Pipelining 319

Instruction type Pipe Stages

Integer instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

Integer instruction IF ID EX MEM WB

FP instruction IF D EX MEM WB

Integer instruction IF 1D EX MEM WB

FP instruction ' IF ID EX MEM WB

Integer instruction IF ID EX MEM WB
FP instruction IF D EX MEM WB

FIGURE 6.46 Superscalar pipeline in operation. The integer and floating-point instructions are issued at the same
time, and each executes at its own pace through the pipeline. This scheme will only improve the performance of programs
with a fair amount of floating point.

By issuing an integer and a floating-point operation in parallel, the need for
additional hardware is minimized—integer and floating-point operations use dif-
ferent register sets and different functional units. The only conflict arises when
the integer instruction is a floating-point load, store, or move. This creates con-
tention for the floating-point register ports and may also create a hazard if the
floating-point operation uses the result of a floating-point load issued at the same
time. Both problems could be solved by detecting this contention as a structural
hazard and delaying the issue of the floating-point instruction. The contention
could also be eliminated by providing two additional ports, a read and a write,
on the floating-point register file. We would also need to add several additional
bypass paths to avoid performance loss.

There is another difficulty that may limit the effectiveness of a superscalar
pipeline. In our simple DLX pipeline, loads had a latency of one clock cycle;
this prevented one-instruction from using the result without stalling. In the
superscalar pipeline, the result of a load instruction cannot be used on the same
clock cycle or on the next clock cycle. This means that the next three instruc-
tions cannot use the load result without stalling; without extra ports, moves
between the register sets are similarly affected. The branch delay also becomes
three instructions. To effectively exploit the parallelism available in a super-
scalar machine, more ambitious compiler-scheduling techniques, as well as more
complex instruction decoding, will need to be implemented. Loop unrolling
helps generate larger straightline fragments for scheduling; more powerful
compiler techniques are discussed near the end of this section.

Let’s see how well loop unrolling and scheduling work on a superscalar ver-
sion of DLX with the same delays in clock cycles.

INTEL Ex.1035.351

320 . 6.8 Advanced Pipelining—Taking Advantage of More Instruction-Level Parallelism

How would the unrolled loop on page 317 be scheduled on a superscalar pipe-
line for DLX? To schedule it without any delays, we will need to unroll it to
make five copies of the body.

-Example

Answer | The resulting code is shown in Figure 6.47.

Integer instruction FP instruction Clock cycle
Loop: LD FO, 0 (R1) 1
LD F6,-8(R1) 2
LD F10,-16 (R1) ADDD F4,F0,F2 3
LD Fl4,-24(R1) ADDD F8,F6,F2 4
LD F18,-32 (R1) ADDD F12,F10,F2 5
SD 0(R1),F4 ADDD F16,F14,F2 6
SD -8(R1),F8 ADDD F20,F18,F2 7
SD -16(R1),F12 8
SD -24(R1),F16 9
SUB R1,R1, #40 10
BNEZ R1,LOOP 11
SD 8 (R1) ,F20 12

FIGURE 6.47 The unrolled and scheduled code as it would look on a superscalar
DLX.

This unrolled superscalar loop now runs in 12 clock cycles per iteration, or 2.4
clock cycles per element, versus 3.5 for the scheduled and unrolled loop on the
ordinary DLX pipeline. In this example, the performance of the superscalar
DLX is limited by the balance between integer and floating-point computation.
Every floating-point instruction is issued together with an integer instruction, but
there are not enough floating-point instructions to keep the floating-point
pipeline full. When scheduled, the original loop ran in 6 clock cycles per
iteration. We have improved on that by a factor of 2.5, more than half of which
came from loop unrolling, which took us from 6 to 3.5, with the rest coming
from issuing more than one instruction per clock cycle. '

Ideally, our superscalar machine will pick up two instructions and issue them
both if the first is an integer and the second is a floating-point instruction. If they
do not fit this pattern, which can be quickly detected, then they are issued
sequentially. This points to one of the major advantages of a general superscalar
machine: There is little impact on code density, and even unscheduled programs
can be run. The number of issues and classes of instructions that can be issued
together are the major factors that differentiate superscalar processors.

INTEL Ex.1035.352

Pipelining 321

Multiple Instruction Issue with
Dynamic Scheduling

Multiple instruction issue can also be applied to dynamically scheduled
machines. We could start with either the scoreboard scheme or Tomasulo’s
algorithm. Let’s assume we want to extend Tomasulo’s algorithm to support
issuing two instructions per clock cycle, one integer and one floating point. We
do not want to issue instructions in the queue out of order, since this makes the
bookkeeping in the register file impossible. Rather, by employing data structures
for the integer and floating-point registers, both types of instructions can be
issued to their respective reservation stations, as long as the two instructions at
the head of the instruction queue do not access the same register set.
Unfortunately, this approach bars issuing two instructions with a dependence in
the same clock cycle. This is, of course, true in the superscalar case, where it is
clearly the compiler’s problem. There are three approaches that can be used to
achieve dual issue. First, we could use software scheduling to ensure that depen-
dent instructions do not appear adjacent. However, this would require pipeline-
scheduling software, thereby defeating one of the advantages of dynamically
scheduled pipelines. :

A second approach is to pipeline the instruction-issue stage so that it runs
twice as fast as the basic clock rate. This permits updating the tables before pro-
cessing the next instruction; then the two instructions can begin execution at
once.

The third approach is based on the observation that if multiple instructions
are not being issued to the same functional unit, then it will only be loads and
stores that will create dependences among instructions that we wish to issue
together. The need for reservation tables for loads and stores can be eliminated
by using queues for the result of a load and for the source operand of a store.
Since dynamic scheduling is most effective for loads and stores, while static
scheduling is highly effective in register-register code sequences, we could use
static scheduling to eliminate reservation stations completely and rely only on
the queues for loads and stores. This style of machine organization has been
called a decoupled architecture.
 For simplicity, let us assume that we have pipelined the instruction issue logic
so that we can issue two operations that are dependent but use different
functional units. Let’s see how this would work with our example.

Consider the execution of our simple loop on a DLX pipeline extended with
Tomasulo’s algorithm and with multiple issue. Assume that both a floating-point
and an integer operation can be issued on every clock cycle, even if they are
related. The number of cycles of latency per instruction is the same. Assume that

- issue and write results take one cycle each, and that there is dynamic branch-
prediction hardware. Create a table showing when each instruction issues, begins
execution, and writes its result, for the first two iterations of the loop. Here is the
original loop:

Example

INTEL Ex.1035.353

322 ‘ 6.8 Advanced Pipelining—Taking Advantage of More Instruction-Level Parallelism

Loop: LD FO,0(R1)
ADDD F4,F0,F2
SD 0(R1),F4
SUB R1,R1, #8
BNEZ R1,LOOP

~ Answer The loop will be dynamically unwound and, whenever possible, instructions will
be issued in pa{irs. The result is shown in Figure 6.48. The loop runs in 4 + %

clock cycles per result for 7 iterations. For large n this approaches 4 clock cycles

per result.
Iteration Instructions Issues at Executes at Writes
number clock-cycle clock-cycle result at
number number clock-cycle
number
1 LD FO0, 0 (R1) 1 2 4
1 ADDD F4,F0,F2 1 5 8
1 SD O0(R1),F4 2 9
1 SUB RI1,R1,#8 3 4 5
1 BNEZ R1, LOOP 4 5
2 LD FO,0(R1) 5 6 8
2 ADDD F4,F0,F2 5 9 12
2 SD 0(R1l),F4 6 13
2 SUB RI1,R1,#8 7 8 9
2 BNEZ R1, LOOP 8 9

FIGURE 6.48 The time of issue, execution, and writing result for a dual-issue
version of our Tomasulo pipeline. The write-result stage does not apply to either stores
or branches, since they do not write any registers.

The number of dual issues is small because there is only one floating-point
operation per iteration. The relative number of dual-issued instructions would be
helped by the compiler partially unwinding the loop to reduce the instruction
count by eliminating loop overhead. With that transformation, the loop would

" run as fast as on a superscalar machine. We will return to this transformation in
Exercises 6.16 and 6.17.

The VLIW Approach

Our superscalar DLX machine can issue two instructions per clock cycle. That
could perhaps be extended to three or at most four, but it becomes difficult to

INTEL Ex.1035.354

Pipelining 323

determine whether three or four instructions can all issue simultaneously without
knowing what order the instructions could be in when fetched and what depen-
dencies might exist among them. An alternative is an LIW (Long Instruction
Word) or VLIW (Very Long Instruction Word) architecture. VLIWSs use multi-
ple, independent functional units. Rather than attempting to issue multiple, inde-
pendent instructions to the units, a VLIW packages the multiple operations into
one very long instruction, hence the name. A VLIW instruction might include
two integer operations, two floating-point operations, two memory references,
and a branch. An instruction would have a set of fields for each functional
unit—perhaps 16 to 24 bits per unit, yielding an instruction length of between
112 and 168 bits. To keep the functional units busy there must be enough work
in a straightline code sequence to keep the instructions scheduled. This is
accomplished by unrolling loops and scheduling code across basic blocks using
a technique called frace scheduling. In addition to eliminating branches by un-
rolling loops, trace scheduling provides a method to move instructions across
branch points. We will discuss trace scheduling more in the next section. For
now, let’s assume we have a technique to generate long, straightline code
sequences for building up VLIW instructions.

Suppose we have a VLIW that could issue two memory references, two FP
Example operations, and one integer operation or branch in every clock cycle. Show an
unrolled version of the vector sum loop for such a machine. Unroll as many
times as necessary to eliminate any stalls. Ignore the branch-delay slot.
Answer | The code is shown in Figure 6.49. The loop has been unrolled 6 times, which
eliminates stalls, and runs in 9 cycles. This yields a running rate of 7 results in 9
cycles, or 1.28 cycles per result.
Memory Memory FP FP Integer operation
reference 1 reference 2 operation 1 operation 2 / branch
LD FO, 0 (R1) LD F6,-8(R1)
LD F10,-16(R1) LD F14,-24(R1) .
LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2
LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2
' ADDD F20,F18,F2 ADDD F24,F22,F2
SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2
SD -16 (R1),F12 SD -24(R1),F16
SD -32(R1),F20 SD -40(R1),F24 ' SUB RI1,R1,#48
SD -0(R1),F28 BNEZ R1,LOOP

FIGURE 6.49 VLIW instructions that occupy the inner loop and replace the unrolled sequence. This code takes
nine cycles assuming no branch delay; normally the branch would also be scheduled. The issue rate is 23 operations in 9
clock cycles, or 2.5 operations per cycle. The efficiency, the percentage of availabie slots that contained an operation, is
about 60%. To achieve this issue rate requires a much largér number of registers than DLX wouid normally use in this

loop.

INTEL Ex.1035.355

324 ' 6.8 Advanced Pipelining—Taking Advantage of More Instruction-Level Parallelism

What are the limitations and costs of a VLIW approach? If we can issue 5
operations per clock cycle, why not 507 Three different limitations are encoun-
tered: limited parallelism, limited hardware resources, and code size explosion.
The first is the simplest: There is a limited amount of parallelism available in in-
struction sequences. Unless loops are unrolled very large numbers of times,
there may not be enough operations to fill the instructions. At first glance, it
might appear that 5 instructions that could be executed in parallel would be suf-
ficient to keep our VLIW completely busy. This, however, is not the case. Sev-
eral of these functional units—the memory, the branch, and the floating-point
units—will be pipelined, requiring a much larger number of operations that can
be executed in parallel. For example, if the floating-point pipeline has 8 steps,
the 2 operations being issued on a clock cycle cannot depend on any of the 14
operations already in the floating-point pipeline. Thus, we need to find a number
of independent operations roughly equal to the average pipeline depth times the
number of functional units. This means about 15 to 20 operations would be
needed to keep a VLIW with 5 functional units busy.

The second cost, the hardware resources for a VLIW, seem quite straight-
forward; duplicating the floating-point and integer functional units is easy and
cost scales linearly. However, there is a large increase in the memory- and
register-file bandwidth. Even with a split floating-point and integer register file,
our VLIW will require 5 read ports and 2 write ports on the integer register file
and 4 read ports and 2 write ports on the floating-point register file. This
bandwidth cannot be supported without some substantial cost in the size of the
register file and possible degradation of clock speed. Our 5-unit VLIW also has
2 data memory ports. Furthermore, if we wanted to expand it, we would need to
continue adding memory ports. Adding only arithmetic units would not help,
since the machine would be starved for memory bandwidth. As the number of
data memory ports grows, so does the complexity of the memory system. To
allow multiple memory accesses in parallel, the memory must be broken into
banks containing different addresses with the hope that the operations in a single
instruction do not have conflicting accesses. A conflict will cause the entire
machine to stall, since all the functional units must be kept synchronized. This
same factor makes it extremely difficult to use data caches in a VLIW.

Finally, there is the problem of code size. There are two different elements
that combine to increase code size substantially. First, generating enough opera-
tions in a straightline code fragment requires ambitiously unrolling loops, which
increases code size. Second, whenever instructions are not full, the unused func-
tional units translate to wasted bits in the instruction encoding. In Figure 6.49,
we saw that only about 60% of the functional units were used; almost half of
each instruction was empty. To combat this problem, clever encodings are
sometimes used. For example, there may be only one large immediate field for
use by any functional unit. Another technique is to compress the instructions in
main memory and expand them when they are read into the cache or are
decoded. *

INTEL Ex.1035.356

Pipelining 325

The major challenge for these machines is to try to exploit large amounts of
instruction-level parallelism. When the parallelism comes from unrolling simple
loops, the original loop probably could have been run efficiently on a vector
machine (see the next chapter). It is not clear that'a VLIW is preferred over a
vector machine for such applications; the costs are similar, and the vector
machine is typically the same speed or faster. The open question in 1990 is
whether there are large classes of applications that are not suitable for vector
machines, but still offer enough parallelism to justify the VLIW approach rather
than a simpler one, such as a superscalar machine.

Increasing Instruction-Level Parallelism with
Software Pipelining and Trace Scheduling

- We have already seen that one compiler technique, loop unrolling, is used to
help exploit parallelism among instructions. Loop unrolling creates longer
sequences of straightline code, which can be used to exploit more instruction-
level parallelism. There are two other more general techniques that have been
developed for this purpose: software pipelining and trace scheduling.

Software pipelining is a technique for reorganizing loops such that each itera-
tion in the software-pipelined code is made from instruction sequences chosen
from different iterations in the original code segment. This is most easily under-
stood by looking at the scheduled code for the superscalar version of DLX. The
scheduler essentially interleaves instructions from different loop iterations,
putting together all the loads, then all the adds, then all the stores. A software-
pipelined loop interleaves instructions from different iterations without unrolling
the loop. This technique is the software counterpart to what Tomasulo’s algo-
rithm does in hardware. The software-pipelined loop would contain one load,
one add, and one store, each from a different iteration. There is also some startup
code that is needed before the loop begins as well as code to finish up after the
loop is completed. We will ignore these in this discussion.

Show a software-pipelined version of this loop:
Example ,

Loop: 'LD F0, 0 (R1)
ADDD F4,F0,F2
SD 0(R1),F4
SUB RI1,R1,#8
BNEZ R1,LOOP

You may omit the start-up and clean-up code.

INTEL Ex.1035.357

326 : 6.8 Advanced Pipelining—Taking Advantage of More Instruction-Level Parallelism

Answer | Given the vector M in memory, and ignoring the start-up and finishing code, we
have: _ :
Loop: SD 0(R1),F4 ;stores into M[i]
ADDD F4,F0,F2 ;adds to M[i-1]
LD FO,-16(R1) ;loads M[i1-2]
BNEZ R1l, LOOP
SUB R1,R1,#8 ;subtract in delay slot

This loop can be run at a rate of 5 cycles per result, ignoring the start-up and
clean-up portions. Because the load fetches two array elements beyond the
element count, the loop should run for two fewer iterations. This would be
accomplished by decrementing R1 by 16 prior to the loop.

Software pipelining can be thought of as symbolic loop unrolling. Indeed,
some of the algorithms for software pipelining use loop unrolling to figure out
how to software pipeline the loop. The major advantage of software pipelining
over straight loop unrolling is that software pipelining consumes less code space.
Software pipelining and loop unrolling, in addition to yielding a better scheduled
inner loop, each reduce a different type of overhead. Loop unrolling reduces the
overhead of the loop—the branch and counter-update code. Software pipelining
reduces the time when the loop is not running at peak speed to once per loop at
the beginning and end. If we unroll a loop that does 100 iterations a constant
number of times, say 4, we pay the overhead 100/4 = 25 times—every time the

* inner unrolled loop is reinitiated. Figure 6.50 shows this behavior graphically.
Because these techniques attack two different types of overhead, the best
performance comes from doing both.

The other technique used to generate additional parallelism is trace schedul-
ing. This is particularly useful for VLIWs, for which the technique was origi-
nally developed. Trace scheduling is a combination of two separate processes.
The first process, called trace selection tries to find the most likely sequence of
operations to put together into a small number of instructions; this sequence is
called a trace. Loop unrolling is used to generate long traces, since loop
branches are taken with high probability. Once a trace is selected, the second
process, called trace compaction, tries to squeeze the trace into a small number
of wide instructions. Trace compaction attempts to move operations as early as it
can in a sequence (trace), packing the operations into as few wide instructions as
possible.

There are two different considerations in compacting a trace: data depen-
dences, which force a partial order on operations, and branch points, which cre-
ate places across which code cannot be easily moved. In essence, the code wants
to be compacted into the shortest possible sequence that preserves the data
dependences; branches are the main impediment to this process. The major
advantage of trace scheduling over simpler pipeline-scheduling techniques is
that it includes a method to move code across branches. Figure 6.51 shows a
code fragment, which may be thought of as an iteration of an unrolled loop, and
the trace selected.

INTEL Ex.1035.358

Pipelining 327

Number

of
overlapped
operations

(a) Software pipelining Time

(b) Loop unrolling Time

FIGURE 6.50 This shows the execution pattern for (a) a software-pipelined loop and (b)
an unrolled loop. The shaded areas are the times when the loop is not running with
maximum overlap or parallelism among instructions. This occurs once at ioop beginning

and once at the end for the software-pipelined loop. For the unrolied loop it occurs %times

if the loop has a total of m executions and is unrolled n times. Each block represents an
unroll of niterations. Increasing the number of unrolls will reduce the start-up and clean-up
overhead.

FIGURE 6.51 A code fragment and the trace selected shaded with gray. This trace
wouid be selected first, if the probability of the true branch being taken were much higher
than the probability of the false branch being taken. The branch from the decision (A[i]=0)
to X is a branch out of the trace, and the branch from X to the assignment to C is a branch
into the trace. These branches are what make compacting the trace difficult.

INTEL Ex.1035.359

328 : 6.8 Advanced Pipelining—Taking Advantage of More Instruction-Level Parallelism

Once the trace is selected as shown in Figure 6.51, it must be conipacted SO as
to fill the wide instruction word. Compacting the trace involves moving the
assignments to variables B and C up to the block before the branch decision.
Let’s first consider the problem of moving the assignment to B. If the assign-
ment to B is moved above the branch (and thus out of the trace), the code in X
would be affected if it used B, since moving the assignment would change the
value of B. Thus, to move the assignment to B, B must not be read in X. One
could imagine more clever schemes if B were read in X—for example, making a
shadow copy and updating B later. Such schemes are generally not used, both
because they are complex to implement and because they will slow down the
program if the trace selected is not optimal and the operations end up requiring
additional instructions. Also, because the assignment to B is moved before the if
test, for this schedule to be valid either X also assigns to B or B is not read after
the if statement. :

Moving the assignment to C up to before the first branch requires first mov-

ing it over the branch from X into the trace. To do this, a copy is made of the
assignment to C on the branch into the trace. A check must still be done, as was
done for B, to make sure that the assignment can be moved over the branch out
of the trace. If C is successfully moved to before the first branch and the “false”
direction of the branch—the branch off the trace—is taken, the assignment to C
will have been done twice. This may be slower than the original code, depending
on whether this operation or other moved operations create additional work in
the main trace. Ironically, the more successful the trace-scheduling algorithm is
in moving code across the branch, the higher the penalty for misprediction.
’ Loop unrolling, trace scheduling, and software pipelining all aim at trying to
increase the amount of local instruction parallelism that can be exploited by a
machine issuing more than one instruction on every clock cycle. The effective-
ness of each of these techniques and their suitability for various architectural
approaches are among the most significant open research areas in pipelined-pro-
cessor design.

6.9 | Putting It All Together: A Pipelined VAX

In this section we will examine the pipeline of the VAX 8600, a macropipelined
VAX. This machine is described in detail by DeRosa et al. [1985] and Troiani et
al. [1985]. The 8600 pipeline is a more dynamic structure than the DLX integer
pipeline. This is because the processing steps may take multiple cycles in one
stage of the pipeline. Additionally, the hazard detection is more complicated
because of the possibility that stages progress independently and because
instructions may modify registers before they complete. Techniques similar to
those used in the DLX FP pipeline to handle variable-length instructions are
used in the 8600 pipeline.

The 8600 is macropipelined—the pipeline understands the structure of VAX
instructions and overlaps their execution, checking the hazards on the instruction

INTEL Ex.1035.360

Pipelining 329

operands. By comparison, the VAX 8800 is micropipelined—microinstructions
are overlapped and hazard detection occurs in the microprogram unit. A differ-
ent issue of the Digital Technical Journal [Digital 1987] describes this machine,
and Clark [1987] describes the pipeline and its performance. The designs are
interesting to compare.

Figure 6.52 shows the 8600 partitioned into four major structural compo-
nents. The MBox is responsible for address translation and memory access (see
Chapter 8). The IBox is the heart of the 8600 pipeline; it is responsible for
instruction fetch and decode, operand address calculation, and operand fetch.
The EBox and FBox are responsible for execution of integer and floating-point
operations, and their primary function is to implement the opcode portion of an
instruction. (Because the FBox is optional, the EBox also contains microcode to
do the floating point, albeit at much lower performance. The optional presence
of the FBox further complicates the operand processing in the EBox.) Since the
EBox and FBox are not pipelined, we will focus our attention primarily on the
IBox. In explaining the IBox function we will refer to the EBox occasionally;
usually the same comments apply to the FBox.

Figure 6.53 breaks the execution of a VAX instruction into four overlapped
steps. The number of clock cycles per step may vary widely, though each step in
the pipeline takes at least one clock.

A VAX instruction may take many clock cycles in a given step. For example,
with multiple memory operands, the instruction will take multiple clock cycles
in the Opfetch step. Because of this, an instruction that takes many cycles at a

Operand buses

FIGURE 6.52 The basic structure of the 8600 consists of an MBox (responsible for
memory access), IBox (handles instruction and operand processing), EBox (all
opcode interpretation except floating point), and FBox (performs floating-point
operations). These four units are connected by six major buses. The IVA and EVA carry
the address for a memory access to the MBox from the IBox and EBox. The MD bus
carries memory data to or from the MBox; all such data flows through the 1Box. The EBox
initiates memory access directly with the MBox only under unusual conditions (e.g.,
misaligned references). The operand buses carry operands from the IBox (where they are
fetched from memory or registers) to the EBox and FBox. Finally, the W Bus carries results
to be written from the EBox and FBox to the GPRs and to memory, via the IBox.

INTEL Ex.1035.361

330 © 6.9 Putting It All Together: A Pipelined VAX

Step Function Located in
1. Ifetch Prefetch instruction bytes and decode them IBox

2. Opfetch Operand address calculation and fetch IBox

3. Execution Execute opcode and write result EBox, FBox
4. Resultstore Write result to memory or registers EBox, IBox

FIGURE 6.53 The basic structure of the 8600 pipeline has four stages, each taking
from 1 to a large number of clock cycles. Up to four VAX instructions are being
processed at once.

stage may cause a back up in the pipeline; this back up may eventually reach the
Ifetch step, where it will cause the pipeline to simply stop fetching instructions.
Additionally, several resources (e.g., the W Bus and GPR ports) are contended
for by multiple stages in the pipeline. In general, these problems are resolved on
the fly using a fixed-priority scheme.

Operand ADecode and Fetch

Much of the work in interpreting a VAX instruction is in the operand specifier
and decode process, and this is the heart of the IBox. Substantial effort is de-
voted to decoding and fetching operands as fast as possible to keep instructions
flowing through the pipeline. Figure 6.54 shows the number of cycles spent in
Opfetch under ideal conditions (no cache misses or other stalls from the memory
hierarchy) for each operand specifier. If the result is a register, the EBox stores

Specifier Cycles

—

Literal or immediate

Register
Deferred
Displacement

PC-relative and absolute

Autodecrement

Autoincrement

Autoincrement deferred

Displacement deferred

SO I 3 Y I N Y (ST A e T

PC-relative deferred

FIGURE 6.54 The minimum number of cycles spent in Opfetch by operand specifier.
This shows the data for an operand of type byte, word, or longword that is read. Modified
and written operands take an additional cycle, except for register mode and immediate or
literal, where writes are not allowed. Quadword and octaword operands may take much
longer. If any stalls are encountered, the cycle count will increase.

INTEL Ex.1035.362

Pipelining _ 331

the result. If the result is a memory operand, Opfetch calculates the address and
waits for the EBox to signal ready, then the IBox stores the result during the
Result store step. If an instruction result is to be stored in memory, the EBox
signals to the IBox when it enters the last cycle of execution for the instruction.
This allows Opfetch to overlap the first cycle of a two-cycle memory write with
the last cycle of execution (even if the operation only takes one cycle).

To maximize the performance of the machine, there are three copies of the
GPRs—in the IBox, EBox, and FBox. A write is broadcast from the FBox,
EBox, or IBox (in the case of autoincrement or autodecrement addressing) to the
other two units, so that their copies of the registers can be updated.

Handling Data Dependences

Register hazards are tracked in Opfetch by maintaining a small table of registers
that will be written. Whenever an instruction passes through Opfetch, its result
register is marked as busy. If an instruction that uses that register arrives in
Opfetch and sees the busy flag set, it stalls until the flag is cleared. This prevents
RAW hazards. The busy flag is cleared when the register is written. Because
there are only two stages after Opfetch (execute and write memory result), the
busy flag can be implemented as a two-entry associative memory. Writes are
maintained in order and always at the end of the pipeline, and all reads are done
in Opfetch. This eliminates all explicit WAW and WAR hazards. The only
possible remaining hazards are those that can occur on implicit operands, such
as the registers written by a MOVC3. Hazards on implicit operands are prevented
by explicit control in the microcode.

Opfetch optimizes the case when the last operand specifier is a register by
processing the register operand specifier at the same time as the next-to-last
specifier. In addition, when the result register of an instruction is the source
operand of the next instruction, rather than stall the dependent instruction,
Opfetch merely signals this relationship to the EBox, allowing execution to
proceed without a stall. This is like the bypassing in our DLX pipeline.

Memory hazards between reads and writes are easily resolved because there
'~ is a single memory port, and the IBox decodes all operand addresses.

Handling Control Dependences

There are two aspects to handling branches in a VAX: synchronizing on the
condition code and dealing with the branch hazard. Most of the branch process-
ing is handled by the IBox. A predict-taken strategy is used; the following steps
are taken when the TBox sees a branch: '

1. Compute the branch target address, send it to the MBox, and initiate a fetch
from the target address. Wait for the EBox to issue CCSYNC, which indi-
cates that the condition codes will be available in the next clock cycle.

INTEL Ex.1035.363

332 " 6.9 Putting it All Together: A Pipelined VAX

2. Evaluate the condition codes from the EBox to check the prediction. If the
prediction was incorrect, the access initiated in the MBox is aborted. The
current PC points at the next instruction or its first operand specifier.

3. Assuming the branch was taken, the IBox flushes the prefetch and decode
stages and begins loading the instruction register and processing the new tar-
get stream. If the branch was not taken, the access to the potential target has
already been killed and the pipeline can continue just using what is in the
prefetch and decode stages.

Simple conditional branches (BEQL, BNEQ), the unconditional branches
(BRB, BRW), and the computed branches (e.g., AOBLEQ) are handled by the
IBox. The EBox handles more complex branches and also the instructions used
for calls and returns.

An Example

To really understand how this pipeline works, let’s look at how a code sequence
executes. This example is somewhat simplified, but is sufficient to demonstrate
the major pipeline interactions. The code sequence we will consider is as follows
(remember that for consistency the result of the ADDL3 is given first):

ADDL3 R1,R2,56 (R3)

CMPL 45 (R1),Q@54 (R2)
BEQL target
MOVL

target: SUBL3

Figure 6.55 shows an annotated pipeline diagram of how these instructions
would progress through the 8600 pipeline.

Dealing with Interrupts

The 8600 maintains three program counters so that instruction interruption and
restart are possible. These program counters and what they designate are:

a Current Program Counter—points to the next byte to be processed and
consumed in Opfetch.

» [Box Starting Address—points to the instruction currently in Opfetch.

» EBox Starting Address—points to the instruction executing in the EBox or
FBox.

In addition, the prefetch unit keeps an address to prefetch from (the VIBA,
Virtual Instruction Buffer Address), but this does not affect interrupt handling.
When an exception is caused by a prefetch operation, the byte in the instruction
buffer is marked. When Opfetch eventually asks for the byte, it will see the
exception, and the Current Program Counter will have the address of the byte
that caused the exception.

INTEL Ex.1035.364

Pipelining 333
: Clock Cycle
Instr. 1 2 3 4 5 6 7 8 9
ADDL3 IF:Fetch IF: IF: IF: IF: OP: OP: Start WR:
ADDL. Continue Decode Decode Decode Compute write. Store.
prefetch R1. R2. 56 (R3). 56+(R3). EX: Add.
if space OP: Fetch OP: EX: get
and‘MBox R1. Fetch R2. first
available. ' operand.
CMPL IF: IF: De- OP: Fetch
Decode code 54 (R2).
45 (R1). @54 (R2).
OP: Fetch
45(R1).
BEQL IF:
Decode
BEQL
displace.
SUBL
Clock Cycle
Instr. 10 11 12 13 14 15 16 17 18
ADDL3
CMPL OP:stall. OP:get OP:Fetch EX:
EX: get indirect @54 (R2). compare
first address. and set
operand. CC.
BEQL OP: Load OP: Fetch OP: Fetch
VA. branch target +4;
target. load
VIBA;
flush
IBuffer.
SUBL IF: OP: OP:
Decode Fetch first Fetch
SUBL3. operand. second
operand.

FIGURE 6.55 The VAX 8600 executing a code sequence. The top portion shows the events on clock ticks 1-9, while
the bottom portion shows the events on clock ticks 10—18. The pipeline stages are abbreviated as IF (instruction Fetch),
OP (Opfetch), EX (Execution), and WR (Write Result) and are shown in bold. Each instruction passes through the 8600
pipeline as soon as the pipe stage is empty and the required data is available. Note that an instruction can be in both the
IF and OP stages at the same time. This figure assumes that at the beginning of cycle 1, the prefetch buffer is empty.
The prefetch in the IF stage continues to fetch instructions as long as there is room in the prefetch buffer and an available
MBox cycle. It is omitted from the diagram for simplicity. The action “stall” indicates a stall for a memory operand during
Opfetch. In total, the three VAX instructions executed take 15 cycles, assuming no stalls from the memory system. This

sequence was chosen to demonstrate the functioning of the pipeline—it is not necessarily typical.

INTEL Ex.1035.365

334 ' 6.9 Putting It All Together: A Pipelined VAX

These PCs are updated when an instruction enters the corresponding pipeline
stage. Hence, if an interrupt occurs in a given stage, the PC can be set back to
the beginning of that instruction. These PCs are needed because the length of
VAX instructions is variable and can only be determined by finding the opcode
byte.

In addition to restoring the starting address of the instruction that caused the
interrupt, we must unwind any register updates done by addressing modes pro-
cessed in Opfetch for instructions that are after the instruction that interrupts the
processor. The IBox maintains a log of updates to the register file done on behalf
of multiple instructions, as we did in Section 5.6. The effects of any changes are
undone and the PC is restored. This allows the operating system to have a clean
machine state to work from.

Final Remarks

The 8600 uses a four-step pipeline. The theoretical peak performance with the
80-ns clock is 12.5 million VAX instructions per second. Some simple
sequences of instructions can actually attain this peak performance with a CPI of
1. Typically, the performance on integer code is about 1.75 million VAX
instructions per second for a CPI of about 7. This yields about 3.5 times the
performance of a VAX-11/780.

6.10 | Fallacies and Pitfalls

Fallacy: Instruction set design has little impact on pipelining.

This is perhaps the most prominent misconception about pipelining and one that
was widely held until recently. Many of the difficulties of pipelining arise
because of instruction set complications. Here are some examples, many of
which are mentioned in the chapter:

» Variable instruction lengths and running times can lead to imbalance among
pipeline stages causing other stages to back up. They also severely compli-
cate hazard detection and the maintenance of precise interrupts. Of course,
there are exceptions to every rule. For example, caches cause instruction run-
ning times to vary when they miss; however, the performance advantages of
caches make the added complexity acceptable. To minimize the complexity,
most machines freeze the pipeline on a cache miss. Other machines try to
continue running parts of the pipeline; though this is very complex, it may
overcome some of the performance losses from cache misses.

= Sophisticated addressing modes can lead to different sorts of problems. Ad-
dressing modes that update registers, such as post autoincrement, complicate

INTEL Ex.1035.366

Pipelining 335

hazard detection. They also slightly increase the complexity of instruction
restart. Other addressing modes that require multiple memory accesses sub-
stantially complicate pipeline control and make it difficult to keep the
pipeline flowing smoothly.

» Architectures that allow writes into the instruction space (self-modifying
code) can cause trouble for pipelining (as well as for cache designs). For
example, if an instruction in the pipeline can modify another instruction, we
must constantly check if the address being written to by an instruction cor-
responds to the address of an instruction further on in the pipeline. If so, the
pipeline must be flushed or the instruction in the pipeline somehow updated.

= Implicitly set condition codes increase the difficulty of finding when a branch
has been decided and the difficulty of scheduling branch delays. The former
problem occurs when the condition-code setting is not uniform, making it
difficult to decide which instruction sets the condition code last. The latter
problem occurs when the setting of the condition code is not under program
control. This makes it hard to find instructions that can be scheduled between
the condition evaluation and the branch. Many newer architectures avoid
condition codes or set them explicitly under program control to eliminate the
pipelining difficulties.

As a simple example, suppose the DLX instruction format were more com-
plex, so that a separate, decode pipe stage were required before register fetch.
This would increase the branch delay to two clock cycles. At best, the second
branch-delay slot would be wasted at least as often as the first. Gross [1983]
found that a second delay slot was only used half as often as the first. This
would lead to a performance penalty for the second delay slot of more than 0.1
clock cycles per instruction.

Pitfall: Unexpected execution sequences may cause unexpected hazards.

At first glance, WAW hazards look like they should never occur because no
compiler would ever generate two writes to the same register without an inter-
vening read. But they can occur when the sequence was unexpected. For exam-
ple, the first write might be in the delay slot of a taken branch when the
scheduler thought the branch would not be taken. Here is the code sequence that
could cause this:

BNEZ R1, foo
DIVD FO,F2,F4 ; moved into delay slot
; from fall through

foo: 1D F0,qgrs

INTEL Ex.1035.367

336 " .10 Fallacies and Pitfalls

If the branch is taken, then before the DIVD can complete the LD will reach WB,
causing a WAW hazard. The hardware must detect this and may stall the issue
of the LD. Another way this can happen is if the second write is in a trap routine.
This occurs when an instruction that traps and is writing results continues and
completes after an instruction that writes the same register in the trap handler.
The hardware must detect and prevent this as well.

Fallacy: Increasing the depth of pipelining always increases performance.

Two factors combine to limit the performance improvement gained by pipe-
lining. Data dependences in the code mean that increasing the pipeline depth
will increase the CPI, since a larger percentage of the cycles will become stalls.
Second, clock skew and latch overhead combine to limit the decrease in clock
period obtained by further pipelining. Figure 6.56 shows the tradeoff between
pipeline depth and performance for the first 14 of the Livermore Loops (see
Chapter 2, page 43). The performance flattens out when the pipeline depth
reaches 4 and actually drops when the execution portion is pipelined 16 deep.

Relative
performance

Pipeline depth

FIGURE 6.56 The depth of pipelining versus the speedup obtained. This data is
based on Table 2 in Kunkel and Smith [1986]. The x axis shows the number of stages in
the EX portion of the floating-point pipeline. A single-stage pipeline corresponds to 32
levels of logic, which might be appropriate for a single FP operation.

Pitfall: Evaluating a scheduler on the basis of unoptimized code.

Unoptimized code—containing redundant loads, stores, and other operations that
might be eliminated by an optimizer—is much easier to schedule than “tight”
optimized code. In GCC running on a DECstation 3100, the frequency of idle
clock cycles increases by 18% from the unoptimized and scheduled code to the
optimized and scheduled code. TeX shows a 20% increase for the same
measurement. To fairly evaluate a scheduler you must use optimized code, since
in the real system you will derive a good performance from other optimizations
in addition to scheduling.

INTEL Ex.1035.368

Pipelining ' 337

Pitfall: Extensive pipelining can impact other aspects of a design, leading to
overall lower cost/performance.

~ The best example of this phenomenon comes from two implementations of the
VAX, the 8600 and the 8700. We discussed the instruction pipeline of the 8600
in Section 6.9. When the 8600 was initially delivered, it had a cycle time of 80
ns. Subsequently, a redesigned version, called the 8650, with a 55-ns clock was
introduced. The 8700 has a much simpler pipeline that operates at the
microinstruction level. The 8700 CPU is much smaller and has a faster clock
rate, 45 ns. The overall outcome is that the 8650 has a CPI advantage of about
20%, but the 8700 has a clock rate that is about 20% faster. Thus, the §700
achieves the same performance with much less hardware.

6.11 I Concluding Remarks

Figure 6.57 shows how the various pipelining approaches affect both clock
speed and CPI. This figure does not account for instruction-count differences.
Since performance is clock speed divided by CPI (ignoring instruction-count
differences), machines in the top left corner will be slowest, and machines in the
bottom right corner will be fastest. However, the machines that move towards
the lower right corner will probably achieve their maximum performance on the
narrowest range of applications.

Machines that are underpipelined lump multiple DLX pipestages into one.
The clock cannot be run as fast, and the CPI will be only marginally lower. The
DLX pipeline achieves a CPI very close to 1 (ignoring memory-system stalls) at
a reasonable clock speed. Architectural simplicity and efficient pipelining are
two of the most important attributes of the RISC (Reduced Instruction Set Com-
puter) machines. DLX constitutes an example of such a machine. We have
chosen to use the term load/store architecture because the ideas apply to a broad
range of machines, and not just to the machines that identify themselves as
RISCs. Much of the discussion in the first part of this chapter centered around
the key ideas developed by the RISC projects.

Machines with higher clock rates and deeper pipelines have been called
superpipelined. Superpipelined machines are characterized by pipelining all
functional units. A superpipelined version of DLX might have a 10-stage
pipeline, rather than the 5-stage pipeline described earlier. Other than increasing
the complexity of pipeline scheduling and pipeline control, superpipelined
machines are not fundamentally different from the machines we have already
examined in-this chapter. Due to limited instruction-level parallelism, a super-
pipelined machine will have a slightly higher CPI than a DLX-style pipeline, but
its advantage in clock cycle time should be larger than the disadvantage in CPI.

Superscalar processors can have clock cycle times very close to that of a
DLX pipeline and maintain a smaller CPI. The VLIW machines can have a

INTEL Ex.1035.369

338 611 Concluding Remarks

substantially lower CPI, but tend to have a significantly higher clock cycle time
for the reasons discussed in this chapter. The vector machines effectively use
both techniques. They are usually superpipelined and have powerful vector
operations that can be considered equivalent to issuing multiple independent
operations on a machine like DLX. We will explore vector machines in detail in
the next chapter.

Going out from the top left corner on either axis in Figure 6.57, the require-
ment to exploit more instruction-level parallelism increases; at the same time, of
course, fewer programs will run at maximum speed.

Faster clock rate -
Superpipelined
Underpipelined DLX
machine pipeline
L
o
w
e
r
Superscalar
c
P
1
VLIW Vector Machines

FIGURE 6.57 Increasing the instruction-issue rate lowers the CPI, while a deeper
pipeline increases the clock rate. Various machines combine these techniques.

6.12 I Historical Perspective and References

This section describes some of the major advances in pipelining and ends with
some of the recent literature on high-performance pipelining.

The first general-purpose pipelined machine is considered to be Stretch, the
IBM 7030. Stretch followed on the IBM 704 and had a goal of being 100 times
faster than the 704. The goals were a stretch from the state of the art at that
time—hence the nickname. The plan was to obtain a factor of 1.6 from overlap-
ping fetch, decode, and execute, using a 4-stage pipeline. Bloch [1959] and
Bucholtz [1962] describe the design and engineering tradeoffs, including the use
of ALU bypasses.

In 1964 CDC delivered the first CDC 6600. The CDC 6600 was unique in
many ways. In addition to introducing scoreboarding, the CDC 6600 was the
first machine to make extensive use of multiple functional units. It also had

INTEL Ex.1035.370

Pipelining . 339

peripheral processors that used a timeshared pipeline. The interaction between
pipelining and instruction set design was understood, and the instruction set was
kept simple to promote pipelining. The CDC 6600 also used an advanced pack-
aging technology. Thornton [1964] describes the pipeline and 1/O processor
architecture, including the concept of out-of-order instruction execution.
Thornton’s book [1970] provides an excellent description of the entire machine,
from technology to architecture, and includes a foreword by Cray.
(Unfortunately, this book is currently out of print.) The CDC 6600 also has an
instruction scheduler for the FORTRAN compilers, described by Thorlin [1967].

The IBM 360/91 introduced many new concepts, including tagging of data,
register renaming, dynamic detection of memory hazards, and generalized for-
warding. Tomasulo’s algorithm is described in his 1967 paper. Anderson,
Sparacio, and Tomasulo [1967] describe other aspects of the machine, including
the use of branch prediction. Patt and his colleagues have described an approach,
called HPSm, that is an extension of Tomasulo’s algorithm [Hwu and Patt
1986]. :

A series of general pipelining descriptions that appeared in the late 1970s and
early 1980s provided most of the terminology and described most of the basic
techniques used in simple pipelines. These surveys include Keller [1975],
Ramamoorthy and Li [1977], Chen [1980], and Kogge’s book [1981], devoted
entirely to pipelining. Davidson and his colleagues [1971, 1975] developed the
concept of pipeline reservation tables as a design methodology for multicycle
pipelines with feedback (also described in Kogge [1981]). Many designers use a
variation of these concepts, as we did in Figures 6.3 and 6.4.

The RISC machines refined the notion of compiler-scheduled pipelines in the
early 1980s. The concepts of delayed branches and delayed loads—common in
microprogramming—were extended into the high-level architecture. The Stan-
ford MIPS architecture made the pipeline structure purposely visible to the
compiler and allowed multiple operations per instruction. Schemes for schedul-
ing the pipeline in the compiler were described by Sites [1979] for the Cray, by
Hennessy and Gross [1983], (and in Gross’s thesis [1983]) and by Gibbons and
Muchnik [1986]. Rymarczyk [1982] describes the interlock conditions that pro—
grammers should be aware of for a 360-like machine; this paper also shows the
complex interaction between pipelining and an instruction set not designed to be
pipelined. .

J. E. Smith and his colleagues have written a number of papers examining
instruction issue, interrupt handling, and pipeline depth for high-speed scalar
" machines. Kunkel and Smith [1986] evaluate the impact of pipeline overhead
and dependences on the choice of optimal pipeline depth; they also have an
excellent discussion of latch design and its impact on pipelining. Smith and
Plezkun [1988] evaluate a variety of techniques for preserving precise interrupts,
including the future file concept mentioned in Section 6.6. Weiss and Smith
[1984] evaluate a variety of hardware pipeline scheduling and instruction-issue
techniques.

INTEL Ex.1035.371

340 ‘ 6.12 Historical Perspective and References

Dynamic hardware branch-prediction schemes are described by J. E. Smith
[1981] and by A. Smith and Lee [1984]. Ditzel [1987] describes a novel branch-
target buffer for CRISP. McFarling and Hennessy [1986] is a quantitative com-

~ parison of a variety of compile-time and run-time branch-prediction schemes.

- A series of early papers, including Tjaden and Flynn [1970] and Foster and
Riseman [1972], concluded that only small amounts of parallelism could be
available at the instruction level without investing an enormous amount of
hardware. These papers dampened the appeal of multiple instruction issue for
more than ten years. Nicolau and Fisher [1984] published a paper asserting the
presence of large amounts of potential instruction-level parallelism.

Charlesworth [1981] reports on the Floating Point Systems AP-120B, one of
the first wide-instruction machines containing multiple operations per instruc-
tion. Floating Point Systems applied the concept of software pipelining—albeit
by hand, rather than with a compiler—by writing assembly language libraries to
use the machine efficiently. Weiss and J. E. Smith [1987]} compare software
pipelining versus loop unrolling as techniques for scheduling code on a
pipelined machine. Lam [1988] presents algorithms for software pipelining and
evaluates their use on Warp, a wide-instruction-word machine. Along with his
colleagues at Yale, Fisher [1983] proposed creating a machine with a very wide
instruction (512 bits), and named this type of machine a VLIW. Code was
generated for the machine using trace scheduling, which Fisher [1981] had
developed originally for generating horizontal microcode. The implementation
of trace scheduling for the Yale machine is described by Fisher, et. al. [1984]
and by Ellis [1986]. The Multiflow machine (see Colwell et. al. [1987])
commercialized the concepts developed at Yale. '

Several researchers proposed techniques for multiple instruction issue.
Agerwala and Cocke [1987] proposed this approach as an extension of the RISC
ideas, and coined the name “superscalar.” IBM described a machine based on
these ideas in late 1989 (see Bakoglu et al. [1989]). In 1990, the IBM was
announced as the RS/6000. The implementation can issue up to four instructions
per clock. A good description of the machine, its background, and software
appears in IBM [1990]. The Apollo DN 10000 and the Intel i860 both offer
multiple instruction issue, though the requirements for multiple issue are rather
rigid. The Intel 1860 should probably be considered a LIW machine because the
program must explicitly indicate whether instruction pairs should be dual issued.
Although the pairs are ordinary instructions, there are substantial limitations on
what can appear as a member of a dual-issued pair. The Intel 960CA and
Tandem Cyclone are examples of superscalar machines with complex instruction
sets.

J. E. Smith and his colleagues at Wisconsin [1984] proposed the decoupled
approach that included multiple issue with dynamic pipeline scheduling. The
Astronautics ZS-1 described by Smith et al. [1987] embodies this approach and
uses queues to connect the load/store unit and the operation units. J. E. Smith
[1989] also describes the advantages of dynamic scheduling and compares that
approach to static scheduling. Dehnert, Hsu, and Bratt [1989] explain the

INTEL Ex.1035.372

Pipelining » ' 341

architecture and performance of the Cydrome Cydra 5, a machine with a wide
instruction word that provides dynamic register renaming. The Cydra 5 is a
unique blend of hardware and software aimed at extracting instruction-level
parallelism.

Recently there have been a number of papers exploring the tradeoffs among
alternative pipelining approaches. Jouppi and Wall [1989] examine the perfor-
mance differences between superpipelined and superscalar systems, concluding
that their performance is similar, but that superpipelined machines may require
less hardware to achieve the same performance. Sohi and Vajapeyam [1989]
give measurements of available parallelism for wide-instruction-word machines.
Smith, Johnson, and Horowitz [1989] recount studies of available instruction-
level parallelism in nonscientific code using an ambitious hardware scheme that
allows multiple-instruction execution.

References

AGERWALA, T. AND J. COCKE [1987]. “High performance reduced instruction set processors,”
IBM Tech. Rep. (March).

ANDERSON, D. W., F. J. SPARACIO, AND R. M. TOMASULO [1967]. “The IBM 360 Model 91:
Machine philosophy and instruction handling,” IBM J. of Research and Development 11:1
(January) 8-24.

BAKOGLU, H. B., G. F. GROHOSKI, L. E. THATCHER, J. A. KAHLE, C. R. MOORE, D. P. TUTTLE;
W. E. MAULE, W. R. HARDELL, D. A. HICKS, M. NGUYEN PHU, R. K. MONTOYE, W. T.
GLOVER , AND S. DHAWAN [1989]. “IBM second-generation RISC machine organization,” Proc.

" Int’l Conf. on Computer Design, IEEE (October) Rye, N.Y., 138—142.

BLOCH, E. [1959]. “The engineering design of the Stretch computer,” Proc. Fall Joint Computer
Conf., 48-59.
BUCHOLTZ, W. [1962]. Planning a Computer System: Project Stretch, McGraw-Hill, New York.

CHARLESWORTH, A. E. [1981]. “An approach to scientific array processing: The architecture
design of the AP-120B/FPS-164 family,” Computer 14:12 (December) 12-30.

CHEN, T. C. [1980]. “Overlap and parallel processing” in Introduction to Computer Architecture, H.
Stone, ed., Science Research Associates, Chicago, 427—486.

CLARK, D. W. [1987]. “Pipelining and performance in the VAX 8800 processor,” Proc. Second
Conf. on Architectural Support for Programming Languages and Operating Systems, IEEE/ACM
(March), Palo Alto, Calif., 173-177.

COLWELL, R. P, R. P, NIX, J. J. O’'DONNELL, D. B. PAPWORTH, AND B. K. RODMAN [1987]. “A
VLIW architecture for a trace scheduling compiler,” Proc. Second Conf. on Architectural Support
for Programming Languages and Operating Systems, IEEE/ACM (March), Palo Alto, Calif., 180~
192.

DAVIDSON, E. S. [1971]. “The design and control of pipelined function generators,” Proc. Conf. on
Systems, Networks, and Computers, IEEE (January), Oaxtepec, Mexico, 19-21.

DAVIDSON, E. S., A. T. THOMAS, L. E. SHAR, AND J. H. PATEL [1975]. “Effective control for
pipelined processors,” COMPCON, IEEE (March), San Francisco, 181-184.

DEHNERT, J. C., P. Y.-T. HSU, ANDJ. P. BRATT [1989]. “Overlapped loop support on the Cydra 5,”
Proc. Third Conf. on Architectural Support for Programming Languages and Operating Systems
(April), IEEE/ACM, Boston, 26-39.

INTEL Ex.1035.373

342 | 6.12 Historical Perspective and References

DEROSA, J., R. GLACKEMEYER, AND T. KNIGHT [1985]. “Design and implementation of the VAX
8600 pipeline,” Computer 18:5 (May) 38—48.

DIGITAL EQUIPMENT CORPORATION [1987]. Digital Technical J. 4 (March), Hudson, Mass. (This
entire issue is devoted to the VAX 8800 processor.)

DITZEL, D. R. AND H. R. MCLELLAN [1987]. “Branch folding in the CRISP microprocessor:
Reducing the branch delay to zero,” Proc. 14th Symposium on Computer Architecture (June),
Pittsburgh, 2-7. .

EARLE, J. G. [1965]. “Latched carry-save adder,” IBM Technical Disclosure Bull. 7 (March) 909—
910.

" ELLIS, J.R., [1986]. Bulldog: A Compiler for VLIW Architectures, The MIT Press,1986.

EMER, J. S. AND D. W CLARK [1984]. “A characterization of processor performance in the VAX-
11/780,” Proc. 11th Symposium on Computer Architecture (June), Ann Arbor, Mich., 301-310.

FISHER, J. A. [1981]. “Trace Scheduling: A Technique for Global Microcode Compaction,” IEEE
Trans. on Computers 30:7 (July), 478-490.

FISHER, J. A. [1983]. “Very long instruction word architectures and ELI-512,” Proc. Tenth Sympo-
sium on Computer Architecture (June), Stockholm, Sweden., 140-150.

FISHER J. A., J. R. ELLIS, J. C. RUTTENBERG, AND A. NICOLAU [1984]. “Parallel processing: A
smart compiler and a dumb machine,” Proc. SIGPLAN Conf. on Compiler Construction (June),
Palo Alto, CA, 11-16.

FOSTER, C. C. AND E. M. RISEMAN [1972]. “Percolation of code to enhance parallel dispatching
and execution,” IEEE Trans. on Computers C-21:12 (December) 1411-1415.

GIBBONS, P. B. AND S. S. MUCHNIK [1986]. “Efficient Instruction Scheduling for a Pipelined
Processor,” SIGPLAN ‘86 Symposium on Compiler Construction, ACM (June), Palo Alto, CA,
11-16.

GROSS, T. R. [1983]. Code Optimization of Pipeline Constraints, Ph.D. Thesis (December),

"Computer Systems Lab., Stanford Univ.

HENNESSY, J. L. AND T. R. GROSS [1983]. “Postpass code optimization of pipeline constraints,”
ACM Trans. on Programming Languages and Systems 5:3 (July) 422-448

HwU, W.-M. AND Y. PATT [1986]. “HPSm, a high performance restricted data flow architecture
having minimum functionality,” Proc. 13th Symposium on Computer Architecture (June), Tokyo,
297-307.

IBM [1990]. “The IBM RISC System/6000 processor,” collection of papers, IBM Jour. of Research
and Development 34:1, (January), 119 pages.

JOUPPI N. P. AND D. W. WALL [1989]. “Available instruction-level parallelism for superscalar and
superpipelined machines,” Proc. Third Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, [IEEE/ACM (April), Boston, 272-282.

KELLER R. M. {1975]. “Look-ahead processors,” ACM Computing Surveys 7:4 (December) 177—
195. '

KOGGE, P. M. [1981]. The Architecture of Pipelined Computers, McGraw-Hill, New York.

KUNKEL, S. R. AND J. E. SMITH [1986]. “Optimal pipelining in supercomputers,” Proc. 13th Sym-
posium on Computer Architecture (June), Tokyo, 404—414,

LAM, M. [1988]. “Software pipelining: An effective scheduling technique for VLIW machines,”
SIGPLAN Conf. on Programming Language Design and Implementation, ACM (June), Atlanta,
Ga., 318-328.

MCFARLING, S. AND J. HENNESSY [1986]. “Reducing the cost of branches,” Proc. 13th Sym-
posium on Computer Architecture (June), Tokyo, 396403,

NICOLAU, A. AND J. A, FISHER [1984]. “Measuring the parallelism available for very long
instruction work architectures,” IEEE Trans. on Computers C-33:11 (November) 968-976.

INTEL Ex.1035.374

Pipelining 343

RAMAMOORTHY, C. V. AND H. F. LI [1977]. “Pipeline architecture,” ACM Computing Surveys 9:1
(March) 61-102.

RYMARCZYK, J. [1982]. “Coding guidelines for pipelined processors,” Proc. Symposium on Archi-
tectural Support for Programming Languages and Operating Systems, IEEE/ACM (March), Palo
Alto, Calif., 12-19.

SITES, R. [1979]. Instruction Ordering for the CRAY-1 Computer, Tech. Rep. 78-CS-023 (July),
Dept. of Computer Science, Univ. of Calif., San Diego.

SMITH, A. AND J. LEE [1984]. “Branch prediction strategies and branch target buffer design,” Com-
puter 17:1 (January) 6-22.

SMITH, J. E. [1981]. “A study of branch prediction strategies,” Proc. Eighth Symposium on
Computer Architecture (May), Minneapolis, 135-148.

SMITH, J. E. [1984]. “Decoupled access/execute computer architectures,” ACM Trans. on Computer
Systems 2:4 (November), 289-308.

SMITH, J. E. [1989]. “Dynamic instruction scheduling and the Astronautics ZS-1,” Computer 22:7
(July) 21-35.

SMITH, J. E. AND A. R. PLEZKUN [1988]. “Implementing precise interrupts in pipelined proces-
sors,” IEEE Trans. on Computers 37:5 (May) 562-573.

SMITH, J. E., G. E. DERMER, B. D. VANDERWARN, S. D. KLINGER, C. M. ROZEWSKI, D. L.
FOWLER, K. R. SCIDMORE, J. P, LAUDON [1987]. “The ZS-1 central processor,” Proc. Second
Conf. on Architectural Support for Programming Languages and Operating Systems, IEEE/ACM
(March), Palo Alto, Calif., 199-204.

SMITH, M. D., M. JOHNSON, AND M. A. HOROWITZ [1989]. “Limits on multiple instruction issue,”
Proc. Third Conf. on Architectural Support for Programming Languages and Operating Systems,
IEEE/ACM (April), Boston, Mass., 290-302.

SOHI, G. S., AND S. VAJAPEYAM [1989]. “Tradeoffs in instruction format design for horizontal
architectures,” Proc. Third Conf. on Architectural Support for Programming Languages and
Operating Systems, IJEEE/ACM (April), Boston, Mass. 15-25.

THORLIN, J. F. [1967]. “Code generation for PIE (parallel instruction execution) computers,” Spring
Joint Computer Conf. (April), Atlantic City, N.J.

THORNTON, J. E. [1964]. “Parallel operation in the Control Data 6600,” Proc. Fall Joint Computer
Conf. 26, 33-40.

THORNTON, J. E. [1970]. Design of a Computer, the Control Data 6600, Scott, Foresman,
Glenview, I11.

TJADEN, G. S. AND M. J. FLYNN [1970]. “Detection and parallel execution of independent instruc-
tions,” IEEE Trans. on Computers C-19:10 (October) 889—895.

TOMASULO, R. M. [1967]. “An efficient algorithm for exploiting multiple arithmetic units,” IBM J.
of Research and Development 11:1 (January) 25-33.

TROIANI, M., S. S. CHING, N. N. QUAYNOR, J. E. BLOEM, AND F. C. COLON OSORIO [1985].
“The VAX 8600 I Box, a pipelined implementation of the VAX architecture,” Digital Technical J.
1 (August) 4-19.

WEISS, S. AND J. E. SMITH [1984]. “Instruction issue logic for pipelined supercomputers,” Proc.
11th Symposium on Computer Architecture (June), Ann Arbor, Mich., 110-118.

WEISS, S. AND J. E. SMITH [1987]. “A study of scalar compilation techniques for pipelined super-
computers,” Proc. Second Conf. on Architectural Support for Programming Languages and
Operating Systems (March), IEEE/ACM, Palo Alto, Calif., 105-109.

INTEL Ex.1035.375

344 " Exercises

EXERCISES

6.1 [12/12/15/20/15/15] <6.2-6.4> Consider an architecture with two instruction formats:
a register—register format and a register—-memory format. There is a single memory
addressing mode (offset + base register).

There is a set of ALU operations with format:
ALUop Rdest, Rsrc, Rsrc,
or
ALUop Rdest, Rsrc;, MEM

Where the ALUop is one of the following: Add, Subtract, And, Or, Load (Rsrc, ignored),
Store (Rdest ignored). Rsrc or Rdest are registers. MEM is a base register and offset pair
and is a source for any ALUop, except a store instruction where it is the destination.

Branches use a full compare of two registers and are PC-relative. Assume that this
machine is pipelined so that a new instruction is started every clock cycle. The following
pipeline structure—similar to that used in the VAX 8800 micropipeline—is used:

IF RF ALU1 MEM ALU2 WB
IF RF ALUl MEM ALU2 WB
IF RF ALU1l MEM ALU2 WB
IF RF ALU1 MEM ALU2 WB
IF RF ALUl MEM ALU2 WB
IF RF ALUl MEM ALU2 WB

The first ALU stage is used for effective address calculation for memory references and
branches. The second ALU cycle is used for operations and branch comparison. RF is
both a decode and register-fetch cycle. Assume reading in RF and writing in WB occur as
in Figure 6.8 (page 262).

a. [12] Find the number of adders needed, counting any adder or incrementer; show a

combination of instructions and pipe stages that justify this answer. You need only
give one combination that maximizes the adder count.

b. [12] Find the number of register read and write ports and memory read and write ports
required. Show that your answer is correct by showing a combination of instructions
and pipeline stage indicating the instruction and the number of read ports and write -
ports required for that instruction.

c. [15] Determine any data forwarding between the two separate ALUs used for the
ALU1 and ALU?2 pipe stages. Put in all forwarding of ALU to ALU needed to avoid
or reduce stalls. Show the relationship between the two instructions involved in
forwarding.

d. [20] Show any other data-forwarding requirements for the units listed below by giving
an example of the source instruction and destination instruction of the forwarding.
Each example should show the maximum separation of the two instructions. How

many instructions can each example forward across? You need only consider the fol-
lowing units: MDR; (memory data in register), MDR _, (memory-data register for

outgoing data), ALU,, and ALU,. Include any forwarding that is required to prevent
or reduce stalls. '

e. [15] Give an example of all remaining hazards after all forwarding of parts C and D
above has been implemented. What is the maximum number of stalls for each hazard?

INTEL Ex.1035.376

Pipelining 345

f. [15] Show all control hazard types by example and state the length of the stall. The
control hazards should be resolved as early as possible (but not using a delayed
branch).

6.2 [12] <6.1-6.4> A machine is called “underpipelined” if additional levels of pipelining
can be added without changing the pipeline-stall behavior appreciably. Suppose that the
DLX pipeline was changed to four stages by merging ID and EX and lengthening the
clock cycle by 50%. 'How much faster would the conventional DLX pipeline be versus
the underpipelined DLX on integer code only? Make sure you include the effect of any
-change in pipeline stalls using the data in Figure 6.24 (page 278).

6.3 [15] <6.2-6.4> We know that a four-deep pipelined implementation has the following
hazard frequencies and stall requirements between an instruction i and its successors:

i+1(andnotoni +2) 20% 2 cycle stall

i+2 5% 1 cycle stall ,
Assume that the clock rate of the pipelined machine is four times the clock rate of the
nonpipelined implementation. What is the effective performance increase from pipelining
if we ignore the effect of hazards? What is the effective performance increase from
pipelining if we account for the effect of pipelining hazards?

6.4 [15] <6.3> Suppose the branch frequencies (as percentages of all instructions) are as
follows:

Conditional branches 20%
Jumps and calls 5%
Conditional branches ' 60% are taken

We are examining a four-deep pipeline where the branch is resolved at the end of the
second cycle for unconditional branches, and at the end of the third cycle for conditional
branches. Assuming that only the first pipe stage can always be done independent of
whether the branch goes and ignoring other pipeline stalls, how much faster would the
machine be without any branch hazards?

6.5 [20] <6.4> Several designers have proposed the concept of canceling branches (also
called squashing or nullifying), as a way to improve the performance of delayed
branches. (Several of the machines discussed in Appendix E have this capability.) The
idea is to allow the branch to indicate that the instruction in the delay slot should be
aborted if the branch is mispredicted. The advantage of canceling branches is that the
delay slot can always be filled, since the branch can abort the contents-of the delay slot if
mispredicted. The compiler need not worry about whether the instruction is OK to
execute when the branch is mispredicted.

A simple version of canceling branches cancels if the branch is not taken; assume this
type of canceling branch. Use the data in Figure 6.18 (page 272) for branch frequency.
Assume that 27% of the branch-delay slots are filled using strategy (a) of Figure 6.20
(page 274) with standard delayed branches, and that the rest of the slots are filled using
canceling branches and strategy (b). Using the taken/not taken data for Spice from Figure
3.22 on page 107, show the effectiveness of this scheme with canceling branches for
Spice using the same format as the graph in Figure 6.22 (page 276). How much faster on
Spice would a machine with canceling branches run, assuming there is no clock-speed
penalty compared to a machine with only delayed branches? Assume CPI without branch
stallsis 1.

6.6 [20/15/20] <6.2-6.4> Suppose that we have the following pipeline layout:

INTEL Ex.1035.377

346 ’ Exercises

Stage Function
1 Instruction fetch
2 Operand decode
3 Execution or memory access (branch resolution)

All data dependences are between the register written in Stage 3 of instruction i and a
register read in Stage 2 of instruction i + I, before instruction { has completed. The
probability of such an interlock occurring is 1/p.

We are considering a change in the machine organization that would write back the result
of an instruction during an effective 4th pipe stage. This would decrease the length of the
clock cycle by d (i.e., if the length of the clock cycle was T, it is now T—d). The prob-
ability of a dependence between instruction i and instruction i +2 is p—z. (Assume that
the value of p—1 excludes instructions that would interlock on i +2.) The branch would
also be resolved during the fourth stage.

a. [20] Considering only the data hazard, find the lower bound on d that makes this a
profitable change. Assume that each result has exactly one use and that the basic
clock cycle has length T.

b. [15] Suppose that the probability of an interlock between i and i+n were 0.3 — 0.1n
for 1<n<3. What increase in the clock rate is needed so that this change improves per-
formance?

c. [20] Now assume that we have used forwarding to eliminate the extra hazard intro-
duced by the change. That is, for all data hazards the pipeline length is effectively 3.
This design may still not be worthwhile because of the impact of control hazards
coming from a four-stage versus a three-stage pipeline. Assume that only Stage 1 of
the pipeline can be safely executed before we decide whether a branch goes or not and
that all branches are conditional. We want to know what the impact of branch hazards
can be before this longer pipeline does not yield high performance. Find an upper
bound on the percent of conditional branches in programs in terms of the ratio of d to
the original clock-cycle time, so that the longer pipeline has better performance. What
if d is a 10% reduction, what is the maximum percentage of conditional branches,
before we lose with this longer pipeline? Assume the taken-branch frequency for
conditional branches is 60%.

6.7 [12] <6.7> A shortcoming of the scoreboard approach occurs when multiple func-
tional units that share input buses are waiting for a single result. The units cannot start
simultaneously, but must serialize. This is not true in Tomasulo’s algorithm. Give a code
sequence that uses no more than 10 instructions and shows this problem. Use the FP -
latencies from Figure 6.29 (page 289) and the same functional units in both examples.
Indicate where the Tomasulo approach can continue, but the scoreboard approach must
stall.

6.8 [15] <6.7> Tomasulo’s algorithm also has a disadvantage versus the scoreboard: only
one result can complete per clock, due to the CDB. Using the FP latencies from Figure
6.29 (page 289) and the same functional units in both cases, find a code sequence of no
more than 10 instructions where scoreboard does not stall, but Tomasulo’s algorithm
must. Indicate where this occurs in your sequence.

6.9 [15] <6.7> Suppose we have a deeply pipelined machine, for which we implement a
branch-target buffer for the conditional branches only. Assume that the misprediction

INTEL Ex.1035.378

Pipelining 347

penalty is always 4 cycles and the buffer miss penalty is always 3 cycles. Assume 90%
hit rate and 90% accuracy, and the branch statistics in Figure 6.18 (page 272). How much
faster is the machine with the branch-target buffer versus a machine that has a fixed 2-
cycle branch penalty? Assume a base CPI without branch stalls of 1.

6.10 [15] <6.7> Some designers have proposed using branch-target buffers to obtain a
zero-delay unconditional branch (see Ditzel and McLellan [1987]). The buffer simply
caches the target instruction rather than the target PC. On an unconditional branch that
hits in the branch-target buffer, the target instruction is fetched and sent to the pipeline in
place of the unconditional branch. Assuming a 90% hit rate, a base CPI of 1, and the data
in Figure 6.18 (page 272), how much improvement is gained by this enhancement versus
a machine whose effective CPI is 1.1.

6.11-6.19 For these problems we will look at how a common vector loop runs on a
variety of pipelined versions of DLX. The loop is the so-called SAXPY loop (discussed
extensively in Chapter 7). The loop implements the vector operation Y = a*X+Y for a
vector of length 100. Here is the DLX code for the loop:

foo: LD d;ﬁaa’;’a F2,0(R1) ;’\’ ;load X (1)

MULTD F4,F2,F0 ;multiply a*X (1)

LD F6,0(R2) ;load Y (i)

ADDD F6,F4,F6 ;add aX (i) + Y (i)
sD 0r2),F6 1 ;store (i)
ADDI’M"'??"{ R1,R1,8 ;increment X index
ADDI R2,R2,8 ;increment Y index
SGTI R3,R1,done ;test if done

BEQZ R3, foo ; loop if not done

For these problems, assume that the integer operations issue and complete in one clock
cycle and that their results are fully bypassed. Ignore the branch delay. You will use the
FP latencies shown in Figure 6.29 (page 289) unless stated otherwise. Assume the FP
units are not pipelined unless the problem states otherwise.

6.11 [20] <6.2-6.6> For this problem use the pipeline constraints shown in Figure 6.29
(page 289). Show the number of stall cycles for each instruction and what clock cycle the
instruction begins execution (i.e., enters its first EX cycle) on the first iteration of the
loop. How many clock cycles does each loop iteration take?

6.12 [22] <6.7> Using the DLX code for SAXPY above, show the state of the scoreboard
tables (as in Figure 6.32) when the SGTI instruction reaches Write result. Assume that
issue and read operands each take a cycle. Assume that there are three integer functional
units and they take only a single execution cycle (including loads and stores). Assume the
functional unit count described in Section 6.7 with the FP latencies of Flgure 6.29. The
branch should not be included in the scoreboard.

6.13 [22] <6.7> Use the DLX code for SAXPY above and the latencies of Figure 6.29.
Assuming Tomasulo’s algorithm for the hardware with the functional units described in
Section 6.7, show the state of the reservation stations and register-status tables (as in

INTEL Ex.1035.379

348 - Exercises

Figure 6.37) when the SGTT writes its result on the CDB. Make the same assumptions
about latencies and functional units as Exercise 6.12.

6.14 [22] <6.7> Using the DLX code for SAXPY above, assume a scoreboard with the
functional units described in the algorithm for the hardware, plus three integer functional
units (also used for load/store). Assume the following latencies in clock cycles:

FP multiply . 10
FP add 6
FP load/store 2
All integer operations 1

Show the state of the scoreboard (as in Figure 6.32) when the branch issues for the
second time. Assume the branch was correctly predicted taken and took one cycle. How
many clock cycles does each loop iteration take? You may ignore any register port/bus
conflicts. -

6.15 [25] <6.7> Use the DLX code for SAXPY above. Assume Tomasulo’s algorithm for
the hardware using the functional-unit count shown in Section 6.7. Assume the following
latencies in clock cycles:

FP multiply 10
FPadd

FP load/store

All integer operations 1

Show the state of the reservation stations and register status tables (as in Figure 6.37)
when the branch is executed for the second time. Assume the branch was correctly pre-
dicted as taken. How many clock cycles does each loop iteration take?

6.16 [22] <6.8> Unwind the DLX code for SAXPY three times and schedule it for the
standard DLX pipeline. Assume the FP latencies of Figure 6.29. When unwinding, you
should optimize the code as in Section 6.8. Significant reordering of the code will be
needed to maximize performance. What is the speedup over the original loop?

6.17 [25] <6.8> Assume a superscalar architecture that can issue any two independent
operations in a clock cycle (including two integer operations). Unwind the DLX code for
SAXPY three times and schedule it assuming the FP latencies of Figure 6.29. Assume
one fully-pipelined copy of each functional unit (e.g., FP adder, FP multiplier). How
many clock cycles will each iteration on the original code take? When unwinding, you
should optimize the code as in Section 6.8. What is the speedup versus the original code?

6.18 [25] <6.8> In a superpipelined machine, rather than have multiple functional units,
we would fully pipeline all the units. Suppose we designed a superpipelined DLX that
had twice the clock rate of our standard DLX pipeline and could issue any two unrelated
operations in the same time that the normal DLX pipeline issued one operation. Unroll
the DLX SAXPY code three times and schedule it for this superpipelined machine
assuming the FP latencies of Figure 6.29. How many clock cycles does each loop
iteration take? Remember that these clock cycles are half as long as those on a standard
DLX pipeline or a superscalar DLX.

INTEL Ex.1035.380

Pipelining 349

6.19 [20] <6.8> Start with the SAXPY code and the machine used in Figure 6.49. Unroll
the SAXPY loop three times, performing simple optimizations (as on page 315). Fill in a
table like Figure 6.49 for the unrolled loop. How many clock cycles does each loop
iteration take?

6.20 [35] <6.1-6.4> Change the DLX instruction simulator to be pipelined. Measure the
frequency of empty branch-delay slots, the frequency of load delays, and the frequency of
FP stalls for a variety of integer and FP programs. Also, measure the frequency of for-
warding operations. Determine what the performance impact of eliminating forwarding
and stalling would be.

6.21 [35] <6.6> Using a DLX simulator, create a DLX pipeline simulator. Explore the
impact of lengthening the FP pipelines, assuming both fully pipelined and nonpipelined
FP units. How does clustering of FP operations affect the results? Which FP units are
most susceptible to changes in the FP pipeline length?

6.22 [40] <6.4-6.6> Write an instruction scheduler for DLX that works on DLX
assembly language. Evaluate your scheduler using either profiles of programs or with a
pipeline simulator. If the DLX C compiler does optimization, evaluate your scheduler’s
performance both with and without optimization.

623 [35] <6.4-6.6> Write a DLX pipeline simulator that uses Tomasulo’s algorithm with
the functional units described. Evaluate the performance of this machine compared to the
straightforward DLX pipeline.

6.24 [Discussion] <6.7> Dynamic instruction scheduling requires a considerable invest-
ment in hardware. In return, this capability allows the hardware to run programs that
could not be run at full speed with only compile-time, static scheduling. What tradeoffs
should be taken into account in trying to decide between a dynamically and a statically
scheduled scheme? What sort of situations in both hardware technology and program
characteristics are likely to favor one approach or the other?

6.25 [Discussion] <6.7> There is a subtle problem that must be considered when imple-
menting Tomasulo's algorithm. It might be called the “two ships passing in the night
problem.” What happens if an instruction is being passed to a reservation station during
the same clock period as one of its operands is going onto the common data bus? Before
an instruction is in a reservation station, the operands are fetched from the register file;
but once it is in the station, the operands are always obtained from the CDB. Since the
instruction and its operand tag are in transit to the reservation station, the tag cannot be
matched against the tag on the CDB. So there is a possibility that the instruction will then
sit in the reservation station forever waiting for its operand, which it just missed. How
might this problem be solved? You might consider subdividing one of the steps in the
algorithm into multiple parts. (This intriguing problem is courtesy of J. E. Smith.)

6.26 [Discussion] <6.8> Discuss the advantages and disadvantages of a superscalar
implementation, a superpipelined implementation, and a VLIW approach in the context
of DLX. What levels of instruction-level parallelism favor each approach? What other
concerns would you consider in choosing which type of machine to build?

INTEL Ex.1035.381

I’'m certainly not inventing vector machines. There are three kinds
that I know of existing today. They are represented by the

Illiac-1V, the (CDC) Star machine, and the TI (ASC) machine.

Those three were all pioneering machines. . . . One of the

problems of being a pioneer is you always make mistakes and
I never, never want to be a pioneer. It' s always best to come
second when you can look at the mistakes the pioneers made.

* Seymour Cray, Public Lecture at Lawrence Livermore Laboratories on the
Introduction of the CRAY-1 (1976)

7.1
7.2
7.3
7.4
7.5
7.6
7.7

7.8
7.9
7.10

Why Vector Machines?

Basic Vector Architecture

Two Real-World Issues: Vector Length and Stride
A Simple Model for Vector Performance

Compiler Technology for Vector Machines
Enhancing Vector Performance

Putting It All Together: Evaluating the
Performance of Vector Processors

Fallacies and Pitfalls

Concluding Remarks

Historical Perspective and References
Exercises

351
353
364
369
371
377

383
390
392
393
397

INTEL Ex.1035.382

Vector Processors

7.1 I Why Vector Machines?

In the last chapter we looked at pipelining in detail and saw that pipeline
scheduling, issuing multiple instructions per clock cycle, and more deeply
pipelining a processor could as much as double the performance of a machine.
Yet there are limits on the performance improvement that pipelining can
achieve. These limits are set by two primary factors:

s Clock cycle time—The clock cycle time can be decreased by making the
pipelines deeper, but a deeper pipeline will increase the pipeline dependences
and result in a higher CPI. At some point, each increase in pipeline depth has
a corresponding increase in CPI. As we saw in Section 6.10, very deep
pipelining can slow down a processor.

» Instruction fetch and decode rate—This limitation, sometimes called the
Flynn bottleneck (based on Flynn [1966]), prevents fetching and issuing of
more than a few instructions per clock cycle. We saw that for most pipelined
machines the average number of instruction issues per clock was less than
one.

The dual limitations imposed by deeper pipelines and issuing multiple instruc-
tions can be viewed from the standpoint of either clock rate or CPI: It is just as

INTEL Ex.1035.383

352 © 7.1 Why Vector Machines?

difficult to schedule a pipeline that is »n times deeper as it is to schedule a
machine that issues » instructions per clock cycle.

High-speed, pipelined machines are particularly useful for large scientific and
engineering applications. A high-speed pipelined machine will usually use a
cache to avoid forcing memory reference instructions to have very long latency.
However, big, long-running, scientific programs often have very large active
data sets that are often accessed with low locality, yielding poor performance
from the memory hierarchy. The resulting impact is a decrease in cache
performance. This problem could be overcome by not caching these structures if
it were possible to determine the memory-access patterns and pipeline the
accesses efficiently. Compiler assistance may help address this problem in the
future (see Section 10.7).

Vector machines provide high-level operations that work on vectors—linear
arrays of numbers. A typical vector operation might add two 64-entry, floating-
point vectors to obtain a single 64-entry vector result. The vector instruction is
equivalent to an entire loop, with each iteration computing one of the 64
elements of the result, updating the indices, and branching back to the
beginning.

Vector operations have several important properties that solve most of the
problems mentioned above:

» The computation of each result is independent of the computation of previous
results, allowing a very deep pipeline without generating any data hazards.
Essentially, the absence of data hazards was determined by the compiler or
programmer when they decided that a vector instruction could be used.

= A single vector instruction specifies a great deal of work—it is equivalent to
executing an entire loop. Thus, the instruction bandwidth requirement is
reduced, and the Flynn bottleneck is considerably mitigated.

m Vector instructions that access memory have a known access pattern. If the
vector’s elements are all adjacent, then fetching the vector from a set of
heavily interleaved memory banks works very well. The high latency of
initiating @ main memory access versus accessing a cache is amortized
because a single access is initiated for the entire vector rather than to a single
word. Thus, the cost of the latency to main memory is seen only once for the
entire vector, rather than once for each word of the vector.

= Because an entire loop is replaced by a vector instruction whose behavior is
predetermined, control hazards that would normally arise from the loop
branch are nonexistent.

For these reasons, vector operations can be made faster than a sequence of scalar
operations on the same number of data items, and designers are motivated to
include vector units if the applications domain can use them frequently.

As mentioned above, vector machines pipeline the operations on the individ-
ual elements of a vector. The pipeline includes not only the arithmetic operations
(multiplication, addition, and so on), but also memory accesses and effective

INTEL Ex.1035.384

Vector Processors 353

address calculations. In addition, most high-end vector machines allow multiple
vector operations to be done at the same time, creating parallelism among the
operations on different elements. In this chapter, we focus on vector machines
that gain performance by pipelining and instruction overlap. In Chapter 10, we
discuss parallel machines that operate on many elements in parallel rather than
in pipelined fashion.

7-2 | Basic Vector Architecture

~

A vector machine typically consists of an ordinary pipelined scalar unit plus a
vector unit. All functional units within the vector unit have a latency of several
clock cycles. This allows a shorter clock cycle time and is compatible with long-
running, vector operations that can be deeply pipelined without generating
hazards. Most vector machines allow the vectors to be dealt with as floating-
point numbers (FP), as integers, or as logical data, though we will focus on
floating point. The scalar unit is basically no different from the type of pipelined
CPU discussed in Chapter 6. ,

- There are two primary types of vector architectures: vector-register machines
and memory—memory vector machines. In a vector-register machine, all vector
operations—except load and store—are among the vector registers. These
machines are the vector counterpart of a load/store architecture. All major vector
machines being shipped in 1990 use a vector-register architecture; these include
the Cray Research machines (CRAY-1, CRAY-2, X-MP, and Y-MP), the
Japanese supercomputers (NEC SX/2, Fujitsu VP200, and the Hitachi S820),
and the mini-supercomputers (Convex C-1 and C-2). In a memory—-memory
vector machine all vector operations are memory to memory. The first vector
machines were of this type, as were CDC’s machines. From this point on we will
focus on vector-register architectures only; we will briefly return to memory—
memory vector architectures at the end of the chapter (Section 7.8) to discuss
why they have not been as successful as vector-register architectures.

We begin with a vector-register machine consisting of the primary com-
ponents shown in Figure 7.1 (page 354). This machine, which is loosely based
on the CRAY-1, is the foundation for discussion throughout most of this chapter.
We will call it DLXYV; its integer portion is DLX, and its vector portion is the
logical vector extension of DLX. The rest of this section examines how the basic
architecture of DLXYV relates to other machines.

The primary components of the instruction set architecture of DLXV are:

m Vector registers—Each vector register is a fixed-length bank holding a single
vector. DLXV has eight vector registers, and each vector register holds 64
doublewords. Each vector register must have at least two read ports and one
write port in DLXV. This will allow a high degree of overlap among vector
operations to different vector registers. (The CRAY-1 manages to implement
the register file with only a single port per register using some clever imple-
mentation techniques.)

INTEL Ex.1035.385

354

7.2 Basic Vector Architecture’

Vector
registers

Scalar
registers

FIGURE 7.1 The basic structure of a vector-register architecture, DLXV. This
machine has a scalar architecture just like DLX. There are also eight 64-element vector
registers, and all-the functional units are vector functional units. Special vector operations
and vector loads and stores are defined. We show vector units for logical and integer oper-
ations. These are included so that DLXV looks like a standard vector machine, which usu-
ally includes these units. However, we will not be discussing these units except in the Exer-
cises. In Section 7.6 we add chaining, which will require additional interconnect capability.

n Vector functional units—Each unit is fully pipelined and can start a new
operation on every clock cycle. A control unit is needed to detect hazards,
both on conflicts for the functional units (structural hazards) and on conflicts
for register accesses (data hazards). DLXV has five functional units, as
shown in Figure 7.1. For simplicity, we will focus exclusively on the floating-
point functional units.

s Vector load/store unit—A vector memory unit that loads or stores a vector to
or from memory. The DLXYV vector loads and stores are fully pipelined, so
that words can be moved between the vector registers and memory with a
bandwidth of one word per clock cycle, after an initial latency.

» A set of scalar registers—These can also provide data as input to the vector
functional units, as well as compute addresses to pass to the vector load/store
unit. These are the normal 32 general-purpose registers and 32 floating-point
registers of DLX.

INTEL Ex.1035.386

Vector Processors ’ 355

Figure 7.2 shows the characteristics of some typical vector machines, including
the size and count of the registers, the number and types of functional units, and
the number of load/store units.

In DLXV, the vector operation has the same name as the DLX name with the
letter “V” appended. These are double-precision, floating-point, vector opera-
tions. (We have omitted single-precision FP operations and integer and logical
operations for simplicity.) Thus, ADDV is an add of two double-precision vec-
tors. The vector operations take as their input either a pair of vector registers
(ADDV) or a vector register and a scalar register designated by appending “SV”’
(ADDSV). In the latter case, the value in the scalar register is used as the input
for all operations—the operation ADDSV will add the contents of a scalar regis-
ter to each element in a vector register. Vector operations always have a vector

“destination register. The names LV and SV denote vector load and vector store,
and load or store an entire vector of double-precision data. One operand is

Machine Year Vector Elements per Vector functional units Vector

announced registers vector register load /
"~ (64-bit elements) store units
CRAY-1 1976 8 64 6: add, multiply, reciprocal, integer add, 1
A logical, shift :
CRAY X-MP 1983 8. 64 8: FP add, FP multiply, FP reciprocal, integer 2 loads
CRAY Y-MP 1988 add, 2 logical, shift, population count/parity 1 store
CRAY-2 1985 8 ' 64 5: FP add, FP multiply, FP reciprocal/sqrt, 1
integer (add shift, population count), logical

Fujitsu 1982 8-256 32-1024 3: FP or integer add/logical, multiply, divide 2
VP100/200
Hitachi 1983 32 256 4: 2 integer add/logical, 1 multiply-add and 1 4
5810/820 multiply/divide—add unit
Convex C-1 1985 8 128 4: multiply, add, divide, integer/logical 1
NEC SX/2 1984 8+ 8192 256 variable 16: 4 integer add/logical, 4 FP 8

multiply/divide, 4 FP add, 4 shift

DLXV 1990 8 64 5: multiply, divide, add, integer add, logical 1

FIGURE 7.2 Characteristics of several vector-register architectures. The vector functional units include all operation
units used by the vector instructions. The functional units are floating point unless stated otherwise. If the machine is a
multiprocessor, the entries correspond to the characteristics of one processar.Each vector load/store unit represents the
ability to do an independent, overlapped transfer to or from the vector registers. The Fujitsu VP200’s vector registers are
configurable: The size and count of the 8K 64-bit entries may be varied inversely to one another (e.g., 8 registers each 1K
elements long, or 128 registers each 64 elements long). The NEC SX/2 has 8 fixed registers of iength 256, plus 8K of
configurable 64-bit registers. The reciprocal unit on the CRAY machines is used to do division (and square root on the
CRAY-2). Add pipelines perform floating-point add and subtract. The multiply/divide—add unit on the Hitachi $810/200
performs an FP multiply or divide followed by an add or subtract (while the multiply-add unit performs a multiply foliowed
by an add or subtract). Note that most machines use the vector FP multiply and divide units for vector integer multiply and
divide, just like DLX, and several of the machines use the same units for FP scalar and FP vector operations.

INTEL Ex.1035.387

356 7.2 Basic Vector Architecture
the vector register to be loaded or stored; the other operand, which is a DLX
general-purpose register, is the starting address of the vector in memory. Figure
7.3 lists the DLXV vector instructions. In addition to the vector registers, we
need two additional special-purpose registers: the vector-length and vector-mask
registers. We will discuss these registers and their purpose in Sections 7.3 and
7.6, respectively.
Vector instruction Operands Function
ADDV v1,v2,V3 Add elements of V2 and V3, then put each result in V1.
ADDSV V1,F0,V2 Add FO to eachrelement of V2, then put each result in V1.
SUBV v1,v2,V3 Subtract elements of V3 from V2, then put each result in V1.
SUBVS v1,v2,F0 Subtract FO from elements of V2, then put each result in V1.
SUBSV V1,F0,V2 Subtract elements of V2 from F 0, then put each result in V1.
MULTV vi,v2,v3 Multiply elements of V2 and V3, then put each result in V1.
MULTSV V1,F0,V2 Multiply FO by each element of V2, then put each result in V1.
DIVV vi,v2,v3 Divide elements of V2 by V3, then put each result in V1.
DIVVS: v1,v2,F0 Divide elements of V2 by F0, then put each result in V1.
DIVSV V1,F0,V2 Divide F0 by elements of V2, then put each result in V1.
IAY V1l,R1 Load vector register V1 from memory starting at address R1.
SV R1,V1 Store vector register V1 into memory starting at address R1.
LVWS V1, (R1,R2) Load V1 from address at R1 with stride in R2, i.e., RL+1*R2.
SVWS (R1,R2),V1 Store V1 from address at R1 with stride in R2, i.e., R1+1*R2.
LVI V1, (R1+V2) Load v1 with vector whose elements are at R1+V2 (i), i.e., V2 is an index.
SVI (R1+Vv2),V1 Store V1 with vector whose elements are at R1+V2 (1), i.e., V2 is an index.
CVI V1l,R1 Create an index vector by storing the values 0, 1*R1,2*R1, ..., 63*R1
' into V1.
S_.V vV1,v2 Compare (EQ, NE, GT, LT, GE, LE) the elements in V1 and V2. If condition is
true put a 1 in the corresponding bit vector; otherwise put 0. Put resulting bit
S_SV FO,V1
vector in vector-mask register (VM). The instruction S_SV performs the same
compare but using a scalar value as one operand.
POP R1,VM Count the 1s in the vector-mask register and store count in R1.
CVM Set the vector-mask register to all 1s.
MOVIZ2S VLR,R1 . Move contents of R1 to the vector-length register.
MOVS2I R1, VLR Move the contents of the vector-length register to R1.
MOVF2S VM, FO Move contents of FO to the vector-mask register.
MOVS2F F0O,VM Move contents of vector-mask register to FO.

FIGURE 7.3 The DLXV vector instructions. Only the double-precision FP operations are shown. In addition to the
vector registers there are two special registers VLR (discussed in Section 7.3) and VM (discussed in Section 7.6). The
operations with stride are explained in Section 7.3, and the use of the index creation and indexed load/store operations
are explained in Section 7.6.

INTEL Ex.1035.388

BT

Vector Processors 357

Example

Answer

A vector machine is best understood by looking at a vector loop on DLXV.
Let’s take a typical vector problem, which will be used throughout this chapter:

Y =ax X+ Y

X and Y are vectors, initially resident in memory, and a is a scalar. This is the
so-called SAXPY or DAXPY (Single-precision or Double-precision A*X Plus
Y) loop that forms the inner loop of the Linpack benchmark. Linpack is a collec-
tion of linear algrebra routines; the Gaussian elimination portion of Linpack is
the segment used as a benchmark. SAXPY represents a small piece of the
program, though it takes most of the time in the benchmark.

For now, let us assume that the number of elements, or length, of a vector
register (64) matches the length of the vector operation we are interested in.
(This restriction will be lifted shortly.)

Show the code for DLX and DLXYV for the DAXPY loop. Assume that the start-
ing addresses of X and Y are in Rx and Ry, respectively.

Here is the DLX code.

LD FO,a

ADDI R4,Rx,#512 ;last address to load
loop: '

LD F2,0 (Rx) ;load X (i)

MULTD F2,F0,F2 ;axX (1)

LD F4,0(Ry) ;load Y (i)

ADDD F4,F2,F4 ;axX (1) + Y(i)

SD F4,0 (Ry) ;store into Y (i)

ADDIT Rx,Rx, #8 ;increment index to X

ADDI Ry, Ry, #8 ;increment index to Y

SUB R20,R4,Rx ;compute bound

BNZ R20, loop ;check if done

Here is the code for DLXV for DAXPY.

LD FO, a ;load scalar a

v V1,Rx ;load vector X

MULTSV V2,F0,V1 ;vector-scalar multiply
Lv V3,Ry ;load vector Y

ADDV V4,V2,V3 Tyadd ‘

SV Ry, V4 ;store the result

There are some interesting comparisons between the two code segments in
the example above. The most dramatic is that the vector machine greatly reduces
the dynamic instruction bandwidth, executing only 6 instructions versus almost
600 for DLX. This reduction occurs both because the vector operations work on

INTEL Ex.1035.389

358 : 7.2 Basic Vector Architecture

64 elements, and because the overhead instructions that constitute nearly half the
loop on DLX are not present in the DLXV code. ,

Another important difference is the frequency of pipeline interlocks. In the
straightforward DLX code every ADDD must wait for a MULTD, and every SD
must wait for the ADDD. On the vector machine, each vector instruction operates
on all the vector elements independently. Thus, pipeline stalls are required only
once per vector operation, rather than once per vector element. In this example,
the pipeline-stall frequency on DLX will be about 64 times higher than it is on
DLXYV. The pipeline; stalls can be eliminated on DLX by using software
pipelining or loop unrolling (as we saw in Chapter 6, Section 6.8). However, the
large difference in instruction bandwidth cannot be reduced.

Vector Start-up Time and Initiation Rate

Let’s investigate the running time of this vector code on DLXV. The running
time of each vector operation in the loop has two components—the start-up time
and the initiation rate. The start-up time comes from the pipelining latency of
the vector operation and is principally determined by how deep the pipeline is
for the functional unit used. For example, a latency of 10 clock cycles means
both that the operation takes 10 clock cycles and that the pipeline is 10 deep. (In
discussions of the performance of vector operations, clock cycles are
customarily used as the metric.) The initiation rate is the time per result once a
vector instruction is running; this rate is usually one per clock cycle for
individual operations, though some supercomputers have vector operations that
can produce 2 or more results per clock, and others have units that may not be
fully pipelined. The completion rate must at least equal the initiation rate—
otherwise there is no place to put results. Hence, the time to complete a single
vector operation of length # is:

Start-up time + » * Initiation rate

Suppose the start-up time for a vector multiply is 10 clock cycles. After start-up
the initiation rate is one per clock cycle. What is the number of clock cycles per
result (i.e., one element of the vector) for a 64-element vector?

Example

Total time

Answer Clock cycles per result = Vector 1 ength

__ Start-up time + 64 * Initiation rate
- 64

_10+64

o - 1.16 clock cycles.

Figure 7.4 shows the effect of start-up time and initiation rate on vector per-
formance. The effect of increasing start-up time on a slow-running vector is

INTEL Ex.1035.390

Vector Processors 359

small, while the same increase in start-up time on a system with an initiation rate
of one per clock decreases performance by a factor of nearly two.

325
4 clock cycles

300 per result

275

250

Total clock
cyclesfora o285
64-element
vector 200
2 clock cycles
175 per result
150
125
100 1 ciock cycle
per result

75
50
25

2 6 10 14 18 22 26 30 34 38 42 46 50

Start-up cost in clock cycles

FIGURE 7.4 Total running time increases with start-up cost from 2 to 50 clock cycles
per operation on the x axis. The impact of start-up time is much greater for fast-running
than for slow-running vectors. The operation running at one clock cycle per result increases
its run time by 75%, while the operation running at four clock cycles per result increases by
less than 20%. '

What determines the start-up and initiation rates? Let’s first consider the
operations that do not involve a memory access. For register-register operations
the start-up time (in clock cycles) is equal to the depth of the functional unit
pipeline, since this is the time to get the first result. In the earlier example, the
depth of 10 gave a start-up time of 10 clock cycles. In the next few sections, we
will see that there are other costs involved that increase the start-up time. The
initiation rate is determined by how often the corresponding vector functional
unit can accept an operand. If it is fully pipelined, then it can start an operation
on new operands every clock cycle, yielding an initiation rate of one per clock
(as in the earlier example). v <[

Start-up time for an operation comprises the 'total latency for the functional
unit implementing that operation. If the initiation rate is to be kept at 1 clock per
result, then

Total functional unit time-'

Pipeline depth = I_ Clock cycle time

For example, if an operation takes 10 clock cycles, it must be pipelined 10 deep
to achieve an initiation rate of one per clock. Pipeline depth, then, is determined

INTEL Ex.1035.391

360 ' 7.2 Basic Vector Architecture

by the complexity of the operation and the clock cycle time of the machine. The
pipeline depths of functional units vary widely—from 2 to 20 stages is not
uncommon—though the most heavily used units have start-up times of 4 to 8
clocks.

For DLXV, we will choose the same pipeline depths as the CRAY-1. All
functional units are fully pipelined. Pipeline depths are six clock cycles for float-
ing-point add and seven clock cycles for floating-point multiply. If a vector
computation depends on an uncompleted computation and will need to be
stalled, it adds an extra 4-clock-cycle start-up penalty. This penalty is typical on
vector machines and arises due to the lack of bypassing: the penalty is the time
to write and then read the operands and is only seen when there is a dependence.
Thus, back-to-back dependent vector operations will see the full latency of a
vector operation. On DLXV, as on most vector machines, independent vector
operations using different functional units can issue without any penalty or
delay. Independent vector operations may also be fully overlapped, and each
instruction issue only takes one clock. Thus, when the operations are indepen-
dent and different, DLXV can overlap vector operations, just as DLX can over-
lap integer and floating-point operations.

Because DLXYV is fully pipelined, the initiation rate for a vector instruction is
always 1. However, a sequence of vector operations will not be able to run at
that rate, due to start-up costs. The term sustained rate is applied to this situation
and refers to the time per element for a collection of related vector operations.
Here an element is not the result of a single vector operation, but one result of a
series of vector operations. The time per element, then, is the time required for
each operation to produce an element. For example, in the SAXPY loop, the
sustained rate will be the time to compute and store one element of the result
vector Y.

For a vector length of 64 on DLXV and the following two vector instructions,
what is the sustained rate for the sequence, and the effective number of floating-
point operations per clock for the sequence?

Example

MULTV V1,V2,V3
ADDV V4,V5,V6

Answer | Let’s look at the start and completion times of these independent operations
(remember that the start-up times are 7 cycles for multiply and 6 cycles for add):

Operation Start Complete
MULTV 0 7+64="71
ADDV 1 1+6+64=71

The sustained rate is one element per clock—remember that sustained rate
requires all vector operations to produce a result. The sequence executes 128

INTEL Ex.1035.392

Vector Processors 361

FLOPs (FLoating-point OPerations) in 71 clock cycles, for a rate of 1.8 FLOPs
per clock. A vector machine can sustain a throughput of more than one operation
per clock cycle by issuing independent vector operations to different vector
functional units.

The behavior of the load/store vector unit is significantly more complicated.
The start-up time for a load is the time to get the first word from memory into a
register. If the rest of the vector can be supplied without stalling, then the vector
initiation rate is equal to the rate at which new words are fetched or stored.
Typically, penalties for start-ups on load/store units are higher than for
functional units—up to 50 clock cycles on some machines. For DLXV we will
assume a low start-up time of 12 clock cycles, since the CRAY-1 and CRAY X-
MP have load/store start-up times of between 9 and 17 clock cycles. For stores,
we will not usually care about the start-up time, since stores do not directly
produce results. However, when an instruction must wait for a store to complete
(as a load might have to with only one memory pipeline), the load may see part
or all of the 12-cycle latency of a store. Figure 7.5 summarizes the start-up
penalties for DLXV vector operations.

Operation Start-up penalty
Vector add 6

Vector multiply _ 7

Vector divide 20

Vector load 12

FIGURE 7.5 Start-up penalties on DLXV. These are the start-up penalties in clock
cycles for DLXV vector operations. When a vector instruction depends on another vector
instruction that has not completed at the time the second vector instruction issues, the
start-up penalty is increased by 4 clock cycles. '

To maintain an initiation rate of one word fetche(?or stored per clock, the
memory system must be capable of producing or accepting this much data. This
is usually done by creating multiple memory banks. Each memory bank is like a
small, separate memory that can access different addresses in parallel with other
banks. The words are then transferred from the memory at the maximum rate
(one per clock in DLXV).

There are two possible implementation techniques for memory banks. One
approach is to synchronize all the banks and to access them in parallel, latching

- the result in each bank. Once the result is latched, the next access can begin
while the words are transferred. An alternative implementation technique uses
independent bank phasing. On the first access, all the banks are accessed in
parallel, and then the words are transferred one at a time from the banks. Once a

INTEL Ex.1035.393

362 ' 7.2 Basic Vector Architecture

bank has transmitted or stored its data, it begins the next access immediately.
The first approach (synchronized accesses) requires more latches, but has sim-
pler control than an approach that uses independent bank phasing. The concept
“of memory banks is similar to but not identical to interleaving, as we will see in
Figure 7.6. We discuss interleaving extensively in Chapter 8, Section 8.4.

Assuming each bank is one double-precision-word wide, if an initiation rate
of one per clock is to be maintained, the following must hold:

Number of memory banks = Memory-bank access time in clock cycles

To see why this relationship exists, think about a vector load of 64 double-
precision words. Let the addresses of the vector elements be given by k;, where

k; = Starting address of the vector + (i-1) * Distance between vector elements.

For double-precision vector elements that are adjacent, the distance between
elements will be 8 bytes. The addresses of the vector elements to be accessed by
a bank will be the values of k; such that

k; mod number of banks = Bank number

Let's look at the first access by each bank. After a time equal to the memory-
access time, all the memory banks will have fetched a double-precision word,
and the words can begin returning to the vector registers. (This requires, of
course, that the accesses be aligned on doubleword boundaries.) Words are sent
serially from the banks, starting with the bank fetching from the lowest address.
If the banks are synchronized, the next accesses start immediately; if the banks
are phased, then the next access begins after an element is transmitted from the
bank. In either case, a bank begins its next access at a byte address that is (8 *
number of banks) higher than the last byte address. Because the memory-access
time in clock cycles is less than the number of memory banks and because the
words are transferred from the banks in round-robin order at a rate of one trans-
fer per clock cycle, a bank will complete the next access before its turn to trans-
mit data comes again. To simplify addressing, the number of memory banks is
usually made a power of two. As we will see shortly, designers will probably
want to have more than the minimum number of required banks so as to mini-
mize memory stalls.

Suppose we want to fetch a vector of 64 elements starting at byte address of 136,
and a memory access takes 6 clocks. How many memory banks must we have?
With what addresses are the banks accessed? When will the various elements
arrive at the CPU?

Example

Answer | Six clocks per access require at least 6 banks, but because we want the number
of banks to be a power of two, we choose to have 8 banks. Figure 7.6 shows
what byte addresses each bank accesses within each time period. Remember that
a bank begins a new access as soon as it has completed the old access.

INTEL Ex.1035.394

Vector Processors 363

Beginning Bank
at clock no. 0 1 2 3 4 5 6 7
0 192 136 144 152 160 168 176 184
6 256 200 208 216 224 232 240 248
14 320 264 272 280 288 296 304 312
22 384 328 336 344 352 360 368 376

FIGURE 7.6 Memory addresses (in bytes) by bank number and time slot at which
access begins. The exact time when a bank transmits its data is given by the address it
accesses minus the starting address divided by 8 plus the memory latency (6 clocks). It is
important to observe that Bank 0 accesses a word in the next block (i.e., it accesses 192
rather than 128 and then 256 rather than 192, and so on). If Bank O were to start at the
lower address we would require an extra cycle to transmit the data, and we would transmit
one value unnecessarily. While this problem is not severe for this example, if we had 64
banks, up to 63 unnecessary clock cycles and transfers could occur. The fact that Bank 0
does not access a word in the same block of 8 distinguishes this type of memory system
from interleaved memory. Normally, interleaved memory systems combine the bank
address and the base starting address by concatenation rather than addition. Also, inter-
leaved memories are almost always implemented with synchronized access. Memory
banks require address latches for each bank, which are not normally needed in a system
with only interleaving. :

Figure 7.7 shows the timing for the first few sets of accesses for an 8—bank
system with a 6—clock-cycle access latency. Two important observations about
these two figures are these: First, notice that the exact address fetched by a bank
is largely determined by the lower-order bits in the bank number; however, the
initial access to a bank is always within 8 doublewords of the initial address.
Second, notice that once the initial latency is overcome (6 clocks in this case),
the pattern is to access a bank every n clock cycles, where 7 is the total number
of banks (#=8 in this case). ‘

Next access Next access
Memory | + deliver last |, + deliver last Last

Action l access | 8 words | 8 words . l soo | access I

Time l l ' |".|
0

6 14 22 62 70

FIGURE 7.7 Access timing for the first 64 double-precision words of the load. After
the 6-clock-cycle initial latency, 8 double-precision words are returned every 8 clock cycles.

The number of banks in the memory system and the pipeline depth in the /
functional units are essentially counterparts, since they determine the initiation
rates for operations using these units. The processor cannot access memory
faster than the memory cycle time. Thus, if memory is built from DRAM, where
cycle time is about twice the access time, the processor will usually need twice
as.many banks as the computations above would give. This characteristic of
DRAM is discussed further in Chapter 8, Section 8.4.

INTEL Ex.1035.395

364) 7.3 Two Real-World Issues: Vector Length and Stride

7-3 I Two Real-World Issues:
Vector Length and Stride

This section deals with two issues that transpire in real programs. These are what
to do when the vector length in a program is not exactly 64, and how to deal
with nonadjacent elements in vectors when a matrix is laid out in memory. First,
let’s deal with the issue of vector length.

Vector-Length Control

A vector-register machine has a natural vector length determined by the number
of elements in each vector register. This length, which is 64 for DLXV, is un-
likely to match the real vector length in a program. Moreover, in a real program
the length of a particular vector operation is often unknown at compile time. In
fact, a single piece of code may require different vector lengths. For example,
consider this code:

do 10 i = 1,n
10 Y(i) = a = X(1) + Y (i)

The size of all the vector operations depends on n, which may not even be
known until run-time! The value of n might also be a parameter to the procedure
and therefore be subject to change during execution.

The solution to these problems is to create a vector-length register (VLR).
The VLR controls the length of any vector operation, including a vector load or
store. The value in the VLR, however, cannot be any greater than the length of
the vector registers. This solves our problem as long as the real length is less
than the maximum vector length (MVL) defined by the machine. :

What if the value of n is not known at compile time, and thus may be greater
than MVL? To tackle this problem, a technique called strip mining is used. Strip
mining is the generation of code such that each vector operation is done for a
size less than or equal to the MVL. The strip-mined version of the SAXPY loop
written in FORTRAN, the major language used for scientific applications, is
shown with C-style comments:

low =1
VL = (n mod MVL) /*find the odd size piece*/
dol j=20,(n/ MVL) /*outer loop*/

do 10 1 = low,low+VL-1 /*runs for length VL*/
Y(i) = axX (i) + Y(i) /*main operation*/
10 continue

low = low+VL /*start of next vector*/
VL = MVL /*reset the length to max*/

1 continue

INTEL Ex.1035.396

Vector Processors 365

The term n / MVL represents truncating integer division (which is what
FORTRAN does) and is used throughout this section. The effect of this loop is
to block the vector into segments which are then processed by the inner loop.
The length of the first segment is (n mod MVL) and all subsequent segments are
of length MVL. This is depicted in Figure 7.8.

Value of j 1 2 3 eee . n/MVL
Rangeofi 1.m (m+1).. (m+ (m+2* . cae (n-MVL
m+MVL MVL+1) MVL+1) +1)..n
me2* .m+3*
MVL MVL

FIGURE 7.8 A vector of arbitrary length processed with strip mining. All blocks but
the first are of length MVL, utilizing the full power of the vector machine. In this figure, the
variable mis used for the expression_(n mod MVL).

The inner loop of the code above is vectorizable with length VL, which is
equal to either (n mod MVL) or MVL. The VLR register must be set twice—
once at each place where the variable VL in the code is assigned. With multiple -
'vector operations executing in parallel, the hardware must copy the value of
VLR when a vector operation issues, in case VLR is changed for a subsequent
vector operation.

In the previous section, start-up overhead could be computed independently
for each vector operation. With strip mining, a significant percentage of the
start-up cost will be the strip-mining overhead itself; and, therefore, computing
the start-up overhead will be more complex.

Let’s see how significant these added overheads are. Consider a simple loop:

do 10 1 = 1,n
10 A (1) B(i)

I

The compiler will generate two nested loops for this code, just as our earlier
example does. The inner loop contains a sequence of two vector operations, LV
(load vector) followed by SV (store vector). Each loop iteration of the original
vector operation would require two clocks if there were no start-up penalties of
any kind. The start-up penalties consist of two types: vector start-up overhead
and strip-mining overhead. For DLXYV the vector start-up overhead is 12 clock
cycles for the vector load plus a 4-clock-cycle delay because the store depends
on the load, for a total of 16 clock cycles. We can ignore the store latency, since
nothing depends on it. Figure 7.9 (page 366) shows the impact of the vector
start-up cost alone as the vector grows from length 1 to length 64. This start-up
cost can decrease the throughput rate by a factor of as much as 9, depending on
the vector length.

INTEL Ex.1035.397

366 , A 7.3 Two Real-World Issues: Vector Length and Stride

14
12
Time 10

per
element g

1 65 9 13 17 21 25 29 33 37 41 45 49 53 57 61
Vector length

FIGURE 7.9 The impact of just the vector start-up cost on a loop consisting of a
vector assignment. For short vectors, the impact of the 16-cycle start-up cost is enor-
mous, decreasing performance by up to nine times. The strip-mining overhead has not
been included.

In Section 7.4, we will see a unified performance model that incorporates all
the start-up and overhead costs. First, let’s examine how to implement vectors
with nonsequential memory accesses.

Vector Stride

The second problem this section addresses is that the position in memory of
adjacent elements in a vector may not be sequential. Consider the straight-
forward code for matrix multiply:

do 10 1 = 1,100
do 10 5 = 1,100
A(i,j) = 0.0
| do 10 k = 1,100
10 A(i,3) = A(i,J)+B(i,k)*C(k,])

At the statement labeled 10 we could vectorize the multiplication of each row of
B with each column of C and strip-mine the inner loop with k as the index vari-
able. To do so, we must consider how adjacent elements in B and adjacent ele-
ments in C are addressed. When an array is allocated memory it is linearized and
must be laid out in either row-major or column-major order. Row-major order,

used by most languages except FORTRAN, lays out the rows first, making ele-
ments B(i,j) and B(i,j+1) adjacent. Column-major order, used by FORTRAN,

INTEL Ex.1035.398

Vector Processors 367

makes B(i,j) and B(i+1,j) adjacent. Figure 7.10 illustrates these two alternatives.

Let’s look at the accesses to B and C in the inner loop of the matrix multiply. In

FORTRAN, the accesses to the elements of B will be nonadjacent in memory,

and each iteration will access an element that is separated by an entire row of the

array. In this case, the elements of B that are accessed by iterations in the inner-
loop are separated by the row size times 8 (the number of bytes per entry) for a

total of 800 bytes.

Two-dimensional 100x100 array
1 2 3 45 6 7100

N O oA WY

Row-major layout

.01 1,2]...]0,100)| @ 1) (2,.2)

Increasing addresses

Column-major layout

L@ f.......... '(1,100) (2, 100)

(100, 1)

FIGURE 7.10 Matrix for a two-dimensional array and corresponding layouts in one-
dimensional storage. In row-major order, successive row elements are adjacent in
storage, while in column-major order, successive column elements are adjacent. It is easy
to imagine extending this to arrays with more dimensions.

This distance separating elements that are to be merged into a single vector is
called the stride. In the current example, using column-major layout for the
matrices means that matrix C has a stride of 1, or 1 doubleword (8 bytes), sepa-
rating successive elements, and matrix B has a stride of 100, or 100 doublewords
(800 bytes).

Once a vector is loaded into a vector register it acts as if it had logically adja-
cent elements. This enables a vector-register machine to handle strides greater
than one, called nonunit strides, by making more general vector-load and vector-
store operations. For example, if we could load a row of B into a vector register,
we could then treat the row as logically adjacent. '

INTEL Ex.1035.399

368 ' 7.3 Two Real-World Issues: Vector Length and Stride

Thus, it is desirable for the vector load and store operations to specify a stride
in addition to a starting address. On a DLXV, where the addressable unit is a
byte, the stride for our example would be 800. The value must be computed
dynamically, since the size of the matrix may not be known at compile time,
or—just like vector length—may change for different executions of the same
statement. The vector stride, like the vector starting address, can be put in a
general-purpose register, where it is used for the life of the vector operation.
Then the DLXYV instruction LVWS (Load Vector With Stride) can be used to
fetch the vector into a vector register. Likewise, when a nonunit stride vector is
being stored, SVWS (Store Vector With Stride) can be used. In some vector
machines the loads and stores always have a stride value stored in a register, so
there is only a single instruction.

Memory-unit complications can occur from supporting strides greater than
one. Earlier, we saw that a vector-memory operation could proceed at full speed
if the number of memory banks was at least as large as the memory-access time
in clock cycles. However, once nonunit strides are introduced it becomes pos-
sible to request accesses from the same bank at a higher rate than the memory-
access time. This situation is called memory-bank conflict and results in each
load seeing a larger portion of the memory-access time. A memory-bank conflict
occurs whenever the same bank is asked to do an access before it has completed
another. Thus, a bank conflict, and hence a stall, will occur if:

Least common multiple (Stride,Number of banks)
Stride

< Memory-access latency

Suppose we have 16 memory banks with an access time of 12 clocks. How long
will it take to complete a 64-element vector load with a stride of 1?7 With a stride
of 327

Example

Answer | Since the number of banks is larger than the load latency, for a stride of 1, the
load will take 12 + 64 = 76 clock cycles, or 1.2 clocks per element. The worst
possible stride is a value that is a multiple of the number of memory banks, as in
this case with a stride of 32 and 16 memory banks. Every access to memory will
collide with the previous one. This leads to an access time of 12 clock cycles per
element and a total time for the vector load of 768 clock cycles.

Memory bank conflicts will not occur if the stride and number of banks are
relatively prime with respect to each other and there are enough banks to avoid
conflicts in the unit-stride case. Increasing the number of memory banks to a
number greater than the minimum to prevent stalls with a stride of length 1 will
decrease the stall frequency for some other strides. For example, with 64 banks,
a stride of 32 will stall on every other access, rather than every access. If we
originally had a stride of 8 and 16 banks, every other access would stall; while
with 64 banks, a stride of 8 will stall on every eighth access. If we have multiple
memory pipelines, we will also need more banks to prevent conflicts. In the

INTEL Ex.1035.400

Vector Processors 369

1990s, most vector supercomputers have at least 64 banks, and some have as
many as 512.

7.4 I A Simple Model for Vector Performance

This section presents a model for understanding the performance of a vectorized
loop. There are three key components of the running time of a strip-mined loop
whose body is a sequence of vector instructions:

1. The time for each vector operation in the loop to process one element, ignor-
ing the start-up costs, which we call Tjemen. The vector sequence often has a
single result, in which case Tejemen: is the time to produce an element in that
result. If the vector sequence produces multiple results, Tejemen: i the time to
produce one element in each result. This time depends only on the execution of
vector instructions. We will see an example shortly.

2. The overhead for each strip-mined block of vector instructions. This over-
head consists of the cost of executing the scalar code for strip mining of each
block, Tjyep, plus the vector start-up cost for each block, Tszgys.

3. The overhead from computing the starting addresses and setting up the vec-
tor control. This occurs once for the entire vector operation. This time, Tpgge,

consists solely of scalar overhead instructions.

These components can be used to state the total running time for a vector
sequence operating on a vector of length », which we will call T ,:

n
Ty = Toase + I_MVL _I* (Tloop + Tstart) + 7 * Telement

The values of T, and T}, are both compiler and machine dependent, while
the value of T¢e;.n; depends mainly on the hardware. The exact vector sequence
affects all three values; the effect on T ; 1s probably the most pronounced,
with T, , and Tloop less affected. ' .

For simplicity, we will use constant values for Tpyge and for Tipop 0on DLXV.

Based on a variety of measurements of CRAY-1 vector execution, the values
chosen are 10 for Tpase and 15 for Tyoop. At first glance, you might think that
these values, especially Tioop, are too small. The overhead in each loop requires:
setting up the vector starting addresses and the strides, incrementing counters,
and executing a loop branch. However, these scalar instructions can be over-
lapped with the vector instructions, minimizing the time spent on these overhead
functions. The values of Tp,se and Tyoop Of course depend on the loop structure,
but the dependence is slight compared to the connection between the vector code
and the values of Tejement and Tgpart.

elemen

INTEL Ex.1035.401

370 A 7.4 A Simple Model for Vector Performance

What is the execution time for the vector operation A = B * s, where s is a scalar
Example | .4 the length of the vectors A and B is 200? '

Answer Here is the strip-mined DLXV code, assuming the addresses of A and B are
initially in Ra and Rb, and s is in F's:

ADDI R2,R0, #1600 ;no. bytes in vector

ADD R2,R2,Ra ;end of A vector

ADDI R1,RO, #8 ;strip-mined length

MOVI2S VLR,R1 ;load vector length

ADDI R1,R0, #64 ;length in bytes

ADDI R3,R0, #64 ;vector length of other pieces
loop: LV V1,Rb ;load B

MULTSV V2,Fs,Vl1 ;vector x scalar

SV Ra,V2 ;store A

ADD Ra,Ra,R1 ;next segment of A

ADD Rb,Rb,R1 ;next segment of B

ADDI R1,R0,#512 ;full vector length (bytes)

MOVI2S VLR, R3 ;set length to 64

SUB R4,R2,Ra ;at the end of A?

BNZ R4, LOOP ;if not, go back

From this code, we can see that: Tejement = 3, for the load, multiply and store of
each value of the vector. Furthermore, our assumptions for DLXV are Tjpqp = 15
and Ty,ee =10. Let’s use our basic formula:

‘ n
Tn= Toase + I—MVL _l* (Tloop + Tstart) + 1 * Telement

Ta00 = 10 + (4) * (15 + Tgpary) + 200 * 3
Tooo =10+ 4 * (15 + Ttary) + 600 = 670 + 4 * Tgart

The value of T,y is the sum of

» The vector load start-up of 12 clock cycles,

» The 4—clock-cycle stall due to the dependence between the load and multiply,
» A 7—<lock-cycle start-up for the multiply, plus

n A 4-clock-cycle stall due to the dependence between the multiply and store.

Thus, the value of Tgart is given by:
Toart=12+4+7+4=27

So, the overall value becomes .
T =670+ 4 %27 =778

INTEL Ex.1035.402

Vector Processors _ 371

S . . 78
The execution time per element with all start-up costs is then 8 _ 3.9,

compared with an ideal case of 3. 200

Figure 7.11 shows the overhead and effective rates per element for the above
example (A = B+*s) with various vector lengths. Compared to the simpler model
of start-up, illustrated in Figure 7.9 on page 366, we see that the overhead
accounting for all sources is higher. In this example, the vector start-up cost,
which is what is plotted in Figure 7.9, accounts for only about half the total
overhead per element.

Clock
cycles 4

Total time
per element

Total-
overhead
per element

10 30 50 70 90 110 130 150 170 190

Vector size

FIGURE 7.11 This shows the total execution time per element and the total overhead
time per element, versus the vector length for the example on page 370. For short
vectors the total start-up time is more than one-half of the total time, while for long vectors it
reduces to about one-third of the total time. The sudden jumps occur when the vector
length crosses a multiple of 64, forcing another iteration of the strip-mining code and
execution of a set of vector instructions. These operations increase T, by Tioqp + Tgtan:

7.5 I Compiler Technology for Vector Machines

To make effective use of a vector machine a compiler must be able to recognize
that a loop (or part of a loop) is vectorizable and generate the appropriate vector
code. This involves determining what dependences exist among the operands in
the loop. For now, we will consider only dependences that occur when an
- operand is written at one point and read at a later point. These correspond to
RAW (read after write—see page 264) hazards. Consider a loop like this one:

INTEL Ex.1035.403

372 75 Compiler Technology for Vector Machines

do 10 i=1,100

1 A(i+1) = A1) + B(1)
2 B(i+1l) = B(i) +_A(i+1)
10 continue

Call the numbered statements 1 and 2 in the loop body S1 and S2, respectively.
The possible different types of dependences are

1. S1 uses a value computed by S1 in an earlier iteration. This is true for S1
since iteration i+1 uses the value A (i) that was computed in iteration i as
A(i+1).The‘sameistrueofS2forB(i) and B (i+1). :

2. S1 uses a value computed by S2 in an earlier iteration. This is true since
S1 uses the value of B (1+1) in iteration i+1 that is computed by S2 in
iteration i.

3. S2 uses a value computed by S1 in the same iteration. This is true for the
value A (i+1).

Because the vector operations are pipelined and the latency may be quite long,
an early iteration may not complete before a later iteration begins: Thus, the
values that will be written by the early iteration may not have been written
before the later iteration begins. Consequently, if situation 1 or 2 exists, vectoriz-
ing the loop will introduce a RAW hazard—a hazard that a vector machine does
not check for. This means that if any of the three dependences in situation 1 and
2 exist, the loop is not vectorizable, and the compiler will not generate vector
instructions for this code. In situation 3, the normal hazard-detection hardware
could handle the situation. A loop containing only dependences like those in
situation 3 can therefore be vectorized, as we will see soon. The dependences in
the first two situations, which involve the use of values computed on earlier loop
iterations, are called loop-carried dependences.

The first task of the compiler is to determine whether there are any loop-car-
ried dependences within the loop body. The compiler accomplishes this with a
dependence-analysis algorithm. Because the statements in the loop body involve
arrays, dependence analysis is complex. (If there weren’t arrays, there would be
nothing to vectorize.) The simplest case occurs when an array name appears
only on one side of an assignment statement. Take, for example, this variation of
our earlier loop:

do 10 i=1,100
A(i) = B(i) + C(1i)
D(i) = A(i1) * E(1)
10 continue

If the arrays A, B, C, D, and E are different, then no loop-carried dependence can
exist. There is a dependence between the two statements for the vector A. If the
compiler realized that there were two accesses to A, it might try not to reload A

INTEL Ex.1035.404

Vector Processors 373

the second statement, instead doing the vector multiply using the result register
from the vector add. In this case, the processor would see the potential RAW
hazard and stall the issue of the vector multiply. If the compiler stored A and
reloaded it, then the loads and stores would occur in order, yielding correct
execution.

Often the same name appears as both a source and destination within a loop,
as it did in the SAXPY loop. There, Y appears on both sides of the assignment:

do 10 i=1,100
Y(1i) = axX (1) + Y (1)
10 continue

In this case there is still io loop-carried dependence because the assignment to Y
does not depend on a value of Y computed in an earlier iteration. However, the
following loop, which is called a recurrence, does contain a loop-carried
dependence:

do 10 i=2,100
Y(i) = Y(i-1) + Y (i)
10 continue

The dependence can be seen by unwinding the loop: In iteration j the value of
Y(~1) is used, but that element is stored in iteration j—1, creating a loop-carried
dependence.

How does the compiler detect dependences in general? Suppose we have
written to an array element with index value a * i + b and accessed with index
value ¢ * i + d, where i is the for-loop index variable that runs from m to n. A
dependence exists if two conditions hold:

1. There are two iteration indices, j and &, both within the limits of the for loop.

2. The loop stores into an array element indexed by a*j+b and later fetches
from that same array element when it is indexed by c*k+d. That is, a*j+b =
cxk+d.

In general, we may not be able to determine whether a dependence exists at
compile time. For example, the values of a, b, ¢, and d may not be known,
making it impossible to tell if a dependence exists. In other cases, the depen-
dence testing may be very expensive but decidable at compile time. For exam-
ple, the accesses may depend on the iteration indices of multiply nested loops.
Many programs do not contain these complex structures, but instead contain
simple indices where a, b, ¢, and d are all constants. For these cases, it is
possible to devise reasonable tests for dependence. :
A simple and sufficient test used to detect dependences is the greatest com-
mon divisor, or GCD. It is based on the observation that if a loop-carried depen-
dence exists, then GCD (c,a) must divide (d—b). (Remember that an integer, x,

divides another integer, y, if there is no remainder when we do the division)Xcand

INTEL Ex.1035.405

374 7.5 Compiler Technology for Vector Machines

get an integer result.) The GCD test is sufficient to guarantee that no dependence
exists (see Exercise 7.10); however, there are cases where the GCD test
succeeds, but no dependence exists. For example, this can arise because the
GCD test does not take the loop bounds into account. A more complex test is the
Banerjee test, named after U. Banerjee [1979], that accounts for loop bounds,
but is still not exact. An exact test can always be done by solving equations for
integer values, but this can be expensive for complex loop structures.

Example | Use the GCD test to determine whether dependences exist in the following loop:
do 10 i=1,100
10 X(2*1i+3) = X(2xi) = 5.0

A
NSWEF | Given the values a=2, b=3, c=2, and d=0, then GCD(a,c) = 2, and d—b = 3.

Since 2 does not divide —3, no dependence is possible.

A true data dependence arises from a RAW hazard and will prevent vector-
ization of the loop as a single vector sequence. There are cases where the loop
can be vectorized as two separate vector sequences (see Exercise 7.11). There
are also dependences corresponding to a WAR (write after read) hazard, called
an antidependence, and to a WAW (write after write) hazard, called an output
dependence. Antidependences and output dependences are not true data
dependences. They are name conflicts and can be eliminated by renaming of
registers in the compiler in a method similar to how Tomasulo’s algorithm
renames registers at run time (see Section 6.7 in Chapter 6). Vectorizing
compilers often use compile-time renaming to eliminate antidependences and
output dependences. '

Example | The following loop has an antidependence (WAR) and an output dependence
(WAW). Find all the true dependences, output dependences, and antidepen-
dences, and eliminate the output dependences and antidependences by renaming.

do 10 i=1,100

1 Y(i) = X(i) / s
2 X(i) = X(i) + s
3 Z(i) = Y(i) + s
4 Y(i) = s - Y (i)
10 continue

Answer | There are true dependences from statement 1 to statement 3 and from statement
1 to statement 4 because of Y (1) . These are not loop carried, so they will not
prevent vectorization. However, the dependences will force statements 3 and 4
to wait for statement 1 to complete, even though statements 3 and 4 use a differ-
ent functional unit than statement 1. In the next section we will see a technique
for eliminating this serialization.

INTEL Ex.1035.406

Vector Processors 375

There is an antidependence from statement 1 to statement 2, and an output
dependence from statement 1 to statement 4. The following version of the loop
eliminates these false (or pseudo) dependences.

do 10 i=1,100

w N O = 0

Y renamed to T to remove output dependence
T(i) = X(i) / s
X renamed to X1 to remove antidependence
X1(i) = X(i) + s
Z(i) = T(i) + s
4 Y(i) = s - T(i)
10 continue

After the loop the variable X has been renamed X1. In code that follows the
loop, the compiler can simply replace the name X by X1. Renaming does not
require an actual copy operation; it can be done by substituting names or by reg-
ister allocation.

Besides deciding which loops are vectorizable, the compiler must generate
strip-mining code and allocate vector registers. Most vectorization transforma-
tions are done at the source level, although some optimizations involve coordi-
nating high-level source transformations with lower-level, machine-dependent
transformations. Efficient allocation of vector registers is such an optimization
and is perhaps the most difficult optimization—one that many vectorizing com-
pilers do not attempt.

Effectiveness of Vectorization Techniques

Two factors affect the success with which a program can be run in vector
mode. The first factor is the structure of the program itself: do the loops have
true data dependences, or can they be restructured so as not to have such depen-
dences? This factor is influenced by the algorithms chosen and, to some extent,
how they are coded. The second factor is the capability of the compiler. While
no compiler can vectorize a loop where no parallelism among the loop iterations
exists, there is tremendous variation in the ability of compilers to determine
whether a loop can be vectorized.

As an indication of the level of vectorization that can be achieved in scientific
programs, let's look at the vectorization levels observed for the Perfect Club
benchmarks, discussed in Section 2.7 of Chapter 2. These benchmarks are large,
real scientific applications. Figure 7.12 (page 376) shows the percentage of
floating-point operations in each benchmark and the percentage executed in
vector mode on the CRAY X-MP. The wide variation in level of vectorization
has been observed by several studies of the performance of applications on

INTEL Ex.1035.407

376 7.5 Compiler Technology for Vector Machines

vector machines. While better compilers might improve the level of
vectorization in some of these programs, most will require rewriting to achieve

significant increases in vectorization. For example, let’s look at our version of
the Spice benchmark in detail. In Spice with the input chosen we found that only

3.7% of the floating-point operations are executed in vector mode on the CRAY
X-MP, and the vector version runs only 0.5% faster than the scalar version.

Clearly, a new program or a significant rewrite will be needed to obtain the

benefits of a vector machine on Spice.

Benchmark name FP operations FP operations executed in
vector mode

-ADM 23% 68%
DYFESM 26% 95%
FLO52 41% 100%
MDG 28% 27%
MG3D 31% 86%
OCEAN 28% 58%
QCD 14% 1%
SPICE 16% 7%
TRACK 9% v 23%
TRFD » : 22% 10%

FIGURE 7.12 Level of vectorization among the Perfect Club benchmarks when
executed on the CRAY X-MP. The first column contains the percentage of operations that
are floating point, while the second contains the percentage of FP operations executed in
vector instructions. Note that this run of Spice with different inputs shows a higher
vectorization ratio.

There is also tremendous variation in how well compilers do in vectorizing
programs. As a summary of the state of vectorizing compilers, consider the data
in Figure 7.13, which shows the extent of vectorization for different machines
using a test suite of 100 hand-written FORTRAN kernels. The kernels were
designed to test vectorization capability and can all be vectorized by hand; we
will see several examples of these loops in the Exercises.

INTEL Ex.1035.408

Vector Processors

377

7.6 |

Machine Compiler » Completely Partially Not
vectorized vectorized vectorized

Ardent Titan-1 FORTRAN V1.0 62 6 32

CDC CYBER- VAST-2 V221 62 5 33

205

Convex C-series FC5.0 69 5 26

CRAY X-MP CFT77 V3.0 69 3 28

CRAY X-MP CFT V1.15 50 1 49

CRAY-2 CFT2 V3.la 27 1 72

ETA-10 FTN 77 V1.0 62 7 31

Hitachi FORT77/HAP 67 4 29

S$810/820 V20-2B

IBM 3090/VF VS FORTRAN 52 4 44
V2.4

NEC S$X/2 FORTRAN77 / 66 5 29
SX V.040

Stellar GS 1000 F77 prerelease 48 11 41

FIGURE 7.13 . Result of applying vectorizing compilers to the 100 FORTRAN test
kernels. For each machine we indicate how many loops were completely vectorized,
partially vectorized, and unvectorized. These loops were collected by Callahan, Dongarra,
and Levine [1988]. The machines shown are those mentioned at some point in this chapter.
Two different compilers for the CRAY X-MP show the large dependence on compile

technology.

Enhancing Vector Performance

Three techniques for improving the performance of vector machines are
discussed in this section. The first deals with making a sequence of dependent
vector operations run faster. The other two deal with expanding the class of
loops that can be run in vector mode. The first technique, chaining, originated in
the CRAY-1, but is now supported on many vector machines. The techniques
discussed in the second and third parts of this section are taken from a variety of
machines and are, in general, more extensive than the capabilities provided on
the CRAY-1 or CRAY X-MP architectures.

Chaining—The Concept of Forwarding Extended

to Vector Registers

Consider the simple vector sequence

MULTV
ADDV

V1,V2,V3
v4,V1,V5

INTEL Ex.1035.409

378 ' 7.6 Enhancing Vector Performance

In DLXYV as it currently stands these two instructions run in time equal to
Tejement * Vector length + Start-up timeappy + stall time + Start-up timepyLTy
=2 * Vector length+ 6 +4 +7
= 2 * Vector length + 17

Because of the dependence, the MULTV must complete before the ADDV can
begin. However, if the vector register, V1 in this case, is treated not as a single
entity but as a group of individual registers, then the pipelining concept of for-
warding can be extended to work on individual elements of a vector. This idea,
which will allow the ADDV to start earlier in this example, is called chaining.
Chaining allows a vector operation to start as soon as the individual elements of
its vector source operand become available: The results from the first functional
unit in the chain are forwarded to the second functional unit. (Of course, they
must be different units to avoid using the same unit twice per clock!) In a
chained sequence the initiation rate is equal to one per clock cycle if the func-
tional units in the chained operations are all fully pipelined. Even though the
operations depend on one another, chaining allows the operations to proceed in
parallel on separate elements of the vector. A sustained rate (ignoring start-up)
of two floating-point operations per clock cycle can be achieved, even though
the operations are dependent! :

The total running time for the above sequence becomes

Vector length + Start-up timeappy + Start-up timepmypTy

Figure 7.14 shows the timing of a chained and an unchained version of the
above pair of vector instructions with a vector length of 64. In Figure 7.14, the
total time for chained operation is 77 clock cycles. With 128 floating-point
operations done in that time, 1.7 FLOPs per clock cycle are obtained, versus a
total time of 145 clock cycles or 0.9 FLOPs per clock cycle for the unchained

version.
We will see in Section 7.7 that chaining plays a major role in boosting vector
performance.
7, 64 48 84
i Total = 145
Unchained Moy 1T ADDV nl
|'77 64 .
Chained MULTV
6 64
H————] Total = 77
ADDV

FIGURE 7.14 Timings for a sequence of dependent vector operations appv and

MULTV, both unchained and chained. The 4—clock-cycle delay comes from a stall for
dependence, described earlier; the 6— and 7—clock-cycle delays are the latency of the

adder and multiplier.

INTEL Ex.1035.410

Vector Processors . ‘ 379

Conditionally Executed Statements
and Sparse Matrices '

In the last section, we saw that many programs only achieved low to moderate
levels of vectorization. Because of Amdahl's Law, the speedup on such pro-
grams will be very limited. Two reasons why higher levels of vectorization are
not achieved are the presence of conditionals (if statements) inside loops and the
use of sparse matrices. Programs that contain if statements in loops cannot be
run in vector mode using the techniques we have discussed so far because the if
statements introduce control flow into a loop. Likewise, sparse matrices cannot
be efficiently implemented using any of the capabilities we have seen so far; this
is a major factor in the lack of vectorization for Spice. This section discusses
techniques that allow programs with these structures to execute in vector mode.
Let's start with conditional execution.
Consider the following loop:

do 100 i = 1, 64
if (A(i) .ne. 0) then
_ A(i) = A(i) - B(i)
endif
100 continue

This loop cannot normally be vectorized because of the conditional execution of
the body. However, if the inner loop could be run for the iterations for which
A1) # 0, then the subtraction could be vectorized.

Vector-mask control helps us do this. The vector-mask control takes a
Boolean vector of length MVL. When the vector-mask register is loaded with
the result of a vector test, any vector instructions to be executed operate only on
the vector elements whose corresponding entries in the vector-mask register are
1. The entries in the destination vector register that correspond to a 0 in the mask
register are unaffected by the vector operation. Clearing the vector-mask register
sets it to all 1s, making subsequent vector instructions operate on all vector ele-
ments. The following code can now be used for the above loop, assuming that
the starting addresses of A and B are in Ra and Rb respectively:

LV V1,Ra ;load vector A into V1

v V2,Rb ;load vector B

1D FO, #0 ;load FP zero into FO

SNESV FO,Vl ;sets the VM to 1 if V1 (1i)#FO0
SUBV V1,V1,VZ2 ;subtract under vector mask
CVM J ;set the vector mask to all 1s
SV Ra,Vvl ;store the result in A :

INTEL Ex.1035.411

380 7.6 Enhancing Vector Performance

Most modern vector machines provide vector-mask control. The vector-mask
capability described here is available on some machines, but others allow the use
of the vector mask with only a small number of instructions.

Using a vector-mask register does, however, have disadvantages. First,
execution time is not decreased, even though some elements in the vector are not
operated on. Second, in some vector machines the vector mask serves only to
disable the storing of the result into the destination register, and the actual opera-
tion still occurs. Thus, if the operation in the above example were a divide rather
than a subtract and the test was on B rather than A, false floating-point
exceptions might result since the operation was actually done. Machines that
mask the operation as well as the result store avoid this problem.

Now, let's turn to sparse matrices; later we will show another method for
handling conditional execution. We have dealt with vectors in which the ele-
ments are separated by a constant stride. If an application called for a sparse
matrix, we might see code that looks like:

do 100 1 = 1,n
100 A(K(1)) = A(K(1)) + C(M(1))

This code implements a sparse vector sum on the arrays A and C, using index
vectors K and M to designate to the nonzero elements of A and C. (A and C
must have the same number of nonzero elements—n of them.) Another common
representation for sparse matrices uses a bit vector to say which elements exist,
and often both representations exist in the same program. Sparse matrices are
found in many codes, and there are many ways to implement them, depending
on the data structure used in the program.

The primary mechanism for supporting sparse matrices is scatter-gather
operations using index vectors. A gather operation takes an index vector, and
fetches the vector whose elements are at the addresses given by adding a base
address to the offsets given in the index vector. The result is a nonsparse vector
in a vector register. After these elements are operated on in dense form, the
sparse vector can be stored in expanded form by a scatter store, using the same
index vector. Hardware support for such operations is called scatter-gather and
appeared on the CDC STAR-100. The instructions LVI (Load Vector Indexed)
and SVI (Store Vector Indexed) provide these operations in DLXV. For exam-
ple, assuming that Ra, Rc, Rk, and Rm contain the starting addresses of the vec-
tors in the above sequence, the inner loop of the sequence can be coded with
vector instructions such as:

LV Vk,Rk ;load K

LVI Va, (Ra+Vk) ;load A(K(I))
LV Vm, Rm ;load M

LVI Vg, (Rc+Vm) ;load C(M(I))
ADDV Va,Va,Vc ;add them

SVI (Ra+Vk) ,Va ;store A(K(I))

INTEL Ex.1035.412

Vector Processors 381

This technique allows code with sparse matrices to be run in vector mode.
The source code above would never be automatically vectorized by a compiler
because the compiler cannot know that the elements of K are distinct values, and
thus that no dependences exist. Instead, a programmer directive would tell the
compiler that it could run the loop in vector mode.

A scatter/gather capability is included on many of the newest super-
computers. Such operations rarely run at one element per clock, but they are still
much faster than the alternative, which may be a scalar loop. If the sparsity
properties of a matrix change, a new index vector must be computed. Many
machines provide support for computing the index vector quickly. The CVI
(Create Vector Index) instruction in DLXV creates an index vector given a stride
(m), where the values in the index vector are 0,m,2*m,...,63*m. Some machines
provide an instruction to create a compressed index vector whose entries cor-
respond to the positions with a 1 in the mask register. Other vector architectures
provide a method to compress a vector. In DLXV, we define the CVI instruction

~ to always create a compressed index vector using the vector mask. When the
vector mask is all ones a standard index vector will be created.

The indexed loads/stores and the CVI instruction provide an alternative
method to support conditional execution. Here is a vector sequence that imple-
ments the loop we saw on page 379:

LV V1, Ra ;load vector A into V1

LD FO, #0 ;load FP zero into FO

SNESV FO0,V1 ;sets the VM to 1 if V1 (i)#FO
ADDI Rc, #8 }

CVI V2,Rc ;generates indices in V2

POP R1,VM ;£find the number of 1’s in VM
MOVI2S VLR,R1 . ;load vector length register
CVM -

LVI V3, (Ra+V2) ;load the nonzero A elements
LVI . V4, (Rb+V2) ;load corresponding B elements
SUBV vV3,V3,v4 ;do the subtract

SVI (RatV2),V3 ;store A back

Whether the implementation using scatter/gather is better than the condition-
ally executed version depends on the frequency with which the condition holds
and the cost of the operations. Ignoring chaining, the running time of the first
version (on page 379) is 5x + ¢;. The running time of the second version using
indexed loads and stores with a running time of one element per clock is 4n +
4%fxn + ¢y, where fis the fraction of elements for which the condition is true
(i.e., A # 0). If we assume that the values of ¢; and ¢, are comparable, or that
they are much smaller than:z, we can find when this second technique is better.

Time; = 5n

Time; = 4n + 4xfkn

INTEL Ex.1035.413

382 7.6 Enhancing Vector Performance

We want Time; = Timey, so

S5n> 4n + 4xfxn
1
= >
427

That is, the second method is faster if less than one-quarter of the elements are
nonzero. In many cases the frequency of execution is much lower. If the index
vector can be reused, or if the number of vector statements within the if state-
ment grows, the advantage of the scatter/gather approach will increase sharply.

Vector Reduction

As we saw in Section 7.5, some loop structures are not easily vectorized. One
common structure is a reduction—a loop that reduces an array to a single value
by repeated application of an operation. This is a special case of a recurrence. A
common example occurs in dot product:

dot = 0.0
do 10 i=1,64
10 dot = dot + A(i) % B(i)

This loop has an obvious loop-carried dependence (on dot) and cannot be vec-
torized in a straightforward fashion. The first thing a good vectorizing compiler
would do is split the loop to separate out the vectorizable portion and the recur-
rence and perhaps rewrite the loop as:

do 10 i=1,64
10 dot (i) = A(i) = B(1)

do 20 i=2,64
20 dot (1) = dot (1) 4+ dot (i)

The variable dot has been expanded into a vector; this transformation is called
scalar expansion.

One simple scheme for compiling the loop with the recurrence is to add -
sequences of progressively shorter vectors—two 32-element vectors, then two
16-clement vectors, and so on. This technique has been called recursive
doubling. It is faster than doing all the operations in scalar mode. Many vector
machines provide hardware assist for doing reductions, as we will see next.

Show how the FORTRAN code would look for execution of the second loop in

Example | 4 ode fragment above using recursive doubling.

INTEL Ex.1035.414

Vector Processors 383

Answer Here is the code:

len = 32
do 100 j=1,6
do 10 i=1, len
10 dot (i) = dot (i) + dot(i+len)
len = len / 2

100 continue

When the loop is done, the sum is in dot(1).

In some vector machines, the vector registers are addressable, and another
technique, sometimes called partial sums, can be used. This is discussed in
Exercise 7.12. There is an important caveat in the use of vector techniques for

. reduction. To make reduction work, we are relying on the associativity of the
operator being used for the reduction. Because of rounding and finite range,
however, floating-point arithmetic is not strictly associative. For this reason,
most compilers require the programmer to indicate whether associativity can be
used to more efficiently compile reductions.

7.7 | Putting It All Together: Evaluating the
Performance of Vector Processors

In this section we look at different measures of performance for vector machines
and what they tell us about the machine. To determine the performance of a
machine on a vector problem we must look at the start-up cost and the sustained
rate. The simplest and best way to report the performance of a vector machine
on a loop is to give the execution time of the vector loop. For vector loops peo-

ple often give the MFLOPS (Millions FLoating point Operations Per Second)
rating rather than execution time. We use the notation R,, for the MFLOPS rating

on a vector of length n. Using the measurements T, (time) or R,, (rate) is equiva-
lent if the number of FLOPs is agreed upon (see Chapter 2, Section 2.2, page 35
for an extensive discussion on MFLOPS). In any event, either measurement
should include the overhead.

In this section we examine the performance of DLXV on our SAXPY loop by
looking at performance from different viewpoints. We will continue to compute
the execution time of a vector loop using the equation developed in Section 7.4.
At the same time, we will look at different ways to measure performance using
the computed time. The constant values for Tjoop and Tpase used in this section

introduce some small amount of error, which will be ignored.

INTEL Ex.1035.415

384 77 Putting It All Together: Evaluating the Performance of Vector Processors

Measures of Vector Performance

Because vector length is so important in establishing the performance of a
machine, length-related measures are often applied in addition to time and
MFLOPs. These length-related measures tend to vary dramatically across differ-
ent machines and are interesting to compare. (Remember, though, that time is
always the measure of interest when comparing the relative speed of two
machines.) Three of the most important length-related measures are:

R..—The MFLOPS rate on an infinite-length vector. Although this measure may
be of interest when estimating peak performance, real problems do not have un-
limited vector lengths, and the overhead penalties encountered in real problems
will be larger. (R, is the MFLOPS rate for a vector of length n.)

N1 ,,—The vector length needed to reach one-half of R_. This is a good measure
of the impact of overhead.

N,—The vector length needed to make vector mode faster than scalar mode.
This measures both overhead and the speed of scalars relative to vectors.

Let’s look at these measures for our SAXPY problem running on DLXV.
When chained, the inner loop of the SAXPY code looks like this (assuming that
Rx and Ry hold starting addresses):

v V1,Rx ;load the vector X

MULTSV Vv2,51,V1 ;vectorsxscalar-chained to LV X
v V3,Ry ;vector load Y

ADDV v4,v2,V3 ;sum aX + Y, chained to LV Y
SV Ry, V4 ;store the vector Y

Recall our performance equation for the execution time of a vector loop with
n elements, T, :

n
Ty= Toase + I_MVL_] * (Tloop + Tstart) + 7 * T element

Since there are three memory references and only one memory pipeline, the
value of Tejement must be at least 3, and chaining allows it to be exactly 3. If

Telement Were a complete indication of performance, the loop would run at a

MFLOPS rate of % * clock rate (since there are 2 FLOPS per iteration). Thus,

based only on the Tejemen: time, an 80-MHz DLXV would run this loop at 53
MFLOPS. But the Linpack benchmark, whose core is this computation, runs at
only 13 MFLOPS (without some sophisticated compiler optimization we discuss
in the Exercises) on an 80-MHz CRAY-1, DLXV’s cousin! Let’s see what
accounts for the difference.

INTEL Ex.1035.416

Vector Processors 385

The Peak Performance of DLXV on SAXPY

First, we should determine what the peak pcrfblmancc, R, really is, since we
know it differs from the ideal 53-MFLOPS rate. Figure 7.15 shows the timing
within each block of strip-mined code.

Operation Starts at clock Completes at clock Comment
number number

v V1, Rx 0 12+64=76 Simple latency

MULTV a,V1 12+1=13 13+7+64=84 Chained to LV

LV V2,Ry 76 +1=177 77+ 12+ 64 =153 Starts after first LV done (memory
contention)

ADDV V3,V1,Vv2._ 77+1+12=90 90 +6+64=160 Chained to MULTV and LV

SV Ry, V3 160 + 1 + 4 =165 165 + 12 + 64 = 241 Must wait on ADDV; not chained
(memory contention)

FIGURE 7.15 The SAXPY loop when chained in DLXV. There are three distinct types of delays: 4—clock-cycle delays
when a nonchained dependence occurs, latency delays that occur when waiting for a result for the pipeline (6 for add, 7
for multiply, and 12 for memory access), and delays due to contention for the memory pipeline. The last cause is what
makes the time per element at least 3 clocks.

From the data in Figure 7.15 and the value of Tejement, We know that
Tstart = 241 — 64 * Tejemen; = 241 — 192 = 49

This value is equal to the sum of the latencies of the functional units: 12 + 7 +
12+ 6 +12=49,
Using MVL = 64, Tyoop = 15, Tpase = 10, and Tejement = 3 in the performance.

equation, the time for an n-element operation is

T,

i

n
10 + |—64—|*(15+49)+ 3n

T, 10+n+64+3n=4n+74

It

The sustained rate is actually over 4 clock cycles per iteration, rather than the
theoretical rate of 3 clocks per iteration, which ignores overhead. The major part
of the difference is the cost of the overhead for each block of 64 elements. The

basic start-up overhead, Typage, adds only '1;19 to the time for each element. This

overhead disappears with long vectors.
We can now compute R for an 80-MHz clock as

R = lim (g)erations per iteration * Clock rate)
N Clock cycles per iteration

INTEL Ex.1035.417

386

7.7 Putting It All Together: Evaluating the Performance of Vector Processors

The numerator is ind¢pendent of n, hence

_ Operations per iteration * Clock rate

o0 —

lim (Clock cycles per iteration)

n—3c0
n

. T
lim (Clock cycles per iteration) = lim (—") =
. n—>c0 n n—yoo

h—yo0

_ 2% 80 MHz

R, .

=40 MFLOPS

Sustained Performance of Linpack on DLXV

The Linpack benchmark is a Gaussian elimination on a 100x100 matrix. Thus,
the vector element lengths range from 99 down to 1. A vector of length % is used
k times. Thus, the average vector length is given by:

Now we can obtain an accurate estimate of the performance of SAXPY using a
vector length of 66.

Teg = 10+2%(15+49) +66 * 3 =10+ 128 + 198 =336

Reg = gf%_g_@ MFLOPS = 31.4 MFLOPS

In reality, Linpack does not spend all its time in the inner loop. The bench-
mark’s actual performance can be found by taking the weighted harmonic mean
of the MFLOPS ratings inside the inner loop (31.4 MFLOPS) and outside that
loop (about 0.5 MFLOPS). We can compute the weighting factors by knowing
the percentage of the time inside the inner loop after vectorization.

The percentage in the inner loop after vectorization can be obtained using
Amdahl's Law if we know the percentage in scalar and the speedup from vec-
torization. In scalar mode, about 75% of the execution time is spent in the inner
loop, and the speedup from vectorization is about 5 times. With this information
the percentage of time in the inner loop after vectorization can be computed:

O’SLS +0.25

i

Total relative time after vectorization

0.15+0.25=0.40

Il

INTEL Ex.1035.418

Vector Processors ’ 387

Percentage of time in inner loop after vectorization = *8%0 =37.5%

The remaining 62.5% of the time is spent outside the main loop. Thus, the
overall MFLOPS rating is

Percentageinner ¥ MFLOPSinner + Percentagegther * MFLOPSgther

=37.5% * 31.4 + 62.5% * 0.5 = 12.1 MFLOPS

This is comparable to the rate at which the CRAY-1 runs this benchmark.

What is Ny, for just the inner loop of SAXPY for DLXV with an 80-MHz
Example clock?

Answer | Using R_ as the peak rate, we want to know the vector length that will achieve
about 20 MFLOPS. So,

- FLOPS |, Clocks

Clock cycles Iteration Second
Iteration FLOPS
Second
_ 2*80MHz _ 3
~ 20 MFLOPS

Hence, a rate of 20 MFLOPS means that a loop iteration completes every 8
T
clock cycles on average, or that-nﬂ = 8. Using our equation and assuming that n

<64,
T,=10+1%64+3%n
Substituting for T, in the first equation, we obtain
8n =T74+3%*n

S5n

Il

74
14.8

n

So N; , = 15; that is, a vector of length 15 gives approximately one-half the peak
performance for the SAXPY loop on DLXV.

What is the vector length, N, such that the vector operation runs faster than the

Example scalar?

INTEL Ex.1035.419

388 : 7.7 Putting It All Together: Evaluating the Performance of Vector Processors

Answer | Again, we know that N, < 64. The time to do one iteration in scalar mode can be
estimated as 10 + 12 + 12 + 7 + 6 = 47 clocks, where 10 is the estimate of the
loop overhead, known to be somewhat less than the strip-mining loop overhead.

In the last problem, we showed that this vector loop runs in vector mode in time
T, = 74 + 3*n clock cycles for a vector of length < 64. Therefore,

74+3n = 47n
L T4

T 44

N, =2

v

For the SAXPY loop, vector mode is faster than scalar as long as the vector has
at least two elements. This number is surprisingly small, as we will see in the
next section (Fallacies and Pitfalls).

SAXPY Performance on an Enhanced DLXV

SAXPY, like many vector problems, is memory limited. Consequently, per-
formance could be improved by adding more memory-access pipelines. This is
the major architectural difference between the CRAY X-MP and the CRAY-1.
The CRAY X-MP has three memory pipelines, compared to the CRAY-1’s sin-
gle memory pipeline, and the X-MP has more flexible chaining. How does this
affect performance?

What would be the value of T¢g for SAXPY on DLXV if we added two more

Example memory pipelines?

Answer | Figure 7.16 is a version of Figure 7.15 (page 385), adjusted for multiple memory

pipelines.

Operation Starts at clock number Completes at clock Comment
number

LV V1,Rx 0 12+64=76 Simple latency
MULTV a,V1 12+1=13 13+7+64=84 Chained to LV
iAY V2,Ry 2 2+12+64=178 Starts immediately
ADDV V3,V1,V2 13 +1+7=21 21+6+64=91 Chained to MULTV and LV
sV Ry, V3 21+1+6=28 28+12+64=104 Chained to ADDV

FIGURE 7.16 The SAXPY loop when chained in DLXV with three memory pipelines. The only delays are latency
delays that occur when waiting for a result for the pipeline (6 for add, 7 for multiply, and 12 for each memory access).

INTEL Ex.1035.420

Vector Processors ' 389

With three memory pipelines, the performance is greatly improved. Here’s
our standard performance equation:

n
Tp= Thase + I_MVL—I * (Tloop + Tstart) + 7 * Telement
With three memory pipelines the value of Tejemen: becomes 1, so that
Tstart =104 — 64 * Tejement = 104 — 64 = 40

The reduction in stalls reduces the start-up penalty for each sequence. The
values of Tgop and Thyse, 15 and 10, remain the same. Therefore, for an average

vector length of 66, we have:

Tes

66
Thase + |_6_4—| * (Tloop + Tstart) + 66 * Telement

Tee = 10+2*(15+40)+66 * 1 =186

With three memory pipelines, we have reduced the clock-cycle count for sus-
tained performance from 336 to 186, a factor of 1.8. Note the effect of Amdahl’s
Law: We improved the theoretical peak rate, as measured by Tejement, by a factor
of 3, but only achieved an overall improvement of a factor of 1.8 in sustained
performance. Because the speedup outside the inner loop is likely to be less than
1.8, the overall improvement in run time for the benchmark will also be less.

Another improvement could come from allowing the start-up of one
loop iteration before another completes. This requires that one vector operation
be allowed to begin using a functional unit, before another operation has com-
pleted. This complicates the instruction issue logic substantially, but has the ad-
vantage that the start-up overhead will only occur once, independent of the vec-
tor length. On a long vector the overhead per block (Tioop + Tstart) can be com-
pletely amortized. In this way a machine with vector registers can have both low
start-up overhead for short vectors and high peak performance for very long
vectors.

What would be the values of R and Tgg for SAXPY on DLXYV if we added two

Example | .. memory pipelines and allowed the strip-mining and start-up overhead to be
fully overlapped? '
Answer li Operations per iteration * Clock rate)
R, =11m .
Clock cycles per iteration

n—yo

i N T
lim (Clock cycles per iteration) = lim (_ﬂ)
n—ye0 n—soo N1

INTEL Ex.1035.421

390 © 7.7 Putting It All Together: Evaluating the Performance of Vector Processors

Since T,=n+40+ 10+ 15=n+ 65,
lim (E) _ lim (——’” 65) =1
n—oeo M7 pse N M

_2*80MHz

. = 160 MFLOPS

R
Thus, adding the extra memory pipelines and more flexible issue logic yields an
improvement in peak performance of a factor of 4. However, Tg¢ = 131, so for
shorter vectors, the sustained performance improvement is about 40%.

In summary, we have examined several measures of vector performance.
Theoretical peak performance can be calculated based purely on the value of
Telement a$

Number of FLOPS per iteration * Clock rate
Telement

By including the loop overhead, we can calculate values for peak performance
for an infinite-length vector (R..), and also for sustained performance R, for a

vector of length n, which is computed as:

Number of FLOPS per iteration * n * Clock rate

R,= T,

Using these measures we also can find Ny and Ny, which give us another way
of looking at the start-up overhead for vectors and the ratio of vector to scalar
speed. A wide variety of measures of performance of vector machines are useful
in understanding the wide range of performance that applications may see on a
vector machine. =

~

7.8 | Fallacies and Pitfalls

Pitfall: Concentrating on peak performance and ignoring start-up overhead.

Early vector machines such as the TI ASC and the CDC STAR-100 had long
start-up times. For some vector problems, N, could be greater than 100! Today,
the Japanese supercomputers often have higher sustained rates than the Cray
Research machines. But with start-up overheads that are 50-100% higher, the
faster sustained rates often provide no real advantage. On the CYBER-205 the
start-up overhead for SAXPY is 158 clock cycles, substantially increasing the
break-even point. With a single vector unit, which contains 2 memory pipelines,
the CYBER-205 can sustain a rate of 2 clocks per iteration. The time for
SAXPY for a vector of length # is therefore roughly 158 + 2x. If the clock rates

INTEL Ex.1035.422

Vector Processors 391

of the CRAY-1 and the CYBER-205 were identical, the CRAY-1 would be
faster until » > 64. Because the CRAY-1 clock is also faster (even though the
205 is newer), the crossover point is over 100. Comparing a four-vector-pipeline
CYBER-205 (the maximum-size machine) to the CRAY X-MP that was deliv-
ered shortly after the 205, the 205 completes two results per clock cycle—twice
as fast as the X-MP. However, vectors must be longer than about 200 for the
CYBER-205 to be faster. The problem of start-up overhead has been the major
difficulty for the memory—memory vector architectures.

Pitfall: Increasing vector performance, without comparable increases in
scalar performance.

This is another area where Seymour Cray rewrote the rules. Many of the early
vector machines had comparatively slow scalar units (as well as large start-up
overheads). Even today, machines with higher peak vector performance, can be -
outperformed by a machine with lower vector performance but better scalar
performance. Good scalar performance keeps down overhead costs (strip min-
ing, for example) and reduces the impact of Amdahl’s Law. A good example of
this comes from comparing a fast scalar machine and a vector machine with
lower scalar performance. The Livermore FORTRAN kernels are a collection of
24 scientific kernels with varying degrees of vectorization (see Chapter 2; Sec-
tion 2.2). Figure 7.17 shows the performance of two different machines on this
benchmark. Despite the vector machine's higher peak performance, its low scalar
performance makes it slower than a fast scalar machine. The next fallacy is
closely related.

Machine Minimum rate for any loop = Maximum rate for any loop Harmonic mean of all 24 loops
MIPS M/120-5 - 0.80 MFLOPS 3.89 MFLOPS 1.85 MFLOPS
Stardent-1500 0.41 MFLOPS 10.08 MFLOPS 1.72 MFLOPS

FIGURE 7.17 Performance measurements for the Livermore FORTRAN kernels on two different machines. Both
the MIPS M/120-5 and the Stardent-1500 (formerly the Ardent Titan-1) use a 16.7-MHz MIPS R2000 chip for the main
CPU. The Stardent-1500 uses its vector unit for scalar FP and has about half the scalar performance (as measured by the
minimum rate) of the MIPS M/120, which uses the MIPS R2010 FP chip. The vector machine is more than a factor of 2.5
times faster for a highly vectorizable loop (maximum rate). However, the lower scalar performance of the Stardent-1500
negates the higher vector performance when total performance is measured by the harmonic mean on all 24 loops.

Fallacy: The scalar performance of the best supercomputers is low.

The supercomputers from Cray Research have always had good scalar perfor-
mance. Measurements of the CRAY Y-MP running (the nonvectorizable) Spice
benchmark show this. When our Spice benchmark is run on the CRAY Y-MP in
scalar mode it executes 665 million instructions, with a CPI of 4.1. By compari-
son, the DECstation 3100 executes 738 million instructions with a CPI of 2.1.

INTEL Ex.1035.423

392 : 7.8 Fallacies and Pitfalls

Although the DECstation uses fewer cycles, the Y-MP uses fewer instructions
and is much faster overall, since it has a clock cycle one-tenth as long.

Fallacy: You can get vector performance without providing memory band-
width.

As we saw with the SAXPY loop, memory bandwidth is quite impor-
tant. SAXPY requires 1.5 memory references per floating-point operation, and
this ratio is typical of many scientific codes. Even if the floating-point operations
took no time, a CRAY-1 could not increase the performance of the vector
sequence used, since it is memory limited. Recently, the CRAY-1 performance
on Linpack has jumped because the compiler used clever transformations to
change the computation so that values could be kept in the vector registers. This
lowered the number of memory references per FLOP and improved the perfor-
mance by nearly a factor of 2! Thus, the memory bandwidth on the CRAY-1
became sufficient for a loop that formerly required more bandwidth.

7.91 Concluding Remarks

In the late 1980s rapid performance increases in efficiently pipelined scalar
machines lead to a dramatic closing of the gap between vector supercomputers,
costing millions of dollars, and fast, pipelined, VLSI microprocessors costing
less than $100,000. The basic reason for this was the rapidly decreasing CPI of
the scalar machines.

For scientific programs, an interesting counterpart to CPI is clock cycles per
FLOP, or CPF. We saw in this chapter that for vector machines this number was
typically in the range of 2 (for a CRAY X-MP style machine) to 4 (for a CRAY-
1 style machine). In the last chapter, we saw that the pipelined machine varied
from about 6 (for DLX) down to about 2.5 (for a superscalar DLX with no
memory system losses running a SAXPY-type loop).

Recent trends in vector machine design have focused on high peak-vector
performance and multiprocessing. Meanwhile, high-speed scalar machines con-
centrate on keeping the ratio of peak to sustained performance near one. Thus, if
the peak rates advance comparably, the sustained rates of the scalar machines
will advance more quickly, and