
INTEL Ex.1035.001

COMPUTER

ARCHITECTURE

&

QUANTITATIVE

APPROACH

JOHN-“HENNESSY.
DAVIDA|PATTERSON ae

INTEL Ex.1035.001

INTEL Ex.1035.002

INTEL Ex.1035.002

INTEL Ex.1035.003INTEL Ex.1035.003

BarrasriaciierecitensretsretenetTTeneTeeaeeeeprersefjriya‘Nedisicitimitsunaseeateeta
JOHNLHENNESSYCOMPUTER|ARCHITECTUREoe.

PUBLISHERS
INC.

MORGAN
KAUFMANN

····rm11r11HHr-·
1 aoooo6534 t D f" •1. T . . F I _._.,:;:" Mr .. nnec ure e 1n1 ions, r1v1a, ormu as,

and Rules of Thumb

Definitions

Big Endian: the byte with the binary address "x ... xOO" is in the most significant position
("big end") of a 32-bit word (page 95).

Clock rate: inverse of clock cycle time, usually measured in MHz (page 36).
CPI: clock cycles per instruction (page 36).
Hit rate: fraction of memory references found in the cache, equal to 1-Miss rate (page 404).
Hit time: memory-access time for a cache hit, including time to determine if hit or miss (page 405).
Instruction count: number of instructions executed while running a program (page 36).
Little Endian: the byte with the binary address "x ... xOO" is in the least significant position

("little end") of a 32-bit word (page 95).
MIMD: (multiple instruction stream, multiple data stream) a multiprocessor or multicomputer

(page 572).
Miss penalty: time to replace a block in the top level of a cache system with the corresponding block

from the lower level (page 405).
Miss rate: fraction of memory references not found in the cache, equal to 1 - Hit rate (page 404).
N112: the vector length needed to reach one-half of R00 (page 384).
Nv: the vector length needed so that vector mode is faster than scalar mode (page 384).
R

00
: the megaflop rate of an infinite-length vector (page 384).

RAW data hazard: (read after write) instruction tries to read a ~ource before a prior instruction writes
it; so it incorrectly gets the old value (page 264).

SIMD: (single instruction stream, multiple data stream) an array processor (page 572).
SISD: (single instruction stream, single data stream) a uniprocessor (page 572).
Spatial locality: (locality in space) if an item is referenced, nearby items will tend to be referenced

soon (page 403).
Temporal locality: (locality in time) if an item is referenced, it will tend to be referenced again soon

(page 403).
WAR data hazard: (write after read) instruction tries to write a destination before it is read by a prior

instruction, so prior instruction incorrectly gets the new value (page 264).
WAW data hazard: (write after write) instruction tries to write an operand before it is written by a

prior instruction. The writes are performed in the wrong order, incorrectly leaving the value of
the prior instruction in the destination (page 264).

Trivia

Byte order of machines (page 95)

Big Endian: IBM 360, MIPS, Motorola, SPARC, DLX
Little Endian: DEC VAX, DEC RISC, Intel 80x86

Year and User Address Size of Generations of IBM and Intel Computer Families

Year Model User address size Year Model User address size
~

1964 IBM360 24 1978 Intel 8086 4+16

1971 IBM370 24 1981 Intel 80186 4+16

1983 IBM370-XA 31 1982 Intel 80286 16+16

1986 IBMESA/370 16+31 1985 Intel 80386 16+32 or 32

1989 Intel 80486 16+32 or 32

INTEL Ex.1035.004

Formulas

1
1. Amdahl's Law: Speedup=---------------

. Fractionenhanced
(page 8)

(l-Fract10nenhanced) + S d
pee UPenhanced

2. CPU time= Instruction count* Clock cycles per instruction* Clock cycle time (page 36)

3 Average memory-access time = Hit time + Miss rate * Miss penalty (page 405)

4. Means-arithmetic(AM), weighted arithmetic(W AM), harmonic(HM) and weighted harmonic(WHM):
n n

AM= l L,Timei, WAM = L,Weighti * Timei, HM= n , WHM = l
n. 1 . 1 n n

l= l=
~ 1 ~Weighti
~Ratei ..£...J Ratei
i=l i=l

where Timei is the execution time for the ith program of a total of n in the workload, W eighti is the
weighting of the ith program in the workload, and Ratei is a function of l!fimei (page 51).

C .-r . d . . _ Cost of die + Cost of testing die + Cost of packaging (page
55

)
5. ost o1 integrate circuit - p· 1 t t · ld ma es y1e

6 D . . Id W .c • ld { 1 Defects per unit area * Die area }--ex . ie yie = aier y1e * + a

where Wafer yield accounts for wafers that are so bad they need not be tested and a corresponds
to the number of masking levels critical to die yield (usually a 2:: 2.0, page 59).

p .
1
. d _ Clock cycle timen0 pipelining * Ideal CPI * Pipeline depth

7 · ipe me spee up - Clock cycle timepipelined Ideal CPI + Pipeline stall cycles per instruction

where Pipeline stall cycles accounts for clock cycles lost due to pipeline hazards (page 258).

8. System performance:
. Timecpu Timeuo Time0 verlap

T1meworkload = S d + S d M · (S d S d pee upcpu pee up1;0 ax1mum pee upcpu, pee up11o)

where Timecpu means the time the CPU is busy, Time1;0 means the time the I/0 system is busy,
and Timeoverlap means the time both are busy. This formula assumes the overlap scales linearly
with speedup (page 506).

Rules of Thumb

1. Amdahl/Case Rule: A balanced compu,ter system need~ about 1 megabyte of main memory
capacity and 1 megabit per second of I/0 bandwidth per MIPS of CPU performance (page 17).

2. 90110 Locality Rule: A program executes about 90% of its instructions in 10% of its code (pages
11-12).

3. DRAM-Growth Rule: Density increases by about 60% per year, quadrupling in 3 years (page 17).
4. Disk-Growth Rule: Den~ity increases by about 25% per year, doubling in 3 years (page 17).
5. Address-Consumption Rule: The memory needed by the average program grows by about a factor

of 1.5 to 2 per year; thus, it consumes between 1/2 and 1 address bit per year (page 16).
6. 90150 Branch-Taken Rule: About 90% of backward-going branches are taken while about 50% of

forward-going branches are taken (page 108).
7. 2:1 Cache Rule: The miss rate of a direct-mapped cache of size Xis about the same as a 2-way­

set-associative cache of size X/2 (page 421).

INTEL Ex.1035.005

INTEL Ex.1035.006
INTEL Ex.1035.006

Computer
Architecture

A
Quantitative

Approach

INTEL Ex.1035.007

INTEL Ex.1035.008INTEL Ex.1035.008

Computer
Architecture

A
Quantitative
Approach

David A. Patterson
UNIVERSITY OF CALIFORNIA AT BERKELEY

John L. Hennessy
STANFORD UNIVERSITY

With a Contribution by
David Goldberg

Xerox Palo Alto Research Center

MORGAN KAUFMANN PUBLISHERS, INC.
SAN MATEO, CALIFORNIA

INTEL Ex.1035.009

Sponsoring Editor Bruce Spatz
Production Manager Shirley Jowell
Technical Writer Walker Cunningham
Text Design Gary Head
Cover Design David Lance Goines
Copy Editor Linda Medoff
Proofreader Paul Medoff
Computer Typesetting and Graphics Fifth Street Computer Services

Library of Congress Cataloging-in-Publication Data
Patterson, David A.

Computer architecture : a quantitative approach I David A.
Patterson, John L. Hennessy

p. cm.
Includes bibliographical references
ISBN 1-55860- 069-8
1. Computer architecture. I. Hennessy, John L. II. Title.

QA76.9.A73P377 1990
004.2'2--dc20

Morgan Kaufmann Publishers, Inc.

Editorial Office: 2929 Campus Drive. San Mateo, CA 94403

Order from: P.O. Box 50490, Palo Alto, CA 94303-9953

© 1990 by Morgan Kaufmann Publishers, Inc.
All rights reserved.

89-85227
CIP

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means-electronic, mechanical, recording, or otherwise-without
the prior permission of the publisher.

All instruction sets and other design information of the DLX computer system contained
herein is copyrighted by the publisher and may not be incorporated in other publications
or distributed by media without formal acknowledgement and written consent from the
publisher. Use of the DLX in other publications for educational purposes is encouraged
and application for permission is welcomed.

ADVICE, PRAISE, & ERRORS: Any correspondence related to this publication or
intended for the authors should be addressed to the editorial offices of Morgan Kaufmann
Publishers, Inc., Dept. P&H APE. Information regarding error sightings is encouraged.
Any error sightings that are accepted for correction in subsequent printings will be
rewarded by the authors with a payment of $1.00 (U.S.) per correction upon availability
of the new printing. Electronic mail can be sent to bugs3@vsop.stanford.edu. (Please
include your full name and permanent mailing address.)

INSTRUCTOR SUPPORT: For information on classroom software and other instructor
materials available to adopters, please contact the editorial offices of Morgan Kaufmann
Publishers, Inc. (415) 578-9911.

Third printing, i993

INTEL Ex.1035.010

To Andrea, Linda, and our four sons

INTEL Ex.1035.011

Trademarks
The following trademarks are the property of the following organizations:

Alliant is a trademark of Alliant Computers. 3090/600, 3090/600S, 3090 VF, 3330, 3380, 3380D, 3380 Disk Model
AMD 29000 is a trademark of AMD. AK4, 3380J, 3390, 3880-23, 3990, 7030, 7090, 7094, IBM FORTRAN,

TeX is a trademark of American Mathematical Society.

AMI 6502 is a trademark of AMI.

Apple I, Apple II, and Macintosh are trademarks of Apple Computer,
Inc.

ZS- I is a trademark of Astronautics.

UNIX and UNIX F77 are trademarks of AT&T Bell Laboratories.

Turbo C is a trademark of Borland International.

The Cosmic Cube is a trademark of California Institute of Technology.

Warp, C.mmp, and Cm* are trademarks of Carnegie-Mellon University.

CP3 IOO is a trademark of Conner Peripherals.

CDC 6600, CDC 7600, CDC STAR-100, CYBER-180, CYBER
180/990, and CYBER-205 are trademarks of Control Data Corporation.

Conve~, C-1, C-2, and C series are trademarks of Convex.

CRA Y-3 is a trademark of Cray Computer Corporation.

CRAY-I, CRAY-IS, CRAY-2, CRAY X-MP, CRAY X-MP/416,
CRAY Y-MP, CFT77 V3.0, CFT, and CFT2 Vl.3a are trademarks of
Cray Research.

Cydra 5 is a trademark of Cydrome.

CY7C601, 7C601, 7C604, and 7C157 are trademarks of Cypress
Semiconductor.

Nova is a trademark of Data General Corporation.

HEP is a trademark of Denelcor.

CV AX, DEC, DECsystem, DECstation, DECstation 3100, DECsystem
10/20, fort, LPl I, Massbus, MicroVAX-I, MicroVAX-II, PDP-8, PDP-
10, PDP-I I, RS-1 !M/IAS, Unibus, Ultrix, Ultrix 3.0, VAX,
V AXstation, V AXstation 2000, V AXstation 3100, VAX-I I, VAX-
11/780, V AX-11/785, VAX Model 730, Model 750, Model 780, VAX
8600, VAX 8700, VAX 8800, VS FORTRAN V2.4, and VMS are
trademarks of Digital Equipment Corporation.

BINAC is a trademark of Eckert-Mauchly Computer Corporation.

Multimax is a trademark of Encore Computers.

ET A 10 is a trademark of the ET A Corporation.

SYMBOL is a trademark of Fairchild Corporation.

Pegasus is a trademark of Ferranti, Ltd.

Ferrari and Testarossa are trademarks of Ferrari Motors.

AP-120B is a trademark of Floating Point Systems.

Ford and Escort are trademarks Ford Motor Co.

Gnu C Compiler is a trademark of Free Software Foundation.

M2361A, Super Eagle, VPlOO, and VP200 are trademarks of Fujitsu
Corporation.

Chevrolet and Corvette are trademarks of General Motors Corporation.

HP Precision Architecture, HP 850, HP 3000, HP 3000/70, Apollo DN
300, Apollo DN 10000, and Precision are trademarks of Hewlett-Packard
Company.

S810, S810/200, and S820 are trademarks of Hitachi Corporation.

Hyundai and Excel are trademarks of the Hyundai Corporation.

432, 960 CA, 4004, 8008, 8080, 8086, 8087, 8088, 80186, 80286,
80386, 80486, iAPX 432, i860, Intel, Multibus, Multibus II, and Intel
Hypercube are trademarks of Intel Corporation.

Inmos and Transputer are trademarks of Inmos.

Clipper ClOO is a trademark of Intergraph.

IBM, 360, 360/30, 360/40, 360/50, 360/65, 360/85, 360/91, 370,
370/135, 370/138, 370/145, 370/155, 370/158, 370/165, 370/168, 370-
XA, ESA/370, System/360, System/370, 701, 704, 709, 801, 3033, 3080,
3080 series, 3080 VF, 3081, 3090, 3090/100, 3090/200, 3090/400,

ISAM, MYS, IBM PC, IBM PC-AT, PL.8, RT-PC, SAGE Stretch
IBM SYS, Vector Facility, and VM are trademarks of Inte~ationai
Business Machines Corporation.

FutureBus is a trademark of the Institute of Electrical and Electronic
Engineers.

Lamborghini and Countach are trademarks of Nuova Automobili
Ferrucio Lamborghini, SP A.

Lotus 1-2-3 is a trademark of Lotus Development Corporation.

MB8909 is a trademark of LSI Logic.

NuBus is a trademark of Massachusetts Institute of Technology.

Miata and Mazda are trademarks of Mazda.

MASM, Microsoft Macro Assembler, MS DOS, MS DOS 3.1, and OS/2
are trademarks of Microsoft Corporation.

MIPS, MIPS 120, MIPS/120A, M/500, M/1000, RC6230, RC6280,
R2000, R2000A, R2010, R3000, and R3010 are trademarks of MIPS
Computer Systems.

Delta Series 8608, System V/88 R32V!, VME bus, 6809, 68000, 68010,
68020, 68030, 68882, 88000, 88000 l.8.4ml4, 88100, and 88200 are
trademarks of Motorola Corporation.

Multiflow is a trademark of Multiflow Corporation.

National 32032 and 32x32 are trademarks of National Semiconductor
Corporation.

Ncube is a trademark of Ncube Corporation.

SX/2, SX/3, and FORTRAN 77/SX V.040 are trademarks of NEC
Information Systems.

NYU Ultracomputer is a trademark of New York University.

VAST-2 v.2.21 is a trademark of Pacific Sierra.

Wren IV, Imprimis, Sabre, Sabre 97209, and IPI-2 are trademarks of
Seagate Corporation.

Sequent, Balance 800, Balance 21000, and Symmetry are trademarks of
Sequent Computers.

Silicon Graphics 4D/60, 4D/240, and Silicon Graphics 4D Series are
trademarks of Silicon Graphics.

Stellar GS 1000, Stardent-1500, and Ardent Titan-I are trademarks of
Stardent.

Sun 2, Sun 3, Sun 3/75, Sun 3/260, Sun 3/280, Sun 4, Sun 4/110, Sun
4/260, Sun 4/280, SunOS 4.0.3c, Sun 1.2 FORTRAN compiler, SPARC,
and SPARCstation I are trademarks of Sun Microsystems.

Synapse N+ I is a trademark of Synapse.

Tandem and Cyclone are trademarks of Tandem Computers.

TI 8847 and TI ASC are trademarks of Texas Instruments Corporation.

Connection Machine and CM-2 are trademarks of Thinking Machines.

Burroughs 6500, B5000, B5500, D-machine, UNIV AC, UNIV AC I,
UNIV AC 1103 are trademarks of UNISYS.

Spice and 4.2 BSD UNIX are trademarks of University of California,
Berkeley.

Illiac, Illiac IV, and Cedar are trademarks of University of Illinois.

Ada is a trademark of the U.S. Government (Ada Joint Program Office).

Weitek 3364, Weitek 1167, WTL 3110, and WTL 3170 are trademarks
of Weitek Computers.

Alto, Ethernet, PARC, Palo Alto Research Center, Smalltalk, and Xerox
are trademarks of Xerox Corporation.

Z-80 is a trademark of Zilog.

INTEL Ex.1035.012

Foreword
by C. Gordon Bell

I am delighted and honored to write the foreword for this landmark book.
The authors have gone beyond the contributions of Thomas to Calculus and

Samuelson to Economics. They have provided the definitive text and reference
for computer architecture and design. To advance computing, I urge publishers
to withdraw the scores of books on this topic so a new breed of architect/
engineer can quickly emerge. This book won't eliminate the complex and
errorful microprocessors from semicomputer companies, but it will hasten the
education of engineers who can design better ones.

The book presents the critical tools to analyze uniprocessor computers. It
shows the practicing engineer how technology changes over time and offers the
empirical constants one needs for design. It motivates the designer about func­
tion, which is a welcome departure from the usual exhaustive shopping list of
mechanisms that a naive designer might attempt to include in a single design.

The authors establish a baseline for analysis and comparisons by using the
most important machine in each class: mainframe (IBM 360), mini (DEC VAX),
and micro/PC (Intel 80x86). With this foundation, they show the coming
mainline of simpler pipelined and parallel processors. These new technologies
are shown as variants of their pedagogically useful, but highly realizable,
processor (DLX). The authors stress technology independence by measuring
work done per clock (parallelism), and time to do work (efficiency and latency).
These methods should also improve the quality of research on new architectures
and parallelism.

Thus, the book is required understanding for anyone working with architec­
ture or hardware, including architects, chip and computer system engineers, and
compiler and operating system engineers. It is especially useful for software
engineers writing programs for pipelined and vector computers. Managers and
marketers will benefit by knowing the Fallacies and Pitfalls sections of the book.
One can lay the demise of many a computer-and, occasionally, a company--on
engineers who fail to understand the subtleties of computer design.

The first two chapters establish the essence of computer design through
measurement and the understanding of price/performance. These concepts are
applied to the instruction set architecture and how it is measured. They discuss
the implementation of processors and include extensive discussions of tech­
niques for designing pipelined and vector processors. Chapters are also devoted
to memory hierarchy and the often-neglected input/output. The final chapter

ix

INTEL Ex.1035.013

x Foreword

presents the opportunities and questions about machines and directions of the
future. Now, we need their next book on how to build these machines.

The reason this book sets a standard above all others and is unlikely to be
superseded in any foreseeable future is the understanding, experience, taste, and
uniqueness of the authors. They have stimulated the major change in architecture
by their work on RISC (Patterson coined the word). Their university research
leading to product development at MIPS and Sun Microsystems established
important architectures for the 1990s. Thus, they have done the analysis,
evaluated the trade-offs, worked on the compilers and operating systems, and
seen their machines achieve significance in use. Furthermore, as teachers, they
have seen that the book is pedagogically sound (and have solicited opinions
from others through the unprecedented Beta testing program). I know this will
be the book of the decade in computer systems. Perhaps its greatest
accomplishment would be to stimulate other great architects and designers of
higher-level systems (databases, communications systems, languages and
operating systems) to write similar books about their domains.

I've already enjoyed and learned from the book, and surely you will too.

-C. Gordon Bell

INTEL Ex.1035.014

Computer Architecture: A Quantitative Approach xi

Contents

Foreword ix
by C. GORDON BELL

Preface xvii

Acknowledgements xx iii

1 Fundamentals of Computer Design 2
1.1 Introduction 3
1.2 Definitions of Performance 5
1.3 Quantitative Principles of Computer Design 8
1.4 The Job of a Computer Designer 13
1.5 Putting It All Together: The Concept of Memory Hierarchy 18
1.6 Fallacies and Pitfalls 21
1.7 Concluding Remarks 22
1.8 Historical Perspective and References 23

Exercises 28

2 Performance and Cost 32
2.1 Introduction 33
2.2 Performance 35
2.3 Cost 53
2.4 Putting It All Together: Price/Performance of Three Machines 66
2.5 Fallacies and Pitfalls 70
2.6 Concluding Remarks 76
2.7 Historical Perspective and References 77

Exercises 81

3 Instruction Set Design:
Alternatives and Principles 88
3.1 Introduction 89
3.2 Classifying Instruction Set Architectures 90
3.3 Operand Storage in Memory: Classifying General-Purpose

Register Machines 92
3.4 Memory Addressing 94
3.5 Operations in the Instruction Set 103
3.6 Type and Size of Operands 109
3.7 The Role of High-Level Languages and Compilers 111
3.8 Putting It All Together: How Programs Use Instruction Sets 122
3.9 Fallacies and Pitfalls 124
3.10 Concluding Remarks 126
3.11 Historical Perspective and References 127

Exercises 132

INTEL Ex.1035.015

r

xii Contents

4 Instruction Set Examples and
Measurements of Use 138
4.1 Instruction Set Measurements: What and Why 139
4.2 The VAX Architecture 142
4.3 The 360/370 Architecture 148
4.4 The 8086 Architecture 153
4.5 The DLX Architecture 160
4.6 Putting It All Together: Measurements

of Instruction Set Usage 167
4.7 Fallacies and Pitfalls 183
4.8 Concluding Remarks 185
4.9 Historical Perspective and References 186

Exercises 191

5 Basic Processor Implementation Techniques 198
5.1 Introduction 199
5.2 Processor Datapath 201
5.3 Basic Steps of Execution 202
5.4 Hardwired Control 204
5.5 Microprogrammed Control 208
5.6 Interrupts and Other Entanglements 214
5.7 Putting It All Together: Control for DLX 220
5.8 Fallacies and Pitfalls 238
5.9 Concluding Remarks 240
5.10 Historical Perspective and References 241

Exercises 244

6 Pipelining 250
6.1 What Is Pipelining? 251
6.2 The Basic Pipeline for DLX 252
6.3 Making the Pipeline Work 255
6.4 The Major Hurdle of Pipelining-Pipeline Hazards 257
6.5 What Makes Pipelining Hard to Implement 278
6.6 Extending the DLX Pipeline to Handle Multicycle Operations 284
6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines 290
6.8 Advanced Pipelining-Taking Advantage of More

Instruction-Level Parallelism 314
6.9 Putting It All Together: A Pipelined VAX 328
6.10 Fallacies and Pitfalls 334
6.11 Concluding Remarks 337
6.12 Historical Perspective and References 338

Exercises 343

INTEL Ex.1035.016

Computer Architecture: A Quantitative Approach xiii

7 Vector Processors 350
7.1 Why Vector Machines? 351
7.2 Basic Vector Architecture 353
7.3 Two Real-World Issues: Vector Length and Stride 364
7.4 A Simple Model for Vector Performance 369
7.5 Compiler Technology for Vector Machines 371
7.6 Enhancing Vector Performance 377
7.7 Putting It All Together: Evaluating the

Performance of Vector Processors 383
7.8 Fallacies and Pitfalls 390
7.9 Concluding Remarks 392
7.10 Historical Perspective and References 393

Exercises 397

8 Memory-Hierarchy Design 402
8.1 Introduction: Principle of Locality 403
8.2 General Principles of Memory Hierarchy 404
8.3 Caches 408
8.4 Main Memory 425
8.5 Virtual Memory 432
8.6 Protection and Examples of Virtual Memory 438
8.7 More Optimizations Based on Program Behavior 449
8.8 Advanced Topics-Improving Cache-Memory Performance 454
8.9 Putting It All Together: The VAX-11/780 Memory Hierarchy 475
8.10 Fallacies and Pitfalls 480
8.11 Concluding Remarks 484
8.12 Historical Perspective and References 485

Exercises 490

9 Input/Output 498
9.1 Introduction 499
9.2 Predicting System Performance 501
9.3 1/0 Performance Measures 506
9.4 Types of 1/0 Devices 512
9.5 Buses-Connecting 1/0 Devices to CPU/Memory 528
9.6 Interfacing to the CPU 533
9.7 Interfacing to an Operating System 535
9.8 Designing an 1/0 System 539
9.9 Putting It All Together:

The IBM 3990 Storage Subsystem 546
9.10 Fallacies and Pitfalls 554
9.11 Concluding Remarks 559
9.12 Historical Perspective and References 560

Exercises 563

INTEL Ex.1035.017

xiv

10

Contents

Future Directions
10.1 Introduction
10.2 Flynn Classification of Computers
10.3 SIMD Computers-Single Instruction

Stream, Multiple Data Streams
10.4 MIMD Computers-Multiple Instruction

Streams, Multiple Data Streams
10.5 The Roads to El Dorado
10.6 Special-Purpose Processors
10.7 Future Directions for Compilers
10.8 Putting It All Together: The Sequent Symmetry

Multiprocessor
10.9 Fallacies and Pitfalls
10.1 O Concluding Remarks-Evolution Versus

Revolution in Computer Architecture
10.11 Historical Perspective and References

Exercises

Appendix A: Computer Arithmetic
by DAVID GOLDBERG
Xerox Palo Alto Research Center

A.1 Introduction
A.2 Basic Techniques of Integer Arithmetic
A.3 Floating Point
A.4 Floating-Point Addition
A.5 Floating-Point Multiplication
A.6 Division and Remainder
A.7 Precisions and Exception Handling
A.8 Speeding Up Integer Addition
A.9 Speeding Up Integer Multiplication and Division
A.1 O Putting It All Together
A.11 Fallacies and Pitfalls
A.12 Historical Perspective and References

Exercises

570
571
572

572

574
576
580
581

582
585

587
588
592

A·1

A-1
A-2

A-12
A-16
A-20
A-23
A-28
A-31
A-39
A-53
A-57
A-58
A-63

Appendix B: Complete Instruction Set Tables B·1
B.1 VAX User Instruction Set
B.2 System/360 Instruction Set
B.3 8086 Instruction Set

B-2
B-6
B-9

Appendix C: Detailed Instruction Set Measurements C·1
C.1 VAX Detailed Measurements
C.2 360 Detailed Measurements
C.3 Intel 8086 Detailed Measurements
C.4 DLX Detailed Instruction Set Measurements

C-2
C-3
C-4
C-5

INTEL Ex.1035.018

Computer Architecture: A Quantitative Approach

Appendix D: Time Versus Frequency Measurements D·1
D.1 Time Distribution on the VAX-11 /780
D.2 Time Distribution on the IBM 370/168
D.3 Time Distribution on an 8086 in an IBM PC
D.4 Time Distribution on a DLX Relative

Appendix E: Survey of RISC Architectures
E.1 Introduction
E.2 Addressing Modes and Instruction Formats
E.3 Instructions: The DLX Subset
E.4 Instructions: Common Extensions to DLX
E.5 Instructions Unique to MIPS
E.6 Instructions Unique to SPARC
E.7 Instructions Unique to M88000
E.8 Instructions Unique to i860
E.9 Concluding Remarks
E.10 References

References

Index

D-2
D-4
D-6
D-8

E·1
E-1
E-2
E-4
E-9

E-12
E-15
E-17
E-19
E-23
E-24

R·1

1·1

xv

INTEL Ex.1035.019

INTEL Ex.1035.020INTEL Ex.1035.020

Computer Architecture: A Quantitative Approach xvii

Preface

I started in 1962 to write a single book with this sequence of chapters, but soon
found that it was more important to treat the subjects in depth rather than to
skim over them lightly. The resulting length has meant that each chapter by itself
contains enough material for a one semester course, so it has become necessary
to publish the series in separate volumes ...

Why We Wrote This Book

Donald Knuth, The Art of Computer Programming,
Preface to Volume 1 (of 7) (1968)

Welcome to this book! We're glad to have the opportunity to communicate with
you! There are so many exciting things happening in computer architecture, but
we feel available materials just do not adequately make people aware of this.
This is not a dreary science of paper machines that will never work. No! It's a
discipline of keen intellectual interest, requiring balance of marketplace forces
and cost/performance, leading to glorious failures and some notable successes.
And it is hard to match the excitement of seeing thousands of people use the
machine that you designed.

Our primary goal in writing this book is to help change the way people learn
about computer architecture. We believe that the field has changed from one that
can only be taught with definitions and historical information, to one that can be
studied with real examples and real measurements. We envision this book as
suitable for a course in computer architecture as well as a primer or reference for
professional engineers and computer architects. This book embodies a new
approach to demystifying computer architecture-it emphasizes a quantitative
approach to cost/performance tradeoffs. This does not imply an overly formal
approach, but simply one that is grounded in good engineering design. To
accomplish this, we've included lots of data about real machines, so that a reader
can understand design tradeoffs in a quantitative as well as qualitative fashion. A
significant component of this approach can be found in the problem sets at the
end of every chapter, as well as the software that accompanies the book. Such
exercises have long formed the core of science and engineering education. With

INTEL Ex.1035.021

xviii Preface

the emergence of a quantitative basis for teaching computer architecture, we feel
the field has the potential to move toward the rigorous quantitative foundation of
other disciplines.

Topic Selection and Organization

We have a conservative approach to topic selection, for there are many
interesting ideas in the field. Rather than attempting a comprehensive survey of
every architecture a reader might encounter today in practice or in the literature,
we've chosen the core concepts of computer architecture that are likely to be
included in any new machine. In making these decisions, a key criterion has
been to emphasize ideas that have been sufficiently examined to be discussed in
quantitative terms. For example, we concentrate on uniprocessors until the final
chapter, where a bus-oriented, shared-memory multiprocessor is described. We
believe this class of computer architecture will increase in popularity, but despite
this perception it only met our criteria by a ·slim margin. Only recently has this
class of architecture been examined in ways that allow us to discuss it
quantitatively; a short time ago even this wouldn't have been included. Although
large-scale parallel processors are of obvious importance to the future, it is our
feeling that a firm basis in the principles of uniprocessor design is necessary
before any practicing engineer tries to build a better computer of any
organization; especially one incorporating multiple uniprocessors.

Readers familiar with our research might expect this book to be only about
reduced instruction set computers (RISCs). This is a mistaken judgment about
the content of this book. Our hope is that design principles and quantitative data
in this book will restrict discussions of architecture styles to terms like "faster"
or "cheaper," unlike previous debates.

The material we have selected has been stretched upon a consistent structure
that is followed in every chapter. After explaining the ideas of a chapter, we
include a "Putting It All Together" section that ties these ideas together by
showing how they are used in a real machine. This is followed by a section,
entitled "Fallacies and Pitfalls," that lets readers learn from the mistakes of
others.We show examples of common misunderstandings and architectural
traps that are difficult to avoid even when you know they are lying in wait for
you. Each chapter ends with a "Concluding Remarks" section, followed by a
"Historical Perspective and References" section that attempts to give proper
credit for the ideas in the chapter and a sense of the history surrounding the
inventions, presenting the human drama of computer design. It also supplies
references that the student of architecture may want to pursue. If you have time,
we recommend reading some of the classic papers in the field that are mentioned
in these sections. It is both enjoyable and educational to hear the ideas from the
mouths of the creators. Each chapter ends with Exercises, over 200 in total,
which vary from one-minute reviews to term projects.

INTEL Ex.1035.022

Computer Architecture: A Quantitative Approach xix

A glance at the Table of Contents shows that neither the amount nor the depth
of the material is equal from chapter to chapter. In the early chapters, for
example, we have more basic material to ensure a common terminology and
background. In talking with our colleagues, we found widely varying opinions
of the backgrounds readers have, the pace at which they can pick up new
material, and even the order in which ideas should be introduced. Our
assumption is that the reader is familiar with logic design, and has had some
exposure to at least one instruction set and basic software concepts. The pace
varies with the chapters, with the first half gentler than the last half. The
organizational decisions were formed in response to reviewer advice. The final
organization was selected to conveniently suit the majority of courses (beyond
Berkeley and Stanford!) with only minor modifications. Depending on your
goals, we see three paths through this material:

Introductory coverage: Chapters 1, 2, 3, 4, 5, 6.1-6.5, 8.1-8.5, 9.1-9.5, 10,
and A.1-A.3.

Intermediary coverage: Chapters 1, 2, 3, 4, 5, 6.1-6.6, 6.9-6.12, 8.1-8.7, 8.9-
8.12, 9, 10, A (except skip division in Section A.9),
and E.

Advanced coverage: Read everything, but Chapters 3 and 5 and Sections
A.1-A.2 and 9.3-9.4 may be largely review, so read
them quickly.

Alas, there is no single best order for the chapters. It would be nice to know
about pipelining (Chapter 6) before discussing instruction sets (Chapters 3 and
4), for example, but it is difficult to understand pipelining without understanding
the full set of instructions being pipelined. We ourselves have tried a few
different orders in earlier versions of this material, and each has its strengths.
Thus, the material was written so that it can be covered in several ways. The
organization proved sufficiently flexible for a wide variety of chapter sequences
in the Beta test program at 18 schools, where the book was used successfully.
Some of these syllabi are reproduced in the accompanying Instructor's Manual.
The only restriction is that some chapters .should be read in sequence:

Chapters 1 and 2

Chapters 3 and 4

Chapters 5, 6, and 7

Chapters 8 and 9

Readers should start with Chapters 1 and 2 and end with Chapter 10, but the rest
can be covered in any order. The only proviso is that if you read Chapters 5, 6,
and 7 before Chapters 3 and 4, you should first skim Section 4.5, as the
instruction set in this section, DLX, is used to illustrate the ideas found in those
three chapters. A compact description of DLX and the hardware description

INTEL Ex.1035.023

xx Preface

notation we use can be found on the inside back cover. (We selected a modified
version of C for our hardware description language because of its compactness,
because of the number of people who know the language, and because there is
no common description language used in books that could be considered
prerequisites.)

We urge everyone to read Chapters 1 and 2. Chapter 1 is intentionally easy to
follow so that it can be read quickly, even by a beginner. It gives a few
important principles that act as themes guiding the tradeoffs in later chapters.
While few would skip the performance section of Chapter 2, some might be
tempted to skip the cost section to get to the "technical issues" in the later
chapters. Please don't. Computer design is almost always balancing cost and
performance, and few understand how price is related to cost, or how to lower
cost and price by 10% in a way that minimizes performance loss. The
foundations laid in the cost section of Chapter 2 allow cost/performance to be
the basis of all tradeoff s in the last half of the book. On the other hand, some
subjects are probably best left as reference material. If the book is part of a
course, lectures can show how to use the data from these chapters in making
decisions in computer design. Chapter 4 is probably the best example of this.
Depending on your background, you already may be familiar with some of the
material, but we try to include a few new twists for each subject. The section on
microprogramming in Chapter 5 will be review for many, for example, but the
description of the impact of interrupts on control is rarely found in other books.

We also invested special effort in making this book interesting to practicing
engineers and advanced graduate students. Advanced topics sections are found
in:

Chapter 6 on pipelining (Sections 6.7 and 6.8, which are about half the
chapter)

Chapter 7 on vectors (the whole chapter)

Chapter 8 on memory-hierarchy design (Section 8.8, which is about a third of
Chapter 8)
Chapter 10 on future directions (Section 10.7, about a quarter of that chapter)

Those under time pressure might want to skip some of these sections. To make
skipping easier, the Putting It All Together sections of Chapters 6 and 8 are
independent of the advanced topics.

You might have noticed that floating point is covered in Appendix A rather
than in a chapter. Since it is largely independent of the other material, our
solution was to include it as an appendix as our surveys indicated that a
significant percentage of the readers would be exposed to floating point
elsewhere.

The remaining appendices are included both for reference purposes for the
computer professional and for the Exercises. Appendix B contains the
instruction sets of three classic machines: the IBM 360, Intel 8086, and the DEC
VAX. Appendices C and D give the mix of instructions in real programs for

INTEL Ex.1035.024

Computer Architecture: A Quantitative Approach xxi

these machines plus DLX, either measured by instruction frequency or time
frequency. Appendix E offers a more detailed comparative survey of several
recent architectures.

Exercises, Projects, and Software

The optional nature of the material is also reflected in the Exercises. Brackets for
each question (<chapter.section>) indicate the text sections of primary relevance
to answering the question. We hope this helps readers to avoid exercises for
which they haven't read the corresponding section, as well as providing the
source for review. We have adopted Donald Knuth's technique of rating the
Exercises. The ratings give an estimate of how much effort a problem might
take:

[1 O] 1 minute (read and understand)

[20] 15-20 minutes for full answer

[25] 1 hour for full written answer

[30] Short programming project: less than 1 full day of programming

[40] Significant programming project: 2 weeks of elapsed time

[50] Term project (2-4 weeks by two people)

[Discussion] Topic for discussion with others interested in computer
architecture

To facilitate the use of this book in the college curriculum, the book is also
accompanied by an Instructor's Manual and software. The software is a UNIX
tar tape that includes benchmarks, cache traces, cache and instruction set
simulators, and a compiler. Readers interested in obtaining the software will find
it available by anonymous FTP via Internet from max.stanford.edu. Copies may
also be obtained by contacting Morgan Kaufmann at (415) 578-9911
(duplication and handling charges will apply on these orders).

Concluding Remarks

You might see a masculine adjective or pronoun in a paragraph. Since English
does not have gender-neutral pronouns or adjectives, we found ourselves in the
unfortunate position of choosing among .the standard, consistent use of the
masculine, alternating between feminine and masculine, and the grammatically
unworkable third person plural. We tried to reduce the occurrence of this
problem, but when a pronoun is unavoidable we alternate gender chapter by
chapter. Our experience is this practice hurts no one, unlike the standard
solution.

If you read the following acknowledgement section you will see that we went
to great lengths to correct mistakes. Since a book goes through many printings,
we have the opportunity to make even more corrections. If you uncover any

INTEL Ex.1035.025

xxii Preface

remammg resilient bugs, please contact the publisher by electronic mail
(bugs2@vsop.stanford.edu) or low-tech mail using the address found on the
copyright page. The first reader to report an error that is incorporated in a future
printing will be rewarded with a $1.00 bounty.

Finally, this book is unusual in that there is no strict ordering of the authors'
names. About half the time you will see Hennessy and Patterson, both in this
book and in advertisements, and half the time you will see Patterson and
Hennessy. You'll even find it listed both ways in bibliographic publications such
as Books in Print. (When we reference the book, we will alternate author order.)
This reflects the true collaborative nature of this book: Together, we
brainstormed about the ideas and method of presentation, then individually
wrote one-half of the chapters and acted as reviewer for every draft of the other.
(In fact, the final page count suggests each of us wrote exactly the same number
of pages!) We could think of no fair way to reflect this genuine cooperation
other than to hide in ambiguity-a practice that may help some authors but
confuses librarians. Thus, we equally share the blame for what you are about to
read.

John Hennessy David Patterson
January 1990

INTEL Ex.1035.026

Computer Architecture: A Quantitative Approach xx iii

Acknowledgements

This book was written with the help of a great many people-so many, in fact,
that some authors would stop here, claiming there .are too many to name. We
decline to use that excuse, however, because to do so would hide the magnitude
of help we needed. Therefore, we name the 137 people and five institutions to
whom our thanks go.

When we decided to add a floating-point appendix that featured the IEEE
standard, we asked many colleagues to recommend a person who understood
that standard and who could write well and explain complex ideas simply.
David Goldberg, of Xerox Palo Alto Research Center, fulfilled all those tasks
admirably, setting a standard to which we hope the rest of the book measures up.

Margo Seltzer of U.C. Berkeley deserves special credit. Not only was she the
first teaching assistant of the course at Berkeley using the material, she brought
together all the software, benchmarks, and traces that we are distributing with
this book. She also ran the cache simulations and instruction set simulations that
appear in Chapter 8. We thank her for her promptness and reliability in taking
odds and ends of software and putting them together into a coherent package.

Bryan Martin and Truman Joe of Stanford also deserve our special thanks
for rapidly reading the Exercises for early chapters near the deadline for the fall
release. Without their dedication, the Exercises would have been considerably
less polished.

Our plan to develop this material was to first try the ideas in the fall of 1988
in courses taught by us at Berkeley and Stanford. We created lecture notes, first
trying them on the students at Berkeley (because the Berkeley academic year
starts before Stanford), fixing some of the errors, and then exposing Stanford
students to these ideas. This may not have been the best experience of their
academic lives, so we wish to thank those who "volunteered" to be guinea pigs,
as well as the teaching assistants Todd Narter, Margo Seltzer and Eric
Williams, who suffered the consequences of this growth experience.

The next step of the plan was to write a draft of the book in the winter of
1989. We expected this to be turning the lecture notes into English, but our
feedback from the students and the reevaluation that is part of any writing turned
this into a much larger task than we expected. This "Alpha" version was sent out
for reviews in the spring of 1989. Special thanks go to Anoop Gupta of
Stanford University and Forest Baskett of Silicon Graphics who used the Alpha
version to teach a class at Stanford in the spring of 1989.

INTEL Ex.1035.027

xx iv Acknowledgements

Computer architecture is a field that has both an academic side and an indus­
trial side. We relied on both kinds of expertise to review the material in this
book. The academic reviewers of the Alpha version include Thomas Casavant
of Purdue University, Jim Goodman of the University of Wisconsin at
Madison, Roger Kieckhafer of the University of Nebraska, Hank Levy of the
University of Washington, Norman Matloff of the University of California at
Davis, David Meyer of Purdue University, Trevor Mudge of the University of
Michigan, Victor Nelson of Auburn University, Richard Reid of Michigan
State University, and Mark Smotherman of Clemson University. We also wish
to acknowledge those who gave feedback on our outline in the fall of 1989: Bill
Dally of MIT, and Jim Goodman, Hank Levy, David Meyer, and Joseph
Pfeiffer of New Mexico State. In April of 1989, a variety of our plans were
tested in a discussion group that included Paul Barr of Northeastern University,
Susan Eggers of the University of Washington, Jim Goodman and Mark Hill
of the University of Wisconsin, James Mooney of the University of West Vir­
ginia, and Larry Wittie of SUNY Stony Brook. We appreciate their helpful
advice.

Before listing the industrial reviewers, special thanks go to Douglas Clark of
DEC, who gave us more input on the Alpha version than all other reviewers
combined, and whose remarks were always carefully written with an eye toward
our sensitive natures. Other people who reviewed several chapters of the Alpha
version were David Douglas and David Wells of Thinking Machines, Joel
Erner of DEC, Earl Killian of MIPS Computer Systems Inc., and Jim Smith of
Cray Research. Earl Killian also explained the mysteries of the Pixie instruction
set analyzer and provided an unreleased version for us to collect branch
statistics.

Thanks also to Maurice Wilkes of Olivetti Research and C. Gordon Bell of
Stardent for helping us improve our versions of computer history at the end of
each chapter.

In addition to those who volunteered to read many chapters, we also wish to
thank those who made suggestions of material to include or reviewed the Alpha
version of the chapters:

Chapter 1: Danny Hillis of Thinking Machines for his suggestion on assigning resources
according to their contribution to perf onnance.

Chapter 2: Andy Bechtolsheim of Sun Microsystems for advice on price versus cost and
workstation cost estimates; David Hodges of the University of California at Berkeley, Ed
Hudson and Mark Johnson of MIPS, Al Marston and Jim Slager of Sun, Charles
Stapper of IBM, and David Wells of Thinking Machines for explaining chip
manufacturing and yield; Ken Lutz of U.C. Berkeley and the FAST chip service of
USC/ISi for the price quotes on chips; Andy Bechtolsheim and Nhan Chu of Sun
Microsystems, Don Lewine of Data General, and John Mashey and Chris Rowen of
MIPS who also reviewed this chapter.
Chapter 4: Tom Adams of Apple and Richard Zimmermann of San Francisco State
University for their Intel 8086 statistics; John Crawford of Intel for reviewing the 80x86
and other material; Lloyd Dickman for reviewing IBM 360 material.

~·

INTEL Ex.1035.028

Computer Architecture: A Quantitative Approach xxv

Chapter 5: Paul Carrick and Peter Stoll of Intel for reviews.

Chapter 7: David Bailey of NASA Ames and Norm Jouppi of DEC for reviews.
Chapter 8: Ed Kelly of Sun for help on the explanation of DRAM alternatives and Bob
Cnielik of Sun for the SPIX statistics; Anant Agarwal of MIT, Susan Eggers of the
University of Washington, Mark Hill of the University of Wisconsin at Madison, and
Steven Przybylski of MIPS for the material from their dissertations; and Susan Eggers
and Mark Hill for reviews.

Chapter 9: Jim Brady of IBM for providing references for quantitative data on response
time and IBM computers and reviewing the chapter; Garth Gibson of the University of
California at Berkeley for help with bus references and for reviewing the chapter; Fred
Berkowitz of Omni Solutions, David Boggs of DEC, Pete Chen and Randy Katz of the
University of California at Berkeley, Mark Hill of the University of Wisconsin, Robert
Shomler of IBM, and Paul Taysom of AT&T Bell Laboratories for reviews.

Chapter 10: C. Gordon Bell of Stardent for his suggestion on including a multiprocessor
in the Putting It All Together section; Susan Eggers, Danny Hillis of Thinking
Machines, and Shreekant Thakkar of Sequent Computer for reviews.

Appendix A: The facts about IEEE REM and argument reduction in Section A.6, as well
as the p:::;; (q-1)/2 theorem (page A-29) are taken from unpublished lecture notes of
William Kahan of U.C. Berkeley (and we don't know of any published sources
containing a discussion of these facts). The SDRWAVE data is from David Hough of
Sun Microsystems. Mark Birman of Weitek Corporation, Merrick Darley of Texas
Instruments, and Mark Johnson of MIPS provided information about the 3364, 8847,
and R3010, respectively. William Kahan also read a draft of this chapter and made
many insightful comments. We also thank Forrest Brewer of the University of California
at Santa Barbara, Milos Ercegovac of the University of California at Los Angeles, Bill
Shannon of Sun Microsystems, and Behrooz Shirazi of Southern Methodist University
for reviews.

The software that goes with this book was collected and examined by Margo
Seltzer of the University of California at Berkeley. The following individuals
volunteered their software for our distribution:

C compiler for DLX: Yong-dong Wang of U.C. Berkeley and the Free Software
Foundation

Assembler for DLX: Jeff Sedayo of U.C. Berkeley

Cache Simulator (Dinero III): Mark Hill of the University of Wisconsin

ATUM traces: Digital Equipment Corporation, Anant Agarwal, and Richard Sites

The initial version of the simulator for DLX was developed by Wie Hong and
Chu-Tsai Sun of U.C. Berkeley.

While many advised us to save ourselves some effort and publish the book
sooner, we pursued the' goal of publishing the cleanest book possible with the
help of an additional group of people involved in the final round of review. This
book would not be as useful without the help of adventurous instructors,
teaching assistants, and willing students, who accepted the role of Beta test sites

INTEL Ex.1035.029

xx vi Acknowledgements

in the class-testing program; we made hundreds of changes as a result of the
Beta testing. (In fact we are so happy with the feedback that we are continuing
the error reporting and reward system; see the copyright page.) The Beta test site
institutions and instructors were:

Carnegie-Mellon University
Clemson University
Cornell University
Pennsylvania State University
San Francisco State University
Southeast Missouri State University
Southern Methodist University
Stanford University
State University of New York at Stony Brook
University of California at Berkeley
University of California at Los Angeles
University of California at Santa Cruz
University of Nebraska
University of North Carolina at Chapel Hill
University of Texas at Austin
University of Waterloo
University of Wisconsin at Madison
Washington University (St. Louis)

Daniel Siewiorek
Mark Smotherman
Keshav Pingali
Mary Jane Irwin/Bob Owens
Vojin Oklobdzija
Anthony Duben
Behrooz Shirazi
John Hennessy
Larry Wittie
Vojin Oklobdzija
David Rennels
Daniel Helman
Roger Kieckhaf er
Akhilesh Tyagi
Joseph Rameh
Bruno Preiss

· Mark Hill
Mark Franklin

Special mention should be given to Daniel Helman, Mark Hill, Mark
Smotherman, and Larry Wittie who were especially generous with their
advice. The compilation of exercise solutions for course instructors was aided by
contributions from Evan Tick of the University of Oregon, Susan Eggers of the
University of Washington, and Anoop Gupta of Stanford University.

The classes at SUNY Stony Brook, Carnegie-Mellon, Stanford, Clemson, and
Wisconsin supplied us with the greatest number of bug discoveries in the Beta
version. To all of those who qualified for the $1.00 reward program by
submitting the first notice of a bug: Your checks are in the mail. We'd also like
to note that numerous bugs were hunted and killed by the following people:
Michael Butler, Rohit Chandra, David Cummings, David Filo, Carl
Feynman, John Heinlein, Jim Quinlan, Andras Radics, Peter Schnorf, and
Malcolm Wing.

In addition to the class testing, we also asked our friends in industry for help
once again. Special thanks go to Jim Smith of Cray Research for a thorough
review and thoughtful suggestions of the full Beta text. The following
individuals also helped us improve the Beta release, and our thanks go to them:

Ben Hao of Sun Microsystems for reviewing the full Beta Release.

Ruby Lee of Hewlett-Packard and Bob Supnik of DEC for reviewing several

chapters.

INTEL Ex.1035.030

Computer Architecture: A Quantitative Approach xxvii

Chapter 2: Steve Goldstein of Ross Semiconductor and Sue Stone of Cypress
Semiconductor for photographs and the wafer of the CY7C601 (pages 57-58); John
Crawford and Jacque Jarve of Intel for the photographs and wafer of the Intel
80486 (pages 56 and 58); and Dileep Bhandarkar of DEC for help with the VMS
version of Spice and TeX used in Chapters 2-4.
Chapter 6: John DeRosa of DEC for help with the 8600 pipeline.

Chapter 7: Corinna Lee of University of California at Berkeley for measurements of
the Cray X-MP and Y-MP and for reviews.

Chapter 8: Steven Przybylski of MIPS for reviews.

Chapter 9: Dave Anderson of lmprimis for reviews and supplying material on disk
access time; Jim Brady and Robert Shomler of IBM for reviews, and Pete Chen of
Berkeley for suggestions on the system performance formulas.

Chapter 10: C. Gordon Bell for reviews, including several suggestions on
classifications of MIMD machines and David Douglas and Danny Hillis of Thinking
Machines for discussions on parallel processors of the future.

Appendix A: Mark Birman of Weitek Corporation, Merrick Darley of Texas
Instruments, and Mark Johnson of MIPS for the photographs and floor plans of the
chips (pages A-54-A-55); and David Chenevert of Sun Microsystems for reviews.

Appendix E: This was added after the Beta version, and we thank the following
people for reviews: Mitch Alsup of Motorola, Robert Garner and David Weaver of
Sun Microsystems, Earl Killian of MIPS Computer Systems, and Les Kohn of Intel.

While we have done our best to eliminate errors and to repair those pointed
out by the reviewers, we alone are responsible for those that remain!

We also want to thank the Defense Advanced Research Projects Agency for
supporting our research for many years. That research was the basis of many
ideas that came to fruition in this book. In particular, we want to thank these
current and former program managers: Duane Adams, Paul Losleben, Mark
Pullen, Steve Squires, Bill Bandy, and John Toole.

Thanks go to Richard Swan and his colleagues at DEC Western Research
Laboratory for providing us a hideout for writing the Alpha and Beta versions,
and to John Ousterhout of U.C. Berkeley, who was always ready (and even a
little too eager) to act as devil's advocate for the merits of ideas in this book
during this trek from Berkeley to Palo Alto. Thanks also to Thinking Machines
Corporation for providing a refuge during the final revision.

This book could not have been published without a publisher. John
Wakerley gave us valuable advice on how to pick a publisher. We selected
Morgan Kaufmann Publishers, Inc., and we have not regretted that decision.
(Not all authors feel this way about their publisher!) Starting with lecture notes
just after New Year's Day 1989, we completed the Alpha version in four
months. In the next three months we received reviews from 55 people and

INTEL Ex.1035.031

xxviii Acknowledgements

finished the Beta version. After class testing with 750 students in the fall of 1989
and more reviews from industry, we submitted the final version just before
Christmas 1989. Yet the book was available by March, 1990. We are not aware
of another publisher who could have kept pace with such a rigorous schedule.
We wish to thank Shirley Jowell for learning about pipelining and pipeline
hazards and seeing how to apply them to publishing. Our warmest thanks to our
editor Bruce Spatz for his guidance and his humor in our writing adventure. We
also want to thank members of the extended Morgan Kaufmann family: Walker
Cunningham for technical editing, David Lance Goines for the cover design,
Gary }lead for the book design, Linda Medoff for copy and production editing,
Fifth Street Computer Services for computer typesetting, and Paul Medoff for
proofreading and productiop assistance.

We must also thank our university staff, Darlene Hadding, Bob Miller,
Margaret Rowland, and Terry Lessard-Smith, for countless faxes and express
mailings as well as holding down the fort at Stanford and Berkeley while we
worked on the book. Linda Simko and Kim Barger of Thinking Machines also
provided numerous express mailings during the fall.

Our final thanks go to our families for their suffering through long nights and
early mornings of reading, typing, and neglect.

INTEL Ex.1035.032

INTEL Ex.1035.033INTEL Ex.1035.033

And now for something completely different.

Monty Python's Flying Circus

1.1 Introduction 3

1.2 Definitions of Performance 5

1.3 Quantitative Principles of Computer Design 8

1.4 The Job of a Computer Designer 13

1.5 Putting It All Together: The Concept of Memory Hierarchy 18

1.6 Fallacies and Pitfalls 21

1.7 Concluding Remarks 22

1.8 Historical Perspective and References 23

Exercises 28

INTEL Ex.1035.034

1.1

Fundamentals of
Computer Design

Introduction

Computer technology has made incredible progress in the past half century. In
1945, there were no stored-program computers. Today, a few thousand dollars
will purchase a personal computer that has more performance, more main mem­
ory, and more disk storage than a computer bought in 1965 for a million dollars.
This rapid rate of improvement has come both from advances in the technology
used to build computers and from innovation in computer designs. The increase
in performance of machines is plotted in Figure 1.1. While technological
improvements have been fairly steady, progress arising from better computer
architectures has been much less consistent. During the first 25 years of elec­
tronic computers, both forces made a major contribution; but for the last 20
years, computer designers have been largely dependent upon integrated circuit
technology. Growth of performance during this period ranges from 18% to 35%
per year, depending on the computer class.

More than any other line of computers, mainframes indicate a growth rate due
chiefly to technology-most of the organizational and architectural innovations
were introduced into these machines many years ago. Supercomputers have
grown both via technological enhancements and via architectural enhancements
(see Chapter 7). Minicomputer advances have included innovative ways to
implement architectures, as well as the adoption of many of the mainframe's
techniques. Performance growth of microcomputers has been the fastest, partly

INTEL Ex.1035.035

4 1.1 Introduction

because these machines take the most direct advantage of improvements in
integrated circuit technology. Also, since 1980, microprocessor technology has
been the technology of choice for both new architectures and new implemen­
tations of older architectures.

Two significant changes in the computer marketplace have made it easier
than ever before to be commercially successful with a new architecture. First,
the virtual elimination of assembly language programming has dramatically
reduced the need for object-code compatibility. Second, the creation of stan­
dardized, vendor-independent operating systems, such as UNIX, has lowered the
cost and risk of bringing out a new architecture. Hence, there has been a
renaissance in computer design: There are many new companies pursuing new
architectural directions, with new computer families emerging-mini­
supercomputers, high-performance microprocessors, graphics supercomputers,
and a wide range of multiprocessors-at a higher rate than ever before.

1000

100

Performance

10

1965 1970 1975 1980 1985 1990

FIGURE 1.1 Different computer classes and their performance growth shown over
the past ten or more years. The vertical axis shows relative performance and the
horizontal axis is year of introduction. Classes of computers are loosely defined, primarily
by their cost. Supercomputers are the most expensive-from over one million to tens of
millions of dollars. Designed mostly for scientific applications, they are also the highest
performance machines. Mainframes are high-end, general-purpose machines, typically
costing more than one-half million dollars and as much as a few million dollars. Mini­
computers are midsized machines costing from about 50 thousand dollars up to ten times
that much. Finally, microcomputers range from small personal computers costing a few
thousand dollars to large powerful workstations costing 50 thousand or more. The
performance growth rates for supercomputers, minicomputers, and mainframes have been
just under 20% per year, while the performance growth rate for microprocessors has been
about 35% per year.

INTEL Ex.1035.036

Example

Fundamentals of Computer Design 5

Starting in 1985, the computer industry saw a new style of architectures tak­
ing advantage of this opportunity and initiating a period in which performance
has increased at a much more rapid rate. By bringing together advances in inte­
grated circuit technology, improvements in compiler technology, and new archi­
tectural ideas, designers were able to create a series of machines that improved
in performance by a factor of almost 2 every year. These ideas are now
providing one of the most significant sustained performance improvements in
over 20 years. This improvement was only possible because a number of
important technological advances were brought together with a much better
empirical understanding of how computers were used. From this fusion has
emerged a style of computer design based on empirical data, experimentation,
and simulation. It is this style and approach to computer design that are reflected
in this text.

Sustaining the improvements in cost and performance of the last 25 to 50
years will require continuing innovations in computer design, and the authors
believe such innovations will be founded on this quantitative approach to com­
puter architecture. Hence, this book has been written not only to document this
design style, but also to stimulate the reader to contribute to this field.

Definitions of Performance

To familiarize the reader with the terminology and concepts of this book, this
chapter introduces some key terms and ideas. Examples of the ideas mentioned
here appear throughout the book, and several of them-pipelining, memory
hierarchies, CPU performance, and cost measurement-are the focus of entire
chapters. Let's begin with definitions of relative performance.

When we say one computer is faster than another, what do we mean? The
computer user may say a computer is faster when a program runs in less time,
while the computer center manager may say a computer is faster when it com­
pletes more jobs in an hour. The computer user is interested in reducing
response time-the time between the start and the completion of an event-also
referred to as execution time or latency. The computer center manager is
interested in increasing throughput-the total amount of work done in a given
time-sometimes called bandwidth. Typically, the terms "response time," "exe­
cution time," and "throughput" are used when an entire computing task is
discussed. The terms "latency" and "bandwidth" are almost always the terms of
choice when discussing a memory system. All of these terms will appear
throughout the text.

Do the following system performance enhancements increase throughput,
decrease response time, or both?

1. Faster clock cycle time

INTEL Ex.1035.037

6

Answer

1.2 Definitions of Performance

2. Multiple processors for separate tasks (handling the airlines reservations
system for the country, for example)

3. Parallel processing of scientific problems

Decreasing response time usually improves throughput. Hence, both 1 and 3
improve response time and throughput. In 2, no one task gets work done faster,
so only throughput increases.

Sometimes these measures are best described with probability distributions
rather than constant values. For example, consider the response time to complete
an 1/0 operation to disk. The response time depends on a number of nondeter­
ministic factors, such as what the disk is doing at the time of the 1/0 request and
how many other tasks are waiting to access the disk. Because these values are
not fixed, it makes more sense to talk about the average response time of a disk
access. Likewise, the effective disk throughput-how much data actually goes to
or from the disk per unit time-is not a constant value. For most of this text, we
will treat response time and throughput as deterministic values, though this will
change in Chapter 9 when we discuss 1/0.

In comparing design alternatives, we often want to relate the performance of
two different machines, say X and Y. The phrase "X is faster than Y" is used
here to mean that the response time or execution time is lower on X than on Y
for the given task. In particular, "Xis n% faster than Y" will mean

Execution timey n
-----~=1+-
Execution timex 100

Since execution time is the reciprocal of performance, the following relationship
holds:

1
n Execution timey Performancey Performancex

1+-= =-----
100 Execution timex 1 Perf ormancey

Performancex

Some people think of a performance increase, n, as the difference between the
performance of the faster and slower machine, divided by the performance of the
slower machine. This definition of n is exactly equivalent to our first definition,
as we can see:

(
Performancex - Performancey)

n= 100
Performancey

INTEL Ex.1035.038

Example·

Answer

Fundamentals of Computer Design 7

n Performancex
100 Performancey

1

n Performancex Execution timey
1+-= -~-~-~-

100 Performancey Execution timex

The phrase "the throughput of X is 30% higher than Y" signifies here that the
number of tasks completed per unit time on machine Xis 1.3 times the number
completed on Y.

If machine A runs a program in 10 seconds and machine B runs the same
program in 15 seconds, which of the following statements is true?

• A is 50% faster than B.

• A is 33% faster than B.

Machine A is n% faster than machine B can be expressed as

or

Thus,

Execution timeB n
------=-= 1 + -
Execution time A 100

Execution timeB - Execution time A
n= . . *100

Execution time A

15 - 10 * 100 = 50
10

A is therefore 50% faster than B.

To help prevent misunderstandings-and because of the lack of consistent
definitions for "faster than" and "slower than"-we will never use the phrase
"slower than" in a quantitative comparison of performance.

Because performance and execution time are reciprocals, increasing perfor­
mance decreases execution time. To help avoid confusion between the terms
"increasing" and "decreasing," we usually say "improve performance" or
"improve execution time" when we mean increase performance and decrease
execution time.

INTEL Ex.1035.039

8 1 .2 Definitions of Performance

Throughput and latency interact in a variety of ways in computer designs.
One of the most important interactions occurs in pipelining. Pipelining is an
implementation technique that improves throughput by overlapping the
execution of multiple instructions; pipelining is discussed in detail in Chapter 6.
Pipelining of instructions is analogous to using an assembly line to manufacture
cars. In an assembly line it may take eight hours to build an entire car, but if
there are eight steps in the assembly line, a new car is finished every hour. In the
assembly line, the latency to build one car is not affected, but the throughput
increases proportionally to the number of stages in the line if all the stages are of
the same length. The fact that pipelines in computers have some overhead per
stage increases the latency by some amount for each stage of the pipeline.

1.3 J Quantitative Principles of Computer Design

This section introduces some important rules and observations that arise. time
and again in designing computers.

Make the Common Case Fast

Perhaps the most important and pervasive principle of computer design is to
make the common case fast: In making a design tradeoff, favor the frequent case
over the infrequent case. This principle also applies when determining how to
spend resources since the impact on making some occurrence faster is higher if
the occurrence is frequent. Improving the frequent event, rather than the rare
event, will obviously help performance, too. In addition, the frequent case is
often simpler and can be done faster than the infrequent case. For example,
when adding two numbers in the central processing unit (CPU), we can expect
overflow to be a rare circumstance and can therefore improve performance by
optimizing the more common case of no overflow. This may slow down the case
when overflow occurs, but if that is rare, then overall performance will be
improved by optimizing for the normal case.

We will see many cases of this principle throughout this text. In applying this
simple principle, we have to decide what the frequent case is and how much per­
formance can be improved by making that case faster. A fundamental law, called
Amdahl's Law, can be used to quantify this principle.

Amdahl's Law

The performance gain that can be obtained by improving some portion of a
computer can be calculated using Amdahl's Law. Amdahl's Law states that the
performance improvement to be gained from using some faster mode of execu­
tion is limited by the fraction of the time the faster mode can be used.

INTEL Ex.1035.040

Example

Vehicle for second
portion of trip

Feet

Bike

Excel

Testarossa

Rocket car

Fundamentals of Computer Design 9

Amdahl's Law defines the speedup that can be gained by using a particular
feature. What is speedup? Suppose that we can make an enhancement to a
machine that will improve performance when it is used. Speedup is the ratio

S d _ Performance for entire task using the enhancement when possible
pee up - Performance for entire task without using the enhancement

Alternatively:

S d _ Execution time for entire task without using the enhancement
pee up - Execution time for entire task using the enhancement when possible

Speedup tells us how much faster a task will run using the machine with the
enhancement as opposed to the original machine.

Consider the problem of going from Nevada to California over the Sierra
Nevada mountains and through the desert to Los Angeles. You have several
types of vehicles available, but unfortunately your route goes through ecolog­
ically sensitive areas in the mountains where you must walk. Your walk over the
mountains will take 20 hours. The last 200 miles, however, can be done by high­
speed vehicle. There are five ways to complete the second portion of your
journey:

1. Walk at an average rate of 4 miles per hour.

2. Ride a bike at an average rate of 10 miles per hour.

3. Drive a Hyundai Excel in which you average 50 miles per hour.

4. Drive a Ferrari Testarossa in which you average 120 miles per hour.

5. Drive a rocket car in which you average 600 miles per hour.

How long will it take for the entire trip using these vehicles, and what is the
speedup versus walking the entire distance?

Hours for second Speedup in the Hours for entire Speedup for
portion of trip desert trip entire trip

50.00 1.0 70.00 1.0

20.00 2.5 40.00 1.8

4.00 12.5 24.00 2.9

1.67 30.0 21.67 3.2

0.33 150.0 20.33 3.4

FIGURE 1.2 The speedup ratios obtained for different means of transport depend heavily on the fact that we
have to walk across the mountains. The speedup in the desert-once we have crossed the mountains-is equal to the
rate using the designated vehicle divided by the walking rate; the final column shows how much faster our entire trip is
compared to walking.

INTEL Ex.1035.041

10

Answer

Example

Answer

1.3 Quantitative Principles of Computer Design

We can find the answer by determining how long the second part of the trip will
take and adding that time to the 20 hours needed to cross the mountains. Figure
1.2 shows the effectiveness of using the enhanced mode of transportation.

Amdahl's Law gives us a quick way to find speedup, which depends on two
factors:

1. The fraction of the computation time in the original machine that can be
converted to take advantage of the enhancement. In the example above, the

fraction is ~~ . This value, which we will call Fractionenhanced• is always less

than or equal to 1.

2. The improvement gained by the enhanced execution mode; that is, how
much faster the task would run if only the enhanced mode were used. In the
above example this value is given in the column labeled "speedup in the
desert." This value is the time of the original mode over the time of the
enhanced mode and is always greater than 1. We call this value
SpeedUPenhanced·

The execution time using the original machine with the enhanced mode will be
the time spent using the unenhanced portion of the machine plus the time spent
using the enhancement:

. . . . (. FractiOilenhanced)
Execut10n tlmenew = Execution tlme0 1d * (1-Fractlonenhanced) + S d

pee UPenhanced

The overall speedup is the ratio of the execution times:

Execution timeold 1
Speedupoverall = Execut1"on ti'menew = Fract1'on . enhanced

(l-Fract1onenhanced) + S d
pee UPenhanced

Suppose that we are considering an enhancement that runs 10 times faster than
the original machine but is only usable 40% of the time. What is the overall
speedup gained by incorporating the enhancement?

Fractionenhanced = 0.4

Speedup enhanced = 10

=
1 1

0 6
0.4 = 0.64 z 1.56

. +10
SpeeduPoverall

INTEL Ex.1035.042

Example

Answer

Fundamentals of Computer Design 11

Amdahl's Law expresses the law of diminishing returns: The incremental
improvement in speedup gained by an additional improvement in the perfor­
mance of just a portion of the computation diminishes as improvements are
added. An important corollary of Amdahl's Law is that if an enhancement is
only usable for a fraction of a task, we can't speed up the task by more than the
reciprocal of 1 minus that fraction.

A common mistake in applying Amdahl's Law is to confuse "fraction of time
converted to use an enhancement" and "fraction of time after enhancement is in
use." If, instead of measuring the time that could use the enhancement in a com­
putation, we measure the time after the enhancement is in use, the results will be
incorrect! (Try Exercise 1.8 to see how wrong.)

Amdahl's Law can serve as a guide to how much an enhancement will
improve performance and how to distribute resources to improve cost/perfor­
mance. The goal, clearly, is to spend resources proportional to where time is
spent.

Suppose we could improve the speed of the CPU in our machine by a factor of
five (without affecting 1/0 performance) for five times the cost. Also assume
that the CPU is used 50% of the time, and the rest of the time the CPU is waiting
for 1/0. If the CPU is one-third of the total cost of the computer, is increasing the
CPU speed by a factor of five a good investment from a cost/performance
viewpoint?

The speedup obtained is

1 1
Speedup = 0.5 = 0.6 = 1.67

0.5+5

The new machine will cost

~ * 1 + } * 5 = 2.33 times the original machine

Since the cost increase is larger than the performance improvement, this change
does not improve cost/performance.

Locality of Reference

While Amdahl's Law is a theorem that applies to any system, other important
fundamental observations come from properties of programs. The most impor­
tant program property that we regularly exploit is locality of reference: Programs
tend to reuse data and instructions they have used recently. A widely held rule of
thumb is that a program spends 90% of its execution time in only 10% of the

INTEL Ex.1035.043

12 1.3 Quantitative Principles of Computer Design

code. An implication of locality is that based on the program's recent past, one
can predict with reasonable accuracy what instructions and data a program will
use in the near future.

To examine locality, several programs were measured to determine what per­
centage of the instructions were responsible for 80% and for 90% of the instruc­
tions executed. The data are shown in Figure 1.3, and the programs are described
in detail in the next chapter.

Locality of reference also applies to data accesses, though not as strongly as
to code accesses. There are two different types of locality that have been
observed. Temporal locality states that recently accessed items are likely to be
accessed in the near future. Figure 1.3 shows one effect of temporal locality.
Spatial locality says that items whose addresses are near one another tend to be
referenced close together in time. We will see these principles applied later in
this chapter, and extensively in Chapter 8.

14%

12%

10%

8%

6%

4%

2%

0%
GCC Spice TeX

90% of all
references

80% of all
references

FIGURE 1.3 This plot shows what percentage of the instructions are responsible for
80% and for 90% of the instruction executions. For example, just under 4% of Spice's
program instructions (also called the static instructions) represent 80% of the dynamically
executed instructions, while just under 10% of the static instructions account for 90% of the
executed instructions. Less than half the static instructions are executed even once in any
one run-in Spice only 30% of the instructions are executed one or more times. Detailed
descriptions of the programs and their inputs appear in Figure 2.17 (page 67).

INTEL Ex.1035.044

Fundamentals of Computer Design 13

1 .4 I The Job of a Computer Designer

A computer architect designs machines to run programs. If you were going to
design a computer, your task would have many aspects, including instruction set
design, functional organization, logic design, and implementation. The imple­
mentation may encompass integrated circuit (IC) design, packaging, power, and
cooling. You would have to optimize a machine design across these levels. This
optimization requires familiarity with a very wide range of technologies, from
compilers and operating systems to logic design and packaging.

Some people have used the term computer architecture to refer only to
instruction set design. They refer to the other aspects of computer design as
"implementation," often insinuating that implementation is uninteresting or less
challenging. The authors believe this view is not only incorrect, but is even
responsible for mistakes in the design of new instruction sets. The architect's or
designer's job is much more than instruction set design, and the technical hur­
dles in the other aspects of the project are certainly as challenging as those
encountered in doing instruction set design.

In this book the term instruction set architecture refers to the actual pro­
grammer-visible instruction set. The instruction set architecture serves as the
boundary between the software and hardware, and that topic is the focus of
Chapters 3 and 4. The implementation of a machine has two components:
organization and hardware. The term organization includes the high-level
aspects of a computer's design, such as the memory system, the bus structure,
and the internal CPU design. For example, two machines with the same instruc­
tion set architecture but different organizations are the VAX-11/780 and the
VAX 8600. Hardware is used to refer to the specifics of a machine. This would
include the detailed logic design and the packaging technology of the machine.
This book focuses on instruction set architecture and on organization. Two
machines with identical instruction set architectures and nearly identical organi­
zations that differ primarily at the hardware level are the V AX-11/780 and the
11/785; the 11/785 used an improved integrated circuit technology to obtain a
faster clock rate and made some small changes in the memory system. In this
book the word "architecture" is intended to cover all three aspects of computer
design.

Functional Requirements

Computer architects must design a computer to meet functional requirements as
well as price and performance goals. Often, they also have to determine what the
functional requirements are, and this can be a major task. The requirements may
be specific features, inspired by the market. Application software often drives
the choice of certain functional requirements by determining how the machine
will be used. If a large body of software exists for a certain instruction set
architecture, the architect may decide that a new machine should implement an

INTEL Ex.1035.045

14 1.4 The Job of a Computer Designer

existing instruction set. The presence of a large market for a particular class of
applications might encourage' the designers to incorporate requirements that
would make the machine competitive in that market. Figure 1.4 (see page 15)
summarizes some requirements that need to be considered in designing a new
machine. Many of these requirements and features will be examined in depth in
later chapters.

Many of the requirements in Figure 1.4 represent a minimum level of sup­
port. For example, modem operating systems use virtual memory and protection.
This requirement establishes a minimum level of support, without which the
machine would not be viable. Any additional hardware above such thresholds
can be evaluated from the viewpoint of cost/performance.

Most of the attributes of a computer-hardware support for different data
types, performance of different functions, and so on--can be evaluated on the
basis of cost/performance for the intended marketplace. The next section dis­
cusses how one might make these tradeoffs.

Balancing Software and Hardware

Once a set of functional requirements has been established, the architect must try
to optimize the design. Which design choices are optimal depends, of course, on
the choice of metrics. The most common metrics involve cost and performance.
Given some application domain, one can try to quantify the performance of the
machine by a set of programs that are chosen to represent that application
domain. (We will see how to measure performance and what aspects affect cost
and price in the next chapter.) Other measurable requirements may be important
in some markets; reliability and fault tolerance are often crucial in transaction
processing environments.

Throughout this text we will focus on optimizing machine cost/performance.
This optimization is largely a question of where is the best place to implement
some required functionality? Hardware and software implementations of a
feature have different advantages. The major advantages of a software imple­
mentation are the lower cost of errors, easier design, and simpler upgrading.
Hardware offers performance as its sole advantage, though hardware imple­
mentations are not always faster-a superior algorithm in software can beat an
inferior algorithm implemented in hardware. Balancing hardware and software
will lead to the best machine for the applications of interest.

Sometimes a specific requirement may effectively necessitate the inclusion of
hardware support. For example, a machine that is to run scientific applications
with intensive floating-point calculations will almost certainly need hardware for
floating-point operations. This is not a question of functionality, but rather of
performance. Software-based floating point could be used, but it is so much
slower that the machine would not be competitive. Hardware-supported floating
point is a de facto requirement for the scientific marketplace. By comparison,
consider building a machine to support commercial applications written in

INTEL Ex.1035.046

Functional requirements

Application area

Special purpose

General purpose

Scientific

Commercial

Fundamentals of Computer Design

Typical features required or supported

Target of computer

Higher performanc~ for specific applications (Ch. 10)

Balanced performance for a range of tasks

High-performance floating point (Appendix A)

Support for COBOL (decimal arithmetic), support for data bases and
transaction processing

15

Level of software compatibility Determines amount of existing software for machine (Ch. 10)

Most flexible for designer, need new compiler At programming language

Object code or binary compatible Architecture is completely defined-little flexibility-but no investment
needed in software or porting programs

Operating system (OS) requirements

Size of address space

Necessary features to support chosen OS

Very important feature (Ch. 8); may limit applications

Memory management

Protection

Context switch

Interrupts and traps

Standards

Floating point

I/0.bus

Operating systems

Networks

Required for modern OS; may be flat, paged, segmented (Ch. 8)

Different OS and application needs: page vs. segment protection (Ch. 8)

Required to interrupt and restart program; performance varies (Ch. 5)

Types of support impact hardware design a.I}d OS (Ch. 5)

Certain standards may be required by marketplace

Format and arithmetic: IEEE, DEC, IBM (Appendix A)

For I/O devices: VME, SCSI, NuBus, Futurebus (Ch. 9)

UNIX, DOS or vendor proprietary

Programming languages

Support required for different networks: Ethernet, FDDI (Ch. 9)

Languages (ANSI C, FORTRAN 77, ANSI COBOL) affect instruction set

FIGURE 1.4 Summary of some of the most important functional requirements an architect faces. The left-hand
column describes the class of requirement, while the right-hand column gives examples of specific features that might be
needed. We will look at these design requirements in more detail in later chapters.

COBOL. Such applications make heavy use of decimal and string operations;
thus, many architectures have included instructions for these functions. Other
machines have supported these functions using a combination of software and
standard integer and logical operations. This is a classic example of a tradeoff
between hardware and software implementation, and there is no single correct
solution.

In choosing between two designs, one factor that an architect must consider is
design complexity. Complex designs take longer to complete, prolonging time to
market. This means a design that takes longer will need to have higher perfor­
mance to be competitive. In general, it is easier to deal with complexity in soft­
ware than in hardware, chiefly because it is easier to debug and change software.
Thus, designers may choose to shift functionality from hardware to software. On

INTEL Ex.1035.047

16 1 .4 The Job of a Computer Designer

the other hand, design choices in the instruction set architecture and in the
organization can affect the complexity of the implementation as well as the
complexity of compilers and operating systems for the machine. The architect
must be constantly aware of the impact of his design choices on the design time
for both hardware and software.

Designing to Last Through Trends

If an architecture is to be successful, it must be designed to survive changes in
hardware technology, software technology, and application characteristics. The
designer must be especially aware of trends in computer usage and in computer
technqlogy. After all, a successful new instruction set architecture may last tens
of years-the core of the IBM 360 has been in use since 1964. An architect must
plan for technology changes that can increase the lifetime of a successful
machine.

To plan for the evolution of a machine, the designer must be especially aware
of rapidly occurring changes in implementation technology. Figure 1.5 shows
some of the most important trends in hardware technology. In writing this book,
the emphasis is on design principles that can be applied with new technologies
and on accounting for ongoing technology trends.

These technology changes are not continuous but often occur in discrete
steps. For example, DRAM (dynamic random-access memory) sizes are always
increased by factors of 4 due to the basic design structure. Thus, rather than
doubling every year or two, DRAM technology quadruples every three or four
years. This stepwise change in technology leads to thresholds that can enable an
implementation technique that was previously impossible. For example, when
MOS technology reached the point where it could put between 25,000 and
50,000 transistors on a single chip, it became possible to build a 32-bit
microprocessor on a single chip. By eliminating chip crossings within the CPU,
a dramatic decrease in cost/performance was possible. This design was simply
infeasible until the technology reached a certain point. Such technology
thresholds are not rare and have a significant impact on a wide variety of design
decisions.

The architect will also need to be aware of trends in software and how pro­
grams will use the machine. One of the most important software trends is the
increasing amount of memory used by programs and their data. The amount of
memory needed by the average program has grown by a factor of 1.5 to 2 per
year! This translates to a consumption of address bits at a rate of 1/2 bit to 1 bit
per year. Underestimating address-space growth is often the major reason why
an instruction set architecture must be abandoned. (For a further discussion, see
Chapter 8 on memory hierarchy.)

Another important software trend in the past 20 years has been the
replacement of assembly language by high-level languages. This trend has
resulted in a larger role for compilers and in the redirection of architectures

INTEL Ex.1035.048

Fundamentals of Computer Design 17

toward the support of the compiler. Compiler technology has been steadily im­
proving. A designer must understand this technology and the direction in which
it is evolving since compilers have become the primary interface between user
and machine. We will talk about the effects of compiler technology in Chapter 3.

A fundamental change in the way programming is done may demand changes
in an architecture to efficiently support the programming model. But the
emergence of new programming models occurs at a much slower rate than
improvements in compiler technology: As opposed to compilers, which improve
yearly, significant changes in programming languages occur about once a
decade.

Technology Density and performance trend

IC logic technology Transistor count on a chip increases by about 25% per year,
doubling in three years. Device speed increases nearly as
fast.

Semiconductor DRAM Density increases by just under 60% per year, quadrupling
in three years. Cycle time has improved very slowly,
decreasing by about one-third in ten years.

Disk technology Density increases by about 25% per year, doubling in three
years. Access time has improved by one-third in ten years.

FIGURE 1.5 Trends in computer implementation technologies show the rapid
changes that designers must deal with. These changes can have a dramatic impact on
design!'lrs when they affect long-term decisions, such as instruction set architecture. The
cost per transistor for logic and the cost per bit for semiconductor or disk memory decrease
at very close to the rate at which density increases. Cost trends are considered in more
detail in the next chapter. In the past, DRAM (dynamic random-access memory) technology
has improved faster than logic technology. This difference has occurred because of
reductions in the number of transistors per DRAM cell and the creation of specialized
technology for DRAMs. As the improvement from these sources diminishes, the density
growth in logic technology and memory technology should become comparable.

When an architect has understood the impact of hardware and software trends
on machine design, he can then consider the question of how to balance the
machine. How much memory do you need to plan for the targeted CPU speed?
How much 1/0 will be required? To try to give some idea of what would consti­
tute a balanced machine, Case and Amdahl coined two rules of thumb that are
now usually combined. The combined rule says that a 1-MIPS (million
instructions per second) machine is balanced when it has 1 megabyte of memory
and I-megabit-per-second throughput of 1/0. This rule of thumb provides a
reasonable starting point for designing a balanced system, but should be refined
by measuring the system performance of the machine when it is executing the
intended applications.

INTEL Ex.1035.049

18

1.s I

1.5 Putting It All Together: The Concept of Memory Hierarchy

Putting It All Together:
The Concept of Memory Hierarchy

In the "Putting It All Together" sections that appear near the end of every chap­
ter, we show real examples that use the principles in that chapter. In this first
chapter, we discuss a key idea in memory systems that will be the sole focus of
our attention in Chapter 8.

To begin this section, let's look at a simple axiom of hardware design:
smaller is faster. Smaller pieces of hardware will generally be faster than larger
pieces. This simple principle is particularly applicable to memories for two
different reasons. First, in high-speed machines, signal propagation is a major
cause of delay; larger memories have more signal delay and require more levels
to decode addresses. Second, in most technologies one can obtain smaller
memories that are faster than larger memories. This is primarily because the
designer can use more power per memory cell in a smaller design. The fastest
memories are generally available in smaller numbers of bits per chip at any point
in time, but they cost substantially more per byte.

Increasing memory bandwidth and decreasing the latency of memory access
are both crucial to system performance, and many of the organizational
techniques we discuss will focus on these two metrics. How can we improve
these two measures? The answer lies in combining the principles we discussed
in this chapter together with the rule that smaller is faster.

The principle of locality of reference says that the data most recently used is
likely to be accessed again in the near future. Favoring accesses to such data will
improve performance. Thus, we should try to keep recently accessed items in
the fastest memory. Because smaller memories will be faster, we want to use
smaller memories to try to hold the most recently accessed items close to the
CPU and successively larger (and slower) memories as we move further away

c Memory
a bus 1/0 bus
c Memory
h
e

Register Cache Memory Disk
reference reference reference l/Odevices memory

reference

FIGURE 1.6 These are the levels in a typical memory hierarchy. As we move further
away from the CPU, the memory in the level becomes larger and slower.

INTEL Ex.1035.050

Level

Called

Typical size

Access time (inns)

Bandwidth (in MB/sec.)

Managed by

Backed by

Fundamentals of Computer Design 19

from the CPU. This type of organization is called a memory hierarchy. In Figure
1.6, a typical multilevel memory hierarchy is shown. Two important levels of
the memory hierarchy are the cache and virtual memory.

A cache is a small, fast memory located close to the CPU that holds the most
recently accessed code or data. When the CPU does not find a data item it needs
in the cache, a cache miss occurs, and the data is retrieved from main memory
and put into the cache. This usually causes the ,CPU to pause until the data is
available.

Likewise, not all objects referenced by a program need to reside in main
memory. If the computer has virtual memory, then some objects may reside on
disk. The address space is usually broken into fixed-size blocks, called pages. At
any time, each page resides either in main memory or on disk. When the CPU
references an item within a page that is not present in the cache or main
memory, a page fault occurs, and the entire page is moved from the disk to main
memory. The cache and main memory have the same relationship as the main
memory and disk.

1 2 3 4

Registers Cache Main memory Disk storage

< 1 KB < 512KB <512MB > 1 GB

10 20 100 20,000,000

800 200 133 4

Compiler Hardware Operating system Operating
system/user

Cache Main memory Disk Tape

FIGURE 1.7 The typical levels in the hierarchy slow down and get larger as we move away from the CPU. Sizes
are typical for a large workstation or minicomputer. The access time is given in nanoseconds. Bandwidth is given in MB
per second, assuming 32-bit paths between levels in the memory hierarchy. As we move to lower levels of the hierarchy,
the access times increase, making it feasible to manage the transfer less responsively. The values shown are typical in
1990 and will no doubt change over time.

Machine Register size Register Cache size Cache
access time access time

VAX-11/780 16 32-bit lOOns 8KB 200ns

VAXstation 16 32-bit 40 ns 1 KB on chip, 125 ns
3100 64 KB off chip

DECstation 32 32-bit integer; 30 ns 64 KB instruction; 60ns
3100 16 64-bit floating 64 KB data

point

FIGURE 1.8 Sizes and access times for the register and cache levels of the
hierarchy vary dramatically among three different machines.

INTEL Ex.1035.051

20

Example

Answer

Example

Answer

1.5 Putting It All Together: The Concept of Memory Hierarchy

Typical sizes of each level in the memory hierarchy and their access times are
shown in Figure 1.7. While the disk and main memory are usually configurable, .
the register count and cache size are typically fixed for an implementation.
Figure 1.8 shows these values for three machines discussed in this text.

Because of locality and the higher speed of smaller memories, a memory
hierarchy can substantially improve performance.

Suppose we have a computer with a small, high-speed memory that holds 2000
instructions. Assume that 10% of the instructions are responsible for 90% of the
instruction accesses and that the accesses to that 10% are uniform. (That is, each
of the instructions in the heavily used 10% is executed an equal number of
times.) If we have a program with 50,000 instructions and we know which 10%
of the program is most heavily used, what fraction of the instruction accesses
can be made to go to high-speed memory?

Ten percent of 50,000 is 5000. Hence, we can fit 2/5 of the 90%, or 36% of the
instructions fetched.

How significant is the impact of memory hierarchy? Let's do a simplified
example to illustrate its impact. Though we will evaluate memory hierarchies in
a much more precise fashion in Chapter 8, this rudimentary example illustrates
the potential impact.

Suppose a cache is five times faster than main memory, and suppose that the
cache can be used 90% of the time. How much speedup do we gain by using the
cache?

This is a simple application of Amdahl's Law.

1
Speedup = · 01 • h

(1 01 f · h b d) w of time cac e can be used
-w o time cac e can e use + S d . h pee up usmg cac e

1
Speedup = 0_

9
(1-0.9) + 5

1
Speedup =

0
_28 ""' 3.6

Hence, we obtain a speedup from the cache of about 3.6 times.

INTEL Ex.1035.052

Fundamentals of Computer Design 21

1.& I Fallacies and Pitfalls

The purpose of this section, which will be found in every chapter, is to explain
some commonly held misbeliefs or misconceptions that one could acquire. We
call such misbeliefs fallacies. When discussing a fallacy, we try to give a
counterexample. We also discuss pitfalls-easily made mistakes. Often pitfalls
are generalizations of principles that are true in a limited context. The purpose of
these sections is to help you avoid making these errors in machines that you
design.

Pitfall: Ignoring the inexorable progress of hardware when planning a new ·
machine.

Suppose you plan to introduce a machine in three years, and you claim the
machine will be a terrific seller because it's twice as fast as anything available
today. Unfortunately, the machine will probably not sell well, because the per­
formance growth rate for the industry will yield machines of the same perfor­
mance. For example, assuming a 25% yearly growth rate in performance, a
machine with performance x today can be expected to have performance
l.25 3x=l.95x in three years. Your machine would have essentially no
performance advantage! Many projects within computer companies are
canceled, either because they do not pay attention to this rule or because the
project slips and the performance of the delayed machine is below the industry
average. While this phenomenon can occur in any industry, the rapid
improvements in cost/performance make this a major concern in the computer
industry.

Fallacy: Hardware is always faster than software.

While a hardware implementation of a well-defined and necessary feature is
faster than a software implementation, the functionality provided by the hard­
ware is often more general than the needs of the software. Thus, a compiler may
be able to choose a sequence of simpler instructions that accomplishes the
required work more efficiently than the more general hardware instruction. A
good example is the MVC (move character) instruction in the IBM 360 architec­
ture. This instruction is very general and will move up to 256 bytes of data
between two arbitrary addresses. The source and destination may begin at any
byte address-and may even overlap. In the worst case, the hardware must move
one byte at a time; determining whether the worst case exists requires significant
analysis when the instruction is decoded.

Because the MVC instruction is very general, it incurs overhead that is often
unnecessary. A software implementation can be faster if it can eliminate this
overhead. Measurements have shown that nonoverlapped moves are 50 times

INTEL Ex.1035.053

22 1.6 Fallacies and Pitfalls

more frequent than overlapped moves and that the average nonoverlapped move
is only 8 bytes long. In fact, more than half of the nonoverlapped moves move
only a single byte! A two-instruction sequence that loads a byte into a register
and then stores it in memory is at least twice as fast as MVC when moving a
single byte. This illustrates the rule of making the frequent case fast.

1 • 7 I Concluding Remarks

The task the computer designer faces is a complex one: Determine what
attributes are important for a new machine, then design a machine to maximize
performance while staying within cost constraints. Performance can be measured
as either throughput or response time; because some environments favor one
over the other, this distinction must be borne in mind when evaluating alterna­
tives. Amdahl's Law is a valuable tool to help determine what performance
improvement an architectural enhancement can have. In the next chapter we will
look at how to measure performance and what properties have the biggest
impact on cost.

Knowing what cases are the most frequent is critical to improving perfor­
mance. In Chapters 3 and 4, we will look at instruction set design and use,
watching for common properties of instruction set usage. Based on measure­
ments of instruction sets, tradeoffs can be made by deciding which instructions
are the most important and what cases to try to make fast.

In Chapters 5 and 6 we will examine the fundamentals of CPU design, start­
ing with a simple sequential machine and moving to pipelined implementations.
Chapter 7 focuses on applying these ideas to high-speed scientific computation
in the form of vector machines. Amdahl's Law will be our guiding light through­
out Chapter 7.

We ·have seen how a fundamental property of programs-the principle of
locality--can help us build faster computers by allowing us to make effective
use of small, fast memories. In Chapter 8, we will return to memory hierarchies,
looking in depth at cache design and support for virtual memory. The design of
high-performance memory hierarchies has become a key component of modern
computer design. Chapter 9 deals with a closely allied topic-1/0 systems. As
we saw when using Amdahl's Law to evaluate a cost/performance tradeoff, it is
not sufficient to merely improve CPU time. To keep a balanced machine, we
must also boost I/0 performance.

Finally, in Chapter 10, we will look at current research directions focusing on
parallel processing. How these ideas will affect the kinds of machines designed
and used in the future is not yet clear. What is clear is that an empirical and
experimental approach to designing new computers will be the basis for contin­
ued and dramatic performance growth.

INTEL Ex.1035.054

Fundamentals of Computer Design 23

1.8 I Historical Perspective and References

If ... history ... teaches us anything, it is that man in his quest for knowledge and
progress, is determined and cannot be deterred.

John F. Kennedy, Address at Rice University, September 12, 1962.

A section of historical perspectives closes each chapter in the text. This section
provides some historical background on some of the key ideas presented in the
chapter. The authors may trace the development of an idea through a series of
machines or describe some important projects. This section will also contain
references for the reader int~rested in examining the initial development of an
idea or machine or interested in further reading.

The First Electronic Computers

J. Presper Eckert and John Mauchly at the Moore School of the University of
Pennsylvania built the world's first electronic general-purpose computer. This
machine, called ENIAC (Electronic Numerical Integrator and Calculator), was
funded by the United States Army and became operational during World War II,
but was not publicly disclosed until 1946. ENIAC was a general-purpose
machine used for computing artillery firing tables. One hundred feet long by
eight-and-a-half feet high and several feet wide, the machine was enormous-far
beyond the size of any computer built today. Each of the 20, 10-digit registers
was two feet long. In total, there were 18,000 vacuum tubes.

While the size was two orders of magnitude bigger than machines built today,
it was more than three orders of magnitude slower, with an add taking 200
microseconds. The ENIAC provided conditional jumps and was programmable,
which clearly distinguished it from earlier calculators. Programming was done
manually by plugging up cables and setting switches. Data was provided on
punched cards. Programming for typical calculations required from a half-hour
to a whole day. The ENIAC was a general-purpose machine limited primarily by
a small amount of storage and tedious programming.

In 1944, John von Neumann was attracted to the ENIAC project. The group
wanted to improve the way programs were entered and discussed storing pro­
grams as numbers; von Neumann helped crystalize the ideas and wrote a memo
proposing a stored-program computer called EDV AC (Electronic Discrete
Variable Automatic Computer). Herman Goldstine distributed the memo and put
von Neumann's name on it, much to the dismay of Eckert and Mauchly, whose
names were omitted. This memo has served as the basis for the commonly used
term "von Neumann computer." The authors and several early inventors in the
computer field believe that this term gives too much credit to von Neumann,

INTEL Ex.1035.055

24 1.8 Historical Perspective and References

who wrote up the ideas, and too little to the engineers, Eckert and Mauchly, who
worked on the machines. For this reason, this term will not appear in this book.

In 1946, Maurice Wilkes of Cambridge University visited the Moore School
to attend the latter part of a series of lectures on developments in electronic
computers. When he returned to Cambridge, Wilkes decided to embark on a
project to build a stored-program computer named EDSAC, for Electronic Delay
Storage Automatic Calculator. The EDSAC became operational in 1949 and was
the world's first full-scale, operational, stored-program computer [Wilkes,
Wheeler, and Gill 1951; Wilkes 1985]. (A small prototype called the Mark I,
which was built at the University of Manchester and ran in 1948, might be called
the first operational stored-program machine.) The EDSAC was an accumulator­
based architecture. This style of machine remained popular until the early 1970s,
and the instruction se.ts looked remarkably similar to the EDSAC. (Chapter 3
starts with a brief summary of the EDSAC instruction set.)

In 1947, Eckert and Mauchly applied for a patent on electronic computers.
The dean of the Moore School, by demanding the patent be turned over to the
university, may have helped Eckert and Mauchly conclude they should leave.
Their departure crippled the EDV AC project, which did not become operational
until 1952,

Goldstine left to join von Neumann at the Institute for Advanced Study at
Princeton in 1946. Together with Arthur Burks, they issued a report (1946)
based on the memo written earlier. The paper led to the IAS machine. built by
Julian Bigelow at Princeton's Institute for Advanced Study. It had a total of
1024, 40-bit words and was roughly 10 times faster than ENIAC. The group
thought about uses for the machine, published a set of reports, and encouraged
visitors. These reports and visitors inspired the development of a number of new
computers. The paper by Burks, Goldstine, and von Neumann was incredible for
the period. Reading it today, one would never guess this landmark paper was
written more than 40 years ago, as most of the architectural concepts seen in
modem computers are discussed there.

Recently, there has been some controversy about John Atanasoff, who built a
small-scale electronic computer in the early 1940s [Atanasoff 1940]. His ma­
chine, designed at Iowa State University, was a special-purpose computer that
was never completely operational. Mauchly briefly visited Atanasoff before he
built ENIAC. The presence of the Atanasoff machine, together with delays in
filing the ENIAC patents (the work was classified and patents could not be filed
until after the war) and the distribution of von Neumann's EDVAC paper, were
used to break the Eckert-Mauchly patent [Larson 1973]. Though controversy
still rages over Atanasoff's role, Eckert and Mauchly are usually given credit for
building the first working, general-purpose, electronic computer [Stem 1980].
Another early machine that deserves some credit was a special-purpose machine
built by Konrad Zuse in Germany in the late 1930s and early 1940s. This ma­
chine was electromechanical and, due to the war, was never extensively pursued.

In the same time period as ENIAC, Howard Aiken was building an electro­
mechanical computer called the Mark-I at Harvard. He followed the Mark-I by a

INTEL Ex.1035.056

Fundamentals of Computer Design 25

relay machine, the Mark-II, and a pair of vacuum tube machines, the Mark-III
and Mark-IV. The Mark-III and Mark-IV were being built after the first stored­
program machines. Because they had separate memories for instructions and
data, the machines were regarded as reactionary by the advocates of stored-pro­
gram computers. The term Harvard architecture was coined to describe this type
of machine. Though clearly different from the original sense, this term is used
today to apply to machines with a single main memory but with separate
instruction and data caches. ·

The Whirlwind project [Redmond and Smith 1980) was begun at MIT in
1947 and was aimed at applications in real-time radar signal processing. While it
led to several inventions, its overwhelming innovation was the creation of
magnetic core memory. Whirlwind had 2048, 16-bit words of magnetic core.
Magnetic cores served as the main memory technology for nearly 30 years.

Commercial Developments

In December 1947, Eckert and Mauchly formed Eckert-Mauchly Computer
Corporation. Their first machine, the BINAC, was built for Northrop and was
shown in August 1949. After some financial difficulties, they were acquired by
Remington-Rand, where they built the UNIV AC I, designed to be sold as a
general-purpose computer. First delivered in June 1951, the UNIVAC I sold for
$250,000 and was the first successful commercial computer-48 systems were
built! Today, this early machine, along with many other fascinating pieces of
computer lore, can be seen at the Computer Museum in Boston, Massachusetts.

IBM, which earlier had been in the punched card and office automation
business, didn't start building computers until 1950. The first IBM computer, the
IBM 701, shipped in 1952 and eventually sold 19 units. In the early 1950s, many
people were pessimistic about the future of computers, believing that the market
and opportunities for these "highly sp~cialized" machines were quite limited.

Several books describing the early days of computing have been written by
the pioneers [Wilkes 1985; Goldstine 1972). There are numerous independent
histories, often built around the people involved [Slater 1987; Shurkin 1984), as
well as a journal, Annals of the History of Computing, devoted to the history of
computing.

The history of some of the computers invented after 1960 can be found in
Chapters 3 and 4 (the IBM 360, the DEC VAX, the Intel 80x86, and the early
RISC machines), Chapter 6 (the pipelined processors, including the CDC 6600),
and Chapter 7 (vector processors including the TI ASC, CDC Star, and Cray
processors).

Computer Generations-
A Capsule Summary of Computer History

Since 1952, there have been thousands of new computers, using a wide range of
technologies and having widely varying capabilities. In an attempt to get a per-

INTEL Ex.1035.057

26

Generation Dates

1 1950-1959

2 1960-1968

3 1969-1977

4 1978-199?

5 199?-

1.8 Historical Perspective and References

spective on the developments, the industry has tended to group computers into
generations. This classification is often based on the implementation technology
used in each generation, as shown in Figure 1.9. Typically, each computer
generation is eight to ten years in length, though the length and start times­
especially of recent generations-is debated. By convention, the first generation
is taken to be commercial electronic computers, rather than the mechanical or
electromechanical machines that preceded them.

Technology Principal new product New companies and
machines

Vacuum tubes Commercial, electronic computer IBM 701, UNIVAC I

Transistors Cheaper computers Burroughs 6500, NCR,
CDC 6600, Honeywell

Integrated circuit Minicomputer 50 new companies: DEC
PDP-11, Data General
Nova

LSI and VLSI Personal computers and Apple II, Apollo
workstations DN 300, Sun 2

Parallel processing? Multiprocessors? ??

FIGURE 1.9 Computer generations are usually determined by the change in dominant implementation
technology. Typically, each generation offers the opportunity to create a new class of computers and tor new computer
companies to be created. Many researchers believe that parallel processing using high-performance microprocessors will
be the basis for the fifth computer generation.

Development of Principles
Discussed in This Chapter

What is perhaps the most basic principle was originally stated by Amdahl [1967]
and concerned the limitations on speedup in the context of parallel processing:

A fairly obvious conclusion which can be drawn at this point is that the effort
expended on achieving high parallel processing rates is wasted unless it is
accompanied by achievements in sequential processing rates of very nearly the
same magnitude. [p. 485]

Amdahl stated his law focusing on the implications of speeding up only a por­
tion of the computation. The basic equation can be used as a general technique
for measuring the speedup and cost-effectiveness of any enhancement.

Virtual memory first appeared on a machine called Atlas, designed in
England in 1962 [Kilburn, et al. 1982]. The IBM 360/85, introduced in the late
1960s, was the first commercial machine to use a cache, but it seems that the
idea was discussed for several machines being built in England in the early
1960s (see the discussion in Chapter 8).

INTEL Ex.1035.058

Fundamentals of Computer Design 27

Knuth [1971] published the original observations about program locality:

Programs typically have a very jagged profile, with a few sharp peaks. As a very
rough approximation, it appears that the nth most important statement of a pro­
gram from the point of view of execution time accounts for about (a-1)a-n of the
running time.for some 'a' and for small 'n'. We also found that less than 4 per
cent of a program generally accounts for more than half of its running time.
[p. 105]

References

AMDAHL, G. M. [1967]. "Validity of the single processor approach to achieving large scale
computing capabilities," Proc. AF/PS 1967 Spring Joint Computer Conf 30 (April), Atlantic City,
N.J., 483-485. -

ATANASOFF, J. V. [1940]. "Computing machine for the solution of large systems of linear
equations," Internal Report, Iowa State University.

BELL, C. G. [1984]. "The mini and micro industries," IEEE Computer 17:10 (October) 14-30.

BURKS, A. W., H. H. GOLDSTINE, AND J. VON NEUMANN [1946]. "Preliminary discussion of the
logical design of an electronic computing instrument," Report to the U.S. Army Ordnance
Department, p. 1; also appears in Papers of John von Neumann, W. Aspray and A. Burks, eds.,
The MIT Press, Cambridge, Mass. and Tomash Publishers, Los Angeles, Calif., 1987, 97-146.

GOLDSTINE, H. H. [1972]. The Computer: From Pascal to von Neumann, Princeton University
Press, Princeton, N.J.

KILBURN, T., D. B. G. EDWARDS, M. J. LANIGAN, AND F. H. SUMNER [1982]. "One-level storage
system," reprinted in D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles
and Examples (1982), McGraw-Hill, New York.

KNUTH, D. E. [1971]. "An empirical study of FORTRAN programs," Software Practice and
Experience, Vol. 1, 105-133.

LARSON, JUDGE E. R. [1973]. "Findings of Fact, Conclusions of Law, and Order for Judgment,"
File No. 4-67, Civ. 138, Honeywell v. Sperry Rand and Illinois Scientific Development, U.S.
District Court for the District of Minnesota, Fourth Division (October 19).

REDMOND, K. C. AND T. M. SMITH [1980]. Project Whirlwind-The History of a Pioneer
Computer, Digital Press, Boston, Mass.

SHURKIN, J. [1984]. Engines of the Mind: A History of the Computer, W.W. Norton, New York.

SLATER, R. [1987]. Portraits in Silicon, The MIT Press, Cambridge, Mass.

STERN, N. [1980]. "Who invented the first electronic digital computer," Annals of the History of
Computing 2:4 (October) 375-376.

WILKES, M. V. [1985]. Memoirs of a Computer Pioneer, The MIT Press, Cambridge, Mass.

WILKES, M. V., D. J. WHEELER, AND S. GILL [1951]. The Preparation of Programs for an
Electronic Digital Computer, Addison-Wesley Press, Cambridge, Mass.

INTEL Ex.1035.059

28 Exercises

EXERCISES

1.1 [10/10/10/12/12/12] <1.1,1.2> Here are the execution times in seconds for the
Linpack benchmark and 10,000 iterations of the Dhrystone benchmark (see Figure 2.5,
page 47) on VAX models:

Model Year shipped Linpack execution Dhrystone execution
time (seconds) time (10,000 iterations)

(seconds)

VAX-11/780 1978 4.90 5.69

VAX 8600 1985 1.43 1.35

VAX8550 1987 0.695 0.96

a. [1 O] How much faster is the 8600 than the 780 using Linpack? How about using
Dhrystone?

b. [10] How much faster is the 8550 than the 8600 using Linpack? How about using
Dhrystone?

c. [10] How much faster is the 8550 than the 780 using Linpack? How about using
Dhrystone?

d. [12] What is the average performance growth per year between the 780 and the 8600
using Linpack? How about using Dhrystone?

e. [12] What is the average performance growth per year between the 8600 and the
8550 using Linpack? How about using Dhrystone?

f. [12] What is the average performance growth per year between the 780 and the 8550
using Linpack? How about using Dhrystone?

1.2-1.5 For the next four questions, assume that we are considering enhancing a
machine by adding a vector mode to it. When a computation is run in vector mode it is
20 times faster than the normal mode of execution. We call the percentage of time that
could be spent using vector mode the percentage of vectorization.

1.2 [20] <1.3> Draw a graph that plots the speedup as a percentage of the computation
performed in vector mode. Label the y axis "Net Speedup" and label the x axis "Percent
Vectorization."

1.3 [10] <1.3> What percent of vectorization is needed to achieve a speedup of 2?

1.4 [10] <1.3> What percentage of vectorization is needed to achieve one-half the
maximum speedup attainable from using vector mode?

1.5 [15] <1.3> Suppose you have measured the percentage of vectorization for programs
to be 70%. The hardware design group says they can double the speed of the vector rate
with a significant additional engineering investment. You wonder whether the compiler
crew could increase the use of vector mode as another approach to increasing

INTEL Ex.1035.060

Fundamentals of Computer Design 29

performance. How much of an increase in the percentage of vectorization (relative to
current usage)·would you need to obtain the same performance gain? Which investment
would you recommend?

1.6 [12/12] < 1.1, 1.4> There are two design teams at two different companies. The
smaller and more aggressive company's management demands a two-year design cycle
for their products. The larger and less aggressive company's management settles for a
four-year design cycle. Assume that today the market they will be selling to demands 25
times the performance of a VAX-11/780.

a. [12] What should the performance goals for each product be, if the growth rates need
to be 30% per year?

b. [12] Suppose that the companies have just switched to using 4-megabit DRAMS.
Assuming the growth rates in Figure 1.5 (page 17) hold, what DRAM sizes should be
planned for use in these projects? Note that DRAM growth is discrete, with each
generation being four times larger than the previous generation.

1.7 [12] <1.3> You are considering two alternative designs for an instruction memory:
using expensive and fast chips or cheaper and slower chips. If you use the slow chips you
can afford to double the width of the memory bus and fetch two instructions, each one
word long, every two clock cycles. (With the more expensive fast chips, the memory bus
can only fetch one word every clock cycle.) Due to spatial locality, when you fetch two
words you often need both. However, in 25% of the clock cycles one of the two words
you fetched will be useless. How do the memory bandwidths of these two systems
compare?

1.8 [15/10] <1.3> Assume-as in the Amdahl's Law example at the bottoin of page 10-
that we make an enhancement to a computer that improves some mode of execution by a
factor of 10. Enhanced mode is used 50% of the time, measured as a percentage of the
execution time when the enhanced mode is in use, rather than as defined in this chapter:
the percentage of the running time without the enhancement.

a. [15] What is the speedup we have obtained from fast mode?

b. [10] What percentage of the original execution time has been converted to fast mode?

1.9 [15/15] <1.5> Assume we are building a machine with a memory hierarchy for
instructions (don't worry about data accesses!). Assume that the program follows the 90-
10 rule and that accesses within the top 10% and bottom 90% are uniformly distributed;
that is, 90% of the time is spread evenly over 10% of the code and the other 10% of the
time is spread evenly over the other 90% of the code. You have three types of memory
for use in your memory hierarchy:

Memory type Access time Cost per word

Local, fast 1 clock cycle $0.10

Main 5 clock cycles $0.01

Disk 5,000 clock cycles $0.0001

INTEL Ex.1035.061

30 Exercises

You have exactly 100 programs, each is 1,000,000 words, and all the programs must fit
on disk. Assume that only one program runs at a time, and that the whole program must
be loaded in main memory. You can spend $30,000 dollars on the memory hierarchy.

a. [15] What is the optimal way to allocate your budget assuming that each word must
be statically placed in fast memory or main memory?

b. [15] Ignoring the time for the first loading from disk, what is the average number of
cycles for a program to make a memory reference in your hierarchy? (This important
measure is called the average memory-access time in Chapter 8.)

1.10 [30] <l.3,1.6> Find a machine that has both a fast and slow implementation of a
feature-for example, a system with and without hardware floating point. Measure the
speedup obtained when using the faster implementation with a simple loop that uses the
feature. Find a real program that makes some use of the feature and measure the speedup.
Using this data, compute the percentage of the time the feature is used.

1.11 [Discussion] <l.3,1.4> Often ideas for speeding up processors take advantage of
some special properties that certain classes of applications have. Thus, the speedup
obtained by an enhancement may be available to only certain applications. How would
you decide to make such an enhancement? What factors would be most relevant in the
decision? Could these factors be measured or estimated reasonably?

INTEL Ex.1035.062

INTEL Ex.1035.063INTEL Ex.1035.063

Remember that time is money.

BEN FRANKLIN, Advice to a Young Tradesman

2.1 Introduction 33

2.2 Performance 35

2.3 Cost 53

2.4 Putting It All Together: Price/Performance of Three Machines 66

2.5 Fallacies and Pitfalls 70

2.6 Concluding Remarks 76

2. 7 Historical Perspective and References 77

Exercises 81

INTEL Ex.1035.064

2.1

Performance and Cost

Introduction

Why do engineers design different computers? Why do people use them? How
do customers decide on one computer versus another? Is there a rational basis
for their decisions? If so, can engineers use that basis to design better comput­
ers? These are some of the questions this chapter addresses.

One way to approach these questions is to see how they have been used in
another design field and then apply those solutions by analogy to our own. The
automobile, for example, can provide a useful source of analogies for explaining
computers: We could say that CPUs are like engines, supercomputers are like
exotic race cars, and fast CPUs with slow memories are like hot engines in poor
chassis.

·Standard measures of performance provide a basis for comparison, leading to
improvements of the object measured. Races helped determine which car and
driver were faster, but it was hard to separate the skills of the driver from the
performance of the car. A few standard performance tests eventually evolved,
such as

• Time until the car reaches a given speed, typically 60 miles per hour

• Time to cover a given distance, typically 1/4 mile

• Top speed on a level surface

INTEL Ex.1035.065

34

Make and model

Chevrolet Corvette

Ferrari Testarossa

Ford Escort

Hyundai Excel

Lamborghini Countach

MazdaMiata

2.1 Introduction

Standard measures allow designers to select between alternatives quantitatively,
which enables orderly progress in a field.

Month Price Sec Sec Top Brake Skid pad Fuel
tested (as tested) (0-60) (1/4 mi.) speed (80-0) g MPG

2-88 $34,034 6.0 14.6 158 225 0.89 17.5

10-89 $145,580 6.2 14.2 181 261 0.87 12.0

7-87 $5,765 11.2 18.8 95 286 0.69 37.0

10-86 $6,965 14.0 19.4 80 291 0.73 29.9

3-86 $118,000 5.2 13.7 173 252 0.88 10.0

7-89 $15,550 9.2 16.8 116 270 0.83 25.5

FIGURE 2.1 Quantitative automotive cost/performance summary. These data were taken from the October 1989
issue of Road and Track, page 26. "Road Test Summary" is found in every issue of the magazine.

Cars proved so popular that magazines were developed to feed the interest in
new cars and to help readers decide which car to purchase. While these
magazines have always carried articles describing the impressions of driving a
new car-the qualitative experience--over time they have expanded the quanti­
tative basis for comparison, as Figure 2.1 illustrates.

Performance, cost of purchase, and cost of operation dominate these sum­
maries. Performance and cost also form the rational basis for deciding which
computer to select. Thus, computer designers must understand both performance
and cost if they want to design computers people will consider worth selecting.

Just as there is no single target for car designers, so there is no single target
for computer designers. At one extreme, high-performance design spares no cost
in achieving its goal. Supercomputers from Cray as well as sports cars from
Ferrari and Lamborghini fit into this category. At the other extreme is low-cost
design, where performance is sacrificed to achieve lowest cost. Computers like
the IBM PC clones along with their automotive equivalents, such as the Ford
Escort and the Hyundai Excel, belong here. In between these extremes is
cost/performance design where the designer balances cost versus performance.
Examples from the minicomputer or workstation industry typify the kinds of
tradeoffs with which designers of the Corvette and Miata would feel
comfortable.

It is on this middle ground, where neither cost nor performance is neglected,
that we will focus our discussion. We begin by looking at performance, the mea­
sure of the designer's dream, before going on to describe the accountant's
agenda--cost. ·

.l
INTEL Ex.1035.066

2.2

Performance and Cost 35

Performance

Time is the measure of computer performance: the computer that performs the
same amount of work in the least time is the fastest. Program execution time is
measured in seconds per program. Performance is frequently measured as a rate
of some number of events per second, so that lower time means higher per­
formance. We tend to blur this distinction and talk about performance as either
time or a rate, reporting refinements as improved performance rather than using
adjectives higher (for rates) or lower (for time).

But time can be defined in different ways depending on what we count. The
most straightforward definition of time is called wall-clock time, response time,
or elapsed time. This is the latency to complete a task, including disk accesses,
memory accesses, input/output activities, operating system overhead-every­
thing. However, since with multiprogramming the CPU works on another
program while waiting for I/0 and may not necessarily minimize the elapsed
time of one program, there needs to be a term to take this activity into account.
CPU time recognizes this distinction and means the time the CPU is computing
not including the time waiting for 1/0 or running other programs. (Clearly the
response time seen by the user is the elapsed time of the program, not the CPU
time.) CPU time can be further divided into the CPU time spent in the program,
called user CPU time, and the CPU time spent in the operating system
performing tasks requested by the program, called system CPU time.

These distinctions are reflected in the UNIX time command, which returned
the following:

90.7u 12.9s 2:39 65%

User CPU time is 90.7 seconds, system CPU time is 12.9 seconds, elapsed time
is 2 minutes and 39 seconds (159 seconds), and the percentage of elapsed time
that is CPU time is (90.7+ 12.9)/159 or 65%. More than a' third of the elapsed
time in this example was spent waiting for I/0 or running other programs or
both. Many measurements ignore system CPU time because of the inaccuracy of
operating systems' self-measurement and the inequity of including system CPU
time when comparing performance between machines with differing system
codes. On the other hand, system code on some machines is user code on others
and no program runs without some operating system running on the hardware,
so a case can be made for using the sum of user CPU time and system CPU time.

In the present discussion, a distinction is maintained between performance
based on elapsed time and that based on CPU time. The term system pe1f or­
mance is used to refer to elapsed time on an unloaded system, while CPU
performance refers to user CPU time. We will concentrate on CPU performance
in this chapter.

INTEL Ex.1035.067

36 2.2 Performance

CPU Performance

Most computers are constructed using a clock running at a constant rate. These
discrete time events are called ticks, clock ticks, clock periods, clocks, cycles, or
clock cycles. Computer designers refer to the time of a clock period by its length
(e.g., 10 ns) or by its rate (e.g., 100 MHz).

CPU time for a program can then be expressed two ways:.

CPU time = CPU clock cycles for a program * Clock cycle time
or

CPU
. CPU clock cycles for a program

time=
Clock rate

Note that it wouldn't make sense to show elapsed time as a function of CPU
clock cycle time since the latency for 1/0 devices is normally independent of the
rate of the CPU clock.

In addition to the number of clock cycles to execute a program, we can also
count the number of instructions executed-the instruction path length or
instruction count. If we know the number of clock cycles and the instruction
count we can calculate the average number of clock cycles per instruction (CPI):

CPI = CPU clock cyc~es for a program
Instruction count

This CPU figure of merit provides insight into different styles of instruction sets
and implementations.

By transposing instruction count in the above formula, clock cycles can be
defined as instruction count * CPI. This allows us to use CPI in the execution
time formula:

CPU time = Instruction count * CPI * Clock cycle time
or

Instruction count * CPI
CPU time = Cl k oc rate

Expanding the first formula into the units of measure shows how the pieces fit
together:

Instructions Clock cycles Seconds Seconds CPU . * - * = = time Program Instruction Clock cycle Program

As this formula demonstrates, CPU performance is dependent upon three
characteristics: clock cycle (or rate), clock cycles per instruction, and instruction
count. You can't change one of these in isolation from others because the basic
technologies involved in changing each characteristic are also interdependent:

INTEL Ex.1035.068

Example

Performance and Cost

Clock rate-Hardware technology and organization

CPI-Organization and instruction set architecture

Instruction count-Instruction set architecture and compiler technology

37

Sometimes it is useful in designing the CPU to calculate the number of total
CPU clock cycles as

n

CPU clock cycles= L(CPii *Ii)
i=l

where Ii represents number of times instruction i is executed in a program and
CPii represents the average number of clock cycles for instruction i. This form
can be used to express CPU time as

n
CPU time= L,(CPii *Ii) *Clock cycle time

i=l

and overall CPI as

n

L(CPii * Ii) n
i=l ~ (Ii .)

CPI= Instruction count= .£..i CPii *-In-s-tru-ct-io~n-co_u_n_t
i=l

The latter form of the CPI calculation multiplies each individual CPii by the
fraction of occurrences in a program.

CPii should be measured and not just calculated from a table in the back of a
reference manual since it must include cache misses and any other memory
system inefficiencies.

Always bear in mind that the real measure of computer performance is time.
Changing the instruction set to lower the instruction count, for example, may
lead to an organization with a slower clock cycle time that offsets the improve­
ment in instruction count. When comparing two machines, you must look at all
three components to understand relative performance.

Suppose we are considering two alternatives for our conditional branch instruc­
tions, as follows:

CPU A. A condition code is set by a compare instruction and followed by a
branch that tests the condition code.

CPU B. A compare is included in the branch.

INTEL Ex.1035.069

38

Answer

Example

Answer

2.2 Performance

On both CPUs, the conditional branch instruction takes 2 cycles, and all other
instructions take 1 clock cycle. (Obviously, if the CPI is 1.0 for everything but
branches in this simple example we are ignoring losses due to the memory sys­
tem in this decision; see the fallacy on page 72.) On CPU A, 20% of all instruc­
tions executed are conditional branches; since every branch needs a compare,
another 20% of the instructions are compares. Because CPU A does not have the
compare included in the branch, its clock cycle time is 25% faster than CPU B's.
Which CPU is faster?

Since we are ignoring all systems issues, we can use the CPU performance for­
mula: CPIA is ((.20*2) + (.80* 1)) or 1.2 since 20% are branches taking 2 clock
cycles and the rest take 1. Clock cycle timeB is 1.25 *Clock cycle timeA since A
is 25% faster. The performance of CPU A is then

CPU timeA =Instruction countA * 1.2 *Clock cycle timeA

= 1.20 *Instruction countA *Clock cycle timeA

Compares are not executed in CPU B, so 20%/80% or 25% of the instructions
are now branches, taking 2 clock cycles, and the remaining 75% of the in~truc­
tions take 1. CPIB is then ((.25*2) + (.75*1)) or 1.25. Because CPU B doesn't
execute compares, Instruction countB is .80*Instruction countA. The perfor­
mance of CPU B is

CPU timeB = (.80*Instruction countA) * 1.25 * (1.25*Clock cycle timeA)

= 1.25 *Instruction countA *Clock cycle timeA

Under these assumptions, CPU A, with the shorter clock cycle time, is faster
than CPU B, which executes fewer instructions.

After seeing the analysis, a designer realized that by reworking the organization
the difference in clock cycle times can easily be reduced to 10%. Which CPU is
faster now?

The only change from the answer above is that Clock cycle timeB is now 1.10 *
Clock cycle timeA since A is just 10% faster. The performance of CPU A is still

CPU timeA = 1.20 *Instruction countA *Clock cycle timeA

The performance of CPU B is now

CPU timeB = (.80*Instruction countA) * 1.25 * (l.lO*Clock cycle timeA)

= 1.10 *Instruction countA *Clock cycle timeA

With this improvement CPU B, which executes fewer instructions, is now faster.

INTEL Ex.1035.070

Example

Answer

Performance and Cost 39

Suppose we are considering another change to an instruction set. The machine
initially has only loads and stores to memory, and then all operations work on
the registers. Such machines are called load/store machi1:1.es (see Chapter 3).
Measurements of the load/store machine showing the frequency of instfuctions,
called an instruction mix, and clock cycle counts per instruction are given in
Figure 2.2.

Operation Frequency Clock cycle count

ALU ops 43% 1

Loads 21% 2

Stores 12% 2

Branches 24% 2

FIGURE 2.2 An example of instruction frequency. The CPI for each class of instruction
is also given. (This frequency comes from the GCC column of Figure C.4 in Appendix C,
rounded up to account for 100% of the instructions.)

Let's assume that 25% of the arithmetic logic unit (ALU) operations directly
use a loaded operand that is not used again.

We propose adding ALU instructions that have one source operand in mem­
ory. These new register-memory instructions have a clock cycle count of 2.
Suppose that the extended instruction set increases the clock cycle count for
branches by 1, but it does not affect the clock cycle time. (Chapter 6, on pipelin­
ing, explains why adding register-memory instructions might slow down
branches.) Would this change improve CPU performance?

The question is whether the new machine is faster than the old machine. We use
the CPU performance formula since we are again ignoring systems issues. The
original CPI is calculated by multiplying together the two columns from Figure
2.2:

CPI0 1a = (.43*1 + .21*2 + .12*2 + .24*2) = 1.57

The performance of CPU0 1a is then

CPU time0 1ct = Instruction count01a * 1.57 * Clock cycle time0 1a

= 1.57 * Instruction count0 1a * Clock cycle time0 1a

Let's give the formula for CPinew first and then explain the components:

CPinew =

(.43 - (.25*.43))*1 + (.21 - (.25*.43))*2 + (.25*.43)*2 + .12*2 + .24*3
1 - (.25*.43)

INTEL Ex.1035.071

40 2.2 Performance

25% of ALU instructions (which are 43% of all instructions executed) become
register-memory instructions, changing the first 3 components of the numerator.
There are (.25*.43) fewer ALU operations, (.25*.43) fewer loads, and (.25*.43)
new register-memory ALU instructions. The rest of the numerator remains the
same except the branches take 3 clock cycles instead of 2. We divide by the new
instruction count, which is .25*43% smaller than the old one. Simplifying this
equation:

1.703
CPinew = .893 = 1.908

Since the clock cycle time is unchanged, the performance of the new CPU is

CPU timenew = (.893 * Instruction count0 1ct) * 1.908 * Clock cycle time0 1ct

= 1.703 *Instruction count0 1ct *Clock cycle time0 1ct

Using these assumptions, the answer to our question is no: It's a bad idea to
add register-memory instructions, because they do not offset the increased exe­
cution time of slower branches.

MIPS and What Is Wrong with Them

A number of popular measures have been adopted in the quest for a standard
measure of computer performance, with the result that a few innocent terms
have been shanghaied from their well-defined environment and forced into a
service for which they were never intended. The authors' position is that the
only consistent and reliable measure of performance is the execution time of real
programs, and that all proposed alternatives to time as the metric or to real pro­
grams as the items measured have eventually led to misleading claims or even
mistakes in computer design. The dangers of a few popular alternatives to our
advice are shown first.

One alternative to time as the metric is MIPS, or million instructions per
second. For a given program, MIPS is simply

MIPS = Instruction count = Clock rate
Execution time * 106 CPI * 106

Some find this rightmost form convenient since clock rate is fixed for a machine
and CPI is usually a small number, unlike instruction count or execution time.
Relating MIPS to time,

E
. . Instruction count

xecut10n time = MIPS * 106

Since MIPS is a rate of operations per unit time, performance can be specified as
the inverse of execution time, with faster machines having a higher MIPS rating.

j

1
INTEL Ex.1035.072

Example

Answer

Performance and Cost 41

The good news about MIPS is that it is easy to understand, especially by a
customer, and faster machines means bigger MIPS, which matches intuition.
The problem with using MIPS as a measure for comparison is threefold:

• MIPS is dependent on the instruction set, making it difficult to compare
MIPS of computers with different instruction sets;

• MIPS varies between programs on the same computer; and most importantly,

• MIPS can vary inversely to performance!

The classic example of the last case is the MIPS rating of a machine with
optional floating-point hardware. Since it generally takes more clock cycles per
floating-point instruction than per integer instruction, floating-point programs
using the optional hardware instead of software floating-point routines take less
time but have a lower MIPS rating. Software floating point executes simpler
instructions, resulting in a higher MIPS rating, but it executes so many more that
overall execution time is longer.

We can even see such anomalies with optimizing compilers.

Assume we build an optimizing compiler for the load/store machine described in
the previous example. The compiler discards 50% of the ALU instructions,
although it cannot reduce loads, stores, or branches. Ignoring systems issues and
assuming a 20-ns clock cycle time (50-MHz clock rate), what is the MIPS rating
for optimized code versus unoptimized code? Does the ranking of MIPS agree
with the ranking of execution time?

From the example above CPiunoptimized = 1.57, so

50MHz
MIPSunoptimized =

5 0
6 = 31.85

1. 7*1

The performance. of unoptimized code is

CPU timeunoptimized = Instruction countunoptimized * 1.57 * (20* 1 o-9)

= 31.4* 1 o-9 * Instruction countunoptimized

For optimized code

(.43/2)*1 + .21*2 + .12*2 + .24*2 .215 + .42 + .24 + .48
CPloptimized = l _ (.43/2) = .785 = 1.73

since half the ALU instructions are discarded (.43/2) and the instruction count is
reduced by the missing ALU instructions. Thus,

INTEL Ex.1035.073

42 2.2 Performance

50MHz
MIPSoptimized = 6 = 28.90

1.73 * 10

The performance of optimized code is

CPU timeoptimized = (.785 *Instruction countunoptimized) * 1.73 * (20 * 10-9)

= 27 .2 * 10-9 * Instruction countunoptimized

Optimized code is 13% faster, but its MIPS rating is lower!

As examples such as this one show, MIPS can fail to give a true picture of
performance in that it does not track execution time. To compensate for this
weakness, another alternative to execution time is to use a particular machine,
with an agreed-upon MIPS rating, as a reference point. Relative MIPS-as
distinguished from the original form, called native MIPS-is then calculated as
follows:

. Timereference
Relative MIPS = T' * MIPSreference

1meunrated

where

Time reference= execution time of a program on the reference machine

Time unrated = execution time of the same program on machine to be rated

MIPS reference= agreed-upon MIPS rating of the reference machine

Relative MIPS only tracks execution time for the given program and input.
Even when they are identified, it becomes harder to find a reference machine on
which to run programs as the machine ages. (In the 1980s the dominant refer­
ence machine was the VAX-11/780, which was called a 1-MIPS machine; see
pages 77-78 in Section 2.7.) The question also arises whether the older machine
should be run with the newest release of the compiler and operating system, or
whether the software should be fixed so the reference machine does not get
faster over time. There is also the temptation to generalize from a relative MIPS
rating using one benchmark to relative execution time, even though there can be
wide variations in relative performance.

In summary, the advantage of relative MIPS is small since execution time,
program, and program input still must be known to have meaningful informa­
tion.

i
INTEL Ex.1035.074

Performance and Cost 43

MFLOPS and What Is Wrong with Them

Another popular alternative to execution time is million floating-point opera­
tions per second, abbreviated megaFLOPS or MFLOPS but always pronounced
"megaflops." The formula for MFLOPS is simply the definition of the acronym:

MFLOPS = Number of floating-point operations in a program
Execution time * 106

Clearly, a MFLOPS rating is dependent on the machine and on the program.
Since MFLOPS were intended to measure floating-point performance, they are
not applicable outside that range. Compilers, as an extreme example, have a
MFLOPS rating near nil no matter how fast the machine since compilers rarely
use floating-point arithmetic.

This term is less innocent than MIPS. Based on operations rather than instruc­
tions, MFLOPS is intended to be a fair comparison between different machines.
The belief is that the same program running on different computers would exe­
cute a different number of instructions but the same number of floating-point
operations. Unfortunately, MFLOPS is not dependable because the set of float­
ing-point operations is not consistent across machines. For example, the CRAY-
2 has no divide instruction, while the Motorola 68882 has divide, square root,
sine, and cosine. Another perceived problem is that the MFLOPS rating changes
not only on the mixture of integer and floating-point operations but also on the
mixture of fast and slow floating-point operations. For example, a program with
100% floating-point adds will have a higher rating than a program with 100%
floating-point divides. The solution for both problems is to give a canonical
number of floating-point operations in the source-level program and then divide
by execution time. Figure 2.3 shows how the authors of the "Livermore Loops"
benchmark calculate the number of normalized floating-point operations per
program according to the operations actually found in the source code. Thus, the
native MFLOPS rating is not the same as the normalized MFLOPS rating
reported in the supercomputer literature, which has come as a surprise to a few
computer designers.

Real FP operations Normalized FP operations

ADD, SUB, COMPARE, MULT 1

DIVIDE, SQRT 4

EXP, SIN, ... 8

FIGURE 2.3 Real versus normalized floating-point operations. The number of normal­
ized floating-point operations per real operation in a program used by the authors of the
Livermore FORTRAN Kernels, or "Livermore Loops," to calculate MFLOPS. A kernel with
one ADD, one DIVIDE, and one SIN would be credited with 13 normalized floating-point
operations. Native MFLOPS won't give the results reported for other machines on that
benchmark.

INTEL Ex.1035.075

44

Example

Answer

2.2 Performance

The Spice program runs on the DECstation 3100 in 94 seconds (see Figures 2.16
to 2.18 for more details on the program, input, compilers, machine, and so on).
The number of floating-point operations executed in that program are listed
below:

ADDD 25,999,440

SUBD 18,266,439

MULD 33,880,810

DIVD 15,682,333

COMPARED 9,745,930

NEGD 2,617,846

ABSD 2,195,930

CONVER TD 1,581,450

TOTAL 109,970,178

What is the native MFLOPS for that program? Using the conversions in Figure
2.3, what is the normalized MFLOPS?

Native MFLOPS is easy to calculate:

Native MFLOPS
= Number of floating-point operations in a program

Execution time* 106

The only operation in Figure 2.3 that is changed for normalized MFLOPS and is
in the list above is divide, raising the total of (normalized) floating-point opera­
tions, and therefore MFLOPS, almost 50%:

. 157M
Normalized MFLOPS ""

94
*106 "" 1.7

Like any other performance measure, the MFLOPS rating for a single pro­
gram cannot be generalized to establish a single performance metric for a com­
puter. Since normalized MFLOPS is really just a constant divided by execution
time for a specific program and specific input (like relative MIPS), MFLOPS is
redundant to execution time, our principal measure of performance. And unlike
execution time, it is tempting to characterize a machine with a single MIPS or
MFLOPS rating without naming the program. Finally, MFLOPS is not a useful
measure for all programs.

r

INTEL Ex.1035.076

Performance and Cost 45

Choosing Programs to Evaluate Performance

Dhrystone does not use floating point. Typical programs don't ...

RICK RICHARDSON, Clarification of Dhrystone, 1988

This program is the result of extensive research to determine the instruction mix
· of a typical FORTRAN program. The results of this program on different

machines should give a good indication of which machine performs better under
a typical load of FORTRAN programs. The statements are purposely arranged
to defeat optimizations by the compiler.

Anonymous, from comments in the Whetstone benchmark

A computer user who runs the same programs day in and day out would be the
perfect candidate to evaluate a new computer. To evaluate a new system he
would simply compare the execution time of his workload-the mixture of
programs and operating system commands that users run on a machine. Few are
in this happy situation, however. Most must rely on other methods to evaluate
machines and often other evaluators, hoping that these methods will predict per­
formance for their usage of the new machine. There are four levels of programs
used in such circumstances, listed below in decreasing order of accuracy of pre­
diction.

1. (Real) Programs-While the buyer may not know what fraction of time is
spent on these programs, he knows that some users will run them to solve real
problems. Examples are compilers for C, text-processing software like TeX, and
CAD tools like Spice. Real programs have input, output, and options that a user
can select when running the program.

2. Kernels-Several attempts have been made to extract small, key pieces
from real programs and use them to evaluate performance. Livermore Loops and
Linpack are the best known examples. Unlike real programs, no user would run
kernel programs, for they exist solely to evaluate performance. Kernels are best
used to isolate performance of individual features of a machine to explain the
reasons for differences in performance of real programs.

3. (Toy) Benchmarks-Toy benchmarks are typically between 10 and 100 lines
of cod~ and produce a result the user already knows before he runs the toy
program. Programs like Sieve of Erastosthenes, Puzzle, and Quicksort are
popular because they are small, easy to type, and run on almost any computer.
The best use of such programs is beginning programming assignments.

4. Synthetic Benchmarks-Similar in philosophy to kernels, synthetic
benchmarks try to match the average frequency of operations and operands of a
large set of programs. Whetstone and Dhrystone are popular synthetic
benchmarks. (Figures 2.4 and 2.5 on pages 46 and 47 show pieces of the bench­
marks.) Like their cousins, the kernels, no user runs synthetic benchmarks

INTEL Ex.1035.077

46 2.2 Performance

because they don't compute anything a user could use. Synthetic benchmarks
are, in fact, even further removed from reality because kernel code is extracted
from real programs, while synthetic code is created artificially to match an aver­
age execution profile. Synthetic benchmarks are not even pieces of real pro­
grams, while all the others might be.

If you 're not sure how to classify a program, first check to see if there is any
input or very much output. A program without input calculates the same result
every time it is invoked. (Few buy computers to act as copying machines.)
While some programs, notably simulation and numerical analysis applications,
use negligible input, every real program has some input.

I = ITER

NS = S99 * I

Nll = 93 * I

x 1. 0
y = 1. 0
z = 1. 0
IF (NS) S9,S9,Sl

Sl DO SS I = 1, NS, 1
SS CALL P3(X,Y,Z)
S9 CONTINUE

x = 0.75
IF (Nl1) 119, 119, 111

111 DO llS I = 1, Nll, 1
llS X = SQRT(EXP(ALOG(X)/Tl))
119 CONTINUE

SUBROUTINE P3 (X,Y,Z)
COMMON T, Tl, T2
Xl X
Yl Y
Xl T * (Xl + Yl)
Yl T * (Xl + Yl)
Z = (Xl + Yl) I T2
RETURN
END

FIGURE 2.4 Two loops of the Whetstone synthetic benchmark. Based on the fre­
quency of Algol statements in programs submitted to a university batch operating system in
the early 1970s, a synthetic program was created to match that profile. (See Curnow and
Wichmann [1976].) The statements at the beginning (e.g., N8 = 899*1) control the number
of iterations of each of the 12 loops (e.g., the DO loop at line 81). The program was later
converted to FORTRAN and became a popular benchmark in marketing literature. (The
line labeled 118 is the subject of a fallacy on pages 73-74 in Section 2.5.)

f

INTEL Ex.1035.078

Performance and Cost 47

Because computer companies thrive or go bust depending on price/perfor­
mance of their products relative to others in the marketplace, tremendous
resources are available to improve performance of programs widely used in
evaluating performance. Such pressures can skew hardware and software engi­
neering efforts to add optimizations that improve performance of synthetic pro­
grams, toy programs, or kernels, but not real programs.

An extreme instance of such targeted engineering employed compiler opti­
mizations that were benchmark sensitive. Rather than perform the analysis so
that the compiler could properly decide if the optimization could be applied, a
person at one startup company used a preprocessor that scanned the text for
keywords to try to identify benchmarks by looking for the name of the author
and the name of a key subroutine. If the scan confirmed that this program was on
a predefined list, the special optimizations were performed. This machine made

for(Run Index= 1; Run_Index<=Number_Of_Runs; ++Run_Index)
{

Proe_5();
Proe 4 () ;
Int 1 Loe = 2;
Int_2_Loe = 3;
strepy(Str_2_Loe,"DHRYSTONE PROGRAMS, 2'ND STRING");

Proe 4 ()

Boolean Bool_Loe;

Bool Loe = Chl 1 Glob == 'A';
Bool Glob = Bool Loe I Bool_Glob;
Chl 2 Glob = 'B' ;

} /* Proe 4 */

Proe 5 ()

Chl 1 Glob = 'A';
Bool Glob = false;

} /* Proe 5 */

FIGURE 2.5 A section of the Dhrystone synthetic benchmark. Inspired by Whetstone,
this program was an attempt to characterize CPU and compiler performance for a typical
program. It was based on the frequency of high-level language statements from a variety of
publications. The program was originally written in Ada and later converted to C and Pascal
(see Weicker [1984]). Note the small size and simple-minded nature of these procedures
makes it trivial for an optimizing compiler to avoid procedure-call overhead by expanding
them inline. The strcpy () on the eighth line is the subject of a fallacy on pages 73-74 in
Section 2.5.

INTEL Ex.1035.079

48 2.2 Performance

a sudden jump in performance-at least according to those benchmarks. Yet
these optimizations were not only invalid to programs not on the list, they were
useless to the identical code with a few name changes.

The small size of programs in the last three categories makes them vulnerable
to such efforts. For example, despite the best intentions, the initial SPEC
benchmark suite (page 79) includes a small program. 99% of the execution time
of Matrix300 is in a single line (see SPEC [1989]). A minor enhancement of the
MIPS FORTRAN compiler (which improved the induction variable elimination
optimization-see Section 3.7 in Chapter 3) resulted in a performance increase
of 56% on a M/2000 and 117% on an RC 6280. This concentration of execution
time led Apollo down the path of temptation: The performance of the DN 10000
is quoted with this line changed to a call to a hand-coded library routine. If the
industry adopts real programs to compare performance, then at least resources
expended to improve performance will help real users.

So why doesn't everyone run real programs to measure performance? Kernels
and toy benchmarks are attractive when beginning a design since they are small
enough to easily simulate, even by hand. They are especially tempting when
inventing a new machine because compilers may not be available until much
later. Small benchmarks are also more easily standardized while large programs
are difficult, hence there are numerous published results for small benchmark
performance but few for large ones.

While there are rationalizations for use early in the design, there is no current
valid rationale for using benchmarks and kernels to evaluate working computer
systems. In the past, programming languages were inconsistent among
machines, and every machine had its own operating system; so real programs
could not be ported without pain and agony. There was also a lack of important
software whose source code was freely available. Finally, programs had to be
small because the architecture simulator had to run on an old, slow machine.

The popularity of standard operating systems like UNIX and DOS, freely dis­
tributed software from universities and others, and faster computers available
today remove many of these obstacles. While kernels, toy benchmarks, and syn­
thetic benchmarks were an attempt to make fair comparisons among different
machines, use of anything less than real programs after initial design studies is
likely to give misleading results and lead the designer astray.

Reporting Performance Results

The guiding principle of reporting performance measurements should be
reproducibility-list everything another experimenter would need to duplicate
the results. Let's compare descriptions of computer performance found in ref­
ereed scientific journals to descriptions of car performance found in magazines
sold at supermarkets. Car magazines, in addition to supplying 20 performance
metrics, list all optional equipment on the test car, the types of tires used in the
performance test, and the date the test was made. Computer journals may have

.l
INTEL Ex.1035.080

Performance and Cost 49

only seconds of execution labeled by the name of the program and the name and
model of the computer-Spice takes 94 seconds on a DECstation 3100. Left to
the reader's imagination are program input, version of the program, version of
compiler, optimizing level of compiled code, version of operating system,
amount of main memory, number and types of disks, version of the CPU-all of
which make a difference in performance.

Car magazines have enough information about the measurement to allow
readers to duplicate results or to question the options selected for measurements,
but computer journals often do not.

Co~paring and Summarizing Performance

Comparing performance of computers is rarely a dull event, especially when the
designers are involved. Charges and countercharges fly across an electronic
network; one is accused of underhanded tactics and the other of misleading
statements. Since careers sometimes depend on the results of such performance
comparisons, it is understandable that the truth is occasionally stretched. But
more frequently discrepancies can be explained by differing assumptions or lack
of information.

We would like to think that if we can just agree on the programs, the experi­
mental environments, and the definition of "faster," then misunderstandings will
be avoided, leaving the networks free for scholarly intercourse. Unfortunately,
the outcome is not such a happy one, for battles are then fought over what is the
fair way to summarize relative performance of a collection of programs. For
example, two articles on summarizing performance in the same journal took
opposing points of view. Figure 2.6, taken from one of the articles, is an exam­
ple of the confusion that can arise.

Computer A Computer B ComputerC

Program 1 (secs) 1 10 20

Program 2 (secs) 1000 100 20

Total time (secs) 1001 110 40

FIGURE 2.6 Execution times of two programs on three machines. Taken from Figure I
of Smith [1988].

Using our definition in Chapter 1 (page 6), the following statements hold:

A is 900% faster than B for program 1.

B is 900% faster than A for program 2.

A is 1900% faster than C for program 1.

C is 4900% faster than A for program 2.

INTEL Ex.1035.081

50 2.2 Performance

B is 100% faster than C for program 1.

C is 400% faster than B for program 2.

Taken individually, any one of these statements may be of use. Collectively,
however, they present a confusing picture-the relative performance of comput­
ers A, B, and C is unclear.

Total Execution Time: A Consistent Summary
Measure

The simplest approach to summarizing relative performance is to use total exe­
cution time of the two programs. Thus

B is 810% faster than A for programs 1 and 2.

C is 2400% faster than A for programs 1 and 2.

C is 175% faster than B for programs 1 and 2.

This summary tracks execution time, our final measure of performance. If the
workload consisted of running programs 1 and 2 an equal number of times, the .
statements above would predict the relative execution times for the workload on
each machine.

An average of the execution times that tracks total execution time is the
arithmetic mean

1 n
- L,Timei
n . 1 l=

where Timei is the execution time for the ith program of a total of n in the
workload. If performance is expressed as a rate (such as MFLOPS), then the
average that tracks total execution time is the harmonic mean

n
n

LR~ei
i=l

where Ratei is a function of l{fimei, the execution time for the ith of n programs
in the workload.

INTEL Ex.1035.082

Program 1 (secs)

Program 2 (secs)

Arithmetic mean :W(l)

Arithmetic mean :W(2)

Arithmetic mean :W(3)

Performance and Cost 51

Weighted Execution Time

The question arises what is the proper mixture of programs for the workload:
Are programs 1 and 2 in fact run equally in the workload as assumed by the
arithmetic mean? I_f not, then there are two approaches that have been tried for
summarizing performance. The first approach when given a nonequal mix of
programs in the workload is to assign a weighting factor Wi to each program to
indicate the relative frequency of the program in that workload. If, for example,
20% of the tasks in the workload were program 1 and 80% of the tasks in the
workload were program 2, then the weighting factors would be 0.2 and 0.8.
(Weighting factors add up to 1.) By summing the products of weighting factors
and execution times, a clear picture of performance of the workload is obtained.
This is called the weighted arithmetic mean:

n
L, Weigh ti * Timei
i=l

where Weighti is the frequency of the ith program in the workload and Timei is
the execution time of that program. Figure 2.7 shows the data from Figure 2.6
with three different weightings, each proportional to the execution time of a
workload with a given mix. The weighted harmonic mean of rates will show the
same relative performance as the weighted arithmetic means of execution times.
The definition is

A B

1.00 10.00

1000.00 100.00

500.50 55.00

91.82 18.18

2.00 10.09

1
n

~Weighti
.£..J Ratei
i=l

c W(l)

20.00 0.50

20.00 0.50

20.00

20.00

20.00

W(2) W(3)

0.909 0.999

0.091 0.001

FIGURE 2. 7 Weighted arithmetic mean execution times using three weightings. W(1) equally weights the pro­
grams, resulting in a mean (row 3) that is the same as the nonweighted arithmetic mean. W(2) makes the mix of programs
inversely proportional to the execution times on machine B; row 4 shows the arithmetic mean for that weighting. W(3)
weights the programs in inverse proportion to the execution times of the two programs on machine A; the arithmetic mean
is given in the last row. The net effect of the second and third weightings is to "normalize" the weightings to the execution
times of programs running on that machine, so that the running time will be spent evenly between each program for that
machine. For a set of n programs each taking Tj time on one machine, the equal-time weightings on that machine are

1

INTEL Ex.1035.083

52

Program 1

Program 2

Arithmetic mean

Geometric mean

Total time

2.2 Performance

Normalized Execution Time and the Pros and
Cons of Geometric Means

A second approach to nonequal mixture of programs in the workload is to nor­
malize execution times to a reference machine and then take the average of the
normalized execution times, similar to the relative MIPS rating discussed above.
This measurement gives a warm fuzzy feeling, because it suggests that perfor­
mance of new programs can be predicted by simply multiplying this number
times its performance on the reference machine.

Average normalized execution time can be expressed as either an arithmetic
or geometric mean. The formula for the geometric mean is

n
IJExecution time ratioi
i=l

where Execution time ratioi is the execution time, normalized to the reference
machine, for the ith program of a total of n in the workload. Geometric means
also have the nice property that

Geometric mean(Xi) _ . (Xi)
G . (Y) - Geometnc mean -y eometnc mean i i

meaning that taking either the ratio of the means or the means of the ratios gets
the same results. In contrast to arithmetic means, geometric means of normalized
execution times are consistent no matter which machine is the reference. Hence,
the arithmetic mean should not be used to average normalized execution times.
Figure 2.8 shows some variations using both arithmetic and geometric means of
normalized times.

Normalized to A Normalized to B Normalized to C
A B c A B c A B c

100% 1000% 2000% 10% 100% 200% 5% 50% 100%

100% 10% 2% 1000% 100% 20% 5000% 500% 100%

100% 505% 1001% 505% 100% 110% 2503% 275% 100%

100% 100% 63% 100% 100% 63% 158% 158% 100%

100% 11% 4% 910% 100% 36% 2503% 275% 100%

FIGURE 2.8 Execution times from Figure 2.6 normalized to each machine. The arithmetic mean performance varies
depending on which is the reference machine-column 2 says B's execution time is 5 times longer than A's while column
4 says just the opposite; column 3 says C is slowest while column 9 says C is fastest. The geometric means are
consistent independent of normalization-A and B have the same performance, and the execution time of C is 63% of A
or B (100%/158% is 63%). Unfortunately total execution time of A is 9 times longer than B, and B in turn is about 3 times
longer than C. As a point of interest, the relationship between the means of the same set of numbers is always harmonic
mean::; geometric mean::; arithmetic mean.

INTEL Ex.1035.084

2.3

Performance and Cost 53

Because weightings of weighted arithmetic means are set proportionate to
execution times on a given machine, as in Figure 2.7, they are influenced not
only by frequency of use in the workload, but also by the peculiarities of a par­
ticular machine and the size of program input. The geometric mean of normal­
ized execution times, ·on the other hand, is independent of the running times of
the individual programs, and it doesn't matter which machine is used to normal­
ize. If a situation arose in comparative performance evaluation where the pro­
grams were fixed but the inputs were not, then competitors could rig the results
of weighted arithmetic means by making their best performing benchmark have
the largest input and therefore dominate execution time. In such a situation the
geometric mean would be less misleading than the arithmetic mean.

The strong drawback to geometric means of normalized execution times is
that they violate our fundamental principle of performance measurement-they
do not predict execution time. The geometric means from Figure 2.8 suggest that

· for programs 1 and 2 the performance of machines A and B is the same, yet this
would only be true for a workload that ran program 1 100 times for every occur­
rence of program 2 (see Figure 2.6 on page 49). The total execution time for
such a workload suggests that machines A and B are about 80% faster than
machine C, in contrast to the geometric mean, which says machine C is faster
than A and B ! In general there is no workload for three or more machines that
will match the performance predicted by the geometric means of normalized
execution times. Our original reason for examining geometric means of
normalized performance was to avoid giving equal emphasis to the programs in
our workload, but is this solution an improvement?

The ideal solution is to measure a real workload and weight the programs
according to their frequency of execution. If this can't be done, then normalizing
so that equal time is spent on each program on some machine at least makes the
relative weightings explicit and will predict execution time of a workload with
that mix (see Figure 2. 7 on page 51). The problem above of unspecified inputs is
best solved by specifying the inputs when comparing performance. If results
must be normalized to a specific machine, first summarize performance with the
proper weighted measure and then do the normalizing. Section 2.4 gives an
example.

Cost

While there are computer designs where costs tend to be ignored-specifically
supercomputers--cost-sensitive designs are of growing importance. Textbooks
have ignored the cost half of cost/performance because costs change, thereby
dating books. Yet an understanding of cost is essential for designers to be able to
make intelligent decisions about whether or not a new feature should be included
in designs where cost is an issue. (Imagine architects designing skyscrapers
without any information on costs of steel beams and concrete.) We therefore

INTEL Ex.1035.085

54 2.3 Cost

cover in this section. fundamentals of cost that will not change for the life of the
book and provide specific examples using costs that, though they may not hold
up over time, demonstrate the concepts involved.

The rapid change in cost of electronics is the first of several themes in cost­
sensitive designs. This parameter is changing so fast that good designers are bas­
ing decisions not on costs of today, but on projected costs at the time the product
is shipped. The underlying principle that drives costs down is the learning
curve-manufacturing costs decrease over time. The learning curve itself is best
measured by change in yield-the percentage of manufactured devices that sur­
vive the testing procedure. Whether it is a chip, a board, or a system, designs
that have twice the yield will have basically half the cost. Understanding how
the learning curve will improve yield is key to projecting costs over the life of
the product.

Lowering cost, however, does not necessarily lower price; it may just
increase profits. But when the product is available from multiple sources and
demand does not exceed supply, competition does force prices to fall with costs.
For the remainder of this discussion we assume that normal competitive forces
are at work with a reasonable balance between supply and demand.

As an example of the learning curve in action, the cost per megabyte of
DRAM drops over the long term by 40% per year. A more dramatic version of
the same information is shown in Figure 2.9, where the cost of a new DRAM
chip is depicted over its lifetime. Between the start of a project and the shipping
of a product, say two years, the cost of a new DRAM drops by nearly a factor of
four. Since not all component costs change at the same rate, designs based on
projected costs result in different cost-performance tradeoffs than those using
current costs.

A second important theme in cost-sensitive designs is the impact of packag­
ing on design decisions. A few years ago the ·advantages of fitting a design on a
single board meant there was no backplane, no card cage, and a smaller and
cheaper box-all resulting in much lower costs and even higher performance. In
a few years it will be possible to integrate all the components of a system, except
main memory, onto a single chip. The overriding issue will be making the sys­
tem fit on the chip, thereby avoiding the speed and cost penalties of having mul­
tiple chips, which means more interfaces, more pins to interfaces, larger boards,
and so forth. The density of integrated circuits and packaging technology deter­
mine the resources available at each cost threshold. The designer must know
where these thresholds are-or blindly cross them.

Cost of an Integrated Circuit

Why would a computer architecture book have a section on integrated circuit
costs? In an increasingly competitive computer marketplace where standard
parts-disks, DRAMs, and so on-are becoming a significant portion of any
system's cost, integrated circuit costs are becoming a greater portion of the cost

INTEL Ex.1035.086

Performance and Cost 55

that varies between machines, especially in the high volume, cost-sensitive por­
tion of the market. Thus computer designers must understand the costs of chips
to understand the costs of current computers. We follow here the American ac­
counting approach to the cost of chips.

While the costs of integrated circuits have dropped exponentially, the basic
procedure of silicon manufacture is unchanged: A wafer is still tested and
chopped into dies that are packaged (see Figures 2. lOa, b, and c). Thus the cost
of a packaged integrated circuit is

C f
. d . . _ Cost of die + Cost of testing die + Cost of packaging

ost o mtegrate circmt - p· 1 · Id

$70

$60

$50

c.
fl $40
Q;
c.
~

.!!! $30 0
Cl

$20

$10

ma test y1e

-$2/chip
o-+-__,.~-,---.-~..---,-~..--~__,.~~-.-~..---,-~..--~

1976 1978 1980 1982 1984 1986 1988 1990
Vear

FIGURE 2.9 Prices of four generations of DRAMs over time, showing the learning
curve at work. While the longer average is 40% improvement per year, each generation
drops in price by nearly a factor of ten over its lifetime. The DRAMs drop to about $1 to $2
per chip over time, independent of capacity. Prices are not adjusted for inflation-if they
were the graph would show an even greater drop in cost. For a time in 1987-1988, prices
of both 256Kb and 1 Mb DRAMs were higher than indicated by earlier learning curves due
to what seems to have been a temporary excess of demand relative to available supply.

INTEL Ex.1035.087

56 2.3 Cost

FIGURE 2.1 Oa Photograph of a 6-inch wafer containing Intel 80486 microprocessors. There are 80 1.6 cm x 1.0 cm
dies, although four dies are so close to the edge that they may or may not be fully functional. There are no separate test
dies; instead, the electrical and parametric test circuits are placed between the dies. The 80486 includes a floating point
unit, a small cache, and a memory management unit in addition to the integer unit.

'
L

INTEL Ex.1035.088

Performance and Cost 57

FIGURE 2.10b Photograph of a 6-inch wafer containing Cypress CY7C601 microprocessors. There are 246 full
0.8 cm x 0.7 cm dies, although again tour dies are so close to the edge it is hard to tell it they are complete. Like Intel,
Cypress places the electrical and parametric test circuits between the dies. These test circuits are removed when the
water is diced into chips. In contrast to the 80486, the CY7C601 contains the integer unit only.

INTEL Ex.1035.089

58 2.3 Cost

FIGURE 2.1 Oc At the top left is the Intel 80486 die, and the Cypress CY7C601 die is on the right, shown at their
actual sizes. Below the dies are the packaged versions of each microprocessor. Note that the 80486 has three rows of
pins (168 total) while the 601 has four rows (207 total). The bottom row shows a close-up of the two dies, shown in proper
relative proportions.

INTEL Ex.1035.090

Performance and Cost 59

Cost of Dies

To learn how to predict the number of good chips per wafer requires first learn­
ing how many dies fit on a wafer and then how to predict the percentage of those
that will work. From there it is simple to predict cost:

C f d
. _ Cost of wafer

ost o le - D' .c D" . ld les per wa1er * le y1e

The most interesting feature of this first term of the chip cost equation is its sen­
sitivity to die size, shown below.

The number of dies per wafer is basically the area of the wafer divided by the
area of the die. It can be more accurately estimated by

7t *(Wafer diameter/2)2 7t *Wafer diameter
Dies per wafer = D' - ~ 1 Test dies per wafer

le area v 2 * Die area

The first term is· the ratio of wafer area (7tr2) to die area. The second compen­
sates for the "square peg in a round hole" problem-rectangular dies near the per­
iphery of round wafers. Dividing the circumference (nd) by the diagonal of a
square die is approximately the number of dies along the edge. The last term is
for test dies that must be strategically placed to control manufacturing. For
example, a I5-cm (::::::6-inch) diameter wafer with 5 test dies produces 3.I4*225/4

- 3.I4*I5/TI - 5 or 138 I-cm-square dies. Doubling die area-the parameter
that a computer designer controls-would cut dies per wafer to 59.

But this only gives the maximum number of dies per wafer, and the critical
question is what is the fraction or percentage of good dies on a wafer number, or
the die yield. A simple model of integrated circuit yield assumes defects are
randomly distributed over the wafer:

{
Defects per unit area * Die area }-a.

Die yield = Wafer yield * I +
a

where wafer yield accounts for wafers that are completely bad and so need not
be tested and a is a parameter that corresponds roughly to the number of mask­
ing levels critical to die yield. a depends upon the manufacturing process.
Generally a = 2.0 for simple MOS processes and higher values for more com­
plex processes, such as bipolar and BiCMOS. As an example, wafer yield is
90%, defects per unit area is 2 per square centimeter, and die area is I square
centimeter. Then die yield is 90%*(1 + (2*I)/2.or2·0 or 22.5%.

The bottom line is the number of good dies per wafer, which comes from
multiplying dies per wafer by die yield. The examples above predict 138*.225 or
3I good I-cm-square dies per I5-cm wafer. As mentioned above, both dies per
wafer and die yield are sensitive to die size-doubling die area knocks die yield
down to 10% and good chips per wafer to just 59*.10, or 6! Die size depends on

INTEL Ex.1035.091

60 2.3 Cost

the technology and gates required by the function on the chip, but it is also lim­
ited by the number of pins that can be placed on the border of a square die.

A 15-cm-diameter wafer processed in two-level metal CMOS costs a semi­
conductor manufacturer about $550 in 1990. The cost for a 1-cm-square die with
two defects per square cm on a 15-cm wafer is $550/(138*.225) or $17 .74.

What should a computer designer remember about chip costs? The manufac­
turing process dictates the wafer cost, wafer yield, a, and defects per unit area,
so the .sole control of the designer is die area. Since a is usually 2 or larger, die
costs are proportional to the third (or higher) power of the die area:

Cost of die= f (Die area3)

The computer designer affects die size, and hence cost, both by what functions
are included on or excluded from the die and by the number of 1/0 pins.

Cost of Testing Die and Cost of Packaging

Testing is the second term of the chip-cost equation, and the success rate of test­
ing (die yield) affects the cost of testing:

C f
. d' _ Cost of testing per hour * Average die test time

ost o testmg 1e - n· . ld 1e y1e

Since bad dies are discarded, die yield is in the denominator in the equation-the
good must shoulder the costs of testing those that fail. Testing costs about $150
per hour in 1990 and die tests take about 5 to 90 seconds on average, depending
on the simplicity of the die and the provisions to reduce testing time included in
the chip. For example, at $150 per hour and 5 seconds to test, the die test cost is
$0.21. After factoring in die yield for a 1-cm-square die, the costs are $0.93 per
good die. As a second example, let's assume testing takes 90 seconds. The cost
is $3.75 per untested die and $16.67 per good die. The bill so far for our 1-cm­
square die is $18.67 to $34.41, depending on how long it takes to test. These two
testing-time examples illustrate the importance of reducing testing time in reduc­
ing costs.

Cost of Packaging and Final Test Yield

The cost of a package depends on the material used, the number of pins, and the
die area. The cost of the material used in the package is in part determined by
the ability to dissipate power generated by the die. For example, a plastic quad
flat pack (PQFP) dissipating less than one watt, with 208 or fewer pins, and
containing a die up to one cm on a side costs $3 in 1990. A ceramic pin grid
array (PGA) can handle 300 to 400 pins and a larger die with more power, but it
costs $50. In addition to the cost of the package itself is the cost of the labor to
place a die in the package and then bond the pads to the pins. We can assume

INTEL Ex.1035.092

~··

Performance and Cost 61

that costs $2. Bum-in exercises the packaged die under power for a short time to
catch chips that would fail early. Bum-in costs about $0.25 in 1990 dollars.

We are not finished with costs until we have figured in failure of some chips
during assembly and bum-in. Using the estimate of 90% for final test yield, the
successful must again pay for the cost of those that fail, so our costs are $26.58
to $96.29 for the 1-cm-square die.

While these specific cost estimates may not hold, the underlying models will.
Figure 2.11 shows the dies per wafer, die yield, and their product against the die
area for a typical fabrication line, this time using programs that more accurately
predict die per wafer and die yield. Figure 2.12 plots the change in area and cost
as one dimension of a square die changes. Changes to small dies make little cost
difference while 30% increases to large dies can double costs. The wise silicon
designer will minimize die area, testing time, and pins per chip and understand
the costs of projected packaging options when considering using more power,
pins, or area for higher performance.

Cost of a Workstation

To put the costs of silicon in perspective, Figure 2.13 shows the approximate
costs of components in a 1990 workstation. Costs of a component can be halved
going from low volume to high volume; here we assume high-volume purchas­
ing of 100,000 units. While costs for units like DRAMs will surely drop over
time from those in Figure 2.13, units whose prices have already been cut, like
displays and cabinets, will change very little.

The processor, floating-point unit, memory-management unit, and cache are
only 12% to 21 % of the cost of the CPU board in Figure 2.13. Depending on the
options included in the system-number of disks, color monitor, and so on-the
processor components drop to 9% and 16% of the cost of a system, as Figure
2.14 illustrates. In the future two questions will be interesting to consider: What
costs can an engineer control? And what costs can a computer engineer control?

Cost Versus Price-Why They Differ and by How Much

Costs of components may confine a designer's desires, but they are still far from
representing what the customer must pay. But why should a computer architec­
ture book contain pricing information? Cost goes through a number of changes
before it becomes price, and the computer designer must understand these to
determine the impact of design choices. For example, changing cost by $1,000
may change price by $4,000 to $5,000. Without understanding the relationship
of cost to price the computer designer may not understand the impact on price of
adding, deleting, or replacing components.

INTEL Ex.1035.093

62 2.3 Cost

Area Side (cm) Die/ Die yield/ Cost of die Cost to test Packaging Total cost after
(sq. cm) wafer wafer die costs final test

0.06 0.25 2778 79.72% $0.25 $0.63 $5.25 $6.81

0.25 0.50 656 57.60% $1.46 $0.87 $5.25 $8.42

0.56 0.75 274 36.86% $5.45 $1.36 $5.25 $13.40

1.00 1.00 143 22.50% $17.09 $2.22 $5.25 $27.29

1.56 1.25 84 13.71% $47.76 $3.65 $52.25 $115.18

2.25 1.50 53 8.52% $121.80 $5.87 $52.25 $199.91

3.06 1.75 35 5.45% $288.34 $9.17 $52.25 $388.62

4.00 2.00 23 3.60% $664.25 $13.89 $52.25 $811.54

FIGURE 2.11 Costs for several die sizes. Costs for a working chip are shown in columns 5 through 7. Column 8 is the
sum of columns 5 through 7 divided by the final test yield. Figure 2.12 presents this information graphically. This figure
assumes a 15.24-cm (6-inch) wafer costing $550, with 5 test die per wafer. The wafer yield is 90%, the defect density is
2.0 per square cm, and a is 2.0. It takes 12 seconds on average to test a die, the tester costs $150 per hour, and the final
test yield is 90%. (The numbers differ a little from the text for a 1-cm-square die because the wafer size is calculated at
the full 15.24 cm rather than rounded to 15 cm and because of the difference in testing time.)

$900

$811
$800

$700

$600

• Final test yield

$500
0Packaging

Final
cost D Testing cost

$400
.Die cost

$300

$200

$100

$7 $8
$0

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Length of side of a square die (cin)

FIGURE 2.12 The costs of a chip from Figure 2.11 presented graphically. Using the
parameters given in the text, packaging is a major percentage of the cost of dies of size
1.25-cm square and smaller, with die cost dominating final costs for larger dies.

INTEL Ex.1035.094

Performance and Cost 63

Rule of Lower %Mono Higher % Color
thumb cost ws cost ws

CPU cabinet Sheet metal, plastic $50 2% $50 1%

Power supply and fans $0.80/watt $55 3% $55 1%

Cables, nuts, bolts $30 1% $30 1%

Shipping box, manuals $10 0% $10 0%

Subtotal $145 7% $145 3%

CPU board IU, FPU, MMU, cache $200 9% $800 16%

DRAM $150/MB $1200 56% $2400 48%

Video logic (frame buffer, Mono $100 5%
DAC, mono/color)

Color $500 10%

I/O interfaces (SCSI, Ethernet, floppy, $100 5% $100 2%
PROM, time-of-day clock)

Printed circuit board 8 layers
$1.00/sq. in.

6 layers $50 2% $50 1%
$0.50/sq. in.

4 layers
$0.25/sq. in.

Subtotal $1650 77% $3850 76%

1/0 devices Keyboard, mouse $50 2% $50 1%

Display monitor Mono $300 14%

Color $1,000 20%

Hard disk lOOMB $400

Tape drive 150MB $400

Mono (8 MB, Mono logic & display, $2,145 100% $2,745
workstation keyboard, mouse, diskless)

Color (16 MB, Color logic & display, $4,445 $5,045 100%
workstation keyboard, mouse, diskless)

File server (16 MB, 6 disks+tape drive) $5,595 $6,195

FIGURE 2.13 Estimated cost of components in a 1990 workstation assuming 100,000 units. IU refers to integer unit
of the processor, FPU to floating-point unit, and MMU to memory-management unit. The lower cost column refers to the
least expensive options, listed as a Mono workstation in the third row from the bottom. The higher cost column refers to
the more expensive options, listed as a Color workstation in the second row from the bottom. Note that about half the cost
of the systems is in the DRAMs. Courtesy of Andy Bechtolsheim of Sun Microsystems, Inc.

INTEL Ex.1035.095

64 2.3 Cost

File server ~~~~~~~~~~~~~ $2,800
1/0 devices Color WS

MonoWS

File server ~~~~~~~~~~~~~$2~,6~5.2._0 ---~
CPU board Color WS

MonoWS

File server

CPU cabinet Color WS
MonoWS

$0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 $3,500 $4,000

FIGURE 2.14 The costs of each machine in Figure 2.13 divided into the three main
categories, assuming the lower cost estimate. Note that 1/0 devices and amount of
memory account for major differences in costs.

The categories that make up price can be shown either as a tax on cost or as a
percentage of the price. We will look at the information both ways. Figure 2.15
shows the increasing price of a product from left to right as we add each kind of
overhead.

Direct costs refer to the costs directly related to making a product. These
include labor costs, purchasing components, scrap (the leftover from yield), and
warranty, which covers the costs of systems that fail at the customer's site dur­
ing the warranty period. Direct cost typically adds 25% to 40% to component
cost. Service or maintenance costs are not included because the customer typ­
ically pays those costs.

The next addition is called the gross margin, the company's overhead that
cannot be billed directly to one product. This can be thought of as indirect cost.
It includes the company's research and development (R&D), marketing, sales,
manufacturing equipment maintenance, building rental, cost of financing, pretax
profits, and taxes. When the component costs are multiplied by the direct cost
and gross margin we reach the average selling price-ASP in the language of
MBAs-the money that comes directly to the company for each product sold.
The gross margin is typically 45% to 65% of the average selling price.

List price and average selling price are not the same. One reason for this is
that companies offer volume discounts, fowering the average selling price. Also,
if the product is to be sold in retail stores, as personal computers are, stores want
to keep 40% of the list price for themselves. Thus, depending on the distribution
system, the average selling price is typically 60% to 75% of the list price. The
formula below ties the four terms together:

. . Cost * (1 + Direct costs)
List pnce = . .

. (1-Average discount)* (1- Gross margm)

INTEL Ex.1035.096

Performance and Cost 65

Figure 2.16 demonstrates the abstract concepts of Figure 2.15 using dollars and
cents by turning the costs of Figure 2.13 into prices. This is done using two
business models. Model A assumes 25% (of cost) direct costs, 50% (of ASP)
gross margin, and a 33% (of list price) average discount. Model B assumes 40%
direct costs, 60% gross margin, and the average discount is dropped to 25%.

Pricing is sensitive to competition. A company striving for market share can
therefore adjust to average discount or profits, but must live with its component
cost and direct cost, plus the rest of the costs in the gross margin.

Many engineers ·are surprised to find that most companies spend only 8% to
15% of their income on R&D, which includes all engineering (except for manu­
facturing and field engineering). This is a weli-established percentage that is
reported in companies' annual reports and tabulated in national magazines, so
.this percentage is unlikely to change over time.

The information above suggests that a company uniformly applies fixed­
overhead percentages to tum cost into price, and this is true for many com­
panies. But another point of view is R&D should be considered an investment,
and so an investment of 8% to 15% of income means every $1 spent on R&D
must generate $7 to $13 in sales. This alternative point of view then suggests a
different gross margin for each product depending on number sold and the size

List--.
price

25%- Average
40% discount

Average
selling

price

45%- Gross 34%- Gross
65% margin 39% margin

20%- Direct 11%- Direct 8%- Direct
29% costs 10% costs 6% costs

100% Component 80%- Component 44%- Component 33%- Component
costs 71% costs 25% costs 15% costs

l ! !

"--Add 25% to __.) \.___Add 82% to _) ___Add 33% to _)
40% for direct 186%for 66% for

costs gross margin average discount

FIGURE 2.15 Starting with component costs, the price increases as we allow for
direct costs, gross margin, and average discount, until we arrive at the list price.
Each increase is shown along the bottom as a tax on the prior price. On the left of each
column are shown the percentages of the new price for all elements.

INTEL Ex.1035.097

66

2.4

2.3 Cost

Model A As% As% of Model B As% As% of
of costs list price of costs list price

Component costs $2,145 100% 27% $2,145 100% 21%

Component costs $2,681 125% 33% $3,003 140% 30%
+ direct costs

Average selling $5,363 250% 67% $7,508 350% 75%
price (adds gross
margin)

List price $8,044 375% 100% $10,010 467% 100%

FIGURE 2.16 The diskless workstation in Figure 2.13 priced using two different
business models. For every dollar of increased component cost the average selling price
goes up between $2.50 and $3.50, and the list price increases between $3.75 and $4.67.

of the investment. Large expensive machines generally cost more to develop-a
machine costing 10 times as much to manufacture may cost many times as much
to develop. Since large expensive machines generally do not sell as well as small
ones, the gross margin must be greater on the big machines for the company to
maintain a profitable return on its investment. This investment model places
large machines in double jeopardy-because there are fewer sold and they
require larger R&D costs-and gives one explanation for a higher ratio of price
to cost versus smaller machines.

Putting It All Together: Price/Performance of
Three Machines

Having covered performance and costs, the next step is to measure performance
of real programs on real machines and list the costs of those machines. Alas,
costs are hard to come by so prices are used instead. We start with the more con­
troversial half of price/performance.

Figure 2.17 lists the programs chosen by the authors for performance mea­
surement in this book. Two of the programs have almost no floating-point
operations, and one has a moderate amount of floating-point operations. All
three programs have input, output, and options-what you would expect from
real programs. Each program has, in fact, a large user community that cares how
fast these programs run. (In measuring performance of machines we would like
to have a larger sample, but we keep the limit at three throughout the book to
make tables and graphs legible.)

INTEL Ex.1035.098

Program name

Version

Lines

Options

Input

Lines/bytes of input

Lines/bytes of output

% floating-point operations
(on the DECstation 3100)

Programming language

Purpose

Performance and Cost 67

Figure 2.18 shows the characteristics of three machines we measure, includ­
ing the list price as tested and the relative performance as calculated by
marketing.

Figure 2.19 (page 69) shows the CPU time and elapsed time measured for
these programs. We include total times and several weighted averages, with the
weights shown in parentheses. The first weighted arithmetic mean is assuming a
workload of just the integer programs (GCC and TeX). The second is the
weightings for a floating-point workload (Spice). The next three weighted means
give three workloads for equal time spent on each program on one of the
machines (see Figure 2.7 on page 51). The only means that are significantly
different are the integer and floating-point means for V AXstation 2000. The rest
of the means for each machine are within 10% of each other, as can be seen in
Figure 2.20 on page 69, which plots the weighted means.

Gnu C Compiler Common TeX Spice
for 68000

L26 2.9 2G6

79,409 23,037 18,307

-0 '&latex/lplain' transient analysis, 200 ps
steps, for 40 ns

i*.C bit-set.tex, compiler. digsr - digital shift
tex,. .. register

28,009/373,688 10,992/698,914 233/1294

47 ,553/664,4 79 758/524,728 656/4172

0.01% 0.05% 13.58%

c c FORTRAN66

Publicly licensed, portable, Document formatting Computer-aided circuit
optimizing C compiler analysis

FIGURE 2.17 Programs used in this book for performance measurements. The Gnu C compiler is a product of
the Free Software Foundation and, for reasons not limited to its price, is preferred by some users over the compilers
supplied by the manufacturer. Only 9,540 of the 79,409 lines are specific to the 68000, and versions exist for the
VAX, SPARC, 88000, MIPS, and several other instruction sets. The input for GCC are the source files of the compiler
that begin with the letter "i." Common TeX is a C version of the document-processing program originally written by
Prof. Donald Knuth of Stanford. The input is a set of manual pages for the Stanford SUIF compiler. Spice is a
computer-aided circuit-analysis package distributed by the University of California at Berkeley. (These programs and
their inputs are available as part of the software package associated with this book. The Preface mentions how to get a
copy.)

INTEL Ex.1035.099

68 2.4 Putting It All Together: Price/Performance of Three Machines

V AXstation 2000 VAXstation 3100 DECstation 3100

Year of introduction 1987 1989 1989

Version of CPU/FPU µVAX II CVAX MIPS R2000A/R2010

Clock rate 5MHz 11.11 MHz 16.67 MHz

Memory size 4MB 8MB 8MB

Cache size none 1 KB on chip, 64-KB 128 KB (split 64-KB
second level instruction and 64-KB

data)

TLB size 8 entries fully associative 28 entries fully 64 entries fully associative
associative

Base list price $4,825 $7,950 $11,950

Optional equipment 19" monitor, extra 10 MB (model 40) extra 8 MB 19" monitor, extra 8 MB

List price as tested $15,425 $14,480 $17,950

Performance according 0.9 MIPS 3.0 MIPS 12 MIPS
to marketing

Operating system Ultrix 3.0 Ultrix 3.0 Ultrix 3.0

C compiler version Ultrix and VMS Ultrix and VMS 1.31

Options for C compiler -0 -0 -02 -Olimit 1060

C library libc libc libc

FORTRAN 77 compiler version fort (VMS) fort (VMS) 1.31

Options for FORTRAN 77 -0 -0 -02 -Olimit 1060
compiler

FORTRAN 77 library lib*77 lib*77 lib*77

FIGURE 2.18 The three machines and software used to measure performance in Figure 2.19. These machines are
all sold by Digital Equipment-in fact, the DECstation 3100 and VAXstation 3100 were announced the same day. All three
are diskless workstations and run the same version of the UNIX operating system, called Ultrix. The VMS compilers
ported to Ultrix were used for TeX and Spice on the VAXstations. We used the native Ultrix C compiler for GCC because
GCC would not run using the VMS C compiler. The compilers for the DECstation 3100 are supplied by MIPS Computer
Systems. (The "-Olimit 1060" option for the DECstation 3100 tells the compiler not to try to optimize procedures longer
than 1060 lines.)

The bottom line for many computer customers is the price they pay for per­
formance. This is graphically depicted in Figure 2.21 (page 70), where arith­
metic means of CPU time are plotted against price of each machine.

INTEL Ex.1035.100

Performance and Cost 69

V AXstation 2000 V AXstation 3100 DECstation 3100

CPU Elapsed CPU Elapsed CPU Elapsed
time time time time time time

Gnu C Compiler for 68000 985 1108 291 327 90 159

Common TeX 1264 1304 449 479 95 137

Spice 958 973 352 395 94 132

Arithmetic mean 1069 1128 364 400 93 143

Weighted AM-integer only 1125 1206 370 403 93 148
(50% GCC, 50% TeX, 0% Spice)

Weighted AM-floating point only 958 973 352 395 94 132
(0% GCC, 0% TeX, 100% Spice)

Weighted AM-equal CPU time on V2000 1053 1113 357 394 93 143
(35.6% GCC, 27.8% TeX, 36.6% Spice)

Weighted AM-equal CPU time on V3100 1049 1114 353 390 93 144
(40.4% GCC, 26.2% TeX, 33.4% Spice)

Weighted AM-equal CPU time on 03100 1067 1127 363 399 93 143
(34.4% GCC, 32.6% TeX, 33.0% Spice)

FIGURE 2.19 Performance of the programs in Figure 2.17 on the machines in Figure 2.18. The weightings
correspond to integer programs only, and then equal CPU time running on each of the three machines. For example, if the
mix of the three programs were proportionate to the weightings in the row "equal CPU time on 03100," the DECstation
3100 would spend a third of its CPU time running Gnu C Compiler, a third running TeX, and a third running Spice. The
actual weightings are in parentheses, calculated as shown in Figure 2.7 on page 51.

1250

1000

.»---~--~ ----V2000 ET
~----+----... ---V2000 CPU

FIGURE 2.20 Plot of means of CPU time and elapsed time from Figure 2.19.

INTEL Ex.1035.101

70

2.5

2.4 Putting It All Together: Price/Performance of Three Machines

13 13

12 12
DECstation 3100

11 11

10 10

9 9

8 8

Performance 7 7
(relative to
VAXstation 2000) 6 6

5
Lines of constant

5 price/performance
4 4

3 3

2 2
VAXstation 2000

0 0
$0 $4000 $8000 $12000 $16000 $20000

Price

FIGURE 2.21 Price versus performance of VAXstation 2000, VAXstation 3100, and
DECstation 3100 for Gnu C Compiler, TeX, and Spice. Based on Figures 2.18-2.19, this
figure plots the list price as tested of a machine versus performance, where performance is
the inverse of the ratio to the arithmetic mean of CPU time on a VAXstation 2000. The lines
through the three machines show lines of constant price/performance. For example, a
machine at the right end of the VAXstation 3100 line costs $20,000. Since it would cost
30% more, it must have 30% more performance than the VAXstation 3100 to have the
same price performance.

Fallacies and Pitfalls

Cost/performance fallacies and pitfalls have ensnared many computer architects,
including ourselves. For this reason, more space is devoted to the warning sec­
tion in this chapter than in other chapters of this text.

Fallacy: Hardware-independent metrics predict performance.

Because accurately predicting performance is so difficult, the folklore of com­
puter design is filled with suggested shortcuts. These are frequently employed
when comparing different instruction sets, especially instruction sets that are
paper designs.

One such shortcut is "Code Size= Speed," or the architecture with the small­
est program is fastest. Static code size is important when memory space is at a
premium, but it is not the same as performance. As we shall see in Chapter 6,

INTEL Ex.1035.102

Performance and Cost 71

larger programs composed of instructions that are easily fetched, decoded, and
executed may run faster than machines with extremely compact instructions that
are difficult to decode. "Code Size=Speed" is especially popular with compiler
writers, for while it can be difficult to decide if one code sequence is faster than
another, it is easy to see which is shorter.

Evidence of the "Code Size=Speed" fallacy can be found on the cover of the
book Assessing the Speed of Algol 60 in Figure 2.22. The CDC 6600's programs
are over twice as big, yet the CDC machine runs Algol 60 programs almost six
times faster than the Burroughs B5500, a machine designed for Algol 60.

Pitfall: Comparing computers using only one or two of three performance
metrics: clock rate, CPI, and instruction count.

The CPU performance equation shows why this can mislead. One example is
that given in Figure 2.22: The CDC 6600 executes almost 50% more instructions
than the Burroughs B5500, yet it is 550% faster. Another example comes from
increasing the clock rate so that some instructions execute fast-sometimes
called peak performance-but making design decisions that also result in a high
overall CPI that offsets the clock rate advantage. The Intergraph Clipper ClOO
has a clock rate of 33 MHz and a peak performance of 33 native MIPS. Yet the
Sun 4/280, with half the clock rate and half the peak native MIPS rating, runs
programs faster [Hollingsworth, Sachs, and Smith 1989, 215]. Since the
Clipper's instruction count is about the same as Sun's, the former machine's CPI
must be more than double that of the latter.

Time Instructions Size

B
5500

FIGURE 2.22 As found on the cover of Assessing the Speed of Algol 60 by B. A.
Wichmann, the graph shows relative execution time, instruction count, and code size
of programs written in Algol 60 for the Burroughs 85500 and the CDC 6600. The
results are normalized to a reference machine, with a higher number being worse. This
book had a profound effect on one of the authors (DP). Seymour Cray, the designer of the
CDC 6600, may not even have known of the existence of this programming language, while
Robert Barton, architect of the 85500, designed the instruction set specifically for Algol 60.
While the CDC 6600 executes 50% more instructions and has 220% larger code, the CDC
6600 is 550% faster than the 85500.

INTEL Ex.1035.103

72 2.5 Fallacies and Pitfalls

Fallacy: When calculating relative MIPS, the versions of the .compiler and
operating system of the reference machine make little difference.

Figure 2.19 shows the V AXstation 2000 taking 958 seconds of CPU time when
running Spice with a standard input. Instead of Ultrix 3.0 with the VMS F77
compiler, many systems use Ultrix 3.0 with the standard UNIX F77 compiler.
This compiler increases Spice CPU time to 1604 seconds. Using the standard
evaluation of 0.9 relative MIPS for the VAXstation 2000, the DECstation 3100
is either 11 or 19 relative MIPS for Spice depending on the compiler of the
reference machine.

Fallacy: CPI can be calculated from the instruction mix and the execution
times of instructions found in the manual.

Current machines are too complicated to estimate performance from a manual.
For example, in Figure 2.19 Spice takes 94 seconds of CPU time on the
DECstation 3100. If we calculate the CPI from the DECstation 3100 manual­
ignoring memory hierarchy and pipelining inefficiencies for this Spice instruc­
tion mix-we get 1.41 for the CPI. When multiplied by the instruction count and
clock rate we get only 73 seconds. The missing 25% of CPU time is due to the
estimate of CPI based only on the manual. The actual measured value, including
all memory-system inefficiencies, is 1.87 CPI.

Pitfall: Summarizing performance by translating throughput into execution
time.

The SPEC benchmarks report performance by measuring the elapsed time of
each of 10 benchmarks. The sole dual processor workstation in the initial
benchmark report ran these benchmarks no faster since the compilers didn't
automatically parallelize the code across the two processors. The benchmarker's
solution was to run a copy of each benchmark on each processor and record
elapsed time for the two copies. This would not have helped if the SPEC release
had only summarized performance using elapsed times, since the times were
slower due to interference of the processors on memory accesses. The loophole
was the initial SPEC release reported geometric means of performance relative
to a VAX-11/780 in addition to elapsed times, and these means are used to graph
the results. This innovative benchmarker interpreted ratio of performance to a
VAX-11/780 as a thro·ughput measure, so doubled his measured ratios to the
VAX! Figure 2.23 shows the plots as found in the report for the uniprocessor
and the multiprocessor. This technique almost doubles the geometric means of
ratios, suggesting the mistaken conclusion that a computer that runs two copies
of a program simultaneously has the same response time to a user as a computer
that runs a single program in half the time. .

INTEL Ex.1035.104

Performance and Cost

30

25

20

0

~
0 15
UJ
0...
(j)

10

5

Multiprocessor

SPECmark
= 15.1

(geo. mean)

GCC Espresso Spice 2g6 DODUC NASA7 Li Eqntott Matrix300 FPPPP TOMCATV

73

FIGURE 2.23 Performance of uniprocessor and multiprocessor as reported in SPEC
Benchmark Press Release. Performance is plotted relative to a VAX-11/780. The ratio for
the multiprocessor is really the ratio of elapsed time multiplied by the number of processors.

Fallacy: Synthetic benchmarks predict performance.

The best known examples of such benchmarks are Whetstone and Dhrystone.
These are not real programs and, as such, may not reflect program behavior for
factors not measured. Compiler and hardware optimizations can artificially
inflate performance of these benchmarks but not of real programs. The other
side of the coin is that because these benchmarks are not natural programs, they
don't reward optimizations of behavior that occur in real programs. Here are
some examples:

• Optimizing compilers can discard 25% of the Dhrystone code; examples
include loops that are only executed once, making the loop overhead instruc­
tions unnecessary. To address these problems the authors of the benchmark
"require" both optimized and unoptimized code to be reported. In addition,
they "forbid" the practice of inline-procedure expansion optimization.
(Dhrystone' s simple procedure structure allows elimination of all procedure
calls at almost no increase in code size; see Figure 2.5 on page 4 7.)

• All Whetstone floating-point loops make optimizations via vectorization
essentially useless. (The program was written before computers with vector
instructions were popular. See Chapter 7.)

INTEL Ex.1035.105

74 2.5 Fallacies and Pitfalls

• Dhrystone has a long history of optimizations that skew its performance. The
most recent comes from a C compiler that appears to include optimizations
just for Dhrystone (Figure 2.5). If the proper option flag is set at compile
time, the compiler turns the portion of the C version of this bencpmark that
copies a variable length string of bytes (terminated by an end-of-string sym­
bol) into a loop that transfers a fixed number of words assuming the source
and destination of the string is word-aligned in memory. Although it is esti­
mated that between 99.70% to 99.98% of typical string copies could not use
this optimization, this single change can make a 20% to 30% improvement in
overall performance-if Dhrystone is your measure.

• Compilers can optimize a key piece of the Whetstone loop by noting the rela­
tionship between square root and exponential, even though this is very
unlikely to occur in real programs. For example, one key loop contains the
following FORTRAN code (see Figure 2.4 on page 46):

X =SQRT(EXP(ALOG(X)/Tl)

It could be compiled as if it were

X =EXP(ALOG(X)/(2*Tl)

since

2

SQRT (EXP (X)) = Y = eX/2 = EXP (X/2)

It would be surprising if such optimizations were ever invoked except in this
synthetic benchmark. (Yet one reviewer of this book found several compilers
that performed this optimization!) This single change converts all calls to the
square root function in Whetstone into multiplies by 2, surely improving per­
formance-if Whetstone is your measure.

Fallacy: Peak performance tracks observed performance.

One definition of peak performance is performance a machine is "guaranteed not
to exceed." The gap between peak performance and observed performance is
typically a factor of 10 or more in supercomputers. (See Chapter 7 on vectors for
an explanation.) Since the gap is so large, peak performance is not useful in pre­
dicting observed performance unless the workload consists of small programs
that normally operate close to the peak.

As an example of this fallacy, a small code segment using long vectors ran on
the Hitachi S810/20 at 236 MFLOPS and on the CRAY X-MP at 115 MFLOPS.
Although this suggests the S810 is 105% faster than the X-MP, the X-MP runs a

INTEL Ex.1035.106

Performance and Cost 75

CRAY Hitachi Performance
X-MP S810/20

A(i)=B(i)*C(i)+D(i)*E(i) (vector length 2.6 secs 1.3 secs Hitachi
1000 done 100,000 times) 105% faster

Vectorized FFf 3.9 secs 7.7 secs CRAY
(vector lengths 64, 32, ... ,2) 97% faster

FIGURE 2.24 Measurements of peak performance and actual performance for the
Hitachi S810/20 and the CRAY X-MP. From Lubeck, Moore, and Mendez [1985, 18-20).
Also see the pitfall in the Fallacies and Pitfalls section of Chapter 7.

Machine PeakMFLOPS Harmonic mean Percent of peak
rating MFLOPS of the MFLOPS

Perfect benchmarks

CRAY X-MP/416 940 14.8 1%

IBM 3090-600S 800 8.3 1%

NEC SX/2 1300 16.6 1%

FIGURE 2.25 Peak performance and harmonic mean of actual performance for the
Perfect Benchmarks. These results are for the programs run unmodified. When tuned by
hand performance of the three machines moves to 24.4, 11.3, and 18.3 MFLOPS,
respectively. This is still 2% or less of peak performance.

program with more typical vector lengths 97% faster than the S810. These data
are shown in Figure 2.24.

Another good example comes from a benchmark suite called the Perfect Club
(see page 80). Figure 2.25 shows the peak MFLOPS rating, harmonic mean of
the MFLOPS achieved for 12 real programs, and the percentage of peak perfor­
mance for three large computers. They achieve only 1 % of peak performance.

While the use of peak performance has been rampant in the supercomputer
business, recently this metric spread to microprocessor manufacturers. For
example, in 1989 a microprocessor was announced as having the performance of
150 million "operations" per second ("MOPS"). The only way this machine can
achieve this performance is for one integer instruction and one floating-point
instruction to be executed each clock cycle and for the floating-point instruction
to perform both a multiply operation and an add. For this peak performance to
predict observed performance a real program would have to have 66% of its
operations be floating point and no losses for the memory system or pipelining.
In contrast to claims, typical measured performance of this microprocessor is
under 30 "MOPS."

The authors hope that peak performance can be quarantined to the super­
computer industry and eventually eradicated from that domain; but in any case,
approaching supercomputer performance is not an excuse for adopting dubious
supercomputer marketing habits.

INTEL Ex.1035.107

76

2.6

2.6 Concluding Remarks

Concluding Remarks

Having a standard of performance reporting in computer science journals as high
as that in car magazines would be an improvement in current practice.
Hopefully, that will be the case as the industry moves toward basing perfor­
mance evaluation on real programs. Perhaps arguments about performance will
even subside.

Computer designs will always be measured by cost and performance, and
finding the best balance will always be the art of computer design. As long as
technology continues to rapidly improve, the alternatives will look like the
curves in Figure 2.26. Once a designer selects a technology, he can't achieve
some performance levels no matter how much he pays and, conversely, no mat­
ter how much he cuts performance there is a limit to how low the cost can go. It
would be better in either case to change technologies.

As a final remark, the number of machines sold is not always the best mea­
sure of cost/performance of computers, nor does cost/performance always pre­
dict number sold. Marketing is very important to sales. It is easier, however, to
market a machine with better cost/performance. Even businesses with high gross
margins need to be sensitive to cost/performance, otherwise the company cannot
lower prices when faced with stiff competition. Unless you go into marketing,
your job is to improve cost/performance!

A

$/MIPS

Performance

FIGURE 2.26 The cost per MIPS goes up on they axis, and system performance
increases on the x axis. A, B, and C are three technologies, let us say three different
semiconductor technologies, to build a processor. Designs in the flat part of the curves can
offer varieties of performance at the same cost/performance. If performance goals are too
high for a technology it becomes very expensive, and too cheap a design makes the per­
formance too low (cost per MIPS expensive for low MIPS). At either extreme it is better to
switch technologies.

INTEL Ex.1035.108

~.
IL

2.7

Performance and Cost 77

Historical Perspective and References

The anticipated degree of overlapping, buffering, and queuing in the [IBM 360)
Model 85 [first computer with a cache] appeared to largely invalidate conven­
tional performance measures based on instruction mixes and program kernels.

Conti, Gibson, and Pitkowsky [1968]

In the earliest days of computing, designers set performance goals-ENIAC was
to be 1000 times faster than the Harvard Mark I, and the IBM Stretch (7030) was
to be 100 times faster than the fastest machine in existence. What wasn't clear,
though, was how this performance was to be measured. In looking back over the
years, it is a consistent theme that each generation of computers obsoletes the
performance evaluation techniques of the prior generation.

The original measure of performance was time to perform an individual
operation, such as addition. Since most instructions took the same execution
time, the timing of one gave insight into the others. As the execution. times of
instructions in a machine became more diverse, however, the time for one opera­
tion was no longer useful for comparisons. To take these differences into
account, an instruction mix was calculated by measuring the relative frequency
of instructions in a computer across many programs. The Gibson mix [1970]
was an early popular instruction mix. Multiplying the time for each instruction
times its weight in the mix gave the user the average instruction execution time.
(If measured in clock cycles, average instruction execution time is the same as
average CPI.) Since instruction sets were similar, this was a more accurate
comparison than add times. From average instruction execution time, then, it
was only a small step to MIPS (as we have seen, the one is the inverse of the
other). MIPS has the virtue of being easy for the layman to understand, hence its
popularity.

As CPUs became more sophisticated and relied on memory hierarchies and
pipelining, there was no longer a single execution time per instruction; MIPS
could not be calculated from the mix and the manual. The next step was bench­
marking using kernels and synthetic programs. Curnow and Wichmann [1976]
created the Whetstone synthetic program by measuring scientific programs
written in Algol 60. This program was converted to FORTRAN and was widely
used to characterize scientific program performance. An effort with similar goals
to Whetstone, the Livermore FORTRAN Kernels, was made by McMahon
[1986] and researchers at Lawrence Livermore Laboratory in an attempt to
establish a benchmark for supercomputers. These kernels, however, consisted of
loops from real programs.

The notion of relative MIPS came along as a way to resuscitate the easily
understandable MIPS rating. When the VAX-11/780 was ready for announce­
ment in 1977, DEC ran small benchmarks that were also run on an IBM
370/158. IBM marketing referred to the 370/158 as a 1-MIPS computer, and

INTEL Ex.1035.109

78 2.7 Historical Perspective and References

since the programs ran at the same speed, DEC marketing called the VAX-
11/780 a 1-MIPS computer. (Note that this rating included the effectiveness of
the compilers on both machines at the moment the comparison was made.) The
popularity of the VAX-11/780 made it a popular reference machine for relative
MIPS, especially since relative MIPS for a 1-MIPS computer is easy to calcu­
late: If a machine was five times faster than the VAX-11/780, for that bench­
mark its rating would be 5 relative MIPS. The 1-MIPS rating was unquestioned
for four years until Joel Erner of DEC measured the V AX-11/780 under a time­
sharing load. He found that the VAX-11/780 native MIPS rating was 0.5.
Subsequent VAXes that run 3 native MIPS for some benchmarks were therefore
called 6-MIPS machines because they run 6 times faster than the V AX-11/780.

Although other companies followed this confusing practice, pundits have
redefined MIPS as "Meaningless Indication of Processor Speed" or "Meaning­
less Indoctrination by Pushy Salespersons." At the present time, the most com­
mon meaning of MIPS in marketing literature is not native MIPS but "number of
times faster than the VAX-11/780" and frequently includes floating-point pro­
grams as well. The exception is IBM, which defines MIPS relative to the
"processing capacity" of an IBM 370/158, presumably running large system
benchmarks (see Henly and McNutt, [1989, 5]). In the late 1980s DEC began
using VAX units of performance (VUP), meaning ratio to VAX-11/780, so 6
relative MIPS became 6 VUPs.

The 1970s and 1980s marked the growth of the supercomputer industry,
which was defined by high performance on floating-point-intensive programs.
Average instruction time and MIPS were clearly inappropriate metrics for this
industry, and hence the invention of MFLOPS. Unfortunately customers quickly
forget the program used for the rating, and marketing groups decided to start
quoting peak MFLOPS in the supercomputer performance wars.

A variety of means have been proposed for averaging performance.
McMahon [1986] recommends the harmonic mean for averaging MFLOPS.
Flemming and Wallace [1986] assert the merits of the geometric mean in gen­
eral. Smith's reply [1988] to their article gives cogent arguments for arithmetic
means of time and harmonic means of rates. (Smith's arguments are the ones
followed in "Comparing and Summarizing Performance" under Section 2.2,
above.)

As the distinction between architecture and implementation pervaded the
computing community (see Chapter 1), the question arose whether the perfor­
mance of an architecture itself could be evaluated, as opposed to an implementa­
tion of the architecture. A study of this question performed at Carnegie-Mellon
University is summarized in Fuller and Burr [1977]. Three quantitative measures
were invented to scrutinize architectures:

S Number of bytes for program code

M Number of bytes transferred between memory and the CPU during pro­
gram execution for code and data (S measures size of code at compile
time, while M is memory traffic during program execution.)

INTEL Ex.1035.110

Gnu C Compiler

Common TeX

Spice

Performance and Cost 79

R Number of bytes transferred between registers in a canonical model of a
CPU

Once these measures were taken, a weighting factor was applied to them to
determine which architecture was "best." Yet there has been no formal effort to
see if these measures really matter-do the implementations of an architecture
with superior S, M, and R measures outperform implementations of lesser archi­
tectures? The VAX architecture was designed in the height of popularity of the
Carnegie-Mellon study, and by those measures it does very well. Architectures
created since 1985, however, have poorer measures than the VAX, yet their
implementations do well against the VAX implementations. For example, Figure
2.27 compares S, M, and CPU time for the V AXstation 3100, which uses the
VAX instruction set, and the DECstation 3100, which doesn't. The DECstation
3100 is 200% to almost 400% faster even though its S measure is 35% to 70%
worse and its M measure is 5% to 15% worse. The effort to evaluate architecture
independent of impl~mentation was a valiant one, it seems, if not a successful
one.

s M CPU Time
(code size in bytes) (megabytes code + data (in seconds)

transferred)
VAX3100 DEC 3100 VAX 3100 DEC 3100 VAX3100 DEC 3100

409,600 688,128 18 21 291 90

158,720 217,088 67 78 449 95

223,232 372,736 99 106 352 94

FIGURE 2.27 Code size and CPU time of the VAXstation 3100 and DECstation 3100 for Gnu C Compiler, TeX, and
Spice. The programs and machines are described in Figures 2.17 and 2.18. Both machines were announced the same
day by the same company and run the same operating system. The difference is in the instruction sets, compilers, clock
cycle time, and organization. The M measure comes from Figure 3.33 (page 123) for smaller inputs than those in Figure
2.17 (page 67), but the relative performance is unchanged. Code size includes libraries.

A promising development in performance evaluation is the formation of the
System Performance Evaluation Cooperative, or SPEC, group in 1988. SPEC
contains representatives of many computer companies-the founders being
Apollo/Hewlett-Packard, DEC, MIPS, and Sun-who have agreed on a set of
real programs and inputs that all will run. It is worth noting that SPEC couldn't
have happened before portable operating systems and the popularity of high­
level languages. Now compilers, too, are accepted as a proper part of the
performance of computer systems and must be measured in any evaluation. (See
Exercises 2.8-2.10 on pages 83-84 for more on SPEC benchmarks.)

History teaches us that while the SPEC effort is useful with current comput­
ers, it will not be able to meet the needs of the next generation. An effort similar
to SPEC, called the Perfect Club, binds together universities and companies

INTEL Ex.1035.111

80 2.7 Historical Perspective and References

interested in parallel computation [Berry et al. 1988]. Rather than being forced
to run the existing sequential programs' code, the Perfect Club includes both
programs and algorithms, and allows members to write new programs in new
languages, which may be needed for the new architectures. Perfect Club mem­
bers may also suggest new algorithms to solve important problems.

While papers on performance are plentiful, little is available on computer
cost. Fuller [197 6] wrote the first paper comparing price and performance for the
Annual International Symposium on Computer Architecture. This was also the
last price/performance paper at this conference. Phiste;r's book [1979] on costs
of computers is exhaustive, and Bell, Mudge, and McNamara [1978] describe
the computer construction process from DEC's perspective. In contrast, there is
a good deal of information on die yield. Strapper [1989] surveys the history of
yield modeling, while technical details on the die-yield model used in this chap­
ter are found in Strapper, Armstrong, and Saji [1983].

References

BELL, C. G., J.C. MUDGE, AND J.E. MCNAMARA [1978]. A DEC View of Computer Engineering,
Digital Press, Bedford, Mass.

BERRY, M., D. CHEN, P. KOSS, D. KUCK [1988]. "The Perfect Club benchmarks: Effective
performance evaluation of supercomputers," CSRD Report No. 827 (November), Center for
Supercomputing Research and Development, University of Illinois at Urbana-Champaign.

CONTI, C. J., D. H. GIBSON, ANDS. H. PITKOWSLI [1968]. "Structural aspects of the System/360
Model 85:1 general organization," IBM Systems J. 7:1, 2-11.

CURNOW, H.J. AND B. A. WICHMANN [1976]. "A synthetic benchmark," The Computer J. 19:1.

FLEMMING, P. J. AND J. J. WALLACE [1986]. "How not to lie with statistics: The correct way to
summarize benchmarks results," Comm. ACM 29:3 (March) 218-221.

FULLER, S. H. [1976]. "Price/performance comparison of C.mmp and the PDP-11," Proc. Third
Annual Symposium on Computer Architecture (Texas, January 19-21), 197-202.

FULLER, S. H. AND W. E. BURR [1977]. "Measurement and evaluation of alternative computer
architectures," Computer 10:10 (October) 24-35.

GIBSON, J.C. [1970]. "The Gibson mix," Rep. TR. 00.2043, IBM Systems Development Division,
Poughkeepsie, N.Y. (Research done in 1959.)

HENLY, M. AND B. MCNUTT [1989]. "DASD 1/0 characteristics: A comparison ofMVS to VM,"
Tech. Rep. TR 02.1550 (May), IBM, General Products Division, San Jose, Calif.

HOLLINGSWORTH, W., H. SACHS AND A. J. SMITH [1989]. "The Clipper processor: Instruction set
architecture and implementation," Comm. ACM 32:2 (February), 200-219.

LUBECK, 0., J. MOORE, AND R. MENDEZ [1985]. "A benchmark comparison of three super­
computers: Fujitsu VP-200, Hitachi S810/20, and Cray X-MP/2," Computer 18:12 (December)
10-24.

MCMAHON, F. M. [1986]. "The Livermore FORTRAN kernels: A computer test of numerical
performance range," Tech. Rep. UCRL-55745, Lawrence Livermore National Laboratory, Univ. of
California, Livermore, Calif. (December).

PHISTER, M., JR. [1979]. Data Processing Technology and Economics, 2nd ed., Digital Press and
Santa Monica Publishing Company.

INTEL Ex.1035.112

Performance and Cost 81

SMITH, J.E. [1988]. "Characterizing computer performance with a single number," Comm. ACM
31:10 (October) 1202-1206.

SPEC [1989]. "SPEC Benchmark Suite Release 1.0," October 2, 1989.

STRAPPER, C. H. [1989]. "Fact and fiction in yield modelling," Special Issue of the Micro­
electronics Journal entitled Microelectronics into the Nineties, Oxford, UK; Elsevier (May).

STRAPPER, C. H., F. H. ARMSTRONG, AND K. SAJI, [1983]. "Integrated circuit yield statistics,"
Proc. IEEE 71:4 (April) 453-470.

WEICKER, R. P. [1984]. "Dhrystone: A synthetic systems programming benchmark," Comm. ACM
27:10 (October) 1013-1030.

WICHMANN, B. A. [1973]. Algol 60 Compilation and Assessment, Academic Press, New York.

EXERCISES

2.1 [20] <2.2> After graduating, you are asked to become the lead computer designer.
Your study of usage of high-level-language constructs suggests that procedure calls are
one of the most expensive operations. You have invented a scheme that reduces the loads
and stores normally associated with procedure calls and returns. The first thing you do is
run some experiments with and without this optimization.Your experiments use the same
state-of-the-art optimizing compiler that will be used with either version of computer.

Your experiments reveal the following information:

• The clock cycle time of the unoptimized version is 5% faster.

• 30% of the instructions in the nonoptimized version are loads or stores.

• The optimized version executes 1/3 fewer loads and stores than the nonoptimized
version. For all other instructions the dynamic execution counts are unchanged.

• All instructions (including load and store) take one clock cycle.

Which is faster? Justify your decision quantitatively.

2.2 [15/15/10] <2.2> Assume the two programs in Figure 2.6 on page 49 each execute
100,000,000 floating-point operations during execution.

a. [15] Calculate the (native) MFLOPS rating of each program.

b. [15] Calculate the arithmetic, geometric, and harmonic mean (native) MFLOPS for
each machine.

c. [10] Which of the three means matches the relative performance of total execution
time?

INTEL Ex.1035.113

82 Exercises

Questions 2.3-2.7 require the following information.

The Whetstone benchmark contains 79,550 floating-point operations, not including the
floating-point operations performed in each call to the following functions:

• arctangent, invoked 640 times

• sine, invoked 640 times

• cosine, invoked 1920 times

• square root, invoked 930 times

• exponential, invoked 930 times

• and logarithm, invoked 930 times

The basic operations for a single iteration (not including floating-point operations to
perform the above functions) are broken down as follows:

Add
Subtract
Multiply
Divide
Convert integer to fp
TOTAL

37,530
3,520

22,900
11,400
4,200

79,550

The total number of floating-point operations for a single iteration can also be calculated
by including the floating-point operations needed to perform the functions arctangent,
sine, cosine, square root, exponential, and logarithm:

Add
Subtract
Multiply
Divide
Convert integer to fp
Compare
TOTAL

82,014
8,229

73,220
21,399
6,006
4,710

195,578

Whetstone was run on a Sun 3/75 using the F77 compiler with optimization turned on.
The Sun 3/75 is based on a Motorola 68020 running at 16.67 MHz, and it includes a
floating-point Goprocessor. (Assume the coprocessor does not include arctangent, sine,
cosine, square root, exponential, and logarithm as instructions.) The Sun compiler allows
the floating-point to be calculated with the coprocessor or using software routines,
depending on compiler flags. A single iteration of Whetstone took 1.08 seconds using the
coprocessor and 13.6 seconds using software. Assume that the CPI using the coprocessor
was measured to be 10 while the CPI using software was measured to be 6.

2.3 [15] <2.2> What is the (native) MIPS rating for both runs?

2.4 [15] <2.2> What is the total number of instructions executed for both runs?

2.5 [8] <2.2> On the average, how many integer instructions does it take to perf onn each
floating-point operation in software?

INTEL Ex.1035.114

Program
Name

GCC

Espresso

Spice 2g6

DOD UC

NASA7

Li

Eqntott

Matrix300

FPPPP

TOMCATV

Geometric mean

Performance and Cost 83

2.6 [18] <2.2> What is the native and normalized MFLOPS for the Sun 3/75 with the
floating-point coprocessor running Whetstone? (Assume convert counts as a single
floating-point operation and use Figure 2.3 for normalized operations.)

2.7 [20] <2.2> Figure 2.3 on page 43 suggests how many floating-point operations it
takes to perform the six functions above (arctangent, sine, and so on). From the data
above you can calculate the average number of floating-point operations per function.
What is the ratio between the estimates in Figure 2.3 and the floating-point operation
measurements for the Sun 3? Assume the coprocessor implements only Add, Subtract,
Multiply, Divide, and Convert.

Questions 2.8-2.10 require the information in Figure 2.28.

The SPEC Benchmark Release 1.0 Summary [SPEC 89] lists performance as shown in
Figure 2.28.

VAX-111780 DECstation 3100 Delta Series 8608 SPARCstation 1
Time Time Ratio Time Ratio Time Ratio

1482 145 10.2 193 7.7 138.9 10.7

2266 194 11.7 197 11.5 254.0 8.9

23951 2500 9.6 3350 7.1 2875.5 8.3

1863 208 9.0 295 6.3 374.1 5.0

20093 1646 12.2 3187 6.3 2308.2 8.7

6206 480 12.9 458 13.6 689.5 9.0

1101 99 11.1 129 8.5 113.5 9.7

4525 749 6.0 520 8.7 409.3 11.1

3038 292 10.4 488 6.2 387.2 7.8

2649 260 10.2 509 5.2 469.8 5.6

3867.7 381.4 10.1 496.5 7.8 468.5 8.3

FIGURE 2.28 SPEC performance summary 1.0. The four integer programs are GCC, Espresso, Li, and Eqntott, with
the rest relying on floating-point hardware.The SPEC report does not describe the version of the 'compilers or operating
system used for the VAX-11/780. The DECstation 3100 is described in Figure 2.18 on page 68. The Motorola Delta
Series 8608 uses a 20-MHz MC88100, 16-KB instruction cache, and 16-KB data cache using two M88200s (see Exercise
8.6 in Chapter 8), the Motorola Sys. V/88 R32V1 operating system, the C88000 1.8.4m14 C compiler, and the Absoft
SysV88 2.0a4 FORTRAN compiler. The SPARCstatiori 1 uses a 20-MHz MB8909 integer unit and 20-MHz WTL3170
floating-point unit, a 64-KB unified cache, SunOS 4.0.3c operating system and C compiler, and Sun 1.2 FORTRAN
compiler. The size of main memory in these three machines is 16 MB.

2.8 [12/15] <2.2> Compare the relative performance using total execution times for the
10 programs versus using geometric means of ratios of the speed of the VAX-11/780.

a. [12] How do the results differ?

b [15] Compare the geometric mean of the ratios of the four integer programs (GCC,
Espresso, Li, and Eqntott) versus the total execution time for these four programs.
How do the results differ from each other and from the summaries of all ten
programs?

INTEL Ex.1035.115

84

Microprocessor

Cypress CY7C601

Intel 80486

Intel 860

MIPS R3000

Motorola 88100

Exercises

2.9 [15/20/12/10] <2.2> Now let's compare performance using weighted arithmetic
means.

a. [15] Calculate the weights for a workload so that running times on the V AX-11/780
will be equal for each of the ten programs (see Figure 2.7 on page 51).

b. [20] Using those weights, calculate the weighted arithmetic means of the execution
times of the ten programs.

c. [12] Calculate the ratio of the weighted means of the VAX execution times to the
weighted means for the other machines.

d. [10] How do the geometric means of ratios and the ratios of weighted arithmetic
means of execution times differ in summarizing relative performance?

2.10 [Discussion] <2.2> What is an interpretation of the geometric means of execution
times? What do you think are the advantages and disadvantages of using total execution
times versus weighted arithmetic means of execution times using equal running time on
the V AX-11/780 versus geometric means of ratios of speed to the V AX-11/780?

Questions 2.11-2.12 require the information in Figure 2.29.

Size (cm) Pins Package Clock rate List price Year available

0.8 x 0.7 207 Ceramic PGA 33MHz $500 1988

1.6 x 1.0 168 Ceramic PGA 33MHz $950 1989

1.2 x 1.2 168 Ceramic PGA 33MHz $750 1989

0.8 x 0.9 144 Ceramic PGA 25MHz $300 1988

0.9 x 0.9 169 Ceramic PGA 25MHz $695 1989

FIGURE 2.29 Characteristics of microprocessors. List prices were quoted as of 7/15/89 at quantity 1000 purchases.

2.11 [15] <2.3> Pick the largest and smallest microprocessors from Figure 2.29, and use
the values found in Figure 2.11 (page 62) for yield parameters. How many good chips do
you get per wafer?

2.12 [15/10/10/15/15] <2.3> Let's calculate costs and prices of the largest and smallest
microprocessors from Figure 2.29. Use the assumptions on manufacturing found in
Figure 2.11 (page 62) unless specifically mentioned otherwise.

a. [15] There are wide differences in defect densities between semiconductor
manufacturers. What are the costs of untested dies assuming: (1) 2 defects per square
cm; and (2) 1 defect per square cm.

b. [1 OJ Assume that testing costs $150 per hour and the smaller chip takes 10 seconds to
test and the larger chip takes 15 seconds, what is the cost of testing each die?

c. [10] Making the assumptions on packaging in Section 2.3, what is the cost of
packaging and burn-in?

d. [15] What is the final cost?

INTEL Ex.1035.116

Performance and Cost 85

e. [15) Given the list price and the calculated cost from the questions above, calculate
the gross margin. Assume the direct cost is 40% and average selling discount is 33%.
What percentage of the average selling price is the gross margin for both chips?

2.13-2.14 A few companies claim they are doing so well that the defect density is
vanishing as the reason for die failures, making wafer yield responsible for the vast
majority. For example, Gordon Moore of Intel said in a talk at MIT in 1989 that defect
density is improving to the point that some companies have been quoted as producing a
100% yield over the whole. run. In fact, he has a 100% yield wafer on his desk.

2.13 [20) <2.3> To understand the impact of such claims, list the costs of the largest and
smallest dies in Figure 2.29 for defect densities per square centimeter of 3, 2, 1, and 0.
For the other parameters use the values found in Figure 2.11 (page 62). Ignore the costs
of testing time, packaging, and final test.

2.14 [Discussion] <2.3> If the statement above becomes true for most semiconductor
manufacturers, how would that change the options for the computer designer?

2.15 [10/15) <2.3,2.4> Figure 2.18 (page 68) shows the list price as tested of the
DECstation 3100 workstation. Start with the costs of the "higher cost" model in Figure
2.13 on page 63, (assuming a color), workstation but change the cost of DRAM to
$100/MB for the full 16 MB of the 3100.

a. [1 OJ Using the average discount and overhead percentages of Model B in Figure 2.16
on page 66, what is the gross margin on the DECstation 3100?

b. [15) Suppose you replace the R2000 CPU of the DECstation 3100 with the R3000,
and that this change makes the machine 50% faster. Use the costs in Figure 2.29 for
the R3000, and assume the R2000 costs a third as much. Since the R3000 does not
require much more power, assume that both the power supply and the cooling of the
DECstation 3100 are satisfactory for the upgrade. What is the cost/performance of a
diskless black-and-white (mono) workstation with an R2000 versus one with an
R3000? Using the business model from the. answer to part a, how much must the
price of the R3000-based machine be increased?

2.16 [30) <2.2,2.4> Pick two computers and run the Dhrystone benchmark and the Gnu C
Compiler. Try running the programs using no optimization and maximum optimization.
(Note: GCC is a benchmark, so use the appropriate C compiler to compile both programs.
Don't try to compile GCC and use it as your compiler!) Then calculate the following
performance ratios:

1. Unoptimized Dhrystone on machine A versus unoptimized Dhrystone on machine B.

2. Unoptimized GCC on A versus unoptimized GCC on B.

3. Optimized Dhrystone on A versus optimized Dhrystone on B.

4. Optimized GCC on A versus optimized GCC on B.

5. Unoptimized Dhrystone versus optimized Dhrystone on machine A.

6. Unoptimized GCC versus optimized GCC on A.

7. Unoptimized Dhrystone versus optimized Dhrystone on B.

INTEL Ex.1035.117

86 Exercises

8. Unoptimized GCC versus optimized GCC on B.

The benchmarking question is how well the benchmark predicts performance of real
programs.

If benchmarks do predict performance, then the following equations should be true
about the ratios:

(1) = (2) and (3) = (4)

If compiler optimizations work equally as well on real programs as on benchmarks,
then

(5) = (6) and (7) = (8)

Are these equations true? If not, try to find the explanation. Is it the machines, the
compiler optimizations, or the programs that explain the answer?

2.17 [30] <2.2,2.4> Perform the same experiment as in question 2.16, except replace
Dhrystone by Whetstone and replace GCC by Spice.

2.18 [Discussion] <2.2> What are the pros and cons of synthetic benchmarks? Find
quantitative evidence-such as data supplied by answering questions 2.16 and 2.17-as
well as listing the qualitative advantages and disadvantages.

2.19 [30] <2.2,2.4> Devise a program in C or Pascal that gets the peak MIPS rating for a
computer. Run it on two machines to calculate the peak MIPS. Now run GCC and TeX on
both machines. How well do peak MIPS predict performance of GCC and TeX?

2.20 [30] <2.2,2.4> Devise a program in C or FORTRAN that gets the peak MFLOPS
rating for a computer. Run it on two machines to calculate the peak MFLOPS. Now run
Spice on both machines. How well do peak MFLOPS predict performance of Spice?

2.21 [Discussion] <2.3> Use the cost information in Section 2.3 as a basis for the merits
of timesharing a large computer versus a network of workstations. (To determine the
potential value of workstations versus timesharing, see Section 9 .2 in Chapter 9 on user
productivity.)

INTEL Ex.1035.118

INTEL Ex.1035.119INTEL Ex.1035.119

A n Add the number in storage location n into the
accumulator

H n Transfer the number in storage location n into the
multiplier register.

E n If the number in the accumulator is greater than or
equal to zero execute next the order which stands in
storage location n; otherwise proceed serially.

I n Read the next row of holes on tape and place the
resulting 5 digits in the least significant places of
storage location n.

Z Stop the machine and ring the warning bell.

Selection from the list of 18 machine instructions for the
EDSAC from Wilkes and Renwick [1949]

3.1 Introduction 89

3.2 Classifying Instruction Set Architectures 90

3.3 Operand Storage in Memory: Classifying General·Purpose

Register Machines 92

3.4 Memory Addressing 94

3.5 Operations in the Instruction Set 103

3.6 Type and Size of Operands 109

3. 7 The Role of High-Level Languages and Compilers 111

3.8 Putting It All Together: How Programs Use Instruction Sets 122

3.9 Fallacies and Pitfalls 124

3.10 Concluding Remarks

3.11 Historical Perspective and References

Exercises

126

127

132

INTEL Ex.1035.120

3.1

Instruction Set Design:
Alternatives and
Principles

Introduction

In this chapter and the next we will concentrate on instruction set architecture­
the portion of the machine visible to the programmer or compiler writer. This
chapter introduces the wide variety of design alternatives with which the instruc­
tion set architect is presented. In particular, this chapter focuses on three topics.
First, we present a taxonomy of instruction set alternatives and give some quali­
tative assessment of the advantages and disadvantages of various approaches.
Second, we present and analyze some instruction set measurements that are
largely independent of a specific instruction set. Finally, we address the issue of
languages and compilers and their bearing on instruction set architecture. Before
we discuss how to classify architectures, we need to say something about the
instruction set measurement.

Throughout this chapter and the next, we will be examining a wide variety of
architectural measurements. These measurements depend on the programs mea­
sured and on the compilers used in making the measurements. The results should
not be interpreted as absolute, and you might see different data if you did the
measurement with a different compiler or a different set of programs. The
authors believe that the measurements shown in these chapters are reasonably
indicative of a class of typical applications. The measurements are presented
using a small set of benchmarks so that the data can be reasonably displayed,

INTEL Ex.1035.121

90 3.1 Introduction

and so that the differences among programs can be seen. An architect for a new
machine would want to analyze a much larger collection of programs to make
his architectural decisions. All the measurements shown are dynamic-that is,
the frequency of a measured event is determined by the number of times that
event occurs during execution of the measured program rather than the number
of static occurences in the code.

Now, we will begin exploring how instruction set architectures can be
classified and analyzed.

3.2 I Classifying Instruction Set Architectures

Instruction sets can be broadly classified along the five dimensions described in
Figure 3.1, which are roughly ordered by the role they play in distinguishing
instruction sets.

The type of internal storage in the CPU is the most basic differentiation, so
we will focus on the alternatives for this portion of the architecture in this
section. As shown in Figure 3.2, the major choices are a stack, an accumulator,
or a set of registers. Operands may be named explicitly or implicitly: The
operands in a stack architecture are implicitly on the top of the stack; in an

Operand storage in Where are operands kept other than in memory?
the CPU

Number of explicit How many operands are named explicitly in a typical instruc-
operands named ti on?
per instruction

Operand location Can any ALU instruction operand be located in memory or
. must some or all of the operands be in internal storage in the

CPU? If an operand is located in memory, how is the memory
location specified?

Operations What operations are provided in the instruction set?

Type and size of What is the type and size of each operand and how is it
operands specified?

FIGURE 3.1 A set of axes for alternative design choices in instruction sets. The type
of storage provided for holding operands in the CPU, as opposed to in memory, is the major
distinguishing factor among instruction set architectures. (All architectures known to the
authors provide some temporary storage within the CPU.) The type of operand storage in
the CPU sometimes dictates the number of operands explicitly named in an instruction. In
one class of machines, the number of explicit operands may vary. Among recent instruction
sets, the number of memory operands per instruction is another significant differentiating
factor. The choice of what operations will be supported in instructions interacts less with
other aspects of the architecture. Finally, specifying the data type and the size of an
operand is largely independent of other instruction set choices.

INTEL Ex.1035.122

Instruction Set Design: Alternatives and Principles 91

accumulator architecture one operand is implicitly the accumulator. General­
purpose register architectures have only explicit operands-either registers or
memory locations. Depending on the architecture, the explicit operands to an
operation may be accessed directly from memory or they may need to be first
loaded into temporary storage, depending on the class of instruction and choice
of specific instruction.

Temporary Examples Explicit oper- De~tination Procedure for
storage pro- ands per ALU for results accessing ex-
vided instruction plicit operands

Stack B5500, 0 Stack Push and pop
HP 3000/70 onto or from

the stack

Accumulator PDP-8, 1 Accumulator Load/store
Motorola 6809 accumulator

Register set IBM360, DEC 2 or 3 Registers or Load/store of
VAX memory registers, or

memory

FIGURE 3.2 Some alternatives for storing operands within the CPU. Each alternative
means that a different number of explicit operands is needed for an instruction with two
source operands and a result operand. Instruction sets are usually classified by this internal
state as stack machine, accumulator machine, or general-purpose register machine. While
most architectures fit cleanly into one or another class, some architectures are hybrids of
different approaches. The Intel 8086, for example, is halfway between a general-purpose
register machine and an accumulator machine.

Figure 3.3 shows how the code sequence C =A+ B would typically appear
on these three classes of instruction sets. The primary advantages and
disadvantages of each of these approaches are listed in Figure 3.4 (page 92).

While most early machines used stack or accumulator-style architectures,
.every machine designed in the past ten years and still surviving uses a general­
purpose register architecture. The major reasons for the emergence of general­
purpose register machines are twofold. First, registers-like other forms of

Stack Accumulator Register

PUSH A LOAD A LOAD Rl,A

PUSH B ADD B ADD Rl,B

ADD STORE c STORE C, Rl

POP c

FIGURE 3.3 The code sequence for C = A + B for three different instruction sets. It is
assumed that A, B, and C all belong in memory and that the values of A and B cannot be
destroyed.

INTEL Ex.1035.123

92 3.2 Classifying Instruction Set Architectures

Machine type Advantages Disadvantages

Stack Simple model of expression evalua- A stack cannot be randomly accessed. This limitation
tion (reverse polish). Short instruc- makes it difficult to generate efficient code. It's also
tions can yield good code density. difficult to implement efficiently, since the stack

becomes a bottleneck.

Accumulator Minimizes internal state of machine. Since accumulator is only temporary storage,
Short instructions. memory traffic is highest for this approach.

Register Most general model for code genera- All operands must be named, leading to longer
ti on. instructions.

FIGURE 3.4 Primary advantages and disadvantages of each class of machine. These advantages and disadvan­
tages are related to three issues: How well the structure matches the needs of a compiler; how efficient the approach is
from an implementation viewpoint; and what the effective code size is relative to other approaches.

storage internal to the CPU-are faster than memory. Second, registers are
easier for a compiler to use and can be used more effectively than other forms of
internal storage. Because general-purpose register machines so dominate
instruction set architectures today-. and it seems unlikely that this will change in
the future-it is only these architectures that we will consider from this point on.
Yet even with this limitation, there is a large number of design alternatives to
consider. Some designers have proposed the extension of the register concept to
allow additional buffering of multiple sets of registers in a stack-like fashion.
This additional level of memory hierarchy is examined in Chapter 8.

3.3 I Operand Storage in Memory: Classifying
General-Purpose Register Machines

The key advantages of general-purpose register machines arise from effective·
use of the registers by a compiler, both in computing expression values and,
more globally, in using registers to hold variables. Registers permit more flex­
ible ordering in evaluating expressions than do either stacks or accumulators.
For example, on a register machine the expression (A*B) - (C*D)- (E*F) may
be evaluated by doing the multiplications in any order, which may be more
efficient due to the location of the operands or because of pipelining concerns
(see Chapter 6). But on a stack machine the expression must be evaluated left to
right, unless special operations or swaps of stack positions are done.

More important, registers can be used to hold variables. When variables are
allocated to registers, the memory traffic is reduced, the program is sped up
(since registers are faster than memory), and the code density improves (since a
register can be named with fewer bits than can a memory location). Compiler
writers would prefer that all registers be equivalent and unreserved. Many
machines compromise this desire-especially older machines with many dedi­
cated registers-effectively decreasing the number of general-purpose registers.

INTEL Ex.1035.124

Number of memory
addresses per typical

ALU instruction

0

1

2

3

Instruction Set Design: Alternatives and Principles 93

If the number of truly general-purpose registers is too small, trying to allocate
variables to registers will not be profitable. Instead, the compiler will reserve all
the uncommitted registers for use in expression evaluation.

How many registers are sufficient? The answer of course depends on how
they are used by the compiler. Most compilers reserve some registers for
expression evaluation, use some for parameter passing, and allow the remainder
to be allocated to hold variables. To understand how many registers are
sufficient, we really need to examine what variables can be allocated to registers
and the allocation algorithm used. We deal with these in our discussion of
compilers in Section 3.7 and examine measurements of register usage in that
section.

There are two major instruction set characteristics that divide general-purpose
register, or GP R, architectures. Both characteristics concern the nature of
operands for a typical arithmetic or logical instruction, or ALU instruction. The
first concerns whether an ALU instruction has two or three operands. In the
three-operand format, the instruction contains a result and two source operands.
In the two-operand format, one of the operands is both a source and a destination
for the operation. The second distinction among GPR architectures concerns
how many of the operands may be memory addresses in ALU instructions. The
number of memory operands supported by a typical ALU instruction may vary
from none to three. All possible combinations of these two attributes are shown
in Figure 3.5, with examples of machines. While there are seven possible com­
binations, three serve to classify nearly all existing machines: register-register
(also called load/store), register-memory, and memory-memory.

The advantages and disadvantages of each of these alternatives are shown in
Figure 3.6 (page 94). Of course, these advantages and disadvantages are not
absolutes. A GPR machine with memory-memory operations can easily be
subsetted by the compiler and used as a register-register machine. The

Maximum number of Examples
operands allowed for a
typical ALU instruction

2 IBM RT-PC

3 SPARC, MIPS, HP Precision Architecture

2 PDP-10, Motorola 68000, IBM 360

3 Part of IBM 360 (RS instructions)

2 PDP-11, National 32x32, part of IBM 360 (SS instructions)

3

3 VAX (also has two-operand formats)

FIGURE 3.5 Possible combinations of memory operands and total operands per ALU instruction with examples
of machines. Machines with no memory reference per ALU instruction are called load/store or register-register

. machines. Instructions with multiple memory operands per typical ALU instruction are called register-memory or memory­
memory, according to whether they have one or more than one memory operand.

INTEL Ex.1035.125

94 3.3 Operand Storage in Memory: Classifying General-Purpose Register Machines

Type Advantages Disadvantages

Register- Simple, fixed-length instruction encoding. Higher instruction count than architectures with
register Simple code generation model. Instructions take memory references in instructions. Some

(0,3) similar numbers of clocks to execute (see instructions are short and bit encoding may be
Chapter 6). wasteful.

Register- Data can be accessed without loading first. Operands are not equivalent since a source
memory Instruction format tends to be easy to encode operand in a binary operation is destroyed.

(1,2)
and yields good density. Encoding a register number and a memory

address in each instruction may restrict the
number of registers. Clocks per instruction varies
by operand location.

Memory- Most compact. Doesn't waste registers for Large variation in instruction size, especially for
memory temporaries. three-operand instructions. Also, large variation in

(3,3) work per instruction. Memory accesses create
memory bottleneck.

FIGURE 3.6 Advantages and disadvantages of the three most common types of general-purpose register
machines. The notation (m, n) means m memory operands and n total operands. In general, machines with fewer
alternatives make the compiler's task simpler since there are fewer decisions for the compiler to make. Machines with a
wide variety of flexible instruction formats reduce the number of bits required to encode the program. A machine that
uses a small number of bits to encode the program is said to have good instruction density-a smaller number of bits do
as much work as a larger number on a different architecture. The number of registers also affects the instruction size.

advantages and disadvantages listed in the figure deal primarily with the impact
both on the compiler and on the implementation. These advantages and
disadvantages are qualitative and their actual impact depends on the compiler
and implementation strategy. One of the most pervasive architectural impacts is
on instruction encoding and the number of instructions needed to perform a task.
In other chapters, we will see the impact of these architectural alternatives on
various implementation approaches.

3.4 I Memory Addressing

Independent of whether the architecture is register-register (also called
load! store) or allows any operand to be a memory reference, it must define how
memory addresses are interpreted and how they are specified. We will deal with
these two topics in this section. The measurements presented here are largely,
but not completely, machine independent. In some cases the measurements are
significantly affected by the compiler technology. These measurements have
been made using an optimizing compiler since compiler technology is playing
an increasing role. The measurements will probably reflect what we will be see­
ing in the future rather than what has been so in the past.

INTEL Ex.1035.126

Instruction Set Design: Alternatives and Principles 95

Interpreting Memory Addresses

How is a memory address interpreted? That is, what object is accessed as a
function of the address and the length? All the machines discussed in this and
the next chapter are byte addressed and provide access for bytes (8 bits), half­
words (16 bits), and words (32 bits). Most of the machines also provide access
for doublewords (64 bits).

There are two different conventions for ordering the bytes within a word, as
shown in Figure 3. 7. Little Endian byte order puts the byte whose address is
"x ... xOO" at the least significant position in the word (the little end). Big Endian
byte order puts the byte whose address is "x ... xOO" at the most significant posi­
tion in the word (the big end). In Big Endian addressing, the address of a datum
is the address of the most significant byte; while in Little Endian, the address of
a datum is the least significant byte. When operating within one machine, the
byte order is often unnoticeable-only programs that access the same locations
as both words and bytes can notice the difference. However, byte order is a
problem when exchanging data among machines with different orderings. (The
byte orders used by a number of different machines are listed inside the front
cover.)

Word address

0

4

Little Endian

Word address

0

4

Big Endian

FIGURE 3.7 The two different conventions for ordering bytes within a word. The
names "Big Endian" and "Little Endian" come from a famous paper by Cohen [1981). The
paper draws an analogy between the argument over which end to number the bytes from
and the argument in Gulliver's Travels over which end of an egg to open. The DEC PDP-
11 /VAX and Intel 80x86 follow the Little Endian model, while the IBM 360/370 and Motorola
680x0, and others follow the Big Endian model. This numbering applies to bit positions as
well, though only a few architectures supply instructions to access bits by their numbered
position.

In some machines, accesses to objects larger than a byte must be aligned. An
access to an object of size s bytes at byte address A is aligned if A mod s = 0.
Figure 3.8 shows the addresses at which an access is aligned or misaligned.

INTEL Ex.1035.127

96 3.4 Memory Addressing

Object addressed Aligned at byte offsets Misaligned at byte offsets

byte O,l,2,3,4,5,6,7 (never)

halfword 0,2,4,6 1,3,5,7

word 0,4 1,2,3,5,6,7

doubleword 0 1,2,3,4,5,6,7

FIGURE 3.8 Aligned and misaligned accesses of objects. The byte offsets are speci­
fied for the low-order three bits of the address.

Why would someone design a machine with alignment restrictions?
Misalignment causes hardware complications, since the memory is typically
aligned on a word boundary. A misaligned memory access will, therefore, take
multiple aligned memory references. Figure 3.9 shows what happens when an
access occurs to a misaligned word in a system with a 32-bit-wide bus to mem­
ory: Two accesses are required to get the word. Thus, even in machines that
allow misaligned access, programs with aligned accesses run faster.

Misaligned word reference

32 32
32 bits ____ _____ ,__ _____ __ _

32

To CPU

FIGURE 3.9 A word reference is made to a halfword (16-bit) boundary in a memory
system that has a 32-bit access path. The CPU or memory system has to perform two
separate accesses to get the upper and lower halfword. The two halfwords are then
merged to obtain the entire word. With memory organized as independent byte-wide
modules it is possible to access only the needed data, but this requires more complex
control to supply a different address to each module to select the proper byte.

Even if data is aligned, supporting byte and halfword accesses requires an
alignment network to align bytes and halfwords in registers. Depending on the
instruction, the machine may also need to sign extend the quantity. On some
machines a byte or halfword does not affect the upper portion of a register. For
stores only the affected bytes in memory may be altered. Figure 3.10 shows the

INTEL Ex.1035.128

Instruction Set Design: Alternatives and Principles 97

alignment network for loading or storing a byte from a word in memory into a
register. While all the machines discussed in this chapter and the next permit
byte and halfword accesses to memory, only the VAX and the Intel 8086 support
ALU operations on register operands with a size shorter than a word.

Byte in register

0 2 I 3 I
Alignment network ;/]

0 2 I 3 I
Word in memory

FIGURE 3.10 · The alignment network to load or store a byte. The memory system is
assumed to be 32 bits wide, and four alignment paths are required for bytes. Accessing
aligned halfwords would require two additional paths to move either byte 0 or byte 2 in
memory to byte 2 in the register. A 64-bit memory system would require twice as many
alignment paths for bytes and halfwords, as well as two 32-bit alignment paths for word
accesses. The alignment network only positions the bytes for a store-additional control
signals are used to ensure that only the correct byte positions are written in memory.
Rather than an alignment network, some machines use a shifter and shift the data only in
those cases where alignment is required. This makes the access of a nonword object con­
siderably slower, but eliminating the alignment network speeds up the more common case
of accessing a word.

Addressing Modes

We now know what bytes to access in memory given an address. In this section
we will look at addressing modes-how architectures specify the address of an
object they will access. In GPR machines, an addressing mode can specify a
constant, a register, or a location in memory. When a memory location is used,
the actual memory address specified by the addressing mode is called the
effective address.

Figure 3 .11 shows all the data addressing modes that arise in the machines
discussed in the following chapter. Immediates or literals are usually considered
a memory addressing mode (even though the value they access is in the instruc­
tion stream), while registers are often separated. We have kept addressing modes
that depend on the program counter, called PC-relative addressing, separate.
PC-relative addressing is used primarily for specifying code addresses in control

INTEL Ex.1035.129

98

Addressing
mode

Register

Immediate or
literal

Displacement
or based

Register defer-
red or indirect

Indexed

Direct or
absolute

Memory indi-
rector mem-
ory deferred

Auto-
increment

Auto-
decrement

Scaled or
index

3.4 Memory Addressing

transfer instructions. The use of PC-relative addressing in control instructions is
discussed in Section 3 .5.

Figure 3 .11 shows the most common names for the addressing modes, though
the names differ among architectures. In this figure and throughout the book, we
will use an extension of the C programming language as a hardware description
notation. In this figure, only two non-C features are used. First, the left arrow
(~) is used for assignment. Second, the array M is used as the name for memory.

Example instruction Meaning When used

Add R4,R3 R4f-R4+R3 When a value is in a register.

Add R4,#3 R4f-R4+3 For constants. In some machines,
literal and immediate are two
different addressing modes.

Add R4,100(Rl) R4f-R4+M [lOO+Rl] Accessing local variables.

Add R4, (Rl) R4f-R4+M [Rl] Accessing using a pointer or a
computed address.

Add R3, (Rl + R2) R3f-R3+M [Rl+R2] Sometimes useful in array ad-
dressing-Rl=base of array;
R2=index amount.

Add Rl I (1001) Rlf-Rl+M[lOOl] Sometimes useful for accessing static
data; address constant may need to be
large.

Add Rl,@(R3) Rlf-Rl +M [M [R3]] If R3 is the address of a pointer p,
then mode yields *P·

Add Rl, (R2)+ Rlf-Rl +M [R2] Useful for stepping through arrays
within a loop. R2 points to start of

R2f-R2+d array; each reference increments R2
by size of an element, d.

Add Rl, - (R2) R2f-R2-d Same use as autoincrement.
Autoincrement/decrement can also be

Rlf-Rl +M [R2] used to implement a stack as push
and pop.

Add Rl,100(R2) [R3] Rlf- Used to index arrays. May be applied
Rl+M[100+R2+R3*d] to any base addressing mode in some

machines.

FIGURE 3.11 Selection of addressing modes with examples, meaning, and usage. The extensions to C used in the
hardware descriptions are defined above. In autoincrement/decrement and scaled or index addressing modes, the
variable d designates the size of the data item being accessed (i.e., whether the instruction is accessing 1, 2, 4, or 8
bytes); this means that these addressing modes are only useful when the elements being accessed are adjacent in
memory. In our measurements, we use the first name shown for each mode. A few machines, such as the VAX, encode
some of these addressing modes as PC-relative.

INTEL Ex.1035.130

l

Instruction Set Design: Alternatives and Principles 99

Thus, M [Rl J refers to the contents of the memory location whose address is
given by the contents of RI. Later, we will introduce extensions for accessing
and transferring data smaller than a word.

Addressing modes have the ability to significantly reduce instruction counts;
they also add to the complexity of building a machine. Thus, the usage of vari­
ous addressing modes is quite important in helping the architect choose what to
include. While many measurements of addressing mode usage are machine
dependent, others are largely independent of the machine architecture. Some of
the more important machine-independent measurements will be examined in this
chapter. But, before we look at this type of measurement, let's look at how often
these various memory addressing modes are used.

Figure 3.12 shows the results of measuring addressing mode usage patterns in
our benchmarks-Gnu C Compiler (GCC), Spice, and TeX-on the VAX,
which supports all the modes shown in Figure 3.11. We will look at further
measurements of addressing mode usage on the VAX in the next chapter.

As Figure 3.12 shows, immediate and displacement addressing dominate
addressing mode usage. Let's look at some properties of these two heavily used
modes.

TeX

Memory indirect Spice 6%
GCC

TeX

Scaled Spice 16%
GCC 6%

TeX 24%
Register deferred Spice

GCC 11%

TeX 43%

Immediate Spice 17%
GCC 39%

TeX 32%

Displacement Spice 55%
GCC 40%

0% 10% 20% 30% 40% 50% 60%

Frequency of the addressing mode

FIGURE 3.12 Summary of use of memory addressing modes (including immediates).
The data were taken on a VAX using our three benchmark programs. Only the addressing
modes with an average frequency of over 1 % are shown. The PC-relative addressing
modes, which are used almost exclusively for branches, are not included. Displacement
mode includes all displacement lengths (8-, 16-, and 32-bit). Register modes, which are not
counted, account for one-half of the operand references, while memory addressing modes
(including immediate) account for the other half. The memory indirect mode on the VAX can
use displacement, autoincrement, or autodecrement to form the initial memory address; in
these programs, almost all the memory indirect references use displacement mode as the
base. Of course, the compiler affects what addressing modes are used; we discuss this
further in Section 3.7. These major addressing modes account for all but a few percent (0%
to 3%) of the memory-accesses.

INTEL Ex.1035.131

100 3.4 Memory Addressing

Displacement or Based Addressing Mode

The major question that arises for a displacement-style addressing mode is that
of the range of displacements used. Based on the use of various displacement
sizes, a decision of what sizes to support can be made. Choosing the displace­
ment field sizes is important because they directly affect the instruction length.
Measurements taken on the data access on a load/store architecture using our
three benchmark programs are shown in Figure 3.13. We will look atbranch off­
sets in the next section-data accessing patterns and branches are so different,
little is gained by combining them.

30%

25%

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of bits needed for a displacement value

j -o- TeX -+- Spice -x- GCC.

FIGURE 3.13 Displacement values are widely distributed. Though there is a large
number of small values, there is also a fair number of large values. The wide distribution of
displacement values is due to multiple storage areas for variables and different
displacements used to access them. The different storage areas and their access patterns
are discussed further in Section 3. 7. The chart shows only the magnitude of the
displacement and not the sign, which is heavily affected by the storage layout. The entry
corresponding to 0 on the x axis shows the percentage of displacements of value 0. The
vast majority of the displacements are positive, but a majority of the largest displacements
(14+ bits) are negative. Again, this is due to the overall addressing scheme used by the
compiler and might change with a different compilation scheme. Since this data was
collected on a machine with 16-bit displacements, it cannot tell us anything about accesses
that might want to use a longer displacement. Such accesses are broken into two separate
instructions-the first of which loads the upper 16 bits of a base register. By counting the
frequency of these "load immediate" instructions, which have limited use for other
purposes, we can bound the number of accesses with displacements potentially larger than
16 bits. Such an analysis indicates GCC, Spice, and TeX may actually require a
displacement longer than 16 bits for up to 5%, 13%, and 27% of the memory references,
respectively. Furthermore, if the displacement is larger than 15 bits, it is likely to be quite a
bit larger since most constants being loaded are large, as shown in Figure 3.15 (page
102).To evaluate the choice of displacement length, we might also want to examine a
cumulative distribution, as shown in Exercise 3.3 (see Figure 3.35 on page 133).

INTEL Ex.1035.132

Instruction Set Design: Alternatives and Principles 101

Immediate or Literal Addressing Mode

lmmediates can be used in arithmetic operations, in comparisons (primarily for
branches), and in moves in which a constant is wanted in a register. The last case
occurs for constants written in the code, which tend to be small, and for address
constants, which can be large. For the use of immediates it is important to know
whether they need to be supported for all operations or for only a subset. The
chart in Figure 3.14 shows the frequency of immediates for the general classes
of operations in an instruction set.

TeX

Loads Spice
GCC

TeX

Compares Spice
GCC

ALU operations

38%
26%

23%

83%
92%

84%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of the operations that use immediates

FIGURE 3.14 We see that for ALU operations about half the operations have an
immediate operand, while for compares more than 85% of the occurrences use an
immediate operand. (For ALU operations, shifts by a constant amount are included as
operations with immediate operands.) For loads, the load immediate instructions load 16
bits into either half of a 32-bit register. These load immediates are not loads in a strict
sense because they do not reference memory. In some cases, a pair of load
immediates may be used to load a 32-bit constant, but this is rare. The compares
include comparisons against zero that are done in conditional branches based on this
comparison. These measurements were taken on a MIPS R2000 architecture with full
compiler optimization. The compiler attempts to use simple compares against zero for
branches whenever possible because these branches are efficiently supported in the
architecture.

Another important instruction set measurement is the range of values for im­
mediates. Like displacement values, the sizes of immediate values affect instruc­
tion lengths. As Figure 3.15 shows, immediate values that are small are most
heavily used. However, large immediates are sometimes used, most likely in ad­
dressing calculations. The data in Figure 3.15 was taken on a VAX, which pro­
vides many instructions that have zero as an implicit operand. These include in­
structions to compare against zero and to store zero into a word. Because of the
use of these instructions, the measurements show relatively infrequent use of
zero.

INTEL Ex.1035.133

102 3.4 Memory Addressing

0 4 8 12 16 20 24 28 32
Number of bits needed for an immediate value

-+- GCC -a- Spice -x-TeX

FIGURE 3.15 The distribution of immediate values is shown. The x axis shows the
number of bits needed to represent the magnitude of an immediate value-a means the
immediate field value was 0. The vast majority of the immediate values are positive:
Overall, less than 6% of the immediates are negative.These measurements were taken on
a VAX, which supports a full range of immediates and sizes as operands to any instruction.
The measured programs are the standard set-GCC, Spice, and TeX.

Encoding of Addressing Modes

How the addressing modes of operands are encoded depends on the range of
addressing modes and the degree of independence between opcodes and modes.
For a small number of addressing modes or opcode/addressing mode combina­
tions, the addressing mode can be encoded in the opcode. This works for the
IBM 360 with only five addressing modes and most operations offered in only
one or two modes. For a large number of combinations, typically a separate
address specifier is needed for each operand. The address specifier tells what
addressing mode the operand is using. In Chapter 4, we will see how these two
types of encodings are used in several real instruction formats.

When encoding the instructions, the number of registers and the number of
addressing modes both have a significant impact on the size of instructions. This
is because the addressing mode field and the register field may appear many
times in a single instruction. In fact, for most instructions many more bits are
consumed encoding addressing modes and register fields than in specifying the
opcode. The architect must balance several competing forces when encoding the
instruction set:

1. The desire to have as many registers and addressing modes as possible.

INTEL Ex.1035.134

3.s 1

Operator type

Arithmetic and logical

Data transfer

Control

System

Floating point

Decimal

String

Instruction Set Design: Alternatives and Principles 103

2. The impact of the size of the register and addressing mode fields on the
average instruction size and hence on the average program size.

3. A desire to have instructions encode into lengths that will be easy to handle
in the implementation. As a minimum, the architect wants instructions to be
in multiples of bytes, rather than an arbitrary length. Many architects have
chosen to use a fixed-length instruction to gain implementation benefits
while sacrificing average code size.

S!nce the addressing modes and register fields make up such a large percent­
age of the instruction bits, their encoding will significantly affect how easy it is
for an implementation to decode the instructions. The importance of having
easily decoded instructions is discussed in Chapters 5 and 6.

Operations in the Instruction Set

The operators supported by most instruction set architectures can be categorized,
as in Figure 3.16. In Section 3.8, we look at the use of operations in a general
fashion (e.g. memory references, ALU operations, and branches). In Chapter 4,
we will examine the use of various instruction operations in detail for four dif­
ferent architectures. Because the instructions used to implement control flow are
largely independent of other instruction set choices and because the measure­
ments of branch and jump behavior are also fairly independent of other mea­
surements, we examine the use of control-flow instructions next.

Examples

Integer arithmetic and logical operations: add, and, subtract, or

Loads/stores (move instructions on machines with memory addressing)

Branch, jump, procedure call and return, traps

Operating system call, virtual memory management instructions

Floating-point operations: add, multiply

Decimal add, decimal multiply, decimal-to-character conversions

String move, string compare, string search

FIGURE 3.16 Categories of instruction operators and examples of each. All machines generally provide a full set of
operations for the first three categories. The support for system functions in the instruction set varies widely among
architectures, but all machines must have some instruction support for basic system functions. The amount of support in
the instruction set for the last three categories may vary from none to an extensive set of special instructions. Floating­
point instructions will be provided in any machine that is intended for use in an application that makes much use of floating
point. These instructions are sometimes part of an optional instruction set. Decimal and string instructions are sometimes
primitives, as in the VAX or the IBM 360, or may be synthesized by the compiler from simpler instructions. Examples of
instruction sets appear in Appendix 8, while Appendix C contains measurements of typical usage. We will examine four
different instruction sets and their usage in detail in Chapter 4.

INTEL Ex.1035.135

104 3.5 Operatidns in the Instruction Set

Instructions for Control Flow

As Figure 3 .17 shows, there is no consistent terminology for instructions that
change the flow of control. Until the IBM 7030, control-flow instructions were
typically called transfers. Beginning with the 7030, the name branch began to be
used. Later, machines introduced additional names. Throughout this book we
will use jump when the change in control is unconditional and branch when the
change is tonditional.

Machine Year "Branch" "Jump"

IBM7030 1960 All control transfers-
addressing is PC-relative

IBM 360/370 1965 All control transfers-no
PC-relative

DEC PDP-11 1970 PC-relative only, All addressing modes;
conditional and unconditional only
unconditional

;

Intel 8086 1978 All transfers are jumps;
conditional jumps are PC-
relative only

DEC VAX 1978 Same as PDP-11 Same as PDP-11

MIPS R2000 1986 Conditional control Unconditional jumps and
transfer, always PC- call instructions
relative

FIGURE 3.17 Machines, dates, and the names associated with control transfers in
their architectures. These names vary widely based on whether the transfer is conditional
or unconditional and on whether it is PC-relative or not. The VAX, PDP-11, and MIPS
R2000 architectures allow only PC-relative addressing for branches.

We can distinguish four different types of control-flow change:

1. Conditional branches

2. Jumps

3. Procedure calls

4. Procedure returns

We want to know the relative frequency of these events, as each event is differ­
ent, may use different instructions, and may have different behavior. The fre­
quencies of these control-flow instructions for a load/store machine running 04r
benchmarks is shown in Figure 3.18.

The destination address of a branch must always be specified. This destina­
tion is specified explicitly in the instruction in the vast majority of cases-pro-

INTEL Ex.1035.136

Instruction Set Design: Alternatives and Principles 105

cedure return being the major exc;:eption-since for return the target is not
known at compile time. The most common way to specify the destination is to
supply a displacement that is added to the program counter, or PC. Branches of
this sort are called PC-relative branches. PC-relative branches are advantageous
because the branch target is often near the current instruction, and specifying the
position relative to the current PC requires fewer bits. Using PC-relative
addressing also permits the code to run independent of where it is loaded. This
property, called position-independence, can eliminate some work when the
program is linked and is also useful in programs linked during execution.

Call/return

Jump

Conditional

TeX 16%
Spice 13%
GCC 10%

TeX " 18%
Spice 12%
GCC 12%

TeX 66%

Spice·················75% GCC 78%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Frequency of a branch of this type

FIGURE 3.18 Breakdown of branches into three classes. Each branch is counted in
one of three bars. Conditional branches clearly dominate. On average 90% of the jumps
are PC-relative.

To implement returns and indirect branches in which the target is not known
at compile time, a method other than PC-relative addressing is required. Here,
there must be a way to specify the target dynamically, so that it can change at

· run-time. This may be as simple as naming a register that contains the target ad­
dress. Alternatively, the branch may permit any addressing mode to be used to
supply the target address.

A key question concerns how far branch targets are from branches. Knowing
the distribution of these displacements will help in choosing what branch offsets
to support and thus will affect the instruction length and encoding. Figure 3.19
(page 106) shows the distribution of displacements for PC-relative branches in
instructions. About 75% of the branches are in the forward direction.

Since most changes in control flow are branches, deciding how to specify the
branch condition is important. The three primary techniques. in use and their ad­
vantages and disadvantages are shown in Figure 3.20 (page 106).

INTEL Ex.1035.137

106

Name

Condition
code (CC)

Condition
register

Compare and
branch

3.5 Operations in the Instruction Set

30%

25%

20%

15%

10%

5%

0%
2 3 4 5 6 7 8 9 10 11 12 13 14

Log2 of the branch distance in instructions

....... Tex o Spice • GCC I
FIGURE 3.19 Branch distances in terms of number of instructions between the
target and the branch instruction.The most frequent branches in Spice are to targets that
are 8 to 15 instructions away (24

). The weighted-arithmetic-mean branch target distance is
86 instructions (2\ This tells us that short displacement fields often suffice for branches
and that the designer can gain some encoding density by having a shorter instruction with a
smaller branch displacement. These measurements were taken on a load/store machine
(MIPS R2000 architecture). An architecture that requires fewer instructions for the same
program, such as a VAX, would have shorter branch distances. Similarly, the number of
bits needed for the displacement may change if the machine allows instructions to be
arbitrarily aligned. A cumulative distribution of this branch displacement data is shown in
Exercise 3.3 (see Figure 3.35 on page 133).

How condition is tested Advantages Disadvantages

Special bits are set by ALU Sometimes condition is CC is extra state. Condition codes
operations, possibly under set for free. constrain t.he ordering of instructions
program control. since they pass information from one

instruction to a branch.

Set arbitrary register with the Simple. Uses up a register.
result of a comparison.

Compare is part of the branch. One instruction rather May be too much work per
Often compare is limited to subset. than two for a branch. instruction.

FIGURE 3.20 The major methods for evaluating branch conditions, their advantages, and disadvantages.
Although condition codes can be set by ALU operations that are needed for other purposes, measurements on programs
show that this rarely happens. The major implementation problems with condition codes arise when the condition code is
set by a large or haphazardly chosen subset of the instructions, rather than being controlled by a bit in the instruction.
Machines with compare and branch often limit the set of compares and use a condition register for more complex
compares. Often, different techniques are used for branches based on floating-point comparison versus those based on
integer comparison. This is reasonable since the number of branches that depend on floating-point comparisons is much
smaller than the number depending on integer comparisons.

INTEL Ex.1035.138

·Instruction Set Design: Alternatives and Principles 107

One of the most noticeable properties of branches is that a large number of
the comparisons are simple equality or inequality tests, and a large number are
comparisons with zero. Thus, some architectures choose to treat these compar­
isons as special cases, especially if a compare and branch instruction is being
used. Figure 3.21 shows the frequency of different comparisons used for condi­
tional branching. The data in Figure 3 .14 said that a large percentage of the
branches had an immediate operand (86%), and while not shown, 0 was the most
heavily used immediate (83% of the immediates in branches). When we
combine this with the data in Figure 3.21 we can see that a significant
percentage (over 50%) of the compares in branches are simple tests for equality
with zero.

LT/GE

GT/LE

EQ/NE

TeX 25%
Spice
GCC 11%

TeX
Spice 25%
GCC

TeX ···········••R.z72%
_Spice 75%
GCC················-89%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Frequency of comparison types in branches

FIGURE 3.21 Frequency of different types of compares in conditional branches. This
includes both the integer and floating-point compares in branches. Floating-point compar­
isons constitute 13% of the branch comparisons in Spice. Remember that earlier data in
Figures 3.14 indicate that most comparisons are against an immediate operand. This
immediate value is usually 0 (83% of the time).

Program Percentage of Percentage taken Percentage of all
backward branches control instructions
branches that actually branch

GCC 26% 54% 63%

Spice 31% 51% 63%

TeX 17% 54% 70%

Average 25% 53% 65%

FIGURE 3.22 Branch direction, branch-taken frequency, and frequency that the PC
is changed. The first column shows what percentage of all branches (both taken and
untaken) are backward-going. The second column shows what percentage of all branches
(remember that a branch is always conditional) are taken. The final column shows what_
percentage of all control-flow instructions actually cause a nonsequential transfer in the
flow. This last column is computed by combining data from the second column and the data
in Figure 3.18 (page 105).

INTEL Ex.1035.139

108

Example

Answer

· 3.5 Operations in the Instruction Set

We will say that a branch is taken if the condition tested by the branch is true
and the next instruction to be executed is the target of the branch. All jumps,
therefore, are taken. Figure 3.22 shows the branch-direction distribution, the
frequency of taken (conditional) branches, and the percentage of control-flow
instructions that change the PC. Most backward-going branches are loop
branches, and typically loop branches are taken with about 90% probability.

Many programs have.a higher percentage of loop branches, thus boosting the
frequency of taken branches over 60%. Overall, branch behavior is application­
dependent and sometimes compiler-dependent. Compiler dependencies arise
because of changes to the control flow made by optimizing compilers to improve
the execution time of loops.

Assuming that 90% of the backward-going branches are taken, find the
probability that a forward-going branch is taken using the averaged data in
Figure 3.22.

The average frequency of taken branches is the sum of the backward-taken and
forward-taken times their respective frequencies:

% taken branches = (%taken backward*% backward)+
(%taken forward*% forward)

53% = (90% * 25%) +(%taken forward* 75%)

53%-22.5% % taken forward = -----
75%

% taken forward = 40.7%

It is not unusual to see the majority of forward branches be untaken. The behav­
ior of forward-going branches often varies among programs.

Procedure calls and returns include control transfer and possibly some state
saving; at a minimum the return address must be saved somewhere. Some archi­
tectures provide a mechanism to save the registers, while others require the
compiler to generate instructions. There are two basic conventions in use to save
registers. Caller-saving means that the calling procedure must save the registers
that it wants preserved for access after the call. Callee-saving means that the
called procedure must save the registers it wants to use. There are times when
caller save must be used due to access patterns to globally visible variables in
two different procedures. For example, suppose we have a procedure Pl that
calls procedure P2, and both procedures manipulate the global variable x. If Pl
had allocated x to a register it must be sure to save x to a location known by P2
before the call to P2. A compiler's ability to discover when a called procedure

INTEL Ex.1035.140

Instruction Set Design: Alternatives and Principles 109

may access register-allocated quantities is complicated by the possibility of
separate compilation, and situations where P2 may not touch x, but P2 can call
another procedure, P3, that may access x. Because of these complications, most
compilers will conservatively caller save any variable that may be accessed dur­
ing a call.

In the cases where either convention could be used, some will be more opti­
mal with callee-save and some will be more optimal with caller-save. As a

t'fesult, the most sophisticated compilers use a combination of the two mecha­
nisms, and the register allocator may choose which register to use for a variable
based on the convention. Later in this chapter we will examine how well more
sophisticated instructions match the needs of the compiler for this function, and
in Chapter 8 we will look at hardware buffering schemes for supporting register
save and restore.

3.6 I Type and Size of Operands

How is the type of an operand designated? There are two primary alternatives:
First, the type of an operand may be designated by encoding it in the opcode­
this is the method used most often. Alternatively, the data can be annotated with
tags that are interpreted by the hardware. These tags specify the type of the
operand, and the operation is chosen accordingly. Machines with tagged data,
however, are extremely rare. The Burroughs' architectures are the most exten­
sive example of tagged architectures. Symbolics also built a series of machines
that used tagged data items for implementing LISP.

Usually the type of an operand-for example, integer, single-precision
floating point, character-effectively gives its size. Common operand types
include character (one byte), halfword (16 bits), word (32 bits), single-precision
floating point (also one word), and double-precision floating point (two words).
Characters are represented as either EBCDIC, used by the IBM mainframe
architectures, or ASCII, used by everyone else. Integers are almost universally
represented as two's complement binary numbers. Until recently, most computer
manufacturers chose their own floating-point representation. However, in the
past few years, a standard for floating point, the IEEE standard 754, has become
the choice of most new computers. The IEEE floating-point standard is dis­
cussed in detail in Appendix A.

Some architectures provide operations on character strings, although such
operations are usually quite limited and treat each byte in the string as a single
character. Typical operations supported on character strings are comparisons and
moves.

For business applications, some architectures support a decimal format, usu­
ally called packed decimal. Packed decimal is binary-coded decimal-four bits
are used to encode the values 0-9, and two decimal digits are packed into each
byte. Numeric character strings are sometimes called unpacked decimal, and

INTEL Ex.1035.141

110 3.6 Type and Size of Operands

operations-called packing and unpacking-are usually provided for converting
back and forth between them.

Our benchmarks use byte or character, halfword (short integer), word
(integer), and floating-point data types. Figure 3.23 shows the dynamic distribu­
tion of the sizes of objects referenced from memory for these programs. The fre­
quency of access to different data types helps in deciding what types are most
important to support efficiently. Should the machine have a 64-bit access path,
or would taking two cycles to access a doubleword be satisfactory? How
important is it to support byte accesses as primitives, which, as we saw earlier,
require an alignment network? In Figure 3.23, memory references are used to
examine the types of data being accessed. In some architectures, objects in
registers may be accessed as bytes or halfwords. Howev_yr, such access is very
infrequent-on the VAX, it accounts for no more than 12% of register
references, or roughly 6% of all operand accesses in these programs.

TeX
Doubleword Spice

GCC

TeX
Word Spice

GCC

TeX
Halfword Spice

GCC

TeX
Byte Spice

GCC

0%
66%

0%

89%
34%

91%

11%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Frequency of the reference

FIGURE 3.23 Distribution of data accesses by size for the benchmark programs.
Access to the major data type (word or doubleword) clearly dominates. Reads outnumbered
writes of data items by a factor of 1.6 for TeX to a factor of 2.5 for Spice. The doubleword
data type is used solely for double-precision floating point in Spice. Spice makes only small
use of single-precision floating point; most word references in Spice are to integers. These
measurements were taken on the memory traffic generated on a load/store architecture.

In the next chapter we will look extensively at the differences in instruction
mix and other architectural measurements on four very different machines. But
before we do that, it will be helpful to take a brief look at modern compiler
technology and its effect on program properties.

INTEL Ex.1035.142

Instruction Set Design: Alternatives and Principles

3. 7 I The Role of High-Level Languages
and Compilers

111

Today most programming is done in high-level languages. This means that since
most instructions executed are the output of a compiler, an instruction set archi­
t~cture is essentially a compiler target. In earlier times, architectural decisions
were often made to ease assembly language programming. Because performance
of a computer will be significantly affected by the compiler, understanding
compiler technology today is critical to designing and efficiently implementing
an instruction set. In earlier days it was popular to try to isolate the compiler
technology and its effect on hardware performance from the architecture and its
peiformance, just as it was popular to try to separate an architecture from its
implementation. This is extremely difficult, if not impossible, with today's com­
pilers and architectures. Architectural choices affect the quality of the code that
can be generated for a machine and the complexity of building a good compiler
for it. Isolating the compiler from the hardware is likely to be misleading. In this
section we will discuss the critical goals in the instruction set primarily from the
compiler viewpoint. What features will lead to high-quality code? What makes it
easy to write efficient compilers for an architecture?

The Structure of Recent Compilers

To begin, let's look at what optimizing compilers are like today. The structure of
recent compilers is shown in Figure 3.24.

A compiler writer's first goal is correctness-all valid programs must be
compiled correctly. The second goal is usually speed of the compiled code.
Typically, a whole set of other goals follow these first two, including fast
compilation, debugging support, and interoperability among languages.
Normally, the passes in the compiler transform higher-level, more abstract
representations into progressively lower-level representations, eventually
reaching the instruction set. This structure helps manage the complexity of the
transformations and makes writing a bug-free compiler easier.

The complexity of writing a correct compiler is a major limitation on the
amount of optimization that can be done. Although the multiple-pass structure
helps reduce compiler complexity, it also means that the compiler must order
and perform some transformations be\ore others. In the diagram of the. optimiz­
ing compiler in Figure 3.24, we can see that certain high-level optimizations are
performed long before it is known what the resulting code will look like in
detail. Once such a transformation is made, the compiler can't afford to go back
and revisit all steps, possibly undoing transformations. This would be pro­
hibiti_ve, both in compilation time and in complexity. Thus, compilers make
assumptions about the ability of later steps to deal with certain problems. For
example, compilers usually have to choose which procedure calls to expand
inline before they know the exact size of the procedure being called. Compiler
writers call this problem the phase-ordering problem.

INTEL Ex.1035.143

112 3.7 The Role of High-Level Languages and Compilers

Dependencies
Language dependent;
machine independent

Somewhat language dependent,
largely machine independent

Small language dependencies;
machine dependencies slight
(e.g., register counts/types)

Highly machine dependent;
language independent

Intermediate
representation

Function
Transform language to
common intermediate form

For example, procedure inlining
and loop transformations

Including global and local
optimizations + register
allocation

Detailed instruction selection
and machine-dependent
optimizations; may include
or be followed by assembler

FIGURE 3.24 Current compilers typically consist of two to four passes, with
more highly optimizing compilers having more passes. A pass is simply one phase in
which the compiler reads and transforms the entire program. (The term "phase" is often
used interchangeably with "pass.") The optimizing passes are designed to be optional and
may be skipped when faster compilation is the goal and lower quality code is acceptable.
This structure maximizes the probability that a program compiled at various levels of
optimization will produce the same output when given the same input. Because the
optimizing passes are also separated, multiple languages can use the same optimizing and
code-generation passes. Only a new .front end is required for a new language. The high­
level optimization mentioned here, procedure inlining, is also called procedure integration.

How does this ordering of transformations interact with the instruction set
architecture? A good example occurs with the optimization called global com­
mon subexpression elimination. This optimization finds two instances of an
expression that compute the same value and saves the value of the first computa­
tion in a temporary. It then uses the temporary value, eliminating the second
computation of the expression. For this optimization to be significant, the tem­
porary must be allocated to a register. Otherwise, the cost of storing the tempo­
rary in memory and later reloading it may negate the savings gained by not
recomputing the expression. There are, in fact, cases where this optimization
actually slows down code when the temporary is not register allocated. Phase
ordering complicates this problem, because register allocation is typically done
near the end of the global optimization pass, just before code generation. Thus,
an optimizer that performs this optimization must assume that the register
allocator will allocate the temporary to a register.

INTEL Ex.1035.144

Instruction Set Design: Alternatives and Principles 113

Because of the central role that register allocation plays, both in speeding up
the code and in making other optimizations useful, it is one of the most impor­
tant-if not the most important-optimizations. Recent register allocation algo­
rithms are based on a technique called graph coloring. The basic idea behind
graph coloring is to construct a graph representing the possible candidates for
allocation to a register and then to use the graph to allocate registers. As shown
in Figure 3.25, each candidate for a register corresponds to a node in the graph,
called an interference graph. The arcs between the nodes show where the ranges
of usage for variables (called live ranges) overlap. The compiler then tries to
color the graph using a number of colors equal to the number of registers avail­
able for allocation. In a graph coloring, no adjacent nodes may have the same
color. This restriction is equivalent to saying that no two variables with over­
lapping uses may be allocated to the same register. However, nodes that are not
connected by an arc may have the same color, allowing variables whose uses do
not overlap to use the same register. Thus, a coloring of the graph corresponds to
an allocation of the active variables to registers. For example, the four nodes in
Figure 3.25 can be colored with two colors, meaning the code only needs two
registers for allocation. Although the problem of coloring a graph is NP-com­
plete, there are heuristic algorithms that work well in practice.

a. Program fragment

A=
B=

... 8 ...
C=
... A .. .
D= .. .
... D .. .
... c .. .

c. Colored graph

b. Interference graph

d. Register­
allocated code

R1 =
R2=

... R2 ...
R2=
... R1 .. .
R1= .. .
... R1 .. .
... R2 .. .

FIGURE 3.25 Graph coloring is used to allocate registers by constructing an
interference graph that is colored heuristically using a number of colors
corresponding to the register count. Part b shows the interference graph corresponding
to the code fragment shown in part a. Each variable corresponds to a node, and the arcs
show the overlap of the active ranges of the variables. The graph can be colored with two
colors, as shown in part c, and this corresponds to the register allocation of part d.

INTEL Ex.1035.145

114

Optimization name

High-level

Procedure integration

Local

Common subexpression
elimination

Constant propagation

Stack height reduction

Global

.Global common
subexpression elimination

Copy propagation

·Code motion

Induction variable elimina-
ti on

Machine-dependent

Strength reduction

Pipeline scheduling

Branch offset optimization

3.7 The Role of High-Level Languages and Compilers

Graph coloring works best when there are at least 16 (and preferably more)
general-purpose registers available for global allocation for integer variables and
additional registers for floating point. Unfortunately, graph coloring does not
work very well when the number of registers is small because the heuristic
algorithms for coloring the graph are likely to fail. The emphasis in the approach
is to achieve 100% allocation of active variables.

Optimizations performed by modern compilers can be classified by the style
of the transformation, as follows:

1. High-level optimizations-often done on the source with output fed to later
optimization passes.

Explanation Percent of the total number
of optimizing transforms

At or near the source level; machine-independent

Replace procedure call by procedure body N.M.

Within straightline code

Replace two instances of the same computation by single copy 18%

Replace all instances of a variable that is assigned a constant with the 22%
constant

Rearrange expression tree to minimize resources needed for expression N.M.
evaluation

Across a branch

Same as local, b,ut this version crosses branches 13%

Replace all instances of a variable A that has been assigned X (i.e., A=X) 11%
withX

Remove code from a loop that computes same value each iteration of the loop 16%

Simplify/eliminate array-addressing calculations within loops 2%

Depends on machine knowledge

Many examples, such as replace multiply by a constant with adds and shifts N.M.

Reorder instructions to improve pipeline performance N.M.

Choose the shortest branch displacement that reaches target N.M.

FIGURE 3.26 Major types of optimizations and examples in each class. The third column lists the static frequency
with which some of the common optimizations are applied in a set of 12 small FORTRAN and Pascal programs. The
percentage is the portion of the static optimizations that are of the specified type. These data tell us about the relative fre­
quency of occurrence of various optimizations. There are nine local and global optimizations done by the compiler
included in the measurement. Six of these optimizations are covered in the figure, and the remaining three account for
18% of the total static occurrences. The abbreviation "N.M." means that the number of occurrences of that optimization
was not measured. Machine-dependent optimizations are usually done in a code generator, and none of those were
measured in this experiment. The data are from Chow [1983], and were collected using the Stanford UCODE compiler.

INTEL Ex.1035.146

Instruction Set Design: Alternatives and Principles 115

2. Local optimizations-optimize code only within a straightline code fragment
(called a basic block by compiler people).

3. Global optimizations-extend the local optimizations across branches and
introduce a set of transformations aimed at optimizing loops.

4. Register allocation.

5. Machine-dependent optimizations-attempt to take advantage of specific
architectural knowledge.

It is sometimes difficult to separate some of the simpler optimizations-local
and machine-dependent optimizations-from transformations done in the code
generator. Examples of typical optimizations are given in Figure 3.26. The last
column of Figure 3.26 indicates the frequency with which the listed optimizing

. transforms. were applied to the source program. Data on the effect of various
optimizations on program run-time are shown in Figure 3.27. The data in Figure
3.27 demonstrate the importance of register allocation, which adds the largest
single improvement. We will look at the overall effect of optimization on our
three benchmarks later in this section.

Optimizations performed Percent faster

Procedure integration only 10%

Local optimizations only 5%

Local optimizations + register allocation 26%

Global and local optimizations 14%

Local and global optimizations + register allocation 63%

Local and global optimizations + procedure integration + 81%
register allocation

FIGURE 3.27 Performance effects of various levels of optimization. Performance
gains are shown as what percent faster the optimized programs were compared to the
unoptimized programs. When register allocation is turned off, data are loaded into, or
stored from, the registers on every individual use. These measurements are also from
Chow [1983] and are for 12 small FORTRAN and Pascal programs.

The Impact of Compiler Technology on the
Architect's Decisions

The interaction of compilers and high-level languages significantly affects how
programs use an instruction set. To better understand this interaction, three
important questions to ask are:

1. How are variables allocated and addressed? How many registers are needed
to allocate variables appropriately?

2. What is the impact of optimization techniques on instruction mixes?

INTEL Ex.1035.147

116 3.7 The Role of High-Level Languages and Compilers

3. What control structures are used and with what frequency?

To address the first questions, we must look at the three separate areas in which
current high-level languages allocate their data:

• The stack-used to allocate local variables. The stack is grown and shrunk on
procedure call or return; respectively. Objects on the stack are addressed rela­
tive to the stack pointer and are primarily scalars (single variables) rather than
arrays. The stack is used for activation records, not as a stack for evaluating
expressions. Hence values are almost never pushed or popped on the stack.

• The global data area-used to allocate statically declared objects, such as
global variables and constants. A large percentage of these objects are arrays
or other aggregate data structures.

• The heap-used to allocate dynamic objects that do not adhere to a stack
discipline. Objects in the heap are accessed with pointers and are typically not
scalars.

Register allocation is much more effective for stack-allocated objects than for
global variables, and register allocation is essentially impossible for heap­
allocated objects because they are accessed with pointers. Global variables and
some stack variables are impossible to allocate because they are aliased, which
means that there are multiple ways to refer to the address of a variable making it
illegal to put it into a register. (All heap variables are effectively aliased.) For
example, consider the following code sequence (where & returns the address of a
variable and * dereferences a pointer):

p = &a

a =
*P = .. .
. . . a .. .

gets address of a in p

assigns to a directly

uses p to assign to a

accesses a

The variable "a" could not be register allocated across the assignment to * p
without generating incorrect code. Aliasing causes a substantial problem because
it is often difficult or impossible to decide what objects a pointer may refer to. A
compiler must be conservative; many compilers will not allocate any local vari­
ables of a procedure in a register when there is a pointer that may refer to one of
the local variables.

After register allocation, memory traffic consists of five types of references:

1. Unallocated reference-a potentially allocatable memory reference that was
not assigned to a register.

2. ·Global scalar-a reference to a global scalar variable not allocated to a regis­
ter. These variables are usually sparsely accessed and thus rarely allocated.

3. Save/restore memory reference-a memory reference made to save or
restore a register (during a procedure call) that contains an allocated variable
and is not aliased.

INTEL Ex.1035.148

Instruction Set Design: Alternatives and Principles 117

4. A required stack reference-a reference to a stack variable that is required
due to aliasing possibilities. For example, if the address of the stack variable
were taken, then that variable cannot usually be register allocated. Also
included in this category are any data items that were caller saved due to
aliasing behavior-such as a potential reference by a called procedure.

5. A computed reference-any heap reference or any reference to a stack vari­
able via a pointer or array index.

Figure 3.28 shows how these classes of memory traffic contribute to total
memory traffic for GCC and TeX benchmark programs run with an optimizing
compiler on a load/store machine and varying the number of registers used. The

100%

90%

80%

70%

60%
Frequency

of the 50%
reference

40%

30%

20%

10%

0%

10097
94

2

3

4

5

92 90 89 Numbers are percentages
87 860504

83 82 81
80 79 79 78 77 77

76 76 75 74 74 73 73 73
l 72

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Register count

From top:
• 1. Unallocated
lili.I 2. Global scalars
D 3. Save/restore

• 4. Other stack
fllll 5. Computed

FIGURE 3.28 The percentage of memory references made to different types of
variables as the register count increases. This data is averaged between TeX and GCC,
which use only integer variables. The decreasing percentage represented by the top bar is
the set of references that are candidates for allocation but are not actually allocated with
the indicated number of registers. This data was collected for the DLX load/store machine
described in the next chapter. The register allocator has 27 integer registers; the first seven
integer registers capture about half of the references that can be allocated to registers.
While each of the other four components contributes something to the remaining memory
traffic, the dominant contribution is computed references to heap-based objects and array
elements, which cannot be register allocated. Some small percentage of the required stack
references may be contributed when the register allocator runs out of registers; however,
from other measurements on the register allocator we know that this contribution is very
small [Chow and Hennessy, 1990].

INTEL Ex.1035.149

118 3.7 The Role of High-Level Languages and Compilers

number of memory references to objects in categories 2 through 5 above is con­
stant because they can never be allocated to registers by this compiler. (The
save/restore references were measured with the full set of registers.) The number
of allocatable references that are unallocated drops as the register count
increases. References to objects that could be allocated but that are accessed
only once are allocated by the code generator using a set of temporary registers.
These references will be counted as required stack references; other allocation
strategies might cause them to be treated as save/restore traffic.

The data in Figure 3.28 shows only the integer registers. The percentage of
allocatable references with a given register count is computed by examining the
frequency of access to registers with a compiler that generally tries to. use as
small a number of registers as possible. The percentage of the references cap­
tured in a given number of registers depends intimately on the compiler and its
register-allocation strategy. This compiler cannot use more than the 27 integer
registers available for allocating variables; additionally, some registers have a
preferred use (such as those used for parameters). We cannot predict from this
data how well the compiler might be able to use 100 registers. Given a substan­
tially larger number of registers, the compiler could use the registers to reduce

100%
100

94
1

90%

80%

70% 2

60%
Frequency 3

of the 50% 4
reference

40% "·
5

30%

20%
6

10%

0%
0

9087

8380
Numbers are percentages

M

'

7674
71 69 67 6564

62605959

" l

56 56 55 54 54 54 54 54 53 53 53
""' .. ·~-~

2 4 6 8 10 12 14 16 18 20 22 24 26
Register count

From top:
• 1. Unallocated FP • 4. Global scalars
l!iil 2. Unallocated integer Iii 5. Other stack
D 3. Save/restore D 6. Computed

FIGURE 3.29 The percentage of references captured by the integer and floating­
point register files for Spice increases to almost 50% with a full register set. Each.
increment on the x axis adds one integer register and one single-precision (SP), floating­
point (FP) register. Thus, the point corresponding to a register count of 12 stands for 12
integer and 12 SP FP registers. Remember that most of the Spice FP data is double
precision, which requires two FP registers per datum. As in Figure 3.28, about seven
integer registers capture half of the integer references, but only about five registers are
needed to capture half the FP references.

INTEL Ex.1035.150

Instruction Set Design: Alternatives and Principles 119

the save/restore memory references and the references for global scalars. How­
ever, neither class of memory references can be completely eliminated. In the
past, compiler technology has made steady progress in its ability to use ever
larger register sets, and we can probably expect this to continue, although the
percentage of allocatable references may bound the value of larger register sets.

Figure 3 .29 shows the same type of data, but this time for Spice, which uses
both the integer and floating-point registers. The effect of register allocation is
very different for Spice compared to GCC and TeX. First, the percentage of
remaining memory traffic is smaller. This probably arises because the absence of
pointers in FORTRAN makes register allocation more effective for Spice than
for programs in C (i.e., GCC and TeX). Second, the amount of save/restore traf­
fic is much lower. In addition to these differences, we can see that it takes fewer
registers to capture the allocatable floating-point references. This is probably
because a far smaller percentage of the FP references are allocatable, since the
majority are to arrays.

Our second question concerns how an optimizer affects the mix of instruc­
tions executed. Figures 3.30 and 3.31 address this issue for the benchmarks used
here. The data was taken on a load/store machine using full global optimization
that includes all of the global and local optimizations listed in Figure 3.26 (page

Branches 12
TeX optimized Loads/stores 30

ALU operations 41

Branches 13
TeX unoptimized Loads/stores 45

ALU operations 50

Branches

Spice optimized Loads/stores 31
ALU operations 38

Branches

Spice unoptimized Loads/stores 52
ALU operations 59

Branches 26
GCC optimized Loads/stores 53

ALU operations 69

Branches 28
GCC unoptimized Loads/stores 70

ALU operations 81

0 10 20 30 40 50 60 70 80 90

Millions or tens of millions of
instructions executed

FIGURE 3.30 The effects of optimization in absolute instruction counts. The x axis is
the number of instructions executed in millions for GCC and TeX and in tens of millions for
Spice. The unoptimized programs execute 21 %, 58%, and 30% more instructions for GCC,
Spice, and TeX, respectively. This data was taken on a DECstation 3100 using -02 opti­
mization, as was the data in Figure 3.31. Optimizations that do not affect instruction count,
but may affect instruction cycle counts, are not measured here.

INTEL Ex.1035.151

120 3.7 The Role of High-Level Languages and Compilers

114). Differences between optimized and unoptimized code are shown in both
absolute and relative terms. The most obvious effect of optimization-besides
decreasing the total instruction count-is to increase the relative frequency of
branches by decreasing the number of memory references and ALU operations
more rapidly than the number of branches (which are decreased only slightly).
We show an example of how optimized and unoptimized code differ on a VAX
in the Fallacies and Pitfalls section.

Finally, with what frequency are various control structures used? These are
important numbers because branches are among the hardest instructions to make
go fast and are very difficult to reduce with the compiler. The data in Figures
3.30 and 3.31 give us a good idea of the branch frequency-from 6.5 to 18
instructions are executed between two branches or jumps (including the branch
or jump itself). Procedure calls occur about 12 to 13 times less frequently than
branches, or in the range of once every 87 to 200 instructions for our programs.
Spice has both the lowest percentage of branches and the fewest procedure calls
per instruction by nearly a factor of two.

Branches 14%
TeX optimized Loads/stores 36%

ALU operations 49%

Branches 12%
TeX unoptimized Loads/stores 42%

ALU operations 46%

Branches 6%
Spice optimized Loads/stores 42%

ALU operations 52%

Branches 5%
Spice unoptimized Loads/stores 45%

ALU operations 50%

Branches 18%
GCC optimized Loads/stores 36%

ALU operations 46%

Branches 16%
GCC unoptimized Loads/stores 39%

ALU operations 45%

0% 10% 20% 30% 40% 50% 60%

Frequency of operation type

FIGURE 3.31 The effects of optimization on the relative mix of instructions for the
data in Figure 3.30.

How the Architect Can Help the Compiler Writer

Today, the complexity of a compiler does not come from translating simple
statements like A = B + C. Most programs are "locally simple," and simple

INTEL Ex.1035.152

Instruction Set Design: Alternatives and Principles 121

translations work fine. Rather, complexity arises because programs are large and
globally complex in their interactions, and because the structure of.compilers
means that decisions must be made about what code sequence is best, one step at
a time.

Compiler writers often are working under their own corollary of a basic
principle in architecture: "Make the frequent cases fast and the rare case cor­
rect." That is, if we know which cases are frequent and which are rare, and if
generating code for both is straightforward, then the quality of the code for the
rare case may not be very important-but it must be correct!

Some instruction set properties help the compiler writer. These properties
should not be thought of as hard and fast rules, but rather as guidelines that will
make it easier to write a compiler that will generate efficient and correct code.

1. Regularity. Whenever it makes sense, the three primary components of an
instruction set-the operations, the data types, and the addressing modes­
should be orthogonal. Two aspects of an architecture are said to be orthogonal if
they are independent. For example, the operations and addressing modes are
orthogonal if for every operation to which a certain addressing mode can be
applied, all addressing modes are applicable. This helps simplify code genera­
tion and is particularly important when the decision about what code to generate
is split into two passes in the compiler. A good counterexample of this property
is restricting what registers can be used for a certain class of instructions. This
can result in the compiler finding itself with lots of available registers, but none
of the right kind!

2. Provide primitives, not solutions. Special features that "match" a language
construct are often unusable. Attempts to support high-level languages may
work only with one language, or do more or less than is required for a correct
and efficient implementation of the language. Some examples of how these
attempts have failed are given in Section 3.9.

3. Simplify tradeoffs among alternatives. One of the toughest jobs a compiler
writer has is figuring out what instruction sequence will be best for every seg­
ment of code that arises. In earlier days, instruction counts or total code size
might have been good metrics, but-as we saw in the last chapter-this is no
longer true. With caches and pipelining, the tradeoffs have become very
complex. Anything the designer can do to help the compiler writer understand
the costs of alternative code sequences would help improve the code. One of the
most difficult instances of complex tradeoffs occurs in a memory-memory
architecture in deciding how many times a variable should be referenced before
it is cheaper to load it into a register. This threshold is hard to compute and, in
fact, may vary among models of the same architecture.

4. Provide instructions that bind the quantities known at compile time as con­
stants. A compiler writer hates the thought of the machine interpreting at run
time a value that was known at compile time. Good counterexamples of this

INTEL Ex.1035.153

122 3.7 The Role of High-Level Languages and Compilers

principle include instructions that interpret values that were fixed at compile
time. For instance, the VAX procedure call instruction (CALLS) dynamically
interprets a mask saying what registers to save on a call, but the mask is fixed at
compile time, though in some cases it may not be known by the caller if separate
compilation is used.

3.8 I Putting It All Together: How Programs Use
Instruction Sets

What do typical programs do? This section will investigate and compare the
behavior of our benchmark programs running on a load/store architecture and on
a memory-memory architecture. The compiler technology for these two differ­
ent architectures differs and these differences affect the overall measurements.

Branches

Moves

ALU operations

TeX,m-m
TeX, l/s

Spice, m-m
Spice, l/s

GCC, m-m
GCC,l/s

TeX,m-m
TeX, l/s

Spice, m-m
Spice, l/s

GCC,m-m
GCC,l/s

TeX;m-m
TeX, l/s

Spice, m-m
Spice, l/s

GCC, m-m
GCC,l/s

0% 10% 20% 30% 40% 50% 60% 70%

Total dynamic count

FIGURE 3.32 The instruction distributions for our benchmarks differ in straight
forward ways when run on a load/store architecture {l/s) and on a memory-memory
architecture {m-m). On the load/store machine, moves are loads or stores. On the mem­
ory-memory machine, moves include transfers between two locations; either of the
operands may be a register or a memory location. However, the majority of the moves
involve one register and a memory location. The load/store machine exhibits a higher per­
centage of moves because it is a load/store machine-for data to be operated on it must be
moved into the registers. The lower relative frequency of branches is primarily a function of
the load/store machine's use of more instructions in the other two classes. This data was
measured with optimization on a VAXstation 3100 for the memory-memory machine and
on DLX, which we discuss in detail in the next chapter, for the load/store machine. The
input used is smaller than that in Chapter 2 to make it possible to collect the data on the
VAX.

INTEL Ex.1035.154

Instruction Set Design: Alternatives and Principles 123

We can examine the behavior of typical programs by looking at-the frequency
of three basic operations: memory references, ALU operatio~s, and control-flow
instructions (branches and jumps). Figure 3.32 does this for a load/store architec­
ture with one addressing mode (a hypothetical machine called DLX that we
define in the next chapter) and for a memory-memory architecture with many
addressing modes (the VAX). The load/store architecture has more registers, and
its compiler places more emphasis on reducing memory traffic. Considering the
enormous differences in the instruction sets of these two machines, the results
are rather similar.

The same machines and programs are used in Figure 3.33, but the data repre­
sent absolute counts of instructions executed, instruction words, and data refer­
ences. This chart shows a clear difference in instruction count: The load/store
machine requires more instructions. Recall that this difference does not imply
anything about the relative performance of machines based on these
architectures.

Data references

Instruction words

executed

Instruction count

TeX,m-m
TeX, l/s

Spice, m-m
Spice, l/s

GCC, m-m
GCC, l/s

TeX,m-m
TeX, l/s

Spice, m-m
Spice, 1/s

GCC,m-m
GCC, l/s

TeX,m-m
TeX, l/s

Spice, m-m
Spice, l/s

GCC, m-m
GCC, l/s

0.0

·8·.4······ • 18.9

5.0 10.0 15.0 20.0 25.0

Millions of instructions, words, or references

FIGURE 3.33 Absolute counts for dynamic events on a load/store and memory­
memory machine. The counts are (from bottom to top) dynamic instructions, instruction
words (instruction bytes divided by four), and data references (these may be byte, word, or
doubleword). Each reference is counted once. Differences in the size of the register set and
the compiler probably explain the large difference in the number of data references. In the
case of Spice, the large difference in the total number of registers available for allocation is
probably the basic reason for the large difference in total data accesses. This data was col­
lected for the same programs, inputs, and machines as the data in Figure 3.32.

This chart also shows the number of data references made by each machine.
From the data in Figure 3.32 and the instruction counts, we might guess that the
total number of memory accesses made by the memory-memory machine would

INTEL Ex.1035.155

124 3.8 Putting It All Together: How Programs Use Instruction Sets

be much lower than the number made on the load/store machine. But the data in
Figure 3.33 indicate that this hypothesis is false. The large difference in data ref­
erences balances the difference in instruction references between the architec­
tures, so that the load/store machine uses about the same memory bandwidth at
the architectural level. This difference in data references probably arises because
the load/store machine has many more registers, and its compiler does a better
job of register allocation. For allocating integer quantities, the load/store
machine has more than twice as many registers available. In total for integer and
floating-point variables, more than four times as many registers are available for
the compiler to use on the load/store architecture. This gap in register count
combined with compiler differences is the most likely basis for the difference in
data bandwidth.

We have seen how architectural measures can run counter to the designer's
intuition, and that some of these measures do not directly relate to performance.
In the next section we will see that architects' attempts to model machines
directly after high-level software features can go awry.

Fallacies and Pitfalls

Time and again architects have tripped on common, but erroneous, beliefs. In
this section we look at a few of them.

Pitfall: Designing a "high-level" instruction set feature specifically oriented
to supporting a high-level language structure.

Attempts to incorporate high-level language features in the instruction set have
led architects to provide powerful instructions with a wide range of flexibility.
But often these instructions do more work than is required in the frequent case or
don't match the requirements of the language exactly. Many such efforts have
been aimed at eliminating what in the 1970s was called the "seman_tic gap."
While the idea is to supplement the instruction set with additions that bring the
hardware up to the level of the language, the additions can generate what Wulf
[1981] has called a "semantic clash":

... by giving too much semantic content to the instruction, the machine designer
made it possible to use the instruction only in limited contexts. [p. 43]

More often the instructions are simply overkill-they are too general for the
most frequent case, resulting in unneeded work and a slower instruction. Again,
the VAX CALLS is a good example. CALLS uses a callee-save strategy (the
registers to be saved are specified by the callee) but the saving is done by the
call instruction in the caller. The CALLS instruction begins with the arguments
pushed on the stack, and then takes the following steps:

1. Align the stack if needed.

INTEL Ex.1035.156

Instruction Set Design: Alternatives and Principles 125

2. Push the argument count on the stack.

3. Save the registers indicated by the procedure call mask on the stack (as men­
tioned in Section 3.7). The mask is kept in the called procedure's code-this
permits callee-save to be done by the caller even with separate compilation.

4. Push the return address on the stack, then push the top and base of stack
pointers for the activation record.

5. Clear the condition codes, which sets the trap enables to a known state.

6. Push a word for status information and a zero word on the stack.

7. Update the two stack pointers.

8. Branch to the first instruction of the procedure.

The vast majority of calls in real programs do not require this amount of
overhead. Most procedures know their argument counts and a much faster link­
age convention can be established using registers to pass arguments rather than
the stack. Furthermore, the call instruction forces two registers to be used for
linkage, while many languages require only one linkage register. Many attempts
to support procedure call and activation stack management have failed to be
useful either because they do not match the language needs or because they are
too general, and hence too expensive to use.

The VAX designers provided a simpler instruction, JSB, that is much faster
since it only pushes the return PC on the stack and jumps to the procedure (see
Exercise 3.11). However, most VAX compilers use the more costly CALLS

instructions. The call instructions were included in the architecture to
standardize the procedure linkage convention. Other machines have standardized
their calling convention by agreement among compiler writers and without
requiring the overhead of a complex, very general procedure call instruction.

Fallacy: It costs nothing to provide a level of functionality that exceeds what
is required in the usual case.

A far more serious architectural pitfall than the previous one was encountered by
a few machines, such as the Intel 432, that provided only a high-overhead call
instruction that handled the most rare cases. The call instruction on the Intel 432
always creates a new, protected context, and thus is fairly costly (see Chapter 8
for a further discussion on memory protection). However, most calls are within
the same module and do not require a protected call. If a simpler call mechanism
were available and used when possible, Dhrystone would run 20% faster on the
432 (see Colwell, ·et al. [1985]). When architects choos.e to have only a general
and expensive instruction, compiler writers have no choice but to use the costly
instruction, and suffer the unneeded overhead. A discussion of the experience of
designers with providing fine-grain protection domains in hardware appears in
the historical section of Chapter 8; the discussion further illustrates this fallacy.

INTEL Ex.1035.157

126 3.9 Fallacies and Pitfalls

Pitfall: Using a nonoptimizing compiler to measure the instruction set usage
made by an optimizing compiler.

The instruction set usage of an optimizing and nonoptimizing compiler may be
quite different. We saw some examples in Figure 3.31 (page 120). Figure 3.34
shows the differences in the use of addressing modes on a VAX for Spice, when
it is compiled with the nonoptimizing UNIX F77 compiler and when it is
compiled with DEC's optimizing FORTRAN compiler.

Memory indirect

Scaled

Register deferred

Immediate

Displacement

Optimized
Nonoptimized

Optimized
Nonoptimized

Optimized
Non optimized

Optimized
Nonoptimized

55% Optimized

Nonoptimized~~~~~~~~~~~~~~~~~7'.:2°'.'.:Vo_
0% 10% 20% 30% 40% 50% 60% 70% 80%

Frequency of the addressing mode

FIGURE 3.34 The address mode usage by an optimizing and nonoptimizing
compiler can differ significantly. These measurements show the use of VAX addressing
modes by Spice when it is compiled using a nonoptimizing compiler (f77) and an optimizing

, compiler (fort). In particular, the use of scaled mode is much higher for the optimizing
compiler. The other VAX addressing modes account for the remaining 2-3% of the data
memory references.

3.1 0 I Concluding Remarks

The earliest architectures were limited in their instruction sets by the hardware
technology of that time. As soon as the hardware technology permitted, archi­
tects began looking for ways to support high-level languages. This search led to
three distinct periods of thought about how to support programs efficiently. In
the 1960s, stack architectures became popular. They were viewed as being a
good match for high-level languages-and they probably were, given the com­
piler technology of the day. In the 1970s, the main concern of architects was
how to reduce software costs. This concern was met primarily by replacing
software with hardware, or by providing high-level architectures that could
simplify the task of software designers. The result was both the high-level-lan­
guage computer architecture movement and powerful architectures like the
VAX, which has a large number of addressing modes, multiple data types, and a
highly orthogonal architecture. In.the 1980s, more sophisticated compiler tech-

INTEL Ex.1035.158

3.11

Instruction Set Design: Alternatives and Principles 127

nology and a renewed emphasis on machine performance has seen a return to
simpler architectures, based mainly on the load/store style of machine. Continu­
ing changes in how we program, the compiler technology we use, and the under­
lying hardware technology will no doubt make another direction more attractive
in the future.

Historical Perspective and References

One'·s eyebrows should rise whenever a future architecture is developed with a
stack- or register-oriented instruction set.

Meyers [1978, 20]

The earliest computers, including the UNIV AC I, the EDSAC, and the IAS
machines, were accumulator-based machines. The simplicity of this type of
machine made it the natural choice when hardware resources were very con­
strained. The first general-purpose register machine was the Pegasus, built by
Ferranti, Ltd. in 1956. The Pegasus had eight general-purpose registers, with RO
always being zero. Block transfers loaded the eight registers from the drum.

In 1963, Burroughs delivered the B5000. The B5000 was perhaps the first
machine to seriously consider software and hardware-software tradeoffs. Barton
and the designers at Burroughs made the B5000 a stack architecture (as
described in Barton [1961]). Designed to support high-level languages such as
ALGOL, this stack architecture used an operating system (MCP) written in a
high-level language. The B5000 was also the first machine from a US manufac­
turer to support virtual memory. The B6500, introduced in 1968 (and discussed
in Hauck and Dent [1968]), added hardware-managed activation records. In both
the B5000 and B6500, the top two elements of the stack were kept in the CPU
and the rest of the stack was kept in memory. The stack architecture yielded
good code density, but only provided two high-speed storage locations. The
authors of both the original IBM 360 paper [Amdahl et al. 1964] and the original
PDP-11 paper [Bell et al. 1970] argue against the stack organization. They cite
three major points in their arguments against stacks:

1. Performance is derived from fast registers, not the way they are used.

2. The stack organization is too limiting and requires many swap and copy
operations.

3. The stack has a bottom, and when placed in slower memory there is a perfor­
mance loss.

Stack-based machines fell out of favor in the late 1970s and essentially dis­
appeared in the 1980s.

The term "computer architecture" was coined by IBM in 1964 for use with
the IBM 360. Amdahl, Blaauw, and Brooks [1964] used the term to refer to the

INTEL Ex.1035.159

128 3.11 Historical Perspective and References

programmer-visible portion of the instruction set. They believed that a family of
machines of the same architecture should be able to run the same software.
Although this idea may seem obvious to us today, it was quite novel at that time.
IBM, even though it was the leading company in the industry, had five different
architectures before the 360. Thus, the notion of a company standardizing on a
single architecture was a radical one. The 360 designers hoped that six different
divisions of IBM could be brought together by defining a common architecture.
Their definition of architecture was

... the structure of a computer that a machine language programmer must
understand to write a correct (timing independent) program for that machine.

The term "machine language programmer" meant that compatibility would hold,
even in assembly language, while "timing independent" allowed different
implementations.

The IBM 360 was the first machine to sell in large quantities with both byte­
addressing using 8-bit bytes and general purpose registers. The 360 also had
register-memory and limited memory-memory instructions.

In 1964, Control Data delivered the first supercomputer, the CDC 6600. As
discussed in Thornton [1964], he, Cray, and the other 6600 designers were the
first to explore pipelining in depth. The 6600 was the first general-purpose,
load/store machine. In the 1960s, the designers of the 6600 realized the need to
simplify architecture for the sake of efficient pipelining. This interaction
between architectural simplicity and implementation was largely neglected dur­
ing the 1970s by microprocessor and minicomputer designers, but was brought
back in the 1980s.

In the late 1960s and early 1970s, people realized that software costs were
growing faster than hardware costs. McKeeman [1967] argued that compilers
and operating systems were getting too big and too complex and taking too long
to develop. Because of inferior compilers and the memory limitations of
machines, most systems programs at the time were still written in assembly
language. Many researchers proposed alleviating the software crisis by creating
more powerful, software-oriented architectures. Tanenbaum [1978] studied the
properties of high-level languages. Like other researchers, he found that most
programs are simple. He then argued that architectures should be designed with
this in mind and should optimize program size and ease of compilation. Tanen­
baum proposed a stack machine with frequency-encoded instruction formats to
accomplish these goals. However, as we have observed, program size does not
translate directly to cost/performance, and stack machines faded out shortly after
this work.

Strecker's article [1978] discusses how he and the other architects at DEC
responded to this by designing the VAX architecture. The VAX was designed to
simplify compilation of high-level languages. Compiler writers had complained
about the lack of complete orthogonality in the PDP-11. The VAX architecture
was designed to be highly orthogonal and to allow the mapping of a high-level-

INTEL Ex.1035.160

Instruction Set Design: Alternatives and Principles 129

language statement into a single VAX instruction. Additionally, the VAX
designers tried to optimize code size because compiled programs were often too
large for available memories. When it was introduced in 1978, the VAX was the
first machine with a true memory-memory architecture.

While the VAX was being designed, a more radical approach, called High­
Level Language Computer Architecture (HLLCA), was being advocated in the
research community. This movement aimed to eliminate the gap between high­
level languages and computer hardware-what Gagliardi [1973] called the
"semantic gap"-by bringing the hardware "up to" the level of the programming
language. Meyers [1982] provides a good summary of the arguments and a his-

. tory of high-level-language computer architecture projects.
Smith, Rice, and their colleagues [1971] discuss the SYMBOL Project they

started at Fairchild. SYMBOL became the largest and most famous of the
HLLCA attempts. Its goal was to build a high-level-language, timesharing
machine that would dramatically reduce programming time. The SYMBOL
machine interpreted programs, written in its own new programming language,
directly; the compiler and operating system were built into the hardware. The
programming language was very dynamic-there were no variable declarations
because the hardware interpreted every statement dynamically.

SYMBOL suffered from many problems, the most important of wQ.ich were
inflexibility, complexity, and performance. The SYMBOL hardware included
the programming language, the operating system, and even the text editor. Pro­
grammers had no choice in what programming language they used, so subse­
quent advances in operating systems and programming languages could not be
incorporated. The machine was also complicated to design and to debug.
Because hardware was used for everything, rare and complex cases needed to be
handled completely in hardware, as well as the simpler, more common cases.

Ditzel [1980] observed that SYMBOL had enormous performance problems.
While exotic cases ran relatively fast, simple and common cases often ran
slowly. Many memory references were needed to interpret a simple statement in
a program. While the goal of eliminating the semantic gap seemed like a worthy
one, any one of the three problems faced by SYMBOL would have been enough
to doom the approach.

HLLCA never had a significant commercial impact. The increase in memory
size on machines and the use of virtual memory eliminated the code-size prob­
lems arising from high-level languages and operating systems written in high­
level languages. The combination of simpler architectures together with software
offered greater performance and more flexibility at lower cost and lower
complexity.

Studies of instruction set usage began in the late 1950s. The Gibson mix,
described in the last chapter, was derived as a study of instruction usage on the
IBM 7090. There were several studies in the 1970s of instruction set usage.
Among the best known are Foster et al. [1971] and Lunde [1977]. Most of these
early studies used small programs because the techniques used to collect data
were expensive. Starting in the late 1970s, the area of instruction set measure-

INTEL Ex.1035.161

130 3.11 Historical Perspective and References

ment and analysis became very active. Because we use data from most of these
papers in the next chapter, we will review the contributions there.

Other studies in the 1970s examined the usage of programming-language
features. Though many of these studied only static properties, papers by Alexan­
der and Wortman [1975] and Elshoff [1976] studied the dynamic properties of
HLL programs. Interest in compiler utilization of instruction sets and interaction
between compilers and architecture grew in the 1980s. A conference focusing o.n
the interaction between software systems and hardware systems, called
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), was created. Many papers on instruction set measurement and
interaction between compilers and architectures have been published in this ·
biannual conference.

In the early 1980s, the direction of computer architecture began to swing
away from providing high-level hardware support for languages. Ditzel and Pat­
terson [1980] analyzed the difficulties encountered by the high-level-language
architectures and argued that the answer lay in simpler architectures. In another
paper [Patterson and Ditzel 1980], these authors first discussed the idea of
reduced instruction set computers (RISC) and presented the argument for sim­
pler architectures. ':fheir proposal was rebutted by Clark and Strecker [1980]. We
will talk more about the effect of these ideas in the next chapter.

About the same time, other researchers published papers that argued for a
closer coupling of architectures and compilers, rather than attempts to supple­
ment compilers. These included Wulf [1981], and Hennessy and his colleagues
[1982].

The early compiler technology developed for FORTRAN was quite good.
Many of the optimization techniques in use in today's compilers were developed
and implemented by the late 1960s or early 1970s (see Cocke and Schwartz
[1970]). Because FORTRAN had to compete with assembly language, there was
tremendous pressure for efficiency in FORTRAN compilers. However, once the
benefits of HLL programming were obvious, focus shifted away from optimiz­
ing technology. Much of the optimization work in the 1970s was theoretically
oriented rather than experimental. In the early 1980s, there was a new focus on
developing optimizing compilers. As this technology stabilized, several
researchers wrote papers examining the impact of various compiler optimiza­
tions on program execution time. Cocke and Markstein [1980] describe the
measurements using the IBM PL.8 compiler; Chow [1983] describes the gain
obtained with the Stanford UCODE compiler for a variety of machines. As we
saw in this chapter, register allocation is the backbone of modern optimizing
compilers. The formulation of register allocation as a graph-coloring problem
was originally done by Chaitin and his colleagues [1982]. Chow and Hennessy
[1984, 1990] extended the algorithm to use priorities in choosing the quantities
to allocate. The progress in optimization and register allocation has led to more
widespread use of optimizing compilers, and the impact of compiler technology
on architectural tradeoffs has increased considerably in the past decade.

INTEL Ex.1035.162

Instruction Set Design: Alternatives and Principles 131

References

ALEXANDER, W. G. AND D. B.WORTMAN [1975). "Static and dynamic characteristics of XPL pro­
grams," Computer 8:11(November)41-46.

AMDAHL, G. M., G. A. BLAAUW, AND F. P. BROOKS, JR. [1964]. "Architecture of the IBM System
360," IBM J. Research and Development 8:2 (April) 87-101.

BARTON, R. S. [1961]. "A new approach to the functional design of a computer," Proc. Western
Joint Computer Conf, 393-396.

BELL, G., R. CADY, H. MCFARLAND, B. DELAGI, J. O'LAUGHLIN, R. NOONAN, AND W. WULF
[1970]. "A new architecture for mini-computers: The DEC PDP-11," Proc. AF/PS SJCC, 657-
675.

CHAITIN, G. J., M.A. AUSLANDER, A. K. CHANDRA, J. COCKE, M. E. HOPKINS, AND P. W.
MARKSTEIN [1982). "Register allocation via coloring," Computer Languages 6, 47-57.

CHOW, F. C. [1983]. A Portable Machine-Independent Global Optimizer-Design and Measure­
ments, Ph.D. Thesis, Stanford Univ. (December).

CHOW, F.C. AND J. L. HENNESSY [1984). "Register allocation by priority-based coloring," Proc.
SIGPLAN '84 Compiler Construction (ACM S/GPLAN Notices 19:6 June) 222-232.

CHOW, F. C. AND J. L. HENNESSY [1990]. "The Priority-Based Coloring Approach to Register
Allocation," ACM Trans. on Programming Languages and Systems 12:4 (October).

CLARK, D. AND W. D. STRECKER [1980]. "Comments on 'the case for the reduced instruction set
computer', "Computer Architecture News 8:6 (October) 34-38.

COCKE, J., AND J. MARKSTEIN [1980]. "Measurement of code improvement algorithms," Informa­
tion Processing 80, 221-228.

COCKE, J. AND J. T. SCHWARTZ [1970]. Programming Languages and Their Compilers, Courant
Institute, New York Univ., New York City.

COHEN, D. [1981]. "On holy wars and a plea for peace," Computer 14: 10 (October) 48-54.

COLWELL, R. P, C. Y. HITCHCOCK, III, E. D. JENSEN, H. M. B. SPRUNT, AND C. P. KOLLAR,
[1985]. "Computers, complexity, and controversy," Computer 18:9 (September) 8-19.

DITZEL, D.R. [1981]. "Reflections on the high-level language Symbol computer system," Computer
14:7 (July) 55-66.

DITZEL, D.R. AND D. A. PATTERSON [1980]. "Retrospective on high-level language computer
architecture," in Proc. Seventh Annual Symposium on Computer Architecture, La Baule, France
(June) 97-104.

ELSHOFF, J. L. [1976]. "An analysis of some commercial PL/I programs," IEEE Trans. on Software
Engineering SE-2 2 (June) 113-120.

FOSTER, C. C., R.H. GONTER, AND E. M. RISEMAN [1971]. "Measures of opcode utilization,"
IEEE Trans. on Computers 13:5 (May) 582-584.

GAGLIARDI, U. 0. [1973]. "Report of workshop 4-software-related advances in computer hard­
ware," Proc. Symposium on the High Cost of Software, Menlo Park, Calif., 99-120.

HAUCK, E. A., AND B. A. DENT [1968]. "Burroughs' B6500/B7500 stack mechanism," Proc.
AF/PS SJCC, 245-251.

HENNESSY, J. L., N. JOUPPI, F. BASKETT, T. R. GROSS, AND J. GILL [1982]. "Hardware/software
tradeoffs for increased performance," Proc. Symposium on Architectural Support for
Programming Languages and Operating Systems (March), 2-11.

LUNDE, A. [1977]. "Empirical evaluation of some features of instruction set processor architecture,"
Comm. ACM 20:3 (March) 143-152.

INTEL Ex.1035.163

132 3.11 Historical Perspective and References

MCKEEMAN, W. M. [1967]. "Language directed computer design," Proc.1967 Fall Joint Computer
Conf, Washington, D.C., 413-417.

MEYERS, G. J. [1978]. "The evaluation of expressions in a storage-to-storage architecture," Com­
puter Architecture News 7:3 (October), 20-23.

MEYERS, G. J. [1982]. Advances in Computer Architecture, 2nd ed., Wiley, N.Y.

PAITERSON, D. A. AND D.R. DITZEL [1980]. "The case for the reduced instruction set computer,"
Computer Architecture News 8:6 (October) 25-33.

SMITH, W. R., R. R. RICE, G, D. CHESLEY, T. A. LALIOTIS, S. F. LUNDSTROM, M. A.
CHALHOUN, L. D. GEROULD, AND T. C. COOK [1971]. "SYMBOL: A large experimental system
exploring major hardware replacement of software," Proc. AF JPS Spring Joint Computer Conf,
601-616.

STRECKER, W. D. [1978]. "VAX-11/780: A virtual address extension of the PDP-11 family," Proc.
AF/PS National Computer Conf 47, 967-980.

TANENBAUM, A. S. [1978]. "Implications of structured programming for machine architecture,"
Comm. ACM 21:3 (March) 237-246.

THORNTON, J. E. [1964]. "Parallel operation in Control Data 6600," Proc. AF/PS Fall Joint Com­
puter Conj. 26, part 2, 33-40.

WILKES, M. V. [1982]. "Hardware support for memory protection: Capability implementations,"
Proc. Conj. on Architectural Support for Programming Languages and Operating Systems

(March) 107-116.

WILKES, M. V. AND W. RENWICK [1949]. Report of a Conf on High Speed Automatic Calculating
Machines, Cambridge, England.

WULF, W. [1981]. "Compilers and computer architecture," Computer 14:7 (July) 41-47.

EXERCISES

3.1 [15/10] <3.7> Use the data in Figures 3.30 and 3.31 (pages 119-120) for GCC for this
problem. Assume the following CPis:

ALU operation

Load/store

Branch

1

3

5

a. [15] Find the CPI for the optimized and unoptimized versions of GCC.

b. [10] How much faster is the optimized program than the unoptimized program?

3.2 [15/15/10] <3.8> Use the data in Figure 3.33 (page 123), in this problem. Assume that
each instruction word and each data reference require one memory access.

a. [15] Determine t~e percentage of memory accesses that are for instructions for each
of the three benchmarks on the load/store machine.

b. [15] Determine the percentage of memory accesses that are for instructions for each
of the three benchmarks on the memory-memory machine.

c. [10] What is the ratio of total memory accesses on the load/store machine versus the
memory-memory machine for each benchmark?

INTEL Ex.1035.164

Instruction Set Design: Alternatives and Principles 133

3.3 [20115110] <3.3, 3.8> We are designing instruction set formats for a load/store archi­
tecture and are trying to decide whether it is worthwhile to have multiple offset lengths
for branches and memory references. We will use average measurements for the three
benchmarks to make this decision. We have decided that the offsets will be the same for
these two classes of instructions. The length of an instruction would be equal to 16 bits+
offset length in bits. ALU instructions will be 16 bits. Figure 3.35 contains the data from
Figures 3.13 (page 100) and 3.19 (page 106) averaged and put in cumulative form.
Assume an additional bit is needed for the sign on the offset.

For instruction set frequencies, use the data from the average of the three benchmarks for
the load/store machine in Figure 3.32 (page 122).

Offset bits Cumulative data Cumulative branches
references

0 " 16% 0% :/

1 16% 0%

2 / 21% 10%

3 29% 27%

4 ! 32% 47%

5 /
44% 66%

6 55% 79%

7 / 62% 89% /

8 66% 94%

9 / 68% 97%

10 73% 99%

11 78% 100%

12 80% 100%

13 86% 100%

14 87% 100%

15 100% 100%

((,

FIGURE 3.35 The second and third columns contain the cumul~tive percentage of
the data references and branches, respectively, that can be accommodated with the
corresponding number of bits of magnitude in the displacement (i.e., the sign-bit is
not included). This data is derived by averaging and accumulating the data in Figures 3.13
and 3.19.

a. [20] Suppose offsets were permitted to be 0, 8, or 16 bits in length including the sign­
bit. Based on the dynamic statistics in Figure 3.32, what is the average length of an
executed instruction?

b. [15] Suppose we wanted a fixed-length instruction and we chose a 24-bit instruction
length (for everything, including ALU instructions). For every offset of longer than 8
bits, an additional instruction is required. Determine the number of instruction bytes
fetched in this machine with fixed instruction size versus those fetched with a
variable-sized instruction.

INTEL Ex.1035.165

134 Exercises

c. [10] What if the offset length were 16 and we never required an additional.
instruction? How would instruction bytes fetched compare to the choice of only an 8-
bit offset? Assume ALU instructions will be 16 bits.

3.4 [15/10] <3.2> Several researchers have suggested that adding a register-memory
addressing mode to a load/store machine might be useful. The idea is to replace
sequences of

by

LOAD Rl, 0 (Rb)
ADD R2,R2,Rl

ADD R2,0(Rb)

Assume the new instruction will cause the clock cycle to increase by 10%. Use the
instruction frequencies for the GCC benchmark on the load/store machine from Figure
3.32 (page 122) and assume that two-thirds of the moves are loads and the rest are stores.
The new instruction affects only the clock speed and not the CPL

a. [15] What percentage of the loads must be eliminated for the machine with the new
instruction to have at least the same performance?

b. [12] Show a situation in a multiple instruction sequence where a load of Rl followed
immediately by a use of Rl (with some type of opcode) could not be replaced by a
single instruction of the form proposed, assuming that the same opcode exists.

3.5 [15/20] <3.1-3.3> For the next two parts of this question, your task is to compare the
memory efficiency of four different styles of instruction sets for two code sequences. The
architecture styles are:

Accumulator

Memory-Memory-All three operands of each instruction are in memory.

Stack-All operations occur on top of the stack. Only push and pop access memory,
and all other instructions remove their operands from stack and replace them with
the result. The implementation uses a stack for the top two entries; accesses that use
other stack positions are memory references.

Load/store-All operations occur in registers, and register-to-register instructions
have three operands per instruction. There are 16 general-purpose registers, and
register specifiers are 4 bits long.

To measure memory efficiency, make the following assumptions about all four instruc­
tion sets:

• The opcode is always 1 byte (8 bits).

• All memory addresses are 2 bytes (16 bits).

• All data operands are 4 bytes (32 bits).

• All instructions are an integral number of bytes in length.

INTEL Ex.1035.166

Instruction Set Design: Alternatives and Principles 135

There are no other optimizations to reduce memory traffic, and the variables A, B, C, and
D are initially in memory.

Invent your own assembly language mnemonics and write the best equivalent assembly
language code for the high-level-language fragments given.

a. [15) Write the four code sequences for

A = B + C;

For each code sequence, calculate the instruction bytes fetched and the memory-data
bytes transferred. Which architecture is most efficient as measured by code size?
Which architecture is most efficient as measured by total memory bandwidth
required (code+ data)?

b. [20) Write the four code sequences for

A B + C;

B A + C;

D A - B;

For each code sequence, calculate the instruction bytes fetched and the memory-data
bytes transferred (read or written). Which architecture is most efficient as measured
by code size? Which architecture is most efficient as measured by total memory
bandwidth required (code+ data)? If the answers are different from part a, why are
they different?

3.6 [20] <3.4> Supporting byte and halfword access requires an alignment network, as in
Figure 3.10 (page 97). Some machines have only word accesses, so that a load of a byte
or halfword takes two instructions (a load and an extract), and a partial word store takes
three instructions (load, insert, store). Use the data for the TeX benchmark from Figure
3.23 (page 110) to determine what percentage of the accesses are to byte or halfwords,
and use the data from TeX on the load/store machine from Figure 3.32 (page 122) to find
the frequency of data transfers. Assume that loads are twice as frequent as stores
independent of the data size. If all instructions on the machine take one cycle, what
increase in the clock rate must we obtain to make eliminating partial word accesses a
good tradeoff?

3.7 [20) <3.3> We have a proposal for three different machines, Mo, Mg, and Mi6, that

differ in their register count. All three machines have three operand instructions, and any
operand can be either a memory reference or a register. The cost of a memory operand on
these machines is six cycles and the cost of a register operand is one cycle. Each of the
three operands has equal probability of being in a register.

The differences among the machines are described in the following table. The execution
cycles per operation are in addition to the cost of operand access. The probability of an
operand being in a register applies to each operand individually and is based on Figures
3.28 (page 117) and 3.29 (page 118).

INTEL Ex.1035.167

136 Exercises

Machine Register count Execution cycles per Probability of an operand
operation ignoring being in a register as
operand accesses opposed to memory

Mo 0 4cycles 0.0

Mg 8 5 cycles 0.5

Mi6 16 6 cycles 0.8

What is the cycle count for an average instruction on each machine?

3.8 [15/10/10] <3.3, 3.7> One place where an architect can drive a compiler writer crazy
is in making it difficult to tell if a compiler "optimization" may slow down a program on
the machine.

Consider an access to A[i], where A is an array of integers and i is an integer offset in a
register. We wish to generate code to use the value of A[i] as a source operand
throughout this problem. Assume that all instructions take one clock cycle plus the cost of
the memory addressing mode:

• Indexed addressing costs four clock cycles for the memory reference (for a total of
five clock cycles for the instruction).

• Register indirect addressing costs three clock cycles for the memory reference (for a
total of four clock cycles).

• Register-register instructions have no memory access cost, requiring only one cycle.

Assume that the value A[i] must be stored in memory at the end of the code sequence and
that the base address of A is already in Rl and the value of i is in R2.

a. [15] Assume that the array element A[i] cannot be kept in a register, but the address
of A[i] may be kept in a register once computed. Then, there are two different
methods to access A[i]:

(1) compute the address of A[i] into a register and use register indirect, and

(2) use the indexed addressing mode.

Write the code sequence for both methods. How many references to A[i] must occur
for method 1 to be better?

b. [10] Suppose you choose method 1, but you ran out of registers and had to save the
address of A[i] on the stack and restore it. How many references must occur now for
method 1 to be better?

c. [10] Suppose that the value A[i] can be kept in a register (versus just the address of
A[i]). How many references must occur to make this the best approach versus using
method 2?

3.9 [Discussion] <3.2-3.8> What are the economic arguments (i.e., more machines sold)
for and against changing instruction set architecture?

INTEL Ex.1035.168

Instruction Set Design: Alternatives and Principles 137

3.10 [25] <3.1-3.3> Find an instruction set manual for some older machine (libraries and
private bookshelves are good places to look). Summarize the instruction set with the dis­
criminating characteristics used in Figures 3.1 and 3.5 (pages 90 and 93). Does the
machine fit nicely into one of the categories shown in Figures 3.4 and 3.6 (pages 92 and
94)? Write the code sequence for this machine for the statements in both parts of
Exercise 3.5.

3.11 [30] <3.7, 3.9> Find a machine that has a powerful instruction set feature, such as
the CALLS instruction on the VAX. Replace the powerful instruction with a simpler
sequence that accomplishes what is needed. Measure the resultant running time. How do
the two compare? Why might they be different? In the early 1980s, engineers at DEC did
a quick experiment to evaluate the impact of replacing CALLS. They found a 30%
improvement in run time on a very call-intensive program when the CALLS was simply
replaced (parameters remained on the stack). How do your results compare?

INTEL Ex.1035.169

The emphasis on per/ ormance rather than aesthetics is
deliberate. Without an interest in performance the study of
architecture is a sterile exercise, since all computable
problems can be solved using trivial architectures, given
enough time. The challenge is to design computers that make
the best use of available technology; in doing so we may be
assured that every increase in processing speed can be used
to advantage in current problems or will make previously
impractical problems tractable.

Leonard J. Shustek, Analysis and Performance of
Computer Instruction Sets (1978)

4.1 Instruction Set Measurements: What and Why

4.2 The VAX Architecture

4.3 The 360/370 Architecture

4.4 The 8086 Architecture

4.5 The DLX Architecture

4.6 Putting It All Together: Measurements
of Instruction Set Usage

4. 7 Fallacies and Pitfalls

4.8 Concluding Remarks

4.9 Historical Perspective and References

Exercises

139

142

148

153

160

167

183

185

186

191

INTEL Ex.1035.170

4

4.1

Instruction Set
Examples and
Measurements
of Use

Instruction Set Measurements:
What and Why

In this chapter we will be examining some specific architectures and then
detailed measurements 9f the architectures. Before doing so, however, let's
discuss what we might want to measure and why, as well as how to measure it.

To understand performance, we are usually most interested in dynamic
measurements-measurements that are made by counting the number of
occurrences of an event during execution. Some measurements, such as code
size, are inherently static measurements, which are made on a program
independent of execution. Static and dynamic measurements may differ
dramatically, as shown in Figure 4.1-using only the static data for this program
would be significantly misleading. Throughout this text the data given is
dynamic, unless otherwise specified. Exceptions are when only static
measurements make sense (as with code size-the most important use of static
measurement) and when it is interesting to compare static and dynamic
measurements. As we will see in Fallacies and Pitfalls and the Exercises, the
dynamic frequency of occurrence of two instructions and the time spent on those
two instructions can sometimes be very different.

Our primary focus in this chapter will be on introducing the architectures and
measuring instruction usag'e for each architecture. Although this suggests a
concentration on opcodes, we will also examine addressing mode and instruction
format usage.

INTEL Ex.1035.171

140 4.1 Instruction Set Measurements: What and Why

Static
Floating-point

operations
Dynamic

Branches
Static

Dynamic

ALU operations
Static

Dynamic 61%

Memory reference Static

instructions Dynamic

0% 10% 20% 30% 40% 50% 60% 70%

FIGURE 4.1 Data from a measurement of the IBM 360 FORTRAN benchmark, which we
describe in detail in Section 4.6. The top 20 dynamically executed instructions have been
broken into four wide classes, showing how different the static and dynamic occurrences
can be. In the case of the dynamic measurements, these 20 instructions account for nearly
100% of the instruction executions, but only 75% of the static instruction occurrences.

The instruction set measurements in Section 4.6 can be used in two ways. At
a high level, the measurements allow one to form broad approximations of the
instruction usage patterns within each architectural approach. For example, we
will see that "PC-changing" instructions for a powerful instruction set like the
VAX average nearly 25% of all instruction executions. This tells us that
techniques that try to optimize the fetching of the next sequential instruction
(instruction prefetch buffers-discussed in Section 8.7 of Chapter 8) will be
significantly limited because every fourth instruction is a branch. The data on
the IBM 360 will show that the use of decimal and string instructions is almost
nonexistent in programs written in languages other than COBOL. This leads us
to conclude that support for such operations need not be included in a machine
targeted at the scientific market. Measurements of the frequency of memory
operands-about 40% of the operands on the 8086-<:an be used in the design of
both the pipeline and the cache. This type of high-level, general measurement is
background data that a computer architect will use on an almost daily basis.

The other purpose of such measurements is to serve as the know ledge data
base that an architect would use in making detailed design tradeoffs. Such
tradeoffs would be required in choosing what to include in an instruction set and
what to omit, or in implementing a defined instruction set and choosing what
cases to try to make fast. For example, the low frequency of use for the memory­
indirect addressing modes on the VAX might encourage the architect to omit
this addressing mode from a new architecture. If he was implementing a VAX,
he would know that the performance penalty for disfavoring this complex
addressing mode would be small. Another example that would use detailed

INTEL Ex.1035.172

Instruction Set Examples and Measurements of Use 141

information might be the evaluation of branching based on condition codes. By
looking at the frequency of conditional branches and instructions whose only
function is to set the condition code, we can evaluate the frequency with which
the condition code is set implicitly (about 35% of the occurrences on the VAX).
We could use this value to decide what kind of conditional branches to design in
a new architecture, or we could use the data to optimize the implementation of
conditional branches in a.VAX. In this chapter and subsequent ones we will see
many examples of how this data is applied to specific design problems.

We have chosen four machines to examine: the DEC VAX, the IBM 360, the
Intel 8086, and a generic load/store machine called DLX. These architectures
play a dominant role in the computer marketplace, and each has a set of unique
and interesting characteristics. The Intel 8086 is the most popular general­
purpose computer in the world; tens of millions of machines containing this
microprocessor have been sold. The IBM 360 and DEC VAX represent
architectures that have existed for long periods of time (25+ and 10+ years,
respectively) and have each sold hundreds of thousands of units. DLX is
representative of a new breed of machines that has become very popular since
the late 1980s. These machines are also very different in architectural style, as
we will see.

To try to simplify the reader's task, a common format is used for the syntax
of instructions. This format puts the destination of a multiple-operand instruction
first, followed by the first and second source operands. So, an instruction that
subtracts R3 from R2 and puts the result in Rl is written as:

SUB Rl,R2,R3

This format follows the convention used on the Intel 8086, and is close to the
convention on the 360. The only significant difference on the 360 is for store
instructions, which place the source register first. While the VAX syntax always
puts the source operands first and the destination last, we will show VAX code
in our common format. Of course, this ordering is purely a syntactic convention
and the architecture defines the encoding of operands in the binary instruction
format.

The next four sections are summaries of the four architectures. Although
these summaries are concise, the important attributes and most heavily used
features are all discussed. Tables containing all the operations in the instruction
sets are contained in Appendix B. To describe these architectures accurately, we
need to introduce a few additional extensions to our C description language to
explain the functions of the instructions. The additions are as follows:

• A subscript is appended to the symbol f- whenever the length of the datum
being assigned might not be clear. Thus, f- n means transfer an n-bit
quantity.

• A subscript is used to indicate selection of a bit from a field. Bits are labeled
from the most significant bit starting at 0. The subscript may be a single digit

INTEL Ex.1035.173

142 4.1 Instruction Set Measurements: What and Why

(e.g., R4o yields the sign bit of R4) or a subrange (e.g., R324 .. 31 yields the
least significant byte of R3).

• A superscript is used to replicate a field (e.g., 024 yields a field of zeros of
length 24 bits).

• The variable M is used as an array that stands for main memory. The array is
indexed by a byte address and may transfer any number of bytes.

• The symbol ## is used to concatenate two fields and may appear on either
side of a data transfer.

A summary of the entire description language appears on the page preceding the
back inside cover. As an example, assuming that RB and Rl O are 32-bit
registers:

R1016 .. 31 f--16 (M[RB]o) 8 ## M[RB]

means that the byte at the memory location addressed by the contents of RB is
sign-extended to form a 16-bit quantity that is stored into the lower half of Rl 0.
(The upper half of Rl 0 is unchanged.)

Following the instruction set architecture summaries in the next four sections,
we examine and contrast dynamic use measurements of the four architectures.

4.2 I The VAX Architecture

The DEC VAX was introduced with its first model, the V AX-11/780, in 1977.
The VAX was designed to be a 32-bit extension of the PDP-11 architecture.
Among the goals of the VAX, two stand out as both important and having had a
substantial impact on the VAX architecture. -

First, the designers wanted to make the existing PDP-11 customer base feel
comfortable with the VAX architecture and view it as an extension of the PDP-
11. This motivated the name V AX-11/780, the use of a very similar assembly
language syntax, inclusion of the PDP-11 data types, and emulation support for
the PDP-11. Second, the designers wanted to ease the task of writing compilers
and operating systems. This translated to a set of goals that included defining
interfaces between languages, the hardware, and OS; and supporting a highly
orthogonal architecture.

In terms of addressing modes and operations supported in instructions, the
other architectures discussed in this chapter are largely subsets of the VAX. For
this reason our discussion begins with the VAX, which will serve as a basis for
comparison. The reader should be aware that there are entire books devoted to
the VAX architecture as well as a number of papers reporting instruction set
measurements. Our summary of the VAX instruction set-like the other

INTEL Ex.1035.174

Instruction Set Examples and Measurements of Use 143

· instruction set summaries in this chapter-focuses on the general principles of
the architecture and on the portions of the architecture most relevant to
understanding the measurements examined here. A list of the full VAX
instruction set is included in Appendix B.

The VAX is a general-purpose register machine with a large orthogonal
instruction set. Figure 4.2 shows the data types supported. The VAX uses the
name "word" to refer to 16-bit quantities, while in this text we use the
convention that a word is 32 bits. Be careful when reading the VAX instruction
mnemonics, as they often refer to the names of the VAX data types. Figure 4.2
shows the conversion between the data type names used in this text and the
VAX names. In addition to the data types in Figure 4.2, the VAX provides
support for fixed- and variable-length bit strings, up to 32 bits in length.

The VAX provides 16 general-purpose registers, but four registers are
effectively claimed by the instruction set architecture. For example, R14 is the
stack pointer and R15 is the PC (program counter). Hence, R15 cannot be used

Bits Data type Our name DEC's name

8 Integer Byte Byte

16 Integer Halfword Word

32 Integer Word Longword

32 Floating point Single precision F _floating

64 Integer Doubleword Quad word

64 Floating point Double D_floating or G_floating
precision

128 Integer Quadword Octa word

128 Floating point Huge H_floating

8n Character string Character Character

4n Binary-coded Packed Packed
decimal

8n Numeric string Unpacked Numeric strings: Trailing and
leading separate

FIGURE 4.2 VAX data types, their lengths, and names. The first letter of the DEC type
(B, W, L, F, Q, D, G, 0, H, C, P, T, S) is often used to complete an opcode name. As
examples, the move opcodes include MOVB, MOVW, MOVL, MOVF, MOVQ, MOVD, MOVG, MOVO,

MOVH, MOVC3, MOVP. Each move instruction transfers an operand of the data type indicated
by the letter following MOV. (There is no difference between moves of character and
numeric strings, so only move character operations are needed.) The length fields that
appear as Xn indicate that the length may be any multiple of X in bits. The packed data
type is special in that the length for operations on this type is always given in digits, each of
which is four bits. The packed objects are still allocated and addressed in units of bytes.
For any string data type the starting address is the low-order address of the string.

INTEL Ex.1035.175

144 4.2 The VAX Architecture

as a general-purpose register, and using R14 is very difficult because it interferes
with instructions that manipulate the stack frame. Condition codes are used for
branching and are set by all arithmetic and logical operations and by the move
instruction. The move instruction transfers data between any two addressable
locations and subsumes load, store, register-register moves, and memory­
memory moves as special cases.

VAX Addressing Modes

The addressing modes include most of those we discussed in Chapter 3: literal,
register (operand is in a register), register deferred (register indirect), autodecre­
ment, autoincrement, autoincrement deferred, byte/word/long displacement,
byte/word/long displacement deferred, and scaled (called "indexed" in the VAX
architecture). Scaled addressing mode may be applied to any general addressing
mode except register or literal. Register is an addressing mode no different from
any other in the VAX. Thus, a 3-operand VAX instruction may include from
zero to three operand memory references, each of which may be any of the
memory addressing modes. Since the memory indirect modes require an
additional memory access, up to 6 memory accesses may be required for a 3-
operand instruction. When the addressing modes are used with R15 (the PC),
only a few are defined, and their meaning is special. The defined addressing
modes with R15 are as follows:

• Immediate-an immediate value is in the instruction stream; this mode is
encoded as autoincrement on PC.

• Absolute-a 32-bit absolute address is in the instruction stream; this mode is
encoded as autoincrement deferred with PC as the register.

• Byte/word/long displacement-the same as the general mode, but the base is
the PC, giving PC-relative addressing.

• Byte/word/ long displacement deferred-the same as the general mode, but
the base is the PC, giving addressing that is indirect· through a memory
location that is PC-relative.

A VAX instruction consists of an opcode followed by zero or more operand
specifiers. The opcode is almost always a single byte that specifies the operation,
the data type, and the operand count. Almost all operations are fully orthogonal
with respect to addressing modes-any combination of addressing modes works
with nearly every opcode, and many operations are supported for all possible
data types.

Operand specifiers may vary in length from one byte to many, depending on
the information to be conveyed. The first byte of each operand specifier consists
of two 4-bit fields: the type of address specifier and a register that is part of the
addressing mode. If the operand specifier requires additional bytes to specify a

INTEL Ex.1035.176

Example

Answer

lnstnJction Set Examples and Measurements of Use 145

displacement, additional registers, or an immediate value, it is extended in 1-
byte increments. The name, assembler syntax, and number of bytes for each
operand specifier are shown in Figure 4.3. The total instruction length and
format are easy to state: Simply add up the sizes of the operand specifiers and
include one byte (or rarely two) for the opcode.

How long is the following instruction?

ADDL3 Rl,737(R2),#456

The opcode length is 1 byte, as is the first operand specifier (Rl). The second
operand specifier has two parts: the first part is a byte that specifies the
addressing mode and base register; the second part is the 2-byte long
displacement. The third operand specifier also has two parts: the first byte
specifies immediate mode, and the second part contains the immediate. Because
the data type is long (ADDL3), the immediate value takes 4 bytes.

Thus, the total length of the instruction is 1 + 1 + (1+2) + (1 +4) = 10 bytes.

Addressing mode Syntax Length in bytes

Literal #value 1 (6-bit signed value)

Immediate #value 1 + length of the immediate

Register Rn 1

Register deferred (Rn) 1

Byte/word/long Displacement (Rn) 1 + length of the displacement
displacement

Byte/word/long @displacement (Rn) 1 + length of the displacement
displacement deferred

Scaled (Indexed) Base mode [Rx] 1 + length of base addressing
mode

Autoincrement (Rn)+ 1

Autodecrement -(Rn) 1

Autoincrement deferred @(Rn)+ 1

FIGURE 4.3 Length of the VAX operand specifiers. The length of each addressing
mode is 1 byte plus the length of any displacement or immediate field that is in the mode.
Literal mode uses a special 2-bit tag and the remaining 6 bits encode the constant value.
The data we examined in Chapter 3 on constants showed the heavy use of small
constants; the same observation motivated this optimization. The length of an immediate is
dictated by the data type indicated in the opcode, not the value of the immediate.

INTEL Ex.1035.177

146 4.2 The VAX Architecture

Type Example Instruction meaning

Data transfers Move data between byte, halfword, word, or
doubleword operands; * is the data type

MOV* Move between two operands

MOVZB* Move a byte to a halfword or word, extending it with
zeroes

MOVA* Move address of operand; data type is last

PUSH* Push operand onto stack

Arithmetic, Operations on integer or logical bytes, halfwords (16
logical bits), words (32 bits); *is the data type

ADD* Add with 2 or 3 operands -
CMP* Compare and set condition codes
TST* Compare to zero and set condition codes
ASH* Arithmetic shift

CLR* Clear
CVTB* Sign extend byte to size of data type

Control Conditional and unconditional branches
BEQL,BNEQ Branch equal/not equal
BCS, BCC Branch carry set, branch carry clear
BRB,BRW Unconditional branch with an 8-bit or 16-bit offset

JMP Jump using any addressing mode to specify target
AOBLEQ Add one to operand; branch if result ::; second operand
CASE Jump based on case selector

Procedure Call/return from procedure
CALLS Call procedure with arguments on stack (see Section 3.9)

CALLG Call procedure with FORTRAN-style parameter list
JSB Jump to subroutine, saving return address

RET Return from procedure call

Bit-field character Operate on variable-length bit fields, character
decimal strings, and decimal strings, both in character and

BCD format
EXTV Extracts a variable-length bit field into a 32-bit word

MOVC3 Move a string of characters for given length

CMPC3 Compare two strings of characters for given length

MOVCS Move string of characters with truncation or filling

ADDP4 Add decimal string of the indicated length

CVTPT Convert packed-decimal strin_g to character strin_g

Floating point Floating-point operations on D, F, G, and H formats
ADDD Add double-precision D-format floating numbers -
SUBD Subtract double-precision D-format floating numbers -
MULF Multiply single-precision F-format floating point -
POLYF Evaluate a polynomial using table of coefficients in F

format

System Change to system mode, modify protected registers

CHMK,CHME · Change mode to kernel/executive

REI Return from exception or interrupt

Other Special operations

CRC Calculate cyclic redundancy check

INSQUE Insert a queue entry into a queue

INTEL Ex.1035.178

Instruction Set Examples and Measurements of Use 147

FIGURE 4.4 (Adjoining page) Classes of VAX instructions with examples. The
asterisk stands for multiple data types-B, W, L, and usually D, F, G, H, and Q; remember
how these VAX data types relate to the names used in the text (see Figure 4.2 on page
143). For example, a MOVW moves the VAX data-type word, which is 16 bits and is called a
halfword in this text. The underline, as in ADDO_, means there are 2-operand (ADDD2) and 3-
operand (ADDD3) forms of this instruction. The operand count is explicit in the opcode.

Operations on the VAX

What types of operators does the VAX provide? VAX operations can be divided
into classes, as shown in Figure 4.4. (Detailed lists of the VAX instructions are
included in Appendix B.) Figure 4.5 gives examples of typical VAX instructions
and their meanings. Most instructions set the VAX condition codes according to
their result; instructions without results, such as branches, do not. The condition
codes are N (Negative), Z (Zero), V (oVerflow), and C (Carry).

Example assembly instruction Length Meaning

MOVL @40(R4),30(R2) 5 M[M[40+R4] Jf-32 M[30+R2]

MOVAW R2, (R3) [R4] 4 R2~ 32 R3+ (R4*2)

ADDL3 RS, (R6)+, (R6)+ 4 i~M[R6];R6~R6+4; R5~i+M[R6]; R6~R6+4

CMPL -(R6),#100 7 R6~R6-4; Set the condition code using: M [R 6 J -' 1 O O

CVTBW RlO, (RB) 3
8

Rl016 .. 3lf--16 (M[R8) o) ## M[R8)

BEQL name 2 if equal(CC) {PC~name}

PC-128 :::; name < PC+l28

BRW name 3 PC~name

PC-32768 :::; name < PC+32768

EXTZV (R8),R5,R6,-564(R7) 7 t~40 M[R7-564+(R5>>3)];
i~R5 & 7; j~if R6>=32 then 32 else if
R6<0 then 0 else R6;

M[R8]~32
32-.

0 J ## t39-i--i+l. .39-ii

MOVC3 @36 (R9), (RlO), 35 (Rll) 6 Rl~35+Rll; R3~M[36+R9);

for (RO~M[RlO];RO!=O;RO--)

{M[R3J~aM[Rl); Rl++; R3++}

R2=0; R4=0; R5=0

ADDD3 R0,R2,R4 4 (RO##Rl) ~64 (R2##R3) + (R4##R5)

register contents are type D floating point.

FIGURE: 4.5 Some examples of typical VAX instructions. VAX assembly language syntax puts the result operand
last; we have put it first for consistency with other machines. Instruction length is given in bytes. The condition equal (cc)
is true if the condition-code setting reflects equality after a compare. Remember that most instructions set the condition
code; the only function of compare instructions is to set the condition code. The names t, i, j are used as a temporaries
in the instruction descriptions; tis 40 bits in length, while i and j are 32 bits. The EXTZV instruction may appear mysterious.
Its purpose is to extract a variable-length field (Oto 32 bits) and zero extend it to 32 bits. The source operands to the
EXTZV are the starting bit position (which may be any distance from the starting byte address), the length of the field, and
the starting address of the bit string to extract the field from. The VAX numbers its bits from low order to high order, but we
number bits in the reverse order. Thus, the subscripts adjust the bit offsets accordingly (which makes EXTV look more
mysterious!). Although the result of the variable bit string operations are always 32 bits, the MOVC3 changes the values of
registers RO through RS as shown (although any of RO, R2, R4, and RS could be used to hold the count). A discussion of
why Movc3 uses the GPRs as working registers appears in Section S.6 of the next chapter.

INTEL Ex.1035.179

148 4.3 The 360/370 Architecture

4.3 I The 360/370 Architecture

The IBM 360 was introduced in 1964. Its official goals included the following:

1. Exploit storage-large main storage, storage hierarchies (ROM used for
microcode).

2. Support concurrent 1/0-up to 5 MB/second with a standard interface on all
·machines.

3. Create a general-purpose machine with new OS facilities and many data . .

types.

4. Maintain strict upward and downward machine-language compatibility.

The System/370, first introduced in 1970, was a successor to System/360.
System/370 is fully upward compatible with System/360, even in system mode.
The major extensions over the 360 included

• Virtual memory and dynamic address translation (see Chapter 8, Section 8.5)

• A few new instructions: synchronization support, long string instructions
(long move and long compare), additional instructions for manipulating bytes
in registers, and some additional decimal instructions

• Removal of data alignment requirements

In addition, several important implementation differences were introduced in the
370 implementations, including MOS main memory rather than core, and
writeable control store (see Chapter 5).

In 1983, IBM introduced 370-XA, the eXtended Architecture. Until this
extension, first used in the 3080 series, the 360/370 architecture had a 24-bit
address space. Additional bits were added to the program status word so that the
program counter could be extended. Unfortunately, it was common program­
ming practice on the 360 to use the high-order byte of an address for status.
Thus, old 24-bit programs cannot be run in 32-bit mode (actually a 31-bit
address), while new and recompiled programs can take advantage of the larger
address space. The I/0 structure was also changed to permit higher levels of
multiprocessing.

The latest extension to the architecture was ESA/370, introduced with the
3090 model in 1986. ESA/370 added additional instructiqn formats, called the
Extended formats, with 16-bit opcodes. ESA/370 includes support for a Vector
Facility (including a set of vector registers) and an extended (128-bit) floating­
point format. The address space was extended by adding segments on top of the
31-bit address space (see Chapter 8, Sections 8.5 and 8.6); a new and more
powerful protection model was added as well.

The remainder of this section surveys the IBM 360 architecture and presents
measurements for the workload. First, let's examine the basics of the 360
architecture, then look at the instruction set formats and some sample
instructions.

INTEL Ex.1035.180

Instruction Set Examples and Measurements of Use 149

The 360/370 Instruction Set Architecture

The IBM System/360 is a 32-bit machine with byte addressability and support
for a variety of data types: byte, halfword (16 bits), word (32 bits), doubleword
(double-precision real), packed decimal, and unpacked character strings. The
System/360 had alignment restrictions, which were removed in the System/370
architecture.

The internal state of the 360 has the following components:

• Sixteen 32-bit, general-purpose registers; register 0 is special when used in an
addressing mode, where a zero is always substituted.

• Four double-precision (64-bit) floating-point registers.

• Program status word (PSW) holds the PC, some control flags, and the
condition codes.

Later versions of the architecture extended this state with additional control
registers.

Addressing Modes and Instruction Formats

The 360/370 has five instruction formats. Each format is associated with a single
addressing mode and has a set of operations defined for that format. While some
operations are defined in multiple formats, most are not. The instruction formats
are shown in Figure 4.6 (page 150). While many instructions follow the
paradigm of operating on sources and putting the result in a destination, other
instructions (such as the control instructions BAL, BALR, BC) do not follow
this paradigm, but use the same fields for other purposes. The associated
addressing modes are a~ follows.

RR (register-register)-Both operands are simply contents of registers. The
first source operand is also the destination.

RX (register~indexed)-The first operand and destination are a register. The
second operand is the contents of the memory location given by the sum of a 12-
bit displacement field D2, the contents of the register B2, and the contents of the
register X2. This format is used when an index register is needed (and for most
loads and stores).

RS (register-storage)-The first operand is a register that is the destination.
The third operand is a register that is used as the second source. The second
operand is the contents of the memory location given by the sum of the 12-bit
displacement field D2 and the contents of the register B2. RS mode differs from
RX in that a 3-operand form is supported, but the index register is eliminated.
This instruction format is used for only a small number of instructions.

INTEL Ex.1035.181

150 4.3 The 360/370 Architecture

SI (storage-immediate)-The destination is a memory operand given by the
sum of the contents of register B 1 and the value of displacement D 1. The second
operand, an 8-bit immediate field, is the source.

SS (storage-storage)-The addresses of the two memory operands are the sum
of the contents of a base register Bi and a displacement Di. The first operand is
the destination. This storage-to-storage operation is used for decimal operations
and for character strings. The length field can specify a single length of 1 to 256,
or two lengths, each from 1 to 16. A single length is used for string instructions,
while decimal instructions specify a length for each operand.

The displacement in the RS, RX, SI, and SS formats is 12 bits and is unsigned.

RR format
Register­
Register

RX format
Register­
Indexed

RS format
Register­
Storage

SI format
Storage-­
Immediate

SS format
Storage-­
Storage

Instruction bytes
2 3 4 5 6

R1 +- R1 op M[X2 + 82 + 02)

R1 +- M[B2 + 02) op R3

M[B1 + 01) ... immediate

M[B1 + 01] -+M[B1 + 01) op M[B2 + 02]

FIGURE 4.6 The 360/370 instruction formats. The possible instruction operands are a
register (R1, R2, or R3), an 8-bit immediate, or a memory location. The opcode specifies
where the operands reside and the addressing mode. The effective addresses for memory
operands are formed using the sum of one or two registers (called 81, 82, or X2) and a 12-
bit unsigned displacement field (called 01 or 02). In addition, the storage-storage
instructions, which are all string-oriented, specify an 8-bit length field. Other instruction
formats have been added in later architectural extensions. These formats allowed the
opcode space to be extended and new data types to be added. For loads, stores, and
moves only one source operand is used and the operation only moves the data (see Figure
4.8 on page 152). For SS instructions, the length is one greater than the value in the
instruction.

INTEL Ex.1035.182

Instruction Set Examples and Measurements of Use 151

Operations on the 360/370

Just as on the VAX, the instructions on the 360 can be divided into classes. Four
basic types of operations on data are supported:

1. Logical operations on bits, character strings, and fixed words. These are
mostly RR and RX formats with a few RS instructions.

2. Decimal or character operations on strings of characters or decimal digits.
These are SS format instructions.

3. Fixed-point binary arithmetic. This is supported in both RR and RX formats.

4. Floating-point arithmetic. This is supported primarily with RR and RX in­
structions.

Branches use the RX instruction format with the effective address specifying
the branch target. Since branches are not PC-relative, a base register may need to
be loaded to specify the branch target. This has a rather substantial impact: in
general, it means that there must be registers that point to every region contain­
ing a branch target. The condition codes are set by all arithmetic and logical
operations. Conditional branches test the condition codes under a mask to deter­
mine whether or not to branch.

Some example instructions and their formats are shown in Figure 4.7. When
an operation is defined for more than one format, separate opcodes are used to
specify the instruction format. For example, the opcode AR (add register) says
that the instruction type is RR; thus, the operands are in registers. The opcode A

(add) says the format is RX; thus, one operand is in memory, accessed with the
RX addressing mode. Figure 4.8 (page 152) has a longer listing of 0perations,
including all the most common ones; a full table of instructions appears in
Appendix B.

Type Instruction example Meaning

RR AR R4,RS ' R4~ R4+RS

RX A R4,10(RS,R6) R4~ R4+M[RS+R6+10]

RX BC Mask, 20 (RS, R6) if (CC & Mask) ! =0 {PC~ 20+RS+R6}

RS STM 20(Rl4),R2,R8 for(i=2;i<=8;i++)
{M[Rl4+20+ (i-2) *4] ~ 32 Ri}

SI MVI 20 (RS), #40 . M[RS+20]~8 40

SS MVC 10(R2),Len,20(R6) for{i=O;i<Len+l;i++)
{M[R2+10+i]~8 M[R6+20+i]}

FIGURE 4.7 Typical IBM 360 instructions with their meanings. The MVC instruction is
shown with the length as the second operand. The length field is a constant in the
instruction; standard 360 assembly language syntax includes the length with the first
operand. The variable i used in the MVC and STM is a temporary.

INTEL Ex.1035.183

152 4.3 The 360/370 Architecture

Class or Format Instruction meaning
instruction

Control Change the PC

BC RX,RR Test the condition and conditionally branch
-

BAL RX,RR Branch and link (address of next instruction is placed in -
R15)

Arithmetic, logical Arithmetic and logical operations

A RX,RR Add
-

s RX,RR Subtract -
SLL RS Shift left logical; shifts a register by an immediate

amount
LA RX Load address-put effective address into destination
CLI SI Compare storage byte against immediate
NI SI AND immediate into storage byte
c RX,RR Compare and set condition codes -
TM RS Test under mask-perform a logical AND of the

operand and an immediate field; set condition codes
based on the result

MH RX Multiply halfword

Data transfer Moves between registers or register and memory

L
-

RX,RR Load a register from memory or another register
MVI SI Store an immediate byte in memory
ST RX Store a register
LD RX Load a double-precision floating-point register
STD RX Store a double-precision floating-point register
LPDR RR Move a double-precision floating-point register to

another
LH RX Load a halfword from memory into a register
IC RX Insert a memory byte into low-order byte of a register
LTR RR Load a register and set condition codes

Floating point Floating-point operations

AD - RX,RR Double-precision floating-point add
MD - RX,RR Double-precision FP multiply

Decimal, string Operations on decimal and character strings

MVC SS Move characters
AP SS Add packed-decimal strings, replacing first with sum
ZAP SS Zero and add packed-replace destination with source
CVD RX Convert a binary word to decimal doubleword
MP SS Multiply two packed-decimal strings
CLC SS Compare two character strings
CP SS Compare two packed-decimal strings
ED SS Edit--convert packed-decimal to character string

FIGURE 4.8 Most frequently used IBM 360 instructions. The underline means that the
opcode is two distinct opcodes with an RX format and an RR format. For example A_

stands for AR and A. The full instruction set is shown in Appendix B.

INTEL Ex.1035.184

Instruction Set Examples and Measurements of Use 153

4.4 I The 8086 Architecture

The Intel 8086 architecture was announced in 1978 as an upward-compatible
extension of the then-successful 8080. Whereas th~ 8080 was a straightforward
accumulator machine, the 8086 extended the architecture with additional
registers. The 8086 fails to be a truly general-purpose register machine,
however, because nearly every register has a dedicated use. Thus, its architecture
falls somewhere between an accumulator machine and a general-purpose
register machine. The 8086 is a 16-bit architecture; all internal registers are 16
bits. To obtain addressability greater than 16 bits the designers added segments
to the architecture. This allowed a 20-bit address space, broken into 64-KB
fragments. Chapter 8 discusses segmentation in detail, while this chapter will
focus only on the implications for a compiler.

The 80186, 80286, 80386, and 80486 are "compatible" extensions of the
8086 architecture and are collectively referred to as the 80x86 processors. They
are compatible in the sense that they all belong to the same architectural family.
There are more instances of this architectural family than of any other in the
world. The 80186 added a small number of extensions (about 16) to the 8086
architecture in 1981. The 80286, introduced in 1982, extended the 80186
architecture by creating an elaborate memory-mapping and protection model and
by extending the address space to 24 bits (see Chapter 8, Section 8.6). Because
8086 programs needed to be binary compatible, the 80286 offered a real
addressing mode to make the machine look just like an 8086.

The 80386 was introduced in 1985. It is a true 32-bit machine when running
in native mode. Like the 80286, a real addressing mode is provided for 8086
compatibility. There is also a virtual 8086 mode that provides for multiple 20-bit
8086 address partitions within the 80386's memory. In addition to a 32-bit
architecture with 32-bit registers and a 32-bit address space, the 80386 has a new
set of addressing modes and additional operations. The added instructions make
the 80386 nearly a general-purpose register machine-. for most operations any
register can be used as an operand. The 80386 also provides paging support (see
Chapter 8). The 80486 was introduced in 1989 and added only a few new
instructions, while substantially increasing performance.

Since 8086 compatibility mode is the dominant use of all 80x86 processors,
we will take a detailed look in this section at the 8086 architecture. We will
begin by summarizing the architecture and then discuss its usage by typical
programs.

8086 Instruction Set Summary

The 8086 provides support for both 8-bit (byte) and 16-bit (called word) data
types. The data type distinctions apply to register operations as well as memory
accesses.

INTEL Ex.1035.185

154 4.4 The 8086 Architecture

The address space on the 8086 is a total of 20 bits; however, it is broken into
64-KB segments addressable with 16-bit offsets. A 20-bit address is formed by
taking a 16-bit effective address-as an offset within a segment-and adding it
to a 16-bit segment base address. The segment base address is obtained by
shifting the contents of a 16-bit segment register 4 bits to the left.

Class Register Purposes of class or register

Data Used to hold and operate on data

AX Used for multiply, divide, and l/0; sometimes an implicit
operand; AH and AL also have dedicated uses in byte
multiply, divide, decimal arithmetic

BX Can also be used as address-base register

ex Used for string operations and loop instructions; CL is the
dynamic shift count

DX Used for multiply, divide, and I/0

Address Used to form 16-bit effective memory addresses
(within segment)

"\
SP Stack pointer

BP Base register-used in based-addressing mode

SI Index register, and also used as string source base register

DI Index register, and also used as string destination base
register

Segment Used to form 20-bit real memory addresses

cs Code segment-used with instruction access

SS Stack segment-used for stack references (SP) or when
BP is base register

DS Data segment-used when a reference is not for code (CS
used), to the stack (SS used), or a string destination (ES
used)

ES Extra segment-used when operand is string destination

Control Used for status and program control

IP Instruction pointer-provides the offset of the currently
executing instruction (this is the lower 16-bits of the
effective PC)

FLAGS Contains six condition code bits-carry, zero, sign,
borrow, parity, and overflow-and three status control
bits

FIGURE 4.9 The 14 registers on the 8086. The table divides them into four classes that
have restricted uses. In addition, many of the individual registers are required for certain
instructions. The data registers have an upper and lower half: xL refers to lower byte and
xH to upper byte of register x.

INTEL Ex.1035.186

Instruction Set Examples and Measurements of Use 155

The 8086 provides a total of 14 registers broken into four groups-data
registers, address registers, segment registers, and control registers-as shown in
Figure 4.9. The segment register for a memory access is usually implied by_ the
base register used to form the effective address within the segment.

The addressing modes for data on the 8086 use the segment registers implied
by the addressing mode or specified in the instruction with an override of the
default mode. We will discuss how branches and jumps deal with segmentation
in the section on operations.

Addressing Modes

Most of the addressing modes for forming the effective address of a data
operand are among those discussed in Chapter 3. The arithmetic, logical, and
data-transfer instructions are two-operand instructions that allow the com­
binations shown in Figure 4.10. ·

Source/destination operand type Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

FIGURE 4.10 Instruction types for the arithmetic, logical, and data-transfer
instructions. The 8086 allows the combinations shown. lmmediates may be 8 or 16 bits in
length; a register is any one of the 12 major registers in Figure 4.9 (not one of the control
registers). The only restriction is the absence of memory-memory mode.

The memory addressing modes supported are absolute (16-bit absolute
address), register indirect, based, indexed, and based indexed with displacement
(not mentioned in Chapter 3). Although a memory operand can use any
addressing mode, there are restrictions on wh.at registers can be used in a mode.
The registers usable in specifying the effective address are as follows:

• Register indirect-BX, SI, DI.

• Based mode with 8-bit or 16-bi.t displacement-BP, BX, SI, DI. (Intel gives
two names to this addressing mode, Based and Indexed, but they are
essentially identical and we combine them.)

• Indexed-address is sum of two registers. The allowable combinations are
BX+SI, BX+DI, BP+SI, and BP+DI. This mode is called Based Indexed on
the 8086.

INTEL Ex.1035.187

156 4.4 The 8086 Architecture

• Based indexed with 8-bit or 16-bit displacement-the address is sum of
displacement and contents of two registers. The same restrictions on registers
apply as in indexed mode.

Operations on the 8086

The 8086 operations can be divided into four major classes:

I. Data movement instructions, including move, push, and pop

2. Arithmetic and logic instructions, including logical operations, test, shifts,
and integer and decimal arithmetic operations

3. Control flow, including conditional and unconditional branches, calls, and
returns

4. String instructions, including string move and string compare

Instruction Function

JE name if equal(CC) { I Pf-name } ;

IP-128 ~ name < IP+l28

JMP name I Pf-name

CALLF name,seg SPf-SP-2; M[SS:SP]f-CS; SPf-SP-2;

M[SS:SP]f-IP+5; IPf-name; CSf-seg;

MOVW BX, [DI+45] BXf-15M [DS: DI+45]

PUSH SI SPf-SP-2; M[SS: SP] f-SI

POP DI Dif-M[SS:SP]; SPf-SP+2

ADD AX,#6765 AXf-AX+ 67 6 5

SHL BX, 1 BXf-BXi. .15 ## 0

TEST DX,#42 Set CC flags with DX & 42

MOVSB M[ES:DI]f-9M[DS:SI];

Dif-DI+l; Sif-SI+l

FIGURE 4.11 Some typical 8086 instructions and their functions. A list of the most
frequent operations appears in Figure 4.12 (page 158). We use the abbreviation SR:X to
indicate the formation of an address with segment register SR and offset X. This effective
address corresponding to SR:X is (SR«4)+X. The CALLF saves the IP of the next
instruction and the current CS on the stack.

INTEL Ex.1035.188

Instruction Set Examples and Measurements of Use 157

In addition, there is a repeat prefix that may precede any string instruction,
which says that the instruction should be repeated using the value in the ex
register for the number of repetitions. Figure 4.11 shows some typical 8086
instructions and their functions.

Control-flow instructions must be able to address destinations in another
segment. This is handled by having two types of control-flow instructions:
"near" for intrasegment (within a segment) and "far" for intersegment (between
segments) transfers. In far jumps, which must be unconditional, two 16-bit
quantities follow the opcode. One of these is used as the instruction pointer,
while the other is loaded into CS and becomes the new code segment. Calls and
returns work similarly-a far call pushes the return instruction pointer and return
segment on the stack and loads both the instruction pointer and code segment. A
far return pops both the instruction pointer and the code segment from the stack.
Programmers or compiler writers must be sure to always use the same type of
call and return for a procedure-a near return does not work with a far call, and
vice versa.

Figure 4.12 (page 158) summarizes the most popular 8086 instructions. Many
of the instructions are available in both byte and word formats. A full listing of
instructions appears in Appendix B.

The encoding of instructions in the 8086 is complex, and there are many
different instruction formats. Instructions may vary from one byte, when there
are no operands, up to six bytes, when the instruction contains a 16-bit imme­
diate and uses 16-bit displacement addressing. Figure 4.13 (page 159) shows the
instruction format for several of the example instructions in Figure 4.11 (page
156). The opcode byte usually contains a bit saying whether the instruction is a
word or byte instruction. For some instructions the opcode may include the
addressing mode and the register; this is true in many instructions that have the
form "registerf-register op immediate." For other instructions a "postbyte" or
extra opcode byte contains the addressing mode information. This postbyte is
used for many of the instructions that address memory. The encoding of the
postbyte is shown in Figure 4.14 (page 160). Finally, there is a byte prefix that is
used for three diffen:mt purposes. It can override the default-segment usage of
instructions, and it can be used to repeat a string instruction by a count provided
in CX. (This latter function is useful for string instructions that operate on a
single byte or word at a time and use autoincrement addressing.) Third, it can be
used to generate an atomic memory access for use in implementing
synchronization.

INTEL Ex.1035.189

158

Instruction

Control

JNZ, JZ

JMP, JMPF

CALL, CALLF

RET, RETF

LOOP

Data transfer

MOV

PUSH

POP

LES

Arithmetic,
logical

ADD

SUB

CMP

SHL

SHR

RCR

CBW

TEST

INC

DEC

OR

XOR

String
instructions

MOVS

LODS

4.4 The 8086 Architecture

Meaning

Conditional and unconditional branches

Jump if condition to IP+ 8-bit offset; JNE (for JNZ), JE (for JZ) are alternative names

Unconditional jump-8-bit or 16-bit offset intrasegment (near), and intersegment (far)
versions

Subroutine call-16-bit offset; return address pushed; near and far versions

Pops return address from stack and jumps to it; near and far versions

Loop branch-decrement CX; jump to IP + 8-bit displacement if CX :;t:O

Move data between registers or between register and memory

Move between two registers or between register and memory

Push source operand on stack

Pop operand from stack top to a register

Load ES and one of the GPRs from memory

Arithmetic and logical operations using the data registers and memory

Add source to destination; register-memory format

Subtract source from destination; register-memory format

Compare source and destination; register-memory format

Shift left

Shift logical right

Rotate right with Carry as fill

Convert byte in AL to word in AX

Logical AND of source and destination sets flags

Increment destination; register-memory format

Decrement destination; register-memory format

Logical OR; register-memory format

Exclusive OR; register-memory format

Move between string operands; length given by a repeat prefix

Copies from string source to destination; may be repeated

Loads a byte or word of a string into the A register

FIGURE 4.12 Some typical operations on the 8086. Many operations use register-memory format, where either the
source or the destination may be memory and the other may be a register or immediate operand.

INTEL Ex.1035.190

Instruction Set Examples and Measurements of Use 159

4. 4 8

a. JE PC + displacement

8 16 16

b. CALLF

6 2 8 8

c. MOV BX, [DI + 45]

5 3

d. PUSH SI

4 3 1 16

e. ADD AX, #6765

6 2 8

f. SHL BX, 1

7 a· 8

g. TEST DX, #42

FIGURE 4.13 Typical 8086 instruction formats. The encoding of the postbyte is shown
in Figure 4.14. Many instructions contain the 1-bit field w, which says whether the operation
is a byte or word. Fields of the form v/w or d/w are a d-field or v-field followed by the w-field.
The d-field in Mov is used in instructions that may move to or from memory and shows the
direction of the move. The field V in the SHL instruction indicates a variable-length shift;
variable-length shifts use a register to hold the shift count. The ADD instruction shows a
typical optimized short encoding usable only when the first operand is AX. Overall
instructions may vary from one to six bytes in length.

INTEL Ex.1035.191

160 4.4 The 8086 Architecture

2 3 3

I 00 I ,, r1
···•,·;I

Mem Indirect

2 3 3 8

I 01 I ,r1 .. •, l Mel)1 I I'
Displac~lllen(;I

8-bit
•,

displacement -;c

2 3 3 16
'/'' ,''·'

10 r1 • ME\ITI . • . ·' .• ·. • IJisp1~6~fn~nt •• • .. ' •

I I 0. ~' ,·' I J I · i • •116-bit
, displacement

~-·-·.'~·;:~··~~~~~~~~~~~.

2 3 3

r~tJ;,;~ .r1 •• J~.i(r~· .• 1 register-register

FIGURE 4.14 There are four postbyte encodings on the 8086 designated by a 2-bit
tag. The first three indicate a register-memory instruction, where Mem is the base register.
The fourth form is register-register.

4.5 I The DLX Architecture

In many places throughout this book we will have occasion to refer to a
computer's "machine language." The machine we use is a mythical computer
called "MIX." MIX is very much like nearly every computer in existence, except
that is, perhaps, nicer ... MIX is the world's first polyunsaturated computer.
Like most machines, it has an identifying number-the 1009. This number was
found by taking 16 actual computers which are very similar to MIX and on
which MIX can be easily simulated, then averaging their number with equal
weight:

[(360 + 650 + 709 + 7070 + U3 + SS80 + 1107 + 1604 + G20 + B220 +
S2000 + 920 + 601 + H800 + PDP-4+11)116)=1009.

The same number may be obtained in a simpler way by taking Roman numerals.

Donald Knuth, The Art of Computer Programming. Volume I: Fundamental Algorithms

INTEL Ex.1035.192

Instruction Set Examples and Measurements of Use 161

In this section we will describe a simple load/store architecture called DLX
(pronounced "Deluxe"). The authors believe DLX to be the world's second
polyunsaturated computer-the average of a number of recent experimental and
commercial machines that are very similar in philosophy to DLX. Like Knuth,
we derived the name of our machine from an average expressed in Roman
numerals:

(AMD 29K, DECstation 3100, HP 850, IBM 801, Intel i860, MIPS M/120A,
MIPS M/1000, Motorola 88K, RISC I, SGI 4D/60, SPARCstation-I, Sun-4/110,
Sun-4/260) I 13 = 560 = DLX.

The architecture of DLX was chosen based on observations about the most
frequently used primitives in programs. More sophisticated (and less
performance-critical) functions are implemented in software with multiple
instructions. In Section 4.9 we discuss how and why these architectures became
popular.

Like most recent load/store machines, DLX emphasizes

• A simple load/store instruction set

• Design for pipelining efficiency (discussed in Chapter 6)

• An easily decoded instruction set

• Efficiency as a compiler target

DLX provides a good architectural model for study, not only because of the
recent popularity of this type of machine, but also because it is an easy
architecture to understand.

DLX-Our Generic Load/Store Architecture

In this section, the DLX instruction set is defined. We will use this architecture
again in Chapters 5 through 7, and it forms the basis for a number of exercises
and programming projects.

• The architecture has thirty-two 32-bit general-purpose registers (GPRs); the
value of RO is always 0. Additionally, there are a set of floating-point
registers (FPRs), which can be used as 32 single-precision (32-bit) registers,
or as even-odd pairs holding double-precision values. Thus, the 64-bit
floating-point registers are named FO, F2, ... , F28, F30. Both single- and
double-precision operations .are provided. There are a set of special registers
used for accessing status information. The FP status register is used for both
compares and FP exceptions. All movement to/from the status register is

,_ through the GPRs; there is a branch that tests the comparison bit in the FP
status register.

INTEL Ex.1035.193

162

Example instruction

LW Rl,30(R2)

LW Rl,lOOO(RO)

LB Rl,40(R3)

LBU Rl,40(R3)

LH Rl,40(R3)

LHU Rl,40(R3)

LF F0,50(R3)

LD F0,50(R2)

SW 500(R4),R3

SF 40(R3),F0

SD 40(R3),FO

SH 502 (R2), R3

SB 41 (R3) I R2

4.5 The DLX Architecture

• Memory is byte addressable in Big Endian mode with a 32-bit address. All
memory references are through loads or stores between memory and either
the GPRs or the FPRs. Accesses involving the GPRs can be to a byte, to a
halfword, or to a word. The FPRs may be loaded and stored with single­
precision or double-precision words (using a pair of registers for DP). All
memory accesses must be aligned. There are also instructions for moving
between a PPR and a GPR.

• All instructions are 32 bits and must be aligned.

• There are also a few special registers that can be transferred to and from the
integer registers. An example is the floating-point status register, used to hold
information about the results of floating-point operations.

Operations

There are four classes of instructions: loads and stores, ALU operations,
branches and jumps, and floating-point operations.

Instruction name Meaning

Load word Rlt-32 M [30+R2]

Load word Rlt-32 M[lOOO+O]

Load byte RH--32 (M[40+R3] o) 24 ## M[40+R3]

Load byte unsigned Rlt-32 024 ## M[40+R3]

Load halfword Rlt-32 (M[40+R3] o) 16 ##M[40+R3] ##M[41+R3]

Load halfword Rlt-32 Q16 ##M[40+R3] ##M[41+R3]
unsigned

Load float FOt-32 M[50+R3]

Load double FO##Flf-64 M[50+R2]

Store word M [500+R4] f-32. R3

Store float M [40+R3] f-32 FO

Store double M [40+R3] f-32 FO; M[44+R3]f-32 Fl

Store half M [502+R2] f-16 R316 .. 31

Store byte M[4l+R3]f-g R224 .. 31

FIGURE 4.15 The load and store instructions in DLX. All use a single addressing mode and require that the memory
value be aligned. Of course, both loads and stores are available for all the data types shown.

INTEL Ex.1035.194

Instruction Set Examples and Measurements of Use 163

Any of the general-purpose or floating-point registers may be loaded or
stored; except that loading RO has no effect. There is a single addressing mode,
base register + 16-bit signed offset. Halfword and byte loads place the loaded
object in the lower portion of the register. The upper portion of the register is
filled with either the sign extension of the loaded value or zeros, depending on
the opcode. Single-precision floating-point numbers occupy a single floating­
point register, while double-precision values occupy a pair. Conversions
between single and double precision must be done explicitly. The floating-point
format is IEEE 754 (see Appendix A). Figure 4.15 gives an example of the load
and store instructions. A complete list of the instructions appears in Figure 4.18
(page 165).

All ALU instructions are register-register instructions. The operations
include simple arithmetic and logical operations: add, subtract, AND, OR, XOR,
and shifts. Immediate forms of all these instructions, with a 16-bit sign-extended
immediate, are provided. The operation LHI (load high immediate) loads the top
half of a register, while setting the lower half to 0. This allows a full 32-bit
constant to be built in two instructions. (We sometimes use the mnemonic LI,
standing for Load Immediate, as an abbreviation for an add immediate where
one of the source operands is RO; likewise, the mnemonic MOV is sometimes
used for an ADD where one of the sources is RO.)

There are also compare instructions, which compare two registers
(=,:;t:,<,>,~.~). If the condition is true, these instructions place a 1 in the
destination register (to represent true); otherwise they place the value 0. Because
these operations "set" a register they are called set-equal, set-not-equal, set-less­
than, and so on. There are also immediate forms of these compares. Figure 4.16
gives some examples of the arithmetic/logical instructions.

Control is handled through a set of jumps and a set of branches. The four
jump instructions are differentiated by the two ways to specify the destination
address and by whether or not a link is made. Two jumps use a 26-bit signed
offset added to the program counter (of the instruction sequentially following the
jump) to determine the destination address; the other two jump instructions
specify a register that contains the destination address. There are two flavors of
jumps: plain jump, and jump and link (used for procedure calls). The latter
places the return address in R31.

Example instruction Instruction name Meaning

ADD Rl,R2,R3 Add Rl~R2+R3

ADDI Rl,R2,#3 Add immediate Rl~R2+3

LHI Rl,#42 Load high immediate Rl~42##0 16

SLLI Rl,R2,#5 Shift left logical Rl~R2<<5

SLT . Rl, R2, R3 Set less than if (R2<R3) Rl~l
..

else Rl~O

FIGURE 4.16 Examples of arithmetic/logical instructions on DLX, both with and
without immediates.

INTEL Ex.1035.195

164 4.5 The DLX Architecture

Example instruction Instruction name Meaning

J name Jump PC~name; ((PC+4) -2 25) s name <
((PC+4) +2 25

)

JAL name Jump and link R31~PC+4; PC~name;

((PC+4) -2 25
) s name < ((PC+4) +2 25

)

JALR R2 Jump and link register R31~PC+4; PC~R2

JR R3 Jump register PC~R3

BEQZ R4,name Branch equal zero if (R4==0) PC~name;

((PC+4)-2 15
) :S name < ((PC+4) +2 15

)

BNEZ R4,name Branch not equal zero if (R4 ! =0) PC~name;

((PC+4) -2 15
) :S name < ((PC+4) +2 15

)

FIGURE 4.17 Typical control-flow instructions in DLX. All control instructions, except jumps to an address in a
register, are PC-relative. If the register operand is RO, the branch is unconditional, but the compiler will usually prefer to
use a jump with a longer offset over this "unconditional branch."

All branches are conditional. The branch_ condition is specified by the in­
struction, which may test the register source for zero or nonzero; this may be a
data value or the result of a compare. The branch target address is specified with
a 16-bit signed offset that is added to the program counter. Figure 4.17 gives
some typical branch and jump instructions.

Floating-point instructions manipulate the floating-point registers and
indicate whether the operation to be performed is single or double precision.
Single-precision operations can be applied to any of the registers, while double­
precision operations apply only to an even-odd pair (e.g., F4, F5), which is
designated by the even register number. Load and store instructions for the
floating-point registers move data between the floating-point registers and
memory both in single and double precision. The operations MOVF and MOVD

copy a single-precision (MOVF) or double-precision (MOVD) floating-point
register to another register of the same type. The operations MOVFP 2 I and
MOVI 2FP move data between a single floating-point register and an integer
register; moving a double-precision value to two integer registers require two
instructions. Integer multiply and divide that work on 32-bit floating-point
registers are also provided, as are conversions from integer to floating point and
vice versa.

The floating-point operations are add, subtract, multiply, and divide; a suffix
D is used for double precision and a suffix F is used for single precision (e.g.,
ADDD, ADDF, SUBD, SUBF, MU LTD, MULTF, D IVD, D IVF). Floating-point
compares set a bit in the special floating-point status register that can be tested
with a pair of branches: BFPT and BFPF, branch floating point true and branch
floating point false.

Figure 4.18 contains a list of all operations and their meaning.

INTEL Ex.1035.196

Instruction Set Examples and Measurements of Use 165

Instruction type I opcode Instruction meaning

Data transfers Move data between registers and memory, or between the integer and FP or
special registers; only memory address mode is 16-bit displacement + contents of

.. aGPR

LB,LBU,SB Load byte, load byte unsigned, store byte

LH,LHU,SH Load halfword, load halfword unsigned, store halfword

LW, SW Load word, store word (to/from integer registers)

LF,LD,SF,SD Load SP float, load DP float, store SP float, store DP float

MOVI2S, MOVS2I Move from/to GPR to/from a special register

MOVF, 1'10VD r Copy one floating-point register or a DP pair to another register or pair

MOVFP2I,MOVI2FP Move 32 bits from/to FP registers to/from integer registers

Arithmetic I Logical Operations on integer or logical data in GPRs; signed arithmetics trap on
overflow

ADD,ADDI,ADDU,ADDUI Add, add immediate (all immediates are 16 bits); signed and unsigned

SUB,SUBI,SUBU,SUBUI Subtract, subtract immediate; signed and unsigned

MULT,MULTU,DIV,DIVU Multiply and divide, signed and unsigned; operands must be floating-point registers;
all operations take and yield 32-bit values

AND,ANDI And, and immediate

OR,ORI,XOR,XORI Or, or immediate, exclusive or, exclusive or immediate

LHI Load high immediate-loads upper half of register with immediate

SLL, SRL, SRA, SLLI, SRLI, Shifts: both immediate (S_I) and variable form (S_) ; shifts are shift left logical,
SRAI right logical, right arithmetic

s 's I Set conditional: "_"may be LT' GT' LE' GE' EQ' NE

Control Conditional branches and jumps; PC-relative or through register

BEQZ,BNEZ Branch GPR equal/not equal to zero; 16-bit offset from PC+4

BFPT,BFPF Test comparison bit in the FP status register and branch; 16-bit offset from PC+4

J, JR Jumps: 26-bit offs~t from PC (J) or target in register (JR)

JAL, JALR Jump and link: save PC+4 to R31, target is PC-relative (JAL) or a register (JALR)

TRAP Transfer to operating system at a vectored address; see Chapter 5

RFE Return to user code from an exception; restore user mode; see Chapter 5

Floating point Floating-point operations on DP and SP formats

ADDD,ADDF Add DP, SP numbers

SUBD,SUBF Subtract DP, SP numbers

MULTD,MULTF Multiply DP, SP floating point

DIVD,DIVF Divide DP, SP floating point

CVTF2D, CVTF2I, CVTD2F, Convert instructions: CVTx2y converts from type x to type y, where x and y are one
CVTD2I, CVTI2F, CVTI2D of I (Integer), D (Double precision), or F (Single precision). Both operands are in the

FP registers

D, F DP and SP compares: "_" may be LT, GT, LE, GE, EQ, NE; sets comparison bit in FP -- --
status register

FIGURE 4.18 Complete list of the instructions in DLX. The formats of these instructions are shown in Figure 4.19.
This list can also be found in the back inside cover.

INTEL Ex.1035.197

166 4.5 The DLX Architecture

Instruction Format

All instructions are 32 bits with a 6-bit primary opcode. Figure 4.19 shows the
instruction layout.

I - type instruction
6 5 5 16

Encodes: Loads and stores of bytes, words, half-words
All immediates (rd rs1 op immediate)

Conditional branch instructions (rs1 is register, rd unused)
Jump register, Jump and link register

· (rd = 0, rs = destination, immediate = 0)

R - type instruction
6 5 5 5 11

Register-register ALU operations: rd rs1 func rs2
Function encodes the data path operation: Add, Sub , ...
Read/write special registers and moves

J - type instruction
6

Jump and jump and link
Trap and RFE

26

FIGURE 4.19 Instruction layout for DLX. All instructions are encoded in one of three types.

Machines Related to DLX

Between 1985 and 1990 many load/store machines were announced that are
similar to DLX. Figure 4.20 describes the major features of these machines. All
have 32-bit instructions and are load/store architectures; the figure lists their
differences. These machines are all very similar-if you 're not convinced, try
making a table such as this one comparing these machines to the VAX or 8086.

DLX bears a close resemblance to all the other load/store machines shown in
Figure 4.20. (See Appendix E for a detailed description of four load/store
machines closely related to DLX.) Thus, the measurements in the next section
will be reasonable approximations of the behavior of any of the machines. In
fact, some studies suggest that compiler differences are more significant than
architectural differences among these machines.

INTEL Ex.1035.198

Instruction Set Examples and Measurements of Use 167

Machine Registers Addressing modes Operations

DLX 32 integer; 16-bit displacement; See Figure 4.18.
16 DP or 32 SP FP 16-bit immediates

AMD29000 192 integer with stack Register deferred only; Integer multiply/divide trap to software.
cache; 8-bitimmediates Branches =,=t- 0 only.

8DPFP

HP Precision 32GPRs 5-bit, 14-bit, and 32-bit Every ALU operation can skip the next in-

Architecture 32DP displacements; scaled struction. Many special bit-manipulation

or64 SPFP
mode (load only); instructions. 32-bit immediates; decimal-
autoincrement; support instructions: integer multiply/divide
autodecrement not single instructions. Stores of partial word.

64-bit addresses possible through
segmentation.

Intel i860 32 integer; 16-bit displacement; Branch compares two registers for equality.

16 DP or 32 SP FP indexed mode; Conditional traps are supported. FP
autoincrement; reciprocal rather than divide. Some support
16-bit immediates for 128-bit loads and stores.

MIPS R2000/ 32 integer; 16-bit displacement; Floating-point load/store moves 32 bits to
R3000 16FP 16-bit immediates upper or lower half of FP register. Branch

condition can compare two registers. Integer
multiply/divide in GPRs. Special instructions
for partial word load/store.

Motorola 32 GPRs 16-bit displacement; Special bit-manipulation instructions.
88000 indexed mode Branches can test for zero and also test bits

set by compares.

SPARC Register windows 13-bit offset and 13-bit Branches use condition code, set selectively
with 32 integer immediates; indexed by instructions. Integer multiply/divide not
registers available per addressing mode instructions. No moves between integer and
procedure; FP registers.
16 DP or 32 SP FP

FIGURE 4.20 Comparison of the major features of a variety of recent load/store architectures. All the machines
have a basic instruction size of 32 bits, though some provisions for shorter or longer are supported. For example, the

'Precision Architecture uses 2-word instructions for long immediates. Register windows and stack caches, which are used
in the SPARC and AMD 29000 architectures, are discussed in Chapter 8. The MIPS R2000 is used in the DECstation
3100, the machine benchmarked in Chapter 2, and used as the load/store machine in Chapter 3. The number of double­
precision floating-point registers is indicated if they are separate from the integer registers. Appendix E has a detailed
comparative description of DLX, the MIPS R2000, SPARC, the i860, and the 88000 architectures. Both the MIPS and
SPARC architectures have extensions that were not supported in hardware in the first implementation. These are
discussed in Appendix E. In several of these machines RO=O, so they really have one less register available.

4.6 I Putting It All Together: Measurements of
Instruction Set Usage

In this section we examine the dynamic use of the four instruction sets presented
in this chapter. All instructions responsible for 1.5% or more of the instruction

INTEL Ex.1035.199

168 4.6 Putting It All Together: Measurements of Instruction Set Usage

executions in a set of benchmarks are included in measurements of each
architecture. In the interest of conciseness, fractional percents are rounded so
that all entries in the graphs of opcode frequency will be at least 2% ..

To facilitate comparisons among dynamic instruction set measurements, the
measurements are organized by class of application. Figure 4.21 shows these
application classes and the programs used to obtain instruction-use data on each
of the machines discussed. We sometimes compare data for different
architectures running the same type of application (e.g., a compiler) but
different programs. The reader is cautioned that such comparisons must be made
cautiously and with substantial limitations. Despite the fact that both programs
may be the same type of application, differences in programming language,
coding style, compilers, and so on, could substantially affect the results.

Machines Compilers Floating point General Business
integer data

processing

VAX GCC Spice TeX COBOLX

360 PL/I FORTGO PLIGO COBOLGO

8086 Turbo C Assembler Lotus 1-2-3

DLX GCC Spice TeX US Steel

FIGURE 4.21 Programs used for reporting information about instruction mixes.
There are four types of workloads, and each workload type has a representation program­
except that there is no floating-point program for the 8086. The inputs to GCC, Spice, and
TeX used for the VAX were purposely shortened because the measurement process is very
time intensive. (Readers who obtain measurements for the 360 or 8086 running GCC,
Spice, or TeX and who are willing to share their data are asked to contact the publisher.)

In this section we present the instruction-mix measurements using a chart for
each machine. The chart shows the average use of an instructiori across the
programs measured for that architecture. The detailed individual measurements
for each program can be found in Appendix C. This appendix will be needed as
a reference to do the exercises and examples in the chapter.

Remember that these measurements depend on the benchmarks chosen and
the compiler technology used. While the authors feel that the measurements in
this section are reasonably indicative of the usage of these four architectures,
other programs may behave differently from any of the benchmarks liere, and
different compilers may yield different results. In doing a real instruction set
study, the architect would want to have a much larger set of benchmarks,
spanning as wide an application range as possible. He would also want to
consider the operating system and its usage of the instruction set. Single-user
benchmarks like those measured here do not necessarily behave in the same
fashion as the operating system.

INTEL Ex.1035.200

Instruction Set Examples and Measurements of Use 169

VAX Instruction Set Measurements

The data on VAX instruction set usage in this section come primarily from
measurements on our three benchmark programs. We add the data reported in
another study for COBOL when we discuss opcode distributions. For these
measurements, Spice and TeX were compiled with the globally optimizing
versions of the VAX compilers originally developed for VMS (called VCC and
fort). GCC cannot be compiled by the vcc compiler and hence uses the standard
VAX 'cc compiler, which performs only peephole optimization. Once compiled,
these programs were run with the Trace bit turned on. This causes the program
to trap on every instruction execution, allowing a measurement program to
collect data. Because this slows the program down by a factor of between 1,000
and 10,000 times, smaller inputs were used for the programs GCC, TeX, and
Spice.

Addressing Mode Usage

Let's begin by looking at the VAX addressing modes, since the choice
addressing modes and operations are orthogonal. First, we break the references
into three broad classes: register, immediate (including short literal), and
memory addressing modes. Figure 4.22 shows the breakdown into these three
classes for our benchmarks. In all three programs, more than half the operand
references are to registers.

About one-third of the operands on the VAX are memory references. How
are those memory locations specified? The VAX memory addressing modes fall

TeX 25%
Memory Spice 39%

GCC 30%

TeX 18%
Immediate Spice 8%

GCC 19%

TeX 57%
Register Spice 53%

GCC 51%

0% 10% 20% 30% 40% 50% 60%

FIGURE 4.22 Breakdown of basic operand types for the three benchmarks on the
VAX. The frequencies are very similar across programs, except for the low usage of
imrriediates by Spice and its correspondingly higher use of memory operands. This
probably arises because few floating-point constants are stored as immediates, but are
instead accessed from memory. An operand is counted by the number of times it appears
in an instruction, rather than by the number of references. Thus, the instruction ADDL2

Rl, 45 (R2) counts as one memory reference and one register reference. The memory
address modes in Figure 4.23 are counted in the same fashion. Wiecek [1982] reports that
about 90% of the operand accesses are either a read or a write, and only about 10% of the
accesses both read and write the same operand (such as Rl in the ADDL2).

INTEL Ex.1035.201

170

Example

4.6 Putting It All Together: Measurements of Instruction Set Usage

Auto increment TeX 1%
Spice ~3%
GCC 4%

Displacement TeX 2%

deferred Spice 7%
GCC 2%

TeX 0%
Scaled Spice

GCC ,..9%

Register TeX
deferred Spice I 4%

GCC t

---=::-:----'I 20%

••••••• 41%

•••• 18%

TeX 56%
Displacement Spice

GCC • ••••••••••••• 166% 67%

0% 10% 20% 30% 40% 50%' 60% 70% 80%

FIGURE 4.23 Use of VAX memory addressing modes, which account for about 31%
of the operand references, in the three programs. Spice again stands out because of

the low frequency of register deferred. In Spice, nonzero displacement values occur much
more frequently. The use of arrays rather than pointers probably influences this. Likewise,
Spice uses the scaled mode to access array elements. The displacement deferred mode is
used to access actual parameters in a FORTRAN subroutine. Remember that PC-based
addressing is not included here-use of PC-based addressing can be measured by branch
frequency.

into three separate classes: PC-based addressing, scaled addressing, and the
other addressing modes (sometimes called the general addressing modes). The
primary use of PC-based addressing is to specify branch targets, rather than data
operands; thus, we do not include this addressing mode here. Scaled mode is
counted as a separate addressing mode, and the. based mode on which it is built
is counted as well. Figure 4.23 shows the use of addressing modes in the three
benchmark programs. Not surprisingly, displacement mode dominates. Taken
together, displacement and register deferred, which is essentially a special case
of displacement with a zero constant value, constitute from 70% to 96% of the
dynamically occurring addressing modes.

The size of a VAX instruction is almost always one byte for the opcode plus
the number of bytes in the addressing modes. From these data the average size
of an instruction can be estimated. Architects often do this type of estimating
when they do not have exact measurements available. This is particularly true
when data collection is expensive. Collecting the VAX data in this chapter, for
example, took from one to several days of running time for each program.

The average VAX instruction has 1.8 operands. Use this fact and the data on
displacement sizes in Figure 3.13 (on page 100 of Chapter 3) to estimate the
average size of a VAX instruction. Such an estimate is useful for determining
memory bandwidth per instruction, a critical design parameter.

INTEL Ex.1035.202

Answer

Instruction Set Examples and Measurements of Use 171

From the above data we know that literal and register modes, which each take 1
byte, dominate the mix. The most heavily used addressing mode, displacement
mode, can vary from 2 bytes to 5 bytes-the register byte plus 1 or more offset
bytes. Based on the length information in Figure 3.13 we guess that the average
displacement is 1.5 bytes, for a total size of 2.5 bytes for the addressing mode.
For this example, we assume that literal, register, and displacement modes make ·
up all the accesses.
' This means there is 1 byte for the opcode, 1 byte for register or literal mode,
and about 2.5 bytes for displacement mode. Using 1.8 operands per instruction
and the average frequencies of accesses from Figure 4.22 (page 169), we obtain
1 + 1.8 * (0.54 + 0.15 + 0.31 * 2.5) or 3.64 bytes7

Wiecek [1982] measured 3.8 bytes per instruction. Direct measurements of
our three programs showed the average sizes to be 3.6, 4.9, and 4.2 for GCC,
Spice, and TeX, respectively.

Instruction Mixes

Now let's look at the distribution for instruction operations, using our three
benchmarks plus the COBOLX program from the study published by Clark and
Levy [1982]. COBOLX is a synthetic, internal DEC benchmark that was
compiled by the VAX VMS COBOL compiler and uses decimal instructions.
However, the new DEC compilers for the VAX avoid using the decimal
instruction set, since most of that portion of the architecture is emulated in
software-and is therefore much slower--on the newer VLSI-based VAXes.

The data in this section are presented in chart form, but detailed tables for
each machine and benchmark appear in Appendix C. The data here focus on
instruction frequency, but frequency distributions and time distributions do not
always match. We will see an example of this in the next section. Appendix D
contains a set of detailed measurements based on time-distribution
measurements.

Figure 4.24 shows all instructions responsible for more than .1.5% of the
dynamic instruction executions across all the benchmarks. Each complete bar.
shows an average instruction mix over the four programs, and how the programs
make up that mix.

GCC and TeX are very similar in behavior; the largest difference is the higher
frequency of data transfers in TeX. Spice and COBOLX look very different.
Each of these executes more than 20% of its instructions using a portion of the
instruction set that is essentially unused by the other benchmarks. Both
COBOLX and Spice do many fewer integer arithmetic operations, instead using
decimal or floating-point operations. COBOLX makes small use of the data
transfer instructions (4% versus an average of 20%. for the other three
programs); instead, 38% of the instructions it executes are decimal or string
instructions.

These 27 instructions in Figure 4.24 correspond to an average of 88% of the
instructions executed in the four benchmarks. However, the tail of the

INTEL Ex.1035.203

172 4.6 Putting It All Together: Measurements of Instruction Set Usage

Decimal,
string

Floating
point

Data
transfer

Arithmetic,
logical

Control
Procedure

CMPC3
CMPP_
ADDP4
MOVC3, MOVC5
CVTTP,CVTPT

CMPD
DIVD
ADDO_
SUBD_
MULD_

MOVZ*L
MOVQ
PUSHL
MOVL

MULL_
ASHL
CVT*L
sus·_
CLRL
TSTL
MOVA*
INCL
ADDL_
CMP*

JMP
RET
CALLS, CALLG
BRB, BRW
Conditional Branch - - 5%

---- 17%

~ 8 ~RR 1~ 18 1~18 18

• GCC 0 Spice • TeX Ill COBOLX ~

FIGURE 4 .. 24 The VAX instruction frequencies combined graphically. The total size of
each bar shows the behavior that would be seen on a machine that ran these four
programs with equal frequency. The segments of the bar show what percentage of the
usage of that instruction would come from each of the programs. This illustrates that some
portions of the instruction set need to be there for only one class of applications. Overall,
only a small number of instructions outside of the control, data transfer, and integer
arithmetic instructions are heavily used.

distribution is long and there are many instructions executed with a frequency of
1/2 to 1 %. In Spice, for example, the top 15 instructions make up 90% of the
executions, and the top 26 make up 95%. However, there are 149 different VAX
instructions executed at least once!

Measurements of 360 Instruction Set Usage

The measurements in this section are taken from those made by Shustek in his
Ph.D. thesis [1978]. His work includes a study of the dynamic characteristics of

INTEL Ex.1035.204

Instruction Set Examples and Measurements of Use 173

seven large programs on the IBM 360 architecture. He collected his data by
building an interpreter for the 360 architecture. The four programs described in
Figure 4.25 are used in this section to examine characteristics of 360 instruction
set usage.

Program Benchmark class Instruction count Program function

COBOLGO Business D.P. 3,559,533 COBOL usage report
formatter

PLIGO General integer 23,863,497 PL/I computer usage
accounting

FORTGO Floating point 11,719,853 FORTRAN linear
systems solver

PLIC Compiler 24,338,101 PL/I compile

FIGURE 4.25 Four programs used to measure the IBM 360. The suffix "GO" indicates
an execution of a program, while the suffix "C" indicates a compile. We chose the PUI
compiler because it is the largest and most representative; it is also written in PUI.
Shustek's thesis used two FORTRAN executions. We chose to use LINSYS2 to represent
the FORTRAN execution, since it is a more typical FORTRAN program; we refer to the
execution of LINSYS2 as FORTGO.

Addressing Modes and Instruction Types

Figure 4.26 shows the frequency of data accesses by addressing mode. The
COBOL program has a very high frequency of data accesses. Movements of
character data and use of decimal data, which always reside in memory,
probably account for this. FORTGO has a substantially lower number of
memory references. This may arise because of allocation of variables to registers
in the tight inner loops of the program.

COBOL GO 79%

Memory PUGO
FORTGO
PUC

COBOLGO
Immediate PUGO

FORTGO
PUC

COBOLGO
Register PUGO

FORTGO 81%
PUC 62%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

FIGURE 4.26 Distribution of operand accesses made by 360 instructions. Limited
support for immediates is the chief reason that immediates see so little use.

INTEL Ex.1035.205

174

Example

Answer

4.6 Putting It All Together: Measurements of Instruction Set Usage

There an~ only two memory addressing modes on the 360: base register +
displacement (RS format, SI format, and SS format) and base register +
displacement + index register (RX format). However, the operations available in
the instructions that address memory typically appear in only one format.
Therefore, it is probably most useful to look at instruction format usage, as
shown in Figure 4.27. Most instructions are RX format with RR following
behind that. The high usage of RX format should not lead .you to conclude that
the displacement + base register + index register addressing mode is heavily
used, because in 85% of the RX instructions the index register is zero. COBOL
displays a high percentage of SS-format instructions, and this is to be expected
because the decimal and string instructions are all SS format. The FORTRAN
execution displays a large percentage of RR format, 2-byte instructions. This
makes sense in a program that makes heavy use of registers in its optimized
inner loops.

FIGURE 4.27 Percentage of 6-, 4-, and 2-byte instructions for the four 360 programs.
The majority of the instructions are 4 bytes, and almost none are 6 bytes, except when
running COBOLGO.

Given th,e data in Figure 4.27 compute the average instruction length for the
PLIGO program.

The average instruction length is

6 * % SS + 4 * (% RX + % RS + % SI) + 2 * % RR

= 0 + 4 * (0.63+ 0.04+0.17) + 2 * 0.16 = 3.68 bytes

Across all the four programs the average measured length is 3.7 bytes.

INTEL Ex.1035.206

Instruction Set Examples and Measurements of Use

ED 0%
CP

CLC
Decimal, MP

strin~ CVD
ZAP

AP
MVC 3%

Floating MDR
point AD

LTR
IC

LH
Data LPDR

transfer STD
LD
ST 3%

MVI 5%
L,LR 19%

MH
TM
c 3%

Arithmetic, NI
logical CLI

LA
SLL
SR

A,AR 10%

Control, BAL, BALR
procedure BC, BCR 15%

~ 8 ~RR 1~ 181~18 18~

• PUC D FORTGO D PLIGO • COBOLGO I

FIGURE 4.28 Combined data for the four programs on the 360. Compare this with
Figure 4.24, where the data for the VAX are graphed.

Instruction Mixes

175

Now let's examine the data for the instruction mixes. Figure 4.28 shows the
most heavily used instructions in the four 360 benchmarks. As Figure 4.28
illustrates, variations among the programs are very large. The PL/I compiler has
an extraordinarily large number of branches, while the PL/I execution has very
few. The use of arithmetic and logical operators is fairly uniform with the
exception of the COBOL program, which uses decimal operations instead.

Cqmparing these programs to the VAX, the much lower frequency of
branches~J6% on the 360 versus 23% on the VAX-stands out. The number of
branches in a program is largely fixed by the program, except for some
architectural anomalies and possible compiler optimizations (such as loop
unrolling-discussed in Chapter 6-but not used by these compilers). Thus, the

INTEL Ex.1035.207

176 4.6 Putting It All Together: Measurements of Instruction Set Usage

percentage of branches is an indirect measure of instruction power or density,
since it says how many other instructions are required for each branch. We
would expect the VAX with its more powerful addressing modes and multiple
memory operands per instruction to have a high instruction density and a higher
branch frequency. We see further evidence of greater instruction density of the
VAX in the higher frequency of data transfers on the 360-more data is moved
explicitly on the 360 rather than used as memory operands, as on the VAX.
However, we cannot draw any specific quantitative conclusions about
instruction density because the measured programs and compilers are different.

Also very different is the percentage of character and string operations used
by the 360 versus the VAX for the two COBOL applications. Finally, the
FORTRAN execution uses a much larger number of integer operations on the
360; this may be traceable to differences arising when the VAX uses an
addressing mode but the 360 must use explicit instructions for address calcula­
tions.

As we have seen, the differences in instruction usage on the 360 and VAX are
fairly significant. The next two architectures differ from these first two even
more dramatically.

Measurements of 8086 Usage

The data in this section were collected by Adams and Zimmerman [1989] in a
study of seven programs running on an IBM PC under MS DOS 3.1. They
collected the data by single.-stepping the programs and collecting data after
every instruction execution, just as was done for the VAX. The three programs

. used here, a brief description, and the number of instructions executed are shown
in Figure 4.29. As with the VAX and 360, we will begin by examining operand
access and addressing modes, and then progress to instruction mixes.

Addressing Modes and Instruction Length

Our first measurement on the 8086, shown in Figure 4.30, graphs the origins of
operands. Immediates play a small role, while register access slightly dominates
memory access. Compared to the VAX, these programs on the 8086 use a higher
frequency of memory operands. The limited register set of the 8086 probably

Program Benchmark class Instruction count Program function

Lotus Business 2,904,931 Lotus 1-2-3 calculating a 128-
cell worksheet four times

MASM General integer 2,365,711 Microsoft Macro Assembler
assembling a 500-line program

Turbo C Compiler 1,806,143 Turbo C compiling Dhrystone

FIGURE 4.29 Three programs used for 8086 measurements. The benchmarks are
written in a combination of 8086 Assembler and in C.

INTEL Ex.1035.208

Instruction Set Examples and Measurements of Use 177

plays a role in increasing the memory traffic, which substantially exceeds that of
the 360, if we ignore the COBOL program (which must use SS instructions) on
the 360.

Lotus 43%
Memory Assembler 37%

Turbo C 43%

Lotus
Immediate Assembler 7%

Turbo C 11 %

Lotus 52%
Register Assembler 55%

Turbo C 46%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55%

FIGURE 4.30 Three classes of basic operand access on the 8086 and their
distribution. The implied use of the accumulator register (AX), which occurs in a number of
instructions, is counted as a register access.

In the above programs 41 % of the operand references are memory accesses.
Figure 4.31 shows the distribution of addressing modes for these memory
references.

Lotus 15%
Indirect Assembler

Turbo C

Lotus 34%
Absolute Assembler 36%

Turbo C 18%

Lotus 51%
Displacement Assembler 52%

Turbo C 73%

0% 10% 20% 30% 40% 50% 60% 70% 80%

FIGURE 4.31 The 8086 memory addressing modes shown in this graph account for.
almost all the memory references in the three programs. Memory addressing modes
indexed and based have been combined, since their effective address calculations are the
same. Register indirect mode is in effect based with a zero offset, equivalent to the VAX
register-deferred mode. If register indirect were counted as a based mode with zero offset,
about two-thirds of the memory references would be displacement mode. The other two
remaining modes are essentially unused in the three programs.

The variable-length instructions, use of implicit registers, and small size of
the register specifier combine to yield a fairly short average instruction. For
these three programs the average instruction length is approximately 2.5 bytes.

INTEL Ex.1035.209

178 4.6 Putting It All Together: Measurements of Instruction Set Usage

Instruction Mixes on the 8086

The instructions responsible for greater than 1.5% of the executions for the 8086
running the three programs are shown graphically in Figure 4.32. The displayed
subset of the instruction set accounts for a higher proportion of all instruction
executions (90%) than it does on the VAX or 360. As we might suspect, the
architectures with smaller instruction repertoires use a higher percentage of their
opcodes.

The major distinguishing characteristic among the programs is the shift from
data transfer instructions to control instructions in Lotus. Lotus makes heavy use
of the LOOP instruction, which may account for that shift.

The overall frequency of move instructions is much larger on the 8086 than
on the VAX. This difference probably arises because the 8086 has fewer
general-purpose registers. Other possible explanations include the use of string
instructions that generate a sequence of move in.structions, and explicit
movement of data among segments to ease processing. The total branch
frequency is not very different between the 8086 and VAX, though the
distribution of different types of control instructions is very different. The
percentage of arithmetic operations on the 8086 is much smaller, due at least
partially to the larger number of move instructions.

POP_.____,

Datas PUSH ••CJll
transfer LES

MOV c:::::=:::::=:::::=:::::=:::::=:::Jliiil!lil!lli'll!IJ27%

TEST

CBW

SUB

Arithmetic, INC, DEC
logical OR, XOR

ADD

SAL, SHR, RCR

CMP

JMP

Control, LOOP

procedure RET,RETF
call CALL, CALLF

Conditional Jump 10%

0% 5% 10% 15% 20% 25% 30%

• Turbo C 0 MASM Ill Lotus i

FIGURE 4.32 Distribution of instruction frequencies on the 8086 shown in the same
format used for the VAX and 360. ·

INTEL Ex.1035.210

Example

Answer

Instruction Set Examples and Measurements of Use 179

In this and the preceding two sections we saw machines designed in the
1960s (the 360) and the 1970s (the VAX and the 8086). In the next section we
will talk about a machine typical of those designed in the 1980s and its usage.

Instruction Set Usage Measurements on DLX

As with the other architectures we have looked at thus far, we start our
examination of instruction set usage on DLX with measurements of operand
location and move from there to instruction mixes. The DLX data throughout the
book was measured using the MIPS R2000/3000 architecture and adjusting the
data to reflect the differences between DLX and the MIPS architecture. The
MIPS compiler technology with optimization level 2, which does full global
optimization with register allocation, was used to compile the programs. A
special program called pixie was used to instrument the object module. The
instrumented object module produces a monitoring file that is used to produce
detailed execution statistics.

Addressing Mode Usage

Operand usage is shown in Figure 4.33. This data is very uniform across the
applications on DLX. Compared to the VAX, a much higher percentage of the
operand references are to registers: On the VAX, only about half the references
are to registers, while roughly three-quarters are on DLX. This probably occurs
because of the larger number of registers available on DLX and greater emphasis
on register allocation by the DLX compiler.

Since D1=-X has only a single addressing mode, it makes no sense to ask what
the distribution of addressing modes is. However, we noticed earlier that on the
VAX and 8086 the deferred addressing mode, which is equivalent to
displacement addressing with a zero displacement, was the second or third most
popular. Would it be useful to add this mode to DLX?

Using the data on offset values from Figure 3.13 .on page 100, determine how
often on average deferred mode would be used for the three programs if the case
of a zero-offset displacement were made a special mode. In particular, what
percentage of the memory references would use it? How much memory band­
width would be saved if we had a 16-bit instruction for this addressing mode?

The frequencies of zero-off set displacement values are

GCC: 27%

Spice: 4%

TeX: 17%

INTEL Ex.1035.211

180 4.6 Putting It All Together: Measurements of Instruction Set Usage

The average frequency for a zero-offset value is then (27% + 4% + 17%)/3 =
16%. Thus, the mode would be used by 16% of the loads and stores, which
average 17..% of the executions. The decrease in instruction bandwidth would be

1
about 2 * 32% * 16%, or about 3%.

TeX 18%
Memory Spice 16%

GCC 16%

TeX
Immediate Spice

GCC

TeX 73%
Register Spice 78%

GCC 75%

0% 10% 20% 30% 40% 50% 60% 70% 80%

FIGURE 4.33 Distribution of operand accesses for the three benchmarks on DLX.
Only accesses for operands-not for effective address calculations-are included. The fact
that DLX has only 3-operand register formats probably increases the frequency of register
operand access slightly, since some instructions probably have only two unique register
operands and use one register as both a source and destination. On a machine like the
VAX, such an operation might use a 2-operand instruction and thus be counted as having
only 2 register operands. This effect has not been measured.

The other two addressing modes used with some frequency are scaled on the
VAX and absolute on the 8086. Scaled addressing mode is synthesized on DLX
with a separate add; the presence of this address mode is significantly affected
by the compiler technology. Better optimizers use the indexed mode less often
because the optimization of induction variable elimination obviates the need for
indexed addressing and for scaling (see the discussion in Section 3.7). The
direct mode is synthesized by dedicating a register to point to a global area and
accessing variables with a displacement from that register. Because only scalar
variables (i.e., not structures or arrays) need to be accessed in this way, this
works very well for most programs.

Instruction Mixes on DLX

Figure 4.34 shows the instruction mixes for our three programs plus the U.S.
Steel COBOL benchmark-the most widely employed COBOL benchmark. The
benchmark is a synthetic program of about 1,000 lines in length. It is included
here because its behavior is substantially different from FORTRAN and C
programs. Measurements on COBOL are also interesting because they reflect
what changes in instruction set usage occur when decimal arithmetic is not

INTEL Ex.1035.212

Instruction Set Examples and Measurements of Use 181

directly supported by decimal instructions. Let's first look at the differences
among the programs before we consider how these mixes compare to the VAX.

The significant differences among these programs are surprising. Both Spice
and TeX stand out as having very low branch frequency. The effect of
translating the decimal arithmetic of COBOL into binary arithmetic is clearly
seen in the large percentage of arithmetic operations in US Steel. Shifts, logical
operators, and load immediates, which are all used to do fast decimal-binary
conversion, occur in significant frequencies. US Steel's low frequency of data
transfer is certainly affected by this increase in arithmetic and logical operations.
Interestingly, only the call frequency of US Steel is high enough to account for
more than 1 % of the instruction executions (the frequency of JAL is about 1 %
for the other three benchmarks).

Floating
point

Data
transfer

Arithmetic,
logic

DIVD

SUBD

ADDO

MULD

MOV*

SD

LD

LBU

SW

LW

OR,ORI

SRA

AND.ANDI

S--,S--1 ·-·

4%

LI •••• 4%

SLL 4%

LHI ~:::J-•ill 5%

7%

13%

ADDU, ADDUI ····====-••••&llllillillillilli/I 20%

Control,
procedure call

JR

JAL

J

B--Z !!!!!!!!!~~~~~~~~1:,.:1o/c~o _, ____ _

0% 5% 10% 15% - 20%

Total Dynamic Count

• GCC D Spice • TeX Ill US Steel •

FIGURE 4.34 The DLX instruction mix visible over four programs with breakdown
showing each program's contribution. What is remarkable is how a small number of
instructions-conditional branch, add, load, and store-dominate across all four programs.
The opcode LI is really an ADDUI with RO as an operand; the high frequency of ADDU and
ADDUI is discussed below.

INTEL Ex.1035.213

182

Example

Answer

4.6 Putting It All Together: Measurements of Instruction Set Usage

These mixes differ dramatically from the VAX (or other machines in this
section). One difference is the very high percentage of ADDU and ADDUI

instructions. These instructions are used for a variety of purposes where the
other machines may use a different instruction or a more powerful addressing
mode or instruction. Among the most frequent uses for ADDU and ADDUI are:
register-register copies (coded as ADDU with RO), synthesizing an address mode
such as scaled, and incrementing the stack pointer on a procedure call.

It is interesting to compare the branch frequency between DLX and the
VAX, since the absolute branch count should be approximately equal (for
reasons discussed earlier), and the ratio of branch frequencies should be about
the same as the ratio of overall instruction counts. However, the compilers may
affect the type of branch used-conditional branch versus jump-so we need to
combine all the branches and jumps, except those used in procedure calls, to
make a comparison.

Find the ratio of absolute branches on the VAX versus DLX for the three
common benchmarks. The ratio of instruction counts, measured in Section 3.8 is

InstructionsDLX = 2.0
Instructions VAX

Use the data in Appendix C for exact percentages of branches.

From Appendix C, we find that the average branch frequency on DLX is
19%+2%+7% . . .

3
= 9.3%, while the average for the VAX is 17.3%. Thus, the ratio

of the branch counts is

BranchesnLX 9.3% * lnstructionsnLx
=

BranchesvAX 17.3% * InstructionsvAX

9.3 * 2.0 * Instructionsv AX
= 17 .3 * Instructionsv AX

= 18.6 = 1 08
17.3 .

So DLX does about 8% more branches.

In the arithmetic and logical instructions, GCC and US Steel are the most
different between the VAX and DLX. We know US Steel differs because of the
absence of decimal instructions-it would be interesting to see what the
instruction mix on such a program would look like with the new VAX compilers
that avoid the decimal instructions. Another major difference between the two
machines is the lower frequency of compare instructions and test instructions on
DLX. The use of compare with zero in the branch instruction is responsible for

INTEL Ex.1035.214

Instruction Set Examples and Measurements of Use 183

this. Because the set instructions are also used to set logical variables, we cannot
know exactly what percentage of conditional branches on DLX do not need a
compare, but we can guess that it is between 75% and 80%.

The difference in data transfers has been discussed extensively at the end of
Chapter 3 (for a machine very close to DLX) and in the previous subsection. We
know that the larger number of registers (at least twice as many) and more am­
bitious register allocator mean that the load and store frequency is lower on
DLX than on the VAX.

We have now seen instruction mixes for four very different machines. In
Appendix D we can see how these mixes differ when we look at time
distributions rather than frequency of occurrence, and in the next section we will
review some of our key observations and point out some additional pitfalls using
data we have examined in this and earlier sections.

4. 7 I Fallacies and Pitfalls

Fallacy: There is such a thing as a typical program.

Many people would like to believe that there is a single "typical" program that
could be used to design an optimal instruction set. For example, see the synthetic
benchmarks discussed in Section 2.2. The data in this chapter clearly show that
programs can vary significantly in how they use an instruction set. For example,
the frequency of control-flow instructions on DLX varied from 5% to 23%. The
variations are even larger on an instruction set that has specific features for
supporting a class of applications, such as decimal or floating-point instructions
that are unused by other applications. There is a related pitfall.

Pitfall: Designing an architecture on the basis of small benchmarks or large
benchmarks from a restricted application domain when the machine is intended
to be general purpose.

Many programs exhibit somewhat biased behavior or do not use a particular
aspect of an architecture. Obviously, choosing TeX or GCC benchmarks to
design the instruction set might result in a machine that wouldn't do well on a
program like Spice or COBOLX. A more subtle example arises when choosing a
representative, but synthetic, benchmark. For example, Dhrystone (see Section
2.2) does a procedure call approximately every 40 instructions on a machine like
DLX-the number of procedure calls is more than half the number of
conditional branches!. By comparison, in GCC a call occurs about once every
100 instructions, and branches are 15 times more frequent than procedure calls.

Faltacy: An architecture with flaws cannot be successful.

The IBM 360 is often criticized in the literature-the branches are not PC­
relative, and the offset is too small in based addressing. Yet, the machine has

INTEL Ex.1035.215

184 4.7 Fallacies and Pitfalls

been an enormous success because it did several new things properly. First, the
architecture has a big enough address space. Second, it is byte addressed and
handles bytes well. Third, it is a general-purpose register machine. Finally, it is
simple enough that it can be efficiently implemented across a wide performance
and cost range.

The 8086 provides an even more dramatic example. The 8086 architecture is
the only widespread architecture in existence today that is not truly a general­
purpose register machine. Furthermore, the segmented address space of the 8086
causes major problems both for programmers and compiler writers. Despite
these major difficulties, the 8086 architecture-because of its selection as the
microprocessor in the IBM PC-has been enormously successful.

Fallacy: One can design a flawless architecture.

All architecture design involves tradeoffs made in the context of a set of
hardware and software technologies. Over time those technologies are likely to
change, and decisions that may have been correct at the time they were made
look like mistakes. For example, in 1975 the VAX designers overemphasized
the importance of code-size efficiency and underestimated how important ease
of decoding and pipelining would be ten years later. Almost all architectures
eventually succumb to the lack of sufficient address space. However, avoiding
this problem in the·long run would probably mean compromising the efficiency
of the architecture in the short run.

Fallacy: In instruction mixes, time distribution and frequency distribution
will be close.

Appendix D shows the time distributio11s for our benchmark programs and
compares the time and frequency distributions. A simple example of where these
distributions are very different is in the COBOLGO program on the 360. Figure
4.35 shows the top instructions by frequency and by time. The two highest
occurring instructions are responsible for 33% of the instruction executions in ·
COBOLGO, but only 4% of the execution time! Remember that time
distributions are dependent on both the architecture and the implementation
used for the measurement. Hence, time distributions may differ from model to
model, while frequency distributions will be the same, provided neither the
software nor the program changes. This large difference between time and
frequency distributions does not exist for simpler load/store architectures, such
asDLX.

Pitfall: Examining only the worst-case or average behavior of an instruction
as design input.

The best example of this comes from the use of MVC on an IBM 360. The
instruction can move overlapped fields of characters, but this occurs less than
1 % of the time, and then usually to clear a field. The average length of a move

INTEL Ex.1035.216

Instruction Set Examples and Measurements of Use 185

as measured by Shustek was ten bytes, but more than three-quarters of the
moves were either one byte or four bytes in length. Assuming worst-case
behavior (overlapping strings) or average length can each lead to suboptimal
design decisions.

Top instructions by Frequency Top instructions by Percentage
frequency time distribution of time

L, LR 19% ZAP 16%

BC, BCR 14% AP 16%

AP 11% MP 13%

ZAP 9% MVC 9%

MVC 7% CVD 5%

FIGURE 4.35 The top five instructions by frequency and by time for the COBOLGO
benchmark run on the 360. The actual frequency or percentage of time is also shown.
Further data appears in Appendix D.

4.8 I Concluding Remarks

We have seen that instruction sets can vary quite dramatically, both in how they
access operands and in the operations that can be performed by a single
instruction. The comparison of opcode usage across architectures by instruction
frequency is summarized in Figure 4.36. This figure shows that even very
different architectures behave similarly in their use of instruction classes.
However, this should also remind us that performance may be only distantly
related to instruction usage-the execution-time distributions for these
architectures in Appendix D look very different indeed.

Dramatic though the variation in instruction usage is across architectures, it is
equally dramatic across applications. We have seen that floating-point programs,
COBOL programs, and C systems programs differ in how they use a machine.
Large segments of the instruction set are unused by some programs. When such
application-specific features are not part of the instruction set-for example, the
absence of decimal instructions in DLX-the impact is a shift in the use of other
parts of the instruction. Even across two programs written in the same
language-GCC and TeX, or PLIC and PLIGO-the differences in instruction
usage can be significant.

Instruction-usage data are an important input for the architect, but they do not
.necessarily tell us what are the most time-consuming instructions. The next
several chapters will help explain why the difference arises by quantifying the
CPI difference among instructions and machines.

INTEL Ex.1035.217

186 4.9 Historical Perspective and References

Machine Program Control Arithmetic, Data Floating Decimal, Totals
logical transfer point string

VAX GCC 30% 40% 19% 89%

VAX Spice 18% 23% 15% 23% 79%

VAX TeX 30% 33% 28% 91%

VAX COBOLX 25% 24% 4% 38% 91%

360 PLIC 32% 29% 17% 4% 82%

360 FORTGO 13% 35% 40% 7% 95%

360 PLIGO 5% 29% 56% 90%

360 COBOLGO 16% 9% 20% 40% 85%

8086 Turbo C 21% 23% 49% 93%

8086 MASM 20% 24% 46% 90%

8086 Lotus 32% 26% 30% 88%

DLX GCC 24% 35% 27% 86%

DLX Spice 4% 29% 35% 15%(83%

DLX TeX 10% 41% 33% 84%

DLX US Steel 23% 49% 10% 82%

FIGURE 4.36 The frequency of instruction distribution for each benchmark broken into five classes of
instructions. Because only instructions with frequencies greater than 1.5% have been included in previous figures, the
totals are less than 100%.

Historical Perspective and References

Although a large number of machines have been developed in the same time
frames as the four machines covered in this chapter, the discussion here is
confined to these machines and measurements of them.

The IBM 360 was introduced in 1964 with six models and a 25:1 per­
formance ratio. Amdahl, Blaauw, and Brooks [1964] discuss the architecture of
the IBM 360 and the concept of permitting multiple object-code-compatible
implementations. The notion of an instruction set architecture as we understand
it today was the most important aspect of the 360. The architecture also
introduced several important innovations, now in wide use:

1. 32-bit architecture

2. Byte-addressable memory with 8-bit bytes

3. 8-, 16-, 32-, and 64-bit data sizes

In 1971, IBM shipped the first System/370 (models 155 and 165), which in­
cluded a number of significant extensions of the 360, as discussed by Case and
Padegs [1978], who also discuss the early history of System/360. The most
important addition was virtual memory, though virtual memory 370s did not
ship until 1972 when a virtual-memory operating system was ready. By 1978,

INTEL Ex.1035.218

Instruction Set Examples and Measurements of Use 187

the high-end 370 was several hundred times faster than the low-end 360s
shipped ten years earlier. In 1984, the 24-bit addressing model built into the
IBM 360 needed to be abandoned, and the 370-XA (eXtended Architecture) was
introduced. While old 24-bit programs could be supported without change,
several instructions could not function in the same manner when extended to a
32-bit addressing model (31-bit addresses supported) because they would not
produce 31-bit addresses. Converting the operating system, which was written
mostly in assembly language, was no doubt the biggest task.

Several studies of the IBM 360 and instruction measurement have been made.
Shustek's thesis [1978] is the best known and most complete study of the
360/370 architecture. He made several observations about instruction set
complexity that were not fully appreciated until some years later. Another
important study of the 360 is the Toronto study by Alexander and Wortman
[1975] done on an IBM 360 using 19 XPL programs.

In the mid-1970s, DEC realized that the PDP-11 was running out of address
space. The 16-bit space had been extended in several creative ways. However, as
Strecker and Bell [1976] observed, the small address space was a problem that
could not be overcome, but only postponed.

In 1978, DEC introduced the VAX. Strecker [1978] described the architecture
and called the VAX "a Virtual Address eXtension of the PDP-11." One of
DEC's primary goals was to keep the installed base of PDP-11 customers. Thus,
the customers were to think of the VAX as a 32-bit successor to the PDP-11. A
32-bit PDP-11 was possible-there were three designs-but Strecker reports
that they were "overly compromised in terms of efficiency, functionality,
programming ease." The chosen solution was to design a new architecture and
include a PDP-11 compatibility mode that would run PDP-11 programs without
change. This mode also allowed PDP-11 compilers to run and to continue to be
used. The VAX-11/780 was made similar to the PDP-11 in many ways. These
are among the most important:

1. Data types and formats are mostly equivalent to those on the PDP-11. The
F and D floating formats came from the PDP-11. G and H formats were
added later. The use of the term "word" to describe a 16-bit quantity was

'J carried from the PDP-11 to the VAX.

2. The assembly language was made similar to the PDP-11 's.

3. The same buses were supported (Unibus and Massbus).

4. The operating system, VMS, was "an evolution" of the RSX-1 lM/IAS OS
(as opposed to the DECsystem 10/20 OS, which was a more advanced sys­
tem).

5. The file system was basically the same.
·~

The VAX-11/780 was the first machine announced in the VAX series. It is
one of the most successful and heavily studied machines ever built. The
cornerstone of DEC's strategy was a single architecture, VAX, running a single

INTEL Ex.1035.219

188 4.9 Historical Perspective and References

operating system, VMS. This strategy worked well for over ten years. The large
number of papers reporting instruction mixes, implementation measurements,
and analysis of the VAX make it an ideal case study.

Wiecek [1982] reported on the use of various architectural features in running
a workload consisting of six compilers. Erner did a set of measurements
(reported by Clark and Levy [1982]) on the instruction set utilization of the
v_ AX when running four very different programs and when running the
operating system. A good detailed description of the architecture, including
memory management and an examination of several of the VAX
implementations, can be found in Levy and Eckhouse [1989].

The first microprocessors were produced late in the first half of the 1970s.
The Intel 4004 and 8008 were extremely simple 4-bit and 8-bit accumulator­
style machines. Morse et al. [1980] describe the evolution of the 8086 from the
8080 in the late 1970s in an attempt to provide a 16-bit machine with better
throughput. At that time almost all programming for microprocessors was done
in assembly language-both memory and compilers were in1short supply. Intel
wanted to keep its base of 8080 users, so the 8086 was designed to be
"compatible" with the 8080. The 8086 was never object-code compatible with
the 8080, but the machines were close enough that translation of assembly
language programs could be done automatically.

In early 1980, IBM selected a version of the 8086 with an 8-bit external bus,
called the 8088, for use in the IBM PC. (They chose the 8-bit version to reduce
the cost of the machine.) This choice, together with the tremendous success of
the IBM PC and its clones (made possible because IBM opened the architecture
of the PC), has made the 8086 architecture ubiquitous. While the 68000 was
chosen for the popular Macintosh, the Macintosh was never as pervasive as the
PC (partly because Apple did not allow clones), and the 68000 did not acquire
the same software leverage that the 8086 enjoys. The Motorola 68000 may have
been more significant technically than the 8086, but the impact of the selection
by IBM and IBM's open architecture strategy dominated the technical
advantages of the 68000 in the market. As discussed in Section 4.4, the 80186,
80286, 80386, and 80486 have extended the architecture and provided a series of
performance enhancements.

There are numerous descriptions of the 80x86 architecture that have been
published-Wakerly's [1989] is both concise and easy to understand. Crawford
and Gelsinger [1988] is a thorough description of the 80386. The work of
Adams and Zimmerman [1989] represents the first detailed, published study of
the dynamic use of the architecture that we are aware of; the data on the 8086
used in this book come from their study.

The simple load/store machines from which DLX is derived are commonly
called RISC (reduced instruction set computer) architectures. The roots of RISC
architectures go back to machines like the 6600, where Thornton, Cray, and
others recognized the importance of instruction set simplicity in building a fast
machine. Cray continued his tradition of keeping machines simple in the CRAY-
1. However, DLX and its close relatives are built primarily on the work of three

INTEL Ex.1035.220

Instruction Set Examples and Measurements of Use 189

research projects: the Berkeley RISC processor, the IBM 801, and the Stanford
MIPS processor. These architectures have attracted enormous industrial interest
because of claims of a performance advantage of anywhere from two to five
times over other machines·using the same technology.

Begun in the late 1970s, the IBM project was the first to start but was the last
to become public. The IBM machine was designed as an ECL minicomputer,
while the university projects were both MOS-based microprocessors. John
Cocke is considered to be the father of the 801 design. He received both the
Eckert-Mauchly and Turing awards in recognition of his contribution. Radin
[1982] describes the highlights of the 801 architecture. The 801 was an
experimental project, but was never designed to be a product. In fact, to keep
down cost and complexity, the machine was built with only 24-bit registers.

In 1980, Patterson and his colleagues at Berkeley began the project that was
to give this architectural approach its name (see Patterson and Ditzel [1980]).
They built two machines called RISC-I and RISC-II. Because the IBM project
was not widely known or discussed, the role played by the Berkeley group in
promoting the RISC approach was critical to the acceptance of the technology.
In addition to a simple load/store architecture, this machine introduced register
windows-an idea that has been adopted by several commercial RISC machines
(this concept is discussed further in Chapter 8). The Berkeley group went on to
build RISC machines targeted toward Smalltalk, described by Ungar et al.
[1984], and LISP, described by Taylor et al. [1987].

In 1981, Hennessy and his colleagues at Stanford published a description of
the Stanford MIPS machine. Efficient pipelining and compiler-assisted
scheduling of the pipeline were both key aspects of the original MIPS design.
· These three early RISC machines had much in common. Both the university

projects were interested in designing a simple machine that could be built in
"VLSI within the university environment. All three machines-the 801, MIPS,
and RISC-II-used a simple load/store architecture, fixed-format 32-bit
instructions, and emphasized efficient pipelining. Patterson [1985] describes the
three machines and the basic design principles that have come to characterize
what a RISC machine is. Hennessy [1984] is another view of the same ideas, as
well as other issues in VLSI processor design.

In 1985, Hennessy published an explanation of the RISC performance
advantage and traced its roots to a substantially lower CPI-under two for a
RISC machine and over ten for a VAX-11/780 (though not with identical
workloads). A paper by Erner and Clark [1984] characterizing VAX-11/780
performance was instrumental in helping the RISC researchers understand the
source of the performance advantage seen by their machines.

Since the university projects finished up, in the 1983-84 timeframe, the
technology has been widely embraced by industry. Many of the early computers
(before 1986) laid claim to being RISC machines. However, these claims were
often born more of marketing ambition than of engineering reality.

In 1986, the computer industry began to announce processors based on the
technology explored by the three RISC research projects. Moussoris et al. [1986]

INTEL Ex.1035.221

190 4.9 Historical Perspective and References

describe the MIPS R2000 integer processor; while Kane [1987] is a complete
description of the architecture. Hewlett-Packard converted their existing
minicomputer line to RISC architectures; the HP Precision Architecture is
described by Lee [1989]. IBM never directly turned the 801 into a product.
Instead, the ideas were adopted for a new, low-end architecture that was
incorporated in the IBM RT-PC and is described in a collection of papers
[Waters 1986]. In 1990, IBM announced a new RISC architecture (the RS
6000), which is the first super scalar RISC machine (see chapter 6). In 1987, Sun
Microsystems began delivering machines based on the SP ARC architecture, a
derivative of the Berkeley RISC-II machine; SPARC is described in Garner et
al. [1988]. Starting in 1987, semiconductor manufacturers began to become
suppliers of RISC microprocessors. With its announcement of the AMD 29000,
AMD was the first major semiconductor manufacturer to deliver a RISC
machine. In 1988, Motorola announced the availability of its RISC machine, the 1

88000.
Prior to the RISC architecture movement, the major trend had been highly

microcoded architectures aimed at reducing the semantic gap. DEC, with the
VAX, and Intel, with the iAPX 432, were among the leaders in this approach. In
1989, DEC and Intel both announced RISC products-the DECstation 3100
(based on the MIPS Computer Systems R2000) and the Intel i860, a new RISC
microprocessor. With these announcements (and the IBM RS6000), RISC
technology has achieved very broad acceptance. In 1990 it is hard to find a
computer company without a RISC product.

References

ADAMS, T. AND R. ZIMMERMAN [1989]. "An analysis of 8086 instruction set usage in MS DOS
programs," Proc. Third Symposium on Architectural Support for Programming Languages and
Systems (April) Boston, 152-161.

ALEXANDER, W. G. AND D. B. WORTMAN [1975]. "Static and dynamic characteristics of XPL
programs," Computer 8:11 (November) 41-46.

AMDAHL, G., G. BLAAUW, AND F. BROOKS [1964]. "Architecture of the IBM System/360," IBM
J. of Research and Development 8:2 (April) 87-101.

CASE, R. AND A. PADEGS [1978]. "Architecture of the IBM System/370," Comm. ACM 21:1
(January) 73-96.

CHOW, F., M. HIMELSTEIN, E. KILLIAN, AND L. WEBER [1986]. "Engineering a RISC compiler
system," Proc. COMPCON (March), San Francisco, 132-137.

CLARK, D. AND H. LEVY [1982]. "Measurement and analysis of instruction set use in the VAX-
11/780," Proc. Ninth Symposium on Computer Architecture (April), Austin, Tex., 9-17.

CRAWFORD, J. AND P. GELSINGER [1988]. Programming the 80386, Sybex Books, Alameda, Calif.

EMER, J: S. AND D. W. CLARK [1984]. "A characterization of processor performance in the VAX-
11/780," Proc. JI th Symposium on Computer Architecture (June), Ann Arbor, Mich., 301-310.

GARNER, R., A. AGARWAL, F. BRIGGS, E. BROWN, D. HOUGH, B. JOY, S. KLEIMAN, S.
MUNCHNIK, M. NAMJOO, D. PATTERSON, J. PENDLETON, AND R. TUCK [1988]. "Scalable
processor architecture (SPARC)," COMPCON, IEEE (March), San Francisco, 278-283.

INTEL Ex.1035.222

Instruction Set Examples and Measurements of Use 191

HENNESSY, J. [1984]. "VLSI processor architecture," IEEE Trans. on Computers C-33:11
(December) 1221-1246.

HENNESSY, J. [1985]. "VLSI RISC processors," VLSI Systems Design VI:lO (October) 22-32.

HENNESSY, J., N. JOUPPI, F. BASKETT, AND J. GILL [1981]. "MIPS: A VLSI processor
architecture," Proc. CMU Conf on VLSI Systems and Computations (October), Computer Science
Press, Rockville, Md.

KANE, G. [1986]. MIPS R2000 RISC Architecture, Prentice ijall, Englewood Cliffs, NJ.

LEE, R. [1989]. "Precision architecture," Computer 22:1(January)78-91.

LEVY, H. AND R. ECKHOUSE [1989]. Computer Programming and Architecture: The VAX, Digital
Press, Boston.

MORSE, S., B. RA VENAL, S. MAZOR, AND W. POHLMAN [1980]. "Intel Microprocessors-8008 to
8086," Computer 13: 10 (October).

MOUSSOURIS, J., L. CRUDELE, D. FREITAS, C. HANSEN, E. HUDSON, S. PRZYBYLSKI, T.
RIORDAN, AND C. ROWEN [1986]. "A CMOS RISC processor with integrated system functions,"
Proc. COMPCON, IEEE (March), San Francisco.

PATTERSON, D. [1985]. "Reduced Instruction Set Computers," Comm. ACM 28:1 (January) 8-:21.

PATTERSON, D. A. AND D.R. DITZEL [1980]. "The case for the reduced instruction set computer,"
Computer Architecture News 8:6 (October), 25-33.

RADIN, G. [1982]. "The 801 minicomputer," Proc. Symposium Architectural Support for
Programming Languages and Operating Systems (March), Palo Alto, Calif. 39-47.

SHUSTEK, L. J. [1978]. "Analysis and performance of computer instruction sets," Ph.D. Thesis
(May), Stanford Univ., Stanford, Calif.

STRECKER, W. [1978]. "VAX-11/780: A virtual address extension to the DEC PDP-11 family,"
Proc. AF/PS NCC 47, 967-980.

STRECKER, W. D. AND C. G. BELL [1976]. "Computer structures: What have we learned from the
PDP-11 ?,"Proc. Third Symposium on Computer Architecture.

TAYLOR, G., P. HILFINGER, J. LARUS, D. PATTERSON; AND B. ZORN [1986]. "Evaluation of the
SPUR LISP architecture," Proc. 13th Symposium on Computer Architecture (June), Tokyo.

UNGAR, D., R. BLAU, P. FOLEY, D. SAMPLES, AND D. PATTERSON [1984]. "Architecture of
SOAR: Smalltalk on a RISC," Proc. 11th Symposium on Computer Architecture (June), Ann
Arbor, Mich.,.188-197.

WAKERLY, J. [1989]. Microcomputer Architecture and Programming, J. Wiley, New York.

WATERS, F., ED. [1986]. IBM RT Personal Computer Technology, IBM, Austin, Tex., SA 23-1057.

WIECEK, C. [1982]. "A case study of the VAX 11 instruction set usage for compiler execution,"
Proc. Symposium on Architectural Support for Programming Languages and Operating Systems
(March), IEEE/ACM, Palo Alto, Calif., 177-184.

EXERCISES

In these exercises you will often need to know the frequency of individual instructions in
a mix. Figures C.1 through C.4 supply the data corresponding to Figures 4.24, 4.28, 4.32,
and 4.34. Additionally, some problems involve the execution-time distribution rather than
the frequency distribution. The information on instruction-time distribution appears in
Appendix D; problems that require data from Appendices C or D include the letter C or D
within the brackets, e.g., <C,D>.

INTEL Ex.1035.223

192 Exercises

In doing these exercises you will need to work with measurements that may not total
100%. In some cases you will need to normalize the data to the actual total. For example,
if we were asked to find the frequency of MOV _ instructions in Spice running on the
VAX, we would proceed as follows (using data from Figure C.1):

Frequency of measured MOV _in table = 9% + 6% = 15%

Fraction of all instructions executed included in Figure C.1 for Spice = 79%

We now normalize the 15%. This is equivalent to assuming that the unmeasured 21 % of
the instruction mix behaves the way as the measured portion. Since there are unmeasured
MOV _ instructions this is the most logical approach.

Frequency of MOV _ in Spice on VAX = ~~: = 19%

If, however, we were asked to find the frequency of MOVL in Spice, we know that it is
exactly 9%, since we have a complete measurement for this instruction type.

4.1 [20/20] <4.2,4.6,C> You are being interviewed by Digital Equipment Corporation for
a job as lead computer designer of future VAX computers. To see if you know what you
are talking about, before they hire you they want to ask you a few questions. They have
allowed you to bring your notes, including Section 4.6 and Appendix C.

You remember an example in Chapter 4 where you were told that the average VAX
instruction had 1.8 operands. You also recall that opcodes are almost always 1 byte long.

a. [20] They ask you to derive the average size of a VAX instruction for the TeX
benchmark. Use the addressing-mode frequency data in 4.22 and 4.23, the
information on sizes of displacements in Figure 3.35 (page 133), the information on
immediate sizes in Figure 3.15 (page 102), and the length of the VAX addressing
modes shown in Figure 4.3. (This should be a more accurate estimate than the
example that appears on page 170, but ignore addressing modes that account for less
than 5% of the occurences.) ·

b. [20] They then ask you to evaluate the performance of their new machine with a 100-
MHz clock. They tell you that the average CPI for everything except instruction fetch
and operand fetch is 3 clocks. They also tell you that

• each data memory specifier and access takes an additional 2 clocks, and

• every 4 bytes of instructions fetched by the instruction fetch unit take one clock.

Can you find the effective native MIPS?

4.2 [20/22/22] <4.2,4.3,4.5> Consider the following fragment of C code:

for (i=l; i<=lOO; i++)
{A[i] = B[i] + C;}

Assume that A are B are arrays of 32-bit integers, and C and i are 32-bit integers. Assume
that all data values are kept in memory (at addresses 0, 5000, 1500, and 2000 for A, B, C,
and i, respectively) except when they are operated on.

a. [20] Write the code for DLX; how many instructions are required dynamically? How
many memory data references will be executed? What is the code size?

INTEL Ex.1035.224

Instruction Set Examples and Measurements of Use 193

b. [22] Write the code for the VAX; how many instructions are required dynamically?
How many memory data references will be executed? What is the code size?

c. [22] Write the code for the 360; how many instructions are required dynamically?
How many memory data references will be executed? What is the code size? For
simplicity, you may assume that register RI contains the address of the first
instruction in the ioop.

4.3 [20/22/22] <4.2,4.3,4.5> For this question use the code sequence of problem 4.2, but
put the scalar data-the value of i and the address of the array variables (but not the
actual array)-in registers and keep them there whenever possible.

a. [20] Write the code for DLX; how many instructions are required dynamically? How
many memory-data references will be executed? What is the code size?

b. [22] Write the code for the VAX; how many instructions are required dynamically?
How many memory data references will be executed? What is the code size?

c. [22] Write the code for the 360; how many instructions are required dynamically?
How many memory data references will be executed? What is the code size?
Assume RI is set-up as in Exercise 4.2 part C.

4.4 [15] <4.6> When designing memory systems it becomes useful to know the frequency
of memory reads versus writes and also accesses for instructions versus data. Using the
average instruction-mix information for DLX in Appendix C, find

• the percentage of all memory accesses that are for data

• the percentage of data accesses that are reads

• the percentage of all memory accesses that are reads

Ignore t]le size of a datum when counting accesses.

4.5 [15] <4.3,4.6> Due to the lack of a PC-relative branch, a branch on a 360 often
requires two instructions. This has been a major criticism of the architecture. Let's figure
out what this omission costs, assuming that an extra instruction is always needed for a
conditional branch on the 360, but that the extra instruction would not be necessary with
PC-relative branches. Using the average data from Figure 4.28 (page I 75) for branches,
determine how many more instructions the standard 360 executes than a 360 with PC­
relative branches. (Remember that the only branches are BC and BCR.)

4.6 [I5] <4.2,4.6> We are interested in adding an instruction to the VAX architecture that
compares an operand to zero and branches. Assume that

• only instructions that set the condition code for a conditional branch could be
eliminated,

• 80% of the conditional branches require an instruction whose only purpose is to set
the condition, and ·

• 90% of all branches that have an instruction that just sets the condition (i.e., the just­
mentioned 80%) are based on a compare against 0.

INTEL Ex.1035.225

194 Exercises

Using the average VAX data from Figure 4.24 (page 172) what percentage more
instructions would a standard VAX execute compared to the VAX with the compare-and­
branch instruction added?

4.7 [18] <4.5,4.6> Compute the effective CPI for DLX. Suppose we have made the
following measurements of average CPI for instructions:

All R-R instructions 1 clock cycle

Loads/stores 1.4 clock cycles

Conditional branches

taken 2.0 clock cycles

not taken 1.5 clock cycles

Jumps 1.2 clock cycles

Assume that 60% of the conditional branches are taken. Average the instruction
frequencies of GCC and TeX to obtain the instruction mix.

4.8 [15] <4.2,4.5> Rather than have immediates supported for many instruction types,
some architectures, such as the 360, collect immediates in memory (in a literal pool) and
access them from there. Suppose the VAX didn't have immediate-mode addressing, but
instead put immediates in memory and accessed them using displacement-mode
addressing. What would be the increase in the frequency that displacement mode was
used? Use the average of the measurements in Figures 4.22 and 4.23 for this problem.

4.9 [20/10] <4.5,4.6> Consider adding a new index addressing mode to DLX. The
addressing mode adds two registers and an 11-bit signed offset to get the effective
address.

Our compiler will be changed so that code sequences of the form

ADD Rl, Rl, R2
LW Rd, 0 (Rl) (or store)

will be replaced with a load (or store) using the new addressing mode. Use the overall
average instruction frequencies in evaluating this addition.

a. [20] Assume that the addressing mode can be used for 10% of the displaceme:r..t
loads and stores (accounting for both the frequency of this type of address
calculation and the shorter offset). What is the ratio of instruction count on the
enhanced DLX compared to the original DLX?

b. [10] If the new addressing mode lengthens the clock cycle by 5%, which machine
will be faster and by how much?

4.10 [12] <4.2,4.5,D> Assume the average number of instructions involved in a call and
return on DLX is 8. The average frequency of a JAL instruction in the benchmarks is 1 %.
If all instructions on DLX take the same number of cycles, how does the percentage of
cycles in calls and returns on DLX compare to the percentage of cycles in CALLS and
RET on the VAX?

(

INTEL Ex.1035.226

Instruction Set Examples and Measurements of Use 195

4.11 [22/22] <4.2,4.3,4.6,D> Some people believe that the most frequent instructions are
also the simplest, while others have pointed out that the most time-consuming
instructions are often not the most frequent.

a. [22] Using the data in Figure D.l, find the CPI of the five most time-consuming
instructions on the VAX that have an average execution frequency of at least 2%.
Assume the overall VAX CPI is 10.

b. [22] Find the CPI for the five most time-consuming instructions on the 360 that have
at least a 3% average frequency, using the data in Figure D.2. Assume the overall
360 CPI is 4.

4.12 [20/20/10] <4.4, 4.6,D> You have been hired to try to convert the 8086 architecture
to be more register-register oriented. To do this, you will_ need more registers, and hence
more encoding space, since the encodings are already tight. Assume that you have
determined that eliminating the PUSH and POP instructions can yield the encoding space
needed. Suppose that increasing the number of registers reduces the frequency of each of
the memory-referencing instructions (PUSH, POP, LES, and MOV) by 25%, but that each
remaining PUSH or POP instruction must be replaced by a two-instruction sequence. Use
the average data from Figures 4.30-4.32 (pages 177-178), the average CPI of 14.1, and
Figure D.5 to answer the following questions about this new machine-the RR8086-
versus the 8086.

a. [20] Which machine executes more instructions and by how much?

b. [20] Using the information in Appendix D, determine which machine has a higher
CPI and by how much?

c. [10] Assuming the clock rates are identical, which machine is faster and by how
much?

4.13 [25/15] <4.2-4.5> Find a C compiler and compile the code shown in Exercise 4.2
for a load/store machine or one of the machines covered in this chapter. Compile the code
both optimized and unoptimized.

a. [25] Find the instruction count, dynamic instruction bytes fetched, and data accesses
done for both the optimized and unoptimized versions.

b. [15] Try to improve the code by hand, and compute the same measures as in Part a
for your hand-optimized version.

4.14 [30] <4.6> If you have access to a VAX, compile the code for Spice and try to
determine why it makes much smaller use of immediates than programs like GCC and
TeX (see Figure 4.22 on page 169).

4.15 [30] <4.6> If you have access to an 8086-based machine, compile some programs
and look at the frequency of MOV instructions. How does it correspond to the frequency in
Figure 4.32 (page 178). By examining the code, can you find some reasons why the
frequency of MOVs is so high?

4.16 [30/30] <4.6, 4.7> Small synthetic benchmarks can be very misleading when used
for measuring instruction mixes. This is particularly true when these benchmarks are

INTEL Ex.1035.227

196 Exercises

optimized. In these exercises we want to explore these differences. These programming
exercises can be done with a VAX, any load/store machine, or using the DLX compiler
and simulator.

a. [30] Compile Whetstone with optimization for a VAX, or a load/store machine
similar to DLX (e.g., a DECstation or a SPARCstation), or the DLX simulator.
Compute the instruction mix for the top twenty instructions. How do the optimized
and unoptimized mixes compare? How does the optimized mix compare to the mix
for Spice on the same or a similar machine?

b. [30] Compile Dhrystone with optimization for a VAX, or a load/store machine
similar to DLX (e.g., a DECstation or a SPARCstation), or the DLX simulator.
Compute the instruction mix for the top twenty instructions. How do the optimized
and unoptimized mixes compare? How does the optimized mix compare to the mix
for TeX on the same or a similar machine?

4.17 [30] <4.6> Many computer manufacturers now include tools or simulators that allow
you to measure the instruction set usage of a user program. Among the methods in use are
machine simulation, hardware-supported trapping, and a compiler technique that
instruments the object-code module by inserting counters. Find a processor available to
you that includes such a tool. Use it to measure the instruction set mix for one of TeX,
GCC, or Spice. Compare the results to those shown in this chapter.

4.18 [30] <4.5,4.6> DLX has only three operand formats for its register-register
operations. Many operations might use the same destination register as one of the
sources. We could introduce a new instruction format into DLX called R2 that has only
two operands and is a total of 24 bits in length. By using this instruction type whenever
an operation had only two different register operands, we could reduce the instruction
bandwidth required for a program. Modify the DLX simulator to count the frequency of
register-register operations with only two different register operands. Using the
benchmarks that come with the simulator, determine how much more instruction
bandwidth DLX requires than DLX with the R2 format.

4.19 [35] <D> Devise a method to measure the CPI of a machine-preferably one of the
machines discussed in this chapter or a relative of DLX. Using the instruction-mix data,
choose the top ten instructions and measure their CPI. How does the frequency ranking
compare to the time taken? How do your measurements compare to the numbers shown
in Appendix D? Try to explain any differences in both time-versus-frequency ranking and
any differences between your measures and those in Appendix D.

4.20 [35] <4.5,4.6> What are the benefits of more powerful addressing modes? Assume
that three VAX addressing modes-autoillcrement, displacement deferred, and scaled­
were added to DLX. Change the C compiler to incorporate the use of these modes.
Measure the change in instruction count with these new modes for several benchmark
programs. Compare the instruction mixes with those for standard DLX. How do the usage
patterns compare to those for the VAX shown in Figure 4.23 (page 170)?

INTEL Ex.1035.228

Instruction Set Examples and Measurements of Use 197

4.21 [35/35/30] <4.5,4.6> How much does the flexibility of memory-memory
instructions reduce instruction count compared to a load/store machine? This program­
ming assignment will help you find out.

a. [35] Assume DLX has an instruction format that allows one of the source operands
to be in memory. Modify the C code generator for DLX so that it uses this new
instruction type. Use several C programs to measure the effectiveness of your
change. How many more instructions does DLX require versus this new machine
that appears to be closer to the 360? How often is the r~gister-memory format used?
How do the instruction mixes differ from those in Section 4.6?

b. [35] Assume that DLX has instruction formats that allow any operand (or all three)
to be memory references. Modify the C code generator for DLX so that it uses these
new instruction formats. Use several programs to measure the usage of these
instructions. How many more instructions does DLX require versus this new
machine that appears to be closer to the VAX? How do the instruction mixes differ
from those in Section 4.6? How many memory operands does the average
instruction have?

c. [30] Design an instruction format for the machines described in Parts a and b;
compare the dynamic instruction bandwidth required for these two machines versus
DLX.

4.22 [40] <4.6> Some manufacturers have not yet seen the value of measuring instruction
set mixes. Maybe you can help them. Pick a machine for which such a tool is not widely
available. Construct one for that machine. If the machine has a single-step mode-as in
the VAX or 8086-you can use it to create your tool. Otherwise, an object code
translation, as used in the MIPS compiler system [Cho)V 1986] might be more
appropriate. If you measure the activity of a machine using the benchmarks in this text
(GCC, Spice, and TeX), and are willing to share the results, please contact the publisher ..

f' 4.23 [25] <E> How much do the instruction set variations among the RISC machines
discussed in Appendix E affect performance. Choose at least three small programs (e.g., a
sort), and code these programs in DLX and two other assembly languages. What is the
resulting difference in instruction count?

4.24 [40] <E> Choose one of the machines discussed in Appendix E. Modify the DLX
code generator and DLX simulator to generate code for and simulate the machine you
chose. Using as many benchmarks as practical, measure the instruction count differences
seen between DLX and the machine you chose.

INTEL Ex.1035.229

In analyzing the functions of the contemplated device, certain
classificatory distinctions suggest themselves immediately ...
First: Since the device is primarily a computer it will have to
perf9rm the elementary operations of arithmetic most
frequently ... a central arithmetic part of the device will
probably have to exist ... Second: The logical control of the
device, that is the proper sequencing of its operations, can be
most efficiently carried out by a central control organ.

John von Neumann, First Draft of a Report on the EDVAC (1945)

5.1 Introduction 199

5.2 Processor Datapath 201
5.3 Basic Steps of Execution 202

5.4 Hardwired Control 204

5.5 Microprogrammed Control 208
5.6 Interrupts and Other Entanglements 214
5.7 Putting It All Together: Control for DLX 220
5.8 Fallacies and Pitfalls 238
5.9 Concluding Remarks 240
5.10 Historical Perspective and References 241

Exercises 244

INTEL Ex.1035.230

5.1

Basic Processor
Implementation
Techniques

Introduction

Architecture shapes a building, but carpentry determines the quality of its
construction. The carpentry of computing is implementation, which sets two of

.. three performance components: CPI (clock cycles per instruction) and clock
cycle time.

In the four decades of constructing computers, much has been learned about
s- implementation-certainly more than can fit in one chapter. Our goal in this

chapter will be to lay the foundations of processor implementation, with
emphasis on control and interrupts. (Floating point is ignored in this chapter;
readers are referred to Appendix A.) While some material is simple, Chapters 6

.. and 7 build on this foundation and show the road to faster computers. (If this is a
review, go quickly over Sections 5.1to5.3 and then take a look at the examples
in Section 5.7, which compare performance of hardwired versus micropro­
grammed control for DLX.)

The computer was divided into basic components by von Neumann, and these
components still remain today: The CPU, or the processor, is the core of the
computer and contains everything except the memory, input, and output. The
processor is further divided into computation and control.

INTEL Ex.1035.231

200 5.1 Introduction

ALU output options:
81 +82 81-82
81 & 82 81I82
81 A 82 81 « 82
81 » 82 81 »a 82

81 82
0 1

--------------,
I
I
I
t

--,------r------,
I I
T I

Register
file

Temp

--------,
PC

IAR

MAR

I
t

IAR - interrupt address register
MAR - memory address register
MDR - memory data register

IR- instruction register
PC - program counter

INTEL Ex.1035.232

Basic Processor Implementation Techniques 201

5.2 I Processor Datapath

Today the "arithmetic" organ of von Neumann is called the datapath. It consists
of execution units, such as arithmetic logic units (ALUs) or shifters, the
registers, and the communication paths between them, as Figure 5.1 illustrates.
From the programmer's perspective, the datapath contains most of the state of
the processor-the information that must be saved for a program to be
suspended and then restored for execution to continue. In addition to the user­
visible general-purpose registers, the state includes the program counter (PC),
the interrupt address register (IAR), and the program status register; the latter
contains all the status flags for a machine, such as interrupt enable, condition
codes, and so forth.

Because an implementation is created for a specific hardware technology, it is
the implementation that sets the clock cycle time. The clock cycle time in tum is
determined py the slowest circuits that operate during a clock cycle period­
within the processor, the datapath frequently has that honor. The datapath will
also dominate the cost of the processor, typically requiring half the transistors
and half the processor area. While it does all the computation, affects
performance, and dominates cost, the datapath is the simplest portion of the
processor to desigri.

Some have held the large quantity of papers on ALU designs and fast-carry
schemes responsible for the loss of our rain forests, with papers on circuit
designs for registers with multiple read and write ports only slightly less
culpable. While this is surely an exaggeration, there are numerous options. (See
Appendix A, Section A.8, for a few carry schemes.) Given the resources
available and the desired goals of cost and performance, it is the designer's job
to select the best style of ALU, the proper number of ports in the register file,
and then march onward.

FIGURE 5.1 (See adjoining page.) A typical processor, divided into control and
datapath, plus memory. The paths for control are in dashed lines and the paths for data
transfer are in solid lines. The processor uses three buses: S1, S2, and Dest. The
fundamental operation of the datapath is reading operands from the register file, operating
on them in the ALU, and then storing the result back. Since the register file does not need
to be read and written every clock cycle, most designers follow the advice of making the
frequent case fast by breaking this sequence into multiple clock cycles and making the
clock cycle shorter. Thus, in this datapath there are latches on the two outputs of the
register file (called A and B) and a latch on the input (C). The register file contains the 32
general-purpose registers of DLX. (Register O of the register file always has the value O,
matching the definition of register 0 in the DLX instruction set.) The program counter (PC)
and interrupt address register (IAR) are also part of the state of the machine. There are
also registers, not part of the state, used in the execution of instructions: memory address
register (MAR), memory data register (MDR), instruction register (IR), and temporary
register (Temp). The Temp register is a scratch register that is available for temporary
storage for control to perform some DLX instructions. Note that the only path from the S1
and S2 buses to the Dest bus is through the ALU.

INTEL Ex.1035.233

202 5.3 Basic Steps of Execution

5.3 I Basic Steps of Execution

Before discussing control, let's first review the steps of instruction execution.
For the DLX instruction set (excluding floating point), all instructions can be
broken into five basic steps: fetch, decode, execute, memory-access, and write­
result. Each step may take one or several clock cycles in the processor shown in
Figure 5.1 (page 200). Here are the five steps (see the page facing the inside
back cover for a review of the register transfer language notation):

1. Instruction fetch step: /

MAR f- PC; IR f- M [MAR]

Operation: Send out the PC and fetch the instruction from memory into the
instruction register. PC is transferred to MAR because it has a connection to
the memory address in Figure 5.1, but PC doesn't.

2. Instruction decode/register fetch step:

A f- Rsl; B f- Rs2; PC f- PC + 4

Operation: Decode the instruction and access the register fiie .to read the
registers. Also, increment the PC· to point to the next instruction.

Decoding can be done in parallel with reading registers, which means that
two registers' values are sent to the A and B latches before the instruction is
decoded. How this is possible can be seen by glancing at the DLX instruction
format (Figure 4.19 on page 166), which shows that the source registers are
always at the same location in an instruction. Thus, registers can be read b.ecause
the register specifiers are unambiguous. (This technique is known as fixed-field
decoding.) Since the immediate portion of an instruction is also identical in
every DLX format, the sign-extended immediate is also calculated during this
step in case it is needed in the next step.

3. Execution/effective address step:

The ALU is operating on the operands prepared in the prior step, performing
one of three functions depending on the DLX instruction type.

Memory reference:

MAR f- A + (IR16) 16##IR16 .. 31 ; MDR f- Rd

Operation: The ALU is adding the operands to form the effective address,
and the MDR is loaded for a store.

INTEL Ex.1035.234

Basic Processor Implementation Techniques 203

ALU instruction:

ALUoutput f- A op (B or (IR16) 16##IR16 .. 31)

Operation: The ALU is performing the operation specified by the opcode on
the value in A (Rsl) and on the value in B or the sign-extended immediate.

Branch/Jump:

ALUoutputf- PC+ (IR16) 16##IR16 .. 31 ; condf- (A op 0)

Operation: The ALU is adding the PC to the sign-extended immediate value
(16-bit for branch and 26-bit for jump) to compute the address of the branch
target. For conditional branches, a register, which has been read in the prior
step, is checked to decide if this address should be inserted into the PC. The
comparison operation op is the relational operator determined by the opcode;
for example, op is"==" for the instruction BEQZ.

The load/store architecture of DLX means that effective address and
execution steps can be combined into a single step, since no instruction needs to
both calculate an address and perform an operation on the data. Other integer
instructions not included above are JAL and TRAP. These are similar to jumps,
except JAL stores the return address in R31 and TRAP stores it in IAR.

4. Memory access/branch completion step: The only DLX instructions active in
this step are loads, stores, branches, and jumps.

Memory reference: ·

MDR f- M [MAR] or M [MAR] f- MDR

Operation: Access memory if needed. If instruction is a load, data returns
from memory; if it is a store, then the data writes into memory. In either case
the address used is the one computed during the prior step.

Branch:

if (cond) PC ~ ALUoutput (branch)

Operation: If the instruction branches, the PC is replaced with the branch
destination address. For jumps the condition is always true.

5. Write-back step:

Rd f- ALUoutput or MDR

Operation: Write the result into the register file, whether coming from the
memory system or from the ALU.

INTEL Ex.1035.235

204

5.4 J

5.3 Basic Steps of Execution

Now that we have had an overview of the work that must be performed to
execute an instruction, we are ready to look at the two main techniques for
implementing control.

Hardwired Control

If the datapath design is simple, then some part of processor design must be
difficult, and that part is control. Specifying control is on the critical path· of any
computer project; and it is where most errors are found when a new computer is
debugged. Control can be simplified-the easiest way is to simplify the
instruction set-but that is the subject of Chapters 3 and 4 ..

Given an instruction set description, such as the. description of DLX in
Chapter 4, and a datapath design, such as Figure 5.1 (page 200), the next step is
defining the control unit. The control unit tells the datapath what to do every
clock cycle during the execution of instructions. This is typically specified~py a
finite-state diagram. Every state corresponds to one clock cycle, and the
operations to be performed during the clock cycle are written within the state.
Each instruction takes several clock cycles to complete; Chapter 6 shows how to _
overlap execution to reduce the clock cycles per instruction to as low as one.

Figure 5.2 shows a portion of a finite-state diagram for the first two steps of
instruction execution in DLX. The first step is spread over all three states: The·
memory-address register is loaded from PC during the first state, the instruction
register is loaded from memory during the second state, and the PC is
incremented in the third state. This third state also performs step 2, loading the
two register operands, Rsl and Rs2, into the A and B registers for use in the later
states. In Section 5.7 the full finite-state diagram for DLX is shown.

Turning a state diagram into hardware is the next step. The alternatives for
doing this depend on the implementation technology. One way to bound the
complexity of control is by the product

States * Control inputs * Control outputs

where

States = the number of states in the finite-state machine controller;

Control inputs = the number of signals examined by the control unit;

Control outputs = the number of control outputs generated for the hardware,
including bits to specify the next state.

/

INTEL Ex.1035.236

Basic Processor Implementation Techniques 205

Memory access not complete

FIGURE 5.2 The top level of the DLX finite-state diagram. The first two steps of
instruction execution, instruction fetch and instruction decode/register fetch, are shown. The
second state repeats until the instruction is fetched from memory. The last three steps of
instruction execution-execution/effective address, memory access, and write back-are
found in Section 5.7.

Figure 5.3 shows an organization for control of DLX. Let's say the DLX
finite-state diagram contains 50 states, requiring 6 bits to represent the state.
Thus, the control inputs must include these 6 bits, some number of bits (say 3) to
select conditions from the datapath and memo!)'. interface unit, plus instruction
bits. Register specifiers and immediates are sent directly to the hardware, so
there is no need to send all 32 bits of DLX instructions as control inputs. The
DLX opcode is 6 bits, and only 6 bits of the extended opcode (the "func" field)
are used, making a total of 12 instruction bits for control inputs. Given those
inputs, control can be specified as a big table. Each row of the table contains the
values of the control lines to perform the operations required by that state and
supplies the next state number. Let's assume there are 40 control lines.

Reducing Hardware Costs of Hardwired Control

The straightforward implementation of a table is with a read only memory
(ROM). In this example, 221 words, each 40 bits wide (10 MB of ROM!), would
be required. It will be a long time before we can afford this much hardware for
control. Fortunately, little of this table has unique information, so its size can be
reduced by keeping only the rows with unique information-at the cost of more
complicated address decoding. Such a hardware construct is called a
programmed logic array (PLA). This essentially reduces the hardware from 221

words to 50 words while increasing address decoding logic. Computer-aided
design programs can reduce the hardware requirements even further by

INTEL Ex.1035.237

206 5.4 Hardwired Control

40
bits

wide

2 (12+3+5) = 2 21 entries

c=:
o­
n­
t--r_

\'"f----J~o -
1--1--i_
n­
e­
s--

Datapath

FIGURE 5.3 Control specified as a table for a simple instruction set. The control
inputs consist of 6 input lines for the 50 states (log2 50=5.6), 3 inputs from the datapath,
and 12 instruction bits (the 6-bit opcode plus 6 bits of the extended opcode). The number of
control lines is assumed to be 40.

minimizing the number of "minterms," which is essentially the number of
unique rows. In real machines, even a single PLA is sometimes prohibitive
because its size grows as the product of the unique rows times the sum of the
inputs and outputs. In such a case, a large table is factored into several smaller
PLAs, whose outputs are multiplexed to choose the correct control.

Oddly enough, the numbering of the states in the finite-state diagram can
make a difference in the size of the PLA. The idea here is to try to assign similar
state numbers to states that perform similar operations. Differentiating the bit
patterns that represent the state number by only one bit-say 010010 and
010011-make the inputs close for the same output. There are also computer­
aided design programs to help with this state-assignment problem.

Since the instruction bits are also inputs to the control PLA, they can affect
the complexity of the PLA just as numbering of the states does. Thus, care
should be taken when selecting opcodes since it may affect the cost of control.

Readers interested in taking this design further are referred to the many
excellent texts on logic design.

INTEL Ex.1035.238

Example

Answer

Basic Processor Implementation Techniques 207

Performance of Hardwired Control

When designing the detailed control for a machine, we want to minimize the
average CPI, the clock cycle, the amount of hardware to specify control, and the
time to develop a correct controller. Minimizing CPI means reducing the
average number of states along the path of execution of an instruction, since

,, each clock cycle corresponds to a state. This is typically done by making
changes to the datapath to combine or eliminate states.

Let's change the hardware so that the PC can be used directly to address
memory without going through MAR first. How should the state diagram be
changed to take advantage of this improvement, and what would be the change
in performance?

From Figure 5.2 (page 205) we see that the first state copies PC into MAR. This
proposed hardware change makes that state unnecessary, and Figure 5.4 shows
the appropriately modified state diagram. This change saves one clock cycle
from every instruction. Suppose the average number of CPI was originally 7.
Provided there was no impact on clock cycle time, this change would make the
machine 17 % faster.

Memory access not complete

FIGURE 5.4 Figure 5.2 modified to remove the loading of MAR from PC in the first state
and to use the PC value directly to address memory.

INTEL Ex.1035.239

208 5.5 Microprogrammed Control

5.5 I Microprogrammed Control

After constructing the first full-scale, operational, stored-program computer in
1949, Maurice Wilkes reflected on the process. 1/0 was easy-teletypewriters
could just be purchased directly from the telegraph company. Memory and the
datapath were highly repetitive, and that made things simpler. But control was
neither easy nor repetitive, so Wilkes set out to discover a better way to design
control. His solution was to turn the control unit into a miniature computer by
having a table to specify control of the datapath and a second table to determine
control flow at the micro level. Wilkes called his invention microprogramming
and attached the prefix "micro" to traditional terms used at the control level:
microinstruction, microcode, microprogram, and so on. (To avoid confusion the
prefix "macro" is sometimes used to describe the higher level, e.g.,
macroinstruction and macroprogram.) Microinstructions specify all the control
signals for the datapath, plus the ability to conditionally decide which micro-

-c-
o-

Microprogram n -
memory t --r -

I - Datapath

-
I --i -n -e --s -

FIGURE 5.5 A basic microcoded engine. Unlike Figure 5.3 (page 206), there is an
incrementer and special logic to select the next microinstruction. There are two approaches
to specifying the next microinstruction: use a microinstruction program counter, as shown
above, or include a next microinstruction address in every microinstruction. Microprogram
memory is sometimes called ROM because most early machines use ROM for control
stores.

INTEL Ex.1035.240

Basic Processor Implementation Techniques 209

instruction should be executed next. As the name "microprogramming" suggests,
once the datapath and memory for the microinstructions are designed, control
becomes essentially a programming task; that is, the task of writing an inter­
preter for the instruction set. The invention of microprogramming enabled the
instruction set to be changed by altering the contents of control store without
touching the hardware. As we will see in Section 5.10, this ability played an
important role in the IBM 360 family-one that was a surprise to its designers.

,Figure 5 .5 shows an organization for a simple microprogrammed control. The
structure of a microprogram is very similar to the state diagram, with a
microinstruction for each state in the diagram.

ABCs of Microprogramming

While it doesn't matter to the hardware how the control lines are grouped within
a microinstruction, control lines performing related functions are traditionally
placed next to each other for ease of understanding. Groups of related control
lines are calledfields and are given names in a microinstruction format. Figure
5.6 shows a microinstruction format with eight fields, each named to reflect its
function. Microprogramming can be thought of as supplying the proper bit
pattern in each field, much like assembly language programming of
"macroinstructions."

FIGURE 5.6 Example microinstruction with eight fields (used for DLX in
Section 5. 7).

A program counter can be used to supply the next microinstruction, as shown
in Figure 5.5, but some computers dedicate a field in every microinstruction to
the address of the next instruction. Some even provide multiple next-address
fields to handle conditional branches.

While conditional branches could be used to decode an instruction by testing
the opcode one bit at a time, this tedious approach is too slow in practice. The
simplest fast instruction decoding scheme is to jam the macroinstruction opcode
into the middle of the address of the next microinstruction, similar to an indexed
jump instruction in assembly language. A more refined approach is to use the
opcode to index a table containing microinstruction addresses that supply the
next address, similar to a jump table in assembly code.

INTEL Ex.1035.241

210 5.5 Microprogrammed Control

The microprogram memory, or control store, is the most visible and easily
measured hardware in microprogrammed control; hence, it is the focus of
techniques to reduce hardware costs. Techniques to trim control-store size
include reducing the number of microinstructions, reducing the width of each
microinstruction, or both. Just as cost is traditionally measured by control-store
size, performance is traditionally measured by .CPI. The wise microprogrammer
knows the frequency of macroinstructions by using statistics like those in
Chapter 4, and hence knows where and how time is best spent-instructions
demanding the largest part of execution time are optimized for speed, and the
others are optimized for space.

In four decades of microprogramming history there have been a wide variety
of terms and techniques for microprogramming. In fact, a workshop has met
annually on this subject since 1968. Before looking at a few examples, let us
remember that control techniques-whether hardwired or microcoded-are
judged by their impact on hardware cost, clock cycle time, CPI, and

')
development time. In the next two sections we will examine how hardware costs
can be lowered by reducing control-store size. First we look at two techniques to .
reduce the width of microinstructions, then one technique to reduce the number
of microinstructions.

Reducing Hardware Costs by Encoding Control Lines

The ideal approach to reducing control store is to first write the complete
microprogram in a symbolic notation and then measure how control lines are set
in each microinstruction. By taking measurements we are able to recognize
control bits that can be encoded into a smaller field. If no more than one of, say,
8 lines is set simultaneously in the same microinstruction, then they can be
encoded into a 3-bit field (log2 8 = 3). This change saves 5 bits in every
microinstruction and does not hurt CPI, though it does mean the extra hardware
cost of a 3-to-8 decoder needed to generate the original 8 control lines.
Nevertheless, shaving 5 bits off control-store width will usually overcome the
cost of the decoder.

This technique of reducing field width is called encoding. To further save
space, control lines may be encoded together if they are only occasionally set in
the same microinstruction; two microinstructions instead of one are then
required when both must be set. As long as this doesn't happen in critical
routines, the narrower microinstruction may justify a few extra words of control
store.

There are dangers to encoding. For example, if an encoded control line is on
the critical timing path, or if the hardware it controls is on the critical path, then
the clock cycle time will suffer. A more subtle danger is that a later revision of
the microcode might encounter situations where control lines would be set in the
same microinstruction, either hurting performance or requiring changes to the
hardware that could lengthen the development cycle.

INTEL Ex.1035.242

Example

Answer

Basic Processor Implementation Techniques 211

Assume we want to encode the three fields that specify a register on a bus­
Destination, Sourcel, and Source2-in the DLX microinstruction format in
Figure 5.6. How many bits of control store can be saved versus unencoded
fields?

Figure 5.7 lists the registers for each source and destination of the datapath in·
Figure 5.1(page200). Note that the destination field must be able to specify that
nothing is modified. Without encoding, the 3 fields require 7 + 9 + 9, or 25 bits.
Since log2 7 ,,,. 2.8 and log2 9 ,,,. 3.2, the encoded fields require 3 + 4 + 4, or 11
bits. Thus, encoding these 3 fields saves 14 bits per microinstruction.

Number Destination Sourcel/Source2

0 (None) A!B

1 c Temp

2 Temp PC

3 PC IAR

4 IAR MAR

5 MAR MDR

6 MDR IR (16-bit imm)

7 --- IR (26-bit imm)

8 --- Constant

FIGURE 5.7 The sources and destinations specified in the three fields of Figure 5.6
from the datapath description in Figure 5.1. A and B are not separate entries because A
can only transfer on the S1 bus and B can only transfer on the S2 bus (see Figure 5.1 on
pages 200-201). The last entry in the third column, Constant, is used by control to specify a
constant needed in an ALU operation (e.g., 4). See Section 5.7 for its use.

Reducing Hardware Costs with Multiple
Microinstruction Formats

Microinstructions can be made narrower still if they are broken into different
formats and given an opcode or format field to distinguish them. The format
field gives all the unspecified control lines their default values, so as not to
change anything else in the machine, and is similar to the opcode of a
macroinstruction.

Reducing hardware costs by using format fields has its own performance
cost-namely, executing more microinstructions. Generally, a microprogram
using a single microinstruction format can specify any combination of
operations in a datapath and will take fewer clock cycles than a microprogram
made up of restricted microinstructions. Narrower machines are cheaper because
memory chips are also narrow and tall: It takes many fewer chips for a 16K
word by 24-bit memory than for a 4K word by 96-bit memory. (When control
memory is on the processor chip, this hardware advantage_ is no longer true.)

INTEL Ex.1035.243

212 5.5 Microprogrammed Control

This narrow but tall approach is often called vertical microcode, while the
wide but short approach is called horizontal microcode. It should be noted that
the terms "vertical miocrocode" and "horizontal microcode" have no universal
definition-the designers of the 8086 considered its 21-bit microinstruction to be
more horizontal than other single-chip computers of the time. The related terms
maximally encoded and minimally encoded lead to less confusion.

Figure 5.8 plots control-store size against microinstruction width for three ,,..
families of computers. Notice that for each family the total size is similar, even
though the width varies by a factor of 6. As a rule, minimally encoded control
stores use more bits, and the narrow but tall aspect of memory chips means that
maximally encoded control stores naturally have more entries. Sometimes
designers of minimally encoded machines don't have the option of shorter RAM
chips, causing wide microinstruction machines to end up with many words of
control store. Since the hardware costs are not lower if microcode doesn't use up
all the space in control store, machines in this class can end up with much larger)
control stores than expected from other implementations. The ECL RAMs
available to build the VAX 8800, for example, led to 2000 K bits of control
store.

750

500

400

Control store
size (Kbits) 300

200

100

0 20 40 60 80 100 120

Microinstruction width (bits)

FIGURE 5.8 Size of control store versus width of microinstructions for 11 computer
models. Each point is identified by the length and width of control store (not including
parity). Models selected from each family are ones that shipped about tlie same time: IBM
360 models 30, 40, 50, and 65 all shipped in 1965; IBM 370 models 145, 155, and 165
shipped in 1971, with the 135 following in the next year; and the VAX model 780 was
shipped in 1978, followed by the 750 in 1980 and the 730 in 1982. The development of the
VAX designs all overlapped one another inside DEC.

INTEL Ex.1035.244

Basic Processor Implementation Techniques

Reducing Hardware Costs by Adding Hardwired
Control to Share Microcode

213

The other approach to reducing control store is to reduce the number of
microinstructions rather than their width. Microsubroutines provide one
approach, as well as routines with common "tail" sequences sharing code by
jumps.

More sharing can be done with hardwired control assistance. For example,
many microarchitectures allow bits of the instruction register to specify the
correct register. Another common assist is to use portions of the instruction
register to specify the ALU operation. Each of these assists is undei:
microprogrammed control and is invoked with a special value in the appropriate
field. The 8086 uses both techniques, giving one 4-line routine responsibility for
32 opcodes. The drawback of adding hardwired control is it may stretch the
development cycle because it no longer involves programming, but requires
hardware layout for designing and debugging.

This section and the previous two give techniques for reducing cost. The
following sections present three techniques for improving performance.

Reducing CPI with Special Case Microcode

As we have noted, the wise microprogrammer knows when to save space and
when to spend it. An instance of this is dedicating extra microcode for frequent
instructions, thereby reducing CPI. For example, the VAX 8800 uses its large
control store for many versions of the CALLS instruction, optimized for register
saving depending upon the value in the register-save mask. Candidates for
special case microcode can be uncovered by instruction mix measurements, such
as those found in Chapter 4 or in Appendix B, or by counting the frequency of
use of each microinstruction in an existing implementation (see Erner and Clark
[1984]).

Reducing CPI by Adding Hardwired Control

Adding hardwired control can reduce costs as well as improve performance. For
example, VAX operands can be in memory or registers, but later machines
reduce CPI by having special code for register-register or register-memory
moves and adds: ADDL2 Rn, 10 (Rm) takes five or more cycles on the 780, but
as few as one on the 8600. Another example is in the memory interface, where
the straightforward solution is for microcode to continuously test and branch
until memory is ready. Because of the delay between the time a condition
becomes true and the time the next microinstruction is read, this approach can
add one extra clock to each memory access. The importance of the memory
interface is underlined by the 780 and 8800 statistics-20% of the 780 clock
cycles and 23% of the 8800 are waiting for memory to be ready, these are called

INTEL Ex.1035.245

214

5.6 J

5.5 Microprogrammed Control

stalls. A stall is where an instruction must pause one or more clock cycles
waiting for some resource to be available. In this chapter stalls occur only when
waiting for memory; in the next chapter we '11 see other reasons for stalls.

Many machines approach this problem by having the hardware stall a
microinstruction that tries to access the memory-data register before the memory
operation is completed: (This can be accomplished by freezing the
microinstruction address so that the same microinstruction is executed until the
condition is met.) The instant the memory reference is ready, the
microinstruction that needs the data is allowed to complete, avoiding the extra
clock delay to access control memory.

Reducing CPI by Parallelism

Sometimes CPI can be reduced with more operations per microinstruction. This
technique, which usually requires a wider microinstruction, increases parallelism
with more datapath operations. It is another characteristic of machines labeled
horizontal. Examples of this performance gain can be seen in the fact that the
fastest models of each family in Figure 5.8 also have the widest microin­
structions. Making the microinstruction wider does not guarantee increased
performance, however. An example where the potential gain was not realized is
found in a microprocessor very similar to the 8086, except that another bus was
added to the datapath, requiring six more bits in its microinstruction. This could
have reduced the execution phase from three clock cycles to two for many
popular 8086 instructions. Unfortunately, these popular macroinstructions were
grouped with macroinstructions that couldn't take advantage of this
optimization, so they all had to run at the slower rate.

Interrupts and Other Entanglements

Control is the hard part of processor design, and the hard part of control is
interrupts-events other than branches that change the normal flow of
instruction execution. Detecting interrupt conditions within an instruction can
often be on the critical timing path of a machine, possibly affecting the clock
cycle time, and thus performance. Without proper attention to interrupts during
design, adding interrupts to a complicated implementation can even foul up the
works so as to make the design impracticable.

Invented to detect arithmetic errors and signal real-time events, interrupts
have been handed a flock of difficult duties. Here are 11 examples:

I/0 device request

Invoking an operating system service from a user program

Tracing instruction execution

INTEL Ex.1035.246

I/O device request

Invoking the operat-
ing system service
from a user
proJl;ram

Tracing instruction
execution
Breakpoint

Arithmetic overflow
or underflow

Page fault (not in
main memory)

Misaligned memory
accesses

Memory protection
violations

Using undefined
instructions

Hardware
malfunctions

Power failure

Basic Processor Implementation Techniques

Breakpoint (programmer-requested interrupt)

Arithmetic overflow or underflow

Page fault (not in main memory)

Misaligned memory accesses (if alignment is required)

Memory-protection violation

Using an undefined instruction

Hardware malfunctions

Power failure

IBM360 VAX Motorola 680x0

Input/output Device interrupt Exception (Level
interruption 0 ... 7 autovector)

Supervisor call Exception (change Exception
interruption mode supervisor trap) (unimplemented

instruction)--on
- Macintosh

NA Exception (trace Exception (trace)
fault)

NA Exception Exception (illegal
(breakpoint fault) instruction or

breakpoint)

Program interruption Exception (integer Exception
(overflow or overflow trap or (floating-point
underflow exception) floating underflow coprocessor errors)

fault)

NA (only in 370) Exception Exception (memory-
(translation not valid management unit
fault) errors)

Program interruption NA Exception
(specification (address error)
exception)

Program interruption Exception (access Exception
(protection control violation (bus error)
exception) fault)

Program interruption Exception (opcode Exception (illegal
(operation exception) privileged/ instruction or break-

reserved fault) point/unimplemented
instruction)

Machine-check Exception (machine- Exception
interruption check abort) (bus error)

Machine-check Urgent interrupt NA
interruption

215

Intel 80x86

Vectored interrupt

Interrupt
(INT instruction)

Interrupt (single-step
trap)

Interrupt (breakpoint
trap)

Interrupt (overflow
trap or math unit
exception)

Interrupt
(page.fault)-

NA

Interrupt (protection
exception)

Interrupt (invalid
opcode)

NA

Nonmaskable
interrupt

FIGURE 5.9 Names of 11 interrupt classes on four computers. Every event on the IBM 360 and 80x86 is called an
interrupt, while every event on the 680x0 is called an exception. VAX divides events into interrupts or exceptions.
Adjectives device, software, and urgent are used with VAX interrupts, while VAX exceptions are subdivided into faults,
traps, and aborts.

INTEL Ex.1035.247

216 5.6 Interrupts and Other Entanglements

The enlarged responsibility of interrupts has led to the confusing situation of
each computer vendor inventing a different term for the same event, as Figure
5.9 on page 215 illustrates. Intel and IBM still call such events interrupts, but
Motorola calls them exceptions; and, depending on the circumstances, DEC calls
them exceptions, faults, aborts, traps, or interrupts. To give some idea of how
often interrupts occur, Figure 5.10 shows the frequency on the VAX 8800.

Event Time between events

I/O interrupt 2.7ms

Interval timer interrupt 10.0 ms

Software interrupt 1.5 ms

Any interrupt 0.9ms

Any hardware interrupt 2.1 ms

FIGURE 5.10 Frequency of different interrupts on the VAX 8800 running a multiuser
workload on the VMS timesharing system. Real-time operating systems used in
embedded controllers may have a higher interrupt rate than a general-purpose timesharing
system. (Collected by Clark, Bannon, and Keller [1988].)

Clearly, there is no consistent convention for naming these events. Rather
than imposing one, then, let's review the reasons for the different names. The
events can be characterized on five independent axes:

1. Synchronous versus asynchronous. If the event occurs at the same place
every time the program is executed with the same data and memory
allocation, the event is synchronous. With the exception of hardware
malfunctions, asynchronous events are caused by devices external to the
processor and memory.

2. User request versus coerced. If the user task directly asks for it, it is a user­
request event.

3. User maskable versus user nonmaskable. If it can be masked or disabled by a
user task, the event is user maskable.

4. Within versus between instructions. This classification depends on whether
the event prevents instruction completion by occurring in the middle of
execution-no matter how short-or whether it is recognized between
instructions.

5. Resume versus terminate. If the program's execution stops after the inter­
rupt, it is a terminating event.

INTEL Ex.1035.248

r

I/0 device request

Invoking operating system
service

Basic Processor Implementation Techniques 217

The difficult task is implementing interrupts occurring within instructions
where the instruction must be resumed. Another program must be invoked to
collect the state of the program, correct the cause of an interrupt, and then
restore the state of the program before an instruction can be tried again.

Figure 5.11 classifies the examples from Figure 5.9 according to these five
categories.

·.

Synchronous vs. User User Within vs. Resume vs.
asynchronous request vs. maskable vs. between terminate

coerced nonmaskable instructions

Asynchronous Coerced Nonmaskable Between Resume

Synchronous User request Nonmaskable Between Resume

Tracing instruction execution Synchronous User request User maskable Between Resume

Breakpoint Synchronous User request User maskable Between Resume

Integer arithmetic overflow Synchronous Coerced User maskable Within Terminate

Floating-point arithmetic - Synchronous Coerced User maskable Within Resume
overflow or underflow

Page fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory accesses Synchronous Coerced User maskable Within Terminate

Memory-protection violations Synchronous Coerced Nonmaskable Within Terminate

Using undefined instructions Synchronous Coerced Nonmaskable Within Terminate

Hardware malfunctions Asynchronous Coerced Nonmaskable Within Terminate

Power failure Asynchronous Coerced Nonmaskable Within Terminate

FIGURE 5.11 The events of Figure 5.9 classified using five categories.

How Control Checks for Interrupts

Integrating interrupts with control means modifying the finite-state diagram to
check for interrupts. Interrupts that occur between instructions are checked
either at the beginning of the finite-state diagram-before an instruction is
decoded-or at the end-after the execution of an instruction is completed.
Interrupts that can occur within an instruction are generally detected in the state
that causes the action or in a state that follows it. For example, Figure 5.12
shows Figure 5 .4 (page 207) modified to check for interrupts:

We assume DLX transfers the return address into a new programmer-visible
register, the interrupt return-address register. Control then loads PC with the
address of the interrupt routine for that interrupt.

INTEL Ex.1035.249

218 5.6 Interrupts and Other Entanglements

Memory access
not complete
(no interrupt)

Memory access complete
(no page fault)

FIGURE 5.12 The top-level view of the DLX finite-state diagram (Figure 5.4 on page
207) modified to check for interrupts. Either a between interrupt or an instruction page
fault invokes the control that saves the PC and then loads it with the address of the
appropriate interrupt routine. The lower portion of the figure shows interrupts resulting in
page faults of data accesses or arithm~tic overflow.

What's Hard About lllterrupts

The conflicting terminology is confusing, but that is not what makes the hard
part of control hard. Even though interrupts are rare, the hardware must be
designed so that the full state of the machine can be saved, including an
indication of the offending event, and the PC of the instruction to be executed
after the interrupt is serviced. This difficulty is exacerbated by events occurring
during the middle of execution, for many instructions also require the hardware
to restore the machine to the sta,te just before the event occurred-the beginning
of the instruction. This last requirement is so difficult that computers are
awarded the title restartable if they pass that test. That supercomputers and
many early microprocessors do not earn that badge of honor illustrates both the
difficulty of interrupts and the potential cost in hardware complexity and
execution speed.

No engineers deserve more admiration than those who built the first VAX,
DEC's first restartable minicomputer. The variable-length instructions mean the
comp~ter can fetch 50 bytes of one instruction before discovering that the next

INTEL Ex.1035.250

Basic Processor Implementation Techniques 219

byte of the instruction is not in main memory-a situation that requires the
saved PC to point 50 bytes earlier. Imagine the difficulties of restarting an in­
struction with six operands, each of which could be misaligned and thus be
partially in memory and partially on disk!

The instructions that are hardest to restart are those that modify some of the
machine state before it is known whether interrupts can occur. The VAX
autoincrement and autodecrement addressing modes would naturally modify

· registers during the addressing phase of execution rather than at the writeback
phase, and so would be vulnerable to this difficulty. To avoid this problem,
recent VAXes keep a history queue of the register specifiers and the operations
on the registers, so that the operations can be reversed on an interrupt. Another
approach, used on the earlier VAXes, is to record the specifiers and the original
values of the registers, restoring the original values on interrupt. (The primary
difference is that it only takes a few bits to record how the address was changed
due to autoincrement or autodecrement versus the full 32-bit register value.)

It is not just addressing modes that make the VAX difficult to restart; long­
running instructions mean that interrupts must be checked in the middle of
execution to prevent long interrupt latency. MOVC3, for example, copies up to
216 bytes and can take tens of milliseconds to finish-far too long to wait for an
urgent event. On the other hand, even if there were a way to undo copying in the
middle of execution so that MOVC 3 could be restarted, interrupts would occur so
frequently, relative to this long-running instruction (see Figure 5.10 on page
216), that MOVC3 would be restarted repeatedly under those conditions. Such
wasted effort from incomplete copies would render MOVC 3 worse than useless.

DEC divided the problem to conquer it. First, the operands-source address,
length, and destination address-are fetched from memory and placed into
general-purpose registers Rl, R2, and R3. If an interrupt occurs during this first
phase, these registers are restored, and the MOVC 3 is restarted from scratch.
After this first phase, every time a byte is copied, the length (R2) is decremented
and addresses (Rl and R3) are incremented. If an interrupt occurs during this
second phase, MOVC 3 sets the first part done (FPD) bit in the program status
word. When the interrupt is serviced and the instruction is reexecuted, it first
checks the FPD bit to see if the operands have already been placed in registers.
If so, the VAX doesn't fetch the address and length operands, but just continues
with the current values in the registers, since that is all that remains to be copied.
This permits more rapid response to interrupts while allowing long-running
instructions to make progress between interrupts.

IBM had a similar problem. The 360 included the MVC instruction, which
copies up to 256 bytes of data. For the early machines without virtual memory,
the machine simply waited until the instruction was completed before servicing
interrupts. With the inclusion of virtual memory in the 370, the problem could
no longer be ignored. Control first tries to access all possible pages, forcing all
possible virtual memory miss interrupts to occur before moving any data. If any
interrupts occur in this phase, the instruction is restarted. Control then ignores
interrupts until the instruction is complete. To allow longer copies, the 370

INTEL Ex.1035.251

220 5.6 Interrupts and Other Entanglements

includes MVCL, which can move up to 224 bytes. The operands are in registers
and are updated as a part of execution-like the VAX, except that there is no
need for FPD since the operands are always in registers. (Or, to speak
historically, the VAX solution is like the IBM 370, which came first.)

5. 7 I Putting It All Together: Control for DLX

The control for DLX is presented here to tie together the ideas from the previous
three sections. We begin with a finite-state diagram to represent hardwired
control and end with microprogrammed control. Both versions of DLX control
are used to demonstrate tradeoffs to reduce cost or to improve performance.
Because the figures are already too large, the checking for data page faults or
arithmetic overflow shown in Figure 5.12 (page 218) is not included in this
section. (Exercise 5.12 adds them.)

Data transfer
(Figure 5.14)

Memory access
not complete

l.

ALU
(Figure 5.15)

access
complete

Set
(Figure 5.16)

Jump
(Figure 5.17)

Branch
(Figure 5.18)

FIGURE 5.13 The top-level view of the DLX finite-state diagram for the non-floating­
point instructions. The first two steps of instruction execution-instruction fetch and
instruction decode/register fetch-are shown. The first state repeats until the instruction is
fetched from memory or an interrupt is detected. If an interrupt is detected, the PC is saved
in IAR and PC is set to the address of the interrupt routine. The last three steps of
instruction execution-execution/effective address, memory access, and write back-are
shown in Figures 5.14 to 5.18 on pages 221-224.

INTEL Ex.1035.252

I
Data transfer

l
MOVS21

MOVl2S

Basic Processor Implementation Techniques 221

Rather than trying to draw. the DLX finite-state machine in a single figure
showing all 52 states, Figure 5.13 (see page 220) shows just the top level,
containing 4 states plus references to the rest of the states detailed in Figures
5.14 (below) through 5.18 (page 224). Unlike Figure 5.2 (page 205), Figure 5.13
takes advantage of the change to the datapath allowing PC to address memory
directly without going through MAR (Figure 5.4 on page 207).

Memory

Figure 5.13

access
complete

FIGURE 5.14 The effective address calculation, memory-access, and write-back states for the memory-access
and data-transfer instructions of DLX. For loads, the second state repeats until the data is fetched from memory. The
final state of stores repeats until the write is complete. While the operation of all five loads is shown in the states of this
figure, the proper operation of writes depends on the memory system writing bytes and halfwords, without disturbing the
rest of the word in memory, and correctly aligning the bytes and halfwords (see Figure 3.10, page 97) over the proper
bytes of memory. On completion of execution control transfers to Figure 5.13, found on page 220.

INTEL Ex.1035.253

222 5.7 Putting It All Together: Control for DLX

ALU

ADD! AND! OR !

Figure 5.13

FIGURE 5.15 The execution and write-back states for the ALU instructions of DLX. After putting a register or the
sign-extended 16-bit immediate into Temp, 1 of the 9 instructions is executed, and the result (C) is written back into the
register file. Only SRA and LHI may not be self-explanatory: The SRA instruction shifts right while it sign extends the
operand and LHI loads the upper 16 bits of the register while zeroing the lower 16 bits. (The C operators « and » shift
left and right, respectively; they fill with zeros unless bits are concatenated explicitly using##, e.g., sign extension). As
mentioned above, the check for overflow in ADD and SUB is not included to simplify the figure. On completion of execution
control transfers to Figure 5.13 (page 220).

FIGURE 5.16 (See adjoining page.) The execution and write-back states for the Set instructions of DLX. After
putting a register or the sign-extended 16-bit immediate into Temp, 1 of the 6 instructions compares A to Temp and then
sets C to 1 or 0, depending on whether the condition is true or false. C is then written back into the register file, and then
execution control transfers to Figure 5.13 (page 220). The dashed lines in this figure and Figure 5.18 are used to make it
easier to follow intersecting lines.

FIGURE 5.17 (See adjoining page.) The execution and write-back states for the jump instructions of DLX. With
jump and link instructions, the return address is first placed in C before the new value is loaded into PC. Trap saves it in
IAR. Note that the immediate in these instructions is 1 O bits longer than the 16-bit immediate in all other instructions. Jump
and link instructions conclude by writing the return address back into R31. On completion of execution, control transfers to
Figure 5.13 (page 220).

INTEL Ex.1035.254

Basic Processor Implementation Techniques 223

Figure 5.13

FIGURE 5.16

FIGURES.17

INTEL Ex.1035.255

224

Example

Answer

5.7 Putting It All Together: Control for DLX

Branch

I\~
y~

·."
Figure 5.13

FIGURE 5.18 The execution states for the branch instructions of DLX. The PC is
loaded with the sum of the PC and the immediate only if the condition is true. On
completion of execution, control transfers to Figure 5.13, found on page 220.

Performance of Hardwired Control for DLX

As stated in Section 5.4, the goal for control designs is to minimize CPI, clock
cycle time, amount of control hardware, and development time. CPI is just the
average number of states along the execution path of an instruction.

Let's assume thathardwired control directly implements the finite-state diagram
in Figures 5.13 to 5.18. What is the CPI for DLX running GCC?

The number of clock cycles to execute each DLX instruction is determined by
simply counting the states of an instruction. Starting at the top, every instruction
spends at least two clock cycles in the states in Figure 5.13 (ignoring interrupts).
The actual number depends on the average number of times the state accessing·
memory must repeat because· memory is not ready. (These wasted clock cycles
are usually c~lled memory stall cycles or wait states.) In cache-based machines
this value is typically 0 (i.e., no repetitions since cache access is 1 cycle) when
the data is found in the cache, and 10 or higher when it is not ..

The time for the remaining portion of instruction execution comes from the
additional figures. Besides two cycles for fetch and decode, loads take four
more cycles plus clock cycles waiting for the data access, while stores take just
three more clock cycles plus wait states. Three extra clock cycles are also
needed by ALU instructions, and set instructions take four. Figure 5.17 shows
that jumps take just one extra clock cycle with jump and links taking three.
Branches depend on the result: Taken branches use two more clock cycles while

INTEL Ex.1035.256

Basic Processor Implementation Techniques 225

DLX instructions Minimum Memory Total clock
clock cycles accesses cycles

Loads 6 2 8

Stores 5 2 7

ALU 5 1 6

Set 6 1 7

Jumps 3 1 4

Jump and links 5 1 6

Branch (taken) 4 1 5

Branch (not taken) 3 1 4

FIGURE 5.19 Clock cycles per instruction for DLX categories using the state
diagram in Figures 5.13 through 5.18. Determining the total clock cycles per category
requires multiplying the number of memory accesses-including instruction fetches-times
the average number of wait states, and adding this product to the minimum number of clock
cycles. We assume an average of 1 clock cycle per memory access. For example, loads
take eight clock cycles if the average number of wait states is one.

untaken branches need just one. Adding these times to the first portion of
instruction execution yields the clock cycles per DLX instruction class shown in
Figure 5.19.

From Chapter 2, one way to calculate CPI is

n

CPI = ~(CPI· * ~i) ,£..J 1 Instruction count
i=l

Using the DLX instruction mix from Figure C.4 in Appendix C for GCC
(normalized to 100%), the percentage of taken branches from Figure 3.22 (page
107), and one for the average number of wait states per memory access, the
DLX CPI for this datapath and state diagram is calculated:

Loads 8 * 21% = 1.68

Stores 7 * 12% = 0.84

ALU 6 * 37% = 2.22

Set 7 * 6% = 0.42

Jumps 4 * 2% = 0.08

Jump and links 6 * 0% = 0.00

Branch (taken) 5 * 12% = 0.60

Branch (not taken) 4 * 11% = 0.44

Total CPI: 6.28

Thus, the DLX CPI for GCC is about 6.3.

INTEL Ex.1035.257

226

Example

Answer

5.7 Putting It All Together: Control for DLX

Improving DLX Performance When Control Is Hardwired

As mentioned above, performance is improved by reducing the number of states
an instruction must pass through during execution. Sometimes, performance can
be improved by removing intermediate calculations that select one of several
options, either by adding hardware that uses information in the opcode to later
select the appropriate option, or by simply increasing the number of states.

Let's look at improving the performance of ALU instructions by removing the
top two states in Figure 5.15 on page 222, which load either a register or an
immediate into Temp. One approach uses a new hardware option. Let's call it
"X" (see Figure 5.20). The X option selects either the B register or the 16-bit
immediate, depending on the opcode in IR. A second approach is simply to
increase the number of execution states so that there are separate states for ALU
instructions usii;ig immediate versus ALU instructions using registers.

For each option, what would be the change in performance, and how should
the state diagram be changed? Also, how many states are needed in each option?

Either change reduces ALU execution time from five to four clock cycles plus
wait states. From Figure C.4, ALU operations are about 37% of the instructions
for GCC, lowering CPI from 6.3 to 5.9, and making the machine about 7%
faster. Figure 5 .20 shows Figure 5 .15 modified to use the X option instead of the
two states that load Temp, while Figure 5.21 simply has many more states to
achieve the same result. The total number of states are 50 and 58, respectively.

ALU

4711\~ AND j
~=~=""'

SRA i

Figure 5.13

FIGURE 5.20 Figure 5.15 modified to remove the two states loading Temp. The
states use the new X option to mean that either B or (IR16) 16##1R16 .. 31 is the operand,
depending on the DLX opcode.

INTEL Ex.1035.258

Basic Processor Implementation Techniques 227

ALU

ADDI /

SUB~ /

ANDI /

XORI /

SLLI /

SRLI /

/

Figure 5.13

FIGURE 5.21 Figure 5.15 modified to remove the two states loading Temp. Unlike
Figure 5.20, this requires no new hardware options in the datapath, but simply more control
states.

Control can affect the clock cycle time, either because control itself takes
longer than the corresponding operations in the datapath, or because the datapath
operations selected by control lengthens the worst-case clock cycle time.

INTEL Ex.1035.259

228

Example

Answer

5.7 Putting It All Together: Control for DLX

Assume a machine with a 10-ns clock cycle (100-MHz clock rate). Suppose that
on closer inspection the designer discovered that all states could be executed in 9
ns, except states that use the shifter. Would it be wise to split those states, taking
two 9-ns clock cycles for shift states and one 9-ns clock for everything else?

Assuming the improvement in the previous example, the average instruction
execution time for the 100-MHz machine is 5.9*10 ns or 59 ns. The shifter is
only used in the states of four instructions: SLL, SRL, SRA, and LHI (see Figure
5.20). In fact, each of these instructions takes 5 clock cycles (including one wait
state for memory access), and only one of the five original clock cycles need be
split into two new clock cycles. Thus, the average execution time of these in­
structions changes from 5* 10 ns, or 50 ns, to 6*9 ns, or 54 ns. From Figure C.4
these 4 instructions are about 11 % of the instructions executed for GCC (after
normalization), making the average instruction execution time 89% * (5.9*9 ns)
+ 11 %*54 ns or 53 ns. Thus, splitting the shift state results in a machine that is
about 10% faster-a wise decision. (See Exercise 5.8 for a more sophisticated
version of this tradeoff.)

Hardwired control is completed by listing the control signals activated in each
state, assigning numbers to the states, and finally generating the PLA. Now let's
implement control using microcode in a ROM.

Microcoded Control for DLX

A custom format such as this is a slave to the architecture of the hardware and
instruction set which it serves. The format must strike a proper compromise
between ROM size, ROM-output decoding circuitry size, and machine execution
rate.

Jim McKevit et al. [1977]

Before microprogramming can commence, the microinstruction set must be
determined. The first step is to list the possible entries for each field of the DLX
microinstruction format from Figure 5.6 on page 209. Figure 5.7 on page 211

. lists them for the Destination, Sourcel, and Source2 fields. Figure 5.22 below
shows the values for the remaining fields.

Sequencing of microinstructions i:equires further explanation. The
microprogrammed control includes a microprogram counter to specify th€
address of the next microinstruction if a branch is not taken, as in Figu_re 5.5 on
page 208. In addition to the branches using the Jump address field, three tables
are used to decode the DLX macroinstructions. These tables are indexed with
the opcodes of the DLX instruction, and supply a microprogram address
depending on the value in the opcode. Their use will become clear as we
examine the DLX micr_oprogram.

INTEL Ex.1035.260

Basic Processor Implementation Techniques 229

Value ALU Misc Cond

0 ADD + Instr Read /Rf- - - - Go to next sequential microinstruction
M[PC]

1 SUB - DataRead MDRf- Uncond Always jump
M[MAR]

2 RSUB -r Write M[MAR]f- Int? Pending (between instruction) interrupt?

(reverse sub) MDR

3 AND & ABf-RF LoadA&B Mem? Memory access not complete?
from Reg. File

4 OR I Rdf-C Write Rd Zero? Is the ALU output zero?

5 XOR /\ R31f-C Write R31 Negative? ls the ALU output less than zero?
J',

(for call)

6 SLL << Load? Is the macroinstruction a DI.x load?

7 SRL >> Decodel Address table 1 determines next micro-
(Fig. 5.24) instruction (uses main opcode)

8 SRA >>a Decode2 Address table 2 determines next micro-
(Fig. 5.26) instruction (uses ''func" opcode)

9 Pass Sl SJ Decode3 Address table 3 determines next micro-
(Fig. 5.26) instruction (uses main opcode)

10 Pass S2 S2

FIGURE 5.22 The options for three fields of the DLX microinstruction format in Figure 5.6 on page 209. The
possible names are shown on the left of the field name, with an explanation of each field to the right. The real
microinstruction would contain a bit pattern corresponding to the number in the first column. Combined with Figure 5. 7
(page 211), all the fields are defined except the Constant and Jump address fields, which contain numbers supplied by
the microprogrammer. »a is an abbreviation for shift right arithmetic and -,means reverse subtract (B -,A= A- B).

Following the lead of the state diagram, the DLX microprogram is divided
into Figures 5.23, 5.25, 5.27, 5.28, and 5.29, with each section of microcode cor­
responding to one of Figures 5.13 to 5.18 (pages 220-224). The first state in
Figure 5.13 becomes the first two microinstructions in Figure 5.23. The first
microinstruction (address 0) branches to microinstruction 3 if there is an
interrupt pending. Microinstruction 1 fetches an instruction from memory,
branching back to itself as long as the memory access is not complete.
Microinstruction 2 increments the PC by 4, loads A and B, and then does the
first-level decoding. The address of the next microinstruction then depends on
which macroinstruction is in the instruction register. The microinstruction
addresses for this first-level macroinstruction decode are specified in Figure
5.24. (In reality, the table shown in this figure is specified after the
microprogram is written, as both the number of entries and the corresponding
locations aren't known until then.)

INTEL Ex.1035.261

230 5.7 Putting It All Together: Control for DLX

Loe Label Dest ALU Sl S2 c Misc Cond Jump Comment
label

0 If etch: Interrupt? Intrpt Check interrupt

1 Hoop: Instr Read Mem? Hoop IR <:-M[PC];
wait for memory

2 PC ADD PC Constant 4 AB<:-RF Decodel

3 Intrpt: IAR Pass Sl PC Interrupt

4 PC Pass S2 Constant 0 Uncond If etch PC<:-0 & go
fetch next
instruction

FIGURE 5.23 The first section of the DLX microprogram, corresponding to the states in Figure 5.13 (page 220).
The first column contains the absolute address of the microinstruction, followed by a label. The rest of the fields contain
values from Figures 5. 7 (page 211) and 5.22 for the microinstruction format in Figure 5.6 (page 209). As an example,
microinstruction 2 corresponds to the second state of Figure 5.13. It sends the output from the ALU into PC, tells the ALU
to add, puts PC onto the Source1 bus, and a constant from the microinstruction (whose value is 4) onto the Source2 bus.
In addition, A and Bare loaded from the register file according to the specifiers in IR. Finally, the address of the next
microinstruction to be executed comes from decode table 1 (Figure 5.24), which depends on the opcode· in the instruction
register (IR).

Opcodes (symbolically Absolute Label Figure
specified) address

Memory 5 Mem: 5.25

Move to special 20 Movl2S: 5.25

Move from special 21 MovS2I: 5.25

S2=B 23 Reg: 5.27

S2 = Immediate 24 Imm: S.27

Branch equal zero 50 Beq: 5.29

Branch not equal zero 52 Bne: 5.29

Jump 54 Jump: 5.29

Jump register 55 JReg: 5.29

Jump and link 56 JAL: 5.29

Jump and link register 58 JALR: 5.29

Trap 60 Trap: 5.29

FIGURE 5.24 Opcodes and corresponding addresses for decode table 1. The
opcodes are shown symbolically on the left, followed by the addresses with the absolute
microinstruction address, a label, and the figure where the microcode can be found. If this
table were implemented with a ROM it would contain 64 entries corresponding to the 6-bit
opcode of DLX. As this would clearly result in many redundant or unspecified entries, a
PLA could be used to minimize hardware.

Figure 5.25 contains the DLX load and store instructions. Microinstruction 5
calculates the effective address, and branches to microinstruction 9 if the

INTEL Ex.1035.262

f',

Loe Label Dest

5 Mem: MAR

6 Store: MDR
7 Dloop:

8
9 Load:

IO
11 LB: Temp

I2 c

13 LBU: Temp

14 c
IS LH: Temp

I6 c
17 LHU: Temp

18 c
I9 LW: c
20 Movl2S: IAR
21 MovS21: c
22 Write I:

Basic Processor Implementation Techniques 231

macroinstruction in the IR is a load. If not, microinstruction 6 loads MDR with
the value to be stored, and microinstruction 7 jumps to itself until the memory is
finished writing the data. Microinstruction 8 then jumps back to microinstruction
0 (Figure 5.23) to begin the execution cycle all over again. If the macroinstruc­
tion was a load, microinstruction 9 loops until the data has been read. Micro­
instruction 10 then uses decode table 2 (specified in Figure 5.26) to specify the
address of the next microinstruction. Unlike the first decode table, this table is
used by other microinstructions. (There is no conflict in multiple uses since the
opcodes for each instance are different.)

Suppose the instruction were load halfword. Figure 5.26 shows that the result
of decode 2 would be to jump to microinstruction 15. This microinstruction
shifts the contents of MDR to the left 16 bits and stores the result in Temp. The
following microinstruction shifts Temp right arithmetically 16 bits and puts the
result in C. C now contains the 16 rightmost bits of MDR, with the upper 16 bits
containing the extended sign. This microinstruction jumps to location 22, which
writes C back into the destination register specifier in IR, and then jumps to
fetch the next macroinstruction starting at location 0 (Figure 5.23).

ALU Sl S2 c Misc Cond Jump Comment
label

ADD A immI6 Load? Load M emorv instruct.

Pass S2 B Store

Data write Mem? Dloop

Uncond If etch Fetch next instr.

Data read Mem? Load LoadMDR

Decode2
SLL MDR Constant 24 Load byte; shift left to

remove uvver 24 bits

SRA Temp Constant 24 Uncond Write I Shift right arithmetic
to sifm extend

SLL MDR Constant 24 LB unsi1med

SRL Temp Constant 24 Uncond Write I Shift rif~ht lof!.ical

SLL MDR Constant I6 Load half

SRA Temp Constant I6 Uncond Write I Shift rif!.ht arithmetic

SLL MDR Constant I6 LH Unsif!.ned

SRL Temp Constant I6 Uncond Write I Shift rif!.ht lof!.ical

Pass Sl MDR Uncond Write I Load word

Pass SI A Uncond If etch Move to special

Pass SI IAR Move from spec.

Rdf--C Uncond If etch Write back & go fetch
next instruction

FIGURE 5.25 The section of the DLX microprogram for loads and stores, corresponding to the states in Figure
5.14 (page 221). The microcode for bytes and halfwords takes an extra microinstruction to align the data (see Figure
3.10, page 97). Note that microinstruction 5 loads A from Rd, just in case the instruction is a store. The label lfetch is for
microinstruction 0 in Figure 5.23 on page 230.

INTEL Ex.1035.263

232 5.7 Putting It All Together: Control for DLX

Opcode Absolute Label Figure
address

Load byte 11 LB: 5.25

Load byte unsigned 13 LBU: 5.25

Load half 15 LH: 5.25

Load half unsigned 17 LHU: 5.25

Load word 19 LW: 5.25

ADD 25 ADD/I: 5.27

SUB 26 SUB/I: 5.27

AND 27 AND/I: 5.27

OR 28 OR/I: 5.27

XOR 29 XOR/I: 5.27

SLL 30 SLL/I: 5.27

SRL 31 SRL/I: 5.27

SRA 32 SRA/I: 5.27

LHI 33 LHI: 5.27

Set equal 35 SEQ/I: 5.28

Set not equal 37 SNEil: 5.28

Set less than 39 SLT/I: 5.28

Set greater than or equal 41 SGE/I: 5.28

Set greater than 43 SGT/I: 5.28

Set less than or equal 45 SLE/I: 5.28

FIGURE 5.26 Opcodes and corresponding addresses for decode tables 2 and 3. The
opcodes are shown symbolically on the left, followed by the absolute microinstruction
address, the corresponding label, and the figure where the microcode can be found. Since
the opcodes are shown symbolically, and they go to the same place in both tables, the
same information can be used for specifying decode tables 2 and 3. This similarity is
attributable to the immediate version and register version of the DLX instructions sharing
the same microcode. If a table were implemented with a ROM, it would contain 64 entries
corresponding to the 6-bit opcode of DLX. Again, the many redundant or unspecified
entries suggest the use of a PLA to minimize hardware cost.

The ALU instructions are found in Figure 5.27. The first two microinstruc­
tions correspond to the states at the top of Figure 5.15 (page 222). After loading ..
Temp with either the register or the immediate, each uses a decode table to
vector to the microinstruction that executes the ALU instruction. To save
microcode space, the same microinstruction is used whether the operand is a
register or an immediate. One of the microinstructions between 25 and 33 is
executed, storing its result in C. It then jumps to microinstruction 34, which
stores C into the register specified in the IR, and in turn jumps to fetch the next
macroinstruction.

INTEL Ex.1035.264

Basic Processor Implementation Techniques 233

Loe Label Dest ALU Sl S2 c Misc Cond Jump Comment
label

23 Reg: Temp Pass S2 B Decode2 -- source2 = ref!.

24 Imm: Temp Pass S2 Imm Decode3 source2 = imm.
25 ADD/I: c ADD A Temp Uncond Write2 ADD
26 SUB/I: c SUB A Temp Uncond Write2 SUB

27 AND/I: c AND A Temp Uncond Write2 AND
28 OR/I: c OR A Temp Uncond Write2 OR

29 XOR/I: c XOR A Temp Uncond Write2 XOR

30 SLL/I: c SLL A Temp Uncond Write2 SLL

31 SRL/I: c SRL A Temp Uncond Write2 SRL

32 SRA/I: c SRA A Temp Uncond Write2 SRA

33 LHI: c SLL Temp Constant 16 ., Uncond Write2 LHI

34 Write2: Rdf-C Uncond If etch Write back & go
fetch next instruction

FIGURE 5.27 .Like the first two states in Figure 5.15 (page 222), microinstructions 23 and 24 load Temp with an
operand and then vector to the appropriate microinstruction, depending on the opcode in IR. One of the nine
following microinstructions is executed, leaving its result in C. C is written back into the register specified in the register
destination field of DLX macroinstruction in IR in microinstruction 34.

Loe Label Dest ALU Sl S2 c Misc Cond Jump' Comment
label

35 SEQ/I: SUB A Temp Zero? Setl Set equal

36 c Pass S2 Constant 0 Uncond Write4 AR (set to false)

37 SNE/I: SUB A Temp Zero? Seto Set not equal

38 c Pass S2 Constant 1 Uncond Write4 AR (set to true)

39 SLT/I: SUB A Temp Negative? Setl Set less than

40 c Pass S2 Constant 0 Uncond Write4 A~T (set to false)

41 SGE/I: SUB A Temp Negative? Seto Set GT or equal

42 c Pass S2 Constant 1 Uncond Write4 A~T (set to true)

43 SGT/I: RSUB A Temp Negative? Setl Set weater than

44 c Pass S2 Constant 0 Uncond Write4 T~ (set to false)

45 SLE/I: RSUB A Temp Negative? Seto Set LT or equal

46 c Pass S2 Constant 1 Uncond Write4 T~ (set to true)

47 Seto: c Pass S2 Constant 0 Uncond Write4 Set to 0 =false

48 Setl: c Pass S2 Constant 1 Set to 1 = true

49 Write4: Rdf-C Uncond If etch Write back &fetch
· next instruction

FIGURE 5.28 Corresponding to Figure 5.16 (pages 222-223), this microcode performs the DLX Set instructions.
As in the previous figure, to save space these same microinstructions execute either the version of set using registers or
the version using immediates. The tricky microcode is found in microinstructions 43 and 45, where the subtraction Temp -
A is unlike the earlier microcode. Remember that A-, Temp= Temp-A (see Figure 5.22 on page 229).

INTEL Ex.1035.265

234

Loe Label Dest

50 Beq:
51
52 Bne:
53 Branch: PC
54 Jump: PC
55 JReg: PC
56 JAL: c
57 PC
58 JALR: c
59 PC
60 Trap: IAR
61 PC

5.7 Putting It All Together: Control for DLX

Figure 5.28 corresponds to the states in Figure 5.16 (pages 222-223), except
that the top two states that load Temp are microinstructions 23 and 24 of the pre­
vious figure; the decode tables will either jump to locations 25 to 34 in Figure
5.27, or 35 to 45 in Figure 5.28, depending on the opcode. The microinstructions
for Set perform relative tests by having the ALU subtract Temp from A and then
test the ALU output to see if the result is zero or negative. Depending on the test
result, C is set to 1 or 0 and written back in the register file before going to fetch
the next macroinstruction. Tests for A = Temp, A '* Temp, A < Temp, and A;;:::
Temp are straightforward using these conditions on the ALU output A - Temp.
A > Temp and A ~ Temp, on the other hand, are not simple, but can be done
using the negative condition with the subtraction reversed:

(Temp-A< 0) = (Temp< A) = (A> Temp)

If the result is negative, then A > Temp, otherwise A ~ Temp. Voila!
Figure 5.29 contains the last of the DLX microcode and corresponds to the

states found in Figures 5.17 and 5.18 (pages 222-224). Microinstruction 50,
corresponding to the macroinstruction branch on equal zero, tests if A equals
zero. If it does, the macroinstruction branch succeeds, and the microinstruction
jumps to the microinstruction 53. This microinstruction loads the PC with the
PC-relative address and then jumps to the microcode that fetches the new
macroinstruction (location 0). If A does not equal zero, the macroinstruction
branch fails, so that the next sequential microinstruction (51) executes, jumping
to location 0 without changing the PC.

A state usually corresponds to a single microinstruction, although in a few
cases above two microinstructions were needed. The jump and link instructions
have the reverse case, with two ptates collapsing into one microinstruction. The
actions in the last two states of] ump and link in Figure 5 .17 are found in micro­
instruction 57, and similarly for the jump and link register with microinstruction
59. These microinstructions load the PC with the PC-relative branch address and
save C into R3 l.

ALU Sl S2 c Misc Cond Jump Comment
label

SUB A Constant 0 O? Branch Instr is branch =0
Uncond If etch :;t(): not taken

SUB A Constant 0 O? If etch Instr is branch ;t: 0
ADD PC imm16 Uncond If etch :;t(): taken
ADD PC imm26 Uncond If etch Jump
Pass Sl A Uncond If etch Jump reRister
Pass Sl PC Jump and link
ADD PC imm26 R31f-C Uncond If etch Jump & save PC
Pass Sl PC Jump & link ref!
Pass Sl A R31f-C Uncond If etch Jump & save PC
Pass Sl PC Trap
Pass S2 imm26 Uncond If etch

FIGURE 5.29 The microcode for branch and jump DLX instructions, corresponding to the states i11 Figures 5.17
and 5.18 on pages 222-224.

INTEL Ex.1035.266

Dest

Unencoded 7

Encoded 3

Basic Processor Implementation Techniques . 235

Performance of Microcoded Control for DLX

Before trying to improve performance or reduce costs of control, the existing
performance must be assessed. Again, the process is to count the clock cycles
for each instruction, but this time there is a larger variety in performance.

All instructions execute microinstructions 0, 1, and 2 in Figure 5.23 (page
230), giving a base of 3 clocks plus wait states, depending on the repetition of
microinstruction 1. The clock cycles for the rest of the categories are:

4 for stores, plus wait states

5 for load word, plus wait states

6 for load byte or load half (signed or unsigned), plus wait states

3 for ALU

4 for set

2 for branch equal zero (taken or untaken)

2 for branch not equal zero (taken)

1 for branch not equal zero (untaken)

1 for jumps

2 for jump and links

Using the instruction mix for GCC in Figure C.4, and assuming an average of 1
wait state per memory access, the CPI is 7.68. This is higher than the hardwired
control CPI, because the test for interrupt takes another clock cycle at the begin­
ning, loads and stores are slower, and branch equal zero is slower for the
untaken case.

Reducing Cost and Improving Performance of DLX
When Control Is Microcoded

The size of a completely unencoded version of the DLX microinstruction is
calculated from the number of entries in Figures 5. 7 (page 211) and 5 .22 (page
229) phis the size of the Constant and Jump address fields. The largest constant
in the fields is 24, which requires 5 bits, and the largest address is 61, which
requires 6. Figure 5.30 shows the microinstruction fields, the unencoded widths,
and the encoded widths. Encoding almost halves the size of control store.

ALU Sourcel Source2 Constant Misc Cond Jump Total
operation address

11 9 9 5 6 10 6 = 63 bits

4 4 4 5 3 4 6 = 33 bits

FIGURE 5.30 Width of field in bits of unencoded and encoded microinstruction formats. Note that the Constant
and Jump address fields are not encoded in this example, placing fewer restrictions on the microprogram using the
encoded format.

INTEL Ex.1035.267

236

Example

Answer

5.7 Putting It All Together: Control for DLX

The microinstruction can be further shrunk by introducing multiple micro­
instruction formats and by combining independent fields.

Figure 5.31 shows an encoded version of the original DLX microinstruction
format and the version with two formats: one for ALU operations and one for
miscellaneous and branch operations. A bit is added to distinguish the two
formats. The ALU/Jump (A/J) microinstruction performs the ALU operations
specified in the microinstruction; the address of the next microinstruction is
specified in the Jump address. For the Transfer/Misc/Branch (T/M/B) micro- ~

instruction, the ALU performs Pass S 1, while the Misc and Cond fields specify
the rest of the operations. The primary change in interpretation of the fields in
the new formats is that the ALU condition being tested in the T/M/B format
refers to the ALU output from the prior A/J microinstruction since there is no
ALU operation in T/M/B format. In both formats the Constant and Jump fields
are combined into a single field under the assumption they are not used at the
same time. (For the A/J format, the appearance of a constant in a source field
results in fetching the following microinstruction.) The new formats shrink
width from the original 33 bits to 22 bits, but the actual size savings depends on
the number of extra microinstructions needed because of the reduced options.

What is the increase in number of microinstructions, compared to the single
format, for the microcode in Figure 5.23 (page 230)?

3 4 4 4 5 3 4 6

ALU/Jump

3 4 4 4 6

Transfer/Misc/Branch

3 4 4 4 6

FIGURE 5.31 The original DLX microinstruction format at the top and the dual- '
format version below. Note that the Misc field is expanded from 3 to 4 bits in the T/M/B to
make the two formats the same length.

Figure 5.32 shows the increase in the number of microinstructions over Figure
5.23 (page 230) because of the restrictions of each format. The five micro­
instructions in the original format expand to six in the new format. Microinstruc­
tion 2 is the only one that expands to two microinstructions for this example.

INTEL Ex.1035.268

Basic Processor Implementation Techniques 237

Loe Label Type. Dest ALU Sl S2 Misc Cond Const/ Comment
Jump

0 If etch: M!f /B --- --- Interrupt? Intrpt Check interruJJt
1 !loop: M!f /B --- --- Instr Mem? !loop IR f-M[PC]; wait

Read for memory
2 A/J PC ADD PC Constant --- --- 4 Increment PC
3 M{f /B --- --- ABf- Decodel

RF

4 In trot: A/J IAR Pass Sl PC --- --- 5 Interrupt
5 A/J PC SUB Temp Temp --- --- If etch PC~O (t minus t=O) ..

& go fetch next
instruction

FIGURE 5.32 Version of Figure 5.23 (page 230) using the dual-format microinstruction in Figure 5.31. Note that
ALU/Jump microinstructions check the 81 and 82 fields for a constant specifier to see if the next address is sequential (as
in microinstruction 2); otherwise they go to the Jump address (as in microinstructions 4 and 5). The microprogrammer
changed the last microinstruction to generate a zero by subtracting a register from itself rather than through straight­
forward use of constant 0. Using the constant would have required an additional microinstruction since this format goes to
the next sequential instruction if a constant is used. (See Figure 5.31.)

Loe Label Dest

50 Beq:

51 PC

Sometimes performance can be improved by finding faster sequences of
microcode, but normally it requires changes to the hardware. The branch equal
zero instruction takes one extra clock cycle when the branch is not taken with
hardwired control, but two with microcoded control; while branch not equal zero
has the same performance for hardwired and microcoded control. Why would
the former differ in performance? Figure 5.29 shows that microinstruction 52
branches on zero to fetch the next microinstruction, which is correct for the
branch on not equal zero macroinstruction. Microinstruction 50 also tests for
zero for the branch on zero macroinstruction and branches to the
microinstruction that loads the new PC. The not zero case is handled by the
following microinstruction (51), which jumps to fetch the next instruction­
hence, one clock cycle for untaken branch on not equal zero and two for untaken
branch on equal zero. One solution is simply to add "not zero" to the microcode
branch conditions in Figure 5.22 (page 229) and change the branch on equal
microcode to the version in Figure 5.33. Since there are only ten branch
conditions, adding the eleventh would not require more than the four bits needed
for an encoded version of that field.

ALU Sl S2 c Misc Cond Jump Comment
label

SUB A Constant 0 notO? !fetch Branch =0
ADD PC imm16 Uncond If etch =0: taken

FIGURE 5.33 Branch not equal microcode from Figure 5.29 (page 234) rewritten by using a not zero condition in
microinstruction 44.

INTEL Ex.1035.269

238

Example

Answer

Loe Label Dest

0 !fetch:

1 PC

2 Intrpt: IAR

3 PC

5.7 Putting It All Together: Control for DLX

This change drops the CPI from 7 .68 to 7 .63 for microcoded control, yet this
is still higher than the CPI for hardwired control.

Let's improve microcoded control so that the CPI for GCC is closer to the
original CPI under hardwired control.

The main performance culprit is the separate test for interrupts in Figure 5.23.
By modifying the hardware, decodel can kill two birds with one stone: In
addition to jumping to the appropriate microinstructions corresponding to the
opcode, it also jumps to the interrupt microcode if an interrupt is pending. Figure
5.34 shows the revised microcode. This modification saves one clock cycle from
each instruction, reducing the CPI to 6.63.

ALU Sl S2 c Misc Cond Jump Comment
label

Instr Read Mem? If etch IR <::-M[PC]; wait
for memory

ADD PC Constant 4 AB<::-RF Decode I Also go to interrupt
if vendinR interrupt

SUB PC Constant 4 Interrupt: undo PC
increment

Pass S2 Constant 0 Uncond If etch PC<::-0 & go fetch
next instruction

FIGURE 5.34 Revised microcode that takes advantage of a change of the hardwar-e1o have decode1 go to
microinstruction 2 if there is a pending interrupt. This microinstruction must reverse the increment of PC in the prior
microinstruction so that the correct value is saved.

5.8 I Fallacies and Pitfalls
,

Pitfall: Microcode implementing a complex instruction may not be faster than
macrocode.

At one time, microcode had the advantage of being fetched from a much faster
memory than macrocode. Since caches came into use in 1968, microcode no
longer has such a consistent edge in fetch time. Microcode does, however, still
have the advantage of using internal temporary registers in the computation,
which can be helpful on machines with few general-purpose registers. The
disadvantage of micn:~code is that the algorithms must be selected before the
machine is announced and can't be changed until the next model of the archi-

INTEL Ex.1035.270

Basic Processor Implementation Techniques 239

tecture; macrocode, · on the other hand, can utilize improvements in its
algorithms at any time during the life of the machine.

The VAX Index instruction provides an example: The instruction checks to
see if the index is between two bounds, one of which is usually zero. The VAX-
11/780 microcode uses two compares and two branches to do this, while
macrocode can perform the same check in one compare and one branch. The
macrocode checks the· index against the upper limit using unsigned
comparisons, rather than two's complement comparisons. This treats a negative
index (less than zero and so failing the comparison) as if it were a very large

J number, thus exceeding the upper limit. (The algorithm can be used with
nonzero lower bounds by first subtracting the lower bound from the index.)
Replacing the index instruction by this VAX macrocode always improves
performance on the V AX-11/780.

Fallacy: If there is space in control store, new instructions are free of cost.

Since the length of control store is usually a power of two, at times there may be
unused control store available to expand the instruction set. The analogy here is
that of building a house and discovering, near completion, that you have enough
land and materials left to add a room. This room wouldn't be free, however,
since there would be the costs of labor and maintenance for the life of the home.
The temptation to add "free" instructions can only occur when the instruction set
is not fixed, as is likely to be the case in the first model of a computer. Because
instruction set compatibility is a long-term requirement, all future models of this
machine will be forced to include these "free" instructions, even if space is later
at a premium. This expansion also ignores the cost of a longer development time
to test the added instructions, as well as the possibility of costs of repairing bugs
in them after the hardware is shipped.

Fallacy: Usersfindwritable control store helpful.

Bugs in microcode persuaded designers of minicomputers and mainframes that it
would be wiser to use RAM than ROM for control store. Doing so would enable
microcode bugs to be repaired by shipping customers floppy disks rather than by
having the field engineer pull boards and replace chips. Some customers and
some manufacturers also decided that users should be allowed to write
microcode; this opportunity became known as writable control store (WCS).
Yet by the time WCS was offered, the world had changed to make WCS less
attractive than originally envisioned:

• The tools for writing microcode were much poorer tha~ those for writing
macrocode. (The authors and many others stepped into that breach to provide
better microprogramming tools.)

• At a time when main memory was expanding, WCS was limited to 1-4KB
microinstructions. (Few programming tasks are harder than forcing code into
too small a memory.)

INTEL Ex.1035.271

240

5.9 I

5.8 Fallacies and Pitfalls

• Microcoded control became increasingly tailored to the native
macroinstruction set, making microprogramming less useful for tasks other
than that for which it was intended.

• With the advent of timesharing, programs might run for only milliseconds
before switching to other tasks. This meant that WCS would have to be
swapped if more than one program needed it, and reloading WCS could
easily take longer than a few milliseconds.

• Timesharing also meant that programs had to be protected from each other.
Because, at such a low level, microprograms can circumvent all protection
barriers, microprograms written by users were notori~usly untrustworthy.

• The increasing demand for virtual memory meant that microprograms had to
be restartable-any memory access could force the computation to be
shelved.

• Finally, companies like DEC that offered WCS provided no customer support
for those who wanted to write microcode.

Many customers ordered WCS, but few benefited from it. The death of WCS has
been by a thousand small cuts, and WCS is not an option on current computers.

Concluding Remarks

In his first paper [1953] Wilkes identified advantages of microprogramming that
still hold true today. One of these advantages is that microprogramming helps
accommodate change. This can happen late in the development cycle, where
simply changing some Os to ls in the control store can sometimes save
redesigning hardware. A related advantage is that by emulating other instruction
sets in microcode, software compatibility is simplified. Microprogramming also
reduces the cost of adding more complex instructions to a standard micro­
architecture to just the cost of a few more words of control store (although there
is the pitfall that once an instruction set is created assuming microprogrammed
control, it is difficult to ever build a machine without using it). This flexibility
allows hardware construction to begin before the instruction set and microcode
have been completely written, because specifying control -is just a matter of
programming. Finally, microprogramming now has the further advantage of
having a large set of tools that have been developed to help write, edit, assemble,
and debug microcode.

The drawback of microcode has always been performance. This is because
microprogramming is a slave to memory tecnnology: The clock cycle time is
limited by the time to read microinstructions from control store. In the 1950s,
microprogramming was impractical since virtually the only technology available
for control store was the same one used for main memory. In the late 1960s and

INTEL Ex.1035.272

Basic Processor Implementation Techniques 241

early 1970s, semiconductor memory was available for control store, while main
memory was constructed from core. The factor of ten in cycle time that
differentiated the two technologies opened the door for microcode. The
popularity of cache memory in the 1970s once again closed this gap, and
machines were again built with the same technology for control store and
memory.

For these reasons instruction sets invented since 1985 have not relied on
. microcode. Though no one likes to predict the future-least of all in writing-it

is the authors' opinion that microprogramming is bound to memory technology.
If in some future technology ROM becomes much faster than RAM, or if caches
are no longer effective, microcode may regain its popularity.

5.1 0 I Historical Perspective and References

Interrupts go back to computer industry pioneers Eckert and Mauchly. Interrupts
were first used to signal arithmetic overflow on the UNIVAC I and later to alert
a UNIV AC 1103 to start online data collection for a wind tunnel (see Codd
[1962]). After the success of the first commercial computer, the UNIVAC 1101
in 1953, the first commercial computer to have interrupts, the 1103, was brought
out. Interrupts were first used for I/0 by AL. Leiner in the National Bureau of
Standards DYSEAC [Smotherman 1989].

Maurice Wilkes learned computer design in a summer workshop from Eckert
and Mauchly and then went on to build the first full-scale, operational, stored­
program computer-the EDSAC. From that experience he realized the difficulty
of control. He thought of a more centralized control using a diode matrix and,
after visiting the Whirlwind computer in the U.S., wrote:

I found that it did indeed have a centralized control based on the use of a
matrix of diodes. It was, however, only capable of producing a fixed sequence
of 8 pulses-a different sequence for each instruction, but nevertheless fixed
as far as a particular instruction was concerned. It was not, I think, until I got
back to Cambridge that I realized that the solution was to turn the control
unit into a computer in miniature by adding a second matrix to determine
the flow of control at the microlevel and by providing for conditional micro­
instructions. [Wilkes 1985, 178]

Wilkes [1953] was ahead of his time in recognizing that problem. Unfortu­
nately, the solution was also ahead of its time: To provide control, micro­
programming relies on fast memory that was not available in the 1950s. Thus,
Wilkes's ideas remained primarily academic conjecture for a decade, although
he did construct the EDSAC 2 using microprogrammed control in 1958 with
ROM made from magnetic cores.

INTEL Ex.1035.273

242 5.10 Historical Perspective and References

IBM brought microprogramming into the spotlight in 1964 with the IBM 360
family. Before this event, IBM saw itself as many small businesses selling
different machines with their own price and performance levels, but also with
their own instruction sets. (Recall that little programming was done in high-level
languages, so that programs written for one IBM machine would not run on
another.) Gene Amdahl, one of the chief architects of the IBM 360, said that
managers of each subsidiary agreed to the 360 family of computers only because
they were convinced that microprogramming made it feasible-if you could take
the same hardware and microprogram it with several different instruction sets,
they reasoned, then you must also be able to take different hardware and
microprogram them to run the same instruction set. To be sure of the viability of
microprogramming, the IBM vice president of engineering even visited Wilkes
surreptitiously and had a "theoretical" discussion of the pros and cons of
microcode. IBM believed the idea was so important to their plans that they
pushed the memory technology inside the company to make microprogramming
feasible.

Stewart Tucker of IBM was saddled with the responsibility of porting
software from the IBM 7090 to the new IBM 360. Thinking about the ·
possibilities of microcode, he suggested expanding the control store to include
simulators, or interpreters, for older machines. Tucker [1967] coined the term
emulation for this, meaning full simulation at the microprogrammed level.
Occasionally, emulation on the 360 was actually faster than the original
hardware. Emulation became so popular with customers in the early years of the
360 that it was sometimes hard to tell which instruction set ran more programs.

Once the giant of the industry began using microcode, the rest soon followed.
A difficulty in adopting microcode was that the necessary memory technology
was not widely available, but that was soon solved by semiconductor ROM and
later RAM. The microprocessor industry followed the same history, with limited
resources of the earliest chips forcing hardwired control. But as the resources in­
creased, the advantages of simpler design and ease of change persuaded many to
use microprogramming.

With the increasing popularity of microprogramming came more
sophisticated instruction sets, including virtual memory. Microprogramming
may well have aided the spread of virtual memory, since microcode made it
easier to cope with the difficulties that arose from mapping addresses and
restarting instructions. The IBM 370 model 138, for example, implemented
virtual memory entirely in microcode without any hardware support.

Over the years, most microarchitectures became more and more dedicated to
support the intended instruction set, so that reprogramming for a different
instruction set failed to off er satisfactory performance. With the passage of time
came much larger control stores, and it became possible to consider a machine
as elaborate as the VAX. To offer a single chip VAX in 1984 DEC reduced the
instructions interpreted by microcode by trapping some instructions and
performing them in software: 20% of VAX instructions are responsible for 60%
of the microcode, yet are only executed 0.2% of the time. Figure 5.35 shows the

INTEL Ex.1035.274

Basic Processor Implementation Techniques 243

reduction in control store by subsetting the instruction set. (The VAX is so tied
to microcode that we venture to predict it will be impossible to build a full­
instruction-set VAX without microcode.) The microarchitecture of one of the
simpler subsetted VAXes, the MicroVAX-I, is described in Levy and Eckhouse
[1989].

Full instruction set Subset instruction set
(VLSI VAX) (MicroVAX 32)

% instructions implemented 100% 80%

Size of control store (bits) 480K 64K

Number of chips in processor 9 2

% performance ofVAX-11/780 100% 90%

FIGURE 5.35 By trapping some VAX instructions and addressing modes, control
store was reduced almost eight-fold. The second chip of the subset VAX is for floating
point.

While this book was being written, a landmark legal precedent concerning
microcode was set. The question under litigation in NEC v. Intel was whether
microcode is like writing, and thereby deserves copyright protection (Intel), or
whether it is like hardware, which can be patented but not copyrighted (NEC).
The importance of this matter lies in the fact that while it is triviaL to get a
copyright, getting a patent can take as long as a college education. A program
can be copyrighted, so the question then follows: What is and isn't a program?
Here is the legislated definition:

A 'computer program' is a set of statements or instructions to be used directly or
indirectly in a computer in order to bring about a certain result.

After years of preparation and trial, a judge did declare that a microprogram
was a program. The lawyers for the losing side then asked him to rescind his
decision on grounds of partiality. They had discovered that through an
investment club, the judge owned $80 of stock belonging to the client he ruled
for. (The tempting sum really was only $80, highly frustrating to one of the
authors who acted as an expert witness on the case!) The case was retried, and
the new judge ruled that "microcode ... comes squarely within the definition of a
'computer program' ... " [Gray 1989, 4]. Of course, the fact that two judges in
two different trials made the same decision doesn't mean that the matter is
closed-there are still higher levels of appeal available.

INTEL Ex.1035.275

244 5.10 Historical Perspective and References

References

CLARK, D. W., P. J. BANNON, AND J.B. KELLER [1988]. "Measuring VAX 8800 performance with
a histogram hardware monitor," Proc. 15th Annual Symposium on Computer Architecture (May­
June), Honolulu, Hawaii, 176-185.

CODD, E. F. [1962]. "Multiprogramming," in F.L. Alt and M. Rubinoff, Advances in Computers,
vol. 3, Academic Press, New York, 82.

EMER, J. S. AND D. W. CLARK [1984]. "A characterization of processor performance in the VAX-
11/780," Proc. 11th Symposium on Computer Architecture (June), Ann Arbor, Mich., 301-310.

GRAY, W. P. [1989]. Memorandum of Decision, No. C-84-20799-WPG, U.S. District Court for the
Northern District of California (February 7, 1989).

LEVY, H. M. AND R.H. ECKHOUSE, JR. [1989]. Computer Programming and Architecture: The
VAX, 2nd ed., Digital Press, Bedford, Mass. 358-372

MCKEVITT, J., ET AL. [1977]. 8086 Design Report, internal memorandum.

PATTERSON, D. A. [1983]. "Microprogramming," Scientific American 248:3 (March), 36-43.

REIGEL, E.W., U. FABER, AND D. A. FISCHER, [1972]. "The Interpreter-a microprogrammable
building block system," Proc. AF1PS 1972 Spring Joint Computer Conj. 40, 705-723.

SMOTHERMAN, M. [1989]. "A sequencing-based taxonomy ofl/0 systems and review of historical
machines," Computer Architecture News 17:5 (September), 5-15.

TUCKER, S. G. [1967]. "Microprogram control for the System/360," IBM Systems Journal 6:4, 222-
241.

WILKES, M. V. [1953]. "The best way to design an automatic calculating machine," in Manchester
University Computer Inaugural Conj., 1951, Ferranti, Ltd., London. (Not published until 1953.)
Reprinted in "The Genesis of Microprogramming" in Annals of the History of Computing 8: 116.

WILKES, M. V. [1985]. Memoirs of a Computer Pioneer, The MIT Press, Cambridge, Mass.

WILKES, M. V. AND J.B. STRINGER [1953]. "Microprogramming and the design of the control
circuits in an electronic digital computer," Proc. Cambridge Philosophical Society 49:230-238.
Also reprinted in D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and
Examples (1982), McGraw-Hill, New York, 158-163, and in "The Genesis of Microprogramming"
in Annals of the History of Computing 8:116.

EXERCISES

If finite-state diagrams and microprogramming are review topics, you may want to skip
over questions 5.5 through 5.14.

5.1 [15/10/15/15] <5.5> One technique that tries to get the best of both the worlds of
vertical and horizontal microarchitectures is a two-level control store, as illustrated by
Figure 5.36. It tries to combine small control-store size with wide instructions. To avoid
confusion the bottom level uses the prefix nano-, yielding the terms "nanoinstruction,"
"nanocode," and so forth. This technique was used in the Motorola 68000, 68010, and
68020, but it was originated in the Burroughs D-machine [Reigel, Faber, and Fischer
1972]. The idea is that the first level has many vertical instructions that point to the few
unique horizontal instructions in the second level. The Burroughs D-machine was a
general-purpose computer offering writable control store. Its microinstructions were 16
bits wide, with 12 of those bits specifying a nanoaddress, and the nanoinstructions were
56 bits wide. One instruction set interpreter used 1124 microinstructions and 123
nanoinstructions.

INTEL Ex.1035.276

Basic Processor Implementation Techniques 245

FIGURE 5.36 Two-level microprogrammed implementation showing relationship of
microcode and nanocode.

a. [15] <5.5> What is the general formula showing when a two-level control store
scheme like Burroughs D-machine uses fewer bits than a single-level control store?
Assume there are M microinstructions each a bits wide and N nanoinstructions each b
bits wide.

b. [10] Was the two-level control store of the D-machine successful in reducing control­
store size versus a single-level control store for the interpreter?

c. [15] After the code was optimized to improve CPI by 10%, the resulting code had
940 microinstructions and 161 nanoinstructions. Was the two-level control store of
the D-machine successful in reducing control-store size versus a single-level control
store for the optimized interpreter?

d. [15] Did optimization increase or decrease the total number of bits needed to specify
control? Why would the number of microinstructions decrease and the number of
nanoinstructions increase?

5.2 [15] <5.5,5.6> One advantage of microcode is that it can handle rare cases without
having the overhead of invoking the operating system before executing the trap routine.
Suppose a machine with a CPI of 1.5 has an operating system that takes 100 clock cycles
on a trap before it can execute the appropriate code. Suppose the trap code takes 10 clock
cycles whether it is microcode or macrocode. For an instruction occurring 5% of the time,
what percentage of the time must it trap before a microcode implementation is 1 % faster
overall than a macrocode implementation?

5.3 [20/20/30] <4.2,5.5,5.6> Let's explore the impact of subsetting an architecture as
described in Figure 5.35. Suppose the MOVC3 instruction were left out of a VAX.

INTEL Ex.1035.277

246 Exercises

a. [20] Write the VAX macrocode to replace MOVC3.

b. [20] Assume the operands are placed in registers RO, Rl, and R2 after a trap. Using
the data for COBOLX in Figure C.1 in Appendix Con instruction usage (assuming ~)

all MOVC_ are MOVC3) and assuming the average MOVC3 moves 15 bytes, what
would be the percentage change in instruction count if MOVC3 were not interpreted
by microcode? (Ignore the cost of traps for this instruction.)

c. [30] If you have access to a VAX, time the speed of MOVC 3 versus a macrocode
version of the routine from part a. Assuming that the trap overhead is 20 clock cycles,
what is the impact on performance of trapping to software for MOVC 3?

5.4 [15] <5.6> Assume we have a machine with a clock cycle time of 10 ns and a base
CPI of 5. Because of the possibilities of interrupts we must have extra registers containing
copies of the values of the registers at the beginning of the instruction. These registers are
usually called shadow registers. Assume that the average instruction has two register
operands that must be restored on an interrupt. The interrupt rate is 100 interrupts per
second, and the interrupt cost is 30 cycles plus the time to restore the shadowed registers,
each of which takes 10 cycles. What is the effective CPI after accounting for interrupts?
What is the performance lost from interrupts?

5.5-5. 7 Given the processor design and finite-state diagram for DLX as modified in
the end of the hardwired-control portion of Section 5.7, explore the impact of
performance of the following changes. In each case show the modified portion of the
finite-state machine, describe the changes to the processor (if necessary), the change in
the number of states, and calculate the change in CPI using the DLX instruction mix
statistics in Figure C.4 for GCC. Show the reasons for the change.

5.5 [12] <5.7> Like the change to the ALU instructions in the second example in Section
5.7 and shown in Figures 5.20 and 5.21, remove the states that load Temp for the Set
instructions in Figure 5.16 first by adding the "X" option and then by increasing the
number of states.

5.6 [15] <5.7> Suppose that the memory interface was optimized so that it was not
necessary to load MAR before a memory access, nor did the data have to be transferred in
MDR for a read or write. Instead, any register on the S 1 bus could specify the address,
any register on the S2 bus could supply the data on a write, and any register on the Dest
bus could receive data on a read.

5.7 [22] <5.7> Most computers overlap the fetching of the next instruction with the
execution of the current instruction. Propose a scheme that overlaps all instruction fetches
except jumps, branches, and stores. You must reorganize the finite-state machine so that
the instruction is already fetched, possibly even partially decoded.

5.8 [15] <5.7> The example in Section 5.7 on page 228 assumes everything but the shifter
can scale to 9 ns. Alas, the memory system can rarely scale as easily as the CPU.
Reperform the analysis in this example, but this time assume that average number of
memory wait states is 2 at the 9-ns clock cycle versus 1 at 10 ns in addition to the
slowdown for shifts.

INTEL Ex.1035.278

Basic Processor Implementation Techniques 247

5.9-5.14 These questions address use of the microcoded control of DLX as shown in
Figures 5.23, 5.25, and 5.27-5.29. In each case show the modified portion of the
microcode; describe the changes to the processor (if necessary), the microinstruction
fields (if necessary), and the change in the number of microinstructions; and calculate the
change in CPI using the DLX instruction-mix statistics in Appendix C for GCC. Show the
reasons for the change.

5.9 [15] <5.7> Like the change to the ALU instructions in the second example in Section
5.7, remove the microinstructions that load Temp for the Set instructions in Figure 5.28
(page 233) first by adding the "X" option and then by increasing the number of
microinstructions.

5.10 [25] <5.7> Continuing the example in Figure 5.32 (page 237), rewrite the microcode
found in Figure 5.29 (page 234) using the dual-format microinstructions of Figure 5.31
(page 236). What is the relative frequency of each type of microinstruction? What is the
savings in control-store size versus the original DLX format? What is the change in CPI?

5.11 [20] <3.4, 5.7> Load byte and Load half take a clock cycle longer than Load word
because of the alignment of data (see Figure 3.10 on page 97 and Figure 5.25 on page
231). Propose a change that eliminates the extra clock for these instructions. How does
this change affect the CPI of GCC? How does it affect the CPI of TeX?

5.12 [20] <5.6, 5.7> Change the microcode to perform the following interrupt tests: page
fault, arithmetic overflow or underflow, misaligned memory accesses, and using
undefined instructions. Make whatever changes are needed to the microarchitecture and
microinstruction format. What is the change in size and performance to perform these
tests?

5.13 [20] <5.7> The computer designer must be careful not to tailor her design too closely
to a particular, single program. Reevaluate the performance impact of all the example
performance improvements in Exercises 5.9 to 5.12 this time using the average instruc­
tion mix data in Figure C.4. How do the programs affect the evaluations?

5.14 [20] <5.6, 5.7> Starting with the microcode in Figures 5.27 (page 233) and 5.34
(page 238), revise the microcode so that the next macroinstruction is fetched as early as
possible during the ALU instructions. Assume a "perfect" memory system, taking one
clock cycle per memory reference. Although technically this improvement speeds up
instructions that follow ALU instructions, the easiest way to account for higher
performance is as faster ALU instructions. How much faster are the ALU instructions?
How does it affect overall performance according to GCC statistics?

5.15 [30] <4,5.6> If you have access to a machine that uses one of the instruction sets in
Chapter 4, determine the worst-case interrupt latency for that implementation of the
architecture. Be sure you are measuring the raw machine latency and not the operating
system overhead.

5.16 [30] <5.6> Computer architects have sometimes been forced to support instructions
that were never published in the original instruction set manual. This situation arises

INTEL Ex.1035.279

248 Exercises

because some programs are created that inadvertently set unused instruction fields to
values other than the architect expected, which raises havoc when the architect tries to use
those values to extend the instruction set. IBM solved that problem in the System 370 by
trapping on every possible undefined field. Try executing instructions with undefined
fields on a computer to see what happens. Do your new instructions compute anything
useful? If so, would you use these new instructions in programs?

5.17 [35] <5.4, 5.5, 5.7> Take the datapath in Figure 5.1 and build a simulator that can
perform any of the operations needed to implement the DLX instruction set. Now
implement the DLX instruction set using:

Microprogrammed control, and

Hardwired control.

For hardwired control see if you can find PLA minimization and state-assignment
programs to reduce the cost of control. From these two designs, determine the perfor­
mance of each implementation and the cost in terms of gates or in terms of silicon area.

5.18 [35] <2.2, 5.5, 5.7> The similarities between the microinstructions and the macro­
instructions of DLX suggest that performance can be gained by writing a program that
translates from DLX macrocode to DLX microcode. (This is the insight that inspired
WCS.) Write such a program and benchmark it. What is the resulting expansion of code
size?

5.19 [50] <2.2, 4.4, 5.10> Recent attempts have been made to run existing software on
hardwired control machines by building hand-tuned simulators for popular machines.
Write such a simulator for the 8086 instruction set. Run some existing IBM PC programs,
and see how fast your simulator is relative to an 8-MHz 8086.

5.20 [Discussion] <4,5.5,5.10> Hypothesis: If the first implementation of an architecture
uses microprogramming, it affects the instruction set architecture. Why might this be
true? Looking at examples in Chapter 4 or elsewhere, give supporting or contradicting
evidence from real machines. Which machines will always use microcode? Why? Which
machines will never use microcode? Why? What control implementation do you think the
architect had in mind when designing the instruction set architecture?

5.21 [Discussion] <5.5,5.10> Wilkes invented microprogramming in large to simplify
construction of control. Since 1980 there has been an explosion of computer-aided design
software whose goal is also to simplify construction of control. Hypothesis: The advances
in computer-aided design software have rendered microprogramming unnecessary. Find
evidence to support and refute the hypothesis.

5.22 [Discussion] <5.10> The DLX instructions and the DLX mi<;:roinstructions have
many similarities. What would make it difficult for a compiler to produce DLX
microcode rather than macrocode? What changes to the microarchitecture would make
the DLX microcode more useful for this application?

INTEL Ex.1035.280

INTEL Ex.1035.281
INTEL Ex.1035.281

It is quite a three-pipe problem.

Sir Arthur Conan Doyle, The Adventures of Sherlock Holmes

6.1 What Is Pipelining? 251

6.2 The Basic Pipeline for DLX 252

6.3 Making the Pipeline Work 255

6.4 The Major Hurdle of Pipelining-Pipeline Hazards 257

6.5 What·Makes Pipelining Hard to Implement 278

6.6 Extending the DLX Pipeline to Handle Multicycle
Operations 284

6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines 290

6.8 Advanced Pipelining-Taking Advantage of More
Instruction-Level Parallelism 314

6.9 Putting It All Together: A Pipelined VAX 328

6.10 Fallacies and Pitfalls 334

6.11 Concluding Remarks 337

6.12 Historical Perspective and References 338

Exercises 343

INTEL Ex.1035.282

6.1

Pipelining

What Is Pipelining?

Pipelining is an implementation technique whereby multiple instructions are
overlapped in execution. Today, pipelining is the key implementation technique
used to make fast CPUs.

A pipeline is like an assembly line: Each step in the pipeline completes a part
of the instruction. As in a car assembly line, the work to be done in an instruc­
tion is broken into smaller pieces, each of which takes a fraction of the time
needed to complete the entire instruction. Each of these steps is called a pipe
stage or a pipe segment. The stages are connected one to the next to form a
pipe-instructions enter at one end, are processed through the stages, and exit at
the other end.

The throughput of the pipeline is determined by how often an instruction
exits the pipeline. Because the pipe stages are hooked together, all the stages
must be ready to proceed at the same time. The time required between moving
an instruction one step down the pipeline is a machine cycle. The length of a
machine cycle is determined by the time required for the slowest pipe stage
(because all stages proceed at the same time). Often the machine cycle is one
clock cycle (sometimes it is two, or rarely more), though the clock may have
multiple phases.

INTEL Ex.1035.283

252 6.1 What Is Pipelining?

The pipeline designer's goal is to balance the length of the pipeline stages. If
the stages are perfectly balanced, then the time per instruction on the pipelined
machine-assuming ideal conditions (i.e., no stalls)-is equal to

Time per instruction on nonpipelined machine
Number of pipe stages

Under these conditions, the speedup from pipelining equals the number of pipe
stages. Usually, however, the stages will not be perfectly balanced; furthermore,
pipelining does involve some overhead. Thus, the time per instruction on the
pipelined machine will not have its minimum possible value, though it can be
close (say within 10%).

Pipelining yields a reduction in the average execution time per instruction.
This reduction can be obtained by decreasing the clock cycle time of the
pipelined machine or by decreasing the number of clock cycles per instruction,
or by both. Typically, the biggest impact is in the number of clock cycles per
instruction, though the clock cycle is often shorter in a pipelined machine
(especially in pipelined supercomputers). In the advanced pipelining sections of
this chapter we will see how deep pipelines can be used to both decrease the
clock cycle and maintain a low CPI.

Pipelining is an implementation technique that exploits parallelism among the
instructions in a sequential instruction stream. It has the substantial advantage
that, unlike some speedup techniques (see Chapters 7 and 10), it is not visible to
the programmer. In this chapter we will first cover the concept of pipelining
using DLX and a simplified version of its pipeline. We will then look at the
problems pipelining introduces and the performance attainable under typical sit­
uations. Later in the chapter we will examine advanced techniques that can be
used to overcome the difficulties that are encountered in pipelined machines and
that may lower the performance attainable from pipelining.

We use DLX largely because its simplicity makes it easy to demonstrate the
principles of pipelining. The same, principles apply to more complex instruction
sets, though the corresponding pipelines are more complex. We will see an
example of such a pipeline in the Putting It All Together section.

6.2 j The Basic Pipeline for DLX

Remember that in Chapter 5 (Section 5.3) we discussed how DLX could be im­
plemented with five basic execution steps:

1. IF-instruction fetch

2. ID-instruction decode and register fetch

3. EX--execution and effective address calculation

4. MEM-memory access

5. WB-write back

INTEL Ex.1035.284

Pipelining 253

Instruction Clock number
number 1 2 3 4 . s 6 7 8 9

Instruction i IF ID EX MEM WB
Instruction i+ 1 IF ID EX MEM WB
Instruction i+2 IF ID EX MEM WB
Instruction i+ 3 IF ID EX MEM WB
Instruction i+4 IF ID EX MEM WB

FIGURE 6.1 Simple DLX pipeline. On each clock cycle another instruction is fetched and begins its five-step execution.
If an instruction is started every clock cycle, the performance will be five times that of a machine that is not pipelined.

Example

Answer

We can pipeline DLX by simply fetching a new instruction on each clock
cycle. Each of the steps above becomes a pipe stage-a step in the pipeline­
resulting in the execution pattern shown in Figure 6.1. While each instruction
still takes five clock cycles, during each clock cycle the hardware is executing
some part of five different instructions.

Pipelining increases the CPU instruction throughput-the number of instruc­
tions completed per unit of time-but it does not reduce the execution time of an
individual instruction. In fact, it usually slightly increases the execution time of
each instruction due to overhead in the control of the pipeline. The increase in
instruction throughput means that a program runs faster and has lower total
execution time, even though no single instruction runs faster!

The fact that the execution time of each instruction remains unchanged puts
limits on the practical depth of a pipeline, as we will see in the next section.
Other design considerations limit the clock rate that can be attained by deeper
pipelining. The most important consideration is the combined effect of latch
delay and clock skew. Latches are required between pipe stages, adding setup
time plus the delay through those latches to each clock period. Clock skew also
contributes to the lower limit on the clock cycle. Once the clock cycle is as small
as the sum of the clock skew and latch overhead, no further pipelining is useful.

Consider a nonpipelined machine with five execution steps of lengths 50 ns,
50 ns, 60 ns, 50 ns, and 50 ns. Suppose that due to clock skew and setup,
pipelining the machine adds 5 ns of overhead to each execution stage. Ignoring
any latency impact, how much speedup in the instruction execution rate will we
gain from a pipeline?

Figure 6.2 shows the execution pattern on the nonpipelined machine and on the
pipelined machine. ,

The average instruction execution time on the nonpipelined machine is

Average instruction execution time= 50+50+60+50+50 ns = 260 ns

INTEL Ex.1035.285

254 6.2 The Basic Pipeline for DLX

I 260 I 260 .1 260 I

I 50 I 50 I 60 I 50 I 50 I 50 I 50 I 60 I 50 I 50 I 50 I 50 I 60 I 50 I 50 I
Instruction 1 Instruction 2 Instruction 3

Nonpipelined execution

I 65 I 65 I 65 I 65 I 65 I

Instruction 1 60 60 60 60 60 I - I 60 60 60 60 60 Instruction 2

-
Instruction 3 60 60 60 60 60

5 5 5 5 5

Pipelined execution

FIGURE 6.2 The execution pattern for three instructions shown for both the non­
pipelined and pipelined versions. In the nonpipelined version, the three instructions are.
executed sequentially. In the pipelined version, the shaded areas represent the overhead of
5 ns per pipestage. The length of the pipestages must all be the same: 60 ns plus the 5-ns
overhead. The latency of an instruction increases from 260 ns in the nonpipelined machine
to 325 ns in the pipelined machine.

In the pipelined implementation, the clock must run at the speed of the slowest
stage plus overhead, which will be 60 + 5 or. 65 ns; this is the average instruction
execution time. Thus, the speedup from pipelining is

_ Average instruction time without pipeline
Speedup - Average instruction time with pipeline

260 4 . =
65

=. times

The 5-ns overhead essentially establishes a limit on the effectiveness of pipelin­
ing. If the overhead is not affected by changes in the clock cycle, Amdahl's Law
tells us that the overhead limits the speedup.

Because the latches in a pipelined ·design can have a significant impact on the
clock speed, designers have looked for latches that permit the highest possible
clock rate. The Earle latch (invented by J. G. Earle [1965]) has three properties
that maj<:e it especially useful in pipelined machines. First, it is relatively insen­
sitive to clock skew. Second, the delay through the latch is always a constant
two-gate delay, avoiding the introduction of skew in the data passing through the
latch. Finally, two levels of logic can be done in the latch without increasing the
latch delay time. This means that two levels of logic in the pipeline can be
overlapped with the latch, so the majority of the overhead from the latch can be

INTEL Ex.1035.286

Pipelining 255

hidden. We will not be analyzing the pipeline designs in this chapter at this level
of detaiL The interested reader should see Kunkel and Smith [1986].

The next two sections will add refinements and address some problems that
can occur in this pipeline. In this discussion (up to the last segment of Section
6.5) we will focus on the pipeline for the integer portion of DLX. The complica­
tions that arise in the floating-point pipeline will be treated in Section 6.6.

6.3 I Making the Pipeline Work

Your instinct is right if you find it hard to believe that pipelining is as simple as
this, because it's not. In this and the following three sections, we will make our
DLX pipeline "real" by dealing with problems that pipelining introduces.

To begin with, we have to determine what happens on every clock cycle of
the machine and make sure that overlapping instructions doesn't overcommit
resources. For example, a single ALU cannot be asked to compute an effective
address and perform a subtract operation at the same time. As we will see, the
simplicity of the DLX instruction set makes resource evaluation relatively easy.

The operations that occur during instruction execution, which were discussed
in Section 5.3 of Chapter 5, are modified to execute in a pipeline as shown in
Figure 6.3. The figure lists the major functional units in our DLX implemen­
tation, the pipe stages, and what has to happen in each stage of the pipeline. The
vertical axis is labeled with the pipeline stages, while the horizontal axis shows
major resources. Each intersection shows what happens for that resource in that
stage. In Figure 6.4 we will show similar information using the instruction type
as the horizontal axis. The combination of instructions that may be in the
pipeline at any one time is arbitrary. Thus, the combined needs of all instruction
typys at any pipe stage determine what resources are needed at that stage.

Every pipe stage is active on every clock cycle. This requires all operations in
a pipe stage to complete in one clock and any combination of operations to be
able to occur at once. Here are the most important implications for the data path,
as specified in Chapter 5:

1. The PC must be incremented on each clock. This must be done in IF rather
than ID. This will require an additional incrementer, since the ALU is
already busy on every cycle and cannot be used to increment the PC.

2. A new instruction must be fetched on every clock-this is also done in IF.

3. A new data word is needed on every clock cycle-this is done in MEM.

4. There must be a separate MDR for loads (LMDR) and stores (SMDR), since
when they are back-to-back, they overlap in time.

5. Three additional latches are needed to hold values that are needed later in the
pipeline, but· may be modified by a subsequent instruction. The values
latched are the instruction, the ALU output, and the next PC.

INTEL Ex.1035.287

256 6.3 Making the Pipeline Work

PC unit Memory Data path
Stage

IF PCf- PC+4; IRf-Mem[PC];

ID PClf- PC IRlf-IR Af- Rsl; Bf- Rs2;

EX 16
DMARf-A + (IRl16) ##IR116 .. 31; SMDRf-B;
or
ALUoutputf- A op (B or

16
(IRl16) ##IRl16 .. 31);

or
ALUoutputf-PCl + 16

(IRl16) ##IRl16 .. 31i

condf- (A op 0) ;

MEM if (cond) LMDRf- Mem [DMAR] ALUoutputlf- ALUoutput
PCf-ALUoutput or

Mem [DMAR l f-SMDR

WB Rdf- ALUoutputl or LMDR

FIGURE 6.3 The table shows the major functional units and what may happen in every pipe stage in each unit. In
several of the stages not all of the actions listed can occur, because they apply under different assumptions about the
instruction. For example, there are three operations within the ALU during the EX stage. The first occurs only on a load or
store; the second on ALU operations (with the input being B or the lower 16 bits of the IR, according to whether the
instruction is register-register or register-immediate); the third operation occurs only on branches. For simplicity, we have
shown the branch case only-jumps will add a 26-bit offset to the PC. The variables ALUouputl, PCl, and IRl save
values for use in later stages of the pipeline. Designing the memory system to support a data load or l?tore on every clock
cycle is challenging; see Chapter 8 for an in-depth discussion. This type of table and that in Figure 6.4 are loosely based
on Davidson's [1971] pipeline reservation tables.

Stage ALU instruction Load or store instruction Branch instruction

IF IRf-Mem [PC l ; IRf-Mem [PC l ; IRf-Mem [PC] ;
PCf-PC+4; PCf-PC+4; PCf-PC+4;

ID Af-Rsl; Bf-Rs2; PClf-PC Af-Rsl; Bf-Rs2; PClf-PC Af-Rsl; Bf-Rs2; PClf-PC
IRlf-IR IRlf-IR IRlf-IR

EX ALUoutputf-A op B; DMARf-A+ ALUoutputf-PCl +
or ((IRl16) 16 ##IR116 .. 31); ((IR116) 16 # #IR116 .. 31) ;
~LUoutputf-A op SMDRf- B; condf- (A op 0) ;

((IRl16) 16 ##IR116 .. 31) ;

MEM ALUoutputlf- ALUoutput LMDRf-Mem [DMAR] ; or if (cond) PCf-ALUoutput;
-

Mem [DMA:R] f-SMDR;

WB Rdf-ALUoutputl; Rdf-LMDR;

FIGURE 6.4 Events on every pipe stage of the DLX pipeline. Because the instruction is not yet decoded, the first two
pipe stages are always identical. Note that it was critical to be able to fetch the registers before decoding the instruction;
otherwise another pipeline stage would be required. Due to the fixed instruction format, both register fields are always
decoded and the registers accessed (though they are sometimes not needed); the PC and immediate fields can be sent to ·
the ALU as well. At the beginning of the ALU operation the correct inputs are multiplexed in, based on the opcode. With
this organization all instruction-dependent operations occur in the EX stage or later. As in Figure 6.3, we include the case
for branches, but not jumps, which will have a 26-bit offset rather than a 16-bit offset. Jumps are essentially like branches.

INTEL Ex.1035.288

Pipelining 257

Probably the biggest impact of pipelining on the machine resources is in the
memory system. Although the memory-access time has not changed, the peak
memory bandwidth must be increased by five times over the nonpipelined
machine because two memory accesses are required on every clock in the
pipelined machine versus two accesses every five clock cycles in a nonpipelined
machine with the same number of steps per instru£tion. To provide two memory
accesses every clock, most machines will use separate instruction and data
caches (see Chapter 8, Section 8.3).

During the EX stage, the ALU can be used for three different functions: an
effective data-address calculation, a branch-address calculation, or an ALU
instruction. Fortunately, the DLX instructions are simple; an instruction in EX
does at most one of these, so no conflict arises.

The pipeline we now have for DLX would function just fine if every instruc­
tion were independent of every other instruction in the pipeline. In reality,
instructions in the pipeline can be dependent on one another; this is the topic of
the next section.

6.4 I The Major Hurdle of Pipelining­
Pipeline Hazards

There are situations, called hazards, that prevent the next instruction in the
instruction stream from executing during its designated clock cycle. Hazards
reduce the performance from the ideal speedup gained by pipelining. There are
three classes of hazards:

1. Structural hazards arise from resource conflicts when the hardware cannot
support all possible combinations of instructions in simultaneous overlapped
execution.

2. Data hazards arise when an instruction depends on the results of a previous
instruction in a way that is exposed by the overlapping of instructions in the
pipeline.

3. Control hazards arise from the pipelining of branches and other instructions
that change the PC.

Hazards in pipelines can make it necessary to stall the pipeline. The major
difference between stalls in a pipelined machine and stalls in a nonpipelined
machine (such as those we saw in DLX in Chapter 5) occurs because there are
multiple instructions under execution at once. A stall in a pipelined machine
often requires that some instructions be allowed to proceed, while others are
delayed. Typically, when an instruction is stalled, all instructions later in the
pipeline than the stalled instruction are also stalled. Instructions earlier than the
stalled instruction can continue, but no new instructions are fetched during the
stall. We will see several examples of how stalls operate in this section-don't
worry, they aren't as complex as they might sound!

INTEL Ex.1035.289

258 6.4 The Major Hurdle of Pipelining-Pipeline Hazards

A stall causes the pipeline performance to degrade from the ideal perfor­
mance. Let's look at a simple equation for finding the actual speedup from
pipelining, starting with the formula from the previous section.

_ Average instruction time without pipeline
Pipeline speedup

- Average instruction time with pipeline

_ CPI without pipelining * Clock cycle without pipelining
- CPI with pipelining * Clock cycle with pipelining

= Clock cycle without pipelining * CPI without pipelining
Clock cycle with pipelining CPI with pipelining

Remember that pipelining can be thought of a~ decreasing the CPI or the clock
cycle time; let's treat it as decreasing the CPI. The ideal CPI on a pipelined
machine is usually

Ideal CPI = CPI "".ith~ut pipelining
P1pelme depth

Rearranging this and substituting into the speedup equation yields:

S d _ Clock cycle without pipelining * Ideal CPI * Pipeline depth
pee up - Clock cycle with pipelining CPI with pipelining

If we confine ourselves to pipeline stalls,

CPI with pipelining = Ideal CPI + Pipeline stall clock cycles per instruction

We can substitute and obtain:

S d _ Clock cycle without pipelining * Ideal CPI * Pipeline depth
pee up - Clock cycle with pipelining Ideal CPI + Pipeline stall cycles

While this gives a general formula for pipeline speedup (ignoring stalls other
than from the pipeline), in most instances a simpler equation can be used. Often,
we choose to ignore the potential increase in the clock cycle due to pipelining
overhead. This makes the clock rates equal and allows us to drop the first term.
A simpler formula can now be used:

p· r d Ideal CPI * Pipeline depth
ipe me spee up = Ideal CPI + Pipeline stall cycles

While we will use this simpler form for evaluating the DLX pipeline, a designer
must be careful not to discount the potential impact on clock rate in evaluating
pipelining strategies.

Structural Hazards

When a machine is pipelined, the overlapped execution of instructions requires
pipelining of functional units and duplication of resources to allow all possible
combinations of instructions in the pipeline. If some combination of instructions

INTEL Ex.1035.290

. <'

Instruction

Load instruction

Instruction i+ 1

Instruction i+2

Instruction i+ 3

Instruction i+4

1

Pipelining 259

cannot be accommodated due to resource conflicts, the machine is said to have a
structural hazard. The most common instances of structural hazards arise when
some functional unit is not fully pipelined. Then a sequence of instructions that
all use that functional unit cannot be sequentially initiated in the pipeline.
Another common way that structural hazards appear is when some resource has
not been duplicated enough to allow all combinations of instructions in the
pipeline to execute. For example, a machine may have only one register-file
write port, but under certain circumstances, the pipeline might want to perform
two writes in a clock cycle. This will generate a structural hazard. When a
sequence of instructions encounters this hazard, the pipeline will stall one of the
instructions until the required unit is available.

Many pipelined machines share a single memory pipeline for data and
instructions. As a result, when an instruction contains a data-memory reference,
the pipeline must stall for one clock cycle; the machine cannot fetch the next
instruction because the data reference is using the memory port. Figure 6.5
shows what a one-memory-port pipeline looks like when it stalls during a load .
We will see another type of stall when we talk about data hazards.

Clock cycle number
2 3 4 5 6 7 8 9

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

stall IF ID EX MEM WB

IF ID EX MEM

FIGURE 6.5 A pipeline stalled for a structural hazard-a load with one memory port. With only one memory port,
the pipeline cannot initiate a data fetch and instruction fetch in the same cycle. A load instruction effectively steals an
instruction-fetch cycle, causing the pipeline to stall-no instruction is initiated on clock cycle 4 (which normally would be
instruction i+3). Because the instruction being fetched is stalled, all other instructions in the pipeline can proceed normally.
The stall cycle will continue to pass through the pipeline.

Example

Answer

Suppose that data references constitute 30% of the mix and that the ideal CPI of
the pipelined machine, ignoring the structural hazard, is 1.2. Disregarding any
other performance losses, how much faster is the ideal machine without the
memory structural hazard, versus the machine with the hazard?

The ideal machine will be faster by the ratio of the speedup of the ideal machine
over the real machine. Since the clock rates are unaffected, we can use the fol­
lowing for speedup:

P
.

1
. d Ideal CPI * Pipeline depth

1pe me spee up = . .
Ideal CPI + P1pelme stall cycles

INTEL Ex.1035.291

260

Example

Answer

6.4 The Major Hurdle of Pipelining-Pipeline Hazards

S. h 'd 1 h' h -all · d . . 1 1.2*Pipeline depth mce t e 1 ea mac me as no st s, its spee up 1s s1mp y 1.
2

.

Th d f h al h
. . 1.2*Pipeline depth_ l.2*Pipeline depth

e spee up o t ere mac me 1s 1.2 + 0.3*l - 1.5

(
l.2*Pipeline depth)

SpeedUPideal = 1.2 = 1.5 = 1 25
SpeedUPreal (l.2*Pipeline depth) 1.2 ·

1.5

Thus, the machine without the structural hazard is 25% faster.

If all other factors are equal, a machine without structural hazards will always
have a lower CPI. Why, then, would a designer allow structural hazards? There
are two reasons: to reduce cost and to reduce the latency of the unit. Pipelining
all the functional units may be too costly. Machines that support one-clock-cycle
memory references require twice as much total memory bandwidth and often
have higher bandwidth at the pins. Likewise, fully pipelining a floating-point
multiplier consumes lots of gates. If the structural hazard would not occur often,
it may not be worth the cost to avoid it. It is also usually possible to design a
nonpipelined unit, or one that isn't fully pipelined, with a shorter total delay than
a fully pipelined unit. For example, both the CDC 7600 and the MIPS R2010
floating-point unit choose shorter latency (fewer clocks per operation) versus
full pipelining. As we will see shortly, reducing latency has other performance
benefits and can frequently overcome the disadvantage of the structural hazard.

Many recent machines do not have fully pipelined floating-point units. For
example, suppose we had an implementation of DLX with a 5-clock-cycle
latency for floating-point multiply, but no pipelining. Will this structural hazard
have a large or small performance impact on Spice running on DLX? For sim- _
plicity, assume that the floating-point multiplies are uniformly distributed.

The data in Figure C.4 show that floating-point multiply has a frequency of 6%
in Spice. Our proposed pipeline can handle up to a 20% frequency of floating­
point multiplies-one every five clock cycles. This means that the performance
benefit of fully pipelining the floating-point multiply is likely to be low, as long
as the floating-point multiplies are not clustered but are distributed uniformly. If
they were clustered, the impact could be much larger.

Data Hazards

A major effect of pipelining is to change the relative timing of instructions by
~:>Verlapping their execution. This introduces data and control hazards. Data

INTEL Ex.1035.292

Instruction

ADD instruction

SUB instruction

Pipelining 261

hazards occur when the order of access to operands is changed by the pipeline
versus the normal order encountered by sequentially executing instructions.
Consider the pipelined execution of these instructions:

ADD Rl,R2,R3
SUB R4,Rl,R5

The SUB instruction has a source, R 1, that is the destination of the ADD instruc­
tion. As shown in Figure 6.6, the ADD instruction writes the value of Rl in the
WB pipe stage, but the SUB instruction reads the value during its ID stage. This
problem is called a data hazard. Unless precautions are taken to prevent it, the
SUB instruction will read the wrong value and try to use it. In fact, the value

· used by the SUB instruction is not even deterministic: Though we might think it
logical to assume that SUB would always use the value of Rl that was assigned
by an instruction prior to ADD, this is not always the case. If an interrupt should
occur between the ADD and SUB instructions, the WB stage of the ADD will
complete, and the value of Rl at that point will be the result of the ADD. This
unpredictable behavior is obviously unacceptable.

Clock cycle
1 2 3 4 5 6

IF ID EX MEM WB--data written here

IF ID-data read here EX MEM WB

FIGURE 6.6 The ADD instruction writes a register that is a source operand for the SUB instruction. But the ADD

doesn't finish writing the data into the register file until three clock cycles after SUB begins reading it!

The problem posed in this example can be solved with a simple hardware
technique calledforwarding (also called bypassing and sometimes short-circuit­
ing). This technique works as follows: The ALU result is always fed back to the
ALU input latches. If the forwarding hardware detects that the previous ALU
operation has written the register corresponding to a source for the current ALU
operation, control logic selects the forwarded result as the ALU input rather than
the value read from the register file. Notice that with forwarding, if the SUB is
stalled, the ADD will be completed, and the bypass will not be activated, causing
the value from the register to be used. This is also true for the case of an inter­
rupt between the two instructions.

In our DLX pipeline, we must pass results to not only the instruction that
immediately follows, but also to the instruction after that. ay the third instruc­
tion down the line, the ID and WB stages overlap; however, as the write is not
finished until the end of WB, we must continue to forward the result. Figure·6.7
shows a set of instructions in the pipeline and the forwarding operations that can
occur.

INTEL Ex.1035.293

262 6.4 The Major Hurdle of Pipelining-Pipeline Hazards

ADD Rl,R2,R3 IF ID EX MEM WB

,\

SUB R4,Rl,R5 IF ID ~ MEM WB

')..

AND R6,Rl,R7 IF ID ·~ MEM WB

\

OR R8,Rl,R9 IF ID- EX MEM WB

XOR RlO, Rl, Rll

FIGURE 6.7 A set of instructions in the pipeline that need to forward results. The
ADD instruction sets R1, and the next four instructions use it. The value of R1 must be
bypassed to the SUB, AND, and OR instructions. By the time the' XOR instruction goes to read
R1 in the ID phase, the ADD instruction has completed WB, and the value is available.

Rl,R2,R3
IF ID

ADD
EX MEM WB

R w

SUB R4,Rl,R5
IF ID EX MEM WB

R w

AND R6,Rl,R7
IF ID EX MEM WB

R w

OR R8,Rl,R9
IF ID EX MEM WB

R w

RlO,Rl,Rll
IF ID

XOR
EX MEM WB

R w

FIGURE 6.8 The same instruction sequence as shown in Figure 6.7, with register
reads and writes occurring in opposite halves of the ID and WB stages. The SUB and
AND instructions will still require the value of R1 to be bypassed to them, and this will hap­
pen as they enter their EX stage. However, by the time of the OR instruction, which also
uses R1, the write of R1 has completed, and no forwarding is required. The XOR depends
on the ADD, but the value of R1 from the ADD is always written back the cycle before XOR

reaches its ID stage and reads it.

INTEL Ex.1035.294

Pipelining 263

It is desirable to cut down the number of instructions that must be bypassed,
since each level requires special hardware. Remembering that the register file is
accessed twice in a clock cycle, it is possible to do the register writes in the first
half of WB and the reads in the second half of ID. This eliminates the need to
bypass to a third instruction, as shown in Figure 6.8.

Each level of bypass requires a latch and a pair of comparators to examine
whether the adjacent instructions share a destination and a source. Figure 6.9
shows the structure of the ALU and its bypass unit as well as what values are in

0 the bypass registers for the instruction sequence in Figure 6. 7. Two ALU result
buffers are needed to hold ALU results to be stored into the destination register
in the next two WB stages. For ALU operations, the result is always forwarded
-when the instruction using the result as a source enters its EX stage. (The
instruction that computed the value to be forwarded may be in its MEM or WB
stages.) The results in the buffers can be inputs into either port on the ALU, via a
pair of multiplexers. Multiplexer control can be done by either the control unit

. ' (which must then track the destinations and sources of all operations in the
pipeline) or locally by logic associated with the bypass (in which case the bypass
buffers will contain tags giving the register numbers the values are destined for).
In either event, the logic must test if either of the two previous instructions wrote
a register that is the input to the current instruction. If so, then the multiplexer
select is set to choose from the appropriate result register rather than from the
bus. Because the ALU operates in a single pipeline stage, there is no need for a
pipeline stall with any combination of ALU instructions once the bypasses have
been implemented.

Result
write bus

Register
file

Bypass
paths

R4 ----m==:...:::i-ALU result
buffers

R1

FIGURE 6.9 The ALU with its bypass unit. The contents of the buffer are shown at the
point where the AND instruction of the code sequence in Figure 6.8 is about to begin the EX
stage. The ADD instruction that computed R1 (in the second buffer) is in its WB stage, and
the left input multiplexer is set to pass the just-computed value of R1 (not the value read
from the register file) as the first operand to the AND instruction. The result of the subtract,
R4, is in the first buffer. These buffers correspond to the variables ALUoutput and
ALUoutputl in Figures 6.3 and 6.4.

INTEL Ex.1035.295

264 6.4 The Major Hurdle of Pipelining-Pipeline Hazards

A hazard is created whenever there is a dependence between instructions, and
they are close enough that the overlap caused by pipelining would change the
order of access to an operand. Our example hazards have all been with register
operands, but it is also possible for a pair of instructions to create a dependence
by writing and reading the same memory location. In our DLX pipeline, how­
ever, memory references are always kept in order, preventing this type of hazard
from arising. Cache misses could cause the memory references to get out of
order if we allowed the processor to continue working on later instructions while
an earlier instruction that missed the cache was accessing memory. For DLX's
pipeline we just stall the entire pipeline, effectively making the instruction that
contained the miss run for multiple clock cycles. In an advanced section of this
chapter, Section 6. 7, we will discuss machines that allow loads and stores to be
executed in an order different from that in the program. All the data hazards dis­
cussed in this section, however, involve registers within the CPU.

Forwarding can be generalized to include passing a result directly to the func­
tional unit that requires it: A result is forwarded from the output of one unit to
the input of another, rather than just from the result of a unit to the input of the
same unit. Take, for example, the following sequence:

ADD Rl,R2,R3
SW 25(Rl),Rl

To prevent a stall in this sequence, we would need to forward the value of R,1
from the ALU both to the ALU, so ,that it can be used in the effective address
calculation, and to the MDR (memory data register), so that it can be stored
without any stall cycles.

Data hazards may be classified as one of three types, depending on the order
of read and write accesses in the instructicms. By convention, the hazards are
named by the ordering in the program that must be preserved by the pipeline.
Consider two instructions i and j, with i occurring before j. The possible data
hazards are:

• RAW (read after write) - j tries to read a source before i writes it, so j
incorrectly gets the old value. This is the most common type of hazard and
the one that appears in Figures 6.6 and 6.7.

• WAR (write after read) -j tries to write a destination before it is read by i,
so i incorrectly gets the new value. This cannot happen in our example
pipeline because all reads are early (in ID) and all writes are late (in WB).
This hazard occurs when there are some instructions that write results early in
the instruction pipeline, and other instructions that read a source after a write
of an instruction later in the pipeline. For example, autoincrement addressing
can create a WAR hazard.

• WAW (write after write) -j tries to write an operand before it is written by
i. The writes end up being performed in the wrong order, leaving the value
writ~en by i rather than the value written by j in the destination. This hazard is
present only in pipelines that write in more than one pipe stage (or allow an

INTEL Ex.1035.296

Pipelining 265

instruction to proceed even when a previous instruction is stalled). The DLX
pipeline writes a register only in WB and avoids this class of hazards.

Note that the RAR (read after read) case is not a hazard.
Not all data hazards can be handled without a performance effect. Consider

the following sequence of instructions:

LW Rl,32(R6)

ADD R4,Rl,R7

SUB R5,Rl,R8

AND R6,Rl,R7

. This case is different from the situation with back-to-back ALU operations. The
LW instruction does not have the data until the end of the MEM cycle, while the
ADD instruction needs to have the data by the beginning of that clock cycle.
Thus, the data hazard from using the result of a load instruction cannot be
completely eliminated with simple hardware. We can forward the result immedi­
ately to the ALU from the MDR, and for the SUB instruction- which begins
two clock cycles after the load-the result arrives in time, as shown in Figure
6.10. However, for the ADD instruction, the forwarded result arrives too late-at
the end of a clock cycle, though it is needed at the beginning.

LW Rl, 32 (R6) IF ID EX MEM WB

ADD R4,Rl,R7 IF ID EX MEM

SUB R5,Rl,R8 IF ID EX

AND R6,Rl,R7 IF ID

FIGURE 6.1 O Pipeline hazard occurring when the result of a load instruction is used
by the next instruction as a source operand and is forwarded. The value is available
when it returns from memory at the end of the load instruction's MEM cycle. However, it is
needed at the beginning of that clock cycle for the ADD (the EX stage of the add). The load
value can be forwarded to the SUB instruction and will arrive in time for that instruction (EX).
The AND can simply read the value during ID since it reads the registers in the second half
of the cycle and the value is written in the first half.

The load instruction has a delay or latency that cannot be eliminated by for­
warding alone-to do so would require the data-access time to be zero. The most
common solution to this problem is a hardware addition called a pipeline inter­
lock. In general, a pipeline interlock detects a hazard and stalls the pipeline until
the hazard is cleared. In this case, the interlock stalls the pipeline beginning with
the instruction that wants to use the data until the sourcing instruction produces
it. This delay cycle, called a pipeline stall or bubble, allows the load data to
arrive from memory; it can now be forwarded by the hardware. The CPI for the .
stalled instruction increases by the length of the stall (one clock cycle in this
case). The stalled pipeline is shown in Figure 6.11.

INTEL Ex.1035.297

266 6.4 The Major Hurdle of Pipelining-Pipeline Hazards

Any instruction IF ID EX MEM WB

LW Rl, 32 (R6) IF ID EX MEM WB

ADD R4,Rl,R7 IF ID stall EX MEM WB

SUB R5,Rl,R8 IF stall ID EX MEM WB

AND R6,Rl,R7 stall IF ID EX MEM WB

FIGURE 6.11 The effect of the stall on the pipeline. All instructions starting with the instruction that has the depen­
dence are delayed. With the delay, the value of the load that returns in MEM can now be forwarded to the EX cycle of the
ADD instruction. Because of the stall, the SUB instruction will riow read the value from the registers during its ID cycle
rather than having it forwarded from the MOR.

Example

Answer

The process of letting an instruction move from the instruction decode stage
(ID) into the execution stage (EX) of this pipeline is usually called instruction
issue; and an instruction that has made this step is said to have issued. For the
DLX integer pipeline, all the data hazards can be checked during the ID phase of
the pipeline. If ~ data hazard exists, the instruction is. stalled before it is issued.
Later in this chapter, we will look at situations where instruction issue is much
more complex. Detecting interlocks early in the pipeline reduces the hardware
complexity because the hardware never has to suspend an instruction that has
updated the state of the machine, unless the entire machine is stalled.

Suppose that 20% of the instructions are loads, and half the time the instruction
following a load instruction depends on the result of the load. If this hazard
creates a single-cycle delay, how much faster is the ideal pipelined machin6
(with a CPI of 1) that does not delay the pipeline, compared to a more realistic
pipeline? Ignore any stalls other than pipeline stalls.

The ideal machine will be faster by the ratio of the CPls. The CPI for an instruc­
tion following a load is 1.5, since they stall half the time. Since loads are 20% of
the mix, the effective CPI is (0.8* 1 + 0.2* 1.5) = 1.1. This yields a performance

ratio of \
1

. Hence, the ideal machine is 10% faster.

vMany types of stalls are quite frequent. The typical code-generation pattern
for a statement such as A=B+C produces a stall for a load of the second data
value. Figure 6.12 shows that the store need not result in another stall, since the
result of the addition can be forwarded to the MDR. Machines where the
operands may come from memory for arithmetic operations will need to stall the
pipeline in the middle of the instruction to wait for memory to complete its
access.

INTEL Ex.1035.298

Pipelining 267

LW Rl,B IF ID EX MEM WB

LW R2,C IF ID EX MEM WB

ADD R3,Rl,R2 IF ID stall EX MEM WB

SW A,R3 IF stall ID EX MEM WB

FIGURE 6.12 The DLX code sequence for A=B+C. The ADD instruction must be stalled to allow the load of C to
complete. The sw need not be delayed further because the forwarding hardware passes the result from the ALU directly to
the MOR for storing.

~xample

Answer

Rather than just allow the pipeline to stall, the compiler could try to schedule
the pipeline to avoid these stalls, by rearranging the code sequence to eliminate
the hazard. For example, the compiler would try to avoid generating code with a
load followed by an immediate use of the load destination register. This tech­
nique, called pipeline scheduling or instruction scheduling, was first used in the
1960s, and became an area of major interest in the 1980s as pipelined machines
became more widespread.

Generate DLX code that avoids pipeline stalls for the following sequence:

a = b + e;

d = e - f;

Assume loads have a latency of one clock cycle.

Here is the scheduled code:

LW Rb,b

LW Re,e

LW Re,e ; swapped with next instruction to avoid stall

ADD Ra,Rb,Re

LW Rf,f

SW a,Ra ; store/load interchanged to avoid stall in SUB

SUB Rd,Re,Rf

SW d,Rd

Both load interlocks (LW Re, e/ADD Ra, Rb, Re and LW Rf, f/S U B
Rd, Re, Rf) have been eliminated. There is a dependence between the ALU
instruction and the store, but the pipeline structure allows the result to be for­
warded. Notice that the use of different registers for the first and second state­
ments was critical for this schedule to be legal. In particular, if the variable e
were loaded into the same register as b or e, this schedule would not be legal. In

INTEL Ex.1035.299

268 6.4 The Major Hurdle of Pipelining-Pipeline Hazards

general, pipeline scheduling can increase the register count required. In Section
6.8, we will see that this increase can be substantial for machines that can issue
multiple instructions in one clock.

This technique works sufficiently well that some machines rely on software
to avoid this type of hazard. A load requiring that the following instruction not
use its result is called a delayed load. The pipeline slot after a load is often
called the load delay or delay slot. When the compiler cannot schedule the inter­
lock, a no-op instruction may be inserted. This does not affect running time, but
only increases the code space versus a machine with the interlock. Whether or
not the hardware detects this interlock and stalls the pipeline, performance will
be enhanced if the compiler schedules instructions. If the stall occurs, the per­
formance impact will be the same, whether the machine executes an idle cycle or
executes a no-op. Figure 6.13 shows that scheduling can eliminate the majority
of these delays. It is clear from this figure that load delays in GCC are signifi­
cantly harder to schedule than in Spice or TeX.

Scheduled
TeX

Unscheduled 65%

Scheduled
Spice

Unscheduled

Scheduled
GCC

Unscheduled

0% 10% 20% 30% 40% 50% 60% 70%
Percentages of loads that cause pipeline stall

FIGURE 6.13 Percentage of the loads that result in a stall with the DLX pipeline. The
black bars show the amount without compiler scheduling; the gray bars show the effect of a
good, but simple, scheduling algorithm. These data show scheduling effectiveness after
global optimization (see Chapter 3, Section 3.7). Global optimization actually makes
scheduling relatively harder because there are fewer candidates available for scheduling
into delay slots. For example, on GCC and TeX, when the programs are scheduled but not ~

globally optimized, the percentage of load delays that result in a stall drops to 22% and
19%, respectively.

Implementing Data Hazard Detection
in Simple Pipelines

How pipeline interlocks are implemented depends quite heavily on the length
and complexity of the pipeline. For a complex machine with long-running
instructions and multicycle interdependences, a central table that keeps track of
the availability of operands and the outstanding writes may be needed (see Sec-

INTEL Ex.1035.300

Pipelining 269

tion 6. 7). For the DLX integer pipeline, the only interlock we need to enforce is
load followed by immediate use. This can be done with a simple comparator that
looks for this pattern of load destination and source. The hardware required to
detect and control the load data hazard and to forward the load result is as fol­
lows:

• Additional multiplexers on the inputs to the ALU (just as was required for the
bypass hardware for register-register instructions)

• Extra paths from the MDR to both multiplexer inputs to the ALU

• A buffer to save the destination-register numbers from the prior two instruc­
tions (the same as for register-register forwarding)

• Four comparators to compare the two possible source register fields with the
destination fields of the prior instructions and look for a match

The comparators check for a load interlock at the beginning of the EX cycle. The
four possibilities and the required actions are shown in Figure 6.14.

For DLX, the hazard detection and forwarding hardware is reasonably sim­
ple; we will see that things become much more complicated when the pipelines
are very deep (Section 6.6). But before we do that, let's see what happens with
branches in our DLX pipeline.

Situation Example code sequence Action

No dependence LW Rl,45(R2) No hazard possible because no
ADD R5,R6,R7 dependence exists on Rl in the
SUB R8,R6,R7 immediately following three
OR R9,R6,R7 instructions.

Dependence LW Rl,45(R2) Comparators detect the use of R 1 in
requiring stall ADD R5,Rl,R7 the ADD and stall the ADD (and SUB

SUB R8,R6,R7 and OR) before the ADD begins EX.
OR R9,R6,R7

Dependence LW Rl,45(R2) Comparators detect use of Rl in SUB
overcome by ADD R5,R6,R7 and forward result of load to ALU in
forwarding SUB R8,Rl,R7 time for s UB to begin EX.

OR R9,R6,R7

Dependence LW Rl,45(R2) No action required because the read
with accesses in ADD R5,R6,R7 of Rl by OR occurs in the second half
order SUB R8,R6,R7 of the ID phase, while the write of the

OR R9,Rl,R7 loaded data occurred in the first half.
See Figure 6.8 (page 262).

FIGURE 6.14 Situations that the pipeline hazard detection hardware can see by
comparing the destination and sources of adjacent instructions. This table indicates
that the only compare needed is between the destination and the sources on the two
instructions following the instruction that wrote the destination. In the case of a stall, the
pipeline dependences will look like the th.ird case, once execution continues.

INTEL Ex.1035.301

270

Branch instruction IF

Instruction i+ 1

Instruction i+2

Instruction i+ 3

Instruction i+4

Instruction i+5

Instruction i+6

6.4 The Major Hurdle of Pipelining-Pipeline Hazards

Control Hazards

Control hazards can cause a greater performance loss for our DLX pipeline than
do data hazards. When a branch is executed, it may or may not change the PC to
something other than its current value plus 4 .. (Recall that if a branch changes the
PC to its target address, it is a taken branch; if it falls through, it is not taken, or
untaken.) If instruction i is a taken branch, then the PC is normally not changed
until the end of MEM, after the completion of the address calculation and com­
parison, as shown in Figure 6.4 (page 256). This means stalling for three clock
cycles, at the end of which the new PC is known and the proper instruction can
be fetched. This effect is called a control or branch hazard. Figure 6.15 shows a
three-cycle stall for a control hazard.

ID EX MEM WB

stall stall stall IF ID EX MEM WB

stall stall stall IF ID EX MEM WB

stall stall stall IF ID EX MEM
stall stall stall IF ID EX

stall stall stall IF ID

stall stall stall IF

FIGURE 6.15 Ideal DLX pipeline stalling after a control hazard. The instruction' labeled instruction i+k represents the
kth instruction executed after the branch. There is a difficulty in that the branch instruction is not decoded until after in­
struction i + 1 has been fetched. This figure shows the conceptual difficulty, while Figure 6.16 shows what really happens.

Branch instruction IF ID EX MEM WB

Instruction i+ 1 IF stall stall IF ID EX MEM WB

Instruction i+2 stall stall stall IF ID EX MEM WB

Instruction i+ 3 stall stall stall IF ID EX MEM
Instruction i+4 stall stall stall IF ID EX.

Instruction i+5 stall stall stall IF ID

Instruction i+6 stall stall stall IF

FIGURE 6.16 What might really happen in the DLX pipeline. Instruction i + 1 is fetched, but the instruction is ignored
and the fetch is restarted once the branch target is known. It is probably obvious that if the branch is not taken; the second
IF for instruction i + 1 is redundant. This will be addressed shortly.

The pipeline in Figure 6.15 is not possible because. we don't know that the
instruction is a branch until after the fetch of the next instruction. Figure 6.16
fixes this by simply redoing the fetch once the target is known.

Three clock cycles wasted for every branch is a significant loss. With a 30%
branch frequency and an ideal CPI of 1, the machine with branch stalls achieves

I·

INTEL Ex.1035.302

Pipelining 271

only about half the ideal speedup from pipelining. Thus, reducing the branch
penalty becomes critical. The number of clock cycles in a branch stall can be
reduced in two steps:

1. Find out whether the branch is taken or not earlier in the pipeline.

2. Compute the taken PC (address of the branch target) earlier.

To optimize the branch behavior, both of these must be done-it doesn't help to
know the target of the branch without knowing whether the next instruction to
execute is the target or the instruction at PC+4. Both steps sh01:1ld be taken as
early in the pipeline as possible.

In DLX, the branches (BEQZ and BNEZ) require testing only equality to zero.
Thus, it is possible to complete this decision by the end of the ID cycle using
special logic devoted to this test. To take advantage of an early decision on
whether the branch is taken, both PCs (taken and not taken) must be computed
early. Computing the branch target address requires a separate adder, which can
add during ID. With the separate adder and a branch decision made during ID,
there is only a one-clock-cycle stall on branches. Figure 6.17 shows the branch
portion of the revised resource allocation table from Figure 6.4 (page 256).

In some machines, branch hazards are even more expensive in clock cycles
than in our example, since the time to evaluate the branch condition and com­
pute the destination can be even longer. For example, a machine with separate

Pipe stage Branch instruction

IF IRf-Mem[PC];
PCf-PC+4;

ID Af-Rsl; Bf- Rs2; PClf- PC; IRlf- IR;
16

BTAf-PC+ ((IR16) ## IR16 .. 31)
if (Rsl op 0) PCf-BTA

EX

MEM

WB

FIGURE 6.17 Revised pipeline structure (see Figure 6.4, page 256) showing the use
of a separate adder to compute the branch target address. The operations that are new
or have changed are in bold. Because the branch target address (BTA) addition happens
during ID, it will happen for all instructions; the branch condition (Rs1 op 0) will also be
done for all instructions. The last operation in ID is to replace the PC. We must know that
the instruction is a branch before we perform this step. This requires decoding the
instruction before the end of ID, or doing this operation at the very beginning of EX when .
the PC is sent out. Because the branch is done by the end of ID, the EX, MEM, and WB
stages are unused for branches. An additional complication arises for jumps that have a
longer offset than branches. We can resolve this by using an additional adder that sums the
PC and lower 26 bits of the IR. Alternatively, we could attempt a clever scheme that does a
16-bit add in the first half of the cycle and determines whether to add in 10 bits from IR in
the second half of the cycle, by decoding the jump opcodes early.

INTEL Ex.1035.303

272 6.4 The Major Hurdle of Pipelining-Pipeline Hazards

decode and register fetch stages will probably have a branch delay-the length
of the control hazard-that is at least one clock cycle longer. The branch delay,
unless it is dealt with, turns into a branch penalty. Many VAXes have branch
delays of four clock cycles or more, and large, deeply pipelined machines often
have branch penalties of six or seven. In general, the deeper the pipeline, the
worse the branch penalty in clock cycles. Of course, the relative performance
effect of a longer branch penalty depends on the overall CPI of the machine. A
high CPI machine can afford to have more expensive branches because the per­
centage of the machine's performance that will be lost from branches is less.

Before talking about methods for reducing the pipeline penalties that can
arise from branches, let's take a brief look at the dynamic behavior of branches.

Branch Behavior in Programs

Since branches can dramatically affect pipeline performance, we should look at
their behavior so as to get some ideas about how the penalties of branches and
jumps might be reduced. We already know the branch frequencies for our pro­
grams from Chapter 4. Figure 6.18 reviews the overall frequency of control-flow
operations for three of the machines and gives the breakdown between branches
and jumps.

All of the machines show a conditional branch frequency of 11 %-17%, while
the frequency of unconditional branches varies between 2% and 8%. An obvious

DLX

Intel 8086

VAX

Unconditional

Conditional

Unconditional

Conditional

Unconditional

Conditional 17%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%
Percentage of occurrence

FIGURE 6.18 The frequency of instructions (branches, jumps, calls, and returns)
that may change the PC. These data represent the average over the programs measured
in Chapter 4. Instructions are divided into two classes: branches, which are conditional
(including loop branches), and those that are unconditional uumps, calls, and returns). The

.360 is omitted because the ordinary unconditional branches are not separated from the
conditional branches. Erner and Clark [1984] reported that 38% of the instructions executed
in their measurements of the VAX were instructions that could change the PC. They
measured that 67% of these instructions actually cause a branch in control flow. Their data
were taken on a timesharing workload and reflect many uses; their measurement of branch
frequency is much higher than the one in this chart.

INTEL Ex.1035.304

Untaken branch instruction

Instruction i+ 1

Instruction i+2

Instruction i+ 3

Instruction i+4

Taken branch instruction

Instruction i+ 1

Instruction i+2

Instruction i+3

Instruction i+4

Pipelining 273

question is, how many of the branches are taken? Knowing the breakdown
between taken and untaken branches is important because this will affect
strategies for reducing the branch penalties. For the VAX, Clark and Levy
[1984] measured simple conditional branches to be taken with a frequency of
just about 50%. Other branches, which occur much less often, have different
ratios. Most bit-testing branches are not taken, and loop branches are taken with
about 90% probability.

For DLX, we measured the branch behavior in Chapter 3 and summarized it
in Figure 3.22 (page 107). That data showed 53% of the conditional branches are
taken. Finally, 75% of the branches executed are forward-going branches. With
this data in mind, let's look at ways to reduce branch penalties.

Reducing Pipeline Branch Penalties

There are several methods for dealing with the pipeline stalls due to branch
delay, and four simple compile-time schemes are discussed in this section. In
these schemes the predictions are static-they are fixed for each branch during
the entire execution, and the predictions are compile-time guesses. More ambi­
tious schemes using hardware to predict branches dynamically are discussed in
Section 6.7.

The easiest scheme is to freeze the pipeline, holding any instructions after the
branch until the branch destination is known. The attractiveness of this solution
lies primarily in its simplicity. It is the solution used earlier in the pipeline
shown in Figures 6.15 and 6.16.

A better and only slightly more complex scheme is to predict the branch as
not taken, simply allowing the hardware to continue as if the branch were not

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF IF ID EX MEM WB

stall IF ID EX MEM WB

stall IF ID EX MEM WB

stall IF ID EX MEM

FIGURE 6.19 The predict-not-taken scheme and the pipeline sequence when the branch is untaken (on the top)
and taken (on the bottom). When the branch is untaken, determined during ID, we have fetched the fall through and just
continue. If the branch is taken during ID, we restart the fetch at the branch target. This causes all instructions following
the branch to stall one clock cycle.

INTEL Ex.1035.305

274 6.4 The Major Hurdle of Pipelining-Pipeline Hazards

executed. Here, care must be taken not to change the machine state until the
branch outcome is definitely known. The complexity that arises from this-that
is, knowing when the state might be changed by an instruction and how to "back
out" a change-might cause us to reconsider the simpler solution of flushing the
pipeline. In the DLX pipeline, this predict-not-taken scheme is implemented by
continuing to fetch instructions as if the branch were a normal instruction. The
pipeline looks as if nothing out of the ordinary is happening. If the branch is
taken, however, we need to stop the pipeline and restart the fetch. Figure 6.19
shows both situations.

(a) From before

ADD R1, R2, R3

if R2 = o then -----.

Becomes

if R2 = o then ----.

(b) From target

SUB R4, RS, RJ

ADD R1, R2, R3

if R1 = O then

Becomes

ADD R1, R2,=---1

if R1 = o then R.:__j

(c) From fall through

ADD R1, R2, R3

if R1 = O then -----.

SUB R4, RS, R6

Becomes

ADD R1, R2, R3

if R1 = O then ----.

FIGURE 6.20 Scheduling the branch-delay slot. The top picture in each pair shows the
code before scheduling, and the bottom picture shows the scheduled code. In (a) the delay
slot is scheduled with an independent instruction from before the branch. This is the best
choice. Strategies (b) and (c) are used when (a) is not possible. In the code sequences for
(b) and (c), the use of Rl in the branch condition prevents the ADD instruction (whose des­
tination is Rl) from being moved after the branch. In (b) the branch-delay slot is scheduled
from the target of the branch; usuq.lly the target instruction will need to be copied becaus.e it
can be reached by another path. Strategy (b) is preferred when the branch is taken with
high probability, such as a loop branch. Finally, the branch may be scheduled from the not­
taken fall through, as in (c). To make this optimization legal for (b) or (c), it must be "OK" to
execute the SUB instruction when the branch goes in the unexpected direction. By "OK" we
mean that the work is wasted, but the program will still execute correctly. This is the case,
for example, if R4 were a temporary register unused when the branch goes in the
unexpected direction.

INTEL Ex.1035.306

Scheduling strategy

(a) From before branch

(b) From target

(c) From fall through

Pipelining 275

An alternative scheme is to predict the branch as taken. As soon as the branch
is decoded and the target address is computed, we assume the branch to be taken
and begin fetching and executing at the target. Since in our DLX pipeline we
don't know the target address any earlier than we know the branch outcome,
there is no advantage in this approach. However, in some machines--especially
those with condition codes or more powerful (and hence slower) branch condi­
tions-the branch target is known before the branch outcome, and this scheme
makes sense.

Some machines have used another technique called delayed branch, which
has been used in many microprogrammed control units. In a delayed branch, the
execution cycle with a branch delay of length n is:

branch instruction

sequential successor1

sequential successor2

sequential successorn

branch target if taken

The sequential successors are in the branch-delay slots. As with load-delay slots,
the job of the software is to make the successor instructions valid and useful. A
number of optimizations are used. Figure 6.20 shows the three ways in which
the branch delay can be scheduled. Figure 6.21 shows the different constraints
for each of these branch-scheduling schemes, as well as situations in which they
win.

The primary limitations on delayed-branch scheduling arise from the restric­
tions on the instructions that are scheduled into the delay slots and from our .
ability to predict at compile time whether a branch is likely to be taken or not.
Figure 6.22 shows the effectiveness of the branch scheduling in DLX with a sin­
gle branch-delay slot using a simple branch-scheduling algorithm. It shows that

Requirements Improves performance when?

Branch must not depend on the rescheduled Always.
instructions.

Must be OK to execute.rescheduled instructions if When branch is taken. May en-
branch is not taken. May need to duplicate instruc- large program if instructions are
tions. duplicated.

Must be OK to execute instructions if branch is When branch is not taken.
taken.

FIGURE 6.21 Delayed-branch-scheduling schemes and their requirements. The origin of the instruction being
scheduled into the delay slot determines the scheduling strategy. The compiler must enforce the requirements when look­
ing for instructions to schedule the delay slot. When the slots cannot be scheduled, they are filled with no-op instructions.
In strategy (b), if the branch target is also accessible from another point in the program-as it would be if it were the head
of a loop-the target instructions must be copied and not just moved.

INTEL Ex.1035.307

276 6.4 The Major Hurdle of Pipelining-Pipeline Hazards

TeX
Delay slots usefully filled

Delay slots filled

Spice
Delay slots usefully filled

Delay slots filled

GCC
Delay slots usefully filled

Delay slots filled

0% 10% 20% 30% 40% 50% 60%
Percentage of all branch-delay slots

FIGURE 6.22 Frequency with which a single branch-delay slot is filled and how
often the instruction is useful to the computation. The solid bar shows the percentage
of the branch-delay slots occupied by some instruction other than a no-op. The difference
between 100% and the dark column represents those branches that are followed by a no­
op. The shaded bar shows how often those instructions do useful work. The difference
between the shaded and solid bars is the percentage of instructions executed in a branch
delay but not contributing to the computation. These instructions occur because optimiza­
tion (b) is only useful when the branch is taken. If optimization (c) were used it would also
contribute to this difference, since it is only useful when the branch is not taken.

slightly more than half the branch-delay slots are filled, and most of the filled
slots do useful work. On average about 80% of the filled delay slots contribute
to the computation. This number seems surprising, since branches are only taken
about 53% of the time. The success r~te is high because about one-half of the
branch delays are being filled with an instruction from before the branch
(strategy (a)), which is useful independent of whether the branch is taken.

When the scheduler in Figure 6.22 cannot use strategy (a)-moving an
instruction from before the branch to fill the branch-delay slot-it uses only
strategy (b)-moving it from the target. (For simplicity reasons, the schedule
does not use strategy (c).) In total, nearly half the branch-delay slots are
dynamically useful, eliminating one-half the branch stalls. Looking at Figure ·
6.22 we see that the primary limitation is the number of empty slots-those
filled with no-ops. It is unlikely that the ratio of useful slots to filled slots, about
80%, can be improved, since this would require much better accuracy in
predicting branches. In the Exercises we consider an extension of the delayed:
branch idea that tries to fill more slots.

There is a small additional hardware cost for delayed branches. Because of
the delayed effect of branches, multiple PCs (one plus the length of the delay)
are needed to correctly restore the state when an interrupt occurs. Consider when
the interrupt occurs after a taken-branch instruction is completed, but before all
the instructions in the delay slot; and the branch target are completed. In this
case, the PC's of the delay slots and the PC of the branch target must be saved,
since they are not sequential.

INTEL Ex.1035.308

Pipelining 277

What is the effective performance of each of these schemes? The effective
pipeline speedup with branch penalties is

P
.

1
. d Ideal CPI * Pipeline depth

1pe me spee up = . .
Ideal CPI + P1pelme stall cycle

If we assume that the ideal CPI is 1, then we can simplify this:

p· r d Pipeline depth
ipe me spee up = 1 + Pipeline stall cycles from branches

Since

Pipeline stall cycles from branches = Branch frequency * Branch penalty

we obtain:

P
. 1. d Pipeline depth
1pe me spee up =

(1 +Branch frequency* Branch penalty)

Using the DLX measurements in this section, Figure 6.23 shows several
hardware options for dealing with branches, along with their performances
(assuming a base CPI of 1).

Scheduling scheme Branch Effective Pipeline Pipeline
penalty CPI speedup over speedup over

nonpipelined stall pipeline
machine on branch

Stall pipeline 3 1.42 3.52 1.00

Predict taken 1 1.14 4.39 1.25

Predict not taken 1 1.09 4.59 1.30

Delayed branch 0.5 1.07 4.67 1.33

FIGURE 6.23 Overall costs of a variety of branch schemes with the DLX pipeline.
1hese data are for our DLX pipeline using the measured control-instruction frequency of
14% and the measurements of delay-slot filling from Figure 6.22. In addition, we know that
65% of the control instructions actually change the PC (taken branches plus unconditional
changes). Shown are both the resultant CPI and the speedup over a nonpipelined machine,
which we assume would have a CPI of 5 without any branch penalties. The last column of
the table gives the speedup over a scheme that always stalls on branches.

Remember that the numbers in this section are dramatically affected by the
length of the pipeline delay and the base CPI. A longer pipeline delay will cause
an increase in the penalty and a larger percentage of wasted time. A delay of
only one clock cycle is small-many machines have minimum delays of five or
more. With a low CPI, the delay must be kept small, while a higher base CPI
would reduce the relative penalty from branches.

INTEL Ex.1035.309

278 6.4 The Major Hurdle of Pipelining-Pipeline Hazards

Summary: Performance of the
DLX Integer Pipeline

We close this section on hazard detection and elimination by showing the total
distribution of idle clock cycles for our benchmarks when run on the DLX inte­
ger pipeline with software for pipeline scheduling. Figure 6.24 shows the distri­
bution of clock cycles lost to load delays ·and branch delays in our three
programs, by combining the separate measurements shown in Figures 6.13 (page
268) and 6.22.

TeX

Spice

GCC

Branch-delay stall cycles

Load~delay stall cycles

Branch-delay stall cycles

Load-delay stall cycles

Branch-delay stall cycles

Load-delay stall cycles

0%

11%

2% 4% 6% 8% 10% 12%
Percentage of all cycles in execution

FIGURE 6.24 Percentage of the clock cycles spent on delays versus executing
instructions. This assumes a perfect memory system; the clock-cycle count and
instruction count would be identical if there were no integer pipeline stalls. This graph says
that from 7% to 15% of the clock cycles are stalls; the remaining 85% to 93% are clock
cycles that issue instructions. The Spice clock cycles do not include stalls in the FP
pipeline, which will be shown at the end of Section 6.6. The pipeline scheduler fills load
delays before branch delays and this affects the distribution of delay cycles.

For the GCC and TeX programs, the effective CPI (ignoring any stalls except
those from pipeline hazards) on this pipelined version of DLX is 1.1. Compare
this to the CPI for the complete nonpipelined, hardwired version of DLX
described in Chapter 5 (Section 5.7), which is 5.8. Ignoring all other sources o'f
stalls and assuming that the clock rates will be the same, the performance
improvement from pipelining is 5.3 times.

6.5 I What Makes Pipelining Hard to Implement

Now that we understand how to detect and resolve hazards, we can deal with
some complications that we have avoided so far. In Chapter 5 we saw that inter~
rupts are among the most difficult aspects of implementing a machine; pipelin­
ing increases that difficulty. In the second part of this section, we discuss some
of the challenges raised by different instruction sets.

INTEL Ex.1035.310

Pipelining 279

Dealing with Interrupts

Interrupts are harder to handle in a pipelined machine because the overlapping of
instructions makes it more difficult to know whether an instruction can safely
change the state of the machine. In a pipelined machine, an instruction is exe­
cuted piece by piece and is not completed for several clock cycles. Yet in the
process of executing it may need to update the machine state. Meanwhile, an
interrupt can force the machine to abort the instruction's execution before it is
completed.

As in nonpipelined implementations, the most difficult interrupts have two
. properties: (1) they occur within instructions, and.(2) they must be restartable. In

our DLX pipeline, for example, a virtual memory page fault resulting from a
data fetch cannot occur until sometime in the MEM cycle of the instruction. By
the time that fault is seen, several other instructions will be in execution. Since a
page fault must be restartable and requires the intervention of another process,
such as the operating system, the pipeline must be safely shut down and the state
saved so that the instruction can be restarted in the correct state. This is usually
implemented by saving the PC of the instruction (during IF) to restart it. If the
restai:ted instruction is not a branch then we will continue to fetch the sequential
successors and begin their execution in the normal fashion. If the restarted
instruction is a branch, then we will evaluate the branch condition and begin
fetching from either the target or the fall through. When an interrupt occurs, we
can take the following steps to save the pipeline state safely:

1. Force a trap instruction into the pipeline on the next IF.

2. Until the trap is taken, tum off all writes for the faulting instruction and for
all instructions that follow in the pipeline. This prevents any state changes for
instructions that will not be completed before the interrupt is handled.

3. After the interrupt-handling routine in the operating system receives control,
it immediately saves the PC of the faulting instruction. This value will be used to
return from the interrupt later.

When we use delayed branches it is no longer possible to re-create the state
of the machine with the single PC of the interrupted instruction, because the
instructions in the pipeline may not be sequentially related. In particular, when
the instruction that causes the interrupt is a branch-delay slot, and the branch
was taken, then the instructions to restart are those in the slot plus the instruction
at the branch target. The branch itself has completed execution and is not
restarted. The addresses of the instructions in the branch-delay slot and the target
are not sequential. So we need to save and restore a number of PCs that is one
more than the length of the branch delay. This is done in the third step above.

After the interrupt has been handled, special instructions return the machine
from the interrupt by reloading the PCs and restarting the instruction stream
(using RFE in DLX). If the pipeline can be stopped so that the instructions just
before the faulting instruction are completed and those after it can be restarted

INTEL Ex.1035.311

280 6.5 What Makes Pipelining Hard to Implement

from scratch, the pipeline is said to have precise interrupts. Ideally, the faulting
instruction would not have changed the state, and correctly handling some inter­
rupts requires that the faulting instruction have no effects. For other interrupts,
such as floating-point exceptions, the faulting instruction on some machines
writes its result before the interrupt can be handled. In such cases, the hardware
must be prepared to retrieve the source operands, even if the destination is iden­
tical to one of the source operands.

Supporting precise interrupts is a requirement in many systems, while in
others it is valuable because it simplifies the operating system interface. At a
minimum, any machine with demand paging or IEEE arithmetic trap handlers
must make its interrupts precise, either in the hardware or with some software
support.

Precise interrupts are challenging because of the same problems that make
instructions difficult to restart. As we saw in the last chapter, restarting is com­
plicated by the fact that instructions can change the state of the machine before
they are guaranteed to complete (sometimes called committed instructions).
Because instructions in the pipeline may have dependences, not updating the
machine state is impractical if the pipeline is to keep going. Thus, as a machine
is more heavily pipelined, it becomes necessary to be able to back out of any
state changes made before the instruction is committed·(as discussed in Chapter
5)~ Fortunately, DLX has no such instructions, given the pipeline we have used.

Figure 6.25 (page 281) shows the DLX pipeline stages and which "problem"
interrupts might occur in each stage. Because in pipelining there are multiple
instructions in execution, multiple interrupts may occur on the same clock cycle.
For example, consider this instruction sequence:

IF ID

IF

EX

ID

MEM

EX

WB

MEM WB

This pair of instructions can cause a data page fault and an arithmetic interrupt at
the same time, since the LW is in MEM while the ADD is in EX. This case can be
handled by dealing with only the data page fault and then restarting the
execution. The second interrupt will reoccur (but not the first, if the software is 1

correct), and when it does it can be handled independently.
In reality, the situation is not all this straightforward. Interrupts may occur out

of order; that is, an instruction may cause an interrupt before an earlier instruc- ,
tion causes one. Consider again the above sequence of instructions LW; ADD.'

The LW can get a data page fault, seen when the instruction is in MEM, and the
ADD can get an instruction page fault, seen when the ADD instruction is in IF.
The instruction page fault will actually occur first, even though it is caused by a
later instruction! This situation can be resolved in two ways. To explain them,·
let's call the instruction in the position of the LW "instruction i" and the instruc­
tion in the position of the ADD "instruction i+ l."

/

INTEL Ex.1035.312

Pipelining 281

Pipeline stage Problem interrupts occurring

IF Page fault on instruction fetch; misaligned memory access;
memory-protection violation

ID Undefined or illegal opcode

EX Arithmetic interrupt

MEM Page fault on data fetch; misaligned memory access;
memory-protection violation

WB None

FIGURE 6.25 Interrupts from Chapter 5 tha' cause stop and restart of the DLX
pipeline in a transparent fashion. The pipelire stage where these interrupts occur is also
shown. Interrupts raised from instruction or data-memory access account for six out of
seven cases. These interrupts and their corresponding names in other processors are in
Figures 5.9 and 5.11.

The first approach is completely precise and is the simplest to understand for
the user of the architecture. The hardware posts each interrupt in a status vector
carried along with each instruction as it goes down the pipeline. When an
instruction enters WB (or is about to leave MEM), the interrupt status vector is
checked. If any interrupts are posted, they are handled in the order in which they
would occur in time-the interrupt corresponding to the earliest instruction is
handled first. This guarantees that all interrupts will be seen on instruction i be­
fore any are seen on i+ 1. Of course, any action taken on behalf of instruction i
may be invalid, but because no state is changed until WB, this is not a problem
in the DLX pipeline. Nevertheless, pipeline control may want to disable any
actions on behalf of an instruction i (and its successors) as soon as the interrupt
is recognized. For pipelines that could update state earlier than WB, this dis­
abling is required.

The second approach is to handle an interrupt as soon as it appears. This
could be regarded as slightly less precise because interrupts occur in an order
different from the order they would occur in if there were no pipelining. Figure
6.26 shows two interrupts occurring in the DLX pipeline. Because the interrupt
at instruction i+ 1 is handled when it appears, the pipeline must be stopped
immediately without completing any instructions that have yet to change state.
For the DLX pipeline, this will be i-2, i-1, i, and i+ 1, assuming the interrupt is
recognized at the end of the IF stage of the ADD instruction. The pipeline is then
restarted with instruction i-2. Since the instruction causing the interrupt can be
any of i-2, ... , i+ 1, the operating system must determine which instruction
faulted. This is easy to figure out if the type of interrupt and its corresponding
pipe stage are known. For example, only i+ 1 (the ADD instruction) could get an
instruction page fault at this point, and only i-2 could get a data page fault. After
handling the fault for i+ 1 and restarting at i-2, the data page fault will be en­
countered on instruction i, which will cause i, ... , i+3 to be interrupted. The data
page fault can then be handled.

INTEL Ex.1035.313

282 6.5 What Makes Pipelining Hard to Implement

Instruction i-3 IF ID EX MEM WB

Instruction i-2 IF ID EX MEM WB
Instruction i-1 IF ID EX MEM WB
Instruction i (LW) IF ID EX MEM WB
Instruction i+ 1 (ADD) IF ID EX MEM WB
Instruction i+2 IF ID EX MEM WB

Instruction i-3 IF ID EX MEM WB

Instruction i-2 IF ID EX MEM WB

Instruction i-1 IF ID EX MEM WB

Instruction i (LW) IF ID EX MEM WB
Instruction i+l (ADD) IF . ID EX MEM WB
Instruction i+ 2 IF ID EX MEM WB
Instruction i+ 3 IF ID EX MEM
Instruction i+4 IF ID EX

FIGURE 6.26 The actions taken for interrupts occurring at different points in the pipeline and handled
immediately. This shows the instructions interrupted when an instruction page fault occurs in instruction i+ 1 (in the fop
diagram), and a data page fault in instruction i in the bottom diagram. The pipe stages in bold are the cycles during which
the interrupt is recognized. The pipe stages in italics are the instructions that will not be completed due to the interrupt,
and will need to be restarted. Because the earliest effect of the interrupt is on the pipe stage after it occurs, instructions
that are in the WB stage when the interrupt occurs will complete, while those that have not yet reached WB will be
stopped and restarted.

Instruction Set Complications

Another set of difficulties arises from odd bits of state that may create additional
pipeline hazards or may require extra hardware to save and restore. Condition
codes are a good example of this. Many machines set the condition codes . ,
implicitly as part of the instruction. At first glance, this looks like a good idea,
since condition codes decouple the evaluation of the condition from the actual 1

branch. However, implicitly set condition codes can cause difficulties in making
branches fast. They limit the effectiveness of branch scheduling because most
operations will modify the condition code, making it hard to schedule instruc- .
tions between the setting of the condition code and the branch. Furthermore, in
machines with condition codes, the processor must decide when the branch con­
dition is fixed. This involves finding out when the condition code has been set
for the last time prior to the branch. On the VAX, most instructions set the con­
dition code, so that an implementation will have to stall if it tries to determine
the branch condition early. Alternatively, the branch condition can be evaluated
by the branch late in the pipeline, but this still leads to a long branch delay. On
the 360/370 many, but not all, instructions set the condition codes. Figure 6.27
shows how the situation differs on the 'bLX, the VAX, and the 360 for the fol-

INTEL Ex.1035.314

Pipelining 283

lowing C code sequence, assuming that b and d are initially in registers R2 and
R3 (and should not be destroyed):

DLX

ADD Rl,R2,R3

...
SW a,Rl

...
BEQZ R2,label

a = b + d;

if (b==O)

VAX

ADDL3 a,R2,R3

. ..
CL R2,0

BEQL label

IBM360

LR Rl,R2

AR Rl,R3

ST a,Rl

. ..
LTR R2,R2

BZ label

FIGURE 6.27 Code sequence for the above two statements. Because the ADD com­
putes the sum of b and d, and the branch condition depends only on b, an explicit compare
(on R2} is needed on the VAX and 360. On DLX, the branch depends only on R2 and can
be arbitrarily far away from it. (In addition the sw could be moved into the branch-delay
slot.) On the VAX all ALU operations and moves set the condition codes, so that a compare
must be right before the branch. On the 360, for this example the instruction load and test
register (L TR) is used to set the condition code. However, most loads on the 360 do not set
the condition codes; thus, a load (or a store) could be moved between the L TR and the
branch.

Provided there is lots of hardware to spare, all instructions before the branch ·
in the pipeline can be examined to decide when the branch is determined. Of
course, architectures with explicitly set condition codes avoid this difficulty.
However, pipeline control must still track the last instruction that sets the
condition code to know when the branch condition is decided. In effect, the
condition code must be treated as an operand requiring hazard detection for
RAW hazards on branches, just as DLX must do on the registers.

A final thorny area in pipelining is multicycle operations. Imagine trying to
pipeline a sequence of VAX instructions such as this:

MOVL Rl,R2

ADDL3 42(Rl),56(Rl)+,@(Rl)

SUBL2 R2,R3

MOVC3 @ (Rl) [R2], 74 (R2) ,R3

These instructions differ radically in the number of clock cycles they will
require, from as low as one lip to hundreds of clock cycles. They also require
different numbers of data memory accesses, from zero to possibly hundreds.
Data hazards are very complex and occur both between and within instructions.

INTEL Ex.1035.315

284 6.5 What Makes Pipelining Hard to Implement

The simple solution of making all instructions execut~ for the same number of
clock cycles is unacceptable because it introduces an enormous number of
hazards and bypass conditions, and makes an immensely long pipeline.
Pipelining the VAX at the instruction level is difficult (as we will see in Section
6.9), but a clever solution was found by the VAX 8800 designers. They pipeline
the microinstruction execution; because the microinstructions are simple (they

. look a lot like DLX), the pipeline control is much easier. While it is not clear
that this approach can achieve quite as low a CPI as an instruction-level pipeline
for the VAX, it is much simpler, possibly leading to a shorter clock cycle time.

Load/store machines that have simple operations with similar amounts of
work pipeline more easily. If architects realize the relationship between instruc­
tion set design and pipelining, they can design architectures for more. efficient
pipelining. In the next section we will see how the DLX pipeline deals with
long-running instructions.

6.& j Extending the DLX Pipeline to
Handle Multicycle Operations

We now want to explore how our DLX pipeline can be extended to handle float­
ing-point operations. This section concentrates on the basic approach and the
design alternatives, and closes with some performance measurements of a DLX
floating-point pipeline.

It is impractical to require that all DLX floating-point operations complete in ,,
one clock cycle, or even in two. Doing so would mean either accepting a slow
clock or using enormous amounts of logic ih the floating-point units, or both.
Instead, the floating-point pipeline will allow for a longer latency for operations.
This is easier to grasp if we imagine the floating-point instructions as having the
same pipeline as the integer instructions, with two important changes. First, the
EX cycle may be repeated as many times as needed to complete the operation;_
the number of repetitions can vary for different operations. Second, there may be
multiple floating-point functional units. A stall will occur if the instruction to be ,
issued will either cause a structural hazard for the functional unit it uses or cause
a data hazard.

For this section let's assume that there are four separate functional units in
our DLX implementation:

1. The main integer unit

2. FP and integer multiplier

3. FP adder

4. FP and integer divider

The integer unit handles all loads and stores to either register set, all the integer
operations (except multiply and divide), and branches. For now we wili also

INTEL Ex.1035.316

Pipelining 285

assume that the execution stages of the other functional units are not pipelined,
so that no other instruction using the functional unit may issue until the previous
instruction leaves EX. Moreover, if an instruction cannot proceed to the EX
stage, the entire pipeline behind that instruction will be stalled. Figure 6.28
shows the resulting pipeline structure. In the next section we will deal with
schemes that allow the pipeline to progress when there are more functional units
or when the functional units are pipelined.

EX

IF ID MEM WB

FIGURE 6.28 The DLX pipeline with three additional nonpipelined, floating-point,
functional units. Because only one instruction issues on every clock cycle, all instructions
go through the standard pipeline for integer operations. The floating-point operations simply
loop when they reach the EX stage. After they have finished the EX stage, they proceed to
MEM and WB to complete execution .

.Since the EX stage may be repeated many times-30 to 50 repetitions for a
floating-point divide would not be unreasonable-we must find a way to track
long potential dependences and resolve hazards that last over tens of clock
cycles, rather than just one or two. There is also the overlap between integer and
floating-point instructions to deal with. However, overlapped integer and FP
instructions do not complicate hazard detection, except on floating-point mem­
ory references and moves between the register sets. This is because, except for
these memory references and moves, the FP and integer registers are distinct,
and all integer instructions operate on the integer registers while the floating­
point operations operate only on their own registers. This simplification of
pipeline control is a major advantage of having separate register files for integer
and floating-point data.

INTEL Ex.1035.317

286 6.6 Extending the DLX Pipeline to Handle Multicycle Operations

For now, let's assume that all floating-point operations take the same number
of clock cycles-say 20 in the EX stage. What kind of hazard-detection circuitry
will we need? Because all operations take the same amount of time, and register
reads and writes always occur in the same stage, only RAW hazards are pos­
sible; no WAR or WA W hazards can occur. Thus, all we need to track is the
destination register of each active functional unit. When we want to issue a new

·floating-point instruction, we take the following steps:

1. Check for structural hazard-Wait until the required functional unit is not
busy.

2. Checkfor a RAW data hazard-Wait until the source registers are not listed
as destinations by any of the EX stages in the functional units.

3. Check for forwarding-Test if the destination register of an instruction in
MEM or WB is one of the source registers of the floating-point instruction; if
so, enable the input multiplexer to use that result, rather than the register
contents.

There is a small complication arising from conflicts between floating-point loads
and floating-point operations when they both reach the WB stage simulta- ,:
neously. We will deal presently with this situation in a more general fashion.

The above discussion assumes that the PP-functional-unit execution times
were all the same. However, this does not hold up under practical scrutiny:
Floating-point adds can typically be done in less than 5 clock cycles, multiplies
in less than 10, and divides in about 20 or more. What we want is to allow the
execution times of the functional units to differ, while still allowing the func­
tional units to overlap execution. This would not change the basic structure of
the pipeline in Figure 6.28, though it may cause the number of iterations around
the loops to vary. Overlapping the execution of instructions whose running times
differ, however, creates three complications: contention for register access at the
end of the pipeline, the possibility of WAR and WA W hazards, and greater dif­
ficulty in providing precise interrupts.

We have already seen that FP loads and FP operations can contend for the
floating-point register file on writes. When floating-point operations vary in ,
execution time, they can also collide when trying to write results. This problem
can be resolved by establishing a static priority for use of the WB stage. If mul­
tiple instructions wish to enter the MEM stage simultaneously, all instructions
except the one with the highest priority are stalled in their EX stage. A simple,
though sometimes suboptimal, heuristic is to give priority to the unit with the
longest latency, since that is the one most likely to be the cause of the bottle­
neck. Although this scheme is reasonably simple to implement, this change to
the DLX pipeline is quite significant. In the integer pipeline, all hazards were
checked before the instruction issued to the EX stage. With this scheme for
determining access to the result write port, instructions can stall after they issue.

Overlapping instructions with different execution times could introduce
WAR and WA W hazards into our DLX pipeline, because the time at which

INTEL Ex.1035.318

Pipelining 287

instructions write is no longer fixed. If all instructions still read their registers at
the same time, no WAR hazards will be introduced.

WA W hazards are introduced because instructions can write their results in a
different order than they appear. For example, consider the following code
sequence:

DIVF

SUBF

F0,F2,F4

FO,F8,Fl0

A WA W hazard occurs between the divide and the subtract operations: The sub­
tract will complete first, writing its result before the divide writes its result. Note
that this hazard only occurs when the result of the divide will be overwritten
without any instruction ever using it! If there were a use of FO between the
DIVF and the SUBF, the pipeline would stall because of a data dependence, and
the SUBF would not issue until the D IVF was completed. We could argue that,
for our pipeline, WA W hazards only occur when a useless instruction is exe­
cuted, but we must still detect them and make sure that the result of the s UBF
appears in FO when we are done. (As we will see in Section 6.10, such
sequences sometimes do occur in reasonable code.)

There are two possible ways to handle this WA W hazard. The first approach
is to delay the issue of the subtract instruction until the D IVF enters MEM. The
second approach is to stamp out the result of the divide by detecting the hazard
and telling the divide unit not to write its result. Then, the SUBF can issue right
away. Because this hazard is rare, either scheme will work fine-you can pick
whatever is simpler to implement. As a pipeline gets more complex, however,
we will need to devote increasing resources to determining when an instruction
can issue.

Another problem caused by these long-running instructions can be illustrated
with a very similar sequence of code:

DIVF

ADDF

SUBF

FO,F2,F4

Fl0,Fl0,F8

Fl2,Fl2,Fl4

This code sequence looks straightforward; there are no dependences. The prob­
lem with which we are concerned arises because an instruction issued early may
-complete after an instruction issued later. In this example, we can expect ADDF
and SUBF to complete before the DIVF completes. This is called out-of-order
completion and is common in pipelines with long-running operations. Since
hazard detection will prevent any dependence among instructions from being
violated, why is out-of-order completion a problem? Suppose that the SUBF
causes a floating-point-arithmetic interrupt at a point where the ADDF has
completed but the DI VF has not. The result will be an imprecise interrupt,
something we are trying to avoid. It may appear that this could be handled by
letting the floating-point pipeline drain, as we do for the integer pipeline. But the
interrupt may be in a position where this is not possible. For example, if the

INTEL Ex.1035.319

288 6.6 Extending the DLX Pipeline to Handle Multicycle Operations

D IVF decided to take a floating-point-arithmetic interrupt after the add
completed, we could not have a precise interrupt at the hardware level. In fact,
since the ADDF destroys one of its operands, we could not restore the state to
what it was before the D IVF, even with software help.

This problem is being created because instructions are completing in a dif­
ferent order from the order in which they were issued. There are four possible
approaches to dealing with out-of-order completion. The first is to ignore the
problem and settle for imprecise interrupts. This approach was used in the 1960s
and early 1970s. It is still used in some supercomputers, where certain classes of
interrupts are not allowed or are handled by the hardware without stopping the
pipeline. But it is difficult to use this approach in most machines built today, due
to features such as virtual memory and the IEEE floating-point standard, which
essentially require precise interrupts, through a combination of hardware and
software.

A second approach is to queue the results of an operation until all the opera­
tions that were issued earlier are complete. Some machines actually use this
solution, but it becomes expensive when the difference in running times among
operations is long, since the number of results to queue can become large. Fur­
thermore, results from the queue must be bypassed so as to continue issuing
instructions while waiting for the longer instruction. This requires a large num­
ber of comparators and a very large multiplexer. There are two viable variations
on this basic approach. The first is a history file, used in the CYBER 180/990.
The history file keeps track of the original values of registers. When an interrupt
occurs and the state must be rolled back earlier than some instruction that com­
pleted out of order, the original value of the register can be restored from the
history file. A similar technique is used for autoincrement and autodecrement
addressing on machines like VAXes. Another approach, the future file, proposed
by J. Smith and Plezkun [1988], keeps the newer value of a register; when all
earlier instructions have completed, the main register file is updated from the
future file. On an interrupt, the main register file has the precise values for the
interrupted state.

A third technique in use is to allow the interrupts to become somewhat
imprecise, but keep enough information so that the trap-handling routines can
create a precise sequence for the interrupt. This means knowing what operations
were in the pipeline and their PCs. Then, after handling a trap, the software
finishes any instructions that precede the latest instruction completed, and the
sequence can restart. Consider the following worst-case code sequence:

~
Instruction1-a long-running instruction that eventually interrupts execution

Instruction2, ... , instructionn-1-a series of instructions that are not completed

Instructionn-an instruction that is finished

Given the PCs of all the instructions in the pipeline and the interrupt return
PC, the software can find the state of instruction 1 and instructionn. Since instruc­
tionn has completed, we will want to restart execution at instructionn+ 1 · After

INTEL Ex.1035.320

Pipelining 289

handling the interrupt, the software must simulate the execution of instruction 1,
.. . , instructionn-1 · Then we can return from the interrupt and restart at
instructionn+ l · The complexity of executing these instructions properly by the
handler is the major difficulty of this scheme. There is an important simplifica­
tion: If instruction2, ... , instructionn are all integer instructions, then we know
that if instructionn has completed, all of instruction2 , instructionn-l have also
completed. Thus, only floating-point operations need to be handled. To make
this scheme tractable the number of floating-point instructions that can be over­
lapped in execution can be limited. For example, if we only overlap two instruc­
tions, then only the interrupting instruction need be completed by software. This
restriction may reduce the potential throughput if the FP pipelines are deep or if
there is a significant number of FP functional units. This approach is used in the
SP ARC architecture to allow overlap of floating'-point and integer operations.

The final technique is a hybrid scheme that allows the instruction issue to
continue only if it is certain that all the instructions before the issuing instruction
will complete without causing an interrupt. This guarantees that when an inter­
rupt occurs, no instructions after the interrupting one will be completed, and all
of the instructions before the interrupting one can be completed. This sometimes
means stalling the machine to maintain precise interrupts. To make this scheme
work, the floating-point functional units must determine if an interrupt is possi­
ble early in the EX stage (in the first three clock cycles in the DLX pipeline), so
as to prevent further instructions from completing. This scheme is used in the
MIPS R2000/3000 architecture and is discussed further in Appendix A, Section
A.7.

FP add &
subtract

FP
multiply

FP divide

0 2 4
Cycle counts

6 8 10 12 14 16 18 20

FIGURE 6.29 Total clock cycle count and permissible overlap among double­
precision, floating-point operations on the MIPS R2010/3010 FP unit. The overall
length of the bar shows the total number of EX cycles required to complete the operation.
For example, after five clock cycles a multiply result is available. The shaded regions are
times during which FP operations can be overlapped. As is common in most FP units,
some of the FP logic is shared-the rounding logic, for example, is often shared. This
means that FP operations with different running times cannot overlap arbitrarily. Also note
that multiply and divide are not pipelined in this FP unit, so only one multiply or divide can
be outstanding. The motivation for this pipeline design is discussed further in Appendix A
(page A-31).

INTEL Ex.1035.321

290 6.6 Extending the DLX Pipeline to Handle Multicycle Operations ·

Performance of a DLX FP Pipeline

To look at the FP pipeline performance of DLX, we need to specify the latency
and issue restrictions for the FP operations. We have chosen to use the pipeline
structure of the MIPS R2010/3010 FP unit. While this unit has some structural
hazards, it tends to have low-latency FP operations compared ~o most other FP
units. The latencies and issue restrictions for DP floating-point operations are
depicted in Figure 6.29 (page 289).

Figure 6.30 gives the breakdown of integer and floating-point stalls for Spice.
There are four classes of stalls: load delays, branch delays, floating-point struc­
tural delays, and floating-point data hazards. The compiler tries to schedule both
load and FP delays before it schedules branch delays. Interestingly, about 27%
of the time in Spice is spent waiting for a floating-point result. Since the struc­
tural hazards are small, further pipelining of the floating-point unit would not
gain much. In fact, the impact might easily be negative if the floating-point
pipeline latency became longer.

Load-delay cycles

Branch-delay cycles

FP structural stalls

FP data-hazard stalls 27%

0% 5% 10% 15% 20% 25% 30%
Percentage of all cycles in execution

FIGURE 6.30 Percentage of clock cycles in Spice that are pipeline stalls. This again
assumes a perfect memory system with no memory-system stalls. In total, 35% of the clock
cycles in Spice are stalls, and without any stalls Spice would run about 50% faster. The
percentage of stalls differs from Figure 6.24 (page 278) because this cycle count includes
all the FP stalls, while the previous graph includes only the integer stalls.

6. 7 I Advanced Pipelining-
Dynamic Scheduling in Pipelines

So far we have assumed that our pipeline fetches an instruction and issues it,
unless there is a data dependence between an instruction already in the pipeline
and the fetched instruction. If there is a data dependence, then we stall the
instruction and cease fetching and issuing until the dependence is cleared. Soft­
ware is responsible for scheduling the instructions to minimize these stalls. This

INTEL Ex.1035.322

Pipelining 291

approach, which is called static scheduling, while first used in the 1960s, has
become popular more recently. Many of the earlier, heavily pipelined machines
used dynamic scheduling, whereby the hardware rearranges the instruction exe­
cution to reduce the stalls.

Dynamic scheduling offers a couple of advantages: It enables handling some
cases when dependences are unknown· at compile time, and it simplifies the
compiler. It also allows code that was compiled with one pipeline in mind to run
efficiently on a different pipeline. As we will see, these advantages are gained at
a significant increase in hardware complexity. The first two parts of this section
deal with reducing the cost of data dependences, especially in deeply pipelined
machines. Corresponding to the dynamic hardware techniques for scheduling
around data dependences are dynamic techniques for handling branches. These
techniques are used for two purposes: to predict whether a branch will be taken,
and to find the target more quickly. Hardware branch prediction, the name for

. these techniques, is the topic of the third part of this advanced section.

Dynamic Scheduling Around Hazards
with a Scoreboard

The major limitation of the pipelining techniques we have used so far is that they
all use in-order instruction issue. If an instruction is stalled in the pipeline, no
later instructions can proceed. If there are multiple functional units, these units
could lie idle. So, if instruction j depends on a long-running instruction i, cur­
rently in execution in the pipeline, then all instructions after j must be stalled
until i is finished and j can execute. For example, consider this code:

DIVF F0,F2,F4

ADDF Fl0,FO,F8

SUBF F6,F6,F14

The SUBF instruction cannot execute because the dependence of ADDF on DIVF

causes the pipeline to stall; yet SUBF does not depend on anything in the
pipeline. This is a performance limitation that can be eliminated by not requiring
instructions to execute in order.

In the DLX pipeline, both structural and data hazards were checked at ID:
When an instruction could execute properly, it was issued from ID. To allow us
to begin executing the S UBF in the above example, we must separate the issue
process into two parts: checking the structural hazards, and waiting for the
absence of a data hazard. We can still check for structural hazards when we
issue the instruction; thus, we still use in-order instruction issue. However, we
want the instructions to begin execution as soon as their data operands are avail­
able. Thus, the pipeline will do out-of-order execution, which obviously implies
out-of-order completion.

In introducing out-of-order execution, we have essentially split two pipe
stages of DLX into three pipe stages. The two stages in DLX were:

INTEL Ex.1035.323

292 6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines

1. ID-decode instruction, check for all hazards, and fetch operands

2. EX-execute instruction

In the DLX pipeline all instructions passed through issue stage in order, and a
stalled instruction in ID caused a stall for all instructions behind it. The three
stages we will need to allow out-of-order execution are:

1. Issue-decode instructions, check for structural hazards

2. Read operands-wait until no data hazards, then read operands

3. Execute

These three stages replace the ID and EX stages in the simple DLX pipeline.
While all instructions pass through the issue stage in order (in-order issue),

they can be stalled or bypass each other in the second stage (read operands), and
thus enter execution out of order. Scoreboarding is a technique for allowing in­
structions to execute out of order when there are sufficient resources and no data

Registers Data buses
•

t===l==============FR·--~
•

Control/
status

Control/
status

FIGURE 6.31 This shows the basic structure of a DLX machine with a scoreboard.
The scoreboard's function is to control instruction execution (vertical control lines). All data
flows between the register file and the functional units over the buses (the horizontal lines,
called trunks in the CDC 6600). There are two FP multipliers, an FP divider, an FP adder,
and an integer unit. One set of buses (two inputs and one output) serves a group of
functional units. The details of the scoreboard are shown in Figures 6.32-6.35.

INTEL Ex.1035.324

Pipelining 293

dependences; it is named after the CDC 6600 scoreboard, which developed this
capability.

Before we see how scoreboarding could be used in the DLX pipeline, it is
important to observe that WAR hazards, which did not exist in the DLX float­
ing-point or integer pipelines, may exist when instructions are executed out of
order. Assume our earlier example has changed so that the SUBF destination is
F8. If ADDF and SUBF use two different functional units, then it is possible to
execute the SUBF before the ADDF, but it will yield an incorrect result if ADDF

has not read F8 before SUBF writes its result. The hazard for this case can be
avoided by two rules: (1) read registers only during Read Operands, and (2)
queue both the ADDF operation and copies of its operands. Of course, WAW

' hazards must still be detected, such as would occur if the destination of the
SUBF were FlO. This WAW hazard can be eliminated by stalling the issue of
the SUBF instruction.

The goal of a scoreboard is to maintain an execution rate of one instruction
per clock cycle (when there are no structural hazards) by executing an instruc­
tion as early as possible. Thus, when the instruction at the front of the queue is
stalled, other instructions can be issued and executed if they do not depend on
any active or stalled instruction. The scoreboard takes full responsibility for
instruction issue and execution, including all hazard detection. Taking advantage
of out-of-order execution requires multiple instructions to be in their EX stage
simultaneously. This can be achieved with either multiple functional units or
with pipelined functional units. Since these two capabilities-pipelined function­
al units and multiple functional units-are essentially equivalent for the pur­
poses of pipeline control, we will assume the machine has multiple functional
units.

The CDC 6600 had 16 separate functional units, including 4 floating-point
units, 5 units for memory references, and 7 units for integer operations. On
DLX, scoreboards make sense only on the floating-point unit. Let's assume that
there are two multipliers, one adder, one divide unit, and a single integer unit for
all memory references, branches, and integer operations. Although this example
is much smaller than the CDC 6600, it is sufficiently powerful to dem<;mstrate
the principles. Because both DLX and the CDC 6600 are load/store, the tech­
niques are nearly identical for the two machines. Figure 6.31 shows what the
machine looks like.

Every instruction goes through the scoreboard, where a picture of the data
dependences is constructed; this step corresponds to instruction issue and
replaces part of the ID step in the DLX pipeline. This picture then determines
when the instruction can read its operands and begin execution. If the scoreboard
decides the instruction cannot execute immediately, it monitors every change in
the hardware and decides when the instruction can execute. The scoreboard also
controls when an instruction can write its result into the destination register.
Thus, all hazard detection and resolution is centralized in the scoreboard. We
will see a picture of the scoreboard later (Figure 6.32 on page 296), but first we
need to understand the steps in the issue and execution segment of the pipeline.

\

INTEL Ex.1035.325

294 6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines

Each instruction undergoes four steps in executing. (Since we are concen­
trating on the FP operations, we will not consider a step for memory access.)
Let's first examine the steps informally and then look in detail at how the score­
board keeps the necessary information that determines when to progress from
one step to the next. The four steps, which replace the ID, EX, and WB steps in
the standard DLX pipeline, are as follows:

1. Issue-If a functional unit for the instruction is free and no other active
instruction has the same destination register, the scoreboard issues the instruc­
tion to the functional unit and updates its internal data structure. By ensuring that
no other active functional unit wants to write its result into the destination regis­
ter, we guarantee that WA W hazards cannot be present. If a structural or WA W
hazard exists, then the instruction issue stalls, and no further instructions will
issue until these hazards are cleared. This step replaces a portion of the ID step
in the DLX J?ipeline.

2. Read operands-The scoreboard monitors the availability of the source
operands. A source operand is available if no active instruction is going to write
it, or if the register containing the operand is being written by a currently active·
functional unit. When the source operands are available, the scoreboard tells the
functional unit to proceed to read the operands from the registers and begin exe­
cution. The scoreboard resolves RAW hazards dynamically in this step, and
instructions may be sent into execution out of order. This step, together with
Issue, completes the function of the ID step in the simple DLX pipeline.

3. Execution-The functional unit begins execution upon receiving operands.
When the result is ready, it notifies the scoreboard that it has completed execu­
tion. This step replaces the EX step in the DLX pipeline and takes multiple
cycles in the DLX FP pipeline.

4. Write result-Once the scoreboard is aware that the functional unit has com­
pleted execution, the scoreboard checks for WAR hazards. A WAR hazard exists
if there is a code sequence like the following:

DIVF FO,F2,F4

ADDF Fl0,FO,F8

SUBF F8,F8,Fl4

ADDF has a source operand F8, which is the same register as the destination of
S UBF. But ADDF actually depends on an earlier instruction. The scoreboard will
still stall the SUBF until ADDF reads its operands. In general, then, a completing
instruction cannot be allowed to write its results when

• there is an instruction that has not read its operands,

• one of the operands is the same register as the result of the completing
instruction, and

• the other operand was the result of an earlier instruction.

INTEL Ex.1035.326

Pipelining 295

If this WAR hazard does not exist, or when it clears, the scoreboard tells the
functional unit to store its result to the destination register. This step replaces the
WB step in the simple DLX pipeline.

Based on its own data structure, the scoreboard controls the instruction pro­
gression from one step to the next by communicating with the functional units.
But there is a small complication: There is only a limited number of source
operands and result buses to the register file. The scoreboard must guarantee that
the number of functional units allowed to proceed into steps 2 and 4 do not
exceed the number of buses available. We will not go into further detail on this,
other than to mention that the CDC 6600 solved this problem by grouping the 16
functional units together into four groups and supplying a set of buses, called
data trunks, for each group. Only one unit in a group could read its operands or
write its result during a clock.

Now let's look at the detailed data structure maintained by a DLX scoreboard
with five functional units. Figure 6.32 (page 296) shows what the scoreboard's
information looks like for a simple sequence of instructions:

LF F6, 34 (R2)

LF F2,45(R3)

MULTF FO,F2,F4

SUBF F8,F6,F2

DIVF Fl0,FO,F6

ADDF F6,F8,F2

There are three parts to the scoreboard:

1. Instruction status-Indicates which of the four steps the instruction is in.

2. Functional unit status-Indicates the state of the functional unit (FU). There
are nine fields for each functional unit:

Busy-Indicates whether the unit is busy or not

Op-Operation to perform in the unit (e.g., add or subtract)

Fi-Destination register

Fj ,Pk-Source-register numbers

Qi,Qk-Number of the units producing source registers Fj, Fk

Rj,Rk-Flags indicating when Fj, Fk are ready; fields are reset when new
values are read so that the scoreboard knows that the source operand has
been read (this is required to handle WAR hazards)

3. Register result status-Indicates which functional unit will write a register, if
an active instruction has the register as its destination.

/

INTEL Ex.1035.327

296 6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines

Instruction status

Instruction Issue Read operands Execution complete Write result

LF F6, 34 (R2) ..J ..J ..J ..J

LF F2,45(R3) ..J ..J ..J

MULTF FO,F2,F4 ..J

SUBF F8,F6,F2 ..J

DIVF F10,FO,F6 ..J

ADDF F6,F8,F2

Functional unit status

FU no. Name Busy Op Fi Fj Fk Qi Qk Rj Rk

1 Integer Yes Load F2 R3 No No

2 Multl Yes Mult FO F2 F4 1 No Yes

3 Mult2 No

4 Add Yes Sub F8 F6 F2 1 Yes No

5 Divide Yes Div FlO FO F6 2 No Yes

Register result status

FO F2 F4 F6 FS FlO F12 ... F30

FU no. 2 1 4 5

FIGURE 6.32 Components of the scoreboard. Each instruction that has issued or is pending issue has an entry in the
instruction-status table. There is one entry in the functional-unit-status table for each functional unit. Once an instruction
issues, the record of its operands is kept in the functional-unit-status table. Finally, the register-result table indicates
which unit will produce each pending result; the number of entries is equal to the number of registers. The instruction­
status register says that (1) the first LF has completed and written its result, and (2) the second LF has completed execu­
tion but has not yet written its result. The MULTF, SUBF, and D IVF have all issued but are stalled, waiting tor their
operands. The functional-unit status says that the first multiply unit is waiting for the integer unit, the add unit is waiting tor
the integer unit, and the divide unit is waiting tor the first multiply unit. The ADDF instruction is stalled due to a structural
hazard; it will clear when the SUBF completes. If an entry in one of these scoreboard tables is not being used, it is left
blank. For example, the Rk field is not used on a load, and the Mult2 unit is unused, hence its fields have no meaning.
Also, once an operand has been read, the Rj and Rk fields are set to No. These are left blank to minimize the complexity
of the tables.

Now let's look at how the code sequence begun in Figure 6.32 continues
execution. After that, we will be able to examine in detail the conditions that the
scoreboard uses to control execution.

INTEL Ex.1035.328

Example

Answer

~

Instruction

LF F6,34(R2)

LF F2,45(R3)
---.,_

MULTF FO,F2,F4

SUBF F8,F6,F2

DIVF F10,FO,F6

ADDF F6,F8,F2

FU no. Name Busy

1 Integer No

2 Multl Yes

3 Mult2 No

4 Add' Yes

5 Divide Yes

FO

FU no. 2

Pipelining 297

Assume the following EX cycle latencies for the floating-point functional units:
Add is 2 clock cycles, multiply is 10 clock cycles, and divide is 40 clock cycles.
Using the code segment in Figure 6.32, and beginning with the point indicated
by the instruction status in Figure 6.32, show what the status tables look like
when MULTF and DIVF are each ready to go to the write-result state.

There are RAW data hazards from the second LF to MULTF and SUBF, from
MULTF to DIVF, and from SUBF to ADDF. There is a WAR data hazard
between DIVF and ADDF. Finally, there is a structural hazard on the add func­
tional unit for ADDF. What the tables look like when MULTF and D IVF are
ready to go to write result are shown in Figures 6.33 and 6.34, respectively.

Instruction status

Issue Read operands Execution complete Write result

...j ...j ...j ...j

...j ...j ...j ...j

...j ...j ...j

...j ...j ...j ...j

...j

...j ...j ...j

Functional unit status

Op Fi Fj Fk Qi Qk Rj Rk

Mult FO F2 F4 No No

Add F6 F8 F2 No No

Div FlO FO F6 2 No Yes

Register result status

F2 F4 F6 FS FlO F12 ... F30

4 5

FIGURE 6.33 Scoreboard tables just before the MULTF goes to write result. The DIVF has not yet read its operands,
since it has a dependence on the result of the multiply. The ADDF has read its operands and is in execution, although it
was forced to wait until the SUBF finished to get the functional unit. ADDF cannot proceed to write result because of the
WAR hazard on F6, which is used by the DIVF.

INTEL Ex.1035.329

298 6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines

Instruction status

Instruction Issue Read operands Execution complete Write result

LF F6, 34 (R2) --} --} --} --}

LF F2,45(R3) --} --} --} --}

MULTF FO,F2,F4 --} --} --} --}

SUBF F8,F6;F2 --} --} --} --}

DIVF Fl0,FO,F6 --} --} --}

ADDF F6,F8,F2 --} --} --} --}

Functional unit status

FU no. Name Busy Op Fi Fj Fk Qi Qk Rj Rk

1 Integer No

2 Multl No

3 Mult2 No

4 Add No

5 Divide Yes Div FlO FO F6 No No

Register Result status

FO F2 F4 F6 FS FlO F12 ... F30

FU no. 5

FIGURE 6.34 Scoreboard tables just before the DIVF goes to write result. ADDF was able to complete as soon as
DIVF passed through read operands and got a copy of F6. Only the DIVF remains to finish.

Instruction status Wait until Bookkeeping

Issue Not busy (FU) and not Busy (FU) f- yes; Result (D) f-FU; Op (FU) f-op;
result(D) Fi (FU) f-D; Fj (FU)f-Sl; Fk (FU) f-82;

Qjf-Result (Sl) ; Qkf-Result (S2); Rjf- not
Qj; Rkf- not Qk

Read operands Rj and Rk Rjf-No; Rkf-No

Execution complete Functional unit done

Write result 'v'/((Fj(/):;t:Fi(FU) or 'v'f(if Qj(f)=FU then Rj (f) f-Yes);
Rj(f)=No) & (Fk(/) 'v' f (if Qk (f) =FU then Rk (f) f-Yes);
:;t:Fi(FU) or Rk(f)=No)) Result(Fi(FU))f-Clear; Busy (FU) f-No

FIGURE 6.35 Required checks and bookkeeping actions for each step in instruction execution. FU stands for the
functional unit used by the instruction, Dis the destination register, 81 and 82 are the source registers, and op is the
operation to be done. To access the scoreboard entry named Fj for functional unit FU we use the notation Fj(FU).
Result(D) is the value of the result register field for register D. The test on the write-result case prevents the write when
there is a WAR hazard. For simplicity we assume that all of the bookkeeping operations are done in one clock cycle.

INTEL Ex.1035.330

Pipelining 299

Now we can see how the scoreboard works in detail by looking at what has to
happen for the scoreboard to allow each instruction to proceed. Figure 6.35
shows what the scoreboard requires for each instruction to advance and the
bookkeeping action necessary when the instruction does advance.

The costs and benefits of scoreboarding are an interesting question. The CDC
6600 designers measured a performance improvement of 1.7 for FORTRAN
programs and 2.5 for hand-coded assembly language. However, this was
measured in the days before software pipeline scheduling, semiconductor main
memory, and caches (which lower memory-access time). The scoreboard on the
CDC 6600 had about as much logic as one of the functional units, which is sur­
prisingly low. The main cost was in the large number of buses-about four times
as many as would be required if the machine only executed instructions in order
(or if it only initiated one instruction per Execute cycle).

The scoreboard does not handle a few situations as well as it might. For
example, when an instruction writes its result, a dependent instruction in the
pipeline must wait for access to the register file because all results are written
through the register file and never forwarded. This increases the latency and lim­
its the ability of multiple instructions waiting for a result to initiate. WA W haz­
ards would be very infrequent, so the stalls they cause are probably not a signif­
icant concern in the CDC 6600. However, in the next section we will see that
dynamic ~cheduling offers the possibility of overlapping the execution of multi­
ple iterations of a loop. To do this effectively requires a scheme for handling
WA W hazards, which are likely to increase in frequency when multiple itera­
tions are overlapped.

Another Dynamic Scheduling Approach­
The Tomasulo Algorithm

Another approach to parallel execution around hazards was used by the IBM
360/91 floating-point unit. This scheme was credited to R. Tomasulo and is
named after him. The IBM 360/91 was completed about three years after the
CDC 6600, before caches appeared in commercial machines. IBM's goal was to
achieve high floating-1Joint performance from an instruction set and from com­
pilers designed for the entire 360 computer family, rather than for only floating­
point-intensive applications. Remember that the 360 architecture has only four
double-precision floating-point registers, which limits the effectiveness of com­
piler scheduling; this fact was another motivation for the Tomasulo approach.
Lastly, the IBM 360/91 had long memory accesses and long floating-point
delays, which the Tomasulo algorithm ,was designed to overcome. At the end of
the section, we will see that Tomasulo's algorithm can also support the over­
lapped execution of multiple iterations of a loop.

We will explain the algorithm, which focuses on the floating-point unit, in the
context of a pipelined, floating-point unit for DLX. The primary difference
between DLX and the 360 is the presence of register-memory instructions in the
latter machine. Because Tomasulo's algorithm uses a load functional unit, no

INTEL Ex.1035.331

300 6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines·

significant changes are needed to add register-memory addressing modes; the
primary addition is another bus. The IBM 360/91 also had pipelined functional
units, rather than multiple functional units. The only difference between these is
that a pipelined unit can start at most one operation per clock cycle. Since there
are really no fundamental differences, we describe the algorithm as if there were
multiple functional units. The IBM 360/91 could accommodate three operations
for the floating-point adder and two for the floating-point multiplier. In addition,
up to six floating-point loads, or memory references, and up to three floating­
point stores could be outstanding. Load data buffers and store data buffers are
used for this function. Although we will not discuss the load and store units, we
do need to include the buffers for operands.

Tomasulo' s scheme shares many ideas with the CDC 6600 scoreboard, so we
assume the reader has understood the scoreboard thoroughly. There are, how­
ever, two significant differences. First, hazard detection and execution control
are distributed-reservation stations at each functional unit control when an
instruction can begin execution at that unit. This function is centralized in the
scoreboard on the CDC 6600. Second, results are passed directly to functional
units rather than going through the registers. The IBM 360/91 has a common re­
sult bus (called the common data bus, or CDB) that allows all units waiting for
an operand to be loaded simultaneously. The CDC 6600 writes results into regis­
ters, where waiting functional units may have to contend for them. Also, the
CDC 6600 has multiple completion buses (two in the floating-point unit), while
the IBM 360/91 has only one.

Figure 6.36 shows the basic structure of a Tomasulo-based floating-point unit
for DLX; none of the execution control tables are shown. The reservation
stations hold instructions that have been issued and are awaiting execution at a
functional unit, as well as the information needed to control the instruction once
it has begun execution to the unit. The load buffers and store buffers hold data
corning from and going to memory. The floating-point registers are connected
by a pair of buses to the functional units and by a single bus to the store buffers.
All results from the functional units and from memory are sent on the common
data bus, which goes everywhere except to the load buffer. All the buffers and
reservation stations have tag fields, employed by hazard control.

Before we describe the details of the reservation stations and the algorithm,
let's look at the steps an instruction goes through-just as we did for the score­
board. Since operands are transmitted differently than in a scoreboard, there are
only three steps:

1. Issue-Get an instruction from the floating-point operation queue. If the
operation is a floating-point operation, issue it if there is an empty reservation
station, and send the operands to the reservation station if they are in the regis­
ters. If the operation is a load or store, it can issue if there is an available buffer.
If there is not an empty reservation station or an empty buffer, then there is a
structural hazard and the instruction stalls until a station or buffer is freed.

INTEL Ex.1035.332

Pipelining 301

2. Execute-If one or more of the operands is not yet available, monitor the
CDB while waiting for the register to be computed. This step checks for RAW
hazards. When both operands are available, execute the operation.

3. Write result-When the result is available, write it on the CDB and from
there into the registers and any functional units waiting for this result.

Although these steps are fundamentally similar to those in the scoreboard,
there are three important differences. First, there is no checking for WA W and
WAR hazards-these are eliminated as a byproduct of the algorithm, as we will
see shortly. Second, the CDB is used to broadcast results rather than waiting on
the registers. Third, the loads and stores are treated as basic functional units.

The data structures used to detect and eliminate hazards are attached to the
reservation stations, the register file, and the load and store buffers. Although
different information is attached to different objects, everything except the load

\

From
memoty

Load buffers !
6~---
5~---
4~---
3~---
2~---1.._ __ _ ~~o_p-e~ra~ti_o-n~b~us~-o-p-~u-+r~-~~-- ~r~ra

1 I ~
memory

31 I I L I I I L 2
211--+--1--+--•. Reservation 11--1-1--+--1-•• 1

1
1
..,•

1
•

1
·-·•stations

+
lf'~.~Qd!lr§ • .!;-:!? multloliers;I.

! Common data bus (CDB)

FIGURE 6.36 The basic structure of a DLX FP unit using Tomasulo's algorithm.
Floating-point operations are sent from the instruction unit into a queue (called the FLOS,
or floating-point operation stack, in the IBM 360/91) when they are issued. The reservation
stations include the operation and the actual operands, as well as information used for
detecting and resolving hazards. There are load buffers to hold the results of outstanding
loads and store buffers to hold the addresses of outstanding stores waiting for their
operands. All results from either the FP units or the load unit are put on the common data
bus (COB), which goes to the FP register file as well as the reservation stations and store
buffers. The FP adders implement addition and subtraction, while the FP multipliers do
multiplication and division.

INTEL Ex.1035.333

302 6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines

buffers contains a tag field per entry. The tag field is a four-bit quantity that
denotes one of the five reservation stations or one of the six load buffers. The tag
field is used to describe which functional unit will produce a result needed as a
source operand. Unused values, such as zero, indicate that the operand is already
available. In describing the information, the scoreboard names are used
wherever this will not lead to confusion. The names used by the IBM 360/91 are
also shown. It is important to remember that the tags in the Tomasulo scheme
refer to the buffer or unit that will proquce a result; the register number is dis­
carded when an instruction issues to a reservation station.

Each reservation station has six fields:

Op-The operation to perform on source operands S 1 and S2.

Qj,Qk-The reservation stations that will produce the corresponding source
operand; a value of zero indicates that the source operand is already available
in Vi or Vj, or is unnecessary. The IBM 360/91 calls0 these SINKunit and
SOURCEunit.

Vj,Vk-The value of the source operands. These are called SINK and
SOURCE on the IBM 360/91. Note that only one of the V field or the Q field
is valid for each operand.

Busy-Indicates that this reservation station and its accompanying functional
unit are occupied.

The register file and store buffer each have a field, Qi:

Qi-The number of the functional unit that will produce a value to be stored
into this register or into memory. If the value of Qi is zero, no currently active
instruction is computing a result destined for this register or buffer. For a
register, this means the value is given by the register contents.

The load and store buffers each require a busy field, indicating when a buffer
is available due to completion of a load or store assigned there. The store buffer
also has a field V, the value to be stored.

Before we examine the algorithm in detail, let's see what the system of tables
looks like for the following code sequence:

1. LF F6,34(R2)

2. LF F2, 45 (R3)

3. MULTF F0,F2,F4

4 . SUBF F8,F6,F2

5. DIVF F10,FO,F6

6. ADDF F6,F8,F2

We saw what the scoreboard looked like for this program when only the first
load had written its result. Figure 6.37 depicts the reservation stations, load and

INTEL Ex.1035.334

Pipelining 303

store buffers, and the register tags. The numbers appended to the names add,
mult, and load stand for the tag for that reservation station-Add! is the tag for
the result from the first add unit. In addition we have included a central table
called "Instruction status." This table is included only to help the reader under­
stand the algorithm; it is not actually a part of the hardware. Instead, the state of
each operation that has issued is kept in a reservation station.

There are two important differences from scoreboards that are observable in
these tables. First, the value of an operand is stored in the reservation station in
one of the V fields as soon as it is available; it is not read from the register file
once the instruction has issued. Second, the ADDF instruction has issued. This
was blocked in the scoreboard by a structural hazard.

Instruction status

Instruction Issue Execute Write result

LF F6,34(R2) -.J -.J -.J

LF F2,45(R3) -.J -.J

MULTF FO,F2,F4 -.J

SUBF F8,F6,F2 -.J

DIVF Fl0,FO,F6 -.J
·'

ADDF F6,F8,F2 -.J

Reservation stations

Name Busy Op Vj Vk Qj Qk

Addi Yes SUB (Load I) Load2

Add2 Yes ADD Addi Load2

Add3 No

Multi Yes MULT ' (F4) Load2

Mult2 Yes DIV (Loadl) Multi

Register status

Field FO F2 F4 F6 FS FlO F12 ... F30

Qi Multi Load2 Add2 Addi Mult2

Busy Yes Yes No Yes Yes Yes No ... No

FIGURE 6.37 Reservation stations and register tags. All of the instructions have issued, but only the first load
instruction has completed and written its result to the CDB. The instruction-status table is not actually present, but the
equivalent information is distributed throughout the hardware. The notation (X), where Xis either a register number or a
functional unit, indicates that this field contains the result of the functional unit X or the contents of register X at the time of
issue. The other instructions are all at reservation stations or, as in the case of instruction 2, completing a memory
reference. The load and store buffers are not shown. Load buffer 2 is the only busy load buffer and it is performing on
behalf of instruction 2 in the sequence-loading from memory address R3 + 45. There are no stores, so the store buffer is
not shown. Remember that an operand is specified by either the Q field or the V field at any time.

INTEL Ex.1035.335

304

Example

Answer

6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines

The big advantages of the Tomasulo scheme are (1) the distribution of the
hazard detection logic, and (2) the elimination of stalls for WA W and WAR
hazards. The first advantage arises from the distributed reservation stations and
the use of the CDB. If multiple instructions are waiting on a single result, and
each instruction already has its other operand, then the instructions can be
released simultaneously by the broadcast on the CDB. In the scoreboard the
waiting instructions must all read their results from the registers when register
buses are available.

WA W and WAR hazards are eliminated by renaming registers using the
reservation stations. For example, in our code sequence in Figure 6.37 we have
issued both the D IVF and the ADDF, even though there is a WAR hazard in­
volving F6. The hazard is eliminated in one of two ways. If the instruction pro­
viding the value for the DI VF has completed, then Vk will store the result,
allowing DIVF to execute independent of the ADDF (this is the case shown). On
the other hand, if the LF had not completed, then Qk would point to the Loadl
and the DI VF instruction would be independent of the ADD F. Thus, in either
case, the ADD F can issue and begin executing. Any uses of the result of the
MULTF would point to the reservation station, allowing the ADDF to complete
and store its value into the registers without affecting the DI VF. We'll see an
example of the elimination of a WAW hazard shortly. But let's first look at how
our earlier example continues execution.

Assume the same latencies for the floating-point functional units as we did for
Figure 6.34: Add is 2 clock cycles, multiply is 10 clock cycles, and divide is 40
clock cycles. With the same code segment, show what the status tables look like
when the MULTF is ready to go to write result.

The result is shown in the three tables in Figure 6.38. Unlike the example with
the scoreboard, ADDF has completed since the operands of DIVF are copied,
thereby overcoming the WAR hazard.

INTEL Ex.1035.336

Pipelining 305

Instruction status

Instruction Issue Execute Write result

LF F6, 34 (R2) ..j ..j ..j

LF F2,45(R3) ..j ..j ..j

MULTF FO,F2,F4 ..j ..j
• ..j ..j ..j SUBF F8,F6,F2

DIVF F10,FO,F6 I ..j

ADDF F6,F8,F2 ..j ..j ..j

Reservation stations

Name Busy Op Vj Vk Qj Qk

Addi No

Add2 No

Add3 No

Multi Yes MULT (Load2) (F4)

Mult2 Yes DIV (Load I) Multi

Register status

Field FO F2 F4 F6 FS FlO F12 ... F30

Qi Multi Mult2

Busy Yes No No No No Yes No ... No

FIGURE 6.38 Multiply and divide are the only instructions not finished. This is different from the scoreboard case,
because the elimination of WAR hazards allowed the ADDF to finish right after the SUBF on which it depended.

Figure 6.39 gives the steps for each instruction to go through. Load and stores
are only slightly special. A load can be e;xecuted as soon as it is available. When
execution is completed and the CDB is available, a load puts its result on the
CDB like any functional unit. Stores receive their values from the CDB or from
the register file and execute autonomously; when they are done they tum the
busy field off to indicate availability, just like a load buffer or reservation
station.

INTEL Ex.1035.337

306 6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines

Instruction status Wait until Action or bookkeeping

Issue Station or buffer empty if (Register[Sl] .Qi *O)
{RS[r] .Qjf--Register[Sl] .Qi}

else {RS[r] .Vjf--Sl; RS [r] . Qj f-- 0} ;
if (Register[S2] .Qi*O)
{RS[r] .Qkf--Register[S2] .Qi};
else {RS [r] . Vkf-- S2; RS [r] . Qkf-- 0}
RS [r] . Busyf--yes;
Register[D] .Qi=r;

Execute (RS[r].Qj=O) and None-operands are in Vj and Vk
(RS[r].Qk=O)

Write result Execution completed at r 'efx(if (Register[x] .Qi=r) {Fxf-- result;
and CDB available Register [x] . Qif-- 0}) ;

'efx(if (RS [x] . Qj =r) {RS [x] . Vjf-- result;
RS [x] .Qj f--0});

Vx(if (RS [x] . Qk=r) {RS [x] . Vkf-- result;
RS[x] .Qk f--0});

'efx(if (Store [x] .Qi=r) {Store [x] . Vf-- result;
Store [x] . Qi f-- 0}) ;

RS [r] . Busyf--NO

FIGURE 6.39 Steps in the algorithm and what is required for each step. For the issuing instruction, D is the
destination, S1 and S2 are the sources, and r is the reservation station or buffer that D is assigned to. RS is the
reservation-station data structure. The value returned by a reservation station or by the load unit is called the "result."
Register is the register data structure, while Store is the store-buffer data structure. When an instruction is issued, the
destination register has its Qi field set to the number of the buffer or reservation station to which the instruction is issued. If
the operands are available in the registers, they are stored in the V fields. Otherwise, the Q fields are set to indicate the
reservation station that will produce the values needed as source operands. The instruction waits at the reservation
station until both its operands are available, indicated by zero in the Q fields. The Q fields are set to zero either when this
instruction is issued, or when an instruction on which this instruction depends completes and does its write back. When an
instruction has finished execution and the COB is available, it can do its write back. All the buffers, registers, and
reservation stations whose value of Qj or Qk is the same as the completing reservation station update their values from
the COB and mark the Q fields to indicate that values have been received. Thus, the COB can broadcast its result to
many destinations in a single clock cycle, and if the waiting instructions have their operands, they can all begin execution
on the next clock cycle. For simplicity we assume that all bookkeeping actions are done in a single cycle.

To understand the full power of eliminating WA W and WAR hazards
through dynamic renaming of registers, we must look at a loop. Consider the
following simple sequence for multiplying the elements of a vector by a scalar in
F2:

Loop: LD FO,O(Rl)

MULTD F4,FO,F2

SD O(Rl) ,F4

SUB Rl,Rl,#8

BNEZ Rl,Loop ; branches if Rl*O

With a branch~taken strategy, using reservation stations will allow multiple exe­
cutions of this loop to proceed at once. This advantage is gained without un­
rolling the loop-in effect, the loop is unrolled dynamically by the hardware. In

INTEL Ex.1035.338

Pipelining 307

the 360 architecture, the presence of only 4 FP registers would severely limit the
use of unrolling. (We will see shortly, when we unroll a loop and schedule it to
avoid interlocks, many more registers are required.) Tomasulo's algorithm sup­
ports the overlapped execution of multiple copies of the same loop with only a
small number of registers used by the program.

Let's assume we have issued all the instructions in two successive iterations
of the loop, but none of the floating-point loads/stores or operations has com­
pleted. The reservation stations, register-status tables, and load and store buffers
at this point are shown in Figure 6.40. (The integer ALU operation is ignored,
and it is assumed the branch was predicted as taken.) Once the system reaches
this state, two copies of the loop could be sustained with a CPI close to one pro­
vided the multiplies could complete in four clock cycles. We will see how com­
piler techniques can achieve a similar result in Section 6.8.

An additional element that is critical to making Tomasulo's algorithm work is
shown in this example. The load instruction from the second loop iteration could
easily complete before the store from the first iteration, although the normal
sequential order is different. The load and store can safely be done in a different
order, provided the load and store access different addresses. This is checked by
examining the addresses in the store buffer whenever a load is issued. If the load
address matches the store-buffer address, we must stop and wait until the store
buffer gets a value; we can then access it or get the value from memory.

This scheme can yield very high performance, provided the cost of branches
can be kept small-this is a problem we will look at later in this section. There
are also limitations imposed by the complexity of the Tomasulo scheme, which
requires a large amount of hardware. In particular, there are many associative
stores that must run at high speed, as well as complex control logic. Lastly, the
performance gain is limited by the single completion bus (CDB). While addi­
tional CDBs can be added, each CDB must interact with all the pipeline hard­
ware, including the reservation stations. In particular, the associative tag-match­
ing hardware would need to be duplicated at all stations for each CDB.

While Tomasulo's scheme may be appealing if the designer is forced to
pipeline an architecture that is difficult to schedule code for or has a shortage of
registers, the authors believe that the advantages of the Tomasulo approach are
limited for architectures that can be efficiently pipelined and statically scheduled
with software. However, as available gate counts grow and the limits of software
scheduling are reached, we may see dynamic scheduling employed. One pos­
sible direction is a hybrid organization that uses dynamic scheduling for loads
and stores, while statically scheduling register-register operations.

Reducing Branch Penalties with Dynamic
Hardware Prediction

The previous section describes techniques for overcoming data hazards. If con­
trol hazards are not addressed, Amdahl's Law predicts, they will limit pipelined­
execution performance. Earlier, we looked at simple hardware schemes for

INTEL Ex.1035.339

308 6. 7 Advanced Pipelining-Dynamic Scheduling in Pipelines

Instruction status

Instruction From iteration Issue Execute Write result

LD FO,O(Rl) 1 -.J -.J

MULTD F4,FO,F2 1 -.J

SD O(Rl),F4 1 -.J

LD FO,O(Rl) 2 -.J -.J

MULTD F4,FO,F2 2 -.J

SD 0(Rl),F4 2 -.J

Reservation stations

Name Busy Fm Vj Vk Qj Qk

Addl No

Add2 No

Add3 No

Multl Yes MULT (F2) Loadl

Mult2 Yes MULT (F2) Load2

Register status

Field FO F2 F4 F6 FS FlO Fl2 ... F30

Qi Load2 Mult2

Busy yes no yes no no no

Store buffers Load buffers

Field Store 1 Store 2 Store 3 Field Load 1 Load2 Load3

Qi Multl Mult2 Address (Rl) (Rl)-8

Busy Yes Yes No Busy Yes Yes No

Address (Rl) (Rl)-8

FIGURE 6.40 Two active iterations of the loop with no instruction having yet completed. Load and store buffers
are included, with addresses to be loaded from and stored to. The loads are in the load buffer; entries in the multiplier
reservation stations indicate that the outstanding loads are the sources. The store buffers indicate that the multiply
destination is their value to store.

dealing with branches (assume taken or not taken) and software-oriented
approaches (delayed branches). This section focuses on using hardware to
dynamically predict the outcome of a branch-the prediction will change if the
branch changes its behavior while the program is running.

The simplest dynamic branch-prediction scheme is a branch-prediction
buffer. A branch-prediction buffer is a small memory indexed by the lower por-

INTEL Ex.1035.340

Pipelining 309

tion of the branch instruction address. The memory contains a bit that says
whether the branch was recently taken or not. This is the simplest sort of buffer;
it has no tags and is useful only to reduce the branch delay when it is longer than
the time to compute the possible target PCs. We don't know, in fact, if the pre­
diction is correct-it may have been put there by another branch that has the
same low-order address bits. But this doesn't matter. It is assumed to be correct,
and fetching begins in the predicted direction. If the branch prediction turns out
to be wrong, the prediction bit is inverted.

This simple one-bit prediction scheme has a performance shortcoming: If a
branch is almost always taken, then when it is not taken, we will predict incor­
rectly twice, rather than once. Consider a loop branch whose behavior is taken
nine times sequentially, then not taken once. If the next time around it is pre­
dicted not taken, the prediction will be wrong. Thus, the prediction accuracy will
only be 80%, ·even on branches that are 90% taken. To remedy this, two-bit pre­
diction schemes are often used. In a two-bit scheme, a prediction must miss
twice in a row before it is changed. Figure 6.41 shows the finite-state machine
for the two-bit prediction scheme.

Not taken

Taken

Not taken

Taken

FIGURE 6.41 This shows the states in a two-bit prediction scheme. By using two bits
rather than one, a branch that strongly favors taken or not taken-as many branches do­
will be mispredicted only once. The two bits are used to encode the four states in the
system.

The branch-prediction buffer can be implemented as a small, special cache
accessed with the instruction address during the IF pipe stage, or as a pair of bits
attached to each block in the instruction cache and fetched with the instruction
(see Section 8.3 in Chapter 8). If the instruction is predicted as a branch and if
the branch is predicted as taken, fetching begins from the target as soon as the

INTEL Ex.1035.341

310 6. 7 Advanced Pipelining-Dynamic Scheduling in Pipelines

PC is known. Otherwise, fetching and sequential executing continue. If the pre­
diction turns out to be wrong, the prediction bits are changed as shown in Figure
6.41. While this scheme is useful for most pipelines, the DLX pipeline finds out
both whether the branch is taken and what the target of the branch is at the same
time. Thus, this scheme does not help for the simple DLX pipeline; we will ex­
plore a scheme that can work for DLX a little later. First, let's see how well a
prediction buffer works with a longer pipeline.

The accuracy of a two-bit prediction scheme is affected by how often the
prediction for each branch is correct and by how often the entry in the prediction
buff er matches the branch being executed. When the entry does not match, the
prediction bit is used anyway because no better information is available. Even if
the entry was for another branch, the guess could be a lucky one. In fact, there is
about a 50% probability of being correct, even if the prediction is for some other
branch. Studies of branch-prediction schemes have found that two-bit prediction
has an accuracy of about 90% when the entry in the buffer is the branch entry. A
buffer of between 500 and 1000 entries has a hit rate of 90%. The overall predic­
tion accuracy is given by

Accuracy=(% predicted correctly* % that prediction is for this instruction)+

(%lucky guess)* (1-% that prediction is for this instruction)

Accuracy= (90% * 90%) + (50% * 10%) = 86%

This number is higher than our success rate for filling delayed branches and
would be useful in a pipeline with a longer branch delay. Now let's look at a
dynamic prediction scheme that is useable for DLX and see how it compares to
our branch-delay scheme.

To reduce the branch penalty on DLX, we need to know from what address to
fetch by the end of IF. This means we must know whether the as yet undecoded
instruction is a branch and, if it is a branch, what the next PC should be. If the
instruction is a branch and we know what the next PC should be, we can have a
branch penalty of zero. A branch-prediction cache that stores the predicted ad­
dress for the next instruction after a branch is called a branch-target buffer.
Because we are predicting the next instruction address and will send it out
before decoding the instruction, we must know whether the fetched instruction
is predicted as a taken branch. We also want to know whether the address in the
target buffer is for a taken or not-taken prediction, so that we can reduce the time
to find a mispredicted branch. Figure 6.42 shows what the branch-target buffer
looks like. If the PC of the fetched instruction matches a PC in the buffer, then
the corresponding predicted PC is used as the next PC. In Chapter 8 we will dis­
cuss caches in much more detail; we will see that the hardware for this branch­
target buffer is similar to the hardware for a cache.

INTEL Ex.1035.342

Pipelining

: PC of instruction to fetch I
llook up Predicted PC

. •·· .·. · . .·
. ..

.· .
.· ..

. .

. ;•·

Number of ·.

entries

in
.. . . .

:: .. :· :·

branch- .. ; ·, .
target . ·· .. \ . •. ..·
buffer· .

: •:. ;.• .
.. · : ·.•

. . : . . . ; •: ;. . . :

·.··. ·>.'.··
.. :.•
. .• : .• ... •. : . ·· ..

. :·

not predicted to be ?-.. , '""'"""'" ,,
branch. Proceed normally

Yes: then instruction is branch and predicted
PC should be used as the next PC

. .

.

. .

.

.

Branch
predicted
taken or
untaken

311

FIGURE 6.42 A branch-target buffer. The PC of the instruction being fetched is matched
against a set of instruction addresses stored in the first column; these represent the
addresses of known branches. If the PC matches one of these entries, then the instruction
being fetched is a branch. If it is a branch, then the second field, predicted PC, contains the
prediction for the next PC after the branch. Fetching begins immediately at that address.
The third field just tracks whether the branch was predicted taken or untaken and helps
keep the misprediction penalty small.

If a matching entry is found in the branch-target buffer, fetching begins
immediately at the predicted PC. Note that (unlike a branch-prediction buffer)
the entry must be for this instruction, because the predicted PC will be sent out
before it is known whether this instruction is even a branch. If we did not check
whether the entry matched this PC, then the wrong PC would be sent out for
instructions that were not branches, resulting in a slower machine. Figure 6.43
shows the steps followed when using a branch-target buffer and when these
steps occur in the pipeline. From this we can see that there will be no branch
delay if a branch-prediction entry is found in the buffer and is correct. Other­
wise, there will be a penalty of at least one clock cycle. In practice, there could
be a penalty of two clock cycles because the branch-target buffer must be up­
dated. We could assume that the instruction following a branch or at the branch
target is not a branch, and do the update during that instruction time. However,
this does complicate the control. Instead, we will take a two-clock-cycle penalty
when the branch is not correctly predicted.

INTEL Ex.1035.343

312 6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines

Send out
predicted

PC

FIGURE 6.43 The steps involved in handling an instruction with a branch-target
buffer. If the PC of an instruction is found in the buffer, then the instruction must be a
branch, and fetching immediately begins from the predicted PC in ID. If the entry is not
found and it subsequently turns out to be a branch, it is entered in the buffer along with the
target, which is known at the end of ID. If the instruction is a branch, is found, and is cor­
rectly predicted, then execution proceeds with no delays. If the prediction is incorrect, we
suffer a one-clock-cycle delay fetching the wrong instruction and restart the fetch one clock
cycle later. If the branch is not found in the buffer and the instruction turns out to be a
branch, we will have proceeded as if the instruction were a branch and can turn this into an
assume-not-taken strategy; the penalty will differ depending on whether the branch is
actually taken or not.

INTEL Ex.1035.344

Pipelining 313

To evaluate how well a branch-target buffer works, we first must determine
what the penalties are in all possible cases. Figure 6.44 contains this informa­
tion.

Instruction in buffer Prediction Actual branch Penalty cycles

Yes Taken Taken 0

Yes Taken Not taken 2

Yes Not taken Not taken 0

Yes Not taken Taken 2

No Taken 2

No Not taken 1

FIGURE 6.44 Penalties for all possible combinations of whether the branch is in the
buffer, how it is predicted, and what it actually does. There is no branch penalty if
everything is correctly predicted and the branch is found in the target buffer. If the branch is
not correctly predicted,_ the penalty is equal to one clock cycle to update the buffer with the
correct information (during which an instruction cannot be fetched) and one clock cycle, if
needed, to restart fetching the next correct instruction for the branch. If the branch is not
found and not taken, the penalty is only one clock cycle because the pipeline assumes not
taken when it is not aware that the instruction is a branch. Other mismatches cost two clock
cycles, since we must restart the fetch and update the buffer.

Using the same probabilities as for a branch-prediction buffer-90% proba­
bility of finding the entry and 90% probability of correct prediction-and the
taken/not taken percentage taken from earlier in this chapter, we can find the
total branch penalty:

Branch penalty = % branches found in buffer * % incorrect predictions * 2 +
(1-% branches found in buffer)*% taken branches* 2 +

(1-% branches found in buffer)*% untaken branches* 1

Branch penalty = 90% * 10% * 2 + 10% * 60% * 2 + 10% * 40% * 1

Branch penalty = 0.34 clock cycles

This compares with a branch penalty for delayed branches of about 0.5 clock
cycles per branch. Remember, though, that the improvement from dynamic
branch prediction will grow as the branch delay grows.

Branch-prediction schemes are limited both by prediction accuracy and by the
penalty for misprediction. It is unlikely that we can improve the effective
branch-prediction success much above 80% to 90%. Instead, we can try to
reduce the penalty for misprediction. This is done by fetching from both the pre­
dicted and unpredicted direction. This requires that the memory system be dual
ported or have an interleaved cache. While this adds cost to the system, it may
be the only way to reduce branch penalties below a certain point.

INTEL Ex.1035.345

314 6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines

We have seen a variety of software-based static schemes and hardware-based
dynamic schemes for trying to boost the performance of our pipelined machine.
Pipelining tries to exploit the potential for parallelism among sequential instruc­
tions. In the ideal case all the instructions would be independent, and our DLX
pipeline would exploit parallelism among the five instructions simultaneously in
the pipeline. Both the static scheduling techniques of the last section and the
dynamic techniques of this section focus on maintaining the throughput of the
pipeline at one instruction per clock. In the next section we will look at tech­
niques that attempt to exploit overlap more than by the factor of 5, to which we
are restricted with the simple DLX pipeline.

6.8 I Advanced Pipelining-Taking Advantage of
More Instruction-Level Parallelism

To improve performance further we would like to decrease the CPI to less than
one. But the CPI cannot be reduced below one if we issue only one instruction
every clock cycle. The goal of the techniques discussed in this section is to allow
multiple instructions to issue in a clock cycle.

As we know from earlier sections, to keep a pipeline full, parallelism among
instructions must be exploited by finding sequences of unrelated instructions that
can be overlapped in the pipeline. Two related instructions must be separated by
a distance equal to the pipeline latency of the fir.st of the instructions.
Throughout this section we will assume the latencies shown in Figure 6.45.
Branches still have a one-clock-cycle delay. We assume that the functional units
are fully pipelined or replicated, and that an operation can be issued on every
clock cycle.

As we try to execute more instructions on every clock cycle and try to overlap
more instructions, we will need to find and exploit more instruction-level paral­
lelism. Thus, before looking at pipeline organizations that require more
parallelism among instructions, let's look at a simple compiler technique that
will help create additional parallelism.

Instruction producing result Destination instruction Latency in clocks

FPALUop Another FP ALU op 3

FPALUop Store double 2

Load double FPALU op 1

Load double Store double 0

FIGURE 6.45 Latencies of operations used in this section. The first column shows the
originating instruction type. The second column is the type of the consuming instruction.
The last column is the separation in clock cycles to avoid a stall. These numbers are similar
to the average latencies we would see on an FP unit, like the one we described for DLX in
Figure 6.29 (page 289).

INTEL Ex.1035.346

Example

Answer

Pipelining

Increasing Instruction-Level Parallelism
with Loop Unrolling

315

To compare the approaches discussed in this section, we will use a simple loop
that adds a scalar value to a vector in memory. The DLX code, not accounting
for the pipeline, looks like this:

Loop: LD FO,O(Rl) load the vector element

ADDD F4,FO,F2 ; add the scalar in F2

SD 0 (Rl) ,·F4 store the vector element

SUB Rl,Rl,#8 ; decrement the pointer by
; 8 bytes (per DW)

BNEZ Rl,LOOP branch when it's zero

For simplicity, we assume the array starts at location ·O. If it were located
elsewhere, the loop would require one additional integer instruction.

Let's start by seeing how well this loop will run when it is scheduled on a
simple pipeline for DLX with the latencies discussed above.

Show how the vector add loop would look on DLX, both scheduled and
unscheduled, including any stalls or idle clock cycles.

Without any scheduling the loop will execute as follows:

Clock cycle issued

Loop: LD FO,O(Rl) 1

stall 2

ADDD F4,FO,F2 3

stall 4

stall 5

SD 0(Rl),F4 6

SUB Rl,Rl,#8 7

BNEZ Rl,LOOP 8

stall 9

This requires 9 clock cycles per iteration. We can schedule the loop to obtain

Loop: LD

stall

ADDD

SUB

BNEZ

SD

FO,O(Rl)

F4,FO,F2

Rl,Rl,#8

Rl,LOOP

8(Rl),F4

; delayed branch

; changed because interchanged with SUB

INTEL Ex.1035.347

316

Example

Answer

6.8 Advanced Pipelining-;-Taking Advantage of More Instruction-Level Parallelism

Execution time has been reduced from 9 clock cycles to 6.
Notice that to create this schedule, the compiler had to determine that it could

swap the SUB and SD by changing the address the SD stored to: The address was
0 (Rl) and is now 8 (Rl). This is not trivial, since most compilers would see
that the SD instruction depends on the SUB and would refuse to interchange
them. A smarter compiler could figure out the relationship and perform the
interchange. The dependence among the LD, ADDD, and SD determines the clock
cycle count for this loop.

In the above example, we complete one loop iteration and finish one vector
element every 6 clock cycles, but the actual work of operating on the vector
element takes just 3 of those 6 clock cycles. The remaining 3 clock cycles con­
sist of loop overhead-the SUB and BNEZ-and a stall. To eliminate these 3
clock cycles we need to get more operations within the loop. A simple scheme
for increasing the number of instructions between executions of the loop branch
is loop unrolling. This is done by simply replicating the loop body multiple
times, adjusting the loop termination code, and then scheduling the unrolled
loop. To allow effective scheduling of the loop, we will want to use different
registers for each iteration, thus increasing the register count.

Show what our loop looks like unrolled three times (yielding four copies of the
loop body), assuming Rl is initially a multiple of 4. Eliminate any obviously
redundant computations, and do not reuse any of the registers.

Here is the result after dropping the unnecessary SUB and BNEZ operations
duplicated during unrolling.

Loop: LD FO,O(Rl)

ADDD F4,FO,F2

SD 0(Rl),F4 ;drop SUB & BNEZ

LD F6,-8(Rl)

ADDD F8,F6,F2

SD -8 (Rl) , F8 ;drop SUB & BNEZ

LD FlO, -16 (Rl)

ADDD Fl2,Fl0,F2

SD -16(Rl),Fl2 ;drop SUB & BNEZ

LD Fl4,-24(Rl)

ADDD Fl6,Fl4,F2

SD -24(Rl),Fl6

SUB. Rl,Rl,#32

BNEZ Rl,LOOP

INTEL Ex.1035.348

Example

Answer.

Pipelining 317

We have eliminated three branches and three decrements of R 1. The addresses
on the loads and stores have been compensated for. Without scheduling, every
operation is followed by a dependent operation, and thus will cause a stall. This
loop will run in 27 clock cycles-each LD takes 2 clock cycles, each ADDD 3,
the branch 2, and all other instructions I-or 6.8 clock cycles for each of the
four elements.

Although this unrolled version is currently slower than the scheduled version
of the original loop, this will change when we schedule the unrolled loop. Loop
unrolling is normally done early in the compilation process, so that redundant
computations can be exposed and eliminated by the optimizer.

In real programs we do not normally know the upper bound on the loop. Sup­
pose it is n, and we would like to unroll the loop k times. Instead of a single
unrolled loop, we generate a pair of loops. The first executes (n mod k) times
and has a body that is the original loop. The unrolled version of the loop is sur­
rounded by an outer loop that iterates (n div k) times. In the above example, un­
rolling improves the performance of this loop by eliminating overhead instruc­
tions, though it increases code size substantially. What will happen to the
performance increase when the loop is scheduled on DLX?

Show the unrolled loop in the previous example after it has been scheduled on
DLX.

Loop: LD FO,O(Rl)

LD F6,-8(Rl)

LD F10,-16(Rl)

LD Fl4,-24(Rl)

ADDD F4,FO,F2

ADDD F8,F6,F2

ADDD Fl2,Fl0,F2

ADDD F16,F14,F2

SD 0(Rl),F4

SD -8(Rl),F8

SD -16(Rl),F12

SUB Rl,Rl,#32 ;branch dependence

BNEZ Rl,LOOP

SD -24(Rl),F16 ; 8-32 = -24

The execution time of the unrolled loop has dropped to a total of 14 clock
cycles, or 3.5 clock cycles per element, compared to 6.8 per element before
scheduling.

INTEL Ex.1035.349

318 6.8 Advanced Pipelining-Taking Advantage of More Instruction-Level Parallelism

The gain from scheduling on the unrolled loop is even larger than on the
original loop. This is because unrolling the loop exposes more computation that
can be scheduled. Scheduling the loop in this fashion necessitates realizing that
the loads and stores are independent and can be interchanged.

Loop unrolling is a simple but useful method for increasing the size of
straightline code fragments that can be scheduled effectively. This compile-time
transformation is similar to what Tomasulo's algorithm does with register
renaming and out-of-order execution. As we will see, this is very important in
attempts to lower the CPI by issuing instructions at a high rate.

A Superscalar Version of DLX

One method of decreasing the CPI of DLX is to issue more than one instruction
per clock cycle. This would allow the instruction-execution rate to exceed the
clock rate. Machines that issue multiple independent instructions per clock cycle
when they are properly scheduled by the compiler have been called superscalar
machines. In a superscalar machine, the hardware can issue a small number (say
2 to 4) of independent instructions in a single clock. However, if the instructions
in the instruction stream are dependent or don't meet certain criteria, only the
first instruction in sequence will be issued. A machine where the compiler has
complete responsibility for creating a package of instructions that can be simul­
taneously issued, and the hardware does not dynamically make any decisions
about multiple issue, should probably be regarded as a type of VLIW (very long
instruction word), which we discuss in the next section.

What would the DLX machine look like as a superscalar? Let's assume two
instructions issued per clock cycle. One of the instructions could be a load, store,
branch, or integer ALU operation, and the other could be any floating-point
operation. As we will see, issue of an integer operation in parallel with a
floating-point operation is much simpler and less demanding than arbitrary dual
issue.

Issuing two instructions per cycle will require fetching and decoding 64 bits
of instructions. To keep the decoding simple, we could require that the instruc­
tions be paired and aligned on a 64-bit boundary, with the integer portion
appearing first. Figure 6.46 shows how the instructions look as they go into the
pipeline in pairs. This table does not address how the floating-point operations
extend the EX cycle, but it is no different in the superscalar case than it was for
the ordinary DLX pipeline; the concepts of Section 6.6 apply directly. With this
pipeline, we have substantially boosted the rate at which we can issue floating­
point instructions. To make this worthwhile, however, we need either pipelined
floating-point units or multiple independent units. Otherwise, floating-point
instructions can only be fetched, and not issued, since all the floating units will
be busy.

INTEL Ex.1035.350

