
Alacritech, Ex. 2034 Page 1

Server Network Scalability and TCP Offload

Doug Freimoth, Elbert Ho, Jason LaVoie, Ronald Mraz,

Erich Nahum, Prashant Pradhan. .lohn Tracey
IBM I J. Ill/arson Research Center

Hawthorne, NY, 10532
{olmfreim olloert, lavoie, ntraz, nnhum, pprad‘nan , traceyfz Wile . ibm. com

Abstrect

Server network porl’onnancc is increasingly dominated
by poorly scaling operations such as 1/0 bus crossingsl
cache misses and interrupts. Their overhead prevents

' performance from scaling even with increased CPU, link
or if!) has bandwidths, These operations can be reduced
by redesigning the host/adapter interface to exploit addi-
tional processing on the adapter, Offloadlng processing
to the adapter is beneficial not only because it allows
more cycles to be applied but also ofthc changes it enu
ables in the host/adapter interface. As opposed to other
approaches such as RDMA, TCP offload provides bene-
fits without requiring changes to either the transport pro—
Tocol or API.

We have designed a new liner/adapter interface that
exploits olfioeded processing to reduce poorly scaling
operations. We have implemented a prototype of the
design including both host and adapter software com-
ponents, Exocrimental evaluation with simple network
benchmarks indicates our design significantly reduces
{0 bus crossing and iroldS promise to reduce other

poorly scaling, operations as well.

1 Introduction

Server network throughput is not scaling with CPU
speeds. Various: studies have reported CPU scaling then
ors of43% [23}, 60% {l 5]. and 33% to 68% [22] which
“all short of an ideal scaling of 100%. in this paper.
we Show that even increaning CPU spec-d5 and link and
ans bandwidths; does not generate a commensurate in-
crease in server network throughput. This lack of scale—
aility points to an increasing tendency for server network
hroughput to become the key bottleneck limiting syetcm
aerformancei lt motivates the need for an alternative do

Sign with better scalability“

Server network scalability is limited by operations
ieavlly used in current designs that themselves do not
scale well, most notably bug erosnings, cache misses and
'nterrupts. Any significant improvement in scalability
meet reduce these operations, Given that the problem is
one of scalability and not Simply performance, it will nor
be solved by faster processors. Faster processors merely

expend more cycles on poorly scaling operations.
Reeearch in server network performance over the

years has yielded significant improvements including:
integrated cheeksnm and copy, ohecksmn offload, copy
avoidance, interrupt coalescing. fast path protocol pro~
massing. efficient state lookup, efficient timer manage-
ment and segmentation oillood, eke large send. Ant
other technique, full TCP offload, hart been pursued for
many years, Work on olfioarl has generercrl both promis~
ing and less than compelling results ll, 38, 40, 42].
Good performance data and analysis on offload is scarce.

Many improvements in server scalability were (le-
scribed more than fifleen years ago by Clark et al. [9}.
The atiihors demonstrated that the overhead incurred by
network protocol processing, per are, is small compared
to both penbyte {memory access) costs; and operating
system overhead, such as buffer and timer management
This motivated work to reduce or eliminate data touch-

ing operations}, such as cop-lee, and to improve the ef-
ficiency of operating system services heavily used by
the network stack. Later work [19] showed that over-
head of nonvdata touching operations is, in fact, signifim
cant for real workloads, which tend to feature a prepon-
derance of $1113“ messages. Today, per—byte overhead.
has been greatly reduced through checksnm offload and
zero~copy send. This leaves per—packer overhead, oper-
ating system services and zero-copy receive as the main
remaining areas for further improvement.

Nearly all of the enhancements described by Clark or
al. have seen widespread adoption. The one notable ex-
ception is “an efficient network interlnce.“ This is a net—
work adapter with a fast general-purport: processor that
provides a much more efficient interface to the network
than the current franiobzmed interface devised decades

ago. In this paper, we describe an effort to develop a
much more efficient network interface and to make this

enhancement a reality as well.

Our work is pursued in the context of TC? for three
reasons: l) TCP’S enormous installed base, 2'} the
methodology employed with TCP will transfer to other
protocols, and 3) the expectation that key new arehitec»
rural Features, such as zero copy receive, will ultimately
demonstrate their viability with TCP.

ALA07620802

Alacritech, Ex. 2034 Page 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Alacritech, Ex. 2034 Page 2

The work described here is part of a larger effort to
improve server network scalability. We began by anat-
lyzing server network performance and recognizing, as
others have. a significant scalability problem. Next, we
identified specific operations to be the cause. specifi-
cally: bus crossings. cache misses. and interrupts. We
formulated a design that reduces the impact of these op-
erations. This design exploits additional processing at
the network adapter, Le. offload, to improve the eili»
cicncy oftlie host/’adaotcr interface which is our primary
focus. We have implemented a prototype of the now de‘
sign which consists of host and adapter software com—
ponents and have analyzed the impact of the new design
on bus crossings. Our findings indicate that offload can
substantially decrease bus crossings and holds promise
to reduce other scalability limiting operations such as
cache misses. Ultimately, we intend to evaluate the de-
sign in a cycle—accurate hardware simulator. This will
allow us to comprehensively quantify the impact of den
Sign alternatives on cache misses, interrupts and overall
performance over several generations of hardware.

This. paper is organized as follows. Section 2 pro~
vidcs motivation and background. Section 3 presents
our design. amt the current prototype implementation is
described in Section 4. Section 5 presents our experi—
mental infrastructure and results. Section 6 surveys and
contrasts related work. and Section 7 summarizes our

contributions and plans for future work.

2 Motivation and Background

To provide the proper motivation and background for
our work, we first describe the current best p'rtietices of
techniques and. optimizations for network server perfor—
mance. Using industry standard benchmarks we then
show that, despite these practices. servers are stili not
sealing with CPU speeds via scvemi benchmarks. Since
TC? offload has been a controversial topic in the re,
search community. we review the critiques of otfload,
providing counterarguments to each point. l-‘low TCP of—
fload addresses these scaling issues is described in more
detail in Section 3.

2.1 Current Best Practices

Current higbperformancc servers have adopted many
techniques to maximize oerfotmanee. We provide a
brief overview of them here.

Sendfiie with zero copy. Most operating systems
have a sendfilc or transmitlile one-ration that allowf; send-
ing a file over a socket without copying the contents of
the file into user space. This can have substantial perfor—
mance benefits {30]. However, the benefits are limited to
scnd~side processing: it does not afiect rccoivc~sidc prow
cessing. In addition, it requires the server application to
maintain its data in the kernel, which may not be feasible

for systems such as application servers, which generate
content dynamically.

Checksum offload. Researchers have shown that

calculating the [P cheeksun’r over the. body of the data
can be expensive [E93, Most ltigh-pei'finmnneo adapters
have the ability to perform the l? cizecksum over both
the contents of the data and the TCP/IP headers. This

removes an expensive data~touehing operation on both
send and receive. However, adapter-level checksums
wili not catch errors introduced by transferring data over
the l/O bus, which has led some to advocate caution with
checksum otiioad {41).

Interrupt coalescing. Researchers have shown that
interrupts are costly, and generating an ioterrttpt for each
packet arrival can severely throttle a system [28]. In re»
spouse: adapter vendors have enabled the ability to de—
lay interrupts by a certain amount of time or number of
packets in an effort to batch packcis per interrupt and.
amortize the costs {E43, While effective, it can be diffi-
cult to determine the proper trigger thresholds for firing
interrupts. and large amounts of batching may cause no
acceptabic latency for an individual connection,

Large send/segmentation offload. TCl’flP Erupts»
menters have long known that larger MTU sizes pro-
vide greater efficiency. both in terms of network utiliza-
tion {fewer headers per byte transferred) and in terms
of host CPU utilization {fewer per-packet: operations iuu
curred per byte sent or received). Unfortunately. larger
MTU sizes are not usually available due to Ethernct’s
1516 byte frame size. Gigabit Ethernet provides ‘jumbo
frames” of 9 KB. but these are only useful in. specialized
local environments and cannot be preserved across the
wide—area lntcrnct. As an unproximation, certain operat-
ing systems, such as AIX and Linux, provide large. send
or TC? segmentation offload (T80) Where the TCP/EP
stack interacts Wirh the network device as if it had a large

MTU size. The device in turn segments the larger buffers
into lSlé-byte Ethernet frames and adjusts the TCP sew
quencc numbers and cheeksums accordingly. However,
this technique is also limited to send-side processing. lu
addition, as we demonstrate in Section 2.2. the technique
is limited by the way TCP performs congestion control.

Efficient connection management. 'Eariy networked
servers did not handle large numbers of TC? connec-
tions eihciently, for example by using a linear linked-
list to manage state [26]. This led to operating systems
using hash table based approaches [24} and separating
table entries in the TIMBWAIT state [2'].

Asynchronous interfaces. To maximize concur»
rcucy, high—performance servers use. asynchronous; in-
terfaces as not to block on king-latency operations [33].
Server applications interact using an even? notification
interface such as seiect () or pol: () ._ which in turn
can b: vc performance implications {5}. Untbrtunatcly.

ALA07620803

Alacritech, Ex. 2034 Page 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Alacritech, Ex. 2034 Page 3

Machine BIOS

Release
Date

Workstniion—Class
500 MHz PS
933 MHZ 5’3
57 (3H2 P4
Server-Class

Mar 2091
Jul 2000 2.000

a .070

Sega 2003 0.590

450 MHz i32-Xcon
Hi Gila P4«Xcon
3.2 GHZ {Ml-Xena

Jan 20%
Oct 200!

May 2094

"fable 1: inoperties for Muitiple Generations of Machines

these interfaces are typically only for network 1/0 and
not file 3/0, so they are not. as general (is they could be.

iii—kernel implementations. Context switches, data
copies, and system calls can be avoided. altogether by
implementing the server completely in kernel Space
{17, 18]. While this providcs the best performance, in-
kemci implementations are difficulr to implement and
maintain, and [he approach is hard to gcneralize across
muitiple applications.

RDMA. Others have also noticed these scaling prob—
lems, particuiarly Wiéh respect to data copying, and have
offered RDMA as a solution. interest: in RDMA and

lnfiniband [4} is growing in the local-area case, such
as in storage networks or cluster-based supercomputing.
However, RDMA requires modifications to both sides of -
a conversation, whereas Oillooci can be deployed incre-
mentally on the server side only. Our interest is in sup-
porting existing appiications in an inter-operable way
which precludes using REDMA.

While effective. these optimizations are limited in that
they do not address the full range oi" scenarios seen by a
server, The main restrictions are: I} that they do not up“
ply to the receive side, 2‘} they are not fully asynchronous
in the way they interact with the operating system, 3)
they do not minimize the interaction with the network
inéerlhce, or 4) they are not inter-operable. Addition-
ally, many techniques do not address what we believe to
he the fundamental performance issue, which is overall
server scalability.

2.2 Server Scalability

The recent arrival of it) gigabit Ethernet and the promise
of 46) and 100 gigabit Ethernet in the near future show
that raw network bandwidth is scaling at least as quickly
as CPU speed. However, it is weli-lmown that mem-
ory speeds are not scaling as quickly as CPU specti in»
creases {lo}. As a consequence of this anti other factors,
researchers have observed that the performance of host

TCP/IP implementations is not scaling at the same rate:
as CPU speeds in spite of raw ncrwork bandwidth in-
creases.

To qnantir‘y how performance scales over time, we
ran 2: number of experiments using several generations
of machines, described in detail in Table]. Wc break
the machines into 2 classes: desk~side workstations and

rack~rnounted servers with aggressive memory systems
and NO bosses. The workstations include a a 500 MHZ

Intel Pentium 3, a 933 MHZ inicl Pentium 3. anti 3 o 3.7
Gl—iz Pentium 4. The servers include a 456 Ml-iz 13:311—
{ium “—ana a 1.6 Gill P4 Xoon, and a 3.2 GHZ P4
Xcon. in addition, each of the 'P4—Xeon servers have
1 MB LS caches. Each machine runs Linux 36.9 and

has a number of Intel E1000 MT server gigabn Ethernet
adapters. connected via a Dell gigabit switch. Lon: is
generated by five 3.2 GHZ I’ll-Kenna acting as clients,
each using an 531000 client gigabit adapter and running
Linux 2.6.5. We chose the El 000 MT adapters for he
servers Since these have been shown to be one of thc

highestmperforrning conventional adapters on the mar 'ct
{32}, and we did not have access to a ll} gigabit adap er.

We measured the time to access various locations

in the memory hierarchy for these machines, includfl
ing from the Ll and L2 caches, main memory, and he
memory-mapped l/Q registers on. the mono. Memory
hieratchy times were measured using LMBcnch [25}. To
measure the device l/O register timea. we added so in:
modifications to the initiaiization routine of the Linux

2.69 El 006 device driver code, Table 2 presents the re-
sults. Nola that while L1 and L2 access limes mmain rei—

atively consistent in terms of grocessor cycles, she time
to access main memory and the device registers is in
creasing over time. if acccss times were improving or
the same rate as CPU speeds, the nurnbcr of clock cy-
cles would remain constant.

To see how aciual server performance is scaling over

time, we ran the static portion of SPEC‘webQQ {i2} us-

ALA07620804

Alacritech, Ex. 2034 Page 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Alacritech, Ex. 2034 Page 4

Mac hinc HO Register

Road
Clock Time: Clock

Cycles ins) Cycles
Workstation-Class
506 MHZ P3
933 MHZ P3
L7 GHZ P4

Sorvcr~Closs
450 MHz P2~Xcmi
L6 Griz X6021
3.2 GHz Xcon

Table 2: Memory Access ”limos {or Multiple Generations of Machines

ing a recent version of Flash [33, 373, in those experi-
ments, Flash oxploits all the available performance opti~
mizations on Linux, including Sandi ile t) with zero
copy, TSO, and chocksum offload on the E1000. Table
3 shown the rcsulto. Observe that server performance is
not scaling with CPU speed. even though this is a heavily
optimized sorvcr matting use ofafii current best practices.
This is not because of limitations in the network bantin

'wiclih; for example. the 3.2 GHZ Xconmbascd machine
has 4 gigahit intcrfaocs and multiple It) gigabit PCLX

'bttsscs.

2.3 Offload: Critiques and Responses

To this paper, we study TC? oii‘load as a solution to the .
scalability problem. However, TC? offload has been

. hotly debated by the research community, perhaps best
- exemplified by Mogol‘s paper. “‘TCP offload is a dumb

idea whose time has come” {27]. That paper effectively
summarizes the criticisms of TCP offload, and so, we

nsc the structure of that paper to oil‘cr our conntcrargu—
monts hcrc.

Limited processing requirements. Onc arguincnt is
that Clark ct al. [9] Show that the main issue in TC?
performance is implementation, not the TC? protocol its
self, and a major factor is data movement; thus Offload
does not address the real problem. We point out that
Offload deco not simply mean TC? header processing;
it includes the entire ”PCP/[P stack, including poorly
stealing. performance—critical components ouch as data
movement, bus crossings, interrupts. and device inter-
action, Offload provides an improved interface to the
adaptor that induces the use of those scalability—limiting
(imitations.

Moore’s Law: Moore’s Law states that CPU speeds
arc doubling ovcry 38 months, and thus one claim it; that
Offload cannot compote with general-porpoise CPUS.
H istoricallyi chino used by adaptor vendors have. not in-
creased at the same rate as gcnci'al-pttrposc CPUS due to

the economics of scale, However, offload can usc com,

motility CPUS with software implementations, which we
bclicve is the proper anproach. In addition, speed needs
only to bc matched with the interface (cg, ll} gig?»
bit Ethernet), and we argue proper design reduces the
code path relative to the non-oiflondcd case (cg with
fewer memory copies). Sarkar at al. [38} and Ang {l}
Show that when the NEC CPU is untiernprovisioned with
respect to the host CPU. performance can actually do
grade. Clearly the NEC procesning capacity must be:
sized properly. Finally, increasing CPU speeds does not
address the scalability issue, which is what we focus on.
here.

Efficient host interface: Early oritiqucs are that
TCP Offload Engines (TOE) vendors recreated ”TC?
over a bus”. Dcvciopmcnt of an elegant and efficient
host/adapter intorface for offload is a fundamental rc—
soarch challengc‘ one we are addressing it: this papct‘.

Bad buffer management: Unicss Otfioad engines
understand higherwlovol protocols, there is still an
zippiicettioti—lezycr boarder copy. While two, copying of
nppiicmion headcrs is not as performance—critical as
copying application data. One complication is the ap—
plication combining its own headers on thc same con—
nection with its data. This can only be solved by chang-
ing the application, which is already proposed in RDMA
extenoions for NFS and ifSCSI {7, 8}.

Connection management overhead: Unlike con—
ventional NICS. ofiloncl adaptors must maintain por—
coonection state. Upponcots argue that ofiload cannot
handle large nambcrs of connections. but Web server
workloads have forced host TCP stacks to discover recli-

niqucs to efficiently manage '1 0,0001% of connections.
Those {ccl'tniqucs are equally applicable for an interfacm
based implementation.

Resource management overhead: Critics argue that
tracking resource management is ”more difficult” for oh
flood. We: do not believe this is the case, it is straight-

ALA07620805

Alacritech, Ex. 2034 Page 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Alacritech, Ex. 2034 Page 5

Machine: Throughput chticstctl Conforming Scale Scale: Ratio
(ops/sec) Connections Connections (ochicvcé) (ideal) (92))

Workstation—Class; l
590 MHZ P3 1235i 375 375 1.00 L00 109
933 MHz P3 13m 400 399 LOG 1.87 56
1.7 GHZ ?4 3457‘ lQUO $169 3,20 3.40 94

Sewer-Class fi-
450 MHZ l’Z-Xoon 2236 700 699 L60 w 133 100
1.6 GHZ P4-XCOD _ _ 8893 2800 2792 4.00 3.56 l 12
3.2 GHZ PituXcon l MM 2500 3490 5‘00 716 TE

Table 3: SPECWeb99 Performance Scalability over McEtiple Generations of Machincs

forward to extend the notion of resource management
' across the interface without making the adapter aware of

every process as we will ShOW in SectionS 3 and 4,

Event management: The claim is that offload does
' hot address managing the large numbers of events that

_ occur in highwolume scrvcra, It is true that of’fioad, per
so. (loci; not adfiress oppi’iz‘aiion viyiliie events, which
are boner addressed by the AP], However, offload can
shield the has: {)perzztifigsyslem from spurious 811116038“
sary adapter events. such as TCP acknowledgments or
Window ntlvertisememsi In addition, it allows hatching
ofoihcr events to amortize the cost of iotermpts and bus
crossings.

Partial offload is sufficiently effective: Parriai of«
flood approaches incitidc checksum ofilood and large
send (or TCP Segmentation Offload), as discussed in

_ Section 2.l. While useful, they have limited value and
_ do not fully Solve the scalability problem as was shown
in Section 2.2. 0ther arguments include that checksum
offload actually masks enom to the host. {4i}. In con:
tract. offload allows larger batching and the opportunity
to pcrform mom rigorotES error checking (by including
the (TM: in the data dcscriptors),

Maintainability: Opponents argue that omoad—based
approachcc are more difficuit to update and maintain in
the presence of security and bug patches. While this
is true of an ASiC~hoscd approach it is not true of
a softwarohascd approach using general—purpocc hard-
ware.

Quality assurance: The argcmcot here. is that offiomi
is harder to test to determine bugs. However, testing
tools such as TBIT [3 l} and ANVL [i 5} allow remote
testing of the offload interface. In additiom software
based approaches based on open»soorce TCP implemen—
tations such as Linux or FrecBSD facilitate both anally

tainzihility and quality assurance.

System management interface: Opponents claim
that offload adapters cannot have the same management
interface as the host OS. This is incorrect one example

is SNMP, lt is trivial to extend this to an offload adapter,
Concerns about NiC vendors: Third—party vendors

may go out of husincss and strand the cugtomer. This has
nothing to do with offload; it is irrac of any M) device:
disk, NIC, or graphics card. Economic incentives seem
to address customer needs. in addition. one of the: largest
NEC vendors is Intel.

3 System Design

_ In this Section we describe our Offload design and how
it addi‘ecses scalability.

3.} How Offload Addresses Scalabiiity

A higher—level interface. Offload allows the host open
ating system to interact: with the device at a higher lcvci
ofahstmction. Rather than simply queuing MTUwsizcd
packets for transmission or reception. the host issues
commands or the traz‘isport layer (cg, connect (l,
accept (i. send (l , close {)). This allows the
adapter to shield the host from transport layer events
(and their attendant intermpt costs) that may he of no
interest to the host, such. as arrivals of TCP acknowlm
cdgments or window updates. Instead, the host is only
notified ofmeaningful events. Examples include a com—
pleted connection establishment or termination {rather
than every packei arrival for the 3-way handshake or
4—way tearaclown} or agnplication-lcvei data units. Soil
ficient intelligence on the adapter can determine the ap-
propriate time to transfer data to the host, either through
knowioége of atondardizcd higheplevel protocols (such
as HTT? or NFS) or through a programmohlc intcr—
face that can provide an application signature (to. an
application-level equivalent to a packet filter). By inter—
acting at this higher lcvel of abstraction, the host will
transfer less data over the bus and incur fewer interruptc
arid device register accesses.

Ability to move data in larger sizes. As described
in Section Zili the ability to use large MTUS has a sig-
nificant impact on performance for both sending and re—

ALA07620806

Alacritech, Ex. 2034 Page 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

