
ms

Modeling and Analysis of the Unix Communication Subsyste

Yi-Chun Chu and Toby J. Teorey

Electrical Engineering and Computer Science Department
The University of Michigan

 Ann Arbor, MI 48109-2122, USA
in

nt
st
ta
e

l
f

t.
el
s.
 a

ld
r
tic
e
n
o
he

re

y,
em
-

-
s
be
s.

s
-

d
s
l-
)
-

f
t
vy

d
)
ce
y

a-
r
y

s-
the
r

n
e
e

e
y

Abstract

The performance of host communication
subsystems is an important research topic
computer networks.1 Performance metrics such as
throughput, delay, and packet loss are importa
indices to observe the system behavior. Mo
research in this area is conducted by experimen
measurement; far less attention is paid to th
analytic modeling approach. The well-known
complexity and dynamic nature of the
Transmission Control Protocol/Internet Protoco
(TCP/IP) make the performance modeling o
communication subsystems extremely difficul
The purpose of this study is to analyze and mod
the overhead in Unix communication subsystem
The overhead is caused by protocol processing
well as kernel functions for fair allocation of
system resources. Our approach is to bui
analytic models of communication overhead fo
sending and receiving a message. The analy
models can be applied to analyze th
communication overhead for Internet informatio
systems, such as the Internet web servers,
software servers built above midwares, such as t
Distributed Computing Environment/Remote
Procedure Call (DCE/RPC) servers, that requi
intensive network I/O.

1 Introduction

With recent advances in networking technolog
many services that used to reside in a host syst
are now provided in a distributed fashion. Distrib

1This work is funded by IBM Canada Ltd. Labora-
tory Centre for Advanced Studies, Toronto.
1
f

Find authenticated court document
l

s

r

uted file service is a good example of this. Provid
ing services across networks increase
communication costs: requests and results must
transported between client and server machine
Intensive overhead caused by network I/O limits
the capacity of many distributed servers. Thi
makes the study of host communication sub
systems an important research topic.

Earlier research closely examined the overhea
generated in host communication subsystem
[3,5,6]. The overhead is caused by both protoco
specific processing and operating system (OS
activities such as data movement, context switch
ing, and interrupt handling. Careful analysis of the
overhead breakdown can improve the design o
communication subsystems. However, it canno
reveal how server machines behave under hea
network traffic [10]. This question has received
more attention recently because many distribute
servers, such as the World-Wide Web (WWW
servers, have generally experienced performan
problems in response time and service availabilit
[11,12].

To answer the above question, we need an an
lytic solution to study the server system behavio
under a varied network load. In this paper, we tr
to develop analytic models of communication
overhead for both sending and receiving a me
sage. These models can be applied to estimate
communication overhead in the distributed serve
systems.

The rest of this paper is organized as follows. I
Section 2, we introduce the software architectur
of communication subsystems derived from th
Berkeley Software Distribution (BSD) Unix. The
overhead breakdown is organized according to th
software and protocol layers. The queueing dela
INTEL EX.1248.001
s without watermarks at docketalarm.com.

https://www.docketalarm.com/

Socket Layer

Protocol Layer

Network Interface
Layer

Application Layer

socket send buffer

interface send queue

socket receive buffer

protocol input queue

socket receive buffer

stream datagram
socketsocket

TCP/UDP

IP

Figure 1. Software Architecture of Unix Communication Subsystems
ed
i-
a
g
er
),
e
ve
d-
in

d
2)

e
n

t

n
k

/
a.
-
.

n
s

in communication subsystems is also describ
here. In Section 3, analytic models for commun
cation overhead are developed, along with
detailed analysis of the critical path for sendin
and receiving a message. Both transport layer s
vices, TCP and User Datagram Protocol (UDP
are considered in our study. In Section 4 w
present two case studies: the Internet web ser
and the DCE/RPC server with our analytic mo
els. Conclusions and future work are outlined
Section 5.

2 Unix Communication
Subsystems

The Unix communication subsystem is divide
into three software layers: 1) the socket layer,
2
f

Find authenticated court document
-

r

the protocol layer, and 3) the network-interfac
layer [8]. The software architecture is shown i
Figure 1.

The socket layer hides the complexity of net-
work communication and provides an abstrac
interface similar to a generic I/O device.The pro-
tocol layer covers protocol-specific processing i
the transport layer (TCP/UDP) and the networ
layer (IP).The network-interface layer is mainly
concerned with the link-layer encapsulation
decapsulation and driving the transmission medi
The TCP/IP protocol specification puts no restric
tion on the layered structure of network software
Most implementations, however, put the code i
the kernel with tightly integrated software layer
for efficiency considerations [2].
INTEL EX.1248.002
s without watermarks at docketalarm.com.

https://www.docketalarm.com/

e
g
 a
e
e
se

er-
ns
ta
ch
.

be
 of
of
b-

e
ig-
pt

6].
oth
 be
 fo
U,

and
).
o-

e
on
e
er-

y

o
et
r

m
er
IP
ta)
-

s;
ta

t
nt
 if
].
the
-
pa-

s
th
d

ds
s-
r-

r-
t

or

e
d
d
n
ly

The specific communication subsystem w
studied is a DEC Alpha AXP workstation runnin
the OSF/1 1.0 [1]. The workstation is attached to
department LAN with an Ethernet adaptor. Th
implementation of the OSF/1 network softwar
follows the design of the 4.3 BSD Reno relea
[8].

2.1 The Processing Overhead

In communication subsystems, processing ov
head can be caused by data-touching operatio
such as data movement and checksum compu
tion, as well as non-data-touching operations, su
as context switching and interrupt handling
Before developing any analytic models to descri
the system behavior, a thorough understanding
the overhead is necessary. The major kinds
overheads discovered in communication su
systems are described below.

Data Movement

Data movement is a principal overhead in th
communication subsystems. This overhead is s
nificant because memory bandwidth has not ke
pace with the speed of microprocessors [3,
Generally, two data movements are needed in b
sending and receiving paths. First, data has to
copied between user space and kernel space
protection reasons. This work is done by CP
and we denote them asMuk(m) andMku(m) sepa-
rately (m is the size of data to be moved).1 The
other data movement is between kernel space
network adaptor buffer (which is in I/O space
The real work can be done either by CPU (pr
gramming I/O) or by Direct Memory Access
(DMA). Which does the work depends on th
hardware I/O architecture, and it also depends
if the network adaptor has DMA capability. In th
system we studied, the data movement from k
nel to adaptor is done by PIO,Mka(m); but the data
movement in the reverse direction is done b
DMA, Mak(m).

Checksum Computation

1Since bothMuk(m) andMku(m) are memory to mem-
ory copy, we useMmm(m) to representMuk(m) or
Mku(m).
3
f

Find authenticated court documents
,
-

r

Network communication relies on checksums t
preserve end-to-end data integrity. In the Intern
protocols, a 16-bit checksum field is used for erro
detection in IP header (20 bytes), UDP datagra
(12-byte IP pseudo header, 8-byte UDP head
and UDP data), and TCP segment (12-byte
pseudo header, 20-byte TCP header and TCP da
[4,15]. We denote the overhead of checksum com
putation asCS(m). Both checksum computation
and data movement are data-touching operation
the overhead, hence, grows linearly with the da
size to be processed.

Protocol-specific Processing

Protocol-specific processing contributes differen
overhead in each protocol layer. Measureme
results show that the overhead tends to be fixed
the checksum computation is not included [6
Therefore, we can use constants to represent
fixed part of overhead for protocol-specific pro
cessing in each layer, and we denote them se
rately asTCPin, TCPout, UDPin, UDPout, IPin, and
IPout.

Demultiplexing

Demultiplexing is a table-lookup operation in the
transport layer. It searches protocol control block
(PCBs) for the socket connection associated wi
an incoming packet. Most implementation derive
from the BSD Unix uses a link-list structure with a
one-entry cache2 (for the latest lookup result) to
improve performance [9]. The search cost depen
on the number of socket connections in the sy
tem. Here we consider it as part of the fixed ove
head in transport-layer input routines, TCPin and
UDPin. However, it has been shown that the ove
head can grow significantly in a busy Interne
information server that has peak connections f
more than a thousand [10].

Interrupt Handling

Network communication generates two devic
hardware interrupts: the receiving interrupt an
the transmission-complete interrupt. The overhea
for interrupt handling receives less attention tha
other processing overhead. This is probab

2The one-entry cache is called “1-behind cache.”
INTEL EX.1248.003
 without watermarks at docketalarm.com.

https://www.docketalarm.com/

Table 1. Overhead Breakdown in Software Layers and Network Adaptor

Overhead Description Device

Socket Layer Muk(m)
Mku(m)

data copy from user space to kernel space
data copy from kernel space to user space

CPU
CPU

Protocol Layer CS(m)
TCPin/TCPout
UDPin/UDPout
IPin/IPout

checksum computation
TCP protocol-specific processing
UDP protocol-specific processing
IP protocol-specific processing

CPU
CPU
CPU
CPU

Network Interface
Layer

Mka(m)
Mak(m)
ETHout
Is
Ir

data copy from kernel space to I/O space (adaptor)
data copy from I/O space (adaptor) to kernel space
link-layer processing
transmit complete interrupt
receive interrupt and link-layer processing

CPU
DMA
CPU
CPU
CPU

Network Adaptor Tx(m)
Rx(m)

packet transmission time
packet reception time

Adaptor
Adaptor
iffi-
is
r
e

r-

en

e
ta
h
et
a
d

 a
e,
ht
ss
t,
e
for

ns
o.
 o
2

n
he

as
-
d

-
1.
r

d-

he
his
-
d

not
-

lay
because of its asynchronous nature and the d
culty for measuring it. However, careful analys
of interrupt handling in the network device drive
reveals how it critically affects the performanc
during heavy network traffic [14]. In the system
we studied, the overhead of the receiving inte
rupt, denoted asIr, covers the entire link-layer
processing. It does not include the data movem
overhead from network adaptor to kernel, Mka(m)
(which is done by DMA). The overhead for th
transmission-complete interrupt involves da
movement from kernel to network adaptor (whic
is done by PIO) and the initiation of next pack
transmission. Hence, it is further divided into
fixed part, denoted asIs, and a varied part, denote
asMka(m).

Context Switch

Socket system calls for sending or receiving
message are synchronous. As a consequenc
blocks the current running process and mig
cause a context switch. Incoming packet proce
ing, which is driven by asynchronous interrup
will “wakeup” the blocked receiving process at th
final stage. Here we denote the fixed overhead
a context switch asC.

Transmission Time

Transmission time depends on the speed of tra
mission media the workstation is attached t
Transmission speed can vary several orders
magnitude, e.g. from 10 Mb/s (Ethernet) to 62
4
f

Find authenticated court document
t

it

-

-

f

Mb/s (ATM). Packet transmission and receptio
are also data-touching operations; we denote t
overhead asTx(m) andRx(m). Generally, it takes
equal time to transmit or receive a packet.

Others

Other kinds of overheads not listed above, such
mbufs allocation, are not significant to our analy
sis. As a result, we treat them as part of the fixe
overhead in protocol-specific processing.

2.2 Overhead Breakdown in
Software Layers

The breakdown of processing overhead in com
munication subsystems is categorized in Table
Overhead for data-touching operations and fo
non-data-touching operations is organized accor
ing to the software layers to which it applies.

The overhead breakdown help us see where t
overhead is generated. In Section 3, we use t
table to develop analytic models of communica
tion overhead by detailed analysis of sending an
receiving paths.

2.3 Queueing Delay in
Communication Subsystems

The processing overhead described above does
account for the entire delay accumulated in com
munication subsystems. There is a queueing de
INTEL EX.1248.004
s without watermarks at docketalarm.com.

https://www.docketalarm.com/

n
ar

or
d.
-
ve

l
on

ta
n.
w

ta

he

is

s
g
e
t
t
re

s
 a
t.
y
iv-

y
e
th

e
i-

y
 is
it
t
el
o

o-
by

er
et

s
n
to

w,
ad
ue-

-
b-
op
-
 a

o
s,

th
ps
e
-
l.

introduced by buffers or queues within or betwee
the software layers. These queues and buffers
also shown in Figure 1 and described below.

Socket Send Buffer

The socket send buffer holds data not sent yet
sent but not acknowledged by the receiving en
Since UDP does not provide flow control or reli
able message delivery, a UDP message is ne
placed into the socket send buffer.1 For TCP, the
queueing delay is determined by its flow-contro
algorithms such as the slow start and congesti
avoidance.

Socket Receive Buffer

The socket receive buffer is used to hold da
received, but not yet delivered to the applicatio
The queueing delay, hence, depends on ho
quickly the receiving process can accept the da
For TCP, its flow-control algorithm will prevent
the sender from sending more data when t
buffer is full. For UDP, which has no flow control,
any message that arrives when the buffer is full
simply dropped.

Protocol Input Queue (IP Queue)

The protocol input queue holds IP datagram
delivered by the network interface that are waitin
for protocol layer input processing. This queu
normally will not build up unless there are burs
packets arriving at the network adaptor. IP inpu
routine is scheduled as an asynchronous softwa
interrupt in the kernel. This software interrupt i
posted by the receiving interrupt handler. It has
lower priority than the device hardware interrup
IP input routine is usually scheduled immediatel
to process incoming IP datagrams after the rece
ing hardware interrupt returns.

Interface Send Queue

Outgoing packets that wait to be transmitted b
the network adaptor are placed in the interfac
send queue. The queueing delay depends on

1Although UDP message is never copied into th
socket send buffer, the buffer size restricts the max
mum size of UDP messages can be sent.
5
f

Find authenticated court document
e

r

.

e

Medium Access Control (MAC) protocol and the
bandwidth of the transmission media.

Developing analytic models to estimate dela
accumulated in the communication subsystems
a challenging task. Several factors make
extremely complicated. First, incoming packe
processing is divided into two stages in the kern
and scheduled as asynchronous activities with tw
different priorities. This applies to both TCP and
UDP. Second, the dynamics of transport layer pr
cessing, such as TCP, is sensitively influenced
its flow-control algorithms. This turns out to be an
end-to-end issue that we have to also consid
how quickly the remote peer can accept the pack
and the end-to-end network latency.

We cannot currently develop analytic model
about the delay accumulated in communicatio
subsystems because further study is required
capture the end-to-end dynamics in TCP. For no
we develop a mean value model of the overhe
delay to be used as the service demands for que
ing models of delay in the future.

3 Analytic Model for Overall
Communication Overhead

In Section 2, we introduced the different catego
ries of overhead generated in communication su
systems. In this section, we use them to devel
analytic models of the overall overhead for send
ing and receiving a message. Since TCP has
much richer transport functionality than UDP
does, it is impractical to use a single model t
describe both of them. Four overhead model
TCPsend(m), TCPrecv(m), UDPsend(m), and
UDPrecv(m), are built, withm denoting the size of
the message to be sent.

3.1 Processing Overhead for
Sending and Receiving a Packet
in the Bottom Layer

We analyze the bottom layer first because bo
TCP and UDP employ the same processing ste
in this layer. The bottom layer corresponds to th
link layer or the MAC sublayer in the Open Sys
tem Interconnection (OSI) reference mode
INTEL EX.1248.005
s without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

