' e INTELLIGENT NETWORK INTERFACE CARD
Q

=5, L2 7 “AND SYSTEM FOR PROTOCOL PROCESSING

2 og <
® s

«o®®” provisional Patent Application Under 35 U.S.C. § 111 (b)

Inventors: Laurence B. Boucher
Stephen E. J. Blightman
Peter K. Craft
David A. Higgin
Clive M. Philbrick
Daryl D. Starr

Assignee: Alacritech Corporation

-1 Background of the Invention

Network processing as it exists today is a costly and inefficient use of system resources.
A 200 MHz Pentium-Pro is typically consumed simply processing network data from a
100Mb/second-network connection. The reasons that this processing is so costly are
described here.

1.1 Too Many Data Moves

When network packet arrives at a typical network interface card (NIC), the NIC moves
the data into pre-allocated network buffers in system main memory. From there the data
1s read into the CPU cache so that it can be checksummed (assuming of course that the
protocol in use requires checksums. Some, like IPX, do not.). Once the data has been
fully processed by the protocol stack, it can then be moved into its final destination in
memory. Since the CPU is moving the data, and must read the destination cache line in
before it can fill it and write it back out, this involves at a minimum 2 more trips across
the system memory bus. In short, the best one can hope for is that the data will get
moved across the system memory bus 4 times before it arrives in its final destination. It
can, and does, get worse. If the data happens to get invalidated from system cache after it
has been checksummed, then it must get pulled back across the memory bus before it can
be moved to its final destination. Finally, on some systems, including Windows NT 4.0,
the data gets copied yet another time while being moved up the protocol stack. In NT
4.0, this occurs between the miniport driver interface and the protocol driver interface.
This can add up to a whopping 8 trips across the system memory bus (the 4 trips
described above, plus the move to replenish the cache, plus 3 more to copy from the
miniport to the protocol driver). That’s enough to bring even today’s advanced memory
busses to their knees.

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 1

L

PTO "

W

JC531 y g

PTO/SB/16 (11/95) (Modified 1997 éﬂsol«

Approved for use through:01/31/98. OMB 0651-0037
Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

PROVISIONAL APPLICATION FOR PATENT COVER SHEET
(Large Entity)

o
;‘fhis is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53 (b)(2).
—— T lus sign
_— ype a plus s
S Docket Number ALA-001 (+) inside this
—)
——— :
— INVENTOR(s)/APPLICANT(s)
LAST NAME FIRST NAME MIDDLE INITIAL RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)
Boucher Laurence B. Saratoga, California
Blightman Stephen E.J. San Jose, California
Craft Peter K. San Francisco, California
Higgin David A. Saratoga, California
TITLE OF THE INVENTION (280 characters max)

INTELLIGENT NETWORK INTERFACE CARD AND SYSTEM FOR PROTOCOL PROCESSING

CORRESPONDENCE ADDRESS
Mark Lauer Tel: (510)556-3500
6850 Regional Street, Fax: (510 803-8189
Suite 250
Dublin
COUNTRY

STATE ZIP CODE 94568

ENCLOSED APPLICATION PARTS (check all that apply)

7] Specificati
pecification Number of Pages
M 130 -
N/ Drawi Numb " inciuded in N/ . Drawings are included within
. rawing(s) umber of Sheets Specificatio }A Other (specify) . ISpecification
- METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT (chéck one)
- N/
N M A check or money order is enclosed to cover the filing fees FILING FEE
AMOUNT $150.00

The Commissioner is hereby authorized to charge
filing fees and credit Deposit Account Number:

The invention was made by an agency of the United States Government or under a contract with an agency of the United States

E No.

D Yes, the name of the U.S. Government agency and the Government contract number

Respectfully submitted,
SIGNATURE % Date | October 141997 |

/ [T
TYPED or PRINTED NAME ~ Mark Lauer REGISTRATION NO. 36,578
(if appropriate)

K7
} { Additional inventors are being named on separately numbered sheets attached hereto

VA
USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

SEND TO: Box Provisional Application, Assistant Commissioner for Patents, Washington, DC 20231
P19LARGE/REV(3

Copyright 1995-97 Legalsoft [Page 1 of |
Alacritech, Ex. 2019 Page 2

PROVISIONAL APPLICATION FOR PATENT COVER SHEET
(Large Entity)

INVENTOR(s)/APPLICANT(s)

LAST NAME MIDDLE INITIAL RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)

Philbrick M. San Jose, California
Starr D. Milpitas, California

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT
SEND TO: Box Provisional Application, Assistant Commissioner for Patents, Washington, DC 20231

Copyright 1995 Legalsoft [Page 2 of 2] P19LARGE/REV02

Alacritech, Ex. 2019 Page 3

x ~

CERTIFICATE OF MAILING BY "EXPRESS MAIL" (37 CFR 1.10) Docket No.
Applicant(s): Laurence B. Boucher et al. "ALA-001
Serial No. Filing Date Examiner * Group Art Unit

Invention: INTELLIGENT NETWORK INTERFACE CARD AND SYSTEM FOR PROTOCOL PROCESSING

I hereby certify that this ATIQ OVER

7 (I entt_‘fy type of correspondence)

is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under

37 CFR 1.10 in an envelope addressed to: The Assistant Commissioner for Patents, Washington, D.C. 20231 on
October 14, 1997
(Date)

Mark Lauer
(Typed or Printed Name of Person Mailing Correspondence)

v

(Signature of Person Mailing Correspondence)

EH756230105US
("Express Mail" Mailing Label Number)

Note: Each paper must have its own certificate of mailing.

Copyright 1995 Legalsoft POBA/REVO2

Alacritech, Ex. 2019 Page 4

INTELLIGENT NETWORK INTERFACE CARD

AND SYSTEM FOR PROTOCOL PROCESSING

Provisional Patent Application Under 35 U.S.C. § 111 (b)

Inventors: Laurence B. Boucher
Stephen E. J. Blightman
Peter K. Craft
David A. Higgin
Clive M. Philbrick
Daryl D. Starr

Assignee: Alacritech Corporation

1 Background of the Invention

Network processing as it exists today is a costly and inefficient use of system resources.
A 200 MHz Pentium-Pro is typically consumed simply processing network data from a
100Mb/second-network connection. The reasons that this processing is so costly are
described here.

1.1 Too Many Data Moves

When network packet arrives at a typical network interface card (NIC), the NIC moves
the data into pre-allocated network buffers in system main memory. From there the data
is read into the CPU cache so that it can be checksummed (assuming of course that the
protocol in use requires checksums. Some, like IPX, do not.). Once the data has been
fully processed by the protocol stack, it can then be moved into its final destination in
memory. Since the CPU is moving the data, and must read the destination cache line in
before it can fill it and write it back out, this involves at a minimum 2 more trips across
the system memory bus. In short, the best one can hope for is that the data will; get
moved across the system memory bus 4 times before it arrives in its final destination. It
can, and does, get worse. If the data happens to get invalidated from system cache after it
has been checksummed, then it must get pulled back across the memory bus before it can
be moved to its final destination. Finally, on some systems, including Windows NT 4.0,
the data gets copied yet another time while being moved up the protocol stack. In NT
4.0, this occurs between the miniport driver interface and the protocol driver interface.
This can add up to a whopping 8 trips across the system memory bus (the 4 trips
described above, plus the move to replenish the cache, plus 3 more to copy from the
miniport to the protocol driver). That’s enough to bring even today’s advanced memory
busses to their knees.

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 5

£

1.2 Too Much Processing by the CPU

In all but the original move from the NIC to system memory, the system CPU is
responsible for moving the data. This is particularly expensive because while the CPU is
moving this data it can do nothing else. While moving the data the CPU is typically
stalled waiting for the relatively slow memory to satisfy its read and write requests. A
CPU, which can execute an instruction every 5 nanoseconds, must now wait as long as
several hundred nanoseconds for the memory controller to respond before it can begin its
next instruction. Even today’s advanced pipelining technology doesn’t help in these
situations because that relies on the CPU being able to do useful work while it waits for
the memory controller to respond. If the only thing the CPU has to look forward to for
the next several hundred instructions is more data moves, then the CPU ultimately gets
reduced to the speed of the memory controller.

Moving all this data with the CPU slows the system down even after the data has been
moved. Since both the source and destination cache lines must be pulled into the CPU
cache when the data is moved, more than 3k of instructions and or data resident in the
CPU cache must be flushed or invalidated for every 1500 byte frame. This is of course
assuming a combined instruction and data second level cache, as is the case with the
Pentium processors. After the data has been moved, the former resident of the cache will
likely need to be pulled back in, stalling the CPU even when we are not performing
network processing. Ideally a system would never have to bring network frames into the
CPU cache, instead reserving that precious commodity for instructions and data that are
referenced repeatedly and frequently.

But the data movement is not the only drain on the CPU. There is also a fair amount of
processing that must be done by the protocol stack software. The most obvious expense
is calculating the checksum for each TCP segment (or UDP datagram). Beyond this,
however, there is other processing to be done as well. The TCP connection object must
be located when a given TCP segment arrives, IP header checksums must be calculated,
there are buffer and memory management issues, and finally there is also the significant
expense of interrupt processing which we will discuss in the following section.

1.3 Too Many Interrupts

A 64k SMB request (write or read-reply) is typically made up of 44 TCP segments when
running over Ethernet (1500 byte MTU). Each of these segments may result in.an ‘
interrupt to the CPU. Furthermore, since TCP must acknowledge all of this incoming
data, it’s possible to get another 44 transmit-complete interrupts as a result of sending out
the TCP acknowledgements. While this is possible, it is not terribly likely. Delayed
ACK timers allow us to acknowledge more than one segment at a time. And delays in
interrupt processing may mean that we are able to process more than one incoming
network frame per interrupt. Nevertheless, even if we assume 4 incoming frames per
input, and an acknowledgement for every 2 segments (as is typical per the ACK-every-
other-segment property of TCP), we are still left with 33 interrupts per 64k SMB request.

Interrupts tend to be very costly to the system. Often when a system is interrupted,
important information must be flushed or invalidated from the system cache so that the
interrupt routine instructions, and needed data can be pulled into the cache. Since the

Provisional Pat. App. of Alacritech, Inc. 2
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 6

CPU will return to its prior location after the interrupt, it is likely that the information
flushed from the cache will immediately need to be pulled back into the cache.

What’s more, interrupts force a pipeline flush in today’s advanced processors. While the
processor pipeline is an extremely efficient way of improving CPU performance, it can
be expensive to get going after it has been flushed.

Finally, each of these interrupts results in expensive register accesses across the -
peripheral bus (PCI). This is discussed more in the following section.

1.4 Inefficient Use of the Peripheral Bus (PCI)

We noted earlier that when the CPU has to access system memory, it may be stalled for
several hundred nanoseconds. When it has to read from PCI, it may be stalled for many
microseconds. This happens every time the CPU takes an interrupt from a standard NIC.
The first thing the CPU must do when it receives one of these interrupts is to read the
NIC Interrupt Status Register (ISR) from PCI to determine the cause of the interrupt. The
most troubling thing about this is that since interrupt lines are shared on PC-based
systems, we may have to perform this expensive PCI read even when the interrupt is not
meant for us!

There are other peripheral bus inefficiencies as well. Typical NICs operate using
descriptor rings. When a frame arrives, the NIC reads a receive descriptor from system
memory to determine where to place the data. Once the data has been moved to main
memory, the descriptor is then written back out to system memory with status about the
received frame. Transmit operates in a similar fashion. The CPU must notify that NIC
that it has a new transmit. The NIC will read the descriptor to locate the data, read the
data itself, and then write the descriptor back with status about the send. Typically on
transmits the NIC will then read the next expected descriptor to see if any more 'data
needs to be sent. In short, each receive or transmit frame results in 3 or 4 separate PCI
reads or writes (not counting the status register read).

2 Summary of the Invention

Alacritech was formed with the idea that the network processing described above could
be offloaded onto a cost-effective Intelligent Network Interface Card (INIC). With the
Alacritech INIC, we address each of the above problems, resulting in the following
advancements: :

1. The vast majority of the data is moved directly from the INIC into its final
destination. A single trip across the system memory bus.

2. There is no header processing, little data copying, and no checksumming required by
the CPU. Because of this, the data is never moved into the CPU cache, allowing the
system to keep important instructions and data resident in the CPU cache.

3. Interrupts are reduced to as little as 4 interrupts per 64k SMB read and 2 per 64k
SMB write.

4. There are no CPU reads over PCI and there are fewer PCI operations per receive or
transmit transaction.

In the remainder of this document we will describe how we accomplish the above.

Provisional Pat. App. of Alacritech, Inc. 3
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 7

2.1 Perform Transport Level Processing on the INIC

In order to keep the system CPU from having to process the packet headers or checksum
the packet, we must perform this task on the INIC. This is a daunting task. There are
more than 20,000 lines of C code that make up the FreeBSD TCP/IP protocol stack.
Clearly this is more code than could be efficiently handled by a competitively priced
network card. Furthermore, as we’ve noted above, the TCP/IP protocol stack is
complicated enough to consume a 200 MHz Pentium-Pro. Clearly in order to perform
this function on an inexpensive card, we need special network processing hardware as
opposed to simply using a general purpose CPU.

2.1.1 Only Support TCP/IP

In this section we introduce the notion of a "context". A context is required to keep track
of information that spans many, possibly discontiguous, pieces of information. When
processing TCP/IP data, there are actually two contexts that must be maintained. The
first context is required to reassemble IP fragments. It holds information about the status
of the IP reassembly as well as any checksum information being calculated across the IP
datagram (UDP or TCP). This context is identified by the IP_ID of the datagram as well
as the source and destination IP addresses. The second context is required to handle the
sliding window protocol of TCP. It holds information about which segments have been
sent or received, and which segments have been acknowledged, and is identified by the
IP source and destination addresses and TCP source and destination ports.

If we were to choose to handle both contexts in hardware, we would have to potentially
keep track of many pieces of information. One such example is a case in which a single
64k SMB write is broken down into 44 1500 byte TCP segments, which are in turn
broken down into 131 576 byte IP fragments, all of which can come in any order (though
the maximum window size is likely to restrict the number of outstanding segments
considerably).

Fortunately, TCP performs a Maximum Segment Size negotiation at connection
establishment time, which should prevent IP fragmentation in nearly all TCP
connections. The only time that we should end up with fragmented TCP connections is
when there is a router in the middle of a connection which must fragment the segments to
support a smaller MTU. The only networks that use a smaller MTU than Ethernet are
serial line interfaces such as SLIP and PPP. At the moment, the fastest of these
connections only run at 128k (ISDN) so even if we had 256 of these connections, we
would still only need to support 34Mb/sec, or a little over three 10bT connections worth
of data. This is not enough to justify any performance enhancements that the INIC
offers. If this becomes an issue at some point, we may decide to implement the MTU
discovery algorithm, which should prevent TCP fragmentation on all connections (unless
an ICMP redirect changes the connection route while the connection is established).

With this in mind, it seems a worthy sacrifice to not attempt to handle fragmented TCP
segments on the INIC.

UDP is another matter. Since UDP does not support the notion of a Maximum Segment
Size, it is the responsibility of IP to break down a UDP datagram into MTU sized

Provisional Pat. App. of Alacritech, Inc. 4
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 8

packets. Thus, fragmented UDP datagrams are very common. The most common UDP
application running today is NFSV2 over UDP. While this is also the most common
version of NFS running today, the current version of Solaris being sold by Sun

Microsystems runs NFSV3 over TCP by default. We can expect to see the NFSV2/UDP
traffic start to decrease over the coming years.

In summary, we will only offer assistance to non-fragmented TCP connections on the
INIC.

2.1.2 Don’t handle TCP “exceptions”

As noted above, we won’t provide support for fragmented TCP segments on the INIC.
We have also opted to not handle TCP connection and breakdown. Here is a list of other
TCP “exceptions” which we have elected to not handle on the INIC:

Fragmented Segments —Discussed above.

Retransmission Timeout — Occurs when we do not get an acknowledgement for
previously sent data within the expected time period.

Out of order segments — Occurs when we receive a segment with a sequence number
other than the next expected sequence number.

FIN segment — Signals the close of the connection.

Since we have now eliminated support for so many different code paths, it might seem
hardly worth the trouble to provide any assistance by the card at all. This is not the case.
According to W. Richard Stevens and Gary Write in their book “TCP/IP Illustrated
Volume 2”, TCP operates without experiencing any exceptions between 97 and 100
percent of the time in local area networks. As network, router, and switch reliability
improve this number is likely to only improve with time.

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 9

2.1.3 Two modes of operation

So the next question is what to do about the network packets that do not fit our criteria.
The answer is to use two modes of operation: One in which the network frames are
processed on the INIC through TCP and one in which the card operates like a typical
dumb NIC. We call these two modes fast-path, and slow-path. In the slow-path'case,
network frames are handed to the system at the MAC layer and passed up through the
host protocol stack like any other network frame. In the fast path case, network data is
given to the host after the headers have been processed and stripped.

CLIENT
INIC A
FAST-PATH DI 1
NetBIOS
TCP
TCP
1P
P
MAC SLOW-PATH VAL
PHYSICAL

“Ethernet
eme PCI

The transmit case works in much the same fashion. In slow-path mode the packets are
given to the INIC with all of the headers attached. The INIC simply sends these packets
out as if it were a dumb NIC. In fast-path mode, the host gives raw data to the INIC
which it must carve into MSS sized segments, add headers to the data, perform
checksums on the segment, and then send it out on the wire.

2.1.4 The TCB cache

Consider a situation in which a TCP connection is being handled by the card and a
fragmented TCP segment for that connection arrives. In this situation, it will be
necessary for the card to turn control of this connection over to the host.

This introduces the notion of a Transmit Control Block (TCB) cache. A TCB is a
structure that contains the entire context associated with a connection. This includes the
source and destination IP addresses and source and destination TCP ports that define the
connection. It also contains information about the connection itself such as the current
send and receive sequence numbers, and the first-hop MAC address, etc. The complete
set of TCBs exists in host memory, but a subset of these may be "owned" by the card at
any given time. This subset is the TCB cache. The INIC can own up to 256 TCBs at any
given time.

TCBs are initialized by the host during TCP connection setup. Once the connection has
achieved a “steady-state” of operation, its associated TCB can then be turned over to the
INIC, putting us into fast-path mode. From this point on, the INIC owns the connection
until either a FIN arrives signaling that the connection is being closed, or until an

Provisional Pat. App. of Alacritech, Inc. : 6
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 10

"
-

4 3

exception occurs which the INIC is not designed to handle (such as an out of order
segment). When any of these conditions occur, the INIC will then flush the TCB back to
host memory, and issue a message to the host telling it that it has relinquished control of
the connection, thus putting the connection back into slow-path mode. From this point
on, the INIC simply hands incoming segments that are destined for this TCB off to the
host with all of the headers intact.

Note that when a connection is owned by the INIC, the host is not allowed to reference
the corresponding TCB in host memory as it will contain invalid information about the
state of the connection.

2.1.5 TCP hardware assistance

When a frame is received by the INIC, it must verify it completely before it even
determines whether it belongs to one of its TCBs or not. This includes all header
validation (is it IP, IPV4 or V6, is the IP header checksum correct, is the TCP checksum
correct, etc). Once this is done it must compare the source and destination IP address and
the source and destination TCP port with those in each of its TCBs to determine if it is
associated with one of its TCBs. This is an expensive process. To expedite this, we have
added several features in hardware to assist us. The header is fully parsed by hardware
and its type is summarized in a single status word. The checksum is also verified
automatically in hardware, and a hash key is created out of the IP addresses and TCP
ports to expedite TCB lookup. For full details on these and other hardware optimizations,
refer to the INIC Hardware Specification sections (Heading 8).

With the aid of these and other hardware features, much of the work associated with TCP
is done essentially for free. Since the card will automatically calculate the checksum for
TCP segments, we can pass this on to the host, even when the segment is for a TCB that
the INIC does not own.

2.1.6 TCP Summary

By moving TCP processing down to the INIC we have offloaded the host of a large
amount of work. The host no longer has to pull the data into its cache to calculate the
TCP checksum. It does not have to process the packet headers, and it does not have to

generate TCP ACKs. We have achieved most of the goals outlined above, but we are not
done yet.

2.2 Transport Layer Interface

This section defines the INIC’s relation to the hosts transport layer interface (Called TDI
or Transport Driver Interface in Windows NT). For full details on this interface, refer to
the Alacritech TCP (ATCP) driver specification (Heading 4).

2.2.1 Receive

Simply implementing TCP on the INIC does not allow us to achieve our goal of landing
the data in its final destination. Somehow the host has to tell the INIC where to put the
data. This is a problem in that the host can not do this without knowing what the data

Provisional Pat. App. of Alacritech, Inc. 7
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 11

actually is. Fortunately, NT has provided a mechanism by which a transport driver can
“indicate” a small amount of data to a client above it while telling it that it has more data
to come. The client, having then received enough of the data to know what it is, is then
responsible for allocating a block of memory and passing the memory address or
addresses back down to the transport driver, which is in turn responsible for moving the
data into the provided location.

We will make use of this feature by providing a small amount of any received data to the
host, with a notification that we have more data pending. When this small amount of data
is passed up to the client, and it returns with the address in which to put the remainder of
the data, our host transport driver will pass that address to the INIC which will DMA the
remainder of the data into its final destination.

Clearly there are circumstances in which this does not make sense. When a small amount
of data (500 bytes for example), with a push flag set indicating that the data must be
delivered to the client immediately, it does not make sense to deliver some of the data
directly while waiting for the list of addresses to DMA the rest. Under these
circumstances, it makes more sense to deliver the 500 bytes directly to the host, and
allow the host to copy it into its final destination. While various ranges are feasible, it is
currently preferred that anything less than a segment’s (1500 bytes) worth of data will be
delivered directly to the host, while anything more will be delivered as a small piece
which may bel28 bytes, while waiting until receiving the destination memory address
before moving the rest.

The trick then is knowing when the data should be delivered to the client or not. As
we’ve noted, a push flag indicates that the data should be delivered to the client
immediately, but this alone is not sufficient. Fortunately, in the case of NetBIOS
transactions (such as SMB), we are explicitly told the length of the session message in the
NetBIOS header itself. With this we can simply indicate a small amount of data to the
host immediately upon receiving the first segment. The client will then allocate enough
memory for the entire NetBIOS transaction, which we can then use to DMA the
remainder of the data into as it arrives. In the case of a large (56k for example) NetBIOS
session message, all but the first couple hundred bytes will be DMA’d to their final
destination in memory.

But what about applications that do not reside above NetBIOS? In this case we can not
rely on a session level protocol to tell us the length of the transaction. Under these
circumstances we will buffer the data as it arrives until A) we have receive some
predetermined number of bytes such as 8k, or B) some predetermined period of time
passes between segments or C) we get a push flag. If after any of these conditions occur
we will then indicate some or all of the data to the host depending on the amount of data
buffered. If the data buffered is greater than about 1500 bytes we must then also wait for
the memory address to be returned from the host so that we may then DMA the
remainder of the data.

2.2.2 Transmit

The transmit case is much simpler. In this case the client (NetBIOS for example) issues a
TDI Send with a list of memory addresses which contain data that it wishes to send along

Provisional Pat. App. of Alacritech, Inc. 8
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech,k Ex. 2019 Page 12

with the length. The host can then pass this list of addresses and length off to the INIC.
The INIC will then pull the data from its source location in host memory, as it needs it,
until the complete TDI request is satisfied.

2.2.3 Affect on interrupts

Note that when we receive a large SMB transaction, for example, that there are two
interactions between the INIC and the host. The first in which the INIC indicates a small
amount of the transaction to the host, and the second in which the host provides the
memory location(s) in which the INIC places the remainder of the data. This results in
only two interrupts from the INIC. The first when it indicates the small amount of data
and the second after it has finished filling in the host memory given to it. A drastic
reduction from the 33/64k SMB request that we estimate at the beginning of this section.

On transmit, we actually only receive a single interrupt when the send command that has
been given to the INIC completes.

2.2.4 Transport Layer Interface Summary

Having now established our interaction with Microsoft’s TDI interface, we have achieved
our goal of landing most of our data directly into its final destination in host memory.

We have also managed to transmit all data from its original location on host memory.
And finally, we have reduced our interrupts to 2 per 64k SMB read and 1 per 64k SMB
write. The only thing that remains in our list of objectives is to design an efficient host
(PCI) interface.

2.3 Host (PCI) Interface

In this section we define the host interface. For a more detailed description, refer to the
“Host Interface Strategy for the Alacritech INIC” section (Heading 3).

2.3.1 Avoid PCI reads

One of our primary objectives in designing the host interface of the INIC was to
eliminate PCI reads in either direction. PCI reads are particularly inefficient in that they
completely stall the reader until the transaction completes. As we noted above, this could
hold a CPU up for several microseconds, a thousand times the time typically required to
execute a single instruction. PCI writes on the other hand, are usually buffered by the
memory-bus<>PCl-bridge allowing the writer to continue on with other instructions.

This technique is known as “posting”.

2.3.1.1 Memory-based status register

The only PCI read that is required by most NICs is the read of the interrupt status
register. This register gives the host CPU information about what event has caused an
interrupt (if any). In the design of our INIC we have elected to place this necessary status
register into host memory. Thus, when an event occurs on the INIC, it writes the status
register to an agreed upon location in host memory. The corresponding driver on the host
reads this local register to determine the cause of the interrupt. The interrupt lines are

Provisional Pat. App. of Alacritech, Inc. 9
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 13

held high until the host clears the interrupt by writing to the INIC’s Interrupt Clear
Register. Shadow registers are maintained on the INIC to ensure that events are not lost.

2.3.1.2 Buffer Addresses are pushed to the INIC

Since it is imperative that our INIC operate as efficiently as possible, we must also avoid
PClI reads from the INIC. We do this by pushing our receive buffer addresses to the
INIC. As mentioned at the beginning of this section, most NICs work on a descriptor
queue algorithm in which the NIC reads a descriptor from main memory in order to
determine where to place the next frame. We will instead write receive buffer addresses
to the INIC as receive buffers are filled. In order to avoid having to write to the INIC for
every receive frame, we instead allow the host to pass off a pages worth (4k) of buffers in
a single write.

2.3.2 Support small and large buffers on receive

In order to reduce further the number of writes to the INIC, and to reduce the amount of
memory being used by the host, we support two different buffer sizes. A small buffer
contains roughly 200 bytes of data payload, as well as extra fields containing status about
the received data bringing the total size to 256 bytes. We can therefore pass 16 of these
small buffers at a time to the INIC. Large buffers are 2k in size. They are used to
contain any fast or slow-path data that does not fit in a small buffer. Note that when we
have a large fast-path receive, a small buffer will be used to indicate a small piece of the
data, while the remainder of the data will be DMA’d directly into memory. Large
buffers are never passed to the host by themselves, instead they are always accompanied
by a small buffer which contains status about the receive along with the large buffer
address. By operating in the manner, the driver must only maintain and process the small
buffer queue. Large buffers are returned to the host by virtue of being attached to small
buffers. Since large buffers are 2k in size they are passed to the INIC 2 buffers at a time.

2.3.3 Command and response buffers

In addition to needing a manner by which the INIC can pass incoming data to us, we also
need a manner by which we can instruct the INIC to send data. Plus, when the INIC
indicates a small amount of data in a large fast-path receive, we need a method of passing
back the address or addresses in which to put the remainder of the data. We accomplish
both of these with the use of a command buffer. Sadly, the command buffer is the only
place in which we must violate our rule of only pushing data across PCI. For the
command buffer, we write the address of command buffer to the INIC. The INIC then
reads the contents of the command buffer into its memory so that it can execute the
desired command. Since a command may take a relatively long time to complete, it is
unlikely that command buffers will complete in order. For this reason we also maintain a
response buffer queue. Like the small and large receive buffers, a page worth of response
buffers is passed to the INIC at a time. Response buffers are only 32 bytes, so we have to
replenish the INIC’s supply of them relatively infrequently. The response buffers only
purpose is to indicate the completion of the designated command buffer, and to pass
status about the completion.

Provisional Pat. App. of Alacritech, Inc. 10
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 14

2.4 Examples

In this section we will provide a couple of examples describing some of the differing data
flows that we might see on the Alacritech INIC.

2.4.1 Fast-path 56k NetBIOS session message

Let’s say a 56k NetBIOS session message is received on the INIC. The first segment will
contain the NetBIOS header, which contains the total NetBIOS length. A small chunk of
this first segment is provided to the host by filling in a small receive buffer, modifying
the interrupt status register on the host, and raising the appropriate interrupt line. Upon
receiving the interrupt, the host will read the ISR, clear it by writing back to the INIC’s
Interrupt Clear Register, and will then process its small receive buffer queue looking for
receive buffers to be processed. Upon finding the small buffer, it will indicate the small
amount of data up to the client to be processed by NetBIOS. It will also, if necessary,
replenish the receive buffer pool on the INIC by passing off a pages worth of small
buffers. Meanwhile, the NetBIOS client will allocate a memory pool large enough to
hold the entire NetBIOS message, and will pass this address or set of addresses down to
the transport driver. The transport driver will allocate an INIC command buffer; fill it in
with the list of addresses, set the command type to tell the INIC that this is where to put
the receive data, and then pass the command off to the INIC by writing to the command
register. When the INIC receives the command buffer, it will DMA the remainder of the
NetBIOS data, as it is received, into the memory address or addresses designated by the
host. Once the entire NetBIOS transaction is complete, the INIC will complete the
command by writing to the response buffer with the appropriate status and command
buffer identifier.

In this example, we have two interrupts, and all but a couple hundred bytes are DMA’d
directly to their final destination. On PCI we have two interrupt status register writes,
two interrupt clear register writes, a command register write, a command read, and a
response buffer write. '

With a standard NIC this would result in an estimated 30 interrupts, 30 interrupt register
reads, 30 interrupt clear writes, and 58 descriptor reads and writes. Plus the data will get
moved anywhere from 4 to 8 times across the system memory bus.

2.4.2 Slow-path receive

If the INIC receives a frame that does not contain a TCP segment for one of its TCB’s, it
simply passes it to the host as if it were a dumb NIC. If the frame fits into a small buffer
(~200 bytes or less), then it simply fills in the small buffer with the data and notifies the
host. Otherwise it places the data in a large buffer, writes the address of the large buffer
into a small buffer, and again notifies the host. The host, having received the interrupt
and found the completed small buffer, checks to see if the data is contained in the small
buffer, and if not, locates the large buffer. Having found the data, the host will then pass
the frame upstream to be processed by the standard protocol stack. It must also replenish
the INIC’s small and large receive buffer pool if necessary.

Provisional Pat. App. of Alacritech, Inc. 11
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 15

With the INIC, this will result in one interrupt, one interrupt status register write and one
interrupt clear register write as well as a possible small and or large receive buffer
register write. The data will go through the normal path although if it is TCP data then
the host will not have to perform the checksum.

With a standard NIC this will result in a single interrupt, an interrupt status register read,
an interrupt clear register write, and a descriptor read and write. The data will get
processed as it would by the INIC, except for a possible extra checksum.

2.4.3 Fast-path 400 byte send

In this example, lets assume that the client has a small amount of data to send. It will
issue the TDI Send to the transport driver which will allocate a command buffer; fill it in
with the address of the 400 byte send, and set the command to indicate that it is a
transmit. It will then pass the command off to the INIC by writing to the command
register. The INIC will then DMA the 400 bytes into its own memory, prepare a frame
with the appropriate checksums and headers, and send the frame out on the wire. After it
has received the acknowledgement it will then notify the host of the completion by
writing to a response buffer.

With the INIC, this will result in one interrupt, one interrupt status register write, one
interrupt clear register write, a command buffer register write a command buffer read,
and a response buffer write. The data is DMA’d directly from the system memory.

With a standard NIC this will result in a single interrupt, an interrupt status register read,
an interrupt clear register write, and a descriptor read and write. The data would get
moved across the system bus a minimum of 4 times. The resulting TCP ACK of the data,
however, would add yet another interrupt, another interrupt status register read, interrupt
clear register write, a descriptor read and write, and yet more processing by the host
protocol stack.

3 Host Interface Strategy for the Alacritech INIC

This section describes the host interface strategy for the Alacritech Intelligent Network
Interface Card (INIC). The goal of the Alacritech INIC is to not only process network
data through TCP, but also to provide zero-copy support for the SMP upper-layer
protocol. It achieves this by supporting two paths for sending and receiving data, the fast-
path and the slow-path. The fast path data flow corresponds to connections that are
maintained on the NIC, while slow-path traffic corresponds to network data for which the
NIC does not have a connection. The fast-path flow works by passing a header to the host
and subsequently holding further data for that connection on the card until the host
responds via an INIC command with a set of buffers into which to place the accumulated
data. In the slow-path data flow, the INIC will be operating as a “dumb” NIC, so that
these packets are simply dumped into frame buffers on the host as they arrive. To do
either path requires a pool of smaller buffers to be used for headers and a pool of data
buffers for frames/data that are too large for the header buffer, with both pools being
managed by the INIC. This section discusses how these two pools of data are managed
as well as how buffers are associated with a given context.

Provisional Pat. App. of Alacritech, Inc. 12
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 16

3.1 Receive Interface

The varying requirements of the fast and slow paths and a desire to save PCI bandwidth
are the driving forces behind the host interface that is described herein. As mentioned
above, the fast-path flow puts a header into a header buffer that is then forwarded to the
host. The host uses the header to determine what further data is following, allocates the
necessary host buffers, and these are passed back to the INIC via a command to the INIC.
The INIC then fills these buffers from data it was accumulating on the card and notifies
the host by sending a response to the command. Alternatively, the fast-path may receive
a header and data that is a complete request, but that is also too large for a header buffer.
This results in a header and data buffer being passed to the host. This latter flow is
identical to the slow-path flow, which also puts all the data into the header buffer or, if
the header is too small, uses a large (2K) host buffer for all the data. This means that on
the unsolicited receive path, the host will only see either a header buffer or a header and
at most, one data buffer. Note that data is never split between a header and a data buffer.
The diagram below illustrates both situations:

Header buffer descriptors Header buffers
Data buffers
Headera —» Status Data buffer descriptors
] Al
Header b | TCP/SMB DATA
Headers
(fast-path)
DATA
Status DATA
DATA
buffer handle
(slow-path) DATA |

Since we want to fill in the header buffer with a single DMA, the header must be the last
piece of data to be written to the host for any received transaction.

3.1.1 Receive Interface Details

3.1.2 Header Buffers

Header buffers in host memory are 256 bytes long, and are aligned on 256 byte
boundaries. There will be a field in the header buffer indicating it has valid data. This
field will initially be reset by the host before passing the buffer descriptor to the INIC. A

Provisional Pat. App. of Alacritech, Inc. 13
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 17

set of header buffers are passed from the host to the INIC by the host writing to the
Header Buffer Address Register on the INIC. This register is defined as follows:

Bits 31-8 Physical address in host memory of the first of a set of contiguous
header buffers
Bits 7-0 Number of header buffers passed.

In this way the host can, say, allocate 16 buffers in a 4K page, and pass all 16 buffers to
the INIC with one register write. The INIC will maintain a queue of these header
descriptors in the SmallHType queue in it’s own local memory, adding to the end of the
queue every time the host writes to the Header Buffer Address Register. Note that the
single entry is added to the queue; the eventual dequeuer will use the count after
extracting that entry.

The header buffers, will be used and returned to the host in the same order that they were
given to the INIC. The valid field will be set by the INIC before returning the buffer to
the host. In this way a PCI interrupt, with a single bit in the interrupt register, may be
generated to indicate that there is a header buffer for the host to process. When servicing
this interrupt, the host will look at its queue of header buffers, reading the valid field to
determine how many header buffers are to be processed.

3.1.3 Receive Data Buffers

Receive data buffers in host memory are aligned to page boundaries, assumed here to be
2K bytes long and aligned on 4K page boundaries, 2 buffers per page. In order to pass
receive data buffers to the INIC, the host must write to two registers on the INIC. The
first register to be written is the Data Buffer Handle Register. The buffer handle is not
significant to the INIC, but will be copied back to the host to return the buffer to the host.
The second register written is the Data Buffer Address Register. This is the physical
address of the data buffer. When both registers have been written, the INIC will add the
contents of these two registers to FreeType queue of data buffer descriptors. Note that
the INIC host driver sets the handle register first, then the address register. There needs to
be some mechanism put in place to ensure the reading of these registers does not get out
of sync with writing them. Effectively the INIC can read the address register first and

_save its contents, then read the handle register. It can then lock the register pair in some
manner such that another write to the handle register is not permitted until the current
contents have been saved. Both addresses extracted from the registers are to be written to
the FreeType queue. The INIC will extract 2 entries each time when dequeuing.

Data buffers will be allocated and used by the INIC as needed. For each data buffer used
by a slow-path transaction, the data buffer handle will be copied into a header buffer.
Then the header buffer will be returned to the host.

3.2 Transmit Interface

3.2.1 Transmit Interface Overview

The transmit interface, like the receive interface, has been designed to minimize the
amount of PCI bandwidth and latencies. In order to transmit data, the host will transfer a
command buffer to the INIC. This command buffer will include a command buffer

Provisional Pat. App. of Alacritech, Inc. 14
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 18

handle, a command field, possibly a TCP context identification, and a list of physical data
pointers. The command buffer handle is defined to be the first word of the command
buffer and is used by the host to identify the command. This word will be passed back to
the host in a response buffer, since commands may complete out of order, and the host
will need to know which command is complete. Commands will be used for many
reasons, but primarily to cause the INIC to transmit data, or to pass a set of buffers to the
INIC for input data on the fast-path as previously discussed.

Response buffers are physical buffers in host memory. They are used by the INIC in the
same order as they were given to it by the host. This enables the host to know which
response buffer(s) to next look at when the INIC signals a command completion.

Command Response
buffer queue Command buffers Buffer queue
Command pointer >’ Command " Command
; buffer handle buffer handle
Command pointer T(_ZP 0 toxt Stats 1
- identifier
Command pointer
Command Command
Data pointers buffer handle |
Status 7
Command Command
buffer handle buffer handle
TCP context F Status \
identifier o
Command S
Data pointers
Command
buffer handle
TCP context
identifier
Command
LData pointers
Provisional Pat. App. of Alacritech, Inc. 15

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 19

3.2.2 Transmit Interface Details

3.2.2.1 Command Buffers

Command buffers in host memory are a multiple of 32 bytes, up to a maximum of 1K
bytes, and are aligned on 32 byte boundaries. A command buffer is passed to the INIC
by writing to one of 5 Command Buffer Address Registers. These registers are defined as

follows:

Bits 31-5 Physical address in host memory of the command buffer.

Bits 4-0 Length of command buffer in bytes / 32 (i.e. number of multiples of
32 bytes)

This is the physical address of the command buffer. The register to which the command
is written predetermines the XMT interface number, or if the command is for the RCV
CPU; hence there will be 5 of them, 0 — 3 for XMT and 4 for RCV. When one of these
registers has been written, the INIC will add the contents of the register to it’s own
internal queue of command buffer descriptors. The first word of all command buffers is
defined to be the command buffer handle. It is the job of the utility CPU to extract a
command from its local queue, DMA the command into a small INIC buffer (from the
FreeSType queue), and queue that buffer into the Xmit#Type queue, where # is 0 — 3
depending on the interface, or the appropriate RCV queue. The receiving CPU will
service the queues to perform the commands. When that CPU has completed a command,
it extracts the command buffer handle and passes it back to the host via a response buffer.

3.2.2.2 Response Buffers

Response buffers in host memory are 32 bytes long and aligned on 32 byte boundaries.
They are handled in a very similar fashion to header buffers. There will be a field in the
response buffer indicating it has valid data. This field will initially be reset by the host
before passing the buffer descriptor to the INIC. A set of response buffers are passed
from the host to the INIC by the host writing to the Response Buffer Address Register on
the INIC. This register is defined as follows:

Bits 31-8 Physical address in host memory of the first of a set of contiguous
response buffers
Bits 7-0 Number of response buffers passed.

In this way the host can, say, allocate 128 buffers in a 4K page, and pass all 128 buffers
to the INIC with one register write. The INIC will maintain a queue of these header
descriptors in it’s ResponseType queue, adding to the end of the queue every time the
host writes to the Response Buffer Address Register. The INIC writes the extracted

contents including the count, to the queue in exactly the same manner as for the header
buffers.

The response buffers can be used and returned to the host in the same order that they
were given to the INIC. The valid field will be set by the INIC before returning the buffer
) Provisional Pat. App. of Alacritech, Inc. 16

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 20

to the host. In this way a PCI interrupt, with a single bit in the interrupt register, may be
generated to indicate that there is a response buffer for the host to process. When
servicing this interrupt, the host will look at its queue of response buffers, reading the
valid field to determine how many response buffers are to be processed.

3.2.3 Interrupt Status Register / Interrupt Mask Register:

The following is the general format of this register:

31 0

ERR — Error bits are set
RCV — RCV has occurred.
XMT

Command has been completed

RMISS —m Rev drop occurred due to no buffers

The setting of any bits in the ISR will cause an interrupt, provided the corresponding bit
in the Interrupt Mask Register is set. The default setting for the IMR is 0.

The INIC is configured so that the host should never need to directly read the ISR from
the INIC. To support this, it is important for the host/INIC to arrange a buffer area in host
memory into which the ISR is dumped. The address and size of that area ca be passed to
the INIC via a command on the XMT interface. That command will also specify the
setting for the IMR. Until the INIC receives this command, it will not DMA the ISR to
host memory, and no events will cause an interrupt. The host could if necessary, read the
ISR directly from the INIC in this case.

For the host to never have to actually read the register from the INIC itself, it is necessary
for the INIC to update this host copy of the register whenever anything in it changes. The
host will Ack (or deassert) events in the register by writing the register with 0’s in
appropriate bit fields. So that the host does not miss events, the following scheme has
been developed:

The INIC keeps a local copy of the register whenever it DMAs it to the host i.e. after
some event(s). Call this COPYA Then the INIC starts accumulating any new events not
reflected in the host copy in a separate word. Call this NEWA. As the host clears bits by
writing the register back with those bits set to zero, the INIC clears these bits in COPYA
(or the host write-back goes directly to COPYA). If there are new events in NEWA, it

Provisional Pat. App. of Alacritech, Inc. 17
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 21

ORs them with COPYA, and DMAs this new ISR to the host. This new ISR then replaces
COPYA, NEWA is cleared and the cycle then repeats.

3.2.4 Register Addresses

For the sake of simplicity, in this example the registers are at 4-byte increments from
whatever the base address is. Hence:

ISR 0x0 Interrupt Status

IMR Ox4 Interrupt Mask

HBAR 0x8 Header Buffer Address

DBHR 0xC Data Buffer Handle

DBAR 0x10 Data Buffer Address

CBARO 0x14 Command Buffer Address XMTO
CBARI1 0x18 Command Buffer Address XMT1
CBAR2 0x1C Command Buffer Address XMT2
CBAR3 0x20 Command Buffer Address XMT3
CBAR4 0x24 Command Buffer Address RCV
RBAR 0x28 Response Buffer Address

4 Alacritech TCP (ATCP) Design Specification

This section outlines the design specification for the Alacritech TCP (ATCP) transport
driver. The ATCP driver consists of three components:

1. The bulk of the protocol stack is based on the FreeBSD TCP/IP protocol stack.
This code performs the Ethernet, ARP, IP, ICMP, and (slow path) TCP processing
for the driver.

2. At the top of the protocol stack we introduce an NT filter driver used to intercept
TDI requests destined for the Microsoft TCP driver.

3. At the bottom of the protocol stack we include an NDIS protocol-driver interface
which allows us to communicate with the INIC miniport NDIS driver beneath the
ATCP driver.

This section covers each of these topics, as well as issues common to the entire ATCP
driver.

4.1 Coding style

In order to ensure that our ATCP driver is written in a consistent manner, we have

adopted a set of coding guidelines. These guidelines are introduced with the philosophy

that we should write code in a Microsoft style since we are introducing an NT-based

product. The guidelines below apply to all code that we introduce into our driver. Since

a very large portion of our ATCP driver will be based on FreeBSD, and since we are

somewhat time-constrained on our driver development, the ported FreeBSD code will be
“exempt from these guidelines.

Provisional Pat. App. of Alacritech, Inc. 18
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 22

1. Global symbols — All function names and global variables in the ATCP driver
should begin with the “ATK” prefix (ATKSend() for instance).

2. Variable names — Microsoft seems to use capital letters to separate multi-word
variable names instead of underscores (VariableName instead of variable_name).
We should adhere to this style.

3. Structure pointers — Microsoft typedefs all of their structures. The structure types
are always capitals and they typedef a pointer to the structure as “P”<name> as
follows:

typedef struct FOO {
INT bar;
} FOO, *PFOO;
We will adhere to this style.

4. Function calls — Microsoft separates function call arguments on separate lines:
X = foobar(
argumentl,
argument2,
);
We will adhere to this style.

5. Comments — While Microsoft seems to alternatively use // and /* */ comment
notation, we will exclusively use the /* */ notation.

6. Function comments — Microsoft includes comments with each function that
describe the function, its arguments, and its return value. We will also include
these comments, but will move them from within the function itself to just prior to
the function for better readability.

7. Function arguments — Microsoft includes the keywords IN and OUT when
defining function arguments. These keywords denote whether the function
argument is used as an input parameter, or alternatively as a placeholder for an
output parameter. We will include these keywords.

8. Function prototypes — We will include function prototypes in the most logical
header file corresponding to the .c file. For example, the prototype for function

foo() found in foo.c will be placed in foo.h.

9. Indentation — Microsoft code fairly consistently uses a tabstop of 4. We will do
likewise.

10. Header file #ifndef — each header file should contain a #ifndef/#define/#endif
which is used to prevent recursive header file includes. For example, foo.h would
include:

#ifndef FOO_H

#define FOO H__

<foo.h contents..>

#endif /¥ __FOO H__ */
Notethe NAME H format.

11. Each file must contain a comment at the beginning which includes the Id as

follows:
/*
* $1d$
*/

Provisional Pat. App. of Alacritech, Inc. 19
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 23

CVS (RCS) will expand this keyword to denote RCS revision, timestamps, author,
etc.

42 SMP

This section describes the process by which we will make the ATCP driver SMP safe.

The basic rule for SMP kernel code is that any access to a memory variable must be
protected by a lock that prevents a competing access by code running on another
processor. Spinlocks are the normal locking method for code paths which do not take a
long time to execute (and which do not sleep.)

In general each instance of a structure will include a spinlock, which must be acquired
before members of that structure are accessed, and held while a function is accessing that
instance of the structure. Structures which are logically grouped together may be
protected by a single spinlock: for example, the ‘in_pcb’ structure, ‘tcpcb’ structure, and
‘socket’ structure which together constitute the administrative information for a TCP
connection will probably be collectively managed by a single spinlock in the ‘socket’
structure.

In addition, every global data structure such as a list or hash table must also have a
protecting spinlock which must be held while the structure is being accessed or modified.
The NT DDK in fact provides a number of convenient primitives for SMP-safe list
manipulation, and it is recommended that these be used for any new lists. Existing list
manipulations in the FreeBSD code can probably be left as-is to minimize code
disturbance, except of course that the necessary spinlock acquisition and release must be
added around them.

Spinlocks should not be held for long periods of time, and most especially, must not be
held during a sleep, since this will lead to deadlocks. There is a significant deficiency in
the NT kernel support for SMP systems: it does not provide an operation which allows a
spinlock to be exchanged atomically for a sleep lock. This would be a serious problem in
a UNIX environment where much of the processing occurs in the context of the user
process which initiated the operation. (The spinlock would have to be explicitly released,
followed by a separate acquisition of the sleep lock: creating an unsafe window.)

The NT approach is more asynchronous, however: IRPs are simply marked as
‘PENDING’ when an operation cannot be completed immediately. The calling thread
does NOT sleep at that point: it returns, and may go on with other processing. Pending
IRPs are later completed, not by waking up the thread which initiated them, but by an

‘loCompleteRequest’ call which typically runs at DISPATCH level in an arbitrary
context.

Thus we have not in fact used sleep locks anywhere in the design of the ATCP driver,
hoping the above issue will not arise.

4.3 Data flow overview

Provisional Pat. App. of Alacritech, Inc. ‘ 20
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 24

The ATCP driver supports two paths for sending and receiving data, the fast-path and the
slow-path. The fast-path data flow corresponds to connections that are maintained on the
INIC, while slow-path traffic corresponds to network data for which the INIC does not
have a connection. In order to set some groundwork for the rest of this section, these two
data paths are summarized here.

4.3.1 Fast-path input data flow

There are 2 different cases to consider:

1. NETBIOS traffic (identifiable by port number.)
2. Everything else.

4.3.1.1 NETBIOS input

As soon as the INIC has received a segment containing a NETBIOS header, it will
forward it up to the TCP driver, along with the NETBIOS length from the header. (In
principle the host could get this from the header itself, but since the INIC has already
done the decode, it seem reasonable to just pass it.)

From the TDI spec, the amount of data in the buffer actually sent must be at least 128
bytes. For small SMBs, all of the received SMB should be forwarded; it will be absorbed
directly by the TDI client without any further MDL exchange. Experiments tracing the
TDI data flow show that the NETBIOS client directly absorbs up to 1460 bytes: the
amount of payload data in a single Ethernet frame. Thus the initial system specifies that
the INIC will indicate anything up to a complete segment to the ATCP driver. [See note
Q)

Once the INIC has passed up an indication with an NETBIOS length greater than the
amount of data in the packet it passed, it will continue to accumulate further incoming
data in DRAM on the INIC. Overflow of INIC DRAM buffers will be avoided by using
a receive window on the INIC at this point, which can be 8K.

On receiving the indicated packet, the ATCP driver will call the receive handler
registered by the TDI client for the connection, passing the actual size of the data in the

packet from the INIC as "bytes indicated" and the NETBIOS length as "bytes available.”
[See note (2)].

In the "large data input" case, where "bytes available" exceeds the packet length, the TDI

client will then provide an MDL, associated with an IRP, which must be completed when
this MDL is filled. (This IRP/MDL may come back either in the response to TCP's call of
the receive handler, or as an explicit TDI_RECEIVE request.)

The ATCP driver will build a “receive request” from the MDL information, and pass this
to the INIC. This request will contain:

e The TCP context identifier.
e Size and offset information.
e A list of physical addresses corresponding to the MDL pages.

Provisional Pat. App. of Alacritech, Inc. 21
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 25

* A context field to allow the ATCP driver to identify the request on completion.
o “Piggybacked” window update information (this will be discussed in section 6.1.3.)

Note: the ATCP driver must copy any remaining data (which was not taken by the
receive handler) from the segment indicated by the INIC to the start of the MDL, and
must adjust the size & offset information in the request passed to the INIC to account for
this.

The INIC will fill the given page(s) with incoming data up to the requested amount, and
respond to the ATCP driver when this is done [see note (3)]. If the MDL is large, the
INIC may open up its advertised receive window for improved throughput while filling
the MDL.

On receiving the response from the INIC, the ATCP driver will complete the IRP
associated with this MDL, to tell the TDI client that the data is available.

At this point the cycle of events is complete, and the ATCP driver is now waiting for the
next header indication.

4.3.1.2 Other TCP input.

In the general case we do not have a higher-level protocol header to enable us to predict
that more data is coming. So on non-NETBIOS connections, the INIC will just
accumulate incoming data in INIC DRAM up to a quantity of 8K in this example. Again,
a maximum advertised window size, which may be 16K, will be used to prevent overflow
of INIC DRAM buffers.

When the prescribed amount has been accumulated, or when a PSH flag is seen, the INIC
will indicate a small packet which may be 128 bytes of the data to the ATCP driver,
along with the total length of the data accumulated in INIC DRAM.

On receiving the indicated packet, the ATCP driver will call the receive handler
registered by the TDI client for the connection, passing the actual size of the data in the
packet from the INIC as "bytes indicated" and the total INIC-buffer length as "bytes
available."”

As in the NETBIOS case, if "bytes available" exceeds "bytes indicated"”, the TDI client
will provide an IRP with an MDL. The ATCP driver will pass the MDL to the INIC to
be filled, as before. The INIC will reply to the ATCP driver, which in turn will complete
the IRP to the TDI client.

Using an MDL from the client avoids a copy step. However, if we can only buffer 8K
and delay indicating to the ATCP driver until we have done so, a question arises
regarding further segments coming in, since INIC DRAM is a scarce resource. We do not
want to ACK with a zero-size window advertisement: this would cause the transmitting
end to go into persist state, which is bad for throughput. If the transmitting end is also our
INIC, this results in having to implement the persist timer on the INIC, which we do not
wish to do. Instead for large transfers (i.e. no PSH flag seen) we will not send an ACK

Provisional Pat. App. of Alacritech, Inc. 22
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 26

until the host has provided the MDL, and also, to avoid stopping the transmitting end, we
will use a receive window of twice the amount we will buffer before calling the host.
Since the host comes back with the MDL quite quickly (measured at < 100
microseconds), we do not expect to experience significant overruns.

4.3.1.3 INIC Receive window updates

If the INIC “owns” an MDL provided by the TDI client (sent by ATCP as a receive
request), it will treat this as a “promise” by the TDI client to accept the data placed in it,
and may therefore ACK incoming data as it is filling the pages.

However, for small requests, there will be no MDL returned by the TDI client: it absorbs
all of the data directly in the receive callback function. We need to update the INIC’s
view of data which has been accepted, so that it can update its receive window. In order
to be able to do this, the ATCP driver will accumulate a count of data which has been
accepted by the TDI client receive callback function for a connection.

From the INIC’s point of view, though, segments sent up to the ATCP driver are just
“thrown over the wall”; there is no explicit reply path. We will therefore “piggyback” the
update on requests sent out to the INIC. Whenever the ATCP driver has outgoing data
for that connection, it will place this count in a field in the send request (and then clear
the counter.) Any receive request (passing a receive MDL to the INIC) may also be used
to transport window update info in the same way.

Note: we will probably also need to design a message path whereby the ATCP driver can
explicitly send an update of this “bytes consumed” information (either when it exceeds a
preset threshold or if there are no requests going out to the INIC for more than a given
time interval), to allow for possible scenarios in which the data stream is entirely one-
way.

4.3.1.4 Notes

1) The PSH flag can help to identify small SMB requests that fit into one segment.

2) Actually, the observed "bytes available" from the NT TCP driver to its client's
callback in this case is always 1460. The NETBIOS-aware TDI client presumably
calculates the size of the MDL it will return from the NETBIOS header. So strictly
speaking we do not need the NETBIOS header length at this point: just an indication
that this is a header for a "large" size. However, we *do* need an actual "bytes
available" value for the non-NETBIOS case, so we may as well pass it.

3) We observe that the PSH flag is set in the segment completing each NETBIOS
transfer. The INIC can use this to determine when the current transfer is complete
and the MDL should be returned. It can, at least in a debug mode, sanity check the
amount of received data against what is expected, though.

Provisional Pat. App. of Alacritech, Inc. 23
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 27

43.2 Fast-path output data flow

The fast-path output data flow is similar to the input data-flow, but simpler. In this case
the TDI client will provide a MDL to the ATCP driver along with an IRP to be completed
when the data is sent. The ATCP driver will then give a request (corresponding to the
MDL) to the INIC. This request will contain:

The TCP context identifier.

Size and offset information.

A list of physical addresses corresponding to the MDL pages.

A context field to allow the ATCP driver to identify the request on completion.
“Piggybacked” window update information (as discussed in section 6.1.3.)

The INIC will copy the data from the given physical location(s) as it sends the
corresponding network frames onto the network. When all of the data is sent, the INIC
will notify the host of the completion, and the ATCP driver will complete the IRP.

Note that there may be multiple output requests pending at any given time, since SMB
allows multiple SMB requests to be simultaneously outstanding.

4.3.3 Slow-path data flow

For data for which there is no connection being maintained on the INIC, we will have to
perform all of the TCP, IP, and Ethernet processing ourselves. To accomplish this we
will port the FreeBSD protocol stack. '

In this mode, the INIC will be operating as a “dumb NIC”; the packets which pass over
the NDIS interface will just contain MAC-layer frames.

The MBUFs in the incoming direction will in fact be managing NDIS-allocated packets.
In the outgoing direction, we need protocol-allocated MBUFs in which to assemble the
data and headers. The MFREE macro must be cognizant of the various types of MBUFs,
and “do the right thing” for each type. (See more extensive discussion of MBUFs in
section XXX.)

We will retain a (modified) socket structure for each connection, containing the socket
buffer fields expected by the FreeBSD code. The TCP code that operates on socket
buffers (adding/removing MBUFs to & from queues, indicating acknowledged &
received data etc) will remain essentially unchanged from the FreeBSD base (though
most of the socket functions & macros used to do this will need to be modified; these are
the functions in kern/uipc_socket2.c)

The upper socket layer (kern/uipc_socket.c), where the overlying OS moves data in and
out of socket buffers, must be entirely re-implemented to work in TDI terms. Thus,
instead of sosend(), there will be a function that copies data from the MDL provided in a
TDI_SEND call into socket buffer MBUFs. Instead of soreceive(), there will be a handler
that calls the TDI client receive callback function, and also copies data from socket buffer

Provisional Pat. App. of Alacritech, Inc. 24
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 28

MBUFs into any MDL provided by the TDI client (either explicitly with the callback
response or as a separate TDI RECEIVE call.)

We must note that there is a semantic difference between TDI_SEND and a write() on a
BSD socket. The latter may complete back to its caller as soon as the data has been
copied into the socket buffer. The completion of a TDI_SEND, however, implies that the
data has actually been sent on the connection. Thus we will need to keep the TDI_SEND
IRPs (and associated MDLs) in a queue on the socket until the TCP code indicates that
the data from them has been ACK’d.

4.3.4 Data Path Notes

1. There might be input data on a connection object for which there is no receive
handler function registered. This has not been observed, but we can probably just
ASSERT for a missing handler for the moment. If it should happen, however, we
must assume that the TDI client will be doing TDI_RECEIVE calls on the
connection. If we can’t make a callup at the time that the indication from the INIC
appears, we can queue the data and handle it when a TDI_RECEIVE does appear.

2. NT has a notion of "canceling" IRPs. It is possible for us to get a "cancel" on an IRP
corresponding to an MDL which has been “handed” to the INIC by a send or receive
request. We can handle this by being able to force the context back off the INIC,
since IRPs will only get cancelled when the connection is being aborted.

4.4 Context Passing Between ATCP and INIC

4.4.1 From ATCP to INIC

There is a synchronization problem that must be addressed here. The ATCP driver will
make a decision on a given connection that this connection should now be passed to the
INIC. It builds and sends a command identifying this connection to the INIC.

Before doing so, it must ensure that no slow-path outgoing data is outstanding. This is
not difficult; it simply pends and queues any new TDI_SEND requests and waits for any
unacknowledged slow path output data to be acknowledged before initiating the context
pass operation.

The problem arises with incoming slow-path data. If we attempt to do the context-pass in
a single command handshake, there is a window during which the ATCP driver has send
the context command, but the INIC has not yet seen this (or has not yet completed setting
up its context.) During this time, slow-path input data frames could arrive and be fed into
the slow-path ATCP processing code. Should that happen, the context information which
the ATCP driver passed to the INIC is no longer correct. We can simply abort the
outward pass of the context in this event, but it seems better to have a reliable handshake.

Therefore, the command to pass context from ATCP driver to INIC will be split into two
halves, and there will be a two-exchange handshake.

Provisional Pat. App. of Alacritech, Inc. 25
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 29

The initial command from ATCP to INIC expresses an “intention” to hand out the
context. It will include the source and destination IP addresses and ports, which will
allow the INIC to establish a “provisional” context. Once it has this “provisional” context
in place, the INIC will not send any more slow-path input frames for that src/dest IP/port
combination (it will queue them, if any are received.)

When the ATCP driver receives the response to this initial “intent” command, it knows
that the INIC will send no more slow-path input. The ATCP driver then waits for any
remaining unconsumed slow-path input data for this connection to be consumed by the
client. (Generally speaking there will be none, since the ATCP driver will not initiate a
context pass while there is unconsumed slow-path input data; the handshake is simply to
close the crossover window.)

Once any such data has been consumed, we know things are in a quiescent state. The
ATCP driver can then send the second, “commit” command to hand out the context, with
confidence that the TCB values it is handing out (sequence numbers etc) are reliable.

Note 1: it is conceivable that there might be situations in which the ATCP driver decides,
after having sent the original “intention” command, that the context is not to be passed
after all. (E.g. the local client issues a close.) So we must allow for the possibility that
the second command may be a “abort”, which should cause the INIC to deallocate and
clear up its “provisional” context.

Note 2: to simplify the logic, the ATCP driver will guarantee that only one context may
be in process of being handed out at a time: in other words, it will never issue another
initial “intention” command until it has completed the second half of the handshake for
the first one.

442 From INIC to ATCP

There are two possible cases for this: a context transfer may be initiated either by the
ATCP driver or by the INIC.

However the machinery will be very similar in the two cases. If the ATCP driver wishes
to cause context to be flushed from INIC to host, it will send a "flush" message to the
INIC specifying the context number to be flushed. Once the INIC receives this, it will
proceed with the same steps as for the case where the flush is initiated by the INIC itself:

e The INIC will send an error response to any current outstanding receive request it is
working on (corresponding to an MDL into which data is being placed.) Before
sending the response, it updates the receive command “length” field to reflect the
amount of data which has actually been placed in the MDL buffers at the time of the
flush.

e Likewise it will send an error response for any current send request, again reporting
the amount of data actually sent from the request.

e The INIC will DMA the TCB for the context back to the host. (Note: part of the
information provided with a context must be the address of the TCB in the host.)

Provisional Pat. App. of Alacritech, Inc. 26
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 30

e The INIC will send a “flush” indication to the host (very preferably via the regular
input path as a special type of frame) identifying the context which is being flushed.
Sending this indication via the regular input path ensures that it will arrive before any
following slow-path frames.

At this point, the INIC is no longer doing fast-path processing, and any further incoming
frames for the connection will simply be sent to the host as raw frames for the slow input
path.

The ATCP driver may not be able to complete the cleanup operations needed to resume
normal slow path processing immediately on receipt of the “flush frame”, since there may
be outstanding send and receive requests to which it has not yet received a response.

If this is the case, the ATCP driver must set a “pend incoming TCP frames” flag in its
per-connection context. The effect of this is to change the behavior of tcp_input(). This
runs as a function call in the context of ip_input(), and normally returns only when
incoming frames have been processed as far as possible (queued on the socket receive
buffer or out-of-sequence reassembly queue.) However, if there is a flush pending and
we have not yet completed resynchronization, we cannot do TCP processing and must
instead queue input frames for TCP on a “holding queue” for the connection, to be picked
up later when context flush is complete and normal slow path processing resumes. (This
is why we want to send the “flush” indication via the normal input path: so that we can
ensure it is seen before any following frames of slow-path input.)

Next we need to wait for any outstanding “send” requests to be errored off:

e The INIC maintains its context for the connection in a “zombie” state. As “send”
requests for this connection come out of the INIC queue, it sends error responses for
them back to the ATCP driver. (It is apparently difficult for the INIC to identify all
command requests for a given context; simpler for it to just continue processing them
in order, detecting ones that are for a “zombie” context as they appear.)

e The ATCP driver has a count of the number of outstanding requests it has sent to the
INIC. As error responses for these are received, it decrements this count, and when it
reaches zero, the ATCP driver sends a “flush complete” message to the INIC.

o When the INIC receives the “flush complete” message, it dismantles its “zombie”
context. From the INIC perspective, the flush is now completed.

e When the ATCP driver has received error responses for all outstanding requests, it
has all the information needed to complete its cleanup. This involves completing any
IRPs corresponding to requests which have entirely completed and adjusting fields in
partially-completed requests so that send and receive of slow path data will resume at
the right point in the byte streams.

e Once all this cleanup is complete, the ATCP driver will loop pulling any “pended”
TCP input frames off the “pending queue” mentioned above and feeding them into
the normal TCP input processing. Once all input frames on this queue have been
cleared off, the “pend incoming TCP frames” flag can be cleared for the connection,
and we are back to normal slow-path processing.

Provisional Pat. App. of Alacritech, Inc. 27
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 31

4.5 FreeBSD Porting Specification

The largest portion of the ATCP driver is either derived, or directly taken from the
FreeBSD TCP/IP protocol stack. This section defines the issues associated with porting
this code, the FreeBSD code itself, and the modifications required for it to suit our needs.

4.5.1 Porting philosophy

FreeBSD TCP/IP (current version referred to as Net/3) is a general purpose TCP/IP
driver. It contains code to handle a variety of interface types and many different kinds of
protocols. To meet this requirement the code is often written in a sometimes confusing,
over-complex manner. General-purpose structures are overlaid with other interface-
specific structures so that different interface types can coexist using the same general-
purpose code. For our purposes much of this complexity is unnecessary since we are
only supporting a single interface type and a few specific protocols. It is therefore
tempting to modify the code and data structures in an effort to make it more readable, and
perhaps a bit more efficient. There are, however, some problems with doing this. First,
the more we modify the original FreeBSD, the more changes we will have to make. This
is especially true with regard to data structures. If we collapse two data structures into
one we might improve the cleanliness of the code a bit, but we will then have to:modify
every reference to that data structure in the entire protocol stack. Another problem with
attempting to “clean up” the code is that we might later discover that we need something
that we had previously thrown away. Finally, while we might gain a small performance
advantage in cleaning up the FreeBSD code, the FreeBSD TCP code will mostly only run
in the slow-path connections, which are not our primary focus. Our priority is to get the
slow-path code functional and reliable as quickly as possible.

For the reasons above we have adopted the philosophy that we should initially keep the
data structures and code at close to the original FreeBSD implementation as possible.
The code will be modified for the following reasons:

5. Asrequired for NT interaction — Obviously we can’t expect to simply “drop-in” the
FreeBSD code as is. The interface of this code to the NT system will require some
significant code modifications. This will mostly occur at the topmost and
bottommost portions of the protocol stack, as well as the “ioctl” sections of the code.
Modifications for SMP issues are also needed.

6. Unnecessary code can be removed — While we will keep the code as close to the
original FreeBSD as possible, we will nonetheless remove code that will never be
used (UDP is a good example of this).

4.5.2 Unix <& NT conversion

The FreeBSD TCP/IP protocol stack makes use of many Unix system services. These
include becopy to copy memory, malloc to allocate memory, timestamp functions, etc.
These will not be itemized in detail since the conversion to the corresponding NT calls is
a fairly trivial and mechanical operation.

An area which will need non-trivial support redesign is MBUFs.

Provisional Pat. App. of Alacritech, Inc. 28
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 32

4.5.2.1 Network buffers

Under FreeBSD, network buffers are mapped using mbufs. Under NT network buffers
are mapped using a combination of packet descriptors and buffer descriptors (the buffer
descriptors are really MDLs). There are a couple of problems with the Microsoft
method. First it does not provide the necessary fields which allow us to easily strip off
protocol headers. Second, converting all of the FreeBSD protocol code to speak in terms
of buffer descriptors is an unnecessary amount of overhead. Instead, in our port we will
allocate our own mbuf structures and remap the NT packets as follows:

Mbuf Mbuf

Packet Desc Buffer Desc Buffer Desc

Data Data

The mbuf structure will provide the standard fields provided in the FreeBSD mbuf
including the data pointer, which points to the current location of the data, data length
fields and flags. In addition each mbuf will point to the packet descriptor which is
associated with the data being mapped. Once an NT packet is mapped, our transport
driver should never have to refer to the packet or buffer descriptors for any information
except when we are finished and are preparing to return the packet.

There are a couple of things to note here. We have designed our INIC such that a packet
header should never be split across multiple buffers. Thus, we should never require the
equivalent of the “m_pullup” routine included in Unix. Also note that there are
circumstances in which we will be accepting data that will also be accepted by the
Microsoft TCP/IP. One such example of this is ARP frames. We will need to build our
own ARP cache by looking at ARP replies as they come off the network. Under these
circumstances, it is absolutely imperative that we do not modify the data, or the packet
and buffer descriptors. We will discuss this further in the following sections.

Provisional Pat. App. of Alacritech, Inc. 29
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 33

We will allocate a pool of mbuf headers at ATCP initialization time. It is important to
remember that unlike other NICs, we can not simply drop data if we run out of the system
resources required to manage/map the data. The reason for this is that we will be
receiving data from the card that has already been acknowledged by TCP. Because of
this it is essential that we never run out of mbuf headers. To solve this problem we will
statically allocate mbuf headers for the maximum number of buffers that we will ever
allow to be outstanding. By doing so, the card will run out of buffers in which to put the
data before we will run out of mbufs, and as a result, the card will be forced to drop data
at the link layer instead of us dropping it at the transport layer.

DhXXX: as we’ve discussed, I don’t think this is really true anymore. The INIC won’t
ACK data until either it’s gotten a window update from ATCP to tell it the data’s been
accepted, or it’s got an MDL.

Thus it seems workable, though undesirable, if we can’t accept a frame from the INIC &
return an error to it saying it was not taken.

We will also require a pool of actual mbufs (not just headers). These mbufs are required
in order to build transmit protocol headers for the slow-path data path, as well as other
miscellaneous purposes such as for building ARP requests. We will allocate a pool of
these at initialization time and we will add to this pool dynamically as needed. Unlike
the mbuf headers described above, which will be used to map acknowledged TCP data
coming from the card, the full mbufs will contain data that can be dropped if we can not
get an mbuf.

4.5.3 The code

In this section we describe each section of the FreeBSD TCP/IP port. These sections
include Interface Initialization, ARP, Route, IP, ICMP, and TCP.

4.5.3.1 Interface initialization

4.5.3.1.1 Structures

There are a variety of structures, which represent a single interface in FreeBSD. These
structures include:

ifnet, arpcom, ifaddr, in_ifaddr, sockaddr, sockaddr_in, and sockaddr_dl. The following
illustration shows the relationship between all of these structures:

Iface ifaddr

pommomTg sockaddr dl

i 1

! ! .J -

} ifnet | 00:60:97:DB:9B:A6
arpcom | : .

P

[L

1

i

l| in_ifaddr

1

! .

L Faddr sockaddr_in

—
192.100.1.2
Provisional Pat. App. of Alacritech, Inc. 30

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 34

In this example we show a single interface with a MAC address of 00:60:97:DB:9B:A6
configured with an IP address of 192.100.1.2. As illustrated above, the in_ifaddr is
actually an ifaddr structure with some extra fields tacked on to the end. Thus the ifaddr
structure is used to represent both a MAC address and an IP address. Similarly the
sockaddr structure is recast as a sockaddr_dl or a sockaddr_in depending on its address
type. An interface can be configured to multiple IP addresses by simply chaining
in_ifaddr structures after the in_ifaddr structure shown above. ‘

As mentioned in the Porting Philosophy section, many of the above structures could
likely be collapsed into fewer structures. In order to avoid making unnecessary
modifications to FreeBSD, for the time being we will leave these structures mostly as is.
We will however eliminate the fields from the structure that will never be used. These
structure modifications are discussed below.

We also show above a structure called iface. This is a structure that we define. It
contains the arpcom structure, which in turn contains the ifnet structure. It also contains
fields that enable us to blend our FreeBSD implementation with NT NDIS requirements.
One such example is the NDIS binding handle used to call down to NDIS with requests
(such as send).

4.5.3.1.2 The functions

FreeBSD initializes the above structures in two phases. First when a network interface is
found, the ifnet, arpcom, and first ifaddr structures are initialized first by the network
layer driver, and then via a call to the if attach routine. The subsequent in_ifaddr
structure(s) are initialized when a user dynamically configures the interface. This occurs
in the in_ioctl and the in_ifinit routines. Since NT allows dynamic configuration of a
network interface we will continue to perform the interface initialization in two phases,
but we will consolidate these two phases as described below:

4.53.1.2.1 Ifnit

The Iflnit routine will be called from the ATKProtocolBindAdapter function. The IfInit
function will initialize the Iface structure and associated arpcom and ifnet structures. It
will then allocate and initialize an ifaddr structure in which to contain link-level
information about the interface, and a sockaddr_dl structure to contain the interface name
and MAC address. Finally it will add a pointer to the ifaddr structure into the ifnet_addrs
array (using the if index field of the ifnet structure) contained in the extended device
object. Iflnit will then call IfConfig for each IP address that it finds in the registry entry
for the interface.

4.5.3.1.2.2 IfConfig

IfConfig is called to configure an IP address for a given interface. It is passed a pointer
to the ifnet structure for that interface along with all the information required to configure
an IP address for that interface (such as IP address, netmask and broadcast info, etc).
IfConfig will allocate an in_ifaddr structure to be used to configure the interface. It will
chain it to the total chain of in_ifaddr structures contained in the extended device object,
and will then configure the structure with the information given to it. After that it will
add a static route for the newly configured network and then broadcast a gratuitous ARP
request to notify others of our Mac/IP address and to detect duplicate IP addresses on the
net.

Provisional Pat. App. of Alacritech, Inc. 31
Inventors Laurence B. Boucher et al. ,
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 35

4532 ARP

We will port the FreeBSD ARP code to NT mostly as-is. For some reason, the FreeBSD
ARP code is located in a file called if ether.c. While the functionality of this file will
remain the same, we will rename it to a more logical arp.c. The main structures used by
ARP are the llinfo_arp structure and the rtentry structure (actually part of route). These
structures will not be require major modifications. The functions that will require
modification are defined here.

4.5.3.2.1 In_arpinput

This function is called to process an incoming ARP frame. An ARP frame can either be
an ARP request or an ARP reply. ARP requests are broadcast, so we will see every ARP
request on the network, while ARP replies are directed so we should only see ARP
replies that are sent to us. This introduces the following possible cases for an incoming
ARP frame:

1. ARP request trying to resolve our IP address — Under normal circumstances, ARP
would reply to this ARP request with an ARP reply containing our MAC address.
Since ARP requests will also be passed up to the Microsoft TCP/IP driver, we
need not reply. Note however, that FreeBSD also creates or updates an ARP cache
entry with the information derived from the ARP request. It does this in
anticipation of the fact that any host that wishes to know our MAC address is
likely to wish to talk to us soon. Since we will need to know his MAC address in
order to talk back, we might as well add the ARP information now rather than
issuing our own ARP request later.

2. ARP request trying to resolve someone else’s IP address — Since ARP requests are
broadcast, we see every one on the network. When we receive an ARP request of
this type, we simply check to see if we have an entry for the host that sent the
request in our ARP cache. If we do, we check to see if we still have the correct
MAC address associated with that host. If it is incorrect, we update our ARP
cache entry. Note that we do not create a new ARP cache entry in this case.

3. ARP reply — In this case we add the new ARP entry to our ARP cache. Having
resolved the address, we check to see if there is any transmit requests pending for
the resolve IP address, and if so, transmit them. '

Given the above three possibilities, the only major change to the in_arpinput code is that
we will remove the code which generates an ARP reply for ARP requests that are meant
for our interface.

4.5.3.2.2 Arpintr

This is the FreeBSD code that delivers an incoming ARP frame to in_arpinput. We will
be calling in_arpinput directly from our ProtocolReceiveDPC routine (discussed in the
NDIS section below) so this function is not needed.

Provisional Pat. App. of Alacritech, Inc. 32
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 36

4.5.3.2.3 Arpwhohas

This is a single line function that serves only as a wrapper around arprequest. We will
remove it and replace all calls to it with direct calls to arprequest.

453.2.4 Arprequest

This code simply allocates a mbuf, fills it in with an ARP header, and then passes it down
to the ethernet output routine to be transmitted. For us, the code remains essentially the
same except for the obvious changes related to how we allocate a network buffer, and
how we send the filled in request.

45325 Arp ifinit

This is simply called when an interface is initialized to broadcast a gratuitous ARP
request (described in the interface initialization section) and to set some ARP related
fields in the ifaddr structure for the interface. We will simply move this functionality into
the interface initialization code and remove this function.

45.3.2.6 Arptimer

This is a timer-based function that is called every 5 minutes to walk through the ARP
table looking for entries that have timed out. Although the time-out period for FreeBSD
is 20 minutes, RFC 826 does not specify any timer requirements with regard to ARP so
we can modify this value or delete the timer altogether to suit our needs. Either way the
function won’t require any major changes.

’

All other functions in if _ether.c will not require any major changes.

4.5.3.3 Route

On first thought, it might seem that we have no need for routing support since our ATCP
driver will only receive IP datagrams who’s destination IP address matches that of one of
our own interfaces. Therefore, we will not “route” from one interface to another.

Instead, the MICROSOFT TCP/IP driver will provide that service. We will, however,
need to maintain an up-to-date routing table so that we know a) whether an outgoing
connection belongs to one of our interfaces, b) to which interface it belongs, and c¢) what
the first-hop IP address (gateway) is if the destination is not on the local network.

We discuss four aspects on the subject of routing in this section. They are as follows:

1. The mechanics of how routing information is stored

2. The manner in which routes are added or deleted from the route table.
3. When and how route information is retrieved from the route table.
4

. Notification of route table changes to interested parties.

Provisional Pat. App. of Alacritech, Inc. v 33
Inventors Laurence B. Boucher et al. ‘
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 37

4.5.3.3.1 The route table

In FreeBSD, the route table is maintained using an algorithm known as PATRICIA
(Practical Algorithm To Retrieve Information Coded in Alphanumeric). Thisisa
complicated algorithm that is a bit costly to set up, but is very efficient to reference.

Since the routing table should contain the same information for both NT and FreeBSD,
and since the key used to search for an entry in the routing table will be the same for each
(the destination IP address), we should be able to port the routing table software to NT
without any major changes.

The software which implements the route table (via the PATRICIA algorithm) is located
in the FreeBSD file, radix.c. This file will be ported directly to the ATCP driver with no
significant changes required.

4.5.3.3.2 Adding and deleting routes

Routes can be added or deleted in a number of different ways. The kernel adds or deletes
routes when the state of an interface changes or when an ICMP redirect is received. User

space programs such as the RIP daemon, or the route command also modify the route
table.

For kernel-based route changes, the changes can be made by a direct call to the routing
software. The FreeBSD software that is responsible for the modification of route table
entries is found in route.c. The primary routine for all route table changes is called
rtrequest(). It takes as its arguments, the request type (ADD, RESOLVE, DELETE), the
destination IP address for the route, the gateway for the route, the netmask for the route,
the flags for the route, and a pointer to the route structure (struct rtentry) in which we will
place the added or resolved route. Other routines in the route.c file include rtinit(), which
is called during interface initialization time to add a static route to the network, rtredirect,
which is called by ICMP when we receive a ICMP redirect, and an assortment of support
routines used for the modification of route table entries. All of these routines found in
route.c will be ported with no major modifications.

For user-space-based changes, we will have to be a bit more clever. In FreeBSD, route
changes are sent down to the kernel from user-space applications via a special route
socket. This code is found in the FreeBSD file, rtsock.c. Obviously this will not work
for our ATCP driver. Instead the filter driver portion of our driver will intercept route
changes destined for the Microsoft TCP driver and will apply those modifications to our
own route table via the rtrequest routine described above. In order to do this, it will have
to do some format translation to put the data into the format (sockaddr_in) expected by
the rtrequest routine. Obviously, none of the code from rtsock.c will be ported to the
ATCP driver. This same procedure will be used to intercept and process explicit ARP
cache modifications.

4.5.3.3.3 Consulting the route table

In FreeBSD, the route table is consulted in ip_output when an IP datagram is being sent.
In order to avoid a complete route table search for every outgoing datagram, the route is
stored into the in_pcb for the connection. For subsequent calls to ip_output, the route
entry is then simply checked to ensure validity. While we will keep this basic operation
as 1s, we will require a slight modification to allow us to coexist with the Microsoft TCP
Provisional Pat. App. of Alacritech, Inc. 34

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 38

driver. When an active connection is being set up, our filter driver will have to determine
whether the connection is going to be handled by one of the INIC interfaces. To do this,
we will have to consult the route table from the filter driver portion of our driver. This is
done via a call to the rtalloc1 function (found in route.c). If a valid route table entry is
found, then we will take control of the connection and set a pomter to the rtentry structure
returned by rtallocl in our in_pcb structure.

4.5.3.3.4 What to do when a route changes.

When a route table entry changes, there may be connections that have pointers to a stale
route table entry. These connections will need to be notified of the new route. FreeBSD
solves this by checking the validity of a route entry during every call to ip_output. If the
entry is no longer valid, its reference to the stale route table entry is removed, and an
attempt is made to allocate a new route to the destination. For our slow path, this will
work fine. Unfortunately, since our IP processing is handled by the INIC for our fast
path, this sanity check method will not be sufficient. Instead, we will need to perform a
review of all of our fast path connections during every route table modification. 'If the
route table change affects our connection, we will need to advise the INIC with a new
first-hop address, or if the destination is no longer reachable, close the connection
entirely. :

4534 ICMP

Like the ARP code above, we will need to process certain types of incoming ICMP
frames. Of the 10 possible ICMP message types, there are only three that we need to
support. These include ICMP_REDIRECT, ICMP_UNREACH, and
ICMP_SOURCEQUENCH. Any FreeBSD code to deal with other types of ICMP traffic
will be removed. Instead, we will simply return NDIS STATUS NOT ACCEPTED for
all but the above ICMP frame types. This section describes how we will handle these
ICMP frames.

4.5.3.4.1 ICMP_REDIRECT

Under FreeBSD, an ICMP_REDIRECT causes two things to occur. First, it causes the
route table to be updated with the route given in the redirect. Second, it results in a call
back to TCP to cause TCP to flush the route entry attached to its associated in_pcb
structures. By doing this, it forces ip_output to search for a new route. As mentioned in
the Route section above, we will also require a call to a routine which will review all of
the TCP fast-path connections, and update the route entries as needed (in this case
because the route entry has been zeroed). The INIC will then be notified of the route
changes.

4.5.3.42 ICMP_UNREACH

In both FreeBSD and Microsoft TCP, the ICMP_UNREACH results in no more than a
simple statistic update. We will do the same.

4.5.3.43 ICMP_SOURCEQUENCH

A source quench is sent to cause a TCP sender to close its congestion window to a single
segment, thereby putting the sender into slow-start mode. We will keep the FreeBSD
code as-is for slow-path connections. For fast path connections we will send a
notification to the card that the congestion window for the given connection has been
reduced. The INIC will then be responsible for the slow-start algorithm.

Provisional Pat. App. of Alacritech, Inc. - 35

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 39

4535 IP

The FreeBSD IP code should require few modifications when porting to the ATCP
driver. What few modifications will be required will be discussed in this section.

4.53.5.1 IPinitialization

During initialization time, ip_init is called to initialize the array of protosw structures.
These structures contain all the information needed by IP to be able to pass incoming data
to the correct protocol above it. For example, when a UDP datagram arrives, IP locates
the protosw entry corresponding to the UDP protocol type value (0x11) and calls the
input routine specified in that protosw entry. We will keep the array of protosw
structures intact, but since we are only handling the TCP and ICMP protocols above IP,
we will strip the protosw array down substantially.

4.5.3.5.2 TP input
Following are the changes required for IP input (function ip_intr()).

4.5.3.5.2.1 No IP forwarding

Since we will only be handling datagrams for which we are the final destination, we
should never be required to forward an IP datagram. All references to IP forwarding, and
the ip_forward function itself, can be removed.

4.5.3.5.2.2 IP options

The only options supported by FreeBSD at this time include record route, strict and loose
source and record route, and timestamp. For the timestamp option, FreeBSD only logs
the current time into the IP header so that before it is forwarded. Since we will not be
forwarding IP datagrams, this seems to be of little use to us. While FreeBSD supports the
remaining options, NT essentially does nothing useful with them. For the moment, we
will not bother dealing with IP options. They will be added in later if needed.

4.5.3.5.2.3 IP reassembly

There is a small problem with the FreeBSD IP reassembly code. The reassembly code
reuses the IP header portion of the IP datagram to contain IP reassembly queue
information. It can do this because it no longer requires the original IP header. This is an
absolute no-no with the NDIS 4.0 method of handling network packets. The NT DDK
explicitly states that we must not modify packets given to us by NDIS. This is not the
only place in which the FreeBSD code modifies the contents of a network buffer. It also
does this when performing endian conversions. At the moment we will leave this code as
is and violate the DDK rules. We believe we can do this because we are going to ensure
that no other transport driver looks at these frames. If this becomes a problem we will

have to modify this code substantially by moving the IP reassembly fields into the mbuf
header. :

4.5.3.5.3 IP output

There are only two modifications required for IP output. The first is that since, for the
moment, we are not dealing with IP options, there is no need for the code that inserts the
IP options into the IP header. Second, we may discover that it is impossible for us to ever
receive an output request that requires fragmentation. Since TCP performs Maximum
Segment Size negotiation, we should theoretically never attempt to send a TCP segment
larger than the MTU.

Provisional Pat. App. of Alacritech, Inc. 36

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 40

4.6 NDIS Protocol Driver

This section defines protocol driver portion of the ATCP driver. The protocol driver
portion of the ATCP driver is defined by the set of routines registered with NDIS via a
call to NdisRegisterProtocol. These routines are limited to those that are called
(indirectly) by the INIC miniport driver beneath us. For example, we register a
ProtocolReceivePacket routine so that when the INIC driver calls
NdisMIndicateReceivePacket it will result in a call from NDIS to our driver. Stnctly
speaking, the protocol driver portion of our driver does not include the method by which
our driver calls down to the miniport (for example, the method by which we send
network packets). Nevertheless, we will describe that method here for lack of a better
place to put it. That said, we cover the following topics in this section of the document:
Initialization

Receive

Transmit

Query/Set Information

Status indications

Reset

Halt

R e

4.6.1 Initialization

The protocol driver initialization occurs in two phases. The first phase occurs when the
ATCP DriverEntry routine calls ATKProtoSetup. The ATKProtoSetup routine:performs
the following:

1. Allocate resources — We attempt to allocate many of the required resources as soon
as possible so that we are more likely to get the memory we want. This mostly
applies to allocating and initializing our mbuf and mbuf header pools.

2. Register Protocol — We call NdisRegisterProtocol to register our set of protocol
driver routines.

3. Locate and initialize bound NICs — We read the Linkage parameters of the registry
to determine which NIC devices we are bound to. For each of these devices we
allocate and initialize a IFACE structure (defined above). We then readthe TCP
parameters out of the registry for each bound device and set the corresponding
fields in the IFACE structure.

After the underlying INIC devices have completed their initialization, NDIS will call our
driver’s ATKBindAdapter function for each underlying device. It will perform the
following:
1. Open the device specified in the call the ATKBind Adapter
2. Find the IFACE structure that was created in ATKProtoSetup for this device.
3. Query the miniport for adapter information. This includes such things as link
speed and MAC address. Save relevant information in the IFACE structure.
4. Perform the interface initialization as specified in section 4.5.3.1 Interface
initialization

Provisional Pat. App. of Alacritech, Inc. 37
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 41

4.6.2 Receive

Receive is handled by the protocol driver routine ATKReceivePacket. Before we

describe this routine, it is important to consider each possible receive type and how it will
be handled.

4.6.2.1 Receive overview

Our INIC miniport driver will be bound to our transport driver as well as the generic
Microsoft TCP driver (and possibly others). The ATCP driver will be bound exclusively
to INIC devices, while the Microsoft TCP driver will be bound to INIC devices as well as
other types of NICs. This is illustrated below:

Filter Driver

ATCP
Microsoft Driver
TCP/IP
Driver

3COM INIC
Miniport Miniport
Driver Driver

By binding the driver in this fashion, we can choose to direct incoming network data to
our own ATCP transport driver, the Microsoft TCP driver, or both. We do this by
playing with the ethernet “type” field as follows.

To NDIS and the transport drivers above it, our card is going to be registered as a normal
ethernet card. When a transport driver receives a packet from our driver, it will expect
the data to start with an ethernet header, and consequently, expects the protocol type field
to be in byte offset 12. If Microsoft TCP finds that the protocol type field is not equal to
either IP, or ARP, it will not accept the packet. So, to deliver an incoming packet to our
driver, we must simply map the data such that byte 12 contains a non-recognized ethernet
type field. Note that we must choose a value that is greater than 1500 bytes so that the
transport drivers do not confuse it with an 802.3 frame. We must also choose a value that
will not be accepted by other transport driver such as Appletalk or IPX. Similarly, if we
want to direct the data to Microsoft TCP, we can then simply leave the ethernet type field

set to IP (or ARP). Note that since we will also see these frames we can choose to accept
or not-accept them as necessary.

Provisional Pat. App. of Alacritech, Inc. 38
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 42

Incoming packets are delivered as follows:

Packets delivered to ATCP only (not accepted by MSTCP):

1. All TCP packets destined for one of our IP addresses. This includes both slow-
path frames and fast-path frames. In the slow-path case, the TCP frames are given
in there entirety (headers included). In the fast-path case, the ATKReceivePacket
is given a header buffer that contains status information and data with no headers
(except those above TCP). More on this later.

Packets delivered to Microsoft TCP only (not accepted by ATCP):

1. All non-TCP packets.

2. All packets that are not destined for one of our interfaces (packets that will be
routed). Continuing the above example, if there is an [P address 144.48.252.4
associated with the 3com interface, and we receive a TCP connect with a
destination IP address of 144.48.252.4, we will actually want to send that request
up to the ATCP driver so that we create a fast-path connection for it. This means
that we will need to know every IP address in the system and filter frames based
on the destination IP address in a given TCP datagram. This can be done in the
INIC miniport driver. Since it will be the ATCP driver that learns of dynamic IP
address changes in the system, we will need a method to notify the INIC miniport
of all the IP addresses in the system. More on this later.

Packets delivered to both:
1. All ARP frames

2. Al ICMP frames

4.6.2.2 Two types of receive packets

There are several circumstances in which the INIC will need to indicate extra information
about a receive packet to the ATCP driver. One such example is a fast path receive in
which the ATCP driver will need to be notified of how much data the card has buffered.
To accomplish this, the first (and sometimes only) buffer in a received packet will
actually be an INIC header buffer. The header buffer contains status information about
the receive packet, and may or may not contain network data as well. The ATCP driver
will recognize a header buffer by mapping it to an ethernet frame and inspecting the type
field found in byte 12. We will indicate all TCP frames destined for us in this fashion,
while frames that are destined for both our driver and the Microsoft TCP driver (ARP,
ICMP) will be indicated without a header buffer.

Provisional Pat. App. of Alacritech, Inc. 39
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 43

Packet Desc Packet Desc
| |
Buffer Desc Buffer Desc Buffer Desc
Header TCP Packet ARP
Buffer e Frame
Example of incoming TCP pkt Example of incoming ARP Frame

4.6.2.3 NDIS 4 ProtocolReceivePacket operation

NDIS has been designed such that all packets indicated via NdisMIndicateReceivePacket
by an underlying miniport are delivered to the ProtocolReceivePacket routine for all
protocol drivers bound to it. These protocol drivers can choose to accept or not accept
the data. They can either accept the data by copying the data out of the packet indicated
to it, or alternatively they can keep the packet and return it later via a call to
NdisReturnPackets. By implementing it in this fashion, NDIS allows more than one
protocol driver to accept a given packet. For this reason, when a packet is delivered to a
protocol driver, the contents of the packet descriptor, buffer descriptors and data must all
be treated as read-only. At the moment, we intend to violate this rule. We choose to
violate this because much of the FreeBSD code modifies the packet headers as it
examines them (mostly for endian conversion purposes). Rather than modify all of the
FreeBSD code, we will instead ensure that no other transport driver accepts the data by
making sure that the ethernet type field is unique to us (no one else will want it).
Obviously this only works with data that is only delivered to our ATCP driver.. For ARP
and ICMP frames we will instead copy the data out of the packet into our own buffer and
return the packet to NDIS directly. While this is less efficient than keeping the data and
returning it later, ARP and ICMP traffic should be small enough, and infrequent enough,
that it doesn’t matter.

The DDK specifies that when a protocol driver chooses to keep a packet, it should return
a value of 1 (or more) to NDIS in its ProtocolReceivePacket routine. The packet is then
later returned to NDIS via the call to NdisReturnPackets. This can only happen after the
ProtocolReceivePacket has returned control to NDIS. This requires that the call to
NdisReturnPackets must occur in a different execution context. We can accomplish this
by scheduling a DPC, scheduling a system thread, or scheduling a kernel thread of our
own. For brevity in this section, we will assume it is a done through a DPC. In any case,
we will require a queue of pending receive buffers on which to place and fetch receive
packets.

After a receive packet is dequeued by the DPC it is then either passed to TCP directly for
fast-path processing, or it is sent through the FreeBSD path for slow-path processing.
Note that in the case of slow-path processing, we may be working on data that needs to
be returned to NDIS (TCP data) or we may be working on our own copy of the data

Provisional Pat. App. of Alacritech, Inc. 40
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 44

(ARP and ICMP). When we finish with the data we will need to figure out whether or
not to return the data to NDIS or not. This will be done via fields in the mbuf header
used to map the data. When the mfreem routine is called to free a chain of mbufs, the
fields in the mbuf will be checked and, if required, the packet descriptor pointed to by the
mbuf will be returned to NDIS.

4.6.24 Mbuf < Packet mapping

As noted in the section on mbufs above, we will map incoming data to mbufs so that our
FreeBSD port requires fewer modifications. Depending on the type of data received, this
mapping will appear differently. Here are some examples:

Addr Addr
Packet desc Packet desc
.. ——T—Addr
mbuf mbuf Packet desc =0
v mbuf
Buffer Desc Buffer Desc |
Packet Packet Data
f——— Buffer
Data Data Data
Next =0 Next Next=0
Buffer Buffer Buffer
Header
buffer Data
Header fo ffer
Buffer
Example A. Example B. Example C.
TCP Fast-path TCP Slow-path ARP Frame

In Example A, we show incoming data for a TCP fast-path connection. In this example,
the TCP data is fully contained in the header buffer. The header buffer is mapped by the
mbuf and sent upstream for fast-path TCP processing. In this case it is required that the
header buffer be mapped and sent upstream because the fast-path TCP code will need
information contained in the header buffer in order to perform the processing. ‘When the
mbuf in this example is freed, the mfreem routine will determine that the mbuf maps a
packet that is owned by NDIS and will then free the mbuf header only and call
NdisReturnPackets to free the data.

In Example B, we show incoming data for a TCP slow-path connection. In this example
the mbuf points to the start of the TCP data directly instead of the header buffer. Since
this buffer will be sent up for slow-path FreeBSD processing, we can not have the mbuf
pointing to a header buffer (FreeBSD would get awfully confused). Again, when mfreem

Provisional Pat. App. of Alacritech, Inc. 41
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 45

is called to free the mbuf, it will discover the mapped packet, free the mbuf header, and
call NDIS to free the packet and return the underlying buffers. Note that even though we
do not directly map the header buffer with the mbuf we do not lose it because of the link
from the packet descriptor. Note also that we could alternatively have the INIC miniport
driver only pass us the TCP data buffer when it receives a slow-path receive. This would
work fine except that we have determined that even in the case of slow-path connections
we are going to attempt to offer some assistance to the host TCP driver (most likely by
checksum processing only). In this case there may be some special fields that we need to
pass up to the ATCP driver from the INIC driver. Leaving the header buffer connected
seems the most logical way to do this.

Finally, in Example C, we show a received ARP frame. Recall that for incoming ARP
and ICMP frames we are going to copy the incoming data out of the packet and return it
directly to NDIS. In this case the mbuf simply points to our data, with no corresponding
packet descriptor. When we free this mbuf, mfreem will discover this and free not only
the mbuf header, but the data as well.

4.6.2.5 Other receive packets

We use this receive mechanism for other purposes besides the reception of network data.
It is also used as a method of communication between the ATCP driver and the INIC.
One such example is a TCP context flush from the INIC. When the INIC determines, for
whatever reason, that it can no longer manage a TCP connection, it must flush that
connection to the ATCP driver. It will do this by filling in a header buffer with
appropriate status and delivering it to the INIC driver. The INIC driver will in turn
deliver it to the protocol driver which will treat it essentially like a fast-path TCP
connection by mapping the header buffer with an mbuf header and delivering it to TCP
for fast-path processing. There are two advantages to communicating in this manner.
First, it is already an established path, so no extra coding or testing is required. Second,
since a context flush comes in, in the same manner as received frames, it will prevent us
from getting a slow-path frame before the context has been flushed.

4.6.2.6 Summary

Having covered all of the various types of receive data, following are the steps that are
taken by the ATKProtocolReceivePacket routine.

1. Map incoming data to an ethernet frame and check the type field.

2. 1If the type field contains our custom INIC type then it should be TCP

3. Ifthe header buffer specifies a fast-path connection, allocate one or more mbufs
headers to map the header and possibly data buffers. Set the packet descriptor
field of the mbuf to point to the packet descriptor, set the mbuf flags appropriately,
queue the mbuf, and return 1.

4. 1If the header buffer specifies a slow-path connection, allocate a single mbuf header
to map the network data, set the mbuf fields to map the packet, queue the mbuf
and return 1. Note that we design the INIC such that we will never get a TCP
segment split across more than one buffer.

Provisional Pat. App. of Alacritech, Inc. 42 -
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 46

Nt

If the type field of the frame indicates ARP or ICMP

6. Allocate a mbuf with a data buffer. Copy the contents of the packet into the mbuf.
Queue the mbuf, and return 0 (not accepted).

7. If the type field is not either the INIC type, ARP or ICMP, we don’t want it.

Return 0.

The receive processing will continue when the mbufs are dequeued. At the moment this
is done by a routine called ATKProtocolReceiveDPC. It will do the following:

fan—y

Dequeue a mbuf from the queue.

2. Inspect the mbuf flags. If the mbuf is meant for fast-path TCP, it will call the fast-
path routine directly. Otherwise it will call the ethernet input routine for slow-path
processing.

4.6.3 Transmit

In this section we discuss the ATCP transmit path.

4.6.3.1 NDIS 4 send operation

The NDIS 4 send operation works as follows. When a transport/protocol driver wishes to
send one or more packets down to an NDIS 4 miniport driver, it calls NdisSendPackets
with an array of packet descriptors to send. As soon as this routine is called, the
transport/protocol driver relinquishes ownership of the packets until they are returned,
one by one in any order, via a NDIS call to the ProtocolSendComplete routine. Since this
routine is called asynchronously, our ATCP driver must save any required context into
the packet descriptor header so that the appropriate resources can be freed. This is
discussed further in the following sections.

4.6.3.2 Types of “sends”

Like the Receive path described above, the transmit path is used not only to send network
data, but is also used as a communication mechanism between the host and the INIC.
Here are some examples of the types of sends performed by the ATCP driver.

4.6.3.2.1 Fast-path TCP send

When the ATCP driver receives a transmit request with an associated MDL, it will
package up the MDL physical addresses into a command buffer, map the command
buffer with a buffer and packet descriptor, and call NdisSendPackets with the
corresponding packet. The underlying INIC driver will issue the command buffer to the
INIC. When the corresponding response buffer is given back to the host, the INIC
miniport will call NdisMSendComplete which will result in a call to the ATCP
ProtocolSendComplete (ATKSendComplete) routine, at which point the resources
associated with the send can be freed. We will allocate and use a mbuf to hold the
command buffer. By doing this we can store the context necessary in order to clean up
after the send completes. This context includes a pointer to the MDL and presumably
some other connection context as well. The other advantage to using a mbuf to hold the
command buffer is that it eliminates having another special set of code to allocate and
return command buffer. We will store a pointer to the mbuf in the reserved section of the

Provisional Pat. App. of Alacritech, Inc. 43

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 47

packet descriptor so we can locate it when the send is complete. The following diagram
illustrates the relationship between the client’s MDL, the command buffer, and the buffer
and packet descriptors.

Packet —l’ mbuf MDL
Desc Y S—
N A Command T
Buffer Buffer ‘
Desc. Data Data Data

4.6.3.2.2 Fast-path TCP Receive

As described in section 4.3.1 above, the receive process typically occurs in two phases.
First the INIC fills in a host receive buffer with a relatively small amount of data, but
notifies the host of a large amount of pending data (either through a large amount of
buffered data on the card, or through a large amount of expected NetBios data). This
small amount of data is delivered to the client through the TDI interface. The client will
then respond with a MDL in which the data should be placed. Like the Fast-path TCP
send process, the receive portion of the ATCP driver will then fill in a command buffer
with the MDL information from the client, map the buffer with packet and buffer
descriptors and send it to the INIC via a call to NdisSendPackets. Again, when the
response buffer is returned to the INIC miniport, the ATKSendComplete routine will be
called and the receive will complete. This relationship between the MDL, command
buffer and buffer and packet descriptors are the same as shown in the Fast-path send
section above.

4.6.3.2.3 Slow-path (FreeBSD)

Slow-path sends pass through the FreeBSD stack until the ethernet header is prepended in
ether_output and the packet is ready to be sent. At this point a command buffer will be
filled with pointers to the ethernet frame, the command buffer will be mapped with a
packet and buffer descriptor and NdisSendPackets will be called to hand the packet off to
the miniport. In the illustration below we show the relationship between the mbufs,
command buffer, and buffer and packet descriptors. Since we will use a mbuf to map the
command buffer, we can simply link the data mbufs directly off of the command buffer
mbuf. This will make the freeing of resources much simpler.

Packet |—p Wbuf
Desc : mbu mbu T mbu
L—T_‘—‘ Command /f /f £
Buffer Buffer
Desc. Data Data | { Data
Provisional Pat. App. of Alacritech, Inc. 44

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 48

4.6.3.2.4 Non-data command buffer

The transmit path is also used to send non-data commands to the card. For example, the
ATCP driver gives a context to the INIC by filling in a command buffer, mapping it with
a packet and buffer descriptor, and calling NdisSendPackets.

Packet mbuf
Desc I i

N AN Command
Bauffer Buffer
Desc.

4.6.3.3 ATKProtocolSendComplete

Given the above different types of sends, the ATKProtocolSendComplete routine will
perform various types of actions when it is called from NDIS. First it must examine the
reserved area of the packet descriptor to determine what type of request has completed.
In the case of a slow-path completion, it can simply free the mbufs, command buffer, and
descriptors and return. In the case of a fast-path completion, it will need to notify the
TCP fast path routines of the completion so TCP can in turn complete the client’s IRP.
Similarly, when a non-data command buffer completes, TCP will again be notified that
the command sent to the INIC has completed.

4.7 TDI Filter Driver

In a first embodiment of the product, the INIC handles only simple-case data transfer
operations on a TCP connection. (These of course constitute the large majority of CPU
cycles consumed by TCP processing in a conventional driver.)

There are many other complexities of the TCP protocol which must still be handied by
host driver software: connection setup and breakdown, out-of-order data, nonstandard
flags, etc.

The NT OS contains a fully functional TCP/IP driver, and one solution would be to
enhance this so that it is able to detect our INIC and take advantage of it by "handing off"
data-path processing where appropriate.

Unfortunately, we do not have access to NT source, let alone permission to modify NT.

Thus the solution above, while a goal, cannot be done immediately. We instead provide
our own custom driver software on the host for those parts of TCP processing which are
not handled by the INIC.

This presents a challenge. The NT network driver framework does make provision for
multiple types of protocol driver: but it does not easily allow for multiple instances of
drivers handling the SAME protocol.

Provisional Pat. App. of Alacritech, Inc. 45
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 49

For example, there are no "hooks" into the Microsoft TCP/IP driver which would allow
for routing of IP packets between our driver (handling our INICs) and the Microsoft
driver (handling other NICs).

Our approach to this is to retain the Microsoft driver for all non-TCP network processing
(even for traffic on our INICs), but to invisibly "steal" TCP traffic on our connections and
handle it via our own (BSD-derived) driver. The Microsoft TCP/IP driver is unaware of
TCP connections on interfaces we handle.

The network "bottom end" of this artifice is described earlier in the document. In this
section we will discuss the "top end": the TDI interface to higher-level NT network client
software.)

We make use of an NT facility called a filter driver. NT allows a special type of driver
("filter driver") to attach itself "on top" of another driver in the system. The NT I/O
manager then arranges that all requests directed to the attached driver are sent first to the
filter driver; this arrangement is invisible to the rest of the system.

The filter driver may then either handle these requests itself, or pass them down to the
underlying driver it is attached to. Provided the filter driver completely replicates the
(externally visible) behavior of the underlying driver when it handles requests itself, the
existence of the filter driver is invisible to higher-level software.

The filter driver attaches itself on top of the Microsoft TCP/IP driver; this gives us the
basic mechanism whereby we can intercept requests for TCP operations and handle them
in our driver instead of the Microsoft driver.

However, while the filter driver concept gives us a framework for what we want to
achieve, there are some significant technical problems to be solved. The basic issue is
that setting up a TCP connection involves a sequence of several requests from higher-
level software, and it is not always possible to tell, for requests early in this sequence,
whether the connection should be handled by our driver or by the Microsoft driver.

Thus for many requests, we store information about the request in case we need it later,
but also allow the request to be passed down to the Microsoft TCP/IP driver in case the
connection ultimately turns out to be one which that driver should handle.

Let us look at this in more detail, which will involve some examination of the TDI
interface: the NT interface into the top end of NT network protocol drivers. Higher-level
TDI client software which requires services from a protocol driver proceeds by creating
various types of NT FILE _OBJECTs, and then making various DEVICE 10 _CONTROL
requests on these FILE_ OBJECTs.

There are two types of FILE OBJECT of interest here. Local IP addresses that are
represented by ADDRESS objects, and TCP connections that are represented by

CONNECTION objects. The steps involved in setting up a TCP connection (from the
"active", client, side) are:

Provisional Pat. App. of Alacritech, Inc. 46
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 50

(for a CONNECTION object)

1) Create an ADDRESS object.

2) Create a CONNECTION object.

3) Issue a TDI_ASSOCIATE ADDRESS io-control to associate the CONNECTION
object with the ADDRESS object.

4) Issue a TDI_CONNECT io-control on the CONNECTION object, specifying the
remote address and port for the connection.

Initial thoughts were that handling this would be straightforward: we would tell, on the
basis of the address given when creating the ADDRESS object, whether the connection is
for one of our interfaces or not. After which, it would be easy to arrange for handling
entirely by our code, or entirely by the Microsoft code: we would simply examine the
ADDRESS object to see if it was "one of ours" or not.

There are two main difficulties, however.

First, when the CONNECTION object is created, no address is specified: it acquires a
local address only later when the TDI_ASSOCIATE_ADDRESS is done. Also, when a
CONNECTION object is created, the caller supplies an opaque "context cookie" which
will be needed for later communications with that caller. Storage of this cookie is the
responsibility of the protocol driver: it is not directly derivable just by examination of the
CONNECTION object itself. If we simply passed the "create” call down to the Microsoft
TCP/IP driver, we would have no way of obtaining this cookie later if it turns out that we
need to handle the connection.

Therefore, for every CONNECTION object which is created we allocate a structure to
keep track of information about it, and store this structure in a hash table keyed by the
address of the CONNECTION object itself, so that we can locate it if we later need to
process requests on this object. We refer to this as a "shadow" object: it replicates
information about the object stored in the Microsoft driver. (We must, of course, also
pass the create request down to the Microsoft driver too, to allow it to set up its own
administrative information about the object.)

A second major difficulty arises with ADDRESS objects. These are often created with
the TCP/IP "wildcard" address (all zeros); the actual local address is assigned only later
during connection setup (by the protocol driver itself.) Of course, a "wildcard" address
does not allow us to determine whether connections that will be associated with this
ADDRESS object should be handled by our driver or by the Microsoft one. Also, as with
CONNECTION objects, there is "opaque" data associated with ADDRESS objects that
cannot be derived just from examination of the object itself. (In this case addresses of
callback functions set on the object by TDI_SET EVENT io-controls.)

Thus, as in the CONNECTION object case, we create a "shadow" object for each
ADDRESS object which is created with a wildcard address. In this we store information
(principally addresses of callback functions) which we will need if we are handling
connections on CONNECTION objects associated with this ADDRESS object.” We store
similar information, of course, for any ADDRESS object which is explicitly for one of

Provisional Pat. App. of Alacritech, Inc. 47
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 51

our interface addresses; in this case we don't need to also pass the create request down to
the Microsoft driver.

With this concept of "shadow" objects in place, let us revisit the steps involved in setting
up a connection, and look at the processing required in our driver.

First, the TDI client makes a call to create the ADDRESS object. Assuming that this is a
"wildcard" address, we create a "shadow" object before passing the call down to the
Microsoft driver.

The next step (omitted in the earlier list for brevity) is normally that the client makes a
number of TDI_ SET EVENT io-control calls to associate various callback functions
with the ADDRESS object. These are functions that should be called to notify the TDI
client when certain events (such arrival of data or disconnection requests etc) occur. We
store these callback function pointers in our "shadow" address object, before passing the
call down to the Microsoft driver.

Next, the TDI client makes a call to create a CONNECTION object. Again, we create
our "shadow" of this object.

Next, the client issues the TDI_ASSOCIATE ADDRESS io-control to bind the
CONNECTION object to the ADDRESS object. We note the association in our
"shadow" objects, and also pass the call down to the Microsoft driver.

Finally the TDI client issues a TDI CONNECT io-control on the CONNECTION object,
spemfymg the remote IP address (and port) for the desired connection. At this point, we
examine our routing tables (see section XXX for details of routing) to determine if this
connection should be handled by one of our interfaces, or by some other NIC. Ifitis
ours, we mark the CONNECTION object as "one of ours" for future reference (using an
opaque field which NT FILE OBJECTS provide for driver use.) We then

proceed with connection setup and handling in our driver, using information stored in our
"shadow" objects. The Microsoft driver does not see the connection request or any
subsequent traffic on the connection.

If the connection request is NOT for one of our interfaces, we pass it down to the
Microsoft driver. Note carefully, however, that we can not simply discard our "shadow"
objects at this point. The TDI interface allows re-use of CONNECTION objects: on
termination of a connection, it is legal for the TDI client to dissociate the
CONNECTION object from its current . Thus our "shadow" objects must be retained for
the lifetime ADDRESS object, re-associate it with another, and use it for another
connection of the NT FILE_OBJECTS: the subsequent connection could turn out to be
via one of our interfaces!

Provisional Pat. App. of Alacritech, Inc. 48
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 52

47.1 Timers

4.7.1.1 Keepalive Timer

We don’t want to implement keepalive timers on the INIC. It would in any case be a
very poor use of resources to have an INIC context sitting idle for two hours.

4.7.1.2 Idle Timer

We will keep an idle timer in the ATCP driver for connections that are managed by the
INIC (resetting it whenever we see activity on the connection), and cause a flush of
context back to the host if this timer expires. We may want to make the threshold
substantially lower than 2 hours, to reclaim INIC context slots for useful work sooner.
May also want to make that dependent on the number of contexts which have actually
been handed out: don’t need to reclaim them if we haven’t handed out the max.

5 Receive & Transmit Microcode Design

This section provides a general description of the design of the microcode that
will execute on two of the sequencers of the Protocol Processor on the INIC. The overall
philosophy of the INIC is discussed in other sections. This section will discuss the INIC
microcode in detail.

5.1 Design Overview

As specified in other sections, the INIC supplies a set of 3 custom processors that
will provide considerable hardware-assist to the microcode running thereon. The
following lists the main hardware-assist features:

e header processing with specialized DMA engines to validate an input header and
generate a context hash, move the header into fast memory and do header
comparisons on a DRAM-based TCP control block.

e DRAM fifos for free buffer queues (large & small), receive-frame queues, event
queues etc.
header compare logic
checksum generation
multiple register contexts with register access controlled by simply setting a context
register . The Protocol Processor will provide 512 SRAM-based registers to be shared
among the 3 sequencers.

e automatic movement of input frames into DRAM buffers from the MAC Fifos.

e run receive processing on one sequencer and transmit processing on the other. This
was chosen as opposed to letting both sequencers run receive and transmit. One of the
main reasons for this is that the header-processing hardware can not be shared and
interlocks would be needed to do this. Another reason is that interlocks would be
needed on the resources used exclusively by receive and by transmit.

e The INIC will support up to 256 TCP connections (TCB’s). A TCB is associated with
an input frame when the frame’s source and destination IP addresses and source and
destination ports match that of the TCB. For speed of access, the TCB’s will be

Provisional Pat. App. of Alacritech, Inc. 49
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 53

maintained in a hash table in NIC DRAM to save sequential searching. There will
however, be an index in hash order in SRAM. Once a hash has been generated, the
TCB will be cached in SRAM. There will be up to 8 cached TCBs in SRAM. These
cache locations can be shared between both sequencers so that the sequencer with the
heavier load will be able to use more cache buffers. There will also be 8 header
buffers to be shared between the sequencers. Note that each header buffer is not
statically linked to a specific TCB buffer. In fact the link is dynamic on a per-frame
basis. The need for this dynamic linking will be explained in later sections. Suffice to
say here that if there is a free header buffer, then somewhere there is also a free TCB
SRAM bulffer.

e There were 2 basic implementation options considered here. The first was single-
stack and the second was a process model. The process model was chosen here
because the custom processor design is providing zero-cost overhead for context
switching through the use of a context base register, and because there will be more
than enough process slots (or contexts) available for the peak load. It is also expected
that all “local” variables will be held permanently in registers whilst an event is being
processed.

e The features that provide this are:

256 of the 512 SRAM-based registers will be used for the register contexts. This
can be divided up into 16 contexts (or processes) of 16 registers each. Then 8 of
these will be reserved for receive and 8 for transmit. A Little’s Law analysis has
shown that in order to support 512 byte frames at maximum arrival rate of 4 * 100
Mbits, requires more than 8 jobs to be in process in the NIC. However each job
requires an SRAM buffer for a TCB context and at present, there are only 8 of
these currently specified due to SRAM space limits. So more contexts (e.g. 32 * 8
regs each) do not seem worthwhile. Refer to Appendix A for more details of this
analysis. ‘

A context switch simply involves reloading the context base register based on the
context to be restarted, and jumping to the appropriate address for resumption.

e To better support the process model chosen, the code will lock an active TCB into an
SRAM buffer while either sequencer is operating on it. This implies there will be no
swapping to and from DRAM of a TCB once it is in SRAM and an operation is
started on it. More specifically, the TCB will not be swapped after requesting that a
DMA be performed for it. Instead, the system will switch to another active “process”.
Then it will resume the former process at the point directly after where the DMA was
requested. This constitutes a zero-cost switch as mentioned above.

¢ individual TCB state machines will be run from within a “process”. There will be a
state machine for the receive side and one for the transmit side. The current TCB
states will be stored in the SRAM TCB index table entry.

e The INIC will have 16 MB of DRAM. The current specification calls for dividing a
large portion of this into 2K buffers and control allocation / deallocation of these
buffers through one of the DRAM fifos mentioned above. These fifos will also be
used to control small host buffers, large host buffers, command buffers and command
response buffers.

e For events from one sequencer to the other (i.e. RCV <& XMT), the current
specification calls for using simple SRAM CIO buffers, one for each direction.

e FEach sequencer handles its own timers independently of the others.

Contexts will be passed to the INIC through the Transmit command and response
buffers. INIC-initiated TCB releases will be handled through the Receive small

Provisional Pat. App. of Alacritech, Inc. 50
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 54

buffers. Host-initiated releases will use the Command buffers. There needs to be strict
handling of the acquisition and release of contexts to avoid windows where for
example, a frame is received on a context just after the context was passed to the
INIC, but before the INIC has “accepted” it.

e T/TCP (Transaction TCP): the initial INIC will not handle T/TCP connections. This
is because they are typically used for the HTTP protocol and the client for that
protocol typically connects, sends a request and disconnects in one segment. The
server sends the connect confirm, reply and disconnect in his first segment. Then the
client confirms the disconnect. This is a total of 3 segments for the life of a context.
Typical data lengths are on the order of 300 bytes from the client and 3K from the
server. The INIC will provide as good an assist as seems necessary here by
checksumming the frame and splitting headers and data. The latter is only likely when
data is forwarded with a request such as when a filled-in form is sent by the client.

5.1.1 SRAM Requirements

The following are SRAM requirements for the Receive and Transmit engines:

TCB buffers 256 bytes * 16 4096

Header buffers 128 bytes * 16 2048

TCB hash index 16 bytes * 256 4096

Timers 128

DRAM Fifo queues 128 bytes * 16 2048
~12K bytes

Depending upon the available space, the number of TCB buffers may be increased to 16.

5.1.2 General Philosophy

The basic plan is to have the host determine when a TCP connection is able to be handed
to the INIC, setup the TCB and pass it to the card via a command in the Transmit queue.
TCBs that the INIC owns can be handed back to the host via a request from the Receive
or Transmit sequencers or from the host itself at any time.

When the INIC receives a frame, one of its immediate tasks is to determine if the frame is
for a TCB that it controls. If not, the frame is passed to the host on a generic interface
TCB. On transmit, the transmit request will specify a TCB hash number if the request is
on a INIC-controlled TCB. Thus the initial state for the INIC will be transparent mode in
which all received frames-are directly passed through and all transmit requests will be
simply thrown on the appropriate wire. This state is maintained until the host passes
TCBs to the INIC to control. Note that frames received for which the INIC hasno TCB
(or it is with the host) will still have the TCP checksum verified if TCP/IP, and may split
the TCPIP header off into a separate buffer.

Provisional Pat. App. of Alacritech, Inc. 51
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US j

Alacritech, Ex. 2019 Page 55

5.1.3 Register Usage

There will be 512 registers available. The first 256 will be used for process contexts. The
remaining 256 will be split between the 3 sequencers as follows:

257 - 320: 64 for RCV general processing / main loop.

321 - 384: 64 for XMT general processing / main loop.

385 — 512: 128 for 3" sequencer use.

5.2 Receive Processing

5.2.1 Main Loop
The following is a summary of the main loop of Receive:

forever {
while there are any Receive events {
if (a new event) {
if (no new context available)
ignore the event;
)
call appropriate event handler to service the event;
this may make a waiting process runnable or set up
a new process to be run (get free context, hddr buffer,
TCB bulffer, set the context up).
}
while any process contexts are runable {
run them by jumping to the start/resume address;
if (process complete)
free the context;

5.2.2 Receive Events

The events that will be processed on a given context are:
e accept a context
e release a context command (from the host via Transmit)
o release a context request (from Transmit)
e receive a valid frame; this will actually become 2 events based on the received frame
- receive an ACK, receive a segment
e receive an “invalid” frame i.e. one that causes the TCB to be flushed to the host
e avalid ACK needs to be sent (delayed ACK timer expiry).
e There are expected to be the following sources of events:
1. Receive input queue: it is expected that hardware will automatically DMA arriving
frames into frame buffers and queue an event into a RCV-event queue.
2. Timer event queue: expiration of a timer will queue an event into this queue.
3. Transmit sequencer queue: for requests from the transmit processor.

Provisional Pat. App. of Alacritech, Inc. 52
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 56

For the sake of brevity the following only discusses receive-frame processing .

5.2.3 Receive Details — Valid Context

The base for the receive processing done by the INIC on an existing context is the fast-
path or “header prediction” code in the FreeBSD release. Thus the processing is divided
into 3 parts: header validation and checksumming, TCP processing and subsequent SMB
processing.

5.2.3.1 Header Validation

There is considerable hardware assist here. The first step in receive processing is to dma
the frame header into an SRAM header buffer. It is useful for header validation to be
implemented in conjunction with this dma by scanning the data as it flies by. The
following tests need to be “passed’:

e MAC header: destination address is our MAC address (not MC or BC too), the
Ethertype is IP.

e [P header: header checksum is valid, header length = 5, IP length > header length,
protocol = TCP, no fragmentation, destination IP is our IP address.

e TCP header: checksum is valid (incl. pseudo-header), header length =5 or 8
(timestamp option), length is valid, dest port = SMB or FTP data, no |
FIN/SYN/URG/PSH/RST bits set, timestamp option is valid if present, segment is in
sequence, the window size did not change, this is not a retransmission, it is a pure ACK
or apure receive segment, and most important, a valid context exists. The valid-context
test is non-trivial in the amount of work involved to determine it. Also note that for pure
ACKs, the window-size test will be relaxed. This is because initially the output PERSIST
state is to be handled on the INIC.

Many but perhaps not all of these tests will be performed in hardware — depending upon
the embodiment

5.2.3.2 TCP Processing

Once a frame has passed the header validation tests, processing splits based on whether
the frame is a pure ACK or a pure received segment.

5.2.3.2.1 Pure RCV Packet

The design is to split off headers into a small header buffer and pass the aligned data in
separate large buffers. Since a frame has been received, eventually some receiver process
on the host will need to be informed. In the case of FTP, the frame is pure data and it is
passed to the host immediately. This involves getting large buffers and dmaing the data
into them, then setting the appropriate details in a small buffer that is used to notify the
host. However for SMB, the INIC is performing reassembly of data when the frame
consists of headers and data. So there may not yet be a complete SMB to pass to the host.
In this case, a small buffer will be acquired and the header moved into it. If the received
segment completes an SMB, then the procedures are pretty much as for FTP. If it does
not, then the scheme is to at least move the received data (not the headers) to the host to
free the INIC buffers and to save latency. The list of in-progress host buffers is
maintained in the TCB and moved to the header buffer when the SMB is complete.

Provisional Pat. App. of Alacritech, Inc. 53
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 57

The final part of pure-receive processing is to fire off the delayed ACK timer for this
segment.

5.2.3.2.2 Pure ACK

Pure ACK processing implies this TCB is the sender, so there may be transmit buffers
that can be returned to the host. If so, send an event to the Transmit processor (or do the
processing here). If there is more output available, send an event to the transmit -
processor. Then appropriate actions need to be taken with the retransmission timer.

5.2.3.3 SMB Processing
The following is the format of the SMB header of an SMB frame:

31 0
NetBIOS header
TYPE FLAGS < LENGTH >
SMB header OxFF «gy M «B”
COM RCLS REH ERR...
...ERR REB /FLG Reserved
Reserved
Reserved
Resetved
TID PID
UID MID
WCT VWV]
BCC Data..........

Notes (interesting fields):

LENGTH 17 bit Length of SMB message (0 — 128K)
COM SMB command
WCT Count (16 bit) of parameter words in VW V(]
VWV Variable number of parameter words
BCC Bytes of data following
Provisional Pat. App. of Alacritech, Inc. 54

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 58

The LENGTH field of the NetBIOS header will be used to determine when a complete
SMB has been received and the header buffer with appropriate details can be posted to
the host. ‘

The interesting commands are the write commands: SMBwrite (0xB), SMBwriteBraw
(0x1D), SMBwriteBmpx (0x1E), SMBwriteBs (0x1F), SMBwriteclose (0x2C),
SMBwriteX (0x2F), SMBwriteunlock (0x14). These are interesting because they will
have data to be aligned in host memory. The point to note about these commands is that
they each have a different WCT field, so that the start offset of the data depends on the
command type. SMB processing will thus need to be cognizant of these types.

5.2.4 Receive Details — No Valid Context

The design here is to provide as much assist as possible. Frames will be checksummed
and the TCPIP headers may be split off.

5.2.5 Receive Notes

1. PRU RCVD or the equivalent in Microsoft language: the host application has to
tell the INIC when he has accepted the received data that has been queued. This is
so that the INIC can update the receive window. It is an advantage for this
mechanism to be efficient. This may be accomplished by piggybacking these on
transmit requests (not necessarily for the same TCB).

2. Keepalive Timer: for a INIC-controlled TCB, the INIC will not maintain this
timer. This leaves the host with the job of determining that the TCB is still active.

3. Timestamp option: it is useful to support this option in the fast path because the
BSD implementation does. Also, it can be very helpful in getting a much better
estimate of the round-trip time (RTT) which TCP needs to use.

4. Idle timer: the INIC will not maintain this timer (see Note 2 above).

5. Frame with no valid context: The INIC may split TCP/IP headers into a separate
header buffer.

Provisional Pat. App. of Alacritech, Inc. 55
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 59

5.3 Transmit Processing

5.3.1 Main Loop.

The following is a summary of the main loop of Transmit:

forever {
while there are any Transmit events {
if (a new event) {
if (no new context available)
ignore the event;

}

call appropriate event handler to service the event;
this may make a waiting process runnable or set up
anew process to be run (get free context, hddr buffer,
TCB buffer, set the context up).

}

while any process contexts are runable {
run them by jumping to the start/resume address;
if (process complete)
free the context;

}

5.3.2 Transmit Events

The events that will be processed on a given context and their sources are:

accept a context (from the Host).

release a context command (from the Host).

release a context command (from Receive).

valid send request and window > 0 (from host or RCV sequencer).

valid send request and window = 0 (from host or RCV sequencer).

send a window update (host has accepted data).

persist timer expiration (persist timer).

context-release event e.g. window shrank (XMT processing or retransmission timer).
receive-release request ACK(from RCV sequencer).

5.3.3 Transmit Details — Valid Context
The following is an overview of the transmit flow:

The host posts a transmit request to the INIC by filling in a command buffer with
appropriate data pointers etc and posting it to the INIC via the Command Buffer Address
register. Note that there is one host command buffer queue, but there are 4 physical
transmit lines. So each request needs to include an interface number as well as the context
number. The INIC microcode will dma the command in and place it in 1 of 4 internal
command queues which the transmit sequencer will work on. This is so that transmit
processing can round-robin service these 4 queues to keep all 4 interfaces busy, and not

Provisional Pat. App. of Alacritech, Inc. : 56
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
 Alacritech, Ex. 2019 Page 60

let a highly-active interface lock out the others (which would happen with a single
queue).

The transmit request may be a segment that is less than the MSS, or it may be as:much as
a full 64K SMB READ. Obviously the former request will go out as one segment, the
latter as a number of MSS-sized segments. The transmitting TCB must hold on to the
request until all data in it has been transmitted and acked. Appropriate pointers to do this
will be kept in the TCB. A large buffer is acquired from the free buffer fifo, and the MAC
and TCP/IP headers are created in it. It may be quicker/simpler to keep a basic frame
header set up in the TCB and either dma directly this into the frame each time. Then data
is dmad from host memory into the frame to create an MSS-sized segment. This dma also
checksums the data. Then the checksum is adjusted for the pseudo-header and placed into
the TCP header, and the frame is queued to the MAC transmit interface which may be
controlled by the third sequencer. The final step is to update various window fields etc in
the TCB. Eventually either the entire request will have been sent and acked, or a
retransmission timer will expire in which case the context is flushed to the host. In either
case, the INIC will place a command response in the Response queue containing the
command buffer handle from the original transmit command and appropriate status.

The above discussion has dealt how an actual transmit occurs. However the real
challenge in the transmit processor is to determine whether it is appropriate to transmit at
the time a transmit request arrives. There are many reasons not to transmit: the receiver’s
window size is <= 0, the Persist timer has expired, the amount to send is less than a full
segment and an ACK is expected / outstanding, the receiver’s window is not half-open
etc. Much of the transmit processing will be in determining these conditions.

5.3.4 Transmit Details — No Valid Context

The main difference between this and a context-based transmit is that the queued request
here will already have the appropriate MAC and TCP/IP (or whatever) headers in the
frame to be output. Also the request is guaranteed not to be greater than MSS-sized in
length. So the processing is fairly simple. A large buffer is acquired and the frame is
dmad into it, at which time the checksum is also calculated. If the frame is TCP/IP, the
checksum will be appropriately adjusted if necessary (pseudo-header etc) and placed in
the TCP header. The frame is then queued to the appropriate MAC transmit interface.
Then the command is immediately responded to with appropriate status through the
Response queue.

5.3.5 Transmit Notes

1. Slow-start: the INIC will handle the slow-start algorithm that is now a part of the
TCP standard. This obviates waiting until the connection is sending a full-rate
before passing it to the INIC.

2. Window Probe vs Window Update: an explanation for posterity...

A Window Probe is sent from the sending TCB to the receiving TCB, and it means the
sender has the receiver in PERSIST state. Persist state is entered when the receiver
advertises a zero window. It is thus the state of the transmitting TCB. In this state, he
sends periodic window probes to the receiver in case an ACK from the receiver has been
lost. The receiver will return his latest window size in the ACK.

Provisional Pat. App. of Alacritech, Inc. 57
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 61

A Window Update is sent from the receiving TCB to the sending TCB, usually to tell him
that the receiving window has altered. It is mostly triggered by the upper layer when it
accepts some data. This probably means the sending TCB is viewing the receiving TCB
as being in PERSIST state.

3. Persist state: it is designed to handle Persist state on the INIC. It seems
unreasonable to throw a TCB back to the host just because its receiver advertised a
zero window. This would normally be a transient situation, and would tend to
happen mostly with clients that do not support slow-start. Alternatively, the code
can easily be changed to throw the TCB back to the host as soon as a receiver
advertises a zero window.

4. MSS-sized frames: the INIC code will expect all transmit requests for which it has
no TCB to not be greater than the MSS. If any request is, it will be dropped and an
appropriate response status posted.

5. Silly Window avoidance: as a receiver, the INIC will do the right thing here and
not advertise small windows — this is easy. However it is necessary to also do
things to avoid this as a sender, for the cases where a stupid client does advertise
small windows. Without getting into too much detail here, the mechanism requires
the INIC code to calculate the largest window advertisement ever advertised by the
other end. It is an attempt to guess the size of the other end’s receive buffer and

assumes the other end never reduces the size of its receive buffer. See Stevens Vol.
1 pp. 325-326. '

6 The Utility Processor

6.1 Summary

The following is a summary of the main functions of the utility sequencer of the
Mmicroprocessor:

¢ look at the event queues: Event13Type & Event23Type (we assume there will be an
event status bit for this - USE_EV13 and USE_EV23) in the events register; these
are events from sequencers 1 and 2; they will mainly be XMIT requests from the XMT
sequencer. Dequeue request and place the frame on the appropriate interface.
e RCV-frame support: in the model, RCV is done through VinicReceive() which is
registered by the lower-edge driver, and is called at dispatch-level. This routine calls
VinicTransferDataComplete() to check if the xfer (possibly DMA) of the frame into host
buffers is complete. The latter rtne is also called at dispatch level on a DMA-completion
interrupt. It queues complete buffers to the RCV sequencer via the normal queune
mechanism.
e Other processes may also be employed here for supporting the RCV sequencer.
e service the following registers: (this will probably involve micro-interrupts)
Header Buffer Address register:
buffers are 256 bytes long on 256-byte boundaries.
31-8 - physical addr in host of a set of
contiguous hddr buffers
7-0 - number of hddr buffers passed.
Use contents to add to SmallHType queue

Provisional Pat. App. of Alacritech, Inc. 58
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 62

Data Buffer Handle & Data Buffer Address registers:
buffers are 4K long aligned on 4K boundaries...
Use contents to add to the FreeType queue.

Command Buffer Address register:
buffers are multiple of 32 bytes up to 1K long (2**5 * 32)
31-5 - physical addr in host of cmd buffer
4-0 - length of cmd in bytes/32
(i.e. multiples of 32 bytes)
Points to host cmd; get FreeSType buffer and move
command into it; queue to Xmit0-Xmit3Type queues.

Response Buffer Address register:
buffers are 32 bytes long on 32-byte boundaries
31-8 - physical addr in host of a set of
contiguous resp buffers
7-0 - number of resp buffers passed.
Use contents to add to the ResponseType queue.

e low buffer threshold support: set approp bits in the ISR when the available-buffers
count in the various queues filled by the host falls below a threshold.

6.2 Further Operations of the Utility Processor

The utility processor of the microprocessor housed on the INIC is responsible for setting
up and implementing all configuration space and memory mapped operations, and also as
described below, for managing the debug interface.

All data transfers, and other INIC initiated transfers will be done via DMA.
Configuration space for both the network processor function and the utility processor
function will define a single memory space for each. This memory space will define the
basic communication structure for the host. In general, writing to one of these memory
locations will perform a request for service from the INIC. This is detailed in the
memory description for each function. This section defines much of the operation of the
Host interface, but should be read in conjunction with the Host Interface Strategy for the
Alacritech INIC to fully define the Host/INIC interface.

Two registers, DMA hardware and an interrupt function comprise the INIC interface to
the Host through PCI. The interrupt function is implemented via a four bit register
(PCI_INT) tied to the PCI interrupt lines. This register is directly accessed by the
Microprocessor.

THE MICROPROCESSOR uses two registers, the PCI_Data Reg and the
PCI_Address Reg, to enable the Host to access Configuration Space and the memory
space allocated to the INIC. These registers are not available to the Host, but are used by
THE MICROPROCESSOR to enable Host reads and writes. The function of these two
registers is as follows.

Provisional Pat. App. of Alacritech, Inc. 59
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 63

PCI Data Reg

This register can be both read and written by THE MICROPROCESSOR. - On write
operations from the host, this register contains the data being sent from the host. On read
operations, this register contains the data to be sent to the host.

PCI Address Reg

This is the control register for memory reads and writes from the host. The structure of
the register is as follows:

Bit31 — 24 Byte enable 7 —0. Only the low order four bits are
valid for 32 bit addressing mode.
Bit23 - 0 Memory access
1 Configuration access
Bit22 — 0 Read (to Host)
1 Write (from Host)

1 Bit 21 - 1 Data Valid

Bit20- 16 Reserved
Biti15— 0 Address

During a write operation from the Host the PCI_Data Reg contains valid data after Data
Valid is set in the PCI_Address Reg. Both registers are locked until THE
MICROPROCESSOR writes the PCI_Data Reg, which resets Data Valid.

All read operations will be direct from SRAM. Memory space based reads will return 00.
Configuration space reads will be mapped as follows:

Configuration Space 1 SRAM Address Offset
00 00 |
04 04
08 08
oC oC
10 10
3C 14

Configuration Space 2

00 00
04 18
08 08
0C 1C
10 20
3C 24

All other reads to configuration space will return 00.

Provisional Pat. App. of Alacritech, Inc. 60
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 64

6.2.1 CONFIGURATION SPACE

The INIC is implemented as a multi-function device. The first device is the network
controller, and the second device is the debug interface. An alternative production
embodiment may implement only the network controller function. Both configuration
space headers will be the same, except for the differences noted in the following
description. :

Vendor ID — This field will contain the Alacritech Vendor ID. One field will be'used for
both functions. The Alacritech Vendor ID is hex 139A.

Device ID — Chosen at Alacritech on a device specific basis. One field will be used for
both functions.

Command — Initialized to 00. All bits defined below as not enabled (0) will remain 0.
Those that are enabled will be set to 0 or 1 depending on the state of the system.. Each
function (network and debug) will have its own command field.

Bit0—-0 I/O accesses are not enabled

Bitl-1 Memory accesses are enabled

Bit2-1 Bus master is enabled

Bit3 -0 Special Cycle is not enabled

Bit4-1 Memory Write and Invalidate is enabled
Bit5-0 VGA palette snooping is not enabled
Bit6 -1 Parity checking is enabled

Bit7-0 Address data stepping is not enabled

Bit 8 - SERR# is enabled

Bit9—-0 Fast back to back is not enabled

Status — This is not initialized to zero. Fach function will have its own field. The
configuration is as follows:

Bit5—-1 66 MHz capable is enabled. This bit will be set if the INIC

Detects the system running at 66 MHz on reset

Bit6 -0 User Definable Features is not enabled

Bit7-1 Fast Back-to-Back slave transfers enabled

Bit8—1 Parity Error enabled — This bit is initialized to 0

Bit 9,10 — 00 — Fast device select will be set if we are at 33 MHz

01 — Medium device select will be set if we are at
66 MHz

Bit 11 -1 Target Abort is implemented. Initialized to 0.

Bit12—1 Target Abort is implemented. Initialized to 0.

Bit 13—-1 Master Abort is implemented. Initialized to 0.

Bit 14 -1 ~ SERR# is implemented. Initialized to 0.

Bit 15—-1 Parity error is implemented. Initialized to 0.

Revision ID — The revision field will be shared by both functions.

Class Code — This is 02 00 00 for the network controller, and for the debug interface.
The field will be shared.

Provisional Pat. App. of Alacritech, Inc. 61
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US ;
Alacritech, Ex. 2019 Page 65

Cache Line Size — This is initialized to zero. Supported sizes are 16, 32, 64 and 128
bytes. This hardware register is replicated in SRAM and supported separately for each
function, but THE MICROPROCESSOR will implement the value set in Configuration
Space 1 (the network processor).

Latency Timer — This is initialized to zero. The function is supported. This hardware
register is replicated in SRAM. Each function is supported separately, but THE
MICROPROCESSOR will implement the value set in Configuration Space 1 (the
network processor).

Header Type — This is set to 80 for both functions, but will be supported separately.

BIST - Is implemented. In addition to responding to a request to run self test, 1f test after
reset fails, a code will be set in the BIST register. This will be implemented separately
for each function.

Base Address Register — A single base address register is implemented for each function.
It is 64 bits in length, and the bottom four bits are configured as follows:

Bit0O— 0 Indicates memory base address

Bit 1,2-00 Locate base address anywhere in 32 bit memory space

Bit3— 1 Memory is prefetchable

CardBus CIS Pointer — Not implemented—initialized to O.
Subsystem Vendor ID — Not implemented—initialized to 0.
Subsystem ID — Not implemented—initialized to 0.

Expansion ROM Base Address — Not implemented—initialized to 0.

Interrupt Line — Implemented—initialized to 0. This is implemented separately for each
function.

Interrupt Pin — This is set to 01, corresponding to INTA# for the network controller, and
02, corresponding to INTB# for the debug interface. This is implemented separately for
each function.

Min_Gnt — This can be set at a value in the range of 10, to allow reasonably long bursts
on the bus. This is implemented separately for each function.

Max_Lat — This can be set to 0 to indicate no particular requirement for frequency of
access to PCIL. This is implemented separately for each function.

6.2.2 MEMORY SPACE

Because each of the following functions may or may not reside in a single location, and
may or may not need to be in SRAM at all, the address for each is really only used as an
identifier (label). There is, therefore, no control block anywhere in memory that
represents this memory space. When the host writes one of these registers, the utility

Provisional Pat. App. of Alacritech, Inc. ‘ 62
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US :
Alacritech, Ex. 2019 Page 66

processor will construct the data required and transfer it. Reads to this memory will
generate 00 for data.

6.2.2.1 Network Processor

The following four byte registers, beginning at location h00 of the network processor’s
allocated memory, are defined.

00 — Interrupt Status Pointer -- Initialized by the host to point to a four byte area
where status is stored

04 — Interrupt Status — Returned status from host. Sent after one or more
status conditions have been reset. Also an interlock for storing any
new status. Once status has been stored at the Interrupt Status Pointer
location, no new status will be stored until the host writes the Interrupt
Status Register. New status will be ored with any remaining
uncleared status (as defined by the contents of the returned status)
and stored again at the Interrupt Status Pointer location. Bits are
as follows:
Bit 31 — ERR -- Error bits are set
Bit 30 — RCV — Receive has occurred
Bit 29 — XMT - Transmit command complete
Bit 25 — RMISS — Receive drop occurred due to no buffers

08 — Interrupt Mask — Written by the host. Interrupts are masked for each
of the bits in the interrupt status when the same bit in the mask
register is set. When the Interrupt Mask register is written and as
aresult a status bit is unmasked, an interrupt is generated. Also,
when the Interrupt Status Register is written, enabling new status
to be stored, when it is stored if a bit is stored that is not masked
by the Interrupt Mask, an interrupt is generated.

0C — Header Buffer Address — Written by host to pass a set of header buffers to the
INIC.

10— Data Buffer Handle — First register to be written by the Host to transfer a receive
data buffer to the INIC. This data is Host reference data. It is not used by the
INIC, it is returned with the data buffer. However, to insure integrity ofthe
buffer, this register must be interlocked with the Data Buffer Address register.
Once the Data Buffer Address register has been written, neither register can be
written until after the Data Buffer Handle register has been read by THE
MICROPROCESSOR.

14— Data Buffer Address — Pointer to the data buffer being sent to the INIC by the
Host. Must be interlocked with the Data Buffer Handle
register.

18— Command Buffer Address XMTO — Pointer to a set of command
buffers sent by the Host. THE MICROPROCESSOR will DMA the buffers to
local DRAM found on the FreeSType queue and queue the Command

Provisional Pat. App. of Alacritech, Inc. 63
Inventors Laurence B. Boucher et al. :
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 67

Buffer Address XMTO0 with the local address replacing the host
Address.

1C - Command Buffer Address SMT1
20~ Command Buffer Address SMT2
24 — Command Buffer Address SMT3

28 — Response Buffer Address -- Pointer to a set of response buffers sent
by the Host. These will be treated in the same fashion as the
Command Buffer Address registers.

6.2.2.2 Utility Processor

Ending status will be handled by the utility processor in the same fashion as it is-handled
by the network processor. At present two ending status conditions are defined B31 —
command complete, and B30 — error. When end status is stored an interrupt is -
generated.

Two additional registers are defined, Command Pointer and Data Pointer. The Host is
responsible for insuring that the Data Pointer is valid and points to sufficient memory
before storing a command pointer. Storing a command pointer initiates command decode
and execution by the debug processor. The Host must not modify either command or
Data Pointer until ending status has been received, at which point a new command may
be initiated. Memory space is write only by the Host, reads will receive 00. The format
is as follows:

00— Interrupt Status Pointer -- Initialized by the host to point to a four byte area
where status is stored

04 — Interrupt Status — Returned status from host. Sent after one or more
status conditions have been reset. Also an interlock for storing any
new status. Once status has been stored at the Interrupt Status Pointer
location, no new status will be stored until the host writes the Interrupt
Status Register. New status will be ored with any remaining
uncleared status (as defined by the contents of the returned status)
and stored again at the Interrupt Status Pointer location. Bits are
as follows:

Bit 31 — CC — Command Complete
Bit 30 — ERR -- Error

Bit29 — Transmit Processor Halted
Bit28 — Receive Processor Halted
Bit27 — Utility Processor Halted

08 — Interrupt Mask — Written by the host. Interrupts are masked for each
of the bits in the interrupt status when the same bit in the mask
register is set. When the Interrupt Mask register is written and as
a result a status bit is unmasked, an interrupt is generated. Also,

Provisional Pat. App. of Alacritech, Inc. 64
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 68

when the Interrupt Status Register is written, enabling new status
to be stored, when it is stored if a bit is stored that is not masked
by the Interrupt Mask, an interrupt is generated.

0C - Command Pointer — Points to command to be executed. Storing
this pointer initiates command decode and execution.

10— Data Pointer — Points to the data buffer. This is used for both read and wnte data,
determined by the command function.

7 Debug Interface

In order to provide a mechanism to debug the microcode running on the microprocessor
sequencers, a debug process has been defined which will run on the utility sequencer.
This processor will interface with a control program on the host processor over PCL

7.1 PCI Interface

This interface is defined in the combination of the Utility Processor and the Host
Interface Strategy sections, above.

7.2 Command Format

The first byte of the command, the command byte, defines the structure of the remainder
of the command. The first five bits of the command byte are the command itself. The
next bit is used to specify an alternate processor, and the last two bits specify which
processors are intended for the command.

7.2.1 Command Byte

7-3 2 1-0
Command Alt. Proc. Processor

7.2.2 Processor Bits

00 — Any Processor

01 — Transmit Processor
10 — Receive Processor
11 — Utility Processor

Provisional Pat. App. of Alacritech, Inc. : 65
Inventors Laurence B. Boucher et al. '
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 69

7.2.3 Alternate Processor

This bit defines which processor should handle debug processing if the utility processor
is defined as the processor in debug.

0 — Transmit Processor
1 — Receive Processor

7.2.4 Single Byte Commands

00 — Halt

This command asynchronously halts the processor.
08 — Run

This command starts the processor.
10 — Step

This command steps the processor.

7.2.5 Eight Byte Commands

18 — Break
0 1 2-3 4-7
Command Reserved Count Address

This command sets a stop at the specified address. A count of 1 causes the specified
processor to halt the first time it executes the instruction. A count of 2 or more ‘causes the
processor to halt after that number of executions. The processor is halted just before
executing the instruction. A count of 0 does not halt the processor, but causes a sync
signal to be generated. If a second processor is set to the same break address, the count
data from the first break request is used, and each time either processor executes the
instruction the count is decremented.

20 — Reset Break

0 1-3 4-7
Command : Reserved Address
Provisional Pat. App. of Alacritech, Inc. 66

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 70

This command resets a previously set break point at the specified address. Rese‘?c break
fully resets that address. If multiple processors were set to that break point, all will be
reset. :

28 — Dump
0 1 2-3 4-7
Command Descriptor Count Address

This command transfers to the host the contents of the descriptor. For descriptors larger

than four bytes, a count, in four byte increments is specified. For descriptors utilizing an
address the address field is specified.

7.2.6 Descriptor
00 — Register

This descriptor uses both count and address fields. Both fields are four byte based (a
count of 1 transfers four bytes).

01 — Sram

This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address.

02 — Dram
This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address

03 — Cstore
This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address ;

Stand-alone descriptors:

The following descriptors do not use either the count or address fields. They transfer the
contents of the referenced register.

04 — CPU_STATUS

05 -PC

Provisional Pat. App. of Alacritech, Inc. 67
Inventors Laurence B. Boucher et al. :
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 71

06 — ADDR_REGA

07— ADDR_REGB

08 - RAM_BASE

09 —FILE_BASE

0A - INSTR REG L

0B - INSTR_REG H

0C-MAC _DATA

0D -DMA_EVENT

OE — MISC_EVENT

OF - Q_IN_RDY

10-Q_OUT _RDY

11 -LOCK STATUS

12 — STACK - This returns 12 bytes

13 — Sense _ Reg
This register contains four bytes of data. If error status is posted for a command, if the
next command that is issued reads this register, a code describing the error in more detail

may be obtained. If any command other than a dump of this register is issued aﬁer error
status, sense information will be reset.

30— Load
0 1 2-3 4-17
Command Descriptor Count Address

This command transfers from the host the contents of the descriptor. For descriptors
larger than four bytes, a count, in four byte increments is specified. For descriptors
utilizing an address the address field is specified. |

7.2.7 Descriptor
00 — Register

This descriptor uses both count and address fields. Both fields are four byte based.

Provisional Pat. App. of Alacritech, Inc. | 68
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US f

Alacritech, Ex. 2019 Page 72

01 — Sram
This descriptor uses both count and address fields. Count is in four byte blocks. - Address
1s in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address.

02 — Dram
This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address

03 — Cstore
This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address. This applies to WCS only.

Stand-alone descriptors:

The following descriptors do not use either the count or address fields. They transfer the
contents of the referenced register.

04 — ADDR_REGA
05— ADDR_REGB
06 - RAM_BASE

07 - FILE_BASE

08 —-MAC DATA

09 -Q IN RDY

0A -Q OUT RDY

0B - DBG_ADDR

38 —Map
This command allows an instruction in ROM to be replaced by an instruction in WCS.
The new instruction will be located in the Host buffer. It will be stored in the first eight

bytes of the buffer, with the high bits unused. To reset a mapped out instruction, map it
to location 00.

0 1-3 4-17
Command Address to Address to
Map To Map Out
Provisional Pat. App. of Alacritech, Inc. 69

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 73

8 HARDWARE SPECIFICATION

FEATURES

e Peripheral Component Interconnect (PCI) Interface

- Universal PCI interface supports both 5.0V and 3.3V signaling environments.
- Supports both 32-bit and 64 bit PCI interface.

- Supports PCI clock frequencies from 15MHz to 66MHz

- High performance bus mastering architecture.

- Host memory based communications reduce register accesses.

- Host memory based interrupt status word reduces register reads.
- Plug and Play compatible.

- PCI specification revision 2.1 compliant.

- PCI bursts up to 512 bytes.

- Supports cache line operations up to 128 bytes.

- Both big-endian and little-endian byte alignments supported.

- Supports Expansion ROM.

e Network Interface

- Four internal 802.3 and ethernet compliant Macs.

- Media Independent Interface (MII) supports external PHYs.
- 10BASE-T, 100BASE-TX/FX and 100BASE-T4 supported.
- Full and half-duplex modes supported.

- Automatic PHY status polling notifies system of status change.

- Provides SNMP statistics counters.

- Supports broadcast and multicast packets.

- Provides promiscuous mode for network monitoring or multiple unicast address detection.
- Supports “huge packets” up to 32KB.

- Mac-layer loop-back test mode.

- Supports auto-negotiating Phys.

Provisional Pat. App. of Alacritech, Inc. 70
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 74

¢ Memory Interface

- External Dram buffering of transmit and receive packets.

- Buffering configurable as 4MB, 8MB, 16MB or 32MB.

- 32-bit interface supports throughput of 224MB/s

- Supports external FLASH ROM up to 4 MB, for diskless boot applications.

- Supports external serial EEPROM for custom configuration and Mac addresses.

e Protocol Processor

- High speed, custom, 32-bit processor executes 66 million instructions per second.
- Processes IP, TCP and NETBIOS protocols.

- Supports up to 256 resident TCP/IP contexts.

- Writable control store (WCS) allows field updates for feature enhancements.

¢ Power

- 3.3V chip operation.
- PCI controlled 5.0V/3.3V 1/O cell operation.

¢ Packaging

- 272-pin plastic ball grid array.
- 91 PCI signals.
- 68 MII signals.

- 58 external memory signals.

- 1 clock signal.

- 54 signals split between power and ground.
- 272 total pins.

Provisional Pat. App. of Alacritech, Inc. 71
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 75

GENERAL DESCRIPTION

The microprocessor is a 32-bit, full-duplex, four channel, 10/100-Megabit per second (Mbps), Intelligent
Network Interface Controller, designed to provide high-speed protocol processing for server appjlications. It
combines the functions of a standard network interface controller and a protocol processor within a single
chip. Although designed specifically for server applications, The microprocessor can be used by PCs,
workstations and routers or anywhere that TCP/IP protocols are being utilized. ‘

When combined with four 802.3/MII compliant Phys and Synchronous Dram (SDram), the INIC comprises
four complete ethernet nodes. It contains four 802.3/ethernet compliant Macs, a PCI Bus Interface Unit (BIU),
a memory controller, transmit fifos, receive fifos and a custom TCP/IP/NETBIOS protocol processor. The
INIC supports 10Base-T , 100Base-TX, 100Base-FX and 100Base-T4 via the MII interface attachment of
appropriate Phys.

The INIC Macs provide statistical information that may be used for SNMP. The Macs operate in promiscuous
mode allowing the INIC to function as a network monitor, receive broadcast and multicast packets and
implement multiple Mac addresses for each node.

Any 802.3/MII compliant PHY can be utilized, allowing the INIC to support 10BASE-T, 10BASE-T2,
100BASE-TX, 100Base-FX and 100BASE-T4 as well as future interface standards. PHY identification and
initialization is accomplished through host driver initialization routines. PHY status registers can be polled
continuously by the INIC and detected PHY status changes reported to the host driver. The Mac can be
configured to support a maximum frame size of 1518 bytes or 32768 bytes.

The 64-bit, multiplexed BIU provides a direct interface to the PCI bus for both slave and master functions.
The INIC is capable of operating in either a 64-bit or 32-bit PCI environment, while supporting 64-bit
addressing in either configuration. PCI bus frequencies up to 66MHz are supported yielding instantaneous bus
transfer rates of 533MB/s. Both 5.0V and 3.3V signaling environments can be utilized by the INIC.
Configurable cache-line size up to 256B will accommodate future architectures, and Expansion ROM/Flash
support allows for diskless system booting. Non-PC applications are supported via programmable big and little
endian modes. Host based communication has been utilized to provide the best system performance possible.

The INIC supports Plug-N-Play auto-configuration through the PCI configuration space. External pull-up and
pull-down resistors, on the memory I/O pins, allow selection of various features during chip reset. Support of
an external eeprom allows for local storage of configuration information such as Mac addresses.

External SDram provides frame buffering, which is configurable as 4MB, 8MB, 16MB or 32MB using the
appropriate SIMMs. Use of -10 speed grades yields an external buffer bandwidth of 224MB/s. The buffer
provides temporary storage of both incoming and outgoing frames. The protocol processor accesses the frames
within the buffer in order to implement TCP/IP and NETBIOS. Incoming frames are processed, assembled
then transferred to host memory under the control of the protocol processor. For transmit, data is moved from
host memory to buffers where various headers are created before being transmitted out via the Mac.

Provisional Pat. App. of Alacritech, Inc. 72
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 76

BLOCK DIAGRAM

MIIA MIIB MIIC MIID
MacA MacB MacC MacD

REG FILE ‘
B11 WS "VEMORY
I Bis
PROC 1KB X 128 Sram El\igll\ﬂalg‘;%

u > &DMACul [T
r I
v
PCI BUS
INTERFACE UNIT
PCI BUS
Provisional Pat. App. of Alacritech, Inc. 73

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 77

OUTLINE

e Cores/Cells

LSI Logic Ethernet-110 Core, 100Base & 10Base Mac with MII interface.
LSI Logic single port Sram, triple port Sram and ROM available.
LSI Logic PCI 66MHz, S5V compatible I/O cell.

LSI Logic PLL

¢ Die Size / Pin Count

LSI Logic G10 process.

MODULE DESCR SPEED AREA
Scratch RAM, 1Kx128 sport, 4.37 ns nom., 06.77 mm?
WCS, 8Kx49 sport, 6.40 ns nom., 18.29 mm?®
MAP, 128x7 sport, 3.50 ns nom., 00.24 mm?
ROM, 1Kx49 32col, 5.00 ns nom., 00.45 mm?
REGs, 512x32 tport, 6.10 ns nom., 03.49 mm?
Macs, JI5mm?x 4 = 03.30 mm?
PLL, Smm? = 00.55 mm?
MISC LOGIC, 117,260 gates / (5035 gates / mm? = 23.29 mm?®
TOTAL CORE 56.22 mm*
(Core side)? = 56.22 mm?
Core side = 07.50 mm
Die side = core side + 1.0 mm (I/O cells) = 08.50 mm
Die area = 8.5mmx 8.5 mm = 72.25 mm’®
Pads needed = 220 signals x 1.25 (vss, vdd) = 275 pins
LSI PBGA = 272 pins

Provisional Pat. App. of Alacritech, Inc. 74
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 78

¢ Datapath Bandwidth

(10MB/s/100Base) x 2 (full duplex) x 4 connections = 80 MB/s
Average frame size = 512B
Frame rate = 80MB/s / 512B = 156,250 frames / s
Cpu overhead / frame = (256 B context read) + (64B header read) +

(128B context write) + (128B misc.) = 512B / frame
Total bandwidth = (512B in) + (512B out) + (512B Cpu) = 1536B / frame
Dram Bandwidth required = (1536B/frame) x (156,250 frames/s) = 240MB/s
Dram Bandwidth @ 60MHz = (32 bytes / 167ns) = 202MB/s
Dram Bandwidth @ 66MHz = (32 bytes / 150ns) = 224MB/s
PCI Bandwidth required = 80MB/s
PCI Bandwidth available @ 30 MHz, 32b, average = 46MB/s
PCI Bandwidth available @ 33 MHz, 32b, average = S50MB/s
PCI Bandwidth available @ 60 MHz, 32b, average = 92MB/s
PCI Bandwidth available @ 66 MHz, 32b, average = 100MB/s
PCI Bandwidth available @ 30 MHz, 64b, average = 92MB/s
PCI Bandwidth available @ 33 MHz, 64b, average = 100MB/s
PCI Bandwidth available @ 60 MHz, 64b, average = 184MB/s
PCI Bandwidth available @ 66 MHz, 64b, average = 200MB/s

¢ Cpu Bandwidth

Receive frame interval = 512B / 40MB/s = 12.8us

Instructions / frame @ 60MHz = (12.8us/frame) / (50ns/instruction) = 256

instructions/frame '

Instructions / frame @ 66MHz = (12.8us/frame) / (45ns/instruction) = 284

instructions/frame

Required instructions / frame (per Clive) = 250 instructions/frame
Provisional Pat. App. of Alacritech, Inc. 75

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 79

¢ Performance Features

- 512 registers improve performance through reduced scratch ram accesses and reduced instructions.
- Register windowing eliminates context-switching overhead.

- Separate instruction and data paths eliminate memory contention.

- Totally resident control store eliminates stalling during instruction feich.

- Multiple logical processors eliminate context switching and improve real-time response.
- Pipelined architecture increases operating frequency.

- Shared register and scratch ram improve inter-processor communication.

- Fly-by state-Machine assists address compare and checksum calculation.

- TCP/IP-context caching reduces latency.

- Hardware implemented queues reduce Cpu overhead and latency.

- Horizontal microcode greatly improves instruction efficiency.

- Automatic frame DMA and status between Mac and dram buffer.

- Deterministic architecture coupled with context switching eliminates processor stalls.

Provisional Pat. App. of Alacritech, Inc. 76
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 80

PROCESSOR

The processor is a convenient means to provide a programmable state-machine which is capable of processing
incoming frames, processing host commands, directing network traffic and directing PCI bus traffic. Three
processors are implemented using shared hardware in a three-level pipelined architecture which launches and
completes a single instruction for every clock cycle. The instructions are executed in three distinct phases
corresponding to each of the pipeline stages where each phase is responsible for a different funcﬁon.

The first instruction phase writes the instruction results of the last instruction to the destination Qperand,
modifies the program counter (Pc), selects the address source for the instruction to fetch, then fetches the

instruction from the control store. The fetched instruction is then stored in the instruction register at the end of
the clock cycle.

The processor instructions reside in the on-chip control-store, which is implemented as a mixture of ROM and
Sram. The ROM contains 1K instructions starting at address 0x0000 and aliases each 050400 locations
throughout the first 0x8000 of instruction space. The Sram (WCS) will hold up to 0x2000 instructions starting
at address 0x8000 and aliasing each 0x2000 locations throughout the last 0x8000 of instruction space. The
ROM and Sram are both 49-bits wide accounting for bits [48:0] of the instruction microword. A separate
mapping ram provides bits [55:49] of the microword (Mapaddr) to allow replacement of faulty ROM based
instructions. The mapping ram has a configuration of 128x7 which is insufficient to allow a separate map
address for each of the 1K ROM locations. To allow re-mapping of the entire 1K ROM space, the map ram
address lines are connected to the address bits Fetch[9:3]. The result is that the ROM is re-mapped in blocks
of 8 contiguous locations.

The second instruction phase decodes the instruction which was stored in the instruction register. It is at this
point that the map address is checked for a non-zero value which will cause the decoder to force a Jmp
instruction to the map address. If a non-zero value is detected then the decoder selects the source operands for
the Alu operation based on the values of the OpdASel, OpdBSel and AluOp fields. These operands are then
stored in the decode register at the end of the clock cycle. Operands may originate from File, Sram, or flip-
flop based registers. The second instruction phase is also where the results of the previous instruction are
written to the Sram.

The third instruction phase is when the actual Alu operation is performed, the test condition is selected and the
Stack push and pop are implemented. Results of the Alu operation are stored in the results register at the end
of the clock cycle.

Following is a block diagram which shows the hardware functions associated with each of the instruction
phases. Note that various functions have been distributed across the three phases of the instruction execution in
order to minimize the combinatorial delays within any given phase.

Provisional Pat. App. of Alacritech, Inc. 77
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US :
Alacritech, Ex. 2019 Page 81

Cpu BLOCK-DIAGRAM
CLK
of e fee e L ol e L fe
I/,
! | Sram | LOAD | LOAD FLAG D’"C Ald“' FETCH| LOAD LOAD | LOAD
| tr]
1
I cm | ocul | ocal DEC STORE| ¢ | cul cul | cal
}
1 £ ¢
K v j
! | Addr | FILE | FF | ALU |FLAG| @ | INSTR |[FETCH Sram [DEBUG|
—» & BASED PC |STAck| Addr
| Data | CTX | REGs [CC's { REG's REG | Addr &BASE(Addr
. 512x32
Sod e FILE O AU VUV PRI VR AN S
l,
: 4Kx32 addr dout dout
! scratch addr INCR INCR
' Sram
: i l l
!
; Y VvV VvV ¥V v Vv |
2l 7 INSTRUCTION DECODER LOAD
<
! OPERAND MULTIPLEXER Ctrl
'
g v VvV v
N ! o| FILE | ALU | ALU TEST | FLAG | QCH Sram [DEBUG
. & | LT PC |STAck| Addr
. | CTX |OPD's| CC’s | OP | SEL | SEL |QCMD Cul &BASE
1
\\\>- _______________________________________
l’/ T
' TEST QRAM STAck
]
; ALU * & [INCR
' MUX QALU EXCHANGE Ctrl
' ,
N .
H ¢ \ v 1
_! [FiLE | ALU | ALU | DEST | TEST | FLAG | QFLGS PGM Sram |DEBUG]
; OPD & | ur PC |STAck| Addr
) CTX | OUT | cC's | SEL | RSLT | SEL | QAddr Ctrl &BASE| Addr
I\\ . .
N
N e e ot o o e] o o o = o e = e =] = —— = —— e - o] . — -] - - ————
Provisional Pat. App. of Alacritech, Inc. 78

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 82

INSTRUCTION SET

The micro-instructions are divided into six types according to the program control directive. The micro-
instruction is further divided into sub-fields for which the definitions are dependent upon the instruction type.
The six instruction types are listed below.

INSTRUCTION-WORD FORMAT

TYPE _[55:49] [48:47] [46:42] [41:33] __[32:24] [23:16] [15:00]

Jce 0b0000000 0b00, AluOp, OpdASel, OpdBSel, TstSel, Literal
Jmp 0b0000000 0bo1, 2AluOp, Opdasel, OpdBsel, FlgSel, Literal
Jsr 0b0000000 0bl10, AluOp, OpdAsSel, OpdBSel, FlgSel, Literal
Rts 0b0000000 0bl1l, AluOp, OpdAsel, OpdBSel, OhEf, Literal
Nxt 0b0000000 0bll, AluOp, OpdAsSel, OpdBSel, FlgSel, Literal
Map MapAddr O0bXX, ObXXXXX, ObXXXXXXXXX, ObXXXXXXXXX, OhXX, 0hXXXX

All instructions include the Alu operation (AluOp), operand “A” select (OpdASel), operand “B” select
(OpdBSel) and Literal fields. Other field usage depends upon the instruction type.

The “jump condition code” (Jec) instruction causes the program counter to be altered if the condition selected
by the “test select” (TstSel) field is asserted. The new program counter (Pc) value is loaded from either the
Literal field or the AluOut as described in the following section and the Literal field may be used as a source
for the Alu or the ram address if the new Pe value is sourced by the Alu.

The “jump” (Jmp) instruction causes the program counter to be altered unconditionally. The new program
counter (Pc) value is loaded from either the Literal field or the AluOut as described in the following section.
The format allows instruction bits 23:16 to be used to perform a flag operation and the Literal field may be
used as a source for the Alu or the ram address if the new Pc value is sourced by the Alu.

The “jump subroutine” (Jsr) instruction causes the program counter to be altered unconditionally. The new
program counter (Pc) value is loaded from either the Literal field or the AluOut as described in the following
section. The old program counter value is stored on the top location of the Pc-Stack which is implemented as a
LIFO memory. The format allows instruction bits 23:16 to be used to perform a flag operationiand the Literal
field may be used as a source for the Alu or the ram address if the new Pc value is sourced by the Alu.

The “Nxt” (Nxt) instruction causes the program counter to increment. The format allows instruction bits
23:16 to be used to perform a flag operation and the Literal field may be used as a source for the Alu or the
ram address.

The “return from subroutine” (Rts) instruction is a special form of the Nxt instruction in which the “flag
operation” (FlgSel) field is set to a value of Ohff. The current Pc value is replaced with the last value stored in
the stack. The Literal field may be used as a source for the Alu or the ram address.

The Mabp instruction is provided to allow replacement of instructions which have been stored in ROM and is
implemented any time the “map enable” (MapEn) bit has been set and the content of the “map address”
(MapAddr) field is non-zero. The instruction decoder forces a jump instruction with the Alu dperation and
destination fields set to pass the MapAddr field to the program control block.

The program control is determined by a combination of PgmCtrl, DstOpd, FlgSel and TstSel. The behavior
of the program control is defined with the following "C-like" description.

Provisional Pat. App. of Alacritech, Inc. 79
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 83

SEQUENCER BEHAVIOR

if (MapEn & (MapAddr != 0b0000000))
Stacke = Stackc;
StackB = StackB;
StackA = Stacki;
InstrAddr = 0h8000 | Pc(2:0] | (MapAddr << 3);
Pc = InstrAddr + (Execute & ~DbgMd);
Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = Dbgaddr + (Execute & DbgMd);}

else if (PgmCtrl == Jcc) {
Stackec = Stacke;
StackB = StackB;
StackA = Stacka;

//re-map instr

//conditional jump

IngstrAddr = ~Tst@TstSel ? Pc: (Alubst==Pc¢) ? AluOut:Literal;

Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd) ;}

else if (PgmCtrl == Jmp) {
Stackec = Stacke;
StackB = StackB;
StackA = Stacka;
InstrAddr = (AluDst == Pc) ? AluOut:Literal;
Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;
Dbgaddr = DbgAddr + (Execute & DbgMd);}

else if (PgmCtrl == Jsr){
Stacke = StackB;
StackB = Stacki;
StackA = Pc;
InstrAddr = (AluDst == Pc¢) ? AluOut:Literal;
Pc = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddr:InstrAddr;

DbgAddr = DbgAddr + (Execute & DbgMd) ;}

else if (FlgSel == Rts){
InstrAddr = Stacka;
StackA = StackB;
StackB = Stackc;
Stacke = ErrVec;

Pc = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddr:Instraddr;
DbgAddr = DbgAddr + (Execute & DbgMd) ;}
else |
InstrAddr = Pc;
StackA = Stacka;
StackB = StackB;
Stackc = Stackc;

Pc = InstrAddr + (Execute & ~DbgMd)
Fetch DbgMd ? DbgAddr:InstrAddr;
Dbgaddr = DbgAddr + (Execute & DbgMd);}

Provisional Pat. App. of Alacritech, Inc.

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

//jump

//jump subroutine

//return subroutine

//continue

80

Alacritech, Ex. 2019 Page 84

ALU OPERATIONS

AluOp OPERATION
000000 A= (A & ~(1 << B)); //bit clear

C=0; V= (B >=32) ? 1:0;

0b00001 A= (A & B); //logical and
C=20; V=20;

0b00010 A = (Literal & B); //logical and
C=0; Vv=20;

0b00011 A = (~Literal & B); //logical and not
C=0; V=20;

0b00100 A= (A | (1L << B)); //bit set
C=0; V= (B >= 32) ? 1:0;

0b00101 A= (a] B); //logical or
C=20; V=20;

0b00110 A = (Literal | B); //logical or
C=0; V= 0;

0b00111 A = (~Literal | B); //logical or not
C=0; V=20;

0b01000 for (i=31; i>=0; i--) if B[i] continue; A=i; //priority enc
C=0; V= (B) ? 0:1;

0b01001 A= (A" B); //logical xor
C=0; V=0;

0b01010 A = ({Literal} * B); //logical xor
C=20; V=20;

0b01011 A = ({~Literal} * B); //logical xor not
C=0; V= 0;

0b01100 A = B; / /move

0b01101 A = B[31:24] * B[23:16] ® B[15:08] “~ B[07:00];//hash
C=20; V=20;

0b01110 a = {B[23:16],B[31:24],B{07:00],B[15:08]}; //swap bytes
C=0; V=20;

0b01111 A = {B[15:00], B[31:161}; //swap doublets
C=20; V=20;

Provisional Pat. App. of Alacritech, Inc. 81
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 85

AluOp

0b10000

0b10001

0bl10010

0b10011

0b10100

0b10101

0b10110

O0bl0111

0b11000

0bl1001

0bli010

0b11011

0b11100

0bl11101

0bl1l1110

0bl111l1

FUNCTION
A = (A + B);
C = (A + B)[32]; V= 0;

(A + B + C);
(A + B+ C)[32]; Vv=0;

(Literal + B);
(Literal + B) [32}; V = 0;

(-Literal + B);
(-Literal + B) [32]; V = 0;

(A - B);

(A - B) [32]; V = 0Q;
(A - B - ~C);

(& - B - ~C)[32); V= 0;
(-A + B);

(-a + B) [32]; V = 0;

(-A + B - ~C);
(-A + B - ~C)[32]; VvV = 0;
(A << B);

A{31]; V= (B >= 32) ? 0:1;

(B << Literal) ;
B[31]; V = (Literal >= 32) ? 0:1;

(B << 1);
B[31]; Vv = 0;

(a - B);
(A - B)[32]; V = 0;

(A >> B);
Af0]; V= (B >= 32) ? 1:0;

(B >> Literal) ;
A[0]; V = (Literal >= 32) ? 1:0;

(B >> 1);
AfCl; Vv = 0;

(B - A);
(B - A)[32]; V = 0;

Provisional Pat. App. of Alacritech, Inc.

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

//add B

//add B, carry

//add constant

//sub constant

//sub

w

//sub B, borrow
//sub A

//sub A, borrow
//shift left A
//shift left B
//shift left B
//compare
//shift right A
//shift right B
//shift right B

//compare

82

Alacritech, Ex. 2019 Page 86

OpdsSel SELECTED OPERANDS

0b0000aaaaa File File@(OpdSel[4:0] | FileBase);
Allows paged access to any part of the register file.

0b000laaaaa CpuReg File@{2'bll, CpulId, OpdSel[4:0]};
Allows direct access to Cpu specific registers.

Ob001XXXXXX reserved Reserved for future expansion.

0b0100000XX CpuStatus 0b0000000000000BHDO0000000000000CC
This is a read-only register providing information about the Cpu executing
(OpdSel[1:0]) cycles after the current cycle. "CC" represents a vahie
indicating the Cpu. Currently, only Cpuld values of O, 1 and 2 are returned.
"H" represents the current state of HIt, "D" indicates DbgMd and "B"
indicates BigMd. Writing this register has no effect.

0b0100001XX Treserved Reserved for future expansion.

0b0100010XX Pec 0x0000AAAA
Writing to this address causes the program control logic to use AluOut as the
new Pc value in the event of a Jmp, Jec or Jsr instruction for the Cpu
executing during the current cycle. If the current instruction is Nxt, Map, or
Rts, the register write has no effect. Reading this register returns the value in
Pc for the Cpu executing (OpdSel[1:0]) cycles after the current cycle.

0b0100011XX DbgAddr 0xDOOOAAAA
Writing to this register alters the contents of the debug address register
(DbgAddr) for the Cpu executing (OpdSel[1:0]) cycles after the current
cycle. DbgAddr provides the fetch address for the control-store when
DbgMd has been selected and the Cpu is executing. DbgAddr is also used
as the control-store address when performing a WrWes@DbgAddr or
RdWes@DbgAddr operation. “D” represents bit 31 of the register. It is a general
purpose flag that is used for event indication during simulation. Reading this
register returns a value of 0x00000000.

0b01001XXXX reserved Reserved for future expansion.

0b010100000 RamAddr {0b1CCC, 0x000, 0bl, AAAA}
RamAddr = AluOut[15] ? AluOut : (AluOut | RamBase);
PrevCC = AluOut[31]? CCC : AluCC;

A read/write register. When reading this register, the Alu condition codes from the previous
instruction are returned together with RamAddr.

bit name description

31 Always 1.

30 PrevC Previous Alu Carry.

29 PrevV Previous Alu Overflow.

28 PrevZ Previous Alu Zero.

27:16 Always 0.

15 Always 1.

14:0 RamAddr Contents of last Sram address used.

When writing this register, if alu_out[31] is set, the previous condition codes will be overwritten with
bits 30:28 of AluQut. If AluQutf15] is set, bits 14:0 will be written to the RamAddr. If AluOut [15]
is not set, bits 14:0 will be ored with the contents of the RamBase and written to the RamAddr.

Provisional Pat. App. of Alacritech, Inc. 83
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech; Ex. 2019 Page 87

OpdSel

SELECTED OPERANDS

0b010100001 AddrRegA 0x0000AAAA
AddrRegA = AluOut;
A read/write operand which loads AddrRegA used to provide the address for read and write
operations. :
When AddrRegA[15] is set, the contents will be presented directly to the ram. When AddrRegA[lS] is
reset, the contents will first be ored with the contents of the RamBase register before pﬁesentation to
the |
ram. Writing to this register takes priority over Literal loads using FigOp. Reading thisiregister returns
the current value of the register.
0b010100010 AddrRegB 0x0000AAAA
AddrRegB = AluOut;
A read/write operand which loads AddrRegB used to provide the address for read and write
operations.
When AddrRegB[15] is set, the contents will be presented directly to the ram. When AddrRegB[15] is
reset, the contents will first be ored with the contents of the RamBase register before presentation to
the
ram. Writing to this register takes priority over Literal loads using FigOp. Reading this register returns
the current value of the register.
0b010100011 AddrRegAb 0x0000AAAA
AddrRegA = AluOut; AddrRegB = AluOut;
A destination only operand which loads AddrRegB and AddrRegA used to provide the address for
read
and write operations Writing to this register takes priority over Literal loads using FlgOp. Reading this
register returns the value 0x00000000.
0b010100100 RamBase 0x0000AARAA
RamBase = AluOut;
A read/write register which provides the base address for ram read and write cycles. When
RamAddr[15] is set, the contents will not be used. When RamAddr([15] is reset, the contents will first
be ored with the contents of the RamBase register before presentation to the ram. Reading this register
returns the value for the current Cpu.
0b010100101 FileBase 0b00000000000000000000000AAAAAAARAA
FileBase = AluOut;
FileAddr = OpdSel[8] ? OpdSel:(OpdSel + FileBase);
A read/write register which provides the base address for file read and write cycles. When OpdSel[8]
is
set, the contents will not be used and OpdSel will be presented directly to the address lines of the file.
When OpdSel[8] is reset, the contents will first be ored with the contents of the FileBase register
before presentation to the file. Reading this register returns the value for the current Cpu.
0b010100110 InstrRegL OXIITIIIIII
This is a read-only register which returns the contents of InstrReg[31:0]. Writing to this register has no
effect.
0b010100111 InstrRegH OxXOO0IIIIII
This is a read-only register which returns the contents of InstrReg[55:32]. Writing to this register has
no

effect.

Provisional Pat. App. of Alacritech, Inc. 84
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 88

OpdsSel

0b010101000

0b010101001

0b010101010

0b010101011

0b010101100

SELECTED OPERANDS

Minus1

FreeTime

LiteralL,

LiteralH

OxEfff£Ffff

This is a read-only register which supplies a value Oxffffffff.. Writing to this
register has no effect.

A free-running timer with a resolution of 1.00 microseconds and a maximum count
of 71 minutes. This timer is cleared during reset.

Instr[15:0]
A read-only register. Writing to this register has no effect

Instr[15:0] < <16;
A read-only register. Writing to this register has no effect

MacData - Writing to this address loads the AluOut data into the MacData register for use

during Mac operations. The Mac operation, resulting from writing to the MacOp register,
determines the definition of the MacData register contents as follows.

MacOp
Mstop

WrMcfg

WrMrng

RdPhy

WrPhy

MacData definition
[117:9:6.0:0:0.:0:0.9.0.0.0.9:0.0.0.:0.0.9:0.0.9.0.:9.0.0.6.0.0.6.9.0 ¢
MacData is not used for the StopM operation.

hrstl, rsvd, rsvd, crcen, fulld, hrstl, hugen, nopre, paden, prtyl, xdl10, ipgri[6:0],
ipgr2[6:0], ipgt[6:0].

Loads the MacCfg register with the contents of the MacData register. Refer to LSI Logic's
Ethernet-110 Core Technical Manual for detailed definitions of these bits.

ObXXXXXXX XXX XXXXXXXXXXKXSSSSSSSSSSS
Loads seed{10:0] into the Mac's random number generator.

ObXXXXRRRRXXXXPPPPXXXXXXXXXXXXXXXX
Reads register[R] of phy[P].

ObXXXXRRRRXXXXPPPPDDDDDDDDDDDDDDDD
Writes register[R] of phy[P] with MacData[15:0].

Reading this register returns prsd[15:0] of Mac0 which contains phy status data returned to the
Mac at the completion of a RdPhy command. This data is invalid while MacBsy is asserted

as a result of a RdPhy command. Refer to the appropriate phy technical manual for a
definition of the phy register contents.

Provisional Pat. App. of Alacritech, Inc. 85
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 89

OpdSel SELECTED OPERANDS

0b010101101 MacOp - A write only register. Writing to this address loads the MacSel register and staRts
execution of the specified operation as follows.

AluOut description

OXXXXAX0XM Mstop - Halts execution of a MacOp for Mac[M]. The user must wait for MacBsy to be
deasserted before issuing another command or changing the contents of MacData.

OXXXXXX1XM WrMcfg - Writes the contents of MacData to the MacCfg register of Mac{M]. The user

must wait for MacBsy to be deasserted before issuing another command or chainging the
contents of MacData.

OXXXXXX2XM WrMrng - Writes the contents of MacData to the seed register of Mac[M]. The user must
wait for MacBsy to be deasserted before issuing another command or changing the contents
of MacData.

OXXXXXX3XM RdPhy - Reads the contents of reg[R] for phy[P] on the MII management bus of Mac[M].
The contents may be read from MacData after MacBsy has been de-asserted.

OXXXXXX4XM WrPhy - Writes the contents of MacData[15:0] to the reg[R] of phy{P] on the MII

management bus of Mac[M]. The user must wait for MacBsy to be deasserted before issuing
another command or changing the contents of MacData.

0XXXXXX8XM WrAddrAL - Writes the contents of MacData[15:0] to MacAddrA[15:0}) for MaciM].
0xXXXXX9XM WrAddrAH - Writes the contents of MacData[11:0] to MacAddrA[47:16] for Mac[M].
0xXXXXXXaXM WrAddrBL - Writes the contents of MacData[15:0] to MacAddrB[15:0] for Mac[M].
OXXXXXXbXM WrAddrBH - Writes the contents of MacData[11:0] to MacAddrB{47:16] for Mac[M].
0010101110 ChCmd A write-only register.
bit _ pame _ description
31:11 reserved Data written to these bits is ignored.
10:8 command 0 - Stops execution of the current operation and clears the corresponding event
flag.
1 - Transfer data from ExtMem to ExtMem.
2 - Transfer data from Pci to ExtMem.
3 - Transfer data from ExtMem to Pci.
4 - Transfer data from Sram to ExtMem.
5 - Transfer data from ExtMem to Sram.
6 - Transfer data from Pci to Sram.
7 - Transfer data from Sram to Pci.
07.05 reserved Data written to these bits is ignored.
04:00 Chid Provides the channel number for the channel command.
00010101110 ChEvnt A read-only register.
bit pame _ description
31:00 ChDn Each bit represents the done flag for the respective dma channel. These
bits are set by a dma sequencer upon completion of the channel
command. Cleared when the processor writes 0 to the corresponding
ChCmd register.
0b010101111 GenEvnt A read-only register.
bit =~ name description
31 PciRdEvnt Indicates that a PCI initiator is attempting to read a uproc¢. register.
30 PciWrEvnt Indicates that a PCI initiator has posted a write to a pproc. register.
29 TimeEvnt An event which occurs once every 2.00 milliseconds.
28:00 reserved Reserved for future use.
Provisional Pat. App. of Alacritech, Inc. 86

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 90

00010110000

0010110001

0b010110010

0b010110011

when

0b010110100

0b010110101

QCirl

A write-only register used to select and manipulate a Q.

description

31:11 reserved Data written to these bits are ignored.

bit name
10:8 QSz
7:5 QOp
4:0 QId
QData

reserved
XcvCirl

Used only during InitQ operations to specify the size of the QBdy in Dram.
7 - Queue depth is 32K entries (128KB).

6 - Queue depth is 16K entries (64KB).

5 - Queue depth is 8K entries (32KB).

4 - Queue depth is 4K entries (16KB).

3 - Queue depth is 2K entries (8KB).

2 - Queue depth is 1K entries (4KB).

1 - Queue depth is 512 entries (2KB).

0 - Queue depth is 256 entries (1KB).

Specifies the queue operation to perform.

7 -DblQ Disables all queues.

6 -EnQ Enables all queues.

5 - RdBdy Increments the QBdyRdPtr and increments the QTIWrPtr.
4 - WrBdy Decrements the QBdyWrPtr and increments the QHdRdPtr.
3-RdQ Returns a queue entry in register QData..

2 -rsvd Reserved. Not to be used.

1 -InitQ Set the queue status to empty and initializes QSz.

0-SelQ Selects the QId to be utilized during writes to QData.

Specifies the queue on which to perform all operations except DblQ or EnQ.

A read/write register. Writing this register will result in the data beiﬂg pushed on to

the selected queue. Reading this register fetches queue data popped off during the
previous RdQ operation.

Reserved for future expansion.

A write-only register used to enable and disable Mac transmit and receive
sub-channels.

bit name _ description
31:09 reserved Data written to these bits are ignored.

8 enable

When set, indicates to the Mac transmit or receive sequencer that the subchannel
contains a transmit or receive descriptor.

07:05 reserved Data written to these bits is ignored.

04 RevCh

Selects a Mac receive subchannel when set. Selects a Mac transmit subchannel

cleared.

03 reserved Data written to this bit are ignored.

02 SubCh
01:00 Macld

Mru

Selects subchannel B when set or A when reset.
Provides the Mac number for the subchannel enable bit.

0x0000000A

A read/write operand indicating which of the 16 entries is least recently used. When
Reading This register the least recently used entry is returned, after which it is
automatically made the most recently used entry. This register should only be read
in conjunction with a "Move' operation of the ALU, else the results are
unpredictable. Writing to this register forces the addressed entry to become the least
recently used entry.

0x0000000A

A write only operand forcing the addressed entry to become the most recently used
entry.

Provisional Pat. App. of Alacritech, Inc. 87

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 91

0b010111000

00010111001

0b010111010

0b010111011

0b0101111XX

0b0110XXXXX

O0b01110XXXX

QInRdy
QOutRdy
QEmpty
QFull
reserved
Constants

reserved

A read-only register comprising QHd not full flags for each of the 32 queues.
A read-only register comprising QTI not empty flags for each of the 32 queues.
A read-only register comprising QEmpty flags for each of the 32 queues.

A read-only register comprising QFull flags for each of the 32 queues.
Reserved for future expansion.

{0b000, Opdsell[4:0]}

Reserved for future expansion.

Provisional Pat. App. of Alacritech, Inc. 88
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 92

OpdSel SELECTED OPERANDg

0b01111XXXX Sram OPERATIONS

Opdsel [31] PostaddrOp

0 nop

1 RamAddr = RamAddr + (OpdSel[1:0]);
Opdsel {2] transpose Ctrl

0 don't transpose

1 transpose bytes

OpdSel [1:0] RamOpdSz

o} quadlet
1 triplet
2 doublet
3 byte
__RAM READ ATTRIBUTES SOURCE OPERAND

endian trans- byte Sram
mode _bose_ offs data £2=Q sz=T szZ= sz=

little 0 0 abed abcd Obcd 00cd 000d
little 0 1 abcX trap Oabc 00bc 000c
little 0 2 abxX trap trap 00ab 000b
little 0 3 aXxXx trap trap trap 000a
little 1 0 abcd dcba odcb oodc 000d
little 1 1 abcX trap Ocha 00cb 000c
little 1 2 abxx trap trap 00ba 000b
little 1 3 aXxx trap trap trap 000a
BIG 0 0 abed abcd Oabc 00ab 000a
BIG 0 1 Xbed trap o0bed 00bc 000b
BIG 0 2 XXcd trap trap 00cd 000¢c
BIG 0 3 XXXd trap trap trap 000d
BIG 1 o abcd dcba Ocba 00ba 000a
BIG 1 1 Xbed trap 0dcb 00ch 000b
BIG 1 2 XXcd trap trap 00dc 000c
BIG 1 3 XXXd trap trap trap 0o00d
RAM WRITE ATTRIBUTES SOURCE OPERAND

endian trans- Op Alu

mode pose_ size out_ OF=0 OF=1 OF=2 OF=3
little 0 Q abcd abcd trap trap trap
little [¢] T Xbed -bed bed- trap trap
little 0 D XXcd --cd -cd- cd-- trap
little 0 B XxXxd ---d --d- -d-- d---
little 1 Q abcd dcba trap trap trap
little 1 T Xbed -dcb dcb- trap trap
little 1 D XXcd --dc -dec- dc-- trap
little 1 B XxXxXd ---d --d- -d-- d---
big 0 Q abed abcd trap trap trap
big 0 T Xbed bed- -bed trap trap
big 0 Is] XXcd cd-- -cd- --cd trap
big 0 B xxXxd a--- -d-- --d- ---d
big 1 Q abed dcba trap trap trap
big 1 T Xbed dcb- -dchb trap trap
big 1 D XXcd de-- -dc- --de trap
big 1 B Xxxd a--- -d-- --d- ~--d

Oblaaaaaaaa PFile File@OpdSel(8:0];
Allows direct, non-paged, access to the top half of the register file.

Provisional Pat. App. of Alacritech, Inc. 89
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 93

IstSel

O0bX00XXXXX
0bX0100000
0bX0100001
0bX0100010
0bX0100011
0bX0100100
0bX0100101
0bX0100110
0bX0100111

0bX0101000

SELECTED TEST

Tst

Tst =

Tst =

Tst =

Tst =

Tst =

Tst =

Tst =

Tst =

Tst =

TstSel[7] * AluOut[TstSel[4:0]]
TstSel([7] * C

TstSel(7] ©~ V

TstSel(7] * 2Z

TstSel(7] ~ (2 | ~C)

TstSel([7] ©~ PrevC

TstSel{7] * Prevv

TstSel([7] * Prevz

TstSel[7] * (PrevZ & Z)

TstSel[7] © QOpDn

//Alu bit
//carry

//error

//zexro

//less or equal
//previous carry
//previous error
//previous zero
//64b zero

//queue op okay

0bX0101001 Tst = reserved

0bX010101X Tst = reserved

0bX01011XX Tst = reserved

ObX0110XXX Tst /ftests the current value of

TstSel[7] * Lock[TstSel[2:0]]

Lock(TstSel[2:0]) = 1; /1the Lock then set it.
O0bX0111XXX Tst = TstSel[7] * Lock[TstSel[2:0]] {tests the value of Lock.
ObX01XXXXX Tst = reserved
ObX1XXXXXX Tst = reserved

FlgSel FLAG OPERATION
0b00000000 No operation.
0b00000001 SelfRst Forces a self reset for the entire chip excluding the PCI configuration
registers
0b00000010 SelBigEnd Selects big-endian mode for ram accesses for the current Cpu.
0b00000011 SelLitEnd Selects little-endian mode for ram accesses for the current Cpu.
0b00000100 DblMap Disable instruction re-mapping for the current Cpu.
0b00000101 EnbMap Enable instruction re-mapping for the current Cpu.
0b0000011X reserved
0b00001XXX reserved
0b00010XXX ClrLck Lock[FlgSel{2:0]] = 0;
Clears the semaphore register bit for the current Cpu only.
0b00011XXX reserved

Provisional Pat. App. of Alacritech, Inc. 90
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 94

FlgSel _

0b0010XXXX

0b0011XXXX

0b01000000

0b01000001

0b01000010

0b01000011

0b01000100

0b010001XX

0b010010XX

0b010011XX

0b010100XX
0b010101XX
0b01011XXX
0b011XXXXX

ObI1XXXXXXX

FLAG OPERATION

AddrOp

FlgSel [3:2
0

1
2
3

FlgSel (1:0]
0

1
2
3

AddrSelect
RamAddr = Literal{15]
RamAddr = AddrRegA[15]
RamAddr = AddrRegB{15]
if (OpdA == RamAddr)
RamAddr = AluOut[15]
else if (OpdA == ram)
RamAddr = AddrRegB[15] ? AddrRegB : (AddrRegB | RamBase);
else
RamAddr = AddrRegA[15] ? AddrRegA : (AddrRegA | RamBase);

? Literal : (Literal | RamBase);
? AddrRegA : (AddrRegA | RamBase);
? AddrRegB : (AddrRegB | RamBase);

? AluOut : (AluOut | RamBase);

addr reg load
nop

AddrRegA = Literal;
AddrRegB = Literal;

AddrRegA = Literal; AddrRegB = Literal;

note: When specifying the same register for both the load and select fields, the current value of the
register, before it is loaded with the new value, will be used for the ram address.

reserved

WrWesL@Dbg

WrWcesH@Dbg

RdWcsL@Dbg

RdWcsH@Dbg

reserved

Step

PcMd

DbgMd

Hlt
Run
reserved
reserved

reserved

Causes the bits [31:0] of the control-store at address DbgAddr to be
written with the current AluQut data.

Causes the bits [63:32] of the control-store at address DbgAddr to be
written with the current AluQut data then increments DbgAddr.

Causes the bits [31:0] of the control-store at address DbgAddr to be
moved to file address Ox1ff.

Causes the bits [63:32] of the control-store at address DbgAddr to be
moved to file address Ox1ff then increments DbgAddr.

Allows the Cpu (FlgSel[1:0]) cycles after the current cycle to execute a single
instruction. There is no effect if the Cpu is not halted. An offset of 0 is not allowed.

Selects the Pc as the address source for the control-store during
instruction fetches for the Cpu (FlgSel[1:0]) cycles after the current cycle.

Selects the DbgAddr address register as the address source for the
control-store during instruction fetches for the Cpu (FlgSel{1:0])
cycles after the current cycle.

Halts the Cpu (FlgSel[1:0]) cycles after the current cycle.

Clears Halt for the Cpu (FlgSel[1:0]) cycles after the current cycle.

Provisional Pat. App. of Alacritech, Inc. 91

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 95

DATA FLOW

Eectrl Pso

<D
T3
%

<«
2]
S

!

Cpu (€

7
i

Cfg
Eeprom

D2s

XmtX

D2q

Dram |¢—ple—p| Xctil

D2d

Q2d

vty
S
i

RevX

S2d

R

P IINET I)

P24

Flash (¢ > o I

i

Pmi

1 P2s

Dcfg

1 Psi . >

Provisional Pat. App. of Alacritech, Inc. 92
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Sram

)

I 4

Alacritech, Ex. 2019 Page 96

SRAM CONTROL SEQUENCER (SramCtrl)

Sram is the nexus for data movement within the INIC. A hierarchy of sequencers, working in concert,
accomplish the movement of data between dram, Sram, Cpu, ethernet and the Pci bus. Slave sequencers,
provided with stimulus from master sequencers, request data movement operations by way of the Sram, Pci
bus, Dram and Flash. The slave sequencers prioritize, service and acknowledge the requests

The preceding block diagram shows all of the master and slave sequencers of the INIC product. Request
information such as r/w, address, size, endian and alignment are represented by each request line.
Acknowledge information to master sequencers include only the size of the transfer being acknowledged.

The following block diagram illustrates how data movement is accomplished for a Pci slave write to Dram.
Note that the Psi (Pci slave in) module functions as both a master sequencer. Psi sends a write request to the
SramCtrl module. Psi requests Xwr to move data from Sram to dram. Xwr subsequently sends a read request
to the SramCtrl module then writes the data to the dram via the Xctrl module. As each piece of data is moved
from the Sram to Xwr, Xwr sends an acknowledge to the Psi module.

Req '—1‘*’ QZE’ZE" Q—é—— Req
—— 2 Sram D R— g(::r
Addr
G Ctrl —=Plac
DOut < 2 ,?é'i 5 Addr
1
PCI BUS |« Xwr Xctr
' . Data ___.>
Psi
- e Ty
WrReq HSramAddr
6 > DramAddr
SramAddr Ack
<
Provisional Pat. App. of Alacritech, Inc. 93

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 97

SRAM CONTROL SEQUENCER (SramCtrl)

Add/ ., ... Addr/
Req0 ¢ o v o & Req N Cirl/ Ctrl/
Data 0 Data N
133MHz l l
-———’ CLK .
Arbiter
| &
133MHz_ e v l
_._h N i
Register
v
z > Align
133MHz +
I CLK . *Addr DIN
Register Sram
P WE DOut
,,,,, v
Partial Align
133MHz v v
____> ICLK
Register
v
—» Partial Align
Ack Sim
/ Rd
Ack_sz Data
Provisional Pat. App. of Alacritech, Inc. 94

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 98

The ‘Sram control sequencer services requests to store to, or retrieve data from an Sram organized as 1024
locations by 128 bits (16KB). The sequencer operates at a frequency of 133MHz, allowing both a.Cpu access
and a dma access to occur during a standard 66MHz Cpu cycle. One 133MHz cycle is reserved for Cpu

accesses during each 66MHz cycle while the remaining 133MHz cycle is reserved for dma accesses on a
prioritized basis.

The preceding block diagram shows the major functions of the Sram control sequencer. A slave sequencer
begins by asserting a request along with r/w, ram address, endian, data path size, data path alignment and
request size. SramCtrl prioritizes the requests. The request parameters are then selected by a multiplexer
which feeds the parameters to the Sram via a register. The requestor provides the Sram address Which when
coupled with the other parameters controls the input and output alignment. Sram outputs are fed to the output
aligner via a register. Requests are acknowledged in parallel with the returned data.

Following is a timing diagram depicting two ram accesses during a single 66MHz clock cycle.

Cpu
CLOCK
- 1
Dma
CLOCK
) o XXXX e XXXX
fr———m
DMA
Gnt
Sram
CLOCK
15T CpuParams SELECTED GRANT TO 1T DVA SEQUENCER 2% CpuParems SELECTED GRANT TO 2™ DMA SEQUENCER
15" DVAFarems SELECTED 2% DMAParms SELECTED!
Ack AND Ack SIZE FOR Cpu Ack AND Ack SIZE FOR 15T DMA Req Ack AND Ack SIZE FOR Cpu
APPLY 157 Cpu Addr APPLY 157 DMA Addr APPLY 2ND Cpu Addr APPLY 2*° DMA Addr
ALIGN 17 Cpu INPUT Data H ALIGN 17 DMA INPUT Data H ALIGN 2ND Cpa INPUT Data H ALIGN 2*° DMA INPUT Data
READ OR WRITE 157 Cpu Data READ OR WRITE 157 DMA Dats. READ OR WRITE 2*° Cpu Dala READ OR WRITE 2¥° DMA Data
: ALIGN AND RETURN 17 Cpu Data i ALIGN AND RETURN 157 DMA Data : ALIGN AND RETURN 2*" Cpu Dala
Provisional Pat. App. of Alacritech, Inc. 95

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 99

EXTERNAL MEMORY CONTROL (Xctrl)

Xctrl provides the facility whereby Xwr, Xrd, Dcfg and Eectrl access external Flash and Dram. Xetrl
includes an arbiter, i/o registers, data multiplexers, address multiplexers and control multiplexers. Ownership
of the external memory interface is requested by each block and granted to each of the requesters by the
arbiter function. Once ownership has been granted the multiplexers select the address, data and control signals
from owner, allowing access to external memory.

Arbiter [Grant V4 »TO requestors

XrdReq
XrdAddr
XrdState
XrdCurl
XrdData

— XAddr 4 TO Xm
XwrReq > e

XwrAddr
XwrState
XwrCirl

XwrData

Mux

DcfgReq
DcfgAddr
DcfgState
DcfgCirl
DefgData

— i XData »TO Xmem

EectrlReq
EectrlAddr
EectrlState
EectrlCtr]
EectriData

L p| XCtrl £ »TO Xmem

R N N N RN A

Provisional Pat. App. of Alacritech, Inc. 96
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 100

EXTERNAL MEMORY READ SEQUENCER (Xrd)

The Xrd sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Xrd
sequencer moves data from external sdram or flash to the Sram, via the Xctrl module, in blocks of 32 bytes
or less. The nature of the sdram requires fixed burst sizes for each of it's internal banks with ras precharge
intervals between each access. By selecting a burst size of 32 bytes for sdram reads and interleaving bank
accesses on a 16 byte boundary, we can ensure that the ras precharge interval for the first bank is: satisfied
before burst completion for the second bank, allowing us to re-instruct the first bank and continue with
uninterrupted dram access. Sdrams require a consistent burst size be utilized each and every timeithe sdram is
accessed. For this reason, if an sdram access does not begin or end on a 32 byte boundary, sdram bandwidth
will be reduced due to less than 32 bytes of data being transferred during the burst cycle.

The following block diagram depicts the major functional blocks of the Xrd sequencer. The first step in
servicing a request to move data from sdram to Sram is the prioritization of the master sequencer requests.
Next the Xrd sequencer takes a snapshot of the dram read address and applies configuration information to
determine the correct bank, row and column address to apply. Once sufficient data has been read, the Xrd
sequencer issues a write request to the SramCtrl sequencer which in turn sends an acknowledge ito the Xrd
sequencer. The Xrd sequencer passes the acknowledge along to the level two master with a size code
indicating how much data was written during the Sram cycle allowing the update of pointers and:counters. The
dram read and Sram write cycles repeat until the original burst request has been completed at which point the
Xrd sequencer prioritizes any remaining requests in preparation for the next burst cycle.

Contiguous dram burst cycles are not guaranteed to the Xrd sequencer as an algorithm is implemented which
ensures highest priority to refresh cycles followed by flash accesses, dram writes then dram reads.

Following is a timing diagram illustrating how data is read from sdram. The dram has been configured for a
burst of four with a Jatency of two clock cycles. Bank A is first selected/activated followed by a read
command two clock cycles later. The bank select/activate for bank B is next issued as read data begins
returning two clocks after the read command was issued to bank A. Two clock cycles before we need to
receive data from bank B we issue the read command. Once all 16 bytes have been received from bank A we
begin receiving data from bank B.

66MHz NNNNNNNINnNnNnoInnnnnmnnnn
controls Xwrb XselaX XX XX XX XX X XX XX XE)

read data CEOEEEEXEDE)
wiite date X 0BT Y27) O

Provisional Pat. App. of Alacritech, Inc. » 97
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 101

EXTERNAL MEMORY READ SEQUENCER (Xrd)

N\
—p| Grant 4 - To Requester
D2p —> ——p XAddr / - To Xctrl
D2s —p
D2d —> EN
D2q I) (&—SramGnt
Pso —> ——p| XData SramData
XmtA —>
XmtB —Pp
XmtC —P
XmtD — L XCul »To Xctrl
SEQ)
> State »To Xctrl
¥ Ack Torequester
P XctrlReq
XctrlDin —» —+»SramReq
XctrlGnt —P
SramGnt ——ﬂ
SramAck —p SramGn
Sram AckSz —P ‘ Tamis t
SramParams
Provisional Pat. App. of Alacritech, Inc. 98

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 102

EXTERNAL MEMORY WRITE SEQUENCER (Xwr)

The Xwr sequencer is a slave sequencer. Servicing requests issued by master sequencers, the Xwr sequencer
moves data from Sram to the external sdram or flash, via the Xctrl module, in blocks of 32 bytes or less while
accumulating a checksum of the data moved. The nature of the sdram requires fixed burst sizes for each of it's
internal banks with ras precharge intervals between each access. By selecting a burst size of 32 bytes for
sdram writes and interleaving bank accesses on a 16 byte boundary, we can ensure that the ras prechage
interval for the first bank is satisfied before burst completion for the second bank, allowing us to re-instruct
the first bank and continue with uninterrupted dram access. Sdrams require a consistent burst size be utilized
each and every time the sdram is accessed. For this reason, if an sdram access does not begin or end on a 32

byte boundary, sdram bandwidth will be reduced due to less than 32 bytes of data being ﬁmsfenéd during the
burst cycle.

The following block diagram depicts the major functional blocks of the Xwr sequencer. The first step in
servicing a request to move data from Sram to sdram is the prioritization of the level two master requests.
Next the Xwr sequencer takes a Snapshot of the dram write address and applies configuration infprmation to
determine the correct dram, bank, row and column address to apply. The Xwr sequencer immediately issues a
read command to the Sram to which the Sram responds with both data and an acknowledge. The Xwr
sequencer passes the acknowledge to the level two master along with a size code indicating how much data
was read during the Sram cycle allowing the update of pointers and counters. Once sufficient data has been
read from Sram, the Xwr sequencer issues a write command to the dram starting the burst cycle.and
computing a checksum as the data flies by. The Sram read cycle repeats until the original burst request has
been completed at which point the Xwr sequencer prioritizes any remaining requests in preparation for the
next burst cycle.

Contiguous dram burst cycles are not guaranteed to the Xwr sequencer as an algorithm is implemented which
ensures highest priority to refresh cycles followed by flash accesses then dram writes.

Following is a timing diagram illustrating how data is written to sdram. The dram has been configured for a
burst of four with a latency of two clock cycles. Bank A is first selected/activated followed by a write
command two clock cycles later. The bank select/activate for bank B is next issued in preparation for issuing
the second write command. As soon as the first 16 byte burst to bank A completes we issue the write
command for bank B and begin supplying data. ‘

controls } X X XX XX XX XX KX X=X XK X™)
vrite data COXAXE2XE XXX 2A)
readdata X BOX BT X B2 X %3) (O KD

Provisional Pat. App. of Alacritech, Inc. 99
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 103

EXTERNAL MEMORY WRITE SEQUENCER (Xwr)

\
——{ Grant 4] —»TO Requester
P2d —> — XAddr] »TO Xctil
S2d —P
D2d —
Q24 —>
Psi —p L »! XData 4 P»TO Xctrl
RevA —P
RcvB —P
RevC o
RevD — —p XCtl »TO Xctrl
——p D2dChkSum [/] +TO D2d
3! P2dChkSum Vi »TO P2d
SEQ
—» State £ »TO Xctrl
»Ack TO requester
P XctrlReq
+»SramReq
XctrlGnt —>
SramGnt —P
SramAck —>
t
Sram AckSz —p ﬂ———S'ramGn ,
SramRdData —P SramParams -
ional Pat. App. of Alacritecfi, Inc. 100

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 104

PCI MASTER-OUT SEQUENCER (Pmo)

The Pmo sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Pmo
sequencer moves data from an Sram based fifo to a Pci target, via the PciMstrIO module, in bursts of up to
256 bytes. The nature of the PCI bus dictates the use of the write line command to ensure optimal system
performance. The write line command requires that the Pmo sequencer be capable of transferring a whole
multiple (1X, 2X, 3X, ...) of cache lines of which the size is set through the Pci configuration registers. To
accomplish this end, Pmo will automatically perform partial bursts until it has aligned the transfets on a cache
line boundary at which time it will begin usage of the write line command. The Sram fifo depth, of 256 bytes,
has been chosen in order to allow Pmo to accommodate cache line sizes up to 128 bytes. Provided the cache
line size is less than 128 bytes, Pmo will perform multiple, contiguous cache line bursts until it has exhausted
the supply of data.

Pmo receives requests from two separate sources; the dram to Pci (D2p) module and the Sram to Pci (S2p)
module. An operation first begins with prioritization of the requests where the S2p module is given highest
priority. Next, the Pmo module takes a Snapshot of the Sram fifo address and uses this to generate read
requests for the SramCtrl sequencer. The Pmo module then proceeds to arbitrate for ownership of the Pci bus
via the PciMstrIO module. Once the Pmo holding registers have sufficient data and Pci bus mastership has
been granted, the Pmo module begins transferring data to the Pci target. For each successful transfer, Pmo
sends an acknowledge and encoded size to the master sequencer, allow it to update it's internal pointers,
counters and status. Once the Pci burst transaction has terminated, Pmo parks on the Pci bus unless another
initiator has requested ownership. Pmo again prioritizes the incoming requests and repeats the process.

2 ®
RdReq ‘_— A:?ir
Sram —
Addr C tl'l DIN
3 ' Ack
DOut ' Addr .
S2p Pmo Pmstr | PCI BUS
Data | l . I
WrReq 1 ; 5
p DI
SramAddr | Sramaddr
Pc1Addr 6 4” :‘::ddr 4
Ack 4
Provisional Pat. App. of Alacritech, Inc. 101

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 105

PCI MASTER-IN SEQUENCER (Pmi)

The Pmi sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Pmi
sequencer moves data from a Pci target to an Sram based fifo, via the PciMstrIO module, in bursts of up to
256 bytes. The nature of the PCI bus dictates the use of the read multiple command to ensure optimal system
performance. The read multiple command requires that the Pmi sequencer be capable of transferring a cache
line or more of data. To accomplish this end, Pmi will automatically perform partial cache line bursts until it
has aligned the transfers on a cache line boundary at which time it will begin usage of the read multiple
command. The Sram fifo depth, of 256 bytes, has been chosen in order to allow Pmi to accommodate cache
line sizes up to 128 bytes. Provided the cache line size is less than 128 bytes, Pmi will perform multiple,
contiguous cache line bursts until it has filled the fifo,

Pmi receive requests from two separate sources; the Pci to dram (P2d) module and the Pci to Sram (P2s)
module. An operation first begins with prioritization of the requests where the P2s module is given highest
priority. The Pmi module then proceeds to arbitrate for ownership of the Pci bus via the PeiMstrIO module.
Once the Pci bus mastership has been granted and the Pmi holding registers have sufficient data, the Pmi
module begins transferring data to the Sram fifo. For each successful transfer, Pmi sends an acknowledge and
encoded size to the master sequencer, allowing it to update it's internal pointers, counters and status. Once the
Pci burst transaction has terminated, Pmi parks on the Pci bus unless another initiator has requested
ownership. Pmi again prioritizes the incoming requests and repeats the process.

G F
WrReq A::il
Sram <
Adr g DOut
T <_5_ Ack
Din ___»PciAddr I
P2s Pmi Pmstr | PCI BUS
Data — >
Req 1 2 3
—P>{RaReg P
SramAddr >Ctrl
SramAddr
PeiAddr P{peiaddr
6
Aol W - Ack
Provisional Pat. App. of Alacritech, Inc. 102

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 106

Dram TO PCI SEQUENCER (D2p)

The D2p sequencer acts is a master sequencer. Servicing channel requests issued by the Cpu, the D2p
sequencer manages movement of data from dram to the Pci bus by issuing requests to both the Xrd sequencer
and the Pmo sequencer. Data transfer is accomplished using an Sram based fifo through which data is staged.

D2p can receive requests from any of the processor's thirty-two dma channels. Once a command rrequest has
been detected, D2p fetches a dma descriptor from an Sram location dedicated to the requesting channel which
includes the dram address, Pci address, Pci endian and request size. D2p then issues a request to the D2s
sequencer causing the Sram based fifo to fill with dram data. Once the fifo contains sufficient data for a Pci
transaction, D2s issues a request to Pmo which in turn moves data from the fifo to a Pci target. The process
repeats until the entire request has been satisfied at which time D2p writes ending status in to the Sram dma
descriptor area and sets the channel done bit associated with that channel. D2p then monitors the dma channels
for additional requests. Following is an illustration showing the major blocks involved in the movement of data
from dram to Pci target.

6
'WrReq RdReq <_]_Q_Req
Req lAddr Addr Addr
Addr l v Dow l DIN
5 add :Zﬂt‘_—>Ack Ctrl Atk ——p Ack Addr
T Cl ‘ Z
Xrd Rq AD D Ack > Pmo —P
Xctrl Data Data PIIISU'
<) L > 1,14 2,15 > <3p
4 Rq AD D Ack req cul
‘_-cm S::Addr 4_3__1?24 Req __l_’SramAddr 4_12_»
IAddr Addr PciAddr
D2,
DramAddr ﬂ—mdr P Addr F—> rck
Ack lf———] Ack Ak —p!
Provisional Pat. App. of Alacritech, Inc. 103

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 107

Dram TO PCI SEQUENCER (D2p)

\
CHANNEL
—» D [
Dram
—» PIR < »TO Xrd
PCI
—» PTR 4 +TO Pmo
XFR p
—» COUNT »TO Xrd
FIFO
—» RD Pir L —»TO Pmo
XrdAck —P
FIFO p
—» WR Pir - TO Xrd
Xrd Status —Pp
XFR
—>| oPTIONS [
Pmo Ack —Pp
SEQ
—» Stae [—
Pmo Status —P
P FifoCnt
»Pmo Req
Sram Ack —Pp —p-X1d Req
Pp-SramReq
EN
(&——From Sram
Sram Rd Data —Pp! SramParams
Provisional Pat. App. of Alacritech, Inc. 104

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 108

PCI TO DRAM SEQUENCER (P2d)

The P2d sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the P2d sequencer manages movement of data from Pci bus to dram by issuing requests to both
the Xwr sequencer and the Pmi sequencer. Data transfer is accomplished using an Sram based fifo through
which data is staged.

P2d can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, P2d, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the dram address, Pci address, Pci endian and request size. P2d then
issues a request to Pmo which in turn moves data from the Pci target to the Sram fifo. Next, P2d issues a
request to the Xwr sequencer causing the Sram based fifo contents to be written to the dram. The process
repeats until the entire request has been satisfied at which time P2d writes ending status in to the Sram dma
descriptor area and sets the channel done bit associated with that channel. P2d then monitors the dma channels
for additional requests. Following is an illustration showing the major blocks involved in the movement of data
from a Pci target to dram. '

10 ’RdReq > 6 _ |Req
Req 'WrReq Addr
————Padds ——
Addr |Addr Sram DOut
powe Ctrl Ack
—|oin 1L —in s < P
Xctrl Adar fack Pmi Pmstr
<+« <« Y 1,14 215 o] >
Wr
AD D Ack
Data
13 P2d 3 Pl >
Ctrl
g;: ﬁﬁﬁi ’ SramAddr
‘_—Addr —'_’PCIAddr
SramAddr 12, Adde |
Provisional Pat. App. of Alacritech, Inc. 105
PP

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 109

PCI TO DRAM SEQUENCER (P2d)

\
CHANNEL
L ID |
Dram
—» PR 4 »TO Xwr
PCI
—» pPTR 4 »TO Pmi
XFR p .
—» COUNT —»TO Pmi
XwrChksum —Pp
FIFO y
—» WR Pt —»TO Pmi
XwrAck —P
FIFO
—» RD Ptr 4 - TO Xwr
XwrStatus —Pp
XFR
—» OPTIONS]
PmiAck —Pp
SEQ
—> state —
PmiStatus —p
pFifoCnt
»PmiReq
SramAck —> P XwrReq
PSramReq
EN
(&——From Sram
SramRdData —Pp SramParams
Provisional Pat. App. of Alacritech, Inc. 106

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 110

SRAM TO PCI SEQUENCER (S2p)

The S2p sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued

by the Cpu, the S2p sequencer manages movement of data from Sram to the Pci bus by issuing requests to the
Pmo sequencer

S2p can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, S2p, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the Sram address, Pci address, Pci endian and request size. S2p then
issues a request to Pmo which in turn moves data from the Sram to a Pci target. The process repeats until the
entire request has been satisfied at which time S2p writes ending status in to the Sram dma descriptor area and
sets the channel done bit associated with that channel. S2p then monitors the dma channels for additional
requests. Following is an illustration showing the major blocks involved in the movement of data from Sram to
Pci target.

lReq
Addr
DIN

Ack
Addr

ol

Pmo Pmstr

Data

Py
;

Regq
Curl

SramAddr
PciAddr

T

Ack

Provisional Pat. App. of Alacritech, Inc. 107
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech; Ex. 2019 Page 111

SRAM TO PCI SEQUENCER (S2p)

CHANNEL
P D Ny

PCI p
—» PTR —»TO Pmo

XFR
—» COUNT ~ »TO Pmo

Sram p
—» PTR »TO Pmo
XFR
—» OPTIONS
PmoAck —Pp
SEQ
> State
PmoStatus —>»
P»-PmoReq
SramAck —»
Pp-SramReq
EN
(&—From Sram
SramRdData ——” SramParams
Provisional Pat. App. of Alacritech, Inc. 108

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 112

PCI TO SRAM SEQUENCER (P2s)

The P2s sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued by
the Cpu, the P2s sequencer manages movement of data from Pci bus to Sram by issuing requests to the Pmi
sequencer.

P2s can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, P2s, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the Sram address, Pci address, Pci endian and request size. P2s then
issues a request to Pmo which in turn moves data from the Pci target to the Sram. The process repeats until
the entire request has been satisfied at which time P2s writes ending status in to the dma descriptor area of
Sram and sets the channel done bit associated with that channel. P2s then monitors the dma channels for

additional requests. Following is an illustration showing the major blocks involved in the movement of data
from a Pci target to dram.

Req

WrReq Adde

|Addr DOut

Ack
Addr

Sram
Ctrl

il 1E

Din

Pmi Pmstr

|Ack

XX XTI

Rg AD D Ack

[

i1y
;

Req
Ctrl

SramAddr
PciAddr
Ack

Req
P2s
[Addr

|Addr

Fydd

Provisional Pat. App. of Alacritech, Inc. : 109
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 113

PCI TO SRAM SEQUENCER (P2s)

CHANNEL
P D Y

PCI
N PTR v - TO Pmi
XFR p)
—®» COUNT »TO Pmi
- Sram
—» PIR 4 $TO Pmi
XFR
— OPTIONS —]
PmiAck —p
SEQ
—> Stae
PmiStatus —P
»PmiReq
SramAck —P>
P SramReq
EN
(&—From Sram
SramRdData —p SramParams
Provisional Pat. App. of Alacritech, Inc. 110

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 114

DRAM TO SRAM SEQUENCER (D2s)

The D2s sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the D2s sequencer manages movement of data from dram to Sram by issuing requests to the Xrd

sequencer.

D2s can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, D2s, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the dram address, Sram address and request size. D2s then issues a
request to the Xrd sequencer causing the transfer of data to the Sram. The process repeats until the entire
request has been satisfied at which time D2s writes ending status in to the Sram dma descriptor area and sets
the channel done bit associated with that channel. D2s then monitors the dma channels for additional requests.
Following is an illustration showing the major blocks involved in the movement of data from dram to Sram.

Req

Addr

Addr
Ack

Xctrl
Xrd

Data

I
P

Ctrt
Regq

SramAddr

| 5 ' |WrReq
|Addr
D
» Sram
|Ack Ctrl

Rg AD D Ack

XX X7

2,9

Rq AD D Ack

Req

ddr
|Addr
Ack

D2S

111

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

111

Alacritech, Ex. 2019 Page 115

DRAM TO SRAM SEQUENCER (D2s)

\
CHANNEL
| fomanneL|
Dram P
—» PTR »TO Xrd
XFR
—» COUNT 4 »TO Xrd
Sram y
P PTR »TO Xrd
XFR
—» OPTIONS]
XrdAck —P
SEQ
—P State —
XrdStatus P
—»XrdReq
SramAck —p!
—p-SramReq
EN
(&——From Sram
SramRdData —> SramParams
Provisional Pat. App. of Alacritech, Inc. 112

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 116

SRAM TO DRAM SEQUENCER (S2d)

The S2d sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the S2d sequencer manages movement of data from Sram to dram by issuing requests to the Xwr
sequencer.

S2d can receive requests from any of the processor’s thirty-two dma channels. Once a command request has
been detected, S2d, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the dram address, Sram address, checksum reset and request size.
S2d then issues a request to the Xwr sequencer causing the transfer of data to the dram. The process repeats
until the entire request has been satisfied at which time S2d writes ending status in to the Sram dma descriptor
area and sets the channel done bit associated with that channel. S2d then monitors the dma channels for
additional requests. Following is an illustration showing the major blocks involved in the movement of data
from Sram to dram.

dReq
Req |Addr
>
Addr i} Sram
¢ Ak Crl
Z ar l |lRg AD D Ack
Xctrl Ack 18 0
<4 — 2,
pr Rqg AD D Ack
Data
<L 3
|Addr
Cul <—- [Addr S2d
fea l—— Ack
SramAddr _6_»
Provisional Pat. App. of Alacritech, Inc. 113

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 117

SRAM TO DRAM SEQUENCER (S2d)

CHANNEL
- D L1

Dram
—» PTR 4 »TO Xwr

XFR
—®» COUNT = »TO Xwr

Sram
F—» PTR /! —»TO Xwr

XFR
— | OPTIONS

XwrAck —P

SEQ
—» State ——

XwrStatus —b‘

»XwrReq
SramAck —»
—P-SramReq
EN
(&——From Sram
SramRdData —Pp SramParams
Provisional Pat. App. of Alacritech, Inc. 114

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 118

PCI SLAVE INPUT SEQUENCER (Psi)

The Psi sequencer acts as both a slave sequencer and a master sequencer. Servicing requests issued by a Pci
master, the Psi sequencer manages movement of data from Pci bus to Sram and Pci bus to dram via Sram by
issuing requests to the SramCtrl and Xwr sequencers.

Psi manages write requests to configuration space, expansion rom, dram, Sram and memory mapped registers.
Psi separates these Pci bus operations in to two categories with different action taken for each. Dram accesses
result in Psi generating write request to an Sram buffer followed with a write request to the Xwr sequencer.
Subsequent write or read dram operations are retry terminated until the buffer has been emptied. An event
notification is set for the processor allowing message passing to occur through dram space. ‘

All other Pci write transactions result in Psi posting the write information including Pci address, Pci byte
marks and Pci data to a reserved location in Sram, then setting an event flag which the event processor
monitors. Subsequent writes or reads of configuration, expansion rom, Sram or registers are terminated with
retry until the processor clears the event flag. This allows the INIC to keep pipelining levels to a minimum for
the posted write and give the processor ample time to modify data for subsequent Pci read operations.

The following diagram depicts the sequence of events when Psi is the target of a Pci write operation. Note that
events 4 through 7 occur only when the write operation targets the dram.

RdReq

Req Addr

Addr
o« Sram
i Ctrl

Rg AD D Ack

3
X“I Rq AD D Ack

Rea —2 9% EVENT NOTIFY

|Addr

o PSi [€4%— EVENT CLEAR

Ack

Addr
Ack

Xctrl

s

Data

I
F1]

Cirl
Req

[T

SramAddr

Pmstr |(q1p PCIBUS

Provisional Pat. App. of Alacritech, Inc. 115
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 119

PCI SLAVE OUTPUT SEQUENCER (Pso)

The Pso sequencer acts as both a slave sequencer and a master sequencer. Servicing requests issued by a Pci
master, the Pso sequencer manages movement of data to Pci bus form Sram and to Pci bus from dram via
Sram by issuing requests to the SramCtrl and Xrd sequencers.

Pso manages read requests to configuration space, expansion rom, dram, Sram and memory mapped registers.
Pso separates these Pci bus operations in to two categories with different action taken for each. Dram accesses
result in Pso generating read request to the Xrd sequencer followed with a read request to Sram buffer.
Subsequent write or read dram operations are retry terminated until the buffer has been emptied.

All other Pci read transactions result in Pso posting the read request information including Pci address and Pci
byte marks to a reserved location in Sram, then setting an event flag which the event processor monitors.
Subsequent writes or reads of configuration, expansion rom, Sram or registers are terminated with retry until
the processor clears the event flag. This allows the INIC to use a microcoded response mechanism to return
data for the request. The processor decodes the request information, formulates or fetches the requested data
and stores it in Sram then clears the event flag allowing Pso to fetch the data and return it on the Pci bus.

The following diagram depicts the sequence of events when Pso is the target of a Pci read operation.

Req
Addr

<¢——p
Addr

Xctrl Ack
<) — 8
Xrd

Data

33— I —p EVENT NOTIFY
Ctel «¢—— EVENT CLEAR
Reg
SramAddr

Pmstr gLl PCIBUS
Provisional Pat. App. of Alacritech, Inc. 116

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 120

FRAME RECEIVE SEQUENCER (RcvX)

The receive sequencer (RcvSeq) analyzes and manages incoming packets, stores the result in dram
buffers, then notifies the processor through the receive queue (RevQ) mechanism. The process begins
when a buffer descriptor is available at the output of the FreeQ. RcvSeq issues a request to the Qmg
which responds by supplying the buffer descriptor to RevSeq. RevSeq then waits for a receive packet.
The Magc, network, transport and session information is analyzed as each byte is received énd stored
in the assembly register (AssyReg). When four bytes of information is available, RevSeq requests a
write of the data to the Sram. When sufficient data has been stored in the Sram based receive fifo, a
dram write request is issued to Xwr. The process continues until the entire packet has been received
at which point RevSeq stores the resuits of the packet analysis in the beginning of the dram buffer.
Once the buffer and status have both been stored, RevSeq issues a write-queue request to Qmg.
Qmg responds by storing a buffer descriptor provided by RevSeq. The process then repeats. If
RcvSeq detects the arrival of a packet before a free buffer is available, it ignores the packet and sets
the FrameLost status bit for the next received buffer.

The following diagram depicts the sequence of events for successful reception of a packet followed by
a definition of the receive buffer and the buffer descriptor as stored on the RevQ.

Mac Cirl
OPTIONS OPTIONS
PauseDet _»TO Xmt_Mac
7
e e AD AD
ram
sm“SM 4 Smddr >Dram AD D >
[
lom A P Dramaddr————Pack o Xctrl
! > <> Xwr 8 >
ﬁck Rq Ack
D
RevX
AD D Ack
< 1.10 Rq Rq
%4 Qmg Sram
D Ctrl
Ackj
laD
Ptr
ek < 312
2,11
‘Req —P
Provisional Pat. App. of Alacritech, Inc. 117

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 121

MacDataln
MacCtrlln

MacStatus_IN

MacAddrA

MacAddrB

SramAck

SramRdData

FREEQ ID
RCV_Q ID
Ctrl Q ID

PauseDetEn

FRAME RECEIVE SEQUENCER (RcvX)

v \ 2 2

v

v

v

Y VvV VvV ¥

QUEUE
COMMAND

N

BUFFER
DESCR

\

Sram WR
Data

p-TO QmgR

From Sram
TO Sram

Sram
Addr

From Sram
TO Sram

Dram
PTR

FIFO WR
PTR

NI NN

FIFO RD
PTR

N

—p-TO Xwr

Data
ASSY REG

RCV SEQ
State

ANALYZER
State

FRAME
POINTER

IP
POINTER

TRANSPORT
POINTER

IP
CHECKSUM

PAYLOAD
CHECKSUM

v vV VvV V ¥V V¥V VvV V VvV ¥V VvV V V V ¥V ¥

CONTEXT
HASH

L ¢ L C L O £

—pTO Xwr

p XwiReq

—p-PauseDet

—» QmgRReq

P SramReqg

From Sram
SramParams

Provisional Pat. App. of Alacritech, Inc. 118
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 122

RECEIVE BUFFER DESCRIPTOR

bit name description

31:30 reserved

29:28 size A copy of the bits in the FreeBufDscr.

27:00 address Represents the last address + 1 to which frame data was transferred. The address

wraps around at the boundary dictated by the S bits. This can be used to determine
the size of the frame received.

RECEIVE BUFFER FORMAT

FRAME Status A OFFSET 0x0000:0x0003

bit name description

31 attention Indicates one or more of the following: CompositeErr, !IpDn, !MacADet &
!MacBDet, IpMcst, IpBest, !ethernet & 1802.3Snap, !Ip4, !Tcp .

30 CompositeErr Set when any of the error bits of ErrStatus are set or if frame processing stops
while receiving a Tcp or Udp header.

29 CtrlFrame A control frame was received at our unicast or special MltCst address.

28 IpDn Frame processing Hlted due to exhaustion of the IP4 length counter.

27 802.3Dn Frame processing Hlted due to exhaustion of the 802.3 length counter.

26 MacADet Frame's destination address matched the contents of MacAddrA.

25 MacBDet Frame's destination address matched the contents of MacAddrB.

24 MacMcst The Mac detected a MItCst address.

23 MacBest The Mac detected a BrdCst address.

22 IpMcst The frame processor detected an IP MItCst address.

21 IpBcst The frame processor detected an IP BrdCst address.

20 Frag The frame processor detected a Frag IP datagram.

19 IpOfist The frame processor detected a non-zero IP datagram offset.

18 IpFlgs The frame processor detected flags within the IP datagram.

17 IpOpts The frame processor detected a header length greater than 20 for the IP datagram.

16 TcpFlgs The frame processor detected an abnormal header flag for the TCP segment.

15 TepOpts The frame processor detected a header length greater than 20 for the TCP segment.

14 TepUrg The frame processor detected a non-zero urgent pointer for the TCP segment.

13 CarrierEvnt Refer to EI10 Technical Manual.

12 LongEvnt Refer to E110 Technical Manual.

11 FrameLost Set when an incoming frame could not be processed as a result of an outstanding -
frame completion event not yet serviced by the utility processor.

10 reserved

10 NoAck The frame processor detected a

09:08 FrameTyp 00 - Reserved. 01- ethernet. 10 - 802.3. 11 - 802.3 Snap.

07:06 NwkTyp 00 - Unknown, 01- Ip4. 10 - Ip6 11 - ip other.

05:04 TrnsptTyp 00 - Unknown. O1- reserved. 10 - Tep 11 - Udp

03 NetBios A NetBios frame was detected.

02 reserved

01:00 channel The Mac on which this frame was received.

Provisional Pat. App. of Alacritech, Inc. 119
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 123

FRAME Status B

bit_ name

31 802.3Shrt
30 BufOvr

29 BadPkt

28 InvldPrmbl
27 CrcErr

26 DrbiNbbl

25 CodeErr

24 IpHdrShrt
23 IpIncmplt
22 IpSumErr
21 TepSumErr
20 TepHdrShrt

19:16 PrecssCd
15:08 MacHsh
07:00 CtxHsh
TIME STAMP
bit name

31:00 RcvTime

CHECKSUM

bit _ name

31:16 IpChksum

15:00 TcpChksum

RESERVED

FRAME Data

OFFSET 0x0004:0x0007
description

End of frame was encountered before the 802.3 length count was exhausted.
The frame length exceded the buffer space available.

Refer to E110 Technical Manual.

Refer to E110 Technical Manual.

Refer to E110 Technical Manual.

Refer to E110 Technical Manual.

Refer to E110 Technical Manual.

The IP4 header length field contained a value less than 0x5.

The frame terminated before the IP length counter was exhausted.

The IP header checksum was not Oxffff at the completion of the IP header read.
The session checksum was not Oxffff at the termination of session processing.
The TCP header length field contained a value less than 0x5.

The state of the frame processor at the time the frame processing terminated.
0b0000 Processing Mac header.

0b0001 Processing 802.3 LLC header.

0b0010 Processing 802.3 SNAP header.

0b0011 Processing unknown network data.

0b0100 Processing IP header.

0b0101 Processing IP data (unknown transport).
0b0110 Processing transport header (IP data).
0b0111l Processing transport data (IP data).
0b1000 Processing IP processing complete.
0b1001 Reserved.

0bl01lx Reserved.

0bllxx Reserved.

The Mac destination-address hash. Refer to E110 Technical Manual.

The 8-bit contexi-hash generated by exclusive-oring all bytes of the IP source
address, IP destination-address, transport source port and the transport destination
port.

OFFSET 0x0008:0x000B

description
The contents of FreeClk at the completion of the frame receive operation.

OFFSET 0x000C:0x000F

description
Reflects the value of the IP header checksum at frame completion or IP header
completion. If an IP datagram was not detected, the checksum provides a total for
the entire data portion of the received frame. The data area is defined as those bytes
received after the type field of an ethernet frame, the LLC header of an 802.3 frame
or the SNAP header of an 802.3-SNAP frame.

Reflects the value of the transport checksum at IP completion or frame completion.
If IP was detected but session was unknown, the checksum will not include the
psuedo-header. If IP was not detected, the checksum will be 0x0000.

OFFSET 0x0010:0x0011

OFFSET 0x0012:END OF BUFFER

Provisional Pat. App. of Alacritech, Inc. 120
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 124

FRAME TRANSMIT SEQUENCER (XmtX)

The transmit sequencer (XmtSeq) analyzes and manages outgoing packets, using buffer descriptors
retrieved from the transmit queue (XmtQ) then storing the descriptor for the freed buffer in the free
buffer queue (FreeQ). The process begins when a buffer descriptor is available at the output of the
XmtQ. XmtSeq issues a request to the Qmg which responds by supplying the buffer descriptor to
XmtSeq. XmtSeq then issues a read request to the Xrd sequencer. Next, XmtSeq issues a read
request to SramCtri then instructs the Mac to begin frame transmission. The Mac accepts data from
XmtSeq which analyzes the packet as it flys-by in order to generate checksums to insert in the data
stream. Once the frame transmission has completed, XmtSeq stores the buffer descriptor on the
FreeQ thereby recycling the buffer.

The following diagram depicts the sequence of events for successful transmission of a packet followed
by a definition of the receive buffer and the buffer descriptor as stored on the XmtQ.

Mac Ctrl
OPTIONS OPTIONS
leLR pause | @~—————From PROCESSOR
\——————From RCV_SEQ
jpauscDet | @————From PROCESSOR
[PauseReq —————p»TO PROCESSOR
h 4
PauseD [Req
ram AD
IStatus > PiaD EE—
Mac :_L___’—Ee‘l - 9p{pram AD ——— Xctrl
ICt1a tatus D
ramAddr 4—5—-—— Ack Dwr —'—‘—>
D ICtxi DramAddr| Cerl
D
'Ack XmtX
Rq AD D Ack
q 110 q
Rq X
Qmg IRq)
D
adr Sram
PTR Ctrl
Req
Addr 2.11 h
hc Serv < 312
Provisional Pat. App. of Alacritech, Inc. ’ 121

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 125

FRAME TRANSMIT SEQUENCER (XmtX)

N\
UEUE
> C(?MMAND - —»TO QmeR
BUF
MacData IN - P I;JES?;{
3 WR From Sram
MacCtrlIN > - rag;ta TO Sram
S From Sram
MacStatus_IN > > ;;g; vz TO Sram
From Xwr
Ly ’?,f?;n /£ TO Xwr
1 D
MacAddzA —P» r—» E I;%f 1
IFO W,
MacAddB P T’ F I;QFR R/ »TO Xwr
Data
g
P HOLD REG
Xmt SE
SramAck - - State Q —
ANALYZER
SramRdData —P P State E vy
FRAME
> POINTER [~
P
FREEQ_ID > > POINTER [~
TRANSPORT _/
Cul Q ID —» > POINTER
P A
XmtQ_ID —» | CHECKSUM
PAYLOAD
> cHECKSUM [~
PauseClr —»
- XmtData
PauseDet —p ¥ XwrReq
- PauseD
Cpu_PauseReq —» p» QmgRReq
9 SramReq
From Sram
i ;SramParams
Provisional Pat. App. of Alacritech, Inc. 122

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech,:: Ex. 2019 Page 126

TRANSMIT BUFFER DESCRIPTOR

bit _ name description ‘
31 ChksumEn When set, XmtSeq will insert a calculated checksum. When reset, XmtSeq will
not alter the outgoing data stream. '

30 reserved ’

29:28 size Represents the size of the buffer by indicating at what boundary the buffer should
start and terminate. This is used in combination with EndAddr to determine the
starting address of the buffer : :

S =0 256B boundary. A[7:0} ignored.

S =1 2KB boundary. A[10:0] ignored.

S =2 4KB boundary. A[11:0] ignored.

S =3 32KB boundary. A[14:0] ignored.
27.00 EndAddr The address of the last byte to transmit plus one.
TRANSMIT BUFFER FORMAT

CHECKSUM PRIMER OFFSET 0x0000:0x0003

bit _ pame description
31:00 Primer A value to be added during checksum accumulation. For IPV4, this should include
the psuedo-header values, protocol and Tcp-length.

RESERVED OFFSET 0x0004:0x0005

FRAME Data OFFSET 0x0006:END OF BUFFER

TRANSMIT Status VECTOR

bit name description ‘
31 LnkErr Indicates that a link status error occured before or during transmit.

30:15 reserved

14 ExcessDeferral Refer to E110 Technical Manual.
13 LateAbort Refer to E110 Technical Manual.
12 ExcessColl Refer to E110 Technical Manual.
11 UnderRun Refer to E110 Technical Manual.
10 ExcessLgth Refer to E110 Technical Manual.

09 Okay Refer to E110 Technical Manual.
08 deferred Refer to E110 Technical Manual.
07 BrdCst Refer to E110 Technical Manual.
06 MitCst Refer to E110 Technical Manual.
05 CrcErr Refer to E110 Technical Manual.
04 LateColl Refer to E110 Technical Manual.
03:00 CollCnt Refer to E110 Technical Manual.
Provisional Pat. App. of Alacritech, Inc. 123

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 127

QUEUE MANAGER (Qmg)

The INIC includes special hardware assist for the implementation of message and pomter queues. The
hardware assist is called the queue manager (Qmg) and manages the movement of queue entries between Cpu
and Sram, between dma sequencers and Sram as well as between Sram and dram. Queues comprise three distinct
entities; the queue head (QHd), the queue tail (QTI) and the queue body (QBdy). QHd resides in 64 bytes of
scratch ram and provides the area to which entries will be written (pushed). QT resides in 64 bytes of scratch
ram and contains queue locations from which entries will be read (popped) . QBdy resides in dram and contains
locations for expansion of the queue in order to minimize the Sram space requirements. The QBdy size depends
upon the queue being accessed and the initialization parameters presented during queue initialization.

Qmg accepts operations from both Cpu and dma sources. Executing these operations at a frequency of
133MHz, Qmg reserves even cycles for dma requests and reserves odd cycles for Cpu requests. Valid Cpu
operations include initialize queue (InitQ), write queue (WrQ) and read queue (RdQ). Valid dma requests
include read body (RdBdy) and write body (WrBdy). Qmg working in unison with Q2d and D2q generate
requests to the Xwr and Xrd sequencers to control the movement of data between the QHd, QTI and QBdy.

The preceding block diagram shows the major functions of Qmg. The arbiter selects the next operation to be
performed. The dual-ported Sram holds the queue variables HdWrAddr, HdRdAddr, TIWrAddr,
TIRdAddr, BdyWrAddr, BdyRdAddr and QSz. Qmg accepts an operation request, fetches the queue
variables from the queue ram (Qram), modifies the variables based on the current state and the requested
operation then updates the variables and issues a read or write request to the Sram controller. The Sram
controller services the requests by writing the tail or reading the head and returning an acknowledge.

66MHz DmaQmgReq AND QmgDmaAck AND
CIK DmaQWrData QmgDmaRdData
__________________________ - e e e e e e
Return Qdata
Return Qdata for Cpu for Dma
Write Write
Sram Qdatafor § Qdata for
Ctrl Cpu Dma
SramQmg Grant for Cpu SramQmg G-rant for Dma
SramQmg Ack for Cpu SramQmg Ack for Dma
133MHz
CLK
__ —
Qmg Fetch for CpuOp QmgSramReq for CpuOp QmgSramReq for DmaOp
Qmg Arb for DmaOp Qmg Fetch for DmaOp
H H i Write for rite for
Just H H i H
Q g i i CpuOp DmaOp
66MHz

QmgCpuAck AND
CLK! . QmgCpuRdData

Provisional Pat. App. of Alacritech, Inc. 124
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 128

QUEUE MANAGER (Qmg)

c D2q Q2d Xmt Q
pu Seq Seq SEQ Write
Req Req Req RCY Data

LIILR !

PRIORITIZE Mux

¢« v)
133MHz—> register
133NIHZ—__»Addr_OUT Q];Nam Addr_IN
v I
BIMEe—— register
{L >
Qmg ALU

v v v

133MH— register
Sram l BODY BODY Sram
Addr Empty Full OUT WR Write
RDY RDY Req Req Data
Provisional Pat. App. of Alacritech, Inc. 125

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 129

DMA OPERATIONS

DMA operations are accomplished through a combination of thirtytwo dma channels (DmaCh) and seven dma
sequencers (DmaSeq). Each dma channel provides a mechanism whereby a Cpu can issue a command to any
of the seven dma sequencers. Where as the dma channels are multi-purpose, the dma sequencers they
command are single purpose as follows.

dma seq # name description
0 none This is a no operation address.
1 D2dSeq Moves data from ExtMem to ExtMem.
2 D2sSeq Moves data from ExtMem bus to sram.
3 D2pSeq Moves data from ExtMem to Pci bus.
4 S2dSeq Moves data from sram to ExtMem.
5 S2pSeq Moves data from sram to Pci bus.
6 P2dSeq Moves data from Pci bus to ExtMem.
7 P2sSeq Moves data from Pci bus to sram.

The processors manage dma in the following way. The processor writes a dma descriptor to an Sram location
reserved for the dma channel. The format of the dma descriptor is dependent upon the targeted dma sequencer.
The processor then writes the dma sequencer number to the channel command register.

Each of the dma sequencers polls all thirtytwo dma channels in search of commands to execute. Once a
command request has been detected, the dma sequencer fetches a dma descriptor from a fixed location in
Sram. The Sram location is fixed and is determined by the dma channel number. The dma sequencer loads the
dma descriptor in to it's own registers, executes the command, then overwrites the dma descriptor with ending
status. Once the command has halted, due to completion or error, and the ending status has been written, the
dma sequencer sets the done bit for the current dma channel.

The done bit appears in a dma event register which the Cpu can examine. The Cpu fetches ending status from
Sram, then clears the done bit by writing zeroes to the channel command (ChCmd) register. The channel is
now ready to accept another command.

The format of all channel command registers is as follows.

bit__ name description
31:11 reserved Data written to these bits is ignored.
10:8 ChCmd 0 - Stops execution of the current operation and clears the corresponding event flag.

1 - Transfer data from ExtMem to ExtMem.
2 - Transfer data from ExtMem bus to sram.
3 - Transfer data from ExtMem to Pci bus.
4 - Transfer data from sram to ExtMem.

S - Transfer data from sram to Pci bus.

6 - Transfer data from Pci bus to ExtMem.
7 - Transfer data from Pci bus to Sram.

07:05 reserved Data written to these bits is ignored.
04:00 Chld Provides the channel number for the channel command.
Provisional Pat. App. of Alacritech, Inc. 126

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 130

The format of the P2d or P2s descriptor is as follows.

bit name description

127:96 PciAddrH Bits [63:32] of the Pci address.

95:64 PciAddrL Bits [31:00] of the Pci address.

59:32 MemAddr Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
31 PciEndian When set, selects big endian mode for Pci transfers.

30 WideDbl When set, disables Pci 64-bit mode.

22 DstFlash Selects Flash for the external memory destination of P2d.

15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.

The format of the S2p or D2p descriptor is as follows.

bit name description

123:96 MemAddr Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
95:64 PciAddrH Bits [63:32] of the Pci address.

63:32 PciAddrL Bits [31:00] of the Pci address.

30 SrcFlash Selects Flash for the external memory source of D2p.

23 PciEndian When set, selects big endian mode for Pci transfers.

22 WideDbl When set, disables Pci 64-bit mode.

15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.

The format of the S2d, D2d or D2s descriptor is as follows.

bit = name description

127:124 reserved Reserved for future use.

123:96 SrcAddr Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
95.:60 reserved Reserved for future use.

59:32 DstAddr Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
30 FlashSel Selects Flash for the external memory source of D2d or D2s.

22 FlashSel Selects Flash for the external memory destination of S2p or D2d.

15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.

The format of the ending status or all channels is as follows.

bit _ name description

127:64 reserved Not used. ‘

63:32 ChkSum Represents the 1's compliment sum of all halfwords transferred during a P2d or D2d
operation only.

31:24 reserved Reserved for future use.

23:20 SrcStatus TBD.

19:16 DstStatus TBD.

15:00 XfrSz Bits [15:00] of the residual dma size expressed in bytes. This value will be zero if the dma

operation was successful

The format of the ChEvnt register is as follows.

bit ~ name description
31:00 ChDn Each bit represents the done flag for the respective dma channel. These bits are set by a

dma sequencer upon completion of the channel command. Cleared when the processor
writes 0 to the corresponding ChCmd register ChCmdOp field.

Provisional Pat. App. of Alacritech, Inc. 127
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 131

,.
‘v

-
-

MAC CONTROL (Macctrl)

From Cpu

Cpu_CLK £ I I I I I ‘)

~———————P PHY | PHY RNG CFG —W Regs Mac
WR RD WR WR TO OTHER
Req0 | Req0 —» Req0 —p» Reqd Macs Data
I T0 OIHER Macs
CK* P CK*
Xmi_CLK REG REG
Xmt_ CLK 1 i
PiCK P-CK
REG REG
i /1
PicK
CFG
REG
A A /) I v
LLC’I‘LD RStatus LRNG CFG
WD, CTLD
MacA
>
L OR
——»
Mac BUSY

Provisional Pat. App. of Alacritech, Inc.

TO Cpu

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

128

Alacritech, Ex. 2019 Page 132

Appendix A
The following load calculations are based on the following basic formulae:

N=X*R (Little’s Law) where
N = number of jobs in the system (either in progress or in a queue),
X = system throughput,
R =response time (which includes time waiting in queues).

U=X*S (from Little’s Law) where
S = service time,
U = utilization.

R =S/ (1-U) for exponential service times (which is the worst-case assumption).

A 256 byte frame at 100Mb/sec takes 20 usec per frame.
4 * 100 Mbit ethernets receiving at full frame rate is:
51200 (4 * 12800) frames/sec @ 1024 bytes/frame
102000 frames/sec @ 512 bytes/frame
204000 frames/sec @ 256 bytes/frame.

The following calculations assume 250 instructions/frame, 45nsec clock. Thus
S =250 * 45 nsecs = 11.2 psecs.

Av. Frame Size Thruput Utilization Response Nbr. in system
X)) R) N)

1024 51200 57 26 usecs 1.3

512 102000 >1 -- --

256 204000 >1 - -

Lets look at it for varying instructions per frame assuming 512 bytes per frame average.

Instns Service Thruput Utilization Response Nbr. in system
Per Frame Time (S) X) U) R) ™)

250 11.2usec 102000 >1 -- --

250 11.2 85000 (*) .95 224 usecs 19

250 11.2 80000 (**) .89 101 8

225 10 102000 1.0 -- --

225 10 95000 (*) .95 200 19

225 10 89000 (**) .89 90 8

200 9 102000 9 90 9

150 6.7 102000 .68 20 2

(*) shows what frame rate can be supported to get a utilization of less than 1.

(**) shows what frame rate can be supported with 8 SRAM TCB buffers and at least 8
process contexts.

Provisional Pat. App. of Alacritech, Inc. 129
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 133

If 100 instructions / frame is used, S = 100 * 45 nsecs = 4.5 usecs, and we can support
256 byte frames:

100 4.5 204000 91 50 10

Firstly note that these calculations assume that response times increase exponentially as
utilization increases. This is the worst-case assumption, and probably may not be true for
our system.

The figures show that to support a theoretical full 4 * 100 Mbit receive load with an
average frame size of 512 bytes, there will need to be 19 active “jobs” in the system,
assuming 250 instructions per frame. Due to SRAM limitations, the current design
specifies 8 SRAM buffers for active TCBs, and not to swap a TCB out of SRAM once it
1s active. So under these limitations, the INIC will not be able to keep up with the full
frame rate. Note that the initial implementation is trying to use only 8KB of SRAM,
although 16KB may be available, in which case 19 TCB SRAM buffers could be used.
This is a cost trade-off.

The real point here is the effect of instructions/frame on the throughput that can be
maintained. If the instructions/frame drops to 200, then the INIC is capable of handling
the full theoretical load (102000 frames/second) with only 9 active TCBs. If it drops to
100 instructions per frame, then the INIC can handle full bandwidth at 256 byte frames
(204000 frames/second) with 10 active TCBs. The bottom line is that ALL hardware-
assist that reduces the instructions/frame is really worthwhile. If header-assist hardware
can save us 50 instructions per frame then it goes straight to the throughput bottom line.

CERTIFICATE OF MAILING UNDER 37 CFR 1.10

I hereby certify that this Provisional Patent Application is being deposited with the
United States Postal Service as “Express Mail Post Office to Addressee”, label number
EH756230105US, in an envelope addressed to: Assistant Commissioner for Patents,
Washington, D.C. 20231, on October 14, 1997.

Date: (v ber /9,,/ /9497 %

Mark Lauer
(person mailing Application)

Provisional Pat. App. of Alacritech, Inc. 130
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 134

1
1. e
P T, { .
INTELLIGENT NETWORK INTERFACE CAQ

AND SYSTEM FOR PROTOCOL PROCESSING
Provisional Patent Application Under 35 U.S.C. § 111 (b)

Inventors: Laurence B. Boucher
Stephen E. J. Blightman
Peter K. Craft
David A. Higgin
Clive M. Philbrick
Daryl D. Starr

Assignee: Alacritech Corporation

1 Background of the Invention

Network processing as it exists today is a costly and inefficient use of system resources.
A 200 MHz Pentium-Pro is typically consumed simply processing network data from a
100Mb/second-network connection. The reasons that this processing is so costly are
described here.

1.1 Too Many Data Moves

When network packet arrives at a typical network interface card (NIC), the NIC moves
the data into pre-allocated network buffers in system main memory. From there the data
is read into the CPU cache so that it can be checksummed (assuming of course that the
protocol in use requires checksums. Some, like IPX, do not.). Once the data has been
fully processed by the protocol stack, it can then be moved into its final destination in
memory. Since the CPU is moving the data, and must read the destination cache line in
before it can fill it and write it back out, this involves at a minimum 2 more trips across
the system memory bus. In short, the best one can hope for is that the data will get
moved across the system memory bus 4 times before it arrives in its final destination. It
can, and does, get worse. If the data happens to get invalidated from system cache after it
has been checksummed, then it must get pulled back across the memory bus before it can
be moved to its final destination. Finally, on some systems, including Windows NT 4.0,
the data gets copied yet another time while being moved up the protocol stack. In NT
4.0, this occurs between the miniport driver interface and the protocol driver interface.
This can add up to a whopping 8 trips across the system memory bus (the 4 trips
described above, plus the move to replenish the cache, plus 3 more to copy from the
miniport to the protocol driver). That’s enough to bring even today’s advanced memory
busses to their knees.

£ R 1T S

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 135

nEs

!
1

i

s B T E "

“ . 6’/

In all but the original move from the NIC to system memory, the system CPU is
responsible for moving the data. This is particularly expensive because while the CPU is
moving this data it can do nothing else. While moving the data the CPU is typically
stalled waiting for the relatively slow memory to satisfy its read and write requests. A
CPU, which can execute an instruction every 5 nanoseconds, must now wait as long as
several hundred nanoseconds for the memory controller to respond before it can begin its
next instruction. Even today’s advanced pipelining technology doesn’t help in these
situations because that relies on the CPU being able to do useful work while it waits for
the memory controller to respond. If the only thing the CPU has to look forward to for
the next several hundred instructions is more data moves, then the CPU ultimately gets
reduced to the speed of the memory controller.

1.2 Too Much Processing by the CPU

Moving all this data with the CPU slows the system down even after the data has been
moved. Since both the source and destination cache lines must be pulled into the CPU
cache when the data is moved, more than 3k of instructions and or data resident in the
CPU cache must be flushed or invalidated for every 1500 byte frame. This is of course

- assuming a combined instruction and data second level cache, as is the case with the

Pentium processors. After the data has been moved, the former resident of the cache will
likely need to be pulled back in, stalling the CPU even when we are not performing
network processing. Ideally a system would never have to bring network frames into the
CPU cache, instead reserving that precious commodity for instructions and data that are
referenced repeatedly and frequently.

But the data movement is not the only drain on the CPU. There is also a fair amount of
processing that must be done by the protocol stack software. The most obvious expense
is calculating the checksum for each TCP segment (or UDP datagram). Beyond this,
however, there is other processing to be done as well. The TCP connection object must
be located when a given TCP segment arrives, IP header checksums must be calculated,
there are buffer and memory management issues, and finally there is also the significant
expense of interrupt processing which we will discuss in the following section.

1.3 Too Many Interrupts

A 64k SMB request (write or read-reply) is typically made up of 44 TCP segments when
running over Ethernet (1500 byte MTU). Each of these segments may result in an ’
interrupt to the CPU. Furthermore, since TCP must acknowledge all of this incoming
data, it’s possible to get another 44 transmit-complete interrupts as a result of sending out
the TCP acknowledgements. While this is possible, it is not terribly likely. Delayed
ACK timers allow us to acknowledge more than one segment at a time. And delays in
interrupt processing may mean that we are able to process more than one incoming
network frame per interrupt. Nevertheless, even if we assume 4 incoming frames per
input, and an acknowledgement for every 2 segments (as is typical per the ACK-every-
other-segment property of TCP), we are still left with 33 interrupts per 64k SMB request.

Interrupts tend to be very costly to the system. Often when a system is interrupted,
important information must be flushed or invalidated from the system cache so that the
interrupt routine instructions, and needed data can be pulled into the cache. Since the

Provisional Pat. App. of Alacritech, Inc. 2
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 136

al e W e S T

CPU will return to its prior locallon after the interrupt, it is likely that t! information
flushed from the cache will immediately need to be pulled back into the cache.

What’s more, interrupts force a pipeline flush in today’s advanced processors. While the
processor pipeline is an extremely efficient way of improving CPU performance, it can
be expensive to get going after it has been flushed.

Finally, each of these interrupts results in expensive register accesses across the
peripheral bus (PCI). This is discussed more in the following section.

1.4 Inefficient Use of the Peripheral Bus (PCI)

We noted earlier that when the CPU has to access system memory, it may be stalled for
several hundred nanoseconds. When it has to read from PCI, it may be stalled for many
microseconds. This happens every time the CPU takes an interrupt from a standard NIC.
The first thing the CPU must do when it receives one of these interrupts is to read the
NIC Interrupt Status Register (ISR) from PCI to determine the cause of the interrupt. The
most troubling thing about this is that since interrupt lines are shared on PC-based
systems, we may have to perform this expensive PCI read even when the interrupt is not
meant for us! ’

There are other peripheral bus inefficiencies as well. Typical NICs operate using
descriptor rings. When a frame arrives, the NIC reads a receive descriptor from system
memory to determine where to place the data. Once the data has been moved to main
memory, the descriptor is then written back out to system memory with status about the
received frame. Transmit operates in a similar fashion. The CPU must notify that NIC
that it has a new transmit. The NIC will read the descriptor to locate the data, read the
data itself, and then write the descriptor back with status about the send. Typically on
transmits the NIC will then read the next expected descriptor to see if any more data
needs to be sent. In short, each receive or transmit frame results in 3 or 4 separate PCI
reads or writes (not counting the status register read).

2 Summary of the Invention

Alacritech was formed with the idea that the network processing described above could
be offloaded onto a cost-effective Intelligent Network Interface Card (INIC). With the
Alacritech INIC, we address each of the above problems, resulting in the following
advancements:

1. The vast majority of the data is moved directly from the INIC into its final
destination. A single trip across the system memory bus.

2. There is no header processing, little data copying, and no checksumming required by
the CPU. Because of this, the data is never moved into the CPU cache, allowing the
system to keep important instructions and data resident in the CPU cache.

3. Interrupts are reduced to as little as 4 interrupts per 64k SMB read and 2 per 64k
SMB write. _

4. There are no CPU reads over PCI and there are fewer PCI operations per receive or
transmit transaction.

In the remainder of this document we will describe how we accomplish the above.

Provisional Pat. App. of Alacritech, Inc. 3
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US]
Alacritech, Ex. 2019 Page 137

4

R NN

¥
}

WO

5

A Al

In order to keep the system CPU from having to process the packet headers or checksum
the packet, we must perform this task on the INIC. This is a daunting task. There are
more than 20,000 lines of C code that make up the FreeBSD TCP/IP protocol stack.
Clearly this is more code than could be efficiently handled by a competitively priced
network card. Furthermore, as we’ve noted above, the TCP/IP protocol stack is
complicated enough to consume a 200 MHz Pentium-Pro. Clearly in order to perform
this function on an inexpensive card, we need special network processing hardware as
opposed to simply using a general purpose CPU.

2.1 Perform Transport Lev! Processing on the INIC

2.1.1 Only Support TCP/IP

In this section we introduce the notion of a "context". A context is required to keep track
of information that spans many, possibly discontiguous, pieces of information. When
processing TCP/IP data, there are actually two contexts that must be maintained. The
first context is required to reassemble IP fragments. It holds information about the status
of the IP reassembly as well as any checksum information being calculated across the IP
datagram (UDP or TCP). This context is identified by the IP_ID of the datagram as well
as the source and destination IP addresses. The second context is required to handle the
sliding window protocol of TCP. It holds information about which segments have been
sent or received, and which segments have been acknowledged, and is identified by the
IP source and destination addresses and TCP source and destination ports.

If we were to choose to handle both contexts in hardware, we would have to potentially
keep track of many pieces of information. One such example is a case in which a single
64k SMB write is broken down into 44 1500 byte TCP segments, which are in turn
broken down into 131 576 byte IP fragments, all of which can come in any order (though
the maximum window size is likely to restrict the number of outstanding segments
considerably).

Fortunately, TCP performs a Maximum Segment Size negotiation at connection
establishment time, which should prevent IP fragmentation in nearly all TCP
connections. The only time that we should end up with fragmented TCP connections is
when there is a router in the middle of a connection which must fragment the segments to
support a smaller MTU. The only networks that use a smaller MTU than Ethernet are
serial line interfaces such as SLIP and PPP. At the moment, the fastest of these
connections only run at 128k (ISDN) so even if we had 256 of these connections, we
would still only need to support 34Mb/sec, or a little over three 10bT connections worth
of data. This is not enough to justify any performance enhancements that the INIC
offers. If this becomes an issue at some point, we may decide to implement the MTU
discovery algorithm, which should prevent TCP fragmentation on all connections (unless
an ICMP redirect changes the connection route while the connection is established).

With this in mind, it seems a worthy sacrifice to not attempt to handle fragmented TCP
segments on the INIC.

UDP is another matter. Since UDP does not support the notion of a Maximum Segment
Size, it is the responsibility of IP to break down a UDP datagram into MTU sized

Provisional Pat. App. of Alacritech, Inc. 4
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 138

BT ET T

packets. Thus, fragmented U&latagrams are very common. The mgommon UDP
application running today is NFSV2 over UDP. While this is also the most common
version of NFS running today, the current version of Solaris being sold by Sun
Microsystems runs NFSV3 over TCP by default. We can expect to see the NFSV2/UDP
traffic start to decrease over the coming years.

In summary, we will only offer assistance to non-fragmented TCP connections on the
INIC.

2.1.2 Don’t handle TCP “exceptions”

As noted above, we won’t provide support for fragmented TCP segments on the INIC.
We have also opted to not handle TCP connection and breakdown. Here is a list of other
TCP “exceptions” which we have elected to not handle on the INIC:

Fragmented Segments —Discussed above.

Retransmission Timeout — Occurs when we do not get an acknowledgement for
previously sent data within the expected time period.

Out of order segments — Occurs when we receive a segment with a sequence number
other than the next expected sequence number.

FIN segment — Signals the close of the connection.

Since we have now eliminated support for so many different code paths, it might seem
hardly worth the trouble to provide any assistance by the card at all. This is not the case.
According to W. Richard Stevens and Gary Write in their book “TCP/IP Illustrated
Volume 27, TCP operates without experiencing any exceptions between 97 and 100
percent of the time in local area networks. As network, router, and switch reliability
improve this number is likely to only improve with time.

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 139

2.1.3 Two modes of operation

So the next question is what to do about the network packets that do not fit our criteria.
The answer is to use two modes of operation: One in which the network frames are
processed on the INIC through TCP and one in which the card operates like a typical
dumb NIC. We call these two modes fast-path, and slow-path. In the slow-path case,
network frames are handed to the system at the MAC layer and passed up through the
host protocol stack like any other network frame. In the fast path case, network data is
given to the host after the headers have been processed and stripped.

CLIENT

INIC A
FAST-PATH ™I T

NetBIOS

TCP
TCP C

P
P
MAC SLOW-PATH VAL
PHYSICAL

- Ethernet

I

PCI

The transmit case works in much the same fashion. In slow-path mode the packets are
given to the INIC with all of the headers attached. The INIC simply sends these packets
out as if it were a dumb NIC. In fast-path mode, the host gives raw data to the INIC
which it must carve into MSS sized segments, add headers to the data, perform
checksums on the segment, and then send it out on the wire.

2.1.4 The TCB cache

5%
B
L]
Cvewr
P
s
bl
FI
=1
?.’:
&

Consider a situation in which a TCP connection is being handled by the card and a
fragmented TCP segment for that connection arrives. In this situation, it will be
necessary for the card to turn control of this connection over to the host.

This introduces the notion of a Transmit Control Block (TCB) cache. A TCB is a
structure that contains the entire context associated with a connection. This includes the
source and destination IP addresses and source and destination TCP ports that define the
connection. It also contains information about the connection itself such as the current
send and receive sequence numbers, and the first-hop MAC address, etc. The complete
set of TCBs exists in host memory, but a subset of these may be "owned" by the card at
any given time. This subset is the TCB cache. The INIC can own up to 256 TCBs at any

given time.

TCBs are initialized by the host during TCP connection setup. Once the connection has
achieved a “steady-state” of operation, its associated TCB can then be turned over to the
INIC, putting us into fast-path mode. From this point on, the INIC owns the connection
until either a FIN arrives signaling that the connection is being closed, or until an

Provisional Pat. App. of Alacritech, Inc. : 6
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 140

exception occurs which the H@is not designed to handle (such as an out of order
segment). When any of these conditions occur, the INIC will then flush the TCB back to
host memory, and issue a message to the host telling it that it has relinquished control of
the connection, thus putting the connection back into slow-path mode. From this point
on, the INIC simply hands incoming segments that are destined for this TCB off to the
host with all of the headers intact.

Note that when a connection is owned by the INIC, the host is not allowed to reference
the corresponding TCB in host memory as it will contain invalid information about the
state of the connection.

2.1.5 TCP hardware assistance

When a frame is received by the INIC, it must verify it completely before it even
determines whether it belongs to one of its TCBs or not. This includes all header
validation (is it IP, IPV4 or V6, is the IP header checksum correct, is the TCP checksum
correct, etc). Once this is done it must compare the source and destination IP address and
the source and destination TCP port with those in each of its TCBs to determine if it is
associated with one of its TCBs. This is an expensivé process. To expedite this, we have
added several features in hardware to assist us. The header is fully parsed by hardware
and its type is summarized in a single status word. The checksum is also verified
automatically in hardware, and a hash key is created out of the IP addresses and TCP
ports to expedite TCB lookup. For full details on these and other hardware optimizations,
refer to the INIC Hardware Specification sections (Heading 8).

ER NN

#,

With the aid of these and other hardware features, much of the work associated with TCP
is done essentially for free. Since the card will automatically calculate the checksum for
TCP segments, we can pass this on to the host, even when the segment is for a TCB that
the INIC does not own.

2.1.6 TCP Summary

. B
aid
3
iz
£
BF
Tei

By moving TCP processing down to the INIC we have offloaded the host of a large
amount of work. The host no longer has to pull the data into its cache to calculate the
TCP checksum. It does not have to process the packet headers, and it does not have to
generate TCP ACKs. We have achieved most of the goals outlined above, but we are not
done yet.

2.2 Transport Layer Interface

This section defines the INIC’s relation to the hosts transport layer interface (Called TDI

or Transport Driver Interface in Windows NT). For full details on this interface, refer to
the Alacritech TCP (ATCP) driver specification (Heading 4).

2.2.1 Receive

Simply implementing TCP on the INIC does not allow us to achieve our goal of landing
the data in its final destination. Somehow the host has to tell the INIC where to put the
data. This is a problem in that the host can not do this without knowing what the data

Provisional Pat. App. of Alacritech; Inc. 7
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US ,
_ Alacritech, Ex. 2019 Page 141

s Bl WO R T

actually is. Fortunately, NT has provided a mechanism by which a transport driver can
“indicate” a small amount of data to a client above it while telling it that it has more data
to come. The client, having then received enough of the data to know what it is, is then
responsible for allocating a block of memory and passing the memory address or
addresses back down to the transport driver, which is in turn responsible for moving the
data into the provided location.

We will make use of this feature by providing a small amount of any received data to the
host, with a notification that we have more data pending. When this small amount of data
is passed up to the client, and it returns with the address in which to put the remainder of
the data, our host transport driver will pass that address to the INIC which will DMA the
remainder of the data into its final destination.

Clearly there are circumstances in which this does not make sense. When a small amount
of data (500 bytes for example), with a push flag set indicating that the data must be
delivered to the client immediately, it does not make sense to deliver some of the data
directly while waiting for the list of addresses to DMA the rest. Under these
circumstances, it makes more sense to deliver the 500 bytes directly to the host, and
allow the host to copy it into its final destination. While various ranges are feasible, it is
currently preferred that anything less than a segment’s (1500 bytes) worth of data will be
delivered directly to the host, while anything more will be delivered as a small piece
which may be128 bytes, while waiting until receiving the destination memory address
before moving the rest.

The trick then is knowing when the data should be delivered to the client or not. As
we’ve noted, a push flag indicates that the data should be delivered to the client
immediately, but this alone is not sufficient. Fortunately, in the case of NetBIOS
transactions (such as SMB), we are explicitly told the length of the session message in the
NetBIOS header itself. With this we can simply indicate a small amount of data to the
host immediately upon receiving the first segment. The client will then allocate enough
memory for the entire NetBIOS transaction, which we can then use to DMA the
remainder of the data into as it arrives. In the case of a large (56k for example) NetBIOS
session message, all but the first couple hundred bytes will be DMA’d to their final
destination in memory.

But what about applications that do not reside above NetBIOS? In this case we can not
rely on a session level protocol to tell us the length of the transaction. Under these
circumstances we will buffer the data as it arrives until A) we have receive some
predetermined number of bytes such as 8k, or B) some predetermined period of time
passes between segments or C) we get a push flag. If after any of these conditions occur
we will then indicate some or all of the data to the host depending on the amount of data
buffered. If the data buffered is greater than about 1500 bytes we must then also wait for
the memory address to be returned from the host so that we may then DMA the
remainder of the data.

2.2.2 Transmit

The transmit case is much simpler. In this case the client (NetBIOS for example) issues a
TDI Send with a list of memory addresses which contain data that it wishes to send along

Provisional Pat. App. of Alacritech, Inc. 8
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 142

A Bl W T S

with the length. The host can then pass this list of addresses and length!ff to the INIC.
The INIC will then pull the data from its source location in host memory, as it needs it,
until the complete TDI request is satisfied.

2.2.3 Affect on interrupts

Note that when we receive a large SMB transaction, for example, that there are two
interactions between the INIC and the host. The first in which the INIC indicates a small
amount of the transaction to the host, and the second in which the host provides the
memory location(s) in which the INIC places the remainder of the data. This results in
only two interrupts from the INIC. The first when it indicates the small amount of data
and the second after it has finished filling in the host memory given to it. A drastic
reduction from the 33/64k SMB request that we estimate at the beginning of this section.

On transmit, we actually only receive a single interrupt when the send command that has
been given to the INIC completes.

2.2.4 Transport Layer Interface Summary

Having now established our interaction with Microsoft’s TDI interface, we have achieved
our goal of landing most of our data directly into its final destination in host memory.

We have also managed to transmit all data from its original location on host memory.
And finally, we have reduced our interrupts to 2 per 64k SMB read and 1 per 64k SMB
write. The only thing that remains in our list of objectives is to design an efficient host
(PCI) interface.

2.3 Host (PCI) Interface

In this section we define the host interface. For a more detailed description, refer to the
“Host Interface Strategy for the Alacritech INIC” section (Heading 3).

2.3.1 Avoid PCI reads

One of our primary objectives in designing the host interface of the INIC was to
eliminate PCI reads in either direction. PCI reads are particularly inefficient in that they
completely stall the reader until the transaction completes. As we noted above, this could
hold a CPU up for several microseconds, a thousand times the time typically required to
execute a single instruction. PCI writes on the other hand, are usually buffered by the
memory-bus & PCl-bridge allowing the writer to continue on with other instructions.
This technique is known as “posting”.

2.3.1.1 Memory-based status register

The only PCI read that is required by most NICs is the read of the interrupt status
register. This register gives the host CPU information about what event has caused an
interrupt (if any). In the design of our INIC we have elected to place this necessary status
register into host memory. Thus, when an event occurs on the INIC, it writes the status
register to an agreed upon location in host memory. The corresponding driver on the host
reads this local register to determine the cause of the interrupt. The interrupt lines are

Provisional Pat. App. of Alacritech, Inc. 9
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 143

22

t

P I S

held high until the host clears !!e interrupt by writing to the INIC’s Inte!pt Clear
Register. Shadow registers are maintained on the INIC to ensure that events are not lost.

2.3.1.2 Buffer Addresses are pushed to the INIC

Since it is imperative that our INIC operate as efficiently as possible, we must also avoid
PCI reads from the INIC. We do this by pushing our receive buffer addresses to the
INIC. As mentioned at the beginning of this section, most NICs work on a descriptor
queue algorithm in which the NIC reads a descriptor from main memory in order to
determine where to place the next frame. We will instead write receive buffer addresses
to the INIC as receive buffers are filled. In order to avoid having to write to the INIC for
every receive frame, we instead allow the host to pass off a pages worth (4k) of buffers in
a single write.

2.3.2 Support small and large buffers on receive

In order to reduce further the number of writes to the INIC, and to reduce the amount of
memory being used by the host, we support two different buffer sizes. A small buffer
contains roughly 200 bytes of data payload, as well as extra fields containing status about
the received data bringing the total size to 256 bytes. We can therefore pass 16 of these
small buffers at a time to the INIC. Large buffers are 2k in size. They are used to
contain any fast or slow-path data that does not fit in a small buffer. Note that when we
have a large fast-path receive, a small buffer will be used to indicate a small piece of the
data, while the remainder of the data will be DMA’d directly into memory. Large
buffers are never passed to the host by themselves, instead they are always accompanied
by a small buffer which contains status about the receive along with the large buffer
address. By operating in the manner, the driver must only maintain and process the small
buffer queue. Large buffers are returned to the host by virtue of being attached to small
buffers. Since large buffers are 2k in size they are passed to the INIC 2 buffers at a time.

2.3.3 Command and response buffers

In addition to needing a manner by which the INIC can pass incoming data to us, we also
need a manner by which we can instruct the INIC to send data. Plus, when the INIC
indicates a small amount of data in a large fast-path receive, we need a method of passing
back the address or addresses in which to put the remainder of the data. We accomplish
both of these with the use of a command buffer. Sadly, the command buffer is the only
place in which we must violate our rule of only pushing data across PCI. For the
command buffer, we write the address of command buffer to the INIC. The INIC then
reads the contents of the command buffer into its memory so that it can execute the
desired command. Since a command may take a relatively long time to complete, it is
unlikely that command buffers will complete in order. For this reason we also maintain a
response buffer queue. Like the small and large receive buffers, a page worth of response
buffers is passed to the INIC at a time. Response buffers are only 32 bytes, so we have to
replenish the INIC’s supply of them relatively infrequently. The response buffers only
purpose is to indicate the completion of the designated command buffer, and to pass
status about the completion. ‘

Provisional Pat. App. of Alacritech, Inc. 10
. Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US '
Alacritech, Ex. 2019 Page 144

a0 Bt WO T S

In this section we will provide a couple of examples describing some of the differing data
flows that we might see on the Alacritech INIC.

2.4 Examples

2.4.1 Fast-path 56k NetBIOS session message

Let’s say a 56k NetBIOS session message is received on the INIC. The first segment will
contain the NetBIOS header, which contains the total NetBIOS length. A small chunk of
this first segment is provided to the host by filling in a small receive buffer, modifying
the interrupt status register on the host, and raising the appropriate interrupt line. Upon
receiving the interrupt, the host will read the ISR, clear it by writing back to the INIC’s
Interrupt Clear Register, and will then process its small receive buffer queue looking for
receive buffers to be processed. Upon finding the small buffer, it will indicate the small
amount of data up to the client to be processed by NetBIOS. It will also, if necessary,
replenish the receive buffer pool on the INIC by passing off a pages worth of small
buffers. Meanwhile, the NetBIOS client will allocate a memory pool large enough to
hold the entire NetBIOS message, and will pass this address or set of addresses down to
the transport driver. The transport driver will allocate an INIC command buffer, fill it in
with the list of addresses, set the command type to tell the INIC that this is where to put
the receive data, and then pass the command off to the INIC by writing to the command
register. When the INIC receives the command buffer, it will DMA the remainder of the
NetBIOS data, as it is received, into the memory address or addresses designated by the
host. Once the entire NetBIOS transaction is complete, the INIC will complete the
command by writing to the response buffer with the appropriate status and command
buffer identifier.

In this example, we have two interrupts, and all but a couple hundred bytes are DMA’d
directly to their final destination. On PCI we have two interrupt status register writes,
two interrupt clear register writes, a command register write, a command read, and a
response buffer write. '

With a standard NIC this would result in an estimated 30 interrupts, 30 interrupt register
reads, 30 interrupt clear writes, and 58 descriptor reads and writes. Plus the data will get
moved anywhere from 4 to 8 times across the system memory bus.

2.4.2 Slow-path receive

If the INIC receives a frame that does not contain a TCP segment for one of its TCB’s, it
simply passes it to the host as if it were a dumb NIC. If the frame fits into a small buffer
(~200 bytes or less), then it simply fills in the small buffer with the data and notifies the
host.- Otherwise it places the data in a large buffer, writes the address of the large buffer
into a small buffer, and again notifies the host. The host, having received the interrupt
and found the completed small buffer, checks to see if the data is contained in the small
buffer, and if not, locates the large buffer. Having found the data, the host will then pass
the frame upstream to be processed by the standard protocol stack. It must also replenish
the INIC’s small and large receive buffer pool if necessary.

Provisional Pat. App. of Alacritech, Inc. 11
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 145

" S

B 0 R

With the INIC, this will result in one interrupt, one interrupt status reg% write and one
interrupt clear register write as well as a possible small and or large receive buffer
register write. The data will go through the normal path although if it is TCP data then
the host will not have to perform the checksum.

With a standard NIC this will result in a single interrupt, an interrupt status register read,
an interrupt clear register write, and a descriptor read and write. The data will get
processed as it would by the INIC, except for a possible extra checksum.

2.4.3 Fast-path 400 byte send

In this example, lets assume that the client has a small amount of data to send. It will
issue the TDI Send to the transport driver which will allocate a command buffer, fill it in
with the address of the 400 byte send, and set the command to indicate that itis a
transmit. It will then pass the command off to the INIC by writing to the command
register. The INIC will then DMA the 400 bytes into its own memory, prepare a frame
with the appropriate checksums and headers, and send the frame out on the wire. After it
has received the acknowledgement it will then notify the host of the completion by
writing to a response buffer.

With the INIC, this will result in one interrupt, one interrupt status register write, one
interrupt clear register write, a command buffer register write a command buffer read,
and a response buffer write. The data is DMA’d directly from the system memory.

With a standard NIC this will result in a single interrupt, an interrupt status register read,
an interrupt clear register write, and a descriptor read and write. The data would get
moved across the system bus a minimum of 4 times. The resulting TCP ACK of the data,
however, would add yet another interrupt, another interrupt status register read, interrupt
clear register write, a descriptor read and write, and yet more processing by the host
protocol stack.

3 Host Interface Strategy for the Alacritech INIC

This section describes the host interface strategy for the Alacritech Intelligent Network
Interface Card (INIC). The goal of the Alacritech INIC is to not only process network
data through TCP, but also to provide zero-copy support for the SMP upper-layer
protocol. It achieves this by supporting two paths for sending and receiving data, the fast-
path and the slow-path. The fast path data flow corresponds to connections that are
maintained on the NIC, while slow-path traffic corresponds to network data for which the
NIC does not have a connection. The fast-path flow works by passing a header to the host
and subsequently holding further data for that connection on the card until the host
responds via an INIC command with a set of buffers into which to place the accumulated
data. In the slow-path data flow, the INIC will be operating as a “dumb” NIC, so that
these packets are simply dumped into frame buffers on the host as they arrive. To do
either path requires a pool of smaller buffers to be used for headers and a pool of data
buffers for frames/data that are too large for the header buffer, with both pools being
managed by the INIC. This section discusses how these two pools of data are managed
as well as how buffers are associated with a given context.

Provisional Pat. App. of Alacritech, Inc. 12
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 146

The varying requirements of the fast and slow paths and a desire to save PCI bandwidth
are the driving forces behind the host interface that is described herein. As mentioned
above, the fast-path flow puts a header into a header buffer that is then forwarded to the
host. The host uses the header to determine what further data is following, allocates the
necessary host buffers, and these are passed back to the INIC via a command to the INIC.
The INIC then fills these buffers from data it was accumulating on the card and notifies
the host by sending a response to the command. Alternatively, the fast-path may receive
a header and data that is a complete request, but that is also too large for a header buffer.
This results in a header and data buffer being passed to the host. This latter flow is
identical to the slow-path flow, which also puts all the data into the header buffer or, if
the header is too small, uses a large (2K) host buffer for all the data. This means that on
the unsolicited receive path, the host will only see either a header buffer or a header and
at most, one data buffer. Note that data is never split between a header and a data buffer.
The diagram below illustrates both situations:

3.1 Receive Interface

Header buffer descriptors Header buffers
Data buffers

by Header a —> Status Data buffer descriptors
= DATA
= Header b TCP/SMB <
= Headers
HE (fast-path)
b DATA /
e Status DATA
= DATA
f buffer handle
.—: (slow-path) DATA

Since we want to fill in the header buffer with a single DMA, the header must be the last
piece of data to be written to the host for any received transaction.

3.1.1 Receive Interface Details

3.1.2 Header Buffers

Header buffers in host memory are 256 bytes long, and are aligned on 256 byte
boundaries. There will be a field in the header buffer indicating it has valid data. This
field will initially be reset by the host before passing the buffer descriptor to the INIC. A

Provisional Pat. App. of Alacritech, Inc. 13
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 147

set of header buffers are passe! !om the host to the INIC by the host writing to the
Header Buffer Address Register on the INIC. This register is defined as follows:

Bits 31-8 Physical address in host memory of the first of a set of contiguous
header buffers
Bits 7-0 Number of header buffers passed.

In this way the host can, say, allocate 16 buffers in a 4K page, and pass all 16 buffers to
the INIC with one register write. The INIC will maintain a queue of these header
descriptors in the SmallHType queue in it’s own local memory, adding to the end of the
queue every time the host writes to the Header Buffer Address Register. Note that the
single entry is added to the queue; the eventual dequeuer will use the count after
extracting that entry.

The header buffers, will be used and returned to the host in the same order that they were
given to the INIC. The valid field will be set by the INIC before returning the buffer to
the host. In this way a PCI interrupt, with a single bit in the interrupt register, may be
generated to indicate that there is a header buffer for the host to process. When servicing
this interrupt, the host will look at its queue of header buffers, reading the valid field to
determine how many header buffers are to be processed.

3.1.3 Receive Data Buffers

Receive data buffers in host memory are aligned to page boundaries, assumed here to be
2K bytes long and aligned on 4K page boundaries, 2 buffers per page. In order to pass
receive data buffers to the INIC, the host must write to two registers on the INIC. The
first register to be written is the Data Buffer Handle Register. The buffer handle is not
significant to the INIC, but will be copied back to the host to return the buffer to the host.
The second register written is the Data Buffer Address Register. This is the physical
address of the data buffer. When both registers have been written, the INIC will add the
contents of these two registers to FreeType queue of data buffer descriptors. Note that
the INIC host driver sets the handle register first, then the address register. There needs to
be some mechanism put in place to ensure the reading of these registers does not get out
of sync with writing them. Effectively the INIC can read the address register first and

~save its contents, then read the handle register. It can then lock the register pair in some

manner such that another write to the handle register is not permitted until the current
contents have been saved. Both addresses extracted from the registers are to be written to
the FreeType queue. The INIC will extract 2 entries each time when dequeuing.

Data buffers will be allocated and used by the INIC as needed. For each data buffer used
by a slow-path transaction, the data buffer handle will be copied into a header buffer.
Then the header buffer will be returned to the host.

3.2 Transmit Interface

3.2.1 Transmit Interface Overview

The transmit interface, like the receive interface, has been designed to minimize the
amount of PCI bandwidth and latencies. In order to transmit data, the host will transfer a
command buffer to the INIC. This command buffer will include a command buffer

Provisional Pat. App. of Alacritech, Inc. 14
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 148

handle, a command field, posgn/ a TCP context identification, and a,stof physical data
pointers. The command buffer handle is defined to be the first word of the command
buffer and is used by the host to identify the command. This word will be passed back to
the host in a response buffer, since commands may complete out of order, and the host
will need to know which command is complete. Commands will be used for many
reasons, but primarily to cause the INIC to transmit data, or to pass a set of buffers to the
INIC for input data on the fast-path as previously discussed.

Response buffers are physical buffers in host memory. They are used by the INIC in the
same order as they were given to it by the host. This enables the host to know which
response buffer(s) to next look at when the INIC signals a command completion.

Command Response
buffer quene Command buffers Buffer queue
Command pointer Command Command
' buffer handle A buffer handle
Command pointer TCP context / Statas
T x identifier
£ Command pointer / “
2 _ Command Y, ™~ Command
bl
‘i;: Data pointers buffer handle
L Status
t_"g Command Command
. buffer handle buffer handle
‘: TCP context Status
:: identifier /

Command
Data pointers /

Command
buffer handle

TCP context
identifier

Command

Data pointers

Provisional Pat. App. of Alacritech, Inc. 15
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 149

3.2.2 Transmit Interface Details
3.2.2.1 Command Buffers
Command buffers in host memory are a multiple of 32 bytes, up to a maximum of 1K

bytes, and are aligned on 32 byte boundaries. A command buffer is passed to the INIC
by writing to one of 5 Command Buffer Address Registers. These registers are defined as

follows:

Bits 31-5 Physical address in host memory of the command buffer.

Bits 4-0 Length of command buffer in bytes / 32 (i.e. number of multiples of
32 bytes)

This is the physical address of the command buffer. The register to which the command
is written predetermines the XMT interface number, or if the command is for the RCV
CPU; hence there will be 5 of them, 0 — 3 for XMT and 4 for RCV. When one of these
registers has been written, the INIC will add the contents of the register to it’s own
internal queue of command buffer descriptors. The first word of all command buffers is
defined to be the command buffer handle. It is the job of the utility CPU to extract a
command from its local queue, DMA the command into a small INIC buffer (from the
FreeSType queue), and queue that buffer into the Xmit#Type queue, where #is 0 — 3
depending on the interface, or the appropriate RCV queue. The receiving CPU will
service the queues to perform the commands. When that CPU has completed a command,
it extracts the command buffer handle and passes it back to the host via a response buffer.

3.2.2.2 Response Buffers

b T U ey

:

Response buffers in host memory are 32 bytes long and aligned on 32 byte boundaries.
They are handled in a very similar fashion to header buffers. There will be a field in the
response buffer indicating it has valid data. This field will initially be reset by the host
before passing the buffer descriptor to the INIC. A set of response buffers are passed
from the host to the INIC by the host writing to the Response Buffer Address Register on
the INIC. This register is defined as follows:

Bits 31-8 Physical address in host memory of the first of a set of contiguous
response buffers (
Bits 7-0 Number of response buffers passed.

In this way the host can, say, allocate 128 buffers in a 4K page, and pass all 128 buffers
to the INIC with one register write. The INIC will maintain a queue of these header
descriptors in it’s ResponseType queue, adding to the end of the queue every time the
host writes to the Response Buffer Address Register. The INIC writes the extracted
contents including the count, to the queue in exactly the same manner as for the header

buffers.

The response buffers can be used and returned to the host in the same order that they
were given to the INIC. The valid field will be set by the INIC before returning the buffer

Provisional Pat. App. of Alacritech, Inc. 16
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US _
Alacritech, Ex. 2019 Page 150

4
i

ol W

o
res

Al Bt TERT "

to the host. In this way a PCI iterrupt, with a single bit in the interrupggister, may be
generated to indicate that there is a response buffer for the host to process. When
servicing this interrupt, the host will look at its queue of response buffers, reading the
valid field to determine how many response buffers are to be processed.

3.2.3 Interrupt Status Register / Interrupt Mask Register:

The following is the general format of this register:

31 0

ERR — Error bits are set

RCYV — RCV has occurred.

XMT Command has been completed
RMISS —— Rcv drop occurred due to no buffers

The setting of any bits in the ISR will cause an interrupt, provided the corresponding bit
in the Interrupt Mask Register is set. The default setting for the IMR is 0.

The INIC is configured so that the host should never need to directly read the ISR from
the INIC. To support this, it is important for the host/INIC to arrange a buffer area in host
memory into which the ISR is dumped. The address and size of that area ca be passed to
the INIC via a command on the XMT interface. That command will also specify the
setting for the IMR. Until the INIC receives this command, it will not DMA the ISR to
host memory, and no events will cause an interrupt. The host could if necessary, read the

ISR directly from the INIC in this case.

For the host to never have to actually read the register from the INIC itself, it is necessary
for the INIC to update this host copy of the register whenever anything in it changes. The
host will Ack (or deassert) events in the register by writing the register with 0’s in
appropriate bit fields. So that the host does not miss events, the following scheme has

been developed:

The INIC keeps a local copy of the register whenever it DMAs it to the host 1.e. after
some event(s). Call this COPYA Then the INIC starts accumulating any new events not
reflected in the host copy in a separate word. Call this NEWA. As the host clears bits by
writing the register back with those bits set to zero, the INIC clears these bits in COPYA
(or the host write-back goes directly to COPYA). If there are new events in NEWA, it

Provisional Pat. App. of Alacritech, Inc. 17
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US _
Alacritech, Ex. 2019 Page 151

ORs them with COPYA, and&As this new ISR to the host. This new ISR then replaces
COPYA, NEWA is cleared and the cycle then repeats.

3.2.4 Register Addresses

For the sake of simplicity, in this example the registers are at 4-byte increments from
whatever the base address is. Hence:

ISR 0x0 Interrupt Status

IMR 0x4 Interrupt Mask

HBAR 0x8 Header Buffer Address

DBHR 0xC Data Buffer Handle

DBAR 0x10 Data Buffer Address

CBARO 0x14 Command Buffer Address XMTO
CBARI1 0x18 Command Buffer Address XMT1
CBAR2 0x1C Command Buffer Address XMT2
CBAR3 0x20 Command Buffer Address XMT3
CBAR4 0x24 Command Buffer Address RCV
RBAR 0x28 Response Buffer Address

4 Alacritech TCP (ATCP) Design Specification

This section outlines the design specification for the Alacritech TCP (ATCP) transport
driver. The ATCP driver consists of three components:

= 1. The bulk of the protocol stack is based on the FreeBSD TCP/IP protocol stack.

i ' This code performs the Ethernet, ARP, IP, ICMP, and (slow path) TCP processing

= for the driver.

""i i 2. At the top of the protocol stack we introduce an NT filter driver used to intercept

= TDI requests destined for the Microsoft TCP driver.

= 3. At the bottom of the protocol stack we include an NDIS protocol-driver interface
which allows us to communicate with the INIC miniport NDIS driver beneath the
ATCP driver.

This section covers each of these topics, as well as issues common to the entire ATCP
driver.

4.1 Coding style

In order to ensure that our ATCP driver is written in a consistent manner, we have
adopted a set of coding guidelines. These guidelines are introduced with the philosophy
that we should write code in a Microsoft style since we are introducing an NT-based
product. The guidelines below apply to all code that we introduce into our driver. Since
a very large portion of our ATCP driver will be based on FreeBSD, and since we are
somewhat time-constrained on our driver development, the ported FreeBSD code will be
exempt from these guidelines.

Provisional Pat. App. of Alacritech, Inc. 18
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 152

..
fi

¥

RO

BN

1

—

. Global symbols — All function names and global variables in thg[CP driver

should begin with the “ATK” prefix (ATKSend() for instance).

2. Variable names — Microsoft seems to use capital letters to separate multi-word
variable names instead of underscores (VariableName instead of variable name).
We should adhere to this style.

3. Structure pointers — Microsoft typedefs all of their structures. The structure types

are always capitals and they typedef a pointer to the structure as “P”<name> as

follows:
typedef struct FOO {

INT bar;
} FOO, *PFOO;
We will adhere to this style.
4. Function calls — Microsoft separates function call arguments on separate lines:
X = foobar(
argumentl,
argument2,
);

We will adhere to this style.

5. Comments — While Microsoft seems to alternatively use // and /* */ comment
notation, we will exclusively use the /* */ notation.

6. Function comments — Microsoft includes comments with each function that
describe the function, its arguments, and its return value. We will also include
these comments, but will move them from within the function itself to just prior to
the function for better readability.

7. Function arguments — Microsoft includes the keywords IN and OUT when
defining function arguments. These keywords denote whether the function
argument is used as an input parameter, or alternatively as a placeholder for an
output parameter. We will include these keywords.

8. Function prototypes — We will include function prototypes in the most logical
header file corresponding to the .c file. For example, the prototype for function
foo() found in foo.c will be placed in foo.h.

9. Indentation — Microsoft code fairly consistently uses a tabstop of 4. We will do
likewise.

10. Header file #ifndef — each header file should contain a #ifndef/#define/#endif
which is used to prevent recursive header file includes. For example, foo.h would
include:

#ifndef FOO H__

#define _ FOO_H__

<foo.h contents..>

#endif /* __ FOO_H__ */ ,
Note the _ NAME H__ format. '

11. Each file must contain a comment at the beginning which includes the $1d$ as

follows: ‘
/*
* $1d$
*/

Provisional Pat. App. of Alacritech, Inc. 19
Inventors Laurence B. Boucher et al.

E Mail Label # EH756230105US
rpress WAl L Alacritech, Ex. 2019 Page 153

CVS (RCS) will expand !!15 keyword to denote RCS revision, timestamps, author,
efc.

4.2 SMP

This section describes the process by which we will make the ATCP driver SMP safe.

The basic rule for SMP kernel code is that any access to a memory variable must be
protected by a lock that prevents a competing access by code running on another
processor. Spinlocks are the normal locking method for code paths which do not take a
long time to execute (and which do not sleep.)

In general each instance of a structure will include a spinlock, which must be acquired
before members of that structure are accessed, and held while a function is accessing that
instance of the structure. Structures which are logically grouped together may be
protected by a single spinlock: for example, the ‘in_pcb’ structure, ‘tcpcb’ structure, and
‘socket’ structure which together constitute the administrative information for a TCP
connection will probably be collectively managed by a single spinlock in the ‘socket’
structure.

In addition, every global data structure such as a list or hash table must also have a
protecting spinlock which must be held while the structure is being accessed or modified.
The NT DDK in fact provides a number of convenient primitives for SMP-safe list
manipulation, and it is recommended that these be used for any new lists. Existing list
manipulations in the FreeBSD code can probably be left as-is to minimize code
disturbance, except of course that the necessary spinlock acquisition and release must be
added around them.

Spinlocks should not be held for long periods of time, and most especially, must not be
held during a sleep, since this will lead to deadlocks. There is a significant deficiency in
the NT kernel support for SMP systems: it does not provide an operation which allows a
spinlock to be exchanged atomically for a sleep lock. This would be a serious problem in
a UNIX environment where much of the processing occurs in the context of the user
process which initiated the operation. (The spinlock would have to be explicitly released,
followed by a separate acquisition of the sleep lock: creating an unsafe window.)

The NT approach is more asynchronous, however: IRPs are simply marked as
‘PENDING’ when an operation cannot be completed immediately. The calling thread
does NOT sleep at that point: it returns, and may go on with other processing. Pending
IRPs are later completed, not by waking up the thread which initiated them, but by an
‘ToCompleteRequest’ call which typically runs at DISPATCH level in an arbitrary
context. :

Thus we have not in fact used sleep locks anywhere in the design of the ATCP driver,
hoping the above issue will not arise.

4.3 _ Data flow overview

Provisional Pat. App. of Alacritech, Inc. 20
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 154

o TS

The ATCP driver supports two paths for sending and receiving data, t&st-path and the
slow-path. The fast-path data flow corresponds to connections that are maintained on the
INIC, while slow-path traffic corresponds to network data for which the INIC does not
have a connection. In order to set some groundwork for the rest of this section, these two
data paths are summarized here.

4.3.1 Fast-path input data flow

There are 2 different cases to consider:

1. NETBIOS traffic (identifiable by port number.)
2. Everything else.

43.1.1 NETBIOS input

As soon as the INIC has received a segment containing a NETBIOS header, it will
forward it up to the TCP driver, along with the NETBIOS length from the header. (In
principle the host could get this from the header itself, but since the INIC has already
done the decode, it seem reasonable to just pass it.)

From the TDI spec, the amount of data in the buffer actually sent must be at least 128
bytes. For small SMBs, all of the received SMB should be forwarded; it will be absorbed
directly by the TDI client without any further MDL exchange. Experiments tracing the
TDI data flow show that the NETBIOS client directly absorbs up to 1460 bytes: the
amount of payload data in a single Ethernet frame. Thus the initial system specifies that
the INIC will indicate anything up to a complete segment to the ATCP driver. [See note

(D]

Once the INIC has passed up an indication with an NETBIOS length greater than the

amount of data in the packet it passed, it will continue to accumulate further incoming
data in DRAM on the INIC. Overflow of INIC DRAM buffers will be avoided by using
a receive window on the INIC at this point, which can be 8K.

On receiving the indicated packet, the ATCP driver will call the receive handler
registered by the TDI client for the connection, passing the actual size of the data in the
packet from the INIC as "bytes indicated" and the NETBIOS length as "bytes available."
[See note (2)].

In the "large data input" case, where "bytes available" exceeds the packet length, the TDI

client will then provide an MDL, associated with an IRP, which must be completed when
this MDL is filled. (This IRP/MDL may come back either in the response to TCP's call of
the receive handler, or as an explicit TDI_RECEIVE request.)

The ATCP driver will build a “receive request” from the MDL information, and pass this
to the INIC. This request will contain:

e The TCP context identifier.
¢ Size and offset information.
o A list of physical addresses corresponding to the MDL pages.

Provisional Pat. App. of Alacritech, Inc. 21
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US]
Alacritech, Ex. 2019 Page 155

e A context field to allow the ATCP driver to identify the request on completion.
e “Piggybacked” window update information (this will be discussed in section 6.1.3.)

Note: the ATCP driver must copy any remaining data (which was not taken by the
receive handler) from the segment indicated by the INIC to the start of the MDL, and
must adjust the size & offset information in the request passed to the INIC to account for
this.

The INIC will fill the given page(s) with incoming data up to the requested amount, and
respond to the ATCP driver when this is done [see note (3)]. If the MDL is large, the
INIC may open up its advertised receive window for improved throughput while filling
the MDL.

On receiving the response from the INIC, the ATCP driver will complete the IRP
associated with this MDL, to tell the TDI client that the data is available.

At this point the cycle of events is complete, and the ATCP driver is now waiting for the
next header indication.

4.3.1.2 Other TCP input.

In the general case we do not have a higher-level protocol header to enable us to predict
that more data is coming. So on non-NETBIOS connections, the INIC will just
accumulate incoming data in INIC DRAM up to a quantity of 8K in this example. Again,
a maximum advertised window size, which may be 16K, will be used to prevent overflow
of INIC DRAM buffers.

When the prescribed amount has been accumulated, or when a PSH flag is seen, the INIC
will indicate a small packet which may be 128 bytes of the data to the ATCP driver,
along with the total length of the data accumulated in INIC DRAM.

On receiving the indicated packet, the ATCP driver will call the receive handler
registered by the TDI client for the connection, passing the actual size of the data in the
packet from the INIC as "bytes indicated" and the total INIC-buffer length as "bytes
available."

As in the NETBIOS case, if "bytes available" exceeds "bytes indicated", the TDI client
will provide an IRP with an MDL. The ATCP driver will pass the MDL to the INIC to
be filled, as before. The INIC will reply to the ATCP driver, which in turn will complete
the IRP to the TDI client.

Using an MDL from the client avoids a copy step. However, if we can only buffer 8K
and delay indicating to the ATCP driver until we have done so, a question arises
regarding further segments coming in, since INIC DRAM is a scarce resource. We do not
want to ACK with a zero-size window advertisement: this would cause the transmitting
end to go into persist state, which is bad for throughput. If the transmitting end is also our
INIC, this results in having to implement the persist timer on the INIC, which we do not
wish to do. Instead for large transfers (i.e. no PSH flag seen) we will not send an ACK

Provisional Pat. App. of Alacritech, Inc. 22
Inventors Laurence B. Boucher et al.

Expreés Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 156

TN Y E T S

until the host has provided the lleL, and also, to avoid stopping the tr!sinitting end, we

will use a receive window of twice the amount we will buffer before calling the host.
Since the host comes back with the MDL quite quickly (measured at < 100
microseconds), we do not expect to experience significant overruns.

4.3.1.3 INIC Receive window updates

If the INIC “owns” an MDL provided by the TDI client (sent by ATCP as a receive
request), it will treat this as a “promise” by the TDI client to accept the data placed in it,

and may therefore ACK incoming data as it is filling the pages.

However, for small requests, there will be no MDL returned by the TDI client: it absorbs
all of the data directly in the receive callback function. We need to update the INIC’s
view of data which has been accepted, so that it can update its receive window. In order
to be able to do this, the ATCP driver will accumulate a count of data which has been
accepted by the TDI client receive callback function for a connection.

From the INIC’s point of view, though, segments sent up to the ATCP driver are just
“thrown over the wall”’; there is no explicit reply path. We will therefore “piggyback” the
update on requests sent out to the INIC. Whenever the ATCP driver has outgoing data
for that connection, it will place this count in a field in the send request (and then clear
the counter.) Any receive request (passing a receive MDL to the INIC) may also be used

to transport window update info in the same way.

Note: we will probably also need to design a message path whereby the ATCP driver can
explicitly send an update of this “bytes consumed” information (either when it exceeds a
preset threshold or if there are no requests going out to the INIC for more than a given
time interval), to allow for possible scenarios in which the data stream is entirely one-

way.
4.3.1.4 Notes

1) The PSH flag can help to identify small SMB requests that fit into one segment.

2) Actually, the observed "bytes available" from the NT TCP driver to its client's
callback in this case is always 1460. The NETBIOS-aware TDI client presumably
calculates the size of the MDL it will return from the NETBIOS header. So strictly
speaking we do not need the NETBIOS header length at this point: just an indication
that this is a header for a "large" size. However, we *do* need an actual "bytes
available" value for the non-NETBIOS case, so we may as well pass it.

3) We observe that the PSH flag is set in the segment completing each NETBIOS
transfer. The INIC can use this to determine when the current transfer is complete
and the MDL should be returned. It can, at least in a debug mode, sanity check the
amount of received data against what is expected, though.

Provisional Pat. App. of Alacritech, Inc. 23
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US ‘]
. Alacritech, Ex. 2019 Page 157

P
3
(=g
o 5
£z
7
)

432 Fast-path output data flow

The fast-path output data flow is similar to the input data-flow, but simpler. In this case
the TDI client will provide a MDL to the ATCP driver along with an IRP to be completed
when the data is sent. The ATCP driver will then give a request (corresponding to the
MDL) to the INIC. This request will contain:

The TCP context identifier.

Size and offset information.

A list of physical addresses corresponding to the MDL pages.

A context field to allow the ATCP driver to identify the request on completion.
“Piggybacked” window update information (as discussed in section 6.1.3.)

The INIC will copy the data from the given physical location(s) as it sends the
corresponding network frames onto the network. When all of the data is sent, the INIC
will notify the host of the completion, and the ATCP driver will complete the IRP.

Note that there may be multiple output requests pending at any given time, since SMB
allows multiple SMB requests to be simultaneously outstanding.

4.3.3 Slow-path data flow

For data for which there is no connection being maintained on the INIC, we will have to
perform all of the TCP, IP, and Ethernet processing ourselves. To accomplish this we
will port the FreeBSD protocol stack.

In this mode, the INIC will be operating as a “dumb NIC”; the packets which pass over
the NDIS interface will just contain MAC-layer frames.

The MBUFs in the incoming direction will in fact be managing NDIS-allocated packets.
In the outgoing direction, we need protocol-allocated MBUFs in which to assemble the
data and headers. The MFREE macro must be cognizant of the various types of MBUFs,
and “do the right thing” for each type. (See more extensive discussion of MBUFs in

section XXX.)

We will retain a (modified) socket structure for each connection, containing the socket
buffer fields expected by the FreeBSD code. The TCP code that operates on socket
buffers (adding/removing MBUFs to & from queues, indicating acknowledged &
received data etc) will remain essentially unchanged from the FreeBSD base (though
most of the socket functions & macros used to do this will need to be modified; these are

the functions in kem/uipc_socket2.c)

The upper socket layer (kern/uipc_socket.c), where the overlying OS moves data in and
out of socket buffers, must be entirely re-implemented to work in TDI terms. Thus,
instead of sosend(), there will be a function that copies data from the MDL provided in a
TDI_SEND call into socket buffer MBUFs. Instead of soreceive(), there will be a handler
that calls the TDI client receive callback function, and also copies data from socket buffer

Provisional Pat. App. of Alacritech, Inc. 24

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US]
Alacritech, Ex. 2019 Page 158

s
i

kg

,
]

W AR T

al el B R

MBUFs into any MDL provide! by the TDI client (either explicitly with the callback
response or as a separate TDI_RECEIVE call.)

We must note that there is a semantic difference between TDI_SEND and a write() on a
BSD socket. The latter may complete back to its caller as soon as the data has been
copied into the socket buffer. The completion of a TDI_SEND, however, implies that the
data has actually been sent on the connection. Thus we will need to keep the TDI_SEND
IRPs (and associated MDLs) in a queue on the socket until the TCP code indicates that

the data from them has been ACK’d.

4.3.4 Data Path Notes

1. There might be input data on a connection object for which there is no receive
handler function registered. This has not been observed, but we can probably just
ASSERT for a missing handler for the moment. If it should happen, however, we
must assume that the TDI client will be doing TDI RECEIVE calls on the
connection. If we can’t make a callup at the time that the indication from the INIC
appears, we can queue the data and handle it when a TDI_RECEIVE does appear.

2. NT has a notion of "canceling" IRPs. It is possible for us to get a "cancel" on an IRP
corresponding to an MDL which has been “handed” to the INIC by a send or receive
request. We can handle this by being able to force the context back off the INIC,
since IRPs will only get cancelled when the connection is being aborted.

4.4 Context Passing Between ATCP and INIC

441 From ATCP to INIC

There is a synchronization problem that must be addressed here. The ATCP driver will
make a decision on a given connection that this connection should now be passed to the
INIC. It builds and sends a command identifying this connection to the INIC.

Before doing so, it must ensure that no slow-path outgoing data is outstanding. This is
not difficult; it simply pends and queues any new TDI_SEND requests and waits for any
unacknowledged slow path output data to be acknowledged before initiating the context

pass operation.

The problem arises with incoming slow-path data. If we attempt to do the context-pass in
a single command handshake, there is a window during which the ATCP driver has send
the context command, but the INIC has not yet seen this (or has not yet completed setting
up its context.) During this time, slow-path input data frames could arrive and be fed into
the slow-path ATCP processing code. Should that happen, the context information which
the ATCP driver passed to the INIC is no longer correct. We can simply abort the
outward pass of the context in this event, but it seems better to have a reliable handshake.

Therefore, the command to pass context from ATCP driver to INIC will be split into two
halves, and there will be a two-exchange handshake.

Provisional Pat. App. of Alacritech, Inc. 25
Inventors Laurence B. Boucher et al.

i S
Express Mail Label # EH756230105US Alacritech, Ex. 2019 Page 159

BT DVT ST

The initial command from A’gto INIC expresses an “intention” to hand out the
context. It will include the source and destination IP addresses and ports, which will
allow the INIC to establish a “provisional” context. Once it has this “provisional” context
in place, the INIC will not send any more slow-path input frames for that src/dest IP/port
combination (it will queue them, if any are received.)

When the ATCP driver receives the response to this initial “intent” command, it knows
that the INIC will send no more slow-path input. The ATCP driver then waits for any
remaining unconsumed slow-path input data for this connection to be consumed by the
client. (Generally speaking there will be none, since the ATCP driver will not initiate a
context pass while there is unconsumed slow-path input data; the handshake is simply to
close the crossover window.)

Once any such data has been consumed, we know things are in a quiescent state. The
ATCP driver can then send the second, “commit” command to hand out the context, with
confidence that the TCB values it is handing out (sequence numbers etc) are reliable.

Note 1: it is conceivable that there might be situations in which the ATCP driver decides,
after having sent the original “intention” command, that the context is not to be passed
after all. (E.g. the local client issues a close.) So we must allow for the possibility that
the second command may be a “abort”, which should cause the INIC to deallocate and

clear up its “provisional” context.

Note 2: to simplify the logic, the ATCP driver will guarantee that only one context may
be in process of being handed out at a time: in other words, it will never issue another
initial “intention” command until it has completed the second half of the handshake for

the first one.

4.42 From INIC to ATCP

There are two possible cases for this: a context transfer may be initiated either by the
ATCP driver or by the INIC.

However the machinery will be very similar in the two cases. If the ATCP driver wishes
to cause context to be flushed from INIC to host, it will send a "flush" message to the
INIC specifying the context number to be flushed. Once the INIC receives this, it will
proceed with the same steps as for the case where the flush is initiated by the INIC itself:

o The INIC will send an error response to any current outstanding receive request it is
working on (corresponding to an MDL into which data is being placed.) Before
sending the response, it updates the receive command “length” field to reflect the
amount of data which has actually been placed in the MDL buffers at the time of the

flush.

e Likewise it will send an error response for any current send request, again reporting
the amount of data actually sent from the request.

¢ The INIC will DMA the TCB for the context back to the host. (Note: part of the
information provided with a context must be the address of the TCB in the host.)

Provisional Pat. App. of Alacritech, Inc.) 26
Inventors Laurence B. Boucher et al.

E Mail Label # EH756230105US
xpress Var e Alacritech, Ex. 2019 Page 160

e The INIC will send a “ﬂuQ’indication to the host (very preferably via the regular
input path as a special type of frame) identifying the context which is being flushed.
Sending this indication via the regular input path ensures that it will arrive before any
following slow-path frames.

At this point, the INIC is no longer doing fast-path processing, and any further incoming
frames for the connection will simply be sent to the host as raw frames for the slow input
path.

The ATCP driver may not be able to complete the cleanup operations needed to resume
normal slow path processing immediately on receipt of the “flush frame”, since there may
be outstanding send and receive requests to which it has not yet received a response.

If this is the case, the ATCP driver must set a “pend incoming TCP frames” flag in its
per-connection context. The effect of this is to change the behavior of tcp_input(). This
runs as a function call in the context of ip_input(), and normally returns only when
incoming frames have been processed as far as possible (queued on the socket receive
buffer or out-of-sequence reassembly queue.) However, if there is a flush pending and
we have not yet completed resynchronization, we cannot do TCP processing and must
instead queue input frames for TCP on a “holding queue” for the connection, to be picked
up later when context flush is complete and normal slow path processing resumes. (This
is why we want to send the “flush” indication via the normal input path: so that we can
ensure it is seen before any following frames of slow-path input.)

R

I
o o

&

5E

Next we need to wait for any outstanding “send” requests to be errored off:

t
1

Tl

¢ The INIC maintains its context for the connection in a “zombie” state. As “send”
requests for this connection come out of the INIC queue, it sends error responses for
them back to the ATCP driver. (It is apparently difficult for the INIC to identify all
command requests for a given context; simpler for it to just continue processing them
in order, detecting ones that are for a “zombie” context as they appear.)

l!} "}g‘:‘ s

]

e The ATCP driver has a count of the number of outstanding requests it has sent to the
INIC. As error responses for these are received, it decrements this count, and when it
reaches zero, the ATCP driver sends a “flush complete” message to the INIC.

e When the INIC receives the “flush complete” message, it dismantles its “zombie”
context. From the INIC perspective, the flush is now completed.

e When the ATCP driver has received error responses for all outstanding requests, it
has all the information needed to complete its cleanup. This involves completing any
IRPs corresponding to requests which have entirely completed and adjusting fields in
partially-completed requests so that send and receive of slow path data will resume at
the right point in the byte streams.

e Once all this cleanup is complete, the ATCP driver will loop pulling any “pended”
TCP input frames off the “pending queue” mentioned above and feeding them into
the normal TCP input processing. Once all input frames on this queue have been
cleared off, the “pend incoming TCP frames” flag can be cleared for the connection,
and we are back to normal slow-path processing.

Provisional Pat. App. of Alacritech, Inc. 27
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 161

The largest portion of the ATCP driver is either derived, or directly taken from the

FreeBSD TCP/IP protocol stack. This section defines the issues associated with porting
this code, the FreeBSD code itself, and the modifications required for it to suit our needs.

4.5 FreeBSD Porting Speclllllcation

4.5.1 Porting philosophy

FreeBSD TCP/IP (current version referred to as Net/3) is a general purpose TCP/IP
driver. It contains code to handle a variety of interface types and many different kinds of
protocols. To meet this requirement the code is often written in a sometimes confusing,
over-complex manner. General-purpose structures are overlaid with other interface-
specific structures so that different interface types can coexist using the same general-
purpose code. For our purposes much of this complexity is unnecessary since we are
only supporting a single interface type and a few specific protocols. It is therefore
tempting to modify the code and data structures in an effort to make it more readable, and
perhaps a bit more efficient. There are, however, some problems with doing this. First,
the more we modify the original FreeBSD, the more changes we will have to make. This
is especially true with regard to data structures. If we collapse two data structures into
one we might improve the cleanliness of the code a bit, but we will then have to modify
every reference to that data structure in the entire protocol stack. Another problem with
attempting to “clean up” the code is that we might later discover that we need something
that we had previously thrown away. Finally, while we might gain a small performance
advantage in cleaning up the FreeBSD code, the FreeBSD TCP code will mostly only run

'~ inthe slow-path connections, which are not our primary focus. Our priority is to get the

slow-path code functional and reliable as quickly as possible.

For the reasons above we have adopted the philosophy that we should initially keep the
data structures and code at close to the original FreeBSD implementation as possible.
The code will be modified for the following reasons:

5. Asrequired for NT interaction — Obviously we can’t expect to simply “drop-in” the
FreeBSD code as is. The interface of this code to the NT system will require some
significant code modifications. This will mostly occur at the topmost and
bottommost portions of the protocol stack, as well as the “ioct]l” sections of the code.
Modifications for SMP issues are also needed.

6. Unnecessary code can be removed — While we will keep the code as close to the
original FreeBSD as possible, we will nonetheless remove code that will never be

used (UDP is a good example of this).

4.5.2 Unix <& NT conversion

The FreeBSD TCP/IP protocol stack makes use of many Unix system services. These
include bcopy to copy memory, malloc to allocate memory, timestamp functions, etc.
These will not be itemized in detail since the conversion to the corresponding NT calls is
a fairly trivial and mechanical operation.

An area which will need non-trivial support redesign is MBUFs.

Provisional Pat. App. of Alacritech, Inc. 28
Inventors Laurence B. Boucher et al.
E Mail Label # EH756230105US ,
xpress Vatl Labe Alacritech, Ex. 2019 Page 162

LETTIE Y BT S

4.52.1 Network buffers

Under FreeBSD, network buffers are mapped using mbufs. Under NT network buffers

are mapped using a combination of packet descriptors and buffer descriptors (the buffer
descriptors are really MDLs). There are a couple of problems with the Microsoft
method. First it does not provide the necessary fields which allow us to easily strip off
protocol headers. Second, converting all of the FreeBSD protocol code to speak in terms
of buffer descriptors is an unnecessary amount of overhead. Instead, in our port we will
allocate our own mbuf structures and remap the NT packets as follows:

Mbuf Mbuf
——P
1 Packet Desc Buffer Desc Buffer Desc
g g
. v v

Data Data

The mbuf structure will provide the standard fields provided in the FreeBSD mbuf
including the data pointer, which points to the current location of the data, data length
fields and flags. In addition each mbuf will point to the packet descriptor which is
associated with the data being mapped. Once an NT packet is mapped, our transport
driver should never have to refer to the packet or buffer descriptors for any information
except when we are finished and are preparing to return the packet.

There are a couple of things to note here. We have designed our INIC such that a packet
header should never be split across multiple buffers. Thus, we should never require the
equivalent of the “m_pullup” routine included in Unix. Also note that there are
circumstances in which we will be accepting data that will also be accepted by the
Microsoft TCP/IP. One such example of this is ARP frames. We will need to build our
own ARP cache by looking at ARP replies as they come off the network. Under these
circumstances, it is absolutely imperative that we do not modify the data, or the packet
and buffer descriptors. We will discuss this further in the following sections.

Provisional Pat. App. of Alacritech, Inc. 29

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US]
Alacritech, Ex. 2019 Page 163

We will allocate a pool of mbu’headers at ATCP initialization time. It 1s important to
remember that unlike other NICs, we can not simply drop data if we run out of the system
resources required to manage/map the data. The reason for this is that we will be
receiving data from the card that has already been acknowledged by TCP. Because of
this it is essential that we never run out of mbuf headers. To solve this problem we will
statically allocate mbuf headers for the maximum number of buffers that we will ever
allow to be outstanding. By doing so, the card will run out of buffers in which to put the
data before we will run out of mbufs, and as a result, the card will be forced to drop data
at the link layer instead of us dropping it at the transport layer.

DhXXX: as we’ve discussed, I don’t think this is really true anymore. The INIC won’t
ACK data until either it’s gotten a window update from ATCP to tell it the data’s been
accepted, or it’s got an MDL.

Thus it seems workable, though undesirable, if we can’t accept a frame from the INIC &
return an error to it saying it was not taken.

We will also require a pool of actual mbufs (not just headers). These mbufs are required
in order to build transmit protocol headers for the slow-path data path, as well as other
miscellaneous purposes such as for building ARP requests. We will allocate a pool of
these at initialization time and we will add to this pool dynamically as needed. Unlike
the mbuf headers described above, which will be used to map acknowledged TCP data
coming from the card, the full mbufs will contain data that can be dropped if we can not
get an mbuf.

4.5.3 The code

In this section we describe each section of the FreeBSD TCP/IP port. These sections
include Interface Initialization, ARP, Route, IP, ICMP, and TCP.

4.5.3.1 Interface initialization

4.5.3.1.1 Structures

There are a variety of structures, which represent a single interface in FreeBSD. These
structures include:

ifnet, arpcom, ifaddr, in_ifaddr, sockaddr, sockaddr_in, and sockaddr_dl. The following
illustration shows the relationship between all of these structures:

Iface ifaddr

(mmmmTo sockaddr_dl

' [}

| i T

arpcom | 1t | | p| 00:60:97:DB:9B:AG

t)

! !

5 L

l

[}

: in_ifaddr

i

, .

L ifaddr sockaddr_in
192.100.1.2

Provisional Pat. App. of Alacritech, Inc. 30

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 164

£
=0
-
-
5
i
iz
&
?—f:
i ¢
L
R
-1

g">=::
[aa]
Semil
.4
H

=5

In this example we show a siﬁgginterface with a MAC address of 009%97:DB:9B:A6
configured with an IP address of 192.100.1.2. As illustrated above, the in_ifaddr is
actually an ifaddr structure with some extra fields tacked on to the end. Thus the ifaddr
structure 1s used to represent both a MAC address and an IP address. Similarly the
sockaddr structure is recast as a sockaddr_dl or a sockaddr_in depending on its address
type. An interface can be configured to multiple IP addresses by simply chaining
in_ifaddr structures after the in_ifaddr structure shown above.

As mentioned in the Porting Philosophy section, many of the above structures could
likely be collapsed into fewer structures. In order to avoid making unnecessary
modifications to FreeBSD, for the time being we will leave these structures mostly as is.
We will however eliminate the fields from the structure that will never be used. These
structure modifications are discussed below.

We also show above a structure called iface. This is a structure that we define. It
contains the arpcom structure, which in turn contains the ifnet structure. It also contains
fields that enable us to blend our FreeBSD implementation with NT NDIS requirements.
One such example is the NDIS binding handle used to call down to NDIS with requests
(such as send).

4.5.3.1.2 The functions

FreeBSD initializes the above structures in two phases. First when a network interface is
found, the ifnet, arpcom, and first ifaddr structures are initialized first by the network
layer driver, and then via a call to the if attach routine. The subsequent in_ifaddr
structure(s) are initialized when a user dynamically configures the interface. This occurs
in the in_ioctl and the in_ifinit routines. Since NT allows dynamic configuration of a
network interface we will continue to perform the interface initialization in two phases
but we will consolidate these two phases as described below:

453121 Ifnit
The IfInit routine will be called from the ATKProtocolBindAdapter function. The IfInit
function will initialize the Iface structure and associated arpcom and ifnet structures. It
will then allocate and initialize an ifaddr structure in which to contain link-level
information about the interface, and a sockaddr_dl structure to contain the interface name
and MAC address. Finally it will add a pointer to the ifaddr structure into the ifnet_addrs
array (using the if index field of the ifnet structure) contained in the extended device
object. IfInit will then call IfConfig for each IP address that it finds in the registry entry
for the interface.

4.5.3.1.2.2 IfConfig

IfConfig is called to configure an IP address for a given interface. It is passed a pointer
to the ifnet structure for that interface along with all the information required to configure
an IP address for that interface (such as IP address, netmask and broadcast info, etc).
IfConfig will allocate an in_ifaddr structure to be used to configure the interface. It will
chain it to the total chain of in_ifaddr structures contained in the extended device object,
and will then configure the structure with the information given to it. After that it will
add a static route for the newly configured network and then broadcast a gratuitous ARP
request to notify others of our Mac/IP address and to detect duplicate IP addresses on the

net.

Provisional Pat. App. of Alacritech, Inc. 31
Inventors Laurence B. Boucher et al. :

E Mail Label # EH756230105US
xpress ATl Labe Alacritech, Ex. 2019 Page 165

=
[
T
i
E’fL“.:
¥
R
= 4
:

We will port the FreeBSD ARP code to NT mostly as-is. For some reason, the FreeBSD
ARP code is located in a file called if_ether.c. While the functionality of this file will
remain the same, we will rename it to a more logical arp.c. The main structures used by
ARRP are the llinfo_arp structure and the rtentry structure (actually part of route). These
structures will not be require major modifications. The functions that will require
modification are defined here.

4532 ARP

4.5.3.2.1 In_arpinput

This function is called to process an incoming ARP frame. An ARP frame can either be
an ARP request or an ARP reply. ARP requests are broadcast, so we will see every ARP
request on the network, while ARP replies are directed so we should only see ARP
replies that are sent to us. This introduces the following possible cases for an incoming
ARP frame:

1. ARP request trying to resolve our IP address — Under normal circumstances, ARP
would reply to this ARP request with an ARP reply containing our MAC address.
Since ARP requests will also be passed up to the Microsoft TCP/IP driver, we
need not reply. Note however, that FreeBSD also creates or updates an ARP cache
entry with the information derived from the ARP request. It does this in

~ anticipation of the fact that any host that wishes to know our MAC address is
likely to wish to talk to us soon. Since we will need to know his MAC address in
order to talk back, we might as well add the ARP information now rather than
issuing our own ARP request later.

2. ARP request trying to resolve someone else’s IP address — Since ARP requests are
broadcast, we see every one on the network. When we receive an ARP request of
this type, we simply check to see if we have an entry for the host that sent the
request in our ARP cache. If we do, we check to see if we still have the correct
MAC address associated with that host. If it is incorrect, we update our ARP
cache entry. Note that we do not create a new ARP cache entry in this case.

3. ARP reply — In this case we add the new ARP entry to our ARP cache. Having
resolved the address, we check to see if there is any transmit requests pending for
the resolve IP address, and if so, transmit them. o

Given the above three possibilities, the only major change to the in_arpinput code is that
we will remove the code which generates an ARP reply for ARP requests that are meant
for our interface.

4.5.3.2.2 Arpintr

This is the FreeBSD code that delivers an incoming ARP frame to in_arpinput. We will
be calling in_arpinput directly from our ProtocolReceiveDPC routine (discussed in the
NDIS section below) so this function is not needed.

Provisional Pat. App. of Alacritech, Inc. 32
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 166

4.53.2.3 Arpwhohas

This is a single line function that serves only as a wrapper around arprequest. We w111
remove it and replace all calls to it with direct calls to arprequest.

4.53.2.4 Arprequest

This code simply allocates a mbuf, fills it in with an ARP header, and then passes it down
to the ethernet output routine to be transmitted. For us, the code remains essentially the
same except for the obvious changes related to how we allocate a network buffer, and

how we send the filled in request.

4.53.2.5 Arp_ifinit

This is simply called when an interface is initialized to broadcast a gratuitous ARP
request (described in the interface initialization section) and to set some ARP related
fields in the ifaddr structure for the interface. We will simply move this functionality into
the interface initialization code and remove this function.

4.5.3.2.6 Arptimer

This is a timer-based function that is called every 5 minutes to walk through the ARP
table looking for entries that have timed out. Although the time-out period for FreeBSD
1s 20 minutes, RFC 826 does not specify any timer requirements with regard to ARP so
we can modify this value or delete the timer altogether to suit our needs. Either way the

function won’t require any major changes.
All other functions in if ether.c will not require any major changes.

4.53.3 Route

On first thought, it might seem that we have no need for routing support since our ATCP
driver will only receive IP datagrams who’s destination IP address matches that of one of
our own interfaces. Therefore, we will not “route” from one interface to another.
Instead, the MICROSOFT TCP/IP driver will provide that service. We will, however,
need to maintain an up-to-date routing table so that we know a) whether an outgoing
connection belongs to one of our interfaces, b) to which interface it belongs, and c¢) what
the first-hop IP address (gateway) is if the destination is not on the local network.

b
:-j Ed
:gl—.
%
]
gL
A
E 3

¥

We discuss four aspects on the subject of routing in this section. They are as follows:

1. The mechanics of how routing information is stored

2. The manner in which routes are added or deleted from the route table.
- 3. When and how route information is retrieved from the route table.
4

. Notification of route table changes to interested parties.

Provisional Pat. App. of Alacritech, Inc. 33
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 167

A B T T T 0

4.5.3.3.1 The route table

In FreeBSD, the route table is maintained using an algorithm known as PATRICIA
(Practical Algorithm To Retrieve Information Coded in Alphanumeric). Thisis a
complicated algorithm that is a bit costly to set up, but is very efficient to reference.
Since the routing table should contain the same information for both NT and FreeBSD,
and since the key used to search for an entry in the routing table wiil be the same for each
(the destination IP address), we should be able to port the routing table software to NT

without any major changes.

The software which implements the route table (via the PATRICIA algorithm) is located
in the FreeBSD file, radix.c. This file will be ported directly to the ATCP driver with no

significant changes required.

4.5.3.3.2 Adding and deleting routes

Routes can be added or deleted in a number of different ways. The kernel adds or deletes
routes when the state of an interface changes or when an ICMP redirect is received. User
space programs such as the RIP daemon, or the route command also modify the route
table.

For kemel-based route changes, the changes can be made by a direct call to the routing
software. The FreeBSD software that is responsible for the modification of route table
entries is found in route.c. The primary routine for all route table changes is called
rtrequest(). It takes as its arguments, the request type (ADD, RESOLVE, DELETE), the
destination IP address for the route, the gateway for the route, the netmask for the route,
the flags for the route, and a pointer to the route structure (struct rtentry) in which we will
place the added or resolved route. Other routines in the route.c file include rtinit(), which
is called during interface initialization time to add a static route to the network, rtredirect,
which is called by ICMP when we receive a ICMP redirect, and an assortment of support
routines used for the modification of route table entries. All of these routines found in
route.c will be ported with no major modifications.

For user-space-based changes, we will have to be a bit more clever. In FreeBSD, route
changes are sent down to the kernel from user-space applications via a special route
socket. This code is found in the FreeBSD file, rtsock.c. Obviously this will not work
for our ATCP driver. Instead the filter driver portion of our driver will intercept route
changes destined for the Microsoft TCP driver and will apply those modifications to our
own route table via the rtrequest routine described above. In order to do this, it will have
to do some format translation to put the data into the format (sockaddr_in) expected by
the rtrequest routine. Obviously, none of the code from rtsock.c will be ported to the
ATCP driver. This same procedure will be used to intercept and process explicit ARP

cache modifications.

4.5.3.3.3 Consulting the route table

In FreeBSD, the route table is consulted in ip_output when an IP datagram is being sent.
In order to avoid a complete route table search for every outgoing datagram, the route is
stored into the in_pcb for the connection. For subsequent calls to ip_output, the route

entry is then simply checked to ensure validity. While we will keep this basic operation
as is, we will require a slight modification to allow us to coexist with the Microsoft TCP

Provisional Pat. App. of Alacritech, Inc. 34
Inventors Laurence B. Boucher et al.

E Mail Label # EH756230105US
npross Al T Alacritech, Ex. 2019 Page 168

53
2EE
HEE]

St WL T

driver. When an active conngn is being set up, our filter driver wiﬁve to determine
whether the connection is going to be handled by one of the INIC interfaces. To do this,
we will have to consult the route table from the filter driver portion of our driver. This is
done via a call to the rtalloc1 function (found in route.c). If a valid route table entry is
found, then we will take control of the connection and set a pointer to the rtentry structure
returned by rtallocl in our in_pcb structure.

4.5.3.3.4 What to do when a route changes. .

When a route table entry changes, there may be connections that have pointers to a stale
route table entry. These connections will need to be notified of the new route. FreeBSD
solves this by checking the validity of a route entry during every call to ip_output. If the
entry is no longer valid, its reference to the stale route table entry is removed, and an
attempt is made to allocate a new route to the destination. For our slow path, this will
work fine. Unfortunately, since our IP processing is handled by the INIC for our fast
path, this sanity check method will not be sufficient. Instead, we will need to perform a
review of all of our fast path connections during every route table modification. If the
route table change affects our connection, we will need to advise the INIC with a new
first-hop address, or if the destination is no longer reachable, close the connection
entirely. '

4534 ICMP

Like the ARP code above, we will need to process certain types of incoming ICMP
frames. Of the 10 possible ICMP message types, there are only three that we need to
support. These include ICMP_REDIRECT, ICMP_UNREACH, and
ICMP_SOURCEQUENCH. Any FreeBSD code to deal with other types of ICMP traffic
will be removed. Instead, we will simply return NDIS_STATUS_NOT_ACCEPTED for
all but the above ICMP frame types. This section describes how we will handle these
ICMP frames. _ ‘

4.5.3.4.1 ICMP_REDIRECT

Under FreeBSD, an ICMP_REDIRECT causes two things to occur. First, it causes the
route table to be updated with the route given in the redirect. Second, it results in a call
back to TCP to cause TCP to flush the route entry attached to its associated in_pcb
structures. By doing this, it forces ip_output to search for a new route. As mentioned in
the Route section above, we will also require a call to a routine which will review all of
the TCP fast-path connections, and update the route entries as needed (in this case
because the route entry has been zeroed). The INIC will then be notified of the route
changes. '

4.5.3.42 ICMP_UNREACH

In both FreeBSD and Microsoft TCP, the ICMP_UNREACH results in no more than a
simple statistic update. We will do the same.

4.5.3.4.3 ICMP_SOURCEQUENCH

A source quench is sent to cause a TCP sender to close its congestion window to a single
segment, thereby putting the sender into slow-start mode. We will keep the FreeBSD
code as-is for slow-path connections. For fast path connections we will send a
notification to the card that the congestion window for the given connection has been
reduced. The INIC will then be responsible for the slow-start algorithm.

Provisional Pat. App. of Alacritech, Inc. - 35

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US]
Alacritech, Ex. 2019 Page 169

4535 IP l | I

The FreeBSD IP code should require few modifications when porting to the ATCP
driver. What few modifications will be required will be discussed in this section.

4.5.3.5.1 IP initialization

During initialization time, ip_init is called to initialize the array of protosw structures.
These structures contain all the information needed by IP to be able to pass incoming data
to the correct protocol above it. For example, when a UDP datagram arrives, IP locates
the protosw entry corresponding to the UDP protocol type value (0x11) and calls the
input routine specified in that protosw entry. We will keep the array of protosw
structures intact, but since we are only handling the TCP and ICMP protocols above IP,

we will strip the protosw array down substantially.

4.5.3.5.2 IP input
Following are the changes required for IP input (function ip_intr()).

4.5.3.5.2.1 No IP forwarding

Since we will only be handling datagrams for which we are the final destination, we
should never be required to forward an IP datagram. All references to IP forwarding, and
the ip_forward function itself, can be removed.

4.5.3.5.2.2 IP options

The only options supported by FreeBSD at this time include record route, strict and loose
source and record route, and timestamp. For the timestamp option, FreeBSD only logs
the current time into the IP header so that before it is forwarded. Since we will not be
forwarding IP datagrams, this seems to be of little use to us. While FreeBSD supports the
remaining options, NT essentially does nothing useful with them. For the moment, we
will not bother dealing with IP options. They will be added in later if needed.

2

B ——
i i i 1]

4.5.3.5.2.3 IP reassembly

= There is a small problem with the FreeBSD IP reassembly code. The reassembly code

oy reuses the IP header portion of the IP datagram to contain IP reassembly queue
information. It can do this because it no longer requires the original IP header. This is an
absolute no-no with the NDIS 4.0 method of handling network packets. The NT DDK
explicitly states that we must not modify packets given to us by NDIS. This is not the
only place in which the FreeBSD code modifies the contents of a network buffer. It also
does this when performing endian conversions. At the moment we will leave this code as
is and violate the DDK rules. We believe we can do this because we are going to ensure
that no other transport driver looks at these frames. If this becomes a problem we will
have to modify this code substantially by moving the IP reassembly fields into the mbuf
header.

4.5.3.5.3 IP output

There are only two modifications required for IP output. The first is that since, for the
moment, we are not dealing with IP options, there is no need for the code that inserts the
IP options into the IP header. Second, we may discover that it is impossible for us to ever
receive an output request that requires fragmentation. Since TCP performs Maximum
Segment Size negotiation, we should theoretically never attempt to send a TCP segment
larger than the MTU.

Provisional Pat. App. of Alacritech, Inc. 36

Inventors Laurence B. Boucher et al.

i H756230105US
Express Mail Label # EH756230 Alacritech, Ex. 2019 Page 170

4.6 NDIS Protocol Driver '

This section defines protocol driver portion of the ATCP driver. The protocol driver
portion of the ATCP driver is defined by the set of routines registered with NDIS via a
call to NdisRegisterProtocol. These routines are limited to those that are called
(indirectly) by the INIC miniport driver beneath us. For example, we register a
ProtocolReceivePacket routine so that when the INIC driver calls
NdisMIndicateReceivePacket it will result in a call from NDIS to our driver. Strictly
speaking, the protocol driver portion of our driver does not include the method by which
our driver calls down to the miniport (for example, the method by which we send
network packets). Nevertheless, we will describe that method here for lack of a better
place to put it. That said, we cover the following topics in this section of the document:
Initialization '

Receive

Transmit ;

Query/Set Information

Status indications

Reset

Halt

NV AE LN -

4.6.1 Initialization

The protocol driver initialization occurs in two phases. The first phase occurs when the
ATCP DriverEntry routine calls ATKProtoSetup. The ATKProtoSetup routine performs
the following:

1. Allocate resources — We attempt to allocate many of the required resources as soon
as possible so that we are more likely to get the memory we want. This mostly
applies to allocating and initializing our mbuf and mbuf header pools.

2. Register Protocol — We call NdisRegisterProtocol to register our set of protocol

driver routines.

Locate and initialize bound NICs — We read the Linkage parameters of the registry
to determine which NIC devices we are bound to. For each of these devices we
allocate and initialize a IFACE structure (defined above). We then read the TCP
parameters out of the registry for each bound device and set the corresponding

fields in the IFACE structure.

T T R

]
et

After the underlying INIC devices have completed their initialization, NDIS will call our
driver’s ATKBindAdapter function for each underlying device. It will perform the
following:

1. Open the device specified in the call the ATKBindAdapter

2. Find the IFACE structure that was created in ATKProtoSetup for this device.

3. Query the miniport for adapter information. This includes such things as link

speed and MAC address. Save relevant information in the IFACE structure.
4. Perform the interface initialization as specified in section 4.5.3.1 Interface

1nitialization

Provisional Pat. App. of Alacritech, Inc. 37

Inventors Laurence B. Boucher et al.
E Mail Label # EH756230105US .
xpress Mafl Labe Alacritech, Ex. 2019 Page 171

Receive is handled by the protocol driver routine ATKReceivePacket. Before we

describe this routine, it is important to consider each possible receive type and how it will
be handled.

4.6.2 Receive

4.6.2.1 Receive overview

Our INIC miniport driver will be bound to our transport driver as well as the generic
Microsoft TCP driver (and possibly others). The ATCP driver will be bound exclusively
to INIC devices, while the Microsoft TCP driver will be bound to INIC devices as well as
other types of NICs. This is illustrated below:

Filter Driver

ATCP
Microsoft Driver
TCP/IP
Driver

3COM INIC
Miniport Miniport
Driver Driver

By binding the driver in this fashion, we can choose to direct incoming network data to
our own ATCP transport driver, the Microsoft TCP driver, or both. We do this by
playing with the ethernet “type” field as follows.

To NDIS and the transport drivers above it, our card is going to be registered as a normal
ethernet card. When a transport driver receives a packet from our driver, it will expect
the data to start with an ethernet header, and consequently, expects the protocol type field
to be in byte offset 12. If Microsoft TCP finds that the protocol type field is not equal to
either IP, or ARP, it will not accept the packet. So, to deliver an incoming packet to our
driver, we must simply map the data such that byte 12 contains a non-recognized ethernet
type field. Note that we must choose a value that is greater than 1500 bytes so that the
transport drivers do not confuse it with an 802.3 frame. We must also choose a value that
will not be accepted by other transport driver such as Appletalk or IPX. Similarly, if we
want to direct the data to Microsoft TCP, we can then simply leave the ethernet type field
set to IP (or ARP). Note that since we will also see these frames we can choose to accept
or not-accept them as necessary.

Provisional Pat. App. of Alacritech, Inc. 38
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105U8)
Alacritech, Ex. 2019 Page 172

Incoming packets are delivered as follows:

Packets delivered to ATCP only (not accepted by MSTCP):

1. All TCP packets destined for one of our IP addresses. This includes both slow-
path frames and fast-path frames. In the slow-path case, the TCP frames are given
in there entirety (headers included). In the fast-path case, the ATKReceivePacket
is given a header buffer that contains status information and data with no headers
(except those above TCP). More on this later.

Packets delivered to Microsoft TCP only (not accepted by ATCP):
1. All non-TCP packets.

2. All packets that are not destined for one of our interfaces (packets that will be
routed). Continuing the above example, if there is an IP address 144.48.252.4
associated with the 3com interface, and we receive a TCP connect with a
destination IP address of 144.48.252.4, we will actually want to send that request
up to the ATCP driver so that we create a fast-path connection for it. This means
that we will need to know every IP address in the system and filter frames based
on the destination IP address in a given TCP datagram. This can be done in the
INIC miniport driver. Since it will be the ATCP driver that learns of dynamic IP
address changes in the system, we will need a method to notify the INIC miniport
of all the IP addresses in the system. More on this later.

Packets delivered to both:
1. All ARP frames

2. All ICMP frames

4.6.2.2 Two types of receive packets

There are several circumstances in which the INIC will need to indicate extra information
about a receive packet to the ATCP driver. One such example is a fast path receive in
which the ATCP driver will need to be notified of how much data the card has buffered.
To accomplish this, the first (and sometimes only) buffer in a received packet will
actually be an INIC header buffer. The header buffer contains status information about
the receive packet, and may or may not contain network data as well. The ATCP driver
will recognize a header buffer by mapping it to an ethernet frame and inspecting the type
field found in byte 12. We will indicate all TCP frames destined for us in this fashion,
while frames that are destined for both our driver and the Microsoft TCP driver (ARP,
ICMP) will be indicated without a header buffer.

Provisional Pat. App. of Alacritech, Inc. 39
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US Alacritech, Ex. 2019 Page 173

Packet Desc Packet Desc
I |

Buffer Desc Buffer Desc Buffer Desc

Header TCP Packet ARP

Buffer Frame

Example of incoming TCP pkt Example of incoming ARP Frame

4.6.2.3 NDIS 4 ProtocolReceivePacket operation

NDIS has been designed such that all packets indicated via NdisMIndicateReceivePacket
by an underlying miniport are delivered to the ProtocolReceivePacket routine for all
protocol drivers bound to it. These protocol drivers can choose to accept or not accept
the data. They can either accept the data by copying the data out of the packet indicated
to it, or alternatively they can keep the packet and return it later via a call to
NdisReturnPackets. By implementing it in this fashion, NDIS allows more than one
protocol driver to accept a given packet. For this reason, when a packet is delivered to a
protocol driver, the contents of the packet descriptor, buffer descriptors and data must all
be treated as read-only. At the moment, we intend to violate this rule. We choose to
violate this because much of the FreeBSD code modifies the packet headers as it
examines them (mostly for endian conversion purposes). Rather than modify all of the
FreeBSD code, we will instead ensure that no other transport driver accepts the data by
making sure that the ethernet type field is unique to us (no one else will want it).
Obviously this only works with data that is only delivered to our ATCP driver. For ARP
and ICMP frames we will instead copy the data out of the packet into our own buffer and
return the packet to NDIS directly. While this is less efficient than keeping the data and
returning it later, ARP and ICMP traffic should be small enough, and infrequent enough,
that it doesn’t matter. :

The DDK specifies that when a protocol driver chooses to keep a packet, it should return
a value of 1 (or more) to NDIS in its ProtocolReceivePacket routine. The packet is then
later returned to NDIS via the call to NdisReturnPackets. This can only happen after the
ProtocolReceivePacket has returned control to NDIS. This requires that the call to
NdisReturnPackets must occur in a different execution context. We can accomplish this
by scheduling a DPC, scheduling a system thread, or scheduling a kernel thread of our
own. For brevity in this section, we will assume it is a done through a DPC. In any case,
we will require a queue of pending receive buffers on which to place and fetch receive

" packets.

After a receive packet is dequeued by the DPC it is then either passed to TCP directly for
fast-path processing, or it is sent through the FreeBSD path for slow-path processing.
Note that in the case of slow-path processing, we may be working on data that needs to
be returned to NDIS (TCP data) or we may be working on our own copy of the data

Provisional Pat. App. of Alacritech, Inc. 40
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 174

(ARP and ICMP). When we !mish with the data we will need to figure out whether or
not to return the data to NDIS or not. This will be done via fields in the mbuf header

used to map the data. When the mfreem routine is called to free a chain of mbufs, the
fields in the mbuf will be checked and, if required, the packet descriptor pointed to by the

mbuf will be returned to NDIS.

4.6.2.4 Mbuf & Packet mapping

As noted in the section on mbufs above, we will map incoming data to mbufs so that our
FreeBSD port requires fewer modifications. Depending on the type of data received, this
mapping will appear differently. Here are some examples:

AT ST ST

. Addr Addr
Packet desc Packet desc
L T Addr
mbuf mbuf Packet desc =0
mbuf
Buffer Desc Buffer Desc
Packet Packet Data
r_ Buffer
Data Data Data
Next=0 Next Next=0
Buffer Buffer Buffer
Header
buffer Data
Header Buffer
Buffer
Example A. Example B. ‘ Example C.
TCP Fast-path TCP Slow-path ARP Frame

In Example A, we show incoming data for a TCP fast-path connection. In this example,
the TCP data is fully contained in the header buffer. The header buffer is mapped by the
mbuf and sent upstream for fast-path TCP processing. In this case it is required that the
header buffer be mapped and sent upstream because the fast-path TCP code will need
information contained in the header buffer in order to perform the processing. When the
mbuf in this example is freed, the mfreem routine will determine that the mbuf maps a
packet that is owned by NDIS and will then free the mbuf header only and call

NdisReturnPackets to free the data.

In Example B, we show incoming data for a TCP slow-path connection. In this example
the mbuf points to the start of the TCP data directly instead of the header buffer. Since
this buffer will be sent up for slow-path FreeBSD processing, we can not have the mbuf
pointing to a header buffer (FreeBSD would get awfully confused). Again, when mfreem
Provisional Pat. App. of Alacritech, Inc. " 41
Inventors Laurence B. Boucher et al.
E Mail Label # EH756230105US :
xpress 2afl Labe Alacritech, Ex. 2019 Page 175

AT T BT S0

is called to free the mbuf, it v&iiscover the mapped packet, free the mbuf header, and
call NDIS to free the packet and return the underlying buffers. Note that even though we
do not directly map the header buffer with the mbuf we do not lose it because of the link
from the packet descriptor. Note also that we could alternatively have the INIC miniport
driver only pass us the TCP data buffer when it receives a slow-path receive. This would
work fine except that we have determined that even in the case of slow-path connections
we are going to attempt to offer some assistance to the host TCP driver (most likely by
checksum processing only). In this case there may be some special fields that we need to
pass up to the ATCP driver from the INIC driver. Leaving the header buffer connected

seems the most logical way to do this.

Finally, in Example C, we show a received ARP frame. Recall that for incoming ARP
and ICMP frames we are going to copy the incoming data out of the packet and return it
directly to NDIS. In this case the mbuf simply points to our data, with no corresponding
packet descriptor. When we free this mbuf, mfreem will discover this and free not only

the mbuf header, but the data as well.

4.6.2.5 Other receive packets

We use this receive mechanism for other purposes besides the reception of network data.
It is also used as a method of communication between the ATCP driver and the INIC.
One such example is a TCP context flush from the INIC. When the INIC determines, for
whatever reason, that it can no longer manage a TCP connection, it must flush that
connection to the ATCP driver. It will do this by filling in a header buffer with
appropriate status and delivering it to the INIC driver. The INIC driver will in turn
deliver it to the protocol driver which will treat it essentially like a fast-path TCP
connection by mapping the header buffer with an mbuf header and delivering it to TCP
for fast-path processing. There are two advantages to communicating in this manner.
First, it is already an established path, so no extra coding or testing is required. Second,
since a context flush comes in, in the same manner as received frames, it will prevent us
from getting a slow-path frame before the context has been flushed.

4.6.2.6 Summary

Having covered all of the various types of receive data, following are the steps that are
taken by the ATKProtocolReceivePacket routine.

1. Map incoming data to an ethemet frame and check the type field.

2. If the type field contains our custom INIC type then it should be TCP

3. If the header buffer specifies a fast-path connection, allocate one or more mbufs
headers to map the header and possibly data buffers. Set the packet descriptor
field of the mbuf to point to the packet descriptor, set the mbuf flags appropriately,
queue the mbuf, and return 1.

4. If the header buffer specifies a slow-path connection, allocate a single mbuf header

- to map the network data, set the mbuf fields to map the packet, queue the mbuf

and return 1. Note that we design the INIC such that we will never get a TCP

segment split across more than one buffer.
Provisional Pat. App. of Alacritech, Inc. 42 -

Inventors Laurence B. Boucher et al.
E Mail Label # EH756230105US .
xpress Mail Label # Alacritech, Ex. 2019 Page 176

5. Ifthe type field of the frame indicates ARP or ICMP ‘

6. Allocate a mbuf with a data buffer. Copy the contents of the packet into the mbuf.
Queue the mbuf, and return 0 (not accepted).

7. Ifthe type field is not either the INIC type, ARP or ICMP, we don’t want it.
Return 0.

The receive processing will continue when the mbufs are dequeued. At the moment this
is done by a routine called ATKProtocolReceiveDPC. It will do the following:

f—y

Dequeue a mbuf from the queue.
2. Inspect the mbuf flags. If the mbufis meant for fast-path TCP, it will call the fast-
path routine directly. Otherwise it will call the ethernet input routine for slow-path

processing.
4.6.3 Transmit
In this section we discuss the ATCP transmit path.
4.6.3.1 NDIS 4 send operation

The NDIS 4 send operation works as follows. When a transport/protocol driver wishes to
send one or more packets down to an NDIS 4 miniport driver, it calls NdisSendPackets
with an array of packet descriptors to send. As soon as this routine is called, the
transport/protocol driver relinquishes ownership of the packets until they are returned,
one by one in any order, via a NDIS call to the ProtocolSendComplete routine. Since this
routine is called asynchronously, our ATCP driver must save any required context into
the packet descriptor header so that the appropriate resources can be freed. This is
discussed further in the following sections.

'4.63.2 Types of “sends”

Like the Receive path described above, the transmit path is used not only to send network
data, but is also used as a communication mechanism between the host and the INIC.
Here are some examples of the types of sends performed by the ATCP driver.

4.6.3.2.1 Fast-path TCP send

When the ATCP driver receives a transmit request with an associated MDL, it will
package up the MDL physical addresses into a command buffer, map the command
buffer with a buffer and packet descriptor, and call NdisSendPackets with the
corresponding packet. The underlying INIC driver will issue the command buffer to the
INIC. When the corresponding response buffer is given back to the host, the INIC
miniport will call NdisMSendComplete which will result in a call to the ATCP
ProtocolSendComplete (ATKSendComplete) routine, at which point the resources
associated with the send can be freed. We will allocate and use a mbuf to hold the
command buffer. By doing this we can store the context necessary in order to clean up
after the send completes. This context includes a pointer to the MDL and presumably
some other connection context as well. The other advantage to using a mbuf to hold the
command buffer is that it eliminates having another special set of code to allocate and
return command buffer. We will store a pointer to the mbuf in the reserved section of the

Provisional Pat. App. of Alacritech, Inc. 43
Inventors Laurence B. Boucher et al.

E il Label # EH756230105US
xpress Mail Label # Alacritech, Ex. 2019 Page 177

packet descriptor so we can locate it when the send is complete. The following diagram
illustrates the relationship between the client’s MDL, the command buffer, and the buffer

and packet descriptors.

Packet | 3 mbuf ‘
Desc y S— MDL
. AN Command AN
Buffer Buffer
Desc. Data Data Data

4.6.3.2.2 Fast-path TCP Receive

As described in section 4.3.1 above, the receive process typically occurs in two phases.
First the INIC fills in a host receive buffer with a relatively small amount of data, but
notifies the host of a large amount of pending data (either through a large amount of
buffered data on the card, or through a large amount of expected NetBios data). This
small amount of data is delivered to the client through the TDI interface. The client will
then respond with a MDL in which the data should be placed. Like the Fast-path TCP
send process, the receive portion of the ATCP driver will then fill in a command buffer
with the MDL information from the client, map the buffer with packet and buffer
descriptors and send it to the INIC via a call to NdisSendPackets. Again, when the
response buffer is returned to the INIC miniport, the ATKSendComplete routine will be
called and the receive will complete. This relationship between the MDL, command
buffer and buffer and packet descriptors are the same as shown in the Fast-path send

section above.

4.6.3.2.3 Slow-path (FreeBSD)

P
£
i
A ﬁ
=
;""1.:
i

Slow-path sends pass through the FreeBSD stack until the ethernet header is prepended in
ether_output and the packet is ready to be sent. At this point a command buffer will be
filled with pointers to the ethernet frame, the command buffer will be mapped with a
packet and buffer descriptor and NdisSendPackets will be called to hand the packet off to
the miniport. In the illustration below we show the relationship between the mbufs,
command buffer, and buffer and packet descriptors. Since we will use a mbuf to map the
command buffer, we can simply link the data mbufs directly off of the command buffer

mbuf. This will make the freeing of resources much simpler.

Packet |—P» mbuf _l_’ >

Desc ‘ mbu mbu mbu
—v——r Command /f /f £
Buffer Buffer

Desc. Data Data || Data

Provisional Pat. App. of Alacritech, Inc. 44

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US .
*Pr ' Alacritech, Ex. 2019 Page 178

[
I
FE
ER R
ek
.e :0‘.'2
=
£z
=
i

4.6.3.2.4 Non-data command buffer

The transmit path is also used to send non-data commands to the card. For example, the
ATCP driver gives a context to the INIC by filling in a command buffer, mapping it with
a packet and buffer descriptor, and calling NdisSendPackets.

Packet mbuf
Desc I C

N A Command
Buffer Buffer

Desc.

4.6.3.3 ATKProtocolSendComplete

Given the above different types of sends, the ATKProtocolSendComplete routine will
perform various types of actions when it is called from NDIS. First it must examine the
reserved area of the packet descriptor to determine what type of request has completed.
In the case of a slow-path completion, it can simply free the mbufs, command buffer, and
descriptors and return. In the case of a fast-path completion, it will need to notify the
TCP fast path routines of the completion so TCP can in turn complete the client’s IRP.
Similarly, when a non-data command buffer completes, TCP will again be notified that
the command sent to the INIC has completed.

4.7 TDI Filter Driver

In a first embodiment of the product, the INIC handles only simple-case data transfer
operations on a TCP connection. (These of course constitute the large majority of CPU
cycles consumed by TCP processing in a conventional driver.)

There are many other complexities of the TCP protocol which must still be handled by
host driver software: connection setup and breakdown, out-of-order data, nonstandard
flags, etc.

The NT OS contains a fully functional TCP/IP driver, and one solution would be to
enhance this so that it is able to detect our INIC and take advantage of it by "handing off"
data-path processing where appropriate.

Unfortunately, we do not have access to NT source, let alone permission to modify NT.

Thus the solution above, while a goal, cannot be done immediately. We instead provide
our own custom driver software on the host for those parts of TCP processing which are
not handled by the INIC.

This presents a challenge. The NT network driver framework does make provision for
multiple types of protocol driver: but it does not easily allow for multiple instances of
drivers handling the SAME protocol.

Provisional Pat. App. of Alacritech, Inc. - , 45
Inventors Laurence B. Boucher et al.

i S
ExpressAMaﬂ Label # EH756230105U Alacritech, Ex. 2019 Page 179

7Y
ol

g

LU I e e L IR

e

For example, there are no "hoo!s" into the Microsoft TCP/IP driver which would allow
for routing of IP packets between our driver (handling our INICs) and the Microsoft
driver (handling other NICs).

Our approach to this is to retain the Microsoft driver for all non-TCP network processing
(even for traffic on our INICs), but to invisibly "steal" TCP traffic on our connections and
handle it via our own (BSD-derived) driver. The Microsoft TCP/IP driver is unaware of
TCP connections on interfaces we handle.

The network "bottom end” of this artifice is described earlier in the document. In this
section we will discuss the "top end": the TDI interface to higher-level NT network client

software.

We make use of an NT facility called a filter driver. NT allows a special type of driver
("filter driver") to attach itself "on top" of another driver in the system. The NT I/O
manager then arranges that all requests directed to the attached driver are sent first to the
filter driver; this arrangement is invisible to the rest of the system.

The filter driver may then either handle these requests itself, or pass them down to the
underlying driver it is attached to. Provided the filter driver completely replicates the
(externally visible) behavior of the underlying driver when it handles requests itself, the
existence of the filter driver is invisible to higher-level software.

The filter driver attaches itself on top of the Microsoft TCP/IP driver; this gives us the
basic mechanism whereby we can intercept requests for TCP operations and handle them
in our driver instead of the Microsoft driver.

However, while the filter driver concept gives us a framework for what we want to
achieve, there are some significant technical problems to be solved. The basic issue is
that setting up a TCP connection involves a sequence of several requests from higher-
level software, and it is not always possible to tell, for requests early in this sequence,
whether the connection should be handled by our driver or by the Microsoft driver.

Thus for many requests, we store information about the request in case we need it later,
but also allow the request to be passed down to the Microsoft TCP/IP driver in case the
connection ultimately turns out to be one which that driver should handle.

Let us look at this in more detail, which will involve some examination of the TDI
interface: the NT interface into the top end of NT network protocol drivers. Higher-level
TDI client software which requires services from a protocol driver proceeds by creating
various types of NT FILE_OBJECTs, and then making various DEVICE_IO_CONTROL
requests on these FILE_OBJECTs.

There are two types of FILE_OBJECT of interest here. Local IP addresses that are
represented by ADDRESS objects, and TCP connections that are represented by
CONNECTION objects. The steps involved in setting up a TCP connection (from the
"active", client, side) are:

Provisional Pat. App. of Alacritech, Inc. 46
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 180

o TR B DR T

(for a CONNECTION object)

1) Creéte an ADDRESS object.

2) Create a CONNECTION object.

3) Issue a TDI_ASSOCIATE_ADDRESS io-control to associate the CONNECTION
object with the ADDRESS object.

4) Issue a TDI_CONNECT io-control on the CONNECTION object, specifying the
remote address and port for the connection.

Initial thoughts were that handling this would be straightforward: we would tell, on the
basis of the address given when creating the ADDRESS object, whether the connection is
for one of our interfaces or not. After which, it would be easy to arrange for handling
entirely by our code, or entirely by the Microsoft code: we would simply examine the
ADDRESS object to see if it was "one of ours" or not.

There are two main difficulties, however.

First, when the CONNECTION object is created, no address is specified: it acquires a
local address only later when the TDI_ASSOCIATE_ADDRESS is done. Also, when a
CONNECTION object is created, the caller supplies an opaque "context cookie” which
will be needed for later communications with that caller. Storage of this cookie is the
responsibility of the protocol driver: it is not directly derivable just by examination of the
CONNECTION object itself. If we simply passed the "create” call down to the Microsoft
TCP/IP driver, we would have no way of obtaining this cookie later if it turns out that we
need to handle the connection.

Therefore, for every CONNECTION object which is created we allocate a structure to
keep track of information about it, and store this structure in a hash table keyed by the
address of the CONNECTION object itself, so that we can locate it if we later need to
process requests on this object. We refer to this as a "shadow" object: it replicates
information about the object stored in the Microsoft driver. (We must, of course, also
pass the create request down to the Microsoft driver too, to allow it to set up its own
administrative information about the object.)

A second major difficulty arises with ADDRESS objects. These are often created with
the TCP/IP "wildcard" address (all zeros), the actual local address is assigned only later
during connection setup (by the protocol driver itself.) Of course, a "wildcard" address
does not allow us to determine whether connections that will be associated with this
ADDRESS object should be handled by our driver or by the Microsoft one. Also, as with
CONNECTION objects, there is "opaque" data associated with ADDRESS objects that
cannot be derived just from examination of the object itself. (In this case addresses of
callback functions set on the object by TDI_SET_EVENT io-controls.)

. Thus, as in the CONNECTION object case, we create a "shadow" object for each

ADDRESS object which is created with a wildcard address. In this we store information
(principally addresses of callback functions) which we will need if we are handling
connections on CONNECTION objects associated with this ADDRESS object. We store
similar information, of course, for any ADDRESS object which is explicitly for one of

Provisional Pat. App. of Alacritech, Inc. 47
Inventors Laurence B. Boucher et al.

i 756230105US
Express Mail Label # EH756230 Alacritech, Ex. 2019 Page 181

o R T

b
}

ﬁ:

our interface addresses; in this case we don't need to also pass the create request down to
the Microsoft driver.

With this concept of "shadow" objects in place, let us revisit the steps involved in setting
up a connection, and look at the processing required in our driver.

First, the TDI client makes a call to create the ADDRESS object. Assuming that this is a
"wildcard" address, we create a "shadow" object before passing the call down to the

Microsoft driver.

The next step (omitted in the earlier list for brevity) is normally that the client makes a
number of TDI_SET EVENT io-control calls to associate various callback functions
with the ADDRESS object. These are functions that should be called to notify the TDI
client when certain events (such arrival of data or disconnection requests etc) occur. We
store these callback function pointers in our "shadow" address object, before passing the

call down to the Microsoft driver.

Next, the TDI client makes a call to create a CONNECTION object. Again, we create
our "shadow" of this object.

Next, the client issues the TDI_ ASSOCIATE_ADDRESS io-control to bind the
CONNECTION object to the ADDRESS object. We note the association in our

. "shadow" objects, and also pass the call down to the Microsoft driver.

Finally the TDI client issues a TDI_CONNECT io-control on the CONNECTION object,
specifying the remote IP address (and port) for the desired connection. At this point, we
examine our routing tables (see section XXX for details of routing) to determine if this
connection should be handled by one of our interfaces, or by some other NIC. Ifitis
ours, we mark the CONNECTION object as "one of ours" for future reference (using an
opaque field which NT FILE_OBJECTS provide for driver use.) We then

proceed with connection setup and handling in our driver, using information stored in our
"shadow" objects. The Microsoft driver does not see the connection request or any
subsequent traffic on the connection.

If the connection request is NOT for one of our interfaces, we pass it down to the
Microsoft driver. Note carefully, however, that we can not simply discard our "shadow"
objects at this point. The TDI interface allows re-use of CONNECTION objects: on
termination of a connection, it is legal for the TDI client to dissociate the
CONNECTION object from its current . Thus our "shadow" objects must be retained for
the lifetime ADDRESS object, re-associate it with another, and use it for another
connection of the NT FILE_OBJECTS: the subsequent connection could turn out to be

via one of our interfaces!

Provisional Pat. App. of Alacritech, Inc. 48
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US Alacritech, Ex. 2019 Page 182

4.7.1 Timers .

4.7.1.1 Keepalive Timer

We don’t want to implement keepalive timers on the INIC. It would in any case be a
very poor use of resources to have an INIC context sitting idle for two hours.

4.7.1.2 1dle Timer

We will keep an idle timer in the ATCP driver for connections that are managed by the
INIC (resetting it whenever we see activity on the connection), and cause a flush of
context back to the host if this timer expires. We may want to make the threshold
substantially lower than 2 hours, to reclaim INIC context slots for useful work sooner.
May also want to make that dependent on the number of contexts which have actually
been handed out: don’t need to reclaim them if we haven’t handed out the max.

5 Receive & Transmit Microcode Design

This section provides a general description of the design of the microcode that
will execute on two of the sequencers of the Protocol Processor on the INIC. The overall
philosophy of the INIC is discussed in other sections. This section will discuss the INIC
microcode in detail.

5.1 Design Overview

As specified in other sections, the INIC supplies a set of 3 custom processors that
will provide considerable hardware-assist to the microcode running thereon. The
following lists the main hardware-assist features:

e header processing with specialized DMA engines to validate an input header and
generate a context hash, move the header into fast memory and do header
comparisons on a DRAM-based TCP control block.

e DRAM fifos for free buffer queues (large & small), receive-frame queues, event
queues etc.
header compare logic
checksum generation
multiple register contexts with register access controlled by simply setting a context
register . The Protocol Processor will provide 512 SRAM-based registers to be shared
among the 3 sequencers.
automatic movement of input frames into DRAM buffers from the MAC Fifos.
run receive processing on one sequencer and transmit processing on the other. This
was chosen as opposed to letting both sequencers run receive and transmit. One of the
main reasons for this is that the header-processing hardware can not be shared and
interlocks would be needed to do this. Another reason is that interlocks would be
needed on the resources used exclusively by receive and by transmit.

e The INIC will support up to 256 TCP connections (TCB’s). A TCB is associated with
an input frame when the frame’s source and destination IP addresses and source and
destination ports match that of the TCB. For speed of access, the TCB’s will be

Provisional Pat. App. of Alacritech, Inc. 49
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US Alacritech, Ex. 2019 Page 183

maintained in a hash table in NIC DRAM to save sequential searching. There will
however, be an index in hash order in SRAM. Once a hash has been generated, the
TCB will be cached in SRAM. There will be up to 8 cached TCBs in SRAM. These
cache locations can be shared between both sequencers so that the sequencer with the
heavier load will be able to use more cache buffers. There will also be 8 header
buffers to be shared between the sequencers. Note that each header buffer is not
statically linked to a specific TCB buffer. In fact the link is dynamic on a per-frame
basis. The need for this dynamic linking will be explained in later sections. Suffice to
say here that if there is a free header buffer, then somewhere there is also a free TCB
SRAM buffer.

e There were 2 basic implementation options considered here. The first was single-
stack and the second was a process model. The process model was chosen here
because the custom processor design is providing zero-cost overhead for context
switching through the use of a context base register, and because there will be more
than enough process slots (or contexts) available for the peak load. It is also expected
that all “local” variables will be held permanently in registers whilst an event is being
processed.

e The features that provide this are:

256 of the 512 SRAM-based registers will be used for the register contexts. This
can be divided up into 16 contexts (or processes) of 16 registers each. Then 8 of
these will be reserved for receive and 8 for transmit. A Little’s Law analysis has
shown that in order to support 512 byte frames at maximum arrival rate of 4 * 100
Mbits, requires more than 8 jobs to be in process in the NIC. However each job
requires an SRAM buffer for a TCB context and at present, there are only 8 of
these currently specified due to SRAM space limits. So more contexts (e.g. 32 * 8
regs each) do not seem worthwhile. Refer to Appendix A for more details of this
analysis.

A context switch simply involves reloading the context base register based on the
context to be restarted, and jumping to the appropriate address for resumption.

e To better support the process model chosen, the code will lock an active TCB into an
SRAM buffer while either sequencer is operating on it. This implies there will be no
swapping to and from DRAM of a TCB once it is in SRAM and an operation is

= started on it. More specifically, the TCB will not be swapped after requesting that a

DMA be performed for it. Instead, the system will switch to another active “process”.
Then it will resume the former process at the point directly after where the DMA was
requested. This constitutes a zero-cost switch as mentioned above.

¢ individual TCB state machines will be run from within a “process”. There will be a
state machine for the receive side and one for the transmit side. The current TCB
states will be stored in the SRAM TCB index table entry.

e The INIC will have 16 MB of DRAM. The current specification calls for dividing a
large portion of this into 2K buffers and control allocation / deallocation of these
buffers through one of the DRAM fifos mentioned above. These fifos will also be
used to control small host buffers, large host buffers, command buffers and command
response buffers.

e For events from one sequencer to the other (i.e. RCV & XMT), the current
specification calls for using simple SRAM CIO buffers, one for each direction.

Each sequencer handles its own timers independently of the others.

¢ Contexts will be passed to the INIC through the Transmit command and response

buffers. INIC-initiated TCB releases will be handled through the Receive small

Provisional Pat. App. of Alacritech, Inc. 50
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 184

N RS

2
a5y

AT

buffers. Host-initiated releases will use the Command buffers. There needs to be strict
handling of the acquisition and release of contexts to avoid windows where for
example, a frame is received on a context just after the context was passed to the
INIC, but before the INIC has “accepted” it.

e T/TCP (Transaction TCP): the initial INIC will not handle T/TCP connections. This

is because they are typically used for the HTTP protocol and the client for that
protocol typically connects, sends a request and disconnects in one segment. The
server sends the connect confirm, reply and disconnect in his first segment. Then the
client confirms the disconnect. This is a total of 3 segments for the life of a context.
Typical data lengths are on the order of 300 bytes from the client and 3K from the
server. The INIC will provide as good an assist as seems necessary here by
checksumming the frame and splitting headers and data. The latter is only likely when
data is forwarded with a request such as when a filled-in form is sent by the client.

5.1.1 SRAM Requirements

The following are SRAM requirements for the Receive and Transmit engines:

TCB buffers 256 bytes * 16 4096
Header buffers 128 bytes * 16 2048
TCB hash index 16 bytes * 256 4096
Timers 128
DRAM Fifo queues 128 bytes * 16 2048

~12K bytes

Depending upon the available space, the number of TCB buffers may be increased to 16.

5.1.2 General Philosophy

The basic plan is to have the host determine when a TCP connection is able to be handed
to the INIC, setup the TCB and pass it to the card via a command in the Transmit queue.
TCBs that the INIC owns can be handed back to the host via a request from the Receive

or Transmit sequencers or from the host itself at any time.

When the INIC receives a frame, one of its immediate tasks is to determine if the frame is
for a TCB that it controls. If not, the frame is passed to the host on a generic interface
TCB. On transmit, the transmit request will specify a TCB hash number if the request is
on a INIC-controlled TCB. Thus the initial state for the INIC will be transparent mode in
which all received frames-are directly passed through and all transmit requests will be
stmply thrown on the appropriate wire. This state is maintained until the host passes
TCBs to the INIC to control. Note that frames received for which the INIC has no TCB
(or it is with the host) will still have the TCP checksum verified if TCP/IP, and may split
the TCPIP header off into a separate buffer.

Provisional Pat. App. of Alacritech, Inc. 51
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 185

LT B

5.1.3 Register Usage

There will be 512 registers available. The first 256 will be used for process contexts. The

remaining 256 will be split between the 3 sequencers as follows:
257 — 320: 64 for RCV general processing / main loop.

321 - 384: 64 for XMT general processing / main loop.

385 — 512: 128 for 3" sequencer use.

5.2 Receive Processing

5.2.1 Main Loop
The following is a summary of the main loop of Receive:

forever {
while there are any Receive events {
if (a new event) {
if (no new context available)
ignore the event;
} ,
call appropriate event handler to service the event;
this may make a waiting process runnable or set up
a new process to be run (get free context, hddr buffer,
TCB buffer, set the context up). '
} :
while any process contexts are runable {
run them by jumping to the start/resume address;
if (process complete)
free the context;

5.2.2 Receive Events

The events that will be processed on a given context are:

e accept a context

o release a context command (from the host via Transmit)
¢ release a context request (from Transmit)

e receive a valid frame; this will actually become 2 events based on the received frame

- receive an ACK, receive a segment

e receive an “invalid” frame 1i.e. one that causes the TCB to be flushed to the host

e avalid ACK needs to be sent (delayed ACK timer expiry).
e There are expected to be the following sources of events:

1. Receive input queue: it is expected that hardware will automatically DMA arriving
frames into frame buffers and queue an event into a RCV-event queue.

2. Timer event queue: expiration of a timer will queue an event into this queue.

3. Transmit sequencer queue: for requests from the transmit processor.

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

52

Alacritech, Ex. 2019 Page 186

itz
#:

i
3

TR "

For the sake of brevity the following only discusses receive-frame processing .

5.2.3 Receive Details — Valid Context

The base for the receive processing done by the INIC on an existing context is the fast-
path or “header prediction” code in the FreeBSD release. Thus the processing is divided
into 3 parts: header validation and checksumming, TCP processing and subsequent SMB

processing.

5.2.3.1 Header Validation

There is considerable hardware assist here. The first step in receive processing is to dma
the frame header into an SRAM header buffer. It is useful for header validation to be
implemented in conjunction with this dma by scanning the data as it flies by. The
following tests need to be “passed”:

e MAC header: destination address is our MAC address (not MC or BC too), the
Ethertype is IP.

e [P header: header checksum is valid, header length = 5, IP length > header length,
protocol = TCP, no fragmentation, destination IP is our IP address.

e TCP header: checksum is valid (incl. pseudo-header), header length =5 or 8
(timestamp option), length is valid, dest port = SMB or FTP data, no
FIN/SYN/URG/PSH/RST bits set, timestamp option is valid if present, segment is in
sequence, the window size did not change, this is not a retransmission, it is a pure ACK
or apure receive segment, and most important, a valid context exists. The valid-context
test is non-trivial in the amount of work involved to determine it. Also note that for pure
ACKs, the window-size test will be relaxed. This is because initially the output PERSIST
state is to be handled on the INIC.

Many but perhaps not all of these tests will be performed in hardware — depending upon
the embodiment

5.2.3.2 TCP Processing

Once a frame has passed the header validation tests, processing splits based on whether
the frame is a pure ACK or a pure received segment.

5.2.3.2.1 Pure RCV Packet

The design is to split off headers into a small header buffer and pass the aligned data in
separate large buffers. Since a frame has been received, eventually some receiver process
on the host will need to be informed. In the case of FTP, the frame is pure data and it is
passed to the host immediately. This involves getting large buffers and dmaing the data
into them, then setting the appropriate details in a small buffer that is used to notify the
host. However for SMB, the INIC is performing reassembly of data when the frame
consists of headers and data. So there may not yet be a complete SMB to pass to the host.
In this case, a small buffer will be acquired and the header moved into it. If the received
segment completes an SMB, then the procedures are pretty much as for FTP. If it does
not, then the scheme is to at least move the received data (not the headers) to the host to
free the INIC buffers and to save latency. The list of in-progress host buffers is
maintained in the TCB and moved to the header buffer when the SMB is complete.

Provisional Pat. App. of Alacritech; Inc. 53
Inventors Laurence B. Boucher et al.

il Label # EH756230105US
Express Mail Label # Alacritech, Ex. 2019 Page 187

el T e

€

The final part of pure-receive processing is to fire off the delayed ACK timer for this
segment.

5.23.2.2 Pure ACK

Pure ACK processing implies this TCB is the sender, so there may be transmit buffers
that can be returned to the host. If so, send an event to the Transmit processor (or do the
processing here). If there is more output available, send an event to the transmit
processor. Then appropriate actions need to be taken with the retransmission timer.

5.2.3.3 SMB Processing
The following is the format of the SMB header of an SMB frame:

31 0
NetBIOS header '
TYPE FLAGS < LENGTH 2>
SMB header OxFF g @ wg
COM RCLS REH ERR...
..ERR REB / FLG Reserved
Resetved
Reserved
Resetved
TID PID
UID MID
WCT VWV[]
BCC Data..........
Notes (interesting fields):
LENGTH 17 bit Length of SMB message (0 — 128K)
COM SMB command
WCT Count (16 bit) of parameter words in VW VT[]
Vwv Variable number of parameter words
BCC Bytes of data following
54

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US Alacritech, Ex. 2019 Page 188

The LENGTH field of the NetBIOS header will be used to determine when a complete
SMB has been received and the header buffer with appropriate details can be posted to

the host.

The interesting commands are the write commands: SMBwrite (0xB), SMBwriteBraw
(0x1D), SMBwriteBmpx (0x1E), SMBwriteBs (0x1F), SMBwriteclose (0x2C),
SMBwriteX (0x2F), SMBwriteunlock (0x14). These are interesting because they will
have data to be aligned in host memory. The point to note about these commands is that
they each have a different WCT field, so that the start offset of the data depends on the
command type. SMB processing will thus need to be cognizant of these types.

5.2.4 Receive Details — No Valid Context

The design here is to provide as much assist as possible. Frames will be checksummed
and the TCPIP headers may be split off.

5.2.5 Receive Notes

1. PRU_RCVD or the equivalent in Microsoft language: the host application has to
tell the INIC when he has accepted the received data that has been queued. This is
so that the INIC can update the receive window. It is an advantage for this
mechanism to be efficient. This may be accomplished by piggybacking these on

" transmit requests (not necessarily for the same TCB).

. Keepalive Timer: for a INIC-controlled TCB, the INIC will not maintain this
timer. This leaves the host with the job of determining that the TCB is still active.

3. Timestamp option: it is useful to support this option in the fast path because the

BSD implementation does. Also, it can be very helpful in getting a much better

estimate of the round-trip time (RTT) which TCP needs to use.

4. Idle timer: the INIC will not maintain this timer (see Note 2 above).

Frame with no valid context: The INIC may split TCP/IP headers into a separate

header buffer.

n

e HHCE W R R R
N

Provisional Pat. App. of Alacritech, Inc. 55
Inventors Laurence B. Boucher et al.
E Mail Label # EH756230105US ,
xpress Mail Label # Alacritech, Ex. 2019 Page 189

EIREN L

1
4

NFH

A WEET " dh

5.3 Transmit Processing

5.3.1 Main Loop.
The following is a summary of the main loop of Transmit:

forever {
while there are any Transmit events {
if (a new event) {
if (no new context available)
ignore the event;

}

call appropriate event handler to service the event;
this may make a waiting process runnable or set up
a new process to be run (get free context, hddr buffer,

TCB buffer, set the context up).
} .

while any process contexts are runable {
run them by jumping to the start/resume address;

if (process complete)
free the context;

}

5.3.2 Transmit Events

The events that will be processed on a given context and their sources are: -

accept a context (from the Host).

release a context command (from the Host).

release a context command (from Receive).

valid send request and window > 0 (from host or RCV sequencer).

valid send request and window = 0 (from host or RCV sequencer).

send a window update (host has accepted data).

persist timer expiration (persist timer).

context-release event e.g. window shrank (XMT processing or retransmission timer).
receive-release request ACK(from RCV sequencer).

® & @ ¢ ¢ o ¢ o

5.3.3 Transmit Details — Valid Context
The following is an overview of the transmit flow:

The host posts a transmit request to the INIC by filling in a command buffer with
appropriate data pointers etc and posting it to the INIC via the Command Buffer Address
register. Note that there is one host command buffer queue, but there are 4 physical
transmit lines. So each request needs to include an interface number as well as the context
number. The INIC microcode will dma the command in and place it in 1 of 4 internal
command queues which the transmit sequencer will work on. This is so that transmit
processing can round-robin service these 4 queues to keep all 4 interfaces busy, and not

Provisional Pat. App. of Alacritech, Inc. : 56
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US Alacritech, Ex. 2019 Page 190

: .
B

let a highly-active interface lock out the others (which would happen with a single
queue).

- The transmit request may be a segment that is less than the MSS, or it may be as much as

a full 64K SMB READ. Obviously the former request will go out as one segment, the
latter as a number of MSS-sized segments. The transmitting TCB must hold on to the
request until all data in it has been transmitted and acked. Appropriate pointers to do this
will be kept in the TCB. A large buffer is acquired from the free buffer fifo, and the MAC
and TCP/IP headers are created in it. It may be quicker/simpler to keep a basic frame
header set up in the TCB and either dma directly this into the frame each time. Then data
1s dmad from host memory into the frame to create an MSS-sized segment. This dma also
checksums the data. Then the checksum is adjusted for the pseudo-header and placed into
the TCP header, and the frame is queued to the MAC transmit interface which may be
controlled by the third sequencer. The final step is to update various window fields etc in
the TCB. Eventually either the entire request will have been sent and acked, or a
retransmission timer will expire in which case the context is flushed to the host. In either
case, the INIC will place a command response in the Response queue containing the
command buffer handle from the original transmit command and appropriate status.

The above discussion has dealt how an actual transmit occurs. However the real
challenge in the transmit processor is to determine whether it is appropriate to transmit at
the time a transmit request arrives. There are many reasons not to transmit: the receiver’s
window size is <= 0, the Persist timer has expired, the amount to send is less than a full
segment and an ACK is expected / outstanding, the receiver’s window is not half-open
etc. Much of the transmit processing will be in determining these conditions.

5.3.4 Transmit Details — No Valid Context

The main difference between this and a context-based transmit is that the queued request
here will already have the appropriate MAC and TCP/IP (or whatever) headers in the
frame to be output. Also the request is guaranteed not to be greater than MSS-sized in
length. So the processing is fairly simple. A large buffer is acquired and the frame is
dmad into it, at which time the checksum is also calculated. If the frame is TCP/IP, the
checksum will be appropriately adjusted if necessary (pseudo-header etc) and placed in
the TCP header. The frame is then queued to the appropriate MAC transmit interface.
Then the command is immediately responded to with appropriate status through the
Response queue.

5.3.5 Transmit Notes

1. Slow-start: the INIC will handle the slow-start algorithm that is now a part of the
TCP standard. This obviates waiting until the connection is sending a full-rate
before passing it to the INIC.

2. Window Probe vs Window Update: an explanation for posterity....

A Window Probe is sent from the sending TCB to the receiving TCB, and it means the
sender has the receiver in PERSIST state. Persist state is entered when the receiver
advertises a zero window. It is thus the state of the transmitting TCB. In this state, he
sends periodic window probes to the receiver in case an ACK from the receiver has been
lost. The receiver will return his latest window size in the ACK.

Provisional Pat. App. of Alacritech, Inc. 57
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US Alacritech, Ex. 2019 Page 191

T R W SR

A Window Update is sent from the receiving TCB to the sending TCB, usually to tell him
that the receiving window has altered. It is mostly triggered by the upper layer when it
accepts some data. This probably means the sending TCB is viewing the receiving TCB
as being in PERSIST state.

3. Persist state: it is designed to handle Persist state on the INIC. It seems
unreasonable to throw a TCB back to the host just because its receiver advertised a
zero window. This would normally be a transient situation, and would tend to
happen mostly with clients that do not support slow-start. Alternatively, the code
can easily be changed to throw the TCB back to the host as soon as a receiver
advertises a zero window.

4. MSS-sized frames: the INIC code will expect all transmit requests for which it has
no TCB to not be greater than the MSS. If any request is, it will be dropped and an
appropriate response status posted.

5. Silly Window avoidance: as a receiver, the INIC will do the right thing here and
not advertise small windows — this is easy. However it is necessary to also do
things to avoid this as a sender, for the cases where a stupid client does advertise
small windows. Without getting into too much detail here, the mechanism requires
the INIC code to calculate the largest window advertisement ever advertised by the
other end. It is an attempt to guess the size of the other end’s receive buffer and
assumes the other end never reduces the size of its receive buffer. See Stevens Vol.
1 pp. 325-326.

6 The Utility Processor

6.1 Summary

The folIoWing is a summary of the main functions of the utility sequencer of the
MiCroprocessor:

e look at the event queues: Event13Type & Event23Type (we assume there will be an
event status bit for this - USE_EV13 and USE_EV23) in the events register; these
are events from sequencers 1 and 2; they will mainly be XMIT requests from the XMT
sequencer. Dequeue request and place the frame on the appropriate interface.
¢ RCV-frame support: in the model, RCV is done through VinicReceive() which is
registered by the lower-edge driver, and is called at dispatch-level. This routine calls
VinicTransferDataComplete() to check if the xfer (possibly DMA) of the frame into host
buffers is complete. The latter rtne is also called at dispatch level on a DMA-completion
interrupt. It queues complete buffers to the RCV sequencer via the normal queue
mechanism.
e Other processes may also be employed here for supporting the RCV sequencer.
e service the following registers: (this will probably involve micro-interrupts)
~ Header Buffer Address register:
buffers are 256 bytes long on 256-byte boundaries.
31-8 - physical addr in host of a set of
contiguous hddr buffers
7-0 - number of hddr buffers passed.
Use contents to add to SmallHType queue

Provisional Pat. App. of Alacritech, Inc. 58
Inventors Laurence B. Boucher et al.

ilL 105US . :
Express Mail Label # EH756230105U Alacritech, Ex. 2019 Pagé 192

Data Buffer Handle & Data Buffer Address registers:
buffers are 4K long aligned on 4K boundaries...
Use contents to add to the FreeType queue.

Command Buffer Address register:
buffers are multiple of 32 bytes up to 1K long (2**5 * 32)
31-5 - physical addr in host of cmd buffer
4-0 - length of cmd in bytes/32
(i.e. multiples of 32 bytes)
Points to host cmd; get FreeSType buffer and move
command into it; queue to Xmit0-Xmit3Type queues.

Response Buffer Address register:
buffers are 32 bytes long on 32-byte boundaries
31-8 - physical addr in host of a set of
contiguous resp buffers
7-0 - number of resp buffers passed.
Use contents to add to the ResponseType queue.

e low buffer threshold support: set approp bits in the ISR when the available-buffers
count in the various queues filled by the host falls below a threshold.

6.2 Further Operations of the Utility Processor

t

T T

The utility processor of the microprocessor housed on the INIC is responsible for setting
up and implementing all configuration space and memory mapped operations, and also as
described below, for managing the debug interface.

All data transfers, and other INIC initiated transfers will be done via DMA.
Configuration space for both the network processor function and the utility processor
function will define a single memory space for each. This memory space will define the
basic communication structure for the host. In general, writing to one of these memory
locations will perform a request for service from the INIC. This is detailed in the
memory description for each function. This section defines much of the operation of the
Host interface, but should be read in conjunction with the Host Interface Strategy for the
Alacritech INIC to fully define the Host/INIC interface.

PR
E
=
]
=
?-—:
=]
==
T

Two registers, DMA hardware and an interrupt function comprise the INIC interface to
the Host through PCI. The interrupt function is implemented via a four bit register
(PCI_INT) tied to the PCI interrupt lines. This register is directly accessed by the
MiCroprocessor.

THE MICROPROCESSOR uses two registers, the PCI_Data_Reg and the
PCI_Address_Reg, to enable the Host to access Configuration Space and the memory
space allocated to the INIC. These registers are not available to the Host, but are used by
THE MICROPROCESSOR to enable Host reads and writes. The function of these two
registers is as follows.

Provisional Pat. App. of Alacritech, Inc. 59
Inventors Laurence B. Boucher et al.

i 105US
Express Mail Label # EH75623010 Alacritech, Ex. 2019 Page 193

T
i
.
:

PCI_Data_Reg

This register can be both read and written by THE MICROPROCESSOR. - On write
operations from the host, this register contains the data being sent from the host. On read
operations, this register contains the data to be sent to the host.

PCI_Address Reg

This is the control register for memory reads and writes from the host. The structure of
the register is as follows:

Bit31 — 24 Byte enable 7 - 0. Only the low order four bits are
valid for 32 bit addressing mode.
Bit23 - 0 Memory access
1 Configuration access
Bit 22 -~ 0O Read (to Host)
1 Write (from Host)

1 Bit 21 - 1 Data Valid

g Bit20—- 16 Reserved
o Bit15—- 0 Address
rﬁ Dtiring a write operation from the Host the PCI_Data_Reg contains valid data after Data
= Valid is set in the PCI_Address_Reg. Both registers are locked until THE
= MICROPROCESSOR writes the PCI_Data_Reg, which resets Data Valid.
f All read operations will be direct from SRAM. Memory space based reads will return 00.
L Configuration space reads will be mapped as follows:
:: " Configuration Space 1 RAM Address Offset
Z 00 00

04 04

08 7 08

0C 0C

10 10

3C 14

- Configuration Space 2

00 00

04 18

08 08

oC 1C

10 20

3C 24

All other reads to configuration space will return 00.

Provisional Pat. App. of Alacritech, Inc. 60
Inventors Laurence B. Boucher et al.

il 1 # EH756230105US
Express Mail Label # Alacritech, Ex. 2019 Page 194

A T T T

6.2.1 CONFIGURATION S!ACE

The INIC is implemented as a multi-function device. The first device is the network
controller, and the second device is the debug interface. An alternative production
embodiment may implement only the network controller function. Both configuration
space headers will be the same, except for the differences noted in the following

description.

Vendor ID — This field will contain the Alacritech Vendor ID. One field will be used for

both functions. The Alacritech Vendor ID is hex 139A.

Device ID — Chosen at Alacritech on a device specific basis. One field will be used for

both functions.

Command — Initialized to 00. All bits defined below as not enabled (0) will remain 0.
Those that are enabled will be set to 0 or 1 depending on the state of the system. Each

function (network and debug) will have its own command field.

Bit0—0 I/O accesses are not enabled

Bit1-1 Memory accesses are enabled

Bit2-1 Bus master is enabled

Bit3-0 Special Cycle is not enabled

Bit4-1 Memory Write and Invalidate is enabled
Bit5-0 VGA palette snooping is not enabled
Bit6 -1 Parity checking is enabled

Bit7-0 Address data stepping is not enabled
Bit 8 - SERR# is enabled

Bit9—-0 Fast back to back is not enabled

Status — This is not initialized to zero. Each function will have its own field. The

configuration is as follows:

Bit5-1 66 MHz capable is enabled. This bit will be set if the INIC
Detects the system running at 66 MHz on reset

Bit6-0 User Definable Features is not enabled
Bit7-1 Fast Back-to-Back slave transfers enabled

Bit8—1 Parity Error enabled — This bit is initialized to 0
Bit 9,10 — 00 — Fast device select will be set if we are at 33 MHz
01 — Medium device select will be set if we are at

66 MHz

Bit 11 -1 Target Abort is implemented. Initialized to O.
Bit 12—1 Target Abort is implemented. Initialized to 0.
Bit 13—1 Master Abort is implemented. Initialized to 0.

Bit 14 -1 ~ SERR# is implemented. Initialized to O.
Bit 15—1 Parity error is implemented. Initialized to 0.

Revision ID — The revision field will be shared by both functions.

Class Code — This is 02 00 00 for the network controller, and for the debug interface.

The field will be shared.

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

61

Alacritech, Ex. 2019 Page 195

Cache Line Size — This is im'gized to zero. Supported sizes are 16, 32, 64 and 128
bytes. This hardware register is replicated in SRAM and supported separately for each
function, but THE MICROPROCESSOR will implement the value set in Configuration
Space 1 (the network processor).

Latency Timer — This is initialized to zero. The function is supported. This hardware
register is replicated in SRAM. Each function is supported separately, but THE
MICROPROCESSOR will implement the value set in Configuration Space 1 (the
network processor).

Header Type — This is set to 80 for both functions, but will be supported separately.

BIST — Is implemented. In addition to responding to a request to run self test, if test after
reset fails, a code will be set in the BIST register. This will be implemented separately
for each function.

Base Address Register — A single base address register is implemented for each function.
It is 64 bits in length, and the bottom four bits are configured as follows:

BitO0—- 0 Indicates memory base address

Bit 1,2—-00 Locate base address anywhere in 32 bit memory space

Bit3—- 1 Memory is prefetchable

ST

CardBus CIS Pointer — Not implemented—initialized to O.

P
e

LT E TR

Subsystem Vendor ID — Not implemented—initialized to 0.
Subsystem ID — Not implemented—initialized to O.

Expansion ROM Base Address — Not implemented—initialized to O.

{
i

f
L

{1

Interrupt Line — Implemented—initialized to 0. This is implemented separately for each
function.

Interrupt Pin — This is set to 01, corresponding to INTA# for the network controller, and
02, corresponding to INTB# for the debug interface. This is implemented separately for
each function.

Min_Gnt — This can be set at a value in the range of 10, to allow reasonably long bursts
on the bus. This is implemented separately for each function.

Max_Lat — This can be set to 0 to indicate no particular requirement for frequency of
access to PCI. This is implemented separately for each function.

6.2.2 MEMORY SPACE

Because each of the following functions may or may not reside in a single location, and
may or may not need to be in SRAM at all, the address for each is really only used as an
identifier (label). There is, therefore, no control block anywhere in memory that
represents this memory space. When the host writes one of these registers, the utility

Provisional Pat. App. of Alacritech, Inc. 62
Inventors Laurence B. Boucher et al.

i 230105US
Express Mail Label # EH75623010 Alacritech, Ex. 2019 Page 196

processor will construct the data required and transfer it. Reads to this memory will
generate 00 for data.

6.2.2.1 Network Processor

The following four byte registers, beginning at location h00 of the network processor’s
allocated memory, are defined.

00— Interrupt Status Pointer -- Initialized by the host to point to a four byte area
where status is stored

04 — Interrupt Status — Returned status from host. Sent after one or more
status conditions have been reset. Also an interlock for storing any
new status. Once status has been stored at the Interrupt Status Pointer
location, no new status will be stored until the host writes the Interrupt
Status Register. New status will be ored with any remaining
uncleared status (as defined by the contents of the returned status)
and stored again at the Interrupt Status Pointer location. Bits are
as follows:
Bit 31 — ERR -- Error bits are set
Bit 30 — RCV — Receive has occurred
Bit 29 — XMT ~ Transmit command complete
Bit 25 — RMISS — Receive drop occurred due to no buffers

08 — Interrupt Mask — Written by the host. Interrupts are masked for each
of the bits in the interrupt status when the same bit in the mask
register is set. When the Interrupt Mask register is written and as
a result a status bit is unmasked, an interrupt is generated. Also,
when the Interrupt Status Register is written, enabling new status
to be stored, when it is stored if a bit is stored that is not masked
by the Interrupt Mask, an interrupt is generated.

P W Eal

0C — Header Buffer Address — Written by host to pass a set of header buffers to the
o INIC.

10— Data Buffer Handle — First register to be written by the Host to transfer a receive
data buffer to the INIC. This data is Host reference data. It is not used by the
INIC, it is returned with the data buffer. However, to insure integrity of the
buffer, this register must be interlocked with the Data Buffer Address register.
Once the Data Buffer Address register has been written, neither register can be
written until after the Data Buffer Handle register has been read by THE
MICROPROCESSOR.

14 - Data Buffer Address — Pointer to the data buffer being sent to the INIC by the
- Host. Must be interlocked with the Data Buffer Handle
register.

18 — Command Buffer Address XMTO — Pointer to a set of command
buffers sent by the Host. THE MICROPROCESSOR will DMA the buffers to
local DRAM found on the FreeSType queue and queue the Command

Provisional Pat. App. of Alacritech, Inc. 63
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 197

Buffer Address XMT0 with the local address replacing the host
Address.

1C - Command Buffer Address SMT1
20~ Command Buffer Address SMT2
24 — Command Buffer Address SMT3.

28 — Response Buffer Address -- Pointer to a set of response buffers sent
by the Host. These will be treated in the same fashion as the
Command Buffer Address registers.

6.2.2.2 Utility Processor

Ending status will be handled by the utility processor in the same fashion as it is handled
by the network processor. At present two ending status conditions are defined B31 —
command complete, and B30 — error. When end status is stored an interrupt is
generated.

Two additional registers are defined, Command Pointer and Data Pointer. The Host is
responsible for insuring that the Data Pointer is valid and points to sufficient memory
before storing a command pointer. Storing a command pointer initiates command decode
and execution by the debug processor. The Host must not modify either command or
Data Pointer until ending status has been received, at which point a new command may
be initiated. Memory space is write only by the Host, reads will receive 00. The format
is as follows:

00— Interrupt Status Pointer -- Initialized by the host to point to a four byte area
where status is stored

04 — Interrupt Status — Returned status from host. Sent after one or more
status conditions have been reset. Also an interlock for storing any
new status. Once status has been stored at the Interrupt Status Pointer
location, no new status will be stored until the host writes the Interrupt
Status Register. New status will be ored with any remaining
uncleared status (as defined by the contents of the returned status)
and stored again at the Interrupt Status Pointer location. Bits are
as follows:

Bit 31 — CC — Command Complete
Bit 30 — ERR -- Error

Bit29 — Transmit Processor Halted
Bit28 — Receive Processor Halted
Bit27 — Utility Processor Halted

08 — Interrupt Mask — Written by the host. Interrupts are masked for each
of the bits in the interrupt status when the same bit in the mask
register is set. When the Interrupt Mask register is written and as
aresult a status bit is unmasked, an interrupt is generated. Also,

Provisional Pat. App. of Alacritech, Inc. 64
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 198

when the Interrupt Status Register is written, enabling new status
to be stored, when it is stored if a bit is stored that is not masked
by the Interrupt Mask, an interrupt is generated.

0C - Command Pointer — Points to command to be executed. Storing
this pointer initiates command decode and execution.

10— Data Pointer — Points to the data buffer. This is used for both read and write data,
determined by the command function.

7 Debug Interface

In order to provide a mechanism to debug the microcode running on the microprocessor
sequencers, a debug process has been defined which will run on the utility sequencer.
This processor will interface with a control program on the host processor over PCL

7.1 PCI Interface

This interface is defined in the combination of the Utility Processor and the Host
Interface Strategy sections, above.

7.2 Command Format

= The first byte of the command, the command byte, defines the structure of the remainder
’E’ of the command. The first five bits of the command byte are the command itself. The
. next bit is used to specify an alternate processor, and the last two bits specify which

processors are intended for the command.

i

LN

i

7.2.1 Command Byte

0
2fin,
-

gt
A8 By

7-3 2 1-0
Command Alt. Proc. Processor

7.2.2 Processor Bits

00 — Any Processor

01 — Transmit Processor
10 — Receive Processor
11 — Utility Processor

Provisional Pat. App. of Alacritech, Inc. 65
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 199

FEH
7
[
¥

5%
i &
e
]
E_E
=3
=8

7.2.3 Alternate Processor

This bit defines which processor should handle debug processing if the utility processor
1s defined as the processor in debug.

0 — Transmit Processor
1 — Receive Processor

7.2.4 Single Byte Commands
00 — Halt

This command asynchronously halts the processor.
08 — Run

This command starts the processor.
10 — Step

This command steps the processor.

7.2.5 Eight Byte Commands

18 — Break
0 1 2-3 4-17
Command Reserved Count Address

This command sets a stop at the specified address. A count of 1 causes the specified
processor to halt the first time it executes the instruction. A count of 2 or more causes the
processor to halt after that number of executions. The processor is halted just before
executing the instruction. A count of 0 does not halt the processor, but causes a sync
signal to be generated. If a second processor is set to the same break address, the count
data from the first break request is used, and each time either processor executes the

instruction the count is decremented.

20 — Reset Break

0 1-3 4-7
Command Reserved Address

Provisional Pat. App. of Alacritech, Inc. 66

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 200

e 0 Tl R A

A Tl LR

This command resets a previously set break point at the specified address. Reset break
fully resets that address. If multiple processors were set to that break point, all will be
reset.

28 — Dump
0 1 2-3 4-7
Command Descriptor Count Address

This command transfers to the host the contents of the descriptor. For descriptors larger
than four bytes, a count, in four byte increments is specified. For descriptors utilizing an
address the address field is specified.

7.2.6 Descriptor

00 — Register

This descriptor uses both count and address fields. Both fields are four byte based (a
count of 1 transfers four bytes).

01 — Sram
This descriptor uses both count and address fields. Count is in four byte blocks. Address

is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address.

02 — Dram
This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address

03 — Cstore
This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address

Stand-alone descriptors:

The following descriptors do not use either the count or address fields. They transfer the
contents of the referenced register.

04 — CPU_STATUS

05 -PC

Provisional Pat. App. of Alacritech, Inc. 67
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
: Alacritech, Ex. 2019 Page 201

el

6

06 — ADDR_REGA

07 - ADDR_REGB

08 —RAM_BASE

09 —FILE BASE

0A - INSTR_REG L

0B — INSTR_REG H

0C-MAC_DATA

0D - DMA_EVENT

OE —MISC_EVENT

0F - Q_IN_RDY

10-Q _OUT_RDY

11 -LOCK STATUS

12 — STACK - This returns 12 bytes

13 - Sense _ Reg
This register contains four bytes of data. If error status is posted for a command, if the
next command that is issued reads this register, a code describing the error in more detail

may be obtained. If any command other than a dump of this register is issued after error
status, sense information will be reset.

30— Load
0 1 2-3 4-7
Command Descriptor Count Address

This command transfers from the host the contents of the descriptor. For descriptors
larger than four bytes, a count, in four byte increments is specified. For descriptors
utilizing an address the address field is specified.

7.2.7 Descriptor

00 — Register

This descriptor uses both count and address fields. Both fields are four byte based.

Provisional Pat. App. of Alacritech, Inc. 68
Inventors Laurence B. Boucher et al.

E Mail Label # EH756230105US
xpress el Labe Alacritech, Ex. 2019 Page 202

This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address.

01 — Sram

02 — Dram

This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address

03 — Cstore
This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address. This applies to WCS only.

Stand-alone descriptors:

= The following descriptors do not use either the count or address fields. They transfer the
ENi contents of the referenced register.

04 — ADDR_REGA

05— ADDR_REGB
06 — RAM_BASE
07 — FILE_BASE

08 — MAC_DATA

e
k=g

il
o

09 - Q_IN_RDY

0A - Q OUT_RDY

0B - DBG_ADDR

38 —Map
This command allows an instruction in ROM to be replaced by an instruction in WCS.
The new instruction will be located in the Host buffer. It will be stored in the first eight

bytes of the buffer, with the high bits unused. To reset a mapped out instruction, map it
to location 00. ‘

0 1-3 4-7
Command Address to Address to
Map To Map Out
Provisional Pat. App. of Alacritech, Inc. 69

Inventors Laurence B. Boucher et al.

E Mail Label # EH756230105US
rpress Yar Lbe Alacritech, Ex. 2019 Page 203

8 HARDWARE SPECIFICATION

FEATURES

¢ Peripheral Component Interconnect (PCI) Interface |

- Universal PCI interface supports both 5.0V and 3.3V signaling environments.
- Supports both 32-bit and 64 bit PCI interface.

- Supports PCI clock frequencies from 15MHz to 66MHz

- High performance bus mastering architecture.

- Host memory based communications reduce register accesses.

- Host memory based interrupt status word reduces register reads.
- Plug and Play compatible.

- PCI specification revision 2.1 compliant.

- PCI bursts up to 512 bytes.

- Supports cache line operations up to 128 bytes.

- Both big-endian and little-endian byte alignments supported.

- Supports Expansion ROM.

M ERINRS

4

¢ Network Interface

i 8

- Four internal 802.3 and ethernet compliant Macs.

- Media Independent Interface (MII) supports external PHYSs.
- 10BASE-T, 100BASE-TX/FX and 100BASE-T4 supported.
- Full and half-duplex modes supported.

o i D

- Automatic PHY status polling notifies system of status change. '

- Provides SNMP statistics counters.

- Supports broadcast and multicast packets.

- Provides promiscuous mode for network monitoring or multiple unicast address detection.
- Supports “huge packets” up to 32KB.

- Mac-layer loop-back test mode.

- Supports auto-negotiating Phys.

Provisional Pat. App. of Alacritech, Inc. 70
Inventors Laurence B. Boucher et al.

E Mail Label # EH756230105US
rpress Yiar e ' Alacritech, Ex. 2019 Page 204

¢ Memory Interface '
- External Dram buffering of transmit and receive packets.

- Buffering configurable as 4MB, 8MB, 16MB or 32MB.

- 32-bit interface supports throughput of 224MB/s

- Supports external FLASH ROM up to 4 MB, for diskless boot applications.

- Supports external serial EEPROM for custom configuration and Mac addresses.

¢ Protocol Processor

- High speed, custom, 32-bit processor executes 66 million instructions per second.
- Processes IP, TCP and NETBIOS protocols.

- Supports up to 256 resident TCP/IP contexts.

- Writable control store (WCS) allows field updates for feature enhancements.

e Power

- 3.3V chip operation.
- PCI controlled 5.0V/3.3V 1/O cell operation.

LEES
g_Z
7=
“‘;".7’
B
Eel

%
i

e Packaging

T

e
e

T

(1]
N

- 272-pin plastic ball grid array.
- 91 PCI signals.
- 68 MII signals.

-- 58 external memory signals.

9 {nn
e

g

- 1 clock signal.
- 54 signals split between power and ground.

- 272 total pins.

Provisional Pat. App. of Alacritech, Inc. 71
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 205

GENERAL DESCRIPTION

The microprocessor is a 32-bit, full-duplex, four channel, 10/100-Megabit per second (Mbps), Intelligent
Network Interface Controller, designed to provide high-speed protocol processing for server applications. It
combines the functions of a standard network interface controller and a protocol processor within a single
chip. Although designed specifically for server applications, The microprocessor can be used by PCs,
workstations and routers or anywhere that TCP/IP protocols are being utilized.

When combined with four 802.3/MII compliant Phys and Synchronous Dram (SDram), the INIC comprises
four complete ethernet nodes. It contains four 802.3/ethernet compliant Macs, a PCI Bus Interface Unit (BIU),
a memory controller, transmit fifos, receive fifos and a custom TCP/IP/NETBIOS protocol processor. The
INIC supports 10Base-T , 100Base-TX, 100Base-FX and 100Base-T4 via the MII interface attachment of
appropriate Phys.

The INIC Macs provide statistical information that may be used for SNMP. The Macs operate in promiscuous
mode allowing the INIC to function as a network monitor, receive broadcast and multicast packets and
implement multiple Mac addresses for each node.

Any 802.3/MII compliant PHY can be utilized, allowing the INIC to support 10BASE-T, 10BASE-T2,
100BASE-TX, 100Base-FX and 100BASE-T4 as well as future interface standards. PHY identification and
initialization is accomplished through host driver initialization routines. PHY status registers can be polled
continuously by the INIC and detected PHY status changes reported to the host driver. The Mac can be
configured to support a maximum frame size of 1518 bytes or 32768 bytes.

The 64-bit, multiplexed BIU provides a direct interface to the PCI bus for both slave and master functions.
The INIC is capable of operating in either a 64-bit or 32-bit PCI environment, while supporting 64-bit
addressing in either configuration. PCI bus frequencies up to 66MHz are supported yielding instantaneous bus
transfer rates of 533MB/s. Both 5.0V and 3.3V signaling environments can be utilized by the INIC.
Configurable cache-line size up to 256B will accommodate future architectures, and Expansion ROM/Flash
support allows for diskless system booting. Non-PC applications are supported via programmable big and little
endian modes. Host based communication has been utilized to provide the best system performance possible.

The INIC supports Plug-N-Play auto-configuration through the PCI configuration space. External pull-up and
pull-down resistors, on the memory I/O pins, allow selection of various features during chip reset. Support of
"an external eeprom allows for local storage of configuration information such as Mac addresses.

External SDram provides frame buffering, which is configurable as 4MB, 8MB, 16MB or 32MB using the

appropriate SIMMs. Use of -10 speed grades yields an external buffer bandwidth of 224MB/s. The buffer

provides temporary storage of both incoming and outgoing frames. The protocol processor accesses the frames

within the buffer in order to implement TCP/IP and NETBIOS. Incoming frames are processed, assembled

then transferred to host memory under the control of the protocol processor. For transmit, data is moved from
~ host memory to buffers where various headers are created before being transmitted out via the Mac.

Provisional Pat. App. of Alacritech, Inc. 72
Inventors Laurence B. Boucher et al.

E Mail Label # EH756230105US
xpress Al -abe Alacritech, Ex. 2019 Page 206

AT T " T Sy

BLOCK DIAGRAM
MIIA MIIB MIIC
MacA MacB MacC
XmtA XmtB XmtC
& & &
RcevA RcvB RevC

MIID

MacD

REG FILE
EXTERNAL
8KI WCS
MEMORY
lKIilOM Bis
PROC 1KB X 128 Sram EXTERNAL
u &DMACul ["
: I
v
PCI BUS
INTERFACE UNIT
PCI BUS

Provisional Pat. App. of Alacritech, Inc.

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 207 .

73

" OUTLINE l

o Cores/Cells

LSI Logic Ethernet-110 Core, 100Base & 10Base Mac with MII interface.
LSI Logic single port Sram, triple port Stam and ROM available.

LSI Logic PCI 66MHz, 5V compatible 1/O cell.

LSI Logic PLL

¢ Die Size / Pin Count

LSI Logic G10 process.
MODULE ESC SPEED AREA
Scratch RAM, 1Kx128 sport, 4.37 ns nom., 06.77 mm®
5 WCS, 8Kx49 sport, 6.40 ns nom., 18.29 mm?
E MAP, 128x7 sport, 3.50 ns nom., 00.24 mm?
= ROM, 1Kx49 32col, 5.00 ns nom., 00.45 mm?
= REGs, 512x32 tport, 6.10 ns nom., 03.49 mm?
Ei:: Macs, I5mm?x 4 = 03.30 mm?
—:::' PLL, Smm? = 00.55 mm?
L MISC LOGIC, 117,260 gates / (5035 gates / mm?® = 23.29 mm*
= TOTAL CORE 56.22 mm’
(Core side)* * = 56.22 mm?
Core side = 07.50 mm
Die side = core side + 1.0 mm (1/0 cells) = 08.50 mm
Die area = 8.5 mm x 8.5 mm = 72.25 mm?
Pads needed = 220 signals x 1.25 (vss, vdd) = 27S pins
LSI PBGA = 272 pins
Provisional Pat. App. of Alacritech, Inc. 74

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US]
Alacritech, Ex. 2019 Page 208

.
! .
H

¢ Datapath Bandwidth
(10MB/s/100Base) x 2 (full duplex) x 4 connections = 80 MB/s
Average frame size : = 512 B
Frame rate = 80MB/s / 512B = 156,250 frames / s
Cpu overhead / frame = (256 B context read) + (64B header read) +
{128B context write) + (128B misc.) = 512B / frame
Total bandwidth = (512B in) + (512B out) + (512B Cpu) = 1536B / frame
Dram Bandwidth required = (1536B/frame) x (156,250 frames/s) = 240MB/s
Dram Bandwidth @ 60MHz = (32 bytes / 167ns) = 202MB/s
Dram Bandwidth @ 66MHz = (32 bytes / 150ns) = 224MB/s
PCI Bandwidth required = 80MB/s
PCI Bandwidth available @ 30‘MHz, 32b, average = 46MB/s
PCI Bandwidth available @ 33 MHz, 32b, average - = S0MB/s
PCI Bandwidth available @ 60 MHz, 32b, average = 92MB/s
i PCI Bandwidth available @ 66 MHz, 32b, average = 100MB/s
g PCI Bandwidth available @ 30 MHz, 64b, average = 92MB/s
E_‘-f : PCI Bandwidth available @ 33 MHz, 64b, average = 100MB/s
: PCI Bandwidth available @ 60 MHz, 64b, average = 184MB/s
;E PCI Bandwidth available @ 66 MHz, 64b, average = 200MB/s
:; e Cpu Bandwidth
: Receive frame interval = 512B / 40MB/s | = 12.8us
=z Instructions / frame @ 60MHz = (12.8us/frame) / (50ns/instruction) = 256
instructions/frame)
Instructions / frame @ 66MHz = (12.8us/frame) / (45ns/instruction) = 284
instructions/frame
Required instructions / frame (per Clive) . = 250 instructions/frame
Provisional Pat. App. of Alacritech, Inc. 75

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 209

¢ Performance Features .

- 512 registers improve performance through reduced scratch ram accesses and reduced instructions.
- Register windowing eliminates context-switching overhead.

- Separate instruction and data paths eliminate memory contention.

- Totally resident control store eliminates stalling during instruction fetch.

- Multiple logical processors eliminate context switching and improve real-time response.
- Pipelined architecture increases operating frequency.

- Shared register and scratch ram improve inter-processor communication.

- Fly-by state-Machine assists address compare and checksum calculation.

- TCP/IP-context caching reduces latency.

- Hardware implemented queues reduce Cpu overhead and latency.

- Horizontal microcode greatly improves instruction efficiency.

- Automatic frame DMA and status between Mac and dram buffer.

-- Deterministic architecture coupled with context switching eliminates processor stalls.

e

.

mi
st

i

i

Provisional Pat. App. of Alacritech, Inc. 76

Inventors Laurence B. Boucher et al.

E Mail Label # EH756230105US
xpress WAl L2 Alacritech, Ex. 2019 Page 210

‘ " PROCESSOR

The processor is a convenient means to provide a programmable state-machine which is capable of processing
incoming frames, processing host commands, directing network traffic and directing PCI bus traffic. Three
processors are implemented using shared hardware in a three-level pipelined architecture which launches and
completes a single instruction for every clock cycle. The instructions are executed in three distinct phases
corresponding to each of the pipeline stages where each phase is responsible for a different function.

The first instruction phase writes the instruction results of the last instruction to the destination operand,
modifies the program counter (Pc), selects the address source for the instruction to fetch, then fetches the
instruction from the control store. The fetched instruction is then stored in the instruction register at the end of
the clock cycle.

The processor instructions reside in the on-chip control-store, which is implemented as a mixture of ROM and
Sram. The ROM contains 1K instructions starting at address 0x0000 and aliases each 0x0400 locations
throughout the first 0x8000 of instruction space. The Sram (WCS) will hold up to 0x2000 instructions starting
at address 0x8000 and aliasing each 0x2000 locations throughout the last 0x8000 of instruction space. The
ROM and Sram are both 49-bits wide accounting for bits [48:0] of the instruction microword. A separate
mapping ram provides bits [55:49] of the microword (Mapaddr) to allow replacement of faulty ROM based
instructions. The mapping ram has a configuration of 128x7 which is insufficient to allow a separate map
address for each of the 1K ROM locations. To allow re-mapping of the entire 1K ROM space, the map ram
address lines are connected to the address bits Fetch{9:3]. The result is that the ROM is re-mapped in blocks
— of 8 contiguous locations.

= The second instruction phase decodes the instruction which was stored in the instruction register. It is at this
HE point that the map address is checked for a non-zero value which will cause the decoder to force a Jmp

= instruction to the map address. If a non-zero value is detected then the decoder selects the source operands for
the Alu operation based on the values of the OpdASel, OpdBSel and AluOp fields. These operands are then
stored in the decode register at the end of the clock cycle. Operands may originate from File, Sram, or flip-
flop based registers. The second instruction phase is also where the results of the previous instruction are
written to the Sram.

The third instruction phase is when the actual Alu operation is performed, the test condition is selected and the
Stack push and pop are implemented. Results of the Alu operation are stored in the results register at the end
of the clock cycle.

% Following is a block diagram which shows the hardware functions associated with each of the instruction
phases. Note that various functions have been distributed across the three phases of the instruction execution in
order to minimize the combinatorial delays within any given phase. .

Provisional Pat. App. of Alacritech, Inc. 77
Inventors Laurence B. Boucher et al. : ‘

E Mail Label # EH756230105US :
xpress MRt Labe Alacritech, Ex. 2019 Page 211

Cpu BLOCK-DIAGRAM
CLK
Jaie piubatetuts intutateint: dalnbeteind siufutetuts intntedninty Sulebeiie =1 t--r--r-——1t--"--r-t1t--"""i----"--
l/, .
! | Sram | LOAD | LOAD FLAG "":: ‘l‘”‘ FETCH| LOAD LOAD | LOAD
i trl
1
bo| cal | om | cal DEC STORE(ot | cul Cul | Cml
1
N
) v Yy Vv \
\ | Adar | FILE | FF | ALU |FLAG| & ¢ |INSTR|FETCH Sram |DEBUG
—P» & BASED PC |STAck| Addr
! | Daa | CTX | REGs | CC's | REG's REG | Addr &BASE| Addr
. 512x32
| S S SN PR SR I .| FLE [_|____ i I SRV IS SN A ———
4
l,,
|| 4Kx32 addr dout dout
H scratch addr INCR INCR
=~ H Sram
i3 :
= ; Y V VvV V¥ \ A /
e AR INSTRUCTION DECODER LOAD
= N AND
5 : OPERAND MULTIPLEXER Crrl
i: '
. A AN J
_ | .| FILE | ALU FLAG Sram [DEBUG
) & LIT PC |STAck| Addr
| cx |oPp's| ccs | op | SEL | SEL [qQcMmp &BASE| Addr
I\\
N\
D T To iys FEPRPRE DUy KU PSS ENI U PIPIpENIRY SPURpI SIS PR I (I PR R S .
d
I//
' TEST QRAM STAck
[}
: ALU < & [INCR
: MUX QALU EXCHANGE Ctrl
[}
Y
- 4 v
_ | o| FILE | ALU | ALU | DEST | TEST | FLAG | QFLGS PGM Sram [DEBUG
) OPD & | ur PC |STAck| Addr
) | CTX | OUT | C€C's | SEL | RSLT | SEL | QAddr Cul &BASE| Addr
I\\
~
| WSPRRPIE) SN U | U ——— S U N NS (N Sy S PR T SR P (pp——
Provisional Pat. App. of Alacritech, Inc. 78

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US]
Alacritech, Ex. 2019 Page 212

. '

The micro-instructions are divided into six types according to the program control directive. The micro-
instruction is further divided into sub-fields for which the definitions are dependent upon the instruction type.
The six instruction types are listed below.

INSTRUCTION SET

INSTRUCTION-WORD FORMAT

IYPE [55:491 [48:47] [46:42] [41:33} {32:241] [23:16] [15:00]

Jcc " 0b0000000 0b00, AluOp, OpdASel, OpdBSel, TstSel, Literal
Jmp 0b0000000 0bo1, AluOp, Opdasel, OpdBSel, = FlgSel, Literal
Jsr 0b0000000 0b10, AluOp, OpdaSel, OpdBSel, FlgSel, Literal
Rts 0b0000000 0bl1l, AluOp, Opdasel, OpdBSel, Ohff, Literal
Nxt 0b0000000 0bl1, AluOp, Opdasel, OpdBSel, FlgSel, Literal
Map MapAddr 0bXX, ObXXXXX, ObXXXXXXXXX, ObXXXXXXXXX, OhXX, OhXXXX

All instructions include the Alu operation (AluOp), operand “A” select (OpdASel), operand “B” select
(OpdBSel) and Literal fields. Other field usage depends upon the instruction type.

The “jump condition code” (Jec) instruction causes the program counter to be altered if the condition selected
by the “test select” (TstSel) field is asserted. The new program counter (Pc¢) value is loaded from either the
Literal field or the AluOut as described in the following section and the Literal field may be used as a source
for the Alu or the ram address if the new Pc value is sourced by the Alu.

The “jump” (Jmp) instruction causes the program counter to be altered unconditionally. The new program
counter (Pc) value is loaded from either the Literal field or the AluQut as described in the following section.
The format allows instruction bits 23:16 to be used to perform a flag operation and the Literal field may be
used as a source for the Alu or the ram address if the new Pe¢ value is sourced by the Alu.

The “jump subroutine” (Jsr) instruction causes the program counter to be altered unconditionally. The new
program counter {Pc¢) value is loaded from either the Literal field or the AluOut as described in the following
section. The old program counter value is stored on the top location of the Pc-Stack which is implemented as a
LIFO memory. The format allows instruction bits 23:16 to be used to perform a flag operation and the Literal
field may be used as a source for the Alu or the ram address if the new Pc value is sourced by the Alu.

The “Nxt” (Nxt) instruction causes the program counter to increment. The format allows instruction bits
23:16 to be used to perform a flag operation and the Literal field may be used as a source for the Alu or the
ram address.

The “return from subroutine” (Rts) instruction is a special form of the Nxt instruction in which the “flag
operation” (FlgSel) field is set to a value of Ohff. The current Pe value is replaced with the last value stored in
the stack. The Literal field may be used as a source for the Alu or the ram address.

The Map instruction is provided to allow replacement of instructions which have been stored in ROM and is
implemented any time the “map enable” (MapEn) bit has been set and the content of the “map address”
{(MapAddr) field is non-zero. The instruction decoder forces a jump instruction with the Ala operation and
destination fields set to pass the MapAddr field to the program control block.

The program conirol is determined by a combination of PgmCtrl, DstOpd, FigSel and TstSel. The behavior
of the program control is defined with the following "C-like" description.

Provisional Pat. App. of Alacritech, Inc. 79
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US _
Alacritech, Ex. 2019 Page 213

if (MapEn & (MapAddr != 0b0000000)) {
Stackc = Stackc;
StackB = StackB;
StackA = StackA;
InstrAddr = 0h8000 | Pc[2:0] | (MapAddr << 3);
Pc = InstrAddr + (Bxecute & ~DbgMd);
Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

EQUENCER BEHAVIOR

else if (PgmCtrl == Jecc){
Stackc = Stacke;
StackB = StackB;
StackA = StackA;

//re-map instr

//conditional jump

InstrAddr = ~Tst@TstSel ? Pc: (AluDst==Pc) ? AluOut:Literal;

Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstraAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

else if (PgmCtrl == Jmp) {

Stackc = Stacke;
StackB = StackB;
StackA = Stacka;
InstrAddr = (AluDst == Pc} ? AluOut:Literal;

Pc = InstrAddr + (Bxecute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr + (Rxecute & DbgMd) ;}

else if (PgmCtrl == Jsr)
Stackc = StackB;
StackB = StackA;
StackA = Pc;
InstrAddr = (AluDst == Pc) ? AluOut:Literal;
Pc = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddr:InstrAddr;

DbgAddr = DbgAddr + (Execute & DbgMd) ;)

else if (FlgSel == Rts){
InstrAddr = StackAa;
StackA = StackB;
StackB = Stacke;
Stackc = ErrVec;
Pc = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd) ;}
else {
InstrAddr = Pc;

Stacka = StackA;
StackB = StackB;
Stackc = Stacke;
Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd) ;)

Provisional Pat. App. of Alacritech, Inc.

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

//3unmp

//jump subroutine

//return subroutine

//continue

80

Alacritech, Ex. 2019 Page 214

| | ‘
R .
. 'Y 4
1 . .

ALU OPERATIONS

AluOp OPERATION
0b00000 A= (A& ~(1 << B)); //bit clear

C=20; V= (B>=32) 7 1:0;

0b00001 A = (A & B); //logical and
C=0; V=20;

0b0G010 A = (Literal & B); //logical and
C=20; V=20;

0b00011 A = (~Literal & B); //logical and not
C=20;,V=20;

0b00100 A= (A]| (1 << B)); //bit set
C=20; Va (B>=32) ? 1:0;)

0b00101 A= (a] B); //logical or
C=0; V=20;

0b00110 A = (Literal | B); //logical or
C=20;, V=20;

L 0b00111 A = (~Literal | B); //logical or not
C=20; V=0;

0b01000 for (i=31; i»=0; i--) if B[i] continue; A=i; //priority enc
: : C=20; V= (B) ? 0:1;

0b01001 A= (A" B); //logical xor
0b01010 A = {({Literal} "~ B); //logical xor
C=20; V=20;

0b01011 A = ({~Literal} "~ B); //logical xor not
C=20; V= 20;

0b01100 A = B; / /move
C=0; V=20;
0b01101 A = B[31:24] ~ B[23:16] * B[15:08] * B[07:00];//hash

C=0;V=20;

0b01110 A = {B[23:16],B[31:24],B[07:00],B[15:08]}; //swap bytes
C=20;V=20;

0b01111 A = {B{15:00]}, B[31:16]}; //swap doublets
C=0; V=20;

Provisional Pat. App. of Alacritech, Inc. 81
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 215

i R ER T

o

==
i

AluOp

0b106000

0b10001

0bl0010

0b10011

0b10100

0bl10101

0bl0110

0bl0111

0b11000

0b11001

0b11010

0bli011

0bl1100

0bl1iio01

0bl1i110

0bl1111

FUNCTION

A= (A + B);

C= (A + B)[32); V= 0O;

A= (A+ B+ C);

C (A + B+ C}[32]; V= 0;

A = (Literal + B)};

c (Literal + B) [32]); V = O;

A = (-Literal + B};

C = (-Literal + B} [32]; V = 0;
A= (A - B);

C = (A - B)[32]; V= O;

A= (A-B - ~C);

c (A - B - ~C)[32]; V= 0;
A= (-A + B);

C = (-A + B)[32]; V = 0;

A= (-A + B - ~C); .
C= (-A +B - ~C)[32}; V= 0;

A = (A << B);

C = A[31]; V= (B >= 32) ? 0:1;
A = (B << Literal);

C = B[31]; V = (Literal >= 32) ? 0:1;
A= (B << 1};

C = B[31]:V=O;

n = (A - B);

€ = (A - B)[32]; V= 0;

A = (A >> B);

C = A[0); V= (B >= 32) ? 1:0;
A = (B >> Literal};

C = A[0]; V = (Literal >= 32) ? 1:0;
A= (B > 1);

C = Aaf[0}l; V=0;

n= (B - A);

C = (B - A)([32]; V= 0O;

Provisional Pat. App. of Alacritech, Inc.

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

//add B

//add B, carry
//add constant
//sub constant
//sub B

//sub B, borrow
//sub A

//sub A, borrow
//shift left A
//shift left B
//shift left B
/ /compare
//shift right A
//shift right B
//shift right B

//compare

82

Alacritech, Ex. 2019 Page 216

OpdSel SELECTED OPERANDS

0b000Oaaaaa File File@(OpdSel [4:0] | FileBase);
Allows paged access to any part of the register file.

0b000Olaaaaa CpuReg File@{2'bll, Cpuld, OpdSel[4:0]};
Allows direct access to Cpu specific registers.

0b001XXXXXX reserved Reserved for future expansion.

0b0100000XX CpuStatus 0b0000000000000BHDO0000000000000CC
This is a read-only register providing information about the Cpu executing
{OpdSel[1:0]) cycles after the current cycle. "CC" represents a value
indicating the Cpu. Currently, only Cpuld values of 0, 1 and 2 are returned.
"H" represents the current state of Hit, "D" indicates DbgMd and "B"
indicates BigMd. Writing this register has no effect.

0b0100001XX reserved Reserved for future expansion.

0b0100010XX Pc 0x0000AAAA ,
Writing to this address causes the program control logic to use AluOut as the
new Pc value in the event of a Jmp, Jce or Jsr instruction for the Cpu
executing during the current cycle. If the current instruction is Nxt, Map, or
Rts, the register write has no effect. Reading this register returns the value in
Pc for the Cpu executing (OpdSel[1:0]) cycles after the current cycle.

0b0100011XX DbgAddr 0xDOCOAAAA

' Writing to this register alters the contents of the debug address register
(DbgAddr) for the Cpu executing (OpdSel[1:0]) cycles after the current
cycle. DbgAddr provides the fetch address for the control-store when
DbgMd has been selected and the Cpu is executing. DbgAddr is also used
as the control-store address when performing a WrWes@DbgAddr or
RdWes@DbgAddr operation. “D” represents bit 31 of the register. It is a general
purpose flag that is used for event indication during simulation. Reading this
register returns a value of 0x00000000.

SN

0b01001XXXX reserved Reserved for future expansion.

0b010100000 RamAddr {0b1CCC, 0x000, Obl, AAAA}
RamAddr = AluOut[15] ? AluOut : (AluOut | RamBase);
PrevCC = AluOut[31]? CCC : AluCC;

A read/write register. When reading this register, the Alu condition codes from the previous
instruction are returned together with RamAddr.

bit name description
31 Always 1.
30 PrevC Previous Alu Carry.
29 PrevV Previcus Alu Overflow.
28 PrevZ Previous Alu Zero.
27:16 Always 0.
15 Always 1.
~ 14:0 RamAddr Contents of last Sram address used.

When writing this register, if alu_out[31] is set, the previous condition codes will be overwritten with
bits 30:28 of AluOut. If AluOut[15] is set, bits 14:0 will be written to the RamAddr. If AluQut [15]
is not set, bits 14:0 will be ored with the contents of the RamBase and written to the RamAddr.

Provisional Pat. App. of Alacritech, Inc. 83
Inventors Laurence B. Boucher et al.

E Mail Label # EH756230105US .
xpress Aal Labe Alacritech, Ex. 2019 Page 217

- ' .
i
! !
.
' . N

OpdSel ELECTED OPERAND
0b010100001 AddrRegA 0x0CO00AARA

AddrRegA = AluOut;

A read/write operand which loads AddrRegA used to provide the address for read and write
operations.

When AddrRegA[15] is set, the contents will be presented directly to the ram. When AddrRegA([15] is

reset, the contents will first be ored with the contents of the RamBase register before presentation to

the
ram. Writing to this register takes priority over Literal loads using FlgOp. Reading this register returns
the current value of the register.
0b010100010 AddrRegB 0x0000AARA

AddrRegB = AluOut;

A read/write operand which loads AddrRegB used to provide the address for read and write
operations.

When AddrRegB[15] is set, the contents will be presented directly to the ram. When AddrRegB[15] is

reset, the contents will first be ored with the contents of the RamBase register before presentation to

the
ram. Writing to this register takes priority over Literal loads using FlgOp. Reading this register returns
the current value of the register.
0b010100011 AddrRegAb 0x0000AAAA
AddrRegA = AluOut; AddrRegB = AluOut;
A destination only operand which loads AddrRegB and AddrRegA used to provide the address for
read
and write operations Writing to this register takes priority over Literal loads using FlgOp. Reading this
register returns the value 0x00000000.
00010100100 RamBase 0x0000AAAA
z RamBase = AluQOut;
fj:x A read/write register which provides the base address for ram read and write cycles. When
L RamAddr[15] is set, the contents will not be used. When RamAddr[15] is reset, the contents will first
_;-:" be ored with the contents of the RamBase register before presentation to the ram. Reading this register
= returns the value for the current Cpu.
0b010100101 FileBase 0b00COC00000000000000000C00AAAAAAAAN
FileBase = AluQOut;
FileAddr = OpdSel[8] ? OpdSel:(OpdSel + FileBase);
A read/write register which provides the base address for file read and write cycles. Wheﬁ OpdSel(8]
is
set, the contents will not be used and OpdSel will be presented directly to the address lines of the file.
When OpdSel{8] is reset, the contents will first be ored with the contents of the FileBase register
before presentation to the file. Reading this register returns the value for the current Cpu.
00010100110 InstrRegL OxIIIIIIII
' This is a read-only register which returns the contents of InstrReg[31:0]. Writing to this register has no
effect.
00010100111 InstrRegH OxO00IIIIII
This is a read-only register which returns the contents of InstrReg{55:32]. Writing to this register has
no

effect.

Provisional Pat. App. of Alacritech, Inc. 84
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 218

)

¥
s
3

A

OpdsSel

0b010101000

0b010101001

0b010101010

0b010101011

0b010101100

SELECTED OPERANDs

Minusl OxEEEfELESE

This is a read-only register which supplies a value Oxffffffff.. Writing to this
register has no effect.

FreeTime A free-running timer with a resolution of 1.00 microseconds and a maximum count
of 71 minutes. This timer is cleared during reset.

LiteralLL Instr[15:0]
A read-only register. Writing to this register has no effect

LiteralH Instrf15:0] < < 16;
A read-only register. Writing to this register has no effect

MacData - Writing to this address loads the AluOut data into the MacData register for use
during Mac operations. The Mac operation, resulting from writing to the MacOp register,
determines the definition of the MacData register contents as follows.

MacOp MacData definition
Mstop 1) 3.0:010:0.0.0.0.0.016:0.0.0:0.0:6.6.0.6.0.6:6.6.6.0.0.0.0.¢:6 0.4

MacData is not used for the StopM operation.

WrMcfg hrstl, rsvd, rsvd, crcen, fulld, hrstl, hugen, nopre, paden, prtyl, xdl10, ipgr1[6:0],
ipgr2[6:0], ipgt[6:0].
Loads the MacCfg register with the contents of the MacData register. Refer to LSI Logic's
Ethernet-110 Core Technical Manual for detailed definitions of these bits.

WrMrng ObXXXXXXXXXXXXXXXXXXXXXSSSSS5S8SSS

Loads seed[10:0] into the Mac's random number generator.
RdPhy ObXXXXRRRRYXXXPPPPXXXXXXXXXXXXXXXX

Reads register[R] of phy[P].
WrPhy ObXXXXRRRRXXXXPPPPDDDDDDDDDDDDDDDD

Writes register[R] of phy[P] with MacData[15:0].

Reading this register returns prsd[15:0] of Mac0 which contains phy status data returned to the
Mac at the completion of a RdPhy command. This data is invalid while MacBsy is asserted

as a result of a RdPhy command. Refer to the appropriate phy technical manual for a
definition of the phy register contents.

Provisional Pat. App. of Alacritech, Inc. 85
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 219

0b010101101 MacOp - A write only register. Writing to this address loads the MacSel register and staRts
execution of the specified operation as follows.

Opdsel SELECTED OPERANDS

AluOut description

OXXXXXX0XM Mstop - Halts execution of a MacOp for Mac[M]. The user must wait for MacBsy to be
deasserted before issuing another command or changing the contents of MacData.

OXXXXXX1XM WrMcfg - Writes the contents of MacData to the MacCfg register of Mac[M]. The user
must wait for MacBsy to be deasserted before issuing another command or changing the
contents of MacData.

OXXXXXX2XM WrMrng - Writes the contents of MacData to the seed register of Mac[M]. The user must
wait for MacBsy to be deasserted before issuing another command or changing the contents
of MacData.

OXXXXXX3XM RdPhy - Reads the contents of reg{R] for phy{P] on the MII management bus of Mac[M].
The contents may be read from MacData after MacBsy has been de-asserted.

OXXXXXX4XM WrPhy - Writes the contents of MacData[15:0] to the reg[R] of phy[P] on the MII

management bus of Mac[M]. The user must wait for MacBsy to be deasserted before issuing
another command or changing the contents of MacData.

OXXXXXX8XM WrAddrAL - Writes the contents of MacData[15:0] to MacAddrA[15:0] for Mac[M].
OXXXXXX9XM WrAddrAH - Writes the contents of MacData[11:0] to MacAddrA[47:16] for Mac[M].
OxXXXXXaxXM WrAddrBL - Writes the contents of MacData[15:0] to MacAddrB[15:0} for Mac[M].
OXXXXXXbXM WrAddrBH - Writes the contents of MacData[11:0] to MacAddrB[47:16] for Mac[M].
00010101110 ChCmd A write-only register.
name description
31:11 reserved Data written to these bits is ignored.
10:8 command 0 - Stops execution of the current operation and clears the corresponding event
flag.
1 - Transfer data from ExtMem to ExtMem.
2 - Transfer data from Pci to ExtMem.
3 - Transfer data from ExtMem to Pci.
4 - Transfer data from Sram to ExtMem.
5 - Transfer data from ExtMem to Sram.
6 - Transfer data from Pci to Sram.
7 - Transfer data from Sram to Pci.
07:05 reserved Data written to these bits is ignored.
04:00 Chld Provides the channel number for the channel command.
0b010101110 ChEvnt A read-only register.
bit name description
31:00 ChDn Each bit represents the done flag for the respective dma channel. These
bits are set by a dma sequencer upon completion of the channel
command. Cleared when the processor writes 0 to the corresponding
ChCmd register.
0b010101111 GenEvnt A read-only register.
bit name description
31 PciRdEvnt Indicates that a PCI initiator is attempting to read a pproc. register.
30 PciWrEvnt Indicates that a PCI initiator has posted a write to a pproc. register.
29 TimeEvnt An event which occurs once every 2.00 milliseconds.
28:00 reserved Reserved for future use.
Provisional Pat. App. of Alacritech, Inc. 86

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US _
Alacritech, Ex. 2019 Page 220

t 1 .
A .
H .
N .

0b010110000 QCtrl A write-only register used to select and manipulate a Q.
bit ~ npame__ description

31:11 reserved Data written to these bits are ignored.
10:8 QSz Used only during InitQ operations to specify the size of the QBdy in Dram.
7 - Queue depth is 32K entries (128KB).
6 - Queue depth is 16K entries (64KB).
5 - Queue depth is 8K entries (32KB).
4 - Queue depth is 4K entries (16KB).
3 - Queue depth is 2K entries (8KB).
2 - Queue depth is 1K entries (4KB).
1 — Queue depth is 512 entries (2KB).
0 - Queue depth is 256 entries (1KB).
7:5 QOp Specifies the queue operation to perform.
7 -DblQ Disables all queues.
6 -EnQ Enables all queues.
5 - RdBdy Increments the QBdyRdPtr and increments the QTIWrPtr.
4 - WrBdy Decrements the QBdyWrPtr and increments the QHdRdPtr.
3-RdQ Returns a queue entry in register QData..
2-rsvd Reserved. Not to be used.
1 - InitQ Set the queue status to empty and initializes QSz.
0 -SelQ Selects the QId to be utilized during writes to QData.

4:0 QId Specifies the queue on which to perform all operations except DblQ or EnQ.
0b010110001 QData A read/write register. Writing this register will result in the data being pushed on to

the selected queue. Reading this register fetches queue data popped off during the
previous RdQ operation.

0b010110010 reserved Reserved for future expansion.
0010110011 XecvCtrl A write-only register used to enable and disable Mac transmit and receive
‘ sub-channels.
bit name description
31:09 reserved Data written to these bits are ignored.
8 enable When set, indicates to the Mac transmit or receive sequencer that the subchannel

contains a transmit or receive descriptor.
07:05 reserved Data written to these bits is ignored.

04 RevCh Selects a Mac receive subchannel when set. Selects a Mac transmit subchannel
when
cleared.
03 reserved Data written to this bit are ignored.
02 SubCh Selects subchannel B when set or A when reset.
01:00 Macld Provides the Mac number for the subchannel enable bit.
00010110100 Lru 0x0000000A
A read/write operand indicating which of the 16 entries is least recently used. When
Reading This register the least recently used entry is returned, after which it is
automatically made the most recently used entry. This register should only be read
in conjunction with a '"Move' operation of the ALU, else the results are
unpredictable. Writing to this register forces the addressed entry to become the least
recently used entry.
0b010110101 Mru 0x0000000A

A write only operand forcing the addressed entry to become the most recently used
entry.

Provisional Pat. App. of Alacritech, Inc. 87
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 221

0b010111000

0b010111001

0b010111010

0b010111011

0b0101111XX

0b0110XXXXX

Ob01110XXXX

QInRdy

QOutRdy

QEmpty
QFull
reserved
Constants

reserved

® @

A read-only register comprising QHd not full flags for each of the 32 queues.
A read-only register comprising QT1 not empty flags for each of the 32 queues.
A read-only register comprising QEmpty flags for each of the 32 queues.

A read-only register comprising QFull flags for each of the 32 queues.
Reserved for future expansion.

{ob0o00, Opdsel(4:0]}

Reserved for future expansion.

Provisional Pat. App. of Alacritech, Inc. 88
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US i
Alacritech, Ex. 2019 Page 222

OpdsSel

0b01111XXXX

Oblaaaaaaaa

SELECTED OPERANDs

Sram OPERATIONS

OpdSel {3 =] Ad

0
1

nop

RamAddr = RamAddr + {OpdSel(1:0]);

OpdsSel [2} trangpose Ctrl
0 don't transpose
1 transpose bytes
OpdSel [1:0% RamOpdSz
0 quadlet
1 triplet
2 doublet
3 byte

RAM READ ATTRIBUTES

endian
mode
little
little
little
little
little
little
little
little
BIG
BIG
BIG
BIG
BIG
BIG
BIG
BIG

trans- byte Sram
_pose offs data
abcd -
abcX
abXX
axxx
abcd
abcX
abXX
aXxx
abcd
Xbed
XXcd
XXXd
abcd
Xbed
XXcd
xxxd

(=]

HFHEPFHFFPOOOCORFRKFEFEMKEFOOOO
WNKFEFOWNEOWNIMOWNR

RAM WRITE ATTRIBUTES

endian
mode
little
little
little
little
little
little
little
little
big
big
big
big
big
big
big
big

File

trans- Opd Alu
out
abcd
Xbcd
XXcd
XXXd
abecd
Xbed
XXcd
XxXxd
abcd
Xbcd
XXcd
XXxd
abcd
Xbed
XXcd
XXxd

]é
;

FHPHROOCOOKRKFHHOOOO
DOHOOUOUHOWDUOUIOoOWU L0

File@OpdSel [8:0];

SOURCE_OPERAND

8z=Q
abcd
trap
trap
trap
dcba
trap
trap
trap
abcd
trap
trap
trap
dcba
trap
trap
trap

8z=T
0bcd
Dabc
trap
trap
0dcb
Ocba
trap
trap
Oabc
Obcd
trap
trap
Ocba
odcb
trap
trap

8z=D
00cd
00bc
00ab
trap
oodc
o0ocb
00ba
trap
00ab

" 00bc

00cd
trap
00ba
00cb
00dc
trap

8z=B
0004
000c
000b
000a
0004
000c
000b
000a
000a
000b
000c
0004
000a
000b
000c
000d

SOURCE_QPERAND

ﬂ?:!
trap
bed-

QOF=2
trap
trap
cd--

trap
trap
trap
d=--
trap
trap
trap
---d
trap
trap
trap
---8

Allows direct, non-paged, access to the top half of the register file.

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

89

Alacritech, Ex. 2019 Page 223

TstSel

ObX00XXXXX
0bX0100000
0bX0100001
0bX0100010
0bX0100011
0bX0100100
0bX0100101
0bX0100110
0bX0100111
0bX0101000
0bX0101001
0bX010101X
0bX01011XX

0bX0110XXX

ObX0111XXX
0bXO01XXXXX

ObX1XXXXXX

FlgSel -

0b00000000

0b00000001

0b00000010
0b00000011
0b00000100
0b00000101
0b0000011X
0b00001XXX

0b00010XXX

0b00011XXX

SELECTED TEST

Tst

Tst = TstSel[7] *~ ¢
Tst = TstSel(7] ~ Vv
Tst = TstSel(7] * 2
Tst = TstSel([7] *
Tst = TstSel({7] *
Tst = TstSel(7] *
Tst = TstSel(7] *
Tst = TstSel([7] *

Tst = TstSel(7] *

TstSel{7] ~ AluOut[TstSel[4:0]]

//Alu bit
//carry
//error

//zero

(z | ~0) //less or equal
PrevC //previous carry
PrevV //previous error
PrevZ //previous zero
(PrevZ & Z) //64b zero

QOpDn //queue op okay

Tst = reserved

Tst = reserved

Tst = reserved

Tst = TstSel[7]
Lock(TstSel[2:0]) = 1;

Tst

TstSel [7]

/1tests the current value of
//the Lock then set it.

* Lock[TstSel{2:0]]

* Lock[TstSel{2:0]} //tests the value of Lock.

Tst = reserved

Tst

FLAG OPERATION

No operation.

SelfRst

SelBigEnd
SelLitEnd
DbiMap
EnbMap
reserved
reserved

ClIrLck

reserved

reserved

Forces a self reset for the entire chip excluding the PCI configuration
registers

Selects big-endian mode for ram accesses for the current Cpu.
Selects little-endian mode for ram accesses for the current Cpu.
Disable instruction re-mapping for the current Cpu.

Enable instruction re-mapping for the current Cpu.

Lock[FlgSel[2:0]] = 0;
Clears the semaphore register bit for the current Cpu only.

Provisional Pat. App. of Alacritech, Inc. 90
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 224

FlgSel

0b0010XXXX

0b0011XXXX

0b01000000
0b01000001
0b01000010
0b01000011

0b01000100

0b010001XX
0b010010XX

0b010011XX

0b010100XX
0b010101XX
0b01011XXX
0b011XXXXX

Ob1XXXXXXX

FLAG OPERATION

AddrOp
F eli3:2

0

1

2

3
FlgSel [1:0]

¢]

1

2

3

AddrSelect
RamAddr = Literal[15]
RamAddr = AddrRegA[15]
RamAddr = AddrRegB[15]
if (OpdA == RamAddr)
RamAddr = AluOut[15]
else if (OpdA == ram)
RamAddr = AddrRegB[15] ? AddrRegB : (AddrRegB | RamBase);
else
RamAddr = AddrRegA[15] ? AddrRegA : (AddrRegA | RamBase);

? Literal : (Literal | RamBase);
? AddrRegA : (AddrRegA | RamBase);
7 AddrRegB : (AddrRegB | RamBase);

? AluOut : (AluOut | RamBase);

addr reg load
nop

AddrRegA = Literal;
AddrRegB = Literal;

AddrRegA = Literal; AddrRegB = Literal;

note: When specifying the same register for both the load and select fields, the current value of the
register, before it is loaded with the new value, will be used for the ram address.

reserved

WrWesL@Dbg

WrWesH@Dbg

RdWcsL@Dbg

RdWcsH@Dbg

reserved

Step

PcMd

DbgMd

Hlt
Run
reserved
reserved

reserved

Causes the bits {31:0] of the control-store at address DbgAddr to be
written with the current AluQut data.

Causes the bits [63:32] of the control-store at address DbgAddr to be
written with the current AluOut data then increments DbgAddr.

Causes the bits [31:0] of the control-store at address DbgAddr to be
moved to file address Ox1ff.

Causes the bits [63:32] of the control-store at address DbgAddr to be
moved to file address Ox1{f then increments DbgAddr.

Allows the Cpu (FlgSel[1:0]) cycles after the current cycle to execute a single
instruction. There is no effect if the Cpu is not halted. An offset of 0 is not allowed.

Selects the Pc as the address source for the control-store during
instruction fetches for the Cpu (FlgSel[1:0]) cycles after the current cycle.

Selects the DbgAddr address register as the address source for the
control-store during instruction fetches for the Cpu (FlgSel[1:0])
cycles after the current cycle.

Halts the Cpu (FlgSel[1:0]) cycles after the current cycle.

Clears Halt for the Cpu (FlgSel[1:0]) cycles after the current cycle.

Provisional Pat. App. of Alacritech, Inc. 91
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 225

AE R TIE " B R TS I

DATA FLOW

Cfg

Flash

!

Eectrl

Eeprom 4—’I

Dram [<¢—»

Xectrl

Xrd

Pso

[3

! 4]

a”)
=
G

i
:

Dcfg

i

Xwr

T
?

RevX

S2d

A
P RINTITITE Y

P2d

Pmi

i

Sram

!

P2s

Psi

=

The d

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

92

Alacritech, Ex. 2019 Page 226

R @ |
: SRAM CONTROL SEQUENCER (SramCtrl)

Sram is the nexus for data movement within the INIC. A hierarchy of sequencers, working in concert,
accomplish the movement of data between dram, Sram, Cpu, ethernet and the Pci bus. Slave sequencers,
provided with stimulus from master sequencers, request data movement operations by way of the Sram, Pci
bus, Dram and Flash. The slave sequencers prioritize, service and acknowledge the requests

The preceding block diagram shows all of the master and slave sequencers of the INIC product. Request
information such as r/w, address, size, endian and alignment are represented by each request line.
Acknowledge information to master sequencers include only the size of the transfer being acknowledged.

The following block diagram illustrates how data movement is accomplished for a Pci slave write to Dram.
Note that the Psi (Pci slave in) module functions as both a master sequencer. Psi sends a write request to the
SramCtrl module. Psi requests Xwr to move data from Sram to dram. Xwr subsequently sends a read request
to the SramCtrl module then writes the data to the dram via the Xctrl module. As each piece of data is moved

from the Sram to Xwr, Xwr sends an acknowledge to the Psi module.

P Reg _1’ ;:gf‘q ‘4_ iz:
; * — P\ Sram <__—lmNr
: o —5Plow Ctrl g P
= = 2 loon BRI —
o PCIBUS | Xwr Xetrl
7 4—»p Data —
Psi
: o
WrReq P{SramAddr
SramAddr < 6 > :::Mddr

Provisional Pat. App. of Alacritech, Inc. 93

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US _
Alacritech, Ex. 2019 Page 227

B T " BT S

SRAM CONTROL SEQUENCER (SramCtrl)

ReqO0 « + 4o 0 ¢ & Req N Cul/ Ctrl/
Data 0 Data N
133MHz l l
—pfox

Arbiter

133MHz LK .
Register
v
> Align
133MHz oK +
___’ . ’Addr DIN
Register . Sram
PWE DOut
v
Partial Align
133MHz 4 +
..’!CLK .
Register
v
» Partial Align

v v
Ack Sram
Rd

Ack_sz Data

Provisional Pat. App. of Alacritech, Inc. 94

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US _
Alacritech, Ex. 2019 Page 228

The ‘Sram control sequencer services requests to store to, or retrieve data from an Sram organized as 1024
locations by 128 bits (16KB). The sequencer operates at a frequency of 133MHz, allowing both a Cpu access
and a dma access to occur during a standard 66MHz Cpu cycle. One 133MHz cycle is reserved for Cpu
accesses during each 66MHz cycle while the remaining 133MHz cycle is reserved for dma accesses on a
prioritized basis.

The preceding block diagram shows the major functions of the Sram control sequencer. A slave sequencer
begins by asserting a request along with r/w, ram address, endian, data path size, data path alignment and
request size. SramCitrl prioritizes the requests. The request parameters are then selected by a multiplexer
which feeds the parameters to the Sram via a register. The requestor provides the Sram address which when
coupled with the other parameters controls the input and output alignment. Sram outputs are fed to the output
aligner via a register. Requests are acknowledged in parallel with the returned data.

Following is a timing diagram depicting two ram accesses during a single 66MHz clock cycle.

Cpu
CLOCK
Dma
CLOCK
eq vali vali
DMA
Gnt
Sram
CLOCK
%7 CpuParams SELECTED QRANT TO 1 DMA SEQUENCER 2% CpuPerams SELECTED GRANT TO 2°® DMA SEQUENCER
11 DMAPsrems SELECTED 2*° DMAParms SELECTED
Ack AND Ack SIZE FOR Cpa Ack AND Ack SIZE FOR I¥! DMA Req Ack AND Ack SIZE FOR Cps
APPLY 17 Cpu Addr APPLY 1™ DMA Addr APPLY IND Cpu Addr APPLY 2*% DMA Addr
ALIGN 17 Cps INPUT Dats i ALIGN 1¥ DMA INPUT Dets H ALIGN IND Cpu INPUT Dats H ALIGN 7°° DMA INPUT Deta
READOR WRITE |7 Cpu Deta READ OR WRITE 17 DMA Dets READ OR WRITE 2*° Cpu De READ OR WRITE 2*® DMA Dea
} ALIGNANDRETURNI7Cpabas ° ALIGNANDRETURN ("DMADwa ° ALIGN ANDRETURN 2% Cpu Dea
Provisional Pat. App. of Alacritech, Inc. 95

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US _
Alacritech, Ex. 2019 Page 229

EXTERNAL MEMORY CONTROL (Xctrl)

Xctrl provides the facility whereby Xwr, Xrd, Dcfg and Eectrl access external Flash and Dram. Xctrl
includes an arbiter, i/o registers, data multiplexers, address multiplexers and control multiplexers. Ownership
of the external memory interface is requested by each block and granted to each of the requesters by the
arbiter function. Once ownership has been granted the multiplexers select the address, data and control signals
from owner, allowing access to external memory.

Arbiter |{_p! Grant V4 »TO requestors

XrdReq
XrdAddr
XrdState
XrdCtrl
XrdData

ot S ey

| p{ XAddr V4 »TO Xmem

XwrReq
XwrAddr
XwrState
XwrCtrl
XwrData

Mux

DcfgReq
DefgAddr
DcfgState
DcfgCtrl
DcfgData

L »| XData / »TO Xmem

EectriReq
EectrlAddr
EectriState
EectrlCtrl
EectrlData

L p XCurl £ »TO Xmem

TYYYY YYYYY VIYYY Vivvy {

Provisional Pat. App. of Alacritech, Inc. 96
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 230

1
i

AR NE

R
&

o

.
MR

EXTERNAL MEMORY READ SEQUENCER (Xrd)

The Xrd sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Xrd
sequencer moves data from external sdram or flash to the Sram, via the Xctrl module, in blocks of 32 bytes
or less. The nature of the sdram requires fixed burst sizes for each of it's internal banks with ras precharge
intervals between each access. By selecting a burst size of 32 bytes for sdram reads and interleaving bank
accesses on a 16 byte boundary, we can ensure that the ras precharge interval for the first bank is satisfied
before burst completion for the second bank, allowing us to re-instruct the first bank and continue with
uninterrupted dram access. Sdrams require a consistent burst size be utilized each and every time the sdram is
accessed. For this reason, if an sdram access does not begin or end on a 32 byte boundary, sdram bandwidth
will be reduced due to less than 32 bytes of data being transferred during the burst cycle.

The following block diagram depicts the major functional blocks of the Xrd sequencer. The first step in
servicing a request to move data from sdram to Sram is the prioritization of the master sequencer requests.
Next the Xrd sequencer takes a snapshot of the dram read address and applies configuration information to
determine the correct bank, row and column address to apply. Once sufficient data has been read, the Xrd
sequencer issues a write request to the SramCtrl sequencer which in turn sends an acknowledge to the Xrd
sequencer. The Xrd sequencer passes the acknowledge along to the level two master with a size code
indicating how much data was written during the Sram cycle allowing the update of pointers and counters. The
dram read and Sram write cycles repeat until the original burst request has been completed at which point the
Xrd sequencer prioritizes any remaining requests in preparation for the next burst cycle.

Contiguous dram burst cycles are not guaranteed to the Xrd sequencer as an algorithm is implemented which
ensures highest priority to refresh cycles followed by flash accesses, dram writes then dram reads.

Following is a timing diagram illustrating how data is read from sdram. The dram has been configured for a
burst of four with a latency of two clock cycles. Bank A is first selected/activated followed by a read
command two clock cycles later. The bank select/activate for bank B is next issued as read data begins
returning two clocks after the read command was issued to bank A. Two clock cycles before we need to
receive data from bank B we issue the read command. Once all 16 bytes have been received from bank A we

begin receiving data from bank B.

seviz [[T T LU I
contols XX XY HFX XX XX X XX OEX X OED)
read data EXEEEEEDE)
write data Y(PO)(PTY(2(¥5) . XX

Provisional Pat. App. of Alacritech, Inc. 97

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US]
Alacritech, Ex. 2019 Page 231

%
i
Gord
=
ERE

wr
?‘r.

EXTERNAL MEMORY READ SEQUENCER (Xrd)

D2p
D2s
D2d
D2q
Pso
XmtA
XmtB
XmtC
XmtD

XctrlDin
XctrlGnt

SramGnt
SramAck
Sram AqkSz

N
—p Grant Z »To Requester
> ____p XAddr Vi »To Xctrl
—p
—p EN
\ (&—SramGnt
> ——p| XData 4 SramData
—>
—>
—>
—> — XCul 4 »To Xctrl
SEQ)
—» State »To Xctrl
P Ack To requester
p-XctriReq
—» P SramReq
—Pp
—P
| (¢——SramGnt
SramParams
pProvisional Pat. App. of Alacritech, Inc.

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

98

Alacritech, Ex. 2019 Page 232

EXTERNAL MEMORY WRITE SEQUENCER (Xwr)

The Xwr sequencer is a slave sequencer. Servicing requests issued by master sequencers, the Xwr sequencer
moves data from Sram to the external sdram or flash, via the Xctrl module, in blocks of 32 bytes or less while
accumulating a checksum of the data moved. The nature of the sdram requires fixed burst sizes for each of it's
internal banks with ras precharge intervals between each access. By selecting a burst size of 32 bytes for
sdram writes and interleaving bank accesses on a 16 byte boundary, we can ensure that the ras prechage
interval for the first bank is satisfied before burst completion for the second bank, allowing us to re-instruct
the first bank and continue with uninterrupted dram access. Sdrams require a consistent burst size be utilized
each and every time the sdram is accessed. For this reason, if an sdram access does not begin or end on a 32
byte boundary, sdram bandwidth will be reduced due to less than 32 bytes of data being transferred during the
burst cycle.

The following block diagram depicts the. major functional blocks of the Xwr sequencer. The first step in
servicing a request to move data from Sram to sdram is the prioritization of the level two master requests.
Next the Xwr sequencer takes a Snapshot of the dram write address and applies configuration information to
determine the correct dram, bank, row and column address to apply. The Xwr sequencer immediately issues a
read command to the Sram to which the Sram responds with both data and an acknowledge. The Xwr
sequencer passes the acknowledge to the level two master along with a size code indicating how much data
was read during the Sram cycle allowing the update of pointers and counters. Once sufficient data has been
read from Sram, the Xwr sequencer issues a write command to the dram starting the burst cycle and
computing a checksum as the data flies by. The Sram read cycle repeats until the original burst request has
been completed at which point the Xwr sequencer prioritizes any remaining requests in preparation for the
next burst cycle.

Contiguous dram burst cycles are not guaranteed to the Xwr sequencer as an algorithm is implemented which
ensures highest priority to refresh cycles followed by flash accesses then dram writes.

Following is a timing diagram illustrating how data is written to sdram. The dram has been configured for a
burst of four with a latency of two clock cycles. Bank A is first selected/activated followed by a write
command two clock cycles later. The bank select/activate for bank B is next issued in preparation for issuing
the second write command. As soon as the first 16 byte burst to bank A completes we issue the write
command for bank B and begin supplying data.

controls XXX XX XX XX XX XX XX X
wrte daa 20000006
read data X FOYFTYFTY(E) YY)

Provisional Pat. App. of Alacritech, Inc. 99
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 233

S

T

"

Ea
Fo=F
s

EXTERNAL MEMORY WRITE SEQUENCER (Xwr)

P2d
S2d
D2d
Q2d
Psi
RcvA
RevB
RevC
RevD

XctrlGnt

SramGnt
SramAck
Sram AckSz
SramRdData

N
—p Grant £ »TO Requester
> —p| XAddr Z »TO Xctrl
—P
—P
E—
> . p! XData y4 »TO Xctrl
—>
—>
—P
> L p! XCtrl V4 »TO Xctrl
L p{ D2dChkSum Vi »TO D2d
| p P2dChkSum Z »TO P2d
SEQ)
—P State P TO Xctrl
PAck TO requester
Pp-XctriReq
P SramReq
—>
—»
ﬂ—SramGnt
—P SramParams
tional Pat. App. of Alacritech, Inc. 100

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 234

" PCI MASTER-OUT SEQUENCER (Pmo)

The Pmo sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Pmo
sequencer moves data from an Sram based fifo to a Pci target, via the PciMstrIO module, in bursts of up to
256 bytes. The nature of the PCI bus dictates the use of the write line command to ensure optimal system
performance. The write line command requires that the Pmo sequencer be capable of transferring a whole
multiple (1X, 2X, 3X, ...) of cache lines of which the size is set through the Pci configuration registers. To
accomplish this end, Pmo will automatically perform partial bursts until it has aligned the transfers on a cache
line boundary at which time it will begin usage of the write line command. The Sram fifo depth, of 256 bytes,
has been chosen in order to allow Pmo to accommodate cache line sizes up to 128 bytes. Provided the cache
line size is less than 128 bytes, Pmo will perform multiple, contiguous cache line bursts until it has exhausted

the supply of data.

Pmo receives requests from two separate sources; the dram to Pci (D2p) module and the Sram to Pci (S2p)
module. An operation first begins with prioritization of the requests where the S2p module is given highest
priority. Next, the Pmo module takes a Snapshot of the Sram fifo address and uses this to generate read
requests for the SramCtrl sequencer. The Pmo module then proceeds to arbitrate for ownership of the Pci bus
via the PciMstrIO module. Once the Pmo holding registers have sufficient data and Pci bus mastership has
been granted, the Pmo module begins transferring data to the Pci target. For each successful transfer, Pmo
sends an acknowledge and encoded size to the master sequencer, allow it to update it's internal pointers,
counters and status. Once the Pci burst transaction has terminated, Pmo parks on the Pci bus unless another
initiator has requested ownership. Pmo again prioritizes the incoming requests and repeats the process.

= Rakeq ™
i3 Sram Pa—
53 Addr DIN
= Ctrl ——>
5 . DOut _i’ Addr Y
= S2p , Pmo Pmstr | PCI BUS
te Daia > —>
-
= WrReq y 5
L il PN

SramAddr ’ SramAddr

pcidd: PeiAddr

Cl, ir 6 Ack r
Ack <

Provisional Pat. App. of Alacritech, Inc. 101

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US]
Alacritech, Ex. 2019 Page 235

. -
")
. 4
‘ * .

PCI MASTER-IN SEQUENCER (Pmi)

The Pmi sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Pmi
sequencer moves data from a Pci target to an Sram based fifo, via the PciMstrIO module, in bursts of up to
256 bytes. The nature of the PCI bus dictates the use of the read multiple command to ensure optimal system
performance. The read multiple command requires that the Pmi sequencer be capable of transferring a cache
line or more of data. To accomplish this end, Pmi will automatically perform partial cache line bursts until it
has aligned the transfers on a cache line boundary at which time it will begin usage of the read multiple
command. The Sram fifo depth, of 256 bytes, has been chosen in order to allow Pmi to accommodate cache
line sizes up to 128 bytes. Provided the cache line size is less than 128 bytes, Pmi will perform multiple,
contiguous cache line bursts until it has filled the fifo.

Pmi receive requests from two separate sources; the Pci to dram (P2d) module and the Pci to Sram (P2s)
module. An operation first begins with prioritization of the requests where the P2s module is given highest
priority. The Pmi module then proceeds to arbitrate for ownership of the Pci bus via the PciMstrIO module.

‘ Once the Pci bus mastership has been granted and the Pmi holding registers have sufficient data, the Pmi

g module begins transferring data to the Sram fifo. For each successful transfer, Pmi sends an acknowledge and

5 encoded size to the master sequencer, allowing it to update it's internal pointers, counters and status. Once the
Pci burst transaction has terminated, Pmi parks on the Pci bus unless another initiator has requested
ownership. Pmi again prioritizes the incoming requests and repeats the process.

WrReq 44_ Red
Addr
Sram «—]
Addr DOut
Ctrl .,
P2 Din _5> PciAddr . >
S Pmi Pmstr | PCI BUS
Data — o Em—
Req 1 2 3
PiRdReq P
SramAddr Cirl
> SramAddr
PeiAddr P peinddr
6
» ¢ Ack
Provisional Pat. App. of Alacritech, Inc. 102

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US]
Alacritech, Ex. 2019 Page 236

* EY
s X .
- B

Dram TO PCI SEQUENCER (D2p)

The D2p sequencer acts is a master sequencer. Servicing channel requests issued by the Cpu, the D2p
sequencer manages movement of data from dram to the Pci bus by issuing requests to both the Xrd sequencer
and the Pmo sequencer. Data transfer is accomplished using an Sram based fifo through which data is staged.

D2p can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, D2p fetches a dma descriptor from an Sram location dedicated to the requesting channel which
includes the dram address, Pci address, Pci endian and request size. D2p then issues a request to the D2s
sequencer causing the Sram based fifo to fill with dram data. Once the fifo contains sufficient data for a Pci
transaction, D2s issues a request to Pmo which in turn moves data from the fifo to a Pci target. The process
repeats until the entire request has been satisfied at which time D2p writes ending status in to the Sram dma
descriptor area and sets the channel done bit associated with that channel. D2p then monitors the dma channels
for additional requests. Following is an illustration showing the major blocks involved in the movement of data
from dram to Pci target.

6 .
L PpiwiReq RdReq |l {Red
Req Addr Addr Addr
Addr g S DO l DIN
ram
5 Jaa AD Sm Pl Ctrt Ack ™ Addr
r Cl
< Xrd < Rq¢ AD D Ack > Pmo >
Xectrl Data Pmstr
R e i 114 215 > <«p
ol N Rq AD D Ack Req cnl
q
R T e o e i <129,
r D2 r PciAddr
pramaddr [€Jagar pAddr _——’ Ack
Ack [~ Ack Ack ——Pp]
8 > 414
Provisional Pat. App. of Alacritech, Inc. : 103

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US]
Alacritech, Ex. 2019 Page 237

‘ . .
B
1

' ' Dram TO PCI SEQUENCER (D2p)

\
CHANNEL
I D /]
Dram
—» PIR 4 »TO Xrd
PCI
—» PIR £ »TO Pmo
Ry XFR p
g —»| COUNT »TO Xrd
= FIFO
& —» RD Pir < »TO Pmo
eE XrdAck —Pp
;= FIFO p
= —» WR Pt »TO Xrd
= Xrd Status —»
— OPTIONS —
Pmo Ack —P
SEQ
—> sae
Pmo Status —p
- FifoCnt
pPmo Req
Sram Ack —P P Xrd Req
P SramReq
EN
(&—From Sram
SramParams

Sram Rd Data —Pp

Provisional Pat. App. of Alacritech, Inc. 104

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US .
P Alacritech, Ex. 2019 Page 238

7

PCI TO DRAM SEQUENCER (P2d)

The P2d sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the P2d sequencer manages movement of data from Pci bus to dram by issuing requests to both
the Xwr sequencer and the Pmi sequencer. Data transfer is accomplished using an Sram based fifo through
which data is staged.

P2d can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, P2d, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the dram address, Pci address, Pci endian and request size. P2d then
issues a request to Pmo which in turn moves data from the Pci target to the Sram fifo. Next, P2d issues a
request to the Xwr sequencer causing the Sram based fifo contents to be written to the dram. The process
repeats until the entire request has been satisfied at which time P2d writes ending status in to the Sram dma
descriptor area and sets the channel done bit associated with that channel. P2d then monitors the dma channels
for additional requests. Following is an illustration showing the major blocks involved in the movement of data
from a Pci target to dram.

e e a”
———Ppladdr ——
Addr Addr Sram DOut
<_DOux e [T
€——Din ¢ —ipin T ppiAddr >
Xctrl Adde Pmi Pmstr
= «> — xwr 25 |, «— PEES
it Data
f:: L3 —3—Plreq <
= Cul — ;::mAddr
£ e —— W {pciaddr
SramAddr <'8__ Ack
Provisional Pat. App. of Alacritech, Inc. 105

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 239

PCI TO DRAM SEQUENCER (P2d)

\
CHANNEL
BN ID /]
Dram
—» PIR £ »TO Xwr
PCI
—» PTR 4 »TO Pmi
XFR p
—» COUNT »TO Pmi
XwrChksum —»
FIFO p)
—» WR Pt »TO Pmi
. XwrAck —p
i FIFO
e —» RD Pir 4 »TO Xwr
= XwrStatus —»|
= XFR
—» oPTIONS —
PmiAck —P
SEQ
—» State —
PmiStatus —»
Pp-FifoCnt
pPmiReq
SramAck —> P XwrReq
Pp-SramReq
EN
ﬂ—From Sram
SramRdData —p SramParams
Provisional Pat. App. of Alacritech, Inc. 106

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US)
Alacritech, Ex. 2019 Page 240

* v
N r
- «
N :

SRAM TO PCI SEQUENCER (S2p)

The S2p sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the S2p sequencer manages movement of data from Sram to the Pci bus by issuing requests to the
Pmo sequencer

S2p can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, S2p, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the Sram address, Pci address, Pci endian and request size. S2p then
issues a request to Pmo which in turn moves data from the Sram to a Pci target. The process repeats until the
entire request has been satisfied at which time S2p writes ending status in to the Sram dma descriptor area and
sets the channel done bit associated with that channel. S2p then monitors the dma channels for additional
requests. Following is an illustration showing the major blocks involved in the movement of data from Sram to
Pci target.

4R
RaReq Addr
|Addr Sram > DIN
Ctrl Ack
DOt 5 ' Addr .
ek Pmo Pmstr
X X bus —» «p>
AD D Ack
2,10
Req — P <5
' tr
Addr S2p 3 > SramAddr
——{pciadde
Add]
' 4‘8—Ack
Provisional Pat. App. of Alacritech, Inc. 107

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 241

SRAM TO PCI SEQUENCER (S2p)

N
CHANNEL
S D L/
PCI P
—P PTR »TO Pmo
XFR P
& —» COUNT »TO Pmo
g:_:z
; Sram P
= —» PTR »TO Pmo
5 XFR
B —» opTIONS [
*: PmoAck —Pp
el —> sae —
PmoStatus —P
. p-PmoReq
SramAck —P>
P SramReq
EN
ﬂ—From Sram
SramRdData —p SramParams

Provisional Pat. App. of Alacritech, Inc. 108

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US
Alacritech, Ex. 2019 Page 242

.)
. s
N .

PCI TO SRAM SEQUENCER (P2s)

The P2s sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued by
the Cpu, the P2s sequencer manages movement of data from Pci bus to Sram by issuing requests to the Pmi
sequencer.

P2s can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, P2s, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the Sram address, Pci address, Pci endian and request size. P2s then
issues a request to Pmo which in turn moves data from the Pci target to the Sram. The process repeats until
the entire request has been satisfied at which time P2s writes ending status in to the dma descriptor area of
Sram and sets the channel done bit associated with that channel. P2s then monitors the dma channels for
additional requests. Following is an illustration showing the major blocks involved in the movement of data
from a Pci target to dram.

Req
Wirkeq <_ﬁ_mmr
Addr Sram DOut
Ctrt I
Din . 7 ' Addr . '
Ack Pmi Pmstr
ALY v b < S
Rq AD D Ack
Req < «>
tri
Addr st SramAddr
—{peiaddr
Addr < 8 JAck
y Provisional Pat. App. of Alacritech, Inc. 109

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US]
Alacritech, Ex. 2019 Page 243

PCI TO SRAM SEQUENCER (P2s)
~
CHANNEL
SN ID L
PCl
—» PR 4 »TO Pmi
XFR]
&3 —» COUNT 4 $»TO Pmi
Sram
—» pPTR 4 »TO Pmi
XFR
—» OPTIONS [
PmiAck —Pp
SEQ
—» State —
PmiStatus P
»PmiReq
SramAck —P
P SramReq
EN
N—From Sram
SramRdData —Pp SramParams

Provisional Pat. App. of Alacritech, Inc. 110
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US)
P Alacritech, Ex. 2019 Page 244

| | . ‘
'
.
B s

DRAM TO SRAM SEQUENCER (D2s)

The D2s sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued

by the Cpu, the D2s sequencer manages movement of data from dram to Sram by issuing requests to the Xrd
sequencer.

D2s can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, D2s, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the dram address, Sram address and request size. D2s then issues a
request to the Xrd sequencer causing the transfer of data to the Sram. The process repeats until the entire
request has been satisfied at which time D2s writes ending status in to the Sram dma descriptor area and sets
the channel done bit associated with that channel. D2s then monitors the dma channels for additional requests.
Following is an illustration showing the major blocks involved in the movement of data from dram to Sram.

req 5 > WrReq |
IAddr
Addr D Sram
' IAck Cirl
< o ‘qu AD D Ack
Addr
Xctrl ok
4P — 18 29
x|t EEEE
ata
4__4___ > 3__|Req
- «— | D2S
Rea —— Ack
SramAddr 1 ’
Provisional Pat. App. of Alacritech, Inc. 111

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US _
Alacritech, Ex. 2019 Page 245

DRAM TO SRAM SEQUENCER (D2s)

\
CHANNEL
N D I
Dram
—» PTR 4 »TO Xrd
= XFR) :
- —» COUNT : »TO Xrd
o —» PIR 4 »TO Xrd
:; XFR
= — OPTIONS [—
: XrdAck —p
SEQ
—> State —
XrdStatus —Pp
»XrdReq
SramAck —p
Pp-SramReq
EN
ﬂ—From Sram
SramRdData —Pp SramParams

Provisional Pat. App. of Alacritech, Inc. 112

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 246

SRAM TO DRAM SEQUENCER (S2d)

The S2d sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the S2d sequencer manages movement of data from Sram to dram by issuing requests to the Xwr
sequencer.

S2d can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, S2d, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the dram address, Sram address, checksum reset and request size.
S2d then issues a request to the Xwr sequencer causing the transfer of data to the dram. The process repeats
until the entire request has been satisfied at which time S2d writes ending status in to the Sram dma descriptor
area and sets the channel done bit associated with that channel. S2d then monitors the dma channels for
additional requests. Following is an illustration showing the major blocks involved in the movement of data
from Sram to dram.

-

4 ’ |RdReq
Req Addr
—
Addr i Sram
jAck Ctrl
Z ddr Rg AD D Ack
Xctrl Ack 1.8
<+] i i ! i 29
. pr Rqg AD D Ack
Data
41— & B
T Addr
B cu «—,, S2d
__:_'1‘ fea — Ack
; SramAddr 6y
Provisional Pat. App. of Alacritech, Inc. 113

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US :
: Alacritech, Ex. 2019 Page 247

SRAM TO DRAM SEQUENCER (S2d)

CHANNEL
— D S—

Dram
—» PTR 4 — »TO Xwr
XFR p
—» COUNT »TO Xwr
Sram
—» PTR 4 »TO Xwr
XFR
—> OPTIONS —]
XwrAck —P
SEQ
—» State —
XwrStatus —»
_ pXwrReq
SramAck —p
p-SramReq
EN
(&—From Sram
SramRdData —p SramParams
Provisional Pat. App. of Alacritech, Inc. 114

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 248

| .
) .
'

PCI SLAVE INPUT SEQUENCER (Psi)

The Psi sequencer acts as both a slave sequencer and a master sequencer. Servicing requests issued by a Pci
master, the Psi sequencer manages movement of data from Pci bus to Sram and Pci bus to dram via Sram by
issuing requests to the SramCtrl and Xwr sequencers.

Psi manages write requests to configuration space, expansion rom, dram, Sram and memory mapped registers.
Psi separates these Pci bus operations in to two categories with different action taken for each. Dram accesses
result in Psi generating write request to an Sram buffer followed with a write request to the Xwr sequencer.
Subsequent write or read dram operations are retry terminated until the buffer has been emptied. An event
notification is set for the processor allowing message passing to occur through dram space.

All other Pci write transactions result in Psi posting the write information including Pci address, Pci byte
marks and Pci data to a reserved location in Sram, then setting an event flag which the event processor
monitors. Subsequent writes or reads of configuration, expansion rom, Sram or registers are terminated with
retry until the processor clears the event flag. This allows the INIC to keep pipelining levels to a minimum for
the posted write and give the processor ample time to modify data for subsequent Pci read operations.

The following diagram depicts the sequence of events when Psi is the target of a Pci write operation. Note that
events 4 through 7 occur only when the write operation targets the dram.

f

NENES

i

Foa
2 3
=

5>[§5R=q
Req IAddr
—P
Addr D Sram
. P A Cl
iddr Rg AD D Ack
Xctrl Ack , .
<P —
e | EEER
ata
B N e i —2% EVENT NOTIFY
Addr .
Cur <4—,,, Psi (€Y~ EVENT CLEAR
Rea ——— Ack
SramAddr _7_’
Pmstr |q1p PCIBUS
Provisional Pat. App. of Alacritech, Inc. 115

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 249

‘ PCI SLAVE OUTPUT SEQUENCER (Pso)

The Pso sequencer acts as both a slave sequencer and a master sequencer. Servicing requests issued by a Pci
master, the Pso sequencer manages movement of data to Pci bus form Sram and to Pci bus from dram via
Sram by issuing requests to the SramCtrl and Xrd sequencers.

Pso manages read requests to configuration space, expansion rom, dram, Sram and memory mapped registers.
Pso separates these Pci bus operations in to two categories with different action taken for each. Dram accesses
result in Pso generating read request to the Xrd sequencer followed with a read request to Sram buffer.
Subsequent write or read dram operations are retry terminated until the buffer has been emptied.

All other Pci read transactions result in Pso posting the read request information including Pci address and Pci
byte marks to a reserved location in Sram, then setting an event flag which the event processor monitors.
Subsequent writes or reads of configuration, expansion rom, Sram or registers are terminated with retry until
the processor clears the event flag. This allows the INIC to use a microcoded response mechanism to return
data for the request. The processor decodes the request information, formulates or fetches the requested data
and stores it in Sram then clears the event flag allowing Pso to fetch the data and return it on the Pci bus.

The following diagram depicts the sequence of events when Pso is the target of a Pci read operation.

)
3EZ

;E N 4 'WVchq
i Req Addr
f’-—f;’ Addr ID
B — Sram
= < s “ ctrl
Eddr Rg AD D Ack
Xctrl Ack
<>] 7 8
Data er Rq AD D Ack
3 — €2 t—» EVENT NOTIFY
- <« Pso |¢— EVENT CLEAR
e] Ak
SramAddr ,_ﬁ_’
Pmstr |¢L% PCIBUS

Provisional Pat. App. of Alacritech, Inc. 116

Inventors Laurence B. Boucher et al.

E Mail Label # EH756230105US
xpress iatl Labe , Alacritech, Ex. 2019 Page 250

FRAME RECEIVE SEQUENCER (RcvX)

The receive sequencer (RcvSeq) analyzes and manages incoming packets, stores the result in dram
buffers, then notifies the processor through the receive queue (RevQ) mechanism. The process begins
when a buffer descriptor is available at the output of the FreeQ. RcvSeq issues a request to the Qmg
which responds by supplying the buffer descriptor to RcvSeq. RcvSeq then waits for a receive packet.
The Mac, network, transport and session information is analyzed as each byte is received and stored
in the assembiy register (AssyReg). When four bytes of information is available, RcvSeq requests a
write of the data to the Sram. When sufficient data has been stored in the Sram based receive fifo, a
dram write request is issued to Xwr. The process continues until the entire packet has been received
at which point RevSeq stores the results of the packet analysis in the beginning of the dram buffer.
Once the buffer and status have both been stored, RcvSeq issues a write-queue request to Qmg.
Qmg responds by storing a buffer descriptor provided by RevSeq. The process then repeats. If
RevSeq detects the arrival of a packet before a free buffer is available, it ignores the packet and sets
the Framel.ost status bit for the next received buffer.

The following diagram depicts the sequence of events for successful reception of a packet followed by
a definition of the receive buffer and the buffer descriptor as stored on the RevQ. .

e
:hi' ﬂ" S“

Mac Ctrl
- OPTIONS OPTIONS
i PauseDet| »TO Xmt_Mac
:,_. \ s S ram AD AD .
= “’““M 4 ramAddr Dram AD D
;"!‘ ct ac _’cm DmmAddr___—’?\Ck Curl —" XCUI
" . > < 9 Xwr 8 »
,lk)ck Rq Ack
R yyis
Rq AD D Ack
Rq Rq q
R4 Qmg name —5_—»]) Sram
D 44;6912’[\“ Ctrl
Al o
o ———»
Addr
[Ptr lAck
| >l
Ack > 3,12
2.11 >
D
Provisional Pat. App. of Alacritech, Inc. 117

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US
' Alacritech, Ex. 2019 Page 251

FRAME RECEIVE SEQUENCER (RcvX)

QUEUE | /
COMMAND »TO QmgR

BUFFER | A
DESCR
From Sram’

Sram WR TO Sram
Data

MacDataln

- MacCtrlln
From Sram

Sram /
Addr TO Sram

Dram Y
PTR

FIFO WR
PTR

FIFO RD
PTR

Data
ASSY REG

RCV SEQ
State

ANALYZER
State

FRAME
POINTER

Ip
POINTER

TRANSPORT
POINTER

P
CHECKSUM

PAYLOAD
CHECKSUM

CONTEXT
HASH

v VvV V¥

MacStatus_IN

—pTO Xwr

v
N

MacAddrA

N

»TO Xwr

MacAddrB —P

el I R

v

SramAck

v

SramRdData

FE
E=7
g
T
ozx
==
HIlE
3.2
=

FREEQ ID

RCV_Q_ID

ctrl Q ID

YV ¥V VY ¥V VvV ¥V vV V V V V VY V V V'V
L L ¢ L L L

vV V Vv ¥

PauseDetEn

P XwrReq
p-PauseDet
» QmgRReq
» SramReq

From Sram
’§—:SramParams

Provisional Pat. App. of Alacritech, Inc. 118
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 252

el AR O

RECEIVE BUFFER DESCRIPTOR

bit
31:30
29:28
27:00

name
reserved
size
address

description

A copy of the bits in the FreeBufDscr.

Represents the last address + 1 to which frame data was transferred. The address

wraps around at the boundary dictated by the S bits. This can be used to determine

the size of the frame received.

RECEIVE BUFFER FORMAT

FRAME Status A
bit ~ pame

31 attention
30 CompositeErr
29 CtriFrame
28 IpDn

27 802.3Dn
26 MacADet
25 MacBDet
24 MacMecst
23 MacBcst
22 IpMcst

21 IpBcst

20 Frag

19 IpOffst

18 IpFlgs

17 TpOpts

16 TcpFlgs
15 TepOpts
14 TcpUrg

13 CarrierEvnt
12 LongEvnt
11 FrameLost
10 reserved
10 NoAck
09:08 FrameTyp
07:06 NwkTyp
05:04 TrusptTyp
03 NetBios
02 reserved
01:00 channel

OFFSET 0x0000:0x0003

description

Indicates one or more of the following: CompositeErr, !IpDn, !MacADet &
IMacBDet, IpMcst, IpBcst, !ethernet & !802.3Snap, 'Ip4, !Tcp .

Set when any of the error bits of ErrStatus are set or if frame processing stops
while receiving a Tcp or Udp header.

A control frame was received at our unicast or special MItCst address.

Frame processing Hlted due to exhaustion of the IP4 length counter.

Frame processing Hlted due to exhaustion of the 802.3 length counter.
Frame's destination address matched the contents of MacAddrA.

Frame's destination address matched the contents of MacAddrB.

The Mac detected a MItCst address.

The Mac detected a BrdCst address.

The frame processor detected an IP MItCst address.

The frame processor detected an IP BrdCst address.

The frame processor detected a Frag IP datagram.

The frame processor detected a non-zero IP datagram offset.

The frame processor detected flags within the IP datagram.

The frame processor detected a header length greater than 20 for the IP datagram.

The frame processor detected an abnormal header flag for the TCP segment.

The frame processor detected a header length greater than 20 for the TCP segment.

The frame processor detected a non-zero urgent pointer for the TCP segment.
Refer to E110 Technical Manual.
Refer to E110 Technical Manual.

Set when an incoming frame could not be processed as a result of an outstanding

frame completion event not yet serviced by the utility processor.

The frame processor detected a

00 - Reserved. 01- ethernet. 10 - 802.3. 11 - 802.3 Snap.
00 - Unknown. O1- Ip4. 10 - Ip6 11 - ip other.
00 - Unknown. OI- reserved. 10 - Tcp 11 - Udp

A NetBios frame was detected.

The Mac on which this frame was received.

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

119

Alacritech, Ex. 2019 Page 253

NENES

FRAME Status B

bi name

31 802.3Shrt

30 BufOvr
29 BadPkt
28 InvidPrmbl
27 CrcErr

26 DrbiINbbl

25 CodeErr

24 IpHdrShrt
23 IpIncmpit
22 IpSumErr
21 TepSumErr
20 TcpHdrShrt

19:16 PressCd
15:08 MacHsh
07:00 CtxHsh
TIME STAMP

bit _ name
31:00 RcvTime

CHECKSUM

bit name
31:16 IpChksum

15:00 TcpChksum

RESERVED

FRAME Data

OFFSET 0x0004:0x0007
description

End of frame was encountered before the 802.3 length count was exhausted.
The frame length exceded the buffer space available.

Refer to E110 Technical Manual.

Refer to E110 Technical Manual.

Refer to E110 Technical Manual.

Refer to E110 Technical Manual.

Refer to E110 Technical Manual.

The IP4 header length field contained a value less than 0x5.

The frame terminated before the IP length counter was exhausted.

The IP header checksum was not Oxffff at the completion of the IP header read.
The session checksum was not Oxffff at the termination of session processing.
The TCP header length field contained a value less than 0xS.

The state of the frame processor at the time the frame processing terminated.
0b0000 Processing Mac header.

0b0001 Processing 802.3 LLC header.

0b0010 Processing 802.3 SNAP header.

0b0011 Processing unknown network data.

0b0100 Processing IP header.

0b0101 Processing IP data (unknown transport}.
0b0110 Processing transport header (IP data).
0b0111 Processing transport data (IP data).
0b1000 Brocessing IP processing complete.
0b1001 Reserved.

0bl01lx Reserved.

Obllxx Reserved.

The Mac destination-address hash. Refer to E110 Technical Manual.

The 8-bit context-hash generated by exclusive-oring all bytes of the IP source
address, IP destination-address, transport source port and the transport destination
port.

OFFSET 0x0008:0x000B
description

The contents of FreeClk at the completion of the frame receive operation.

OFFSET 0x000C:0x000F
description

Reflects the value of the IP header checksum at frame completion or IP header
completion. If an IP datagram was not detected, the checksum provides a total for
the entire data portion of the received frame. The data area is defined as those bytes
received after the type field of an ethernet frame, the LLC header of an 802.3 frame
or the SNAP header of an 802.3-SNAP frame.

Reflects the value of the transport checksum at IP completion or frame completion.
If IP was detected but session was unknown, the checksum will not include the
psuedo-header. If IP was not detected, the checksum will be 0x0000.

OFFSET 0x0010:0x0011

OFFSET 0x0012:END OF BUFFER

Provisional Pat. App. of Alacritech, Inc. \ 120
Inventors Laurence B. Boucher et al. :
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 254

FRAME TRANSMIT SEQUENCER (XmtX)

The transmit sequencer (XmtSeq) analyzes and manages outgoing packets, using buffer descriptors
retrieved from the transmit queue (XmtQ) then storing the descriptor for the freed buffer in the free
buffer queue (FreeQ}. The process begins when a buffer descriptor is available at the output of the
XmtQ. XmtSeq issues a request to the Qmg which responds by supplying the buffer descriptor to
XmtSeq. XmtSeq then issues a read request to the Xrd sequencer. Next, XmtSeq issues a read
request to SramCtrl then instructs the Mac to begin frame transmission. The Mac accepts data from
XmtSeq which analyzes the packet as it flys-by in order to generate checksums to insert in the data
stream. Once the frame transmission has completed, XmtSeq stores the buffer descriptor on the
FreeQ thereby recycling the buffer.

The following diagram depicts the sequence of events for successful transmission of a packet followed
by a definition of the receive buffer and the buffer descriptor as stored on the XmtQ.

bl WSS

Mac Ctrl
OPTIONS OPTIONS
CLR Pause ——From PROCESSOR
——From RCV_SEQ
FauseDet | @————From PROCESSOR
PauseReq P TO PROCESSOR
h 4
PauseD _A_____’F—
ram AD
Istarus ——p I E—
Mac Req L PibamaD 4— Xctrl
ICt tatus D
ramAddr 4—5—— Ack Dwr P
D Curl DramAddr Ctri
D
Ack XmtX
Rq AD D Ack
IRq ‘._1;1.0_._ __6.____’ q
D
0 ﬁq < > Ack
m q 3112
8 AD
D S
Addr Sram
PTR Ctrl
[Req
IReq >Ack
Addr 211 >
Ac Serv . < 312
Provisional Pat. App. of Alacritech, Inc. 121

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 255

. f
' (. .
LI 1

FRAME TRANSMIT SEQUENCER (XmtX)

\
QUEUE | /4
> COMMAND »TO QmgR
MacData_IN —» ! BDUé:SIZIEls L/
S WR From Sram
MacCtrlIN > > ralj)lzlna TO Sram
5 From Sram
. MacStatus IN ~ —p» = <V TO Sram
From Xwr
. Il),fra;“ Vi TO Xwr
MacAddrA —» > FH;%? DL
MacAddrB —P —» FII;(%;V R p-TO Xwr
Data
|/
| HOLD REG
SramAck —p] anliaff Q|
g SramRdData > AR
FRAME
i |/
= | POINTER
= P |
= FREEQ_ID —» | POINTER
TRANSPORT| |
Cirt Q ID —» P POINTER
IP W
XmtQ_ID > ™| cuecksum
PAYLOAD | /
| CHECKSUM
PauseClr —»
p-XmtData
PauseDet —» » XwiReq
p PauseD
Cpu_PauseReq o o p QmgRReq
» SramReq
From Sram
§:SramParams
Provisional Pat. App. of Alacritech, Inc. 122

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 256

’ " TRANSMIT BUFFER DESCRIPTOR '
bit name description

31 ChksumEn When set, XmtSeq will insert a calculated checksum. When reset, XmtSeq will
not alter the outgoing data stream.

30 reserved
29:28 size Represents the size of the buffer by indicating at what boundary the buffer should
start and terminate. This is used in combination with EndAddr to determine the
starting address of the buffer :
S =0 256B boundary. A[7:0] ignored.
S =1 2KB boundary. A[10:0] ignored.
S =2 4KB boundary. A[11:0] ignored.
S =3 32KB boundary. A[14:0] ignored.
27:00 EndAddr The address of the last byte to transmit plus one.
TRANSMIT BUFFER FORMAT

CHECKSUM PRIMER OFFSET 0x0000:0x0003

bit name description
31:00 Primer A value to be added during checksum accumulation. For IPV4, this should include
the psuedo-header values, protocol and Tcp-length.

RESERVED OFFSET 0x0004:0x0005

FRAME Data OFFSET 0x0006:END OF BUFFER

TRANSMIT Status VECTOR

bit pame description

31 LnkErr Indicates that a link status error occured before or during transmit.

30:15 reserved

14 ExcessDeferral Refer to E110 Technical Manual.
13 LateAbort Refer to E110 Technical Manual.
12 ExcessColl Refer to E110 Technical Manual.
11 UnderRun Refer to E110 Technical Manual.
10 ExcessLgth Refer to E110 Technical Manual.

09 Okay Refer to E110 Technical Manual.
08 deferred Refer to E110 Technical Manual.
07 BrdCst Refer to E110 Technical Manual.
06 MitCst Refer to E110 Technical Manual.
05 CrcErr Refer to E110 Technical Manual.
04 LateColl Refer to E110 Technical Manual.
03:00 CollCnt Refer to E110 Technical Manual.
Provisional Pat. App. of Alacritech, Inc. 123

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US]
Alacritech, Ex. 2019 Page 257

.)
3 1 .

QUEUE MANAGER (Qmg)

The INIC includes special hardware assist for the implementation of message and pointer queues. The
hardware assist is called the queue manager (Qmg) and manages the movement of queue entries between Cpu
and Sram, between dma sequencers and Sram as well as between Sram and dram. Queues comprise three distinct
entities; the queue head (QHd), the queue tail {(QTI) and the queue body (QBdy). QHd resides in 64 bytes of
scratch ram and provides the area to which entries will be written (pushed). QT resides in 64 bytes of scratch
ram and contains queue locations from which entries will be read (popped) . QBdy resides in dram and contains
locations for expansion of the queue in order to minimize the Sram space requirements. The QBdy size depends
upon the queue being accessed and the initialization parameters presented during queue initialization.

Qmg accepts operations from both Cpu and dma sources. Executing these operations at a frequency of
133MHz, Qmg reserves even cycles for dma requests and reserves odd cycles for Cpu requests. Valid Cpu
operations include initialize queue (InitQ), write queue (WrQ) and read queue (RdQ). Valid dma requests
include read body (RdBdy) and write body (WrBdy). Qmg working in unison with Q2d and D2q generate
requests to the Xwr and Xrd sequencers to control the movement of data between the QHd, QTl and QBdy.

The preceding block diagram shows the major functions of Qmg. The arbiter selects the next operation to be
performed. The dual-ported Sram holds the queue variables HdOWrAddr, HdRdAddr, TIWrAddr,
TiIRdAddr, BdyWrAddr, BdyRdAddr and QSz. Qmg accepts an operation request, fetches the queue
variables from the queue ram (Qram)}, modifies the variables based on the current state and the requested
operation then updates the variables and issues a read or write request to the Sram controller. The Sram
controller services the requests by writing the tail or reading the head and returning an acknowledge.

QmgDmaAck AND
QmgDmaRdData

j
g
2
¥

U S

Return Qdata
Return Qdata for Cpu for Dma
E ‘ Write Write
Sram i H Qdatafor Qdata for
Ctrl Cpu i Dma
SramQmg G:ram for Cpu SramQmg G:mm forDma .
SramQmg Ack for Cpu SramQmg Ack for Dma
133MHz
CLK
Qmg Fetch for CpuOp QmgSramReq for Cpulp QmgSramReq for DmaOp
Qmg Arb for DmaOp Qmg Fetch for DmaOp
i rite for rite for
Qme P -1 cpup © Dmaop
66M H'Z QmgCpuAck AND
CLK QmgCpuRdData
Provisional Pat. App. of Alacritech, Inc. 124

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 258

i el WD HT M TR W

QUEUE MANAGER (Qmg)

c D2q Q2d Xmt
pu Seq Seq SEQ

RCV
Req Req Req Req Sl(E:Q

b4 vy ¥

PRIORITIZE

Write
Data

Mux

¢ v)
133MHz— register
133MHz—]) Qram -
v '
133MHz—y register
¢ >
Qmg ALU
v
v v v
133MHz—> register
R
Req Addr Empty Fu]l IN OUT WR Write
RDY RDY Req Req Data

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

125

Alacritech, Ex. 2019 Page 259

: | . .
1 !

DMA OPERATIONS

DMA operations are accomplished through a combination of thirtytwo dma channels (DmaCh) and seven dma
sequencers (DmaSeq). Each dma channel provides a mechanism whereby a Cpu can issue a command to any
of the seven dma sequencers. Where as the dma channels are multi-purpose, the dma sequencers they
command are single purpose as follows.

dma seq # name description
0 none This is a no operation address.
1 D2dSeq Moves data from ExtMem to ExtMem.
2 D2sSeq Moves data from ExtMem bus to sram.
3 D2pSeq Moves data from ExtMem to Pci bus.
4 S2dSeq Moves data from sram to ExtMem.
5 S2pSeq Moves data from sram to Pci bus.
6 P2dSeq Moves data from Pci bus to ExtMem.
7

P2sSeq Moves data from Pci bus to sram.

The processors manage dma in the following way. The processor writes a dma descriptor to an Sram location
reserved for the dma channel. The format of the dma descriptor is dependent upon the targeted dma sequencer.
The processor then writes the dma sequencer number to the channel command register.

Each of the dma sequencers polls all thirtytwo dma channels in search of commands to execute. Once a
command request has been detected, the dma sequencer fetches a dma descriptor from a fixed location in
Sram. The Sram location is fixed and is determined by the dma channel number. The dma sequencer loads the
dma descriptor in to it's own registers, executes the command, then overwrites the dma descriptor with ending
status. Once the command has halted, due to completion or error, and the ending status has been written, the
dma sequencer sets the done bit for the current dma channel.

LERES

The done bit appears in a dma event register which the Cpu can examine. The Cpu fetches ending status from
Sram, then clears the done bit by writing zeroes to the channel command (ChCmd) register. The channel is
now ready to accept another command.

The format of all channel command registers is as follows.

bit ~ pame __ description_ :
31:11 reserved Data written to these bits is ignored.
10:8 ChCmd 0 - Stops execution of the current operation and clears the corresponding event flag.

1 - Transfer data from ExtMem to ExtMem.

2 - Transfer data from ExtMem bus to sram. -
3 - Transfer data from ExtMem to Pci bus.

4 - Transfer data from sram to ExtMem.

5 - Transfer data from sram to Pci bus.

6 - Transfer data from Pci bus to ExtMem.

7 - Transfer data from Pci bus to Sram.

07:05 reserved Data written to these bits is ignored.
04:00 Chld Provides the channel number for the channel command.
Provisional Pat. App. of Alacritech, Inc. 126

Inventors Laurence B. Boucher et al.

E Mail Label # EH756230105US
xpress Miall mabe Alacritech, Ex. 2019 Page 260

)
= ! ‘ .

The format of the P2d or P2s descriptor is as follows.

bit npame_ _ description

127:96 PciAddrH Bits [63:32] of the Pci address.

95:64 PciAddrL Bits [31:00] of the Pci address.

59:32 MemAddr Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
31 PciEndian When set, selects big endian mode for Pci transfers.

30 WideDbl When set, disables Pci 64-bit mode.

22 DstFlash Selects Flash for the external memory destination of P2d.

15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.

The format of the S2p or D2p descriptor is as follows.

bit name description
123:96 MemAddr Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
95:64 PciAddrH Bits [63:32] of the Pci address.
63:32 PciAddrL Bits {31:00] of the Pci address.
30 SrcFlash Selects Flash for the external memory source of D2p.
23 PciEndian When set, selects big endian mode for Pci transfers.
22 WideDbl When set, disables Pci 64-bit mode.
15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.
ot The format of the S2d, D2d or D2s descriptor is as follows.
i bit_ name ____ description
R 127:124 reserved Reserved for future use.
£ 123:96 SrcAddr Bits [27:00] of the ExtMem address or bits {15:00] of the Sram address.
#5 95:60 reserved Reserved for future use. '
59:32 DstAddr Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
30 FlashSel Selects Flash for the external memory source of D2d or D2s.
= 22 FlashSel Selects Flash for the external memory destination of S2p or D2d.
15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.

The format of the ending status or all channels is as follows.

bit ~ name __ description

127:64 reserved Not used.

63:32 ChkSum Represents the 1's compliment sum of all halfwords transferred during a P2d or D2d
operation only.

31:24 reserved Reserved for future use.

23:20 SrcStatus TBD.

19:16 DstStatus TBD.

15:00 XfrSz Bits [15:00] of the residual dma size expressed in bytes. This value will be zero if the dma

operation was successful

The format of the ChEvnt register is as follows.

bit__ name description
31:00 ChDn Each bit represents the done flag for the respective dma channel. These bits are set by a

dma sequencer upon completion of the channel command. Cleared when the processor
writes 0 to the corresponding ChCmd register ChCmdOp field.

Provisional Pat. App. of Alacritech, Inc. 127
Inventors Laurence B. Boucher et al.

E Mail Label # EH756230105US
xpress Mail Label # Alacritech, Ex. 2019 Page 261

. »
= i
1

MAC CONTROL (Macctrl)

‘ .
-

From Cpu

Cpu_CLK I I I z z I .

P PHY | PHY —®| RNG —P CFG —P Regs Mac

WR RD WR WR TO OTHER
Req0 | ReqQ —p» Reql —p»| Req0 Macs Data
l TO OTHER Macs
h 4 A 4
Xmi_CLK >CKI;EG ’C‘;:EG
Xmt_CLK ¢ ¢
P(cK PicK
REG REG
¢ /]
ICK
CFG
REG
h 4 v \ 4 i N 4
LCTLD RStatus LRNG CFG
D, CTLD
MacA
—P
—p
L OR
—P
v
Mac BUSY TO Cpu
Provisional Pat. App. of Alacritech, Inc. 128

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US .
Alacritech, Ex. 2019 Page 262

=2
5
%
B
A E]
—e

P .
. N
J

The following load calculations are based on the following basic formulae:

Appendix A

N=X*R (Little’s Law) where
N = number of jobs in the system (either in progress or in a queue),

X = system throughput,
R = response time (which includes time waiting in queues).

U=X* S (from Little’s Law) where
S = service time,
U = utilization.

R =S/ (1-U) for exponential service times (which is the worst-case assumption).

A 256 byte frame at 100Mb/sec takes 20 psec per frame.
4 * 100 Mbit ethernets receiving at full frame rate is:
51200 (4 * 12800) frames/sec @ 1024 bytes/frame
102000 frames/sec @ 512 bytes/frame
204000 frames/sec @ 256 bytes/frame.

The following calculations assume 250 instructions/frame, 45nsec clock. Thus
S =250 * 45 nsecs = 11.2 psecs.

Av. Frame Size Thruput Utilization Response Nbr. in system
X) (8) R) ™)

1024 51200 57 26 usecs 13

512 102000 >1 - --

256 204000 >1 - --

Lets look at it for varying instructions per frame assuming 512 bytes per frame average.

Instns Service Thruput Utilization Response Nbr. in system
Per Frame Time(S) (X)) (R) N)

250 11.2 usec 102000 >1 -- --

250 11.2 85000 (*) .95 224 usecs 19

250 11.2 80000 (**) .89 101 8

225 10 102000 1.0 -- --

225 10 95000 (*) .95 200 19

225 10 89000 (**) .89 90 8

200 9 102000 9 90 9

150 6.7 102000 .68 20 2

(*) shows what frame rate can be supported to get a utilization of less than 1.
(**) shows what frame rate can be supported with § SRAM TCB buffers and at least 8
process contexfts.
Provisional Pat. App. of Alacritech, Inc. 129
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 263

A B TR T

) ¢

If 100 instructions / frame is used, S = 100 * 45 nsecs =4.5 usecs, and we can support

~ 256 byte frames:

100 45 - 77204000 91 50 10

Firstly note that these calculations assume that response times increase-exponentially as
utilization increases. This is the worst-case assumption, and probably may not be true for ~
our system.
The figures show that to support a theoretical full 4 * 100 Mbit receive load with an
average frame size of 512 bytes, there will need to be 19 active “jobs” in the system,
assuming 250 instructions per frame. Due to SRAM limitations, the current design
specifies 8 SRAM buffers for active TCBs, and not to swap a TCB out of SRAM once it
is active. So under these limitations, the INIC will not be able to keep up with the full
frame rate. Note that the initial implementation is trying to use only 8KB of SRAM,
although 16KB may be available, in which case 19 TCB SRAM buffers could be used.
This is a cost trade-off.
The real point here is the effect of instructions/frame on the throughput that can be
maintained. If the instructions/frame drops to 200, then the INIC is capable of handling
the full theoretical load (102000 frames/second) with only 9 active TCBs. If it drops to
100 instructions per frame, then the INIC can handle full bandwidth at 256 byte frames
(204000 frames/second) with 10 active TCBs. The bottom line is that ALL hardware-
assist that reduces the instructions/frame is really worthwhile. If header-assist hardware
can save us 50 instructions per frame then it goes straight to the throughput bottom line.

CERTIFICATE OF MAILING UNDER 37 CFR 1.10

I hereby certify that this Provisional Patent Application is being deposited with the
United States Postal Service as “Express Mail Post Office to Addressee”, label number
EH756230105US, in an envelope addressed to: Assistant Commissioner for Patents,
Washington, D.C. 20231, on October 14, 1997.

Date: (Aot ber /z /967 %

Mark Lauer
(person mailing Application)

Provisional Pat. App. of Alacritech, Inc. 130
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Alacritech, Ex. 2019 Page 264

Best Available Copy

POSITION

CLASSIFIER

EXAMINER

e TYPIST

NUSCATION VERIFIER

; CORPS CORR.

SPEC. HAND
seACouEEn FILE MAINT

7 BRON TS T ONAL DRAFTING

CRNRENGE B. BOL
PETER K. \CRAFT.!
CLIVE M. PHILER

1

i

N te - ‘l
aEGUNTIINUIING DA
TOYFRIVIED §

|

+9EDRELGN @FPL]
TWERIFLED

!
!
H
]

FORELGN FILTNE

| C5USC 119 condiioni met L
o and Acritedged” =
< MARE JLAUER H
CewITE 288
&E50 REGTONAL
DUBLIN DA %4%

)

e o
TINTELLCTGENT i
i

(LEFT INSIDE) Alagcritech, Ex.

3 . ol 4
—— P VISR S G L

	1998-05-15 Specification
	1997-10-14 Miscellaneous Incoming Letter
	1997-10-14 Specification
	1997-10-14 Index of Claims

