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[POO0
Error bits are sent
RCVhasoccured.

ERR Commandhas been completed
XMT

Rev drop occured due to no buffers

RMISS

FIG. 19

ISR 0x0 Interrupt Status
IMR Ox4 Interrupt Mask
HBAR 0x8 Header Buffer Address
DBHR 0xC Data Buffer Handle
DBAR 0x10 Data Buffer Address
CBARO=Ox14 Command Buffer Address XMT0
CBARI 0x18|Command Buffer Address XMT1
CBAR2 0xlC Command Buffer Address XMT2
CBAR3 0x20 Command Buffer Address XMT3
CBAR4 0x24 Command Buffer Address RCV
RBAR 0x28 Response Buffer Address

FIG. 20
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Command
Buffer 

FIG. 29

SRAM requirementsfor the Receive and Transmit engines:

TCB buffers 256 bytes* 16 4096
Headerbuffers 128 bytes* 16 2048
TCBhash index 16 bytes* 256 4096
Timers 128
DRAMFifo queues 128 bytes* 16 2048

~12K bytes

KC

FIG. 30
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Summary of the main loop of Receive:

forever {
while there are any Receive events {

if (a new event) {
if (no new context available)

ignore the event;

call appropriate event handler to service the event;
this may make a waiting process runnable or set up
a new process to be run (get free context, hddr buffer,
TCB buffer, set the context up).

while any process contexts are runable {
run them by jumping to the start/resume address;
if (process complete)

free the context;

FIG. 31
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Format of the SMB headerof an SMBframe:

 'NetBIOS header

SMBheader

l

<—__ LENGTH

COM

ERR|REB/FLG Reserved

|Reg
Red
Res

TID PID

UID MID

WCT VWV[

  
 

Bkco Fe
 

 

. .

 
BCC

Notes(interesting fields):
LENGTH 17 bit Length of SMB message (0 - 128K)
COM SMB command
WCT Count (16 bit) of parameter words in VWV[ |
VWV Variable number of parameter words
BCC Bytesofdata following
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Summaryof the main loop of Transmit:

forever {
while there are any Transmit events {

if (a new event) {
if (no new context available)

ignore the event;

call appropriate event handler to service the event,
this may make a waiting process runnable or set up
a new process to be run (get free context, hddr buffer,
TCB buffer, set the context up).

while any process contexts are runable {
run them by jumping to the start/resume address;
if (process complete)

free the context;

FIG. 33
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Bit 31 - 24 Byte enable 7 - 0. Only the low orderfourbits are
valid for 32 bit addressing mode.

Bit 23 - 0 Memory access
1 Configuration access

Bit 22- 0 Read (to Host)
1 Write (to Host)

Bit 21-1 Data Valid
Bit 20 - 16 Reserved
Bit 15 - 0 Address

Ke

FIG. 34

Configuration Space | SRAM Address Offset
00 00
04 04
08 08
OC OC
10 10
3C 14

00 00
04 18
08 08
0C IC
10 20
3C 24

All other reads to configuration spacewill return 00.

FIG. 35
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Bit0-0 I/O accesses are not enabled

Bit 1-1 Memory accesses are enabled
Bit 2-1 Bus masteris enabled

Bit3-0 Special Cycle is not enabled
Bit 4-1 Memory Write and Invalidate is enabled
Bit5-0 VGA palette snoopingis not enabled
Bit6-1 Parity checking is enabled
Bit7-0 Address data stepping is not enabled
Bit 8 - SERR# is enabled
Bit9-0 Fast back to back is not enabled

FIG. 36

Bit5-1 66 MHz capable is enabled. This bit will be set if the INIC
Detects the system running at 66 MHz onreset

Bit6-0 User Definable Features is not enabled
Bit7-1 Fast Back-to-Backslave transfers enabled
Bit8-1 Parity Error enabled - Thisbit is initialized to 0
Bit 9,10 - 00 - Fast device select will be set if we are at 33 MHz

01 - Medium device select will be set if we are at 66 MHz
Bit 11-1 Target Abort is implemented.Initialized to 0.
Bit 12-1 Target Abort is implemented.Initialized to 0.
Bit 13-1 Master Abort is implemented.Initialized to 0.
Bit 14-1 SERR# is implemented. Initialized to 0.
Bit 15-1 Parity error is implemented. Initialized to 0.

FIG. 37
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MODULE DESCR SPEED AREA

Scratch RAM, IKx128sport, 4.37 nsnom., 06.77 mm”
WCS, 8Kx49 sport, 6.40 nsnom., 18.29 mm?
MAP, 128x7 sport, 3.50 ns nom., 00.24 mm?
ROM, 1Kx49 32col, 5.00 ns nom., 00.45 mm?
REGs, 512x32 tport, 6.10 nsnom., 03.49 mm?
Macs, 75 mm? x 4= 03.30 mm?
PLL, 5mm? = 00.55 mm?
MISC LOGIC,117,260gates / (5035 gates / mm?)= 23.29 mm?
TOTAL CORE 56.22 mm”

(Core sidey = 56.22 mm*
Core side = (07.50 mm
Dieside =core side + 1.0 mm (I/O cells) = 08.50 mm
Die area = 8.5 mm x 8.5 mm = 72.25 mm?

Pads needed = 220 signals x 1.25 (vss, vdd) = 275 pins
LSI PBGA = 272 pins

FIG, 39
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(10MB/s/100Base) x 2 (full duplex) x 4 connections = 80 MB/s
Average framesize = 512B
Frame rate = 80MB/s / 512B = 156,250 frames / s
Cpuoverhead / frame = (256B context read) + (64B header read) +

(128B context write) + (128B misc.) = 512B/ frame
Total bandwidth = (512B in) + (512B out) + ($12B Cpu) = |536B/ frame
Dram Bandwidth required = (1536B/frame) x (156,250 frames/s) = 240MB/s
Dram Bandwidth @ 60MHz=(32 bytes / 167ns) = 202MB/s
Dram Bandwidth @ 66MHz = (32 bytes / 150ns) = 224MB/s
PCI Bandwidth required = §80MB/s
PCI Bandwidth available @ 30 MHz, 32b,average = 46MB/s
PCI Bandwidth available @ 33 MHz, 32b, average = 50MB/s
PCI Bandwidth available @ 60 MHz,32b,average = 92MB/s
PCI Bandwidth available @ 66 MHz, 32b,average = 100MB/s
PCI Bandwidth available @ 30 MHz,64b,average = 92MB/s
PCI Bandwidth available @ 33 MHz,64, average = {00MB/s
PCI Bandwidth available @ 60 MHz, 64b,average = |84MB/s
PCI Bandwidth available @ 66 MHz,64, average = 00MB/s

FIG. 40

Receiveframe interval = 512B / 40MB/s = |2.8us
Instructions / frame @ 60MHz=(12.8us/ftame) /(SOns/instruction) = 256
instructions/frame

Instructions / frame @ 66MHz=(12.8us/ftame)/ (4Sns/instruction) = 284
instructions/frame

Required instructions / frame = 250 instructions/frame
KY

FIG. 41
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TYPE _[55:49]_ [48:47] [46:42]_[41:33] [32:24] [23:16] [15:00]

Jcc

Jmp

Jsr

Rts

Nxt

Map

0b0000000

0b0000000

0b0000000

0b0000000

0b0000000

MapAddr

0b00, AluOp,

0b01, AluOp,

0b10, AluOp,

Ob11, AluOp,

Obl1, AluOp,

OpdASel, OpdBSel,

OpdASel, OpdBSel,

OpdASel, OpdBSel,

OpdASel, OpdBSel,

OpdASel, OpdBSel,

TstSel, Literal

FigSel, Literal

FligSel, Literal

Ohff, Literal

FlgSel, Literal

OBXX, OBXXXXX, OBXXXXXXXXX, OBKXXKXXXXX, OHXX, OHXXXX

FIG. 43
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SEQUENCER BEHAVIOR

if (MapEn & (MapAddr!= 0b0000000)){ //re-map instr
Stacke = Stackc;
StackB = StackB;
StackA = StackA;

InstrAddr = 0h8000 | Pe[2:0] | (MapAddr << 3);
Pc = InstrAddr + (Execute & ~DbgMd);

Fetch = DbgMd ? DbgAddr:InstrAddr,
DbgAddr = DbgAddr + (Execute & DbgMd);}

else if (PgmCtrl == Jec){ /{conditional jump
Stacke = Stackc;
StackB = StackB;
StackA = StackA;

InstrAddr = ~Tst@TstSel ? Pc:(AluDst==Pc) ? AluOut:Literal;
Pc = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddr:InstrAddr,
DbgAddr = DbgAddr+ (Execute & DbgMd);}

else if (PgmCtrl == Jmp){ //jump
Stacke = Stacke;
StackB = StackB;
StackA = StackA;

InstrAddr = (AluDst == Pc) ? AluOut:Literal;
Pc = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr+ (Execute & DbgMd);}

else if (PgmCtrl == Jsr){ //yump subroutine
Stacke = StackB;
StackB = StackA;
StackA = Pc;

InstrAddr = (AluDst == Pe) ? AluOut:Literal,;
Pc = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr+ (Execute & DbgMd);}

else if (FlgSel == Rts){ /freturn subroutine
InstrAddr = StackA;

StackA = StackB;
StackB = Stackc;
Stacke = ErrVec;

Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr,

DbgAddr = DbgAddr+ (Execute & DbgMd);}

else {
InstrAddr = Pe; //fcontinue

StackA = StackA;
StackB = StackB;
Stacke = Stacke;

Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr,

DbgAddr = DbgAddr+ (Execute & DbgMd);}

FIG. 44
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ALU OPERATIONS

AluOp OPERATION

0b00000 A=(A & ~(1 << B));
C = 0; V = (B >= 32) ? 1:0;

0b00001 A=(A & B);
C=0; V=0;

0b00010 = (Literal & B);
C=0; V=0;

0b00011 A = (~Literal & B);
C=0; V=0;

0b00100 A=avera << B));= (B >= 32) ? 1:0;

0b00101 A=(A|B);
C=0; V=0;

0b00110 A=(Literal| B);
C=0; V=0;

0b00111 A = (~Literal| B);
C=0; V=0;

0b01000 for (i=31; i>=0; i--) if B[i] continue; A=i;
C=0;V= (B) 20:1;

0b01001 A=(A“%B);
C=0; V=0;

0b01010 A = ({Literal} * B);
C=0;V=0;

0b01011 A = ({~Literal} * B);
C=0; V=0;

0b01100 A=B;
C=0;V=0;

0b01101 A = B[31:24] * B[23:16] * B[15:08] * B[07:00];
C=0; V=0;

0b01110 A= {B[23:16],B[31:24],B[07:00],B[15:08]}
C=0; V=0;

0b01111 A = {B[15:00], B[31:16]};
C=0; V=0;

FIG. 45
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//bit clear

/Nogical and

/Nogical and

/{logical and not

bit set

/Nogical or

/Nogical or

/Nogical or not

//priority enc

/flogical xor

/Aogical xor

/Nogical xor not

//move

//hash

//swap bytes

//swap doublets
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AluOp

0b10000

0b10001

0b10010

0b10011

0b10100

0b10101

0b10110

0b10111

0b11000

0b11001

0b11010

0b11011

0b11100

0b11101

0b11110

Ob11111
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FUNCTION

A=(A+B);
C =(A + B)[32]; V = 0;

A=(A+B+O);
C=(A+B+C©)[32]; V=0;

A = (Literal + B);
C = (Literal + B)[32]; V = 0;

A = (-Literal + B);
C = (-Literal + B)[32]; V = 0;

A=(A-B);
C=(A - B)32]; V = 0;

A=(A-B--C);
C=(A-B-~O)32]; V=0;

C= CA + B32]: V = 0;
A=(-A+B-~C);
C =(-A+B-~C)[32]; V = 0;

A=(A <<B);
C= A[31];V

A = (B << Literal);
C= B[31]; V = (Literal >= 32) ? 0:1;

= (B>= 32)? 0:1;

A=(B<< 1);
C= B31]; V=9;

n= (A-B);C=(A- B32]; V =0;
A=(A>>BC= ATO, Vv (B >= 32)? 1:0;
A = (B >> Literal);
C= A[0]; V = (Literal >= 32) ? 1:0;

A=(B>> 1);
C= A[0}; V = 0;

n = (B - A),
C =(B- A)[32]; V = 0;

FIG. 46

US 6,334,153 B2

Hladd B

//fadd B, carry

//add constant

//sub constant

//sub B

//sub B, borrow

//sub A

/{sub A, borrow

(shift left A

//shift left B

//shift left B

/{compare

//shift right A

shift right B

shift right B

/{compare

INTEL Ex. 1259.037



INTEL Ex. 1259.038

U.S. Patent Dee. 25, 2001 Sheet 36 of 82 US 6,334,153 B2

OpdSel_

0b0000aaaaa

0b000 1 aaaaa

SELECTED OPERANDS

File File@(OpdSel[4:0] | FileBase);
Allows paged access to any part ofthe registerfile.

CpuReg File@{2'b11, Cpuld, OpdSel[4:0]};
Allowsdirect access to Cpu specific registers.

Ob00IXXXXXX reserved Reserved for future expansion.

0b0100000XX

0b0100001XX

0b0100010XX

0b0100011XX

0b01001XXXKX

06010100000

CpuStatus 0b0000000000000BHD00000000000000CC
This is a read-only register providing information about the Cpu executing
(OpdSel[1:0]) cycles after the current cycle. "CC"represents a value
indicating the Cpu. Currently, only Cpuld values of 0, 1 and 2 are returned.
"H"represents the current state of HIt, "D" indicates DbgMdand "B"
indicates BigMd. Writing this register has no effect.

reserved Reserved for future expansion.

Pe Ox0000AAAA
Writing to this address causes the program control logic to use AluOutas the
new Pevalue in the event of a Jmp, Jee or Jsr instruction for the Cpu
executing during the current cycle. If the current instruction is Nxt, Map, or
Rts, the register write has no effect. Reading this register returns the value in
Pc for the Cpu executing (OpdSel[1:0]) cycles after the current cycle.

DbgAddr OxDO00AAAA
Writingto this register alters the contents of the debug addressregister
(DbgAddr) for the Cpu executing (OpdSel[1:0]) cycles after the currentcycle. DbgAddrprovides the fetch address for the control-store when
DbgMdhasbeenselected and the Cpu is executing. DbgAddris also used
as the control-store address when performing a WrWes@DbgAddror
RdWes@DbgAddroperation. “D”represents bit 31 of the register. It is a general
purpose flag that is used for event indication during simulation. Reading this
register returns a value of 0x00000000.

reserved Reserved for future expansion.

RamAddr {0b1CCC, 0x000, 0b1, AAAA}
RamAddr = AluOut[15] ? AluQut : (AluOut | RamBase);
PrevCC = AluOut{31]?CCC :AlCC;

A read/write register. When readingthis register, the Alu condition codes from the previous
instruction are returned together with RamAddr.

bit name description
31 Always1.
30 PrevC Previous Alu Carry.
29 PrevV Previous Alu Overflow.
28 PrevZ Previous Alu Zero.
27:16 Always 0.
15 Always1.
14:0 RamAddr Contents of last Sram address used.

Whenwritingthisregister, if alu_out[31] is set, the previous condition codeswill be overwritten with
bits 30:28 of AluOut. If AluOut{ 15]is set, bits 14:0 will be written to the RamAddr.IfAluOut[15]
is notset, bits 14:0 will be ored with the contents of the RamBase andwritten to the RamAddr

FIG. 47
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OpdSel

0b010100001

0b010100010

06010100011

0b010100100

0b010100101

0b010100110

0b010100111

SELECTED OPERANDs

AddrRegA 0x0000AAAA

AddrRegA = AluOut,

A read/write operand which loads AddrRegAusedto provide the address for read and write
gperations: When AddrRegA[15]is set, the contents will be presented directly to the ram.en AddrRegA[1 >| is reset, the contents will first be ored with the contents of the RamBaseation to the ram. Writing to this register takes priority over Literal loadsregister before presen :

ue of the register.using FlgOp. Readingthis register returns the current va

AddrRegB 0x0000AAAA

AddrRegB = AluOut;

A read/write operand which loads AddrRegB usedto provide the address for read and writeoperations.
When AddrRegB[15]is set, the contents will be presented directly to the ram. When
AddrRegB[15{is reset, the contents will first be ored with the contents of the RamBase
register before presentation to the ram. Writing to this register takes priority over Literal loadsusing FigOp. Reading this register returns the current value ofthe register.

AddrRegAb—0x0000AAAA
AddrRegA = AluOut; AddrRegB = AluOut;

A destination only operand which loads AddrRegB and AddrRegaAusedto provide the address
for read and write operations Writingto this register takes priority over Literal loads using
FigOp. Readingthis register returns the value 0x00000000.

RamBase 0x0000AAAA
RamBase = AluOut;

A read/write register which providesthe base address for ram read and write cycles. When
RamAddr{15)is set, the contents will not be used. When RamAddr[15]is reset, the contents
will first be oredwith the contents of the RamBaseregister before presentation to the ram.
Readingthis register returns the value for the current Cpu.

FileBase 0b00000000000000000000000AAAAAAAAA
FileBase = AluOut;
FileAddr = OpdSei{8| ? OpdSel:(OpdSel + FileBase);

A read/write register which provides the base address for file read and write cycles. When0 dSel[8| is set, the contents will not be used and OpdSel will be presented irectly to theaddresslines of the file. When OpdSel(8]is reset, the contents will first be ored with the
contents of the FileBase register before presentationto the file. Reading this register returns the
value for the current Cpu.

InstrRegL Oxi

This is a read-only register which returns the contents of InstrReg[3 1:0}. Writing to
this register has no effect.

InstrRegH OxOOIINII

This is a read-only register which returns the contents of InstrReg[55:32]. Writing to this
register has noeffect.

FIG. 48
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SELECTED OPERANDs

Minus1 Oxfffftttt

This is a read-only register which supplies a value Oxffffffff.. Writing to this
register has no effect.

FreeTime A free-runningtimerwitha resolution of 1.00 microseconds and amaximum count
of 71 minutes. This timer is cleared duringreset.

LiteralL Instr[15:0]
A read-only register. Writing to this register has no effect

LiteralH Instr[15:0]<<16;
A read-only register. Writing to this register has no effect

MacData - Writing to this address loads the AluOutdata into the MacDataregister for use
during Mac operations. The Macoperation,resulting from writing to the MacOpregister,
determines the definition of the MacDataregister contents as follows.

MacOp
Mstop

WrMefg

WrMrng

RdPhy

WrPhy

MacData definition

ObXXXXXXXXXXXXXKXXKXXXKKKKXXKXXKXKKXXX

MacDatais not used for the StopM operation.

hrstl, rsvd, rsvd, ercen, fulld, hrstl, hugen, nopre, paden, prtyl, xdl10,
ipgr1[6:0],
ipgr2[6:0], ipgt[6:0].
Loads the MaeCfg register with the contents of the MacDataregister. Refer to
LSI Logic's Ethernet-110 Core Technical Manualfordetailed definitions ofthese
bits.

ObXXXXXXXXXXXXXXXXXXXXXSSSSSSSSSSS

Loads seed[10:0] into the Mac's random number generator.

ObXXXXRRRRXXXXPPPPXXXXXXXXKKXKXXKXKXK

Readsregister[R] of phy[P].

0bXXXXRRRRXXXXPPPPDDDDDDDDDDDDDDDD

Writes register[R] of phy[P] with MacData[15:0].

Readingthis register returns prsd[15:0] of Mac0 which contains phy status data returned to the
Macat the completion of a RdPhy command. This data is invalid while MacBsy is asserted
as a result of a RdPhy command.Refer to the appropriate phy technical manualfor a
definition of the phy register contents.

FIG. 49
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FIG. 50A

FIG. 50B

FIG. 50C

 
FIG. 50
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OpdSel SELECTED OPERANDs

0b010101101 MacOp- A write only register. Writing to this address loads the MacSelregister and staRts
execution of the specified operation as follows.

AluQOut description
OxXXXXXOXM Mstop - Halts execution of a MacOp for Mac[M]. The user must wait for

MacBsyto be deasserted before issuing another command or changing the
contents of MacData.

OxXXXXXIXM  WrMefg- Writes the contents of MacDatato the MacCfgregister of _MadM]
Theuser must wait for MacBsyto be deasserted before issuing another command
or changing the contents of MacData.

OxXXXXX2XM  WrMrng- Writes the contents of MacDatato the seed register ofMac[M]. The
user must wait for MacBsyto be deasserted before issuing another command or
changing the contents of MacData.

0xXXXXX3XM  RdPhy- Reads the contents of reg[R] for phy[P] on the MI] managementbusof
Mac[M]. The contents may be read from MacData after MacBsy hasbeen de-

asserted.

OxXXXXX4XM  WrPhy- Writes the contents ofMacData[15:0] to ereg[R] of phy[P] on the MII
management bus of Mae[M]. The user must wait for MacBsyto be deasserted
before issuing another commandor changing the contents of MacData.

OxXXXXX8XM WrAddrAL- Writes the contents of MacData[15:0] to MacAddrA{15:0] for Mac[M].
OxXXXXX9XM WrAddrAH- Writes the contents ofMacData[1 1:0] to MacAddrA[47:16] for Mac[M].
OxXXXXXaXM  WrAddrBL-Writes the contents of MacData[15:0] to MacAddrB[15:0] for Mac[M].
OxXXXXXbXM WrAddrBH- Writes the contents ofMacData[1 1:0] to MacAddrB[47:16] for Mac[M].

b010101110 ChCmd A write-only register.

bit name description
31:11 reserved Data written to these bits is ignored.
10:8 command 0 - Stops executionof the current operation and clears the

corresponding eventflag.
1 - Transfer data from ExtMem to ExtMem.

2 - Transfer data from Pci to ExtMem.

3 - Transfer data from ExtMemto Pci.
4 - Transfer data from Sram to ExtMem.

5 - Transfer data from ExtMem to Sram.

6 - Transfer data from Pci to Sram.

7 - Transfer data from Sram to Pci.

07:05 reserved Data written to these bits is ignored.
04:00 Chid Provides the channel numberfor the channel command.

FIG. 50A
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0b010101110 ChEvnt A read-only register.

bit name description
31:00 ChDn Eachbit represents the doneflag for the respective dma channel. These

bits are set by a dma sequencer upon completion of the channel
command. Cleared when the processor writes 0 to the corresponding
ChCmdregister.

0b010101111 GenEvnt A read-only register.

bit name description
31 PeiRdEvnt Indicates that a PCIinitiator is attempting to read a mproc.

register.
30 PeiWrEvnt Indicates that a PCI initiator has posted a write to a mproc.

register.
29 TimeEvnt An event which occurs once every 2.00 milliseconds.
28:00 reserved Reserved for future use.

0b010110000==QcCtrl A write-only register used to select and manipulate a Q.

bit name description
31:11 reserved Data written to these bits are ignored.
10:8 QSz Used only during InitQ operations to specify the size of the QBdy in Dram.

7 — Queue depth is 32K entries (128KB).
6 — Queue depth is 16K entries (64KB).
5 — Queue depth is 8K entries (32KB).
4 — Queue depth is 4K entries (16KB).
3 ~ Queue depth is 2K entries (8KB).
2 — Queue depth is 1K entries (4KB).
1 — Queue depth is 512 entries QKB).
0 — Queue depth is 256 entries (1 KB).

7:5 QOp Specifies the queue operation to perform.
7—DbiQ Disables all queues.
6-—EnQ_—Enablesall queues.
5 ~RdBdy Increments the QBdyRdPtrand increments the QTIWrPtr.
4 —WrBdy Decrements the QBdyWrPtr and increments the QHdRdPtr.
3-RdQ_Returns a queueentry in register QData..
2-—rsvd Reserved. Not to be used.

1-InitQ—Set the queue status to empty andinitializes QSz.
0-—SelQ—Selects the QId to be utilized during writes to QData.

FIG. 50B
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Qld Specifies the queue on which to perform all operations except DbIQ or EnQ.

QData A read/write register. Writing this register will result in the data being pushed on
to the selected queue. Readingthis register fetches queue data popped off during
the previous RdQ operation.

reserved Reserved for future expansion.

XevCtrl A write-only register used to enable and disable Mactransmit and receive
sub-channels.

bit name__ description
31:09 reserved Data written to these bits are ignored.
8 enable Whenset, indicates to the Mac transmit or receive sequencerthat the subchannel

contains a transmit or receive descriptor.
07:05 reserved Data written to these bits is ignored.
04 RevCh Selects a Mac receive subchannel when set. Selects a Mac transmit subchannel

whencleared.

03 reserved Data written to this bit are ignored.
02 SubCh Selects subchannel B whenset or A whenreset.
01:00 Macld Provides the Mac numberfor the subchannelenable bit.

Lru 0x0000000A

A read/write operand indicating which of the 16 entries is least recently used.
When Reading This register the least recently used entry is returned, after which
it is automatically made the most recently used entry. This register should only
be read in conjunction with a 'Move' operation of the ALU,else the results are
unpredictable. Writing to this register forces the addressed entry to become the
least recently used entry.

Mru 0x0000000A

A write only operand forcing the addressed entry to becomethe most recently
used entry.

QInRdy A read-only register comprising QHdnotfull flags for each of the 32 queues.

QOutRdy A read-only register comprising QTI not empty flags for each of the 32 queues.

QEmpty A read-only register comprising QEmptyflags for each of the 32 queues.

QFull A read-only register comprising QFull flags for each of the 32 queues.

reserved Reserved for future expansion.

Constants {0b000, OpdSel[4:0]}

reserved Reserved for future expansion.

FIG. 50C
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SELECTED OPERANDs

Sram OPERATIONS

OpdSel[3] PostAddrOp
0
1

nop
RamAddr = RamAddr+ (OpdSel[1:0]);

OpdSel[2] transpose Ctrl
0 don't transpose

1 transpose bytes

OpdSel[1:0] RamOpdSz
0 quadlet
1 triplet
2 doublet
3 byte

RAM READ ATTRIBUTES

endian trans- byte Sram
mode ose_ offs data sz= sz=T sz=D
little 0 abed=abe Obed 00ed
little 0 1 abcX trap Qabe 00bc
little 0 2 abXX trap trap 00ab
little 0 3 aXXX tra trap trap
little 1 0 abcd dcba Odcb 00dc

little ] 1 abcX trap Ocba  O00cb
little 1 2 abXX trap trap 00ba
little ] 3 aXXX trap trap trap
BIG 0 0 abcd abcd abc 00ab
BIG 0 1 Xbed trap Obcd 00bc
BIG 0 2 XXed_ trap trap 00cd
BIG 0 3 XXXd_ trap trap trap
BIG l 0 abcd dceba Ocha 00ba
BIG 1 1 Xbed trap Odeb  00cb
BIG 1 2 XXcd__ trap trap 00dc
BIG 1 3 XXXd_ trap trap trap

RAM WRITE ATTRIBUTES

endian trans- Opd Alumode
fittle
little
little
little
little
little

pose
0

—etOOOOOO0eeeeOO
size out OF=0 OF=1 OF=2

Q abed abcd trap trap
T Xbcd -bed  bed- trap
D XXed_ --cd -cd- cd--
B XXXd_ ---d --d- -d--
Q abcd dcba tra trap
T Xbed -deb  dceb- trap
D XXed_  --de -de- dc--
B XXXd_ ---d --d- -d--

Q abcd abcd trap trap
T Xbcd bed- -bed trap
D XXed__cd-- -cd- --cd
B XXXd_ d--- -d-- --d-
Q abcd dcba trap trap
T Xbed deb- -dceb tra
D XXced_ de-- -de- --de
B XXXd_ d--- -d-- --d-

File@OpdSel{8:0];
Allows direct, non-paged, access to the top halfofthe registerfile.

FIG.31
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SOURCE OPERAND

sz=B
000d
000c
000b
000a
000d
000c
000b
000a
000a
000b
000c
000d
000a
000b
000c
000d

SOURCE OPERAND

OF=3

trap
trap
trap

trap
trap
trap
d---

trap
trap
trap
---d

trap
trap
trap
---d
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SELECTED TEST

Tst = TstSel[7] * AluOut[TstSel[4:0]]

Tst = TstSel[7] * C

Tst = TstSel[7] “ V

Tst = TstSel[7] * Z

Tst = TstSel[7] “(Z| ~C)

Tst = TstSel[7] “ PrevC

Tst = TstSel[7] * PrevV

Tst = TstSel[7] “ PrevZ

Tst = TstSel[7] * (PrevZ & Z)

Tst = TstSel[7] “ QOpDn

Tst = reserved

Tst = reserved

Tst = reserved

Tst = TstSel[7] * Lock[TstSel[2:0]]
Lock(TstSel[2:0]) = 1;

Tst = TstSel[7] * Lock[TstSel[2:0]]

Tst = reserved

Tst = reserved

FIG. 52
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(Alubit

/{carry

/ferror

//zero

//ess or equal

//previous carry

//previous error

//previous zero

/164b zero

//queue op okay

//tests the current value of

//the Lock thensetit.

//tests the value of Lock.
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FLAG OPERATION

No operation.

SelfRst

SelBigEnd

SelLitEnd

DbIMap

EnbMap

reserved

reserved

CirLek

reserved

AddrOp

I
2
3

Figsel Lo
1
2
3

Forces a self reset for the entire chip excluding the PCI configuration
registers

Selects big-endian mode for ram accesses for the current Cpu.

Selectslittle-endian mode for ram accesses for the current Cpu.

Disable instruction re-mapping for the current Cpu.

Enable instruction re-mapping for the current Cpu.

Lock[FlgSel{2:0]] = 0;
Clears the semaphoreregister bit for the current Cpu only.

AddrSelect

RamAddr= Literal[15]
RamAddr = AddrRegA{15]
RamAddr = AddrRegB/15]
if (OpdA == RamAddr)
RamAddr = AluOut[15]
else if (OpdA == ram)

RamAddr = AddrRegB([15]else
RamAdgdr= AddrRegA[15]
addr reg load
nop
AddrRegA = Literal;
AddrRegB = Literal;
AddrRegA = Literal;

? Literal : (Literal | RamBase);
? AddrRegA : (AddrRegA| RamBase);
? AddrRegB : (AddrRegB | RamBase);
? AluOut

? AddrRegB : (AddrRegB | RamBase);

? AddrRegA : (AddrRegA| RamBase),

: (AluOut | RamBase);

AddrRegB = Literal;

note: When specifying the sameregister for both the load and select fields, the current value of the
register, before it is loaded with the new value, will be used for the ram address.
reserved

WrWesL@Dbg

WrWcsH@Dbg

RdWesL@Dbg

RdWcsH@Dbg

reserved

Step

PcMd

DbgMd

Hit

Run

reserved
reserved

reserved

Causes the bits [31:0] of the control-store at address DbgAddrto be
written with the current AluOutdata.

Causes the bits [63:32] of the control-store at address DbgAdadrto be
written with the current AluOut data then increments DbgAddr.

Causes the bits[31-0] of the control-store at address DbgAddrto bemovedto file address Ox1ff.

Causesthe bits [63:32] of the control-store at address DbgAddrto be
movedto file address Oxi ff then increments DbgAddr.

Allows the Cpu (FlgSel[1:0]) cycles after the current cycle to execute a singleinstruction. There is no effect if the Cpu is not halted. An offset of 0 is not allowed.

Selects the Pe as the address source for the control-store during
instruction fetches for the Cpu (FlgSel[1:0]) cycles after the current cycle.

Selects the DbgAddraddressregister as the address source for the
control-store during instruction fetches for the Cpu (FlgSel[1:0])
cycles after the current cycle.

Halts the Cpu (FlgSel{1:0]) cycles after the current cycle.

Clears Halt for the Cpu (FigSel[1:0]) cycles after the current cycle.

FIG. 53
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Arbiter
TO requestors

XrdReq
XrdAddr

XrdState

XrdCtrl

XrdData

XwrReq
XwrAddr

Xwrstate

XwrCtrl

XwrData

TO Xmem

DefgReq
DefgAddr
DefgState
DefgCtrl
DefgData

TO Xmem

EectrlReq
EectrlAddr

EectrlState

EectrlCtrl

EectrlData
TO Xmem
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TO Requester
D2p
D2s

/|

Dad . XAddr . TO Xetrl
Pee a - EN SramGnt$0

XmtA XD 4 > SramData

i; -
ata

XmtB

XmtC

XmtD XCtrl TO Xctrl

SEQ TO Xctrl

XctrlDin Ack To requester
XctrlGnt XetrlReq

SramReq

SramGnt

SramAck

> SramParams

FIG. 59
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4 TO Requester

S2s /
Dod XAddr TO Xctrl
Q2q
Psi XData 4 TO Xctrl

RevA - JRevB A—~TO Xotrl

RevD

D2dChkSum - TO D2d; P2dChkSum +—< TO P2dSEQ B
10 Xet

XctrlGnt

Ack TO requester

XcetrlReq
SramGnt SramReq
SramAck

SramAckSz SramGnt

SramRdData > SramParams

FIG. 61
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CHANNEL

- - -Dram
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XFR A

i: COUNT - TO XrdFIFO

i; RDPtr - TO PmoFIFO

: WRPtr - TO Xrd
XFR
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Xie Status

State

Pmo Ack FifoCnt

Pmo Req
PmoStatus XrdReq
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EN
From Sram
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FIG. 65
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RECEIVE BUFFER DESCRIPTOR

bit name
31:30 reserved
29:28 size
27:00 address

TIME STAMP

bit name
31:00 RevTime

CHECKSUM

bit name
31:16 IpChksum

15:00 TepChksum

RESERVED

FRAMEData

description 

A copyofthe bits in the FreeBufDscr.
Represents the last address +1 to which frame data was transferred. The address
wraps around at the boundary dictated by the S bits. This can be used to determine
the size of the frame received.

FIG. 81

OFFSET 0x0008:0x000B

The contents of FreeClk at the completion of the frame receive operation.

FIG, 82

OFFSET 0x000C:0x000F

ReesthevalueofTheIPHeaderchecksumatamecompletionoFIPheaderReflects the value of the IP header checksum at frame completion or IP header
completion.If an IP datagram was not detected, the checksum providesa total for
the entire data portion of the received frame. The data area is defined as those bytes
received after the type field of an ethernet frame, the LLC header of an 802.3 frame
or the SNAP header of an 802.3-SNAPframe.

Reflects the value of the transport checksum at IP completion or frame completion.
If IP was detected but session was unknown,the checksum will not include the
psuedo-header. If IP was not detected, the checksum will be 0x0000.-

OFFSET 0x0010:0x0011

OFFSET 0x0012:END OF BUFFER

FIG, 83
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RECEIVE BUFFER FORMAT

FRAMEStatus A

bit name
31 attention

30 CompositeErr

29 CtrlFrame
28 IpDn
27 802.3Dn
26 MacADet
25 MacBDet
24 MacMest
23 MacBest
22 IpMest
21 IpBest
20 Fra

19 IpOffst
18 IpFlgs
17 IpOpts
16 TepFlgs
15 TcpOpts
14 TepUrg
13 CarrierEvnt

12 LongEvnt11 FrameLost

10 reserved
10 NoAck
09:08 FrameTyp
07:06 NwkTyp
05:04 TrnsptTyp
03 NetBios
02 reserved
01:00 channel

FRAMEStatus B

bit name
31 802.3Shrt
30 BufOvr
29 BadPkt
28 InvidPrmbl
27 CreErr
26 DrbINbbl
25 CodeErr

24 IpHdrShrt
23 IpIncmplt
22 IpSumErr
21 TepSumErr
20 TcpHdrShrt
19:16 PressCd

15:08 MacHsh
07:00 CtxHsh

OFFSET 0x0000:0x0003

description
Indicates one or more of the following. CompositeErr, 'IpDn, !MacADet &
!MacBDet, IpMest, IpBest, !ethernet & !802.3Snap,!Ip4, !Tep .
Set when anyofthe error bits of ErrStatusare set orif frame processing stops
while receiving a Tcp or Udp header.
A control frame wasreceived at our unicast or special MltCst address.
Frame processing Hlted due to exhaustion of the IP4 length counter.
Frameprocessing Hited due to exhaustion of the 802.3 length counter.
Frame's destination address matchedthe contents of MacAddrA.
Frame's destination address matched the contents of MacAddrB.
The Macdetected a MltCst address.
The Macdetected a BrdCst address.
The frame processor detected an IP MitCst address.
The frame processor detected an IP BrdCst address.
The frame processor detected a Frag IP datagram.
The frame processor detected a non-zero IP datagram offset.
The frame processor detected flags within the IP datagram.
Theframe processor detected a headerlength greater than 20 for the IP datagram.
The frame processor detected an abnormal header flag for the TCP segment.
The frame processor detected a headerlength greater than 20 for the TCP segment.
The frame processor detected a non-zero urgent pointer for the TCP segment.
Refer to E/10 Technical Manual.
Refer to E710 Technical Manual.
Set when an incoming frame could notbe processedas a result ofan outstanding frame completion
event not yet serviced by the utility processor.

The frame processordetected a
00-Reserved. 01- ethernet. 10 - 802.3. 11 - 802.3 Snap.
00 - Unknown. 01- Ip4. 10 - Ip6 11 - ip other.
00 - Unknown. 01- reserved. 10 - Tep 11-Udp
A NetBios frame was detected.

The Mac on which this frame wasreceived.

OFFSET0x0004:0x0007

description
End of frame was encountered before the 802.3 length count was exhausted.
The frame length exceded the buffer space available.
Refer to E110 Technical Manual.
Refer to E110 Technical Manual.
Refer to E/ 10 Technical Manual.
Refer to E/10 Technical Manual.
Refer to E110 Technical Manual.
The IP4 header length field contained a valueless than 0x5.
The frame terminated before the IP length counter was exhausted.
The IP header checksum was not Oxffff at the completion of the IP headerread.
The session checksum wasnot Oxffff at the termination of session processing.
The TCP headerlength field contained a value less than 0x5.
Thestate of the frame processorat the time the frame processing terminated.
0b0000 Processing Mac header.
0b0001 Processing 802.3 LLC header.
0b0010 Processing 802.3 SNAP header.
0b0011 Processing unknown network data.
0b0100 Processing IP header.
0b0101 Processing IP data (unknown transport).
0b0110 Processing transport header(IP data).
0b0111 Processing transport data (IP data).
0b1000 Processing IP processing complete.
0b1001 Reserved.
0b101x Reserved.
Oblixx Reserved.
The Mac destination-address hash. Refer to E//0 Technical Manual.
The 8-bit context-hash generated by exclusive-oring all bytes of the IP source
address, IP destination-address,transport source port and the transport destination port.

FIG. 84
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TRANSMIT BUFFER DESCRIPTOR

bit name description
31 ChksumEn Whenset, XmtSeq will insert a calculated checksum. Whenreset, XmtSeq will

notalter the outgoing data stream.
30 reserved
29:28 size Represents the size of the buffer by indicating at what boundary the buffer should

start and terminate. This is used in combination with EndAddrto determine the
starting address of the buffer:

S=0 256B boundary. A[7:0] ignored.
S=1  2KB boundary. A[10:0] ignored.
S=2  4KB boundary. A[11:0] ignored.
S=3  32KB boundary. A[14:0] ignored.

27:00 EndAddr The address ofthe last byte to transmit plus one.

TRANSMIT BUFFER FORMAT

CHECKSUM PRIMER OFFSET 0x0000:0x0003

bit name description
31:00 Primer A value to be added during checksum accumulation. For IPV4,this should include

the psuedo-headervalues, protocol and Tcp-length.

RESERVED OFFSET 0x0004:0x0005

FRAMEData OFFSET 0x0006:END OF BUFFER

FIG. 88

TRANSMITStatus VECTOR

bit name description
31 LnkErr Indicates that a link status error occured before or during transmit.
30:15 reserved
14 ExcessDeferral Refer to E//0 Technical Manual.
13 LateAbort Refer to £110 Technical Manual.
12 ExcessColl Refer to E/10 Technical Manual.
11 UnderRun Refer to E110 Technical Manual.
10 ExcessLeth Refer to E/10 Technical Manual.
09 Okay Refer to E110 Technical Manual.
08 deferred Refer to E110 Technical Manual.
07 BrdCst Refer to E110 Technical Manual.
06 MIitCst Refer to E110 Technical Manual.
05 CreErr Refer to E/10 Technical Manual.
04 LateColl Refer to E//0 Technical Manual.
03:00 CollCnt Refer to £110 Technical Manual.

FIG. 89
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DMA OPERATIONS

dma seq # name

NAMARWNeOS

bit

10:8

07:05
04:00

none

D2dSeq
D2sSeq
D2pSeq
S2dSeq
S2pSeq
P2dSeq
P2sSeq

name
reserve
ChCmd

reserved
Chid

name
PciAddrH
PciAddrL
MemAddr
PciEndian
WideDb!
DstFlash
XfrSz

Dec. 25, 2001 Sheet 80 of 82 US 6,334,153 B2

description
This is a no operation address.
Movesdata from ExtMem to ExtMem.
Movesdata from ExtMem busto sram.
Movesdata from ExtMem to Pcibus.
Movesdata from sram to ExtMem.
Movesdata from sram to Pci bus.
Movesdata from Pci bus to ExtMem.
Movesdata from Pci bus to sram.

FIG. 92

description
Data written to these bits is ignored.
0 - Stops execution of the current operation andclears the corresponding eventflag.
1 - Transfer data from ExtMem to ExtMem.
2 - Transfer data from ExtMem busto sram.
3 - Transfer data from ExtMem to Pci bus.
4 - Transfer data from sram to ExtMem.
5 - Transfer data from sram to Pci bus.
6 - Transfer data from Pci bus to ExtMem.
7 - Transfer data from Pci bus to Sram.
Data written to these bits is ignored.
Provides the channel numberfor the channel command.

FIG. 93

description—__Bits [63:32] of the Pci address.Bits R 1:00] of the Pci address.
Bits [27:00] of the ExtMem addressorbits [15:00] of the Sram address.
Whenset, selects big endian mode for Pci transfers.
Whenset, disables Pci 64-bit mode.
Selects Flash for the external memory destination of P2d.
Bits [15:00] of the requested dmasize expressed in bytes.

FIG. 94
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bit name
123:56 MemAddr
95:64 PeiAddrH
63:32 PeiAddrL
30 SrcFlash
23 PciEndian
22 WideDbl
15:00 XfrSz

bit name
127-124 reserved
123:96 SreAddr
95:60 reserved
59:32 DstAddr
30 FlashSel
22 FlashSel
15:00 XfrSz

bit name
127-64 reserved
63:32 ChkSum

31:24 reserved
23:20 SreStatus
19:16 DstStatus
15:00 XfrSz

bit name
31:00 ChDn

Dec. 25, 2001 Sheet 81 of 82 US 6,334,153 B2

description
Bits [27:00] of the ExtMem address orbits [15:00] of the Sram address.
Bits [63:32] of the Pci address.
Bits [31:00] of the Pci address.
Selects Flash for the external memory source of D2p.
Whenset, selects big endian mode for Pci transfers.
Whenset, disables Pci 64-bit mode.
Bits [15:00] of the requested dma size expressed in bytes.

FIG. 95

description
Reservedfor future use.

Bits [27:00] of the ExtMem addressorbits [15:00] of the Sram address.
Reserved forfuture use.

Bits [27:00] of the ExtMem addressorbits [15:00] of the Sram address.
Selects Flash for the external memory source of D2d or D2s.
Selects Flash for the external memory destination of S2p or D2d.
Bits [15:00] of the requested dma size expressed in bytes.

FIG. 96

description
Notused.

Represents the 1's compliment sum ofall halfwordstransferred during a P2d or D2d
operation only.
Reserved for future use.
TBD.
TBD.

Bits [15:00] of the residual dma size expressed in bytes. This value will be zero if the
dma operation was successful

FIG. 97

 

BechbutrepresentsthedoneTlagTorthefespectivedinachannel,TheseBitsaresetbyaEachbit represents the doneflag for the respective dma channel. Thesebits are set by a
dma sequencer upon completion of the channel command. Cleared when the processor
writes 0 to the corresponding ChCmdregister ChCmdOpfield.

FIG. 98
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1

PASSING A COMMUNICATION CONTROL
BLOCK FROM HOST TO A LOCAL DEVICE

SUCH THAT A MESSAGE IS PROCESSED
ON THE DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 09/439,603,filed Nov. 12, 1999, now U.S.Pat.
No. 6,247,060 which is a continuation of U.S. patent appli-
cation Ser. No. 09/067,544, filed Apr. 27, 1998, now U.S.
Pat. No. 6,226,680, which in turn claims the benefit under 35
US.C. § 119(e) of the Provisional Application Serial No.
60/061,809, filed Oct. 14, 1997. The complete disclosures
of: U.S. patent application Ser. No. 09/439,603; U.S. patent
application Ser. No. 09/067,544; and Provisional Applica-
tion Serial No. 60/061,809 are incorporated herein byref-erence.

TECHNICAL FIELD

The present invention relates generally to computer or
other networks, and more particularly to protocol processing
for information communicated between hosts such as com-

puters connected to a network.

BACKGROUND

The advantages of network computing are increasingly
evident. The convenience and efficiency of providing
information, communication or computational power to
individuals at their personal computer or other end user
devices has led to rapid growth of such network computing,
including internet as well as intranet systems and applica-
tions.

As is well known, most network computer communica-
tion is accomplished with the aid of a layered software
architecture for moving information between host comput-
ers connected to the network. The layers help to segregate
information into manageable segments, the general func-
tions of each layer often based on an international standard
called Open Systems Interconnection (OSI). OSI sets forth
seven processing layers through which information may
pass whenreceived bya hostin order to be presentable to an
end user. Similarly, transmission of information from a host
to the network may pass through those seven processing
layers in reverse order. Each step of processing and service
by a layer may include copying the processed information.
Another reference model that is widely implemented, called
TCP/IP (TCP standsfor transport control protocol, while IP
denotes internet protocol) essentially employs five of the
seven layers of OSI.

Networks may include, for instance, a high-speed bus
such as an Ethernet connection or an internet connection

between disparate local area networks (LANs), each of
which includes multiple hosts, or any of a variety of other
known meansfor data transfer between hosts. According to
the OSI standard, physical layers are connected to the
network at respective hosts, the physical layers providing
transmission and receipt of raw data bits via the network. A
data link layer is serviced by the physical layer of each host,
the data link layers providing frame division and error
correction to the data received from the physical layers, as
well as processing acknowledgment frames sent by the
receiving host. A network layer of each host is serviced by
respective data link layers, the network layers primarily
controlling size and coordination of subnets of packets of
data.
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A transport layer is serviced by each network layer and a
session layer is serviced by each transport layer within each
host. Transport layers accept data from their respective
session layers and split the data into smaller units for
transmission to the other host’s transport layer, which con-
catenates the data for presentation to respective presentation
layers. Session layers allow for enhanced communication
control between the hosts. Presentation layers are serviced
by their respective session layers, the presentation layers
translating between data semantics and syntax which may be
peculiar to each host and standardized structures of data
representation. Compression and/or encryption of data may
also be accomplished at the presentation level. Application
layers are serviced by respective presentation layers, the
application layers translating between programsparticular to
individual hosts and standardized programsfor presentation
to either an application or an end user. The TCP/IP standard
includes the lower four layers and application layers, but
integrates the functions of session layers and presentation
layers into adjacent layers. Generally speaking, application,
presentation and session layers are defined as upperlayers,
while transport, network and data link layers are defined as
lowerlayers.

The rules and conventions for each layer are called the
protocol of that layer, and since the protocols and general
functions of each layer are roughly equivalent in various
hosts, it is useful to think of communication occurring
directly between identical layers of different hosts, even
though these peer layers do not directly communicate with-
out information transferring sequentially through each layer
below. Each lower layer performs a service for the layer
immediately above it to help with processing the commu-
nicated information. Each layer saves the information for
processing and service to the next layer. Due to the multi-
plicity of hardware and software architectures, systems and
programs commonly employed, each layer is necessary to
insure that the data can makeit to the intended destination

in the appropriate form, regardless of variations in hardware
and software that may intervene.

In preparing data for transmission fromafirst to a second
host, some control data is added at each layer ofthefirst host
regarding the protocol of that layer, the control data being
indistinguishable from the original (payload) data for all
lowerlayers of that host. Thus an application layer attaches
an application header to the payload data and sends the
combineddata to the presentation layer of the sending host,
which receives the combined data, operates on it and adds a
presentation header to the data, resulting in another com-
bined data packet. The data resulting from combination of
payload data, application header and presentation header is
then passed to the session layer, which performs required
operations including attaching a session header to the data
and presenting the resulting combination of data to the
transport layer. This process continues as the information
moves to lower layers, with a transport header, network
header and data link header andtrailer attached to the data

at each of those layers, with each step typically including
data moving and copying, before sending the data as bit
packets over the network to the second host.

The receiving host generally performs the converse of the
above-described process, beginning with receiving the bits
from the network, as headers are removed and data pro-
cessed in order from the lowest (physical) layer to the
highest (application) layer before transmission to a destina-
tion of the receiving host. Each layer of the receiving host
recognizes and manipulates only the headers associated with
that layer, since to that layer the higher layer control data is
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included with and indistinguishable from the payload data.
Multiple interrupts, valuable central processing unit (CPU)
processing time and repeated data copies may also be
necessary for the receiving host to place the data in an
appropriate form at its intended destination.

The above description of layered protocol processing is
simplified, as college-level textbooks devoted primarily to
this subject are available, such as Computer Networks, Third
Edition (1996) by Andrew S. Tanenbaum, which is incor-
porated herein by reference. As defined in that book, a
computer network is an interconnected collection of autono-
mous computers, such as internet and intranet systems,
including local area networks (LANs), wide area networks
(WANs), asynchronoustransfer mode (ATM),ring or token
ring, wired, wireless, satellite or other means for providing
communication capability between separate processors. A
computer is defined herein to include a device having both
logic and memory functions for processing data, while
computers or hosts connected to a network are said to be
heterogeneous if they function according to different oper-
ating systems or communicate via different architectures.

As networks grow increasingly popular and the informa-
tion communicated thereby becomes increasingly complex
and copious, the need for such protocol processing has
increased. It is estimated that a large fraction of the pro-
cessing powerof a host CPU may be devoted to controlling
protocol processes, diminishing the ability of that CPU to
perform other tasks. Network interface cards have been
developed to help with the lowest layers, such as the
physical and data link layers. It is also possible to increase
protocol processing speed by simply adding more process-
ing power or CPUsaccording to conventional arrangements.
This solution, however, is both awkward and expensive. But
the complexities presented by various networks, protocols,
architectures, operating systems and applications generally
require extensive processing to afford communication capa-
bility between various network hosts.

SUMMARYOF THE INVENTION

The current invention provides a system for processing
network communication that greatly increases the speed of
that processing and the efficiency of moving the data being
communicated. The invention has been achieved by ques-
tioning the long-standing practice of performing multilay-
ered protocol processing on a general-purpose processor.
The protocol processing method and architecture that results
effectively collapses the layers of a connection-based, lay-
ered architecture such as TCP/IP into a single wider layer
whichis able to send network data more directly to and from
a desired location or buffer on a host. This accelerated

processing is provided to a host for both transmitting and
receiving data, and so improves performance whether one or
both hosts involved in an exchange of information have such
a feature.

The accelerated processing includes employing represen-
tative control instructions for a given message that allow
data from the message to be processed via a fast-path which
accesses message data directly at its source or delivers it
directly to its intended destination. This fast-path bypasses
conventional protocol processing of headers that accompany
the data. The fast-path employs a specialized microproces-
sor designed for processing network communication, avoid-
ing the delays and pitfalls of conventional software layer
processing, such as repeated copying and interrupts to the
CPU. In effect, the fast-path replaces the states that are
traditionally found in several layers of a conventional net-
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work stack with a single state machine encompassing all
those layers, in contrast to conventional rules that require
rigorous differentiation and separation of protocol layers.
The host retains a sequential protocol processing stack
which can be employed for setting up a fast-path connection
or processing message exceptions. The specialized micro-
processor and the hostintelligently choose whether a given
message or portion of a message is processed by the micro-
processor or the host stack.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 is a plan view diagram of a system of the present
invention, including a host computer having a
communication-processing device for accelerating network
communication.

FIG. 2 is a diagram of information flow for the host of
FIG. 1 in processing network communication, including a
fast-path, a slow-path and a transfer of connection context
between the fast and slow-paths.

FIG.3 is a flow chart of message receiving according to
the present invention.

FIG. 4A is a diagram of information flow for the host of
FIG. 1 receiving a message packet processed by the slow-
path.

FIG. 4B is a diagram of information flow for the host of
FIG.1 receiving an initial message packet processed by the
fast-path.

FIG. 4C is a diagram of information flow for the host of
FIG. 4B receiving a subsequent message packet processed
by the fast-path.

FIG. 4D is a diagram of information flow for the host of
FIG. 4C receiving a message packet having an error that
causes processing to revert to the slow-path.

FIG. 5 is a diagram of information flow for the host of
FIG. 1 transmitting a message by either the fast or slow-
paths.

FIG. 6 is a diagram of information flow for a first
embodiment of an intelligent network interface card (INIC)
associated with a client having a TCP/IP processing stack.

FIG. 7 is a diagram of hardware logic for the INIC
embodiment shown in FIG. 6, including a packet control
sequencer and a fly-by sequencer.

FIG.8 is a diagram of the fly-by sequencer of FIG. 7 for
analyzing header bytes as they are received by the INIC.

FIG. 9 is a diagram of information flow for a second
embodiment of an INIC associated with a server having a
TCP/IPprocessing stack.

FIG. 10 is a diagram of a commanddriverinstalled in the
host of FIG. 9 for creating and controlling a communication
control block for the fast-path.

FIG. 11 is a diagram of the TCP/IP stack and command
driver of FIG. 10 configured for NetBios communications.

FIG. 12 is a diagram of a communication exchange
between the client of FIG. 6 and the server of FIG. 9.

FIG.13 is a diagram of hardware functions included in the
INIC of FIG.9.

FIG. 14 is a diagram of a trio of pipelined microproces-
sors included in the INIC of FIG.13, including three phases
with a processor in each phase.

FIG. 15A is a diagram ofa first phase of the pipelined
microprocessor of FIG. 14.

FIG. 15B is a diagram of a second phase of the pipelined
microprocessor of FIG. 14.
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FIG. 15C is a diagram of a third phase of the pipelined
microprocessor of FIG. 14.

FIGS. 16-99 are associated with the description below
entitled “Disclosure From Provisional Application 60/061,
809”.

DETAILED DESCRIPTION

FIG. 1 showsa host 20 of the present invention connected
by a network 25 to a remote host 22. The increase in
processing speed achieved by the present invention can be
provided with an intelligent network interface card (INIC)
that is easily and affordably added to an existing host, or
with a communication processing device (CPD) that is
integrated into a host, in either case freeing the host CPU
from mostprotocol processing and allowing improvements
in other tasks performed by that CPU. The host 20 inafirst
embodiment contains a CPU 28 and a CPD 30 connected by
a PCI bus 33. The CPD 30 includes a microprocessor
designed for processing communication data and memory
buffers controlled by a direct memory access (DMA) unit.
Also connected to the PCI bus 33 is a storage device 35, such
as a semiconductor memoryor disk drive, along with any
related controls.

Referring additionally to FIG. 2, the host CPU 28 controls
a protocol processing stack 44 housed in storage 35, the
stack including a data link layer 36, network layer 38,
transport layer 40, upper layer 46 and an upper layer
interface 42. The upper layer 46 may represent a session,
presentation and/or application layer, depending upon the
particular protocol being employed and message communi-
cated. The upper layer interface 42, along with the CPU 28
and any related controls can sendorretrieveafile to or from
the upper layer 46 or storage 35, as shown by arrow 48. A
connection context 50 has been created, as will be explained
below, the context summarizing various features of the
connection, such as protocol type and source and destination
addresses for each protocol layer. The context may be passed
between an interface for the session layer 42 and the CPD
30, as shown by arrows 52 and 54, and stored as a commu-
nication control block (CCB)at either CPD 30 or storage 35.

When the CPD 30 holds a CCB defining a particular
connection, data received by the CPD from the network and
pertaining to the connection is referenced to that CCB and
can then be sent directly to storage 35 according to a
fast-path 58, bypassing sequential protocol processing by
the data link 36, network 38 and transport 40 layers. Trans-
mitting a message, such as sendingafile from storage 35 to
remote host 22, can also occurvia the fast-path 58, in which
case the context for the file data is added by the CPD 30
referencing a CCB, rather than by sequentially adding
headers during processing by the transport 40, network 38
and data link 36 layers. The DMAcontrollers of the CPD 30
perform these transfers between CPD and storage 35.

The CPD 30 collapses multiple protocol stacks each
having possible separate states into a single state machine
for fast-path processing. As a result, exception conditions
may occur that are not provided for in the single state
machine, primarily because such conditions occur infre-
quently and to deal with them on the CPD would provide
little or no performancebenefit to the host. Such exceptions
can be CPD 30 or CPU 28 initiated. An advantage of the
invention includes the manner in which unexpected situa-
tions that occur on a fast-path CCB are handled. The CPD
30 deals with these rare situations by passing back or
flushing to the host protocol stack 44 the CCB and any
associated message frames involved, via a control negotia-
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tion. The exception condition is then processed in a con-
ventional manner by the host protocol stack 44. At some
later time, usually directly after the handling of the excep-
tion condition has completed and fast-path processing can
resume, the host stack 44 hands the CCB back to the CPD.

This fallback capability enables the performance-
impacting functions of the host protocols to be handled by
the CPD network microprocessor, while the exceptions are
dealt with by the host stacks, the exceptions being so rare as
to negligibly effect overall performance. The custom
designed network microprocessor can have independent
processors for transmitting and receiving network
information, and further processors for assisting and queu-
ing. A preferred microprocessor embodiment includes a
pipelined trio of receive, transmit and utility processors.
DMAcontrollers are integrated into the implementation and
work in close concert with the network microprocessor to
quickly move data between buffers adjacent the controllers
and other locations such as long term storage. Providing
buffers logically adjacent to the DMA controllers avoids
unnecessary loads on the PCI bus.

FIG. 3 diagrams the general flow of messages received
according to the current invention. A large TCP/IP message
such as a file transfer may be received by the host from the
network in a number of separate, approximately 64 KB
transfers, each of which may be split into many, approxi-
mately 1.5 KB frames or packets for transmission over a
network. Novel NetWare protocol suites running Sequenced
Packet Exchange Protocol (SPX) or NetWare Core Protocol
(NCP)over Internetwork Packet Exchange (IPX) work in a
similar fashion. Another form of data communication which

can be handled by the fast-path is Transaction TCP
(hereinafter T/TCP or TTCP), a version of TCP which
initiates a connection with an initial transaction requestafter
which a reply containing data may be sent according to the
connection, rather than initiating a connection via a several-
message initialization dialogue and then transferring data
with later messages. In any ofthe transfers typified by these
protocols, each packet conventionally includes a portion of
the data being transferred, as well as headers for each of the
protocol layers and markers for positioning the packet
relative to the rest of the packets of this message.

When a message packet or frame is received 47 from a
network by the CPD,it is first validated by a hardwareassist.
This includes determining the protocol types of the various
layers, verifying relevant checksums, and summarizing 57
these findings into a status word or words. Included in these
words is an indication whether or not the frame is a

candidate for fast-path data flow. Selection 59 of fast-path
candidates is based on whether the host may benefit from
this message connection being handled by the CPD, which
includes determining whether the packet has header bytes
denoting particular protocols, such as TCP/IP or SPX/IPX
for example. The small percent of frames that are not
fast-path candidates are sent 61 to the host protocol stacks
for slow-path protocol processing. Subsequent network
microprocessor work with each fast-path candidate deter-
mines whether a fast-path connection such as a TCP or SPX
CCB is already extant for that candidate, or whether that
candidate may be used to set up a new fast-path connection,
such as for a TTCP/IP transaction. The validation provided
by the CPD provides acceleration whether a frame is pro-
cessed by the fast-path or a slow-path, as only error free,
validated frames are processed by the host CPU evenfor the
slow-path processing.

All received message frames which have been determined
by the CPD hardware assist to be fast-path candidates are
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examined 53 by the network microprocessor or INIC com-
paritor circuits to determine whether they match a CCB held
by the CPD. Upon confirming such a match, the CPD
removes lower layer headers and sends 69 the remaining
application data from the frame directly into its final desti-
nation in the host using direct memory access (DMA)units
of the CPD. This operation may occur immediately upon
receipt of a message packet, for example when a TCP
connection already exists and destination buffers have been
negotiated, or it may first be necessary to process an initial
header to acquire a newset offinal destination addresses for
this transfer. In this latter case, the CPD will queue subse-
quent message packets while waiting for the destination
address, and then DMAthe queued application data to that
destination.

A fast-path candidate that does not match a CCB may be
used to set up a new fast-path connection, by sending 65 the
frame to the host for sequential protocol processing. In this
case, the host uses this frame to create 51 a CCB, which is
then passed to the CPD to control subsequent frames on that
connection. The CCB, which is cached 67 in the CPD,
includes control and state information pertinent to all pro-
tocols that would have been processed had conventional
software layer processing been employed. The CCB also
contains storage space for per-transfer information used to
facilitate moving application-level data contained within
subsequent related message packets directly to a host appli-
cation in a form available for immediate usage. The CPD
takes command of connection processing upon receiving a
CCBfor that connection from the host.

As shown morespecifically in FIG. 4A, when a message
packet is received from the remote host 22 via network 25,
the packet enters hardware receive logic 32 of the CPD 30,
which checksumsheaders and data, and parses the headers,
creating a word or words which identify the message packet
and status, storing the headers, data and word temporarily in
memory 60. As well as validating the packet, the receive
logic 32 indicates with the word whether this packet is a
candidate for fast-path processing. FIG. 4A depicts the case
in which the packet is not a fast-path candidate, in which
case the CPD 30 sends the validated headers and data from

memory 60 to data link layer 36 along an internal bus for
processing by the host CPU, as shown by arrow 56. The
packetis processed by the host protocol stack 44 of data link
36, network 38, transport 40 and session 42 layers, and data
(D) 63 from the packet may then be sent to storage 35, as
shownby arrow 65.

FIG.4B, depicts the case in which the receive logic 32 of
the CPD determines that a message packetis a candidate for
fast-path processing, for example by deriving from the
packet’s headers that the packet belongs to a TCP/IP, TTCP/
IP or SPX/IPX message. A processor 55 in the CPD 30 then
checks to see whether the word that summarizes the fast-

path candidate matches a CCB held in a cache 62. Upon
finding no match for this packet, the CPD sends the vali-
dated packet from memory 60 to the host protocol stack 44
for processing. Host stack 44 mayuse this packet to create
a connection context for the message, including finding and
reserving a destination for data from the message associated
with the packet, the context taking the form of a CCB. The
present embodiment employsa single specialized host stack
44 for processing both fast-path and non-fast-path
candidates, while in an embodiment described below fast-
path candidates are processed by a different host stack than
non-fast-path candidates. Some data (D1) 66 from that
initial packet may optionally be sent to the destination in
storage 35, as shown by arrow 68. The CCBis then sent to
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the CPD 30 to be saved in cache 62, as shown by arrow 64.
For a traditional connection-based message such as typified
by TCP/IP, the initial packet may be part of a connection
initialization dialogue that transpires between hosts before
the CCBis created and passed to the CPD 30.

Referring now to FIG. 4C, when a subsequent packet
from the same connection as the initial packet is received
from the network 25 by CPD 30, the packet headers and data
are validated by the receive logic 32, and the headers are
parsed to create a summary of the message packet and a hash
for finding a corresponding CCB, the summary and hash
contained in a word or words. The word or words are

temporarily stored in memory 60 along with the packet. The
processor 55 checks for a match between the hash and each
CCB that is stored in the cache 62 and, finding a match,
sends the data (D2) 70 via a fast-path directly to the
destination in storage 35, as shown by arrow 72, bypassing
the session layer 42, transport layer 40, network layer 38 and
data link layer 36. The remaining data packets from the
message can also be sent by DMA directly to storage,
avoiding the relatively slow protocol layer processing and
repeated copying by the CPU stack 44.

FIG. 4D shows the procedure for handling the rare
instance when a message for which a fast-path connection
has been established, such as shownin FIG.4C,has a packet
that is not easily handled by the CPD. In this case the packet
is sent to be processed by the protocol stack 44, which is
handed the CCB for that message from cache 62 via a
control dialogue with the CPD, as shown by arrow 76,
signaling to the CPU to take over processing of that mes-
sage. Slow-path processing by the protocol stack then results
in data (D3) 80 from the packet being sent, as shown by
arrow 82, to storage 35. Once the packet has been processed
and the error situation corrected, the CCB can be handed
back via a control dialogue to the cache 62, so that payload
data from subsequent packets of that message can again be
sent via the fast-path of the CPD 30. Thus the CPU and CPD
together decide whether a given messageis to be processed
accordingto fast-path hardware processing or more conven-
tional software processing by the CPU.

Transmission of a message from the host 20 to the
network 25 for delivery to remote host 22 also can be
processed by either sequential protocol software processing
via the CPU oraccelerated hardware processing via the CPD
30, as shown in FIG. 5. A message (M) 90 that is selected
by CPU 28 from storage 35 can be sent to session layer 42
for processing by stack 44, as shown by arrows 92 and 96.
For the situation in which a connection exists and the CPD

30 already has an appropriate CCB for the message,
however, data packets can bypass host stack 44 and be sent
by DMAdirectly to memory 60, with the processor 55
adding to each data packet a single header containing all the
appropriate protocol layers, and sending the resulting pack-
ets to the network 25 for transmission to remote host 22.

This fast-path transmission can greatly accelerate processing
for even a single packet, with the acceleration multiplied for
a larger message.

A message for which a fast-path connection is not extant
thus may benefit from creation of a CCB with appropriate
control and state information for guiding fast-path transmis-
sion. For a traditional connection-based message, such as
typified by TCP/IP or SPX/IPX, the CCB is created during
connection initialization dialogue. For a quick-connection
message, such as typified by TTCP/IP, the CCB can be
created with the same transaction that transmits payload
data. In this case, the transmission of payload data may be
a reply to a request that was used to set up the fast-path
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connection. In any case, the CCB provides protocol and
status information regarding each of the protocol layers,
including which user is involved and storage space for
per-transfer information. The CCB is created by protocol
stack 44, which then passes the CCB to the CPD 30 by
writing to a command register of the CPD, as shown by
arrow 98. Guided by the CCB, the processor 55 moves
network frame-sized portions of the data from the source in
host memory 35 into its own memory 60 using DMA,as
depicted by arrow 99. The processor 55 then prepends
appropriate headers and checksumsto the data portions, and
transmits the resulting frames to the network 25, consistent
with the restrictions of the associated protocols. After the
CPD 30 has received an acknowledgementthat all the data
has reachedits destination, the CPD will then notify the host
35 by writing to a response buffer.

Thus, fast-path transmission of data communications also
relieves the host CPU of per-frame processing. A vast
majority of data transmissions can be sent to the network by
the fast-path. Both the input and output fast-paths attain a
huge reduction in interrupts by functioning at an upper layer
level, 1.e., session level or higher, and interactions between
the network microprocessor and the host occur using the full
transfer sizes which that upper layer wishes to make. For
fast-path communications, an interrupt only occurs (at the
most) at the beginning and end of an entire upper-layer
message transaction, and there are no interrupts for the
sending or receiving of each lowerlayer portion or packet of
that transaction.

Asimplified intelligent network interface card (INIC) 150
is shown in FIG.6 to provide a network interface for a host
152. Hardware logic 171 of the INIC 150 is connected to a
network 155, with a peripheral bus (PCI) 157 connecting the
INIC and host. The host 152 in this embodiment has a

TCP/IPprotocol stack, which provides a slow-path 158 for
sequential software processing of message frames received
from the network 155. The host 152 protocol stack includes
a data link layer 160, network layer 162, a transport layer
164 and an application layer 166, which provides a source
or destination 168 for the communication data in the host

152. Other layers which are not shown, such as session and
presentation layers, may also be included in the host stack
152, and the source or destination may vary depending upon
the nature of the data and mayactually be the application
layer.

The INIC 150 has a network processor 170 which chooses
between processing messages along a slow-path 158 that
includes the protocol stack of the host, or along a fast-path
159 that bypasses the protocol stack of the host. Each
received packet is processed on the fly by hardware logic
171 contained in INIC 150,so thatall of the protocol headers
for a packet can be processed without copying, moving or
storing the data between protocol layers. The hardware logic
171 processes the headers of a given packet at one time as
packet bytes pass through the hardware, by categorizing
selected header bytes. Results of processing the selected
bytes help to determine which other bytes of the packet are
categorized, until a summary of the packet has been created,
including checksum validations. The processed headers and
data from the received packetare then stored in INIC storage
185, as well as the word or words summarizing the headers
and status of the packet.

The hardware processing of message packets received by
INIC 150 from network 155 is shown in more detail in FIG.

7. A received message packet first enters a media access
controller 172, which controls INIC access to the network
and receipt of packets and can providestatistical information

10

15

20

25

30

35

40

45

50

55

60

65

10

for network protocol management. From there, data flows
one byte at a time into an assembly register 174, which in
this example is 128 bits wide. The data is categorized by a
fly-by sequencer 178, as will be explained in more detail
with regard to FIG. 8, which examinesthe bytes of a packet
as they fly by, and generates status from those bytes that will
be used to summarize the packet. The status thus created is
merged with the data by a multiplexor 180 and the resulting
data stored in SRAM 182. A packet control sequencer 176
oversees the fly-by sequencer 178, examines information
from the media access controller 172, counts the bytes of
data, generates addresses, moves status and manages the
movementof data from the assembly register 174 to SRAM
182 and eventually DRAM 188. The packet control
sequencer 176 manages a buffer in SRAM 182 via SRAM
controller 183, and also indicates to a DRAM controller 186
whendata needs to be moved from SRAM 182 to a buffer

in DRAM 188. Once data movementfor the packet has been
completed and all the data has been movedto the buffer in
DRAM 188, the packet control sequencer 176 will move the
status that has been generated in the fly-by sequencer 178
out to the SRAM 182 and to the beginning of the DRAM
188 buffer to be prepended to the packet data. The packet
control sequencer 176 then requests a queue manager 184 to
enter a receive buffer descriptor into a receive queue, which
in turn notifies the processor 170 that the packet has been
processed by hardware logic 171 andits status summarized.

FIG. 8 showsthat the fly-by sequencer 178 has several
tiers, with each tier generally focusing on a particular
portion of the packet header and thus onaparticular protocol
layer, for generating status pertaining to that layer. The
fly-by sequencer 178 in this embodiment includes a media
access control sequencer 191, a network sequencer 192, a
transport sequencer 194 and a session sequencer 195.
Sequencers pertaining to higher protocol layers can addi-
tionally be provided. The fly-by sequencer 178is reset by the
packet control sequencer 176 and given pointers by the
packet control sequencer that tell the fly-by sequencer
whether a given byte is available from the assembly register
174. The media access control sequencer 191 determines, by
looking at bytes 0-5, that a packet is addressed to host 152
rather than or in addition to another host. Offsets 12 and 13

of the packet are also processed by the media access control
sequencer 191 to determine the type field, for example
whether the packet is Ethernet or 802.3. If the type field is
Ethernet those bytes also tell the media access control
sequencer 191 the packet’s network protocol type. For the
802.3 case, those bytes instead indicate the length of the
entire frame, and the media access control sequencer 191
will check eight bytes further into the packet to determine
the network layer type.

For most packets the network sequencer 192 validates that
the header length received has the correct length, and
checksums the network layer header. For fast-path candi-
dates the network layer header is knownto be IP or IPX from
analysis done by the media access control sequencer 191.
Assuming for example that the type field is 802.3 and the
network protocol is IP, the network sequencer 192 analyzes
the first bytes of the network layer header, which will begin
at byte 22, in order to determine IP type. Thefirst bytes of
the IP header will be processed by the network sequencer
192 to determine what IP type the packet involves. Deter-
mining that the packet involves, for example, IP version 4,
directs further processing by the network sequencer 192,
which also looks at the protocol type located ten bytes into
the IP header for an indication of the transport header
protocol of the packet. For example, for IP over Ethernet, the
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IP header begins at offset 14, and the protocol type byte is
offset 23, which will be processed by network logic to
determine whether the transport layer protocol is TCP, for
example. From the length of the network layer header, which
is typically 20-40 bytes, network sequencer 192 determines
the beginning of the packet’s transport layer header for
validating the transport layer header. Transport sequencer
194 may generate checksums for the transport layer header
and data, which may include information from the IP header
in the case of TCPatleast.

Continuing with the example of a TCP packet, transport
sequencer 194 also analyzes the first few bytes in the
transport layer portion of the header to determine,in part, the
TCP source and destination ports for the message, such as
whether the packet is NetBiosor other protocols. Byte 12 of
the TCP headeris processed by the transport sequencer 194
to determine and validate the TCP header length. Byte 13 of
the TCP header contains flags that may, aside from ack flags
and push flags, indicate unexpected options, such as reset
and fin, that may cause the processor to categorize this
packet as an exception. TCP offset bytes 16 and 17 are the
checksum, which is pulled out and stored by the hardware
logic 171 while the rest of the frame is validated against the
checksum.

Session sequencer 195 determines the length of the ses-
sion layer header, which in the case of NetBios is only four
bytes, two of which tell the length of the NetBios payload
data, but which can be muchlarger for other protocols. The
session sequencer 195 can also be used to categorize the type
of message as read or write, for example, for which the
fast-path may be particularly beneficial. Further upper layer
logic processing, depending upon the message type, can be
performed by the hardware logic 171 of packet control
sequencer 176 and fly-by sequencer 178. Thus hardware
logic 171 intelligently directs hardware processing of the
headers by categorization of selected bytes from a single
stream of bytes, withthe status of the packet being built from
classifications determined onthe fly. Once the packet control
sequencer 176 detects that all of the packet has been
processed by the fly-by sequencer 178, the packet control
sequencer 176 adds the status information generated by the
fly-by sequencer 178 and any status information generated
by the packet control sequencer 176, and prepends (addsto
the front) that status information to the packet, for conve-
nience in handling the packet by the processor 170. The
additional status information generated by the packet control
sequencer 176 includes media access controller 172 status
information and any errors discovered, or data overflow in
either the assembly register or DRAM buffer, or other
miscellaneous information regarding the packet. The packet
control sequencer 176 alsostores entries into a receive buffer
queue anda receivestatistics queue via the queue manager
184.

An advantage of processing a packet by hardware logic
171is that the packet does not, in contrast with conventional
sequential software protocol processing, have to be stored,
moved, copied or pulled from storage for processing each
protocol layer header, offering dramatic increases in pro-
cessing efficiency and savings in processing time for each
packet. The packets can be processed at the rate bits are
received from the network, for example 100 megabits/
second for a 100 baseT connection. The time for categoriz-
ing a packet receivedat this rate and having a length ofsixty
bytes is thus about 5 microseconds. The total time for
processing this packet with the hardware logic 171 and
sending packet data to its host destination via the fast-path
may be about 16 microsecondsor less, assuming a 66 MH
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PCI bus, whereas conventional software protocol processing
by a 300 MH Pentium II® processor may take as much as
200 microseconds in a busy system. More than an order of
magnitude decrease in processing time can thus be achieved
with fast-path 159 in comparison with a high-speed CPU
employing conventional sequential software protocol
processing, demonstrating the dramatic acceleration pro-
vided by processing the protocol headers by the hardware
logic 171 and processor 170, without even considering the
additional time savings afforded by the reduction in CPU
interrupts and host bus bandwidth savings.

The processor 170 chooses, for each received message
packet held in storage 185, whether that packet is a candi-
date for the fast-path 159 and, if so, checks to see whether
a fast-path has already beenset up for the connectionthat the
packet belongs to. To do this, the processor 170 first checks
the header status summary to determine whether the packet
headers are of a protocol defined for fast-path candidates.If
not, the processor 170 commands DMAcontrollers in the
INIC 150 to send the packet to the host for slow-path 158
processing. Even for a slow-path 158 processing of a
message, the INIC 150 thus performsinitial procedures such
as validation and determination of message type, and passes
the validated message at least to the data link layer 160 of
the host.

For fast-path 159 candidates, the processor 170 checksto
see whether the header status summary matches a CCB held
by the INIC. If so, the data from the packet is sent along
fast-path 159 to the destination 168 in the host. If the
fast-path 159 candidate’s packet summary does not match a
CCB held by the INIC, the packet may be sent to the host
152 for slow-path processing to create a CCB for the
message. Employmentof the fast-path 159 mayalso not be
neededor desirable for the case of fragmented messages or
other complexities. For the vast majority of messages,
however, the INIC fast-path 159 can greatly accelerate
message processing. The INIC 150 thus provides a single
state machine processor 170 that decides whether to send
data directly to its destination, based upon information
gleaned on the fly, as opposed to the conventional employ-
mentof a state machine in each of several protocol layers for
determining the destiny of a given packet.

In processing an indication or packet received at the host
152, a protocol driver of the host selects the processing route
based upon whether the indication is fast-path or slow-path.
A TCP/IP or SPX/IPX message has a connection that is set
up from which a CCBis formed bythe driver and passed to
the INIC for matching with and guiding the fast-path packet
to the connection destination 168. For a TTCP/IP message,
the driver can create a connection context for the transaction

from processing an initial request packet, including locating
the message destination 168, and then passing that context
to the INIC in the form of a CCBfor providing a fast-path
for a reply from that destination. A CCB includes connection
and state information regarding the protocol layers and
packets of the message. Thus a CCB caninclude source and
destination media access control (MAC) addresses, source
and destination IP or IPX addresses, source and destination
TCP or SPX ports, TCP variables such as timers, receive and
transmit windowsfor sliding window protocols, and infor-
mation denoting the session layer protocol.

Caching the CCBs in a hash table in the INIC provides
quick comparisons with words summarizing incoming pack-
ets to determine whether the packets can be processed via
the fast-path 159, while the full CCBsare also held in the
INIC for processing. Other ways to accelerate this compari-
son include software processes such as a B-tree or hardware
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assists such as a content addressable memory (CAM). When
INIC microcode or comparitor circuits detect a match with
the CCB, a DMA controller places the data from the packet
in the destination 168, without any interrupt by the CPU,
protocol processing or copying. Depending uponthe type of
message received, the destination of the data may be the
session, presentation or application layers, or a file buffer
cache in the host 152.

FIG. 9 shows an INIC 200 connected to a host 202 thatis

employed as a file server. This INIC provides a network
interface for several network connections employing the
802.3u standard, commonly known as Fast Ethernet. The
INIC 200 is connected by a PCI bus 205 to the server 202,
which maintains a TCP/IP or SPX/IPX protocol stack
including MAClayer 212, network layer 215, transport layer
217 and application layer 220, with a source/destination 222
shown above the application layer, although as mentioned
earlier the application layer can be the source or destination.
The INIC is also connected to network lines 210, 240, 242
and 244, which are preferably fast Ethernet, twisted pair,
fiber optic, coaxial cable or other lines each allowing data
transmission of 100 Mb/s, while faster and slower data rates
are also possible. Network lines 210, 240, 242 and 244 are
each connected to a dedicated row of hardware circuits

which can each validate and summarize message packets
received from their respective network line. Thusline 210 is
connected withafirst horizontal row of sequencers 250, line
240 is connected with a second horizontal row of sequencers
260, line 242 is connected with a third horizontal row of
sequencers 262 and line 244 is connected with a fourth
horizontal row of sequencers 264. After a packet has been
validated and summarized by oneofthe horizontal hardware
rowsit is stored along with its status summary in storage
270.

A network processor 230 determines, based on that sum-
mary and a comparison with any CCBsstored in the INIC
200, whether to send a packet along a slow-path 231 for
processing by the host. A large majority of packets can avoid
such sequential processing and have their data portions sent
by DMAalong a fast-path 237 directly to the data destina-
tion 222 in the server according to a matching CCB.
Similarly, the fast-path 237 provides an avenue to send data
directly from the source 222 to any of the network lines by
processor 230 division of the data into packets and addition
of full headers for network transmission, again minimizing
CPU processing and interrupts. For clarity only horizontal
sequencer 250 is shown active; in actuality each of the
sequencer rows 250, 260, 262 and 264 offers full duplex
communication, concurrently with all other sequencer rows.
The specialized INIC 200 is much faster at working with
message packets than even advanced general-purpose host
CPUsthat processes those headers sequentially according to
the software protocol stack.

One of the most commonly used network protocols for
large messages suchasfile transfers is server message block
(SMB) over TCP/IP. SMB can operate in conjunction with
redirector software that determines whether a required
resource for a particular operation, such as a printer or a disk
upon whicha file is to be written, resides in or is associated
with the host from which the operation was generated or is
located at another host connected to the network, such as a
file server. SMB and server/redirector are conventionally
serviced by the transport layer; in the present invention SMB
and redirector can instead be serviced by the INIC.In this
case, sending data by the DMAcontrollers from the INIC
buffers when receiving a large SMBtransaction may greatly
reduce interrupts that the host must handle. Moreover, this
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DMAgenerally movesthe datato its final destination in the
file system cache. An SMB transmission of the present
invention follows essentially the reverse of the above
described SMBreceive, with data transferred from the host
to the INIC and stored in buffers, while the associated
protocol headers are prependedto the data in the INIC, for
transmission via a network line to a remote host. Processing
by the INIC of the multiple packets and multiple TCP, IP,
NetBios and SMBprotocol layers via custom hardware and
without repeated interrupts of the host can greatly increase
the speed of transmitting an SMB messageto a networkline.

As shown in FIG. 10, for controlling whether a given
message is processed by the host 202 or by the INIC 200, a
message command driver 300 may beinstalled in host 202
to work in concert with a host protocol stack 310. The
command driver 300 can intervene in message reception or
transmittal, create CCBs and send or receive CCBsfrom the
INIC 200, so that functioning of the INIC, aside from
improved performance,is transparent to a user. Also shown
is an INIC memory 304 and an INIC miniport driver 306,
which can direct message packets received from network
210 to either the conventional protocol stack 310 or the
command protocol stack 300, depending upon whether a
packet has been labeled as a fast-path candidate. The con-
ventional protocol stack 310 has a data link layer 312, a
network layer 314 and a transport layer 316 for
conventional, lower layer processing of messages that are
not labeled as fast-path candidates and therefore not pro-
cessed by the commandstack 300. Residing above the lower
layer stack 310 is an upper layer 318, which represents a
session, presentation and/or application layer, depending
upon the message communicated. The command driver 300
similarly has a data link layer 320, a network layer 322 and
a transport layer 325.

The driver 300 includes an upperlayer interface 330 that
determines, for transmission of messages to the network
210, whether a message transmitted from the upper layer
318 is to be processed by the command stack 300 and
subsequently the INIC fast-path, or by the conventional
stack 310. When the upper layer interface 330 receives an
appropriate message from the upper layer 318 that would
conventionally be intended for transmission to the network
after protocol processing by the protocol stack of the host,
the message is passed to driver 300. The INIC then acquires
network-sized portions of the message data for that trans-
mission via INIC DMAunits, prepends headers to the data
portions and sends the resulting message packets down the
wire. Conversely, in receiving a TCP, TTCP, SPX or similar
message packet from the network 210 to be used in setting
up a fast-path connection, miniport driver 306 diverts that
message packet to command driver 300 for processing. The
driver 300 processes the message packet to create a context
for that message, with the driver 302 passing the context and
commandinstructions back to the INIC 200 as a CCB for

sending data of subsequent messages for the same connec-
tion along a fast-path. Hundreds of TCP, TTCP, SPX or
similar CCB connections may be held indefinitely by the
INIC, although a least recently used (LRU) algorithm is
employed for the case when the INIC cache is full. The
driver 300 can also create a connection context for a TTCP

request which is passed to the INIC 200 as a CCB,allowing
fast-path transmission of a TTCP reply to the request. A
message having a protocol that is not accelerated can be
processed conventionally by protocol stack 310.

FIG. 11 shows a TCP/IP implementation of command
driver software for Microsoft® protocol messages. A con-
ventional host protocol stack 350 includes MAC layer 353,
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IP layer 355 and TCP layer 358. A command driver 360
works in concert with the host stack 350 to process network
messages. The command driver 360 includes a MAC layer
363, an IP layer 366 and an Alacritech TCP (ATCP) layer
373. The conventional stack 350 and command driver 360

share a network driver interface specification (NDIS) layer
375, which interacts with the INIC miniport driver 306. The
INIC miniport driver 306 sorts receive indications for pro-
cessing by either the conventional host stack 350 or the
ATCP driver 360. A TDI filter driver and upper layer
interface 380 similarly determines whether messages sent
from a TDI user 382 to the network are diverted to the

commanddriver and perhapsto the fast-path of the INIC,or
processed by the host stack.

FIG. 12 depicts a typical SMB exchange betweena client
190 and server 290, both of which have communication
devices of the present invention, the communication devices
each holding a CCB defining their connection for fast-path
movementof data. The client 190 includes INIC 150, 802.3
compliant data link layer 160, IP layer 162, TCP layer 164,
NetBios layer 166, and SMB layer 168. The client has a
slow-path 157 and fast-path 159 for communication pro-
cessing. Similarly, the server 290 includes INIC 200, 802.3
compliant data link layer 212, IP layer 215, TCP layer 217,
NetBios layer 220, and SMB 222. The server is connected
to network lines 240, 242 and 244, as well as line 210 which
is connected to client 190. The server also has a slow-path
231 and fast-path 237 for communication processing.

Assumingthat the client 190 wishes to read a 100 KB file
on the server 290, the client may begin by sending a Read
Block Raw (RBR) SMB command across network 210
requesting the first 64 KB ofthat file on the server 290. The
RBR command may be only 76 bytes, for example, so the
INIC 200 on the server will recognize the message type
(SMB)and relatively small message size, and send the 76
bytes directly via the fast-path to NetBios of the server.
NetBios will give the data to SMB, which processes the
Read request and fetches the 64 KB of data into server data
buffers. SMB then calls NetBios to send the data, and
NetBios outputs the data for the client. In a conventional
host, NetBios would call TCP output and pass 64 KB to TCP,
which would divide the data into 1460 byte segments and
output each segment via IP and eventually MAC (slow-path
231). In the present case, the 64 KB data goes to the ATCP
driver along with an indication regarding the client-server
SMB connection, which denotes a CCB held by the INIC.
The INIC 200 then proceeds to DMA 1460 byte segments
from the host buffers, add the appropriate headers for TCP,
IP and MACat one time, and send the completed packets on
the network 210 (fast-path 237). The INIC 200 will repeat
this until the whole 64 KB transfer has been sent. Usually
after receiving acknowledgementfrom the client that the 64
KB hasbeenreceived, the INIC will then send the remaining
36 KB also bythe fast-path 237.

With INIC 150 operating on the client 190 whenthis reply
arrives, the INIC 150 recognizes from the first frame
received that this connection is receiving fast-path 159
processing (TCP/IP, NetBios, matching a CCB), and the
ATCP mayusethis first frame to acquire buffer space for the
message. This latter case is done by passing the first 128
bytes of the NetBios portion of the frame via the ATCP
fast-path directly to the host NetBios;that will give NetBios/
SMBall of the frame’s headers. NetBios/SMB will analyze
these headers,realize by matching with a request ID that this
is a reply to the original RawRead connection, and give the
ATCPa 64Klist of buffers into which to place the data. At
this stage only one frame has arrived, although more may
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arrive while this processing is occurring. As soon as the
client buffer list is given to the ATCP,it passes that transfer
information to the INIC 150, and the INIC 150 starts
DMAing any frame data that has accumulated into those
buffers.

FIG. 13 provides a simplified diagram of the INIC 200,
which combines the functions of a network interface con-

troller and a protocol processor in a single ASIC chip 400.
The INIC 200 in this embodimentoffers a full-duplex, four
channel, !%oo-Megabit per second (Mbps) intelligent net-
work interface controller that is designed for high speed
protocol processing for server applications. Although
designed specifically for server applications, the INIC 200
can be connected to personal computers, workstations, rout-
ers or other hosts anywhere that TCP/IP, TTCP/IP or SPX/
IPX protocols are being utilized.

The INIC 200 is connected with four network lines 210,
240, 242 and 244, which maytransport data along a number
of different conduits, such as twisted pair, coaxial cable or
optical fiber, each of the connections providing a media
independent interface (MII). The lines preferably are 802.3
compliant and in connection with the INIC constitute four
complete Ethernet nodes, the INIC supporting 10Base-T,
10Base-T2, 100Base-TX, 100Base-FX and 100Base-T4 as
well as future interface standards. Physical layer identifica-
tion and initialization is accomplished through host driver
initialization routines. The connection between the network

lines 210, 240, 242 and 244 and the INIC 200 is controlled
by MAC units MAC-A 402, MAC-B 404, MAC-C 406 and
MAC-D 408 which contain logic circuits for performing the
basic functions of the MACsublayer, essentially controlling
when the INIC accesses the network lines 210, 240, 242 and
244. The MAC units 402-408 may act in promiscuous,
multicast or unicast modes, allowing the INIC to function as
a network monitor, receive broadcast and multicast packets
and implement multiple MAC addresses for each node. The
MACunits 402-408 also provide statistical information that
can be used for simple network management protocol
(SNMP).

The MACunits 402, 404, 406 and 408 are each connected
to a transmit and receive sequencer, XMT & RCV-A 418,
XMT & RCV-B 420, XMT & RCV-C 422 and XMT &
RCV-D 424, by wires 410, 412, 414 and 416, respectively.
Each of the transmit and receive sequencers can perform
several protocol processing steps on the fly as message
frames pass through that sequencer. In combination with the
MACunits, the transmit and receive sequencers 418-422
can compile the packet status for the data link, network,
transport, session and,if appropriate, presentation and appli-
cation layer protocols in hardware, greatly reducing the time
for such protocol processing compared to conventional
sequential software engines. The transmit and receive
sequencers 410-414 are connected, by lines 426, 428, 430
and 432 to an SRAM and DMAcontroller 444, which
includes DMAcontrollers 438 and SRAM controller 442.

Static random access memory (SRAM) buffers 440 are
coupled with SRAM controller 442 by line 441. The SRAM
and DMAcontrollers 444 interact across line 446 with

external memory control 450 to send and receive frames via
external memory bus 455 to and from dynamic random
access memory (DRAM) buffers 460, which is located
adjacent to the IC chip 400. The DRAM buffers 460 may be
configured as 4 MB, 8 MB, 16 MB or 32 MB, and may
optionally be disposed on the chip. The SRAM and DMA
controllers 444 are connected via line 464 to a PCI Bus

Interface Unit (BIU) 468, which manages the interface
between the INIC 200 and the PCI interface bus 257. The
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64-bit, multiplexed BIU 380 provides a direct interface to
the PCI bus 257 for both slave and master functions. The

INIC 200 is capable of operating in either a 64-bit or 32-bit
PCI environment, while supporting 64-bit addressing in
either configuration.

A microprocessor 470 is connected by line 472 to the
SRAM and DMAcontrollers 444, and connected via line
475 to the PCI BIU 468. Microprocessor 470 instructions
and register files reside in an on chip control store 480,
which includes a writable on-chip control store (WCS)of
SRAM and a read only memory (ROM),and is connected to
the microprocessor by line 477. The microprocessor 470
offers a programmable state machine which is capable of
processing incoming frames, processing host commands,
directing networktraffic and directing PCI bustraffic. Three
processors are implemented using shared hardware in a three
level pipelined architecture that launches and completes a
single instruction for every clock cycle. A receive processor
482 is dedicated to receiving communications while a trans-
mit processor 484 is dedicated to transmitting communica-
tionsin orderto facilitate full duplex communication, while
a utility processor 486 offers various functions including
overseeing and controlling PCI register access. The instruc-
tions for the three processors 482, 484 and 486 reside in the
on-chip control-store 480.

The INIC 200 in this embodiment can support up to 256
CCBs which are maintained in a table in the DRAM 460.

There is also, however, a CCB index in hash order in the
SRAM 440 to save sequential searching. Once a hash has
been generated, the CCB is cached in SRAM,with up to
sixteen cached CCBsin SRAM in this example. These cache
locations are shared between the transmit 484 and receive

486 processors so that the processor with the heavierload is
able to use more cache buffers. There are also eight header
buffers and eight commandbuffers to be shared between the
sequencers. A given header or command buffer is not
statically linked to a specific CCB buffer, as the link is
dynamic on a per-frame basis.

FIG. 14 shows an overview of the pipelined micropro-
cessor 470, in which instructions for the receive, transmit
and utility processors are executed in three distinct phases
according to Clock increments I, II and III, the phases
corresponding to each of the pipeline stages. Each phase is
responsible for different functions, and each of the three
processors occupies a different phase during each Clock
increment. Each processor usually operates upon a different
instruction stream from the control store 480, and each
carries its own program counter and status through each of
the phases.

In general, a first instruction phase 500 of the pipelined
microprocessors completes an instruction and stores the
result in a destination operand, fetches the next instruction,
and stores that next instruction in an instruction register. A
first register set 490 provides a numberofregisters including
the instruction register, and a set of controls 492 forfirst
register set provides the controls for storage to the first
register set 490. Some items pass through the first phase
without modification by the controls 492, and instead are
simply copied into the first register set 490 or a RAM file
register 533. A second instruction phase 560 has an instruc-
tion decoder and operand multiplexer 498 that generally
decodes the instruction that was stored in the instruction

register ofthe first register set 490 and gathers any operands
which have been generated, which are then stored in a
decode register of a second register set 496. The first register
set 490, second register set 496 and a third register set 501,
which is employed in a third instruction phase 600, include

10

15

20

25

30

35

40

45

50

55

60

65

18

many of the same registers, as will be seen in the more
detailed views of FIGS. 14 A-C. The instruction decoder

and operand multiplexer 498 can read from two address and
data ports of the RAM file register 533, which operates in
both the first phase 500 and second phase 560. A third phase
600 of the processor 470 has an arithmetic logic unit (ALU)
602 which generally performs any ALU operations on the
operands from the second register set, storing the results in
a results register included in the third register set 501. A
stack exchange 608 can reorder register stacks, and a queue
manager 503 can arrange queues for the processor 470, the
results of which are stored in the third register set.

The instructions continue with the first phase then fol-
lowing the third phase, as depicted by a circular pipeline
505. Note that various functions have been distributed

across the three phases of the instruction execution in order
to minimize the combinatorial delays within any given
phase. With a frequency in this embodiment of 66
Megahertz, each Clock increment takes 15 nanoseconds to
complete, for a total of 45 nanoseconds to complete one
instruction for each of the three processors. The instruction
phasesare depicted in more detail in FIGS. 15A-C, in which
each phase is shown in a different figure.

Moreparticularly, FIG. 15A shows somespecific hard-
ware functions of the first phase 500, which generally
includesthe first register set 490 and related controls 492.
The controls for the first register set 492 includes an SRAM
control 502, which is a logical control for loading address
and write data into SRAM address and data registers 520.
Thus the output of the ALU 602 from the third phase 600
may be placed by SRAM control 502 into an address register
or data register of SRAM address and data registers 520. A
load control 504 similarly provides controls for writing a
contextfora file to file context register 522, and another load
control 506 provides controls for storing a variety of mis-
cellaneous data to flip-flop registers 525. ALU condition
codes, such as whethera carried bit is set, get clocked into
ALU condition codes register 528 without an operation
performed in the first phase 500. Flag decodes 508 can
perform various functions, such as setting locks, that get
stored in flag registers 530.

The RAM file register 533 has a single write port for
addresses and data and tworeadports for addresses and data,
so that more than one register can be read from at one time.
As noted above, the RAM file register 533 essentially
straddles the first and second phases,as it is written in the
first phase 500 and read from in the second phase 560. A
control store instruction 510 allows the reprogramming of
the processors due to new data in from the control store 480,
not shown in this figure, the instructions stored in an
instruction register 535. The address for this is generated in
a fetch control register 511, which determines which address
to fetch, the address stored in fetch address register 538.
Load control 515 provides instructions for a program
counter 540, which operates muchlike the fetch address for
the control store. A last-in first-out stack 544 of three

registers is copiedto the first register set without undergoing
other operations in this phase. Finally, a load control 517 for
a debug address 548 is optionally included, which allows
correction of errors that may occur.

FIG. 15B depicts the second microprocessor phase 560,
which includes reading addresses and data out of the RAM
file register 533. A scratch SRAM 565 is written from
SRAM address and data register 520 of the first register set,
which includes a register that passes through the first two
phases to be incremented in the third. The scratch SRAM
565 is read by the instruction decoder and operand multi-
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plexer 498, as are mostof the registers from the first register
set, with the exception of the stack 544, debug address 548
and SRAM address and data register mentioned above. The
instruction decoder and operand multiplexer 498 looks at the
various registers of set 490 and SRAM 565, decodes the
instructions and gathers the operands for operation in the
next phase,in particular determining the operandsto provide
to the ALU 602 below. The outcome of the instruction

decoder and operand multiplexer 498 is stored to a number
of registers in the second register set 496, including ALU
operands 579 and 582, ALU condition coderegister 580, and
a queue channel and command 587 register, which in this
embodiment can control thirty-two queues. Several of the
registers in set 496 are loaded fairly directly from the
instruction register 535 above without substantial decoding
by the decoder 498, including a program control 590, a
literal field 589, a test select 584 and a flag select 585. Other
registers such as the file context 522 of the first phase 500
are always stored in a file context 577 of the second phase
560, but may also be treated as an operand that is gathered
by the multiplexer 572. The stack registers 544 are simply
copied in stack register 594. The program counter 540 is
incremented 568 in this phase and stored in register 592.
Also incremented 570 is the optional debug address 548, and
a load control 575 may be fed from the pipeline 505 at this
point in orderto allow error control in each phase, the result
stored in debug address 598.

FIG. 15C depicts the third microprocessor phase 600,
which includes ALU and queue operations. The ALU 602
includes an adder, priority encoders and other standard logic
functions. Results of the ALU are stored in registers ALU
output 618, ALU condition codes 620 and destination oper-
and results 622. A file context register 616, flag select
register 626 andliteral field register 630 are simply copied
from the previous phase 560. A test multiplexer 604 is
provided to determine whether a conditional jump results in
a jump, with the results stored in a test results register 624.
The test multiplexer 604 may instead be performed in the
first phase 500 along with similar decisions such as fetch
control 511. A stack exchange 608 shifts a stack up or down
depending by fetching a program counter from stack 594 or
putting a program counter onto that stack, results of which
are stored in program control 634, program counter 638 and
stack 640 registers. The SRAM address may optionally be
incremented in this phase 600. Another load control 610 for
another debug address 642 may be forced from the pipeline
505 at this point in orderto allow error control in this phase
also. A queue RAM and queue ALU 606 reads from the
queue channel and commandregister 587, stores in SRAM
and rearranges queues, adding or removing data and pointers
as needed to manage the queues of data, sending results to
the test multiplexer 604 and a queue flags and queue address
register 628. Thus the queue RAM and ALU 606 assumes
the duties of managing queues for the three processors, a
task conventionally performed sequentially by software on a
CPU,the queue manager 606 instead providing accelerated
and substantially parallel hardware queuing.

The above-described system for protocol processing of
data communication results in dramatic reductions in the

time required for processing large, connection-based mes-
sages. Protocol processing speed is tremendously acceler-
ated by specially designed protocol processing hardware as
compared with a general purpose CPU running conventional
protocol software, and interrupts to the host CPU are also
substantially reduced. These advantages can be provided to
an existing host by addition of an intelligent network inter-
face card (INIC), or the protocol processing hardware may
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be integrated with the CPU. In either case, the protocol
processing hardware and CPU intelligently decide which
device processes a given message, and can change the
allocation of that processing based upon conditions of the
message.

Disclosure from Provisional Application No. 60/
061,809.

1. Background of The Invention
Network processing as it exists today is a costly and

inefficient use of system resources. A 200 MHz Pentium-Pro
is typically consumed simply processing network data from
a 100 Mb/second-network connection. The reasonsthat this

processing is so costly are described here.
1.1 Too Many Data Moves

When network packet arrives at a typical network inter-
face card (NIC), the NIC movesthe data into pre-allocated
network buffers in system main memory. From there the data
is read into the CPU cacheso that it can be checksummed

(assuming of course that the protocol in use requires check-
sums. Some,like IPX, do not.). Once the data has been fully
processed by the protocol stack, it can then be moved into
its final destination in memory. Since the CPU is moving the
data, and must read the destination cacheline in before it can
fill it and write it back out, this involves at a minimum 2
moretrips across the system memory bus.In short, the best
one can hopefor is that the data will get moved across the
system memory bus 4 times before it arrives in its final
destination. It can, and does, get worse. If the data happens
to get invalidated from system cache after it has been
checksummed, then it must get pulled back across the
memory bus before it can be movedto its final destination.
Finally, on some systems, including Windows NT 4.0, the
data gets copied yet another time while being moved up the
protocol stack. In NT 4.0, this occurs between the miniport
driver interface and the protocol driver interface. This can
add up to a whopping8 trips across the system memory bus
(the 4; trips described above, plus the move to replenish the
cache, plus 3 more to copy from the miniport to the protocol
driver). That’s enough to bring even today’s advanced
memory busses to their knees.
1.2 Too Much Processing By the CPU

In all but the original move from the NIC to system
memory, the system CPUis responsible for moving the data.
This is particularly expensive because while the CPU is
moving this data it can do nothing else. While moving the
data the CPU is typically stalled waiting for the relatively
slow memoryto satisfy its read and write requests. A CPU,
which can execute an instruction every 5 nanoseconds, must
now wait as long as several hundred nanoseconds for the
memory controller to respond before it can begin its next
instruction. Even today’s advanced pipelining technology
doesn’t help in these situations because that relies on the
CPU being able to do useful work while it waits for the
memory controller to respond. If the only thing the CPU has
to look forward to for the next several hundred instructions

is more data moves, then the CPU ultimately gets reduced to
the speed of the memory controller.

Movingall this data with the CPU slowsthe system down
even after the data has been moved. Since both the source

and destination cache lines must be pulled into the CPU
cache when the data is moved, more than 3 k of instructions
and or data resident in the CPU cache must be flushed or

invalidated for every 1500 byte frame. This is of course
assuming a combined instruction and data second level
cache, as is the case with the Pentium processors. After the
data has been moved, the former resident of the cache will
likely need to be pulled backin,stalling the CPU even when
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we are not performing network processing. Ideally a system
would never have to bring network frames into the CPU
cache, instead reserving that precious commodity for
instructions and data that are referenced repeatedly and
frequently.

But the data movementis not the only drain on the CPU.
There is also a fair amount of processing that must be done
by the protocol stack software. The most obvious expense is
calculating the checksum for each TCP segment (or UDP
datagram). Beyond this, however, there is other processing
to be done as well. The TCP connection object must be
located when a given TCP segment arrives, IP header
checksums must be calculated, there are buffer and memory
managementissues, and finally there is also the significant
expense of interrupt processing which we will discuss in the
following section.
1.3 Too Many Interrupts

A64k SMBrequest(write or read-reply) is typically made
up of 44 TCP segments when running over Ethernet (1500
byte MTU). Each of these segments may result in an
interrupt to the CPU. Furthermore, since TCP must acknow]-
edgeall of this incoming data, it’s possible to get another 44
transmit-complete interrupts as a result of sending out the
TCP acknowledgements. While this is possible, it is not
terribly likely. Delayed ACK timers allow us to acknowl-
edge more than one segment at a time. And delays in
interrupt processing may mean that we are able to process
more than one incoming network frame per interrupt.
Nevertheless, even if we assume 4 incoming frames per
input, and an acknowledgementfor every 2 segments(asis
typical per the ACK-every-other-segment property of TCP),
weare still left with 33 interrupts per 64 _k SMB request.

Interrupts tend to be very costly to the system. Often when
a system is interrupted, important information must be
flushed or invalidated from the system cache so that the
interrupt routine instructions, and needed data can be pulled
into the cache. Since the CPU will return to its prior location
after the interrupt, it is likely that the information flushed
from the cache will immediately need to be pulled back into
the cache.

What’s more, interrupts force a pipeline flush in today’s
advanced processors. While the processor pipeline is an
extremely efficient way of improving CPU performance,it
can be expensive to get going after it has been flushed.

Finally, each of these interrupts results in expensive
register accesses across the peripheral bus (PCI). This is
discussed more in the following section.
1.4 Inefficient Use of the Peripheral Bus (PCI)

Wenoted earlier that when the CPU hasto access system
memory, it may be stalled for several hundred nanoseconds.
When it has to read from PCI, it may be stalled for many
microseconds. This happens every time the CPU takes an
interrupt from a standard NIC.Thefirst thing the CPU must
do whenit receives one of these interruptsis to read the NIC
Interrupt Status Register (ISR) from PCI to determine the
cause of the interrupt. The most troubling thing aboutthisis
that since interrupt lines are shared on PC-based systems, we
may have to perform this expensive PCI read even when the
interrupt is not meant for us.

There are other peripheral bus inefficiencies as well.
Typical NICs operate using descriptor rings. When a frame
arrives, the NIC reads a receive descriptor from system
memory to determine whereto place the data. Once the data
has been moved to main memory, the descriptor is then
written back out to system memory with status about the
received frame. Transmit operates in a similar fashion. The
CPU mustnotify that NIC that it has a new transmit. The
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NIC will read the descriptor to locate the data, read the data
itself, and then write the descriptor back with status about
the send. Typically on transmits the NIC will then read the
next expected descriptor to see if any more data needs to be
sent. In short, each receive or transmit frame results in 3 or
4 separate PCI reads or writes (not counting the status
register read).
2 Summaryof the Invention

Alacritech was formed with the idea that the network

processing described above could be offloaded onto a cost-
effective Intelligent Network Interface Card (INIC). With
the Alacritech INIC, we address each of the above problems,
resulting in the following advancements:

1. The vast majority of the data is moved directly from the
INIC into its final destination. A single trip across the
system memory bus.

2. There is no header processing,little data copying, and
no checksumming required by the CPU. Because of
this, the data is never moved into the CPU cache,
allowing the system to keep important instructions and
data resident in the CPU cache.

3. Interrupts are reduced to as little as 4 interrupts per 64
k SMBread and 2 per 64 k SMB write.

4. There are no CPU reads over PCI and there are fewer

PCI operations per receive or transmit transaction.
In the remainder of this document we will describe how

we accomplish the above.
2.1 Perform Transport Level Processing on the INIC

In order to keep the system CPU from having to process
the packet headers or checksum the packet, we must perform
this task on the INIC. This is a daunting task. There are more
than 20,000 lines of C code that make up the FreeBSD
TCP/IP protocol stack. Clearly this is more code than could
be efficiently handled by a competitively priced network
card. Furthermore, as noted above, the TCP/IP protocol
stack is complicated enough to consume a 200 MHz
Pentium-Pro. Clearly in order to perform this function on an
inexpensive card, we need special network processing hard-
ware as opposed to simply using a general purpose CPU.
2.1.1 Only Support TCP/IP

In this section we introduce the notion of a “context”. A

context is required to keep track of information that spans
many, possibly discontiguous, pieces of information. When
processing TCP/IP data, there are actually two contexts that
must be maintained. The first context is required to reas-
semble IP fragments.It holds information aboutthe status of
the IP reassembly as well as any checksum information
being calculated across the IP datagram (UDP or TCP). This
contextis identified by the IP_ID of the datagram as well as
the source and destination IP addresses. The second context

is required to handle the sliding window protocol of TCP.It
holds information about which segments have been sent or
received, and which segments have been acknowledged, and
is identified by the IP source and destination addresses and
TCP source and destination ports.

If we were to choose to handle both contexts in hardware,
we would have to potentially keep track of many pieces of
information. One such example is a case in whichasingle
64 k SMB write is broken down into 44 1500 byte TCP
segments, which are in turn broken down into 131 576 byte
IP fragments,all of which can comein any order (though the
maximum windowsize is likely to restrict the number of
outstanding segments considerably).

Fortunately, TCP performs a Maximum Segment Size
negotiation at connection establishment time, which should
prevent IP fragmentation in nearly all TCP connections. The
only time that we should end up with fragmented TCP
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connections is when there is a router in the middle of a

connection which must fragment the segments to support a
smaller MTU. The only networks that use a smaller MTU
than Ethernetare serial line interfaces such as SLIP and PPP.

At the moment, the fastest of these connections only run at
128 k (ISDN) so even if we had 256 of these connections,
we would still only need to support 34 Mb/sec,oralittle
over three 10 bT connections worth of data. This is not

enough to justify any performance enhancements that the
INICoffers. If this becomes an issue at some point, we may
decide to implement the MTU discovery algorithm, which
should prevent TCP fragmentation on all connections
(unless an ICMPredirect changes the connection route while
the connection is established).

With this in mind, it seems a worthy sacrifice to not
attempt to handle fragmented TCP segments on the INIC.
UDP is another matter. Since UDP does not support the
notion of a Maximum SegmentSize,it is the responsibility
of IP to break down a UDP datagram into MTUsized
packets. Thus, fragmented UDP datagrams are very com-
mon. The most common UDPapplication running today is
NFSV2 over UDP. While this is also the most common

version of NFS running today, the current version of Solaris
being sold by Sun Microsystems runs NFSV3 over TCP by
default. We can expect to see the NFSV2/UDPtraffic start to
decrease over the coming years. In summary, we will only
offer assistance to non-fragmented TCP connections on the
INIC.

2.1.2 Don’t Handle TCP “Exceptions”
As noted above, we won’t provide support for fragmented

TCP segments on the INIC. Wehavealso opted to not handle
TCP connection and breakdown.Here is a list of other TCP

“exceptions” which we have elected to not handle on the
INIC:

Fragmented Segments—Discussed above.
Retransmission Timeout—Occurs when wedo notget an

acknowledgement for previously sent data within the
expected time period.

Out of order segments—Occurs when we receive a seg-
ment with a sequence number other than the next expected
sequence number.

FIN segment—Signals the close of the connection.
Since we have now eliminated support for so many

different code paths, it might seem hardly worth the trouble
to provide any assistance by the card at all. This is not the
case. According to W. Richard Stevens and Gary Write in
their book “TCP/IP Ilustrated Volume 2”, TCP operates
without experiencing any exceptions between 97 and 100
percent of the time in local area networks. As network,
router, and switch reliability improve this numberis likely to
only improve with time.
2.1.3 Two Modes of Operation

So the next question is what to do about the network
packets that do notfit our criteria. The answer shownin FIG.
16 is to use two modes of operation: One in which the
network frames are processed on the INIC through TCP and
one in whichthe card operates like a typical dumb NIC. We
call these two modesfast-path, and slow-path. In the slow-
path case, network frames are handed to the system at the
MAClayer and passed up through the host protocol stack
like any other network frame. In the fast path case, network
data is given to the host after the headers have been
processed and stripped.

The transmit case works in much the same fashion. In

slow-path modethe packets are given to the INIC with all of
the headers attached. The INIC simply sends these packets
out as if it were a dumb NIC.In fast-path mode, the host
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gives raw data to the INIC which it must carve into MSS
sized segments, add headersto the data, perform checksums
on the segment, and then sendit out on the wire.
2.1.4 The TCB Cache

Consider a situation in which a TCP connection is being
handled by the card and a fragmented TCP segmentforthat
connection arrives. In this situation, it will be necessary for
the card to turn control of this connection over to the host.

This introduces the notion of a Transmit Control Block

(TCB) cache. A TCB is a structure that contains the entire
context associated with a connection. This includes the
source and destination IP addresses and source and destina-

tion TCP ports that define the connection. It also contains
information about the connection itself such as the current

send and receive sequence numbers, andthe first-hop MAC
address, etc. The complete set of TCBs exists in host
memory, but a subset of these may be “owned” by the card
at any given time. This subset is the TCB cache. The INIC
can own up to 256 TCBsat any given time.

TCBsare initialized by the host during TCP connection
setup. Once the connection has achieved a “steady-state” of
operation, its associated TCB can then be turned overto the
INIC,putting us into fast-path mode. From this point on, the
INIC ownsthe connection until either a FIN arrives signal-
ing that the connection is being closed, or until an exception
occurs which the INIC is not designed to handle (such as an
out of order segment). When any of these conditions occur,
the INIC will then flush the TCB back to host memory, and
issue a messageto the host telling it that it has relinquished
control of the connection, thus putting the connection back
into slow-path mode. From this point on, the INIC simply
hands incoming segments that are destined for this TCB off
to the host with all of the headers intact.

Note that when a connection is owned by the INIC, the
host is not allowed to reference the corresponding TCB in
host memoryas it will contain invalid information about the
state of the connection.
2.1.5 TCP Hardware Assistance

Whena frame is received by the INIC, it must verify it
completely before it even determines whether it belongs to
one of its TCBsornot. This includesall header validation (is
it IP, IPV4 or V6,is the IP header checksum correct, is the
TCP checksum correct, etc). Once this is done it must
compare the source and destination IP address and the
source and destination TCP port with those in each of its
TCBs to determineif it is associated with one of its TCBs.

This is an expensive process. To expedite this, we have
added several features in hardware to assist us. The header

is fully parsed by hardware and its type is summarized in a
single status word. The checksum is also verified automati-
cally in hardware, and a hash keyis created out of the IP
addresses and TCP ports to expedite TCB lookup. For full
details on these and other hardware optimizations, refer to
the INIC Hardware Specification sections (Heading 8).

With the aid of these and other hardware features, much
of the work associated with TCP is doneessentially for free.
Since the card will automatically calculate the checksum for
TCP segments, we can pass this on to the host, even when
the segment is for a TCB that the INIC does not own.
2.1.6 TCP Summary

By moving TCP processing down to the INIC we have
offloaded the host of a large amount of work. The host no
longerhasto pull the data into its cache to calculate the TCP
checksum. It does not have to process the packet headers,
and it does not have to generate TCP ACKs. We have
achieved most of the goals outlined above, but we are not
done yet.
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2.2 Transport Layer Interface
This section defines the INIC’s relation to the hosts

transport layer interface (Called TDI or Transport Driver
Interface in Windows NT). For full details on this interface,
refer to the Alacritech TCP (ATCP) driver specification
(Heading 4).
2.2.1 Receive

Simply implementing TCP on the INIC doesnot allow us
to achieve our goal of landing the datain its final destination.
Somehowthehosthasto tell the INIC where to put the data.
This is a problem in that the host can not do this without
knowing what the data actually is. Fortunately, NT has
provided a mechanism by which a transport driver can
“indicate” a small amountof data to a client above it while

telling it that it has more data to come. The client, having
then received enoughof the data to know whatit is, is then
responsible for allocating a block of memory and passing the
memory address or addresses back downto the transport
driver, whichis in turn responsible for moving the data into
the provided location.

We will make use of this feature by providing a small
amount of any received data to the host, with a notification
that we have more data pending. Whenthis small amountof
data is passed up to the client, and it returns with the address
in which to put the remainder of the data, our host transport
driver will pass that address to the INIC which will DMAthe
remainder of the data into its final destination.

Clearly there are circumstances in which this does not
make sense. When a small amount of data (500 bytes for
example), with a push flag set indicating that the data must
be delivered to the client immediately, it does not make
sense to deliver some of the data directly while waiting for
the list of addresses to DMAthe rest. Under these

circumstances, it makes more sense to deliver the 500 bytes
directly to the host, and allow the host to copyit into its final
destination. While various rangesare feasible, it is currently
preferred that anything less than a segment’s (1500 bytes)
worth of data will be delivered directly to the host, while
anything more will be delivered as a small piece which may
be 128 bytes, while waiting until receiving the destination
memory address before movingthe rest.

The trick then is knowing when the data should be
delivered to the client or not. As we’ve noted, a push flag
indicates that the data should be delivered to the client

immediately, but this alone is not sufficient. Fortunately, in
the case of NetBIOS transactions (such as SMB), weare
explicitly told the length of the session message in the
NetBIOS headeritself. With this we can simply indicate a
small amountof data to the host immediately upon receiving
the first segment. The client will then allocate enough
memory for the entire NetBIOS transaction, which we can
then use to DMAthe remainderof the data into asit arrives.

In the case of a large (56 k for example) NetBIOS session
message, all but the first couple hundred bytes will be
DMA’d to their final destination in memory.

But what about applications that do not reside above
NetBIOS? In this case we can not rely on a session level
protocolto tell us the length of the transaction. Under these
circumstances we will buffer the data as it arrives until A) we
have receive some predetermined numberof bytes such as 8
k, or B) some predetermined period of time passes between
segments or C) we get a push flag. If after any of these
conditions occur we will then indicate someorall of the data

to the host depending on the amountof data buffered. If the
data buffered is greater than about 1500 bytes we must then
also wait for the memory address to be returned from the
host so that we may then DMAthe remainderof the data.
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2.2.2 Transmit

The transmit case is much simpler.In this case the client
(NetBIOS for example) issues a TDI Send with a list of
memory addresses which contain data that it wishes to send
along with the length. The host can then pass this list of
addresses and length off to the INIC. The INIC will then pull
the data from its source location in host memory, asit needs
it, until the complete TDI requestis satisfied.
2.2.3 Affect on Interrupts

Note that when we receive a large SMB transaction, for
example, that there are two interactions between the INIC
and the host. The first in which the INIC indicates a small

amount of the transaction to the host, and the second in
whichthe host provides the memory location(s) in which the
INIC places the remainder of the data. This results in only
two interrupts from the INIC. Thefirst whenit indicates the
small amount of data and the second after it has finished

filling in the host memory given to it. A drastic reduction
from the 33/64 k SMB request that we estimate at the
beginning of this section. On transmit, we actually only
receive a single interrupt when the send commandthat has
been given to the INIC completes.
2.2.4 Transport Layer Interface Summary

Having nowestablished our interaction with Microsoft’s
TDIinterface, we have achieved our goal of landing most of
our data directly into its final destination in host memory. We
have also managed to transmit all data from its original
location on host memory. And finally, we have reduced our
interrupts to 2 per 64k SMBread and 1 per 64k SMB write.
The only thing that remains in ourlist of objectives is to
design an efficient host (PCI) interface.
2.3 Host (PCI) Interface

In this section we define the host interface. For a more

detailed description, refer to the “Host Interface Strategy for
the Alacritech INIC” section (Heading 3).
2.3.1 Avoid PCI Reads

One of our primary objectives in designing the host
interface of the INIC was to eliminate PCI reads in either

direction. PCI reads are particularly inefficient in that they
completely stall the reader until the transaction completes.
As noted above, this could hold a CPU up for several
microseconds, a thousand times the time typically required
to execute a single instruction. PCI writes on the other hand,
are usually buffered by the memory-bus<——>PCl-bridge
allowing the writer to continue on with other instructions.
This technique is known as“posting”.
f2.3.1.1 Memory-based Status Register

The only PCI read that is required by most NICsis the
read of the interrupt status register. This register gives the
host CPU information about what event has caused an

interrupt (if any). In the design of our INIC we haveelected
to place this necessary status register into host memory.
Thus, when an event occurs on the INIC, it writes the status
register to an agreed upon location in host memory. The
corresponding driver on the host reads this local register to
determine the cause of the interrupt. The interrupt lines are
held high until the host clears the interrupt by writing to the
INIC’s Interrupt Clear Register. Shadow registers are main-
tained on the INIC to ensure that events are notlost.
2.3.1.2 Buffer Addresses are Pushed to the INIC

Since it is imperative that our INIC operate asefficiently
as possible, we must also avoid PCI reads from the INIC. We
do this by pushing our receive buffer addresses to the INIC.
As mentioned at the beginning of this section, most NICs
work on a descriptor queue algorithm in which the NIC
reads a descriptor from main memory in order to determine
whereto place the next frame. We will instead write receive
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buffer addresses to the INIC as receive buffers are filled. In

order to avoid having to write to the INIC for every receive
frame, we instead allow the host to pass off a pages worth
(4k) of buffers in a single write.
2.3.2 Support Small and Large Buffers on Receive

In order to reduce further the number of writes to the

INIC, and to reduce the amount of memory being used by
the host, we support two different buffer sizes. Asmall buffer
contains roughly 200 bytes of data payload, as well as extra
fields containing status about the received data bringing the
total size to 256 bytes. We can therefore pass 16 of these
small buffers at a time to the INIC. Large buffers are 2 k in
size. They are used to contain any fast or slow-path data that
doesnot fit in a small buffer. Note that when we havea large
fast-path receive, a small buffer will be used to indicate a
small piece of the data, while the remainder of the data will
be DMA’d directly into memory. Large buffers are never
passed to the host by themselves, instead they are always
accompanied by a small buffer which contains status about
the receive along with the large buffer address. By operating
in the manner, the driver must only maintain and process the
small buffer queue. Large buffers are returned to the host by
virtue of being attached to small buffers. Since large buffers
are 2 k in size they are passed to the INIC 2 buffers at a time.
2.3.3 Command and Response Buffers

In addition to needing a manner by which the INIC can
pass incoming data to us, we also need a manner by which
we can instruct the INIC to send data. Plus, when the INIC
indicates a small amountof data in a large fast-path receive,
we need a method of passing back the address or addresses
in which to put the remainder of the data. We accomplish
both of these with the use of a command buffer. Sadly, the
command buffer is the only place in which we must violate
our rule of only pushing data across PCI. For the command
buffer, we write the address of command buffer to the INIC.
The NICthen reads the contents of the commandbuffer into

its memory so that it can execute the desired command.
Since a command may take a relatively long time to
complete, it is unlikely that command buffers will complete
in order. For this reason we also maintain a response buffer
queue. Like the small and large receive buffers, a page worth
of response buffers is passed to the INIC at a time. Response
buffers are only 32 bytes, so we have to replenish the INIC’s
supply of them relatively infrequently. The response buffers
only purposeis to indicate the completion of the designated
command buffer, and to pass status about the completion.

2.4 EXAMPLES

In this section we will provide a couple of examples
describing someofthe differing data flows that we might see
on the Alacritech INIC.

2.4.1 Fast-path 56 K Netbios Session Message
Let’s say a 56 k NetBIOSsession message is received on

the INIC. The first segment will contain the NetBIOS
header, which contains the total NetBIOS length. A small
chunkofthis first segment is provided to the host byfilling
in a small receive buffer, modifying the interrupt status
register on the host, and raising the appropriate interrupt
line. Upon receiving the interrupt, the host will read the ISR,
clear it by writing back to the INIC’s Interrupt Clear
Register, and will then process its small receive buffer queue
lookingfor receive buffers to be processed. Uponfinding the
small buffer, it will indicate the small amount of data up to
the client to be processed by NetBIOS. It will also, if
necessary, replenish the receive buffer pool on the INIC by
passing off a pages worth of small buffers. Meanwhile, the
NetBIOSclient will allocate a memory pool large enough to
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hold the entire NetBIOS message, and will pass this address
or set of addresses down to the transport driver. The trans-
port driver will allocate an INIC commandbuffer, fill it in
with the list of addresses, set the command type to tell the
INICthat this is where to put the receive data, and then pass
the command off to the INIC by writing to the command
register. When the INIC receives the command buffer,it will
DMAthe remainder of the NetBIOSdata, as it is received,
into the memory addressor addresses designated bythe host.
Once the entire NetBIOStransaction is complete, the INIC
will complete the command by writing to the response buffer
with the appropriate status and commandbuffer identifier.

In this example, we have two interrupts, and all but a
couple hundred bytes are DMA’d directly to their final
destination. On PCI we have two interrupt status register
writes, two interrupt clear register writes, a command reg-
ister write, a command read, and a response buffer write.

With a standard NIC this would result in an estimated 30

interrupts, 30 interrupt register reads, 30 interrupt clear
writes, and 58 descriptor reads and writes. Plus the data will
get moved anywhere from 4 to 8 times across the system
memory bus.
2.4.2 Slow-path Receive

If the INIC receives a frame that does not contain a TCP

segment for one of its TCB’s,it simply passesit to the host
as if it were a dumb NIC.If the frame fits into a small buffer

(~200 bytes or less), then it simply fills in the small buffer
with the data and notifies the host. Otherwise it places the
data in a large buffer, writes the address of the large buffer
into a small buffer, and again notifies the host. The host,
having received the interrupt and found the completed small
buffer, checks to see if the data is contained in the small
buffer, and if not, locates the large buffer. Having found the
data, the host will then pass the frame upstream to be
processed by the standard protocol stack. It must also
replenish the INIC’s small and large receive buffer pool if
necessary.

With the INIC, this will result in one interrupt, one
interrupt status register write and one interrupt clear register
write as well as a possible small and or large receive buffer
register write. The data will go through the normal path
although if it is TCP data then the host will not have to
perform the checksum.

With a standard NIC this will result in a single interrupt,
an interrupt status register read, an interrupt clear register
write, and a descriptor read and write. The data will get
processed as it would by the INIC, except for a possible
extra checksum.

2.4.3 Fast-path 400 Byte Send
In this example, lets assume that the client has a small

amount of data to send. It will issue the TDI Send to the

transport driver which will allocate a command buffer,fill it
in with the address of the 400 byte send, and set the
commandto indicate that it is a transmit. It will then pass the
command off to the INIC by writing to the command
register. The SMCwill then DMAthe 400 bytesinto its own
memory, prepare a frame with the appropriate checksums
and headers, and send the frame out on the wire. After it has
received the acknowledgementit will then notify the host of
the completion by writing to a response buffer.

With the INIC, this will result in one interrupt, one
interrupt status register write, one interrupt clear register
write, a command buffer register write a command buffer
read, and a response buffer write. The data is DMA’d
directly from the system memory.

With a standard NIC this will result in a single interrupt,
an interrupt status register read, an interrupt clear register
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write, and a descriptor read and write. The data would get
moved across the system bus a minimum of 4 times. The
resulting TCP ACK of the data, however, would add yet
anotherinterrupt, anotherinterrupt status register read, inter-
rupt clear register write, a descriptor read and write, and yet
more processing by the host protocol stack.

Host Interface Strategy for the Alacritech INIC

This section describes the host interface strategy for the
Alacritech Intelligent Network Interface Card (INIC). The
goal of the Alacritech INIC is to not only process network
data through TCP, but also to provide zero-copy support for
the SMP upper-layer protocol. It achieves this by supporting
two paths for sending and receiving data, the fast-path and
the slow-path. The fast path data flow corresponds to con-
nections that are maintained on the NIC, while slow-path
traffic corresponds to network data for which the NIC does
not have a connection. The fast-path flow works by passing
a header to the host and subsequently holding further data
for that connection on the card until the host responds via an
INIC commandwith a set of buffers into which to place the
accumulated data. In the slow-path data flow, the INIC will
be operating as a“dumb” NIC, so that these packets are
simply dumpedinto frame buffers on the host as they arrive.
To do either path requires a pool of smaller buffers to be used
for headers and a pool of data buffers for frames/data that are
too large for the header buffer, with both pools being
managed by the INIC. This section discusses how these two
pools of data are managed as well as how buffers are
associated with a given context.
3.1 Receive Interface

The varying requirements of the fast and slow paths and
a desire to save PCI bandwidth are the driving forces behind
the host interface that is described herein. As mentioned

above, the fast-path flow puts a header into a header buffer
that is then forwarded to the host. The host uses the header

to determine what further data is following, allocates the
necessary host buffers, and these are passed back to the INIC
via a commandto the INIC. The INIC then fills these buffers

from data it was accumulating on the card and notifies the
host by sending a response to the command. Alternatively,
the fast-path may receive a header and data that is a
complete request, but that is also too large for a header
buffer. This results in a header and data buffer being passed
to the host. Thislatter flow is identical to the slow-path flow,
which also puts all the data into the header buffer or,if the
header is too small, uses a large (2 K) host buffer for all the
data. This means that on the unsolicited receive path, the
host will only see either a header buffer or a header and at
most, one data buffer. Note that data is never split between
a header andadata buffer. FIG. 17illustrates both situations.

Since we wantto fill in the header buffer with a single DMA,
the header mustbe the last piece of data to be written to the
host for any received transaction.
3.1.1 Receive Interface Details
3.1.2 Header Buffers

Header buffers in host memory are 256 bytes long, and are
aligned on 256 byte boundaries. There will be a field in the
header buffer indicating it has valid data. This field will
initially be reset by the host before passing the buffer
descriptor to the INIC. A set of header buffers are passed
from the host to the INIC by the host writing to the Header
Buffer Address Register on the INIC. This register is defined
as follows:

Bits 31-8 Physical address in host memoryofthe first of
a set of contiguous header buffers.

Bits 7-0 Number of header buffers passed.
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In this way the host can, say, allocate 16 buffers ina4K
page, and passall 16 buffers to the INIC with one register
write. The INIC will maintain a queue of these header
descriptors in the SmallHType queue in it’s own local
memory, adding to the end of the queue every time the host
writes to the Header Buffer Address Register. Note that the
single entry is added to the queue; the eventual dequeuer will
use the count after extracting that entry.

The header buffers, will be used and returned to the host
in the sameorderthat they were given to the INIC. Thevalid
field will be set by the INIC before returning the buffer to the
host. In this way a PCI interrupt, with a single bit in the
interrupt register, may be generated to indicate that there is
a header buffer for the host to process. Whenservicing this
interrupt, the host will look at its queue of header buffers,
reading the valid field to determine how manyheader buffers
are to be processed.
3.1.3 Receive Data Buffers

Receive data buffers in host memory are aligned to page
boundaries, assumed here to be 2 K bytes long and aligned
on 4 K page boundaries, 2 buffers per page. In order to pass
receive data buffers to the INIC, the host must write to two
registers on the INIC. The first register to be written is the
Data Buffer Handle Register. The buffer handle is not
significant to the INIC, but will be copied back to the host
to return the buffer to the host. The second register written
is the Data Buffer Address Register. This is the physical
address of the data buffer. When both registers have been
written, the INIC will add the contents of these two registers
to FreeType queue of data buffer descriptors. Note that the
INIC host driver sets the handle register first, then the
address register. There needs to be some mechanism put in
place to ensure the reading of these registers does not get out
of syne with writing them. Effectively the INIC can read the
address register first and save its contents, then read the
handle register. It can then lock the register pair in some
manner such that another write to the handle register is not
permitted until the current contents have been saved. Both
addresses extracted from the registers are to be written to the
FreeType queue. The INIC will extract 2 entries each time
when dequeuing.

Data buffers will be allocated and used by the INIC as
needed. For each data buffer used by a slow-path transaction,
the data buffer handle will be copied into a header buffer.
Then the header buffer will be returned to the host.
3.2 Transmit Interface
3.2.1 Transmit Interface Overview

The transmit interface shownin FIG. 18, like the receive
interface, has been designed to minimize the amount of PCI
bandwidth andlatencies. In order to transmit data, the host
will transfer a command buffer to the INIC. This command

buffer will include a command buffer handle, a command
field, possibly a TCP context identification, and a list of
physical data pointers. The command buffer handle is
defined to be the first word of the command buffer and is

used by the host to identify the command. This word will be
passed backto the host in a response buffer, since commands
may complete out of order, and the host will need to know
which command is complete. Commands will be used for
many reasons, but primarily to cause the INIC to transmit
data, or to pass a set of buffers to the INIC for input data on
the fast-path as previously discussed.

Response buffers are physical buffers in host memory.
They are used by the INIC in the same order as they were
given to it by the host. This enables the host to know which
response buffer(s) to next look at when the INIC signals a
command completion.
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3.2.2 Transmit Interface Details
3.2.2.1 Command Buffers

Command buffers in host memory are a multiple of 32
bytes, up to a maximum of 1 K bytes, and are aligned on 32
byte boundaries. A commandbuffer is passed to the INIC by
writing to one of 5 Command Buffer Address Registers.
These registers are defined as follows:

Bits 31-5 Physical address in host memory of the com-
mand buffer.

Bits 4—0 Length of command buffer in bytes / 32 (ie.
number of multiples of 32 bytes).

This is the physical address of the command buffer. The
register to which the commandis written predetermines the
XMTinterface number, or if the commandis for the RCV
CPU; hencethere will be 5 of them, 0-3 for XMT and 4 for
RCV. When oneof these registers has been written, the “IC
will add the contents of the register to it’s own internal
queue of command buffer descriptors. The first word ofall
command buffers is defined to be the command buffer

handle. It is the job of the utility CPU to extract a command
from its local queue, DMA the commandinto a small INIC
buffer (from the FreeSType queue), and queue that buffer
into the Xmit#Type queue, where # is 0-3 depending on the
interface, or the appropriate RCV queue. The receiving CPU
will service the queues to perform the commands. Whenthat
CPU has completed a command, it extracts the command
buffer handle and passes it back to the host via a response
buffer.

3.2.2.2 Response Buffers
Response buffers in host memory are 32 bytes long and

aligned on 32 byte boundaries. They are handled in a very
similar fashion to header buffers. There will bea field in the

response buffer indicating it has valid data. This field will
initially be reset by the host before passing the buffer
descriptor to the INIC. A set of response buffers are passed
from the host to the INIC by the host writing to the Response
Buffer Address Register on the INIC. This register is defined
as follows:

Bits 31-8 Physical address in host memoryofthe first of
a set of contiguous response buffers.

Bits 7-0 Number of response buffers passed.
In this way the host can, say, allocate 128 buffers in a 4

K page, and passall 128 buffers to the INIC with oneregister
write. The INIC will maintain a queue of these header
descriptors in it’s ResponseType queue, addingto the end of
the queue every time the host writes to the Response Buffer
Address Register. The INIC writes the extracted contents
including the count, to the queue in exactly the same manner
as for the header buffers.

The response buffers can be used and returnedto the host
in the sameorderthat they were given to the INIC. Thevalid
field will be set by the INIC before returning the buffer to the
host. In this way a PCI interrupt, with a single bit in the
interrupt register, may be generated to indicate that there is
a responsebuffer for the host to process. Whenservicing this
interrupt, the host will look at its queue of response buffers,
reading the valid field to determine how many response
buffers are to be processed.
3.2.3 Interrupt Status Register/Interrupt Mask Register

FIG. 19 shows the general format of this register. The
setting of any bits in the ISR will cause an interrupt,
provided the corresponding bit in the Interrupt Mask Reg-
ister is set. The default setting for the IMR is 0.

The INIC is configured so that the host should never need
to directly read the ISR from the INIC. To support this,it is
important for the host/NIC to arrange a buffer area in host
memory into which the ISR is dumped. The address and size
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of that area ca be passed to the INIC via a commandon the
XMTinterface. That command will also specify the setting
for the IMR. Until the INIC receives this command,it will
not DMAthe ISR to host memory, and no events will cause
an interrupt. The host could if necessary, read the ISR
directly from the INIC in this case.

For the host to never have to actually read the register
from the INIC itself, it is necessary for the INIC to update
this host copy of the register whenever anything in it
changes. The host will Ack (or deassert) events in the
register by writing the register with 0’s in appropriate bit
fields. So that the host does not miss events, the following
scheme has been developed:

The INIC keeps a local copy of the register wheneverit
DMAs it to the host ie. after some event(s). Call this
COPYAThen the INIC starts accumulating any new events
not reflected in the host copy in a separate word. Call this
NEWA.As the host clears bits by writing the register back
with those bits set to zero, the INIC clears these bits in
COPYA(orthe host write-back goes directly to COPYA).If
there are new events in NEWA,it ORs them with COPYA,
and DMAs this new ISRto the host. This new ISR then

replaces COPYA, NEWAis cleared and the cycle then
repeats.

3.2.4 Register Addresses
For the sake of simplicity, in this example of FIG. 20 the

registers are at 4-byte increments from whatever the base
address is.

4 Alacritech TCP (ATCP) Design Specification

This section outlines the design specification for the
Alacritech TCP (ATCP) transport driver. The ATCP driver
consists of three components:

1. The bulk of the protocol stack is based on the FreeBSD
TCPAP protocol stack. This code performs the Ethernet,
ARP, IP, ICMP, and (slow path) TCP processing for the
driver.

2. At the top of the protocol stack we introduce an NT
filter driver used to intercept TDI requests destined for the
Microsoft TCP driver.

3. At the bottom of the protocol stack we include an NDIS
protocol-driver interface which allows us to communicate
with the INIC miniport NDIS driver beneath the ATCP
driver.

This section covers each of these topics, as well as issues
common to the entire ATCP driver.

4.1 Coding Style
In order to ensure that our ATCP driver is written in a

consistent manner, we have adopted a set of coding guide-
lines. These guidelines are introduced with the philosophy
that we should write code in a Microsoft style since we are
introducing an NJ-based product. The guidelines below
apply to all code that we introduce into our driver. Since a
very large portion of our ATCP driver will be based on
FreeBSD, and since we are somewhat time-constrained on
our driver development, the ported FreeBSD code will be
exempt from these guidelines.

1. Global symbols—AI] function names and global vari-
ables in the ATCP driver should begin with the“ATK”prefix
(ATKSend( ) for instance).

2. Variable names—Microsoft seemsto use capital letters
to separate multi-word variable names instead of under-
scores (VariableName instead of variable_name). We
should adhere to this style.

INTEL Ex. 1259.100



INTEL Ex. 1259.101

US 6,334,153 B2
33

3. Structure pointers—Microsoft typedefs all of their
structures. The structure types are always capitals and they
typedef a pointer to the structure as “P”<name> as follows:

typedef struct_FOO {
INT bar;

} FOO, *PFOO;

We will adhere to this style. 4. Function calls—Microsoft 10
separates function call arguments on separate lines:

X = foobar(
argumentl,
argument2,
)s

15

We will adhere to this style. 20
5. Comments—While Microsoft seems to alternatively

use // and /* */ comment notation, we will exclusively use
the /* */ notation.

6. Function comments—Microsoft includes comments

with each function that describe the function,its arguments,
and its return value. We will also include these comments,
but will move them from within the function itself to just
prior to the function for better readability.

7. Function arguments—Microsoft includes the keywords
IN and OUT when defining function arguments. These
keywords denote whether the function argumentis used as
an input parameter, or alternatively as a placeholder for an
output parameter. We will include these keywords.

8. Function prototypes—Wewill include function proto-
types in the most logical header file corresponding to the .c
file. For example, the prototype for function foo( ) found in
foo.c will be placed in foo.h.

9. Indentation—Microsoft code fairly consistently uses a
tabstop of 4. We will do likewise.

10. Headerfile #ifndef—each headerfile should contain

a #ifndef/#define/#endif which is used to prevent recursive
headerfile includes. For example, foo.h would include:

30

35

#ifndef_FOO_H_
#define_FOO_H_
<foo.h contents..>
#endif/*_FOO_H_*/

Note theNAME_H_format.

45

11. Each file must contain a comment at the beginning
which includes the $Id$ as follows:

50

{*
*$1d$
*/

55

CVS (RCS) will expand this keyword to denote RCS
revision, timestamps, author,etc.
4.2 SMP

This section describes the process by which we will make
the ATCP driver SMP safe. The basic rule for SMP kernel

code is that any access to a memory variable must be
protected by a lock that prevents a competing access by code
running on another processor. Spinlocks are the normal 65
locking method for code paths which do nottake a long time
to execute (and which do not sleep.)

60

34

In general each instance of a structure will include a
spinlock, which must be acquired before members of that
structure are accessed, and held while a function is accessing
that instance of the structure. Structures which are logically
grouped together may be protected by a single spinlock: for
example, the ‘in_pcb’ structure, ‘tcpcb’ structure, and
‘socket’ structure which together constitute the administra-
tive information for a TCP connection will probably be
collectively managed by a single spinlock in the ‘socket’
structure.

In addition, every global data structure such as a list or
hash table must also have a protecting spinlock which must
be held while the structure is being accessed or modified.
The NT DDK in fact provides a number of convenient
primitives for SMP-safe list manipulation, and it is recom-
mended that these be used for any new lists. Existing list
manipulations in the FreeBSD code can probably be left
as-is to minimize code disturbance, except of course that the
necessary spinlock acquisition and release must be added
around them.

Spinlocks should not be held for long periods of time, and
most especially, must not be held during a sleep, since this
will lead to deadlocks. There is a significant deficiency in the
NT kernel support for SMP systems:it does not provide an
operation which allows a spinlock to be exchanged atomi-
cally for a sleep lock. This would be a serious problem in a
UNIX environment where much of the processing occurs in
the context of the user process whichinitiated the operation.
(The spinlock would haveto be explicitly released, followed
by a separate acquisition of the sleep lock: creating an unsafe
window.)

The NT approach is more asynchronous, however: IRPs
are simply marked as ‘PENDING’whenan operation cannot
be completed immediately. The calling thread does NOT
sleep at that point: it returns, and may go on with other
processing. Pending IRPsare later completed, not by waking
up the thread which initiated them, but by an ‘IoCompl-
eteRequest’ call which typically runs at DISPATCH level in
an arbitrary context.

Thus wehavenotin fact used sleep locks anywherein the
design of the ATCP driver, hoping the above issue will not
arise.
4.3 Data Flow Overview

The ATCP driver supports two paths for sending and
receiving data, the fast-path and the slow-path. The fast-path
data flow corresponds to connections that are maintained on
the INIC, while slow-path traffic corresponds to network
data for which the INIC does not have a connection.In order

to set some groundworkfor the rest of this section, these two
data paths are summarized here.
4.3.1 FAST-path Input Data Flow

There are 2 different cases to consider:

1. NETBIOStraffic (identifiable by port number.)
2. Everything else.

4.3.1.1 NETBIOS Input
As soon as the INIC has received a segment containing a

NETBIOSheader, it will forward it up to the TCP driver,
along with the NETBIOSlength from the header. (In prin-
ciple the host could get this from the headeritself, but since
the INIC has already done the decode, it seem reasonable to
just passit.)

From the TDI spec, the amount of data in the buffer
actually sent mustbe at least 128 bytes. For small SMBs,all
of the received SMB should be forwarded; it will be
absorbeddirectly by the TDI client without any further MDL
exchange. Experiments tracing the TDI data flow show that
the NETBIOSclient directly absorbs up to 1460 bytes: the
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amount of payload data in a single Ethernet frame. Thus the
initial system specifies that the INIC will indicate anything
up to a complete segment to the ATCPdriver. [See note (1)].

Once the INIC has passed up an indication with an
NETBIOSlength greater than the amount of data in the
packet it passed, it will continue to accumulate further
incoming data in DRAM on the INIC. Overflow of INIC
DRAM buffers will be avoided by using a receive window
on the INIC at this point, which can be 8 K.

Onreceiving the indicated packet, the ATCP driver will
call the receive handler registered by the TDI client for the
connection, passing the actual size of the data in the packet
from the INIC as“bytes indicated” and the NETBIOSlength
as“bytes available.”[See note (2)].

In the“large data input” case, where“bytes available”
exceeds the packet length, the TDI client will then provide
an MDL,associated with an IRP, which must be completed
when this MDLis filled. (This IRP/MDL may come back
either in the response to TCP’s call of the receive handler,
or as an explicit TDI_RECEIVErequest.)

The ATCP driver will build a“receive request” from the
MDLinformation, and pass this to the INIC. This request
will contain:

1) The TCP context identifier; 2) Size and offset infor-
mation; 3) A list of physical addresses corresponding to the
MDLpages; 4) A context field to allow the ATCP driver to
identify the request on completion; and 5)“Piggybacked”
window update information.

Note: the ATCP driver must copy any remaining data
(which was not taken by the receive handler) from the
segment indicated by the INIC to the start of the MDL,and
must adjust the size & offset information in the request
passed to the INIC to accountfor this.

The INIC will fill the given page(s) with incoming data up
to the requested amount, and respond to the ATCP driver
when this is done [See note (3)]. If the MDLis large, the
INIC may open up its advertised receive window for
improved throughput while filling the MDL. On receiving
the response from the INIC, the ATCP driver will complete
the IRP associated with this MDL,to tell the TDI client that
the data is available. At this point the cycle of events is
complete, and the ATCP driver is now waiting for the next
header indication.

4.3.1.2 Other TCP Input
In the general case we do not havea higher-level protocol

header to enable us to predict that more data is coming. So
on non-NETBIOSconnections, the INIC will just accumu-
late incoming data in INIC DRAM upto a quantity of 8 K
in this example. Again, a maximum advertised windowsize,
which may be 16 K,will be used to prevent overflow of
INIC DRAM buffers.

When the prescribed amount has been accumulated, or
when a PSH flag is seen, the INIC will indicate a small
packet which may be 128 bytes of the data to the ATCP
driver, along with the total length of the data accumulated in
INIC DRAM.

Onreceiving the indicated packet, the ATCP driver will
call the receive handler registered by the TDI client for the
connection, passing the actual size of the data in the packet
from the INIC as“bytes indicated” and the total INIC-buffer
length as“bytes available.”

As in the NETBIOScase, if “bytes available” exceeds
“bytes indicated”, the TDI client will provide an IRP with an
MDL.The ATCP driver will pass the MDLto the INIC to be
filled, as before. The INIC will reply to the ATCP driver,
which in turn will complete the IRP to the TDI client.

Using an MDL from the client avoids a copy step.
However, if we can only buffer 8 K and delay indicating to
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the ATCP driver until we have done so, a question arises
regarding further segments coming in, since INIC DRAM is
a scarce resource. We do not want to ACK with a zero-size

window advertisement: this would cause the transmitting
end to go into persist state, which is bad for throughput.If
the transmitting end is also our INIC,this results in having
to implementthe persist timer on the INIC, which we do not
wish to do. Instead for large transfers (i.e. no PSH flag seen)
we will not send an ACK until the host has provided the
MDL,and also, to avoid stopping the transmitting end, we
will use a receive windowof twice the amount wewill buffer

before calling the host. Since the host comes back with the
MDLquite quickly (measured at <100 microseconds), we do
not expect to experience significant overruns.
4.3.1.3 INIC Receive Window Updates

If the INIC “owns” an MDLprovided by the TDI client
(sent by ATCP as a receive request), it will treat this as a
“promise” by the TDI client to accept the data placed in it,
and may therefore ACK incoming data as it is filling the
pages.

However, for small requests, there will be no MDL
returned by the TDIclient: it absorbsall of the data directly
in the receive callback function. We need to update the
INIC’s view of data which has been accepted, so that it can
update its receive window.In orderto be able to dothis, the
ATCPdriver will accumulate a count of data which has been

accepted by the TDI client receive callback function for a
connection.

From the INIC’s point of view, though, segments sent up
to the ATCP driver are just “thrown over the wall”; there is
no explicit reply path. We will therefore “piggyback” the
update on requests sent out to the INIC. Whenever the ATCP
driver has outgoing data for that connection,it will place this
count in a field in the send request (and then clear the
counter.) Any receive request (passing a receive MDLto the
INIC) mayalso be used to transport window update info in
the same way.

Note: we will probably also need to design a message path
whereby the ATCP driver can explicitly send an update of
this “bytes consumed” information (either when it exceeds
a preset threshold or if there are no requests going outto the
INIC for more than a given time interval), to allow for
possible scenarios in which the data stream is entirely
one-way.
4.3.1.4 Notes

1) The PSH flag can help to identify small SMB requests
that fit into one segment.

2) Actually, the observed “bytes available” from the NT
TCP driver to its client’s callback in this case is always
1460. The NETBIOS-aware TDI client presumably calcu-
lates the size of the MDLit will return from the NETBIOS

header. So strictly speaking we do not need the NETBIOS
header length at this point: just an indication that this is a
headerfor a “large” size. However, we *do* need an actual
“bytes available”value for the non-NETBIOScase, so we
may as well passit.

3) We observe that the PSH flag is set in the segment
completing each NETBIOStransfer. The INIC can use this
to determine whenthe current transfer is complete and the
MDLshould be returned. It can, at least in a debug mode,
sanity check the amount of received data against what is
expected, though.
4.3.2 Fast-path Output Data Flow

The fast-path output data flow is similar to the input
data-flow, but simpler. In this case the TDI client will
provide a MDLto the ATCP driver along with an IRP to be
completed when the data is sent. The ATCP driver will then
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give a request (corresponding to the MDL) to the SIC. This
request will contain:

1) The TCP context identifier; 2) Size and offset infor-
mation; 3) A list of physical addresses corresponding to the
MDLpages; 4) A contextfield to allow the ATCP driver to
identify the request on completion; 5) “Piggybacked” win-
dow update information (as discussed in section 6.1.3.)

The INIC will copy the data from the given physical
location(s) as it sends the corresponding network frames
onto the network. Whenall of the data is sent, the INIC will
notify the host of the completion, and the ATCP driver will
complete the IRP.

Note that there may be multiple output requests pending
at any given time, since SMB allows multiple SMB requests
to be simultaneously outstanding.
4.3.3 Slow-Path Data Flow

For data for which there is no connection being main-
tained on the INIC, we will have to perform all of the TCP,
IP, and Ethernet processing ourselves. To accomplish this we
will port the FreeBSD protocol stack. In this mode, the INIC
will be operating as a “dumb NIC”; the packets which pass
over the NDIS interface will just contain MAC-layer frames.

The MBUFs in the incoming direction will in fact be
managing NDIS-allocated packets. In the outgoing
direction, we need protocol-allocated MBUFs in which to
assemble the data and headers. The MFREE macro must be

cognizant of the various types of MBUFs,and “do the right
thing” for each type.

We will retain a (modified) socket structure for each
connection, containing the socket buffer fields expected by
the FreeBSD code. The TCP code that operates on socket
buffers (adding/removing MBUFsto & from queues, indi-
cating acknowledged & received data etc) will remain
essentially unchanged from the FreeBSD base (though most
of the socket functions & macros used to do this will need

to be modified; these are the functions in kern/uipe_
socket2.c)

The upper socket layer (kern/uipc_socket.c), where the
overlying OS moves data in and out of socket buffers, must
be entirely re-implemented to work in TDI terms. Thus,
instead of sosend(), there will be a function that copies data
from the MDL provided in a TDI_SENDcall into socket
buffer MBUFs. Instead of soreceive( ), there will be a
handler that calls the TDI client receive callback function,
and also copies data from socket buffer MBUFs into any
MDLprovided by the TDIclient (either explicitly with the
callback response or as a separate TDI_RECEIVEcall.)

We must note that there is a semantic difference between

TDI_SENDand a write() on a BSD socket. The latter may
complete back to its caller as soon as the data has been
copied into the socket buffer. The completion of a TDI_
SEND,however, implies that the data has actually been sent
on the connection. Thus we will need to keep the TDI_
SENDIRPs(and associated MDLs) in a queue on the socket
until the TCP code indicates that the data from them has
been ACK’d.
4.3.4 Data Path Notes

1. There might be input data on a connection object for
which there is no receive handler function registered. This
has not been observed, but we can probably just ASSERTfor
a missing handler for the moment. If it should happen,
however, we must assumethat the TDI client will be doing
TDI_RECEIVEcalls on the connection. If we can’t make

a callup at the time that the indication from the INIC
appears, we can queue the data and handle it when a
TDI_RECEIVEdoes appear.

2. NT has a notion of “canceling” IRPs.It is possible for
us to get a “cancel” on an IRP corresponding to an MDL
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which has been “handed” to the INIC by a send or receive
request. We can handle this by being able to force the
context back off the INIC, since IRPs will only get cancelled
when the connection is being aborted.
4.4 Context Passing Between ATCP and INIC
4.4.1 From ATCP to INIC

There is a synchronization problem that must be
addressed here. The ATCPdriver will make a decision on a

given connection that this connection should now be passed
to the INIC.It builds and sends a commandidentifying this
connection to the INIC.

Before doing so, it must ensure that no slow-path outgo-
ing data is outstanding. This is not difficult; it simply pends
and queues any new TDI_SEND requests and waits for any
unacknowledged slow path output data to be acknowledged
before initiating the context pass operation.

The problem arises with incoming slow-path data. If we
attempt to do the context-pass in a single command
handshake, there is a window during which the ATCPdriver
has send the context command,but the INIC hasnot yet seen
this (or has not yet completed setting up its context.) During
this time, slow-path input data frames could arrive and be
fed into the slow-path ATCP processing code. Should that
happen, the context information which the ATCP driver
passed to the INIC is no longer correct. We can simply abort
the outward pass of the context in this event, but it seems
better to have a reliable handshake.

Therefore, the command to pass context from ATCP
driver to INIC will be split into two halves, and there will be
a two-exchange handshake.

The initial command from ATCP to INIC expresses an
“intention” to hand out the context. It will include the source

and destination IP addresses and ports, which will allow the
INIC to establish a “provisional” context. Once it has this
“provisional” context in place, the INIC will not send any
more slow-path input frames for that src/dest IP/port com-
bination (it will queue them, if any are received.)

Whenthe ATCPdriver receives the responseto this initial
“intent” command, it knowsthat the INIC will send no more
slow-path input. The ATCPdriver then waits for any remain-
ing unconsumed slow-path input data for this connection to
be consumedbythe client. (Generally speaking there will be
none, since the ATCP driver will not initiate a context pass
while there is unconsumed slow-path input data; the hand-
shake is simply to close the crossover window.)

Once any such data has been consumed, we know things
are in a quiescent state. The ATCP driver can then send the
second, “commit” command to hand out the context, with
confidence that the TCB valuesit is handing out (sequence
numbersetc) are reliable.

Note 1: it is conceivable that there might be situations in
which the ATCP driver decides, after having sent the original
“intention” command, that the context is not to be passed
after all. (E.g. the local client issues a close.) So we must
allow for the possibility that the second command may be a
“abort”, which should cause the INIC to deallocate and clear
up its “provisional” context.

Note 2: to simplify the logic, the ATCP driver will
guarantee that only one context may bein process of being
handed out at a time: in other words, it will never issue
another initial “intention” command until it has completed
the second half of the handshake for the first one.
4.4.2 From INIC to ATCP

There are two possible cases for this: a context transfer
may beinitiated either by the ATCP driver or by the INIC.
However the machinery will be very similar in the two
cases. If the ATCP driver wishes to cause context to be
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flushed from INIC to host, it will send a “flush” message to
the INIC specifying the context numberto be flushed. Once
the *IC receives this, it will proceed with the same steps as
for the case where the flush is initiated by the INICitself:

1) The INIC will send an error response to any current
outstanding receive request it is working on (corresponding
to an MDLinto which data is being placed.) Before sending
the response, it updates the receive command “length”field
to reflect the amount of data which has actually been placed
in the MDL buffers at the time of the flush.

2) Likewise it will send an error response for any current
send request, again reporting the amount of data actually
sent from the request.

3) The INIC will DMA the TCB for the context back to
the host. (Note: part of the information provided with a
context must be the address of the TCB in the host.)

4) The INIC will send a “flush” indication to the host
(very preferably via the regular input path as a special type
of frame) identifying the context which is being flushed.
Sending this indication via the regular input path ensures
that it will arrive before any following slow-path frames.

At this point, the INIC is no longer doing fast-path
processing, and any further incoming frames for the con-
nection will simply be sent to the host as raw framesfor the
slow input path. The ATCP driver may not be able to
complete the cleanup operations needed to resume normal
slow path processing immediately on receipt of the “flush
frame”, since there may be outstanding send and receive
requests to which it has not yet received a response.If this
is the case, the ATCP driver mustset a “pend incoming TCP
frames” flag in its per-connection context. The effect of this
is to change the behavior of tcp_input( ). This runs as a
function call in the context of ip_input( ), and normally
returns only when incoming frames have been processed as
far as possible (queued on the socket receive buffer or
out-of-sequence reassembly queue.) However,if there is a
flush pending and we have not yet completed
resynchronization, we cannot do TCP processing and must
instead queue input frames for TCP on a “holding queue”for
the connection, to be picked up later when context flush is
complete and normal slow path processing resumes.(This is
why we wantto send the “flush” indication via the normal
input path: so that we can ensure it is seen before any
following frames of slow-path input.)

Next we need to wait for any outstanding “send” requests
to be errored off:

1) The INIC maintains its context for the connection in a
“zombie”state. As “send” requests for this connection come
out of the INIC queue,it sends error responses for them back
to the ATCPdriver.(It is apparently difficult for the INIC to
identify all command requests for a given context; simpler
for it to just continue processing them in order, detecting
ones that are for a “zombie” context as they appear.)

2) The ATCP driver has a count of the number of
outstanding requests it has sent to the INIC. As error
responses for these are received, it decrements this count,
and when it reaches zero, the ATCP driver sends a “flush
complete” message to the INIC.

3) Whenthe INICreceives the “flush complete” message,
it dismantles its “zombie” context. From the INIC

perspective, the flush is now completed.
4) When the ATCPdriver has received error responses for

all outstanding requests,it has all the information needed to
complete its cleanup. This involves completing any IRPs
corresponding to requests which have entirely completed
and adjusting fields in partially-completed requests so that
send and receive of slow path data will resume at the right
point in the byte streams.
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4) Once all this cleanup is complete, the ATCP driver will
loop pulling any “pended” TCP input frames off the
“pending queue” mentioned above and feeding them
into the normal TCP input processing. Once all input
frames on this queue have been cleared off, the “pend
incoming TCP frames” flag can be cleared for the
connection, and we are back to normal slow-path
processing.

4.5 FreeBSD Porting Specification

The largest portion of the ATCP driver is either derived,
or directly taken from the FreeBSD TCP/IP protocol stack.
This section defines the issues associated with porting this
code, the FreeBSD code itself, and the modifications

required for it to suit our needs.

4.5.1 Porting Philosophy

FreeBSD TCP/IP (current version referred to as Net/3) is
a general purpose TCP/IP driver. It contains code to handle
a variety of interface types and many different kinds of
protocols. To meet this requirementthe codeis often written
in a sometimes confusing, over-complex manner. General-
purpose structures are overlaid with other interface-specific
structures so that different interface types can coexist using
the same general-purpose code. For our purposes much of
this complexity is unnecessary since we are only supporting
a single interface type and a few specific protocols. It is
therefore tempting to modify the code and data structures in
an effort to make it more readable, and perhaps a bit more
efficient. There are, however, some problems with doing
this. First, the more we modify the original FreeBSD, the
more changes wewill have to make. This is especially true
with regard to data structures. If we collapse two data
structures into one we might improvethe cleanliness of the
code a bit, but we will then have to modify every reference
to that data structure in the entire protocol stack. Another
problem with attempting to “clean up” the code is that we
might later discover that we need something that we had
previously thrown away. Finally, while we might gain a
small performance advantage in cleaning up the FreeBSD
code, the FreeBSD TCP code will mostly only run in the
slow-path connections, which are not our primary focus. Our
priority is to get the slow-path code functional and reliable
as quickly as possible.

For the reasons above we have adopted the philosophy
that we should initially keep the data structures and codeat
close to the original FreeBSD implementation as possible.
The code will be modified for the following reasons:

1) As required for NT interaction—Obviously we can’t
expect to simply “drop-in” the FreeBSD code as is. The
interface of this code to the NT system will require some
significant code modifications. This will mostly occur at the
topmost and bottommost portions of the protocol stack, as
well as the “ioctl” sections of the code. Modifications for
SMPissues are also needed.

2) Unnecessary code can be removed—While we will
keep the code as close to the original FreeBSDas possible,
we will nonetheless remove code that will never be used

(UDPis a good example ofthis).
4.5.2 Unixe-—=NT Conversion

The FreeBSD TCP/IP protocol stack makes use of many
Unix system services. These include beopy to copy memory,
malloc to allocate memory, timestamp functions, etc. These
will not be itemized in detail since the conversion to the

corresponding NT calls is a fairly trivial and mechanical
operation.
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An area which will need non-trivial support redesign is
MBUFs.
4.5.2.1 Network buffers

Under FreeBSD, network buffers are mapped using
mbufs. Under NT network buffers are mapped using a
combination of packet descriptors and buffer descriptors(the
buffer descriptors are really MDLs). There are a couple of
problems with the Microsoft method. First it does not
provide the necessary fields which allow usto easily strip off
protocol headers. Second, converting all of the FreeBSD
protocol code to speak in terms of buffer descriptors is an
unnecessary amount of overhead. Instead, in our port we
will allocate our own mbuf structures and remap the NT
packets as shown in FIG. 21.

The mbuf structure will provide the standard fields pro-
vided in the FreeBSD mbuf including the data pointer, which
points to the current location of the data, data length fields
and flags. In addition each mbuf will point to the packet
descriptor which is associated with the data being mapped.
Once an NT packet is mapped, our transport driver should
neverhaveto refer to the packet or buffer descriptors for any
information except when weare finished and are preparing
to return the packet.

There are a couple of things to note here. We have
designed our INIC suchthat a packet header should never be
split across multiple buffers. Thus, we should never require
the equivalent of the “m__pullup” routine included in Unix.
Also note that there are circumstances in which we will be

accepting data that will also be accepted by the Microsoft
TCP/IP. One such example of this is ARP frames. We will
need to build our own ARPcache by looking at ARPreplies
as they comeoff the network. Under these circumstances,it
is absolutely imperative that we do not modify the data, or
the packet and buffer descriptors. We will discuss this further
in the following sections.

We will allocate a pool of mbuf headers at ATCP initial-
ization time. It is important to rememberthat unlike other
NICs, we can not simply drop data if we run out of the
system resources required to manage/map the data. The
reasonfor this is that we will be receiving data from the card
that has already been acknowledged by TCP. Becauseofthis
it is essential that we never run out of mbuf headers. To solve

this problem wewill statically allocate mbuf headers for the
maximum number of buffers that we will ever allow to be

outstanding. By doing so, the card will run out of buffers in
which to put the data before we will run out of mbufs, and
as a result, the card will be forced to drop data at the link
layer instead of us dropping it at the transport layer.
DhXXxX:as we’ve discussed, I don’t think this is really true
anymore. The INIC won’t ACK data until either it’s gotten
a window update from AICP to tell it the data’s been
accepted, or it’s got an MDL. Thus it seems workable,
though undesirable, if we can’t accept a frame from the INIC
& return an error to it saying it was not taken.

We will also require a pool of actual mbufs (not just
headers). These mbufs are required in orderto build transmit
protocol headers for the slow-path data path, as well as other
miscellaneous purposes such as for building ARP requests.
Wewill allocate a pool of these at initialization time and we
will add to this pool dynamically as needed. Unlike the mbuf
headers described above, which will be used to map
acknowledged TCP data coming from the card, the full
mbufs will contain data that can be droppedifwe can not get
an mbuf.
4.5.3 The Code

In this section we describe each section of the FreeBSD

TCP/IP port. These sections include Interface Initialization,
ARP, Route, IP, ICMP, and TCP.
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4.5.3.1 Interface Initialization
4.5.3.1.1 Structures

There are a variety of structures, which represent a single
interface in FreeBSD. These structures include: ifnet,
arpcom, ifaddr, in_ifaddr, sockaddr, sockaddr_in, and
sockaddr_dl. FIG. 22 showsthe relationship betweenall of
these structures:

In the example of FIG. 22 we showasingle interface with
a MACaddress of 00:60:97:DB:9B:A6 configured with an
IP address of 192.100.1.2. As illustrated above, the
in_ifaddr is actually an ifaddr structure with some extra
fields tacked on to the end. Thusthe ifaddr structure is used

to represent both a MAC address and an ’P address. Simi-
larly the sockaddr structure is recast as a sockaddr_dl or a
sockaddr_in depending onits address type. An interface can
be configured to multiple IP addresses by simply chaining
in_ifaddr structures after the in_ifaddr structure shown in
FIG. 22.

As mentionedin the Porting Philosophy section, many of
the above structures could likely be collapsed into fewer
structures. In order to avoid making unnecessary modifica-
tions to FreeBSD, for the time being we will leave these
structures mostly as is. We will however eliminate the fields
from the structure that will never be used. These structure
modifications are discussed below.

We also show above a structure called iface. This is a

structure that we define. It contains the arpcom structure,
which in turn contains the ifnet structure. It also contains

fields that enable us to blend our FreeBSD implementation
with NT NDISrequirements. One such example is the NDIS
binding handle used to call down to NDIS with requests
(such as send).
4.5.3.1.2 The Functions

FreeBSDinitializes the above structures in two phases.
First when a network interface is found, the ifnet, arpcom,
andfirst ifaddr structures are initialized first by the network
layer driver, and then via a call to the if__attach routine. The
subsequent in_ifaddr structure(s) are initialized when a user
dynamically configures the interface. This occurs in the
in_ioctl and the in_ifinit routines. Since NT allows

dynamic configuration of a network interface we will con-
tinue to perform the interface initialization in two phases,
but we will consolidate these two phases as described below:
4.5.3.1.2.1 Ifinit

The Ifinit routine will be called from the ATKProtocol-

BindAdapter function. The Ifinit function will initialize the
*face structure and associated arpcom andifnetstructures.It
will then allocate and initialize an ifaddr structure in which

to contain link-level information about the interface, and a
sockaddr_dl structure to contain the interface name and

MACaddress. Finally it will add a pointer to the ifaddr
structure into the ifnet__addrs array (using the if_indexfield
of the ifnet structure) contained in the extended device
object. [fInit will then call IfConfig for each IP address that
it finds in the registry entry for the interface.
4.5.3.1.2.2 IFConfig

IfConfig is called to configure an IP address for a given
interface. It is passed a pointer to the ifnet structure for that
interface along with all the information required to configure
an IP address forthat interface (such as IP address, netmask
and broadcast info, etc). IfConfig will allocate an in_ifaddr
structure to be used to configure the interface. It will chain
it to the total chain of in_ifaddr structures contained in the

extended device object, and will then configure the structure
with the information givento it. After that it will add a static
route for the newly configured network and then broadcast
a gratuitous ARP request to notify others of our Mac/IP
address and to detect duplicate IP addresses on the net.
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4.5.3.2 ARP

We will port the FreeBSD ARP code to NT mostly as-is.
For some reason, the FreeBSD ARPcodeis located inafile
called if_ether.c. While the functionality of this file will
remain the same, we will renameit to a more logical arp.c.
The main structures used by ARPare the Ilinfo_arp struc-
ture and the rtentry structure (actually part of route). These
structures will not be require major modifications. The
functions that will require modification are defined here.
4.5.3.2.1 In_arpinput

This functionis called to process an incoming ARPframe.
An ARPframecan either be an ARP request or an ARPreply.
ARP requests are broadcast, so we will see every ARP
request on the network, while ARPrepliesare directed so we
should only see ARP replies that are sent to us. This
introduces the following possible cases for an incoming ARP
frame:

1. ARP request trying to resolve our IP address_Under
normal circumstances, ARP would reply to this ARP request
with an ARPreply containing our MACaddress. Since ARP
requests will also be passed up to the Microsoft TCP/IP
driver, we need not reply. Note however, that FreeBSD also
creates or updates an ARP cache entry with the information
derived from the ARPrequest. It does this in anticipation of
the fact that any host that wishes to know our MACaddress
is likely to wish to talk to us soon. Since we will need to
know his MAC address in order to talk back, we might as
well add the ARP information now rather than issuing our
own ARPrequestlater.

2. ARP request trying to resolve someone else’s IP
address—Since ARP requests are broadcast, we see
every one on the network. When we receive an ARP
request of this type, we simply check to see if we have
an entry for the host that sent the request in our ARP
cache. If we do, we check to see if we still have the
correct MAC address associated with that host. If it is

incorrect, we update our ARP cacheentry. Note that we
do not create a new ARP cacheentry in this case.

3. ARP reply—lIn this case we add the new ARPentry to
our ARP cache. Having resolved the address, we check to
see if there is any transmit requests pending for the resolve
IP address, and if so, transmit them.

Given the abovethree possibilities, the only major change
to the in_arpinput code is that we will remove the code
which generates an ARP reply for ARP requests that are
meant for our interface.

4.5.3.2.2 Arpintr
This is the FreeBSD code that delivers an incoming ARP

frame to in_arpinput. We will be calling in_arpinput
directly from our ProtocolReceiveDPCroutine (discussed in
the NDISsection below) so this function is not needed.
4.5.3.2.3 Arpwhohas

This is a single line function that serves only as a wrapper
around arprequest. We will removeit and replaceall calls to
it with direct calls to arprequest.
4.5.3.2.4 Arprequest

This code simply allocates a mbuf, fills it in with an ARP
header, and then passes it downto the ethernet output routine
to be transmitted. For us, the code remains essentially the
same except for the obvious changes related to how we
allocate a network buffer, and how wesend thefilled in
request.
4.5.3.2.5 Arpifinit

This is simply called when aninterface is initialized to
broadcast a gratuitous ARP request (described in the inter-
face initialization section) and to set some ARPrelatedfields
in the ifaddr structure for the interface. We will simply move
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this functionality into the interface initialization code and
remove this function.

4.5.3.2.6 Arptimer
This is a timer-based function that is called every 5

minutes to walk through the ARP table looking for entries
that have timed out. Although the time-out period for
FreeBSDis 20 minutes, RFC 826 does not specify any timer
requirements with regard to ARP so we can modify this
value or delete the timer altogether to suit our needs. Either
waythe function won’t require any major changes. All other
functions in if_ether.c will not require any major changes.
4.5.3.3 Route

Onfirst thought, it might seem that we have no need for
routing support since our ATCP driver will only receive IP
datagrams who’s destination IP address matchesthat of one
of our owninterfaces. Therefore, we will not “route” from
one interface to another. Instead, the MICROSOFT TCP/IP
driver will provide that service. We will, however, need to
maintain an up-to-date routing table so that we know a)
whether an outgoing connection belongs to one of our
interfaces, b) to which interface it belongs, and c) what the
first-hop IP address (gateway) is if the destination is not on
the local network.

Wediscuss four aspects on the subject of routing in this
section. They are as follows:
1. The mechanics of how routing information is stored.
2. The manner in which routes are added or deleted from the

route table.
3. When and how route information is retrieved from the

route table.

4. Notification of route table changes to interested parties.
4.5.3.3.1 The Route Table

In FreeBSD, the route table is maintained using an
algorithm known as PATRICIA (Practical Algorithm To
Retrieve Information Coded in Alphanumeric). This is a
complicated algorithm that is a bit costly to set up, but is
very efficient to reference. Since the routing table should
contain the same information for both NT and FreeBSD,and
since the key used to search for an entry in the routing table
will be the same for each (the destination IP address), we
should be able to port the routing table software to NT
without any major changes.

The software which implements the route table (via the
PATRICIAalgorithm)is located in the FreeBSDfile, radix.c.
This file will be ported directly to the ATCP driver with no
significant changes required.
4.5.3.3.2 Adding and Deleting Routes

Routes can be added or deleted in a numberof different

ways. The kernel adds or deletes routes when the state of an
interface changes or when an ICMPredirect is received.
User space programs such as the RIP daemon,or the route
command also modify the route table.

For kernel-based route changes, the changes can be made
by a direct call to the routing software. The FreeBSD
software that is responsible for the modification of route
table entries is found in route.c. The primary routine for all
route table changes is called rtrequest( ). It takes as its
arguments, the request type (ADD, RESOLVE, DELETE),
the destination IP address for the route, the gateway for the
route, the netmask for the route, the flags for the route, and
a pointer to the route structure (struct rtentry) in which we
will place the added or resolved route. Other routines in the
route.c file include rtinit(.), which is called during interface
initialization time to add a static route to the network,
rtredirect, which is called by ICMP whenwereceive a ICMP
redirect, and an assortment of support routines used for the
modification of route table entries. All of these routines

found in route.c will be ported with no major modifications.
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For user-space-based changes, we will have to be a bit
moreclever. In FreeBSD,route changes are sent downto the
kernel from user-space applications via a special route
socket. This code is found in the FreeBSD file, rtsock.c.
Obviously this will not work for our ATCP driver. Instead
the filter driver portion of our driver will intercept route
changes destined for the Microsoft TCP driver and will
apply those modifications to our own route table via the
rtrequest routine described above. In order to do this, it will
have to do some formattranslation to put the data into the
format (sockaddr_in) expected by the rtrequest routine.
Obviously, none of the code from rtsock.c will be ported to
the ATCP driver. This same procedure will be used to
intercept and process explicit ARP cache modifications.
4.5.3.3.3 Consulting the Route Table

In FreeBSD, the route table is consulted in 1p_output
when an IP datagram is being sent. In order to avoid a
complete route table search for every outgoing datagram,the
route is stored into the in_pcb for the connection. For
subsequentcalls to ip__output, the route entry is then simply
checked to ensure validity. While we will keep this basic
operation as is, we will require a slight modification to allow
us to coexist with the Microsoft TCP driver. When an active

connection is being set up, our filter driver will have to
determine whether the connection is going to be handled by
one of the INIC interfaces. To do this, we will have to
consult the route table from the filter driver portion of our
driver. This is donevia a call to the rtalloc 1 function (found
in route.c). If a valid route table entry is found, then we will
take control of the connection andset a pointer to the rtentry
structure returned by rtallocl in our in peb structure.
4.5.3.3.4 What to do When a Route Changes

Whenaroute table entry changes, there may be connec-
tions that have pointers to a stale route table entry. These
connections will need to be notified of the new route.

FreeBSDsolves this by checkingthe validity of a route entry
during every call to ip_output. If the entry is no longer
valid, its reference to the stale route table entry is removed,
and an attempt is made to allocate a new route to the
destination. For our slow path, this will work fine.
Unfortunately, since our IP processing is handled by the
INIC for our fast path, this sanity check method will not be
sufficient. Instead, we will need to perform a review ofall of
our fast path connections during every route table modifi-
cation. If the route table change affects our connection, we
will need to advise the INIC with a newfirst-hop address, or
if the destination is no longer reachable, close the connection
entirely.
4.5.3.4 ICMP

Like the ARP code above, we will need to processcertain
types of incoming ICMP frames. Of the 10 possible ICMP
message types, there are only three that we need to support.
These include ICMP_REDIRECT, ICMP_UNREACH,
and ICMP_SOURCEQUENCH.Any FreeBSD codeto deal
with other types of ICMPtraffic will be removed.Instead,
we will simply return NDIS_STATUSNOT_
ACCEPTEDfor all but the above ICMP frame types. This
section describes how we will handle these ICMP frames.

4.5.3.4.1 ICMP_REDIRECT

Under FreeBSD, an ICMPREDIRECT causes two
things to occur. First, it causes the route table to be updated
with the route given in the redirect. Second,it results in a call
back to TCP to cause TCPto flush the route entry attached
to its associated in__pcb structures. By doingthis,it forces
ip__output to search for a new route. As mentioned in the
Route section above, we will also require a call to a routine
which will review all of the TCP fast-path connections, and
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update the route entries as needed (in this case because the
route entry has been zeroed). The INIC will then be notified
of the route changes.
4.5.3.4.2 ICMP_UNREACH

In both FreeBSD and Microsoft TCP, the ICMP__
UNREACHresults in no more than a simple statistic update.
We will do the same.

4.5.3.4.3 ICMP_SOURCEQUENCH

A source quenchis sent to cause a TCP senderto closeits
congestion window to a single segment, thereby putting the
senderinto slow-start mode. We will keep the FreeBSD code
as-is for slow-path connections. For fast path connections
we will send a notification to the card that the congestion
window for the given connection has been reduced. The
INIC will then be responsible for the slow-start algorithm.
4.5.3.5 IP

The FreeBSD IP code should require few modifications
when porting to the ATCP driver. What few modifications
will be required will be discussed in this section.
4.5.3.5.1 IP Initialization

During initialization time, ip__init is called to initialize the
array of protosw structures. These structures contain all the
information needed byIP to be able to pass incoming data
to the correct protocol above it. For example, when a UDP
datagram arrives, ’P locates the protosw entry corresponding
to the UDP protocol type value (0x11) and calls the input
routine specified in that protosw entry. We will keep the
array of protosw structures intact, but since we are only
handling the TCP and ICMPprotocols aboveIP, we will strip
the protosw array down substantially.
4.5.3.5.2 IP Input

Following are the changes required for IP input (function
ip_intr( ))
4.5.3.5.2.1 No IP Forwarding

Since wewill only be handling datagrams for which we
are the final destination, we should never be required to
forward an IP datagramn. All references to IP forwarding,
and the ip__forward function itself, can be removed.
4.5.3.5.2.2 IP Options

The only options supported by FreeBSD at this time
include record route, strict and loose source and record
route, and timestamp. For the timestamp option, FreeBSD
only logs the current time into the IP header so that before
it is forwarded. Since we will not be forwarding IP
datagrams, this seems to be of little use to us. While
FreeBSD supports the remaining options, NT essentially
does nothing useful with them. For the moment, we will not
bother dealing with IP options. They will be added in later
if needed.

4.5.3.5.2.3 IP Reassembly
There is a small problem with the FreeBSD IP reassembly

code. The reassembly code reuses the IP header portion of
the IP datagram to contain IP reassembly queue information.
It can do this because it no longer requires the original IP
header. This is an absolute no-no with the NDIS 4.0 method

of handling network packets. The NT DDKexplicitly states
that we must not modify packets given to us by NDIS. This
is not the only place in which the FreeBSD code modifies the
contents of a network buffer. It also does this when per-
forming endian conversions. At the moment wewill leave
this code asis and violate the DDKrules. We believe we can

do this because weare going to ensure that no other transport
driver looks at these frames. If this becomes a problem we
will have to modify this code substantially by moving the IP
reassembly fields into the mbuf header.
4.5.3.5.3 IP Output

There are only two modifications required for IP output.
The first is that since, for the moment, we are not dealing

INTEL Ex. 1259.107



INTEL Ex. 1259.108

US 6,334,153 B2
47

with IP options, there is no need for the codethat inserts the
IP options into the IP header. Second, we may discover that
it is impossible for us to ever receive an output request that
requires fragmentation. Since TCP performs Maximum Seg-
ment Size negotiation, we should theoretically never attempt
to send a TCP segmentlarger than the MTU.
4.6 NDISProtocol Driver

This section defines protocol driver portion of the ATCP
driver. The protocol driver portion of the ATCP driver is
defined by the set of routines registered with NDISviaacall
to NdisRegisterProtocol. These routines are limited to those
that are called (indirectly) by the INIC miniport driver
beneath us. For example, we register a ProtocolReceive-
Packet routine so that when the INIC driver calls Ndis-
MIndicateReceivePacketit will result in a call from NDIS to

our driver. Strictly speaking, the protocol driver portion of
our driver does not include the method by which our driver
calls down to the miniport (for example, the method by
which we send network packets). Nevertheless, we will
describe that method here for lack of a better place to putit.
That said, we cover the following topics in this section of the
document: 1) Initialization; 2) Receive; 3) Transmit; 4)
Query/Set Information; 5) Status indications; 6) Reset; and
7) Halt.
4.6.1 Initialization

The protocol driver initialization occurs in two phases.
The first phase occurs when the ATCP DriverEntry routine
calls ATKProtoSetup. The ATKProtoSetup routine performs
the following:

1. Allocate resources—Weattemptto allocate manyof the
required resources as soon as possible so that we are
more likely to get the memory we want. This mostly
appliesto allocating and initializing our mbuf and mbuf
header pools.

2. Register Protocol—We call NdisRegisterProtocol to
register our set of protocol driver routines.

3. Locate and initialize bound NICs—Weread the Link-

age parameters of the registry to determine which NIC
devices we are boundto. For each of these devices we

allocate and initialize a IFACE structure (defined
above). We then read the TCP parameters out of the
registry for each bound device and set the correspond-
ing fields in the IFACEstructure.

After the underlying INIC devices have completed their
initialization, NDIS will call our driver’s ATKBindAdapter
function for each underlying device. It will perform the
following:
1. Open the device specified in the call the ATKBindAdapter
2. Find the IFACEstructure that was created in ATKPro-

toSetup for this device.
3. Query the miniport for adapter information. This includes

such things as link speed and MACaddress. Save relevant
information in the IFACEstructure.

4. Perform the interface initialization as specified in section
4.5.3.1 Interface initialization.

4.6.2 Receive

Receive is handled by the protocol driver routine ATKRe-
ceivePacket. Before we describe this routine, it is important
to consider each possible receive type and how it will be
handled.
4.6.2.1 Receive Overview

Our INIC miniport driver will be bound to our transport
driver as well as the generic Microsoft TCP driver (and
possibly others). The ATCPdriver will be bound exclusively
to INIC devices, while the Microsoft TCP driver will be
bound to INIC devices as well as other types of NICs. This
is illustrated in FIG. 23. By binding the driverin this fashion,
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we can choose to direct incoming network data to our own
ATCPtransport driver, the Microsoft TCP driver, or both.
We do this by playing with the ethernet “type” field as
follows.

To NDISand the transport drivers above it, our card is
going to be registered as a normal ethernet card. When a
transport driver receives a packet from our driver, it will
expect the data to start with an ethernet header, and
consequently, expects the protocol type field to be in byte
offset 12. If Microsoft TCPfindsthat the protocol type field
is not equalto either IP, or ARP, it will not accept the packet.
So, to deliver an incoming packet to our driver, we must
simply map the data such that byte 12 contains a non-
recognized ethernet type field. Note that we must choose a
value that is greater than 1500 bytes so that the transport
drivers do not confuse it with an 802.3 frame. We must also

choose a value that will not be accepted by other transport
driver such as Appletalk or IPX. Similarly, if we want to
direct the data to Microsoft TCP, we can then simply leave
the ethernet type field set to IP (or ARP). Note that since we
will also see these frames we can choose to accept or
not-accept them as necessary. Incoming packets are deliv-
ered as follows:

A. Packets Delivered to ATCP only (not Accepted by
MSTCP):

1. All TCP packets destined for one of our IP addresses.
This includes both slow-path frames and fast-path frames. In
the slow-path case, the TCP frames are given in there
entirety (headers included). In the fast-path case, the
ATKReceivePacket is given a header buffer that contains
status information and data with no headers (except those
above TCP). More on this later.
B. Packets Delivered to Microsoft TCP Only (Not Accepted
by ATCP)

1. All non-TCP packets.
2. All packets that are not destined for one of our

interfaces (packets that will be routed). Continuing the
above example, if there is an IP address 144.48.252.4
associated with the 3com interface, and we receive a TCP
connect with a destination IP address of 144.48.252.4, we
will actually want to send that request up to the ATCP driver
so that we create a fast-path connection for it. This means
that we will need to know every IP address in the system and
filter frames based on the destination IP address in a given
TCP datagram. This can be done in the INIC miniportdriver.
Since it will be the ATCP driver that learns of dynamic IP
address changes in the system, we will need a method to
notify the INIC miniport of all the IP addresses in the
system. More onthislater.
C. Packets delivered to both

1. All ARP frames.
2. All ICMPframes.

4.6.2.2 Two Types of Receive Packets
There are several circumstances in which the INIC will

need to indicate extra information about a receive packet to
the ATCPdriver. One such example is a fast path receive in
which the ATCP driver will need to be notified of how much

data the card has buffered. To accomplishthis, the first (and
sometimes only) buffer in a received packet will actually be
an INIC header buffer. The header buffer contains status

information about the receive packet, and may or may not
contain network data as well. The ATCPdriver will recog-
nize a header buffer by mapping it to an ethernet frame and
inspecting the type field found in byte 12. We will indicate
all TCP frames destined for us in this fashion, while frames
that are destined for both our driver and the Microsoft TCP

driver (ARP, ICMP) will be indicated without a header
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buffer. FIG. 24 shows an example of an incoming TCP
packet. FIG. 25 shows an example of an incoming ARP
frame.

4.6.2.3 NDIS 4 ProtocolReceivePacket Operation
NDIS has been designed such that all packets indicated

via NdisMIndicateReceivePacket by an underlying miniport
are delivered to the ProtocolReceivePacket routine for all

protocol drivers bound to it. These protocol drivers can
choose to accept or not accept the data. They can either
accept the data by copying the data out of the packet
indicated to it, or alternatively they can keep the packet and
return it later via a call to NdisReturnPackets. By imple-
menting it in this fashion, NDIS allows more than one
protocol driver to accept a given packet. For this reason,
whena packetis delivered to a protocol driver, the contents
of the packet descriptor, buffer descriptors and data mustall
be treated as read-only. At the moment, we intend to violate
this rule. We choose to violate this because much of the

FreeBSD code modifies the packet headers as it examines
them (mostly for endian conversion purposes). Rather than
modify all of the FreeBSD code, we will instead ensure that
no other transport driver accepts the data by making surethat
the ethernet type field is unique to us (no oneelse will want
it). Obviously this only works with data that is only deliv-
ered to our ATCPdriver. For ARP and ICMPframes wewill

instead copy the data out of the packet into our own buffer
and return the packet to NDIS directly. While this is less
efficient than keeping the data and returningit later, ARP and
ICMPtraffic should be small enough, and infrequent
enough, that it doesn’t matter.

The DDKspecifies that when a protocol driver chooses to
keep a packet, it should return a value of 1 (or more) to NDIS
in its ProtocolReceivePacket routine. The packetis then later
returned to NDISviathe call to NdisReturnPackets. This can

only happen after the ProtocolReceivePacket has returned
control to NDIS. This requires that the call to NdisReturn-
Packets must occur in a different execution context. We can

accomplish this by scheduling a DPC, scheduling a system
thread, or scheduling a kernel thread of our own.For brevity
in this section, we will assumeit is a done through a DPC.
In any case, we will require a queue of pending receive
buffers on which to place and fetch receive packets.

After a receive packet is dequeued by the DPCit is then
either passed to TCP directly for fast-path processing, or it
is sent through the FreeBSD path for slow-path processing.
Note that in the case of slow-path processing, we may be
working on data that needs to be returned to NDIS (TCP
data) or we may be working on our own copy of the data
(ARP and ICMP). When wefinish with the data we will need
to figure out whetheror not to return the data to NDISornot.
This will be done via fields in the mbuf header used to map
the data. When the mfreem routine is called to free a chain

of mbufs, the fields in the mbuf will be checked and, if
required, the packet descriptor pointed to by the mbuf will
be returned to NDIS.

4.6.2.4 MBUF<-—*Packet Mapping
As noted in the section on mbufs above, we will map

incoming data to mbufs so that our FreeBSD port requires
fewer modifications. Depending on the type of data
received, this mapping will appear differently. Here are
some examples:

In FIG. 26A, we show incoming data for a TCP fast-path
connection. In this example, the TCP data is fully contained
in the header buffer. The header buffer is mapped by the
mbuf and sent upstream for fast-path TCP processing.In this
case it is required that the header buffer be mapped and sent
upstream because the fast-path TCP code will need infor-
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mation contained in the header buffer in order to perform the
processing. When the mbuf in this example is freed, the
mfreem routine will determine that the mbuf maps a packet
that is owned by NDIS and will then free the mbuf header
only and call NdisReturnPackets to free the data.

In FIG. 26B, we show incoming data for a TCP slow-path
connection. In this example the mbuf points to the start of
the TCP data directly instead of the header buffer. Since this
buffer will be sent up for slow-path FreeBSD processing, we
can not have the mbuf pointing to a header buffer (FreeBSD
would get awfully confused). Again, when mfreem is called
to free the mbuf, it will discover the mapped packet, free the
mbuf header, and call NDISto free the packet and return the
underlying buffers. Note that even though wedo notdirectly
map the header buffer with the mbuf we do not lose it
becauseof the link from the packet descriptor. Note also that
we could alternatively have the INIC miniport driver only
pass us the TCP data buffer when it receives a slow-path
receive. This would work fine except that we have deter-
mined that even in the case of slow-path connections weare
going to attempt to offer some assistance to the host TCP
driver (most likely by checksum processing only). In this
case there may be somespecial fields that we need to pass
up to the ATCP driver from the INIC driver. Leaving the
header buffer connected seems the most logical way to do
this.

Finally, in FIG. 26C, we show a received ARP frame.
Recall that for incoming ARP and ICMP frames we are
going to copy the incoming data out of the packet and return
it directly to NDIS. In this case the mbuf simply points to our
data, with no corresponding packet descriptor. When wefree
this mbuf, mfreem will discover this and free not only the
mbuf header, but the data as well.
4.6.2.5 Other Receive Packets

Weuse this receive mechanism for other purposes besides
the reception of network data. It is also used as a method of
communication between the ATCPdriver and the INIC. One

such example is a TCP context flush from the INIC. When
the INIC determines, for whatever reason, that it can no
longer manage a TCP connection,it must flush that connec-
tion to the ATCPdriver. It will do this by filling in a header
buffer with appropriate status and delivering it to the INIC
driver. The INIC driver will in turn deliver it to the protocol
driver which will treat it essentially like a fast-path TCP
connection by mapping the header buffer with an mbuf
header and delivering it to TCP for fast-path processing.
There are two advantages to communicating in this manner.
First, it is already an established path, so no extra coding or
testing is required. Second, since a context flush comes in,
in the same manneras received frames, it will prevent us
from getting a slow-path frame before the context has been
flushed.

4.6.2.6 Summary
Having covered all of the various types of receive data,

following are the steps that are taken by the AT'KProtocol-
ReceivePacket routine.

1. Map incoming data to an ethernet frame and check the
type field;

2. If the type field contains our custom “IC type then it
should be TCP;

3. If the header buffer specifies a fast-path connection,
allocate one or more mbufs headers to map the header
and possibly data buffers. Set the packet descriptor field
of the mbuf to point to the packet descriptor, set the
mbuf flags appropriately, queue the mbuf, and return 1;

4. If the header buffer specifies a slow-path connection,
allocate a single mbuf header to map the network data,
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set the mbuf fields to map the packet, queue the mbuf
and return 1. Note that we design the INIC such that we
will never get a TCP segment split across more than one
buffer;

5. If the type field of the frame indicates ARP or ICMP;
6. Allocate a mbuf with a data buffer. Copy the contents

of the packet into the mbuf.
Queue the mbuf, and return 0 (not accepted); and
7. If the type field is not either the INIC type, ARP or

ICMP, we don’t want it. Return 0.
The receive processing will continue when the mbufs are

dequeued. At the moment this is done by a routine called
ATKProtocolReceiveDPC.It will do the following:

1. Dequeue a mbuf from the queue; and
2. Inspect the mbuf flags. If the mbuf is meant for

fast-path TCP, it will call the fast-path routine directly.
Otherwiseit will call the ethernet input routine for slow-path
processing.
4.6.3 Transmit

In this section we discuss the ATCP transmit path.
4.6.3.1 NDIS 4 Send Operation

The NDIS 4 send operation works as follows. When a
transport/protocol driver wishes to send one or more packets
downto an NDIS 4 miniport driver,it calls NdisSendPackets
with an array of packet descriptors to send. As soon as this
routine is called, the transport/protocol driver relinquishes
ownership of the packets until they are returned, one by one
in any order, via a NDIScall to the ProtocolSendComplete
routine. Since this routine is called asynchronously, our
ATCPdriver must save any required context into the packet
descriptor header so that the appropriate resources can be
freed. This is discussed further in the following sections.
4.6.3.2 Types of “Sends”

Like the Receive path described above, the transmit path
is used not only to send network data, but is also used as a
communication mechanism betweenthe host and the INIC.

Here are some examples of the types of sends performed by
the ATCP driver.

4.6.3.2.1 Fast-path TCP Send
When the ATCPdriver receives a transmit request with an

associated MDL, it will package up the MDL physical
addresses into a command buffer, map the command buffer
with a buffer and packet descriptor, and call NdisSendPack-
ets with the corresponding packet. The underlying INIC
driver will issue the command buffer to the INIC. Whenthe

corresponding response buffer is given back to the host, the
INIC miniport will call NdisMSendComplete which will
result in a call to the ATCP ProtocolSendComplete
(ATKSendComplete) routine, at which point the resources
associated with the send can be freed. We will allocate and

use a mbuf to hold the command buffer. By doing this we
can store the context necessary in order to clean up after the
send completes. This context includes a pointer to the MDL
and presumably some other connection context as well. The
other advantage to using a mbuf to hold the command buffer
is that it eliminates having another special set of code to
allocate and return command buffer. We will store a pointer
to the mbuf in the reserved section of the packet descriptor
so we can locate it when the send is complete. FIG. 27
illustrates the relationship between the client’s MDL, the
command buffer, and the buffer and packet descriptors.
4.6.3.2.2 Fast-path TCP Receive

As described in section 4.3.1 above, the receive process
typically occurs in two phases. First the INIC fills in a host
receive buffer with a relatively small amount of data, but
notifies the host of a large amount of pending data (either
through a large amount of buffered data on the card, or

10

15

20

25

30

35

40

45

50

55

60

65

52

through a large amount of expected NetBios data). This
small amount of data is delivered to the client through the
TDIinterface. The client will then respond with a MDL in
which the data should be placed. Like the Fast-path TCP
send process, the receive portion of the ATCP driver will
then fill in a command buffer with the MDL information

from the client, map the buffer with packet and buffer
descriptors and send it to the INIC via a call to NdisSend-
Packets. Again, when the response buffer is returned to the
INIC miniport, the ATKSendComplete routine will be called
and the receive will complete. This relationship between the
MDL, commandbuffer and buffer and packet descriptors are
the same as shownin the Fast-path send section above.
4.6.3.2.3 Slow-path (FreeBSD)

Slow-path sends pass through the FreeBSD stack until the
ethernet header is prepended in ether_output and the packet
is ready to be sent. At this point a command buffer will be
filled with pointers to the ethernet frame, the command
buffer will be mapped with a packet and buffer descriptor
and NdisSendPackets will be called to hand the packetoff to
the miniport. In FIG. 28 showsthe relationship between the
mbufs, command buffer, and buffer and packet descriptors.
Since we will use a mbuf to map the command buffer, we
can simply link the data mbufs directly off of the command
buffer mbuf. This will make the freeing of resources much
simpler.
4.6.3.2.4 Non-data Command Buffer

The transmit path is also used to send non-data commands
to the card. As shown in FIG. 29, for example, the ATCP
driver gives a context to the INIC byfilling in a command
buffer, mapping it with a packet and buffer descriptor, and
calling NdisSendPackets.
4.6.3.3 ATKPROTOCOLSENDCOMPLETE

Given the above different types of sends, the ATKProto-
colSendComplete routine will perform various types of
actions when it is called from NDIS. First it must examine

the reserved area of the packet descriptor to determine what
type of request has completed. In the case of a slow-path
completion, it can simply free the mbufs, command buffer,
and descriptors and return. In the case of a fast-path
completion, it will need to notify the TCP fast path routines
of the completion so TCP can in turn complete the client’s
IRP. Similarly, when a non-data command buffer completes,
TCP will again be notified that the command sent to the
INIC has completed.
4.7 TDI Filter Driver

In a first embodiment of the product, the INIC handles
only simple-case data transfer operations on a TCP connec-
tion. (These of course constitute the large majority of CPU
cycles consumed by TCP processing in a conventional
driver.)

There are many other complexities of the TCP protocol
which must still be handled by host driver software: con-
nection setup and breakdown, out-of-order data, nonstand-
ard flags, etc.

The NT OScontains a fully functional TCP/IP driver, and
one solution would be to enhance this so that it is able to

detect our INIC and take advantage of it by “handing off”
data-path processing where appropriate.

Unfortunately, we do not have access to NT source, let
alone permission to modify NT. Thus the solution above,
while a goal, cannot be done immediately. We instead
provide our own custom driver software on the host for those
parts of TCP processing which are not handled by the INIC.

This presents a challenge. The NT network driver frame-
work does make provision for multiple types of protocol
driver: but it does not easily allow for multiple instances of
drivers handling the SAMEprotocol.
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For example, there are no “hooks” into the Microsoft
TCPAPdriver which would allow for routing of IP packets
between our driver (handling our INICs) and the Microsoft
driver (handling other NICs).

Our approachto this is to retain the Microsoft driver for
all non-TCP network processing (even for traffic on our
INICs), but to invisibly “steal” TCP traffic on our connec-
tions and handle it via our own (BSD-derived) driver. The
Microsoft TCP/IP driver is unaware of TCP connections on
interfaces we handle.

The network “bottom end” of this artifice is described
earlier in the document. In this section we will discuss the

“top end”: the TDI interface to higher-level NT network
client software.

We make use of an NT facility called a filter driver. NT
allowsa special type of driver (“filter driver”) to attach itself
“on top” of another driver in the system. The NT I/O
manager then arranges that all requests directed to the
attached driver are sentfirst to the filter driver; this arrange-
mentis invisible to the rest of the system.

The filter driver may then either handle these requests
itself, or pass them down to the underlying driver it is
attached to. Provided the filter driver completely replicates
the (externally visible) behavior of the underlying driver
when it handles requests itself, the existence of the filter
driver is invisible to higher-level software.

The filter driver attaches itself on top of the Microsoft
TCP/IP driver; this gives us the basic mechanism whereby
we can intercept requests for TCP operations and handle
them in our driver instead of the Microsoft driver.

However, while the filter driver concept gives us a frame-
work for what we wantto achieve, there are some significant
technical problems to be solved. The basic issue is that
setting up a TCP connection involves a sequence of several
requests from higher-level software, and it is not always
possible to tell, for requests early in this sequence, whether
the connection should be handled by our driver or by the
Microsoft driver.

Thus for many requests, we store information about the
request in case we need itlater, but also allow the request to
be passed down to the Microsoft TCP/IP driver in case the
connection ultimately turns out to be one which that driver
should handle.

Let us look at this in more detail, which will involve some
examination of the TDI interface: the NT interface into the

top end of NT network protocol drivers. Higher-level TDI
client software which requires services from a protocol
driver proceeds by creating various types of NT FILE_
OBJECTs, and then making various DEVICE_10_
CONTROLrequests on these FILE_OBJECTs.

There are two types of FILE_OBJECTofinterest here.
Local IP addresses that are represented by ADDRESS
objects, and TCP connections that are represented by CON-
NECTIONobjects. The steps involved in setting up a TCP
connection (from the “active” client side, for a CONNEC-
TION object) are:

1) Create an ADDRESSobject; 2) Create a CONNEC-
TION object; 3) Issue a TDI_ASSOCIATE_ADDRESS
io-control to associate the CONNECTIONobject with the
ADDRESS object; and 4) Issue a TDI_CONNECT
io-control on the CONNECTION object, specifying the
remote address and port for the connection.

Initial thoughts were that handling this wouldbestraight-
forward: we would tell, on the basis of the address given
when creating the ADDRESSobject, whether the connec-
tion is for one of our interfaces or not. After which, it would
be easy to arrange for handling entirely by our code, or
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entirely by the Microsoft code: we would simply examine
the ADDRESSobject to see if it was “one of ours” or not.

There are two main difficulties, however. First, when the
CONNECTIONobject is created, no address is specified: it
acquires a local address only later when the TDI_
ASSOCIATE_ADDRESSis done. Also, when a CONNEC-
TION object is created, the caller supplies an opaque “con-
text cookie” which will be needed for later communications

with that caller. Storage of this cookie is the responsibility
of the protocol driver: it is not directly derivable just by
examination of the CONNECTION object itself. If we
simply passed the “create” call down to the Microsoft
TCPAP driver, we would have no way of obtaining this
cookie later if it turns out that we need to handle the

connection. Therefore, for every CONNECTION object
which is created we allocate a structure to keep track of
information aboutit, and store this structure in a hash table
keyed by the address of the CONNECTIONobjectitself, so
that we can locate it if we later need to process requests on
this object. We refer to this as a “shadow” object: it
replicates information about the object stored in the
Microsoft driver. (We must, of course, also pass the create
request down to the Microsoft driver too, to allow it to set
up its own administrative information about the object.)

A second major difficulty arises with ADDRESSobjects.
These are often created with the TCP/IP “wildcard” address

(all zeros); the actual local address is assigned only later
during connection setup (by the protocol driver itself.) Of
course, a “wildcard”address does not allow us to determine
whether connections that will be associated with this

ADDRESSobject should be handled by our driver or by the
Microsoft one. Also, as with CONNECTIONobjects, there
is “opaque” data associated with ADDRESSobjects that
cannot be derived just from examination of the object itself.
(In this case addresses of callback functionsset on the object
by TDI_SET_EVENTio-controls.)

Thus, as in the CONNECTIONobject case, we create a
“shadow”object for each ADDRESSobject whichis created
with a wildcard address. In this we store information

(principally addresses of callback functions) which we will
need if we are handling connections on CONNECTION
objects associated with this ADDRESS object. We store
similar information, of course, for any ADDRESS object
whichis explicitly for one of our interface addresses; in this
case we don’t need to also pass the create request down to
the Microsoft driver.

With this concept of “shadow” objects in place, let us
revisit the steps involved in setting up a connection, and look
at the processing required in our driver.

First, the TDI client makes a call to create the ADDRESS
object. Assumingthat this is a “wildcard” address, we create
a “shadow” object before passing the call down to the
Microsoft driver.

The next step (omitted in the earlier list for brevity) is
normally that the client makes a number of TDI_SET_
EVENTio-control calls to associate various callback func-

tions with the ADDRESSobject. These are functions that
should be called to notify the TDI client when certain events
(such arrival of data or disconnection requests etc) occur. We
store these callback function pointers in our “shadow”
address object, before passing the call down to the Microsoft
driver.

Next, the TDI client makes a call to create a CONNEC-
TION object. Again, we create our “shadow”of this object.

Next, the client issues the TDI_ASSOCIATE_
ADDRESSio-control to bind the CONNECTIONobject to
the ADDRESS object. We note the association in our
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“shadow” objects, and also pass the call down to the
Microsoft driver.

Finally the TDI client issues a TDI_CONNECT
io-control on the CONNECTION object, specifying the
remote IP address (and port) for the desired connection. At
this point, we examine our routing tables to determineif this
connection should be handled by oneofour interfaces, or by
some other NIC.If it is ours, we mark the CONNECTION
objectas “one of ours”for future reference (using an opaque
field which NT FILE_OBJECTSprovide for driver use.)
We then proceed with connection setup and handling in our
driver, using information stored in our “shadow”objects.
The Microsoft driver does not see the connection request or
any subsequenttraffic on the connection.

If the connection request is NOTfor one of our interfaces,
we pass it down to the Microsoft driver. Note carefully,
however, that we can not simply discard our “shadow”
objects at this point. The TDI interface allows re-use of
CONNECTIONobjects: on termination of a connection, it
is legal for the TDIclient to dissociate the CONNECTION
object from its current. Thus our “shadow” objects must be
retained for the lifetime ADDRESSobject, re-associate it
with another, and use it for another connection of the NT
FILE_OBJECTS: the subsequent connection could turn out
to be via one of ourinterfaces.
4.7.1 Timers

4.7.1.1 KeepAlive Timer
We don’t want to implement keepalive timers on the

INIC.It would in any case be a very poor use of resources
to have an INIC context sitting idle for two hours.
4.7.1.2 Idle Timer

We will keep an idle timer in the ATCP driver for
connections that are managed by the INIC (resetting it
whenever wesee activity on the connection), and cause a
flush of context backto the hostif this timer expires. We may
want to make the threshold substantially lower than 2 hours,
to reclaim INIC context slots for useful work sooner. May
also want to make that dependent on the numberof contexts
which have actually been handed out: don’t need to reclaim
them if we haven’t handed out the max.

5 Receive and Transmit Microcode Design
This section provides a general description of the design

of the microcode that will execute on two of the sequencers
of the Protocol Processor on the INIC. The overall philoso-
phy of the INIC is discussed in other sections. This section
will discuss the INIC microcodein detail.

5.1 Design Overview
As specified in other sections, the INIC supplies a set of

3 custom processors that will provide considerable
hardware-assist to the microcode running thereon. The para-
graphs immediately following list the main hardware-assist
features:

1) Header processing with specialized DMAengines to
validate an input header and generate a context hash,
move the header into fast memory and do header
comparisons on a DRAM-based TCPcontrol block;

2) DRAM fifos for free buffer queues (large & small),
receive-frame queues, event queuesetc.;

3) Header comparelogic;
4) Checksum generation;
5) Multiple register contexts with register access con-

trolled by simply setting a context register. The Proto-
col Processor will provide 512 SRAM-basedregisters
to be shared among the 3 sequencers;

6) Automatic movement of input frames into DRAM
buffers from the MAC Fifos;
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7) Run receive processing on one sequencer and transmit
processing on the other. This was chosen as opposed to
letting both sequencers run receive and transmit. One
of the main reasons for this is that the header-

processing hardware can not be shared and interlocks
would be needed to do this. Another reason is that
interlocks would be needed on the resources used

exclusively by receive and by transmit;
8) The INIC will support up to 256 TCP connections

(TCB’s). ATCBis associated with an input frame when
the frame’s source and destination IP addresses and

source and destination ports match that of the TCB. For
speed of access, the TCB’s will be maintained in a hash
table in NIC DRAM to save sequential searching.
There will however, be an index in hash order in
SRAM.Oncea hash has been generated, the TCB will
be cached in SRAM.There will be up to 8 cached TCBs
in SRAM.These cache locations can be shared between

both sequencers so that the sequencer with the heavier
load will be able to use more cache buffers. There will
also be 8 header buffers to be shared between the

sequencers. Note that each header buffer is notstati-
cally linked to a specific TCB buffer. In fact the link is
dynamic on a per-frame basis. The need for this
dynamic linking will be explained in later sections.
Suffice to say here that if there is a free header buffer,
then somewherethereis also a free TCB SRAM buffer;

9) There were 2 basic implementation options considered
here. The first was single-stack and the second was a
process model. The process model was chosen here
because the custom processor design is providing zero-
cost overhead for context switching through the use of
a context base register, and because there will be more
than enoughprocessslots (or contexts) available for the
peak load.It is also expected that all “local” variables
will be held permanently in registers whilst an eventis
being processed;

10) The features that provide this are 256 of the 512
SRAM-basedregisters that will be used for the register
contexts. This can be divided up into 16 contexts (or
processes) of 16 registers each. Then 8 of these will be
reserved for receive and 8 for transmit. A Little’s Law

analysis has shown that in order to support 512 byte
frames at maximum arrival rate of 4*100 Mbits,
requires more than 8 jobs to be in process in the NIC.
However each job requires an SRAM buffer for a TCB
context and at present, there are only 8 of these
currently specified due to SRAM space limits. So more
contexts (e.g. 32*8 regs each) do not seem worthwhile.
Refer to the section entitled “LOAD CALCULA-

TIONS” for more details of this analysis. A context
switch simply involves reloading the context base
register based on the context to be restarted, and
jumping to the appropriate address for resumption;

11) To better support the process model chosen, the code
will lock an active TCB into an SRAM buffer while

either sequencer is operating on it. This implies there
will be no swapping to and from DRAM of a TCB once
it is in SRAM and an operation is started on it. More
specifically, the TCB will not be swapped after request-
ing that a DMA be performedforit. Instead, the system
will switch to another active “process”. Then it will
resume the former process at the point directly after
where the DMA was requested. This constitutes a
zero-cost switch as mentioned above;

12) Individual TCB state machines will be run from
within a “process”. There will be a state machinefor the
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receive side and one for the transmit side. The current
TCB states will be stored in the SRAM TCB index

table entry;
13) The INIC will have 16 MB of DRAM.Thecurrent

specification calls for dividing a large portion of this
into 2 K buffers and control allocation / deallocation of

these buffers through one of the DRAM fifos men-
tioned above. These fifos will also be used to control

small host buffers, large host buffers, commandbuffers
and command response buffers;

14) For events from one sequencer to the other (ie.
RCV<-—>XMT), the current specification calls for
using simple SRAM CIO buffers, one for each direc-
tion;

15) Each sequencer handles its own timers independently
of the others;

16) Contexts will be passed to the INIC through the
Transmit command and response buffers. INIC-
initiated TCB releases will be handled through the
Receive small buffers. Host-initiated releases will use

the Commandbuffers. There needs to bestrict handling
of the acquisition and release of contexts to avoid
windows where for example, a frame is received on a
context just after the context was passed to the INIC,
but before the INIC has “accepted”it; and

17) T/TCP(Transaction TCP): the initial INIC will not
handle T/TCP connections. This is because they are
typically used for the HTTPprotocol and the client for
that protocol typically connects, sends a request and
disconnects in one segment. The server sends the
connect confirm, reply and disconnectin his first seg-
ment. Then the client confirms the disconnect. This is

a total of 3 segments for the life of a context. Typical
data lengths are on the order of 300 bytes from the
client and 3 K from the server. The INIC will provide
as good an assist as seems necessary here by check-
summing the frame and splitting headers and data. The
latter is only likely when data is forwarded with a
request such as whenafilled-in form is sent by the
client.

5.1.1 SRAM Requirements
SRAM requirements for the Receive and Transmit

engines ar shown in FIG. 30. Depending upon the available
space, the number of TCB buffers may be increased to 16.
5.1.2 General Philosophy

The basic plan is to have the host determine when a TCP
connection is able to be handedto the INIC, setup the TCB
and pass it to the card via a commandin the Transmit queue.
TCBsthat the INIC owns can be handed backto the host via

a request from the Receive or Transmit sequencers or from
the host itself at any time.

When the INIC receives a frame, one of its immediate
tasks is to determineif the frame is for a TCBthatit controls.

If not, the frame is passed to the host on a generic interface
TCB. Ontransmit, the transmit request will specify a TCB
hash numberif the request is on a INIC-controlled TCB.
Thus the initial state for the INIC will be transparent mode
in which all received framesare directly passed through and
all transmit requests will be simply thrown on the appropri-
ate wire. This state is maintained until the host passes TCBs
to the INIC to control. Note that frames received for which

the INIC has no TCB(orit is with the host) will still have
the TCP checksum verified if TCP/IP, and maysplit the
TCPIP header off into a separate buffer.
5.1.3 Register Usage

There will be 512 registers available. Thefirst 256 will be
used for process contexts. The remaining 256 will be split
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between the three sequencers as follows: 1) 257-320: 64 for
RCVgeneral processing / main loop; 2) 321-384: 64 for
XMTgeneral processing / main loop; and 3) 385-512: 128
for three sequenceruse.
5.2 Receive Processing
5.2.1 Main Loop

FIG. 31 is a summary of the main loop of Receive.
5.2.2 Receive Events

The events that will be processed on a given context are:

1) accept a context;
2) release a context command (from the host via

Transmit);
3) release a context request (from Transmit);
4) receive a valid frame; this will actually become 2

events based on the received frame—teceive an ACK,
receive a segment;

5) receive an “invalid” frame i.e. one that causes the TCB
to be flushed to the host;

6) a valid ACK needs to be sent (delayed ACK timer
expiry); and

7) There are expected to be the following sources of
events: a) Receive input queue: it is expected that
hardware will automatically DMAarriving frames into
frame buffers and queue an event into a RCV-event
queue; b) Timer event queue: expiration of a timer will
queue an event into this queue; and c) Transmit
sequencer queue: for requests from the transmit pro-cessor.

For the sake of brevity the following only discusses
receive-frame processing.
5.2.3 Receive Details_Valid Context

The base for the receive processing done by the INIC on
an existing context is the fast-path or “header prediction”
code in the FreeBSD release. Thus the processing is divided
into three parts: header validation and checksumming, TCP
processing and subsequent SMBprocessing.
5.2.3.1 Header Validation

There is considerable hardwareassist here. Thefirst step
in receive processing is to DMAthe frame header into an
SRAM headerbuffer. It is useful for header validation to be

implemented in conjunction with this DMA byscanning the
data as it flies by. The following tests need to be “passed”:

1) MACheader: destination address is our MAC address
(not MC or BCtoo), the Ethertype is IP; 2) IP header: header
checksum is valid, header length=5, IP length>header
length, protocol=TCP, no fragmentation, destination IP is
our IP address; and 3) TCP header: checksum isvalid (incl.
pseudo-header), header length=5 or 8 (timestamp option),
length is valid, dest port=SMB or FTP data, no FIN/SYN/
URG/PSH/RSTbits set, timestamp option is valid if present,
segmentis in sequence, the window size did not change,this
is not a retransmission, it is a pure ACK or a pure receive
segment, and most important, a valid context exists. The
valid-context test is non-trivial in the amount of work

involved to determine it. Also note that for pure ACKs,the
window-size test will be relaxed. This is because initially the
output PERSISTstate is to be handled on the INIC.

Manybut perhapsnotall of these tests will be performed
in hardware—depending upon the embodiment.
5.2.3.2 TCP Processing

Once a frame has passed the header validation tests,
processing splits based on whetherthe frame is a pure ACK
or a pure received segment.
5.2.3.2.1 Pure RCV Packet

The designis to split off headers into a small header buffer
and pass the aligned data in separate large buffers. Since a
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frame has been received, eventually some receiver process
on the host will need to be informed.In the case of FTP, the

frame is pure data and it is passed to the host immediately.
This involves getting large buffers and DMAingthedata into
them, then setting the appropriate details in a small buffer
that is used to notify the host. However for SMB,the INIC
is performing reassembly of data when the frame consists of
headers and data. So there may not yet be a complete SMB
to pass to the host. In this case, a small buffer will be
acquired and the header moved into it. If the received
segment completes an SMB,then the procedures are pretty
much as for FTP. If it does not, then the schemeis to at least
movethe received data (not the headers) to the host to free
the INIC buffers and to save latency. The list of in-progress
host buffers is maintained in the TCB and moved to the

header buffer when the SMB is complete.

The final part of pure-receive processing isto fire off the
delayed ACK timer for this segment.
5.2.3.2.2 Pure ACK

Pure ACK processing implies this TCB is the sender, so
there may be transmit buffers that can be returnedto the host.
If so, send an event to the Transmit processor (or do the
processing here). If th(re is more output available, send an
event to the transmit processor. Then appropriate actions
need to be taken with the retransmission timer.

5.2.3.3 SMB Processing
FIG. 32 shows the format of the SMB header of an SMB

frame. The LENGTHfield of the NetBIOS header will be

used to determine when a complete SMBhas been received
and the header buffer with appropriate details can be posted
to the host. The interesting commandsare the write com-
mands: SMBwrite (OxB), SMBwriteBraw (0x1D), SMB-
writeBmpx (Ox1E), SMBwriteBs (Ox1F), SMBwriteclose
(Ox2C), SMBwriteX (O0x2F), SMBwriteunlock (0x14).
These are interesting because they will have data to be
aligned in host memory. The point to note about these
commandsis that they each have a different WCTfield, so
that the start offset of the data depends on the commandtype.
SMBprocessing will thus need to be cognizant of these
types.
5.2.4 Receive Details_No Valid Context

The design here is to provide as muchassist as possible.
Frames will be checksummed and the TCPIP headers may
be split off.
5.2.5 Receive Notes

1. PRU_RCVDorthe equivalent in Microsoft language:
the host application has to tell the INIC when he has
accepted the received data that has been queued. This
is so that the INIC can update the receive window.It is
an advantage for this mechanism to be efficient. This
may be accomplished by piggybacking these on trans-
mit requests (not necessarily for the same TCB).

2. Keepalive Timer: for a INIC-controlled TCB, the INIC
will not maintain this timer. This leaves the host with

the job of determining that the TCBis still active.

3. Timestamp option: it is useful to support this option in
the fast path because the BSD implementation (toes.
Also, it can be very helpful in getting a much better
estimate of the round-trip time (RTT) which TCP needs
to use.

4. Idle timer: the INIC will not maintain this timer (see
Note 2 above).

5. Frame with no valid context: The INIC may split
TCP/IP headers into a separate header buffer.
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5.3 Transmit Processing
5.3.1 Main Loop

FIG. 33 is a summary of the main loop of Transmit.
5.3.2 Transmit Events

The events that will be processed on a given context and
their sources are: 1) accept a context (from the Host); 2)
release a context command (from the Host); 3) release a
context command (from Receive); 4) valid send request and
window>0 (from host or RCV sequencer); 5) valid send
request and window=0 (from host or RCV sequencer); 6)
send a window update (host has accepted data); 7) persist
timer expiration (persist timer); 8) context-release event e.g.
window shrank (XMTprocessing or retransmission timer);
and 9) receive-release request ACK( from RCV sequencer).
5.3.3 Transmit Details_Valid Context

The following is an overview of the transmit flow: The
host posts a transmit request to the INIC by filling in a
command buffer with appropriate data pointers etc and
posting it to the INIC via the Command Buffer Address
register. Note that there is one host commandbuffer queue,
but there are four physical transmit lines. So each request
needs to include an interface numberas well as the context
number. The INIC microcode will DMA the command in

and place it in one of four internal command queues which
the transmit sequencer will work on. Thisis so that transmit
processing can round-robin service these four queues to
keep all four interfaces busy, and not let a highly-active
interface lock out the others (which would happen with a
single queue). The transmit request may be a segmentthatis
less than the MSS,or it may be as much as a full 64K SMB
READ. Obviously the former request will go out as one
segment, the latter as a number of MSS-sized segments. The
transmitting TCB must hold on to the request until all data
in it has been transmitted and acked. Appropriate pointers to
do this will be kept in the TCB. A large buffer is acquired
from the free buffer fifo, and the MAC and TCP/IP headers
are created in it. It may be quicker/simpler to keep a basic
frame headerset up in the TCB and either DMAdirectly this
into the frame each time. Then data is DMA’d from host

memory into the frame to create an MSS-sized segment.
This DMAalso checksums the data. Then the checksum is

adjusted for the pseudo-header and placed into the TCP
header, and the frame is queued to the MACtransmit
interface which may be controlled by the third sequencer.
The final step is to update various windowfields etc in the
TCB. Eventually either the entire request will have been sent
and acked, or a retransmission timer will expire in which
case the context is flushed to the host. In either case, the
INIC will place a command response in the Response queue
containing the command buffer handle from the original
transmit command and appropriate status.

The above discussion has dealt how an actual transmit

occurs. Howeverthe real challenge in the transmit processor
is to determine whether it is appropriate to transmit at the
time a transmit request arrives. There are many reasons not
to transmit: the receiver’s window size is<=0, the Persist
timer has expired, the amount to send is less than a full
segment and an ACK is expected I outstanding, the receiv-
er’s window is not half-open etc. Much of the transmit
processing will be in determining these conditions.
5.3.4 Transmit DetailsNo Valid Context

The main difference between this and a context-based

transmit is that the queued request here will already have the
appropriate MAC and TCP/IP (or whatever) headers in the
frame to be output. Also the request is guaranteed not to be
greater than MSS-sized in length. So the processingis fairly
simple. A large buffer is acquired and the frame is DMAed
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into it, at which time the checksum is also calculated. If the
frame is TCP/IP, the checksum will be appropriately
adjusted if necessary (pseudo-header etc) and placed in the
TCP header. The frame is then queued to the appropriate
MACtransmit interface. Then the command is immediately
responded to with appropriate status through the Response
queue.
5.3.5 Transmit Notes

1) Slow-start: the INIC will handle the slow-start algo-
rithm that is now a part of the TCP standard. This obviates
waiting until the connection is sending a full-rate before
passing it to the INIC.

2) Window Probe vs Window Update—an explanation for
posterity. A Window Probeis sent from the sending TCB to
the receiving TCB, and it means the sender has the receiver
in PERSISTstate. Persist state is entered when the receiver
advertises a zero window.It is thus the state of the trans-

mitting TCB. In this state, he sends periodic window probes
to the receiver in case an ACK from the receiver has been
lost. The receiver will return his latest window size in the

ACK. A Window Update is sent from the receiving TCB to
the sending TCB, usually to tell him that the receiving
window hasaltered. It is mostly triggered by the upper layer
whenit accepts some data. This probably meansthe sending
TCB is viewing the receiving TCB as being in PERSIST
state.

3) Persist state: it is designed to handle Persist state on the
INIC.It seems unreasonable to throw a TCBback tothe host

just because its receiver advertised a zero window. This
would normally be a transient situation, and would tend to
happen mostly with clients that do not support slow-start.
Alternatively, the code can easily be changed to throw the
TCB back to the host as soon as a receiver advertises a zero
window.

4) MSS-sized frames: the INIC code will expect all
transmit requests for which it has no TCBto not be greater
than the MSS.If any requestis, it will be dropped and an
appropriate response status posted.

5) Silly Window avoidance:as a receiver, the INIC will do
the right thing here and not advertise small windows—this
is easy. Howeverit is necessary to also do things to avoid
this as a sender, for the cases where a stupid client does
advertise small windows. Without getting into too much
detail here, the mechanism requires the INIC code to cal-
culate the largest window advertisement ever advertised by
the other end. It is an attempt to guess the size of the other
end’s receive buffer and assumesthe other end never reduces

the size of its receive buffer. See Stevens, “TCP/IP
Illustrated”, Vol. 1, pp. 325-326 (1994).
6 The Utility Processor
6.1 Summary

The following is a summary of the main functions of the
utility sequencer of the microprocessor:

1) Look at the event queues: Eventl3Type &
Event23Type (we assumethere will be an event status bit for
this—USE_EV13 and USE_EV23) in the events register;
these are events from sequencers 1 and 2; they will mainly
be XMIT requests from the XMT sequencer. Dequeue
request and place the frame on the appropriate interface.

2) RCV-frame support: in the model, RCV is done
through VinicReceive( ) which is registered by the lower-
edge driver, and is called at dispatch-level. This routine calls
VinicTransferDataComplete( ) to check if the xfer (possibly
DMA)ofthe frame into host buffers is complete. Thelatter
rtne is also called at dispatch level on a DMA-completion
interrupt. It queues complete buffers to the RCV sequencer
via the normal queue mechanism.
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3) Other processes may also be employed here for sup-
porting the RCV sequencer.

4) Service the following registers (this will probably
involve micro-interrupts):

a) Header Buffer Addressregister:
Buffers are 256 bytes long on 256-byte boundaries.

31-8- physical addr in host of a set of contiguous hddr
buffers.

7-0- numberof hddr buffers passed.

Use contents to add to SmallHType queue.
b) Data Buffer Handle & Data Buffer Address registers:
Buffers are 4 K long aligned on 4 K boundaries.

Use contents to add to the FreeType queue.
c) Command Buffer Address register:
Buffers are multiple of 32 bytes up to 1 K long (2**5*32).
31-5—physical addr in host of cmd buffer.

4-0—length of cmd in bytes/32 (i.e. multiples of 32
bytes).

Points to host cmd; get FreeSType buffer and move.
commandinto it; queue to Xmit0-Xmit3Type queues.

d) Response Buffer Address register:
Buffers are 32 bytes long on 32-byte boundaries.
31-8—physical addr in host of a set of contiguous resp

buffers.

7-O—numberof resp buffers passed.
Use contents to add to the ResponseType queue.
5) Low buffer threshold support: set approp bits in the ISR

when the available—buffers count in the various queues
filled by the host falls below a threshold.
6.2 Further Operations of the Utility Processor

The utility processor of the microprocessor housed on the
INIC is responsible for setting up and implementing all
configuration space and memory mapped operations, and
also as described below, for managing the debug interface.

All data transfers, and other INIC initiated transfers will
be done via DMA.Configuration space for both the network
processor function and the utility processor function will
define a single memory space for each. This memory space
will define the basic communication structure for the host. In

general, writing to one of these memory locations will
perform a request for service from the INIC. This is detailed
in the memory description for each function. This section
defines much of the operation of the Host interface, but
should be read in conjunction with the Host Interface
Strategy for the Alacritech INIC to fully define the Host/
INIC interface.

Two registers, DMA hardware and an interrupt function
comprise the INIC interface to the Host through PCI. The
interrupt function is implemented via a four bit register
(PCI_INT)tied to the PCI interrupt lines. This register is
directly accessed by the microprocessor.

THE MICROPROCESSORuses tworegisters, the PCI__
Data_Reg and the PCI_Address_Reg, to enable the Host
to access Configuration Space and the memory space allo-
cated to the INIC. These registers are not available to the
Host, but are used by THE MICROPROCESSORto enable
Host reads and writes. The function of these two registers is
as follows.

1) PCI_Data_Reg: This register can be both read and
written by THE MICROPROCESSOR.On write opera-
tions from the host, this register contains the data being
sent from the host. On read operations, this register
contains the data to be sent to the host.

2) PCI_Address_Reg: This is the control register for
memoryreads and writes from the host. The structure of
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the register is shown in FIG. 34. During a write operation
from the Host the PCI_Data_Reg contains valid data
after Data Valid is set in the PCI_Address_Reg. Both
registers are locked until THE MICROPROCESSOR
writes the PCI_Data_Reg, which resets Data Valid. All
read operations will be direct from SRAM. Memory space
based reads will return 00. Configuration space reads will
be mapped as shownin FIG. 35.

6.2.1 Configuration Space
The INIC is implemented as multi-function device. The

first device is the network controller, and the second device
is the debug interface. An alternative production embodi-
ment may implement only the network controller function.
Both configuration space headers will be the same, except
for the differences noted in the following description.

Vendor ID—Thisfield will contain the Alacritech Vendor
ID. Onefield will be used for both functions. The Alacritech
Vendor ID is hex 139A.

Device ID—Chosen at Alacritech on a device specific
basis. One field will be used for both functions.

Command—Initialized to 00. All bits defined below as

not enabled (0) will remain 0. Those that are enabled will be
set to 0 or 1 depending on the state of the system. Each
function (network and debug) will have its own command
field, as shown in FIG. 36.

Status—Thisis notinitialized to zero. Each function will

have its own field. The configuration is as shown in FIG. 37.
Revision ID—Therevision field will be shared by both

functions.

Class Code—This is 02 00 00 for the network controller,
and for the debug interface. The field will be shared.

Cache Line Size—This is initialized to zero. Supported
sizes are 16, 32, 64 and 128 bytes. This hardwareregister is
replicated in SRAM and supported separately for each
function, but THE MICROPROCESSOR will implement
the value set in Configuration Space 1 (the network
processor).

Latency Timer—Thisis initialized to zero. The function is
supported. This hardware register is replicated in SRAM.
Each function is supported separately, but THE MICRO-
PROCESSORwill implementthe value set in Configuration
Space 1 (the network processor).

Header Type—Thisis set to 80 for both functions, but will
be supported separately.

BIST—Is implemented. In addition to responding to a
request to run self test, if test after reset fails, a code will be
set in the BISTregister. This will be implemented separately
for each function.

Base Address Register—Asingle base address register is
implemented for each function.It is 64 bits in length, and the
bottom four bits are configured as follows: Bit 0-0, indicates
memory base address; Bit 1,2-00, locate base address any-
where in 32 bit memory space; and Bit 3-1, memory is
prefetchable.

CardBus CIS Pointer—Not implemented—initialized to
0.

Subsystem Vendor ID—Not implemented—initialized to
0.

Subsystem ID—Not implemented—initialized to 0.
Expansion ROM Base Address—Not implemented-

initialized to 0.

Interrupt Line—Implemented—initialized to 0. This is
implemented separately for each function.

Interrupt Pin—Thisis set to 01, corresponding to INTA#
for the network controller, and 02, corresponding to INTB#
for the debug interface. This is implemented separately for
each function.
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Min_Gnt—This can beset at a value in the range of 10,
to allow reasonably long bursts on the bus. This is imple-
mented separately for each function.

Max_Lat—This can beset to 0 to indicate no particular
requirement for frequency of access to PCI. This is imple-
mented separately for each function.
6.2.2 Memory Space

Because each of the following functions may or may not
reside in a single location, and may or may notneed to be
in SRAM atall, the address for each is really only used as
an identifier (label). There is, therefore, no control block
anywhere in memory that represents this memory space.
When the host writes one of these registers, the utility
processor will construct the data required and transferit.
Reads to this memory will generate 00 for data.
6.2.2.1 Network Processor

The following four byte registers, beginning at location
h0O of the network processor’s allocated memory, are
defined.

00 - Interrupt Status Pointer - Initialized by the host to point to a four
byte area wherestatus is stored.
Interrupt Status - Returned status from host. Sent after one or more
status conditions have been reset. Also an interlock for storing any
new status. Once status has been stored at the Interrupt Status
Pointer location, no new status will be ORed until the host writes
the Interrupt Status Register. New status will be ored with any
remaining uncleared status (as defined by the contents of the
returned status) and stored again at the Interrupt Status Pointerlocation. Bits are as follows:
Bit 31 - ERR - Error bits are set;
Bit 30 - RCV - Receive has occurred;
Bit 29 - XMT - Transmit command complete; and
Bit 25 - RMISS- Receive drop occurred due to no buffers.
Interrupt Mask - Written by the host. Interrupts are masked for
each of the bits in the interrupt status when the same bit in the
mask register is set. When the Interrupt Mask register is written
and as a result a status bit is unmasked, an interrupt is generated.
Also, when the Interrupt Status Register is written, enabling new
status to be stored, when it is stored if a bit is stored that is not
masked by the Interrupt Mask, an interrupt is generated.
Header Buffer Address - Written by host to pass a set of header
buffers to the INIC.

Data Buffer Handle - First register to be written by the Host to
transfer a receive data buffer to the INIC. This data is Host

reference data. It is not used by the INIC,it is returned with the
data buffer. However, to insure integrity of the buffer, this register
must be interlocked with the Data Buffer Address register. Once
the Data Buffer Address register has been written, neither register
can be written until after the Data Buffer Handle register has been
read by THE MICROPROCESSOR.
Data Buffer Address - Pointer to the data buffer being sent to the
INIC by the Host. Must be interlocked with the Data Buffer
Handle register.
Command Buffer Address XMTO- Pointer to a set of command

buffers sent by the Host. THE MICROPROCESSOR will DMA
the buffers to local DRAM found on the FreeSType queue and
queue the Command Buffer Address XMTO with the local address
replacing the host Address.
Command Buffer Address SMT1.
Command Buffer Address SMT2.
Command Buffer Address SMT3.

Response Buffer Address - Pointer to a set of response buffers sent
by the Host. These will be treated in the same fashion as the
Command Buffer Address registers.

04 -

08 -

OC -

10 -

14 -

18 -

 
6.2.2.2 Utility Processor

Ending status will be handled by the utility processor in
the same fashion as it is handled by the network processor.
At present two ending status conditions are defined B31—
command complete, and B30—error. When end status is
stored an interrupt is generated.

Two additional registers are defined, Command Pointer
and Data Pointer. The Host is responsible for insuring that
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the Data Pointer is valid and points to sufficient memory
before storing a command pointer. Storing a command
pointer initiates command decode and execution by the
debug processor. The Host must not modify either command
or Data Pointer until ending status has been received, at
which point a new command may be initiated. Memory
space is write only by the Host, reads will receive 00. The
format is as follows:

00- Interrupt Status Pointer - Initialized by the host to point to a four
byte area wherestatus is stored.
Interrupt Status - Returned status from host. Sent after one or more
status conditions have been reset. Also an interlock for storing any
new status. Once status has been stored at the Interrupt Status
Pointer location, no new status will be stored until the host writes
the Interrupt Status Register. New status will be ored with any
remaining uncleared status (as defined by the contents of the
returned status) and stored again at the Interrupt Status Pointerlocation. Bits are as follows:

Bit 31 - CC - Command Complete;
Bit 30 - Err - Error;
BIT 29 - Transmit Processor Halted;
Bit 28 - Receive Processor Halted; and
Bit 27 - Utility Processor Halted.
Interrupt Mask - Written by the host. Interrupts are masked for
each of the bits in the interrupt status when the samebit in the
mask register is set. When the Interrupt Mask register is written
and as a result a status bit is unmasked, an interrupt is generated.
Also, when the Interrupt Status Register is written, enabling new
status to be stored, when it is stored if a bit is stored that is not
masked by the Interrupt Mask, an interrupt is generated.
Command Pointer - Points to command to be executed. Storing
this pointer initiates command decode and execution.
Data Pointer - Points to the data buffer. This is used for both read

and write data, determined by the command function.

04 -

08 -

OC -

10 -

7 Debug Interface
In order to provide a mechanism to debug the microcode

running on the microprocessor sequencers, a debug process
has been defined which will run on the utility sequencer.
This processor will interface with a control program on the
host processor over PCI.
7.1 PCI Interface

This interface is defined in the combination of the Utility
Processor and the Host Interface Strategy sections, above.
7.2 Command Format

Thefirst byte of the command, the commandbyte,defines
the structure of the remainder of the command.

7.2.1 Command Byte
Thefirst five bits of the command byte are the command

itself. The next bit is used to specify an alternate processor,
and the last two bits specify which processors are intended
for the command.
7.2.2 Processor Bits

00—AnyProcessor;
01—Transmit Processor;
10—Receive Processor; and

11—Utility Processor.
7.2.3 Alternate Processor

This bit defines which processor should handle debug
processing if the utility processor is defined as the processor
in debug.

0Q—Transmit Processor; and
1—Receive Processor.

7.2.4 Single Byte Commands
00—Halt—This commandasynchronously halts the pro-Cessor.

08—Run—This commandstarts the processor.
10—Step—This command steps the processor.
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7.2.5 Eight Byte Commands

18 - Break

0 1 2-3 47

Command Reserved Count Address

This commandsets a stop at the specified address. A count
of 1 causes the specified processor to halt the first time it
executes the instruction. A count of 2 or more causes the

processor to halt after that number of executions. The
processoris halted just before executing the instruction. A
count of 0 does not halt the processor, but causes a sync
signal to be generated. If a second processor is set to the
same break address, the count data from the first break
request is used, and each time either processor executes the
instruction the count is decremented.

20 - Reset Break

0 1-3 47

Command Reserved Address

This commandresets ;a previously set break point at the
specified address. Reset break fully resets that address. If
multiple processors were set to that break point, all will be
reset.

28 - Dump

0 1 2-3 4-7

Command Descriptor Count Address

This command transfers to the host the contents of the

descriptor. For descriptors larger than four bytes, a count, in
four byte increments is specified. For descriptors utilizing an
address the address field is specified.
7.2.6 Descriptor

00—Register—This descriptor uses both count and
address fields. Both fields are four byte based (a count of 1
transfers four bytes).

01—Sram—tThis descriptor uses both count and address
fields. Count is in four byte blocks. Addressis in bytes, but
if it is not four byte aligned,it is forced to the lower four byte
aligned address.

02—DRAM—This descriptor uses both count and
address fields. Count is in four byte blocks. Address is in
bytes, but if it is not four byte aligned, it is forced to the
lower four byte aligned address

03—Cstore—This descriptor uses both count and address
fields. Count is in four byte blocks. Addressis in bytes, but
if it is not four byte aligned,it is forced to the lower four byte
aligned address
Stand-alone descriptors: The following descriptors do not
use either the count or address fields. They transfer the
contents of the referenced register.

04—CPU_STATUS;
05—PC;
06—ADDR_REGA;
07—ADDR_REGB;
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08—RAM_BASE;

09—FILE_BASE;

OA—INSTR_REG_L;

OB—INSTR_REG_H,;

O0C—MAC_DATA;

0D—DMA_EVENT;

OE—MISC_EVENT;

OF—Q_IN_RDY;

10—Q_OUT_RDY;

11—LOCK STATUS;

12—STACK—This returns 12 bytes; and

13—Sense_Reg.
This register contains four bytes of data. If error statusis

posted for a command,if the next commandthat is issued
reads this register, a code describing the error in more detail
may be obtained. If any command other than a dump ofthis
register is issued after error status, sense information will be
reset.

30 - Load

0 1 2-3 47

Command Descriptor Count Address

This commandtransfers from the host the contents of the

descriptor. For descriptors larger than four bytes, a count, in
four byte increments is specified. For descriptors utilizing an
address the addressfield is specified.
7.2.7 Descriptor

00—Register—This descriptor uses both count and
address fields. Both fields are four byte based.

01—Sram—This descriptor uses both count and address
fields. Count is in four byte blocks. Addressis in bytes, but
if it is not four byte aligned,it is forced to the lower four byte
aligned address.

02—DRAM—This descriptor uses both count and
address fields. Count is in four byte blocks. Address is in
bytes, but if it is not four byte aligned, it is forced to the
lower four byte aligned address.

03—Cstore—This descriptor uses both count and address
fields. Count is in four byte blocks. Addressis in bytes, but
if it is not four byte aligned,it is forced to the lower four byte
aligned address. This applies to WCSonly.
Stand-alone descriptors: The following descriptors do not
use either the count or address fields. They transfer the
contents of the referenced register.

04—ADDR_REGA;

05—ADDR_REGB;

06—RAM_BASE;

07—FILE_BASE;

08—MAC_DATA;

09—Q_IN_RDY;

0A—Q_OUT_RDY;

OB—DBG_ADDR;and

38—Map.
This command allows an instruction in ROM to be

replaced by an instruction in WCS. The new instruction will
be located in the Hostbuffer. It will be stored in thefirst eight
bytes of the buffer, with the high bits unused. To reset a
mapped out instruction, map it to location 00.

68

0 1-33 47

5 Command Address to Address to
Map To Map Out

Hardware Specification
Features

1) Peripheral Component Interconnect (PCT) Interface
a) Universal PCI interface supports both 5.0V and 3.3V

signaling environments;

b) Supports both 32-bit and 64 bit PCI interface;
c) Supports PCI clock frequencies from 15 MHz to 66

MHz;

d) High performance bus mastering architecture;

15

e) Host memory based communications reduce register

30 accesses;
f) Host memory based interrupt status word reduces

register reads;

g) Plug and Play compatible;
h) PCI specification revision 2.1 compliant;
i) PCI bursts up to 512 bytes;
j) Supports cache line operations up to 128 bytes;

25

k) Both big-endian and little-endian byte alignments
supported; and

1) Supports Expansion ROM.
2) Network Interface

a) Four internal 802.3 and ethernet compliant Macs;
b) Media Independent Interface (MII) supports external

PHYs;

c) 10OBASE-T, 100BASE-TX/FX and 100BASE-T4 sup-
ported;

35

d) Full and half-duplex modes supported;
e) Automatic PHYstatus polling notifies system of status

change;

f) Provides SNMPstatistics counters;
g) Supports broadcast and multicast packets;

40

h) Provides promiscuous mode for network monitoring or

as multiple unicast address detection;
i) Supports “huge packets” up to 32 KB;
j) Mac-layer loop-back test mode; and
k) Supports auto-negotiating Phys.

3) MemoryInterface

50a) External DRAM buffering of transmit and receive
packets;

b) Buffering configurable as 4 MB, 8 MB, 16 MBor 32
MB;

c) 32-bit interface supports throughput of 224 MB/s;
d) Supports external FLASH ROM up to 4 MB,for

diskless boot applications; and

55

e) Supports external serial EEPROM for custom configu-
ration and Mac addresses.

60 4) Protocol Processor

a) High speed, custom, 32-bit processor executes 66
million instructions per second;

b) Processes IP, TCP and NETBIOSprotocols;
c) Supports up to 256 resident TCP/IP contexts; and
d) Writable control store (WCS) allowsfield updates for

feature enhancements.

65
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5) Power
a) 3.3V chip operation; end
b) PCI controlled 5.0V/3.3V I/O cell operation.

6) Packaging
a) 272-pin plastic ball grid array;
b) 91 PCI signals;
c) 68 MIIsignals;
d) 58 external memorysignals;
e) 1 clock signal;
f) 54 signals split between power and ground; and
g) 272 total pins.

General Description
The microprocessor (see FIG. 38)is a 32-bit, full-duplex,

four channel, !%oo-Megabit per second (Mbps),Intelligent
Network Interface Controller (INIC), designed to provide
high-speed protocol processing for server applications. It
combines the functions of a standard network interface

controller and a protocol processor within a single chip.
Although designed specifically for server applications, the
microprocessor can be used by PCs, workstations and rout-
ers or anywhere that TCP/IP protocols are being utilized.

When combined with four 802.3/MII compliant Phys and
Synchronous DRAM (SDRAM), the NIC comprises four
complete ethernet nodes. It contains four 802.3/ethernet
compliant Mac s, a PCI BusInterface Unit (BIU), a memory
controller, transmit fifos, receive fifos arid a custom TCP/
IP/NETBIOS protocol processor. The INIC supports
10Base-T, 100Base-TX, 100Base-FX and 100Base-T4 via
the MII interface attachment of appropriate Phys.

The INIC Macsprovide statistical information that may
be used for SNMP. The Macs operate in promiscuous mode
allowing the INIC to function as a network monitor, receive
broadcast and multicast packets and implement multiple
Macaddresses for each node.

Any 802.3/MII compliant PHY can be utilized, allowing
the INIC to support 1OBASE-T, 10BASE-T2, 10OBASE-
TX, 100Base-FX and 1OOBASE-T4 as well as future inter-
face standards. PHY identification and initialization is

accomplished through host driver initialization routines.
PHYstatus registers can be polled continuously by the INIC
and detected PHYstatus changesreported to the host driver.
The Mac can be configured to support a maximum frame
size of 1518 bytes or 32768 bytes.

The 64-bit, multiplexed BIU providesa direct interface to
the PCI bus for both slave and master functions. The INIC

is capable of operating in either a 64-bit or 32-bit PCI
environment, while supporting 64-bit addressing in either
configuration. PCI bus frequencies up to 66 MHzare sup-
ported yielding instantaneous bus transfer rates of 533
MB/s. Both 5.0V and 3.3V signaling environments can be
utilized by the INIC. Configurable cache-line size up to
256B will accommodate future architectures, and Expansion
ROM/Flash support allows for diskless system booting.
Non-PC applications are supported via programmable big
and little endian modes. Host based communication has

been utilized to provide the best system performance pos-
sible.

The INIC supports Plug-N-Play auto-configuration
through the PCI configuration space. External pull-up and
pull-downresistors, on the memory I/O pins,allow selection
of various features during chip reset. Support of an external
eeprom allowsfor local storage of configuration information
such as Mac addresses.

External SDRAM provides frame buffering, which is
configurable as 4 MB, 8 MB, 16 MB or 32 MBusing the
appropriate SIMMs. Use of -10 speed grades yields an
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external buffer bandwidth of 224 MB/E.The buffer provides
temporary storage of both incoming and outgoing frames.
The protocol processor accesses the frames within the buffer
in order to implement TCP/IP and NETBIOS. Incoming
frames are processed, assembled then transferred to host
memory under the control of the protocol processor. For
transmit, data is moved from host memory to buffers where
various headers are created before being transmitted out via
the Mac.

1) Cores/Cells
a) LSI Logic Ethernet-110 Core, 100Base and 10Base

Mac with MII interface;

b) LSI Logic single port SRAM,triple port SRAM and
ROMavailable;

c) LSI Logic PCI 66 MHz, 5V compatible I/O cell; and
d) LSI Logic PLL.

2) Die Size/Pin Count
LSI Logic G10 process. FIG. 39 showsthe area on the die

of each module.

3) DATAPATH Bandwidth (See FIG. 40)
4) CPU Bandwidth (See FIG. 41)
5) Performance Features

a) 512 registers improve performance through reduced
scratch ram accesses and reduced instructions;

b) Register windowing eliminates context-switching
overhead;

c) Separate instruction and data paths eliminate memory
contention;

d) Totally resident control store eliminatesstalling during
instruction fetch;

e) Multiple logical processors eliminate context switching
and improvereal-time response;

f) Pipelined architecture increases operating frequency;
g) Shared register and scratch ram improve inter-

processor communication;
h) Fly-by state-Machine assists address compare and

checksum calculation;

i) TCP/IP-context caching reduces latency;
j) Hardware implemented queues reduce Cpu overhead

and latency;
k) Horizontal microcode greatly improves instruction

efficiency;
1) Automatic frame DMAand status between Mac and

DRAM buffer; and

m) Deterministic architecture coupled with context
switching eliminates processorstalls.

Processor

The processor is a convenient means to provide a pro-
grammable state-machine which is capable of processing
incoming frames, processing host commands, directing net-
worktraffic and directing PCI bustraffic. Three processors
are implemented using shared hardware in a three-level
pipelined architecture which launches and completes a
single instruction for every clock cycle. The instructions are
executed in three distinct phases corresponding to each of
the pipeline stages where each phase is responsible for a
different function.

Thefirst instruction phase writes the instruction results of
the last instruction to the destination operand, modifies the
program counter (Pc), selects the address source for the
instruction to fetch, then fetches the instruction from the
control store. The fetched instruction is then stored in the

instruction register at the end of the clock cycle.
The processor instructions reside in the on-chip control-

store, which is implemented as a mixture of ROM and
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SRAM. The ROM contains 1 K instructions starting at
address 0x0000 and aliases each 0x0400 locations through-
out the first 0x8000 of instruction space. The SRAM (WCS)
will hold up to 0x2000 instructions starting at address
0x8000 and aliasing each 0x2000 locations throughout the
last Ox8000 of instruction space. The ROM and SRAM are
both 49-bits wide accounting for bits [48:0] of the instruc-
tion microword. A separate mapping ram provides bits
[55:49] of the microword (MapAddr) to allow replacement
of faulty ROM based instructions. The mapping ram has a
configuration of 128x7 which is insufficient to allow a
separate map address for each of the 1 K ROM locations. To
allow re-mapping of the entire 1 K ROM space, the map ram
address lines are connected to the address bits Fetch[9:3].
The result is that the ROM is re-mapped in blocks of 8
contiguous locations.

The second instruction phase decodes the instruction
which wasstored in the instruction register. It is at this point
that the map address is checked for a non-zero value which
will cause the decoder to force a Jmp instruction to the map
address. If a non-zero value is detected then the decoder

selects the source operands for the Alu operation based on
the values of the OpdASel, OpdBSel and AluOp fields.
These operands are then stored in the decode register at the
end of the clock cycle. Operands may originate from File,
SRAM,orflip-flop based registers. The second instruction
phaseis also where the results of the previous instruction are
written to the SRAM.

The third instruction phase is when the actual Alu opera-
tion is performed,the test condition is selected and the Stack
push and pop are implemented. Results of the Alu operation
are stored in the results register at the end of the clock cycle.

FIG.42 is a block diagram of the CPU. FIG. 42 showsthe
hardware functions associated with each of the instruction

phases. Note that various functions have been distributed
across the three phases of the instruction execution in order
to minimize the combinatorial delays within any given
phase.
Instruction Set

The microinstructions, are divided into six types accord-
ing to the program control directive. The micro-instruction
is further divided into sub-fields for which the definitionsare

dependent upon the instruction type. The six instruction
types are listed in FIG. 43.

All instructions (see FIG. 43) include the Alu operation
(AluOp), operand “A”select (OpdASel), operand “IT”select
(OpdBSel) and Literal fields. Other field usage depends
upon the instruction type.

The “jump condition code” (Jcc) instruction causes the
program counterto be altered if the condition selected by the
“test select” (TstSel) field is asserted. The new program
counter (Pc) value is loaded from either the Literal field or
the AluOut as described in the following section and the
Literal field may be used as a source for the Alu or the ram
address if the new Pc value is sourced by the Alu.

The “jump” (Jmp) instruction causes the program counter
to be altered unconditionally. The new program counter (Pc)
value is loaded from eitherthe Literal field or the AluOut as

described in the following section. The format allows
instruction bits 23:16 to be used to perform a flag operation
and the Literal field may be used as a source for the Alu or
the ram address if the new Pc value is sourced by the Alu.

The “jump subroutine” (Jsr) instruction causes the pro-
gram counter to be altered unconditionally. The new pro-
gram counter (Pc) value is loaded from either the Literal
field or the AluOutas described in the following section. The
old program counter valueis stored on the top location of the
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Pe-Stack which is implemented as a LIFO memory. The
format allows instruction bits 23:16 to be used to perform a
flag operation and the Literal field may be used as a source
for the Alu or the ram addressif the new Pc value is sourced

by the Alu.
The “Nxt” (Nxt) instruction causes the program counterto

increment. The format allows instruction bits 23:16 to be

used to perform a flag operation and the Literal field may be
used as a source for the Alu or the ram address.

The “return from subroutine”(Rts) instructionis a special
form of the Nxt instruction in which the “flag operation”
(FlgSel) field is set to a value of Ohff. The current Pe value
is replaced with the last value stored in the stack. The Literal
field may be used as a source for the Alu or the ram address.

The Mapinstruction is provided to allow replacement of
instructions which have been stored in ROM andis imple-
mented any time the “map enable” (MapEn)bit has been set
and the content of the “map address” (MapAddr) field is
non-zero. The instruction decoder forces a jump instruction
with the Alu operation and destination fields set to pass the
MapAddrfield to the program control block.

The program control is determined by a combination of
PgmCtrl, DstOpd, FlgSel and TstSel. The behavior of the
program control is defined with the “C-like”description in
FIG. 44. FIGS. 45-53 show ALU operations, selected
operands, selected tests, and flag operations.
Sram Control Sequencer (SramCtrl)

SRAM is the nexus for data movement within the INIC.

A hierarchy of sequencers, working in concert, accomplish
the movement of data between DRAM, SRAM,Cpu,eth-
ernet and the Pci bus. Slave sequencers, provided with
stimulus from master sequencers, request data movement
operations by way of the SRAM,Pci bus, DRAM and Flash.
The slave sequencers prioritize, service and acknowledge
the requests.

The data flow block diagram of FIG. 54 showsall of the
master and slave sequencers of the INIC product. Request
information suchas r/w, address, size, endian and alignment
are represented by each request line. Acknowledge infor-
mation to master sequencers include only the size of the
transfer being acknowledged.

The block diagram of FIG. 55 illustrates how data move-
ment is accomplished for a Pci slave write to DRAM. Note
that the Psi (Pci slave in) module functions as both a master
sequencer. Psi sends a write request to the SramCtrl module.
Psi requests Xwr to move data from SRAM to DRAM. Xwr
subsequently sends a read request to the SramCtrl module
then writes the data to the DRAM via the Xctrl module. As

each piece of data is moved from the SRAM to Xwr, Xwr
sends an acknowledge to the Psi module.

The SRAM control sequencer services requests to store
to, or retrieve data from an SRAM organized as 1024
locations by 128 bits (16 KB). The sequencer operates at a
frequency of 133 MHz, allowing both a Cpu access and a
DMAaccess to occur during a standard 66 MHz Cpu cycle.
One 133 MHzcycle is reserved for Cpu accesses during
each 66 MHz cycle while the remaining 133 MHz cycle is
reserved for DMA accesses ona prioritized basis.

The block diagram of FIG. 56 shows the major functions
of the SRAM control sequencer. A slave sequencer begins by
asserting a request along with r/w, ram address, endian, data
path size, data path alignment and request size. SramCtrl
prioritizes the requests. The request parameters are then
selected by a multiplexer which feeds the parameters to the
SRAM via a register. The requester provides the SRAM
address which when coupled with the other parameters
controls the input and output alignment. SRAM outputs are
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fed to the output aligner via a register. Requests are
acknowledged in parallel with the returned data.

FIG. 57 is a timing diagram depicting two ram accesses
during a single 66 MHz clock cycle.
External Memory Control (Xctrl)

Xctrl (See FIG. 58) provides the facility whereby Xwr,
Xrd, Defg and Eectrl access external Flash and DRAM.
Xctrl includes an arbiter, i/o registers, data multiplexers,
address multiplexers and control multiplexers. Ownership of
the external memoryinterace is requested by each block and
granted to each of the requesters by the arbiter function.
Once ownership has been granted the multiplexers select the
address, data and control signals from owner, allowing
access to external memory.
External Memory Control(Xrd)

The Xrd sequencer acts only as a slave sequencer. Ser-
vicing requests issued by master sequencers, the Xrd
sequencer moves data from external SDRAM orflash to the
SRAM,via the Xctrl module, in blocks of 32 bytes or less.
The nature of the SDRAM requiresfixed burst sizes for each
of it’s internal banks with ras precharge intervals between
each access. By selecting a burst size of 32 bytes for
SDRAM reads and interleaving bank accesses on a 16 byte
boundary, we can ensure that the ras precharge interval for
the first bank is satisfied before burst completion for the
second bank, allowing us to re-instruct the first bank and
continue with uninterrupted DRAM access. SDRAMs
require a consistent burst size be utilized each and every
time the SDRAM isaccessed.For this reason, if an SDRAM
access does not begin or end on a 32 byte boundary,
SDRAM bandwidth will be reduced dueto less than 32 bytes
of data being transferred during the burst cycle.

FIG. 59 depicts the major functional blocks of the Xrd
external memory read sequencer. Thefirst step in servicing
a request to move data from SDRAM to SRAM is the
prioritization of the master sequencer requests. Next the Xrd
sequencer takes a snapshot of the DRAM read address and
applies configuration information to determine the correct
bank, row and column address to apply. Once sufficient data
has been read, the Xrd sequencerissues a write requestto the
SramCtrl sequencer which in turn sends an acknowledge to
the Xrd sequencer. The Xrd sequencer passes the acknowl-
edge along to the level two master with a size code indi-
cating how much data was written during the SRAM cycle
allowing the update of pointers and counters. The DRAM
read and SRAM write cycles repeat until the original burst
request has been completed at which point the Xrd
sequencer prioritizes any remaining requests in preparation
for the next burst cycle.

Contiguous DRAM burst cycles are not guaranteed to the
Xrd sequencer as an algorithm is implemented which
ensures highest priority to refresh cycles followed by flash
accesses, DRAM writes then DRAM reads.

FIG. 60 is a timing diagram illustrating how data is read
from SDRAM. The DRAM hasbeen configured :or a burst
of four with a latency of two clock cycles. Bank A isfirst
selected/activated followed by a read command two clock
cycles later. The bank select/activate for bank B is next
issued as read data begins returning two clocksafter the read
command wasissued to bank A. Two clock cycles before we
need to receive data from bank B we issue the read com-

mand. Onceall 16 bytes have been received from bank A we
begin receiving data from bank B.
External Memory Write Sequencer (Xwr)

The Xwr sequencer is a slave sequencer. Servicing
requests issued by master sequencers, the Xwr sequencer
moves data from SRAM to the external SDRAM or flash,
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via the Xctrl module, in blocks of 32 bytes or less while
accumulating a checksum of the data moved. The nature of
the SDRAM requires fixed burst sizes for each of it’s
internal banks with ras precharge intervals between each
access. By selecting a burst size of 32 bytes for SDRAM
writes and interleaving bank accesses on a 16 byte boundary,
we can ensure that the ras precharge interval for the first
bank is satisfied before burst completion for the second
bank, allowing usto re-instruct the first bank and continue
with uninterrupted DRAM access. SDRAMsrequire a con-
sistent burst size be utilized each and every time the
SDRAM is accessed. For this reason, if an SDRAM access
does not begin or end on a 32 byte boundary, SDRAM
bandwidth will be reduced due to less than 32 bytes of data
being transferred during the burst cycle.

FIG. 61 depicts the major functional blocks of the Xwr
sequencer. The first step in servicing a request to move data
from SRAM to SDRAM istheprioritization of the level two
master requests. Next the Xwr sequencer takes a Snapshot of
the DRAM write address and applies configuration infor-
mation to determine the correct DRAM, bank, row and
column address to apply. The Xwr sequencer immediately
issues a read command to the SRAM to which the SRAM

responds with both data and an acknowledge. The Xwr
sequencer passes the acknowledge to the level two master
along with a size code indicating how much data was read
during the SRAM cycle allowing the update of pointers and
counters. Once sufficient data has been read from SRAM,
the Xwr sequencer issues a write command to the DRAM
starting the burst cycle and computing a checksum as the
data flys by. The SRAM read cycle repeats until the original
burst request has been completed at which point the Xwr
sequencer prioritizes any remaining requests in preparation
for the next burst cycle.

Contiguous DRAM burst cycles are not guaranteed to the
Xwr sequencer as an algorithm is implemented which
ensures highest priority to refresh cycles followed by flash
accesses then DRAM writes.

FIG. 62 is a timing diagram illustrating how data is
written to SDRAM. The DRAM has been configured for a
burst of four with a latency of two clock cycles. Bank A is
first selected/activated followed by a write command two
clock cycles later. The bank select/activate for bank It is next
issued in preparation for issuing the second write command.
As soon as the first 16 byte burst to bank A completes we
issue the write command for bank B and begin supplying
data.

PCI Master-Out Sequencer (Pmo)
The Pmo sequencer (See FIG. 63) acts only as a slave

sequencer. Servicing requests issued by master sequencers,
the Pmo sequencer moves data from an SRAM basedfifo to
a Pci target, via the PciMstrIO module, in bursts of up to 256
bytes. The nature of the PCI bus dictates the use of the write
line command to ensure optimal system performance. The
write line command requires that the Pmo sequencer be
capable of transferring a whole multiple (1x, 2x, 3x, ...)
of cache lines of which the size is set through the Pci
configuration registers. To accomplish this end, Pmo will
automatically perform partial bursts until it has aligned the
transfers on a cache line boundary at which timeit will begin
usage of the write line command. The SRAM fifo depth, of
256 bytes, has been chosen in order to allow Pmo to
accommodate cacheline sizes up to 128 bytes. Provided the
cache line size is less than 128 bytes, Pmo will perform
multiple, contiguous cacheline bursts until it has exhausted
the supply of data.

Pmo receives requests; from two separate sources; the
DRAM to Pci (D2p) module and the SRAM to Pei (S2p)
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module. An operation first begins with prioritization of the
requests where the S2p module is given highest priority.
Next, the Pmo module takes a Snapshot of the SRAM fifo
address and uses this to generate read requests for the
SramCtrl sequencer. The Pmo module then proceeds to
arbitrate for ownership of the Pci bus via the PciMstrIO
module. Once the Pmo holding registers have sufficient data
and Pci bus mastership has be-en granted, the Pmo module
beginstransferring data to the Pci target. For each successful
transfer, Pmo sends an acknowledge and encodedsize to the
master sequencer, allow it to update it’s internal pointers,
counters and status. Once the Pci burst transaction has

terminated, Pmoparkson the Pci bus unless anotherinitiator
has requested ownership. Pmo again prioritizes the incom-
ing requests and repeats the process.
PCI Master-Out Sequencer (Pmi)

The Pmi sequencer (See FIG. 64) acts only as a slave
sequencer. Servicing requests issued by master sequencers,
the Pmi sequencer movesdata from a Pci target to an SRAM
basedfifo, via the PciMstrIO module, in bursts of up to 256
bytes. The nature of the PCI bus dictates the use of the read
multiple command to ensure optimal system performance.
The read multiple command requires that the Pmi sequencer
be capable of transferring a cache line or more of data. To
accomplish this end, Pmi will automatically perform partial
cacheline bursts until it has aligned the transfers on a cache
line boundary at which time it will begin usage of the read
multiple command. The SRAM fifo depth, of 256 bytes, has
been chosen in order to allow Pmi to accommodate cache

line sizes up to 128 bytes. Provided the cache line size is less
than 128 bytes, Pmi will perform multiple, contiguous cache
line bursts until it has filled the fifo.

Pmireceive requests from two separate sources; the Pci to
DRAM (P2d) module and the Pci to SRAM (P2s) module.
An operation first begins with prioritization of the requests
where the P2s module is given highest priority. The Pmi
module then proceeds to arbitrate for ownership of the Pci
bus via the PciMstrIO module. Once the Pci bus mastership
has been granted and the Pmi holding registers have suffi-
cient data, the Pmi module begins transferring data to the
SRAM fifo. For each successful transfer, Pmi sends an
acknowledge and encoded size to the master sequencer,
allowing it to update it’s internal pointers, counters and
status. Once the Pci burst transaction has terminated, Pmi
parks on the Pci bus unless another initiator has requested
ownership. Pmi again prioritizes the incoming requests and
repeats the process.
Dram TO PCI Sequencer (D2P)

The D2p sequencer (See FIG. 65) acts is a master
sequencer. Servicing channel requests issued by the Cpu,the
D2p sequencer manages movement of data from DRAM to
the Pci bus by issuing requests to both the Xrd sequencer and
the Pmo sequencer. Data transfer is accomplished using an
SRAM basedfifo through which data is staged.

D2p can receive requests from any of the processor’s
thirty-two DMA channels. Once a command request has
been detected, D2p fetches a DMAdescriptor from an
SRAM location dedicated to the requesting channel which
includes the DRAM address, Pci address, Pci endian and
request size. D2p then issues a request to the D2s sequencer
causing the SRAM basedfifo to fill with DRAM data. Once
the fifo contains sufficient data for a Pci transaction, D2s
issues a request to Pmo which in turn moves data from the
fifo to a Pci target. The process repeats until the entire
request has beensatisfied at which time D2p writes ending
status in to the SRAM DMAdescriptor area and sets the
channel done bit associated with that channel. D2p then
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monitors the DMA channels for additional requests. FIG. 65
is an illustration showing the major blocks involved in the
movement of data from DRAM to Pcitarget.
PCI To DRAM Sequencer (P2d)

The P2d sequencer (See FIG. 67) acts as both a slave
sequencer and a master sequencer. Servicing channel
requests issued by the Cpu, the P2d sequencer manages
movement of data from Pci bus to DRAM byissuing
requests to both the Xwr sequencer and the Pmi sequencer.
Data transfer is accomplished using an SRAM based fifo
through which data is staged.

P2d can receive requests from any of the processor’s
thirty-two DMA channels. Once a command request has
been detected, P2d, operating as a slave sequencer, fetches
a DMAdescriptor from an SRAM location dedicated to the
requesting channel which includes the DRAM address, Pci
address, Pci endian and request size. P2d then issues a
request to Pmo which in turn movesdata from the Pci target
to the SRAM fifo. Next, P2d issues a request to the Xwr
sequencer causing the SRAM based fifo contents to be
written to the DRAM. The process repeats until the entire
request has beensatisfied at which time P2d writes ending
status in to the SRAM DMAdescriptor area and sets the
channel done bit associated with that channel. P2d then

monitors the DMA channels for additional requests. FIG. 68
is an illustration showing the major blocks involved in the
movement of data from a Pci target to DRAM.
SRAM to PCI Sequencer (S2p)

The S2p sequencer (See FIG. 69) acts as both a slave
sequencer and a master sequencer. Servicing channel
requests issued by the Cpu, the S2p sequencer manages
movement of data from SRAM to the Pci bus by issuing
requests to the Pmo sequencer

S2p can receive requests from any of the processor’s
thirty-two DMA channels. Once a command request has
been detected, S2p, operating as a slave sequencer, fetches
a DMAdescriptor from an SRAM location dedicated to the
requesting channel which includes the SRAM address, Pci
address, Pci endian and request size. S2p then issues a
request to Pmo which in turn movesdata from the SRAM to
a Pci target. The process repeats until the entire request has
been satisfied at which time S2p writes ending status in to
the SRAM DMAdescriptor area and sets the channel done
bit associated with that channel. S2p then monitors the DMA
channels for additional requests. FIG. 70 is an illustration
showing the major blocks involved in the movementof data
from SRAM to Pcitarget.
PCI to SRAM Sequencer (P2s).

The P2s sequencer (See FIG. 71) acts as both a slave
sequencer and a master sequencer. Servicing channel
requests issued by the Cpu, the P2s sequencer manages
movement of data from Pci bus to SRAM byissuing
requests to the Pmi sequencer.

P2s can receive requests from any of the processor’s
thirty-two DMA channels. Once a command request has
been detected, P2s, operating as a slave sequencer, fetches a
DMAdescriptor from an SRAM location dedicated to the
requesting channel which includes the SRAM address, Pci
address, Pci endian and request size. P2s then issues a
request to Pmo which in turn movesdata from the Pci target
to the SRAM.Theprocessrepeats until the entire request has
been satisfied at which time P2s writes endingstatus in to the
DMAdescriptor area of SRAM andsets the channel donebit
associated with that channel. P2s then monitors the DMA

channels for additional requests. FIG. 72 is an illustration
showing the major blocks involved in the movementof data
from a Pci target to DRAM.
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Dram to SRAM Sequencer (D2s)
The D2s sequencer (See FIG. 73) acts as both a slave

sequencer and a master sequencer. Servicing channel
requests issued by the Cpu, the D2s sequencer manages
movement of data from DRAM to SRAM by issuing
requests to the Xrd sequencer.

D2s can receive requests from any of the processor’s
thirty-two DMA channels. Once a command request has
been detected, D2s, operating as a slave sequencer, fetches
a DMAdescriptor from an SRAM location dedicated to the
requesting channel which includes the DRAM address,
SRAM address and request size. D2s then issues a request
to the Xrd sequencer causing the transfer of data to the
SRAM.Theprocess repeats until the entire request has been
satisfied at which time D2s writes ending status in to the
SRAM DMAdescriptor area and sets the channel donebit
associated with that channel. D2s then monitors the DMA

channels for additional requests. FIG. 74 is an illustration
showing the major blocks involved in the movementof data
from DRAM to SRAM.

SRAM to DRAM Sequencer (S24)
The S2d sequencer (See FIG. 75) acts as both a slave

sequencer and a master sequencer. Servicing channel
requests issued by the Cpu, the S2d sequencer manages
movement of data from SRAM to DRAM by issuing
requests to the Xwr sequencer.

S2d can receive requests from any of the processor’s
thirty-two DMA channels. Once a command request has
been detected, S2d, operating as a slave sequencer, fetches
a DMAdescriptor from an SRAM location dedicated to the
requesting channel which includes the DRAM address,
SRAM address, checksum reset and request size. S2d then
issues a request to the Xwr sequencercausing the transfer of
data to the DRAM. The process repeats until the entire
request has beensatisfied at which time S2d writes ending
status in to the SRAM DMAdescriptor area and sets the
channel done bit associated with that channel. S2d then

monitors the DMA channels for additional requests. FIG. 76
is an illustration showing the major blocks involved in the
movement of data from SRAM to DRAM.

PCI Slave Input Sequencer (Psi)
The Psi sequencer (See FIG. 77) acts as both a slave

sequencer and a master sequencer. Servicing requests issued
by a Pci master, the Psi sequencer manages movement of
data from Pci bus to SRAM and Pci bus to DRAM via

SRAM by issuing requests to the SramCtrl and Xwr
sequencers.

Psi manages write requests to configuration space, expan-
sion rom, DRAM, SRAM and memory mappedregisters.
Psi separates these Pci bus operations in to two categories
with different action, taken for each. DRAM accessesresult
in Psi generating write request to an SRAM buffer followed
with a write request to the Xwr sequencer. Subsequent write
or read DRAM operations are retry terminated until the
buffer has been emptied. An event notification is set for the
processor allowing message passing to occur through
DRAM space.

All other Pci write transactions result in Psi posting the
write information including Pci address, Pci byte marks and
Pci data to a reserved location in SRAM,then setting an
event flag which the event processor monitors. Subsequent
writes or reads of configuration, expansion rom, SRAM or
registers are terminated with retry until the processor clears
the event flag. This allows the INIC pipelining levels to a
minimum for the posted write and give the processor ample
time to modify data for subsequent Pci read operations.

FIG. 77 depicts the sequence of events when Psiis the
target of a Pci write operation. Note that events 4 through 7
occur only when the write operation targets the DRAM.
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PCI Slave Output Sequencer (Pso)
The Pso sequencer (See FIG. 78) acts as both a slave

sequencer and a master sequencer. Servicing requests issued
by a Pci master, the Pso sequencer manages movement of
data to Pci bus from SRAM andto Pci bus from DRAM via

SRAM byissuing requests to the SramCtrl and Xrd sequenc-ers.

Pso managesread requests to configuration space, expan-
sion rom, DRAM, SRAM and memory mappedregisters.
Pso separates these Pci bus operations in to two categories
with different action taken for each. DRAM accesses result

in Pso generating read request to the Xrd sequencer followed
with a read request to SRAM buffer. Subsequent write or
read DRAM operations are retry terminated until the buffer
has been emptied.

All other Pci read transactions result in Pso posting the
read request information including Pci address and Pci byte
marksto a reserved location in SRAM,thensetting an event
flag which the event processor monitors. Subsequent writes
or reads of configuration, expansion rom, SRAM orregisters
are terminated with retry until the processor clears the event
flag. This allows the INIC to use a microcoded response
mechanism to return data for the request. The processor
decodes the request information, formulates or fetches the
requested data and stores it in SRAM thenclears the event
flag allowing Pso to fetch the data and return it on the Pei
bus.

FIG. 78 depicts the sequence of events when Psois the
target of a Pci read operation.
Frame Receive Sequencer (RevX)

The receive sequencer (See FIG. 79) (RevSeq) analyzes
and manages incoming packets,stores the result in DREAM
buffers, then notifies the processor through the receive queue
(RevQ) mechanism. The process begins when a buffer
descriptor is available at the output of the FreeQ. RevSeq
issues a request to the Qmg which respondsby supplying the
buffer descriptor to RevSeq. RevSeq then waits for a receive
packet. The Mac, network,transport and session information
is analyzed as each byte is received and stored in the
assembly register (AssyReg). When four bytes of informa-
tion is available, RcvSeq requests a write of the data to the
SRAM.Whensufficient data has been stored in the SRAM

based receive fifo, a DRAM write request is issued to Xwr.
The process continues until the entire packet has been
received at which point RevSeq stores the results of the
packet analysis in the beginning of the DRAM buffer. Once
the buffer and status have both been stored, RevSeq issues
a write-queue request to Qmg. Qmg responds bystoring a
buffer descriptor and a status vector provided by RevSeq.
The process then repeats. If RcvSeq detects the arrival of a
packet before a free bufferis available, it ignores the packet
and sets the FrameLost status bit for the next received

packet.
FIG. 80 depicts the sequence of events for successful

reception of a packet followed by a definition of the receive
buffer and the buffer descriptor as stored on the RevQ. FIG.
90 shows the Receive Buffer Descriptor. FIGS. 91-93 show
the Receive Buffer Format.

Frame Transmit Sequencer (XmtX)
The transmit sequencer (See FIG. 85) (XmtSeq) analyzes

and manages outgoing packets, using buffer descriptors
retrieved from the transmit queue (XmtQ) then storing the
descriptor for the freed buffer in the free buffer queue
(FreeQ). The process begins when a buffer descriptor is
available at the output of the XmtQ. XmtSeq issues a request
to the Qmg which responds by supplying the buffer descrip-
tor to XmtSeq. XmtSeq then issues a read request to the Xrd
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sequencer. Next, XmtSeq issues a read request to SramCtrl
then instructs the Mac to begin frame transmission. Once the
frame transmission has completed, XmtSeq stores the buffer
descriptor on the FreeQ thereby recycling the buffer.

FIG. 86 depicts the sequence of events for successful
transmission of a packet followed by a definition of th(e,
receive buffer and the buffer descriptor as stored on the
XmtQ. FIG. 87 shows the Transmit Buffer Descriptor. FIG.
88 shows the Transmit Buffer Format. FIG. 89 show the
Transmit Status Vector.

Queue Manager (Qmg)
The INIC includes special hardware assist for the imple-

mentation of message and pointer queues. The hardware
assist is called the queue manager (See FIG. 90) (Qmg) and
manages the movement of queue entries between Cpu and
SRAM, between DMA sequencers and SRAM as well as
between SRAM and DRAM. Queues comprise three distinct
entities; the queue head (QHd), the queuetail (QTI) and the
queue body (QBdy). QHdresides in 64 bytes of scratch ram
and provides the area to which entries will be written
(pushed). QTI resides in 64 bytes of scratch ram and
contains queue locations from which entries will be read
(popped). QBdy resides in DRAM and containslocations for
expansion of the queue in order to minimize the SRAM
space requirements. The QBdy size depends upon the queue
being accessed and the initialization parameters presented
during queue initialization.

Omgaccepts operations from both Cpu and DMA sources
(See FIG. 91). Executing these operations at a frequency of
133 MHz, Omgreserves even cycles for DMA requests and
reserves odd cycles for Cpu requests. Valid Cpu operations
include initialize queue (InitQ), write queue (WrQ) and read
queue (RdQ). Valid DMA requests include read body
(RdBdy) and write body (WrBdy). Qmg working in unison
with Q2d and D2gq generate requests to the Xwr and Xrd
sequencers to control the movement of data between the
QHd, QTI and QBdy.

FIG. 90 shows the major functions of Qmg. The arbiter
selects the next operation to be performed. The dual-ported
SRAM holds the queue variables HdWrAddr, HdRdAddr,
TIWrAddr, TIRdAddr, BdyWrAddr, BdyRdAddr and QSz.
Qmg accepts an operation request, fetches the queue vari-
ables from the queue ram (Qram), modifies the variables
based on the current state and the requested operation then
updates the variables and issues a read or write requestto the
SRAM controller. The SRAM controller services the

requests by writing the tail or reading the head and returning
an acknowledge.
DMAOperations

DMAoperations are accomplished through a combination
of thirtytwo DMA channels (DmaCh) and sever, DMA
sequencers (DmaSeq). Each DMA channel provides a
mechanism whereby a Cpu can issue a commandto any of
the seven DMA sequencers. Where as the DMA channels are
multi-purpose, the DMA sequencers they command are
single purpose as shown in FIG. 92.

The processors manage DMAinthe following way. The
processor writes a DMA descriptor to an SRAM location
reserved for the DMA channel. The format of the DMA

descriptor is dependent upon the targeted DMA sequencer.
The processor then writes the DMA sequencer numberto the
channel commandregister.

Each of the DMA sequencers polls all thirtytwo DMA
channels in search of commands to execute. Once a com-

mand request has been detected, the DMA sequencerfetches
a DMAdescriptor from a fixed location in SRAM. The
SRAM location is fixed and is determined by the DMA
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channel number. The DMA sequencer loads the DMA
descriptor in to it’s own registers, executes the command,
then overwrites the DMA descriptor with ending status.
Once the command has halted, due to completion orerror,
and the ending status has been written, the DMA sequencer
sets the done bit for the current DMA channel.

The done bit appears in a DMAeventregister which the
Cpu can examine. The Cpu fetches ending status from
SRAM,then clears the done bit by writing zeroes to the
channel command (ChCmd) register. The channel is now
ready to accept another command.

The format of the channel commandregister is as shown
in FIG. 93. The format of the P2d or P2s descriptor is; as
shownin FIG. 94. The format of the S2p or D2p descriptor
is as shown in FIG. 95. The format of the S2d, D2d or D2s
descriptor is as shown in FIG. 96. The format of the ending
status of all channels is as shown in FIG. 97. The format of

the ChEvnt register is as shown in FIG. 98. FIG. 99 is a
block diagram of MAC CONTROL (Macctrl).
Load Calculations

The following load caculations are based on the following
basic formulae:

N=X*R(Little’s Law)

where

N=numberof jobs in the system (either in progress or in
a queue),

X=system throughput,

R=response time (which includes time waiting in queues).

U=X*S (from Little’s Law)

where:

S=service time,
Usutilization.

R=S (1-U) for exponential service times (which is the
worst-case assumption).

A 256-byte frame at 100 Mb/sec takes 20 usec per frame.
4*100 Mbit ethernets receiving at full frame rateis:

51200 (4*12800) frames/sec @ 1024 bytes/frame,
102000 frames/sec @ 512 bytes/frame,

204000 frames/sec @ 256 bytes/frame.
The following calculations assume 250 instructions/frame,
45 nsec clock. Thus S=250*45 nsecs=11.2 usecs.

Thruput Utilization Response Nbr in system
Av Frame Size (X) (U) (R) (N)

1024 51200 0.57 26 usecs 1.3
$12 102000 >1 —_ —_
256 204000 >1 —_ —_

Lets lookat it for varying instructions per frame assuming
512 bytes per frame average.

Instns Service

Per Time Thruput Utilization Response Nbrin system
Frame (8) &) (u) (R) (N)
250 11.2 102000 >1 _ _

usec

250 11.2 85000 (*) 0.95 224 usecs 19
250 11.2 80000 (**) 0.89 101 8
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Instns Service

Per Time Thruput Utilization Response Nbr in system
Frame (8) (X) (u) (R) (N)
225 10 102000 1.0 —_ —_

225 10 95000 (*) 0.95 200 19
225 10 89000 (**) 0.89 90 8200 9 102000 0.9 90 9
150 6.7 102000 0.68 20 2

(*) shows what frame rate can be supported to get a utilization of less
than 1.
(**) shows what frame rate can be supported with 8 SRAM CCBbuffers
and at least 8 process contexts.

If 100 instructions/frame is used, S=100*45 nsecs=4.5
usecs, and we can support 256 byte frames:

100 4.5 204000 0.91 50 10

Note that these calculations assume that response times
increase exponentially as utilization increases. This is the
worst-case assumption, and probably may not betrue for our
system. The figures show that to support a theoretical full
4*100 Mbit receive load with an average frame size of 512
bytes, there will need to be 19 active “jobs” in the system,
assuming 250 instructions per frame. Due to SRAM
limitations, the current design specifies 8 SRAM buffers for
active TCBs, and not to swap a TCB out of SRAM onceit
is active. So under these limitations, the INIC will not be
able to keep up with the full frame rate. Note that the initial
implementation is trying to use only 8 KB of SRAM,
although 16 KB may beavailable, in which case 19 TCB
SRAM buffers could be used. This is a cost trade-off. The
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real point here is the effect of instructions/frame on the
throughput that can be maintained.If the instructions/frame
drops to 200, then the INIC is capable of handling the full
theoretical load (102000 frames/second) with only 9 active
TCBs. If it drops to 100 instructions per frame, then the
INIC can handle full bandwidth at 256 byte frames (204000
frames/second) with 10 active CCBs. The bottom line is that
ALLhardware-assist that reduces the instructions/frame is

really worthwhile. If header-assist hardware can save us 50
instructions per framethen it goes straight to the throughput
bottom line.

Whatis claimedis:

1. Asystem for communication between a local host and
a remote host that are connected by a network, the system
comprising:

a device connected to the network and to the local host,
said device including hardware logic for processing
data packets,

a protocol processing stack disposed in the local host and
configured for passing a communication control block
to said device, with said communication control block
defining a connection between the local host and the
remote host,

wherein said device and said protocol processing stack are
arranged such that a message transferred between said
network and said local host is generally processed by
said device instead of said protocol processing stack
whensaid device is holding said communication con-
trol block.

2. The system of claim 1, wherein the device comprises
means for processing TCP data packets.

* * * * *
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