definition-the designers of the 8086 considered its 21-bit microinstruction to be 
more horizontal than other single-chip computers of the time. The related terms 
maximally encoded and minimally encoded lead to less confusion. 

Figure 5.8 plots control-store size against microinstruction width for three ,,.. 
families of computers. Notice that for each family the total size is similar, even 
though the width varies by a factor of 6. As a rule, minimally encoded control 
stores use more bits, and the narrow but tall aspect of memory chips means that 
maximally encoded control stores naturally have more entries. Sometimes 
designers of minimally encoded machines don't have the option of shorter RAM 
chips, causing wide microinstruction machines to end up with many words of 
control store. Since the hardware costs are not lower if microcode doesn't use up 
all the space in control store, machines in this class can end up with much larger ) 
control stores than expected from other implementations. The ECL RAMs 
available to build the VAX 8800, for example, led to 2000 K bits of control 
store. 

750 

500 

400 

Control store 
size (Kbits) 300 

200 

100 

0 20 40 60 80 100 120 

Microinstruction width (bits) 

FIGURE 5.8 Size of control store versus width of microinstructions for 11 computer 
models. Each point is identified by the length and width of control store (not including 
parity). Models selected from each family are ones that shipped about tlie same time: IBM 
360 models 30, 40, 50, and 65 all shipped in 1965; IBM 370 models 145, 155, and 165 
shipped in 1971, with the 135 following in the next year; and the VAX model 780 was 
shipped in 1978, followed by the 750 in 1980 and the 730 in 1982. The development of the 
VAX designs all overlapped one another inside DEC. 
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The other approach to reducing control store is to reduce the number of 
microinstructions rather than their width. Microsubroutines provide one 
approach, as well as routines with common "tail" sequences sharing code by 
jumps. 

More sharing can be done with hardwired control assistance. For example, 
many microarchitectures allow bits of the instruction register to specify the 
correct register. Another common assist is to use portions of the instruction 
register to specify the ALU operation. Each of these assists is undei: 
microprogrammed control and is invoked with a special value in the appropriate 
field. The 8086 uses both techniques, giving one 4-line routine responsibility for 
32 opcodes. The drawback of adding hardwired control is it may stretch the 
development cycle because it no longer involves programming, but requires 
hardware layout for designing and debugging. 

This section and the previous two give techniques for reducing cost. The 
following sections present three techniques for improving performance. 

Reducing CPI with Special Case Microcode 

As we have noted, the wise microprogrammer knows when to save space and 
when to spend it. An instance of this is dedicating extra microcode for frequent 
instructions, thereby reducing CPI. For example, the VAX 8800 uses its large 
control store for many versions of the CALLS instruction, optimized for register 
saving depending upon the value in the register-save mask. Candidates for 
special case microcode can be uncovered by instruction mix measurements, such 
as those found in Chapter 4 or in Appendix B, or by counting the frequency of 
use of each microinstruction in an existing implementation (see Erner and Clark 
[1984]). 

Reducing CPI by Adding Hardwired Control 

Adding hardwired control can reduce costs as well as improve performance. For 
example, VAX operands can be in memory or registers, but later machines 
reduce CPI by having special code for register-register or register-memory 
moves and adds: ADDL2 Rn, 10 (Rm) takes five or more cycles on the 780, but 
as few as one on the 8600. Another example is in the memory interface, where 
the straightforward solution is for microcode to continuously test and branch 
until memory is ready. Because of the delay between the time a condition 
becomes true and the time the next microinstruction is read, this approach can 
add one extra clock to each memory access. The importance of the memory 
interface is underlined by the 780 and 8800 statistics-20% of the 780 clock 
cycles and 23% of the 8800 are waiting for memory to be ready, these are called 
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stalls. A stall is where an instruction must pause one or more clock cycles 
waiting for some resource to be available. In this chapter stalls occur only when 
waiting for memory; in the next chapter we '11 see other reasons for stalls. 

Many machines approach this problem by having the hardware stall a 
microinstruction that tries to access the memory-data register before the memory 
operation is completed: (This can be accomplished by freezing the 
microinstruction address so that the same microinstruction is executed until the 
condition is met.) The instant the memory reference is ready, the 
microinstruction that needs the data is allowed to complete, avoiding the extra 
clock delay to access control memory. 

Reducing CPI by Parallelism 

Sometimes CPI can be reduced with more operations per microinstruction. This 
technique, which usually requires a wider microinstruction, increases parallelism 
with more datapath operations. It is another characteristic of machines labeled 
horizontal. Examples of this performance gain can be seen in the fact that the 
fastest models of each family in Figure 5.8 also have the widest microin­
structions. Making the microinstruction wider does not guarantee increased 
performance, however. An example where the potential gain was not realized is 
found in a microprocessor very similar to the 8086, except that another bus was 
added to the datapath, requiring six more bits in its microinstruction. This could 
have reduced the execution phase from three clock cycles to two for many 
popular 8086 instructions. Unfortunately, these popular macroinstructions were 
grouped with macroinstructions that couldn't take advantage of this 
optimization, so they all had to run at the slower rate. 

Interrupts and Other Entanglements 

Control is the hard part of processor design, and the hard part of control is 
interrupts-events other than branches that change the normal flow of 
instruction execution. Detecting interrupt conditions within an instruction can 
often be on the critical timing path of a machine, possibly affecting the clock 
cycle time, and thus performance. Without proper attention to interrupts during 
design, adding interrupts to a complicated implementation can even foul up the 
works so as to make the design impracticable. 

Invented to detect arithmetic errors and signal real-time events, interrupts 
have been handed a flock of difficult duties. Here are 11 examples: 

I/0 device request 

Invoking an operating system service from a user program 

Tracing instruction execution 
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I/O device request 

Invoking the operat-
ing system service 
from a user 
proJl;ram 

Tracing instruction 
execution 
Breakpoint 

Arithmetic overflow 
or underflow 

Page fault (not in 
main memory) 

Misaligned memory 
accesses 

Memory protection 
violations 

Using undefined 
instructions 

Hardware 
malfunctions 

Power failure 
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Breakpoint (programmer-requested interrupt) 

Arithmetic overflow or underflow 

Page fault (not in main memory) 

Misaligned memory accesses (if alignment is required) 

Memory-protection violation 

Using an undefined instruction 

Hardware malfunctions 

Power failure 

IBM360 VAX Motorola 680x0 

Input/output Device interrupt Exception (Level 
interruption 0 ... 7 autovector) 

Supervisor call Exception (change Exception 
interruption mode supervisor trap) (unimplemented 

instruction)--on 
- Macintosh 

NA Exception (trace Exception (trace) 
fault) 

NA Exception Exception (illegal 
(breakpoint fault) instruction or 

breakpoint) 

Program interruption Exception (integer Exception 
(overflow or overflow trap or (floating-point 
underflow exception) floating underflow coprocessor errors) 

fault) 

NA (only in 370) Exception Exception (memory-
(translation not valid management unit 
fault) errors) 

Program interruption NA Exception 
(specification (address error) 
exception) 

Program interruption Exception (access Exception 
(protection control violation (bus error) 
exception) fault) 

Program interruption Exception (opcode Exception (illegal 
(operation exception) privileged/ instruction or break-

reserved fault) point/unimplemented 
instruction) 

Machine-check Exception (machine- Exception 
interruption check abort) (bus error) 

Machine-check Urgent interrupt NA 
interruption 

215 

Intel 80x86 

Vectored interrupt 

Interrupt 
(INT instruction) 

Interrupt (single-step 
trap) 

Interrupt (breakpoint 
trap) 

Interrupt (overflow 
trap or math unit 
exception) 

Interrupt 
(page.fault)-

NA 

Interrupt (protection 
exception) 

Interrupt (invalid 
opcode) 

NA 

Nonmaskable 
interrupt 

FIGURE 5.9 Names of 11 interrupt classes on four computers. Every event on the IBM 360 and 80x86 is called an 
interrupt, while every event on the 680x0 is called an exception. VAX divides events into interrupts or exceptions. 
Adjectives device, software, and urgent are used with VAX interrupts, while VAX exceptions are subdivided into faults, 
traps, and aborts. 
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The enlarged responsibility of interrupts has led to the confusing situation of 
each computer vendor inventing a different term for the same event, as Figure 
5.9 on page 215 illustrates. Intel and IBM still call such events interrupts, but 
Motorola calls them exceptions; and, depending on the circumstances, DEC calls 
them exceptions, faults, aborts, traps, or interrupts. To give some idea of how 
often interrupts occur, Figure 5.10 shows the frequency on the VAX 8800. 

Event Time between events 

I/O interrupt 2.7ms 

Interval timer interrupt 10.0 ms 

Software interrupt 1.5 ms 

Any interrupt 0.9ms 

Any hardware interrupt 2.1 ms 

FIGURE 5.10 Frequency of different interrupts on the VAX 8800 running a multiuser 
workload on the VMS timesharing system. Real-time operating systems used in 
embedded controllers may have a higher interrupt rate than a general-purpose timesharing 
system. (Collected by Clark, Bannon, and Keller [1988].) 

Clearly, there is no consistent convention for naming these events. Rather 
than imposing one, then, let's review the reasons for the different names. The 
events can be characterized on five independent axes: 

1. Synchronous versus asynchronous. If the event occurs at the same place 
every time the program is executed with the same data and memory 
allocation, the event is synchronous. With the exception of hardware 
malfunctions, asynchronous events are caused by devices external to the 
processor and memory. 

2. User request versus coerced. If the user task directly asks for it, it is a user­
request event. 

3. User maskable versus user nonmaskable. If it can be masked or disabled by a 
user task, the event is user maskable. 

4. Within versus between instructions. This classification depends on whether 
the event prevents instruction completion by occurring in the middle of 
execution-no matter how short-or whether it is recognized between 
instructions. 

5. Resume versus terminate. If the program's execution stops after the inter­
rupt, it is a terminating event. 
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Invoking operating system 
service 
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The difficult task is implementing interrupts occurring within instructions 
where the instruction must be resumed. Another program must be invoked to 
collect the state of the program, correct the cause of an interrupt, and then 
restore the state of the program before an instruction can be tried again. 

Figure 5.11 classifies the examples from Figure 5.9 according to these five 
categories. 

·. 

Synchronous vs. User User Within vs. Resume vs. 
asynchronous request vs. maskable vs. between terminate 

coerced nonmaskable instructions 

Asynchronous Coerced Nonmaskable Between Resume 

Synchronous User request Nonmaskable Between Resume 

Tracing instruction execution Synchronous User request User maskable Between Resume 

Breakpoint Synchronous User request User maskable Between Resume 

Integer arithmetic overflow Synchronous Coerced User maskable Within Terminate 

Floating-point arithmetic - Synchronous Coerced User maskable Within Resume 
overflow or underflow 

Page fault Synchronous Coerced Nonmaskable Within Resume 

Misaligned memory accesses Synchronous Coerced User maskable Within Terminate 

Memory-protection violations Synchronous Coerced Nonmaskable Within Terminate 

Using undefined instructions Synchronous Coerced Nonmaskable Within Terminate 

Hardware malfunctions Asynchronous Coerced Nonmaskable Within Terminate 

Power failure Asynchronous Coerced Nonmaskable Within Terminate 

FIGURE 5.11 The events of Figure 5.9 classified using five categories. 

How Control Checks for Interrupts 

Integrating interrupts with control means modifying the finite-state diagram to 
check for interrupts. Interrupts that occur between instructions are checked 
either at the beginning of the finite-state diagram-before an instruction is 
decoded-or at the end-after the execution of an instruction is completed. 
Interrupts that can occur within an instruction are generally detected in the state 
that causes the action or in a state that follows it. For example, Figure 5.12 
shows Figure 5 .4 (page 207) modified to check for interrupts: 

We assume DLX transfers the return address into a new programmer-visible 
register, the interrupt return-address register. Control then loads PC with the 
address of the interrupt routine for that interrupt. 
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Memory access 
not complete 
(no interrupt) 

Memory access complete 
(no page fault) 

FIGURE 5.12 The top-level view of the DLX finite-state diagram (Figure 5.4 on page 
207) modified to check for interrupts. Either a between interrupt or an instruction page 
fault invokes the control that saves the PC and then loads it with the address of the 
appropriate interrupt routine. The lower portion of the figure shows interrupts resulting in 
page faults of data accesses or arithm~tic overflow. 

What's Hard About lllterrupts 

The conflicting terminology is confusing, but that is not what makes the hard 
part of control hard. Even though interrupts are rare, the hardware must be 
designed so that the full state of the machine can be saved, including an 
indication of the offending event, and the PC of the instruction to be executed 
after the interrupt is serviced. This difficulty is exacerbated by events occurring 
during the middle of execution, for many instructions also require the hardware 
to restore the machine to the sta,te just before the event occurred-the beginning 
of the instruction. This last requirement is so difficult that computers are 
awarded the title restartable if they pass that test. That supercomputers and 
many early microprocessors do not earn that badge of honor illustrates both the 
difficulty of interrupts and the potential cost in hardware complexity and 
execution speed. 

No engineers deserve more admiration than those who built the first VAX, 
DEC's first restartable minicomputer. The variable-length instructions mean the 
comp~ter can fetch 50 bytes of one instruction before discovering that the next 
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byte of the instruction is not in main memory-a situation that requires the 
saved PC to point 50 bytes earlier. Imagine the difficulties of restarting an in­
struction with six operands, each of which could be misaligned and thus be 
partially in memory and partially on disk! 

The instructions that are hardest to restart are those that modify some of the 
machine state before it is known whether interrupts can occur. The VAX 
autoincrement and autodecrement addressing modes would naturally modify 

· registers during the addressing phase of execution rather than at the writeback 
phase, and so would be vulnerable to this difficulty. To avoid this problem, 
recent VAXes keep a history queue of the register specifiers and the operations 
on the registers, so that the operations can be reversed on an interrupt. Another 
approach, used on the earlier VAXes, is to record the specifiers and the original 
values of the registers, restoring the original values on interrupt. (The primary 
difference is that it only takes a few bits to record how the address was changed 
due to autoincrement or autodecrement versus the full 32-bit register value.) 

It is not just addressing modes that make the VAX difficult to restart; long­
running instructions mean that interrupts must be checked in the middle of 
execution to prevent long interrupt latency. MOVC3, for example, copies up to 
216 bytes and can take tens of milliseconds to finish-far too long to wait for an 
urgent event. On the other hand, even if there were a way to undo copying in the 
middle of execution so that MOVC 3 could be restarted, interrupts would occur so 
frequently, relative to this long-running instruction (see Figure 5.10 on page 
216), that MOVC3 would be restarted repeatedly under those conditions. Such 
wasted effort from incomplete copies would render MOVC 3 worse than useless. 

DEC divided the problem to conquer it. First, the operands-source address, 
length, and destination address-are fetched from memory and placed into 
general-purpose registers Rl, R2, and R3. If an interrupt occurs during this first 
phase, these registers are restored, and the MOVC 3 is restarted from scratch. 
After this first phase, every time a byte is copied, the length (R2) is decremented 
and addresses (Rl and R3) are incremented. If an interrupt occurs during this 
second phase, MOVC 3 sets the first part done (FPD) bit in the program status 
word. When the interrupt is serviced and the instruction is reexecuted, it first 
checks the FPD bit to see if the operands have already been placed in registers. 
If so, the VAX doesn't fetch the address and length operands, but just continues 
with the current values in the registers, since that is all that remains to be copied. 
This permits more rapid response to interrupts while allowing long-running 
instructions to make progress between interrupts. 

IBM had a similar problem. The 360 included the MVC instruction, which 
copies up to 256 bytes of data. For the early machines without virtual memory, 
the machine simply waited until the instruction was completed before servicing 
interrupts. With the inclusion of virtual memory in the 370, the problem could 
no longer be ignored. Control first tries to access all possible pages, forcing all 
possible virtual memory miss interrupts to occur before moving any data. If any 
interrupts occur in this phase, the instruction is restarted. Control then ignores 
interrupts until the instruction is complete. To allow longer copies, the 370 
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includes MVCL, which can move up to 224 bytes. The operands are in registers 
and are updated as a part of execution-like the VAX, except that there is no 
need for FPD since the operands are always in registers. (Or, to speak 
historically, the VAX solution is like the IBM 370, which came first.) 

5. 7 I Putting It All Together: Control for DLX 

The control for DLX is presented here to tie together the ideas from the previous 
three sections. We begin with a finite-state diagram to represent hardwired 
control and end with microprogrammed control. Both versions of DLX control 
are used to demonstrate tradeoffs to reduce cost or to improve performance. 
Because the figures are already too large, the checking for data page faults or 
arithmetic overflow shown in Figure 5.12 (page 218) is not included in this 
section. (Exercise 5.12 adds them.) 

Data transfer 
(Figure 5.14) 

Memory access 
not complete 

l. 

ALU 
(Figure 5.15) 

access 
complete 

Set 
(Figure 5.16) 

Jump 
(Figure 5.17) 

Branch 
(Figure 5.18) 

FIGURE 5.13 The top-level view of the DLX finite-state diagram for the non-floating­
point instructions. The first two steps of instruction execution-instruction fetch and 
instruction decode/register fetch-are shown. The first state repeats until the instruction is 
fetched from memory or an interrupt is detected. If an interrupt is detected, the PC is saved 
in IAR and PC is set to the address of the interrupt routine. The last three steps of 
instruction execution-execution/effective address, memory access, and write back-are 
shown in Figures 5.14 to 5.18 on pages 221-224. 
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Rather than trying to draw. the DLX finite-state machine in a single figure 
showing all 52 states, Figure 5.13 (see page 220) shows just the top level, 
containing 4 states plus references to the rest of the states detailed in Figures 
5.14 (below) through 5.18 (page 224). Unlike Figure 5.2 (page 205), Figure 5.13 
takes advantage of the change to the datapath allowing PC to address memory 
directly without going through MAR (Figure 5.4 on page 207). 

Memory 

Figure 5.13 

access 
complete 

FIGURE 5.14 The effective address calculation, memory-access, and write-back states for the memory-access 
and data-transfer instructions of DLX. For loads, the second state repeats until the data is fetched from memory. The 
final state of stores repeats until the write is complete. While the operation of all five loads is shown in the states of this 
figure, the proper operation of writes depends on the memory system writing bytes and halfwords, without disturbing the 
rest of the word in memory, and correctly aligning the bytes and halfwords (see Figure 3.10, page 97) over the proper 
bytes of memory. On completion of execution control transfers to Figure 5.13, found on page 220. 
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ALU 

ADD! AND! OR ! 

Figure 5.13 

FIGURE 5.15 The execution and write-back states for the ALU instructions of DLX. After putting a register or the 
sign-extended 16-bit immediate into Temp, 1 of the 9 instructions is executed, and the result (C) is written back into the 
register file. Only SRA and LHI may not be self-explanatory: The SRA instruction shifts right while it sign extends the 
operand and LHI loads the upper 16 bits of the register while zeroing the lower 16 bits. (The C operators « and » shift 
left and right, respectively; they fill with zeros unless bits are concatenated explicitly using##, e.g., sign extension). As 
mentioned above, the check for overflow in ADD and SUB is not included to simplify the figure. On completion of execution 
control transfers to Figure 5.13 (page 220). 

FIGURE 5.16 (See adjoining page.) The execution and write-back states for the Set instructions of DLX. After 
putting a register or the sign-extended 16-bit immediate into Temp, 1 of the 6 instructions compares A to Temp and then 
sets C to 1 or 0, depending on whether the condition is true or false. C is then written back into the register file, and then 
execution control transfers to Figure 5.13 (page 220). The dashed lines in this figure and Figure 5.18 are used to make it 
easier to follow intersecting lines. 

FIGURE 5.17 (See adjoining page.) The execution and write-back states for the jump instructions of DLX. With 
jump and link instructions, the return address is first placed in C before the new value is loaded into PC. Trap saves it in 
IAR. Note that the immediate in these instructions is 1 O bits longer than the 16-bit immediate in all other instructions. Jump 
and link instructions conclude by writing the return address back into R31. On completion of execution, control transfers to 
Figure 5.13 (page 220). 
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Figure 5.13 

FIGURE 5.16 

FIGURES.17 
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Branch 

I\~ 
y~ 

·." 
Figure 5.13 

FIGURE 5.18 The execution states for the branch instructions of DLX. The PC is 
loaded with the sum of the PC and the immediate only if the condition is true. On 
completion of execution, control transfers to Figure 5.13, found on page 220. 

Performance of Hardwired Control for DLX 

As stated in Section 5.4, the goal for control designs is to minimize CPI, clock 
cycle time, amount of control hardware, and development time. CPI is just the 
average number of states along the execution path of an instruction. 

Let's assume thathardwired control directly implements the finite-state diagram 
in Figures 5.13 to 5.18. What is the CPI for DLX running GCC? 

The number of clock cycles to execute each DLX instruction is determined by 
simply counting the states of an instruction. Starting at the top, every instruction 
spends at least two clock cycles in the states in Figure 5.13 (ignoring interrupts). 
The actual number depends on the average number of times the state accessing· 
memory must repeat because· memory is not ready. (These wasted clock cycles 
are usually c~lled memory stall cycles or wait states.) In cache-based machines 
this value is typically 0 (i.e., no repetitions since cache access is 1 cycle) when 
the data is found in the cache, and 10 or higher when it is not .. 

The time for the remaining portion of instruction execution comes from the 
additional figures. Besides two cycles for fetch and decode, loads take four 
more cycles plus clock cycles waiting for the data access, while stores take just 
three more clock cycles plus wait states. Three extra clock cycles are also 
needed by ALU instructions, and set instructions take four. Figure 5.17 shows 
that jumps take just one extra clock cycle with jump and links taking three. 
Branches depend on the result: Taken branches use two more clock cycles while 
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DLX instructions Minimum Memory Total clock 
clock cycles accesses cycles 

Loads 6 2 8 

Stores 5 2 7 

ALU 5 1 6 

Set 6 1 7 

Jumps 3 1 4 

Jump and links 5 1 6 

Branch (taken) 4 1 5 

Branch (not taken) 3 1 4 

FIGURE 5.19 Clock cycles per instruction for DLX categories using the state 
diagram in Figures 5.13 through 5.18. Determining the total clock cycles per category 
requires multiplying the number of memory accesses-including instruction fetches-times 
the average number of wait states, and adding this product to the minimum number of clock 
cycles. We assume an average of 1 clock cycle per memory access. For example, loads 
take eight clock cycles if the average number of wait states is one. 

untaken branches need just one. Adding these times to the first portion of 
instruction execution yields the clock cycles per DLX instruction class shown in 
Figure 5.19. 

From Chapter 2, one way to calculate CPI is 

n 

CPI = ~(CPI· * ~i ) ,£..J 1 Instruction count 
i=l 

Using the DLX instruction mix from Figure C.4 in Appendix C for GCC 
(normalized to 100% ), the percentage of taken branches from Figure 3.22 (page 
107), and one for the average number of wait states per memory access, the 
DLX CPI for this datapath and state diagram is calculated: 

Loads 8 * 21% = 1.68 

Stores 7 * 12% = 0.84 

ALU 6 * 37% = 2.22 

Set 7 * 6% = 0.42 

Jumps 4 * 2% = 0.08 

Jump and links 6 * 0% = 0.00 

Branch (taken) 5 * 12% = 0.60 

Branch (not taken) 4 * 11% = 0.44 

Total CPI: 6.28 

Thus, the DLX CPI for GCC is about 6.3. 
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Improving DLX Performance When Control Is Hardwired 

As mentioned above, performance is improved by reducing the number of states 
an instruction must pass through during execution. Sometimes, performance can 
be improved by removing intermediate calculations that select one of several 
options, either by adding hardware that uses information in the opcode to later 
select the appropriate option, or by simply increasing the number of states. 

Let's look at improving the performance of ALU instructions by removing the 
top two states in Figure 5.15 on page 222, which load either a register or an 
immediate into Temp. One approach uses a new hardware option. Let's call it 
"X" (see Figure 5.20). The X option selects either the B register or the 16-bit 
immediate, depending on the opcode in IR. A second approach is simply to 
increase the number of execution states so that there are separate states for ALU 
instructions usii;ig immediate versus ALU instructions using registers. 

For each option, what would be the change in performance, and how should 
the state diagram be changed? Also, how many states are needed in each option? 

Either change reduces ALU execution time from five to four clock cycles plus 
wait states. From Figure C.4, ALU operations are about 37% of the instructions 
for GCC, lowering CPI from 6.3 to 5.9, and making the machine about 7% 
faster. Figure 5 .20 shows Figure 5 .15 modified to use the X option instead of the 
two states that load Temp, while Figure 5.21 simply has many more states to 
achieve the same result. The total number of states are 50 and 58, respectively. 

ALU 

4711\~ AND j 
~=~=""' 

SRA i 

Figure 5.13 

FIGURE 5.20 Figure 5.15 modified to remove the two states loading Temp. The 
states use the new X option to mean that either B or (IR16) 16##1R16 .. 31 is the operand, 
depending on the DLX opcode. 
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ALU 

ADDI / 

SUB~ / 

ANDI / 

XORI / 

SLLI / 

SRLI / 

/ 

Figure 5.13 

FIGURE 5.21 Figure 5.15 modified to remove the two states loading Temp. Unlike 
Figure 5.20, this requires no new hardware options in the datapath, but simply more control 
states. 

Control can affect the clock cycle time, either because control itself takes 
longer than the corresponding operations in the datapath, or because the datapath 
operations selected by control lengthens the worst-case clock cycle time. 
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Assume a machine with a 10-ns clock cycle (100-MHz clock rate). Suppose that 
on closer inspection the designer discovered that all states could be executed in 9 
ns, except states that use the shifter. Would it be wise to split those states, taking 
two 9-ns clock cycles for shift states and one 9-ns clock for everything else? 

Assuming the improvement in the previous example, the average instruction 
execution time for the 100-MHz machine is 5.9*10 ns or 59 ns. The shifter is 
only used in the states of four instructions: SLL, SRL, SRA, and LHI (see Figure 
5.20). In fact, each of these instructions takes 5 clock cycles (including one wait 
state for memory access), and only one of the five original clock cycles need be 
split into two new clock cycles. Thus, the average execution time of these in­
structions changes from 5* 10 ns, or 50 ns, to 6*9 ns, or 54 ns. From Figure C.4 
these 4 instructions are about 11 % of the instructions executed for GCC (after 
normalization), making the average instruction execution time 89% * (5.9*9 ns) 
+ 11 %*54 ns or 53 ns. Thus, splitting the shift state results in a machine that is 
about 10% faster-a wise decision. (See Exercise 5.8 for a more sophisticated 
version of this tradeoff.) 

Hardwired control is completed by listing the control signals activated in each 
state, assigning numbers to the states, and finally generating the PLA. Now let's 
implement control using microcode in a ROM. 

Microcoded Control for DLX 

A custom format such as this is a slave to the architecture of the hardware and 
instruction set which it serves. The format must strike a proper compromise 
between ROM size, ROM-output decoding circuitry size, and machine execution 
rate. 

Jim McKevit et al. [ 1977] 

Before microprogramming can commence, the microinstruction set must be 
determined. The first step is to list the possible entries for each field of the DLX 
microinstruction format from Figure 5.6 on page 209. Figure 5.7 on page 211 

. lists them for the Destination, Sourcel, and Source2 fields. Figure 5.22 below 
shows the values for the remaining fields. 

Sequencing of microinstructions i:equires further explanation. The 
microprogrammed control includes a microprogram counter to specify th€ 
address of the next microinstruction if a branch is not taken, as in Figu_re 5.5 on 
page 208. In addition to the branches using the Jump address field, three tables 
are used to decode the DLX macroinstructions. These tables are indexed with 
the opcodes of the DLX instruction, and supply a microprogram address 
depending on the value in the opcode. Their use will become clear as we 
examine the DLX micr_oprogram. 
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Value ALU Misc Cond 

0 ADD + Instr Read /Rf- - - - Go to next sequential microinstruction 
M[PC] 

1 SUB - DataRead MDRf- Uncond Always jump 
M[MAR] 

2 RSUB -r Write M[MAR]f- Int? Pending (between instruction) interrupt? 

(reverse sub) MDR 

3 AND & ABf-RF LoadA&B Mem? Memory access not complete? 
from Reg. File 

4 OR I Rdf-C Write Rd Zero? Is the ALU output zero? 

5 XOR /\ R31f-C Write R31 Negative? ls the ALU output less than zero? 
J', 

(for call) 

6 SLL << Load? Is the macroinstruction a DI.x load? 

7 SRL >> Decodel Address table 1 determines next micro-
(Fig. 5.24) instruction (uses main opcode) 

8 SRA >>a Decode2 Address table 2 determines next micro-
(Fig. 5.26) instruction (uses ''func" opcode) 

9 Pass Sl SJ Decode3 Address table 3 determines next micro-
(Fig. 5.26) instruction (uses main opcode) 

10 Pass S2 S2 

FIGURE 5.22 The options for three fields of the DLX microinstruction format in Figure 5.6 on page 209. The 
possible names are shown on the left of the field name, with an explanation of each field to the right. The real 
microinstruction would contain a bit pattern corresponding to the number in the first column. Combined with Figure 5. 7 
(page 211 ), all the fields are defined except the Constant and Jump address fields, which contain numbers supplied by 
the microprogrammer. »a is an abbreviation for shift right arithmetic and -,means reverse subtract (B -,A= A- B). 

Following the lead of the state diagram, the DLX microprogram is divided 
into Figures 5.23, 5.25, 5.27, 5.28, and 5.29, with each section of microcode cor­
responding to one of Figures 5.13 to 5.18 (pages 220-224). The first state in 
Figure 5.13 becomes the first two microinstructions in Figure 5.23. The first 
microinstruction (address 0) branches to microinstruction 3 if there is an 
interrupt pending. Microinstruction 1 fetches an instruction from memory, 
branching back to itself as long as the memory access is not complete. 
Microinstruction 2 increments the PC by 4, loads A and B, and then does the 
first-level decoding. The address of the next microinstruction then depends on 
which macroinstruction is in the instruction register. The microinstruction 
addresses for this first-level macroinstruction decode are specified in Figure 
5.24. (In reality, the table shown in this figure is specified after the 
microprogram is written, as both the number of entries and the corresponding 
locations aren't known until then.) 
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Loe Label Dest ALU Sl S2 c Misc Cond Jump Comment 
label 

0 If etch: Interrupt? Intrpt Check interrupt 

1 Hoop: Instr Read Mem? Hoop IR <:-M[PC]; 
wait for memory 

2 PC ADD PC Constant 4 AB<:-RF Decodel 

3 Intrpt: IAR Pass Sl PC Interrupt 

4 PC Pass S2 Constant 0 Uncond If etch PC<:-0 & go 
fetch next 
instruction 

FIGURE 5.23 The first section of the DLX microprogram, corresponding to the states in Figure 5.13 (page 220). 
The first column contains the absolute address of the microinstruction, followed by a label. The rest of the fields contain 
values from Figures 5. 7 (page 211) and 5.22 for the microinstruction format in Figure 5.6 (page 209). As an example, 
microinstruction 2 corresponds to the second state of Figure 5.13. It sends the output from the ALU into PC, tells the ALU 
to add, puts PC onto the Source1 bus, and a constant from the microinstruction (whose value is 4) onto the Source2 bus. 
In addition, A and Bare loaded from the register file according to the specifiers in IR. Finally, the address of the next 
microinstruction to be executed comes from decode table 1 (Figure 5.24), which depends on the opcode· in the instruction 
register (IR). 

Opcodes (symbolically Absolute Label Figure 
specified) address 

Memory 5 Mem: 5.25 

Move to special 20 Movl2S: 5.25 

Move from special 21 MovS2I: 5.25 

S2=B 23 Reg: 5.27 

S2 = Immediate 24 Imm: S.27 

Branch equal zero 50 Beq: 5.29 

Branch not equal zero 52 Bne: 5.29 

Jump 54 Jump: 5.29 

Jump register 55 JReg: 5.29 

Jump and link 56 JAL: 5.29 

Jump and link register 58 JALR: 5.29 

Trap 60 Trap: 5.29 

FIGURE 5.24 Opcodes and corresponding addresses for decode table 1. The 
opcodes are shown symbolically on the left, followed by the addresses with the absolute 
microinstruction address, a label, and the figure where the microcode can be found. If this 
table were implemented with a ROM it would contain 64 entries corresponding to the 6-bit 
opcode of DLX. As this would clearly result in many redundant or unspecified entries, a 
PLA could be used to minimize hardware. 

Figure 5.25 contains the DLX load and store instructions. Microinstruction 5 
calculates the effective address, and branches to microinstruction 9 if the 
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Loe Label Dest 

5 Mem: MAR 

6 Store: MDR 
7 Dloop: 

8 
9 Load: 

IO 
11 LB: Temp 

I2 c 

13 LBU: Temp 

14 c 
IS LH: Temp 

I6 c 
17 LHU: Temp 

18 c 
I9 LW: c 
20 Movl2S: IAR 
21 MovS21: c 
22 Write I: 
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macroinstruction in the IR is a load. If not, microinstruction 6 loads MDR with 
the value to be stored, and microinstruction 7 jumps to itself until the memory is 
finished writing the data. Microinstruction 8 then jumps back to microinstruction 
0 (Figure 5.23) to begin the execution cycle all over again. If the macroinstruc­
tion was a load, microinstruction 9 loops until the data has been read. Micro­
instruction 10 then uses decode table 2 (specified in Figure 5.26) to specify the 
address of the next microinstruction. Unlike the first decode table, this table is 
used by other microinstructions. (There is no conflict in multiple uses since the 
opcodes for each instance are different.) 

Suppose the instruction were load halfword. Figure 5.26 shows that the result 
of decode 2 would be to jump to microinstruction 15. This microinstruction 
shifts the contents of MDR to the left 16 bits and stores the result in Temp. The 
following microinstruction shifts Temp right arithmetically 16 bits and puts the 
result in C. C now contains the 16 rightmost bits of MDR, with the upper 16 bits 
containing the extended sign. This microinstruction jumps to location 22, which 
writes C back into the destination register specifier in IR, and then jumps to 
fetch the next macroinstruction starting at location 0 (Figure 5.23). 

ALU Sl S2 c Misc Cond Jump Comment 
label 

ADD A immI6 Load? Load M emorv instruct. 

Pass S2 B Store 

Data write Mem? Dloop 

Uncond If etch Fetch next instr. 

Data read Mem? Load LoadMDR 

Decode2 
SLL MDR Constant 24 Load byte; shift left to 

remove uvver 24 bits 

SRA Temp Constant 24 Uncond Write I Shift right arithmetic 
to sifm extend 

SLL MDR Constant 24 LB unsi1med 

SRL Temp Constant 24 Uncond Write I Shift rif~ht lof!.ical 

SLL MDR Constant I6 Load half 

SRA Temp Constant I6 Uncond Write I Shift rif!.ht arithmetic 

SLL MDR Constant I6 LH Unsif!.ned 

SRL Temp Constant I6 Uncond Write I Shift rif!.ht lof!.ical 

Pass Sl MDR Uncond Write I Load word 

Pass SI A Uncond If etch Move to special 

Pass SI IAR Move from spec. 

Rdf--C Uncond If etch Write back & go fetch 
next instruction 

FIGURE 5.25 The section of the DLX microprogram for loads and stores, corresponding to the states in Figure 
5.14 (page 221). The microcode for bytes and halfwords takes an extra microinstruction to align the data (see Figure 
3.10, page 97). Note that microinstruction 5 loads A from Rd, just in case the instruction is a store. The label lfetch is for 
microinstruction 0 in Figure 5.23 on page 230. 
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Opcode Absolute Label Figure 
address 

Load byte 11 LB: 5.25 

Load byte unsigned 13 LBU: 5.25 

Load half 15 LH: 5.25 

Load half unsigned 17 LHU: 5.25 

Load word 19 LW: 5.25 

ADD 25 ADD/I: 5.27 

SUB 26 SUB/I: 5.27 

AND 27 AND/I: 5.27 

OR 28 OR/I: 5.27 

XOR 29 XOR/I: 5.27 

SLL 30 SLL/I: 5.27 

SRL 31 SRL/I: 5.27 

SRA 32 SRA/I: 5.27 

LHI 33 LHI: 5.27 

Set equal 35 SEQ/I: 5.28 

Set not equal 37 SNEil: 5.28 

Set less than 39 SLT/I: 5.28 

Set greater than or equal 41 SGE/I: 5.28 

Set greater than 43 SGT/I: 5.28 

Set less than or equal 45 SLE/I: 5.28 

FIGURE 5.26 Opcodes and corresponding addresses for decode tables 2 and 3. The 
opcodes are shown symbolically on the left, followed by the absolute microinstruction 
address, the corresponding label, and the figure where the microcode can be found. Since 
the opcodes are shown symbolically, and they go to the same place in both tables, the 
same information can be used for specifying decode tables 2 and 3. This similarity is 
attributable to the immediate version and register version of the DLX instructions sharing 
the same microcode. If a table were implemented with a ROM, it would contain 64 entries 
corresponding to the 6-bit opcode of DLX. Again, the many redundant or unspecified 
entries suggest the use of a PLA to minimize hardware cost. 

The ALU instructions are found in Figure 5.27. The first two microinstruc­
tions correspond to the states at the top of Figure 5.15 (page 222). After loading .. 
Temp with either the register or the immediate, each uses a decode table to 
vector to the microinstruction that executes the ALU instruction. To save 
microcode space, the same microinstruction is used whether the operand is a 
register or an immediate. One of the microinstructions between 25 and 33 is 
executed, storing its result in C. It then jumps to microinstruction 34, which 
stores C into the register specified in the IR, and in turn jumps to fetch the next 
macroinstruction. 
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Loe Label Dest ALU Sl S2 c Misc Cond Jump Comment 
label 

23 Reg: Temp Pass S2 B Decode2 -- source2 = ref!. 

24 Imm: Temp Pass S2 Imm Decode3 source2 = imm. 
25 ADD/I: c ADD A Temp Uncond Write2 ADD 
26 SUB/I: c SUB A Temp Uncond Write2 SUB 

27 AND/I: c AND A Temp Uncond Write2 AND 
28 OR/I: c OR A Temp Uncond Write2 OR 

29 XOR/I: c XOR A Temp Uncond Write2 XOR 

30 SLL/I: c SLL A Temp Uncond Write2 SLL 

31 SRL/I: c SRL A Temp Uncond Write2 SRL 

32 SRA/I: c SRA A Temp Uncond Write2 SRA 

33 LHI: c SLL Temp Constant 16 ., Uncond Write2 LHI 

34 Write2: Rdf-C Uncond If etch Write back & go 
fetch next instruction 

FIGURE 5.27 .Like the first two states in Figure 5.15 (page 222), microinstructions 23 and 24 load Temp with an 
operand and then vector to the appropriate microinstruction, depending on the opcode in IR. One of the nine 
following microinstructions is executed, leaving its result in C. C is written back into the register specified in the register 
destination field of DLX macroinstruction in IR in microinstruction 34. 

Loe Label Dest ALU Sl S2 c Misc Cond Jump' Comment 
label 

35 SEQ/I: SUB A Temp Zero? Setl Set equal 

36 c Pass S2 Constant 0 Uncond Write4 AR (set to false) 

37 SNE/I: SUB A Temp Zero? Seto Set not equal 

38 c Pass S2 Constant 1 Uncond Write4 AR (set to true) 

39 SLT/I: SUB A Temp Negative? Setl Set less than 

40 c Pass S2 Constant 0 Uncond Write4 A~T (set to false) 

41 SGE/I: SUB A Temp Negative? Seto Set GT or equal 

42 c Pass S2 Constant 1 Uncond Write4 A~T (set to true) 

43 SGT/I: RSUB A Temp Negative? Setl Set weater than 

44 c Pass S2 Constant 0 Uncond Write4 T~ (set to false) 

45 SLE/I: RSUB A Temp Negative? Seto Set LT or equal 

46 c Pass S2 Constant 1 Uncond Write4 T~ (set to true) 

47 Seto: c Pass S2 Constant 0 Uncond Write4 Set to 0 =false 

48 Setl: c Pass S2 Constant 1 Set to 1 = true 

49 Write4: Rdf-C Uncond If etch Write back &fetch 
· next instruction 

FIGURE 5.28 Corresponding to Figure 5.16 (pages 222-223), this microcode performs the DLX Set instructions. 
As in the previous figure, to save space these same microinstructions execute either the version of set using registers or 
the version using immediates. The tricky microcode is found in microinstructions 43 and 45, where the subtraction Temp -
A is unlike the earlier microcode. Remember that A-, Temp= Temp-A (see Figure 5.22 on page 229). 

INTEL Ex.1035.265



234 

Loe Label Dest 

50 Beq: 
51 
52 Bne: 
53 Branch: PC 
54 Jump: PC 
55 JReg: PC 
56 JAL: c 
57 PC 
58 JALR: c 
59 PC 
60 Trap: IAR 
61 PC 

5.7 Putting It All Together: Control for DLX 

Figure 5.28 corresponds to the states in Figure 5.16 (pages 222-223), except 
that the top two states that load Temp are microinstructions 23 and 24 of the pre­
vious figure; the decode tables will either jump to locations 25 to 34 in Figure 
5.27, or 35 to 45 in Figure 5.28, depending on the opcode. The microinstructions 
for Set perform relative tests by having the ALU subtract Temp from A and then 
test the ALU output to see if the result is zero or negative. Depending on the test 
result, C is set to 1 or 0 and written back in the register file before going to fetch 
the next macroinstruction. Tests for A = Temp, A '* Temp, A < Temp, and A;;::: 
Temp are straightforward using these conditions on the ALU output A - Temp. 
A > Temp and A ~ Temp, on the other hand, are not simple, but can be done 
using the negative condition with the subtraction reversed: 

(Temp-A< 0) = (Temp< A) = (A> Temp) 

If the result is negative, then A > Temp, otherwise A ~ Temp. Voila! 
Figure 5.29 contains the last of the DLX microcode and corresponds to the 

states found in Figures 5.17 and 5.18 (pages 222-224). Microinstruction 50, 
corresponding to the macroinstruction branch on equal zero, tests if A equals 
zero. If it does, the macroinstruction branch succeeds, and the microinstruction 
jumps to the microinstruction 53. This microinstruction loads the PC with the 
PC-relative address and then jumps to the microcode that fetches the new 
macroinstruction (location 0). If A does not equal zero, the macroinstruction 
branch fails, so that the next sequential microinstruction (51) executes, jumping 
to location 0 without changing the PC. 

A state usually corresponds to a single microinstruction, although in a few 
cases above two microinstructions were needed. The jump and link instructions 
have the reverse case, with two ptates collapsing into one microinstruction. The 
actions in the last two states of] ump and link in Figure 5 .17 are found in micro­
instruction 57, and similarly for the jump and link register with microinstruction 
59. These microinstructions load the PC with the PC-relative branch address and 
save C into R3 l. 

ALU Sl S2 c Misc Cond Jump Comment 
label 

SUB A Constant 0 O? Branch Instr is branch =0 
Uncond If etch :;t(): not taken 

SUB A Constant 0 O? If etch Instr is branch ;t: 0 
ADD PC imm16 Uncond If etch :;t(): taken 
ADD PC imm26 Uncond If etch Jump 
Pass Sl A Uncond If etch Jump reRister 
Pass Sl PC Jump and link 
ADD PC imm26 R31f-C Uncond If etch Jump & save PC 
Pass Sl PC Jump & link ref! 
Pass Sl A R31f-C Uncond If etch Jump & save PC 
Pass Sl PC Trap 
Pass S2 imm26 Uncond If etch 

FIGURE 5.29 The microcode for branch and jump DLX instructions, corresponding to the states i11 Figures 5.17 
and 5.18 on pages 222-224. 
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Performance of Microcoded Control for DLX 

Before trying to improve performance or reduce costs of control, the existing 
performance must be assessed. Again, the process is to count the clock cycles 
for each instruction, but this time there is a larger variety in performance. 

All instructions execute microinstructions 0, 1, and 2 in Figure 5.23 (page 
230), giving a base of 3 clocks plus wait states, depending on the repetition of 
microinstruction 1. The clock cycles for the rest of the categories are: 

4 for stores, plus wait states 

5 for load word, plus wait states 

6 for load byte or load half (signed or unsigned), plus wait states 

3 for ALU 

4 for set 

2 for branch equal zero (taken or untaken) 

2 for branch not equal zero (taken) 

1 for branch not equal zero (untaken) 

1 for jumps 

2 for jump and links 

Using the instruction mix for GCC in Figure C.4, and assuming an average of 1 
wait state per memory access, the CPI is 7.68. This is higher than the hardwired 
control CPI, because the test for interrupt takes another clock cycle at the begin­
ning, loads and stores are slower, and branch equal zero is slower for the 
untaken case. 

Reducing Cost and Improving Performance of DLX 
When Control Is Microcoded 

The size of a completely unencoded version of the DLX microinstruction is 
calculated from the number of entries in Figures 5. 7 (page 211) and 5 .22 (page 
229) phis the size of the Constant and Jump address fields. The largest constant 
in the fields is 24, which requires 5 bits, and the largest address is 61, which 
requires 6. Figure 5.30 shows the microinstruction fields, the unencoded widths, 
and the encoded widths. Encoding almost halves the size of control store. 

ALU Sourcel Source2 Constant Misc Cond Jump Total 
operation address 

11 9 9 5 6 10 6 = 63 bits 

4 4 4 5 3 4 6 = 33 bits 

FIGURE 5.30 Width of field in bits of unencoded and encoded microinstruction formats. Note that the Constant 
and Jump address fields are not encoded in this example, placing fewer restrictions on the microprogram using the 
encoded format. 
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Example 

Answer 

5.7 Putting It All Together: Control for DLX 

The microinstruction can be further shrunk by introducing multiple micro­
instruction formats and by combining independent fields. 

Figure 5.31 shows an encoded version of the original DLX microinstruction 
format and the version with two formats: one for ALU operations and one for 
miscellaneous and branch operations. A bit is added to distinguish the two 
formats. The ALU/Jump (A/J) microinstruction performs the ALU operations 
specified in the microinstruction; the address of the next microinstruction is 
specified in the Jump address. For the Transfer/Misc/Branch (T/M/B) micro- ~ 

instruction, the ALU performs Pass S 1, while the Misc and Cond fields specify 
the rest of the operations. The primary change in interpretation of the fields in 
the new formats is that the ALU condition being tested in the T/M/B format 
refers to the ALU output from the prior A/J microinstruction since there is no 
ALU operation in T/M/B format. In both formats the Constant and Jump fields 
are combined into a single field under the assumption they are not used at the 
same time. (For the A/J format, the appearance of a constant in a source field 
results in fetching the following microinstruction.) The new formats shrink 
width from the original 33 bits to 22 bits, but the actual size savings depends on 
the number of extra microinstructions needed because of the reduced options. 

What is the increase in number of microinstructions, compared to the single 
format, for the microcode in Figure 5.23 (page 230)? 

3 4 4 4 5 3 4 6 

ALU/Jump 

3 4 4 4 6 

Transfer/Misc/Branch 

3 4 4 4 6 

FIGURE 5.31 The original DLX microinstruction format at the top and the dual- ' 
format version below. Note that the Misc field is expanded from 3 to 4 bits in the T/M/B to 
make the two formats the same length. 

Figure 5.32 shows the increase in the number of microinstructions over Figure 
5.23 (page 230) because of the restrictions of each format. The five micro­
instructions in the original format expand to six in the new format. Microinstruc­
tion 2 is the only one that expands to two microinstructions for this example. 
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Loe Label Type. Dest ALU Sl S2 Misc Cond Const/ Comment 
Jump 

0 If etch: M!f /B --- --- Interrupt? Intrpt Check interruJJt 
1 !loop: M!f /B --- --- Instr Mem? !loop IR f-M[PC]; wait 

Read for memory 
2 A/J PC ADD PC Constant --- --- 4 Increment PC 
3 M{f /B --- --- ABf- Decodel 

RF 

4 In trot: A/J IAR Pass Sl PC --- --- 5 Interrupt 
5 A/J PC SUB Temp Temp --- --- If etch PC~O (t minus t=O) .. 

& go fetch next 
instruction 

FIGURE 5.32 Version of Figure 5.23 (page 230) using the dual-format microinstruction in Figure 5.31. Note that 
ALU/Jump microinstructions check the 81 and 82 fields for a constant specifier to see if the next address is sequential (as 
in microinstruction 2); otherwise they go to the Jump address (as in microinstructions 4 and 5). The microprogrammer 
changed the last microinstruction to generate a zero by subtracting a register from itself rather than through straight­
forward use of constant 0. Using the constant would have required an additional microinstruction since this format goes to 
the next sequential instruction if a constant is used. (See Figure 5.31.) 

Loe Label Dest 

50 Beq: 

51 PC 

Sometimes performance can be improved by finding faster sequences of 
microcode, but normally it requires changes to the hardware. The branch equal 
zero instruction takes one extra clock cycle when the branch is not taken with 
hardwired control, but two with microcoded control; while branch not equal zero 
has the same performance for hardwired and microcoded control. Why would 
the former differ in performance? Figure 5.29 shows that microinstruction 52 
branches on zero to fetch the next microinstruction, which is correct for the 
branch on not equal zero macroinstruction. Microinstruction 50 also tests for 
zero for the branch on zero macroinstruction and branches to the 
microinstruction that loads the new PC. The not zero case is handled by the 
following microinstruction (51 ), which jumps to fetch the next instruction­
hence, one clock cycle for untaken branch on not equal zero and two for untaken 
branch on equal zero. One solution is simply to add "not zero" to the microcode 
branch conditions in Figure 5.22 (page 229) and change the branch on equal 
microcode to the version in Figure 5.33. Since there are only ten branch 
conditions, adding the eleventh would not require more than the four bits needed 
for an encoded version of that field. 

ALU Sl S2 c Misc Cond Jump Comment 
label 

SUB A Constant 0 notO? !fetch Branch =0 
ADD PC imm16 Uncond If etch =0: taken 

FIGURE 5.33 Branch not equal microcode from Figure 5.29 (page 234) rewritten by using a not zero condition in 
microinstruction 44. 
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Loe Label Dest 

0 !fetch: 

1 PC 

2 Intrpt: IAR 

3 PC 

5.7 Putting It All Together: Control for DLX 

This change drops the CPI from 7 .68 to 7 .63 for microcoded control, yet this 
is still higher than the CPI for hardwired control. 

Let's improve microcoded control so that the CPI for GCC is closer to the 
original CPI under hardwired control. 

The main performance culprit is the separate test for interrupts in Figure 5.23. 
By modifying the hardware, decodel can kill two birds with one stone: In 
addition to jumping to the appropriate microinstructions corresponding to the 
opcode, it also jumps to the interrupt microcode if an interrupt is pending. Figure 
5.34 shows the revised microcode. This modification saves one clock cycle from 
each instruction, reducing the CPI to 6.63. 

ALU Sl S2 c Misc Cond Jump Comment 
label 

Instr Read Mem? If etch IR <::-M[PC]; wait 
for memory 

ADD PC Constant 4 AB<::-RF Decode I Also go to interrupt 
if vendinR interrupt 

SUB PC Constant 4 Interrupt: undo PC 
increment 

Pass S2 Constant 0 Uncond If etch PC<::-0 & go fetch 
next instruction 

FIGURE 5.34 Revised microcode that takes advantage of a change of the hardwar-e1o have decode1 go to 
microinstruction 2 if there is a pending interrupt. This microinstruction must reverse the increment of PC in the prior 
microinstruction so that the correct value is saved. 

5.8 I Fallacies and Pitfalls 
, 

Pitfall: Microcode implementing a complex instruction may not be faster than 
macrocode. 

At one time, microcode had the advantage of being fetched from a much faster 
memory than macrocode. Since caches came into use in 1968, microcode no 
longer has such a consistent edge in fetch time. Microcode does, however, still 
have the advantage of using internal temporary registers in the computation, 
which can be helpful on machines with few general-purpose registers. The 
disadvantage of micn:~code is that the algorithms must be selected before the 
machine is announced and can't be changed until the next model of the archi-
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tecture; macrocode, · on the other hand, can utilize improvements in its 
algorithms at any time during the life of the machine. 

The VAX Index instruction provides an example: The instruction checks to 
see if the index is between two bounds, one of which is usually zero. The VAX-
11/780 microcode uses two compares and two branches to do this, while 
macrocode can perform the same check in one compare and one branch. The 
macrocode checks the· index against the upper limit using unsigned 
comparisons, rather than two's complement comparisons. This treats a negative 
index (less than zero and so failing the comparison) as if it were a very large 

J number, thus exceeding the upper limit. (The algorithm can be used with 
nonzero lower bounds by first subtracting the lower bound from the index.) 
Replacing the index instruction by this VAX macrocode always improves 
performance on the V AX-11/780. 

Fallacy: If there is space in control store, new instructions are free of cost. 

Since the length of control store is usually a power of two, at times there may be 
unused control store available to expand the instruction set. The analogy here is 
that of building a house and discovering, near completion, that you have enough 
land and materials left to add a room. This room wouldn't be free, however, 
since there would be the costs of labor and maintenance for the life of the home. 
The temptation to add "free" instructions can only occur when the instruction set 
is not fixed, as is likely to be the case in the first model of a computer. Because 
instruction set compatibility is a long-term requirement, all future models of this 
machine will be forced to include these "free" instructions, even if space is later 
at a premium. This expansion also ignores the cost of a longer development time 
to test the added instructions, as well as the possibility of costs of repairing bugs 
in them after the hardware is shipped. 

Fallacy: Usersfindwritable control store helpful. 

Bugs in microcode persuaded designers of minicomputers and mainframes that it 
would be wiser to use RAM than ROM for control store. Doing so would enable 
microcode bugs to be repaired by shipping customers floppy disks rather than by 
having the field engineer pull boards and replace chips. Some customers and 
some manufacturers also decided that users should be allowed to write 
microcode; this opportunity became known as writable control store (WCS). 
Yet by the time WCS was offered, the world had changed to make WCS less 
attractive than originally envisioned: 

• The tools for writing microcode were much poorer tha~ those for writing 
macrocode. (The authors and many others stepped into that breach to provide 
better microprogramming tools.) 

• At a time when main memory was expanding, WCS was limited to 1-4KB 
microinstructions. (Few programming tasks are harder than forcing code into 
too small a memory.) 
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5.9 I 

5.8 Fallacies and Pitfalls 

• Microcoded control became increasingly tailored to the native 
macroinstruction set, making microprogramming less useful for tasks other 
than that for which it was intended. 

• With the advent of timesharing, programs might run for only milliseconds 
before switching to other tasks. This meant that WCS would have to be 
swapped if more than one program needed it, and reloading WCS could 
easily take longer than a few milliseconds. 

• Timesharing also meant that programs had to be protected from each other. 
Because, at such a low level, microprograms can circumvent all protection 
barriers, microprograms written by users were notori~usly untrustworthy. 

• The increasing demand for virtual memory meant that microprograms had to 
be restartable-any memory access could force the computation to be 
shelved. 

• Finally, companies like DEC that offered WCS provided no customer support 
for those who wanted to write microcode. 

Many customers ordered WCS, but few benefited from it. The death of WCS has 
been by a thousand small cuts, and WCS is not an option on current computers. 

Concluding Remarks 

In his first paper [1953] Wilkes identified advantages of microprogramming that 
still hold true today. One of these advantages is that microprogramming helps 
accommodate change. This can happen late in the development cycle, where 
simply changing some Os to ls in the control store can sometimes save 
redesigning hardware. A related advantage is that by emulating other instruction 
sets in microcode, software compatibility is simplified. Microprogramming also 
reduces the cost of adding more complex instructions to a standard micro­
architecture to just the cost of a few more words of control store (although there 
is the pitfall that once an instruction set is created assuming microprogrammed 
control, it is difficult to ever build a machine without using it). This flexibility 
allows hardware construction to begin before the instruction set and microcode 
have been completely written, because specifying control -is just a matter of 
programming. Finally, microprogramming now has the further advantage of 
having a large set of tools that have been developed to help write, edit, assemble, 
and debug microcode. 

The drawback of microcode has always been performance. This is because 
microprogramming is a slave to memory tecnnology: The clock cycle time is 
limited by the time to read microinstructions from control store. In the 1950s, 
microprogramming was impractical since virtually the only technology available 
for control store was the same one used for main memory. In the late 1960s and 
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early 1970s, semiconductor memory was available for control store, while main 
memory was constructed from core. The factor of ten in cycle time that 
differentiated the two technologies opened the door for microcode. The 
popularity of cache memory in the 1970s once again closed this gap, and 
machines were again built with the same technology for control store and 
memory. 

For these reasons instruction sets invented since 1985 have not relied on 
. microcode. Though no one likes to predict the future-least of all in writing-it 

is the authors' opinion that microprogramming is bound to memory technology. 
If in some future technology ROM becomes much faster than RAM, or if caches 
are no longer effective, microcode may regain its popularity. 

5.1 0 I Historical Perspective and References 

Interrupts go back to computer industry pioneers Eckert and Mauchly. Interrupts 
were first used to signal arithmetic overflow on the UNIVAC I and later to alert 
a UNIV AC 1103 to start online data collection for a wind tunnel (see Codd 
[1962]). After the success of the first commercial computer, the UNIVAC 1101 
in 1953, the first commercial computer to have interrupts, the 1103, was brought 
out. Interrupts were first used for I/0 by AL. Leiner in the National Bureau of 
Standards DYSEAC [Smotherman 1989]. 

Maurice Wilkes learned computer design in a summer workshop from Eckert 
and Mauchly and then went on to build the first full-scale, operational, stored­
program computer-the EDSAC. From that experience he realized the difficulty 
of control. He thought of a more centralized control using a diode matrix and, 
after visiting the Whirlwind computer in the U.S., wrote: 

I found that it did indeed have a centralized control based on the use of a 
matrix of diodes. It was, however, only capable of producing a fixed sequence 
of 8 pulses-a different sequence for each instruction, but nevertheless fixed 
as far as a particular instruction was concerned. It was not, I think, until I got 
back to Cambridge that I realized that the solution was to turn the control 
unit into a computer in miniature by adding a second matrix to determine 
the flow of control at the microlevel and by providing for conditional micro­
instructions. [Wilkes 1985, 178] 

Wilkes [1953] was ahead of his time in recognizing that problem. Unfortu­
nately, the solution was also ahead of its time: To provide control, micro­
programming relies on fast memory that was not available in the 1950s. Thus, 
Wilkes's ideas remained primarily academic conjecture for a decade, although 
he did construct the EDSAC 2 using microprogrammed control in 1958 with 
ROM made from magnetic cores. 
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IBM brought microprogramming into the spotlight in 1964 with the IBM 360 
family. Before this event, IBM saw itself as many small businesses selling 
different machines with their own price and performance levels, but also with 
their own instruction sets. (Recall that little programming was done in high-level 
languages, so that programs written for one IBM machine would not run on 
another.) Gene Amdahl, one of the chief architects of the IBM 360, said that 
managers of each subsidiary agreed to the 360 family of computers only because 
they were convinced that microprogramming made it feasible-if you could take 
the same hardware and microprogram it with several different instruction sets, 
they reasoned, then you must also be able to take different hardware and 
microprogram them to run the same instruction set. To be sure of the viability of 
microprogramming, the IBM vice president of engineering even visited Wilkes 
surreptitiously and had a "theoretical" discussion of the pros and cons of 
microcode. IBM believed the idea was so important to their plans that they 
pushed the memory technology inside the company to make microprogramming 
feasible. 

Stewart Tucker of IBM was saddled with the responsibility of porting 
software from the IBM 7090 to the new IBM 360. Thinking about the · 
possibilities of microcode, he suggested expanding the control store to include 
simulators, or interpreters, for older machines. Tucker [1967] coined the term 
emulation for this, meaning full simulation at the microprogrammed level. 
Occasionally, emulation on the 360 was actually faster than the original 
hardware. Emulation became so popular with customers in the early years of the 
360 that it was sometimes hard to tell which instruction set ran more programs. 

Once the giant of the industry began using microcode, the rest soon followed. 
A difficulty in adopting microcode was that the necessary memory technology 
was not widely available, but that was soon solved by semiconductor ROM and 
later RAM. The microprocessor industry followed the same history, with limited 
resources of the earliest chips forcing hardwired control. But as the resources in­
creased, the advantages of simpler design and ease of change persuaded many to 
use microprogramming. 

With the increasing popularity of microprogramming came more 
sophisticated instruction sets, including virtual memory. Microprogramming 
may well have aided the spread of virtual memory, since microcode made it 
easier to cope with the difficulties that arose from mapping addresses and 
restarting instructions. The IBM 370 model 138, for example, implemented 
virtual memory entirely in microcode without any hardware support. 

Over the years, most microarchitectures became more and more dedicated to 
support the intended instruction set, so that reprogramming for a different 
instruction set failed to off er satisfactory performance. With the passage of time 
came much larger control stores, and it became possible to consider a machine 
as elaborate as the VAX. To offer a single chip VAX in 1984 DEC reduced the 
instructions interpreted by microcode by trapping some instructions and 
performing them in software: 20% of VAX instructions are responsible for 60% 
of the microcode, yet are only executed 0.2% of the time. Figure 5.35 shows the 
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reduction in control store by subsetting the instruction set. (The VAX is so tied 
to microcode that we venture to predict it will be impossible to build a full­
instruction-set VAX without microcode.) The microarchitecture of one of the 
simpler subsetted VAXes, the MicroVAX-I, is described in Levy and Eckhouse 
[1989]. 

Full instruction set Subset instruction set 
(VLSI VAX) (MicroVAX 32) 

% instructions implemented 100% 80% 

Size of control store (bits) 480K 64K 

Number of chips in processor 9 2 

% performance ofVAX-11/780 100% 90% 

FIGURE 5.35 By trapping some VAX instructions and addressing modes, control 
store was reduced almost eight-fold. The second chip of the subset VAX is for floating 
point. 

While this book was being written, a landmark legal precedent concerning 
microcode was set. The question under litigation in NEC v. Intel was whether 
microcode is like writing, and thereby deserves copyright protection (Intel), or 
whether it is like hardware, which can be patented but not copyrighted (NEC). 
The importance of this matter lies in the fact that while it is triviaL to get a 
copyright, getting a patent can take as long as a college education. A program 
can be copyrighted, so the question then follows: What is and isn't a program? 
Here is the legislated definition: 

A 'computer program' is a set of statements or instructions to be used directly or 
indirectly in a computer in order to bring about a certain result. 

After years of preparation and trial, a judge did declare that a microprogram 
was a program. The lawyers for the losing side then asked him to rescind his 
decision on grounds of partiality. They had discovered that through an 
investment club, the judge owned $80 of stock belonging to the client he ruled 
for. (The tempting sum really was only $80, highly frustrating to one of the 
authors who acted as an expert witness on the case!) The case was retried, and 
the new judge ruled that "microcode ... comes squarely within the definition of a 
'computer program' ... " [Gray 1989, 4]. Of course, the fact that two judges in 
two different trials made the same decision doesn't mean that the matter is 
closed-there are still higher levels of appeal available. 
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EXERCISES 

If finite-state diagrams and microprogramming are review topics, you may want to skip 
over questions 5.5 through 5.14. 

5.1 [15/10/15/15] <5.5> One technique that tries to get the best of both the worlds of 
vertical and horizontal microarchitectures is a two-level control store, as illustrated by 
Figure 5.36. It tries to combine small control-store size with wide instructions. To avoid 
confusion the bottom level uses the prefix nano-, yielding the terms "nanoinstruction," 
"nanocode," and so forth. This technique was used in the Motorola 68000, 68010, and 
68020, but it was originated in the Burroughs D-machine [Reigel, Faber, and Fischer 
1972]. The idea is that the first level has many vertical instructions that point to the few 
unique horizontal instructions in the second level. The Burroughs D-machine was a 
general-purpose computer offering writable control store. Its microinstructions were 16 
bits wide, with 12 of those bits specifying a nanoaddress, and the nanoinstructions were 
56 bits wide. One instruction set interpreter used 1124 microinstructions and 123 
nanoinstructions. 
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FIGURE 5.36 Two-level microprogrammed implementation showing relationship of 
microcode and nanocode. 

a. [15] <5.5> What is the general formula showing when a two-level control store 
scheme like Burroughs D-machine uses fewer bits than a single-level control store? 
Assume there are M microinstructions each a bits wide and N nanoinstructions each b 
bits wide. 

b. [10] Was the two-level control store of the D-machine successful in reducing control­
store size versus a single-level control store for the interpreter? 

c. [15] After the code was optimized to improve CPI by 10%, the resulting code had 
940 microinstructions and 161 nanoinstructions. Was the two-level control store of 
the D-machine successful in reducing control-store size versus a single-level control 
store for the optimized interpreter? 

d. [15] Did optimization increase or decrease the total number of bits needed to specify 
control? Why would the number of microinstructions decrease and the number of 
nanoinstructions increase? 

5.2 [15] <5.5,5.6> One advantage of microcode is that it can handle rare cases without 
having the overhead of invoking the operating system before executing the trap routine. 
Suppose a machine with a CPI of 1.5 has an operating system that takes 100 clock cycles 
on a trap before it can execute the appropriate code. Suppose the trap code takes 10 clock 
cycles whether it is microcode or macrocode. For an instruction occurring 5% of the time, 
what percentage of the time must it trap before a microcode implementation is 1 % faster 
overall than a macrocode implementation? 

5.3 [20/20/30] <4.2,5.5,5.6> Let's explore the impact of subsetting an architecture as 
described in Figure 5.35. Suppose the MOVC3 instruction were left out of a VAX. 
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a. [20] Write the VAX macrocode to replace MOVC3. 

b. [20] Assume the operands are placed in registers RO, Rl, and R2 after a trap. Using 
the data for COBOLX in Figure C.1 in Appendix Con instruction usage (assuming ~) 

all MOVC_ are MOVC3) and assuming the average MOVC3 moves 15 bytes, what 
would be the percentage change in instruction count if MOVC3 were not interpreted 
by microcode? (Ignore the cost of traps for this instruction.) 

c. [30] If you have access to a VAX, time the speed of MOVC 3 versus a macrocode 
version of the routine from part a. Assuming that the trap overhead is 20 clock cycles, 
what is the impact on performance of trapping to software for MOVC 3? 

5.4 [15] <5.6> Assume we have a machine with a clock cycle time of 10 ns and a base 
CPI of 5. Because of the possibilities of interrupts we must have extra registers containing 
copies of the values of the registers at the beginning of the instruction. These registers are 
usually called shadow registers. Assume that the average instruction has two register 
operands that must be restored on an interrupt. The interrupt rate is 100 interrupts per 
second, and the interrupt cost is 30 cycles plus the time to restore the shadowed registers, 
each of which takes 10 cycles. What is the effective CPI after accounting for interrupts? 
What is the performance lost from interrupts? 

5.5-5. 7 Given the processor design and finite-state diagram for DLX as modified in 
the end of the hardwired-control portion of Section 5.7, explore the impact of 
performance of the following changes. In each case show the modified portion of the 
finite-state machine, describe the changes to the processor (if necessary), the change in 
the number of states, and calculate the change in CPI using the DLX instruction mix 
statistics in Figure C.4 for GCC. Show the reasons for the change. 

5.5 [12] <5.7> Like the change to the ALU instructions in the second example in Section 
5.7 and shown in Figures 5.20 and 5.21, remove the states that load Temp for the Set 
instructions in Figure 5.16 first by adding the "X" option and then by increasing the 
number of states. 

5.6 [15] <5.7> Suppose that the memory interface was optimized so that it was not 
necessary to load MAR before a memory access, nor did the data have to be transferred in 
MDR for a read or write. Instead, any register on the S 1 bus could specify the address, 
any register on the S2 bus could supply the data on a write, and any register on the Dest 
bus could receive data on a read. 

5.7 [22] <5.7> Most computers overlap the fetching of the next instruction with the 
execution of the current instruction. Propose a scheme that overlaps all instruction fetches 
except jumps, branches, and stores. You must reorganize the finite-state machine so that 
the instruction is already fetched, possibly even partially decoded. 

5.8 [15] <5.7> The example in Section 5.7 on page 228 assumes everything but the shifter 
can scale to 9 ns. Alas, the memory system can rarely scale as easily as the CPU. 
Reperform the analysis in this example, but this time assume that average number of 
memory wait states is 2 at the 9-ns clock cycle versus 1 at 10 ns in addition to the 
slowdown for shifts. 
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5.9-5.14 These questions address use of the microcoded control of DLX as shown in 
Figures 5.23, 5.25, and 5.27-5.29. In each case show the modified portion of the 
microcode; describe the changes to the processor (if necessary), the microinstruction 
fields (if necessary), and the change in the number of microinstructions; and calculate the 
change in CPI using the DLX instruction-mix statistics in Appendix C for GCC. Show the 
reasons for the change. 

5.9 [15] <5.7> Like the change to the ALU instructions in the second example in Section 
5.7, remove the microinstructions that load Temp for the Set instructions in Figure 5.28 
(page 233) first by adding the "X" option and then by increasing the number of 
microinstructions. 

5.10 [25] <5.7> Continuing the example in Figure 5.32 (page 237), rewrite the microcode 
found in Figure 5.29 (page 234) using the dual-format microinstructions of Figure 5.31 
(page 236). What is the relative frequency of each type of microinstruction? What is the 
savings in control-store size versus the original DLX format? What is the change in CPI? 

5.11 [20] <3.4, 5.7> Load byte and Load half take a clock cycle longer than Load word 
because of the alignment of data (see Figure 3.10 on page 97 and Figure 5.25 on page 
231 ). Propose a change that eliminates the extra clock for these instructions. How does 
this change affect the CPI of GCC? How does it affect the CPI of TeX? 

5.12 [20] <5.6, 5.7> Change the microcode to perform the following interrupt tests: page 
fault, arithmetic overflow or underflow, misaligned memory accesses, and using 
undefined instructions. Make whatever changes are needed to the microarchitecture and 
microinstruction format. What is the change in size and performance to perform these 
tests? 

5.13 [20] <5.7> The computer designer must be careful not to tailor her design too closely 
to a particular, single program. Reevaluate the performance impact of all the example 
performance improvements in Exercises 5.9 to 5.12 this time using the average instruc­
tion mix data in Figure C.4. How do the programs affect the evaluations? 

5.14 [20] <5.6, 5.7> Starting with the microcode in Figures 5.27 (page 233) and 5.34 
(page 238), revise the microcode so that the next macroinstruction is fetched as early as 
possible during the ALU instructions. Assume a "perfect" memory system, taking one 
clock cycle per memory reference. Although technically this improvement speeds up 
instructions that follow ALU instructions, the easiest way to account for higher 
performance is as faster ALU instructions. How much faster are the ALU instructions? 
How does it affect overall performance according to GCC statistics? 

5.15 [30] <4,5.6> If you have access to a machine that uses one of the instruction sets in 
Chapter 4, determine the worst-case interrupt latency for that implementation of the 
architecture. Be sure you are measuring the raw machine latency and not the operating 
system overhead. 

5.16 [30] <5.6> Computer architects have sometimes been forced to support instructions 
that were never published in the original instruction set manual. This situation arises 
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because some programs are created that inadvertently set unused instruction fields to 
values other than the architect expected, which raises havoc when the architect tries to use 
those values to extend the instruction set. IBM solved that problem in the System 370 by 
trapping on every possible undefined field. Try executing instructions with undefined 
fields on a computer to see what happens. Do your new instructions compute anything 
useful? If so, would you use these new instructions in programs? 

5.17 [35] <5.4, 5.5, 5.7> Take the datapath in Figure 5.1 and build a simulator that can 
perform any of the operations needed to implement the DLX instruction set. Now 
implement the DLX instruction set using: 

Microprogrammed control, and 

Hardwired control. 

For hardwired control see if you can find PLA minimization and state-assignment 
programs to reduce the cost of control. From these two designs, determine the perfor­
mance of each implementation and the cost in terms of gates or in terms of silicon area. 

5.18 [35] <2.2, 5.5, 5.7> The similarities between the microinstructions and the macro­
instructions of DLX suggest that performance can be gained by writing a program that 
translates from DLX macrocode to DLX microcode. (This is the insight that inspired 
WCS.) Write such a program and benchmark it. What is the resulting expansion of code 
size? 

5.19 [50] <2.2, 4.4, 5.10> Recent attempts have been made to run existing software on 
hardwired control machines by building hand-tuned simulators for popular machines. 
Write such a simulator for the 8086 instruction set. Run some existing IBM PC programs, 
and see how fast your simulator is relative to an 8-MHz 8086. 

5.20 [Discussion] <4,5.5,5.10> Hypothesis: If the first implementation of an architecture 
uses microprogramming, it affects the instruction set architecture. Why might this be 
true? Looking at examples in Chapter 4 or elsewhere, give supporting or contradicting 
evidence from real machines. Which machines will always use microcode? Why? Which 
machines will never use microcode? Why? What control implementation do you think the 
architect had in mind when designing the instruction set architecture? 

5.21 [Discussion] <5.5,5.10> Wilkes invented microprogramming in large to simplify 
construction of control. Since 1980 there has been an explosion of computer-aided design 
software whose goal is also to simplify construction of control. Hypothesis: The advances 
in computer-aided design software have rendered microprogramming unnecessary. Find 
evidence to support and refute the hypothesis. 

5.22 [Discussion] <5.10> The DLX instructions and the DLX mi<;:roinstructions have 
many similarities. What would make it difficult for a compiler to produce DLX 
microcode rather than macrocode? What changes to the microarchitecture would make 
the DLX microcode more useful for this application? 
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6.1 

Pipelining 

What Is Pipelining? 

Pipelining is an implementation technique whereby multiple instructions are 
overlapped in execution. Today, pipelining is the key implementation technique 
used to make fast CPUs. 

A pipeline is like an assembly line: Each step in the pipeline completes a part 
of the instruction. As in a car assembly line, the work to be done in an instruc­
tion is broken into smaller pieces, each of which takes a fraction of the time 
needed to complete the entire instruction. Each of these steps is called a pipe 
stage or a pipe segment. The stages are connected one to the next to form a 
pipe-instructions enter at one end, are processed through the stages, and exit at 
the other end. 

The throughput of the pipeline is determined by how often an instruction 
exits the pipeline. Because the pipe stages are hooked together, all the stages 
must be ready to proceed at the same time. The time required between moving 
an instruction one step down the pipeline is a machine cycle. The length of a 
machine cycle is determined by the time required for the slowest pipe stage 
(because all stages proceed at the same time). Often the machine cycle is one 
clock cycle (sometimes it is two, or rarely more), though the clock may have 
multiple phases. 
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The pipeline designer's goal is to balance the length of the pipeline stages. If 
the stages are perfectly balanced, then the time per instruction on the pipelined 
machine-assuming ideal conditions (i.e., no stalls)-is equal to 

Time per instruction on nonpipelined machine 
Number of pipe stages 

Under these conditions, the speedup from pipelining equals the number of pipe 
stages. Usually, however, the stages will not be perfectly balanced; furthermore, 
pipelining does involve some overhead. Thus, the time per instruction on the 
pipelined machine will not have its minimum possible value, though it can be 
close (say within 10% ). 

Pipelining yields a reduction in the average execution time per instruction. 
This reduction can be obtained by decreasing the clock cycle time of the 
pipelined machine or by decreasing the number of clock cycles per instruction, 
or by both. Typically, the biggest impact is in the number of clock cycles per 
instruction, though the clock cycle is often shorter in a pipelined machine 
(especially in pipelined supercomputers). In the advanced pipelining sections of 
this chapter we will see how deep pipelines can be used to both decrease the 
clock cycle and maintain a low CPI. 

Pipelining is an implementation technique that exploits parallelism among the 
instructions in a sequential instruction stream. It has the substantial advantage 
that, unlike some speedup techniques (see Chapters 7 and 10), it is not visible to 
the programmer. In this chapter we will first cover the concept of pipelining 
using DLX and a simplified version of its pipeline. We will then look at the 
problems pipelining introduces and the performance attainable under typical sit­
uations. Later in the chapter we will examine advanced techniques that can be 
used to overcome the difficulties that are encountered in pipelined machines and 
that may lower the performance attainable from pipelining. 

We use DLX largely because its simplicity makes it easy to demonstrate the 
principles of pipelining. The same, principles apply to more complex instruction 
sets, though the corresponding pipelines are more complex. We will see an 
example of such a pipeline in the Putting It All Together section. 

6.2 j The Basic Pipeline for DLX 

Remember that in Chapter 5 (Section 5.3) we discussed how DLX could be im­
plemented with five basic execution steps: 

1. IF-instruction fetch 

2. ID-instruction decode and register fetch 

3. EX--execution and effective address calculation 

4. MEM-memory access 

5. WB-write back 
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Instruction Clock number 
number 1 2 3 4 . s 6 7 8 9 

Instruction i IF ID EX MEM WB 
Instruction i+ 1 IF ID EX MEM WB 
Instruction i+2 IF ID EX MEM WB 
Instruction i+ 3 IF ID EX MEM WB 
Instruction i+4 IF ID EX MEM WB 

FIGURE 6.1 Simple DLX pipeline. On each clock cycle another instruction is fetched and begins its five-step execution. 
If an instruction is started every clock cycle, the performance will be five times that of a machine that is not pipelined. 

Example 

Answer 

We can pipeline DLX by simply fetching a new instruction on each clock 
cycle. Each of the steps above becomes a pipe stage-a step in the pipeline­
resulting in the execution pattern shown in Figure 6.1. While each instruction 
still takes five clock cycles, during each clock cycle the hardware is executing 
some part of five different instructions. 

Pipelining increases the CPU instruction throughput-the number of instruc­
tions completed per unit of time-but it does not reduce the execution time of an 
individual instruction. In fact, it usually slightly increases the execution time of 
each instruction due to overhead in the control of the pipeline. The increase in 
instruction throughput means that a program runs faster and has lower total 
execution time, even though no single instruction runs faster! 

The fact that the execution time of each instruction remains unchanged puts 
limits on the practical depth of a pipeline, as we will see in the next section. 
Other design considerations limit the clock rate that can be attained by deeper 
pipelining. The most important consideration is the combined effect of latch 
delay and clock skew. Latches are required between pipe stages, adding setup 
time plus the delay through those latches to each clock period. Clock skew also 
contributes to the lower limit on the clock cycle. Once the clock cycle is as small 
as the sum of the clock skew and latch overhead, no further pipelining is useful. 

Consider a nonpipelined machine with five execution steps of lengths 50 ns, 
50 ns, 60 ns, 50 ns, and 50 ns. Suppose that due to clock skew and setup, 
pipelining the machine adds 5 ns of overhead to each execution stage. Ignoring 
any latency impact, how much speedup in the instruction execution rate will we 
gain from a pipeline? 

Figure 6.2 shows the execution pattern on the nonpipelined machine and on the 
pipelined machine. , 

The average instruction execution time on the nonpipelined machine is 

Average instruction execution time= 50+50+60+50+50 ns = 260 ns 
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I 260 I 260 .1 260 I 

I 50 I 50 I 60 I 50 I 50 I 50 I 50 I 60 I 50 I 50 I 50 I 50 I 60 I 50 I 50 I 
Instruction 1 Instruction 2 Instruction 3 

Nonpipelined execution 

I 65 I 65 I 65 I 65 I 65 I 

Instruction 1 60 60 60 60 60 I - I 60 60 60 60 60 Instruction 2 

-
Instruction 3 60 60 60 60 60 

5 5 5 5 5 

Pipelined execution 

FIGURE 6.2 The execution pattern for three instructions shown for both the non­
pipelined and pipelined versions. In the nonpipelined version, the three instructions are. 
executed sequentially. In the pipelined version, the shaded areas represent the overhead of 
5 ns per pipestage. The length of the pipestages must all be the same: 60 ns plus the 5-ns 
overhead. The latency of an instruction increases from 260 ns in the nonpipelined machine 
to 325 ns in the pipelined machine. 

In the pipelined implementation, the clock must run at the speed of the slowest 
stage plus overhead, which will be 60 + 5 or. 65 ns; this is the average instruction 
execution time. Thus, the speedup from pipelining is 

_ Average instruction time without pipeline 
Speedup - Average instruction time with pipeline 

260 4 . = 
65 

=. times 

The 5-ns overhead essentially establishes a limit on the effectiveness of pipelin­
ing. If the overhead is not affected by changes in the clock cycle, Amdahl's Law 
tells us that the overhead limits the speedup. 

Because the latches in a pipelined ·design can have a significant impact on the 
clock speed, designers have looked for latches that permit the highest possible 
clock rate. The Earle latch (invented by J. G. Earle [1965]) has three properties 
that maj<:e it especially useful in pipelined machines. First, it is relatively insen­
sitive to clock skew. Second, the delay through the latch is always a constant 
two-gate delay, avoiding the introduction of skew in the data passing through the 
latch. Finally, two levels of logic can be done in the latch without increasing the 
latch delay time. This means that two levels of logic in the pipeline can be 
overlapped with the latch, so the majority of the overhead from the latch can be 

INTEL Ex.1035.286



Pipelining 255 

hidden. We will not be analyzing the pipeline designs in this chapter at this level 
of detaiL The interested reader should see Kunkel and Smith [1986]. 

The next two sections will add refinements and address some problems that 
can occur in this pipeline. In this discussion (up to the last segment of Section 
6.5) we will focus on the pipeline for the integer portion of DLX. The complica­
tions that arise in the floating-point pipeline will be treated in Section 6.6. 

6.3 I Making the Pipeline Work 

Your instinct is right if you find it hard to believe that pipelining is as simple as 
this, because it's not. In this and the following three sections, we will make our 
DLX pipeline "real" by dealing with problems that pipelining introduces. 

To begin with, we have to determine what happens on every clock cycle of 
the machine and make sure that overlapping instructions doesn't overcommit 
resources. For example, a single ALU cannot be asked to compute an effective 
address and perform a subtract operation at the same time. As we will see, the 
simplicity of the DLX instruction set makes resource evaluation relatively easy. 

The operations that occur during instruction execution, which were discussed 
in Section 5.3 of Chapter 5, are modified to execute in a pipeline as shown in 
Figure 6.3. The figure lists the major functional units in our DLX implemen­
tation, the pipe stages, and what has to happen in each stage of the pipeline. The 
vertical axis is labeled with the pipeline stages, while the horizontal axis shows 
major resources. Each intersection shows what happens for that resource in that 
stage. In Figure 6.4 we will show similar information using the instruction type 
as the horizontal axis. The combination of instructions that may be in the 
pipeline at any one time is arbitrary. Thus, the combined needs of all instruction 
typys at any pipe stage determine what resources are needed at that stage. 

Every pipe stage is active on every clock cycle. This requires all operations in 
a pipe stage to complete in one clock and any combination of operations to be 
able to occur at once. Here are the most important implications for the data path, 
as specified in Chapter 5: 

1. The PC must be incremented on each clock. This must be done in IF rather 
than ID. This will require an additional incrementer, since the ALU is 
already busy on every cycle and cannot be used to increment the PC. 

2. A new instruction must be fetched on every clock-this is also done in IF. 

3. A new data word is needed on every clock cycle-this is done in MEM. 

4. There must be a separate MDR for loads (LMDR) and stores (SMDR), since 
when they are back-to-back, they overlap in time. 

5. Three additional latches are needed to hold values that are needed later in the 
pipeline, but· may be modified by a subsequent instruction. The values 
latched are the instruction, the ALU output, and the next PC. 
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PC unit Memory Data path 
Stage 

IF PCf- PC+4; IRf-Mem[PC]; 

ID PClf- PC IRlf-IR Af- Rsl; Bf- Rs2; 

EX 16 
DMARf-A + (IRl16) ##IR116 .. 31; SMDRf-B; 
or 
ALUoutputf- A op (B or 

16 
(IRl16) ##IRl16 .. 31); 

or 
ALUoutputf-PCl + 16 

(IRl16) ##IRl16 .. 31i 

condf- (A op 0) ; 

MEM if (cond) LMDRf- Mem [DMAR] ALUoutputlf- ALUoutput 
PCf-ALUoutput or 

Mem [ DMAR l f-SMDR 

WB Rdf- ALUoutputl or LMDR 

FIGURE 6.3 The table shows the major functional units and what may happen in every pipe stage in each unit. In 
several of the stages not all of the actions listed can occur, because they apply under different assumptions about the 
instruction. For example, there are three operations within the ALU during the EX stage. The first occurs only on a load or 
store; the second on ALU operations (with the input being B or the lower 16 bits of the IR, according to whether the 
instruction is register-register or register-immediate); the third operation occurs only on branches. For simplicity, we have 
shown the branch case only-jumps will add a 26-bit offset to the PC. The variables ALUouputl, PCl, and IRl save 
values for use in later stages of the pipeline. Designing the memory system to support a data load or l?tore on every clock 
cycle is challenging; see Chapter 8 for an in-depth discussion. This type of table and that in Figure 6.4 are loosely based 
on Davidson's [1971] pipeline reservation tables. 

Stage ALU instruction Load or store instruction Branch instruction 

IF IRf-Mem [PC l ; IRf-Mem [PC l ; IRf-Mem [PC] ; 
PCf-PC+4; PCf-PC+4; PCf-PC+4; 

ID Af-Rsl; Bf-Rs2; PClf-PC Af-Rsl; Bf-Rs2; PClf-PC Af-Rsl; Bf-Rs2; PClf-PC 
IRlf-IR IRlf-IR IRlf-IR 

EX ALUoutputf-A op B; DMARf-A+ ALUoutputf-PCl + 
or ( (IRl16) 16 ##IR116 .. 31); ( ( IR116) 16 # #IR116 .. 31) ; 
~LUoutputf-A op SMDRf- B; condf- (A op 0) ; 

( ( IRl16) 16 ##IR116 .. 31) ; 

MEM ALUoutputlf- ALUoutput LMDRf-Mem [DMAR] ; or if (cond) PCf-ALUoutput; 
-

Mem [DMA:R] f-SMDR; 

WB Rdf-ALUoutputl; Rdf-LMDR; 

FIGURE 6.4 Events on every pipe stage of the DLX pipeline. Because the instruction is not yet decoded, the first two 
pipe stages are always identical. Note that it was critical to be able to fetch the registers before decoding the instruction; 
otherwise another pipeline stage would be required. Due to the fixed instruction format, both register fields are always 
decoded and the registers accessed (though they are sometimes not needed); the PC and immediate fields can be sent to · 
the ALU as well. At the beginning of the ALU operation the correct inputs are multiplexed in, based on the opcode. With 
this organization all instruction-dependent operations occur in the EX stage or later. As in Figure 6.3, we include the case 
for branches, but not jumps, which will have a 26-bit offset rather than a 16-bit offset. Jumps are essentially like branches. 
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Probably the biggest impact of pipelining on the machine resources is in the 
memory system. Although the memory-access time has not changed, the peak 
memory bandwidth must be increased by five times over the nonpipelined 
machine because two memory accesses are required on every clock in the 
pipelined machine versus two accesses every five clock cycles in a nonpipelined 
machine with the same number of steps per instru£tion. To provide two memory 
accesses every clock, most machines will use separate instruction and data 
caches (see Chapter 8, Section 8.3). 

During the EX stage, the ALU can be used for three different functions: an 
effective data-address calculation, a branch-address calculation, or an ALU 
instruction. Fortunately, the DLX instructions are simple; an instruction in EX 
does at most one of these, so no conflict arises. 

The pipeline we now have for DLX would function just fine if every instruc­
tion were independent of every other instruction in the pipeline. In reality, 
instructions in the pipeline can be dependent on one another; this is the topic of 
the next section. 

6.4 I The Major Hurdle of Pipelining­
Pipeline Hazards 

There are situations, called hazards, that prevent the next instruction in the 
instruction stream from executing during its designated clock cycle. Hazards 
reduce the performance from the ideal speedup gained by pipelining. There are 
three classes of hazards: 

1. Structural hazards arise from resource conflicts when the hardware cannot 
support all possible combinations of instructions in simultaneous overlapped 
execution. 

2. Data hazards arise when an instruction depends on the results of a previous 
instruction in a way that is exposed by the overlapping of instructions in the 
pipeline. 

3. Control hazards arise from the pipelining of branches and other instructions 
that change the PC. 

Hazards in pipelines can make it necessary to stall the pipeline. The major 
difference between stalls in a pipelined machine and stalls in a nonpipelined 
machine (such as those we saw in DLX in Chapter 5) occurs because there are 
multiple instructions under execution at once. A stall in a pipelined machine 
often requires that some instructions be allowed to proceed, while others are 
delayed. Typically, when an instruction is stalled, all instructions later in the 
pipeline than the stalled instruction are also stalled. Instructions earlier than the 
stalled instruction can continue, but no new instructions are fetched during the 
stall. We will see several examples of how stalls operate in this section-don't 
worry, they aren't as complex as they might sound! 
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A stall causes the pipeline performance to degrade from the ideal perfor­
mance. Let's look at a simple equation for finding the actual speedup from 
pipelining, starting with the formula from the previous section. 

_ Average instruction time without pipeline 
Pipeline speedup 

- Average instruction time with pipeline 

_ CPI without pipelining * Clock cycle without pipelining 
- CPI with pipelining * Clock cycle with pipelining 

= Clock cycle without pipelining * CPI without pipelining 
Clock cycle with pipelining CPI with pipelining 

Remember that pipelining can be thought of a~ decreasing the CPI or the clock 
cycle time; let's treat it as decreasing the CPI. The ideal CPI on a pipelined 
machine is usually 

Ideal CPI = CPI "".ith~ut pipelining 
P1pelme depth 

Rearranging this and substituting into the speedup equation yields: 

S d _ Clock cycle without pipelining * Ideal CPI * Pipeline depth 
pee up - Clock cycle with pipelining CPI with pipelining 

If we confine ourselves to pipeline stalls, 

CPI with pipelining = Ideal CPI + Pipeline stall clock cycles per instruction 

We can substitute and obtain: 

S d _ Clock cycle without pipelining * Ideal CPI * Pipeline depth 
pee up - Clock cycle with pipelining Ideal CPI + Pipeline stall cycles 

While this gives a general formula for pipeline speedup (ignoring stalls other 
than from the pipeline), in most instances a simpler equation can be used. Often, 
we choose to ignore the potential increase in the clock cycle due to pipelining 
overhead. This makes the clock rates equal and allows us to drop the first term. 
A simpler formula can now be used: 

p· r d Ideal CPI * Pipeline depth 
ipe me spee up = Ideal CPI + Pipeline stall cycles 

While we will use this simpler form for evaluating the DLX pipeline, a designer 
must be careful not to discount the potential impact on clock rate in evaluating 
pipelining strategies. 

Structural Hazards 

When a machine is pipelined, the overlapped execution of instructions requires 
pipelining of functional units and duplication of resources to allow all possible 
combinations of instructions in the pipeline. If some combination of instructions 
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cannot be accommodated due to resource conflicts, the machine is said to have a 
structural hazard. The most common instances of structural hazards arise when 
some functional unit is not fully pipelined. Then a sequence of instructions that 
all use that functional unit cannot be sequentially initiated in the pipeline. 
Another common way that structural hazards appear is when some resource has 
not been duplicated enough to allow all combinations of instructions in the 
pipeline to execute. For example, a machine may have only one register-file 
write port, but under certain circumstances, the pipeline might want to perform 
two writes in a clock cycle. This will generate a structural hazard. When a 
sequence of instructions encounters this hazard, the pipeline will stall one of the 
instructions until the required unit is available. 

Many pipelined machines share a single memory pipeline for data and 
instructions. As a result, when an instruction contains a data-memory reference, 
the pipeline must stall for one clock cycle; the machine cannot fetch the next 
instruction because the data reference is using the memory port. Figure 6.5 
shows what a one-memory-port pipeline looks like when it stalls during a load . 
We will see another type of stall when we talk about data hazards. 

Clock cycle number 
2 3 4 5 6 7 8 9 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID EX MEM WB 

stall IF ID EX MEM WB 

IF ID EX MEM 

FIGURE 6.5 A pipeline stalled for a structural hazard-a load with one memory port. With only one memory port, 
the pipeline cannot initiate a data fetch and instruction fetch in the same cycle. A load instruction effectively steals an 
instruction-fetch cycle, causing the pipeline to stall-no instruction is initiated on clock cycle 4 (which normally would be 
instruction i+3). Because the instruction being fetched is stalled, all other instructions in the pipeline can proceed normally. 
The stall cycle will continue to pass through the pipeline. 

Example 

Answer 

Suppose that data references constitute 30% of the mix and that the ideal CPI of 
the pipelined machine, ignoring the structural hazard, is 1.2. Disregarding any 
other performance losses, how much faster is the ideal machine without the 
memory structural hazard, versus the machine with the hazard? 

The ideal machine will be faster by the ratio of the speedup of the ideal machine 
over the real machine. Since the clock rates are unaffected, we can use the fol­
lowing for speedup: 

P
. 

1
. d Ideal CPI * Pipeline depth 

1pe me spee up = . . 
Ideal CPI + P1pelme stall cycles 
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Example 

Answer 

6.4 The Major Hurdle of Pipelining-Pipeline Hazards 

S. h 'd 1 h' h -all · d . . 1 1.2*Pipeline depth mce t e 1 ea mac me as no st s, its spee up 1s s1mp y 1.
2 

. 

Th d f h al h
. . 1.2*Pipeline depth_ l.2*Pipeline depth 

e spee up o t ere mac me 1s 1.2 + 0.3*l - 1.5 

(
l.2*Pipeline depth) 

SpeedUPideal = 1.2 = 1.5 = 1 25 
SpeedUPreal (l.2*Pipeline depth) 1.2 · 

1.5 

Thus, the machine without the structural hazard is 25% faster. 

If all other factors are equal, a machine without structural hazards will always 
have a lower CPI. Why, then, would a designer allow structural hazards? There 
are two reasons: to reduce cost and to reduce the latency of the unit. Pipelining 
all the functional units may be too costly. Machines that support one-clock-cycle 
memory references require twice as much total memory bandwidth and often 
have higher bandwidth at the pins. Likewise, fully pipelining a floating-point 
multiplier consumes lots of gates. If the structural hazard would not occur often, 
it may not be worth the cost to avoid it. It is also usually possible to design a 
nonpipelined unit, or one that isn't fully pipelined, with a shorter total delay than 
a fully pipelined unit. For example, both the CDC 7600 and the MIPS R2010 
floating-point unit choose shorter latency (fewer clocks per operation) versus 
full pipelining. As we will see shortly, reducing latency has other performance 
benefits and can frequently overcome the disadvantage of the structural hazard. 

Many recent machines do not have fully pipelined floating-point units. For 
example, suppose we had an implementation of DLX with a 5-clock-cycle 
latency for floating-point multiply, but no pipelining. Will this structural hazard 
have a large or small performance impact on Spice running on DLX? For sim- _ 
plicity, assume that the floating-point multiplies are uniformly distributed. 

The data in Figure C.4 show that floating-point multiply has a frequency of 6% 
in Spice. Our proposed pipeline can handle up to a 20% frequency of floating­
point multiplies-one every five clock cycles. This means that the performance 
benefit of fully pipelining the floating-point multiply is likely to be low, as long 
as the floating-point multiplies are not clustered but are distributed uniformly. If 
they were clustered, the impact could be much larger. 

Data Hazards 

A major effect of pipelining is to change the relative timing of instructions by 
~:>Verlapping their execution. This introduces data and control hazards. Data 
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hazards occur when the order of access to operands is changed by the pipeline 
versus the normal order encountered by sequentially executing instructions. 
Consider the pipelined execution of these instructions: 

ADD Rl,R2,R3 
SUB R4,Rl,R5 

The SUB instruction has a source, R 1, that is the destination of the ADD instruc­
tion. As shown in Figure 6.6, the ADD instruction writes the value of Rl in the 
WB pipe stage, but the SUB instruction reads the value during its ID stage. This 
problem is called a data hazard. Unless precautions are taken to prevent it, the 
SUB instruction will read the wrong value and try to use it. In fact, the value 

· used by the SUB instruction is not even deterministic: Though we might think it 
logical to assume that SUB would always use the value of Rl that was assigned 
by an instruction prior to ADD, this is not always the case. If an interrupt should 
occur between the ADD and SUB instructions, the WB stage of the ADD will 
complete, and the value of Rl at that point will be the result of the ADD. This 
unpredictable behavior is obviously unacceptable. 

Clock cycle 
1 2 3 4 5 6 

IF ID EX MEM WB--data written here 

IF ID-data read here EX MEM WB 

FIGURE 6.6 The ADD instruction writes a register that is a source operand for the SUB instruction. But the ADD 

doesn't finish writing the data into the register file until three clock cycles after SUB begins reading it! 

The problem posed in this example can be solved with a simple hardware 
technique calledforwarding (also called bypassing and sometimes short-circuit­
ing). This technique works as follows: The ALU result is always fed back to the 
ALU input latches. If the forwarding hardware detects that the previous ALU 
operation has written the register corresponding to a source for the current ALU 
operation, control logic selects the forwarded result as the ALU input rather than 
the value read from the register file. Notice that with forwarding, if the SUB is 
stalled, the ADD will be completed, and the bypass will not be activated, causing 
the value from the register to be used. This is also true for the case of an inter­
rupt between the two instructions. 

In our DLX pipeline, we must pass results to not only the instruction that 
immediately follows, but also to the instruction after that. ay the third instruc­
tion down the line, the ID and WB stages overlap; however, as the write is not 
finished until the end of WB, we must continue to forward the result. Figure·6.7 
shows a set of instructions in the pipeline and the forwarding operations that can 
occur. 
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ADD Rl,R2,R3 IF ID EX MEM WB 

,\ 

SUB R4,Rl,R5 IF ID ~ MEM WB 

' ).. 

AND R6,Rl,R7 IF ID ·~ MEM WB 

\ 

OR R8,Rl,R9 IF ID- EX MEM WB 

XOR RlO, Rl, Rll 

FIGURE 6.7 A set of instructions in the pipeline that need to forward results. The 
ADD instruction sets R1, and the next four instructions use it. The value of R1 must be 
bypassed to the SUB, AND, and OR instructions. By the time the' XOR instruction goes to read 
R1 in the ID phase, the ADD instruction has completed WB, and the value is available. 

Rl,R2,R3 
IF ID 

ADD 
EX MEM WB 

R w 

SUB R4,Rl,R5 
IF ID EX MEM WB 

R w 

AND R6,Rl,R7 
IF ID EX MEM WB 

R w 

OR R8,Rl,R9 
IF ID EX MEM WB 

R w 

RlO,Rl,Rll 
IF ID 

XOR 
EX MEM WB 

R w 

FIGURE 6.8 The same instruction sequence as shown in Figure 6.7, with register 
reads and writes occurring in opposite halves of the ID and WB stages. The SUB and 
AND instructions will still require the value of R1 to be bypassed to them, and this will hap­
pen as they enter their EX stage. However, by the time of the OR instruction, which also 
uses R1, the write of R1 has completed, and no forwarding is required. The XOR depends 
on the ADD, but the value of R1 from the ADD is always written back the cycle before XOR 

reaches its ID stage and reads it. 
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It is desirable to cut down the number of instructions that must be bypassed, 
since each level requires special hardware. Remembering that the register file is 
accessed twice in a clock cycle, it is possible to do the register writes in the first 
half of WB and the reads in the second half of ID. This eliminates the need to 
bypass to a third instruction, as shown in Figure 6.8. 

Each level of bypass requires a latch and a pair of comparators to examine 
whether the adjacent instructions share a destination and a source. Figure 6.9 
shows the structure of the ALU and its bypass unit as well as what values are in 

0 the bypass registers for the instruction sequence in Figure 6. 7. Two ALU result 
buffers are needed to hold ALU results to be stored into the destination register 
in the next two WB stages. For ALU operations, the result is always forwarded 
-when the instruction using the result as a source enters its EX stage. (The 
instruction that computed the value to be forwarded may be in its MEM or WB 
stages.) The results in the buffers can be inputs into either port on the ALU, via a 
pair of multiplexers. Multiplexer control can be done by either the control unit 

. ' (which must then track the destinations and sources of all operations in the 
pipeline) or locally by logic associated with the bypass (in which case the bypass 
buffers will contain tags giving the register numbers the values are destined for). 
In either event, the logic must test if either of the two previous instructions wrote 
a register that is the input to the current instruction. If so, then the multiplexer 
select is set to choose from the appropriate result register rather than from the 
bus. Because the ALU operates in a single pipeline stage, there is no need for a 
pipeline stall with any combination of ALU instructions once the bypasses have 
been implemented. 

Result 
write bus 

Register 
file 

Bypass 
paths 

R4 ----m==:...:::i-ALU result 
buffers 

R1 

FIGURE 6.9 The ALU with its bypass unit. The contents of the buffer are shown at the 
point where the AND instruction of the code sequence in Figure 6.8 is about to begin the EX 
stage. The ADD instruction that computed R1 (in the second buffer) is in its WB stage, and 
the left input multiplexer is set to pass the just-computed value of R1 (not the value read 
from the register file) as the first operand to the AND instruction. The result of the subtract, 
R4, is in the first buffer. These buffers correspond to the variables ALUoutput and 
ALUoutputl in Figures 6.3 and 6.4. 
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A hazard is created whenever there is a dependence between instructions, and 
they are close enough that the overlap caused by pipelining would change the 
order of access to an operand. Our example hazards have all been with register 
operands, but it is also possible for a pair of instructions to create a dependence 
by writing and reading the same memory location. In our DLX pipeline, how­
ever, memory references are always kept in order, preventing this type of hazard 
from arising. Cache misses could cause the memory references to get out of 
order if we allowed the processor to continue working on later instructions while 
an earlier instruction that missed the cache was accessing memory. For DLX's 
pipeline we just stall the entire pipeline, effectively making the instruction that 
contained the miss run for multiple clock cycles. In an advanced section of this 
chapter, Section 6. 7, we will discuss machines that allow loads and stores to be 
executed in an order different from that in the program. All the data hazards dis­
cussed in this section, however, involve registers within the CPU. 

Forwarding can be generalized to include passing a result directly to the func­
tional unit that requires it: A result is forwarded from the output of one unit to 
the input of another, rather than just from the result of a unit to the input of the 
same unit. Take, for example, the following sequence: 

ADD Rl,R2,R3 
SW 25(Rl),Rl 

To prevent a stall in this sequence, we would need to forward the value of R,1 
from the ALU both to the ALU, so ,that it can be used in the effective address 
calculation, and to the MDR (memory data register), so that it can be stored 
without any stall cycles. 

Data hazards may be classified as one of three types, depending on the order 
of read and write accesses in the instructicms. By convention, the hazards are 
named by the ordering in the program that must be preserved by the pipeline. 
Consider two instructions i and j, with i occurring before j. The possible data 
hazards are: 

• RAW (read after write) - j tries to read a source before i writes it, so j 
incorrectly gets the old value. This is the most common type of hazard and 
the one that appears in Figures 6.6 and 6.7. 

• WAR (write after read) -j tries to write a destination before it is read by i, 
so i incorrectly gets the new value. This cannot happen in our example 
pipeline because all reads are early (in ID) and all writes are late (in WB). 
This hazard occurs when there are some instructions that write results early in 
the instruction pipeline, and other instructions that read a source after a write 
of an instruction later in the pipeline. For example, autoincrement addressing 
can create a WAR hazard. 

• WAW (write after write) -j tries to write an operand before it is written by 
i. The writes end up being performed in the wrong order, leaving the value 
writ~en by i rather than the value written by j in the destination. This hazard is 
present only in pipelines that write in more than one pipe stage (or allow an 
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instruction to proceed even when a previous instruction is stalled). The DLX 
pipeline writes a register only in WB and avoids this class of hazards. 

Note that the RAR (read after read) case is not a hazard. 
Not all data hazards can be handled without a performance effect. Consider 

the following sequence of instructions: 

LW Rl,32(R6) 

ADD R4,Rl,R7 

SUB R5,Rl,R8 

AND R6,Rl,R7 

. This case is different from the situation with back-to-back ALU operations. The 
LW instruction does not have the data until the end of the MEM cycle, while the 
ADD instruction needs to have the data by the beginning of that clock cycle. 
Thus, the data hazard from using the result of a load instruction cannot be 
completely eliminated with simple hardware. We can forward the result immedi­
ately to the ALU from the MDR, and for the SUB instruction- which begins 
two clock cycles after the load-the result arrives in time, as shown in Figure 
6.10. However, for the ADD instruction, the forwarded result arrives too late-at 
the end of a clock cycle, though it is needed at the beginning. 

LW Rl, 32 (R6) IF ID EX MEM WB 

ADD R4,Rl,R7 IF ID EX MEM 

SUB R5,Rl,R8 IF ID EX 

AND R6,Rl,R7 IF ID 

FIGURE 6.1 O Pipeline hazard occurring when the result of a load instruction is used 
by the next instruction as a source operand and is forwarded. The value is available 
when it returns from memory at the end of the load instruction's MEM cycle. However, it is 
needed at the beginning of that clock cycle for the ADD (the EX stage of the add). The load 
value can be forwarded to the SUB instruction and will arrive in time for that instruction (EX). 
The AND can simply read the value during ID since it reads the registers in the second half 
of the cycle and the value is written in the first half. 

The load instruction has a delay or latency that cannot be eliminated by for­
warding alone-to do so would require the data-access time to be zero. The most 
common solution to this problem is a hardware addition called a pipeline inter­
lock. In general, a pipeline interlock detects a hazard and stalls the pipeline until 
the hazard is cleared. In this case, the interlock stalls the pipeline beginning with 
the instruction that wants to use the data until the sourcing instruction produces 
it. This delay cycle, called a pipeline stall or bubble, allows the load data to 
arrive from memory; it can now be forwarded by the hardware. The CPI for the . 
stalled instruction increases by the length of the stall (one clock cycle in this 
case). The stalled pipeline is shown in Figure 6.11. 
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Any instruction IF ID EX MEM WB 

LW Rl, 32 (R6) IF ID EX MEM WB 

ADD R4,Rl,R7 IF ID stall EX MEM WB 

SUB R5,Rl,R8 IF stall ID EX MEM WB 

AND R6,Rl,R7 stall IF ID EX MEM WB 

FIGURE 6.11 The effect of the stall on the pipeline. All instructions starting with the instruction that has the depen­
dence are delayed. With the delay, the value of the load that returns in MEM can now be forwarded to the EX cycle of the 
ADD instruction. Because of the stall, the SUB instruction will riow read the value from the registers during its ID cycle 
rather than having it forwarded from the MOR. 

Example 

Answer 

The process of letting an instruction move from the instruction decode stage 
(ID) into the execution stage (EX) of this pipeline is usually called instruction 
issue; and an instruction that has made this step is said to have issued. For the 
DLX integer pipeline, all the data hazards can be checked during the ID phase of 
the pipeline. If ~ data hazard exists, the instruction is. stalled before it is issued. 
Later in this chapter, we will look at situations where instruction issue is much 
more complex. Detecting interlocks early in the pipeline reduces the hardware 
complexity because the hardware never has to suspend an instruction that has 
updated the state of the machine, unless the entire machine is stalled. 

Suppose that 20% of the instructions are loads, and half the time the instruction 
following a load instruction depends on the result of the load. If this hazard 
creates a single-cycle delay, how much faster is the ideal pipelined machin6 
(with a CPI of 1) that does not delay the pipeline, compared to a more realistic 
pipeline? Ignore any stalls other than pipeline stalls. 

The ideal machine will be faster by the ratio of the CPls. The CPI for an instruc­
tion following a load is 1.5, since they stall half the time. Since loads are 20% of 
the mix, the effective CPI is (0.8* 1 + 0.2* 1.5) = 1.1. This yields a performance 

ratio of \
1

. Hence, the ideal machine is 10% faster. 

vMany types of stalls are quite frequent. The typical code-generation pattern 
for a statement such as A=B+C produces a stall for a load of the second data 
value. Figure 6.12 shows that the store need not result in another stall, since the 
result of the addition can be forwarded to the MDR. Machines where the 
operands may come from memory for arithmetic operations will need to stall the 
pipeline in the middle of the instruction to wait for memory to complete its 
access. 
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LW Rl,B IF ID EX MEM WB 

LW R2,C IF ID EX MEM WB 

ADD R3,Rl,R2 IF ID stall EX MEM WB 

SW A,R3 IF stall ID EX MEM WB 

FIGURE 6.12 The DLX code sequence for A=B+C. The ADD instruction must be stalled to allow the load of C to 
complete. The sw need not be delayed further because the forwarding hardware passes the result from the ALU directly to 
the MOR for storing. 

~xample 

Answer 

Rather than just allow the pipeline to stall, the compiler could try to schedule 
the pipeline to avoid these stalls, by rearranging the code sequence to eliminate 
the hazard. For example, the compiler would try to avoid generating code with a 
load followed by an immediate use of the load destination register. This tech­
nique, called pipeline scheduling or instruction scheduling, was first used in the 
1960s, and became an area of major interest in the 1980s as pipelined machines 
became more widespread. 

Generate DLX code that avoids pipeline stalls for the following sequence: 

a = b + e; 

d = e - f; 

Assume loads have a latency of one clock cycle. 

Here is the scheduled code: 

LW Rb,b 

LW Re,e 

LW Re,e ; swapped with next instruction to avoid stall 

ADD Ra,Rb,Re 

LW Rf,f 

SW a,Ra ; store/load interchanged to avoid stall in SUB 

SUB Rd,Re,Rf 

SW d,Rd 

Both load interlocks (LW Re, e/ADD Ra, Rb, Re and LW Rf, f/S U B 
Rd, Re, Rf) have been eliminated. There is a dependence between the ALU 
instruction and the store, but the pipeline structure allows the result to be for­
warded. Notice that the use of different registers for the first and second state­
ments was critical for this schedule to be legal. In particular, if the variable e 
were loaded into the same register as b or e, this schedule would not be legal. In 
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general, pipeline scheduling can increase the register count required. In Section 
6.8, we will see that this increase can be substantial for machines that can issue 
multiple instructions in one clock. 

This technique works sufficiently well that some machines rely on software 
to avoid this type of hazard. A load requiring that the following instruction not 
use its result is called a delayed load. The pipeline slot after a load is often 
called the load delay or delay slot. When the compiler cannot schedule the inter­
lock, a no-op instruction may be inserted. This does not affect running time, but 
only increases the code space versus a machine with the interlock. Whether or 
not the hardware detects this interlock and stalls the pipeline, performance will 
be enhanced if the compiler schedules instructions. If the stall occurs, the per­
formance impact will be the same, whether the machine executes an idle cycle or 
executes a no-op. Figure 6.13 shows that scheduling can eliminate the majority 
of these delays. It is clear from this figure that load delays in GCC are signifi­
cantly harder to schedule than in Spice or TeX. 

Scheduled 
TeX 

Unscheduled 65% 

Scheduled 
Spice 

Unscheduled 

Scheduled 
GCC 

Unscheduled 

0% 10% 20% 30% 40% 50% 60% 70% 
Percentages of loads that cause pipeline stall 

FIGURE 6.13 Percentage of the loads that result in a stall with the DLX pipeline. The 
black bars show the amount without compiler scheduling; the gray bars show the effect of a 
good, but simple, scheduling algorithm. These data show scheduling effectiveness after 
global optimization (see Chapter 3, Section 3.7). Global optimization actually makes 
scheduling relatively harder because there are fewer candidates available for scheduling 
into delay slots. For example, on GCC and TeX, when the programs are scheduled but not ~ 

globally optimized, the percentage of load delays that result in a stall drops to 22% and 
19%, respectively. 

Implementing Data Hazard Detection 
in Simple Pipelines 

How pipeline interlocks are implemented depends quite heavily on the length 
and complexity of the pipeline. For a complex machine with long-running 
instructions and multicycle interdependences, a central table that keeps track of 
the availability of operands and the outstanding writes may be needed (see Sec-
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tion 6. 7). For the DLX integer pipeline, the only interlock we need to enforce is 
load followed by immediate use. This can be done with a simple comparator that 
looks for this pattern of load destination and source. The hardware required to 
detect and control the load data hazard and to forward the load result is as fol­
lows: 

• Additional multiplexers on the inputs to the ALU (just as was required for the 
bypass hardware for register-register instructions) 

• Extra paths from the MDR to both multiplexer inputs to the ALU 

• A buffer to save the destination-register numbers from the prior two instruc­
tions (the same as for register-register forwarding) 

• Four comparators to compare the two possible source register fields with the 
destination fields of the prior instructions and look for a match 

The comparators check for a load interlock at the beginning of the EX cycle. The 
four possibilities and the required actions are shown in Figure 6.14. 

For DLX, the hazard detection and forwarding hardware is reasonably sim­
ple; we will see that things become much more complicated when the pipelines 
are very deep (Section 6.6). But before we do that, let's see what happens with 
branches in our DLX pipeline. 

Situation Example code sequence Action 

No dependence LW Rl,45(R2) No hazard possible because no 
ADD R5,R6,R7 dependence exists on Rl in the 
SUB R8,R6,R7 immediately following three 
OR R9,R6,R7 instructions. 

Dependence LW Rl,45(R2) Comparators detect the use of R 1 in 
requiring stall ADD R5,Rl,R7 the ADD and stall the ADD (and SUB 

SUB R8,R6,R7 and OR) before the ADD begins EX. 
OR R9,R6,R7 

Dependence LW Rl,45(R2) Comparators detect use of Rl in SUB 
overcome by ADD R5,R6,R7 and forward result of load to ALU in 
forwarding SUB R8,Rl,R7 time for s UB to begin EX. 

OR R9,R6,R7 

Dependence LW Rl,45(R2) No action required because the read 
with accesses in ADD R5,R6,R7 of Rl by OR occurs in the second half 
order SUB R8,R6,R7 of the ID phase, while the write of the 

OR R9,Rl,R7 loaded data occurred in the first half. 
See Figure 6.8 (page 262). 

FIGURE 6.14 Situations that the pipeline hazard detection hardware can see by 
comparing the destination and sources of adjacent instructions. This table indicates 
that the only compare needed is between the destination and the sources on the two 
instructions following the instruction that wrote the destination. In the case of a stall, the 
pipeline dependences will look like the th.ird case, once execution continues. 
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Branch instruction IF 

Instruction i+ 1 

Instruction i+2 

Instruction i+ 3 

Instruction i+4 

Instruction i+5 

Instruction i+6 

6.4 The Major Hurdle of Pipelining-Pipeline Hazards 

Control Hazards 

Control hazards can cause a greater performance loss for our DLX pipeline than 
do data hazards. When a branch is executed, it may or may not change the PC to 
something other than its current value plus 4 .. (Recall that if a branch changes the 
PC to its target address, it is a taken branch; if it falls through, it is not taken, or 
untaken.) If instruction i is a taken branch, then the PC is normally not changed 
until the end of MEM, after the completion of the address calculation and com­
parison, as shown in Figure 6.4 (page 256). This means stalling for three clock 
cycles, at the end of which the new PC is known and the proper instruction can 
be fetched. This effect is called a control or branch hazard. Figure 6.15 shows a 
three-cycle stall for a control hazard. 

ID EX MEM WB 

stall stall stall IF ID EX MEM WB 

stall stall stall IF ID EX MEM WB 

stall stall stall IF ID EX MEM 
stall stall stall IF ID EX 

stall stall stall IF ID 

stall stall stall IF 

FIGURE 6.15 Ideal DLX pipeline stalling after a control hazard. The instruction' labeled instruction i+k represents the 
kth instruction executed after the branch. There is a difficulty in that the branch instruction is not decoded until after in­
struction i + 1 has been fetched. This figure shows the conceptual difficulty, while Figure 6.16 shows what really happens. 

Branch instruction IF ID EX MEM WB 

Instruction i+ 1 IF stall stall IF ID EX MEM WB 

Instruction i+2 stall stall stall IF ID EX MEM WB 

Instruction i+ 3 stall stall stall IF ID EX MEM 
Instruction i+4 stall stall stall IF ID EX. 

Instruction i+5 stall stall stall IF ID 

Instruction i+6 stall stall stall IF 

FIGURE 6.16 What might really happen in the DLX pipeline. Instruction i + 1 is fetched, but the instruction is ignored 
and the fetch is restarted once the branch target is known. It is probably obvious that if the branch is not taken; the second 
IF for instruction i + 1 is redundant. This will be addressed shortly. 

The pipeline in Figure 6.15 is not possible because. we don't know that the 
instruction is a branch until after the fetch of the next instruction. Figure 6.16 
fixes this by simply redoing the fetch once the target is known. 

Three clock cycles wasted for every branch is a significant loss. With a 30% 
branch frequency and an ideal CPI of 1, the machine with branch stalls achieves 

I· 

INTEL Ex.1035.302



Pipelining 271 

only about half the ideal speedup from pipelining. Thus, reducing the branch 
penalty becomes critical. The number of clock cycles in a branch stall can be 
reduced in two steps: 

1. Find out whether the branch is taken or not earlier in the pipeline. 

2. Compute the taken PC (address of the branch target) earlier. 

To optimize the branch behavior, both of these must be done-it doesn't help to 
know the target of the branch without knowing whether the next instruction to 
execute is the target or the instruction at PC+4. Both steps sh01:1ld be taken as 
early in the pipeline as possible. 

In DLX, the branches (BEQZ and BNEZ) require testing only equality to zero. 
Thus, it is possible to complete this decision by the end of the ID cycle using 
special logic devoted to this test. To take advantage of an early decision on 
whether the branch is taken, both PCs (taken and not taken) must be computed 
early. Computing the branch target address requires a separate adder, which can 
add during ID. With the separate adder and a branch decision made during ID, 
there is only a one-clock-cycle stall on branches. Figure 6.17 shows the branch 
portion of the revised resource allocation table from Figure 6.4 (page 256). 

In some machines, branch hazards are even more expensive in clock cycles 
than in our example, since the time to evaluate the branch condition and com­
pute the destination can be even longer. For example, a machine with separate 

Pipe stage Branch instruction 

IF IRf-Mem[PC]; 
PCf-PC+4; 

ID Af-Rsl; Bf- Rs2; PClf- PC; IRlf- IR; 
16 

BTAf-PC+ ( (IR16) ## IR16 .. 31) 
if (Rsl op 0) PCf-BTA 

EX 

MEM 

WB 

FIGURE 6.17 Revised pipeline structure (see Figure 6.4, page 256) showing the use 
of a separate adder to compute the branch target address. The operations that are new 
or have changed are in bold. Because the branch target address (BTA) addition happens 
during ID, it will happen for all instructions; the branch condition (Rs1 op 0) will also be 
done for all instructions. The last operation in ID is to replace the PC. We must know that 
the instruction is a branch before we perform this step. This requires decoding the 
instruction before the end of ID, or doing this operation at the very beginning of EX when . 
the PC is sent out. Because the branch is done by the end of ID, the EX, MEM, and WB 
stages are unused for branches. An additional complication arises for jumps that have a 
longer offset than branches. We can resolve this by using an additional adder that sums the 
PC and lower 26 bits of the IR. Alternatively, we could attempt a clever scheme that does a 
16-bit add in the first half of the cycle and determines whether to add in 10 bits from IR in 
the second half of the cycle, by decoding the jump opcodes early. 
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decode and register fetch stages will probably have a branch delay-the length 
of the control hazard-that is at least one clock cycle longer. The branch delay, 
unless it is dealt with, turns into a branch penalty. Many VAXes have branch 
delays of four clock cycles or more, and large, deeply pipelined machines often 
have branch penalties of six or seven. In general, the deeper the pipeline, the 
worse the branch penalty in clock cycles. Of course, the relative performance 
effect of a longer branch penalty depends on the overall CPI of the machine. A 
high CPI machine can afford to have more expensive branches because the per­
centage of the machine's performance that will be lost from branches is less. 

Before talking about methods for reducing the pipeline penalties that can 
arise from branches, let's take a brief look at the dynamic behavior of branches. 

Branch Behavior in Programs 

Since branches can dramatically affect pipeline performance, we should look at 
their behavior so as to get some ideas about how the penalties of branches and 
jumps might be reduced. We already know the branch frequencies for our pro­
grams from Chapter 4. Figure 6.18 reviews the overall frequency of control-flow 
operations for three of the machines and gives the breakdown between branches 
and jumps. 

All of the machines show a conditional branch frequency of 11 %-17%, while 
the frequency of unconditional branches varies between 2% and 8%. An obvious 

DLX 

Intel 8086 

VAX 

Unconditional 

Conditional 

Unconditional 

Conditional 

Unconditional 

Conditional 17% 

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 
Percentage of occurrence 

FIGURE 6.18 The frequency of instructions (branches, jumps, calls, and returns) 
that may change the PC. These data represent the average over the programs measured 
in Chapter 4. Instructions are divided into two classes: branches, which are conditional 
(including loop branches), and those that are unconditional uumps, calls, and returns). The 

.360 is omitted because the ordinary unconditional branches are not separated from the 
conditional branches. Erner and Clark [1984] reported that 38% of the instructions executed 
in their measurements of the VAX were instructions that could change the PC. They 
measured that 67% of these instructions actually cause a branch in control flow. Their data 
were taken on a timesharing workload and reflect many uses; their measurement of branch 
frequency is much higher than the one in this chart. 
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Untaken branch instruction 

Instruction i+ 1 

Instruction i+2 

Instruction i+ 3 

Instruction i+4 

Taken branch instruction 

Instruction i+ 1 

Instruction i+2 

Instruction i+3 

Instruction i+4 
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question is, how many of the branches are taken? Knowing the breakdown 
between taken and untaken branches is important because this will affect 
strategies for reducing the branch penalties. For the VAX, Clark and Levy 
[1984] measured simple conditional branches to be taken with a frequency of 
just about 50%. Other branches, which occur much less often, have different 
ratios. Most bit-testing branches are not taken, and loop branches are taken with 
about 90% probability. 

For DLX, we measured the branch behavior in Chapter 3 and summarized it 
in Figure 3.22 (page 107). That data showed 53% of the conditional branches are 
taken. Finally, 75% of the branches executed are forward-going branches. With 
this data in mind, let's look at ways to reduce branch penalties. 

Reducing Pipeline Branch Penalties 

There are several methods for dealing with the pipeline stalls due to branch 
delay, and four simple compile-time schemes are discussed in this section. In 
these schemes the predictions are static-they are fixed for each branch during 
the entire execution, and the predictions are compile-time guesses. More ambi­
tious schemes using hardware to predict branches dynamically are discussed in 
Section 6.7. 

The easiest scheme is to freeze the pipeline, holding any instructions after the 
branch until the branch destination is known. The attractiveness of this solution 
lies primarily in its simplicity. It is the solution used earlier in the pipeline 
shown in Figures 6.15 and 6.16. 

A better and only slightly more complex scheme is to predict the branch as 
not taken, simply allowing the hardware to continue as if the branch were not 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF IF ID EX MEM WB 

stall IF ID EX MEM WB 

stall IF ID EX MEM WB 

stall IF ID EX MEM 

FIGURE 6.19 The predict-not-taken scheme and the pipeline sequence when the branch is untaken (on the top) 
and taken (on the bottom). When the branch is untaken, determined during ID, we have fetched the fall through and just 
continue. If the branch is taken during ID, we restart the fetch at the branch target. This causes all instructions following 
the branch to stall one clock cycle. 
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executed. Here, care must be taken not to change the machine state until the 
branch outcome is definitely known. The complexity that arises from this-that 
is, knowing when the state might be changed by an instruction and how to "back 
out" a change-might cause us to reconsider the simpler solution of flushing the 
pipeline. In the DLX pipeline, this predict-not-taken scheme is implemented by 
continuing to fetch instructions as if the branch were a normal instruction. The 
pipeline looks as if nothing out of the ordinary is happening. If the branch is 
taken, however, we need to stop the pipeline and restart the fetch. Figure 6.19 
shows both situations. 

(a) From before 

ADD R1, R2, R3 

if R2 = o then -----. 

Becomes 

if R2 = o then ----. 

(b) From target 

SUB R4, RS, RJ 

ADD R1, R2, R3 

if R1 = O then 

Becomes 

ADD R1, R2,=---1 

if R1 = o then R.:__j 

(c) From fall through 

ADD R1, R2, R3 

if R1 = O then -----. 

SUB R4, RS, R6 

Becomes 

ADD R1, R2, R3 

if R1 = O then ----. 

FIGURE 6.20 Scheduling the branch-delay slot. The top picture in each pair shows the 
code before scheduling, and the bottom picture shows the scheduled code. In (a) the delay 
slot is scheduled with an independent instruction from before the branch. This is the best 
choice. Strategies (b) and (c) are used when (a) is not possible. In the code sequences for 
(b) and (c), the use of Rl in the branch condition prevents the ADD instruction (whose des­
tination is Rl) from being moved after the branch. In (b) the branch-delay slot is scheduled 
from the target of the branch; usuq.lly the target instruction will need to be copied becaus.e it 
can be reached by another path. Strategy (b) is preferred when the branch is taken with 
high probability, such as a loop branch. Finally, the branch may be scheduled from the not­
taken fall through, as in (c). To make this optimization legal for (b) or (c), it must be "OK" to 
execute the SUB instruction when the branch goes in the unexpected direction. By "OK" we 
mean that the work is wasted, but the program will still execute correctly. This is the case, 
for example, if R4 were a temporary register unused when the branch goes in the 
unexpected direction. 
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(a) From before branch 

(b) From target 

( c) From fall through 
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An alternative scheme is to predict the branch as taken. As soon as the branch 
is decoded and the target address is computed, we assume the branch to be taken 
and begin fetching and executing at the target. Since in our DLX pipeline we 
don't know the target address any earlier than we know the branch outcome, 
there is no advantage in this approach. However, in some machines--especially 
those with condition codes or more powerful (and hence slower) branch condi­
tions-the branch target is known before the branch outcome, and this scheme 
makes sense. 

Some machines have used another technique called delayed branch, which 
has been used in many microprogrammed control units. In a delayed branch, the 
execution cycle with a branch delay of length n is: 

branch instruction 

sequential successor1 

sequential successor2 

sequential successorn 

branch target if taken 

The sequential successors are in the branch-delay slots. As with load-delay slots, 
the job of the software is to make the successor instructions valid and useful. A 
number of optimizations are used. Figure 6.20 shows the three ways in which 
the branch delay can be scheduled. Figure 6.21 shows the different constraints 
for each of these branch-scheduling schemes, as well as situations in which they 
win. 

The primary limitations on delayed-branch scheduling arise from the restric­
tions on the instructions that are scheduled into the delay slots and from our . 
ability to predict at compile time whether a branch is likely to be taken or not. 
Figure 6.22 shows the effectiveness of the branch scheduling in DLX with a sin­
gle branch-delay slot using a simple branch-scheduling algorithm. It shows that 

Requirements Improves performance when? 

Branch must not depend on the rescheduled Always. 
instructions. 

Must be OK to execute.rescheduled instructions if When branch is taken. May en-
branch is not taken. May need to duplicate instruc- large program if instructions are 
tions. duplicated. 

Must be OK to execute instructions if branch is When branch is not taken. 
taken. 

FIGURE 6.21 Delayed-branch-scheduling schemes and their requirements. The origin of the instruction being 
scheduled into the delay slot determines the scheduling strategy. The compiler must enforce the requirements when look­
ing for instructions to schedule the delay slot. When the slots cannot be scheduled, they are filled with no-op instructions. 
In strategy (b), if the branch target is also accessible from another point in the program-as it would be if it were the head 
of a loop-the target instructions must be copied and not just moved. 
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TeX 
Delay slots usefully filled 

Delay slots filled 

Spice 
Delay slots usefully filled 

Delay slots filled 

GCC 
Delay slots usefully filled 

Delay slots filled 

0% 10% 20% 30% 40% 50% 60% 
Percentage of all branch-delay slots 

FIGURE 6.22 Frequency with which a single branch-delay slot is filled and how 
often the instruction is useful to the computation. The solid bar shows the percentage 
of the branch-delay slots occupied by some instruction other than a no-op. The difference 
between 100% and the dark column represents those branches that are followed by a no­
op. The shaded bar shows how often those instructions do useful work. The difference 
between the shaded and solid bars is the percentage of instructions executed in a branch 
delay but not contributing to the computation. These instructions occur because optimiza­
tion (b) is only useful when the branch is taken. If optimization (c) were used it would also 
contribute to this difference, since it is only useful when the branch is not taken. 

slightly more than half the branch-delay slots are filled, and most of the filled 
slots do useful work. On average about 80% of the filled delay slots contribute 
to the computation. This number seems surprising, since branches are only taken 
about 53% of the time. The success r~te is high because about one-half of the 
branch delays are being filled with an instruction from before the branch 
(strategy (a)), which is useful independent of whether the branch is taken. 

When the scheduler in Figure 6.22 cannot use strategy (a)-moving an 
instruction from before the branch to fill the branch-delay slot-it uses only 
strategy (b )-moving it from the target. (For simplicity reasons, the schedule 
does not use strategy (c).) In total, nearly half the branch-delay slots are 
dynamically useful, eliminating one-half the branch stalls. Looking at Figure · 
6.22 we see that the primary limitation is the number of empty slots-those 
filled with no-ops. It is unlikely that the ratio of useful slots to filled slots, about 
80%, can be improved, since this would require much better accuracy in 
predicting branches. In the Exercises we consider an extension of the delayed: 
branch idea that tries to fill more slots. 

There is a small additional hardware cost for delayed branches. Because of 
the delayed effect of branches, multiple PCs (one plus the length of the delay) 
are needed to correctly restore the state when an interrupt occurs. Consider when 
the interrupt occurs after a taken-branch instruction is completed, but before all 
the instructions in the delay slot; and the branch target are completed. In this 
case, the PC's of the delay slots and the PC of the branch target must be saved, 
since they are not sequential. 
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What is the effective performance of each of these schemes? The effective 
pipeline speedup with branch penalties is 

P
. 

1
. d Ideal CPI * Pipeline depth 

1pe me spee up = . . 
Ideal CPI + P1pelme stall cycle 

If we assume that the ideal CPI is 1, then we can simplify this: 

p· r d Pipeline depth 
ipe me spee up = 1 + Pipeline stall cycles from branches 

Since 

Pipeline stall cycles from branches = Branch frequency * Branch penalty 

we obtain: 

P
. 1. d Pipeline depth 
1pe me spee up = 

(1 +Branch frequency* Branch penalty) 

Using the DLX measurements in this section, Figure 6.23 shows several 
hardware options for dealing with branches, along with their performances 
(assuming a base CPI of 1). 

Scheduling scheme Branch Effective Pipeline Pipeline 
penalty CPI speedup over speedup over 

nonpipelined stall pipeline 
machine on branch 

Stall pipeline 3 1.42 3.52 1.00 

Predict taken 1 1.14 4.39 1.25 

Predict not taken 1 1.09 4.59 1.30 

Delayed branch 0.5 1.07 4.67 1.33 

FIGURE 6.23 Overall costs of a variety of branch schemes with the DLX pipeline. 
1hese data are for our DLX pipeline using the measured control-instruction frequency of 
14% and the measurements of delay-slot filling from Figure 6.22. In addition, we know that 
65% of the control instructions actually change the PC (taken branches plus unconditional 
changes). Shown are both the resultant CPI and the speedup over a nonpipelined machine, 
which we assume would have a CPI of 5 without any branch penalties. The last column of 
the table gives the speedup over a scheme that always stalls on branches. 

Remember that the numbers in this section are dramatically affected by the 
length of the pipeline delay and the base CPI. A longer pipeline delay will cause 
an increase in the penalty and a larger percentage of wasted time. A delay of 
only one clock cycle is small-many machines have minimum delays of five or 
more. With a low CPI, the delay must be kept small, while a higher base CPI 
would reduce the relative penalty from branches. 
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Summary: Performance of the 
DLX Integer Pipeline 

We close this section on hazard detection and elimination by showing the total 
distribution of idle clock cycles for our benchmarks when run on the DLX inte­
ger pipeline with software for pipeline scheduling. Figure 6.24 shows the distri­
bution of clock cycles lost to load delays ·and branch delays in our three 
programs, by combining the separate measurements shown in Figures 6.13 (page 
268) and 6.22. 

TeX 

Spice 

GCC 

Branch-delay stall cycles 

Load~delay stall cycles 

Branch-delay stall cycles 

Load-delay stall cycles 

Branch-delay stall cycles 

Load-delay stall cycles 

0% 

11% 

2% 4% 6% 8% 10% 12% 
Percentage of all cycles in execution 

FIGURE 6.24 Percentage of the clock cycles spent on delays versus executing 
instructions. This assumes a perfect memory system; the clock-cycle count and 
instruction count would be identical if there were no integer pipeline stalls. This graph says 
that from 7% to 15% of the clock cycles are stalls; the remaining 85% to 93% are clock 
cycles that issue instructions. The Spice clock cycles do not include stalls in the FP 
pipeline, which will be shown at the end of Section 6.6. The pipeline scheduler fills load 
delays before branch delays and this affects the distribution of delay cycles. 

For the GCC and TeX programs, the effective CPI (ignoring any stalls except 
those from pipeline hazards) on this pipelined version of DLX is 1.1. Compare 
this to the CPI for the complete nonpipelined, hardwired version of DLX 
described in Chapter 5 (Section 5.7), which is 5.8. Ignoring all other sources o'f 
stalls and assuming that the clock rates will be the same, the performance 
improvement from pipelining is 5.3 times. 

6.5 I What Makes Pipelining Hard to Implement 

Now that we understand how to detect and resolve hazards, we can deal with 
some complications that we have avoided so far. In Chapter 5 we saw that inter~ 
rupts are among the most difficult aspects of implementing a machine; pipelin­
ing increases that difficulty. In the second part of this section, we discuss some 
of the challenges raised by different instruction sets. 
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Dealing with Interrupts 

Interrupts are harder to handle in a pipelined machine because the overlapping of 
instructions makes it more difficult to know whether an instruction can safely 
change the state of the machine. In a pipelined machine, an instruction is exe­
cuted piece by piece and is not completed for several clock cycles. Yet in the 
process of executing it may need to update the machine state. Meanwhile, an 
interrupt can force the machine to abort the instruction's execution before it is 
completed. 

As in nonpipelined implementations, the most difficult interrupts have two 
. properties: (1) they occur within instructions, and.(2) they must be restartable. In 

our DLX pipeline, for example, a virtual memory page fault resulting from a 
data fetch cannot occur until sometime in the MEM cycle of the instruction. By 
the time that fault is seen, several other instructions will be in execution. Since a 
page fault must be restartable and requires the intervention of another process, 
such as the operating system, the pipeline must be safely shut down and the state 
saved so that the instruction can be restarted in the correct state. This is usually 
implemented by saving the PC of the instruction (during IF) to restart it. If the 
restai:ted instruction is not a branch then we will continue to fetch the sequential 
successors and begin their execution in the normal fashion. If the restarted 
instruction is a branch, then we will evaluate the branch condition and begin 
fetching from either the target or the fall through. When an interrupt occurs, we 
can take the following steps to save the pipeline state safely: 

1. Force a trap instruction into the pipeline on the next IF. 

2. Until the trap is taken, tum off all writes for the faulting instruction and for 
all instructions that follow in the pipeline. This prevents any state changes for 
instructions that will not be completed before the interrupt is handled. 

3. After the interrupt-handling routine in the operating system receives control, 
it immediately saves the PC of the faulting instruction. This value will be used to 
return from the interrupt later. 

When we use delayed branches it is no longer possible to re-create the state 
of the machine with the single PC of the interrupted instruction, because the 
instructions in the pipeline may not be sequentially related. In particular, when 
the instruction that causes the interrupt is a branch-delay slot, and the branch 
was taken, then the instructions to restart are those in the slot plus the instruction 
at the branch target. The branch itself has completed execution and is not 
restarted. The addresses of the instructions in the branch-delay slot and the target 
are not sequential. So we need to save and restore a number of PCs that is one 
more than the length of the branch delay. This is done in the third step above. 

After the interrupt has been handled, special instructions return the machine 
from the interrupt by reloading the PCs and restarting the instruction stream 
(using RFE in DLX). If the pipeline can be stopped so that the instructions just 
before the faulting instruction are completed and those after it can be restarted 
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from scratch, the pipeline is said to have precise interrupts. Ideally, the faulting 
instruction would not have changed the state, and correctly handling some inter­
rupts requires that the faulting instruction have no effects. For other interrupts, 
such as floating-point exceptions, the faulting instruction on some machines 
writes its result before the interrupt can be handled. In such cases, the hardware 
must be prepared to retrieve the source operands, even if the destination is iden­
tical to one of the source operands. 

Supporting precise interrupts is a requirement in many systems, while in 
others it is valuable because it simplifies the operating system interface. At a 
minimum, any machine with demand paging or IEEE arithmetic trap handlers 
must make its interrupts precise, either in the hardware or with some software 
support. 

Precise interrupts are challenging because of the same problems that make 
instructions difficult to restart. As we saw in the last chapter, restarting is com­
plicated by the fact that instructions can change the state of the machine before 
they are guaranteed to complete (sometimes called committed instructions). 
Because instructions in the pipeline may have dependences, not updating the 
machine state is impractical if the pipeline is to keep going. Thus, as a machine 
is more heavily pipelined, it becomes necessary to be able to back out of any 
state changes made before the instruction is committed·(as discussed in Chapter 
5)~ Fortunately, DLX has no such instructions, given the pipeline we have used. 

Figure 6.25 (page 281) shows the DLX pipeline stages and which "problem" 
interrupts might occur in each stage. Because in pipelining there are multiple 
instructions in execution, multiple interrupts may occur on the same clock cycle. 
For example, consider this instruction sequence: 

IF ID 

IF 

EX 

ID 

MEM 

EX 

WB 

MEM WB 

This pair of instructions can cause a data page fault and an arithmetic interrupt at 
the same time, since the LW is in MEM while the ADD is in EX. This case can be 
handled by dealing with only the data page fault and then restarting the 
execution. The second interrupt will reoccur (but not the first, if the software is 1 

correct), and when it does it can be handled independently. 
In reality, the situation is not all this straightforward. Interrupts may occur out 

of order; that is, an instruction may cause an interrupt before an earlier instruc- , 
tion causes one. Consider again the above sequence of instructions LW; ADD.' 

The LW can get a data page fault, seen when the instruction is in MEM, and the 
ADD can get an instruction page fault, seen when the ADD instruction is in IF. 
The instruction page fault will actually occur first, even though it is caused by a 
later instruction! This situation can be resolved in two ways. To explain them,· 
let's call the instruction in the position of the LW "instruction i" and the instruc­
tion in the position of the ADD "instruction i+ l." 

/ 
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Pipeline stage Problem interrupts occurring 

IF Page fault on instruction fetch; misaligned memory access; 
memory-protection violation 

ID Undefined or illegal opcode 

EX Arithmetic interrupt 

MEM Page fault on data fetch; misaligned memory access; 
memory-protection violation 

WB None 

FIGURE 6.25 Interrupts from Chapter 5 tha' cause stop and restart of the DLX 
pipeline in a transparent fashion. The pipelire stage where these interrupts occur is also 
shown. Interrupts raised from instruction or data-memory access account for six out of 
seven cases. These interrupts and their corresponding names in other processors are in 
Figures 5.9 and 5.11. 

The first approach is completely precise and is the simplest to understand for 
the user of the architecture. The hardware posts each interrupt in a status vector 
carried along with each instruction as it goes down the pipeline. When an 
instruction enters WB (or is about to leave MEM), the interrupt status vector is 
checked. If any interrupts are posted, they are handled in the order in which they 
would occur in time-the interrupt corresponding to the earliest instruction is 
handled first. This guarantees that all interrupts will be seen on instruction i be­
fore any are seen on i+ 1. Of course, any action taken on behalf of instruction i 
may be invalid, but because no state is changed until WB, this is not a problem 
in the DLX pipeline. Nevertheless, pipeline control may want to disable any 
actions on behalf of an instruction i (and its successors) as soon as the interrupt 
is recognized. For pipelines that could update state earlier than WB, this dis­
abling is required. 

The second approach is to handle an interrupt as soon as it appears. This 
could be regarded as slightly less precise because interrupts occur in an order 
different from the order they would occur in if there were no pipelining. Figure 
6.26 shows two interrupts occurring in the DLX pipeline. Because the interrupt 
at instruction i+ 1 is handled when it appears, the pipeline must be stopped 
immediately without completing any instructions that have yet to change state. 
For the DLX pipeline, this will be i-2, i-1, i, and i+ 1, assuming the interrupt is 
recognized at the end of the IF stage of the ADD instruction. The pipeline is then 
restarted with instruction i-2. Since the instruction causing the interrupt can be 
any of i-2, ... , i+ 1, the operating system must determine which instruction 
faulted. This is easy to figure out if the type of interrupt and its corresponding 
pipe stage are known. For example, only i+ 1 (the ADD instruction) could get an 
instruction page fault at this point, and only i-2 could get a data page fault. After 
handling the fault for i+ 1 and restarting at i-2, the data page fault will be en­
countered on instruction i, which will cause i, ... , i+3 to be interrupted. The data 
page fault can then be handled. 
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Instruction i-3 IF ID EX MEM WB 

Instruction i-2 IF ID EX MEM WB 
Instruction i-1 IF ID EX MEM WB 
Instruction i (LW) IF ID EX MEM WB 
Instruction i+ 1 (ADD) IF ID EX MEM WB 
Instruction i+2 IF ID EX MEM WB 

Instruction i-3 IF ID EX MEM WB 

Instruction i-2 IF ID EX MEM WB 

Instruction i-1 IF ID EX MEM WB 

Instruction i (LW) IF ID EX MEM WB 
Instruction i+l (ADD) IF . ID EX MEM WB 
Instruction i+ 2 IF ID EX MEM WB 
Instruction i+ 3 IF ID EX MEM 
Instruction i+4 IF ID EX 

FIGURE 6.26 The actions taken for interrupts occurring at different points in the pipeline and handled 
immediately. This shows the instructions interrupted when an instruction page fault occurs in instruction i+ 1 (in the fop 
diagram), and a data page fault in instruction i in the bottom diagram. The pipe stages in bold are the cycles during which 
the interrupt is recognized. The pipe stages in italics are the instructions that will not be completed due to the interrupt, 
and will need to be restarted. Because the earliest effect of the interrupt is on the pipe stage after it occurs, instructions 
that are in the WB stage when the interrupt occurs will complete, while those that have not yet reached WB will be 
stopped and restarted. 

Instruction Set Complications 

Another set of difficulties arises from odd bits of state that may create additional 
pipeline hazards or may require extra hardware to save and restore. Condition 
codes are a good example of this. Many machines set the condition codes . , 
implicitly as part of the instruction. At first glance, this looks like a good idea, 
since condition codes decouple the evaluation of the condition from the actual 1 

branch. However, implicitly set condition codes can cause difficulties in making 
branches fast. They limit the effectiveness of branch scheduling because most 
operations will modify the condition code, making it hard to schedule instruc- . 
tions between the setting of the condition code and the branch. Furthermore, in 
machines with condition codes, the processor must decide when the branch con­
dition is fixed. This involves finding out when the condition code has been set 
for the last time prior to the branch. On the VAX, most instructions set the con­
dition code, so that an implementation will have to stall if it tries to determine 
the branch condition early. Alternatively, the branch condition can be evaluated 
by the branch late in the pipeline, but this still leads to a long branch delay. On 
the 360/370 many, but not all, instructions set the condition codes. Figure 6.27 
shows how the situation differs on the 'bLX, the VAX, and the 360 for the fol-
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lowing C code sequence, assuming that b and d are initially in registers R2 and 
R3 (and should not be destroyed): 

DLX 

ADD Rl,R2,R3 

... 
SW a,Rl 

... 
BEQZ R2,label 

a = b + d; 

if (b==O) 

VAX 

ADDL3 a,R2,R3 

. .. 
CL R2,0 

BEQL label 

IBM360 

LR Rl,R2 

AR Rl,R3 

ST a,Rl 

. .. 
LTR R2,R2 

BZ label 

FIGURE 6.27 Code sequence for the above two statements. Because the ADD com­
putes the sum of b and d, and the branch condition depends only on b, an explicit compare 
(on R2} is needed on the VAX and 360. On DLX, the branch depends only on R2 and can 
be arbitrarily far away from it. (In addition the sw could be moved into the branch-delay 
slot.) On the VAX all ALU operations and moves set the condition codes, so that a compare 
must be right before the branch. On the 360, for this example the instruction load and test 
register (L TR) is used to set the condition code. However, most loads on the 360 do not set 
the condition codes; thus, a load (or a store) could be moved between the L TR and the 
branch. 

Provided there is lots of hardware to spare, all instructions before the branch · 
in the pipeline can be examined to decide when the branch is determined. Of 
course, architectures with explicitly set condition codes avoid this difficulty. 
However, pipeline control must still track the last instruction that sets the 
condition code to know when the branch condition is decided. In effect, the 
condition code must be treated as an operand requiring hazard detection for 
RAW hazards on branches, just as DLX must do on the registers. 

A final thorny area in pipelining is multicycle operations. Imagine trying to 
pipeline a sequence of VAX instructions such as this: 

MOVL Rl,R2 

ADDL3 42(Rl),56(Rl)+,@(Rl) 

SUBL2 R2,R3 

MOVC3 @ (Rl) [R2], 74 (R2) ,R3 

These instructions differ radically in the number of clock cycles they will 
require, from as low as one lip to hundreds of clock cycles. They also require 
different numbers of data memory accesses, from zero to possibly hundreds. 
Data hazards are very complex and occur both between and within instructions. 
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The simple solution of making all instructions execut~ for the same number of 
clock cycles is unacceptable because it introduces an enormous number of 
hazards and bypass conditions, and makes an immensely long pipeline. 
Pipelining the VAX at the instruction level is difficult (as we will see in Section 
6.9), but a clever solution was found by the VAX 8800 designers. They pipeline 
the microinstruction execution; because the microinstructions are simple (they 

. look a lot like DLX), the pipeline control is much easier. While it is not clear 
that this approach can achieve quite as low a CPI as an instruction-level pipeline 
for the VAX, it is much simpler, possibly leading to a shorter clock cycle time. 

Load/store machines that have simple operations with similar amounts of 
work pipeline more easily. If architects realize the relationship between instruc­
tion set design and pipelining, they can design architectures for more. efficient 
pipelining. In the next section we will see how the DLX pipeline deals with 
long-running instructions. 

6.& j Extending the DLX Pipeline to 
Handle Multicycle Operations 

We now want to explore how our DLX pipeline can be extended to handle float­
ing-point operations. This section concentrates on the basic approach and the 
design alternatives, and closes with some performance measurements of a DLX 
floating-point pipeline. 

It is impractical to require that all DLX floating-point operations complete in ,, 
one clock cycle, or even in two. Doing so would mean either accepting a slow 
clock or using enormous amounts of logic ih the floating-point units, or both. 
Instead, the floating-point pipeline will allow for a longer latency for operations. 
This is easier to grasp if we imagine the floating-point instructions as having the 
same pipeline as the integer instructions, with two important changes. First, the 
EX cycle may be repeated as many times as needed to complete the operation;_ 
the number of repetitions can vary for different operations. Second, there may be 
multiple floating-point functional units. A stall will occur if the instruction to be , 
issued will either cause a structural hazard for the functional unit it uses or cause 
a data hazard. 

For this section let's assume that there are four separate functional units in 
our DLX implementation: 

1. The main integer unit 

2. FP and integer multiplier 

3. FP adder 

4. FP and integer divider 

The integer unit handles all loads and stores to either register set, all the integer 
operations (except multiply and divide), and branches. For now we wili also 
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assume that the execution stages of the other functional units are not pipelined, 
so that no other instruction using the functional unit may issue until the previous 
instruction leaves EX. Moreover, if an instruction cannot proceed to the EX 
stage, the entire pipeline behind that instruction will be stalled. Figure 6.28 
shows the resulting pipeline structure. In the next section we will deal with 
schemes that allow the pipeline to progress when there are more functional units 
or when the functional units are pipelined. 

EX 

IF ID MEM WB 

FIGURE 6.28 The DLX pipeline with three additional nonpipelined, floating-point, 
functional units. Because only one instruction issues on every clock cycle, all instructions 
go through the standard pipeline for integer operations. The floating-point operations simply 
loop when they reach the EX stage. After they have finished the EX stage, they proceed to 
MEM and WB to complete execution . 

.Since the EX stage may be repeated many times-30 to 50 repetitions for a 
floating-point divide would not be unreasonable-we must find a way to track 
long potential dependences and resolve hazards that last over tens of clock 
cycles, rather than just one or two. There is also the overlap between integer and 
floating-point instructions to deal with. However, overlapped integer and FP 
instructions do not complicate hazard detection, except on floating-point mem­
ory references and moves between the register sets. This is because, except for 
these memory references and moves, the FP and integer registers are distinct, 
and all integer instructions operate on the integer registers while the floating­
point operations operate only on their own registers. This simplification of 
pipeline control is a major advantage of having separate register files for integer 
and floating-point data. 
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For now, let's assume that all floating-point operations take the same number 
of clock cycles-say 20 in the EX stage. What kind of hazard-detection circuitry 
will we need? Because all operations take the same amount of time, and register 
reads and writes always occur in the same stage, only RAW hazards are pos­
sible; no WAR or WA W hazards can occur. Thus, all we need to track is the 
destination register of each active functional unit. When we want to issue a new 

·floating-point instruction, we take the following steps: 

1. Check for structural hazard-Wait until the required functional unit is not 
busy. 

2. Checkfor a RAW data hazard-Wait until the source registers are not listed 
as destinations by any of the EX stages in the functional units. 

3. Check for forwarding-Test if the destination register of an instruction in 
MEM or WB is one of the source registers of the floating-point instruction; if 
so, enable the input multiplexer to use that result, rather than the register 
contents. 

There is a small complication arising from conflicts between floating-point loads 
and floating-point operations when they both reach the WB stage simulta- ,: 
neously. We will deal presently with this situation in a more general fashion. 

The above discussion assumes that the PP-functional-unit execution times 
were all the same. However, this does not hold up under practical scrutiny: 
Floating-point adds can typically be done in less than 5 clock cycles, multiplies 
in less than 10, and divides in about 20 or more. What we want is to allow the 
execution times of the functional units to differ, while still allowing the func­
tional units to overlap execution. This would not change the basic structure of 
the pipeline in Figure 6.28, though it may cause the number of iterations around 
the loops to vary. Overlapping the execution of instructions whose running times 
differ, however, creates three complications: contention for register access at the 
end of the pipeline, the possibility of WAR and WA W hazards, and greater dif­
ficulty in providing precise interrupts. 

We have already seen that FP loads and FP operations can contend for the 
floating-point register file on writes. When floating-point operations vary in , 
execution time, they can also collide when trying to write results. This problem 
can be resolved by establishing a static priority for use of the WB stage. If mul­
tiple instructions wish to enter the MEM stage simultaneously, all instructions 
except the one with the highest priority are stalled in their EX stage. A simple, 
though sometimes suboptimal, heuristic is to give priority to the unit with the 
longest latency, since that is the one most likely to be the cause of the bottle­
neck. Although this scheme is reasonably simple to implement, this change to 
the DLX pipeline is quite significant. In the integer pipeline, all hazards were 
checked before the instruction issued to the EX stage. With this scheme for 
determining access to the result write port, instructions can stall after they issue. 

Overlapping instructions with different execution times could introduce 
WAR and WA W hazards into our DLX pipeline, because the time at which 
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instructions write is no longer fixed. If all instructions still read their registers at 
the same time, no WAR hazards will be introduced. 

WA W hazards are introduced because instructions can write their results in a 
different order than they appear. For example, consider the following code 
sequence: 

DIVF 

SUBF 

F0,F2,F4 

FO,F8,Fl0 

A WA W hazard occurs between the divide and the subtract operations: The sub­
tract will complete first, writing its result before the divide writes its result. Note 
that this hazard only occurs when the result of the divide will be overwritten 
without any instruction ever using it! If there were a use of FO between the 
DIVF and the SUBF, the pipeline would stall because of a data dependence, and 
the SUBF would not issue until the D IVF was completed. We could argue that, 
for our pipeline, WA W hazards only occur when a useless instruction is exe­
cuted, but we must still detect them and make sure that the result of the s UBF 
appears in FO when we are done. (As we will see in Section 6.10, such 
sequences sometimes do occur in reasonable code.) 

There are two possible ways to handle this WA W hazard. The first approach 
is to delay the issue of the subtract instruction until the D IVF enters MEM. The 
second approach is to stamp out the result of the divide by detecting the hazard 
and telling the divide unit not to write its result. Then, the SUBF can issue right 
away. Because this hazard is rare, either scheme will work fine-you can pick 
whatever is simpler to implement. As a pipeline gets more complex, however, 
we will need to devote increasing resources to determining when an instruction 
can issue. 

Another problem caused by these long-running instructions can be illustrated 
with a very similar sequence of code: 

DIVF 

ADDF 

SUBF 

FO,F2,F4 

Fl0,Fl0,F8 

Fl2,Fl2,Fl4 

This code sequence looks straightforward; there are no dependences. The prob­
lem with which we are concerned arises because an instruction issued early may 
-complete after an instruction issued later. In this example, we can expect ADDF 
and SUBF to complete before the DIVF completes. This is called out-of-order 
completion and is common in pipelines with long-running operations. Since 
hazard detection will prevent any dependence among instructions from being 
violated, why is out-of-order completion a problem? Suppose that the SUBF 
causes a floating-point-arithmetic interrupt at a point where the ADDF has 
completed but the DI VF has not. The result will be an imprecise interrupt, 
something we are trying to avoid. It may appear that this could be handled by 
letting the floating-point pipeline drain, as we do for the integer pipeline. But the 
interrupt may be in a position where this is not possible. For example, if the 
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D IVF decided to take a floating-point-arithmetic interrupt after the add 
completed, we could not have a precise interrupt at the hardware level. In fact, 
since the ADDF destroys one of its operands, we could not restore the state to 
what it was before the D IVF, even with software help. 

This problem is being created because instructions are completing in a dif­
ferent order from the order in which they were issued. There are four possible 
approaches to dealing with out-of-order completion. The first is to ignore the 
problem and settle for imprecise interrupts. This approach was used in the 1960s 
and early 1970s. It is still used in some supercomputers, where certain classes of 
interrupts are not allowed or are handled by the hardware without stopping the 
pipeline. But it is difficult to use this approach in most machines built today, due 
to features such as virtual memory and the IEEE floating-point standard, which 
essentially require precise interrupts, through a combination of hardware and 
software. 

A second approach is to queue the results of an operation until all the opera­
tions that were issued earlier are complete. Some machines actually use this 
solution, but it becomes expensive when the difference in running times among 
operations is long, since the number of results to queue can become large. Fur­
thermore, results from the queue must be bypassed so as to continue issuing 
instructions while waiting for the longer instruction. This requires a large num­
ber of comparators and a very large multiplexer. There are two viable variations 
on this basic approach. The first is a history file, used in the CYBER 180/990. 
The history file keeps track of the original values of registers. When an interrupt 
occurs and the state must be rolled back earlier than some instruction that com­
pleted out of order, the original value of the register can be restored from the 
history file. A similar technique is used for autoincrement and autodecrement 
addressing on machines like VAXes. Another approach, the future file, proposed 
by J. Smith and Plezkun [1988], keeps the newer value of a register; when all 
earlier instructions have completed, the main register file is updated from the 
future file. On an interrupt, the main register file has the precise values for the 
interrupted state. 

A third technique in use is to allow the interrupts to become somewhat 
imprecise, but keep enough information so that the trap-handling routines can 
create a precise sequence for the interrupt. This means knowing what operations 
were in the pipeline and their PCs. Then, after handling a trap, the software 
finishes any instructions that precede the latest instruction completed, and the 
sequence can restart. Consider the following worst-case code sequence: 

~ 
Instruction1-a long-running instruction that eventually interrupts execution 

Instruction2, ... , instructionn-1-a series of instructions that are not completed 

Instructionn-an instruction that is finished 

Given the PCs of all the instructions in the pipeline and the interrupt return 
PC, the software can find the state of instruction 1 and instructionn. Since instruc­
tionn has completed, we will want to restart execution at instructionn+ 1 · After 
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handling the interrupt, the software must simulate the execution of instruction 1, 
.. . , instructionn-1 · Then we can return from the interrupt and restart at 
instructionn+ l · The complexity of executing these instructions properly by the 
handler is the major difficulty of this scheme. There is an important simplifica­
tion: If instruction2, ... , instructionn are all integer instructions, then we know 
that if instructionn has completed, all of instruction2 .... , instructionn-l have also 
completed. Thus, only floating-point operations need to be handled. To make 
this scheme tractable the number of floating-point instructions that can be over­
lapped in execution can be limited. For example, if we only overlap two instruc­
tions, then only the interrupting instruction need be completed by software. This 
restriction may reduce the potential throughput if the FP pipelines are deep or if 
there is a significant number of FP functional units. This approach is used in the 
SP ARC architecture to allow overlap of floating'-point and integer operations. 

The final technique is a hybrid scheme that allows the instruction issue to 
continue only if it is certain that all the instructions before the issuing instruction 
will complete without causing an interrupt. This guarantees that when an inter­
rupt occurs, no instructions after the interrupting one will be completed, and all 
of the instructions before the interrupting one can be completed. This sometimes 
means stalling the machine to maintain precise interrupts. To make this scheme 
work, the floating-point functional units must determine if an interrupt is possi­
ble early in the EX stage (in the first three clock cycles in the DLX pipeline), so 
as to prevent further instructions from completing. This scheme is used in the 
MIPS R2000/3000 architecture and is discussed further in Appendix A, Section 
A.7. 

FP add & 
subtract 

FP 
multiply 

FP divide 

0 2 4 
Cycle counts 

6 8 10 12 14 16 18 20 

FIGURE 6.29 Total clock cycle count and permissible overlap among double­
precision, floating-point operations on the MIPS R2010/3010 FP unit. The overall 
length of the bar shows the total number of EX cycles required to complete the operation. 
For example, after five clock cycles a multiply result is available. The shaded regions are 
times during which FP operations can be overlapped. As is common in most FP units, 
some of the FP logic is shared-the rounding logic, for example, is often shared. This 
means that FP operations with different running times cannot overlap arbitrarily. Also note 
that multiply and divide are not pipelined in this FP unit, so only one multiply or divide can 
be outstanding. The motivation for this pipeline design is discussed further in Appendix A 
(page A-31 ). 
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Performance of a DLX FP Pipeline 

To look at the FP pipeline performance of DLX, we need to specify the latency 
and issue restrictions for the FP operations. We have chosen to use the pipeline 
structure of the MIPS R2010/3010 FP unit. While this unit has some structural 
hazards, it tends to have low-latency FP operations compared ~o most other FP 
units. The latencies and issue restrictions for DP floating-point operations are 
depicted in Figure 6.29 (page 289). 

Figure 6.30 gives the breakdown of integer and floating-point stalls for Spice. 
There are four classes of stalls: load delays, branch delays, floating-point struc­
tural delays, and floating-point data hazards. The compiler tries to schedule both 
load and FP delays before it schedules branch delays. Interestingly, about 27% 
of the time in Spice is spent waiting for a floating-point result. Since the struc­
tural hazards are small, further pipelining of the floating-point unit would not 
gain much. In fact, the impact might easily be negative if the floating-point 
pipeline latency became longer. 

Load-delay cycles 

Branch-delay cycles 

FP structural stalls 

FP data-hazard stalls 27% 

0% 5% 10% 15% 20% 25% 30% 
Percentage of all cycles in execution 

FIGURE 6.30 Percentage of clock cycles in Spice that are pipeline stalls. This again 
assumes a perfect memory system with no memory-system stalls. In total, 35% of the clock 
cycles in Spice are stalls, and without any stalls Spice would run about 50% faster. The 
percentage of stalls differs from Figure 6.24 (page 278) because this cycle count includes 
all the FP stalls, while the previous graph includes only the integer stalls. 

6. 7 I Advanced Pipelining-
Dynamic Scheduling in Pipelines 

So far we have assumed that our pipeline fetches an instruction and issues it, 
unless there is a data dependence between an instruction already in the pipeline 
and the fetched instruction. If there is a data dependence, then we stall the 
instruction and cease fetching and issuing until the dependence is cleared. Soft­
ware is responsible for scheduling the instructions to minimize these stalls. This 
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approach, which is called static scheduling, while first used in the 1960s, has 
become popular more recently. Many of the earlier, heavily pipelined machines 
used dynamic scheduling, whereby the hardware rearranges the instruction exe­
cution to reduce the stalls. 

Dynamic scheduling offers a couple of advantages: It enables handling some 
cases when dependences are unknown· at compile time, and it simplifies the 
compiler. It also allows code that was compiled with one pipeline in mind to run 
efficiently on a different pipeline. As we will see, these advantages are gained at 
a significant increase in hardware complexity. The first two parts of this section 
deal with reducing the cost of data dependences, especially in deeply pipelined 
machines. Corresponding to the dynamic hardware techniques for scheduling 
around data dependences are dynamic techniques for handling branches. These 
techniques are used for two purposes: to predict whether a branch will be taken, 
and to find the target more quickly. Hardware branch prediction, the name for 

. these techniques, is the topic of the third part of this advanced section. 

Dynamic Scheduling Around Hazards 
with a Scoreboard 

The major limitation of the pipelining techniques we have used so far is that they 
all use in-order instruction issue. If an instruction is stalled in the pipeline, no 
later instructions can proceed. If there are multiple functional units, these units 
could lie idle. So, if instruction j depends on a long-running instruction i, cur­
rently in execution in the pipeline, then all instructions after j must be stalled 
until i is finished and j can execute. For example, consider this code: 

DIVF F0,F2,F4 

ADDF Fl0,FO,F8 

SUBF F6,F6,F14 

The SUBF instruction cannot execute because the dependence of ADDF on DIVF 

causes the pipeline to stall; yet SUBF does not depend on anything in the 
pipeline. This is a performance limitation that can be eliminated by not requiring 
instructions to execute in order. 

In the DLX pipeline, both structural and data hazards were checked at ID: 
When an instruction could execute properly, it was issued from ID. To allow us 
to begin executing the S UBF in the above example, we must separate the issue 
process into two parts: checking the structural hazards, and waiting for the 
absence of a data hazard. We can still check for structural hazards when we 
issue the instruction; thus, we still use in-order instruction issue. However, we 
want the instructions to begin execution as soon as their data operands are avail­
able. Thus, the pipeline will do out-of-order execution, which obviously implies 
out-of-order completion. 

In introducing out-of-order execution, we have essentially split two pipe 
stages of DLX into three pipe stages. The two stages in DLX were: 
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1. ID-decode instruction, check for all hazards, and fetch operands 

2. EX-execute instruction 

In the DLX pipeline all instructions passed through issue stage in order, and a 
stalled instruction in ID caused a stall for all instructions behind it. The three 
stages we will need to allow out-of-order execution are: 

1. Issue-decode instructions, check for structural hazards 

2. Read operands-wait until no data hazards, then read operands 

3. Execute 

These three stages replace the ID and EX stages in the simple DLX pipeline. 
While all instructions pass through the issue stage in order (in-order issue), 

they can be stalled or bypass each other in the second stage (read operands), and 
thus enter execution out of order. Scoreboarding is a technique for allowing in­
structions to execute out of order when there are sufficient resources and no data 

Registers Data buses 
• 

t===l==============FR·--~ 
• 

Control/ 
status 

Control/ 
status 

FIGURE 6.31 This shows the basic structure of a DLX machine with a scoreboard. 
The scoreboard's function is to control instruction execution (vertical control lines). All data 
flows between the register file and the functional units over the buses (the horizontal lines, 
called trunks in the CDC 6600). There are two FP multipliers, an FP divider, an FP adder, 
and an integer unit. One set of buses (two inputs and one output) serves a group of 
functional units. The details of the scoreboard are shown in Figures 6.32-6.35. 
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dependences; it is named after the CDC 6600 scoreboard, which developed this 
capability. 

Before we see how scoreboarding could be used in the DLX pipeline, it is 
important to observe that WAR hazards, which did not exist in the DLX float­
ing-point or integer pipelines, may exist when instructions are executed out of 
order. Assume our earlier example has changed so that the SUBF destination is 
F8. If ADDF and SUBF use two different functional units, then it is possible to 
execute the SUBF before the ADDF, but it will yield an incorrect result if ADDF 

has not read F8 before SUBF writes its result. The hazard for this case can be 
avoided by two rules: (1) read registers only during Read Operands, and (2) 
queue both the ADDF operation and copies of its operands. Of course, WAW 

' hazards must still be detected, such as would occur if the destination of the 
SUBF were FlO. This WAW hazard can be eliminated by stalling the issue of 
the SUBF instruction. 

The goal of a scoreboard is to maintain an execution rate of one instruction 
per clock cycle (when there are no structural hazards) by executing an instruc­
tion as early as possible. Thus, when the instruction at the front of the queue is 
stalled, other instructions can be issued and executed if they do not depend on 
any active or stalled instruction. The scoreboard takes full responsibility for 
instruction issue and execution, including all hazard detection. Taking advantage 
of out-of-order execution requires multiple instructions to be in their EX stage 
simultaneously. This can be achieved with either multiple functional units or 
with pipelined functional units. Since these two capabilities-pipelined function­
al units and multiple functional units-are essentially equivalent for the pur­
poses of pipeline control, we will assume the machine has multiple functional 
units. 

The CDC 6600 had 16 separate functional units, including 4 floating-point 
units, 5 units for memory references, and 7 units for integer operations. On 
DLX, scoreboards make sense only on the floating-point unit. Let's assume that 
there are two multipliers, one adder, one divide unit, and a single integer unit for 
all memory references, branches, and integer operations. Although this example 
is much smaller than the CDC 6600, it is sufficiently powerful to dem<;mstrate 
the principles. Because both DLX and the CDC 6600 are load/store, the tech­
niques are nearly identical for the two machines. Figure 6.31 shows what the 
machine looks like. 

Every instruction goes through the scoreboard, where a picture of the data 
dependences is constructed; this step corresponds to instruction issue and 
replaces part of the ID step in the DLX pipeline. This picture then determines 
when the instruction can read its operands and begin execution. If the scoreboard 
decides the instruction cannot execute immediately, it monitors every change in 
the hardware and decides when the instruction can execute. The scoreboard also 
controls when an instruction can write its result into the destination register. 
Thus, all hazard detection and resolution is centralized in the scoreboard. We 
will see a picture of the scoreboard later (Figure 6.32 on page 296), but first we 
need to understand the steps in the issue and execution segment of the pipeline. 

\ 
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Each instruction undergoes four steps in executing. (Since we are concen­
trating on the FP operations, we will not consider a step for memory access.) 
Let's first examine the steps informally and then look in detail at how the score­
board keeps the necessary information that determines when to progress from 
one step to the next. The four steps, which replace the ID, EX, and WB steps in 
the standard DLX pipeline, are as follows: 

1. Issue-If a functional unit for the instruction is free and no other active 
instruction has the same destination register, the scoreboard issues the instruc­
tion to the functional unit and updates its internal data structure. By ensuring that 
no other active functional unit wants to write its result into the destination regis­
ter, we guarantee that WA W hazards cannot be present. If a structural or WA W 
hazard exists, then the instruction issue stalls, and no further instructions will 
issue until these hazards are cleared. This step replaces a portion of the ID step 
in the DLX J?ipeline. 

2. Read operands-The scoreboard monitors the availability of the source 
operands. A source operand is available if no active instruction is going to write 
it, or if the register containing the operand is being written by a currently active· 
functional unit. When the source operands are available, the scoreboard tells the 
functional unit to proceed to read the operands from the registers and begin exe­
cution. The scoreboard resolves RAW hazards dynamically in this step, and 
instructions may be sent into execution out of order. This step, together with 
Issue, completes the function of the ID step in the simple DLX pipeline. 

3. Execution-The functional unit begins execution upon receiving operands. 
When the result is ready, it notifies the scoreboard that it has completed execu­
tion. This step replaces the EX step in the DLX pipeline and takes multiple 
cycles in the DLX FP pipeline. 

4. Write result-Once the scoreboard is aware that the functional unit has com­
pleted execution, the scoreboard checks for WAR hazards. A WAR hazard exists 
if there is a code sequence like the following: 

DIVF FO,F2,F4 

ADDF Fl0,FO,F8 

SUBF F8,F8,Fl4 

ADDF has a source operand F8, which is the same register as the destination of 
S UBF. But ADDF actually depends on an earlier instruction. The scoreboard will 
still stall the SUBF until ADDF reads its operands. In general, then, a completing 
instruction cannot be allowed to write its results when 

• there is an instruction that has not read its operands, 

• one of the operands is the same register as the result of the completing 
instruction, and 

• the other operand was the result of an earlier instruction. 
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If this WAR hazard does not exist, or when it clears, the scoreboard tells the 
functional unit to store its result to the destination register. This step replaces the 
WB step in the simple DLX pipeline. 

Based on its own data structure, the scoreboard controls the instruction pro­
gression from one step to the next by communicating with the functional units. 
But there is a small complication: There is only a limited number of source 
operands and result buses to the register file. The scoreboard must guarantee that 
the number of functional units allowed to proceed into steps 2 and 4 do not 
exceed the number of buses available. We will not go into further detail on this, 
other than to mention that the CDC 6600 solved this problem by grouping the 16 
functional units together into four groups and supplying a set of buses, called 
data trunks, for each group. Only one unit in a group could read its operands or 
write its result during a clock. 

Now let's look at the detailed data structure maintained by a DLX scoreboard 
with five functional units. Figure 6.32 (page 296) shows what the scoreboard's 
information looks like for a simple sequence of instructions: 

LF F6, 34 (R2) 

LF F2,45(R3) 

MULTF FO,F2,F4 

SUBF F8,F6,F2 

DIVF Fl0,FO,F6 

ADDF F6,F8,F2 

There are three parts to the scoreboard: 

1. Instruction status-Indicates which of the four steps the instruction is in. 

2. Functional unit status-Indicates the state of the functional unit (FU). There 
are nine fields for each functional unit: 

Busy-Indicates whether the unit is busy or not 

Op-Operation to perform in the unit (e.g., add or subtract) 

Fi-Destination register 

Fj ,Pk-Source-register numbers 

Qi,Qk-Number of the units producing source registers Fj, Fk 

Rj,Rk-Flags indicating when Fj, Fk are ready; fields are reset when new 
values are read so that the scoreboard knows that the source operand has 
been read (this is required to handle WAR hazards) 

3. Register result status-Indicates which functional unit will write a register, if 
an active instruction has the register as its destination. 

/ 
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Instruction status 

Instruction Issue Read operands Execution complete Write result 

LF F6, 34 (R2) ..J ..J ..J ..J 

LF F2,45(R3) ..J ..J ..J 

MULTF FO,F2,F4 ..J 

SUBF F8,F6,F2 ..J 

DIVF F10,FO,F6 ..J 

ADDF F6,F8,F2 

Functional unit status 

FU no. Name Busy Op Fi Fj Fk Qi Qk Rj Rk 

1 Integer Yes Load F2 R3 No No 

2 Multl Yes Mult FO F2 F4 1 No Yes 

3 Mult2 No 

4 Add Yes Sub F8 F6 F2 1 Yes No 

5 Divide Yes Div FlO FO F6 2 No Yes 

Register result status 

FO F2 F4 F6 FS FlO F12 ... F30 

FU no. 2 1 4 5 

FIGURE 6.32 Components of the scoreboard. Each instruction that has issued or is pending issue has an entry in the 
instruction-status table. There is one entry in the functional-unit-status table for each functional unit. Once an instruction 
issues, the record of its operands is kept in the functional-unit-status table. Finally, the register-result table indicates 
which unit will produce each pending result; the number of entries is equal to the number of registers. The instruction­
status register says that (1) the first LF has completed and written its result, and (2) the second LF has completed execu­
tion but has not yet written its result. The MULTF, SUBF, and D IVF have all issued but are stalled, waiting tor their 
operands. The functional-unit status says that the first multiply unit is waiting for the integer unit, the add unit is waiting tor 
the integer unit, and the divide unit is waiting tor the first multiply unit. The ADDF instruction is stalled due to a structural 
hazard; it will clear when the SUBF completes. If an entry in one of these scoreboard tables is not being used, it is left 
blank. For example, the Rk field is not used on a load, and the Mult2 unit is unused, hence its fields have no meaning. 
Also, once an operand has been read, the Rj and Rk fields are set to No. These are left blank to minimize the complexity 
of the tables. 

Now let's look at how the code sequence begun in Figure 6.32 continues 
execution. After that, we will be able to examine in detail the conditions that the 
scoreboard uses to control execution. 
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Instruction 

LF F6,34(R2) 

LF F2,45(R3) 
---.,_ 

MULTF FO,F2,F4 

SUBF F8,F6,F2 

DIVF F10,FO,F6 

ADDF F6,F8,F2 

FU no. Name Busy 

1 Integer No 

2 Multl Yes 

3 Mult2 No 

4 Add' Yes 

5 Divide Yes 

FO 

FU no. 2 
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Assume the following EX cycle latencies for the floating-point functional units: 
Add is 2 clock cycles, multiply is 10 clock cycles, and divide is 40 clock cycles. 
Using the code segment in Figure 6.32, and beginning with the point indicated 
by the instruction status in Figure 6.32, show what the status tables look like 
when MULTF and DIVF are each ready to go to the write-result state. 

There are RAW data hazards from the second LF to MULTF and SUBF, from 
MULTF to DIVF, and from SUBF to ADDF. There is a WAR data hazard 
between DIVF and ADDF. Finally, there is a structural hazard on the add func­
tional unit for ADDF. What the tables look like when MULTF and D IVF are 
ready to go to write result are shown in Figures 6.33 and 6.34, respectively. 

Instruction status 

Issue Read operands Execution complete Write result 

...j ...j ...j ...j 

...j ...j ...j ...j 

...j ...j ...j 

...j ...j ...j ...j 

...j 

...j ...j ...j 

Functional unit status 

Op Fi Fj Fk Qi Qk Rj Rk 

Mult FO F2 F4 No No 

Add F6 F8 F2 No No 

Div FlO FO F6 2 No Yes 

Register result status 

F2 F4 F6 FS FlO F12 ... F30 

4 5 

FIGURE 6.33 Scoreboard tables just before the MULTF goes to write result. The DIVF has not yet read its operands, 
since it has a dependence on the result of the multiply. The ADDF has read its operands and is in execution, although it 
was forced to wait until the SUBF finished to get the functional unit. ADDF cannot proceed to write result because of the 
WAR hazard on F6, which is used by the DIVF. 
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Instruction status 

Instruction Issue Read operands Execution complete Write result 

LF F6, 34 (R2) --} --} --} --} 

LF F2,45(R3) --} --} --} --} 

MULTF FO,F2,F4 --} --} --} --} 

SUBF F8,F6;F2 --} --} --} --} 

DIVF Fl0,FO,F6 --} --} --} 

ADDF F6,F8,F2 --} --} --} --} 

Functional unit status 

FU no. Name Busy Op Fi Fj Fk Qi Qk Rj Rk 

1 Integer No 

2 Multl No 

3 Mult2 No 

4 Add No 

5 Divide Yes Div FlO FO F6 No No 

Register Result status 

FO F2 F4 F6 FS FlO F12 ... F30 

FU no. 5 

FIGURE 6.34 Scoreboard tables just before the DIVF goes to write result. ADDF was able to complete as soon as 
DIVF passed through read operands and got a copy of F6. Only the DIVF remains to finish. 

Instruction status Wait until Bookkeeping 

Issue Not busy (FU) and not Busy (FU) f- yes; Result (D) f-FU; Op (FU) f-op; 
result(D) Fi (FU) f-D; Fj (FU)f-Sl; Fk (FU) f-82; 

Qjf-Result (Sl) ; Qkf-Result (S2); Rjf- not 
Qj; Rkf- not Qk 

Read operands Rj and Rk Rjf-No; Rkf-No 

Execution complete Functional unit done 

Write result 'v'/((Fj(/):;t:Fi(FU) or 'v'f(if Qj(f)=FU then Rj (f) f-Yes); 
Rj(f)=No) & (Fk(/) 'v' f (if Qk ( f) =FU then Rk ( f) f-Yes); 
:;t:Fi(FU) or Rk(f)=No)) Result(Fi(FU))f-Clear; Busy (FU) f-No 

FIGURE 6.35 Required checks and bookkeeping actions for each step in instruction execution. FU stands for the 
functional unit used by the instruction, Dis the destination register, 81 and 82 are the source registers, and op is the 
operation to be done. To access the scoreboard entry named Fj for functional unit FU we use the notation Fj( FU). 
Result(D) is the value of the result register field for register D. The test on the write-result case prevents the write when 
there is a WAR hazard. For simplicity we assume that all of the bookkeeping operations are done in one clock cycle. 
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Now we can see how the scoreboard works in detail by looking at what has to 
happen for the scoreboard to allow each instruction to proceed. Figure 6.35 
shows what the scoreboard requires for each instruction to advance and the 
bookkeeping action necessary when the instruction does advance. 

The costs and benefits of scoreboarding are an interesting question. The CDC 
6600 designers measured a performance improvement of 1.7 for FORTRAN 
programs and 2.5 for hand-coded assembly language. However, this was 
measured in the days before software pipeline scheduling, semiconductor main 
memory, and caches (which lower memory-access time). The scoreboard on the 
CDC 6600 had about as much logic as one of the functional units, which is sur­
prisingly low. The main cost was in the large number of buses-about four times 
as many as would be required if the machine only executed instructions in order 
(or if it only initiated one instruction per Execute cycle). 

The scoreboard does not handle a few situations as well as it might. For 
example, when an instruction writes its result, a dependent instruction in the 
pipeline must wait for access to the register file because all results are written 
through the register file and never forwarded. This increases the latency and lim­
its the ability of multiple instructions waiting for a result to initiate. WA W haz­
ards would be very infrequent, so the stalls they cause are probably not a signif­
icant concern in the CDC 6600. However, in the next section we will see that 
dynamic ~cheduling offers the possibility of overlapping the execution of multi­
ple iterations of a loop. To do this effectively requires a scheme for handling 
WA W hazards, which are likely to increase in frequency when multiple itera­
tions are overlapped. 

Another Dynamic Scheduling Approach­
The Tomasulo Algorithm 

Another approach to parallel execution around hazards was used by the IBM 
360/91 floating-point unit. This scheme was credited to R. Tomasulo and is 
named after him. The IBM 360/91 was completed about three years after the 
CDC 6600, before caches appeared in commercial machines. IBM's goal was to 
achieve high floating-1Joint performance from an instruction set and from com­
pilers designed for the entire 360 computer family, rather than for only floating­
point-intensive applications. Remember that the 360 architecture has only four 
double-precision floating-point registers, which limits the effectiveness of com­
piler scheduling; this fact was another motivation for the Tomasulo approach. 
Lastly, the IBM 360/91 had long memory accesses and long floating-point 
delays, which the Tomasulo algorithm ,was designed to overcome. At the end of 
the section, we will see that Tomasulo's algorithm can also support the over­
lapped execution of multiple iterations of a loop. 

We will explain the algorithm, which focuses on the floating-point unit, in the 
context of a pipelined, floating-point unit for DLX. The primary difference 
between DLX and the 360 is the presence of register-memory instructions in the 
latter machine. Because Tomasulo's algorithm uses a load functional unit, no 
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significant changes are needed to add register-memory addressing modes; the 
primary addition is another bus. The IBM 360/91 also had pipelined functional 
units, rather than multiple functional units. The only difference between these is 
that a pipelined unit can start at most one operation per clock cycle. Since there 
are really no fundamental differences, we describe the algorithm as if there were 
multiple functional units. The IBM 360/91 could accommodate three operations 
for the floating-point adder and two for the floating-point multiplier. In addition, 
up to six floating-point loads, or memory references, and up to three floating­
point stores could be outstanding. Load data buffers and store data buffers are 
used for this function. Although we will not discuss the load and store units, we 
do need to include the buffers for operands. 

Tomasulo' s scheme shares many ideas with the CDC 6600 scoreboard, so we 
assume the reader has understood the scoreboard thoroughly. There are, how­
ever, two significant differences. First, hazard detection and execution control 
are distributed-reservation stations at each functional unit control when an 
instruction can begin execution at that unit. This function is centralized in the 
scoreboard on the CDC 6600. Second, results are passed directly to functional 
units rather than going through the registers. The IBM 360/91 has a common re­
sult bus (called the common data bus, or CDB) that allows all units waiting for 
an operand to be loaded simultaneously. The CDC 6600 writes results into regis­
ters, where waiting functional units may have to contend for them. Also, the 
CDC 6600 has multiple completion buses (two in the floating-point unit), while 
the IBM 360/91 has only one. 

Figure 6.36 shows the basic structure of a Tomasulo-based floating-point unit 
for DLX; none of the execution control tables are shown. The reservation 
stations hold instructions that have been issued and are awaiting execution at a 
functional unit, as well as the information needed to control the instruction once 
it has begun execution to the unit. The load buffers and store buffers hold data 
corning from and going to memory. The floating-point registers are connected 
by a pair of buses to the functional units and by a single bus to the store buffers. 
All results from the functional units and from memory are sent on the common 
data bus, which goes everywhere except to the load buffer. All the buffers and 
reservation stations have tag fields, employed by hazard control. 

Before we describe the details of the reservation stations and the algorithm, 
let's look at the steps an instruction goes through-just as we did for the score­
board. Since operands are transmitted differently than in a scoreboard, there are 
only three steps: 

1. Issue-Get an instruction from the floating-point operation queue. If the 
operation is a floating-point operation, issue it if there is an empty reservation 
station, and send the operands to the reservation station if they are in the regis­
ters. If the operation is a load or store, it can issue if there is an available buffer. 
If there is not an empty reservation station or an empty buffer, then there is a 
structural hazard and the instruction stalls until a station or buffer is freed. 
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2. Execute-If one or more of the operands is not yet available, monitor the 
CDB while waiting for the register to be computed. This step checks for RAW 
hazards. When both operands are available, execute the operation. 

3. Write result-When the result is available, write it on the CDB and from 
there into the registers and any functional units waiting for this result. 

Although these steps are fundamentally similar to those in the scoreboard, 
there are three important differences. First, there is no checking for WA W and 
WAR hazards-these are eliminated as a byproduct of the algorithm, as we will 
see shortly. Second, the CDB is used to broadcast results rather than waiting on 
the registers. Third, the loads and stores are treated as basic functional units. 

The data structures used to detect and eliminate hazards are attached to the 
reservation stations, the register file, and the load and store buffers. Although 
different information is attached to different objects, everything except the load 
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FIGURE 6.36 The basic structure of a DLX FP unit using Tomasulo's algorithm. 
Floating-point operations are sent from the instruction unit into a queue (called the FLOS, 
or floating-point operation stack, in the IBM 360/91) when they are issued. The reservation 
stations include the operation and the actual operands, as well as information used for 
detecting and resolving hazards. There are load buffers to hold the results of outstanding 
loads and store buffers to hold the addresses of outstanding stores waiting for their 
operands. All results from either the FP units or the load unit are put on the common data 
bus (COB), which goes to the FP register file as well as the reservation stations and store 
buffers. The FP adders implement addition and subtraction, while the FP multipliers do 
multiplication and division. 
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buffers contains a tag field per entry. The tag field is a four-bit quantity that 
denotes one of the five reservation stations or one of the six load buffers. The tag 
field is used to describe which functional unit will produce a result needed as a 
source operand. Unused values, such as zero, indicate that the operand is already 
available. In describing the information, the scoreboard names are used 
wherever this will not lead to confusion. The names used by the IBM 360/91 are 
also shown. It is important to remember that the tags in the Tomasulo scheme 
refer to the buffer or unit that will proquce a result; the register number is dis­
carded when an instruction issues to a reservation station. 

Each reservation station has six fields: 

Op-The operation to perform on source operands S 1 and S2. 

Qj,Qk-The reservation stations that will produce the corresponding source 
operand; a value of zero indicates that the source operand is already available 
in Vi or Vj, or is unnecessary. The IBM 360/91 calls0 these SINKunit and 
SOURCEunit. 

Vj,Vk-The value of the source operands. These are called SINK and 
SOURCE on the IBM 360/91. Note that only one of the V field or the Q field 
is valid for each operand. 

Busy-Indicates that this reservation station and its accompanying functional 
unit are occupied. 

The register file and store buffer each have a field, Qi: 

Qi-The number of the functional unit that will produce a value to be stored 
into this register or into memory. If the value of Qi is zero, no currently active 
instruction is computing a result destined for this register or buffer. For a 
register, this means the value is given by the register contents. 

The load and store buffers each require a busy field, indicating when a buffer 
is available due to completion of a load or store assigned there. The store buffer 
also has a field V, the value to be stored. 

Before we examine the algorithm in detail, let's see what the system of tables 
looks like for the following code sequence: 

1. LF F6,34(R2) 

2. LF F2, 45 (R3) 

3. MULTF F0,F2,F4 

4 . SUBF F8,F6,F2 

5. DIVF F10,FO,F6 

6. ADDF F6,F8,F2 

We saw what the scoreboard looked like for this program when only the first 
load had written its result. Figure 6.37 depicts the reservation stations, load and 
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store buffers, and the register tags. The numbers appended to the names add, 
mult, and load stand for the tag for that reservation station-Add! is the tag for 
the result from the first add unit. In addition we have included a central table 
called "Instruction status." This table is included only to help the reader under­
stand the algorithm; it is not actually a part of the hardware. Instead, the state of 
each operation that has issued is kept in a reservation station. 

There are two important differences from scoreboards that are observable in 
these tables. First, the value of an operand is stored in the reservation station in 
one of the V fields as soon as it is available; it is not read from the register file 
once the instruction has issued. Second, the ADDF instruction has issued. This 
was blocked in the scoreboard by a structural hazard. 

Instruction status 

Instruction Issue Execute Write result 

LF F6,34(R2) -.J -.J -.J 

LF F2,45(R3) -.J -.J 

MULTF FO,F2,F4 -.J 

SUBF F8,F6,F2 -.J 

DIVF Fl0,FO,F6 -.J 
·' 

ADDF F6,F8,F2 -.J 

Reservation stations 

Name Busy Op Vj Vk Qj Qk 

Addi Yes SUB (Load I) Load2 

Add2 Yes ADD Addi Load2 

Add3 No 

Multi Yes MULT ' (F4) Load2 

Mult2 Yes DIV (Loadl) Multi 

Register status 

Field FO F2 F4 F6 FS FlO F12 ... F30 

Qi Multi Load2 Add2 Addi Mult2 

Busy Yes Yes No Yes Yes Yes No ... No 

FIGURE 6.37 Reservation stations and register tags. All of the instructions have issued, but only the first load 
instruction has completed and written its result to the CDB. The instruction-status table is not actually present, but the 
equivalent information is distributed throughout the hardware. The notation (X), where Xis either a register number or a 
functional unit, indicates that this field contains the result of the functional unit X or the contents of register X at the time of 
issue. The other instructions are all at reservation stations or, as in the case of instruction 2, completing a memory 
reference. The load and store buffers are not shown. Load buffer 2 is the only busy load buffer and it is performing on 
behalf of instruction 2 in the sequence-loading from memory address R3 + 45. There are no stores, so the store buffer is 
not shown. Remember that an operand is specified by either the Q field or the V field at any time. 
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Example 

Answer 

6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines 

The big advantages of the Tomasulo scheme are (1) the distribution of the 
hazard detection logic, and (2) the elimination of stalls for WA W and WAR 
hazards. The first advantage arises from the distributed reservation stations and 
the use of the CDB. If multiple instructions are waiting on a single result, and 
each instruction already has its other operand, then the instructions can be 
released simultaneously by the broadcast on the CDB. In the scoreboard the 
waiting instructions must all read their results from the registers when register 
buses are available. 

WA W and WAR hazards are eliminated by renaming registers using the 
reservation stations. For example, in our code sequence in Figure 6.37 we have 
issued both the D IVF and the ADDF, even though there is a WAR hazard in­
volving F6. The hazard is eliminated in one of two ways. If the instruction pro­
viding the value for the DI VF has completed, then Vk will store the result, 
allowing DIVF to execute independent of the ADDF (this is the case shown). On 
the other hand, if the LF had not completed, then Qk would point to the Loadl 
and the DI VF instruction would be independent of the ADD F. Thus, in either 
case, the ADD F can issue and begin executing. Any uses of the result of the 
MULTF would point to the reservation station, allowing the ADDF to complete 
and store its value into the registers without affecting the DI VF. We'll see an 
example of the elimination of a WAW hazard shortly. But let's first look at how 
our earlier example continues execution. 

Assume the same latencies for the floating-point functional units as we did for 
Figure 6.34: Add is 2 clock cycles, multiply is 10 clock cycles, and divide is 40 
clock cycles. With the same code segment, show what the status tables look like 
when the MULTF is ready to go to write result. 

The result is shown in the three tables in Figure 6.38. Unlike the example with 
the scoreboard, ADDF has completed since the operands of DIVF are copied, 
thereby overcoming the WAR hazard. 
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Instruction status 

Instruction Issue Execute Write result 

LF F6, 34 (R2) ..j ..j ..j 

LF F2,45(R3) ..j ..j ..j 

MULTF FO,F2,F4 ..j ..j 
• ..j ..j ..j SUBF F8,F6,F2 

DIVF F10,FO,F6 I ..j 

ADDF F6,F8,F2 ..j ..j ..j 

Reservation stations 

Name Busy Op Vj Vk Qj Qk 

Addi No 

Add2 No 

Add3 No 

Multi Yes MULT (Load2) (F4) 

Mult2 Yes DIV (Load I) Multi 

Register status 

Field FO F2 F4 F6 FS FlO F12 ... F30 

Qi Multi Mult2 

Busy Yes No No No No Yes No ... No 

FIGURE 6.38 Multiply and divide are the only instructions not finished. This is different from the scoreboard case, 
because the elimination of WAR hazards allowed the ADDF to finish right after the SUBF on which it depended. 

Figure 6.39 gives the steps for each instruction to go through. Load and stores 
are only slightly special. A load can be e;xecuted as soon as it is available. When 
execution is completed and the CDB is available, a load puts its result on the 
CDB like any functional unit. Stores receive their values from the CDB or from 
the register file and execute autonomously; when they are done they tum the 
busy field off to indicate availability, just like a load buffer or reservation 
station. 
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Instruction status Wait until Action or bookkeeping 

Issue Station or buffer empty if (Register[Sl] .Qi *O) 
{RS[r] .Qjf--Register[Sl] .Qi} 

else {RS[r] .Vjf--Sl; RS [ r] . Qj f-- 0} ; 
if (Register[S2] .Qi*O) 
{RS[r] .Qkf--Register[S2] .Qi}; 
else {RS [r] . Vkf-- S2; RS [ r] . Qkf-- 0} 
RS [r] . Busyf--yes; 
Register[D] .Qi=r; 

Execute (RS[r].Qj=O) and None-operands are in Vj and Vk 
(RS[r].Qk=O) 

Write result Execution completed at r 'efx(if (Register[x] .Qi=r) {Fxf-- result; 
and CDB available Register [x] . Qif-- 0}) ; 

'efx(if (RS [x] . Qj =r) {RS [x] . Vjf-- result; 
RS [x] .Qj f--0}); 

Vx(if (RS [x] . Qk=r) {RS [x] . Vkf-- result; 
RS[x] .Qk f--0}); 

'efx(if (Store [x] .Qi=r) {Store [ x] . Vf-- result; 
Store [x] . Qi f-- 0}) ; 

RS [ r] . Busyf--NO 

FIGURE 6.39 Steps in the algorithm and what is required for each step. For the issuing instruction, D is the 
destination, S1 and S2 are the sources, and r is the reservation station or buffer that D is assigned to. RS is the 
reservation-station data structure. The value returned by a reservation station or by the load unit is called the "result." 
Register is the register data structure, while Store is the store-buffer data structure. When an instruction is issued, the 
destination register has its Qi field set to the number of the buffer or reservation station to which the instruction is issued. If 
the operands are available in the registers, they are stored in the V fields. Otherwise, the Q fields are set to indicate the 
reservation station that will produce the values needed as source operands. The instruction waits at the reservation 
station until both its operands are available, indicated by zero in the Q fields. The Q fields are set to zero either when this 
instruction is issued, or when an instruction on which this instruction depends completes and does its write back. When an 
instruction has finished execution and the COB is available, it can do its write back. All the buffers, registers, and 
reservation stations whose value of Qj or Qk is the same as the completing reservation station update their values from 
the COB and mark the Q fields to indicate that values have been received. Thus, the COB can broadcast its result to 
many destinations in a single clock cycle, and if the waiting instructions have their operands, they can all begin execution 
on the next clock cycle. For simplicity we assume that all bookkeeping actions are done in a single cycle. 

To understand the full power of eliminating WA W and WAR hazards 
through dynamic renaming of registers, we must look at a loop. Consider the 
following simple sequence for multiplying the elements of a vector by a scalar in 
F2: 

Loop: LD FO,O(Rl) 

MULTD F4,FO,F2 

SD O(Rl) ,F4 

SUB Rl,Rl,#8 

BNEZ Rl,Loop ; branches if Rl*O 

With a branch~taken strategy, using reservation stations will allow multiple exe­
cutions of this loop to proceed at once. This advantage is gained without un­
rolling the loop-in effect, the loop is unrolled dynamically by the hardware. In 
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the 360 architecture, the presence of only 4 FP registers would severely limit the 
use of unrolling. (We will see shortly, when we unroll a loop and schedule it to 
avoid interlocks, many more registers are required.) Tomasulo's algorithm sup­
ports the overlapped execution of multiple copies of the same loop with only a 
small number of registers used by the program. 

Let's assume we have issued all the instructions in two successive iterations 
of the loop, but none of the floating-point loads/stores or operations has com­
pleted. The reservation stations, register-status tables, and load and store buffers 
at this point are shown in Figure 6.40. (The integer ALU operation is ignored, 
and it is assumed the branch was predicted as taken.) Once the system reaches 
this state, two copies of the loop could be sustained with a CPI close to one pro­
vided the multiplies could complete in four clock cycles. We will see how com­
piler techniques can achieve a similar result in Section 6.8. 

An additional element that is critical to making Tomasulo's algorithm work is 
shown in this example. The load instruction from the second loop iteration could 
easily complete before the store from the first iteration, although the normal 
sequential order is different. The load and store can safely be done in a different 
order, provided the load and store access different addresses. This is checked by 
examining the addresses in the store buffer whenever a load is issued. If the load 
address matches the store-buffer address, we must stop and wait until the store 
buffer gets a value; we can then access it or get the value from memory. 

This scheme can yield very high performance, provided the cost of branches 
can be kept small-this is a problem we will look at later in this section. There 
are also limitations imposed by the complexity of the Tomasulo scheme, which 
requires a large amount of hardware. In particular, there are many associative 
stores that must run at high speed, as well as complex control logic. Lastly, the 
performance gain is limited by the single completion bus (CDB). While addi­
tional CDBs can be added, each CDB must interact with all the pipeline hard­
ware, including the reservation stations. In particular, the associative tag-match­
ing hardware would need to be duplicated at all stations for each CDB. 

While Tomasulo's scheme may be appealing if the designer is forced to 
pipeline an architecture that is difficult to schedule code for or has a shortage of 
registers, the authors believe that the advantages of the Tomasulo approach are 
limited for architectures that can be efficiently pipelined and statically scheduled 
with software. However, as available gate counts grow and the limits of software 
scheduling are reached, we may see dynamic scheduling employed. One pos­
sible direction is a hybrid organization that uses dynamic scheduling for loads 
and stores, while statically scheduling register-register operations. 

Reducing Branch Penalties with Dynamic 
Hardware Prediction 

The previous section describes techniques for overcoming data hazards. If con­
trol hazards are not addressed, Amdahl's Law predicts, they will limit pipelined­
execution performance. Earlier, we looked at simple hardware schemes for 
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Instruction status 

Instruction From iteration Issue Execute Write result 

LD FO,O(Rl) 1 -.J -.J 

MULTD F4,FO,F2 1 -.J 

SD O(Rl),F4 1 -.J 

LD FO,O(Rl) 2 -.J -.J 

MULTD F4,FO,F2 2 -.J 

SD 0(Rl),F4 2 -.J 

Reservation stations 

Name Busy Fm Vj Vk Qj Qk 

Addl No 

Add2 No 

Add3 No 

Multl Yes MULT (F2) Loadl 

Mult2 Yes MULT (F2) Load2 

Register status 

Field FO F2 F4 F6 FS FlO Fl2 ... F30 

Qi Load2 Mult2 

Busy yes no yes no no no 

Store buffers Load buffers 

Field Store 1 Store 2 Store 3 Field Load 1 Load2 Load3 

Qi Multl Mult2 Address (Rl) (Rl)-8 

Busy Yes Yes No Busy Yes Yes No 

Address (Rl) (Rl)-8 

FIGURE 6.40 Two active iterations of the loop with no instruction having yet completed. Load and store buffers 
are included, with addresses to be loaded from and stored to. The loads are in the load buffer; entries in the multiplier 
reservation stations indicate that the outstanding loads are the sources. The store buffers indicate that the multiply 
destination is their value to store. 

dealing with branches (assume taken or not taken) and software-oriented 
approaches (delayed branches). This section focuses on using hardware to 
dynamically predict the outcome of a branch-the prediction will change if the 
branch changes its behavior while the program is running. 

The simplest dynamic branch-prediction scheme is a branch-prediction 
buffer. A branch-prediction buffer is a small memory indexed by the lower por-
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tion of the branch instruction address. The memory contains a bit that says 
whether the branch was recently taken or not. This is the simplest sort of buffer; 
it has no tags and is useful only to reduce the branch delay when it is longer than 
the time to compute the possible target PCs. We don't know, in fact, if the pre­
diction is correct-it may have been put there by another branch that has the 
same low-order address bits. But this doesn't matter. It is assumed to be correct, 
and fetching begins in the predicted direction. If the branch prediction turns out 
to be wrong, the prediction bit is inverted. 

This simple one-bit prediction scheme has a performance shortcoming: If a 
branch is almost always taken, then when it is not taken, we will predict incor­
rectly twice, rather than once. Consider a loop branch whose behavior is taken 
nine times sequentially, then not taken once. If the next time around it is pre­
dicted not taken, the prediction will be wrong. Thus, the prediction accuracy will 
only be 80%, ·even on branches that are 90% taken. To remedy this, two-bit pre­
diction schemes are often used. In a two-bit scheme, a prediction must miss 
twice in a row before it is changed. Figure 6.41 shows the finite-state machine 
for the two-bit prediction scheme. 

Not taken 

Taken 

Not taken 

Taken 

FIGURE 6.41 This shows the states in a two-bit prediction scheme. By using two bits 
rather than one, a branch that strongly favors taken or not taken-as many branches do­
will be mispredicted only once. The two bits are used to encode the four states in the 
system. 

The branch-prediction buffer can be implemented as a small, special cache 
accessed with the instruction address during the IF pipe stage, or as a pair of bits 
attached to each block in the instruction cache and fetched with the instruction 
(see Section 8.3 in Chapter 8). If the instruction is predicted as a branch and if 
the branch is predicted as taken, fetching begins from the target as soon as the 
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PC is known. Otherwise, fetching and sequential executing continue. If the pre­
diction turns out to be wrong, the prediction bits are changed as shown in Figure 
6.41. While this scheme is useful for most pipelines, the DLX pipeline finds out 
both whether the branch is taken and what the target of the branch is at the same 
time. Thus, this scheme does not help for the simple DLX pipeline; we will ex­
plore a scheme that can work for DLX a little later. First, let's see how well a 
prediction buffer works with a longer pipeline. 

The accuracy of a two-bit prediction scheme is affected by how often the 
prediction for each branch is correct and by how often the entry in the prediction 
buff er matches the branch being executed. When the entry does not match, the 
prediction bit is used anyway because no better information is available. Even if 
the entry was for another branch, the guess could be a lucky one. In fact, there is 
about a 50% probability of being correct, even if the prediction is for some other 
branch. Studies of branch-prediction schemes have found that two-bit prediction 
has an accuracy of about 90% when the entry in the buffer is the branch entry. A 
buffer of between 500 and 1000 entries has a hit rate of 90%. The overall predic­
tion accuracy is given by 

Accuracy=(% predicted correctly* % that prediction is for this instruction)+ 

(%lucky guess)* (1-% that prediction is for this instruction) 

Accuracy= (90% * 90%) + (50% * 10%) = 86% 

This number is higher than our success rate for filling delayed branches and 
would be useful in a pipeline with a longer branch delay. Now let's look at a 
dynamic prediction scheme that is useable for DLX and see how it compares to 
our branch-delay scheme. 

To reduce the branch penalty on DLX, we need to know from what address to 
fetch by the end of IF. This means we must know whether the as yet undecoded 
instruction is a branch and, if it is a branch, what the next PC should be. If the 
instruction is a branch and we know what the next PC should be, we can have a 
branch penalty of zero. A branch-prediction cache that stores the predicted ad­
dress for the next instruction after a branch is called a branch-target buffer. 
Because we are predicting the next instruction address and will send it out 
before decoding the instruction, we must know whether the fetched instruction 
is predicted as a taken branch. We also want to know whether the address in the 
target buffer is for a taken or not-taken prediction, so that we can reduce the time 
to find a mispredicted branch. Figure 6.42 shows what the branch-target buffer 
looks like. If the PC of the fetched instruction matches a PC in the buffer, then 
the corresponding predicted PC is used as the next PC. In Chapter 8 we will dis­
cuss caches in much more detail; we will see that the hardware for this branch­
target buffer is similar to the hardware for a cache. 
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FIGURE 6.42 A branch-target buffer. The PC of the instruction being fetched is matched 
against a set of instruction addresses stored in the first column; these represent the 
addresses of known branches. If the PC matches one of these entries, then the instruction 
being fetched is a branch. If it is a branch, then the second field, predicted PC, contains the 
prediction for the next PC after the branch. Fetching begins immediately at that address. 
The third field just tracks whether the branch was predicted taken or untaken and helps 
keep the misprediction penalty small. 

If a matching entry is found in the branch-target buffer, fetching begins 
immediately at the predicted PC. Note that (unlike a branch-prediction buffer) 
the entry must be for this instruction, because the predicted PC will be sent out 
before it is known whether this instruction is even a branch. If we did not check 
whether the entry matched this PC, then the wrong PC would be sent out for 
instructions that were not branches, resulting in a slower machine. Figure 6.43 
shows the steps followed when using a branch-target buffer and when these 
steps occur in the pipeline. From this we can see that there will be no branch 
delay if a branch-prediction entry is found in the buffer and is correct. Other­
wise, there will be a penalty of at least one clock cycle. In practice, there could 
be a penalty of two clock cycles because the branch-target buffer must be up­
dated. We could assume that the instruction following a branch or at the branch 
target is not a branch, and do the update during that instruction time. However, 
this does complicate the control. Instead, we will take a two-clock-cycle penalty 
when the branch is not correctly predicted. 
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Send out 
predicted 

PC 

FIGURE 6.43 The steps involved in handling an instruction with a branch-target 
buffer. If the PC of an instruction is found in the buffer, then the instruction must be a 
branch, and fetching immediately begins from the predicted PC in ID. If the entry is not 
found and it subsequently turns out to be a branch, it is entered in the buffer along with the 
target, which is known at the end of ID. If the instruction is a branch, is found, and is cor­
rectly predicted, then execution proceeds with no delays. If the prediction is incorrect, we 
suffer a one-clock-cycle delay fetching the wrong instruction and restart the fetch one clock 
cycle later. If the branch is not found in the buffer and the instruction turns out to be a 
branch, we will have proceeded as if the instruction were a branch and can turn this into an 
assume-not-taken strategy; the penalty will differ depending on whether the branch is 
actually taken or not. 
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To evaluate how well a branch-target buffer works, we first must determine 
what the penalties are in all possible cases. Figure 6.44 contains this informa­
tion. 

Instruction in buffer Prediction Actual branch Penalty cycles 

Yes Taken Taken 0 

Yes Taken Not taken 2 

Yes Not taken Not taken 0 

Yes Not taken Taken 2 

No Taken 2 

No Not taken 1 

FIGURE 6.44 Penalties for all possible combinations of whether the branch is in the 
buffer, how it is predicted, and what it actually does. There is no branch penalty if 
everything is correctly predicted and the branch is found in the target buffer. If the branch is 
not correctly predicted,_ the penalty is equal to one clock cycle to update the buffer with the 
correct information (during which an instruction cannot be fetched) and one clock cycle, if 
needed, to restart fetching the next correct instruction for the branch. If the branch is not 
found and not taken, the penalty is only one clock cycle because the pipeline assumes not 
taken when it is not aware that the instruction is a branch. Other mismatches cost two clock 
cycles, since we must restart the fetch and update the buffer. 

Using the same probabilities as for a branch-prediction buffer-90% proba­
bility of finding the entry and 90% probability of correct prediction-and the 
taken/not taken percentage taken from earlier in this chapter, we can find the 
total branch penalty: 

Branch penalty = % branches found in buffer * % incorrect predictions * 2 + 
(1-% branches found in buffer)*% taken branches* 2 + 

(1-% branches found in buffer)*% untaken branches* 1 

Branch penalty = 90% * 10% * 2 + 10% * 60% * 2 + 10% * 40% * 1 

Branch penalty = 0.34 clock cycles 

This compares with a branch penalty for delayed branches of about 0.5 clock 
cycles per branch. Remember, though, that the improvement from dynamic 
branch prediction will grow as the branch delay grows. 

Branch-prediction schemes are limited both by prediction accuracy and by the 
penalty for misprediction. It is unlikely that we can improve the effective 
branch-prediction success much above 80% to 90%. Instead, we can try to 
reduce the penalty for misprediction. This is done by fetching from both the pre­
dicted and unpredicted direction. This requires that the memory system be dual 
ported or have an interleaved cache. While this adds cost to the system, it may 
be the only way to reduce branch penalties below a certain point. 
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We have seen a variety of software-based static schemes and hardware-based 
dynamic schemes for trying to boost the performance of our pipelined machine. 
Pipelining tries to exploit the potential for parallelism among sequential instruc­
tions. In the ideal case all the instructions would be independent, and our DLX 
pipeline would exploit parallelism among the five instructions simultaneously in 
the pipeline. Both the static scheduling techniques of the last section and the 
dynamic techniques of this section focus on maintaining the throughput of the 
pipeline at one instruction per clock. In the next section we will look at tech­
niques that attempt to exploit overlap more than by the factor of 5, to which we 
are restricted with the simple DLX pipeline. 

6.8 I Advanced Pipelining-Taking Advantage of 
More Instruction-Level Parallelism 

To improve performance further we would like to decrease the CPI to less than 
one. But the CPI cannot be reduced below one if we issue only one instruction 
every clock cycle. The goal of the techniques discussed in this section is to allow 
multiple instructions to issue in a clock cycle. 

As we know from earlier sections, to keep a pipeline full, parallelism among 
instructions must be exploited by finding sequences of unrelated instructions that 
can be overlapped in the pipeline. Two related instructions must be separated by 
a distance equal to the pipeline latency of the fir.st of the instructions. 
Throughout this section we will assume the latencies shown in Figure 6.45. 
Branches still have a one-clock-cycle delay. We assume that the functional units 
are fully pipelined or replicated, and that an operation can be issued on every 
clock cycle. 

As we try to execute more instructions on every clock cycle and try to overlap 
more instructions, we will need to find and exploit more instruction-level paral­
lelism. Thus, before looking at pipeline organizations that require more 
parallelism among instructions, let's look at a simple compiler technique that 
will help create additional parallelism. 

Instruction producing result Destination instruction Latency in clocks 

FPALUop Another FP ALU op 3 

FPALUop Store double 2 

Load double FPALU op 1 

Load double Store double 0 

FIGURE 6.45 Latencies of operations used in this section. The first column shows the 
originating instruction type. The second column is the type of the consuming instruction. 
The last column is the separation in clock cycles to avoid a stall. These numbers are similar 
to the average latencies we would see on an FP unit, like the one we described for DLX in 
Figure 6.29 (page 289). 
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To compare the approaches discussed in this section, we will use a simple loop 
that adds a scalar value to a vector in memory. The DLX code, not accounting 
for the pipeline, looks like this: 

Loop: LD FO,O(Rl) load the vector element 

ADDD F4,FO,F2 ; add the scalar in F2 

SD 0 (Rl) ,·F4 store the vector element 

SUB Rl,Rl,#8 ; decrement the pointer by 
; 8 bytes (per DW) 

BNEZ Rl,LOOP branch when it's zero 

For simplicity, we assume the array starts at location ·O. If it were located 
elsewhere, the loop would require one additional integer instruction. 

Let's start by seeing how well this loop will run when it is scheduled on a 
simple pipeline for DLX with the latencies discussed above. 

Show how the vector add loop would look on DLX, both scheduled and 
unscheduled, including any stalls or idle clock cycles. 

Without any scheduling the loop will execute as follows: 

Clock cycle issued 

Loop: LD FO,O(Rl) 1 

stall 2 

ADDD F4,FO,F2 3 

stall 4 

stall 5 

SD 0(Rl),F4 6 

SUB Rl,Rl,#8 7 

BNEZ Rl,LOOP 8 

stall 9 

This requires 9 clock cycles per iteration. We can schedule the loop to obtain 

Loop: LD 

stall 

ADDD 

SUB 

BNEZ 

SD 

FO,O(Rl) 

F4,FO,F2 

Rl,Rl,#8 

Rl,LOOP 

8(Rl),F4 

; delayed branch 

; changed because interchanged with SUB 
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Execution time has been reduced from 9 clock cycles to 6. 
Notice that to create this schedule, the compiler had to determine that it could 

swap the SUB and SD by changing the address the SD stored to: The address was 
0 (Rl) and is now 8 (Rl). This is not trivial, since most compilers would see 
that the SD instruction depends on the SUB and would refuse to interchange 
them. A smarter compiler could figure out the relationship and perform the 
interchange. The dependence among the LD, ADDD, and SD determines the clock 
cycle count for this loop. 

In the above example, we complete one loop iteration and finish one vector 
element every 6 clock cycles, but the actual work of operating on the vector 
element takes just 3 of those 6 clock cycles. The remaining 3 clock cycles con­
sist of loop overhead-the SUB and BNEZ-and a stall. To eliminate these 3 
clock cycles we need to get more operations within the loop. A simple scheme 
for increasing the number of instructions between executions of the loop branch 
is loop unrolling. This is done by simply replicating the loop body multiple 
times, adjusting the loop termination code, and then scheduling the unrolled 
loop. To allow effective scheduling of the loop, we will want to use different 
registers for each iteration, thus increasing the register count. 

Show what our loop looks like unrolled three times (yielding four copies of the 
loop body), assuming Rl is initially a multiple of 4. Eliminate any obviously 
redundant computations, and do not reuse any of the registers. 

Here is the result after dropping the unnecessary SUB and BNEZ operations 
duplicated during unrolling. 

Loop: LD FO,O(Rl) 

ADDD F4,FO,F2 

SD 0(Rl),F4 ;drop SUB & BNEZ 

LD F6,-8(Rl) 

ADDD F8,F6,F2 

SD -8 (Rl) , F8 ;drop SUB & BNEZ 

LD FlO, -16 (Rl) 

ADDD Fl2,Fl0,F2 

SD -16(Rl),Fl2 ;drop SUB & BNEZ 

LD Fl4,-24(Rl) 

ADDD Fl6,Fl4,F2 

SD -24(Rl),Fl6 

SUB. Rl,Rl,#32 

BNEZ Rl,LOOP 
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We have eliminated three branches and three decrements of R 1. The addresses 
on the loads and stores have been compensated for. Without scheduling, every 
operation is followed by a dependent operation, and thus will cause a stall. This 
loop will run in 27 clock cycles-each LD takes 2 clock cycles, each ADDD 3, 
the branch 2, and all other instructions I-or 6.8 clock cycles for each of the 
four elements. 

Although this unrolled version is currently slower than the scheduled version 
of the original loop, this will change when we schedule the unrolled loop. Loop 
unrolling is normally done early in the compilation process, so that redundant 
computations can be exposed and eliminated by the optimizer. 

In real programs we do not normally know the upper bound on the loop. Sup­
pose it is n, and we would like to unroll the loop k times. Instead of a single 
unrolled loop, we generate a pair of loops. The first executes (n mod k) times 
and has a body that is the original loop. The unrolled version of the loop is sur­
rounded by an outer loop that iterates (n div k) times. In the above example, un­
rolling improves the performance of this loop by eliminating overhead instruc­
tions, though it increases code size substantially. What will happen to the 
performance increase when the loop is scheduled on DLX? 

Show the unrolled loop in the previous example after it has been scheduled on 
DLX. 

Loop: LD FO,O(Rl) 

LD F6,-8(Rl) 

LD F10,-16(Rl) 

LD Fl4,-24(Rl) 

ADDD F4,FO,F2 

ADDD F8,F6,F2 

ADDD Fl2,Fl0,F2 

ADDD F16,F14,F2 

SD 0(Rl),F4 

SD -8(Rl),F8 

SD -16(Rl),F12 

SUB Rl,Rl,#32 ;branch dependence 

BNEZ Rl,LOOP 

SD -24(Rl),F16 ; 8-32 = -24 

The execution time of the unrolled loop has dropped to a total of 14 clock 
cycles, or 3.5 clock cycles per element, compared to 6.8 per element before 
scheduling. 
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The gain from scheduling on the unrolled loop is even larger than on the 
original loop. This is because unrolling the loop exposes more computation that 
can be scheduled. Scheduling the loop in this fashion necessitates realizing that 
the loads and stores are independent and can be interchanged. 

Loop unrolling is a simple but useful method for increasing the size of 
straightline code fragments that can be scheduled effectively. This compile-time 
transformation is similar to what Tomasulo's algorithm does with register 
renaming and out-of-order execution. As we will see, this is very important in 
attempts to lower the CPI by issuing instructions at a high rate. 

A Superscalar Version of DLX 

One method of decreasing the CPI of DLX is to issue more than one instruction 
per clock cycle. This would allow the instruction-execution rate to exceed the 
clock rate. Machines that issue multiple independent instructions per clock cycle 
when they are properly scheduled by the compiler have been called superscalar 
machines. In a superscalar machine, the hardware can issue a small number (say 
2 to 4) of independent instructions in a single clock. However, if the instructions 
in the instruction stream are dependent or don't meet certain criteria, only the 
first instruction in sequence will be issued. A machine where the compiler has 
complete responsibility for creating a package of instructions that can be simul­
taneously issued, and the hardware does not dynamically make any decisions 
about multiple issue, should probably be regarded as a type of VLIW (very long 
instruction word), which we discuss in the next section. 

What would the DLX machine look like as a superscalar? Let's assume two 
instructions issued per clock cycle. One of the instructions could be a load, store, 
branch, or integer ALU operation, and the other could be any floating-point 
operation. As we will see, issue of an integer operation in parallel with a 
floating-point operation is much simpler and less demanding than arbitrary dual 
issue. 

Issuing two instructions per cycle will require fetching and decoding 64 bits 
of instructions. To keep the decoding simple, we could require that the instruc­
tions be paired and aligned on a 64-bit boundary, with the integer portion 
appearing first. Figure 6.46 shows how the instructions look as they go into the 
pipeline in pairs. This table does not address how the floating-point operations 
extend the EX cycle, but it is no different in the superscalar case than it was for 
the ordinary DLX pipeline; the concepts of Section 6.6 apply directly. With this 
pipeline, we have substantially boosted the rate at which we can issue floating­
point instructions. To make this worthwhile, however, we need either pipelined 
floating-point units or multiple independent units. Otherwise, floating-point 
instructions can only be fetched, and not issued, since all the floating units will 
be busy. 
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