
INTEL Ex.1002.001

x a

 Old‘S'nOL60r,
TO THE COMMISSIONERFOR PATENTS:

Transmitted herewith is a patent application identified as follows:

First-named inventor: Laurence B. Boucher

Assignee: Alacritech, Inc.
Filing Date: September 27, 2002
Title: FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO A TCP CONNECTION

‘This application claims the benefit under 35 USC §120 (prior application not abandoned)of:

60/098296, filed August 27, 1998.

US.
US.
US.
US.
US.
US.
US.
US.
US.
US.
US.

(X)

(xX)

(X)

[.PriororApplication:“F“Fyast-Path Apparatus|Eor Receiving DatDataaCorrespondingto.toa TCPConnectioron”)
Serial No.: 10/092,967_ f

FilingDate: March 6, 2002
Atty. Docket: ALA-006C

{(Brtiner:ZamMaung
This application claims the benefit under 35 USC §120 of Application Serial No. 10/092,967, filed March 6,

2002, which in turn claims the benefit under 35 USC §120 of Application Serial No. 10/023,240, filed December
15, 2001, which in turn claims the benefit under 35 USC 8120 of Application Serial No. 09/464,283, filed
December 15, 1999, which in turn claims the benefit under 35 USC §120 of Application Serial No. 09/439,603,
filed Novembcr 12, 1999, which in turn claims the benefit under 35 USC §120 of Application Serial No.
09/067,544,filed April 27, 1998, which in tum claims the benefit under 35 USC §119 of Provisional Application
Serial No. 60/061,809, filed October 14, 1997.

This application also claims the benefit under 35 USC §120 of Application Serial No. 09/384,792, filed
August 27, 1999, whichin turn claims the benefit under 35 USC §120 of Application Serial No. 09/141,713, filed
August 28, 1998, which in turn claims the benefit under 35 USC §119 of Provisional Application Serial No.

This application also claims the benefit under 35 U.S.C. §120 of the following:
Patent Application Serial No.
Patent Application Serial No:
Patent Application Serial No.
Patent Application Serial No.
Patent Application Serial No.
Patent Application Scrial No.
Patent Application Serial No.
Patent Application Serial No.
Patent Application Serial No.
Patent Application Serial No.
Patent Application Serial No.

09/416,925 (ALA-005), filed October 13, 1999;
09/514,425 (ALA-007), filed February 28, 2000;
09/675,484 (ALA-010A), filed September 29, 2000;
09/675,700 (ALA-010B), filed September 29, 2000;
09/789,366 (ALA-013), filed February 20, 2001;
09/801,488 (ALA-011), filed March 7, 2001;
09/802,551 (ALA-012), filed March 9, 2001;
09/802,426 (ALA-014), filed March 9, 2001;
09/802,550 (ALA-015), filed March 9, 2001;
09/855,979 (ALA-016), filed March 14, 2001; and
09/970,124 (ALA-020), filed October 2, 2001.

The specification contains a statementclaiming priority under 35 USC § 120 and claiming the benefit under
35 U.S.C. §119.

The entire disclosure of each of the prior applications (10/092,967; 10/023,240; 09/464,283; 09/439,603;
09/067,544; 09/384,792; 09/141,713; 09/416,925; 09/514,425; 09/675,484; 09/675,700; 09/789,366;
09/801,488; 09/802,551; 09/802,426; 09/802,550; 09/855,979; 09/970,124) 1s consideredas being partof the
disclosure of the accompanying application and is hereby incorporated by reference therein.
The entire disclosure of each of the prior provisional applications (60/061,809; 60/098,296) is considered as
being part ofthe disclosure of the accompanying application and is hereby incorporated by referencetherein.

INTEL Ex.1002.001

INTEL Ex.1002.002

i.
b of

Se..

Enclosedare:

pages Application Transmittal Letter
145 pages Specification

pages Claims
page Abstract

89—pages Drawings
4 pages Declaration/PowerofAttorney from prior

application 10/092,967 (signed - copy)
4 pages Declaration/Power of Attorney from prior

application 10/092,967 (signed - copy)
page CD Appendix Transmittal Letter

x CD Appendix (two copics)

tN

Newly Executed Declaration Not Required:

aK

page Terminal Disclaimer Over A Prior Patent
A checkforfiling fee ($ 922.00)
Return Receipt Postcard

A newly executed declaration is not filed in this application because, under 37 CFR 1.63(d)(1), a newly executed
declaration is not required because: the prior application contained a declaration as prescribed by 37 CFR 1.63; the
continuation application (this application)is filed by all of the inventors namedin the prior application; the specification
and drawings in the continuation application (this application) contain no matter that would have been new matter in the
prior application; and a copy of the executed declaration (there were two)in the prior applicationis being submitted in the
continuation application (this application).

Thefiling fee is calculated as follows:

CLAIMSASFILED

I hereby certify that this is being deposited with the U.S. Postal
Service “Express Mail Post Office to Addressee” service under
37-CFR § 1.10 on the date indicated below and 1s addressedto:

Box Patent Application
Assistant Commissionerfor Patents
Washington, D.C. 20231

 By:

Typed Name: Mark Lauer

Express Mail Label No.: EL928548779US.

Date of Deposit: F2/7-a2. a

$922.00

Respectfully submitted,

By: fee
Mark Lauer

Attorney for Applicants
Reg. No. 36,578

(~ Customer No.2455017~~

Date: GS-27 -22.

Correspondence Address:

Mark Lauer, Patent Attorney
7041 Koll Center Parkway, Suite 280
Pleasanton, California 94566
Phone: (925) 484-9295
Fax: (925) 484-9291

INTEL Ex.1002.002

INTEL Ex.1002.003

Inventors:

Filing Date:

Title:

Sir:

teRE iy aTws Reg Te TS
Ch Supa we AB ule

Php Pop AoA atty2 Red? How

TO THE ASSISTANT COMMISSIONER FOR PATENTS:

Laurence B. Boucher,etal. Atty Docket: ALA-006E

September 27, 2002 Serial No.: Unknown

FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO
A TCP CONNECTION

Compact Disk Transmittal Letter per 37 CFR 1.52(e)3(ii1))

Transmitted herewith are:

Two Labeled Compact Discs — Recordable (CD-R) — “Copy 1”and “Copy 2,” each in a

CD case and contained in a padded envelope.

The content on the two discs is identical

The machine format is: IBM-PC

The operating system is: MS-Windows

The creation date of the CDsis: September 26, 2002

The name,date and size of the files on the CDsarelisted below:

There are three folders on each disc: 1) CD Appendix A,

2) CD Appendix B, and

3) CD Appendix C.

Folder Appendix A contains twofiles:

CD Appendix A Title Page.txt. Its size is 370 bytes. It was created 9/26/02.

Rev.v. Its size is 84.4KB. It was created 1/7/99.

Folder Appenidix B contains twofiles:

CD Appendix B Title Page.txt. Its size is 495 bytes. It was created 9/26/02.

Microcode.txt. Its size is 105 KB. It was created 10/1/99.

INTEL Ex.1002.003

INTEL Ex.1002.004

2

-*.W US geo ae gee we ene eee py eyed. BOP fee Healt He Ua lt Goa 4OUR aLUr,
Ae MEA unm Ey

nt may
Eres

Folder Appendix C contains three files:

CD Appendix C Title Page.txt. Its size is 416 bytes. It was created 9/26/02.

atcpsource.wrd.ixt. Iis size is 778 KB. It was created (written to disc) 2/19/02.

simbasource.wrd.txt. Its size is 262 KB. It was created (written to disc) 2/19/02.

Respectfully submitted,

CERTIFICATE OF MAILING

I hereby certify that this correspondence 1s being deposited with Mark Lauer

the United States Postal Service as Express Mail Label No. Reg. No. 36,578
EL928365779USin an envelope addressed to: Box PATENT 7041 Koll Center

APPLICATION,Assistant Commissionerfor Patents, Parkway
Washington, D.C. 20231, on September 27, 2002. Suite 280

Pleasanton, CA 94566va Date: 7 =Z7 ~22 a Tel: (925) 484-9295
fo Mark Lauer Fax: (925) 484-929]

v

'

My

\

|

2

INTEL Ex.1002.004

INTEL Ex.1002.005

ia ih wee a DeadHae

ALA-006E

TERMINAL DISCLAIMER OVER A PRIOR PATENT: 10/03/2002 DTESSEM 00000026 10260;; 8In re Application of: Laurence B. Boucheret al. 93 FC:148 a
110.00 Op

Application No.: Unknown

Filed: September 27, 2002

Title: FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

Express Mail No.: EL928365779US

The owner, Alacritech, Inc., of a one hundred percentinterest in the instant
_ application hereby disclaims, except as provided below,the terminal part of the statutory
’ term ofany patent granted ontheinstant application, which would extend beyond the

expiration date of the full statutory term defined in 35 U.S.C. 154 to 156 and 173,as
presently shortened by any terminal disclaimer, of prior U.S. Patent Nos. 6,226,680 and
6,247,060. The ownerhereby agrees that any patent so granted on the instant application
shall be enforceable only for and during such period that it and the prior patents are
commonly owned. This agreement runs with any patent granted on the instant application
and is binding upon the grantee, its successorsor assigns.

In making the above disclaimer, the owner does not disclaim the terminal part of
any patent granted on the instant application that would extend to the expiration date of
the full statutory term as defined in 35 U.S.C. 154 to 156 and 173 of the prior patents, as
presently shortened by any terminal disclaimer, in the event that they later: expire for
failure to pay a maintenance fee, are held unenforceable, are found invalid by a court of
competent jurisdiction, are statutorily disclaimed in whole or terminally disclaimed under
37 CFR 1.321, have all claims canceled by a reexamination certificate, are reissued, or
are in any manner terminated prior to the expiration of its full statutory term as presently
shortened by any terminal disclaimer.

I hereby declare that all statements made herein of my own knowledgeare true
and thatall statements made on information and belief are believed to be true; and further
that these statements were made with the knowledgethat willful false statements and the
like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title
18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

The undersigned is an attorney or agent of record.

Date: 7 22, Gee _
Mark Lauer

Registration No. 36,578

The terminal disclaimer fee under 37 CFR 1.20(d) is included.
a el

Ne NN

INTEL Ex.1002.005

INTEL Ex.1002.006

SUDer HT oF Beeee
fed? bs Halk WP Fees at thal’ En

YO.
* ALA-006E

FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDINGTO A TCP CONNECTION

Laurence B. Boucher

5 Stephen E. J. Blightman

Peter K. Craft

David A. Higgen

Clive M.Philbrick

Daryl D. Starr

10

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the bencfit under 35 U.S.C. §120 of U.S. Patent Application Serial

No. 10/092,967, entitled “FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION,”filed March 6, 2002, by Laurence B.

15 Boucheret al., which in turn claims the benefit under 35 U.S.C. §120 of U.S. Patent

Application Serial No. 10/023,240 (Attorney Docket No. ALA-006A), entitled “TRANSMIT

_ FAST-PATH PROCESSING ON TCP/IP OFFLOAD NETWORK INTERFACEDEVICE,”

filed December 15, 2001, by Laurence B. Boucheret al., which in turn claims the benefit
under 35 U.S.C. §120 of U.S. Patent Application Serial No. 09/464,283 (Attomey Docket No.

20 ALA-006), entitled “INTELLIGENT NETWORK INTERFACE DEVICE AND SYSTEM

FOR ACCELERATED COMMUNICATION”, filed December 15, 1999, by Laurence B.

Boucheret al., which in turn claims the benefit under 35 U.S.C. §120of U.S. Patent

Application Serial No. 09/439,603 (Attorney Docket No. ALA-009), entitled “INTELLIGENT

NETWORK INTERFACE SYSTEM AND METHOD FOR ACCELERATED PROTOCOL

25 PROCESSING”,filed November 12, 1999, by Laurence B. Boucher et al., which in turn

claims the benefit under 35 U.S.C. §120 of U.S. Patent Application Serial No. 09/067,544

(Attorney Docket No. ALA-002), entitled “TINTELLIGENT NETWORK INTERFACE

SYSTEM AND METHOD FOR ACCELERATED PROTOCOL PROCESSING”,filed April

27, 1998, which in turn claims the benefit under 35 U.S.C. § 119(e)(1) of the Provisional

30~=—sApplication filed under 35 U.S.C. §111(b) entitled “INTELLIGENT NETWORK

INTEL Ex.1002.006

INTEL Ex.1002.007

ALA-006E

10

15

20

25

30

INTERFACE CARD AND SYSTEM FOR PROTOCOL PROCESSING,” Serial No.

60/061,809 (Attorney Docket No. ALA-001),filed on October 14, 1997,

This application also claims the benefit under 35 U.S.C. §120 of U.S. Patent Application

Serial No. 09/384,792 (Attorney Docket No. ALA-008), entitled “INTELLIGENT

NETWORK INTERFACE DEVICE AND SYSTEM FOR ACCELERATED

COMMUNICATION,”filed August 27, 1999, which in turn claims the benefit under 35

U.S.C. §120 of U.S. Patent Application Serial No. 09/141,713 (Attorney Docket No. ALA-

003), entitled “INTELLIGENT NETWORK INTERFACE DEVICE AND SYSTEM FOR

ACCELERATED PROTOCOL PROCESSING”, filed August 28, 1998, which both claim the

benefit under 35 U.S.C, § 119(e)(1) of the Provisional Application filed under 35 U.S.C.

§111(b) entitled “INTELLIGENT NETWORK INTERFACE DEVICE AND SYSTEM FOR

ACCELERATED COMMUNICATION,”Serial No. 60/098,296 (Attorney Docket No. ALA-

004), filed August 27, 1998.

This application also claims the benefit under 35 U.S.C. §120 of U.S. Patent Application

Serial No. 09/416,925 (Attorney Docket No. ALA-005), entitled “QUEUE SYSTEM FOR
- MICROPROCESSORS,”filed October 13, 1999, U.S. Patent Application Serial No.

09/514,425 (Attorney Docket No. ALA-007), entitled “PROTOCOL PROCESSING STACK

FOR USE WITH INTELLIGENT NETWORK INTERFACE CARD,”filed February 28,

2000, U.S. Patent Application Serial No. 09/675,484 (Attorney Docket No. ALA-010A),

entitled “INTELLIGENT NETWORK STORAGE INTERFACE SYSTEM,”filed September

29, 2000, U.S. Patent Application Serial No. 09/675,700 (Attorney Docket No. ALA-01 0B),

entitled “INTELLIGENT NETWORK STORAGE INTERFACE DEVICE,”filed September

29, 2000, U.S. Patent Application Serial No. 09/789,366 (Attorney Docket No. ALA-013),

entitled “OBTAINING A DESTINATION ADDRESS SO THAT A NETWORK

INTERFACE DEVICE CAN WRITE NETWORK DATA WITHOUT HEADERS

DIRECTLY INTO HOST MEMORY,”filed February 20, 2001, U.S. Patent Application

Serial No, 09/801 ,488 (Attorney Docket No. ALA-011), entitled “PORT AGGREGATION

FOR NETWORK CONNECTIONS THAT ARE OFFLOADED TO NETWORK

INTERFACE DEVICES,”filed March 7, 2001, U.S. Patent Application Serial No. 09/802,551

(Attorney Docket No. ALA-012), entitled “INTELLIGENT NETWORK STORAGE

INTERFACE SYSTEM,”filed March 9, 2001, U.S. Patent Application Serial No. 09/802,426

(Attorney Docket No. ALA-014), entitled “REDUCING DELAYS ASSOCIATED WITH
2

INTEL Ex.1002.007

INTEL Ex.1002.008

ALA-006E

10

15

20

25

INSERTING A CHECKSUM INTO A NETWORK MESSAGE,”filed March 9, 2001, U.S.
Patent Application Serial No. 09/802,550 (Attorney Docket No. ALA-015), entitled

“INTELLIGENT INTERFACE CARD AND METHOD FOR ACCELERATED PROTOCOL

PROCESSING,”filed March 9, 2001, U.S. Patent Application Serial No. 09/855,979

(Attorney Docket No. ALA-016), entitled “NETWORK INTERFACE DEVICE

~ EMPLOYING DMA COMMAND QUEUE,”filed March 14, 2001, U.S. Patent Application

Serial No. 09/970,124 (Attorney Docket No. ALA-020), entitled “NETWORK INTERFACE

DEVICE THAT FAST-PATH PROCESSES SOLICITED SESSION LAYER READ

COMMANDS,”filed October 2, 2001.

The subject matter ofall of the above-identified patent applications (including the

subject matter in the Microfiche Appendix of U.S. Application Serial No. 09/464,283), and of

the two above-identified provisional applications, is incorporated by reference herein.

REFERENCE TO COMPACT DISC APPENDIX

The Compact Disc Appendix (CD Appendix), whichis a part of the present disclosure,

includes three folders, designated CD Appendix A, CD Appendix B, and CD Appendix C on

the compact disc. CD Appendix A contains a hardware description language (verilog code)

description of an embodimentof a receive sequencer. CD Appendix B contains microcode

executed by a processorthat operates in conjunction with the receive sequencer of CD

Appendix A. CD Appendix C contains a device driver executable on the host as well as ATCP

code executable on the host. A portion of the disclosure of this patent document contains

material (other than any portion of the ‘“‘free BSD” stack included in CD Appendix C) which is

subject to copyright protection. The copyright ownerof that material has no objection to the

facsimile reproduction by anyone of the patent documentor the patent disclosure, as it appears

in the Patent and Trademark Office patentfiles or records, but otherwise reserves all copyright

rights.

TECHNICAL FIELD

The present invention relates generally to computer or other networks, and more

particularly to processing of information communicated between hosts such as computers

connected to a network.

INTEL Ex.1002.008

INTEL Ex.1002.009

Wop Aa Site ae aea yO eon
Boo BOP a al ae BOP a!

ALA-006E

10

20

25

30

BACKGROUND

The advantages of network computing are increasingly evident. The convenience and

efficiency of providing information, communication or computational powerto individuals at

- their personal computeror other end user devices has led to rapid growth of such network

computing, including internet as well as intranet devices and applications.

Asis well known, most network computer communication is accomplished with the aid of

a layered software architecture for moving information between host computers connected to

the network. The layers help to segregate information into manageable segments, the gencral

functions of cach layer often based on an international standard called Open Systems

Interconnection (OSI). OSI sets forth seven processing layers through which information may

pass whenreceived by a host in order to be presentable to an end user. Similarly, transmission

of information from a host to the network maypass through those seven processing layers in
reverse order. Each step of processing and service by a layer may include copying the

processed information.. Another reference modelthat is widely implemented, called TCP/IP

(TCP stands for transport control protocol, while IP denotes internet protocol) essentially

employs five of the seven layers of OSI.

Networks may include, for instance, a high-speed bus such as an Ethernet connection or an

internet connection between disparate local arca networks (LANs), cach of which includes

multiple hosts, or any of a variety ofothcr known meansfor data transfer between hosts.

According to the OSI standard, physical layers are connected to the network at respective

hosts, the physical laycrs providing transmission and receipt of raw data bits via the network.

A datalink layer is serviced by the physical layer of each host, the data link layers providing

- frame division anderror correction to the data received from the physical layers, as well as

processing acknowledgment framessent by the receiving host. A network layer of each hostis

serviced by respective data link layers, the network layers primarily controlling size and

coordination of subnets of packets of data.

A transport layer is serviced by each network layer and a session layer is serviced by each

transport layer within each host. Transport layers accept data from their respective session

layers and split the data into smaller units for transmission to the other host’s transport layer,

which concatenates the data for presentation to respective presentation layers. Scssion layers

allow for enhanced communication control between the hosts. Presentation layers are serviced

by their respective session layers, the presentation layers translating between data semantics
4

INTEL Ex.1002.009

INTEL Ex.1002.010

ALA-006E

10

15

20

25

30

iyGS Sb hyoe get mn Sg ghCg Seee
aul, RQGa eR OR PWS un Be CIE Brae ot EanBee

and syntax which may bepeculiar to each host and standardized structures of data

representation. Compression and/or encryption of data may also be accomplishedat the

presentation level. Application layers are serviced by respective presentation layers, the

application layers translating between programsparticular to individual hosts and standardized

programsfor presentation to either an application or an end user. The TCP/IP standard

includes the lower four layers and application layers, but integrates the functions of session

layers and presentation layers into adjacent layers. Generally speaking, application,

presentation and session layers are defined as upper layers, while transport, network and data

link layers are defined as lowerlayers.

The rules and conventions for each layer are called the protocol of that layer, and since the

protocols and general functions of each layer are roughly equivalent in various hosts, it is

useful to think of communication occurring directly between identical layers of different hosts,

even thoughthese peer layers do not directly communicate without information transferring

sequentially through each layer below. Each lower layer performsa service for the layer

immediately aboveit to help with processing the communicated information. Each layer saves

- the information for processing and serviceto the next layer. Due to the multiplicity of

hardware and software architectures, devices and programs commonly employed, each layeris

necessary to insure that the data can makeit to the intended destination in the appropriate

form, regardless of variations in hardware and software that may intervene. .
In preparing data for transmission fromafirst to a second host, some control data is added

at each layer of thefirst host regarding the protocol of that layer, the control data being

indistinguishable from the original (payload) data for all lower layers of that host. Thus an

application layer attaches an application header to the payload data and sends the combined

data to the presentation layer of the sending host, which receives the combined data, operates

on it and addsa presentation headerto the data, resulting in another combined data packet.

The data resulting from combination of payload data, application header and presentation

headeris then passed to the session layer, which performs required operations including

attaching a session headerto the data and presenting the resulting combination of data to the

transport layer. This process continues as the information movesto lower layers, with a

transport header, network header and data link header andtrailer attached to the data at each of

those layers, with each step typically including data moving and copying, before sending the

data as bit packcts over the network to the second host.
5

INTEL Ex.1002.010

INTEL Ex.1002.011

ALA-006E

- 10

15

20 -

25

30

The receiving host generally performs the converse of the above-described process,

beginning with receiving the bits from the network, as headers are removed and data processed

in order from the lowest (physical) layer to the highest (application) layer before transmission

to a destination of the receiving host. Each layer of the receiving host recognizes and

manipulates only the headers associated with that layer, since to that layer the higher layer

control data is included with and indistinguishable from the payload data. Multiple interrupts,

valuable central processing unit (CPU)processing time and repeated data copies may also be

necessary for the receiving host to place the data in an appropriate form at its intended
destination.

The above description of layered protocol processing is simplified, as college-level

textbooks devoted primarily to this subject are available, such as Computer Networks, Third

Edition (1996) by Andrew S. Tanenbaum,whichis incorporated herein by reference. As

defined in that book, a computer network is an interconnected collection of autonomous

computers, such as internet and intranet devices, including local area networks (LANs), wide

. area networks (WANs), asynchronous transfer mode (ATM),ring or token ring, wired,

wireless, satellite or other means for providing communication capability between separate

processors. A computer is defined herein to include a device having both logic and memory

functions for processing data, while computers or hosts connected to a network are said to be

heterogeneousif they function according to different operating devices or communicate via

different architectures.

As networks grow increasingly popular and the information communicated thereby

becomes increasingly complex and copious, the need for such protocol processing has

increased. It is estimated that a large fraction of the processing power of a host CPU may be

devoted to controlling protocol processes, diminishing the ability of that CPU to perform other

tasks. Network interface cards have been developed to help with the lowest layers, such as the

physical and data link layers. It is also possible to increase protocol processing speed by

simply adding more processing power or CPUs according to conventional arrangements. This

solution, however, is both awkward and expensive. But the complexities presented by various

networks, protocols, architectures, operating devices and applications generally require

extensive processing to afford communication capability between various network hosts.

INTEL Ex.1002.011

INTEL Ex.1002.012

2 owe ere his eysgh Wy AT at ey wrenSe Sh tip ae eis on; avutbs Coot Boe BLE Beak Be a LLP oak Be “a thee a” UE RLD.

ALA-006E

10

15

20

25

30

SUMMARY OF THE INVENTION

Thecurrent invention provides a device for processing network communicationthatgreatly

increases the speed ofthat processing and the efficiency oftransferring data being
communicated. The invention has been achieved by questioning the long-standing practice of
performing multilayered protocol processing on a general-purpose processor. The protocol
processing method andarchitecture that results effectively collapses the layers of a connection-
based, layered architecture such as TCP/IPinto a single wider layer whichis able to send
network data moredirectly to and from a desired location or buffer on a host. This accelerated

processing is provided to a host for both transmitting and receiving data, and so improves
performance whether oneor both hosts involved in an exchange of information have such a
feature.

The accelerated processing includes employing representative control instructions for a

given messagethat allow data from the message to be processed via a fast-path which accesses
message data directly at its source or delivers it directly to its intended destination. This fast-

path bypasses conventional protocol processing of headers that accompanythe data. The fast-
path employsa specialized microprocessor designed for processing network communication,
avoiding the delays andpitfalls of conventional software layer processing, such as repeated
copying andinterrupts to the CPU. Ineffect, the fast-path replaces the statcs that are

traditionally found in several layers of a conventional network stack with a single state
machine encompassingall those layers, in contrast to conventional rules that require rigorous
differentiation and separation ofprotocol layers. The host retains a sequential protocol
processing stack which can be employedfor setting up a fast-path connection or processing
message exceptions. The specialized microprocessor and the host intelligently choose whether

a given messageor portion of a message is processed by the microprocessoror the host stack.
One embodimentis a methodofgenerating a fast-path response to a packet received onto a

network interface device where the packet is received over a TCP/IP network connection and

where the TCP/IP network connectionis identified at least in part by a TCP source port, a TCP
destination port, an IP source address, and an IP destination address. The method comprises:
1) Examining the packet and determining from the packet the TCP source port, the TCP
destination port, the IP source address, and the IP destination address; 2) Accessing an
appropriate template header stored on the network interface device. The template header has

TCP fields and IP fields; 3) Employing a finite state machine that implements both TCP
7

INTEL Ex.1002.012

INTEL Ex.1002.013

ALA-006E

10

15

20°

25

30

protocol processing and IP protocol processingto fill in the TCP fields and IP fields of the

template header; and 4) Transmitting the fast-path response from the network interface device.

The fast-path response includesthe filled in template header and a payload. Thefinite state

machinedoesnot entail a TCP protocol processing layer and a discrete IP protocol processing

layer where the TCP and IP layers are executed one after another in sequence. Rather, the

finite state machine covers both TCP andIP protocol processing layers.

In one embodiment, buffer descriptors that point to packets to be transmitted arc pushed

onto a plurality of transmit queues. A transmit sequencer pops the transmit queues and obtains

the buffer descriptors. The buffer descriptors are then used to retrieve the packets from buffers

where the packets are stored. The retrieved packets are then transmitted from the network

interface device. In one embodiment, there are two transmit queues, one having a higher

transmission priority than the other. Packets identified by buffer descriptors on the higher

priority transmit queue are transmitted from the network interface device before packets

identified by the lower priority transmit queue.

Other structures and methodsare disclosed in the detailed description below. This

summary does not purport to define the invention. The invention is defined by the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a plan view diagram of a device of the present invention, including a host

computer having a communication-processing device for accelerating network

communication.

FIG.2 is a diagram of information flow for the host of FIG. 1 in processing network

communication, including a fast-path, a slow-path and a transfer of connection context

between the fast and slow-paths.

FIG. 3 is a flow chart of message receiving according to the present invention.

FIG. 4Ais a diagram of information flow for the host of FIG. 1 receiving a message packet

processed by the slow-path.

FIG.4Bis a diagram of information flow for the host of FIG. 1 receiving an initial message

packet processed by the fast-path.

FIG. 4Cis a diagram of information flow for the host of FIG. 4B receiving a subsequent
message packet processed by the fast-path.

INTEL Ex.1002.013

INTEL Ex.1002.014

ALA-006E

10

15

20

25

30

FIG.4D is a diagram of information flow for the host of FIG. 4C receiving a message

packet having anerror that causes processingto revert to the slow-path.

FIG,5 is a diagram of information flow for the host of FIG. 1 transmitting a message by

either the fast or slow-paths.

FIG.6 is a diagram of information flow for a first embodimentof an intelligent network

interface card (INIC) associated with a client having a TCP/IP processing stack.

FIG. 7 is a diagram of hardwarelogic for the INIC embodiment shownin FIG.6, including

a packet control sequencer and a fly-by sequencer.

FIG.8 is a diagram ofthe fly-by sequencer of FIG. 7 for analyzing headerbytes as they are

received by the INIC.

FIG.9 is a diagram of information flow for a second embodiment of an INIC associated

with a server having a TCP/IP processing stack.

FIG. 10 is a diagram of a command driverinstalled in the host of FIG. 9 for creating and

controlling a communication control block for the fast-path.

FIG, 11 is a diagram of the TCP/IP stack and commanddriver of FIG. 10 configured for

NetBios communications.

FIG. 12 is a diagram of a communication exchange between the client of FIG. 6 and the

server of FIG. 9,

FIG. 13 is a diagram of hardware functions included in the INIC of FIG.9.

FIG. 14 is a diagram of a trio ofpipelined microprocessors included in the INIC of FIG. 13,

including three phases with a processor in each phase. |
FIG. 15Ais a diagram ofa first phase of the pipelined microprocessor ofFIG. 14.

FIG. 15B is a diagram of a second phase of the pipelined microprocessorof FIG.14.
FIG. 15C is a diagram ofa third phase of the pipelined microprocessor of FIG. 14.

FIG. 16 is a diagram of a plurality of queue storage units that interact with the

microprocessor of FIG. 14 and include SRAM and DRAM.

FIG. 17 is a diagram ofa set of status registers for the queues storage units of FIG. 16.
FIG. 18 is a diagram of a queue manager, which interacts, with the queue storage units and

status registers of FIG. 16 and FIG. 17.

FIGs. 19A-D are diagramsof various stages of a least-recently-used register that is

employed for allocating cache memory.

INTEL Ex.1002.014

INTEL Ex.1002.015

ALA-006E

10

20

25

30

FIG.20 is a diagram of the devices used to operate the least-recently-used register of FIGs.
19A-D.

FIG. 21 is another diagram ofIntelligent Network Interface Card (INIC) 200 of Figure 13.

FIG. 22 is a diagram of the receive sequencer of FIG. 21.
FIG. 23 is a diagram illustrating a “‘fast-path” transfer of data of a multi-packet message

from INIC 200to a destination 2311 in host 20.
FIGS. 24-107 are associated with the description below entitled “Disclosure From

Provisional Application 60/061,809.”

DETAILED DESCRIPTION

FIG. 1 showsa host 20 of the present invention connected by a network 25 to a remote host

22. The increase in processing speed achieved by the present invention can be provided with

an intelligent network interface card (INIC)thatis easily and affordably added to an existing
host, or with a communication processing device (CPD)that is integrated into a host, in either

case freeing the host CPU from mostprotocol processing and allowing improvements in other

tasks performed by that CPU. The host 20 in a first embodiment contains a CPU 28 and a

- CPD 30 connected by a host bus 33. The CPD 30 includes a microprocessor designed for

processing communication data and memory buffers controlled by a direct memory access

(DMA) unit. Also connected to the host bus 33 is a storage device 35, such as a

semiconductor memory or disk drive, along with any related controls.

Referming additionally to FIG. 2, the host CPU 28 controls a protocol processing stack 44

housedin storage 35, the stack including a data link layer 36, network layer 38, transport layer

40, upper layer 46 and an upperlayer interface 42. The upper layer 46 may represent a
session, presentation and/or application layer, depending upontheparticular protocol being

employed and message communicated. The upper layer interface 42, along with the CPU 28

and anyrelated controls can sendorretrieve a file to or from the upper layer 46 or storage 35,

as shown by arrow 48. A connection context 50 has been created, as will be explained below,

the context summarizing various features of the connection, such as protocol type and source
and destination addresses for each protocol layer. The context may be passed between an

interface for the session layer 42 and the CPD 30, as shown by arrows 52 and 54, and stored as

a communication control block (CCB) ateither CPD 30 or storage 35.

10

INTEL Ex.1002.015

INTEL Ex.1002.016

ALA-006E

10

15

20

25

30

Whenthe CPD 30 holds a CCB defining a particular connection, data received by the CPD

from the network and pertaining to the connection is referenced to that CCB and can then be

sent directly to storage 35 accordingto a fast-path 58, bypassing sequential protocol

processing by the data link 36, network 38 and transport 40 layers. Transmitting a message,
such as sendinga file from storage 35 to remote host 22, can also occur via the fast-path 58, in
which case the context for the file data is added by the CPD 30 referencing a CCB,rather than

by sequentially adding headers during processing by the transport 40, network 38 and data link

36 layers. The DMAcontrollers of the CPD 30 perform these transfers between CPD and

storage 35.

The CPD 30 collapses multiple protocol stacks each having possible separate states into a

single state machinefor fast-path processing. As a result, exception conditions may occur that

are not provided for in the single state machine, primarily because such conditions occur

infrequently and to deal with them on the CPD wouldprovidelittle or no performancebenefit

to the host. Such exceptions can be CPD 30 or CPU 28 initiated. An advantage ofthe

invention includes the mannerin which unexpected situations that occur on a fast-path CCB

are handled. The CPD 30 deals with these rare situations by passing back or flushing to the

host protocol stack 44 the CCB and any associated message frames involved, via a control

negotiation. The exception condition is then processed in a conventional mannerby the host

protocol stack 44. At somelater time, usually directly after the handling of the exception

condition has completed and fast-path processing can resume, the host stack 44 hands the CCB

_ back to the CPD.

This fallback capability enables the performance-impacting functions of the host protocols

to be handled by the CPD network microprocessor, while the exceptions are dealt with by the

host stacks, the exceptions being so rare as to negligibly effect overall performance. The

custom designed network microprocessor can have independent processors for transmitting

and receiving network information, and further processors for assisting and queuing. A

preferred microprocessor embodimentincludesa pipelined trio of receive, transmit and utility

processors. DMAcontrollers are integrated into the implementation and work in close concert

with the network microprocessor to quickly move data between buffers adjacent to the .

controllers and other locations such as long term storage. Providing buffers logically adjacent

to the DMAcontrollers avoids unnecessary loads on the PCI bus.

11

INTEL Ex.1002.016

INTEL Ex.1002.017

ALA-006E

10

15

20

25

30

FIG, 3 diagrams the general flow of messages received according to the current invention.

A large TCP/IP message suchasa file transfer may be received by the host from the network

in a numberof separate, approximately 64 KB transfers, each of which maybesplit into many,

approximately 1.5 KB frames or packets for transmission over a network. Novell NetWare

_ protocol suites running Sequenced Packet Exchange Protocol (SPX) or NetWare Core Protocol

(NCP) over Internetwork Packet Exchange (IPX) workin a similar fashion. Another form of

data communication which can be handled by the fast-path is Transaction TCP (hereinafter

T/TCP or TTCP), a version of TCP whichinitiates a connection with an initial transaction

requestafter which areply containing data may be sent according to the connection, rather
than initiating a connection via a several-messageinitialization dialogue and then transferring
data with later messages. In anyofthe transfers typified by these protocols, cach packet

conventionally includes a portion of the data being transferred, as well as headers for each of

the protocol layers and markers for positioning the packetrelative to the rest of the packets of
this message. |

When a messagepacketor frame is received 47 from a network by the CPD,itis first

validated by a hardware assist. This includes determining the protocol types of the various

layers, verifying relevant checksums, and summarizing 57 these findings into a status word or

words. Included in these words is an indication whether or not the frame is a candidate for

fast-path data flow. Selection 59 offast-path candidatesis based on whetherthe host may

benefit from this message connection being handled by the CPD, which includes determining

‘whether the packet has header bytes indicating particular protocols, such as TCP/IP or

SPX/IPX for example. The small percent of frames that are not fast-path candidates are sent

61 to the host protocol stacks for slow-path protocol processing. Subsequent network

microprocessor work with each fast-path candidate determines whethera fast-path connection

such as a TCP or SPX CCBisalready extant for that candidate, or whether that candidate may

be used to set up a new fast-path connection, such as for a TTCP/IP transaction. The
validation provided by the CPD provides acceleration whether a frameis processed bythefast-
path or a slow-path, as only error free, validated frames are processed by the host CPU even

for the slow-path processing.

All received message frames which have been determined by the CPD hardwareassist to be

fast-path candidates are examined 53 by the network microprocessor or INIC comparator

circuits to determine whether they match a CCBheld by the CPD. Upon confirming such a
12

INTEL Ex.1002.017

INTEL Ex.1002.018

ae BY OM aed ey me
wel Beall HaeMeo? Hed? edt 8" an?

ALA-006E

20

25

30

match, the CPD removes lower layer headers and sends 69 the remaining application data from

the framedirectly into its final destination in the host using direct memory access (DMA) units

of the CPD. This operation may occur immediately upon receipt of a message packet, for

example when a TCP connection already exists and destination buffers have been negotiated,

or it mayfirst be necessary to process an initial header to acquire a newsetoffinal destination

addressesfor this transfer. In this latter case, the CPD will queue subsequent message packets

while waiting for the destination address, and then DMAthe queuedapplication data to that

destination.

A fast-path candidate that does not match a CCB maybc usedto sect up a new fast-path

connection, by sending 65 the frame to the host for sequential protocol processing. In this

case, the host uses this frame to create 51 a CCB, which is then passed to the CPD to control

subsequent frames on that connection. The CCB, which is cached 67 in the CPD,includes

control and state information pertinent to all protocols that would have been processed had

conventional software layer processing been employed. The CCBalso contains storage space

for per-transfer information used to facilitate moving application-level data contained within

subsequent related message packets directly to a host application in a form available for

immediate usage. The CPD takes command of connection processing upon receiving a CCB

for that conncction from the host.

As shown morespecifically in FIG. 4A, when a message packet is received from the remote

host 22 via network 25, the packet enters hardware receive logic 32 of the CPD 30, which

checksumsheaders and data, and parses the headers, creating a word or words whichidentify

the messagepacket and status, storing the headers, data and word temporarily in memory 60.

’ As well as validating the packet, the receive logic 32 indicates with the word whetherthis

packet is a candidate for fast-path processing. FIG. 4A depicts the case in whichthe packetis

not a fast-path candidate, in which case the CPD 30 sendsthe validated headers and data from

memory 60 to data link layer 36 along an internal bus for processing by the host CPU,as

shown by arrow 56. The packet is processed by the host protocol stack 44 of data link 36,

network 38, transport 40 and session 42 layers, and data (D) 63 from the packet may then be

- sent to storage 35, as shownbyarrow 65.

FIG.4B, depicts the case in which the receive logic 32 of the CPD determinesthat a

messagepacket is a candidate for fast-path processing, for example by deriving from the

packet’s headers that the packet belongs to a TCP/IP, TTCP/IP or SPX/IPX message. A
13

INTEL Ex.1002.018

INTEL Ex.1002.019

ALA-006E

10

20

25

30

processor 55 in the CPD 30 then checks to see whether the word that summarizesthe fast-path

candidate matches a CCB held in a cache 62. Upon finding no matchfor this packet, the CPD

sends the validated packet from memory 60 to the host protocol stack 44 for processing. Host

stack 44 mayuse this packet to create a connection context for the message, including finding

and reserving a destination for data from the message associated with the packet, the context

taking the form of a CCB. The present embodiment employsa single specialized host stack 44

for processing both fast-path and non-fast-path candidates, while in an embodimentdescribed

below fast-path candidates are processed by a different host stack than non-fast-path

candidates. Some data (D1) 66 from thatinitial packet may optionally be sent to the

destination in storage 35, as shown by arrow 68. The CCBis then sent to the CPD 30 to be

saved in cache 62, as shownby arrow 64. Fora traditional connection-based message such as

typified by TCP/IP, theinitial packet may be part of a connection initialization dialoguethat

transpires between hosts before the CCBis created and passed to the CPD 30.

Referring now to FIG. 4C, when a subsequent packet from the same connection as the

initial packet is received from the network 25 by CPD 30, the packet headers and data are
validated by the receive logic 32, and the headers are parsed to create a summary of the

message packetand a hashfor finding a corresponding CCB, the summary and hash contained

in a word or words. The word or words are temporarily stored in memory 60 along with the

packet. The processor 55 checksfor a match between the hash and each CCB thatis stored in
the cache 62 and, finding a match, sends the data (D2) 70 via a fast-path directly to the

destination in storage 35, as shown by arrow 72, bypassing the session layer 42, transport layer

40, network layer 38 and data link layer 36. The remaining data packets from the message can

also be sent by DMA directly to storage, avoiding the relatively slow protocol layer processing

and repeated copying by the CPU stack 44.

FIG. 4D showsthe procedure for handling the rare instance when a message for which a

fast-path connection has been established, such as shownin FIG.4C,has a packet that is not

easily handled by the CPD. In this case the packet is sent to be processed by the protocol stack

44, which is handed the CCB for that message from cache 62 via a control dialogue with the

CPD,as shownbyarrow 76, signaling to the CPU to take over processing of that message.

Slow-path processing by the protocol stack then results in data (D3) 80 from the packet being

sent, as shown by arrow 82, to storage 35. Once the packet has been processed andthe error

situation corrected, the CCB can be handedbackvia a control dialogue to the cache 62, so that
14

INTEL Ex.1002.019

INTEL Ex.1002.020

ALA-006E

10

15

20 .

25

30

payload data from subsequent packets of that message can again be sent via the fast-path of the

CPD 30. Thus the CPU and CPD together decide whether a given messageis to be processed

according to fast-path hardware processing or more conventional software processing by the

CPU.

Transmission of a message from the host 20 to the network 25 for delivery to remote host 22

also can be processed by either sequential protocol software processing via the CPU or

accclerated hardware processing via the CPD 30, as shown in FIG.5. A message (M)90 that

is selected by CPU 28 from storage 35 can be sent to session layer 42 for processing by stack

44, as shown by arrows 92 and 96. Forthe situation in which a connection exists and the CPD

30 already has an appropriate CCB for the message, however, data packets can bypass host

stack 44 and be sent by DMA directly to memory 60, with the processor 55 adding to each

data packet a single header containing all the appropriate protocol layers, and sending the

_ resulting packets to the network 25 for transmission to remote host 22. This fast-path

transmission can greatly accelerate processing for even a single packet, with the acceleration

multiplied for a larger message.

A message for which a fast-path connection is not extant thus may benefit from creation of

aCCB with appropriate control and state information for guiding fast-path transmission. For a
traditional connection-based message, such as typified by TCP/IP or SPX/IPX, the CCB is

created during connectioninitialization dialogue. For a quick-connection message, such as

typified by TTCP/IP, the CCB can be created with the sametransaction that transmits payload

‘data. In this case, the transmission of payload data may be a reply to a request that was used to

set up the fast-path connection. In any case, the CCB provides protocol and status information

regarding each of the protocol layers, including which user is involved and storage space for

per-transfer information. The CCB is created by protocol stack 44, which then passes the CCB
to the CPD 30 by writing to a commandregister of the CPD, as shown by arrow 98. Guided

by the CCB, the processor 55 moves network frame-sized portions of the data from the source

in host memory 35 into its own memory 60 using DMA,as depicted by arrow 99. The

processor 55 then prepends appropriate headers and checksumsto the data portions, and

transmits the resulting frames to the network 25, consistent with the restrictions ofthe

associated protocols. After the CPD 30 has received an acknowledgementthat all the data has

reached its destination, the CPD will then notify the host 35 by writing to a response buffer.

15

INTEL Ex.1002.020

INTEL Ex.1002.021

ALA-006E

10

15

20

25

30

Thus, fast-path transmission of data communications also relieves the host CPU of per-frame

processing. A vast majority of data transmissions can be sent to the network by the fast-path.
Both the input and output fast-paths attain a huge reductionin interrupts by functioning at an
upperlayerlevel, i.e., session level or higher, and interactions between the network

microprocessor and the host occur using the full transfer sizes which that upper layer wishes to
make. For fast-path communications, an interrupt only occurs (at the most) at the beginning
and end ofan entire upper-layer messagetransaction, and there are no interrupts for the
sending or receiving of cach lowerlayer portion or packet ofthat transaction.

A simplified intelligent network interface card (INIC) 150 is shownin FIG.6 to provide a
networkinterface for a host 152. Hardware logic 171 of the INIC 150 is connected to a

network 155, with a peripheral bus (PCI) 157 connecting the INIC and host. The host 152 in

this embodiment has a TCP/IP protocol stack, which provides a slow-path 158 ‘for sequential

software processing ofmessage frames received from the network 155. The host 152 protocol
stack includesa data link layer 160, network layer 162, a transport layer 164 and an

application layer 166, which provides a source or destination 168 for the communication data

in the host'152. Other layers which are not shown, such as session and presentation layers,
may also beincludedin the host stack 152, and the source or destination may vary depending
upon the nature of the data and mayactually be the application layer.

The INIC 150 has a network processor 170 which chooses between processing messages
along a slow-path 158 that includes the protocol stack of the host, or along a fast-path 159 that

bypasses the protocol stack of the host. Each ré¢eived packetis processed on the fly by
hardware logic 171 contained in INIC 150, so that all of the protocol headers for a packet can
be processed without copying, movingorstoring the data betweenprotocol layers. The
hardware logic 171 processes the headers of a given packet at one time aspacket bytes pass
through the hardware, by categorizing selected header bytes. Results ofprocessing the

selected bytes help to determine which otherbytes of the packet are categorized, until a

summary of the packet has been created, including checksum validations. The processed
headersanddata from the reccived packetare then stored in INIC storage 185, as well as the

word or words summarizing the headers and status of the packet. For a network storage

configuration, the INIC 150 may be connected to a peripheral storage device such as a disk

drive which has an IDE, SCSIor similar interface, with a file cache for the storage device

16

INTEL Ex.1002.021

INTEL Ex.1002.022

 wabee Baad

ALA-006E

10 _

20°

25

30

residing on the memory 185 of the INIC 150. Several such network interfaces may exist for a
host, with each interface having an associated storage device.

The hardware processing ofmessage packets received by INIC 150 from network 155 is

shown in more detail in FIG. 7. A received message packetfirst enters a media access -

controller 172, which controls INIC access to the network and receipt ofpackets and can

provide statistical information for network protocol management. From there, data flows one

byte at a time into an assembly register 174, which in this example is 128 bits wide. The data

is categorized bya fly-by sequencer 178, as will be explained in more detail with regard to

FIG. 8, which cxaminesthe bytes of a packct as they fly by, and generates status from those

bytes that will be used to summarize the packet. The status thus created is merged with the

data by a multiplexor 180 and the resulting data stored in SRAM 182. A packet control

sequencer 176 oversees the fly-by sequencer 178, examines information from the media access

controller 172, counts the bytes of data, generates addresses, moves status and manages the

movementof data from the assembly register 174 to SRAM 182 and eventually DRAM 188.

The packet control sequencer 176 manages a buffer in SRAM 182 via SRAMcontroller 183,

and also indicates toa DRAM controller 186 when data needs to be moved from SRAM 182 to

a buffer in DRAM 188. Once data movementfor the packet has been completed andall the

data has been movedto the buffer in DRAM 188, the packet control sequenccr 176 will move

the status that has been generated in the fly-by sequencer 178 out to the SRAM 182 and to the
beginning of the DRAM 188 buffer to be prepended to the packet data. The packet control

sequencer 176 then requests a queue manager184 to enter a receive buffer descriptor into a

receive queue, which in turn notifies the processor 170 that the packet has been processed by

hardware logic 171 andits status summarized.

FIG. 8 showsthat the fly-by sequencer 178 has several tiers, with each tier generally

. focusing on a particular portion of the packet header and thus on a particular protocol layer, for

’ generating status pertaining to that layer. The fly-by sequencer 178 in this embodiment

includes a media access control sequencer 191, a network sequencer 192, a transport sequencer
194 and a session sequencer 195. Sequencers pertaining to higher protocol layers can

additionally be provided. The fly-by sequencer 178 is reset by the packet control sequencer

176 and given pointers by the packet control sequencerthat tell the fly-by sequencer whether a

given byte is available from the assembly register 174. The media access control sequencer

191 determines, by looking at bytes 0-5, that a packet is addressed to host 152 rather than or in
17

INTEL Ex.1002.022

INTEL Ex.1002.023

ALA-006E

10

20

25

30

addition to another host. Offsets 12 and 13 of the packet are also processed by the media

access control sequencer 191 to determine the type ficld, for example whetherthe packetis

Ethernet or 802.3. If the type field is Ethernet those bytesalso tell the media access control

sequencer 191 the packet’s network protocol type. For the 802.3 case, those bytes instead

indicate the length of the entire frame, and the media access control sequencer 191 will check

eight bytes furtherinto the packet to determine the network layer type.
For most packets the network sequencer 192 validates that the header length received has

the correct length, and checksumsthe network layer header. For fast-path candidates the

network layer header is knownto be IP or IPX from analysis done by the media access control

sequencer 191. Assuming for examplethat the type field is 802.3 and the network protocol is

IP, the network sequencer 192 analyzes the first bytes of the network layer header, which will

begin at byle 22, in order to determine IP type. Thefirst bytes ofthe IP header will be

processed by the network sequencer 192 to determine what IP type the packet involves.

Determining that the packetinvolves, for example, IP version 4, directs further processing by

the network sequencer 192, which also looks at the protocol type located ten bytes into the IP

headerfor an indication of the transport header protocol of the packet. For example, for IP

over Ethernet, the IP header beginsat offset 14, and the protocol type byte is offset 23, which

will be, processed by network logic to determine whether the transport layer protocol is TCP,
for example. From the length of the network layer header, which is typically 20-40 bytes,.

network sequencer 192 determines the beginning of the packet’s transport layer header for

validating the transport layer header. Transport sequencer 194 may gencrate checksumsfor

the transport layer header and data, which may include information from the IP headerin the

case of TCPatleast.

Continuing with the example of a TCP packet, transport sequencer 194 also analyzes the

first few bytes in the transport layer portion of the header to determine,in part, the TCP source _

and destination ports for the message, such as whetherthe packet is NetBios or other

‘protocols. Byte 12 of the TCP header is processed by the transport sequencer 194 to determine

and validate the TCP headerlength. Byte 13 of the TCPheadercontains flags that may, aside
from ack flags and push flags, indicate unexpected options, such as reset and fin, that may

_cause the processor to categorize this packet as an exception. TCP offset bytes 16 and 17 are

the checksum, which is pulled out and stored by the hardware logic 171 while therest of the

frameis validated against the checksum.
18

INTEL Ex.1002.023

INTEL Ex.1002.024

ALA-006E

10

20 .

25

30

Session sequencer 195 determines the length of the session layer header, which in the case

ofNetBios is only four bytes, two of whichtell the length of the NetBios payloaddata, but

which can be muchlarger for other protocols. The session sequencer 195 can also be used to

categorize the type of message as read or write, for example, for which the fast-path may be

particularly beneficial. Further upper layer logic processing, depending upon the message

type, can be performedby the hardware logic 171 of packet control sequencer 176 and fly-by

sequencer 178. Thus hardware logic 171 intelligently directs hardware processing of the

headers by categorization of selected bytes from a single stream ofbytes, with the status of the

packet being built from classifications determined on the fly. Once the packet control

sequencer 176 detects that all of the packet has been processed by the fly-by sequencer 178,

the packet control sequencer 176 addsthe status information generated by the fly-by sequencer

~ 178 and any status information generated by the packet control sequencer 176, and prepends

(addsto the front) that status information to the packet, for convenience in handling the packet

by the processor 170. The additional status information generated by the packet control

sequencer 176 includes media access controller 172 status information and any errors

discovered, or data overflow in either the assembly register or DRAM buffer, or other
miscellaneous information regarding the packet. The packet control sequencer 176 also stores

entries into a receive buffer queue and a receivestatistics queue via the queue manager 184.

An advantage ofprocessing a packet by hardware logic 171 is that the packet does not, in

contrast with conventional sequential software protocol processing,have to be stored, moved,
copied or pulled from storage for processing each protocol layer headcr, offering dramatic

increases in processing efficiency and savings in processing time for each packet. The packets

can be processedat the rate bits are received from the network, for example 100

megabits/second for a 100 baseT connection. The time for categorizing a packet received at

this rate and having a length of sixty bytes is thus about 5 microseconds. The total time for

processing this packet with the hardware logic 171 and sending packet data to its host

destination via the fast-path may be about 16 microsecondsorless, assuming a 66 MHz PCT

bus, whereas conventional software protocol processing by a 300 MHz Pentium JI® processor

may take as much as 200 microsecondsin a busy device. More than an order ofmagnitude

decrease in processing time can thus be achieved with fast-path 159 in comparison with a

high-speed CPU employing conventional sequential software protocol processing,

demonstrating the dramatic acceleration provided by processing the protocol headers by the
19

INTEL Ex.1002.024

INTEL Ex.1002.025

sh
 iBs

ALA-006E

10

15

20

25

30

hardware logic 171 and processor 170, without even considering the additional time savings

afforded by the reduction in CPU interrupts and host bus bandwidth savings.

The processor 170 chooses, for each received message packetheld in storage 185, whether

that packetis a candidate for the fast-path 159 and, if so, checks to see whether a fast-path has

already been set up for the connection that the packet belongs to. To do this, the processor 170

first checks the header status summary to determine whether the packet headers are of a

protocol defined for fast-path candidates. If not, the processor 170 commands DMA

controllers in the INIC 150 to send the packetto the host for slow-path 158 processing. Even

for a slow-path 158 processing of a message, the INIC 150 thus performsinitial procedures

such as validation and determination ofmessage type, and passes the validated messageat

least to the data link layer 160 ofthe host.

Forfast-path 159 candidates, the processor 170 checks to see whether the headerstatus

summary matches a CCBheld by the INIC. If so, the data from the packet is sent along fast-

path 159 to the destination 168 in the host. Ifthe fast-path 159 candidate’s packet summary

does not match a CCBheld by the INIC, the packet may be sent to the host 152 for slow-path

processing to create a CCB for the message. Employmentof the fast-path 159 may also not be

needed or desirable for the case of fragmented messages or other complexities. For the vast

majority of messages, however, the INIC fast-path 159 can greatly accelerate message

processing. The INIC 150 thus provides a single state machine processor 170 that decides

whether to send data directly to its destination, based upon information gleaned onthefly, as

opposed to the conventional employmentof a state machinein each of several protocol layers

for determining the destiny of a given packet.

In processing an indication or packet received at the host 152, a protocol driver ofthe host

selects the processing route based upon whetherthe indication is fast-path or slow-path. A

TCP/IP or SPX/IPX message has a connection that is set up from which a CCBis formed by

the driver and passed to the INIC for matching with and guiding the fast-path packet to the

connection destination 168. For a TTCP/IP message, the driver can create a connection

~ context for the transaction from processing an initial request packet, including locating the

message destination 168, and then passing that context to the INIC in the form of a CCB for

providing a fast-path for a reply from that destination. A CCB includes connection andstate

information regarding the protocol layers and packets of the message. Thus a CCB can

include source and destination media access control (MAC)addresses, source and destination
20

INTEL Ex.1002.025

INTEL Ex.1002.026

ae MR Te ye Btwalle Hae? Ge Bad Meat

ALA-006E

10

15

20

25

30

IP or IPX addresses, source and destination TCP or SPX ports, TCP variables such as timers,

receive and transmit windowsfor sliding window protocols, and information indicating the

session layer protocol.

Caching the CCBsin a hash table in the INIC provides quick comparisons with words

summarizing incoming packets to determine whether the packets can be processedvia thefast-

path 159, while the full CCBsare also held in the INIC for processing. Other ways to

accelerate this comparison include software processes such as a B-tree or hardwareassists

such as a content addressable memory (CAM). When INIC microcode or comparatorcircuits

detect a match with the CCB, a DMAcontroller places the data from the packet in the

destination 168, without any interrupt by the CPU,protocol processing or copying. Depending

upon the type of message received, the destination of the data maybethe session, presentation

or application layers, or a file buffer cache in the host 152.

FIG. 9 shows an INIC 200 connected to a host 202 that is employed asafile server. This

INIC provides a network interface for several network connections employing the 802.3u

standard, commonly knownas Fast Ethernet. The INIC 200 is connected by a PCI bus 205 to
the server 202, which maintains a TCP/IP or SPX/IPX protocol stack including MAClayer

212, network layer 215, transport layer 217 and application layer 220, with a

source/destination 222 shown above the application layer, although as mentionedearlier the

application layer can be the source or destination. The INICis also connected to network lines

210, 240, 242 and 244, which are preferably Fast Ethernet, twisted pair, fiber optic, coaxial

cable or other lines each allowing data transmission of 100 Mb/s, while faster and slower data
rates are also possible. Network lines 210, 240, 242 and 244 are each connected to a dedicated

row of hardware circuits which can each validate and summarize message packets received

from their respective network line. Thus line 210 is connected with a first horizontal row of

sequencers 250, line 240 is connected with a second horizontal row of sequencers 260, line

242 1s connected with a third horizontal row of sequencers 262 and line 244 is connected with

a fourth horizontal row of sequencers 264. After a packet has been validated and summarized

by oneofthe horizontal hardware rowsit is stored along with its status summary in storage
270.

A network processor 230 determines, based on that summary and a comparison with any

CCBsstored in the INIC 200, whether to send a packet along a slow-path 231 for processing

by the host. A large majority of packets can avoid such sequential processing and havetheir
21

INTEL Ex.1002.026

INTEL Ex.1002.027

oS th Tale ay peettn saltttg2saAT Ops Setsees a3ewe To BA Gedhe eo Sup ae

ALA-006E

15

20

25

30

data portions sent by DMAalonga fast-path 237 directly to the data destination 222 in the

server according to a matching CCB. Similarly, the fast-path 237 provides an avenue to send

data directly from the source 222 to any of the network lines by processor 230 division of the

data into packets and addition of full headers for network transmission, again minimizing CPU

processing and interrupts. For clarity only horizontal sequencer 250 is shown active; in

actuality cach of the sequencer rows 250, 260, 262 and 264 offers full duplex communication,

concurrently with all other sequencer rows. The specialized INIC 200 is muchfasterat

working with message packets than even advanced general-purpose host CPUsthat processes

those headers sequentially according to the software protocol stack. .

One of the most commonly used networkprotocols for large messages suchasfile transfers
is server message block (SMB) over TCP/IP. SMBcan operate in conjunction with redirector

software that determines whether a required resource for a particular operation, such as a

printer or a disk upon whicha file is to be written, resides in or is associated with the host from

which the opcration was generated or is located at another host connected to the network, such
as a file server. SMBandserver/redirector are conventionally serviced by the transport layer;

in the present invention SMBandredirector can instead be serviced by the INIC. Inthis case,

sending data by the DMAcontrollers from the INIC buffers when receiving a large SMB

transaction maygreatly reduceinterrupts that the host must handle. Moreover, this DMA
generally movesthe datato its final destination in the file device cache. An SMBtransmission

ofthe present invention follows essentially the reverse of the above described SMBreceive,
with data transferred from the host to the INIC andstored in buffers, while the associated

. protocol headers are prepended to the data in the INIC,for transmission via a network line to a

remote host. Processing by the INIC of the multiple packets and multiple TCP, IP, NetBios

and SMBprotocol layers via custom hardware and without repeated interrupts ofthe host can

greatly increase the speed of transmitting an SMB messageto a networkline.

As shown in FIG. 10, for controlling whether a given messageis processed by the host 202

or by the INIC 200, a message commanddriver 300 may beinstalled in host 202 to work in

concert with a host protocol stack 310. The commanddriver 300 can intervene in message

reception or transmittal, create CCBs and send or receive CCBs from the INIC 200,so that

functioning of the INIC, aside from improved performance,is transparent to a user. Also

shown is an INIC memory 304 and an INIC miniport driver 306, which can direct message

packets received from network 210 to either the conventional protocol stack 310 or the
22

INTEL Ex.1002.027

INTEL Ex.1002.028

ALA-006E

10

15

20

25

30

command protocol stack 300, depending upon whethera packet has been labeled as a fast-path

candidate. The conventional protocol stack 310 has a data link layer 312, a network layer 314
and a transport layer 316 for conventional, lower layer processing of messagesthat are not

labeled as fast-path candidates and therefore not processed by the commandstack 300.

Residing above the lower layer stack 310 is an upper layer 318, which represents a session,

presentation and/or application layer, depending upon the message communicated. The

commanddriver 300 similarly has a data link layer 320, a network layer 322 and a transport

layer 325. |
The driver 300 includes an upperlayer interface 330 that determines, for transmission of

messages to the network 210, whether a message transmitted from the upper layer 318 is to be
processed by the commandstack 300 and subsequently the INIC fast-path, or by the

conventional stack 310. When the upper layer interface 330 receives an appropriate message

from the upper layer 318 that would conventionally be intended for transmission to the

networkafter protocol processing by the protocol stack of the host, the message is passed to

driver 300. The INIC then acquires network-sized portions of the message data for that

transmission via INIC DMAunits, prepends headers to the data portions and sendsthe

resulting message packets down the wire. Conversely, in receiving a TCP, TTCP, SPX or
similar message packet from the network 210 to be usedin setting up a fast-path conncction,

miniport driver 306 diverts that message packet to commanddriver 300 for processing. The

driver 300 processes the message packet to create a context for that message, with the driver

302 passing the context and commandinstructions back to the INIC 200 as a CCB for sending

data of subsequent messages for the same connection along a fast-path. Hundreds of TCP,

TTCP, SPX or similar CCB connections may be held indefinitely by the INIC, although a least

recently used (LRU) algorithm is employed for the case when the INIC cacheis full. The
driver 300 can also create a connection context for a TTCP request whichis passed to the INIC

200 as a CCB,allowing fast-path transmission of a TTCP reply to the request. A message

having a protocolthat is not accelerated can be processed conventionally by protocol stack

310.

FIG. 11 shows a TCP/IP implementation of command driver software for Microsoft®

protocol messages. A conventional host protocol stack 350 includes MAClayer 353, IP layer

355 and TCP layer 358. A command driver 360 worksin concert with the host stack 350 to

process network messages. The command driver 360 includes a MAClayer 363, an IP layer
23

INTEL Ex.1002.028

INTEL Ex.1002.029

ALA-006E

15

20

25

- 30

366 and an Alacritech TCP (ATCP) layer 373. The conventional stack 350 and command
driver 360 share a network driver interface specification (NDIS) layer 375, which interacts

with the INIC miniport driver 306. The INIC miniport driver 306 sorts receive indications

for processing by either the conventional host stack 350 or the ATCP driver 360. A TDIfilter

driver and upper layer interface 380 similarly determines whether messages sent from a TDI

user 382 to the network are diverted to the commanddriver and perhapsto the fast-path of the

INIC,or processed by the host stack.

FIG. 12 depicts a typical SMB exchange between a clicnt 190 and server 290, both of

which have communication devices of the present invention, the communication devices each

holding a CCB defining their conncction for fast-path movement of data. The client 190

includes INIC 150, 802.3 compliant data link layer 160, IP layer 162, TCP layer 164, NetBios

layer 166, and SMB layer 168. The client has a slow-path 157 and fast-path 159 for

communication processing. Similarly, the server 290 includes INIC 200, 802.3 compliant data
link layer 212, IP layer 215, TCP layer 217, NetBios layer 220, and SMB 222. Theserveris

connected to network lines 240, 242 and 244, as well as line 210 which is connected to client

190. The server also has a slow-path 231 and fast-path 237 for communication processing.

Assumingthat the client 190 wishes to read a 100KB file on the server 290, the client may

begin by sending a Read Block Raw (RBR) SMB commandacross network 210 requesting the

first 64 KB of that file on the server 290. The RBR command maybe only 76 bytes, for
. example, so the INIC 200 ontheserver will recognize the message type (SMB) andrelatively

small message size, and send the 76 bytes directly via the fast-path to NetBios of the server.

NetBioswill give the data to SMB, which processes the Read request and fetches the 64KB of

data into server data buffers. SMBthen calls NetBios to send the data, and NetBios outputs
the data for the clicnt. In a conventional host, NetBios would call TCP output and pass 64 KB
to TCP, which would divide the data into 1460 byte segments and output each segmentvia IP

and eventually MAC (slow-path 231). In the present case, the 64KB data goes to the ATCP

driver along with an indication regarding the client-server SMBconnection, which indicates a
CCBheld by the INIC. The INIC 200 then proceeds to DMA 1460 byte segments from the

host buffers, add the appropriate headers for TCP, IP and MACatone time, and send the

completed packets on the network 210 (fast-path 237). The INIC 200 will repeat this until the

whole 64KB transfer has been sent. Usually after receiving acknowledgement from the client

24

INTEL Ex.1002.029

INTEL Ex.1002.030

ALA-006E

10

15

20

25

30

that the 64KB has been received, the [NIC will then send the remaining 36KB also bythefast-

path 237.

With INIC 150 operating on the client 190 whenthis reply arrives, the INIC 150 recognizes

from the first frame received that this connectionis receiving fast-path 159 processing

(TCP/IP, NetBios, matching a CCB), and the ATCP mayusethis first frame to acquire buffer

space for the message. This latter case is done by passingthe first 128 bytes of the NetBios

portion of the frame via the ATCP fast-path directly to the host NetBios; that will give

NetBios/SMBall of the frame’s headers. NetBios/SMBwill analyze these headers, realize by ‘

matching with a request ID that this is a reply to the original RawRead connection, and give

the ATCP a 64Klist of buffers into which to place the data. At this stage only one frame has
arrived, although more mayarrive while this processing is occurring. As soonastheclient

bufferlist is given to the ATCP,it passes that transfer information to the INIC 150, and the

INIC 150 starts DMAing any frame data that has accumul ated into those buffers.
FIG. 13 provides a simplified diagram of the INIC 200, which combines the functions of a

nctwork interface controller and a protocol processorin a single ASIC chip 400. The INIC

_ 200 in this embodimentoffers a full-duplex, four channel, 10/100-Megabit per second (Mbps)

intelligent network interface controller that is designed for high speed protocol processing for

server applications. Although designed specifically for server applications, the INIC 200 can

be connected to personal computers, workstations, routers or other hosts anywherethat
TCP/IP, TTCP/IP or SPX/IPX protocols are being utilized.

The INIC 200 is connected with four network lincs 210, 240, 242 and 244, which may

transport data along a numberofdifferent conduits, such as twisted pair, coaxial cable or
optical fiber, each of the connections providing a media independentinterface (MII) via

commercially available physical layer chips, such as model 80220/80221 Ethernet Media

Interface Adapter from SEEQ Technology Incorporated, 47200 Bayside Parkway, Fremont,
CA 94538. The lines preferably are 802.3 compliant and in connection with the INIC /

constitute four complete Ethernet nodes, the INIC supporting 10Base-T, 10Base-T2, 100Base-

TX, 100Base-FX and 100Base-T4 as well as future interface standards. Physical layer

identification and initialization is accomplished through hostdriverinitialization routines. The

connection between the network lines 210, 240, 242 and 244 and the INIC 200is controlled by

MAC units MAC-A 402, MAC-B 404, MAC-C 406 and MAC-D 408 which contain logic

circuits for performing the basic functions of the MAC sublayer, essentially controlling when
25

INTEL Ex.1002.030

INTEL Ex.1002.031

patie MS pete sme ee Sm
Fed Bos Roaat

ALA-006E

10

15

20

25

30

the INIC accesses the network lines 210, 240, 242 and 244, The MACunits 402-408 may act
in promiscuous, multicast or unicast modcs, allowing the INIC to function as a network

monitor, receive broadcast and multicast packets and implement multiple MAC addresses for
each node. The MAC units 402-408also provide statistical information that can be used for

simple network management protocol (SNMP).

The MACunits 402, 404, 406 and 408 are each connected to a transmit and receive

sequencer, XMT & RCV-A 418, XMT & RCV-B 420, XMT & RCV-C 422 and XMT &

RCV-D 424, by wires 410, 412, 414 and 416, respectively. Each of the transmit and receive

sequencers can perform several protocol processing steps on the fly as message frames pass

through that sequencer. In combination with the MAC units, the transmit and receive

sequencers 418-422 can compile the packet status for the data link, network, transport, session

and, if appropriate, presentation and application layer protocols in hardware, greatly reducing

the time for such protocol processing compared to conventional sequential software engines.

The transmit and receive sequencers 410-414 are connected, by lines 426, 428, 430 and 432 to

an SRAM and DMAcontroller 444, which includes DMAcontrollers 438 and SRAM

controller 442. Static random access memory (SRAM)buffers 440 are coupled with SRAM

controller 442 by line 441. The SRAM and DMAcontrollers 444 interact across line 446 with

external memory control 450 to send and receive frames via cxtcrnal memory bus 455 to and
from dynamic random access memory (DRAM)buffers 460, which is located adjacentto the

IC chip 400. The DRAM buffers 460 may be configured as 4 MB, 8 MB, 16 MBor 32 MB,

and mayoptionally be disposed on the chip. The SRAM and DMAcontrollers 444 are

connected via line 464 to a PCI BusInterface Unit (BIU) 468, which managestheinterface

between the INIC 200 and the PCI interface bus 257. The 64-bit, multiplexed BIU 468

provides a direct interface to the PCI bus 257 for both slave and master functions. The INIC

200 is capable of operating in either a 64-bit or 32-bit PCI environment, while supporting 64-

bit addressing in either configuration.

A microprocessor 470 is connected by line 472 to the SRAM and DMAcontrollers 444,

and connected via line 475 to the PC] BIU 468. Microprocessor 470instructions and register

files reside in an on chip control store 480, which includes a writable on-chip control store

(WCS) of SRAM and a read only memory (ROM), and is connected to the microprocessor by

line 477. The microprocessor 470 offers a programmable state machine which is capable of

processing incoming frames, processing host commands,directing network traffic and
26

INTEL Ex.1002.031

INTEL Ex.1002.032

amy, ANN StSaRost ES aSEP ae ee rite pete mayo ni ae Ee
suthe Read? BUS. Bad Baa Hee OE a aR cairn, dt BoB GR.

ALA-006E

10

15 —

20

25

30

directing PCI bustraffic. Three processors are implemented using shared hardwarein a three

level pipelined architecture that launches and completesa single instruction for every clock

cycle. A receive processor 482 is primarily used for receiving communications whilc a

transmit processor 484 is primarily used for transmitting communicationsin orderto facilitate

full duplex communication, while a utility processor 486 offers various functions including
overseeing and controlling PCI register access.

Theinstructions for the three processors 482, 484 and 486 reside in the on-chip control-

store 480. Thusthe functions of the three processors can be casily redefined, so that the

microprocessor 470 can adapted for a given environment. For instance, the amount of

processing required for receive functions may outweighthat required for either transmit or

utility functions. In this situation, some receive functions may be performed by the transmit

processor 484 and/orthe utility processor 486. Alternatively, an additional level of pipelining

can be created to yield four or more virtual processors instead of three, with the additional

level devoted to reccive functions.

The INIC 200 in this embodiment can support up to 256 CCBs which are maintained in a

table in the DRAM 460. Thereis also, however, a CCB index in hash order in the SRAM 440

to save sequential searching. Once a hash has been generated, the CCB is cached in SRAM,

with up to sixteen cached CCBs in SRAM inthis example. Allocation of the sixteen CCBs

cached in SRAMis handled bya least recently used register, described below. These cache

locations are shared between the transmit 484 and receive 486 processorsso that the processor

with the heavierload is able to use more cache buffers. There are also eight header buffers

‘and eight command buffers to be shared between the sequencers. A given header or command

buffer is not statically linked to a specific CCB buffer, as the link is dynamic on a per-frame
basis.

FIG. 14 showsan overview ofthe pipelined microprocessor 470, in which instructions for

the receive, transmit and utility processors are executed in three alternating phases according

to Clock incrementsI, II andIII, the phases corresponding to each of the pipeline stages. Each

phasc is responsible for different functions, and each of the three processors occupies a

different phase during each Clock increment. Each processor usually operates uponadifferent

instruction stream from the control store 480, and each carrics its own program counter and

status through each of the phases.

27

INTEL Ex.1002.032

INTEL Ex.1002.033

ALA-006E |

10

15

20

25

30 ©

In general, a first instruction phase 500 of the pipelined microprocessors completes an
instruction andstores the result in a destination operand, fetches the next instruction, and

stores that next instruction in an instruction register. A first register set 490 provides a number

of registers including the instruction register, and a set of controls 492 for first register set

provides the controls for storage to the first register set 490. Some items pass through thefirst

phase without modification by the controls 492, and instead are simply copicdinto the first

register set 490 or a RAMfile register 533. A secondinstruction phase 560 has an instruction

decoder and operand multiplexer 498 that generally decodes the instruction that was stored in

the instructionregister of the first register set 490 and gathers any operands which have been

generated, which are then stored in a decode register of a second register set 496. Thefirst

register set 490, second register set 496 anda third register set 501, which is.employed in a

third instruction phase 600, include many ofthe sameregisters, as will be seen in the more

detailed views ofFIGs. 15A-C. Theinstruction decoder and operand multiplexer 498 can read
~ from two address and data ports of the RAMfile register 533, which operates in both the first

phase 500 and second phase 560. A third phase 600 of the processor 470 has an arithmetic

logic unit (ALU) 602 which generally performs any ALU operations on the operands from the

secondregisterset, storing the results in a results register included in the third register set 501.

A stack exchange 608 can reorder register stacks, and a qucuc manager 503 can arrange

queues for the processor 470, the results ofwhich are stored in the third registerset.

The instructions continue with the first phase then followingthe third phase, as depicted by a
circular pipeline 505. Note that various functions have beendistributed across the three phases

of the instruction execution in order to minimize the combinatorial delays within any given

phase. With a frequency in this embodiment of 66 MHz, each Clock increment takes 15

nanoseconds to complete, for a total of 45 nanoseconds to complete one instruction for each of.

the three processors. The rotating instruction phases are depicted in more detail in FIGs. 15A-

C, in which each phaseis shownin a different figure.

Moreparticularly, FIG. 15A shows somespecific hardware functionsof the first phase 500,

which generally includesthefirst register set 490 and related controls 492. The controls for the

first register set 492 includes an SRAM control 502, whichis a logical control for loading

address and write data into SRAM address and data registers 520. Thus the output of the ALU

602 from the third phase 600 may be placed by SRAM control 502 into an address register or

data register of SRAM address and data registers 520. A load control 504 similarly provides
28

INTEL Ex.1002.033

INTEL Ex.1002.034

ALA-006E

iS.

20

25

30

controls for writing a context fora file to file context register 522, and another load control

506 provides controls for storing a variety of miscellaneousdata to flip-flop registers 525.

ALU condition codes, such as whethera carried bit is set, get clocked into ALU condition

codes register 528 without an operation performedin the first phase 500. Flag decodes 508

can perform various functions, such as setting locks, that get stored in flag registers 530.

The RAMfile register 533 has a single write port for addresses and data and tworead ports

for addresses and data, so that more than oneregister can be read from at one time. As noted

above, the RAM file register 533 essentially straddlcs the first and second phases,asit is

written in the first phase 500 and read from in the second phase 560. A control store

instruction 510 allows the reprogramming ofthe processors due to new data in from the

control store 480, not shownin this figure, the instructions stored in an instruction register

535. The address for this is generated in a fetch control register 511, which determines which

address to fetch, the address stored in fetch address register 538. Load control 515 provides

instructions for a program counter 540, which operates muchlike the fetch address for the

control store. A last-in first-out stack 544 of three registers is copied to the first register set

without undergoing other operations in this phase. Finally, a load control 517 for a debug

address 548 is optionally included, which allows correction of crrors that may occur.

FIG. 15B depicts the second microprocessor phase 560, which includes reading addresses

and data out of the RAMfile register 533. A scratch SRAM 565is written from SRAM

address and data register 520 of thefirst register set, which includes a register that passes

through the first two phascs to be incremented in the third. The scratch SRAM 565is read by

the instruction decoder and operand multiplexer 498, as are most of the registers from thefirst

register set, with the exception of the stack 544, debug address 548 and SRAM address and

data register mentioned above. Theinstruction decoder and operand multiplexer 498 looksat

the various registers of set 490 and SRAM 565,decodesthe instructions and gathers the

operands for operation in the next phase, in particular determining the operandsto provide to

the ALU 602 below. The outcomeof the instruction decoder and operand multiplexer 498 is

stored to a numberofregisters in the second register sct 496, including ALU operands 579 and

582, ALU condition code register 580, and aqueue channel and command 587 register, which
in this embodiment can control thirty-two qucues. Several of the registers in set 496 are
loadedfairly directly from the instruction register 535 above without substantial decoding by
the decoder 498, including a program control 590,a literal field 589, a test select 584 and a

29

INTEL Ex.1002.034

INTEL Ex.1002.035

ALA-006E

-20

25

30

flag select 585. Other registers such as the file context 522 ofthe first phase 500 are always

stored in a file context 577 of the second phase 560, but mayalso be treated as an operand that

_ is gathered by the multiplexcr 572. The stack registers 544 are simply copied in stack register
594. The program counter 540is incremented 568in this phase and stored in register 592.

Also incremented 570 is the optional debug address 548, and a load control 575 may be fed

from the pipeline 505 at this point in order to allow error control in each phase, the result
stored in debug address 598.

FIG. 15C depicts the third microprocessor phase 600, which includes ALU and queue

operations. The ALU 602 includes an addcr,priority encoders and other standard logic

functions. Results of the ALUare storedin registers ALU output 618, ALU condition codes

620 and destination operand results 622. A file context register 616, flag select register 626

_andliteral field register 630 are simply copied from the previous phase 560. A test multiplexer

604 is provided to determine whether a conditional jumpresults in a jump, with the results

stored in a test results register 624. The test multiplexer 604 may instead be performcdin the

first phase 500 along with similar decisions such as fetch control 511. A stack exchange 608

shifts a stack up or down by fetching a program counter from stack 594 or putting a program

counter onto that stack, results of which are stored in program control 634, program counter

638 and stack 640 registers. The SRAM address mayoptionally be incremented in this phase

600. Another load control 610 for another debug address 642 may be forced from the pipeline
505 at this point in order to allow error control in this phase also. A QRAM & QALU 606,
showntogetherin this figure, read from the queuc channel and commandregister 587, store in
SRAMandrearrange queues, adding or removing data and pointers as needed to managethe

queues of data, sending results to the test multiplexer 604 and a queueflags and queueaddress
register 628. Thus the QRAM & QALU 606 assumethe duties of managing queues for the
three processors, a task conventionally performed sequentially by software on a CPU, the

queue manager 606 instead providing accelerated and substantially parallel hardware qucuing.

FIG. 16 depicts two ofthe thirty-two hardware queues that are managed by the qucue

manager 606, with each of the queues having an SRAM head, an SRAMtail and the ability to

queue information ina DRAMbodyas well, allowing expansion and individual configuration

of each queue. Thus FIFO 700 has SRAMstorageunits, 705, 707, 709 and 711, each

containing eight bytes for a total of thirty-two bytes, although the numberand capacity of

these units may vary in other embodiments. Similarly, FIFO 702 has SRAMstorage units
30

INTEL Ex.1002.035

INTEL Ex.1002.036

ALA-006E

_10

15

20

25

30

- 713, 715, 717 and 719. SRAM units 705 and 707 are the head of FIFO 700 and units 709 and

711 are the tail of that FIFO, while units 713 and 715 are the head of FIFO 702 and units 717

and 719 are the tail of that FIFO. Information for FIFO 700 maybewritten into head units

705 or 707, as shown by arrow 722, and read from tail units 711 or 709, as shown by arrow

725. A particular cntry, however, may be both written to and read from head units 705 or 707,

or may be both written to and read from tail units 709 or 711, minimizing data movement and

latency. Similarly, information for FIFO 702 is typically written into head units 713 or 715, as

shownbyarrow 733, and read from tail units 717 or 719, as shown by arrow 739, but may

instead be read from the same headortail unit to which it was written.

The SRAM FIFOS700 and 702 are both connected to DRAM 460, whichallowsvirtually

unlimited expansion of those FIFOSto handle situations in which the SRAM head andtail are

full. For example a first of the thirty-two queucs, labeled Q-zero, may queue an entry in

DRAM460,as shown by arrow 727, by DMAunits acting underdirection of the queue

manager, instead of being qucued in the head ortail of FIFO 700. Entries stored in DRAM

460 return to SRAMunit 709, as shown by arrow 730, extending the length and fall-through
time of that FIFO. Diversion from SRAM to DRAMistypically reserved for when the SRAM

is full, since DRAM is slower and DMA movementcauses additional latency. Thus Q-zero

may comprise the entries stored by queue manager 606 in both the FIFO 700 and the DRAM

460. Likewise, information bound for FIFO 702, which may correspond to Q-twenty-seven,

for example, can be moved by DMA into DRAM 460,as shownbyarrow 735. The capacity

for queuing in cost-effective albeit slower DRAM 460is user-definable duringinitialization,

allowing the queues to changein size as desired. Information queued in DRAM 460is

returned to SRAM unit 717, as shown byarrow 737,

Status for each of the thirty-two hardware queues is conveniently maintained in and

accessed fromaset 740 of four, thirty-two bit registers, as shown in FIG. 17, in which a

specific bit in cach register correspondsto a specific queue. The registers are labeled Q-

Out_Ready 745, Q-In_Ready 750, Q-Empty 755. and Q-Full 760. Ifa particularbit is set in
the Q-Out_Ready register 750, the queue correspondingto that bit contains information that is

ready to be read, while the setting of the samebit in the Q-In_Ready 752 register meansthat

the queueis ready to be written. Similarly, a positive setting of a specific bit in the Q-Empty

register 755 meansthat the queue corresponding to that bit is empty, while a positive setting of

a particular bit in the Q-Full register 760 meansthat the qucuc correspondingto thatbit is full.
31

INTEL Ex.1002.036

INTEL Ex.1002.037

ge ae | sty ey emp #here teSOW ud thet PT Bee GP Bu

ALA-006E

10

20

25

30

Thus Q-Out_Ready 745 contains bits zero 746 through thirty-one 748, including bits twenty-
seven 752, twenty-eight 754, twenty-nine 756 and thirty 758. Q-InReady 750 contains bits
zero 762 through thirty-one 764, including bits twenty-seven 766, twenty-eight 768, twenty-

nine 770 and thirty 772. Q-Empty 755 contains bits zero 774 through thirty-one 776,

including bits twenty-seven 778, twenty-eight 780, twenty-nine 782 and thirty 784, and Q-full

760 contains bits zero 786 through thirty-one 788, including bits twenty-seven 790, twenty-

eight 792, twenty-nine 794 and thirty 796.

Q-zero, corresponding to FIFO 700,is a free buffer queue, which holdsalist of addresses

for all available buffers. This queue is addressed when the microprocessor or other devices

need a free buffer address, and so commonly includes appreciable DRAM 460. Thusa device

needing a free buffer address would check with Q-zcro to obtain that address. Q-twenty-

seven, corresponding to FIFO 702, is a reccive buffer descriptor queue. After processing a

received frame by the receive sequencer the sequencerlooksto store a descriptor for the frame

in Q-twenty-seven. If a location for sucha descriptor is immediately available in SRAM,bit
twenty-seven 766 ofQ-In_Ready 750 will be set. If not, the sequencer must wait for the queue

managerto initiate a DMA move from SRAM to DRAM,thereby freeing space to store the

receive descriptor.

Operation of the queue manager, which manages movementof queueentries between

SRAMandthe processor, the transmit and receive sequencers, and also between SRAM and

DRAM,is shown in more detail in FIG. 18. Requests which utilize the queues include

Processor Request 802, Transmit Sequencer Request 804, and Reccive Sequencer Request

806. Other requests for the queucs arc DRAM to SRAM Request 808 and SRAM to DRAM

Request 810, which operate on behalf of the queue manager in moving data back and forth

between the DRAM and the SRAM headortail of the queues. Determining which of these

various requests will get to use the queue managerin the next cycle is handled by priority logic

Arbiter 815. To enable high frequency operation the queue manageris pipelined, with

Register A 818 and Register B 820 providing temporary storage, while Status Register 822
maintainsstatus until the next update. The queue managerreserves even cycles for DMA,

receive and transmit sequencer requests and odd cycles for processor requests. Dual ported

QRAM 825stores variables regarding each of the queues, the variables for each queue

including a Head Write Pointer, Head Read Pointer, Tail Write Pointer and Tail Read Pointer

32

INTEL Ex.1002.037

INTEL Ex.1002.038

ALA-006E

10°

15

20

25

30

corresponding to the queue’s SRAM condition, and a Body Write Pointer and Body Read
Pointer corresponding to the queue’s DRAM condition and the queue’ssize.

After Arbiter 815 has selected the next opcration to be performed, the variables of QRAM

825 are fetched and modified according to the selected operation by a QALU 828, and an

SRAM Read Request 830 or an SRAM Write Request 840 may be generated. Thevariables

are updated and the updated status is stored in Status Register 822 as well as QRAM 825. The

status is also fed to Arbiter 815 to signal that the operation previously requested has been

fulfilled, inhibiting duplication of requests. The Status Register 822 updates the four queue
registers Q-Out_Ready 745, Q-In_Ready 750, Q-Empty 755 and Q-Full 760to reflect the new

status of the queue that was accessed. Similarly updatcd are SRAM Addresses 833, Body

Write Request 835 and Body Read Requests 838, which are accessed via DMAto and from

SRAMhead andtails for that queue, Alternatively, various processes may wish to write to a

queue, as shown by Q Write Data 844, which are selected by multiplexor 846, and pipelined to

SRAM Write Request 840. The SRAM controller services the read and write requests by

writing the tail or reading the head of the accessed queueand returning an acknowledge. In

this mannerthe various queuesare utilized andtheir status updated.

FIGs. 19A-C showa least-recently-used register 900 that is employed for choosing which

contexts or CCBs to maintain in INIC cache memory. The INIC in this embodiment can cacher

up to sixteen CCBs in SRAM at a given time, and so when a new CCBis cached an old one

. must often be discarded, the discarded CCB usually chosen according to this register 900 to be

the CCBthat has been used least recently. In this embodiment, a hash table for up to two

hundred fifty-six CCBsis also maintained in SRAM,while up to two hundredfifty-six full

CCBsare held in DRAM.Theleast-recently-used register 900 contains sixteen four-bit blocks

labeled RO-R15, each of which corresponds to an SRAM cacheunit. Uponinitialization, the

blocks are numbered 0-15, with number0 arbitrarily stored in the block representing the least
recently used (LRU) cache unit and number15 stored in the block representing the most

recently used (MRU)cache unit. FIG. 19A showsthe register 900 at an arbitrary time when

the LRU block RO holds the number9 and the MRU block R15 holds the number6.

Whena different CCB than is currently being held in SRAMisto be cached, the LRU

block RO is read, which in FIG. 19A holds the number9, and the new CCBis stored in the

SRAMcache unit corresponding to number 9. Since the new CCB corresponding to number

‘9 is now the most recently used CCB, the number9 is stored in the MRU block, as shown in
33

INTEL Ex.1002.038

INTEL Ex.1002.039

ALA-006E

10

15

- 20

25

30

FIG. 19B. The other numbers are all shifted one register block to the left, leaving the number
1 in the LRU block. The CCBthat had previously been cached in the SRAM unit

corresponding to number9 has been movedto slower but more cost-effective DRAM.

FIG. 19C showsthe result when the next CCB used had already been cached in SRAM. In

this example, the CCB was cached in an SRAM unit corresponding to number 10, and so after

employmentof that CCB, number10 is stored in the MRU block. Only those numbers which

had previously been morerecently used than number10 (register blocks R9-R15) are shifted

to the left, leaving the number 1 in the LRU block. In this manner the INIC maintains the

most active CCBs in SRAM cache.

In somecases a CCB being usedis onethat is not desirable to hold in the limited cache

memory. For example, it is preferable not to cache a CCB for a context that is knownto be

closing, so that other cached CCBs can remain in SRAM longer. In this case, the number

representing the cache unit holding the decacheable CCBis stored in the LRU block RO rather

than the MRUblock R15, so that the decacheable CCB will be replaced immediately upon

employment of a new CCBthat is cached in the SRAM unit corresponding to the numberheld

in the LRU block RO. FIG. 19D showsthe case for which number8 (which had been in block

R9 in FIG. 19C) corresponds to a CCBthat will be used and then closed. In this case number
8 has been removed from block R9 andstored in the LRU block RO. All the numbers that had

previously been stored to the left ofblock R9 (R1-R8) are then shifted one block to the right.

FIG. 20 shows someofthe logical units employed to operate the least-recently-used

register 900. An array of sixteen, three or four input multiplexors 910, of which only

multiplexors MUX0, MUX7, MUX8, MUX9 and MUX15 are shownforclarity, have outputs

fed into the corresponding sixteen blocks of least-recently-used register 900. For cxample, the

output of MUX0is stored in block RO, the output of MUX7is stored in block R7, etc. The

value of each ofthe register blocks is connected to an input for its corresponding multiplexor

and also into inputs for both adjacent multiplexors, for use in shifting the block numbers. For
instance, the numberstored in R8is fed into inputs for MUX7, MUX8 and MUX9. MUX0

and MUX15 cach have only one adjacent block, and the extra input for those multiplexorsis

used for the selection of LRU and MRUblocks, respectively. MUXI5 is shownas a four-

input multiplexor, with input 915 providing the numberstored on RO.

Anarray of sixteen comparators 920 each receives the valuc stored in the corresponding

block of the least-recently-used register 900. Each comparator also receives a signal from
34

INTEL Ex.1002.039

INTEL Ex.1002.040

OhBb.

ALA-006E

10

1S °

20

25

30

processor 470 along line 935 so that the register block having a number matching that sent by

processor 470 outputs true to logic circuits 930 while the other fifteen comparators output

false. Logic circuits 930 control a pair of select lines leading to each of the multiplexors, for
selecting inputs to the multiplexors and therefore controlling shifting of the register block

numbers. Thusselect lines 939 control MUXO,selectlines 944 control MUX7,select lines

949 control MUX8,select lines 954 control MUX9andselect lines 959 control MUX15.

When a CCBis to be used, processor 470 checks to see whether the CCB matches a CCB

currently held in one of the sixteen cache units. If a match is found, the processor sends a
signal along line 935 with the block numbercorrespondingto that cache unit, for example

number 12. Comparators 920 compare the signal from that line 935 with the block numbers

and comparator C8 provides a true output for the block R8 that matches the signal, while all

the other comparators output false. Logic circuits 930, under control from the processor 470,

use select lines 959 to choose the input from line 935 for MUX15, storing the number12 in the

MRUblock R15. Logic circuits 930 also send signals along the pairs of select lines for MUX8

and higher multiplexors, aside from MUX15, to shift their output one blockto theleft, by

selecting as inputs to each multiplexor MUX8 andhigherthe value that had been stored in

register blocks one block to the right (R9-R15). The outputs of multiplexorsthat are to theleft

of MUX8are selected to be constant.

If processor 470 does not find a match for the CCB amongthe sixteen cache units, on the

other hand, the processor reads from LRU block RO along line 966 to identify the cache
corresponding to the LRU block, and writes the data stored in that cache to DRAM. The
numberthat was stored in RO,in this case number3, is chosen by’select lines 959 as input 915

to MUX15 for storage in MRU block R15. Theotherfifteen multiplexors outputto their

- respective register blocks the numbers that had been stored each register block immediately to

the nght..

Forthe situation in which the processor wishes to remove a CCB from the cacheafter use,

the LRU block RO rather than the MRU block R15 is selected for placementof the number
correspondingto the cache unit holding that CCB. The numbercorresponding to the CCB to

be placed in theLRU block RO for removal from SRAM (for example number1, held in block

R9) is sent by processor 470 along line 935, which is matched by comparator C9, The

processorinstructs logic circuits 930 to input the number 1 to RO, by selecting with lines 939

input 935 to MUX0. Select lines 954 to MUX9chooseas input the numberheld in register
35

INTEL Ex.1002.040

INTEL Ex.1002.041

Sey Aye eg TM2 Hee ee Ae
Hoo Hye Ut

ALA-006E

10

15

20

25

30

block R8, so that the number from R8is stored in R9. The numbers held by the otherregister

blocks between RO and R9are similarly shifted to the right, whereas the numbersin register

blocksto the right of R9 are left constant. This frees scarce cache memory from maintaining

closed CCBs for many cycles while their identifying numbers movethroughregister blocks
from the MRU to the LRU blocks. |

Figure 21 is another diagram of Intelligent Network Interface Card (INIC) 200 of Figure

13. INIC card 200 includes a Physical Layer Interface (PHY) chip 2100, ASIC chip 400 and

Dynamic Random Access Memory (DRAM) 460. PHYchip 2100 couples INIC card 200 to

network line 210 via a network connector 2101. INIC card 200 is coupled to the CPU of the

host (for example, CPU 28 of host 20 of Figure 1) via card edge connector 2107 and PCI bus

257. ASIC chip 400 includes a Media Access Control (MAC)unit 402, a sequencers block
2103, SRAM control 442, SRAM 440, DRAM control 450, a qucuc manager 2103, a

processor 470, and a PCI businterface unit 468. Structure and operation of queue manager
2103 is described above in connection with Figure 18 and in U.S. Patent Application Serial

Number 09/416,925, entitled “Qucuc System For Microprocessors”, attorney docket no. ALA-

005, filed October 13, 1999, by Daryl D. Starr and Clive M. Philbrick (the subject matter of

whichis incorporated herein by reference). Sequencers block 2102 includesa transmit

sequencer 2104, a receive sequencer 2105, and configuration registers 2106. A MAC

destination addressis stored in configuration register 2106. Part of the program code executed
by processor 470 is contained in ROM (not shown) andpart is located in a writeable control

" store SRAM (not shown). The program is downloadedinto the wnteable control store SRAM
at initialization from the host 20.

Figure 22 is a more detailed diagram of receive sequencer 2105. Reccive sequencer 2105

includes a data synchronization buffer 2200, a packct synchronization sequencer 2201,a data

assembly register 2202, a protocol analyzer 2203, a packet processing sequencer 2204, a queue

managerinterface 2205, and a Direct Memory Access (DMA)control block 2206. The packet

synchronization sequencer 2201 and data synchronization buffer 2200 utilize a network-

synchronized clock of MAC 402, whereas the remainderof the receive sequencer 2105 utilizes

a fixed-frequency clock. Dashed line 2221 indicates the clock domain boundary.
CD Appendix A contains a complete hardware description (verilog code) of an embodiment

of receive sequencer 2105. Signals in the verilog code are namedto designate their functions.

Individual sections of the verilog code are identified and labeled with commentlincs. Each of
36

INTEL Ex.1002.041

INTEL Ex.1002.042

ALA-006E

these sections describes hardware in a block of the receive sequencer 2105 as set forth below

in Table 1.

| SECTION OF VERILOG CODE BLOCK OFFIG. 22

Synchronization Interface 2201

| Syne-Buffer Read-Ptr Synchronizers 2201

Packet-Synchronization Sequencer 2201

Data Synchronization Buffer 2201 and 2200

Synchronized Status for Link-Destination-Address 2201

Synchronized Status-Vector 2201

Synchronization Interface 2204

Receive Packet Control and Status , 2204

Buffer-Descriptor 2201

Ending Packet Status 2201.

AssyReg shift-in. Mac -> AssyReg. 2202 and 2204

Fifo shift-in. AssyReg -> Sram Fifo 2206

Fifo ShiftOut Burst. SramFifo -> DramBuffer : 2206

Fly-By Protocol Analyzer; Frame, Network and Transport Layers|2203

Link Pointer 2203

| Mac address detection 2.203

Magic pattern detection 2203

Link layer and network layer detection 2203

| Network counter 2203
Control Packet analysis 2203

Network header analysis | 2203
Transport layer counter 2203

Transport header analysis 2203

Pseudo-header stuff 2203

Free-Descriptor Fetch 2205

Receive-Descriptor Store 2205

Receive-Vector Store 2205

Queue-manager interface-mux 2205

INTEL Ex.1002.042

INTEL Ex.1002.043

ALA-006E

15

20

25

“Pause Clock Generator

 Pause Timer

TABLE1

Operation of receive sequencer 2105 of Figures 21 and 22 is now described in connection

with the receipt onto INIC card 200 of a TCP/IP packet from network line 210. At
initialization time, processor 470 partitions DRAM 460 into buffers. Receive sequencer 2105
uses the buffers in DRAM 460 to store incoming network packet data as well as status

information for the packet. Processor 470 creates a 32-bit buffer descriptor for each buffer. A
buffer descriptor indicates the size and location in DRAM ofits associated buffer. Processor

470 places these buffer descriptors on a “free-buffer queue” 2108 by writing the descriptors to
the queue manager 2103. Queue manager 2103 maintains multiple queues including the “‘free-

buffer queue” 2108. In this implementation, the heads andtails of the various queuesare

located in SRAM 440, whereasthe middle portion of the queues are located in DRAM 460.

Lines 2229 comprise a request mechanism involving a request line and addresslines.
Similarly, lines 2230 comprise a request mechanism involving a request line and addresslines.

Queue manager 2103 uses lines 2229 and 2230 to issue requests to transfer queue information

from DRAM to SRAMor from SRAM to DRAM.

The queue managerinterface 2205 of the receive sequencer always attempts to maintain a

free buffer descriptor 2207 for use by the packet processing sequencer 2204. Bit 2208 is a

ready bit that indicates that free-buffer descriptor 2207 is available for use by the packet

processing sequencer 2204. If queue manager interface 2205 does not haveafree buffer

descriptor (bit 2208 is not set), then queue managerinterface 2205 requests one from queue

manager 2103 via request line 2209. (Request line 2209 is actually a bus which communicates
the request, a queue ID, a read/write signal and data if the operation is a write to the queue.)

In response, queue manager 2103retrieves a free buffer descriptor from the tail of the “free

buffer queue” 2108 and then alerts the queue managerinterface 2205 via an acknowledge

signal on acknowledge line 2210. When queue managerinterface 2205 receives the

acknowledgesignal, the queue managerinterface 2205 loads the free buffer descriptor 2207

and sets the ready bit 2208. Because the free buffer descriptor was in the tail of the free buffer

queuc in SRAM 440, the queue managerinterface 2205 actually receives the free buffer

38

INTEL Ex.1002.043

INTEL Ex.1002.044

fee SEPe tMed BaP AOULD oat

ALA-006E

10

20

25

30

descriptor 2207 from the read data bus 2228 of the SRAM control block 442. Packet

processing sequencer 2204 requests a free buffer descriptor 2207 via request line 2211. When
the queue managerinterface 2205 retrieves the free buffer descriptor 2207 and the free buffer

descriptor 2207 is available for use by the packet processing sequencer, the queue manager
interface 2205 informsthe packet processing sequencer 2204 via grant line 2212. Bythis

process, a free buffer descriptor is made available for use by the packet processing sequencer
2204 and the receive sequencer 2105 is ready to processes an incoming packet.

Next, a TCP/IP packet is received from the network line 210 via network connector 2101

and Physical Layer Interface (PHY) 2100. PHY 2100 supplies the packet to MAC402 via a

Media IndependentInterface (MII) parallel bus 2109. MAC 402 begins processing the packet

andasserts a “start of packet“signal on line 2213 indicating that the beginning of a packetis

being received. Whena byte of data is received in the MAC andis availableat the MAC

outputs 2215, MAC 402asserts a “data valid” signal on line 2214. Uponreceiving the “data
valid” signal, the packet synchronization sequencer 2201 instructs the data synchronization
buffer 2200 via load signal line 2222 to load the received byte from data lines 2215. Data

synchronization buffer 2200 is four bytes deep. The packet synchronization sequencer 2201

then increments a data synchronization buffer write pointer. This data synchronization buffer

write pointer is made available to the packet processing sequencer 2204 via lines 221 6.

Consecutive bytes of data from data lines 2215 are clocked into the data synchronization

buffer 2200 in this way.

A data synchronization buffer read pointer available on lines 2219 is maintained by the

packet processing sequencer 2204. The packet processing sequencer 2204 determines that
data is available in data synchronization buffer 2200 by comparing the data synchronization

buffer write pointer on lines 2216 with the data synchronization buffer read pointer on lines
2219. .

Data assembly register 2202 contains a sixteen-byte long shift register 2217. This register

2217 is loadedserially a single byte at a time and is unloadedin parallel. When data is loaded

into register 2217, a write pointer is incremented. This write pointer is made available to the

packet processing sequencer 2204 via lines 2218. Similarly, when data is unloaded from

register 2217, a read pointer maintained by packet processing sequencer 2204 is incremented.
This read pointer is available to the data assembly register 2202 via lines 2220. The packet

39

INTEL Ex.1002.044

INTEL Ex.1002.045

By ety Bt 2AE ES eaeathe Moat Bele Ma aT ee.

ALA-006E

10

15

20

25

30

processing sequencer 2204 can therefore determine whether room 1s available in register 2217

by comparing the write pointer on lines 2218 to the read pointer on lines 2220. |
If the packet processing sequencer 2204 determines that room is available in register 2217,

then packet processing scquencer 2204instructs data assembly register 2202 to load a byte of

data from data synchronization buffer 2200. The data assembly register 2202 increments the

data assembly register write pointer on lines 2218 and the packet processing sequencer 2204

increments the data synchronization buffer read pointer on lincs 2219. Data shifted into

register 2217 is examinedat the register outputs by protocol analyzer 2203 whichverifies
checksums, and generates “status” information 2223.

DMAcontrol block 2206 is responsible for moving information from register 2217 to

buffer 2114 via a sixty-four byte receive FIFO 2110. DMAcontrol block 2206 implements

reccive FIFO 2110 as two thirty-two byte ping-pong buffers using sixty-four bytes of SRAM

440. DMA control block 2206 implements the receive FIFO using a write-pointer and a read-

pointer. Whendata to be transferred is available in register 2217 and spaceis available in

FIFO 2110, DMAcontrol block2206 asserts an SRAM write request to SRAM controller 442

via lines 2225. SRAMcontroller 442 in turn moves data from register 2217 to FIFO 2110 and

asserts an acknowledge signal back to DMAcontrol block 2206 via lines 2225. DMA control

block 2206 then increments the receive FIFO write pointer and causes the data assembly

register read pointer to be incremented.

Whenthirty-two bytes of data has been deposited into receive FIFO 2110, DMAcontrol

block 2206 presents a DRAM write request to DRAM controller 450 via lines 2226. This

write request consists of the free buffer descriptor 2207 ORed with a “buffer load count” for

the DRAMrequest address, and the receive FIFO read pointer for the SRAM read address.

Using the receive FIFO read pointer, the DRAM controller 450 asserts a read request to
SRAMcontroller 442. SRAM controller 442 responds to DRAM controller 450 by returning

the indicated data from the receive FIFO 2110 in SRAM 440andasserting an acknowledge

signal. DRAM controller 450 stores the data ina DRAM write data register, stores a DRAM

request address ina DRAMaddressregister, and asserts an acknowledge to DMA control

block 2206. The DMAcontrol block 2206 then decrements the receive FIFO read pointer.

Then the DRAM controller 450 moves the data from the DRAM write data register to buffer

2114. In this way, as consecutive thirty-two byte chunksofdata are stored in SRAM 440,

DRAMcontrol block 2206 movesthose thirty-two byte chunksof data one at a time from
40

INTEL Ex.1002.045

INTEL Ex.1002.046

be By wt fying ey, ey Se
Pet alt Het at Ba,

ALA-006E

“10

15

20

25

30

SRAM440 to buffer 2214 in DRAM 460. Transferring thirty-two byte chunksof data to the

DRAM 460in this fashion allows data to be written into the DRAM usingtherelatively

efficient burst mode of the DRAM.

Packet data continues to flow from network line 210 to buffer 2114 until all packet data has

been received. MAC 402 then indicates that the incoming packet has completed by asserting

an “ond of frame”(i.e., end ofpacket) signal on line 2227 and by presentingfinal packet status
(MACpacketstatus) to packet synchronization sequencer 2204. The packet processing

sequencer 2204 then movesthe status 2223 (also called “protocol analyzer status”) and the

MACpacketstatus to register 2217 for eventual transfer to buffer 2114. After all the data of

the packet has been placed in buffer 22 14, status 2223 and the MAC packetstatusis
transferred to buffer 2214 so that it is stored prepended to the associated data as shown in

Figure 22.

After all data and status has been transferred to buffer 2114, packet processing sequencer

2204 creates a summary 2224 (alsocalled a “receive packet descriptor”) by concatenating the

free buffer descriptor 2207, the buffer load-count, the MAC ID,andastatusbit (also called an

“attention bit”). If the attention bit is a one, then the packet is not a “fast-path candidate”;

whereasif the attention bit is a zero, then the packet is a “fast-path candidate”. ‘The value of

the attention bit represents the result of a significant amount ofprocessing that processor 470
would otherwise have to do to determine whetherthe packetis a “‘fast-path candidate”. For

example, the attention bit being a zcro indicates that the packet'‘employs both TCP protocol

and IP protocol. By carrying outthis significant amount of processing in hardware beforehand

and then encodingthe result in the attention bit, subsequent decision making by processor 470

as to whether the packetis an actual “fast-path packet” is accelerated. A complete logical

description of the attention bit in verilog code is set forth in CD:Appendix A in the lines

following the heading “Ending Packet Status”.

Packet processing sequencer 2204 thensets a ready bit (not shown) associated with

summary 2224 and presents summary 2224 to queue managerinterface 2205. Queue manager

interface 2205 then requests a write to the head of a “summary queue” 2112 (also called the

“receive descriptor queue”). The queue manager 2103 receives the request, writes the
summary 2224 to the head of the summary queue 2212, and asserts an acknowledge signal

back to queue managerinterface via line 2210. When queue managerinterface 2205 receives
the acknowledge, queue managerinterface 2205 informs packet processing sequencer 2204

4)

INTEL Ex.1002.046

INTEL Ex.1002.047

ce Wn wtih 2 “x ae wae Sanathy
“ied okt MhoP UP? thee of ELI Mae

ALA-006E

15

20

25

30

that the summary 2224 is in summary queue 2212 by clearing the ready bit associated with the

summary. Packet processing sequencer 2204 also generates additional status information (also
called a “‘vector”) for the packet by concatenating the MAC packct status and the MACID.

Packet processing sequencer 2204 sets a ready bit (not shown) associated with this vector and

presents this vector to the queue managerinterface 2205. The queue managerinterface 2205

and the queue manager 2103 then cooperate to write this vector to the head ofa “vector queue”
2113 in similar fashion to the way summary 2224 was written to the head of summary queue

2112 as described above. Whenthe vector for the packet has been written to vector queue

2113, queue managerinterface 2205 resets the ready bit associated with the vector.

Once summary 2224 (including a buffer descriptor that points to buffer 2114) hasbeen
placed in summary queue 2112 and the packet data has been placed in buffer 2144, processor

470 can retrieve summary 2224 from summary qucuc 2112 and cxaminethe“attention bit”.

lf the attention bit from summary 2224 is a digital one, then processor 470 determines that
the packetis not a “fast-path candidate” and processor 470 need not examine the packet

_ headers. Only the status 2223 (first sixteen bytes) from buffer 2114 are DMAtransferred to

SRAMso processor 470 can examineit. If the status 2223 indicates that the packet is a type

ofpacket that is not to be transferred to the host (for example, a multicast frame that the hostis
not registered to receive), then the packet is discarded(i.e., not passed to the host). If status

2223 does not indicate that the packetis the type ofpacket that is not to be transferred to the
host, then the entire packet (headers and data) is passed to a buffer on host 20 for “slow-path”

transport and network layer processing by the protocol stack ofhost 20.
If, on the other hand, the attention bit is a zero, then processor 470 determines that the

packetis a ‘‘fast-path candidate”. If processor 470 determines that the packet1s a “fast-path

candidate”, then processor 470 uses the buffer descriptor from the summary to DMAtransfer

the first approximately 96 bytes of information from buffer 2114 from DRAM 460 into a

portion of SRAM 440 so processor 470 can examineit. This first approximately 96 bytes

contains status 2223 as well as the IP source address of the IP header, the IP destination

address of the IP header, the TCP source address of the TCP header, and the TCP destination

address of the TCP header. The IP source address of the IP header, the IP destination address

of the IP header, the TCP source address of the TCP header, and the TCP destination address

of the TCP header together uniquely define a single connection context (TCB) with which the

packet is associated. Processor 470 examines these addresses of the TCP and IP headers and
42

INTEL Ex.1002.047

INTEL Ex.1002.048

ALA-006E

10

15

20

25

30

determines the connection context of the packet. Processor 470 then checksa list of

connection contexts that are under the control of INIC card 200 and determines whetherthe

packet is associated with a connection context (TCB) underthe control of INIC card 200.

Ifthe connection context is not in thelist, then the “fast-path candidate” packet is

determinednotto be a ‘“‘fast-path packet.” In such a case, the entire packet (headers and data)

is transferred to a buffer in host 20 for “slow-path” processing by the protocol stack ofhost 20.
If, on the other hand, the connection contextis in the list, then software executed by

processor 470 including software state machines 2231 and 2232 checks for one ofnumerous

exception conditions and determines whether the packetis a “fast-path packet” or is not a

“fast-path packet”. These exception conditions include: 1) IP fragmentation is detected; 2) an

IP option is detected; 3) an unexpected TCP flag (urgentbit set, reset bit set, SYN bit set or

FIN bit set) is detected; 4) the ACK field in the TCP header is before the TCP window,or the

ACKfield in the TCP headeris after the TCP window,or the ACK field in the TCP header

shrinks the TCP window; 5) the ACKfield in the TCP header is a duplicate ACK and the

ACKfield exceeds the duplicate ACK count (the duplicate ACK countis a user settable

. value); and 6) the sequence numberof the TCP headeris out of order (packetis received out of

sequence). If the software executed by processor 470 detects one of these exception

conditions, then processor 470 determines.that the “fast-path candidate”is not a “fast-path
packet.” In such a case, the connection context for the packetis “flushed” (the connection

context is passed back to the host) so that the connection context is no longer presentin the list

of connection contexts under control of INIC card 200. The entire packet (headers and data) is

transferred to a buffer in host 20 for “‘slow-path”transport layer and network layer processing

by the protocol stack of host 20.

If, on the other hand, processor 470 finds no such exception condition, then the “fast-path

candidate” packet is determined to be an actual ‘“‘fast-path packet”. The receive state machine

2232 then processes of the packet through TCP. The data portion of the packet in buffer 2114

is then transferred by another DMA controller (not shown in Figure 21) from buffer 2114 to a

host-allocated file cache in storage 35 of host 20. In one embodiment, host 20 does no

analysis of the TCP and IP headers of a “‘fast-path packet’. All analysis of the TCP and IP

headersof a “‘fast-path packet” is done on INIC card 20.

Figure 23 is a diagram illustrating the transfer of data of “fast-path packets” (packets of a

64k-byte session layer message 2300) from INIC 200 to host 20. The portion of the diagram
4B

INTEL Ex.1002.048

INTEL Ex.1002.049

ALA-006E

10

15

20

25

30

to the left of the dashed line 2301 represents INIC 200, whereas the portion of the diagram to

the right of the dashed line 2301 represents host 20. The 64k-byte session layer message 2300

includes approximately forty-five packets, four of which (2302, 2303, 2304 and 2305) arc

labeled on Figure 23. The first packet 2302 includes a portion 2306 containing transport and

network layer headers (for example, TCP and IP headers), a portion2307 containing a session
layer header, and a portion 2308 containing data. Inafirst step, portion 2307,the first few

bytes of data from portion 2308, and the connection context identifier 2310 of the packet 2300

are transferred from INIC 200 to a 256-byte buffer 2309 in host 20. In a second step, host 20

examines this information and returns to INIC 200 a destination (for example, the location of a

file cache 2311 in storage 35) for the data. Host 20 also copies the first few bytes of the data
from buffer 2309 to the beginning ofafirst part 2312 of file cache 2311. In a third step, INIC

200 transfers the remainder of the data from portion 2308 to host 20 such that the remainder of

the data is stored in the remainderoffirst part 2312 of file cache 2311. No network,transport,

or session layer headers are stored in first part 2312 offile cache 2311. Next, the data portion

2313 of the second packet 2303 is transferred to host 20 such that the data portion 2313 ofthe

second packct 2303 is stored in a second part 2314 offile cache 2311. The transport layer and

networklayer header portion 2315 of second packet 2303 is not transferred to host 20. There

is no network, transport, or session layer headerstored in file cache 2311 between the data

portion offirst packet 2302 and the data portion of second packet 2303. Similarly, the data

portion 2316 of the next packet 2304 of the session layer messageis transferred to file cache

2311 so that there is no network, transport, or session layer headers between the data portion

of the second packet 2303 and the data portion of the third packet 2304 in file cache 2311. In

this way, only the data portions of the packets of the session layer message are placed in the

file cache 2311. The data from the session layer message 2300 is presentin file cache 2311 as

a block such that this block contains no network, transport, or session layer headers.

In the case of a shorter, single-packct session layer message, portions 2307 and 2308of the

session layer message are transferred to 256-byte buffer 2309 ofhost 20 along with the

connection context identifier 2310 as in the case of the longer session layer message described

above. In the case of a single-packet session layer message, however, the transfer is completed

at this point. Host 20 does not return a destination to INIC 200 and INIC 200 does nottransfer

subsequent data to such a destination.

44

INTEL Ex.1002.049

INTEL Ex.1002.050

28 ER EDey
wf Madd Boe BSP

ALA-006E

10

20

25

30

CD Appendix B includesa listing of software executed by processor 470 that determines

whether a “fast-path candidate” packetis or is nota “fast-path packet”. An example of the

instruction set ofprocessor 470 is found starting on page 79 of the Provisional U.S. Patent

Application Serial No. 60/061 ,809, entitled “Intelligent Network Interface Card And System

For Protocol Processing”, filed October 14, 1997 (the subject matter of this provisional

application is incorporated hcrein by reference).

CD Appendix C includes device driver software executable on host 20 that interfaces the

host 20 to INIC card 200. There is also ATCP codethat executes on host 20. This ATCP

code includes: 1) a “free BSD”stack (available from the University of California, Berkeley)
that has been modified slightly to make it run on the NT4 operating system (the “free BSD”

stack normally runs on a UNIX machine), and 2) code added to the free BSD stack between

the session layer above and the device driver below that cnables the BSD stack to carry out

“fast-path” processing in conjunction with INIC 200.

TRANSMIT FAST-PATH PROCESSING: The following is an overview of one

embodimentofa transmit fast-path flow once a commandhas been posted (for additional

information, see provisional application 60/098,296, filed August 27, 1998). The transmit
request may be a segmentthat is less than the MSS,orit may be as muchas a full 64K session
layer packet. The former request will go out as one segment, the latter as a number of MSS-

sized segments. The transmitting CCB must hold on to the request until all data in it has been

transmitted and ACKed. Appropriate pointers to do this are kept in the CCB. Tocreate an

output TCP/IP segment, a large DRAM buffer is acquired from the QFREEL queue. Then

data is DMAd from host memory into the DRAM buffer to create an MSS-sized segment.

This DMAalso checksums the data. The TCP/IP header is created in SRAM and DMAdto

. the front of the payload data. It is quicker and simpler to keep a basic frame header(i.c., a

template header) permanently in the CCB and DMAthis directly from the SRAM CCBbuffer

into the DRAM buffer each time. Thus the payload checksum is adjusted for the pseudo-

header(i.e., the template header) and placed into the TCP header prior to DMAing the header

from SRAM. Then the DRAMbuffer is queued to the appropriate QUXMTtransmit queue.

Thefinal step is to update various window fields etc in the CCB. Eventually either the entire

request will have been sent and ACKed,or a retransmission timer will expire in which casc the

context is flushed to the host. In either case, the INIC will place a command responsein the

45

INTEL Ex.1002.050

INTEL Ex.1002.051

ALA-006E

10.

15

20

25

30

response queue containing the command buffer from the original transmit command and
appropriate status.

The above discussion has dealt with how an actual transmit occurs. Howeverthe real

challenge in the transmit processor is to determine whetherit is appropriate to transmit at the

time a transmit request arrives, and then to continue to transmit for as long as the transport
protocol permits. There are many reasonsnotto transmit: the receiver’s window size is less

than or equal to zero, the persist timer has expired, the amountto send is less than a full

segment and an ACKis expected/outstanding, the receiver’s windowis not half-open,etc.
Muchoftransmit processing will be in determining these conditions.

The fast-path is implemented as a finite state machine (FSM)that coversat least three

layers of the protocol stack, i.e., IP, TCP, and Session. The following summarizes the steps

involved in normal fast-path transmit commandprocessing: |) get control of the associated

CCB (gotten from the command): this involves locking the CCB to stop other processing(e.g.

Receive) from altering it while this transmit processing is taking place. 2) Get the CCB into

an SRAM CCBbuffer. There are sixteen of these buffers in SRAM and they are not flushedto

DRAMuntil the buffer space is needed by other CCBs. Acquisition and flushing of these

CCB buffers is controlled by a hardware LRU mechanism. Thus getting into a buffer may

_involve flushing another CCB from its SRAM buffer. 3) Process the send command

(EX_SCMD)event against the CCB’s FSM."

Each event andstate intersection provides an action to be executed and a new state. The

following is an example ofthe state/event transition, the action to be executed and the new

state for the SEND commandwhilein transmit state IDLE (SX_IDLE). Theaction from this

state/event intersection is AX_NUCMDandthe next state is XMIT COMMAND ACTIVE

(SX_XMIT). To summarize, a command to transmit data has been received while transmitis

currently idle. The action performs the following steps: 1) Store dctails of the command into

the CCB. 2) Checkthatit is okay to transmit now (e.g. send windowis not zero). 3) If output

is not possible, send the Check Output event to QEVENT1 queue for the Transmit CCB’s

FSM and exit. 4) Geta DRAM 2K-byte buffer from the Q-FREEL queueinto which to move

the payload data. 5) DMA payloaddata from the addresses in the scatter/gatherlists in the

commandinto an offset in the DRAM bufferthat leaves space for the frame header. These

DMaAswill provide the checksum of the payload data. 6) Concurrently with the above DMA,

fill out variable details in the frame header template in the CCB. Also get the IP and TCP
46

INTEL Ex.1002.051

INTEL Ex.1002.052

- ALA-006E

10

15

20

25

30

header checksumswhile doing this. Notethat base IP and TCP headers checksumsare kept in

the CCB,andthese are simply updatedfor fields that vary per frame, viz. IP Id, IP length, IP

checksum, TCP sequence and ACK numbers, TCP windowsize, TCP flags and TCP

checksum. 7) Whenthe payload is complete, DMAthe frame header from the CCBto the

front of the DRAM buffer. 8) Queue the DRAM buffer(i.e., queue a buffer descriptor that

points to the DRAM buffer) to the appropriate Q UXMTqueueforthe interface for this CCB.

9) Determineif there is more payload in the command. If so, save the current command

transfer address details in the CCB and send a CHECK OUTPUTeventvia the QEVENT1

queue to the Transmit CCB. If not, send the ALL COMMAND DATA SENT (EX_ACDS)

event to the Transmit CCB. 10) Exit from Transmit FSM processing.

Code that implements an embodimentof the Transmit FSM (transmit software state

machine 2231 of Figure 21) is’ found in CD Appendix B, In one embodiment, fast-path

transmit processing is controlled using write only transmit configuration register (XmtCfg).

Register XmtCfg has the following portions: 1) Bit 31 (name: Reset). Writing a one (1) will
force reset asserted to the transmit sequencer of the channel selected by XcvSel. 2) Bit 30

(name: XmtEn). Writing a one (1) allows the transmit sequencer to run. Writing a zero (0)
causesthe transmit sequencer to halt after completion ofthe current packet. 3) Bit 29 (name:
PauseEn). Writing a one (1) allows the transmit sequencer to stop packet transmission, after

completion of the current packet, whenever the receive sequencer detects an 802.3 X pause

command packet. 4) Bit 28 (name: LoadRng). Writing a one (1) causes the data in

RevAddrB|10:00] to be loaded in to the Mac’s random numberregister for use during

collision back-offs. 5) Bits 27:20 (name: Reserved). 6) Bits 19:15 (name: FrecQId). Selects
the queue to whichthe freed buffer descriptors will be written once the packet transmission

has been terminated, either successfully or unsuccessfully. 7) Bits 14:10 (name: XmtQId).

Selects the queue from which the transmit buffer descriptors will be fetched for data packets.

8) Bits 09:05 (name: CtrlQId). Selects the qucuc from which the transmit buffer descriptors

will be fetched for control packets. These packets have transmission priority over the data

packets and will be exhausted before data packets will be transmitted. 9) Bits 04:00 (name:

VectQId). Selects the queue to which the transmit vector data is written after the completion

of each packet transmit. In some embodiments, transmit sequencer 2104 of Figure 21 retrieves

buffer descriptors from two transmit queues, one of the queues having a higher transmission

priority than the other. The higher transmissionpriority transmit queue is used for the
47 -

INTEL Ex.1002.052

INTEL Ex.1002.053

ALA-006E

10

15

20

25

30

transmission ofTCP ACKs, whereas the lower transmissionpriority transmit queue is used for

the transmission of other types of packets. ACKs maybe transmitted in accordance with

techniques set forth in U.S. Patent Application Serial No. 09/802,426 (the subject matter of

whichis incorporated herein by reference). In some embodiments, the processor that executes

the Transmit FSM,the receive and transmit sequencers, and the host processor that executes

the protocol stack are all realized on the sameprinted circuit board. The printed circuit board

may, for example, be a card adapted for coupling to another computer.

All told, the above-described devices and systems for processing of data communication

result in dramatic reductions in the time and host resources required for processing large,

connection-based messages. Protocol processing speed and efficiency is tremendously

accelerated by specially designed protocol processing hardware as compared with a general
purpose CPU running conventional protocol software, and interrupts to the host CPU arc also

substantially reduced. These advantages can be provided to an existing host by addition of an

intelligent network interface card (INIC), or the protocol processing hardware may be
integrated with the CPU. In either case, the protocol processing hardware and CPU

intelligently decide which device processes a given message, and can changethe allocation of

that processing based upon conditions of the message.

DISCLOSURE FROM PROVISIONAL APPLICATION 60/061,809.

BACKGROUND OF THE INVENTION.

Network processing as it exists today is a costly and inefficient use of system

resources. A 200 MHz Pentium-Prois typically consumed simply processing network data

from a 100Mb/second-network connection. The reasonsthat this processing is so costly are

described here.

TOO MANY DATA MOVES.

When networkpacketarrives at a typical network interface card (NIC), the NIC moves

the data into pre-allocated network buffers in system main memory. From there the data is

rcad into the CPU cachesothat it can be checksummed(assuming ofcourse that the protocol

in use requires checksums. Some, like IPX, do not.). Once the data has been fully processed

by the protocolstack, it can then be movedinto its final destination in memory. Since the
48

INTEL Ex.1002.053

INTEL Ex.1002.054

HAA ON Bue Fa
wth. Me flee BTURCLR ak

ALA-006E

10

15

20

25

30

CPUis moving the data, and must read the destination cacheline in beforeit can fill it and

write it back out, this involves at a minimum two moretrips across the system memory bus. In

short, the best onc can hopeforis that the data will get moved across the system memory bus

four times beforeit arrives in its final destination. It can, and does, get worse. If the data

happensto get invalidated from system cacheafter it has been checksummed,then it must get

pulled back across the memory bus before it can be movedto its final destination. Finally, on

some systems, including Windows NT 4.0, the data gets copicd yet another time while being

movedup the protocol stack. In NT 4.0, this occurs between the miniport driver interface and

the protocol driver interface. This can add up to a whoppingeight trips across the system

memory bus(the four trips described above,plus the moveto replenish the cache, plusthree
more to copy from the miniport to the protocol driver). That’s enough to bring even today’s

advanced memory bussesto their knees.

TOO MUCH PROCESSINGBY THE CPU. : .

In all but the original move from the NIC to system memory, the system CPU is

responsible for moving the data. This is particularly expensive because while the CPU is

movingthis data it can do nothing else. While movingthe data the CPUis typically stalled

waiting for the relatively slow memory to satisfy its read and write requests. A CPU, which
can execute an instruction every 5 nanoseconds, must now wait as long as several hundred

nanosecondsfor the memory controller to respond before it can begin its next instruction.

Even today’s advanced pipelining technology doesn’t help in these situations because that

relies on the CPU being able to do useful work while it waits for the memory controller to

respond. Ifthe only thing the CPU has to look forward to for the next several hundred

instructions is more data moves, then the CPU ultimately gets reduced to the speed of the

memory controller.

Movingall this data with the CPU slowsthe system down even after the data has been

moved. Since both the source and destination cache lines must be pulled into the CPU cache

whenthe data is moved, morethan 3k of instructions and or data resident in the CPU cache

mustbe flushed or invalidated for every 1500 byte frame. This is of course assuming a

combinedinstruction and data second level cache, as is the case with the Pentium processors.

After the data has been moved, the formerresident of the cache will likely need to be pulled

backin, stalling the CPU even when weare not performing network processing. Ideally a
49

INTEL Ex.1002.054

INTEL Ex.1002.055

ALA-006E

10

15

20

25

30

system would never haveto bring network frames into the CPU cache,instead reserving that

precious commodity for instructions and data that are referenced repeatedly and frequently.

But the data movementis not the only drain on the CPU. Thereis also a fair amount of

processing that must be done by the protocol stack software. The most obvious expenseis

calculating the checksum for each TCP segment (or UDP datagram). Beyond this, however,

there is other processing to be done as well. The TCP connection object must be located when

a given TCP segmentarrives, IP header checksums mustbe calculated, there are buffer and

memory managementissues, andfinally there is also the significant expense ofinterrupt

processing which wewill discuss in the following section.

TOO MANY INTERRUPTS.

A 64k SMBrequest (write or read-reply) is typically made up of 44 TCP segments

when running over Ethernet (1500 byte MTU). Each of these segments may result in an

interrupt to the CPU. Furthermore, since TCP must acknowledgeall of this incoming data, it’s

possible to get another 44 transmit-complete interrupts as a result of sending out the TCP

acknowledgements. While this is possible, it is not terribly likely. Delayed ACK timers allow

us to acknowledge more than one segmentat a time. And dclays in interrupt processing may

mean that we are able to proccss more than one incoming network frame per interrupt.

Nevertheless, cven if we assume four incoming frames per input, and an acknowledgement for

every two segments(as is typical per the ACK-every-other-segment property of TCP), we are

still left with 33 interrupts per 64k SMB request.

Interrupts tend to be very costly to the system. Often when a system is interrupted,

important information must be flushed or invalidated from the system cacheso that the

interrupt routine instructions, and needed data can be pulled into the cache. Since the CPU

will return to its prior location after the interrupt,it is likely that the information flushed from

the cache will immediately need to be pulled back into the cache.

What’s more, interrupts force a pipeline flush in today’s advanced processors. While

the processor pipeline is an extremely efficient way of improving CPU performance,it can be

expensive to get going after it has been flushed.

Finally, each of these interrupts results in expensive register accesses across the

peripheral bus (PCI). This is discussed more in the following section.

50

INTEL Ex.1002.055

INTEL Ex.1002.056

ALA-006E

10

15

20

25

30

INEFFICIENT USE OF THE PERIPHERALBUS(PCI).

Wenotedearlier that when the CPUhasto access system memory,it maybestalled for

several hundred nanoseconds. Whenit has to read from PCI, it maybestalled for many

microseconds. This happensevery time the CPUtakes an interrupt from a standard NIC. The

first thing the CPU must do whenit receives one of these interrupts is to read the NIC Interrupt

Status Register (ISR) from PCI to determine the cause of the interrupt. The most troubling

thing about this is that since interrupt lines are shared on PC-based systems, we may have to

perform this expensive PCI read even whentheinterrupt is not meantfor us.

There are other peripheral bus inefficiencies as well. Typical NICs operate using

descriptor rings. When a framearrives, the NIC reads a receive descriptor from system

memory to determine whereto place the data. Once the data has been moved to main

memory, the descriptor is then written back out to system memory with status about the

received frame. Transmit operates in a similar fashion. The CPU must notify that NIC that it

has a new transmit. The NIC will read the descriptor to locate the data, read the dataitself, and

then write the descriptor back with status about the send. Typically on transmits the NIC will

then read the next expected descriptor to see if any morc data needsto be sent. In short, each

receive or transmit frameresults in 3 or 4 separate PCI reads or writes (not counting the status

register read)..

SUMMARYOF THE INVENTION.

Alacritech was formed with the idea that the network processing described above could

be offloaded onto a cost-effective Intelligent Network Interface Card (INIC). With the

Alacritech INIC, we address each of the above problems,resulting in the following

advancements:

1. The vast majority of the data is moved directly from the INIC into its final

destination. A single trip across the system memory bus.

2. There is no header processing,little data copying, and no checksumming

required by the CPU. Becauseofthis, the data is never moved into the CPU cache, allowing
the system to keep important instructions and data resident in the CPU cache.

3. Interrupts are reducedto as little as 4 interrupts per 64k SMBread and 2 per

64k SMBwrite.

51

INTEL Ex.1002.056

INTEL Ex.1002.057

ALA-006E

10°

15

20

25

30

4. There are no CPU reads over PCI and there are fewer PCI operations per

receive or transmit transaction.

In the remainder of this document we will describe how we accomplish the above.

PERFORM TRANSPORT LEVEL PROCESSING ON THEINIC.

In order to keep the system CPU from having to process the packet headers or
checksum the packet, we must perform this task on the INIC. This is a daunting task. There

are more than 20,000 lines of C code that make up the FreeBSD TCP/IP protocol stack.

Clearly this is more code than could beefficiently handled by a competitively priced network

card. Furthermore, as noted above, the TCP/IP protocol stack is complicated enough to

consume a 200 MHz Pentium-Pro. Clearly in order to perform this function on an inexpensive

card, we need special network processing hardware as opposed to simply using a general

purpose CPU.

ONLY SUPPORT TCP/IP.

In this section we introduce the notion of a "context". A context is required to keep

track of information that spans many, possibly discontiguous, pieces of information. When

processing TCP/IP data, there are actually two contexts that must be maintained. Thefirst

context is required to reassemble IP fragments, It holds information about the status of the IP
reassembly as well as any checksum information being calculated across the IP datagram
(UDPor TCP). This context is identified by the IP_ID of the datagram as well as the source

and destination IP addresses. The secondcontextis required to handle the sliding window

protocol] of TCP. It holds information about which segments have been sent or received, and

which segments have been acknowledged,andis identified by the IP source and destination

addresses and TCP source and destination ports.

If we were to chooseto handle both contexts in hardware, we would haveto potentially

keep track ofmany pieces of information. One such example is a case in which a single 64k

SMBwrite is broken downinto 44 1500 byte TCP segments, which are in turn broken down

into 131 576 byte IP fragments, all of which can comein any order (though the maximum

windowsize is likely to restrict the number of outstanding segments considerably).

Fortunately, TCP performs a Maximum Segment Size negotiation at connection

establishment time, which should prevent IP fragmentation in nearly all TCP connections. The
52

INTEL Ex.1002.057

INTEL Ex.1002.058

eee ; AS,LB EME Ne ek gery oe HEM ata hgh Soe Oeah eyook Bud Bly TRGR GPRS ad MG Ba ah Be Ba

ALA-006E

10

15

20

25

30

only time that we should end up with fragmented TCP connections is whenthereis a routerin

the middle of a connection which must fragment the segments to support a smaller MTU. The

only networks that use a smaller MTU than Ethernetare serial line interfaces such as SLIP and

PPP. At the moment, the fastest of these connections only run at 128k (ISDN) so even if we

had 256 of these connections, we would still only need to support 34Mb/sec,oralittle over

three 10bT connections worth of data. This is not enoughto justify any performance

enhancements that the INIC offers. If this becomes an issue at some point, we may decidc to

implement the MTU discovery algorithm, which should prevent TCP fragmentation onall

connections (unless an ICMPredirect changes the connection route while the connection is

established).

With this in mind, it seems a worthysacrifice to not attempt to handle fragmented TCP

segments on the INIC. UDPis another matter. Since UDP does not support the notion of a

Maximum Segment Size,it is the responsibility of IP to break down a UDP datagram into

MTUsized packets. Thus, fragmented UDP datagrams are very common. The most common

UDPapplication running today is NFSV2 over UDP. While this is also the most common
version ofNFS running today, the current version of Solaris being sold by Sun Microsystems

runs NFSV3 over TCP by default. We can expect to see the NFSV2/UDPtraffic start to

decrease over the coming years. In summary, we will only offer assistance to non-fragmented

TCP connections on the INIC.

DON’T HANDLETCP “EXCEPTIONS”.

As noted above, we won’t provide support for fragmented TCP segments on the INIC.

Wehavealso opted to not handle TCP connection and breakdown. Hereis a list of other TCP

“exceptions” which we haveelected to not handle on the INIC:

Fragmented Segments —Discussed above. .

Retransmission Timeout — Occurs when wedo notget an acknowledgement for
previously sent data within the expected time period.

Out of order segments — Occurs when we receive a segment with a sequence number

other than the next expected sequence number.

FIN segment — Signals the close of the connection.

Since we have noweliminated support for so many different code paths, it might seem

hardly worth the trouble to provide any assistance by the card at all. This is not the case.

53 a

INTEL Ex.1002.058

INTEL Ex.1002.059

tS gfe Bh SUShy Spe yhTTR al OUR BacMaat Beas

ALA-006E

10

15

20

25

- 30

According to W. Richard Stevens and Gary Write in their book “TCP/IP Illustrated Volume

2”, TCP operates without experiencing any exceptions between 97 and 100 percentof the time
in local area networks. As network, router, and switch reliability improve this numberis likely

to only improve with time.

TWO MODESOF OPERATION.

So the next question is what to do about the nctwork packets that do notfit our criteria,

The answer shownin Fig. 24 is to use two modes of operation: One in which the network
frames are processed on the INIC through TCP and one in which the card operateslike a

typical dumb NIC. Wecall these two modes fast-path, and slow-path. In the slow-path case,
network frames are handed to the system at the MAClayer and passed up through the host

protocol stack like any other network frame. In the fast path case, network data is given to the

_ host after the headers have been processed and stripped.

The transmit case works in muchthe samefashion. In slow-path mode the packets are

given to the INIC with all of the headers attached. The INIC simply sends these packets outas
if it were adumb NIC. In fast-path mode, the host gives raw datato the INIC which it must
carve into MSS sized segments, add headers to the data, perform checksumson the segment,

and then send it out on the wire.

THE TCB CACHE.

Consider a situation in which a TCP connection is being handled by the card and a

fragmented TCP segmentfor that connection arrives. In this situation, it will be necessary for

the card to turn contral of this connection over to the host.

This introduces the notion of a Transmit Control Block (TCB) cache. A TCB isa

structure that contains the entire context associated with a connection. This includes the

source and destination IP addresses and source and destination TCP ports that define the

connection, It also contains information about the connection itself such as the current send

and receive sequence numbers, andthe first-hop MACaddress, ctc. The complete set ofTCBs

exists in host memory, but a subset of these may be "owned"by the card at any given time.
This subset is the TCB cache. The INIC can own up to 256 TCBsat any given time.

TCBsare initialized by the host during TCP connection setup. Once the connection has

achieved a “steady-state” of operation, its associated TCB can then be turned over to the INIC,
54

INTEL Ex.1002.059

INTEL Ex.1002.060

ALA-006E

10

15

20

25

30

putting us into fast-path mode. From this point on, the INIC ownsthe connection until either a
FIN arrives signaling that the connection is being closed, or until an exception occurs which

the INIC is not designed to handle (such as an out of order segment). When any of these

conditions occur, the INIC will then flush the TCB back to host memory, and issue a message

to the host telling it that it has relinquished control of the connection, thus putting the

connection back into slow-path mode. From this point on, the INIC simply hands incoming

segments that are destined for this TCB off to the host with all of the headersintact.

Note that when a connection is owned by the INIC,the host is not allowed to reference

the corresponding TCB in host memory asit will contain invalid information aboutthe state of

’ the connection.

TCP HARDWARE ASSISTANCE.

Whena frameis received by the INIC,it must verify it completely before it even
determines whetherit belongs to onc of its TCBsor not. This includesall header validation (is
it IP, IPV4 or V6, is the IP header checksum corrcct, is the TCP checksum correct, etc). Once

this is done it must compare the source and destination IP address and the source and

destination TCP port with those in each of its TCBs to determineif it is associated with one of ©

its TCBs. This is an expensive process. To expedite this, we have added several features in

hardwareto assist us. The headeris fully parsed by hardware andits type is summarized in a

single status word. The checksum is also verified automatically in hardware, and a hash keyis

created out of the IP addresses and TCP ports to expedite TCB lookup. Forfull details on

these and other hardware optimizations, refer to the INIC Hardware Specification sections

(Heading 8).

With the aid of these and other hardware features, much of the work associated with

TCPis done essentially for free. Since the card will automatically calculate the checksum for

TCP segments, we can pass this on to the host, cven when the segment is for a TCB that the

TNIC does not own.

TCP SUMMARY. ,

By moving TCP processing down to the INIC we haveoffloaded the host of a large

amount of work. The host no longer hasto pull the data into its cache to calculate the TCP

55

INTEL Ex.1002.060

INTEL Ex.1002.061

ALA-006E

10

15

20

25

30

checksum. It docs not have to process the packet headers, and it does not have to generate

TCP ACKs. We have achieved most of the goals outlined above, but we are not doneyet.

TRANSPORT LAYER INTERFACE.

This section defines the INIC’s relation to the hosts transport layer interface (Called

TDIor Transport Driver Interface in Windows NT). For full details on this interface, refer to

the Alacritech TCP (ATCP) driver specification (Heading 4).

RECEIVE.

Simply implementing TCP on the INIC does not allow us to achieve our goal of landing

the datain its final destination. Somehow the host hasto tell the INIC whereto put the data.

This is a problem in that the host cannot do this without knowing whatthe data actually is.

Fortunately, NT has provided a mechanism by whicha transport driver can “indicate” a small

amountof data to a client above it while telling it that it has more data to come. Theclient,

having then received enough of the data to know whatit is, is then responsible for allocating a

block of memory and passing the memory address or addresses back downto the transport
driver, which is in turn responsible for moving the data into the provided location.

Wewill makeuse of this feature by providing a small amountof any received data to

the host, with a notification that we have more data pending. When this small amountof data

is passed up to the client, and it returns with the address in which to put the remainder ofthe
data, our host transport driver will pass that address to the INIC which will DMA the

remainderofthe data into its final destination.

Clearly there are circumstances in which this does not make sense. When a small

amount of data (500 bytes for example), with a push flag set indicating that the data must be

. delivered to the client immediately, it does not make sense to deliver some ofthe data directly

while waiting for the list of addresses to DMAthe rest. Under these circumstances, it makes

more sense to deliver the 500 bytes directly to the host, and allow the host to copyitinto its

final destination. While various ranges are feasible, it is currently preferred that anything less

than a segment’s (1500 bytes) worth of data will be delivered directly to the host, while

anything morewill be delivered as a small picce which may be128 bytes, while waiting until

receiving the destination memory address before movingtherest.

56

INTEL Ex.1002.061

INTEL Ex.1002.062

ALA-006E

15

20

25

30

The trick then is knowing whenthe data should be delivered to the client or not. As

we’ve noted, a push flag indicates that the data should be delivered to the client immediately,

but this alone is not sufficient. Fortunately, in the case of NetBIOStransactions (such as

SMB), weare explicitly told the length of the session message in the NetBIOS headeritself.

With this we can simply indicate a small amountofdata to the host immediately upon

receiving the first segment. The client will then allocate enough memory for the entire

NetBIOStransaction, which we can then use to DMA the remainderof the data into as it

arrives. In the case of a large (56k for example) NetBIOS session message,all but the first

couple hundred bytes will be DMA’dto their final destination in memory.

But what about applications that do not reside above NetBIOS? In this case we can not

rely on a session level protocolto tell us the length of the transaction. Under these

circumstances we will buffer the data as it arrives until A) we have receive some

‘predetermined numberofbytes such as 8k, or B) some predetermined period of time passes

between segments or C) we get a push flag. If after any of these conditions occur we will then

‘indicate someorall of the data to the host depending on the amountof data buffered. If the
data buffered is greater than about 1500 bytes we must then also wait for the memory address

to be returned from the host so that we may then DMAthe remainderofthe data.

~ TRANSMIT.

The transmit case is much simpler. In this case the client (NetBIOS for example) issues

a TDI Send with a list of memory addresses which contain data that it wishes to send along

with the length. The host can then passthis list of addresses and length off to the INIC. The

INIC will then pull the data from its source location in host memory, as it needs it, until the

complete TDI requestis satisfied.

AFFECTS ON INTERRUPTS.

Note that when wereceive a large SMBtransaction, for example, that there are two

interactions between the INIC and the host. Thefirst in which the INIC indicates a small

amountof the transaction to the host, and the second in which the host provides the memory

location(s) in which the INIC places the remainderofthe data. This results in only two

interrupts from the INIC. The first when it indicates the small amount of data and the second

after it has finished filling in the host memory given to it. A drastic reduction from the 33/64k
57

INTEL Ex.1002.062

INTEL Ex.1002.063

BE eo + 2S RA ay rayaay trayUw GEN TiS ew Aeee A oP Bd a VIS oF AyeH. BP Hoe Lt ad Wee ah RB oa BaOG FaHL

ALA-006E

10

15

20

25

30

SMBrequestthat we estimate at the beginning of this section. On transmit, we actually only

receive a single interrupt when the send commandthat has been given to the INIC completes.

TRANSPORT LAYER INTERFACE SUMMARY.

Having now established our interaction with Microsoft’s TDI interface, we have

achieved our goal of landing mostof our data directly into its final destination in host memory.

Wehave also managedto transmit all data from its original location on host memory. And

finally, we have reduced our interrupts to 2 per 64k SMBread and | per 64k SMB write. The

only thing that remainsin ourlist of objectives is to design an efficient host (PCT) interface.

HOST (PCI) INTERFACE.

In this section we define the host interface. For a more detailed description, refer to the

“Host Interface Strategy for the Alacritech INIC” section (Heading 3).

AVOID PCI READS.

One ofour primary objectives in designing the host interface of the INIC was to

eliminate PCI reads in either direction. PCI reads are particularly inefficient in that they

completely stall the reader until the transaction completes. As noted above, this could hold a

CPUup for several microseconds, a thousand times the time typically required to execute a

single instruction. PCI writes on the other hand, are usually buffered by the memory-

bus“PCI-bridge allowing the writer to continue on with other instructions. This technique is

* known as “posting”.

MEMORY-BASED STATUS REGISTER.

The only PCI read that is required by most NICsis the read of the interrupt status

register. This register gives the host CPU information about what event has caused an

interrupt (if any). In the design of our INIC wehave elected to place this necessary status

register into host memory. Thus, when an event occurs on the INIC,it writes the status

register to an agreed upon location in host memory. The corresponding driver on the host

reads this local register to determine the cause of the interrupt. The interrupt lines are held

high until the host clears the interrupt by writing to the INIC’s Interrupt Clear Register.

Shadowregisters are maintained on the INIC to ensure that events are not lost.
58

INTEL Ex.1002.063

INTEL Ex.1002.064

f

ALA-006E

10

20

25

30

the INIC 2 buffers at a time.

BUFFER ADDRESSES ARE PUSHED TO THEINIC.

Since it is imperative that our INIC operate as efficiently as possible, we must also

avoid PCI reads from the INIC. Wedo this by pushing our receive buffer addresses to the

INIC. As mentioned at the beginning of this section, most NICs work on a descriptor queue

algorithm in which the NIC reads a descriptor from main memory in order to determine where

to place the next frame. We will instead write receive buffer addresses to the INIC as receive |

buffers are filled. In order to avoid having to write to the INIC for every receive frame, we

instead allow the host to pass off a pages worth (4k) ofbuffers in a single write.

SUPPORT SMALL AND LARGE BUFFERSON RECEIVE.

In order to reduce further the number of wmites to the INIC, and to reduce the amount of

memory being used by the host, we support two different buffer sizes. A small buffer contains

roughly 200 bytes of data payload, as well as extra fields containing status about the received

data bringing the total size to 256 bytes. We can therefore pass 16 of these small buffers at a
time to the INIC. Large buffers are 2k in size. They are used to contain any fast or slow-path

data that does notfit in a small buffer. Note that when we have a large fast-path receive, a

small buffer will be used to indicate a small piece of the data, while the remainder of the data

will be DMA’d directly into memory. Large buffers are never passed to the host by

themselves, instead they are always accompanied by a small buffer which contains status about

the receive along with the large buffer address. By operating in the manner, the driver must

_ only maintain and process the small buffer queue. Large buffers are returned to the host by

virtue ofbeing attached to small buffers. Since large buffers are 2k in size they are passed to

COMMAND AND RESPONSE BUFFERS.

In addition to needing a manner by which the INIC can pass incoming data to us, we

also need a manner by which we can instruct the INIC to send data. Plus, when the INIC

indicates a small amountof data in a Jarge fast-path receive, we need a method of passing back

the address or addresses in which to put the remainder of the data. We accomplish both of

-these with the use of a commandbuffer. Sadly, the command buffer is the only place in which

we must violate our rule of only pushing data across PCI. For the commandbuffer, we write
59

INTEL Ex.1002.064

INTEL Ex.1002.065

ALA-006E

10

15

20

25

30

the address of commandbuffer to the INIC. The INIC then reads the contents of the command
buffer into its memory so that it can execute the desired command. Since a command may
take a relatively long time to complete, it is unlikely that commandbufters will complete in

order. For this reason we also maintain a response buffer queue. Like the small and large

receive buffers, a page worth of response buffers is passed to the INIC at a time. Response

buffers are only 32 bytes, so we have to replenish the INIC’s supply of them relatively

infrequently. The response buffers only purposeis to indicate the completion of the

designated commandbuffer, and to pass status about the completion.

EXAMPLES.

In this section we will provide a couple of examples describing someofthe differing

data flows that we might see on the Alacritech INIC.

FAST-PATH 56K NETBIOS SESSION MESSAGE.

Let’s say a 56k NetBIOS session message is received on the INIC. The first segment

will contain the NetBIOS header, which contains the total NetBIOS length. A small chunk of

this first segment is provided to the host by filling in a small receive buffer, modifying the

interrupt status register on the host, and raising the appropriate interrupt line. Upon receiving

the interrupt, the host will read the ISR, clear it by writing back to the INIC’s Interrupt Clear

Register, and will then process its small receive buffer queue looking for receive buffers to be

processed. Uponfinding the small buffer, it will indicate the small amount of data up to the

client to be processed by NetBIOS.It will also, if necessary, replenish the receive buffer pool

on the INIC by passing off a pages worth of small buffers. Meanwhile, the NetBIOSclient

will allocate a memory poollarge enough to hold the entire NetBIOS message, and will pass

this address or set of addresses downto the transport driver. The transport driver will allocate

an INIC commandbuffer, fill it in with the list of addresses, set the commandtypeto tell the

INIC that this is where to put the receive data, and then pass the commandoff to the INIC by

writing to the command register. When the INIC receives the commandbuffer, it will DMA

the remainder of the NetBIOSdata,as it is received, into the memory address or addresses

designated by the host. Once the entire NetBIOStransaction is complete, the INIC will

complete the command by writing to the response buffer with the appropriate status and

command buffer identificr.

60

INTEL Ex.1002.065

INTEL Ex.1002.066

ALA-006E

10

15

20

25

30

In this example, we have twointerrupts, andall but a couple hundred bytes are DMA’d.

directly to their final destination. On PCI we have twointerrupt status register writes, two

interrupt clear register writes, a commandregister write, a commandread, and a response

buffer write.

With a standard NIC this would result in an estimated 30 interrupts, 30 interrupt register

reads, 30 interrupt clear writes, and 58 descriptor reads and writes. Plus the data will get

moved anywhere from 4 to 8 times across the system memory bus.

SLOW-PATH RECEIVE.

If the INIC receives a frame that does not contain a TCP segment for one of its TCB’s,

it simply passesit to the host as if it were a dumb NIC.If the framefits into a small buffer

(~200 bytes or less), then it simply fills in the small buffer with the data and notifies the host.

Otherwiseit places the data in a large buffer, writes the address of the large buffer into a small

buffer, and again notifies the host. The host, having received the interrupt and found the

completed small buffer, checks to see if the data is contained in the small buffer, and if not,

locates thelarge buffer. Having found the data, the host will then pass the frame upstream to

be processed by the standard protocol stack. It must also replenish the INIC’s small and large

‘receive buffer pool ifnecessary.

With the INIC, this will result in one interrupt, one interrupt status register write and

one interrupt clear register write as well as a possible small and or large receive buffer register

write. The data will go through the normalpath althoughif it is TCP data then the host will

not have to perform the checksum.

With a standard NIC this will result in a single interrupt, an interrupt status register read,

an interrupt clear register write, and a descriptor read and write. The data will get processed as

it would by the INIC, except for a possible extra checksum.

FAST-PATH 400 BYTE SEND.

In this example, lets assumethat the client has a small amountofdata to send. It will

issue the TDI Send to the transport driver which will allocate a command buffer, fill it in with

the address of the 400 byte send, and set the commandto indicate that it is a transmit. It will

then pass the commandoffto the INIC by writing to the command register. The INIC will

then DMAthe 400 bytes into its own memory,prepare a frame with the appropriate
61

INTEL Ex.1002.066

INTEL Ex.1002.067

10

15

20

25

30

~ ALA-006E

checksums and headers, and send the frameout on the wire. After it has received the

acknowledgementit will then notify the host of the completion by writing to a response buffer.

With the INIC,this will result in one interrupt, one interrupt status register write, one

interrupt clear register write, a command buffer register write a commandbuffer read, and a

response buffer write. The data is DMA’d directly from the system memory.

With a standard NIC this will result in a single interrupt, an interrupt status register read,

an interrupt clear register writc, and a descriptor read and write. ‘ The data would get moved

across the system bus a minimum of4 times. The resulting TCP ACKof the data, however,

would add yet another interrupt, another interrupt status register read, interrupt clear register

write, a descriptor read and write, and yet more processing by the host protocol stack.

HOST INTERFACE STRATEGY FOR THE ALACRITECHINIC.

This section describes the host interface strategy for the Alacritech Intelligent Network

Interface Card (INIC). The goal of the Alacritech INIC is to not only process network data

through TCP,butalso to provide zero-copy support for the SMP upper-layerprotocol. It

achieves this by supporting two paths for sending and receiving data, the fast-path and the

slow-path. The fast path data flow corresponds to connections that are maintained on the NIC,

while slow-path traffic corresponds to network data for which the NIC does not have a

connection. The fast-path flow works by passing a headerto the host and subsequently holding

further data for that connection on the card until the host responds via an INIC command with

a set of buffers into which to place the accumulated data. In the slow-path data flow, the INIC

will be operating as a “dumb”NIC,so that these packets are simply dumpedinto frame buffers

on the host as they arrive. To do either path requires a pool of smaller buffers to be used for

headers and a pool of data buffers for frames/data that are too large for the header buffer, with

both pools being managed by the INIC. This section discusses how these two pools of data are

managed as well as how buffers are associated with a given context.

RECEIVE INTERFACE.

The varying requirements of the fast and slow paths and a desire to save PCI bandwidth

are the driving forces behind the host interface that is described herein. As mentioned above,
the fast-path flow puts a header into a header bufferthat is then forwarded to the host. The host
uses the header to determine whatfurther data is following, allocates the necessary host

62 :

INTEL Ex.1002.067

INTEL Ex.1002.068

BoyMe MPa ey ore

oh Re Bos Min nl

ALA-006E

15

20

25

30 ©

buffers, and these are passed back to the INIC via a commandto the INIC. The INIC thenfills

these buffers from data it was accumulating on the card and notifies the host by sending a

response to the command. Alternatively, the fast-path may receive a header and data thatis a

complete request, but that is also too large for a header buffer. This results in a header and data

buffer being passedto the host. This latter flow is identical to the slow-path flow, which also

puts all the data into the headerbufferor, if the header is too small, uses a large (2K) host

buffer for all the data. This meansthat on the unsolicited receive path, the host will only see

either a header buffer or a header and at most, one data buffer. Note that data is neversplit

between a header and a data buffer.

Fig. 25 illustrates both situations. Since we wantto fill in the header buffer with a

single DMA,the header mustbe the last piece of data to be written to the host for any received

transaction.

RECEIVE INTERFACE DETAILS.

HEADER BUFFERS.

Header buffers in host memory are 256 bytes long, and are.aligned on 256 byte

boundaries. There will be a field in the header buffer indicating it has valid data. This field

will initially be reset by the host before passing the buffer descriptor to the INIC. A set of

headerbuffers are passed from the host to the INIC by the host writing to the “Header Buffer

Address Register” on the INIC.This register is defined as follows:

Bits 31-8 Physical address in host memory ofthe first of a set of contiguous

headerbuffers.

Bits 7-0 Numberof header buffers passed.

In this waythe host can,say, allocate 16 buffers in a 4K page, and passall 16 buffers to
the INIC with one register write. The INIC will maintain a queue of these header descriptors

in the SmallHType queue init’s own local memory, adding to the end of the queue every time

the host writes to the Header Buffer Address Register. Note that the single entry is added to

the queue; the eventual dequeuer will use the count after extracting that entry.

The header buffers, will be used and returned to the host in the sameorder that they

were given to the INIC. The valid field will be set by the INIC before returning the buffer to

the host. In this way a PCIinterrupt, with a single bit in the interrupt register, may be

generated to indicate that there is a header buffer for the host to process. Whenservicing this
63

INTEL Ex.1002.068

INTEL Ex.1002.069

soe Fin Xe Se
WA a Rue BL xt

ALA-006E

10

is

20

25

30

interrupt, the host will look at its queue ofheader buffers, reading the valid field to determine

how many header buffers are to be processed.

RECEIVE DATA BUFFERS.

Receive data buffers in host memory are aligned to page boundaries, assumed herc to be

2K bytes long and aligned on 4K page boundaries, 2 buffers per page. In order to pass receive

data buffers to the INIC, the host must write to two registers on the INIC. Thefirst register to

be written is the “Data Buffer Handle Registcr.” The buffer handle is not significantto the

INIC,but will be copied back to the hostto return the buffer to the host. The secondregister

written is the Data Buffer Address Register. This is the physical address of the data buffer.

Whenboth registers have been written, the INIC will add the contents of these two registers to

FreeType queue of data buffer descriptors. Note that the INIC hostdriver sets the handle

registerfirst, then the address register. There needs to be some mechanism put in place to
ensure the reading ofthese registers does not get out of sync with writing them. Effectively the

INIC can read the addressregister first and save its contents, then read the handleregister. It

canthen lock the register pair in some manner such that another write to the handle register is

not permitted until the current contents have been saved. Both addresses extracted from the

registers are to be written to the FreeType qucuc. The INIC will extract 2 entries each time

when dequeuing.

Data buffers will be allocated and used by the INIC as needed. For each data buffer

used by a slow-path transaction, the data buffer handle will be copied into a header buffer.

Then the header buffer will be returned to the host.

TRANSMIT INTERFACE.

TRANSMIT INTERFACE OVERVIEW.

The transmit interface shownin Fig. 26, like the receive interface, has been designed to

minimize the amount of PCI bandwidth and latencies. In order to transmit data, the host will

transfer a commandbuffer to the INIC. This commandbuffer will include a commandbuffer

handle, a commandfield, possibly a TCP context identification, anda list of physical data

pointers. The commandbuffer handle is defined to be the first word of the commandbuffer

andis used by the host to identify the command. This word will be passed backto the host in

a response buffer, since commands may complete out of order, and the host will need to know
64

INTEL Ex.1002.069

INTEL Ex.1002.070

ALA-006E

10

15

20

25

30.

which command is complete. Commandswill be used for many reasons, but primarily to cause

the INIC to transmit data, or to pass a set ofbuffers to the INIC for input data on the fast-path

as previously discussed.

Response buffers are physical buffers in host memory. They are used by the INIC in the

same order as they were givento it by the host. This enables the host to know which response

buffer(s) to next look at when the INIC signals a command completion.

TRANSMIT INTERFACEDETAILS.

COMMAND BUFFERS.
Commandbuffers in host memory are a multiple of 32 bytes, up to a maximum of 1K

bytes, and are aligned on 32 byte boundaries. A command bufferis passed to the INIC by
writing to one of five “Command Buffer Address Registers.” These registers are defined as

follows:

Bits 31-5 Physical address in host memory of the commandbuffer.

. Bits 4-0 Length of commandbuffer in bytes / 32 (i.e. number of multiples of 32
bytes).

This is the physical address of the command buffer. The register to which the command

is written predetermines the XMT interface number, or if the commandis for the RCV CPU;

hence there will be 5 of them, 0 — 3 for XMTand 4 for RCV. When oncofthese registers has

been written, the INIC will add the contents of the register to it’s own internal queue of
command buffer descriptors. The first word of all commandbuffers is defined to be the

commandbuffer handle. It is the job of the utility CPUto extract a command from its local

queue, DMAthe commandinto a small INIC buffer (from the FreeSType queue), and queue

_ that buffer into the Xmit#Type queue, where # is 0— 3 depending on the interface, or the

appropriate RCV queue. The receiving CPU will service the queues to perform the commands.

Whenthat CPU has completed a command,it extracts the command buffer handle and passes

it back to the host via a response buffer.

RESPONSE BUFFERS.

Response buffers in host memory are 32 bytes long and aligned on 32 byte boundaries.

They are handled in a very similar fashion to header buffers. There will be a field in the

response buffer indicating it has valid data. This field will initially be reset by the host beforc
65

INTEL Ex.1002.070

INTEL Ex.1002.071

ALA-006E

10

15

20

- 25

30

passing the buffer descriptor to the INIC. A set of response buffers are passed from the host to

the INIC by the host writing to the “Response Buffer Address Register” on the INIC. This

register is defined as follows:

Bits 31-8 Physical address in host memory ofthe first of a set of contiguous
responsebuffers. . ,

Bits 7-0 Number of response buffers passed.
In this way the host can, say, allocate 128 buffers in a 4K page, andpassall 128 buffers

to the INIC with oneregister write. The INIC will maintain a queue of these hcader

descriptorsin it’s ResponscType queue, adding to the end of the queue every time the host .

writes to the “Response Buffer Address Register”. The INIC writes the extracted contents

including the count, to the queuein exactly the same manneras for the header buffers.

The response buffers can be used andreturnedto the host in the sameorder that they

were given to the INIC. The valid field will be set by the INIC before returning the buffer to
the host. In this way a PCIinterrupt, with a single bit in the interrupt register, may be

generated to indicate that there is a responsebuffer for the host to process. When servicing
this interrupt, the host will look at its queue of response buffers, reading the valid field to

determine how many responsebuffers are to be processed.

INTERRUPT STATUS REGISTER / INTERRUPT MASK REGISTER.

Fig. 27 showsthe gencral formatofthis register. The setting of any bits in the ISR will

cause an interrupt, provided the corresponding bit in the Interrupt Mask Registeris set. The

default setting for the IMRis 0.

The INIC is configured so that the host should neverneed to directly read the ISR from
the INIC. To support this, it is important for the host/INIC to arrange a buffer area in host

memory into which the ISR is dumped. The addressandsize of that area ca be passedto the
INIC via a command on the XMT interface. That commandwill also specify the setting for the

IMR. Until the INIC receives this command,it will not DMAthe ISR to host memory, and no

events will cause an interrupt. The host could if necessary, read the ISR directly from the INIC

in this case.

For the host to never haveto actually read the register from the INIC itself,it is

necessary for the INIC to updatethis host copy of the register whenever anythingin it changes.

- The host will Ack (or deassert) events in the register by writing the register with 0’s in
66

INTEL Ex.1002.071

INTEL Ex.1002.072

ALA-006E

10

15

20

25

30

appropriate bit fields. So that the host does not miss events, the following scheme has been

developed:

The INIC keepsa local copy of the register whenever it DMAsit to the hosti.e. after

some event(s). Call this COPYA Then the INIC starts accumulating any new events not

reflected in the host copy in a separate word. Call this NEWA.Asthehostclears bits by
writing the register back with thosebits set to zero, the INIC clears these bits in COPYA (or

the host write-back goes directly to COPYA). If there are new events in NEWA,it ORs them

with COPYA, and DMAsthis new ISR to the host. This new ISR then replaces COPYA,
NEWAis cleared and the cycle then repeats.

REGISTER ADDRESS.

For the sake of simplicity, in this example of Fig. 28 the registers are at 4-byte

increments from whateverthe base addressis.

ALACRITECH TCP (ATCP) DESIGN SPECIFICATION.

This section outlines the design specification for the Alacritech TCP (ATCP)transport
driver. The ATCPdriver consists of three components:

1. The bulk of the protocol stack is based on the FreeBSD TCP/IP protocol stack.

This code performs the Ethernet, ARP, IP, ICMP, and (slow path) TCP processing for the
driver.

2. At the top of the protocol stack we introduce an NTfilter driver used to

intercept TDI requests destined for the Microsoft TCP driver.

3. Atthe bottom of the protocol stack we include an NDIS protocol-driver

interface which allows us to communicate with the INIC miniport NDIS driver beneath the

ATCPdriver.

This section covers cach of these topics, as well as issues commonto the entire ATCP

driver.

CODING STYLE.

In order to ensure that our ATCP driver is written in a consistent manner, we have

adopted a set of coding guidelines. These guidclines are introduced with the philosophy that

we should wnite codc in a Microsoft style since weare introducing an NT-based product. The

67

INTEL Ex.1002.072

INTEL Ex.1002.073

YB By Bey oe AR mee or ew EyWD AAH oe a aes en any Beg aayate hel Bi. the Bedt eA Ai aR TURP RA AY BP

ALA-006E

10

20

25

guidelines below apply to all code that we introduce into our driver. Since a very large portion

ofour ATCP driver will be based on FreeBSD, and since we are somewhat time-constrained

on our driver development, the ported FreeBSD code will be exempt from these guidelines.

1. Global symbols — All function names and global variables in the ATCP driver

should begin with the “ATK”prefix (ATKSend() for instance).

2, Variable names — Microsoft seems to use capital letters to separate multi-word

variable names instead ofunderscores (VariableNameinstead of variablename). We should

adhere to this style.

3. Structure pointers — Microsoft typedefs all of their structures. The structure

types are always capitals and they typedef a pointer to the structure as ‘““P”<name> as follows:

typedef struct FOO { |
INT_bar;

} FOO, *PFOO;

Wewill adhereto this style.

4. Function calls — Microsoft separates function call arguments on separate lines:

X = foobar(

argument,

argument2,

);

Wewill adhereto this style.

5. Comments — While Microsoft seems to alternatively use // and /* */ comment

notation, we will exclusively use the /* */ notation.

6. Function comments©Microsoft includes comments with each function that

describe the function, its arguments, and its return value. Wewill also include these

comments, but will move them from within the function itself to just prior to the function for

better readability.

7. Function arguments — Microsoft includes the keywords IN and OUT when

defining function arguments. These keywords denote whetherthe function argumentis used

as an input parameter, or alternatively as a placeholder for an output parameter. We will

include these keywords.

68

INTEL Ex.1002.073

INTEL Ex.1002.074

ALA-006E

8. Function prototypes — We will include function prototypes in the most logical

header file corresponding to the .c file. For example, the prototype for function foo() found in

foo.c will be placed in foo.h.

9. Indentation — Microsoft code fairly consistently uses a tabstop of 4. We will

5 do likewise.

10. Headerfile #ifndef —~ each headerfile should contain a #ifndef/#define/#endif

whichis used to prevent recursive headerfile includes. For example, foo.h would include:

#ifndefFOOH__

#define FOOH|

10- <foo.h contents..>

#endif/* FOOH_ */

Note the —_NAMEH_ format.

69

INTEL Ex.1002.074

INTEL Ex.1002.075

ALA-006E

10

15

20

- 25

30

11. Each file must contain a commentat the beginning which includes the Id as

follows:

f*

* Id

*/

CVS (RCS)will expand this keyword to denote RCSrevision, timestamps,author,etc.

SMP

This section describes the process by which wewill make the ATCP driver SMPsafe. -

The basic rule for SMP kernel codeis that any access to a memory variable must be protected
by a lock that prevents a competing access by code running on anotherprocessor. Spinlocks |
are the normal locking method for code paths which do not take a long time to execute (and
which do notsicep.)

In general each instance ofa structure will include a spinlock, which must be acquired

before members of that structure are accessed, and held while a function is accessing that

instance of the structure. Structures which are logically grouped together may be protected by

a single spinlock: for example, the ‘in_pcb’ structure, ‘tepceb’ structure, and ‘socket’ structure
which together constitute the administrative information for a TCP connection will probably

be collectively managed by a single spinlock in the ‘socket’ structure.

In addition, every global data structure such asa list or hash table must also have a

protecting spinlock which must be held while the structure is being accessed or modified. The
NT DDKin fact provides a numberof convenient primitives for SMP-safe list manipulation,

andit is recommendedthat these’be used for any new lists. Existing list manipulations in the
FreeBSD code can probably beleft as-is to minimize code disturbance, except of course that

the necessary spinlock acquisition and release must be added around them.

Spinlocks should not be held for long periods of time, and most especially, must not be

held during a sleep, since this will lead to deadlocks. Thereis a significant deficiency in the

NT kernel support for SMP systems: it does not provide an operation which allows a spinlock

to be exchanged atomically for a sleep lock. This would be a serious problem in a UNIX

environment where much ofthe processing occurs in the context of the user process which

initiated the operation. (The spinlock would haveto be explicitly released, followed by a

separate acquisition of the sleep lock: creating an unsafe window.)
70

INTEL Ex.1002.075

INTEL Ex.1002.076

“ALA-006E

10

1s:

20

25

30

The NT approach is more asynchronous, however: IRPs are simply marked as

‘PENDING’ whenan operation cannot be completed immediately. The calling thread does

NOTsleep atthat point: it returns, and may go on with other processing. Pending IRPs are

later completed, not by waking up the thread which initiated them, but by an

“ToCompleteRequest” call which typically rans at DISPATCHlevel in an arbitrary context.

Thus wehavenotin fact used sleep locks anywhere in the design of the ATCP driver,

hoping the above issue will not arise.

DATA FLOW OVERVIEW.

The ATCPdriver supports two paths for sending and receiving data, the fast-path and

the slow-path. The fast-path data flow corresponds to connectionsthat are maintained on the

INIC, while slow-path traffic corresponds to network data for which the INIC does not havea ©

connection. In order to set some groundwork for the rest of this section, these two data paths

are summarized here.

.FAST-PATH INPUT DATA FLOW.

There are 2 different cases to consider:

1. NETBIOStraffic (identifiable by port number.)
2. Everything else.

NETBIOS INPUT.

- As soon as the INIC has received a segment containing a NETBIOSheader,it will

forward it up to the TCP driver, along with the NETBIOSlength from the header. (In

principle the host could get this from the header itself, but since the INIC has already done the

decode,it seem reasonableto just passit.)

From the TDI spec, the amountofdata in the buffer actually sent mustbeat least 128

bytes. For small SMBs,all of the received SMB should be forwarded; it will be absorbed

directly by the TDI client without any further MDL exchange. Experiments tracing the TDI
data flow show that the NETBIOSclient directly absorbs up to 1460 bytes: the amount of

payload data in a single Ethernet frame. Thusthe initial system specifies that the INIC will

indicate anything up to a complete segment to the ATCP driver. [See note (1)].

71

INTEL Ex.1002.076

INTEL Ex.1002.077

vy et
Tt, Bat SEY eee

~ALA-006E

10

‘15

20

25

30

Once the INIC has passed up an indication with an NETBIOSlength greater than the

amountof data in the packet it passed, it will continue to accumulate further incoming data in

DRAM onthe INIC. Overflow of INIC DRAMbuffers will be avoided by using a receive

window on the INIC at this point, which can be 8K. .

On receiving the indicated packet, the ATCP driver will call the receive handler

registered by the TDI client for the connection, passing the actual size of the data in the packet

from the INIC as "bytes indicated" and the NETBIOSlength as "bytes available." [See note

(2)].

In the "large data input" case, where "bytes available" exceeds the packet length, the
TDI client will then provide an MDL,associated with an IRP, which must be completed when
this MDLisfilled. (This IRP/MDL may comebackeither in the response to TCP's call of the

receive handler, or as an explicit TDIRECEIVErequest.)

The ATCP driver will build a “receive request” from the MDL information, and pass
.this to the INIC. This request will contain:

1) The TCP context-identifier; 2) Size and offset information; 3) A list of physical

addresses corresponding to the MDL pages; 4) A context field to allow the ATCP driver to

identify the request on completion; and 5) “Piggybacked” window update information.

Note: the ATCP driver must copy any remaining data (which was not taken by the

receive handler) from the segment indicated by the INIC to the start of the MDL, and must

adjust the size & offset information in the request passed to the INIC to accountforthis.

The INIC will fill the given page(s) with incoming data upto the requested amount,

and respond to the ATCP driver whenthis is done [See note (3)]. If the MDL is large, the INIC

may open up its advertised receive window for improved throughput while filling the MDL.

Onreceiving the response from the INIC, the ATCP driver will complete the IRP associated _
with this MDL,to tell the TDI client that the data is available. At this point the cycle of events

is complete, and the ATCP driver is now waiting for the next header indication.

OTHER TCP INPUT.

In the general case we do not have a higher-level protocol header to enable us to

predict that more data is coming. So on non-NETBIOSconnections, the INIC will just

' accumulate incoming data in INIC DRAM upto a quantity of 8K in this example. Again, a

72

INTEL Ex.1002.077

INTEL Ex.1002.078

ALA-006E

10

15

20

25

30

maximum advertised window size, which may be 16K, will be used to prevent overflow of

INIC DRAMbuffers.

Whenthe prescribed amount has been accumulated, or when a PSHflag is seen, the

INIC will indicate a small packet which may be.128 bytes of the data to the ATCPdriver,

along with the total length of the data accumulated in INIC DRAM.

On receiving the indicated packet, the ATCP driver will call the receive handler

registered by the TDI client for the connection, passing the actual size of the data in the packet

from the INIC as "bytes indicated" and the total INIC-buffer length as "bytes available."

As in the NETBIOScase, if "bytes available" exceeds "bytes indicated", the TDI client

will provide an IRP with an MDL. The ATCPdriver will pass the MDLto the INIC to be

filled, as before. The INIC will reply to the ATCP driver, which in turn will complete the IRP

to the TDIclient.

Using an MDLfrom the client avoids a copy step. However, ifwe can only buffer 8K.

and delay indicating to the ATCP driver until we have donc so, a question arises regarding

further segments comingin, since INIC DRAMisa scarce resource. We do not want to ACK

with a zero-size window advertisement: this would cause the transmitting end to go into persist

state, which is bad for throughput. If the transmitting end is also our INIC,this results in

having to implementthe persist timer on the INIC, which we do not wish to do. Instead for

large transfers (i.e. no PSH flag seen) we will not send an ACK until the host has provided the

MDL,andalso, to avoid stopping the transmitting end, we will use a receive window of twice

the amountwe will buffer before calling the host. Since the host comes back with the MDL

quite quickly (measured at < 100 microseconds), we do not expect to experience significant
overruns.

INIC RECEIVE WINDOW UPDATES.

If the INIC “owns” an MDLprovided by the TDI client (sent by ATCPasa receive

request), it will treat this as a “promise” by the TDIclient to accept the data placed in it, and

may therefore ACK incoming dataas it is filling the pages.

However, for small requests, there will be no MDL returned by the TDIclient:it

absorbsall of the data directly in the receive callback function. We need to update the INIC’s

view of data which has been accepted, so that it can update its receive window. In order to be

73

INTEL Ex.1002.078

INTEL Ex.1002.079

ALA-006E

10

15

20

25

30

able to do this, the ATCP driver will accumulate a count of data which has been accepted by

the TDIclient receive callback function for a connection.

From the INIC’s point of view, though, segments sent up to the ATCP driver arc just

“thrown overthe wall”; there is no explicit reply path. We will therefore “piggyback”the

update on requests sent out to the INIC. Whenever the ATCP driver has outgoing data for that
connection, it will place this count in a field in the send request (and then clear the counter.)

Any receive request (passing a receive MDLto the INIC) mayalso be used to transport

window update info in the same way.

Note: we will probably also nccd to design a message path whereby the ATCP driver

can explicitly send an update ofthis “bytes consumcd”information (either when it exceeds a

preset threshold orif there are no requests going out to the INIC for more than a given time

interval), to allow for possible scenarios inwhich the data stream is entirely onc-way.

NOTES.

1) The PSH flag can help to identify small SMB requests that fit into one segment.

2) Actually, the observed "bytes available" from the NT TCP driver toits client's callback

in this case is always 1460. The NETBIOS-aware TDIclient presumably calculates the size of

the MDLit will return from the NETBIOSheader. Sostrictly speaking we do not need the

NETBIOSheaderlength at this point: just an indication that this is a header for a "large" size.

However, we *do* need an actual "bytes available" value for the non-NETBIOScase, so we

may as well passit.

3) Weobservethat the PSH flagis set in the segment completing each NETBIOStransfer.

The INIC canusethis to determine whenthe current transfer is complete and the MDL should

be returned. It can, at least in a debug mode, sanity check the amountof received data against

whatis expected, though.

FAST-PATH OUTPUT DATA FLOW.

The fast-path output data flow is similar to the input data-flow, but simpler. In this

case the TDI client will provide a MDLto the ATCP driver along with an IRP to be completed

when the data is scent. The ATCPdriver will then give a request (corresponding to the MDL)

to the INIC. This request will contain: .

74

INTEL Ex.1002.079

INTEL Ex.1002.080

ALA-006E

10

15

20

25

30

1) The TCP context identifier: 2) Size and offset information; 3) A list ofphysical
addresses corresponding to the MDL pages; 4) A context field to allow the ATCP driverto

identify the request on completion; 5) “Piggybacked” window update information (as

discussed in section 6.1.3.)

The INIC will copy the data from the given physical location(s) as it sends the

corresponding network frames onto the network. Whenall of the data is sent, the INIC will

notify the host of the completion, and the ATCP driver will complete the IRP.

Note that there may be multiple output requests pending at any given time, since SMB

allows multiple SMB requests to be simultaneously outstanding.

SLOW-PATH DATA FLOW.

For data for which there is no connection being maintained on the INIC, we will have

_ to perform all of the TCP, IP, and Ethernet processing ourselves. To accomplish this wewill

port the FreeBSD protocol stack. In this mode, the INIC will be operating as a “dumb NIC”;

the packets which pass over the NDISinterface will just contain MAC-layer frames. _

The MBUFsinthe incoming direction will in fact be managing NDIS-allocated

packets. In the outgoing direction, we need protocol-allocated MBUFsin which to assemble

the data and headers. The MFREE macro must be cognizant ofthe various types of MBUBFs,

and “dothe right thing”for cach type. |
Wewill retain a (modified) socket structure for each connection, containing the socket

buffer ficlds expected by the FreeBSD code. The TCP codethat operates on socket buffers

(adding/removing MBUFsto & from queues,indicating acknowledged & received data etc)

will remain essentially unchanged from the FreeBSD base (though mostof the socket

functions & macros used to do this will need to be modified; these are the functions in

kern/uipce_socket2.c)

The upper socket layer (kern/uipc_socket.c), where the overlying OS movesdata in and

out of socket buffers, must be entirely re-implemented to work in TDI terms. Thus, instead of

sosend(), there will be a function that copics data from the MDLprovided in a TDI_SENDcall

into socket buffer MBUFs. Instead of soreceive(), there will be a handler that calls the TDI

client receive callback function, and also copies data from socket buffer MBUFsinto any

MDLprovided by the TDIclient (either explicitly with the callback responseoras a separate

TDI_RECEIVEcall.)
75

INTEL Ex.1002.080

INTEL Ex.1002.081

ALA-006E

10

15

20

25

30°

We must note that there is a semantic difference between TDISENDanda write() on

a BSD socket. The latter may complete back to its caller as soon as the data has been copied

into the socket buffer. The completion of a TDISEND, however, implies that the data has

actually been sent on the connection. Thus we will need to keep the TDISEND IRPs (and

associated MDLs) in a queue on the socket until the TCP code indicates that the data from

them has been ACK’d.

. DATA PATH NOTES:

1. There might be input data on a connection object for which there is no receive handler

function registered. This has not been observed, but we can probably just ASSERTfor a

missing handler for the moment. If it should happen, however, we must assumethat the TDI

client will be doing TDI_RECEIVEcalls on the connection. If we can’t make a callupat the
time that the indication from the INIC appears, we can queuethe data and handle it when a

TDLRECEIVEdoes appear.

2. NThas a notion of "canceling" IRPs. It is possible for us to get a "cancel" on an IRP

corresponding to an MDL whichhas been “handed”to the INIC by a send or receive request.

' We can handle this by being able to force the context back off the INIC, since IRPs will only

‘get cancelled when the conncction is being aborted.

CONTEXT PASSING BETWEEN ATCP ANDINIC.

FROM ATCP TOINIC.

There is a synchronization problem that must be addressed here. The ATCP driver will

make a decision on a given connection that this connection should now bepassed to the INIC.

It builds and sends a commandidentifying this connection to the INIC.

Before doing so, it must ensure that no slow-path outgoing data is outstanding. This is

not difficult; it simply pends and queues any new TDI_SENDrequests and waits for any

unacknowledged slow path output data to be acknowledged before initiating the context pass

operation.

The problem arises with incoming slow-path data. If we attempt to do the context-pass

in a single command handshake,there is a window during which the ATCPdriver has send the

context command,but the INIC has not yet seen this (or has not yet completed setting up its

context.) During this time, slow-path input data frames could arrive and be fed into the slow-

76 ‘

INTEL Ex.1002.081

INTEL Ex.1002.082

ALA-006E

10

15

20

25

30

path ATCP processing code. Should that happen, the context information which the ATCP

driver passed to the INIC is no longer correct. We can simply abort the outward pass of the

context in this event, but it seems better to have a reliable handshake.

Therefore, the commandto pass context from ATCP driver to INIC will be split into

two halves, and there will be a two-exchange handshake.

Theinitial command from ATCPto INIC expresses an “intention” to hand out the .

context. It will include the source and destination IP addresses and ports, which will allow the

INIC to establish a “provisional” context. Onceit has this “provisional” context in place, the

INIC will not send any more slow-path input frames for that src/dest IP/port combination (it

will queue them,if any are received.)

When the ATCP driver receives the response to this initial “intent” command, it knows

that the INIC will send no more slow-path input. The ATCP driver then waits for any

remaining unconsumed slow-path input data for this connection to be consumed by the client.

(Generally speaking there will be none, since the ATCP driver will not initiate a context pass

while there is unconsumed slow-path input data; the handshakeis simply to close the |

crossover window.)
Once any such data has been consumed, we knowthingsare in a quiescent state. The

ATCPdriver can then send the second, “commit” command to hand out the context, with
contidencethat theTCB valuesit is handing out (sequence numbersetc) are reliable.

Note 1: it is conceivable that there might be situations in which the ATCPdriver

decides, after having sent the original “intention” command,that the context is not to be

passed after all. (E.g. the local client issues a close.) So we must allow for the possibility that

the second command maybe a “abort”, which should cause the INIC to deallocate and clear up

its “provisional” context.

Note 2: to simplify the logic, the ATCP driver will guarantee that only one context may

be in process ofbeing handedoutat a time: in other words, it will never issue anotherinitial

“intention” command until it has completed the second half of the handshake for the first one.

FROM INIC TO ATCP.

There are two possible cases for this: a context transfer may be initiated either by the

ATCPdriver or by the INIC. However the machinery will be very similar in the two cases. If

the ATCP driver wishes to cause context to be flushed from INIC to host, it will send a "flush"
77

INTEL Ex.1002.082

INTEL Ex.1002.083

Bitty PORTk ty ttn
ORE iTTBad

ALA-006E

10

15

20.

25

30

message to the INIC specifying the context numberto be flushed. Once the [NIC receives

this, it will proceed with the samesteps as for the case wherethe flush is initiated by the INIC

itself: | |

1) The INIC will send an error response to any current outstanding receive requestit is

working on (corresponding to an MDLinto which data is being placed.) Before sending the

response, it updates the receive command“length”field to reflect the amount of data which
has actually been placed in the MDLbuffers at the time of the flush.

2) Likewise it will send an error response for any current send request, again reporting

the amountof data actually sent from the request.

3) The INIC will DMA the TCB for the context back to the host. (Note: part of the

information provided with a context must be the address of the TCB in the host.)

4) The INIC will send a “flush” indication to the host (very preferably via the regular

input path as a special type of frame) identifying the context which is being flushed. Sending

this indication via the regular input path ensuresthatit will arrive before any following slow-

path frames.

Atthis point, the INIC is no longer doing fast-path processing, and any further

incoming frames for the connection will simply be sent to the host as raw frames for the slow

input path. The ATCP driver may not be able to complete the cleanup operations needed to

"resume normalslow path processing immediately on receipt of the “flush frame”, since there

may beoutstanding send and receive requests to which it has not yet received a response. If

this is the case, the ATCP driver must set a “pend incoming TCP frames”flag in its per-

connection context. The effect of this is to change the behavior of tcp_input(). This runs as a

function call in the context of ip_input(Q), and normally returns only when incoming frames

have been processed as far as possible (queued on the socket receive buffer or out-of-sequence

reassembly queue.) However,if there is a flush pending and we have not yet completed

resynchronization, we cannot do TCP processing and must instead queue input frames for TCP

on a “holding queue” for the connection, to be picked up later when context flush is complete

and normal slow path processing resumes. (This is why we want to send the “flush” indication

via the normalinputpath: so that we can ensure it is seen before any following frames of slow-

path input.)

Next we need to wait for any outstanding ‘“‘send” requests to be errored off: ©
2

78

INTEL Ex.1002.083

INTEL Ex.1002.084

ALA-006E

10

15

» 20

25

30

1) The INIC maintains its context for the connection in a “zombie” state. As “‘send”

requests for this connection comeout of the INIC queue,it sends error responses for them

back to the ATCPdriver. (It is apparently difficult for the INIC to identify all command

requests for a given context; simpler for it to just continue processing them in order, detecting

onesthat are for a “zombie” context as they appear.)

2) The ATCPdriver has a count of the numberofoutstanding requests it has sent to

the INIC. Aserror responses for these are reccived, it decrements this count, and whenit

_reaches zero, the ATCPdriver sendsa “flush complete” messageto the INIC,

3) When the INIC receives the “‘flush complete’”’ message, it dismantles its “zombie”

context. From the INIC perspective, the flush is now completed.

4) When the ATCPdriver has received error responsesforall outstanding requests, it
has all the information needed to complete its cleanup. This involves completing any IRPs

corresponding to requests which have entirely completed and adjusting fields in partially-

- completed requests so that send and receive of slow path data will resumeat the right point in

the byte streams.

5) Onceall this cleanup is complete, the ATCP driver will loop pulling any “pended”

TCPinput frames off the “pending queue” mentioned above and feeding them into the normal

TCP input processing. Onceall input frames on this queue have been cleared off, the “pend

incoming TCP frames”flag can be cleared for the connection, and wearc back to normal

slow-path processing.

’ FREEBSD PORTING SPECIFICATION.

The largest portion of the ATCP driver is either derived, or directly taken from the

FreeBSD TCP/IP protocol stack. This section defines the issues associated with porting this

code, the FreeBSD codeitself, and the modifications required for it to suit our needs.

PORTING PHILOSOPHY.

FreeBSD TCP/IP (current version referred to as Net/3) is a general purpose TCP/IP

driver. It contains code to handle a variety of interface types and manydifferent kinds of

protocols. To meet this requirement the codeis often written in a sometimes confusing, over-

complex manner. General-purposestructures are overlaid with other interface-specific

structures so that different interface types can coexist using the same general-purposecode.
79

INTEL Ex.1002.084

INTEL Ex.1002.085

ALA-006E

10

15

20

25

30

For our purposes much of this complexity is unnecessary since we are only supporting a single

interface type and a few specific protocols. It is therefore tempting to modify the code and

data structures in an effort to make it more readable, and perhaps a bit more efficient. There

are, however, some problems with doing this. First, the more we modify the original

FreeBSD,the more changes we will have to make. This is especially true with regard to data

structures. If we collapse two data structures into one we might improvethe cleanliness of the

codea bit, but we will then have to modify every reference to that data structure in the entire

protocol stack. Another problem with attempting to “clean up” the code is that we might later

discover that we need something that we had previously thrown away. Finally, while we

might gain a small performance advantage in cleaning up the FreeBSD code, the FreeBSD

TCP code will mostly only run in the slow-path connections, which are not our primary focus.

Ourpriority is to get the slow-path code functional andreliable as quickly as possible.

For the reasons above we have adopted the philosophy that we should initially keep the

data structures and codeat close to the original FreeBSD implementation as possible. The

code will be modified for the following reasons:

1) As required for NT interaction — Obviously we can’t expcet to simply “drop-in” the
FreeBSD code as is. The interface of this code to the NT system will require some significant

code modifications. This will mostly occur at the topmost and bottommostportions of the

protocol stack, as well as the “ioctl” sections of the code. Modifications for SMP issues are

also needed. ,

2) Unnecessary code can be removed — While we will keep the code as close to the

original FreeBSDas possible, we will nonetheless remove codethat will never be used (UDP

is a good exampleofthis).

UNIX <> NT CONVERSION.

The FreeBSD TCP/IP protocol stack makes use of many Unix system services. These

include beopy to copy memory, malloc to allocate memory, timestamp functions, etc. These

will not be itemized in detail since the conversion to the corresponding NTcalls is a fairly

trivial and mechanical operation.

An area which will need non-trivial support redesign is MBUFs.

80

INTEL Ex.1002.085

INTEL Ex.1002.086

getty Soe ee PePE Shag PE peteySecA RPA POUoad LF TBPaw ah HP Dacet

ALA-006E

10

20

25

30

NETWORK BUFFERS.

Under FreeBSD, network buffers are mapped using mbufs. Under NT network buffers

are mapped using a combination of packet descriptors and buffer descriptors (the buffer

descriptors are really MDLs). There are a couple ofproblems with the Microsoft method.

First it does not provide the necessary fields which allow usto easily strip offprotocol

headers. Second, converting all of the FreeBSD protocol code to speak in terms ofbuffer

descriptors is an unnecessary amount of overhead. Instead, in our port we will allocate our

own mbufstructures and remap the NT packets as shownin Fig. 29.

The mbufstructure will provide the standard ficlds provided in the FreeBSD mbuf

including the data pointer, which points to the current location of the data, data length fields

and flags. In addition each mbuf will point to the packet descriptor which is associated with

the data being mapped. Once an NT packetis mapped, our transport driver should never have

to refer to the packet or buffer descriptors for any information except when weare finished and

are preparing to return the packet.

There are a couple of things to note here. We have designed our INIC suchthat a

packet header should neverbe split across multiple buffers. Thus, we should never require the
equivalent of the “m_pullup” routine included in Unix. Also note that there are circumstances

in which we will be accepting data that will also be accepted by the Microsoft TCP/IP. One

such exampleof this is ARP frames. Wewill need to build our own ARP cacheby looking at
ARP replies as they comeoff the network. Underthese circumstances, it is absolutely

imperative that we do not modify the data, or the packet and buffer descriptors. We will

discuss this further in the following sections.

Wewill allocate a pool of mbuf headers at ATCP initialization time. It is important to

rememberthat unlike other NICs, we can not simply drop data if we run out ofthe system

resources required to manage/map the data. The reasonforthis is that we will be receiving
data from the card that has already been acknowledged by TCP. Becauseofthis it is essential

that we never run out of mbuf headers. To solve this problem we will statically allocate mbuf

headers for the maximum numberofbuffers that we will ever allow to be outstanding. By

doing so, the card will run out of buffers in which to put the data before we will run out of

mbufs, and as a result, the card will be forced to drop data at the link layer instead of us

droppingit at the transport layer. DhXXX: as we’ve discussed, I don’t think thisis really true

anymore. The INIC won’t ACK data until either it’s gotten a window update from ATCPto
81

INTEL Ex.1002.086

INTEL Ex.1002.087

ALA-006E

15

20

25

30.

tell it the data’s been accepted,or it’s got an MDL. Thusit seems workable, though

undesirable, if we can’t accept a frame from the INIC & return an errorto it saying it was not
taken.

Wewill also require a pool of actual mbufs (not just headers). These mbufs are

required in order to build transmit protocol headers for the slow-path data path, as well as

other miscellancous purposes such as for building ARP requests. We will allocate a pool of.

these at initialization time and we will add to this pool dynamically as needed. Unlike the

mbufheaders described above, which will be used to map acknowledged TCP data coming

from thecard, the full mbufs will contain data that can be dropped ifwe can not get an mbuf.

_ THE CODE.

In this section we describe each section of the FreeBSD TCP/IP port. These sections

include Interface Initialization, ARP, Route, IP, ICMP, and TCP.

INTERFACEINITIALIZATION,

STRUCTURES. |

There are a variety ofstructures, which represent a single interface in FreeBSD. These

structures include: ifnet, arpcom,ifaddr, in_ifaddr, sockaddr, sockaddr_in, and sockaddr_dl.

Fig. 30 showsthe relationship between all of these structures:

In the example of Fig. 30 we showasingle interface with a MACaddress of

00:60:97:DB:9B:A6 configured with an IP address of 192.100.1.2. Asillustrated above, the

in_ifaddr is actually an ifaddr structure with someextra fields tacked on to the end. Thus the

ifaddr structure is used to represent both a MAC address and an IP address. Similarly the

sockaddr structure is recast as a sockaddr_dl or a sockaddr_in dependingon its address type.

Aninterface can be configured to multiple IP addresses by simply chaining in_ifaddr

structures after the in_ifaddr structure shownin Fig. 30.

As mentioned in the Porting Philosophy section, many of the above structures could

likely be collapsed into fewer structures. In order to avoid making unnecessary modifications

to FreeBSD,for the time being we will leave these structures mostly as is. We will however

eliminate the fields from the structure that will never be used. These structure modifications

are discussed below.

82

INTEL Ex.1002.087

INTEL Ex.1002.088

LA Son pe ge sey eee eee
eth Halt Bie Gt ut Bet 7 an

ALA-006E

10

20

25

30

. Wealso show abovea structure called iface. This is a structure that we define. It

contains the arpcomstructure, which in turn contains the ifnet structure. It also containsfields

that enable us to blend our FreeBSD implementation with NT NDIS requirements. One such

example is the NDIS binding handle usedto call down to NDIS with requests (such as send).

THE FUNCTIONS.

FreeBSDinitializes the above structures in two phases. First when a networkinterface

is found, the ifnet, arpcom, andfirst ifaddr structures are initialized first by the network layer

driver, and then via a call to the if_attach routine. The subsequent in_ifaddr structure(s) are

initialized when a user dynamically configures the interface. This occurs in the inioctl and

the in_ifinit routines. Since NTallows dynamic configuration of a network interface wewill
continue to perform the interface initialization in two phases, but we will consolidate these two
phasesas described below:

 IFINIT.

The IfInit routine will be called from the ATKProtocolBindAdapter function. The

IfInit function will initialize the Iface structure and associated arpcom andifnetstructures. It

will then allocate and initialize an ifaddr structure in which to contain link-level information

_about the interface, and a sockaddr_dilstructure to contain the interface name and MAC

address. Finally it will add a pointerto the ifaddr structure into the ifnet_addrs array (using

the if_index field of the ifnet structure) contained in the extended device object. IfInit will
then call IfConfig for each IP addressthat it finds in the registry entry for the interface.

IFCONFIG.

IfConfig is called to configure an IP address for a given interface. It is passed a pointer

to the ifnet structure for that interface along with all the information required to configure an

IP address for that interface (such as IP address, netmask and broadcast info, etc). IfConfig

will allocate an in_ifaddr structure to be used to configure the interface. It will chain it to the

total chain of in_ifaddr structures contained in the extended device object, and will then

configure the structure with the information givento it. After that it will add a static route for

the newly configured network and then broadcast a gratuitous ARP requestto notify others of

our.Mac/IP address and to detect duplicate IP addresses on the net.
83

INTEL Ex.1002.088

INTEL Ex.1002.089

ALA-006E

° 10

15

20

25

30

ARP.

Wewill port the Free8SD ARP code to NT mostly as-is. For some reason, the

FreeBSD ARP codeis located in a file called if _ether.c. While the functionality of this file

will remain the same, we will renameit to a more logical arp.c. The main structures used by

ARP are the llinfo_arp structure and the rtentry structure (actually part of route). These

structures will not require major modifications. The functions that will require modification

are defined here.

IN_ARPINPUT.

This function is called to process an incoming ARP frame. An ARP framecaneither .
be an ARP request or an ARP reply. ARPrequests are broadcast, so we will see every ARP
request on the network, while ARP replies are directed so we should only see ARPreplies that

are sent to us. This introduces the following possible cases for an incoming ARP frame:

1. ARP request trying to resolve our IP address — Under normal circumstances, ARP

would reply to this ARP request with an ARP reply containing our MAC address. Since ARP

requests will also be passed up to the Microsoft TCP/IP driver, we need not reply. Note

however, that FreeBSD also creates or updates an ARP cacheentry with the information

derived from the ARP request. It does this in anticipation of the fact that any host that wishes
to know our MACaddressis likely to wish to talk to us soon. Since we will need to know his

MACaddress in orderto talk back, we might as well add the ARP information now rather than

issuing our own ARPrequestlater.

2. ARP request trying to resolve someoneelse’s IP address — Sincc ARP requests are

broadcast, we see every one on the network. When wereceive an ARP request ofthis type, we

simply check to see if we have an entry for the host that sent the request in our ARP cache. If

we do, we checkto see if we still have the correct MAC address associated with that host. Ifit

is incorrect, we update our ARP cache entry. Note that we do not create a new ARP cache

entry in this case.

3. ARP reply — In this case we add the new ARP entry to our ARP cache. Having

resolved the address, we check to see if there is any transmit requests pending for the resolve

IP address, and if so, transmit them.

84

INTEL Ex.1002.089

INTEL Ex.1002.090

ALA-006E

10

15

20

25

30

Given the abovethree possibilities, the only major changeto the in_arpinput code is

that we will remove the code which generates an ARP reply for ARP requests that are meant

for our interface.

ARPINTR.

This is the FreeBSD codethat delivers an incoming ARP frame to in_arpinput. We

will be calling in_arpinput directly from our ProtocolReceiveDPCroutine (discussed in the

NDISsection below) so this function is not needed.

ARPWHOHAS.

This is a single line function that serves only as a wrapper around arprequest. Wewill

removeit and replace all calls to it with direct calls to arprequest.

ARPREQUEST.

This code simply allocates a mbuf, fills it in with an ARP header, and then passesit

’ downto the ethernet outputroutine to be transmitted. For us, the code remains essentially the

same except for the obvious changesrelated to how we allocate a network buffer, and how we

send the filled in request.

ARP_IFINIT.

This is simply called when an interfaceis initialized to broadcast a gratuitous ARP

request (described in the interface initialization section) and to set some ARP related fields in

the ifaddr structure for the interface. We will simply movethis functionality into the interface

initialization code and removethis function.

ARPTIMER.

This is a ttmer-based function that is called every 5 minutes to walk through the ARP

table looking for entries that have timed out. Although the time-out period for FreeBSD is 20

minutes, RFC 826 does not specify any timer requirements with regard to ARP so we can

modify this value or delete the timer altogether to suit our needs. Either way the function

won't require any major changes. All other functions in if_ether.c will not require any major

changes.
85

INTEL Ex.1002.090

INTEL Ex.1002.091

ALA-006E

10

20

25

30

ROUTE.

Onfirst thought, it might seem that we have no need for routing support since our

ATCPdriver will only receive IP datagrams whosedestination IP address matches that of one

of our owninterfaces. Therefore, we will not “route” from one interface to another. Instead,

the MICROSOFT TCP/IP driver will provide that service. We will, however, need to maintain

an up-to-date routing table so that we know a) whether an outgoing connection belongs to one
of our interfaces, b) to which interface it belongs, and c) whatthe first-hop IP address

(gateway)is if the destination is not on the local network.

Wediscuss four aspects on the subject of routing in this section. Thcy are as follows:

1. The mechanics of how routing information is stored.

The manner in which routes are added or deleted from the route table.

When and how route information is retrieved from the route table.YN
Notification of route table changesto interested parties.

THE ROUTE TABLE.

In FreeBSD,the route table is maintained using an algorithm known as PATRICIA

(Practical Algorithm To Retrieve Information Coded in Alphanumeric). This is a complicated

algorithm thatis a bit costly to set up, but is very efficient to reference. Since the routing table

should contain the same information for both NT and FreeBSD,andsince the key used to

search for an entry in the routing table will be the same for each (the destination IP address),

we should beable to port the routing table software to NT without any major changes.

The software which implements the route table (via the PATRICIA algorithm) is

located in the FreeBSDfile, radix.c. Thisfile will be ported directly to the ATCP driver with

no significant changes required.

ADDING AND DELETING ROUTES.

Routes can be added or deleted in a numberofdifferent ways. The kernel adds or
deletes routes whenthestate of an interface changes or when an ICMPredirectis received.

User space programssuch as the RIP daemon,or the route commandalso modify the route

table.

86

INTEL Ex.1002.091

INTEL Ex.1002.092

we BEa geadi. Med? Bao Balt Baa

ALA-006E

10

20

25

30

For kernel-based route changes, the changes can be madebya direct call to the routing

software. The FreeBSDsoftwarethat is responsible for the modification of route table entries

is found in route.c. The primary routine for all route table changesis called rtrequest(). It

takes as its arguments, the request type (ADD, RESOLVE, DELETE),the destination IP

address for the route, the gateway for the route, the netmask for the route, the flags for the

route, and a pointer to the route structure (struct rtentry) in which we will place the added or

resolved route. Other routines in the route.c file includertinit(), which is called during

interface initialization time to add a static route to the network, rtredirect, whichis called by

ICMP whenwereceive a ICMP redirect, and an assortment of support routines used for the
modification ofroute table entries. All of these routines found in route.c will be ported with

no major modifications.

For user-space-based changes, we will have to be a bit more clever. In FreeBSD, route
changes are sent downto the kernel from user-space applications via a special route socket.
This code is found in the FreeBSD file, rtsock.c. Obviously this will not work for our ATCP

driver. Instead the filter driver portion of our driver will intercept route changes destined for

the Microsoft TCP driver and will apply those modifications to our own route table via the

rtrequest routine described above. In order to do this, it will have to do some format

translation to put the data into the format (sockaddrin) expected by the rtrequest routine.

‘Obviously, none of the code from rtsock.c will be ported to the ATCP driver. This same

procedure will be used to intercept and process explicit ARP cache modifications.

CONSULTING THE ROUTE TABLE.

In FreeBSD,the route table is consulted in ipoutput when an IP datagram is being
sent. In order to avoid a complete route table search for every outgoing datagram,the routeis
stored into the in_pcb for the connection. For subsequent calls to ipoutput, the route entry is

then simply checked to ensure validity. While we will keep this basic operation as is, we will
require a slight modification to allow us to coexist with the Microsoft TCP driver. When an

active connection 1s being set up, our filter driver will have to determine whetherthe

connection is going to be handled by one of the INIC interfaces. To do this, we will have to

consult the route table from thefilter driver portion of our driver. This is done via a call to the

rtallocl function (found in route.c). Ifa valid route table entry is found, then we will take

87

INTEL Ex.1002.092

INTEL Ex.1002.093

ALA-006E

10

15

20

25

30 .

control of the connection and set a pointer to the rtentry structure returned by rtalloc! in our

- in_peb structure.

WHAT TO DO WHEN A ROUTE CHANGES.

Whena route table entry changes, there may be connectionsthat have pointers to a

stale route table entry. These connections will need to be notified of the new route. FreeBSD

_ Solves this by checking the validity of a route entry during every call to ip_output. If the entry

is no longervalid, its reference to the stale route table entry is removed, and an attemptis

madeto allocate a new route to the destination. For our slow path, this will workfine.

Unfortunately, since our IP processing is handled by the INIC for our fast path, this sanity

check method will not be sufficient. Instead, wewill need to perform a review ofall of our

‘fast path connections during every route table modification. If the route table change affects

our connection, we will need to advise the INIC with a new first-hop address, orif the

destination is no longer reachable, close the connectionentirely.

ICMP.

Like the ARP code above, we will need to process certain types of incoming ICMP

frames. Of the 10 possible ICMP messagetypes, there are only three that we need to support.

These include ICMP_REDIRECT, ICMP_UNREACH,and ICMP_SOURCEQUENCH. Any

FreeBSD codeto deal with other types of ICMP traffic will be removed. Instead, we will

simply return NDISSTATUS_NOT_ACCEPTEDforall but the above ICMP frametypes.

‘This section describes how wewill handle these ICMP frames.

ICMP_REDIRECT.

Under FreeBSD, an ICMP_REDIRECTcauses two things to occur. First, it causes the

route table to be updated with the route given in the redirect. Second,it results in a call back
to TCP to cause TCPto flush the route entry attached to its associated in_pcb structures. By

doing this, it forces ip_output to search for a new route. As mentioned in the Route section

above, we will also require a call to a routine which will review all of the TCP fast-path

connections, and update the route entries as needed (in this case because the route entry has

been zeroed). The INIC will then be notified of the route changes.

88

INTEL Ex.1002.093

INTEL Ex.1002.094

ALA-006E

10

20

25

30

ICMP_UNREACH.

In both FreeBSD and Microsoft TCP, theICMP_UNREACHresults in no more than a

simple statistic update. We will do the same.

ICMP_SOURCEQUENCH.

A source quenchis sent to cause a TCP senderto close its congestion window to a

single segment, thereby putting the sender into slow-start mode. Wewill keep the FreeBSD

code as-is for slow-path connections. For fast path connections we will send a notification to

the card that the congestion window for the given connection has been reduced. The INIC will

then be responsible for the slow-start algorithm.

IP.

The FreeBSD IP code should require few modifications when porting to the ATCP

driver. What few modifications will be required will be discussed in this section.

IP INITIALIZATION.

Duringinitialization time, ip_init is called to initialize the array ofprotosw structures.

Thesestructures contain all thé information needed by IP to be able to pass incoming data to

the correct protocol above it. For example, when a UDP datagramarrives, IP locates the

protosw entry corresponding to the UDP protocol type value (0x11) and calls the input routine

specified in that protosw entry. Wewill keep the array of protosw structures intact, but since

weare only handling the TCP and ICMPprotocols above IP, wewill strip the protosw array

downsubstantially.

IP INPUT.

Following are the changes required for IP input (function ipintr()).

NO IP FORWARDING.

Since we will only be handling datagrams for which weare the final destination, we

should never be required to forward an IP datagram. All references to IP forwarding, and the

ip_forward functionitself, can be removed.

89

INTEL Ex.1002.094

INTEL Ex.1002.095

ALA-006E

10

1S

20

25

30

IP OPTIONS.

The only options supported by FreeBSDatthis time include record route, strict and

loose source and record route, and timestamp. For the timestamp option, FreeBSD only logs

the current time into the IP headerso that before it is forwarded. Since we will not be

forwarding IP datagrams, this seemsto be of little use to us. While FreeBSD supports the

remaiming options, NT essentially does nothing useful with thern. For the moment, wewill not

bother dealing with IP options. They will be addedin later if needed.

- IP REASSEMBLY.

There is a small problem with the FreeBSD IP reassembly code. The reassembly code
~- reuses the IP header portion of the IP datagram to contain IP reassembly queue information. It

can do this because it no longer requires the original IP header. This is an absolute no-no with

. the NDIS 4.0 method of handling network packets. The NT DDK explicitly states that we
. must not modify packets given to us by NDIS. Thisis not the only place in which the

FreeBSD code modifies the contents of a network buffer, It also does this when performing
endian conversions. At the momentwewill leave this code as is and violate the DDK rules.

Webelieve wecan do this because we are going to ensure that no other transport driver looks

' at these frames. If this becomes a problem wewill have to modify this code substantially by

‘moving the IP reassembly fields into the mbuf header.

IP OUTPUT.

There are only two modifications required for IP output. Thefirst is that since, for the

moment, we are not dealing with IP options, there is no need for the code that inserts the IP

options into the IP header. Second, we maydiscoverthat it is impossible for us to ever receive

an output request that requires fragmentation. Since TCP performs Maximum SegmentSize

negotiation, we should theoretically never attempt to send a TCP segmentlarger than the

MTU.

NDIS PROTOCOL DRIVER.

This section defines protocol driver portion of the ATCP driver. The protocol driver

portion of the ATCPdriveris defined by the set of routines registered with NDIS via a call to

NdisRegisterProtocol. These routines are limited to those that are called (indirectly) by the
90

INTEL Ex.1002.095

INTEL Ex.1002.096

ALA-006E

15—

20

25

30

INIC miniport driver beneath us. For example, we register a ProtocolReceivePacket routine so
that when the INIC driver calls NdisMIndicateR eceivePacketit will result in a call from NDIS

to our driver. Strictly speaking, the protocol driver portion of our driver does not include the

method by which our driver calls down to the miniport (for example, the method by which we
- send network packets). Nevertheless, we will describe that method here for lack of a better

place to put it. That said, we cover the following topicsin this section of the document: 1)

Initialization; 2) Receive; 3) Transmit; 4) Query/Sct Information; 5) Status indications:

6) Reset; and 7) Halt.

INITIALIZATION.

Theprotocoldriverinitialization occurs in two phases. Thefirst phase occurs when the

ATCP DriverEntry routine calls ATKProtoSetup. The ATKProtoSetup routine performsthe

following: |

1. Allocate resources — We attemptto allocate many of the required resources as soon

as possible so that we are more likely to get the memory we want. This mostly applies to

allocating and initializing our mbuf and mbufheaderpools.

2. Register Protocol — Wecall NdisRegisterProtocol to register our set ofprotocol
driver routines.

3. Locate andinitialize bound NICs — Weread the Linkage parametersof the registry
to determine which NIC devices we are bound to. For each of these devices weallocate and

initialize a IFACEstructure (defined above). We then read the TCP parametersout of the
registry for each bound device andset the correspondingfields in the IFACEstructure.

After the underlying INIC devices have completedtheir initialization, NDIS will call

our driver’s ATKBindAdapterfunction for each underlying device. It will perform the
following:

1. Open the device specified in the call the ATKBindAdapter.

2. Find the IFACEstructure that was created in ATKProtoSetup for this device.

3. Query the miniport for adapter information. This includes such thingsas link speed
and MACaddress. Save relevant information in the IFACEstructure.

4. Performtheinterface initialization as specified in the section on Interface

Initialization.

91

INTEL Ex.1002.096

INTEL Ex.1002.097

A tits Pg seek - =

wa WR a BEge,

ALA-006E

10

15

20

25

30

RECEIVE.

Receive is handled by the protocol driver routine ATKReceivePacket. Before we

. describe this routine, it is important to consider each possible receive type and howit will be

handled.

RECEIVE OVERVIEW.

Our [NIC miniport driver will be bound to our transport driver as well as the generic

Microsoft TCP driver (and possibly others). The ATCP driver will be bound exclusively to

INIC devices, while the Microsoft TCP driver will be bound to INIC devices as well as other

types of NICs. This is illustrated in Fig. 31. By binding the driver in this fashion, we can

. chooseto direct incoming network data to our own ATCPtransport driver, the Microsoft TCP

driver, or both. We dothis by playing with the ethernet “type” field as follows.

To NDISand the transport drivers above it, our card is going to be registered as a

normal ethernet card. When a transport driver receives a packet from our driver, it will expect
the data to start with an ethernet header, and consequently, expects the protocoltypefield to be

in byte offset 12. If Microsoft TCP finds that the protocol type field is not equal to either IP,

or ARP,it will not accept the packet. So, to deliver an incoming packetto our driver, we must

simply map the data such that byte 12 contains a non-recognizcd cthernct type field. Note that

we must choose a value that is greater than 1500 bytes so that the transport drivers do not

confuse it with an 802.3 frame. We must also choose a value that will not be accepted by

other transport driver such as Appletalk or IPX. Similarly, if we want to direct the data to

Microsoft TCP, we can then simply leave the ethernet type field set to IP (or ARP). Note that

since we will also see these frames we can chooseto accept or not-accept them as necessary.

Incoming packets are delivered as follows:

A. Packets delivered to ATCP only (not accepted by MSTCP):

1. All TCP packets destined for one of our IP addresses. This includes both slow-

path frames and fast-path frames. In the slow-path case, the TCP frames are given in there

entirety (headers included). In the fast-path case, the ATKReceivePacket is given a header

buffer that contains status information and data with no headers (except those above TCP).

Moreonthis later.

B. Packets delivered to Microsoft TCP only (not accepted by ATCP):

1. All non-TCP packets.
92

INTEL Ex.1002.097

INTEL Ex.1002.098

ALA-006E

10

20

25

30

2. All packets that are not destined for one of our interfaces (packets that will be

routed). Continuing the above example, if there is an IP address 144.48.252.4 associated with

the 3com interface, and we receive a TCP connect with a destination IP address of

144.48.252.4, we will actually want to send that request up to the ATCP driver so that we

cercate a fast-path connectionforit. This meansthat we will need to know every IP addressin
the system andfilter frames based on the destination IP address in a given TCP datagram.

This can be done in the INIC miniport driver. Since it will be the ATCP driver that learns of

dynamic IP address changesin the system, we will need a methodto notify the INIC miniport

ofall the IP addresses in the system. More onthis later.

C. Packets delivered to both:

1. All ARP frames.

2. AILICMPframes.

TWO TYPES OF RECEIVE PACKETS.

There are several circumstances in which the INIC will need to indicate extra |
information about a receive packet to the ATCP driver. One such exampleis a fast path

receive in which the ATCP driver will need to be notified ofhow muchdata the card has

buffered. To accomplish this, the first (and sometimes only) buffer in a received packet will

actually be an INIC header buffer. The header buffer contains status information aboutthe

receive packet, and may or may not contain network data as well. The ATCP driverwill

recognize a header buffer by mappingit to an ethernet frame and inspecting the typefield

found in byte 12. We will indicate all TCP frames destined for us in this fashion, while frames

that are destined for both our driver and the Microsoft TCP driver (ARP, ICMP)will be

indicated without a header buffer. Fig. 32 shows an example of an incoming TCP packet.Fig.

33 shows an example of an incoming ARP frame.

NDIS 4 PROTOCOLRECEIVEPACKET OPERATION.

NDIS has been designed suchthat all packets indicated via

NdisMIndicateReceivePacket by an underlying miniport are delivered to the

ProtocolReceivePacket routine for all protocol drivers bound to it. These protocol drivers can

choose to accept or not accept the data. They can either accept the data by copying the data

. out of the packet indicated toit, or alternatively they can keep the packet and return it later via
93

INTEL Ex.1002.098

INTEL Ex.1002.099

ALA-006E

10

15

20

25

a call to NdisReturnPackets. By implementing it in this fashion, NDIS allows more than one

protocol driver to accept a given packet. Forthis reason, whena packetis delivered to a

protocol driver, the contents of the packet descriptor, buffer descriptors and data mustall be

treated as read-only. At the moment, weintend to violate this rule. We chooseto violate this

because much of the FreeBSD code modifies the packet headers as it examines them (mostly

for endian conversion purposes). Rather than modify all of the FreeBSD code, we will instead

ensure that no other transport driver accepts the data by making sure that the ethernet type field

is unique to us (no oneelse will want it). Obviously this only works with data that is only

_ delivered to our ATCP driver. For ARP and ICMPframes wewill instead copy the data out of

the packct into our own buffer and return the packet to NDIS directly. While thisis less

. efficient than keeping the data and rcturningit later, ARP and ICMPtraffic should be small

cnough,and infrequent enough,that it doesn’t matter.

The DDKspecifies that when a protocol driver chooses to keep a packet, it should

return a value of 1 (or more) to NDIS in its ProtocolReceivePacket routine. The packetis then

later returned to NDISvia the call to NdisReturnPackets. This can only happen after the

‘ProtocolReceivePacket has returned control to NDIS. This requires that the call to

NdisReturnPackets must occur in a different execution context. We can accomplish this by

scheduling a DPC, scheduling a system thread, or scheduling a kernel thread of our own. For
brevity in this section, we will assumeit is a done through a DPC. In any case, we will require

a queue of pending receive buffers on which to place and fetch receive packets.

Afier a receive packet is dequeued by the DPCit is then cither passed to TCP directly

for fast-path processing, or it is sent through the FreeBSD path for slow-path processing. Note

that in the case of slow-path processing, we may be working on data that needs to be returned

to NDIS (TCP data) or we may be working on our own copy of the data (ARP and ICMP).

When wefinish with the data we will need to figure out whether or not to return the data to

NDISor not. This will be donevia fields in the mbufheader used to map the data. When the

mfreem routine is called to free a chain of mbufs, the fields in the mbuf will be checked and, if

required, the packet descriptor pointed to by the mbufwill be returned to NDIS.

94

INTEL Ex.1002.099

INTEL Ex.1002.100

ALA-006E

15

20

25

30

MBUF © PACKET MAPPING.

Asnoted in the section on mbufs above, we will map incoming data to mbufsso that

our FreeBSDport requires fewer modifications. Depending on the type of data received, this

mapping will appear differently. Here are some examples:

In Fig. 34A, we show incoming data for a TCPfast-path connection. In this example,
the TCP data is fully contained in the header buffer. The header buffer is mapped by the mbuf

and scent upstream for fast-path TCP processing. In this case it is required that the header

buffer be mapped and sent upstream because the fast-path TCP code will need information

contained in the header buffer in order to perform the processing. When the mbufin this

exampleis freed, the mfreem routine will determine that the mbuf mapsa packet that is owned

by NDISand will then free the mbuf header only and call NdisRcturnPackets to free the data.

In Fig. 34B, we show incoming data for a TCP slow-path connection. In this example

the mbufpoints to the start of the TCP data directly instead of the header buffer. Since this

buffer will be sent up for slow-path FreeBSD processing, we can not have the mbufpointing to

a header buffer (FreeBSD would get awfully confused). Again, when mfreem is called to free

the mbuf, it will discover the mapped packet, free the mbuf header, and call NDISto free the

packetand return the underlying buffers. Note that even though we do not directly map the
header buffer with the mbuf we do not lose it because of the link from the packet descriptor.
Note also that we could alternatively have the INIC miniport driver only pass us the TCP data

buffer whenit receives a slow-path receive. This would work fine except that we have

determined that even in the case of slow-path connections we are going to attemptto offer

someassistance to the host TCP driver (mostlikely by checksum processing only). In this
‘case there may be somespecial fields that we need to pass up to the ATCPdriver from the

INIC driver. Leaving the header buffer connected seems the most logical wayto dothis.

Finally, in Fig. 34C, we show arcccived ARP frame. Recall that for incoming ARP

and ICMP frames we.are going to copy the incomingdata outofthe packet and return it

directly to NDIS. In this case the mbuf simply points to our data, with no corresponding

packet descriptor. When wefree this mbuf, mfreem will discover this and free not only the
mbufheader, but the data as well.

95

INTEL Ex.1002.100

INTEL Ex.1002.101

ALA-006E

10

15.

20

25

30

OTHER RECEIVE PACKETS.

Weusethis receive mechanism for other purposes besides the reception of network

data. It is also used as a method of communication between the ATCP driver and the INIC.

One such example is a TCP context flush from the INIC. When the INIC determines, for

whateverreason,that it can no longer manage a TCP connection, it must flush that connection
to the ATCP driver. It will do this by filling in a header buffer with appropriate status and

delivering it to the INIC driver. The INIC driver will in turn deliver it to the protocol driver

which will treat it essentially like a fast-path TCP connection by mapping the header buffer

with an mbufheader and delivering it to TCP for fast-path processing. There are two

advantages to communicating in this manner. First, it is already an established path, so no

extra coding or testing is required. Second, since a context flush comesin, in the same manner

as received frames, it will prevent us from getting a slow-path frame before the context has

been flushed.

SUMMARY

Having covered all of the various types of receive data, following are the steps that are

taken by the ATKProtocolReceivePacketroutine.

1. Map incomingdata to an ethernet frame and check the typefield;

2. If the type field contains our custom INICtype then it should be TCP;

3. Ifthe header buffer specifies a fast-path connection, allocate one or more mbufs headers

to map the header and possibly data buffers. Set the packet descriptor field of the mbuf

to point to the packet descriptor, set the mbuf flags appropriately, queue the mbuf, and
return 1;

4. Ifthe header buffer specifies a slow-path connection, allocate a single mbuf header to

map the network data, set the mbuffields to map the packet, queuc the mbuf and return

1. Note that we design the INIC such that we will never get a TCP segmentsplit across

more than one buffer; .

5. Ifthe type field of the frame indicates ARP or ICMP;

6. Allocate a mbufwith a data buffer. Copy the contents of the packet into the mbuf.

Queue the mbuf, and return 0 (not accepted); and

7. If the type field is not either the INIC type, ARP or ICMP, we don’t want it. Return 0.

96

INTEL Ex.1002.101

INTEL Ex.1002.102

ALA-006E

10

“15

20

25

30

The receive processing will continue when the mbufs are dequeued. At the moment

this is done by a routine called ATKProtocolReceiveDPC. It will do the following:
1. Dequeue a mbuf from the queue; and

2. Inspect the mbufflags. If the mbuf is meant for fast-path TCP,it will call the fast-path

routine directly. Otherwise it will call the ethernet input routine for slow-path
processing.

TRANSMIT.

In this section we discuss the ATCP transmit path.

: NDIS 4 SEND OPERATION.

The NDIS4 send operation works as follows. When a transport/protocol driver wishes

_ to send one or more packets down to an NDIS4 miniport driver,it calls NdisSendPackets with

an array of packet descriptors to send. As soon asthis routine is called, the transport/protocol

driver relinquishes ownership of the packets until they are returned, one by onein any order,

via a NDIScall to the ProtocolSendComplete routine. Since this routine is called

asynchronously, our ATCP driver must save any required context into the packet descriptor

header so that the appropriate resources can be freed. This is discussed further in the

following sections.

TYPES OF “SENDS”.

Like the Receive path described above, the transmit path is used not only to send

network data, but is also used as a communication mechanism betweenthe host and the INIC.

Here are some examplesof the types of sends performed by the ATCPdriver.

FAST-PATH TCP SEND.

When the ATCPdriver receives a transmit request with an associated MDL,it will

package up the MDLphysical addresses into a commandbuffer, map the commandbuffer

with a buffer and packet descriptor, and call NdisSendPackets with the corresponding packet.

The underlying INIC driver will issue the command buffer to the INIC. When the

corresponding response buffer is given back to the host, the INIC miniport will call

NdisMSendComplete which will result in a call to the ATCP ProtocolSendComplete

97

INTEL Ex.1002.102

INTEL Ex.1002.103

ALA-006E

10

15 —

20

25

30

(ATKSendComplete) routine, at which point the resources associated with the send can be

freed. We will allocate and use a mbuf to hold the commandbuffer. By doing this we can

store the context necessary in order to clean up after the send completes. This context includes

a pointer to the MDL and presumably some other connection context as well. The other

advantage to using a mbuf to hold the commandbufferis that it eliminates having another

special set of code to allocate and return commandbuffer. We will store a pointer to the mbuf

in the reserved section of the packet descriptor so we can locate it when the send is complete.

Fig. 35 illustrates the relationship between the client’s MDL, the command buffer, and the

buffer and packet descriptors.

FAST-PATH TCP RECEIVE.

Asdescribed in the Fast-Path Input Data Flow section above, the receive process

typically occurs in two phases. First the [NIC fills in a host receive buffer with a relatively

small amountofdata, but notifies the host of a large amount ofpending data (either through a

large amount of buffered data on the card, or through a large amount of expected NetBios

data). This small amount of data is delivered to the client through the TDI interface. The

client will then respond with a MDLin which the data should be placed. Like the Fast-path

TCP send process, the receive portion of the ATCP driver will then fill in a commandbuffer

with the MDLinformation from the client, map the buffer with packet and buffer descriptors

and sendit to the INIC via a call to NdisSendPackets. Again, when the responsebuffer is

returned to the INIC miniport, the ATKSendComplete routine will be called and the receive

will complete. This relationship between the MDL, command buffer and buffer and packet

descriptors are the same as shownin the Fast-path send section above.

SLOW-PATH (FREEBSD).

Slow-path sends pass through the FreeBSDstack until the ethernet header is prepended

in ether_output and the packet is ready to be sent. At this point a command buffer will be

filled with pointers to the ethernet frame, the command buffer will be mapped with a packet

and buffer descriptor and NdisSendPackets will be called to hand the packet off to the

miniport. Fig. 36 showsthe relationship between the mbufs, command buffer, and buffer and

packet descriptors. Since we will use a mbuf to map the commandbuffer, we can simply link

98

INTEL Ex.1002.103

INTEL Ex.1002.104

ALA-006E

10

15

20

25

30

the data mbufs directly off of the command buffer mbuf. This will make the freeing of

resources much simpler.

NON-DATA COMMANDBUFFER.

The transmit path is also used to send non-data commandsto the card. As shown in

Fig. 37, for example, the ATCP driver gives a context to the INIC byfilling in a command

buffer, mapping it with a packet and buffer descriptor, and calling NdisSendPackets.

ATKPROTOCOLSENDCOMPLETE.

Given the above different types of sends, the ATKProtocolSendComplete routine will
perform various types of actions whenit is called from NDIS. First it must examine the

reserved area of the packet descriptor to determine what type of request has completed. In the

case of a slow-path completion, it can simply free the mbufs, command buffer, and descriptors

and return. In the case of a fast-path completion,it will need to notify the TCP fast path

routines of the completion so TCP can in turn complete the client’s IRP. Similarly, when a

. hon-data commandbuffer completes, TCP will again be notified that the command sentto the

INIC has completed.

TDI FILTER DRIVER.

In a first embodiment of the product, the INIC handles only simple-case data transfer

operations on a TCP connection. (These of course constitute the large majority of CPU cycles

consumed by TCP processing in a conventional driver.)

There are many other complexitics of the TCP protocol which muststill be handled by

host driver software: connection sctup and breakdown,out-of-order data, nonstandard flags,
etc.

The NT OScontains a fully functional TCP/IP driver, and one solution would be to

enhancethis sothatit is able to detect our INIC and take advantageof it by "handing off" data-

path processing where appropriate.

Unfortunately, we do not have access to NT source, let alone permission to modify NT.

Thusthe solution above, while a goal, cannot be done immediately. We instead provide our

own custom driver software on the host for those parts of TCP processing which are not

handled by the INIC.
99

INTEL Ex.1002.104

INTEL Ex.1002.105

ALA-006E

10

15

20

25

30

This presents a challenge. The NT network driver framework does makeprovision for

, multiple types ofprotocol driver: but it docs not casily allow for multiple instances of drivers
handling the SAMEprotocol.

For example, there are no "hooks" into the Microsoft TCP/IP driver which would allow

for routing of IP packets between our driver (handling our INICs) and the Microsoft driver

(handling other NICs). ,

Our approachto this is to retain the Microsoft driver for all non-TCP network

processing (even for traffic on our INICs), but to invisibly "steal" TCP traffic on our

connections and handleit via our own (BSD-derived) driver. The Microsoft TCP/IP driveris

unaware of TCP connections on interfaces we handlc.

The network "bottom end"ofthis artifice is described earlier in the document. In this

section we will discuss the "top end": the TDI interface to higher-level NT network client
software.

Wemake use of an NT facility called a filter driver. NT allows a special type of driver

("filter driver") to attach itself "on top" of another driver in the system. The NT I/O manager

then arrangesthat all requests directed to the attached driver are sent first to the filter driver;
"this arrangementis invisible to the rest of the system.

Thefilter driver may then either handle these requests itself, or pass them downto the

underlying driver it is attached to. Provided the filterdriver completely replicates the

(externally visible) behavior of the underlying driver when it handles requestsitself, the

existence ofthe filter driver is invisible to higher-level software.

Thefilter driver attaches itself on top of the Microsoft TCP/IP driver; this gives us the

basic mechanism whereby wecan intercept requests for TCP operations and handle them in

our driver instead of the Microsoft driver.

However, while the filter driver concept gives us a framework for what we want to

achieve, there are some significant technical problems to be solved. The basic issueis that

setting up a TCP connection involves a sequence of several requests from higher-level

software, and it is not always possible to tell, for requests early in this sequence, whether the

connection should be handled by our driver or by the Microsoft driver.

Thus for many requests, we store information about the request in case we needitlater,

but also allow the request to be passed downto the Microsoft TCP/IP driver in case the

connection ultimately turns out to be one which that driver should handle.
: 100

INTEL Ex.1002.105

INTEL Ex.1002.106

ALA-006E

10

15

20

25

30

Let us look at this in more detail, which will involve some examination of the TDI

interface: the NT interface into the top end of NT network protocol drivers. Higher-level TDI

client software which requires services from a protocol driver procecds by creating various

types of NT FILEOBJECTs, and then making various DEVICE_IO_CONTROLrequests on

these FILE_OBJECTs.

There are two types of FILE_OBJECTofinterest here. Local IP addresses that are

represented by ADDRESSobjects, and TCP connections that are represented by

CONNECTIONobjects. The steps involved in setting up a TCP connection (from the "active"

client side, for a CONNECTIONobject) are:

1) Create an ADDRESSobject; 2) Create a CONNECTIONobject; 3) Issue a

TDIASSOCIATE_ADDRESSio-control to associate the CONNECTIONobject with the

ADDRESSobject; and 4) Issue a TDICONNECTio-control on the CONNECTIONobject,

specifying the remote address and port forthe connection.
Initial thoughts were that handling this would be straightforward: we would tell, on the

basis of the address given when creating the ADDRESSobject, whether the connection is for

one of our interfaces or not. After which, it would be easy to arrange for handling entirely by

our code, or entirely by the Microsoft code: we would simply examine the ADDRESSobject

to see if it was "one of ours"or not.

There are two main difficulties, however. First, when the CONNECTIONobjectis

created, no address is specified: it acquires a local addressonly later when the

TDI_ASSOCIATE_ADDRESSis done. Also, when a CONNECTIONobjectis created, the

caller supplies an opaque "context cookie" which will be needed for later communications

with that caller. Storage of this cookie is the responsibility of the protocol driver: it is not

. directly derivable just by examination of the CONNECTIONobject itself. If we simply

passed the "create" call down to the Microsoft TCP/IP driver, we would have no way of

obtaining this cookie later if it turns out that we need to handle the connection. Therefore, for

every CONNECTIONobject whichis created weallocate a structure to keep track of .
information aboutit, and store this structure in a hash table keyed by the address of the

CONNECTIONobject itself, so that we can locate it if we later need to process requests on

this object. We refer to this as a "shadow"object: it replicates information about the object

stored in the Microsoft driver. (We must, of course, also pass the create request down to the

Microsoft driver too, to allow it to set-up its own administrative information about the object.)
101

INTEL Ex.1002.106

INTEL Ex.1002.107

ALA-006E

10

15

20

25

30

A second majordifficulty arises with ADDRESSobjects. These are often created with

the TCP/IP "wildcard" address(all zeros); the actual local address is assigned only later during

connection setup (by the protocol driveritself.) Of course, a "wildcard" address does not

allow us to determine whether connections that will be associated with this ADDRESSobject

should be handledby ourdriver or by the Microsoft one. Also, as with CONNECTION
objects, there is "opaque" data associated with ADDRESSobjects that cannot be derived just

from examination of the object itself. (In this case addresses of callback functions set on the

object by TDISETEVENTio-controls.)

Thus, as in the CONNECTIONobject case, we create a "shadow" object for each

ADDRESSobject which is created with a wildcard address. In this we store information

(principally addresses of callback functions) which we will need if we arehandling
connections on CONNECTIONobjects associated with this ADDRESSobject. We store

similar information, of course, for ary ADDRESSobject whichis explicitly for one of our

interface addresses; in this case we don't need to also pass the create request down tothe
Microsoft driver.

With this concept of "shadow" objects in place, Ict us revisit the steps involved in

setting up a connection, and look at the processing required in our driver.

First, the TDI client makes a call to create the ADDRESSobject. Assumingthat this is

a "wildcard" address, we create a "shadow" object before passing the call down to the

Microsoft driver.

Thenext step (omitted in the earlier list for brevity) is normally that the client makes a

number of TDI_SET_EVENTio-controlcalls to associate various callback functions with the
ADDRESSobject. These are functions that should be called to notify the TDI client when

certain events (such arrival of data or disconnection requests etc) occur. We store these

callback function pointers in our "shadow"address object, before passing the call down to the

Microsoft driver.

Next, the TDI client makes a call to create a CONNECTION object. Again, we create

‘our "shadow"of this object.

Next, the client issues the ‘TDIASSOCIATEADDRESS io-control to bind the

CONNECTIONobject to the ADDRESSobject. We note the association in our "shadow"

' . objects, and also pass the call downto the Microsoft driver. ~

102

INTEL Ex.1002.107

INTEL Ex.1002.108

wey | a,ee Pee aeadh. Wa Bae. Mh

“ALA-006E

10

20°

25

30

Finally the TDIclient issues a TDI_CONNECTio-control on the CONNECTION

object, specifying the remote IP address (and port) for the desired connection. At this point,

we examine our routing tables to determineifthis connection should be handled by one of our

interfaces, or by some other NIC. If it is ours, we mark the CONNECTIONobject as "one of

ours" for future reference (using an opaque field which NT FILE_OBJECTSprovidefor driver

use.) We then proceed with connection setup and handlingin our driver, using information

stored in our "shadow" objects. The Microsoft driver does not sec the connection request or
any subsequenttraffic on the connection.

If the connection request is NOT for one of our interfaces, we pass it down to the
Microsoft driver. Note carefully, however, that we can not simply discard our "shadow"
objects at this point. The TDI interface allows re-use of CONNECTIONobjects: on
termination of a connection,it is legal for the TDI client to dissociate the CONNECTION

object from its current . Thus our "shadow" objects must be retained for the lifetime
ADDRESSobject, re-associate it with another, and use it for another connection of the NT

FILE_OBJECTS: the subsequent connection could turn out to be via one ofour interfaces.

TIMERS.

KEEPALIVE TIMER.

Wedon’t want to implement keepalive timers on the INIC. It would in any case be a

very poor use of resources to have an INIC context sitting idle for two hours.

IDLE TIMER.

Wewill keep an idle timer in the ATCP driver for connections that are managed by the

INIC (resetting it whenever wesce activity on the connection), and cause a flush of context

back to the host if this timer expires. We may want to makethe threshold substantially lower
than 2 hours,to reclaim INIC context slots for useful work sooner. May also want to make
that dependent on the numberof contexts which haveactually been handed out: don’t need to

reclaim them ifwe haven’t handedout the max.
\

RECEIVE AND TRANSMIT MICROCODEDESIGN.

This section provides a general description of the design of the microcodethat will

execute on two of the sequencers of the Protocol Processor on the INIC. The overall
103

INTEL Ex.1002.108

INTEL Ex.1002.109

ALA-006E

10

15

20

30

philosophyof the INIC is discussed in other sections. This section will discuss the INIC

microcode in detail.

DESIGN OVERVIEW.

As specified in other sections, the INIC supplics a set of 3 custom processors that will

provide considerable hardwarc-assist to the microcode running thereon. The paragraphs

immediatcly following list the main hardware-assist features:

1) Header processing with specialized DMAengines to validate an input header and
generate a context hash, movethe header into fast memory and do header comparisons on a

DRAM-based TCPcontrol block;

2) DRAMfifos for free buffer queues (large & small), receive-frame queues, event

queuesetc.;

3) Header comparelogic;

4) Checksum generation;

5) Multiple register contexts with register access controlled by simply setting a context
register. The Protocol Processor will provide 512 SRAM-basedregisters to be shared among

the 3 sequencers;

6) Automatic movementof input frames into DRAM buffers from the MACFifos;

7) Run receive processing on one sequencerand transmit processing on the other. This
was chosen as opposed to letting both sequencers run receive and transmit. One of the main

reasonsforthis is that the header-processing hardware can not be shared and interlocks would

be needed to do this. Another reason is that interlocks would be needed on the resources used

exclusively by receive and by transmit;

8) The INIC will support up to 256 TCP connections (TCB’s). A TCB is associated

with an input frame when the frame’s source anddestination IP addresses and source and

destination ports match that of the TCB.For speed of access, the TCB’s will be maintained in

a hash table in NIC DRAMto save sequential searching. There will however, be an index in

hash order in SRAM. Once a hash has been generated, the TCB will be cached in SRAM.

There will be up to 8 cached TCBs in SRAM. These cache locations can be shared between

both sequencers so that the sequencer with the heavier load will be able to use more cache

buffers. There will also be 8 header buffers to be shared between the sequencers. Note that

each headerbuffer is not statically linked to a specific TCB buffer. In fact the link is dynamic
104

INTEL Ex.1002.109

INTEL Ex.1002.110

eh Pe ee

eM Bd thats Belk? Y,

ALA-006E

1)

20

25

30

. ona per-frame basis. The need for this dynamic linking will be explained in later sections.

Suffice to say here that if there is a free header buffer, then somewherethereis also a free TCB

SRAMbuffer;

9) There were 2 basic implementation options considered here. Thefirst was single-

stack and the second was a process model. The process model was chosen here becausethe

custom processor design is providing zero-cost overhead for context switching through the use

of a context base register, and because there will be more than enoughprocessslots (or

contexts) available for the peak load. It is also expected thatall “local” variables will be held

permanently in registers whilst an event is being processed;

10) The features that provide this are 256 of the 512 SRAM-basedregisters that will

be used for the register contexts. This can be divided up into 16 contexts (or processes) of 16

registers each. Then 8 of these will be reserved for receive and 8 for transmit. A Little’s Law

analysis has shown that in order to support 512 byte frames at maximum arrival rate of 4 * 100

Mbits, requires more than 8 jobs to be in process in the NIC. Howevereach job requires an

SRAMbuffer for a TCB context and at present, there are only 8 of these currently specified

duc to SRAMspacelimits. So more contexts (e.g. 32 * 8 regs each) do not seem worthwhile.

Refer to the section entitled “LOAD CALCULATIONS?”for moredetails of this analysis. A

context switch simply involves reloading the context base register based on the context to be»

restarted, and jumping to the appropriate address for resumption; _

11) To better support the process model chosen, the code will lock an active TCB into

an SRAM buffer while either sequencer is operating on it. This implies there will be no’

swapping to and from DRAM of a TCB onceit is in SRAM and an operationis started onit.

Morespecifically, the TCB will not be swapped after requesting that a DMA be performed for

it. Instead, the system will switch to another active “process”. Then it will resume the former

process at the point directly after where the DMA was requested. This constitutes a zero-cost

switch as mentioned above;

12) Individual TCB state machines will be run from within a “process”. There will be

a state machinefor the receive side and onefor the transmit side. The current TCBstates will

be stored in the SRAM TCBindextable entry;

13) The INIC will have 16 MB of DRAM.Thecurrent specification calls for dividing

a large portion of this into 2K buffers and control allocation / deallocation of these buffers

105

INTEL Ex.1002.110

INTEL Ex.1002.111

ALA-006E

10

15

20

30

through one of the DRAM fifos mentioned above. Thesefifos will also be used to control

small host buffers, large host buffers, command buffers and commandresponsebuffers;

14) For events from one sequencerto the other (i.e. RCV < XMT),the current

_ specification calls for using simple SRAM CIObuffers, one for each direction;

15) Each sequencer handles its own timers independently of the others;

16) Contexts will be passed to the INIC through the Transmit commandand response

buffers. INIC-initiated TCB releases will be handled through the Receive small buffers. Host-

initiated releases will use the Command buffers. There needsto bestrict handling of the

acquisition and release of contexts to avoid windows where for example, a frame is received

on a context just after the context was passed to the INIC, but before the INIC has “accepted”

it; and

17) T/TCP (Transaction TCP): the initial INIC will not handle T/TCP conncctions.

This is because they are typically used for the HTTP protocol andtheclient for that protocol .
typically connects, sends a request and disconnects in one segment. The server sends the

connect confirm, reply and disconnectin his first segment. Then the client confirmsthe

disconnect. Thisis a total of 3 scgments for the life of a context. Typical data lengths are on

the order of 300 bytes from the client and 3K from the server. The INIC will provide as good
an assist as seems necessary here by checksummingthe frame andsplitting headers and data.

Thelatter is only likely when data is forwarded with a request such as whena filled-in form is

sent by theclient.

SRAM REQUIREMENTS.

SRAM requirements for the Receive and Transmit engines are shownin Fig. 38.
‘Depending uponthe available space, the number of TCB buffers may be increased to 16.

GENERAL PHILOSOPHY.

Thebasic plan is to have the host determine when a TCP connectionis able to be

handed to the INIC, setup the TCB andpassit to the card via a commandin the Transmit

queue. TCBsthat the INIC ownscan be handed backto the host via a request from the Receive

or Transmit sequencers or from the hostitself at any time.

Whenthe INIC receives a frame, one of its immediate tasks is to determine if the frame

is for a TCB thatit controls. If not, the frame is passed to the host on a generic interface TCB.
106

INTEL Ex.1002.111

INTEL Ex.1002.112

“ALA-006E

10

15°

20

25

30

Ontransmit, the transmit request will specify a TCB hash numberif the request is on a INIC-

controlled TCB. Thus theinitial state for the INIC will be transparent mode in whichall

received framesare directly passed through andall transmit requests will be simply thrown on

the appropriate wire. This state is maintained until the host passes TCBsto the INIC to control.
Note that frames received for which the INIC has no TCB(orit is with the host) will still have

the TCP checksum verified if TCP/IP, and may split the TCPIP headeroff into a separate

buffer.

_ REGISTER USAGE.

There will be 512 registers available. The first 256 will be uscd for process contexts.

The remaining 256 will be split between the three sequencers as follows: 1) 257 — 320: 64 for
RCVgeneral processing / main loop; 2) 321 - 384: 64 for XMT general processing / main

loop; and 3) 385 ~ 512: 128 for three sequenceruse.

RECEIVE PROCESSING,

MAIN LOOP.

Fig. 39 is a summary ofthe main loop of Receive.

RECEIVE EVENTS.

The events that will be processed on a given context are:

1) accept a context;

2) release a context command (from the host via Transmit),
3) release a context request (from Transmit);

4) receive a valid frame;this will actually become 2 events based on the received

frame - receive an ACK, receive a segment;

5) receive an “invalid”frame i.e. one that causes the TCB to be flushedto the host;

6) avalid ACK needsto be sent (delayed ACK timer expiry); and

7) There are expected to be the following sources of events: a) Receive input queue:

it is expected that hardware will automatically DMAarriving frames into frame buffers and

queue an event into a RCV-event queue; b) Timer event queue: expiration of a timerwill

queuean eventinto this queue; and c) Transmit sequencer queue: for requests from the

transmit processor.
, 107

INTEL Ex.1002.112

INTEL Ex.1002.113

ALA-006E

10

15

20

25

30

For the sake ofbrevity the following only discusses reccive-frame processing.

RECEIVE DETAILS — VALID CONTEXT.

The base for the receive processing done by the INIC on an existing context is the fast-

path or “header prediction” code in the FreeBSD release. Thus the processing is divided into

three parts: header validation and checksumming, TCP processing and subsequent SMB

processing.

HEADER VALIDATION.

There is considerable hardwareassist here. The first step in receive processingis to

DMAthe frame header into an SRAM headerbuffer. It is useful for header validation to be

implemented in conjunction withthis DMA by scanningthe data asit flies by. The following
tests need to be “passed”:

1) MACheader: destination address is our MAC address (not MC or BCtoo), the
Ethertype is IP; 2) IP header: header checksum is valid, header length = 5, IP length > header

length, protocol = TCP, no fragmentation, destination IP is our IP address; and’3) TCP header:

checksumis valid (incl. pseudo-header), header length = 5 or 8 (timestamp option), length is

‘ valid, dest port = SMB or FTP data, no FIN/SYN/URG/PSH/RSTbits sct, timestamp option is

valid if present, segmentis in sequence, the window size did not change,this is not a

retransmission, it is a pure ACK or a pure receive segment, and most important, a valid

context exists. The valid-context test is non-trivial in the amount of work involved to

determineit. Also note that for pure ACKs,the window-sizetest will be relaxed. This is

becauseinitially the output PERSISTstate is to be handled on the INIC.

Manybut perhapsnotall of these tests will be performed in hardware — depending

uponthe embodiment.

TCP PROCESSING.

Once a frame haspassed the headervalidation tests, processing splits based on whether

the frame is a pure ACKor a pure received segment.

108

INTEL Ex.1002.113

INTEL Ex.1002.114

ALA-006E

10

20

25

30

PURE RCV PACKET.

The design is to split off hcadcrs into a small header buffer and pass the aligned data in

separate large buffers. Since a framc has been received, eventually some receiver process on

the host will need to be informed. In the case of FTP, the frame is pure data andit is passed to

the host immediately. This involves getting large buffers and DMAingthe data into them,

then setting the appropriate details in a small buffer that is used to notify the host. However for

SMB,the INIC is performing reassembly of data when the frame consists of headers and data.

So there may not yet be a complete SMBto passto the host. In this case, a small buffer will be

acquired and the header movedintoit. If the received segment completes an SMB, then the

procedures are pretty much as for FTP. If it docs not, then the schemeis to at least move the

' received data (not the headers) to the host to free the INIC buffers and to save latency. Thelist

of in-progress host buffers is maintained in the TCB and movedto the header buffer when the

SMBis complete.

The final part ofpure-receive processing is to fire off the delayed ACK timerfor this

segment.

~ PURE ACK.

Pure ACK processing implies this TCB is the sender, so there may be transmit buffers

that can be returned to the host. If so, send an event to the Transmit processor (or do the

processing here). If there is more output available, send an event to the transmit processor.

Then appropriate actions need to be taken with the retransmission timer.

SMB PROCESSING.

Fig. 40 showsthe format of the SMB header of an SMB frame. The LENGTHfield of

the NetBIOS header will be used to determine when a complete SMB has been received and

the header buffer with appropriate details can be posted to the host. The interesting commands

are the write commands: SMBwrite (OxB), SMBwriteBraw (0x1D), SMBwriteBmpx (0x1E),

SMBwriteBs (0x1F), SMBwriteclose (0x2C), SMBwriteX (0x2F), SMBwriteunlock (0x14).
These are interesting because they will have data to be aligned in host memory. The point to

note about these commandsis that they each have a different WCTfield, so that the start offset

of the data depends on the command type. SMBprocessing will thus nced to be cognizant of

these types.
109

INTEL Ex.1002.114

INTEL Ex.1002.115

a ey oy

wide. ood Hooke Bed Hewit

ALA-006E

10

15

20

25

30

RECEIVE DETAILS — NO VALID CONTEXT.

The design here is to provide as muchassist as possible. Frames will be checksummed

and the TCPIP headers maybesplit off.

RECEIVE NOTES.

1. PRU_RCVDorthe equivalent in Microsoft language: the host application has to

tell the INIC whenhehasaccepted the received data that has been queued. Thisis so that the

INIC can update the receive window.It is an advantage for this mechanism to beefficient.

This may be accomplished by piggybacking these on transmit requests (not necessarily for the

same TCR).

2. Keepalive Timer: for a INIC-controlled TCB,the INIC will not maintain this timer.
This leaves the host with the job of determining that the TCBisstill active.

3. Timestamp option:it is uscful to support this option in the fast path because the

BSD implementation does. Also, it can be very helpful in getting a much better estimate of the

round-trip time (RTT) which TCP needsto use.

4. Idlc timer: the INIC will not maintain this timer (see Note 2 above).

5. Frame with no valid context: The INIC may split TCP/IP headers into a separate
header buffer.

TRANSMIT PROCESSING.

MAIN LOOP.

Fig. 41 is a summary of the main loop of Transmit.

TRANSMIT EVENTS.

The events that will be processed on a given context and their sources are: 1) accept a

context (from the Host); 2) release a context command (from the Host); 3) release a context

command(from Reecive); 4) valid send request and window > 0 (from host or RCV

sequencer); 5) valid send request and window = 0 (from host or RCV sequencer); 6) send a
window update (host has accepted data); 7) persist timer expiration (persist timer); 8)

context-release event e.g. window shrank (XMTprocessing or retransmission timer); and 9)

receive-release request ACK(from RCV sequencer).
110

INTEL Ex.1002.115

INTEL Ex.1002.116

Qh REY PRELo GD cyt we eye Shh why wane
ed. BOP Bio HGP BOP UR Poe Bed OO BL of

ALA-006E —

10

20

25

30

TRANSMIT DETAILS — VALID CONTEXT.

The following is an overview ofthe transmit flow: The host posts a transmit request to

the INIC byfilling in a commandbuffer with appropriate data pointers etc and postingit to the

INIC via the Command Buffer Address register. Note that there is one host commandbuffer

queue, but there are four physical transmit lines. So each request needs to includean interface

number as well as the context number. The INIC microcode will DMAthe command in and

place it in one offour internal command queues which the transmit sequencer will work on.

Thisis so that transmit processing can round-robin service these four queues to kcep all four

interfaces busy,and notlet a highly-active interface lock out the others (which would happen

with a single queue). The transmit request may be a segmentthatis less than the MSS,orit

may be as muchasa full 64K SMB READ.Obviously the former request will go out as one

segment, the latter as a number of MSS-sized segments. Thetransmitting TCB must hold on‘to
the request until all data in it has been transmitted and acked. Appropriate pointers to do this

will be kept in the TCB. A large buffer is acquired from the free buffer fifo, and the MAC and

TCP/IP headersare createdin it. It may be quicker/simpler to keep a basic frame headerset up

in the TCB and either DMAdirectly this into the frame each time. Then data is DMA’d from

host memory into the frame to create an MSS-sized segment. This DMA also checksumsthe

data. Then the checksum is adjusted for the pseudo-header and placed into the TCP header,

_and the frame is queued to the MACtransmitinterface which maybecontrolled by the third

sequencer. Thefinal step is to update various windowfields etc in the TCB. Eventually cither

the entire request will have been sent and acked, or a retransmission timer will expire in which

case the context is flushed to the host. In either case, the INIC will place a command response

in the Response queue containing the command buffer handle from the original transmit

command and appropriate status.

The above discussion has dealt how an actual transmit occurs. Howeverthe real

challenge in the transmit processor is to determine whetherit is appropriate to transmit at the

time a transmit request arrives. There are many reasonsnotto transmit: the receiver’s window

size is <= 0, the Persist timer has expired, the amountto sendis less than a full segment and an

ACKis expected / outstanding, the receiver’s window is not half-open etc. Much of the

transmit processing will be in determining these conditions.

111

INTEL Ex.1002.116

INTEL Ex.1002.117

_ ALA-006E

10

45

20

25

30

TRANSMIT DETAILS — NO VALID CONTEXT.

The main difference between this and a context-based transmit is that the queued

~ request here will already have the appropriate MAC and TCP/IP (or whatever) headers in the

frame to be output. Also the request is guaranteed not to be greater than MSS-sized in length.

So the processing is fairly simple. A large buffer is acquired and the frame is DMAedintoit,

at which time the checksum is also calculated. If the frame is TCP/IP, the checksum will be

appropriately adjusted if necessary (pseudo-headeretc) and placed in the TCP header. The

frame is then queued to the appropriate MACtransmit interface. Then the commandis

immediately responded to with appropriate status through the Response qucuc.

TRANSMIT NOTES.

1) Slow-start: the INIC will handle the slow-start algorithm that is nowapart of the

TCP standard. This obviates waiting until the connection is sending a full-rate before passing

it to the INIC. |

2) Window Probe vs Window Update - an explanation for posterity. A Window Probe

is sent from the sending TCBto the receiving TCB, and it means the sender has the receiver in

PERSISTstate. Persist state is entered when the receiver advertises a zero window.It is thus

the state of the transmitting TCB.In this state, he sends periodic window probesto the receiver

in case an ACK fromthe receiver has been lost. The receiver will return his latest window size
in the ACK. A Window Updateis sent from the receiving TCB to the sending TCB,usually to

tell him that the receiving window hasaltered. It is mostly triggered by the upper layer whenit

accepts some data. This probably means the sending TCBis viewing the receiving TCB as

being in PERSISTstate. | ,

3) Persist state: it is designed to handle Persist state on the INIC. It seems

unreasonable to throw a TCB backto the host just because its receiver advertised a zero
window. This would normally be a transient situation, and would tend to happen mostly with

clients that do not support slow-start. Alternatively, the code can easily be changed to throw

the TCB back tothe host as soon asa receiver advertises a zero window.

4) MSS-sized frames: the INIC code will expect all transmit requests for which it has

no TCB to not be greater than the MSS.If any request is, it will be dropped and an

appropriate response status posted.

112

INTEL Ex.1002.117

INTEL Ex.1002.118

eb ey ae ey epRaat Deel PH Theat
ALA-006E

10

15

20

25

30

5) Silly Window avoidance: asa receiver, the INIC will do the right thing here and not

advertise small windows— this is easy. Howeverit is necessary to also do things to avoid this

as a sender, for the cases where a stupid client does advertise small windows. Without getting

into too muchdetail here, the mechanism requires the INIC code to calculate the largest

window advertisement ever advertised by the other end. It is an attempt to guess the size of the

other end’s receive buffer and assumesthe other end never reducesthe size ofits receive

buffer. See Stevens, “TCP/IP Illustrated”, Vol. 1, pp. 325-326 (1994).

THE UTILITY PROCESSOR.
SUMMARY.

Thefollowing is a summary of the main functions ofthe utility sequencer of the

microprocessor:

1) Look at the event queues: Eventl13Type & Event23Type (we assumethere will be

an eventstatusbitforthis - USE_EV13 and USE_EV23) in the events register; these are
events from sequencers 1 and 2; they will mainly be XMITrequests from the XMT sequencer.

Dequeue request and place the frame on the appropriate interface.

2) RCV-frame support: in the model, RCV is done through VinicReceive() which is
registered by the lower-edge driver, and is called at dispatch-level. This routine calls

_ VinicTransferDataComplete() to check if the xfer (possibly DMA)ofthe frame into host

buffers is complete. The latter rtne is also called at dispatch level on a DMA-completion

intcrrupt. It queues complete buffers to the RCV sequencer via the normal queue mechanism.

3) Other processes may also be employed here for supporting the RCV sequencer.

4) Service the following registers (this will probably involve micro-interrupts):
a) Header Buffer Addressregister: .

Buffers are 256 bytes long on 256-byte boundaries.

31-8 - physical addr in host of a set of contiguous hddr buffers.

7-O - numberofhddr buffers passed.

Use contents to add to Smalll!Type queue.

b) Data Buffer Handle & Data Buffer Addressregisters:

Buffers are 4K long aligned on 4K boundaries.

Use contents to add to the FreeType queue.

c) Command Buffer Addressregister:
113

INTEL Ex.1002.118

INTEL Ex.1002.119

ALA-006E

10

15

20

25

30

Buffers are multiple of 32 bytes up to 1K long (2**5 * 32),

31-5 - physical addr in host of cmd buffer.

4-0 - length of cmd in bytes/32(i.e. multiples of 32 bytes).

Points to host cmd; get FreeSType buffer and move.

commandinto it; queue to Xmit0-Xmit3Type queues.

d) Response Buffer Address register:

Buffers are 32 bytes long on 32-byte boundaries.

31-8 - physical addrin host of a set of contiguousresp buffers.

7-0 - numberof resp buffers passed.

Usecontents to add to the ResponseType queuc.
5) Low buffer threshold support: set approp bits in the ISR when the available-buffers

count in the various queuesfilled by the host falls below a threshold.

FURTHER OPERATIONS OF THE UTILITY PROCESSOR.

Theutility processorof the microprocessor housed on the INIC is responsible for
setting up and implementing all configuration space and memory mapped operations, and also

as described below, for managing the debuginterface.

All data transfers, and other INIC initiated transfers will be done via DMA.

Configuration spacc for both the network processor function and the utility processor function

will define a single memory space for each. This memory spacc will define the basic

communication structure for the host. In general, writing to onc of these memory locations

will perform a request for service from the INIC. This is detailed in the memory description

for cach function. This section defines much of the operation of the Host interface, but should

be read in conjunction with the Host Interface Strategy for the Alacritech TNIC to fully define
the Host/INIC interface.

Tworegisters, DMA hardware andan interrupt function comprise the INIC interfaceto

the Host through PCI. Theinterrupt function is implementedvia a four bit register (PCIINT)

tied to the PC] interrupt lines. This register is directly accessed by the microprocessor.

THE MICROPROCESSORusestworegisters, the PCI_Data_Reg and the

PCI_Address_Reg, to cnable the Host to access Configuration Space and the memory space

allocated to the INIC. Theseregisters are not available to the Host, but are used by THE

114

INTEL Ex.1002.119

INTEL Ex.1002.120

ALA-006E

10 .

15

20

25

30

MICROPROCESSORto enable Host reads and writes. The function of these tworegisters is
as follows.

1) PCI_DataReg: This register can be both read and written by THE

MICROPROCESSOR.Onwrite operations from the host, this register contains the data being

sent from the host. On read operations,this register contains the data to besent to the host.
2) PCI_Address_Reg: This is the control register for memory reads and writes from

the host. The structure of the register is shown in Fig. 42. During a write operation from the

Host the PCI_Data_Regcontainsvalid data after Data Valid is set in the PCL AddressReg.

Both registers are locked until THE MICROPROCESSORwrites the PCIDataReg, which

resets Data Valid. All read operationswill be direct from SRAM. Memory space based reads

will return 00. Configuration space reads will be mapped as shown in Vig. 43.

CONFIGURATION SPACE,

The INIC is implemented as a multi-function device. The first device is the network

controller, and the sccond device is the debug interface. An alternative production

embodiment may implement only the network controller function. Both configuration space

headcrswill be the same, except for the differences noted in the following description.
VendorID — This field will contain the Alacritech Vendor ID. Onefield will be used

for both functions. The Alacritech Vendor ID is hex 139A.

Device ID — Chosen at Alacritech on a device specific basis. Onefield will be used for
both functions.

Command -- Initialized to 00. All bits defined below as not enabled (0) will remain 0.

Those that are enabled will be sct to 0 or 1 depending on the state of the system. Each

function (network and debug) will have its own commandfield, as shown in Fig. 44.
Status — This is notinitialized to zero. Each function will have its own ficld. The

configuration is as shown in Fig. 45.

Revision ID — Therevision field will be shared by both functions.

Class Code — This is 02 00 00 for the network controller, and for the debug interface.
Thefield will be shared.

Cache Line Size ~— Thisis initialized to zero. Supported sizes are 16, 32, 64 and 128

bytes. This hardware register is replicated in SRAM and supported separately for each

115

INTEL Ex.1002.120

INTEL Ex.1002.121

t

Se ti te TasMig iggy OMEN pin gegitwe
edhe By Pose BART aoa BPP mh

ALA-006E

10

15

20

25

30

function, butTHE MICROPROCESSORwill implementthe value set in Configuration Space

1 (the network processor).

Latency Timer — Thisis initialized to zcro. The function is supported. This hardware

register is replicated in SRAM. Each function is supported separately, but THE

MICROPROCESSORwill implementthe value set in Configuration Space 1 (the network

processor).

Header Type — Thisis set to 80 for both functions, but will be supported separately.

BIST — Is implemented. In addition to responding to a request to runselftest, if test

after reset fails, a code will be set in the BIST register. This will be implemented separately
for each function.

Base Address Register — A single base address register is implemented for each

function. It is 64 bits in length, and the bottom four bits are configured as follows: Bit 0— 0,

indicates memory base address; Bit 1,2 — 00, locate base address anywhere in 32 bit memory
space; and Bit 3 — 1, memory is prefetchable.

CardBus CIS Pointer — Not implemented—initialized to 0.

Subsystem Vendor ID — Not implemented—initialized to 0.

Subsystem ID — Not implemented—initialized to 0.

Expansion ROM Base Address — Not implemented—initialized to 0. :
Interrupt Line — Implemented—initialized to 0. This is implemented separately for

each function.

Interrupt Pin — Thisis set to 01, corresponding to INTA# for the network controller,

and 02, corresponding to INTB# for the debug interface. This is implemented separately for
each function.

Min_Gnt — This can beset at a value in the range of 10, to allow reasonably long bursts

on the bus. This is implemented separately for each function.

Max_Lat — This can beset to 0 to indicate no particular requirement for frequency of

access to PCI. This is implemented separately for each function.

MEMORYSPACE.

Becauseeach of the following functions may or may notreside in a single location, and

may or may not need to be in SRAMatall, the address for each is really only used as an

identifier (label). There is, therefore, no control block anywhere in memory that represents
116

INTEL Ex.1002.121

INTEL Ex.1002.122

ALA-006E

15

20

25

30

this memory space. Whenthe host writes one ofthese registers, the utility processor will

construct the data required and transfer it. Reads to this memory will generate 00 fordata.

NETWORK PROCESSOR.

The following four byte registers, beginning at location h00 of the network processor’s

allocated memory,are defined.

00— Interrupt Status Pointer -- Initialized by the host to point to a four byte area where
status is stored.

04-— Interrupt Status — Returned status from host. Sent after one or more

status conditions have been reset. Also an interlock for storing any

new status. Once status has been stored at the Interrupt Status Pointer

location, no new status will be ORed until the host writes the Interrupt

Status Register. New status will be ored with any remaining

uncleared status (as defined by the contents of the returnedstatus)

and stored again at the Interrupt Status Pointer location. Bits are

as follows: .

Bit 31—ERR -- Errorbits are set;

Bit 30 — RCV — Receive has occurred;

Bit 29 - XMT — Transmit command complete; and

Bit 25 — RMISS — Receive drop occurred dueto no buffers.

08— Interrupt Mask — Written by the host. Interrupts are masked for each

of the bits in the interrupt status when the samebit in the mask

register is set. When the Interrupt Mask register is written and as

a result a status bit is unmasked, an interrupt is generated. Also,

when the Interrupt Status Register is written, enabling new status

to be stored, whenit is stored if a bit is stored that is not masked

by the Interrupt Mask,an interrupt is generated.

OC — Header Buffer Address — Written by host to pass a set ofheader buffers to the INIC.

10~- Data Buffer Handle — First register to be written by the Host to transfer a receive data

buffer to the INIC. This data is Host reference data. It is not used by the INIC,it is

returned with the data buffer. However, to insure integrity of the buffer, this register

mustbe interlocked with the Data Buffer Address register. Once the Data Buffer
117

INTEL Ex.1002.122

INTEL Ex.1002.123

opty eee ee ie gee oad tes SUR rep i tN eh beepcei. Sia HAL, EAP OBR abc oS dl out RU XRGal? MF Baas

ALA-006E

10

15

20

25

30

Address register has been written, neither register can be written until after the Data

Buffer Handle register has been read by THE MICROPROCESSOR.

14-— Data Buffer Address — Pointer to the data buffer being sent to the [NIC by the Host.

Must be interlocked with the Data Buffer Handle register.

18— Command Buffer Address XMTO — Pointer to a set of command

buffers sent by the Host. THE MICROPROCESSOR will DMAthebuffers to local
DRAMfound on the FreeSType queue and queue the Command

Buffer Address XMTOwiththe local address replacing the host Address.
1C— Command Buffer Address SMT1.

20— Command Buffer Address SMT2.

24— Command Buffer Address SMT3.

28— Response Buffer Address -- Pointer to a set of response buffers sent

by the Host. These will be treated in the same fashion as the Command Buffer Address

registers.

UTILITY PROCESSOR.

Endingstatus will be handled by the utility processor in the same fashion asit is

handled by the network processor. At present two ending status conditions are defined B31 —
command complete, and B30~- error. When endstatus is stored an interrupt is generated.

Two additional registers are defined, Command Pointer and Data Pointer. The Hostis

responsible for insuring that the Data Pointeris valid and points to sufficient memory before
storing a command pointer. Storing a command pointer initiates command decode and
execution by the debug processor. The Host must not modify either command or Data Pointer

until ending status has been received, at which point a new command maybeinitiated.

Memory space is write only by the Host, reads will receive 00. The formatis as follows:

_00— Interrupt Status Pointer -- Initialized by the host to point to a four byte area where

status is stored.

04— Interrupt Status — Returned status from host. Sent after one or more

status conditions have been reset. Also an interlock for storing any

new status. Once status has been stored at the Interrupt Status Pointer

location, no new status will be stored until the host writes the Interrupt
Status Register. New status will be ored with any remaining

118

INTEL Ex.1002.123

INTEL Ex.1002.124

ALA-006E

10

15

20

25

08 —

0c —

10 ~

uncleared status (as defined by the contents of the returned status)

and stored again at the Interrupt Status Pointer location. Bits are

as follows:

Bit 31 — CC —- Command Complete;

Bit 30 — ERR — Error;

Bit29 — Transmit Processor Halted;

Bit28 - Receive Processor Halted; and

Bit27 — Utility Processor Halted.

Interrupt Mask — Written by the host. Interrupts are masked for each

of the bits in the interrupt status when the samebit in the mask
register is set. When the Interrupt Mask register 1s written and as

a result a'status bit is unmasked, an interrupt is generated. Also,

whenthe Interrupt Status Register is written, enabling new status
to be stored, when it is stored if a bit is stored that is not masked

by the Interrupt Mask, an interrupt is generated.

CommandPointer — Points to command to be executed. Storing

this pointer initiates command decode and execution.

Data Pointer — Points to the data buffer. This is used for both read and write data,

determined by the command function.

- DEBUG INTERFACE.

In order to provide a mechanism to debug the microcode running on the microprocessor

sequencers, a debug process has been defined which will run on the utility sequencer. This

processorwill interface with a control program on the host processor over PCI.

PCI INTERFACE.

This interface is defined in the combination of the Utility Processor and the Host

Interface Strategy sections, above.

119

INTEL Ex.1002.124

INTEL Ex.1002.125

ALA-006E

10

15

20

25

30

COMMAND FORMAT.

Thefirst byte of the command, the commandbyte, defines the structure of the remainder

of the command.

COMMANDBYTE.

Thefirst five bits of the command byte are the commanditself. The next bit is used to

specify an alternate processor, and the last two bits specify which processors are intended for

the command.

PROCESSORBITS.

00 — Any Processor;

01 — Transmit Processor;

10 — Receive Processor; and

11 — Utility Processor.

ALTERNATE PROCESSOR.

This bit defines which processor should handle debug processingif the utility

processoris defined as the processor in debug.

0 — Transmit Processor; and

1 — Receive Processor.

SINGLE BYTE COMMANDS.

00 — Halt - This command asynchronously halts the processor.

08 — Run - This commandstarts the processor.

10 — Step - This commandsteps the processor.

EIGHT BYTE COMMANDS.

18 — Break

0 1 2-3 4-7

Command Reserved Count Address

120

INTEL Ex.1002.125

INTEL Ex.1002.126

yang,as whaha yeyfoo ad gt Wu

ALA-006E

This commandsets a stop at the specified address. A count of 1 causes the specified

_ processorto halt the first time it executes the instruction. A count of 2 or more causes the

processorto halt after that number of executions. Theprocessoris halted just before exccuting

the instruction. A count of 0 does not halt the processor, but causes a syncsignal to be

‘5 generated. Ifa second processoris set to the same break address, the count data from thefirst
break request is used, and each time either processor executes the instruction the countis

decremented.

20 — Reset Break

10 0 1-3 4—7

Command Reserved Address

This commandresets a previously set break point at the specified address. Reset break

fully resets that address. Ifmultiple processors wereset to that break point, all will be reset.

15

28 — Dump

07 1 2-3 4-7

. Command Descriptor Count Address

20 . This commandtransfers to the host the contents of the descriptor. For descriptors

larger than four bytes, a count, in four byte increments is specified. For descriptors utilizing

an address the addressfield is specified.

DESCRIPTOR.

25 00-— Register - This descriptor uses both count and addressfields. Both fields are

four bytc based (a count of | transfers four bytes). .

01— Sram - This descriptor uses both count and addressfields. Count is in four byte

blocks. Addressis in bytes, but if it is not four byte aligned, it is forced to the

lower four byte aligned address.

30 02— DRAM- This descriptor uses both count and address fields. Count is in four

byte blocks. Address is in bytes, butif it is not four byte aligned,it is forced to

. the lower four byte aligned address.
‘ 121

INTEL Ex.1002.126

INTEL Ex.1002.127

ALA-006E

10

15

20

25

30

03— Cstore - This descriptor uses both count and address fields. Count is in four

byte blocks. Addressis in bytes, butif it is not four byte aligned,it is forced to

the lower four byte aligned address.

Stand-alone descriptors: The following descriptors do not use either the count or address

fields. They transfer the contents of the referenced register.

04— CPU_STATUS;

O5-— PC;

06-— ADDR_REGA;

07— ADDR_REGB;

08— RAM BASE;

09-— FILEBASE;

OA— INSTR_REGL;

0B- INSTRREGH;

oC — MACDATA;

0OD-— DMA_EVENT;

OE— MISC_EVENT;

OF— QINRDY;

10— QOUT_RDY;

11— LOCK STATUS;

12— STACK- This returns 12 bytes; and

13— SENSEREG.

This register contains four bytes of data. If error status is posted for a command,if the

next commandthatis issued readsthis register, a code describing the error in more detail may

’ be obtained. If any commandother than a dumpofthis register is issued after errorstatus,

sense information will be reset.

30 — Load

0 1 2-3 4-7

Command Descriptor Count Address

122

INTEL Ex.1002.127

INTEL Ex.1002.128

ALA-006E

15

20

25

30

This commandtransfers from the host the contents of the descriptor. For descriptors

larger than four bytes, a count, in four byte increments is specified. For descriptors utilizing

an address the addressfield is specified.

DESCRIPTOR.

, 00-— Register - This descriptor uses both count and addressfields. Both fields are

four byle based.

01-— Sram - This descriptor uses both count and address fields. Countis in four byte
blocks. Addressis in bytes, but if it is not four byte aligned, it is forced to the

lower four byte aligned address.

02— DRAM-This descriptor uses both count and address fields. Count is in four

byte blocks. Addressis in bytes, but ifit is not four byte aligned, it is forced to

the lower four byte aligned address.

03-— Cstore- This descriptor uses both count and addressfields. Count is in four

byte blocks. Addressis in bytes, but if it is not four byte aligned, it is forced to

the lower four byte aligned address. This applies to WCSonly.

| Stand-alone descriptors: The foliowing descriptors do not use either the count or address
ficids. They transfer the contents of the referenced register.

04— ADDRREGA;

05— ADDR_REGB;

06— RAMBASE;

07— FILEBASE;

08— MACDATA;

09— QINRDY;

OA- QOUT_RDY;

0B— DBG_ADDR;and

38— MAP.

This commandallowsan instruction in ROMto be replaced by an instruction in WCS.

The new instruction will be located in the Host buffer. It will be stored in the first eight bytes

of the buffer, with the high bits unused. ‘lo reset a mapped out instruction, mapit to location

00.

123

INTEL Ex.1002.128

INTEL Ex.1002.129

stwee Sy pte AaWP ow A SOP

ALA-006E

0 1-3 4-7

Command Address to Address to

Map To Map Out

5

10

15

20

25

30

HARDWARE SPECIFICATION.

FEATURES:

1) PERIPHERAL COMPONENT INTERCONNECT(PCI) INTERFACE.

a) Universal PCI interface supports both 5.0V and 3.3V signaling environments;

b) Supports both 32-bit and 64 bit PCI interface;

c) Supports PCI clock frequencies from 15MHz to 66MHz;

d) High performance bus mastering architecture;

e) Host memory based communications reduce register accesses;

f) Host memory basedinterrupt status word reduces register reads;

g) Plug and Play compatible;

h) PCI specification revision 2.1 compliant;

i) PCI bursts up to 512 bytes;

j) Supports cacheline operations up to 128 bytes;

k) Both big-endian andlittle-endian byte alignments supported; and

1) Supports Expansion ROM.

2) NETWORK INTERFACE.

a) Four internal 802.3 and ethernet compliant Macs;’

- b) Media IndependentInterface (MII) supports external PHYs;

c) 10BASE-T, 100BASE-TX/FX and 100BASE-T4 supported;
d) Full and half-duplex modes supported;

e) Automatic PHYstatus polling notifics system of status change;

f) Provides SNMPstatistics counters; .
g) Supports broadcast and multicast packets;

h) Provides.promiscuous mode for network monitoring or multiple unicast address

detection;

i) Supports “huge packets” up to 32KB;

j) Mac-laycr loop-back test mode; and
124

INTEL Ex.1002.129

INTEL Ex.1002.130

ALA-006E

10

15

20.

25

30

3)

k) Supports auto-negotiating Phys.

MEMORYINTERFACE.

a) External DRAM buffering of transmit and receive packets;

b) Buffering configurable as 4MB, 8MB, 16MBor 32MB;
c) 32-bit interface supports throughput of 224MB/s; .
d) Supports external FLASH ROMupto 4 MB,for diskless boot applications; and

e) Supports external serial EEPROM for custom configuration and Mac addresses.

4) PROTOCOL PROCESSOR.

a) High speed, custom, 32-bit processor cxecutes 66 million instructions per second;
b) Processes IP, TCP and NETBIOSprotocols; ,

c) Supports up to 256 resident TCP/IP contexts; and

d) Writable control store (WCS)allowsfield updates for feature enhancements.

5) POWER.

a) 3.3V chip operation; and

b) PCI controlled 5.0V/3.3V I/O cell operation.

6) PACKAGING.

a) 272-pin plastic ball grid array;

b) 91 PCI signals;

c) 68 MIIsignals;

d) 58 external memory signals;

e) 1 clock signal;

f) 54 signals split between power and ground; and

g) 272 total pins. |

GENERAL DESCRIPTION.

The microprocessor (sec Fig. 46) is a 32-bit, full-duplex, four channel, 10/100-Megabit

per second (Mbps), Intelligent Network Interface Controller (INIC), designed to provide high-

speed protocol processing for server applications. It combines the functions of a standard
125

INTEL Ex.1002.130

INTEL Ex.1002.131

WY A asvy
Soh ou Boe GD

ALA-006E

10

15 -

20

25

30

networkinterface controller and a protocol processor within a single chip. Although designed

specifically for server applications, the microprocessor can be used by PCs, workstations and

routers or anywhere that TCP/IP protocols are being utilized.

When combined with four 802.3/MII compliant Phys and Synchronous DRAM

(SDRAM), the INIC comprises four complete ethernet nodes. It contains four 802.3/ethernet

compliant Macs, a PCI Bus Interface Unit (BIU), a memory controller, transmit fifos, receive

fifos and a custom TCP/IP/NETBIOSprotocol processor. The INIC supports 10Base-T ,

~ 100Base-TX, 100Base-FX and 100Base-T4 via the MII interface attachment of appropriate

_ Phys.

The INIC Macsprovidestatistical information that may be used for SNMP. The Macs

operate in promiscuous mode allowing the INIC to function as a network monitor, receive

broadcast and multicast packets and implement multiple Mac addresses for each node.

Any 802.3/MII compliant PHY can be utilized, allowing the INIC to support 10BASE-
T, lJOBASE-T2, 1OOBASE-TX, 100Base-FX and 1O0BASE-T4 as well as future interface
standards. PHY identification andinitialization is accomplished through host driver

initialization routines. PHY status registers can be polled continuously by the INIC and

detected PHY status changes reported to the host driver. The Mac can be configured to support

a maximum framesize of 1518 bytes or 32768 bytes.

The 64-bit, multiplexed BIU provides a direct interface to the PCI bus for both slave
and master functions. The INIC is capable of operating in either a 64-bit or 32-bit PCT

environment, while supporting 64-bit addressing in either configuration. PCI bus frequencies

up to 66MHz are supported yielding instantaneous bustransfer rates of 533MB/s. Both 5.0V
and 3.3V signaling environments can be utilized by the INIC. Configurable cache-line size up
to 256B will accommodate future architectures, and Expansion ROM/Flash support allows for

diskless system booting. Non-PC applications are supported via programmable big andlittle
endian modes. Host based communication has been utilized to provide the best system

performancepossible.

The INIC supports Plug-N-Play auto-configuration through the PCI configuration

space. External pull-up and pull-downresistors, on the memory I/O pins, allow selection of

various features during chip reset. Support of an external eeprom allowsfor local storage of
configuration information such as Macaddresses.

126

INTEL Ex.1002.131

INTEL Ex.1002.132

ALA-006E

15

20

25

30

External SDRAMprovides frame buffering, which is configurable as 4MB, 8MB, 16MB
or 32MB using the appropriate SIMMs.Useof -10 speed grades yields an external buffer

bandwidth of 224MB/s. The buffer provides temporary storage ofboth incoming and outgoing
frames. The protocol processor accesses the frames within the buffer in orderto implement
TCP/IP and NETBIOS. Incoming framesare processed, assembled then transferred to host

memory underthe control of the protocol processor. For transmit, data is moved from host

memory to buffers where various headers are created before being transmitted out via the Mac.

~ 1) CORES/CELLS.

a) LSI Logic Ethernet-110 Core, 100Base and 10Base Mac with MII interface;
b) LSI Logic single port SRAM,triple port SRAM and ROM available;
c) LSI Logic PCI 66MHz, 5V compatibleI/O cell; and

d) LSI Logic PLL.

2) DIE SIZE / PIN COUNT.

LSI Logic G10 process. Fig. 47 showsthe area on the die of each module.

3) DATAPATH BANDWIDTH(SeeFig. 48).

4) CPU BANDWIDTH(SeeFig. 49).

5) PERFORMANCE FEATURES.

a) 512 registers improve performance through reduced scratch ram accesses and reduced
instructions;

b) Register windowing eliminates context-switching overhead;

c) Separate instruction and data paths eliminate memory contention;

d) Totally resident control store eliminates stalling during instruction fetch;

€) Multiple logical processors eliminate context switching and improvereal-time
response;

f) Pipelined architecture increases operating frequency;

g) Shared register and scratch ram improve inter-processor communication;

h) Fly-by state-Machineassists address compare and checksum calculation;
i) TCP/IP-context caching reduces latency;

j) Hardware implemented queues reduce CPU overhead and latency;
k) Horizontal microcode greatly improvesinstruction efficiency;

1) Automatic frame DMAand status between Mac and DRAM buffer; and
127

INTEL Ex.1002.132

INTEL Ex.1002.133

“SR MS ae et ip th ete wryadh. Bol Ht WP CP be ao Bo
QPS ay La oy
POP Basen OM Manel Hees

AI.A-006E

m) Deterministic architecture coupled with context switching eliminates processorstalls.

128

INTEL Ex.1002.133

INTEL Ex.1002.134

aS Be Le ty
wate Balt Baste Bad? Bedt AL

ALA-006E

15

20

25

30

PROCESSOR.

The processor is a convenient meansto provide a programmable state-machine which

is capable ofprocessing incoming frames, processing host commands,directing network

traffic and directing PCI bus traffic. Three processors are implemented using shared hardware

in a three-level pipelined architecture which launches and completes a single instruction for

every clock cycle. The instructions are executed in three distinct phases corresponding to cach
of the pipeline stages where each phaseis responsiblefor a different function.

Thefirst instruction phase writes the instruction results of the last instruction to the

destination operand, modifies the program counter (Pc), selects the address source for the

instruction to fetch, then fetches the instruction from the control store. The fetched instruction

is then stored in the instruction register at the end of the clock cycle.

The processor instructionsreside in the on-chip control-store, whichis implemented as

a mixture of ROM and SRAM. The ROM contains 1K instructions starting at address 0x0000

and aliases each 0x0400 locations throughoutthe first Ox8000 of instruction space. The SRAM
(WCS) will hold up to 0x2000 instructions starting at address 0x8000 and aliasing each
0x2000 locations throughout the last 0x8000 ofinstruction space. The ROM and SRAMare

both 49-bits wide accounting for bits [48:0] of the instruction microword. A separate mapping
ram provides bits [55:49] of the microword (MapAddr) to allow replacement of faulty ROM
based instructions. The mapping ram hasa configuration of 128x7 whichis insufficientto

allow a separate map address for cach of the 1K ROMlocations. To allow re-mapping of the

entire 1K ROMspace, the map ram addresslines are connectedto the addressbits Fetch[9:3].
The result is that the ROM is re-mappedin blocks of 8 contiguous locations.

The secondinstruction phase decodesthe instruction which wasstored in the

instruction register.It is at this point that the map address is checked for a non-zero value

which will cause the decoder to force a Jmpinstruction to the map address. If a non-zero value

is detected then the decoder selects the source operands for the Alu operation based on the

values of the OpdASel, OpdBSel and AluOpficlds. These operandsare then stored in the
decode register at the end of the clock cycle. Operands may originate from File, SRAM,or

‘flip-flop based registers. The secondinstruction phase is also where theresults of the previous
instruction are written to the SRAM.

129

INTEL Ex.1002.134

INTEL Ex.1002.135

ALA-006E

20

25

30

Thethird instruction phase is when the actual Alu operation is performed,the test

condition is selected and the Stack push and pop are implemented. Results of the Alu
operation are stored in the results register at the endofthe clock cycle.

Fig. 50 is a block diagram of the CPU. Fig. 50 shows the hardware functions

associated with each ofthe instruction phases. Note that various functions have becn
distributed across the three phases of the instruction execution in order to minimize the

combinatorial delays within any given phase.

INSTRUCTION SET.

The micro-instructions are divided into six types according to the program control

directive. The micro-instruction is further divided into sub-fields for which the definitions are

dependent uponthe instruction type. The six instruction types are listed in Fig. 51.

All instructions (see Fig. 51) include the Alu operation (AluOp), operand “A”select

. (OpdASel), operand “B” select (OpdBSel) andLiteral fields. Other field usage depends upon
the instruction type.

The “jump condition code” (Jcc) instruction causes the program counter to be altered if

the condition selected by the “test select” (TstSel) field is asserted. The new program counter

(Pc) value is loaded from either the Literal field or the AJuOut as described in the following

section and the Literal field may be used as a source for the Alu or the ram address if the new

Pc value is sourced by the Alu. .

The “jump” (Jmp) instruction causes the program counterto be altered unconditionally.
The new program counter (Pc) value is loaded from either the Literal field or the AluOutas .
described in the following section. The format allowsinstruction bits 23:16 to be used to

performaflag operation andthe Literal ficld may be used as a source for the Alu or the ram

address if the new Pc value is sourced by the Alu.

The “jump subroutine” (Isr) instruction causes the program counter to be altered

unconditionally. The new program counter (Pc) value is loaded from either the Literal field or
the AluOut as described in the following section. The old program counter valueis stored on

the top location of the Pc-Stack which is implemented as a LIFO memory. The formatallows

instruction bits 23:16 to be used to performa flag operation andthe Literal field may be used

as a source for the Alu or the ram address if the new Pc value is sourced by the Alu.

130

INTEL Ex.1002.135

INTEL Ex.1002.136

ALA-006E

10

15

20,

25

30

The “Nxt” (Nxt) instruction causes the program counter to increment. The format

allowsinstruction bits 23:16 to be used to perform a flag operation and the Literal field may be

used as a source for the Alu or the ram address.

The “return from subroutine” (Rts) instruction is a special form of the Nxt instruction
in whichthe “flag operation” (FlgSel) field is set to a value of Ohff. The current Pc value is
replaced with the last value stored in the stack. The Literal field may be used as a source for

the Alu or the ram address.

The Mapinstruction is provided to allow replacement of instructions which have been

stored in ROM andis implemented any time the “map cnable” (MapEn)bit has been set and

the content of the “map address” (MapAddr)field is non-zero. Theinstruction decoder forces a
jumpinstruction with the Alu operation and destination fields set to pass the MapAddrfield to

the program control block.

The program control is determined by a combination of PgmCtrl, DstOpd, FlgSel and

TstScl. The behavior of the program control is defined with the "C-like" description in Fig. 52.
Figs. 53-61 show ALU operations, selected operands, selected tests, and flag operations.

SRAM CONTROL SEQUENCER(SramCtrl).

SRAMisthe nexus for data movementwithin the INIC. A hierarchy of sequencers,

working in concert, accomplish the movement ofdata between DRAM, SRAM,CPU,ethernet
and the Pci bus. Slave sequencers, provided with stimulus from master sequencers, request

data movementoperations by way of the SRAM,Pci bus, DRAMandFlash. Theslave

sequencersprioritize, service and acknowledge the requests.

The data flow block diagram of Fig. 62 shows all of the master and slave sequencers of

the INIC product. Request information suchas r/w, address, size, endian and alignmentare

represented by each requestline. Acknowledge information to master sequencers include only

the size of the transfer being acknowledged.

The block diagram of Fig. 63 illustrates how data movementis accomplishedfor a Pci

slave write to DRAM.Notethat the Psi (Pci slave in) module functions as both a master
sequencer. Psi sends a write request to the SramCtrl module. Psi requests Xwr to move data

from SRAM to DRAM.Xwrsubsequently sends a read request to the SramCtrl module then

writes the data to the DRAMvia the Xctrl module. As each piece of data is moved from the

SRAM to Xwr, Xwr sends an acknowledge to the Psi module.
131

INTEL Ex.1002.136

INTEL Ex.1002.137

ALA-006E

10

15

20

25°

30

The SRAMcontrol sequencer services requests to store to, or retrieve data from an _

SRAMorganized as 1024 locations by 128 bits (16KB). The sequencer operates at a frequency

of 133MHz,allowing both a CPU access and a DMAaccessto occur during a standard

66MHz CPUcycle. One 133MHzcycle is reserved for CPU accesses during each 66MHz

cycle while the remaining 133MHz cycle is reserved for DMAaccessesonaprioritized basis.

The block diagram of Fig. 64 showsthe major functions of the SRAM control

sequencer. A-slave sequencerbegins by asserting a request along with r/w, ram address,

endian, data path size, data path alignment and request size. SramCtrl prioritizes the requests.

The request parameters are then selected by a multiplexer which feeds the parameters to the

- SRAMviaa register. The requestor provides the SRAM address which when coupled with the

other parameters controls the input and output alignment. SRAM outputs are fed to the output

aligner via a register. Requests are acknowledgedin parallel with the returned data.
Fig. 65 is a timing diagram depicting two ram accesses during a single 66MHz clock

cycle.

EXTERNAL MEMORY CONTROL(Xctrl).

Xcetrl (See Fig. 66) providesthe facility whereby Xwr, Xrd, Dcfg and Eectrl access

external Flash and DRAM.Xctrl includesan arbiter, i/o registers, data multiplexers, address

multiplexers and control multiplexers. Ownership of the external memory interace is requested

by each block and granted to each of the requesters by the arbiter function. Once ownership

has been granted the multiplexers select the address, data and control signals from owner,

allowing access to external memory.

EXTERNAL MEMORY READ SEQUENCER(Xrd).

The Xrd sequenceracts only as a slave sequencer. Servicing requests issued by master

sequencers, the Xrd sequencer moves data from external SDRAMorflash to the SRAM,via

the Xctrl module, in blocks of 32 bytes or less. The nature of the SDRAM requires fixed burst

sizes for each ofit's internal banks with ras precharge intervals between each access. By

selecting a burst size of 32 bytes for SDRAM readsand interleaving bank accesses on a 16

byte boundary, we can ensure that the ras precharge interval for the first bank is satisfied

before burst completion for the second bank,allowingusto re-instruct the first bank and

continue with uninterrupted DRAM access. SDRAMsrequire a consistent burst size be
132

/

INTEL Ex.1002.137

INTEL Ex.1002.138

ALA-006E

10

15

20

25

30

utilized each and every time the SDRAMisaccessed. For this reason, if an SDRAM access

does not begin or end on a 32 byte boundary, SDRAM bandwidth will be reduced dueto less

than 32 bytes of data being transferred during the burst cycle.

Fig. 67 depicts the major functional blocks of the Xrd external memory read sequencer.

_ Thefirst step in servicing a request to move data from SDRAM to SRAMisthe prioritization
of the master sequencer requests. Next the Xrd sequencertakes a snapshot of the DRAM read

address and applies configuration information to determinethe correct bank, row and column

addressto apply. Oncesufficient data has been read, the Xrd scquencerissues a write request
to the SramCtrl sequencer which in turn sends an acknowledgeto the Xrd sequencer. The Xrd
sequencerpasses the acknowledge alongto the level two master with a size codc indicating

how much data was written during the SRAM cycle allowing the update of pointers and
counters. The DRAM read and SRAM write cycles repeat until the original burst request has

been completed at which point the Xrd sequencer prioritizes any remaining requests in
preparation for the next burst cycle.

Contiguous DRAMburstcycles are not guaranteed to the Xrd sequenceras an

algorithm is implemented which ensures highestpriority to refresh cycles followed by flash

accesses, DRAM writes then DRAMreads.

Fig. 68 is a timing diagram illustrating how data is read from SDRAM.The DRAMhas

been configured for a burst of four with a latency of two clock cycles. BankAisfirst
selected/activated followed by a read commandtwoclock cycles later. The bank

select/activate for bank B is next issued as read data begins returning two clocksafter the read

command wasissued to bank A. Two clock cycles before we need to receive data from bank B

weissue the read command. Once all 16 bytes have been received from bank A we begin

receiving data from bank B.

EXTERNAL MEMORY WRITE SEQUENCER (Xwr).

The Xwr sequenceris a slave sequencer. Servicing requests issued by master

sequencers, the Xwr sequencer movesdata from SRAM to the external SDRAM orflash, via
the Xctrl module, in blocks of 32 bytes or less while accumulating a checksum ofthe data

moved. Thenature of the SDRAM requiresfixed burst sizes for cachofit's internal banks with

ras precharge intervals between each access. By selecting a burst size of 32 bytes for SDRAM

writes and interleaving bank accesses on a 16 byte boundary, we can ensurethat the ras
133

INTEL Ex.1002.138

INTEL Ex.1002.139

ALA-006E

15

20

25

30

prechageintervalfor the first bank is satisfied before burst completion for the second bank,
allowingusto re-instruct the first bank and continue with uninterrupted DRAM access.

“SDRAMsrequire a consistent burst size be utilized cach and every time the SDRAM 1s
accessed. For this reason, if an SDRAMaccessdoesnot begin or end on a 32 byte boundary,

SDRAM bandwidth will be reduced due to less than 32 bytes of data being transferred during

the burst cycle.

Fig. 69 depicts the major functional blocks of the Xwr sequencer. Thefirst step in

servicing a request to movedata from SRAM to SDRAMisthe prioritization ofthe level two
master requests. Next the Xwr sequencertakes a Snapshot of the DRAM write address and
applies configuration information to determine the correct DRAM,bank,row and column
address to apply. The Xwr sequencer immediatcly issues a read commandto the SRAM to
whichthe SRAM respondswith both data and an acknowledge. The Xwr sequencer passcs the

acknowledgeto the level two master along with a size code indicating how much data was

read during the SRAM cycle allowing the updateof pointers and counters. Oncesufficient data
has been read from SRAM,the Xwr sequencerissues a write command to the DRAMstarting

the burst cycle and computing a checksumasthe data flys by. The SRAM read cycle repeats

until the original burst request has been completed at which point the Xwr sequencer

prioritizes any remaining requests in preparation for the next burst cycle.
Contiguous DRAM burst cycles are not guaranteed to the Xwr sequenceras an

algorithm is implemented whichensureshighest priority to refresh cycles followed by flash
accesses then DRAM writes.

Fig.70 is a timing diagram illustrating how data is written to SDRAM. The DRAM has
been configured for a burst of four with a latency of two clock cycles. BankA isfirst
selected/activated followed by a write commandtwoclock cycles later. The bank

select/activate for bank B is next issued in preparation for issuing the second write command.

As soon asthefirst 16 byte burst to bank A completes we issue the write command for bank B

and begin supplying data.

PCI MASTER-OUT SEQUENCER(Pmo).

The Pmo sequencer (See Fig. 71) acts only as a slave sequencer. Servicing requests

issued by master sequencers, the Pmo sequencer movesdata from an SRAM based fifo to a Pci
target, via the PeiMstrIO module, in bursts of up to 256 bytes. The nature of the PCI bus

134

INTEL Ex.1002.139

INTEL Ex.1002.140

BAIe
Bud Ban

po a nthe ek tie sty 3
a A BaP aS a Da, Baal

ALA-006E

10

15

20

25

30

dictates the use of the write line commandto ensure optimal system performance. The write

line command requires that the Pmo sequencer be capable of transferring a whole multiple

(1X, 2X, 3X,...) of cache lines of which the size is set through the Pci configuration registers.

To accomplish this end, Pmo will automatically perform partial bursts until it has aligned the

transfers on a cacheline boundary at which timeit will begin usage of the write line command.

The SRAM fifo depth, of 256 bytes, has been chosen in order to allow Pmo to accommodate

cacheline sizes up to 128 bytes. Provided the cache line sizeis less than 128 bytes, Pmo will

perform multiple, contiguous cacheline bursts until it has exhausted the supply of data.
Pmoreceives requests from two separate sources; the DRAM to Pci (D2p) module and

the SRAM to Pei (S2p) module. An operation first begins with prioritization of the requests
where the S2p module is given highest priority. Next, the Pmo module takes a Snapshotof the

SRAMfifo address and uses this to generate read requests for the SramCtrl sequencer. The

Pmo module then proceedsto arbitrate for ownership of the Pci bus via the PciMstrIO module.

Once the Pmo holding registers have sufficient data and Pci bus mastership has been granted,

the Pmo module begins transferring data to the Pci target. For each successful transfer, Pmo

sends an acknowledge and encoded size to the master sequencer, allow it to update it's internal

pointers, counters and status. Once the Pci burst transaction has terminated, Pmo parks on the

Pci bus unless another initiator has requested ownership. Pmo again prioritizes the incoming
requests and repeats the process.

PCI MASTER-OUT SEQUENCER(Pmi).

The Pmi sequencer (See Fig. 72) acts only as a slave sequencer. Servicing requests

issued by master sequencers, the Pmi sequencer moves data from a Pci target to an SRAM

based fifo, via the PciMstrIO module, in bursts of up to 256 bytes. The nature of the PCI bus

dictates the use of the read multiple commandto ensure optimal system performance. Theread

multiple commandrequires that the Pmi sequencer be capable oftransferring a cache line or

more of data. To accomplish this end, Pmi will automatically perform partial cache line bursts

until it has aligned the transfers on a cache line boundary at which timeit will begin usage of

the read multiple command. The SRAMfifo depth, of 256 bytes, has been chosen in order to

allow Pmi to accommodate cacheline sizes up to 128 bytes. Provided the cache line size is

less than 128 bytes, Pmi will perform multiple, contiguous cache line bursts until it has filled

the fifo.

135

INTEL Ex.1002.140

INTEL Ex.1002.141

10

15

20

25

30

- ALA-006E

Pmi reccive requests from two separate sources; the Pci to DRAM (P2d) module and
the Pci to SRAM (P2s) module. An operation first begins with prioritization of the requests

where the P2s moduleis given highest priority. The Pmi module then proceedsto arbitrate for

ownership of the Pci busvia the PeiMstrlO module. Once the Pci bus mastership has been
granted and the Pmi holding registers have sufficient data, the Pmi module beginstransferring

data to the SRAM fifo. For each successful transfer, Pmi sends an acknowledge and encoded
size to the master sequencer, allowing it to update it's internal pointers, counters and status.

Once the Pci burst transaction has terminated, Pmi parks on the Pci bus unless anotherinitiator

has requested ownership. Pmi again prioritizes the incoming requests and repeats the process.

DRAM TO PCI SEQUENCER (D2P).

The D2p sequencer (See Fig. 73) acts is a master sequencer. Servicing channel requests

issued by the CPU, the D2p sequencer manages movementofdata from DRAM to the Pci bus

by issuing requests to both the Xrd sequencer and the Pmo sequencer. Data transfer is
accomplished using an SRAM based fifo through which data is staged.

D2p can receive requests from any of the processor's thirty-two DMA channels. Once a

command request has been detected, D2p fetches a DMA descriptor from an SRAM location

dedicated to the requesting channel which includes the DRAM address, Pci address, Pci endian

and request size. D2p then issues a request to the D2s sequencer causing the SRAMbasedfifo
to fill with DRAM data. Oncethe fifo contains sufficient data for a Pci transaction, D2s issues

a request to Pmo which in turn movesdata from the fifo to a Pci target. The process repeats

until the entire request has been satisfied at which time D2p writes ending status in to the

SRAM DMA descriptor area and sets the channel done bit associated with that channel. D2p

then monitors the DMA channels for additional requests. Fig. 74 is an illustration showing the

major blocks involved in the movement of data from DRAMto Pcitarget.

PCI TO DRAM SEQUENCER(P2d).

The P2d sequencer (See Fig. 75) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU, the P2d sequencer manages movement of data
from Pci bus to DRAM byissuing requests to both the Xwr sequencer and the Pmi sequencer.

Data transfer is accomplished using an SRAM based fifo through which datais staged.

136

INTEL Ex.1002.141

INTEL Ex.1002.142

ALA-006E

10

15

20.

25

30

P2d can receive requests from any ofthe processor's thirty-two DMA channels. Once a

commandrequest has been detected, P2d, operating as a slave sequencer, fetches a DMA
‘descriptor from an SRAMlocation dedicatedto the requesting channel which includesthe
DRAMaddress, Pci address, Pci endian and requestsize. P2d then issues a request to Pmo
which in turn moves data from the Pci target to the SRAM fifo. Next, P2d issues a request to

the Xwr sequencer causing the SRAM basedfifo contents to be written to the DRAM.‘The
process repeats until the entire request has been satisfied at which time P2d writes ending
status in to the SRAM DMAdescriptorarea andsets the channcl done bit associated with that
channel. P2d then monitors the DMA channels for additional requests. Fig. 76 is an illustration
showing the major blocks involved in the movementof data from a Pci target to DRAM.

SRAM TO PCI SEQUENCER(S2p).

The S2p sequencer (See Fig. 77) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU,the $2p sequencer manages movement of data
from SRAMtothe Pcibus by issuing requests to the Pmo sequencer

S2p can receive requests from any of the processor's thirty-two DMAchannels. Once a
commandrequest has been detected, S2p, operating as a slave sequencer; fetches a DMA
descriptor from an SRAMlocation dedicated to the requesting channel which includes the
SRAM address, Pci address, Pci endian and request size. S2p then issues a request to Pmo
which in turn moves data from the SRAM to a Pci target. The process repeats until the entire
request has been satisfied at which time S2p writes endingstatus in to the SRAM DMA
descriptor area andsets the channel donebit associated with that channel. S2p then monitors
the DMA channels for additional requests. Fig. 78 is an illustration showing the major blocks

involved in the movementof data from SRAM to Pcitarget.

PCI TO SRAM SEQUENCER(P2s).

The P2s sequencer (See Fig. 79) acts as both a slave sequencer and a master sequencer.
Servicing channel requests issued by the CPU, the P2s sequencer manages movement of data
from Pci bus to SRAM byissuing requests to the Pmi sequencer.

P2s can receive requests from any of the processor's thirty-two DMAchannels. Once a
command request has been detected, P2s, operating as a slave sequencer, fetches a DMA
descriptor from an SRAMlocation dedicated to the requesting channel which includesthe

137

INTEL Ex.1002.142

INTEL Ex.1002.143

ALA-006E

10

15

20

25

30

SRAM address, Pci address, Pci endian and request size. P2s then issues a request to Pmo
whichin turn moves data from the Pci target to the SRAM.Theprocess repeats until the entire

requesthas been satisfied at which time P2s writes ending status in to the DMA descriptor area
. of SRAMandsets the channel donebit associated with that channel. P2s then monitors the

DMAchannels for additional requests. Fig. 80 is anillustration showing the major blocks
involved in the movementof data from a Pci target to DRAM.

DRAM TO SRAM SEQUENCER(D2s).

The D2s sequencer(See Fig. 81) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU, the D2s sequencer manages movement of data
from DRAM to SRAMbyissuing requests to the Xrd sequencer.

D2s can receive requests from any of the processor's thirty-two.DMAchannels. Once a
commandrequest has been detected, D2s, operating as a slave sequencer, fetches a DMA
descriptor from an SRAM location dedicated to the requesting channel which includesthe
DRAMaddress, SRAM address and request size. D2s then issues a request to the Xrd

sequencer causing the transfer of data to the SRAM. The process repeats until the entire
. Tequest has been satisfied at which time D2s writes ending status in to the SRAM DMA

. descriptor area and sets the channel donebit associated with that channel. D2s then monitors
the DMA channelsfor additional requests. Fig. 82 is an illustration showing the major blocks
involved in the movementof data from DRAM to SRAM.

SRAM TO DRAM SEQUENCER(82d).

The $2d sequencer(Sce Fig. 83) acts as both a slave sequencer and a master sequencer.

Servicing channel requests issued by the CPU, the S2d sequencer manages movement of data
from SRAM to DRAMbyissuing requests to the Xwr sequencer. :

S2d can receive requests from anyofthe processor's thirty-two DMA channels. Once a

commandrequest has been detected, S2d, operating as a slave sequencer, fetches a DMA
descriptor from an SRAM location dedicated to the requesting channel which includesthe
DRAMaddress, SRAM address, checksum resct and request size. S2d then issues a request to

the Xwr sequencer causingthe transfer of data to the DRAM. The process repeats until the
entire request has beensatisfied at which time S2d writes endingstatus in to the SRAM DMA
descriptor area and scts the channel donebit associated with that channel. S2d then monitors

138

INTEL Ex.1002.143

INTEL Ex.1002.144

SB iatoe apry on ny City ona gute came,wal. GaP Ral Bat Bak bal WP eo
a Sth iy

Heol ok Thal UP thesRoea

ALA-006E

10

15

20

25

30

the DMA channels for additional requests. Fig. 84 is an illustration showing the major blocks
involved in the movement of data from SRAM to DRAM.

PCI SLAVE INPUT SEQUENCER(Psi).

The Psi sequencer (See Fig. 85) acts.as both a slave sequencer and a master sequencer.

Servicing requests issued by a Pci master, the Psi sequencer manages movementof data from

Pci bus to SRAM and Pci bus to DRAM via SRAMbyissuing requests to the SramCtr] and

Xwr sequencers.

Psi manages writc requests to configuration spacc, cxpansion rom, DRAM, SRAM and

memory mapped registers. Psi separates these Pci bus operations in to two categories with

different action taken for each. DRAM accessesresult in Psi generating write request to an

SRAM buffer followed with a write request to the Xwr sequencer. Subsequent write or read

DRAMoperationsare retry terminated until the buffer has been emptied. An event notification

is set for the processor allowing message passing to occur through DRAM space.

All other Pci write transactions result in Psi posting the write information including Pci

address, Pci byte marks and Pci data to a reserved location in SRAM,then setting an event flag

which the event processor monitors. Subsequent writes or reads of configuration, expansion

rom, SRAMorregisters are terminated with retry until the processor clears the event flag. This

allows the INIC pipelining levels to a minimum for the posted write and give the processor

amplc time to modify data for subsequent Pci rcad operations. .

Fig. 85 depicts the sequence of events when Psi is the target of a Pci write operation.

Note that events 4 through 7 occur only whenthe write operation targets the DRAM.

PC] SLAVE OUTPUT SEQUENCER(Pso).

The Pso sequencer (See Fig. 86) acts as both a slave sequencer and a master sequencer,

Servicing requests issued by a Pci master, the Pso sequencer manages movementofdata to Pci

bus from SRAMandto Pci bus from DRAM via SRAMbyissuing requests to the SramCtrl

and Xrd sequencers.

Pso managesread requests to configuration space, expansion rom, DRAM, SRAM and

memory mapped registers. Pso separates these Pci bus operations in to two categories with

different action taken for each. DRAM accessesresult in Pso generating read request to the

' Xrd sequencer followed with a read request to SRAM buffer. Subsequent write or read DRAM
139

INTEL Ex.1002.144

INTEL Ex.1002.145

ALA-006E

15

20

25

operationsare retry terminated until the buffer has been emptied.

All other Pci read transactions result in Pso posting the read request information

including Pci address and Pci byte marks to a reserved location in SRAM,thensetting an
event flag which the event processor monitors. Subscquent writes or reads of configuration,

expansion rom, SRAMorregisters are terminated with retry until the processor clears the

event flag. This allows the INIC to use a microcoded response mechanism to return data for

the request. The processor decodes the request information, formulates or fetches the requested.

data and stores it in SRAM then clears the event flag allowing Pso to fetch the data and return

it on the Pci bus.

Fig. 78 depicts the sequence of events when Psois the target of a Pci read operation.

FRAME RECEIVE SEQUENCER(RevX).

The receive sequencer (Sec Fig. 87) (RevSeq) analyzes and manages incoming packets,

stores the result in DRAM buffers, then notifies the processor through the receive queue

(RevQ) mechanism. The process begins whena buffer descriptoris available at the output of

the FreeQ. RevSeq issues a request to the Qmg which responds by supplying the buffer

descriptor to RevSeq. RevSeq then waits for a receive packet. The Mac, network, transport and

session information is analyzed as each byte is received and stored in the assembly register

(AssyReg). When four bytes of information is available, RcvSeq requests a write of the data to

the SRAM. Whensufficient data has been stored in the SRAM based receive fifo, a DRAM

write request is issued to Xwr. The process continues until the entire packet has been received

at which point RevSeq stores the results of the packet analysis in the beginning of the DRAM

buffer. Once the buffer and status have both been stored, RcvSeq issues a write-queue request

to Qmg. Qmgrespondsby storing a buffer descriptor and a status vector provided by RcvSeq.

The process then repeats. If RevSeq detects the arrival of a packet before a free buffer is

available, it ignores the packet and sets the FrameLost status bit for the next received packet.

Fig. 88 depicts the sequence of events for successful reception of a packet followed by

a definition of the receive buffer and the buffer descriptor as stored on the RcevQ. Fig. 89

shows the Receive Buffer Descriptor. Figs. 90-92 show the Receive Buffer Format.

140

INTEL Ex.1002.145

INTEL Ex.1002.146

ALA-006E

10

15

20

25

FRAME TRANSMIT SEQUENCER(XmtX).

Thetransmit sequencer (See Fig. 93) (XmtSeq) analyzes and manages outgoing

packets, using buffer descriptors retrieved from the transmit queue (XmtQ) then storing the
descriptor for the freed buffer in the free buffer queue (FreeQ). The process begins when a
buffer descriptoris available at the output of the XmtQ. XmtSeqissues a request to the Qmg

which respondsby supplying the buffer descriptor to XmtSeq. XmtSeq then issues a read
request to the Xrd sequencer. Next, XmtSeq issues a read request to SramCtrl then instructs
the Mac to begin frame transmission. Oncethe frame transmission has completed, XmtSeq
stores the buffer descriptor on the FreeQ thereby recycling the buffer.

Fig. 94 depicts the sequence of events for successful transmission of a packet followed
by a definition of the receive buffer and the buffer descriptor as stored on the XmtQ. Fig. 95

~ shows the Transmit Buffer Descriptor. Fig. 96 shows the Transmit Buffer Format. Fig. 97

shows the Transmit Status Vector.

QUEUE MANAGER(Omg).

The INIC includes special hardware assist for the implementation of message and

pointer queues. The hardware assist is called the queue manager (See Fig. 98) (Qmg) and
manages the movement of queue entries between CPU and SRAM,between DMA sequenccrs
and SRAM aswell as between SRAM and DRAM.Queues comprise three distinct entities; the

queue head (QH4d), the queuetail (QTI) and the queue body (QBdy). QHdresides in 64 bytes
of scratch ram and provides the area to which entries will be written (pushed). QT]resides in

64 bytes of scratch ram and contains queue locations from which entries will be read (popped).
QBdyresides in DRAM andcontainslocations for expansion of the queuein orderto
minimize thc SRAM space requirements. The QBdy size depends upon the queue being
accessed andthe initialization parameters presented during queue initialization.

141

INTEL Ex.1002.146

INTEL Ex.1002.147

- 10

“15

20

25

30

~ ALA-006E

Qmgaccepts operations from both CPU and DMAsources(See Fig. 99). Executing

these operations at a frequency of 133MHz, Qmgreserves even cycles for DMA requests and

reserves odd cycles for CPU requests. Valid CPU operations include initialize queue (InitQ),

write queue (WrQ)and read queue (RdQ). Valid DMA requests include read body (RdBdy)

and write body (WrBdy). Qmg working in unison with Q2d and D2q gencrate requests to the

Xwr and Xtd sequencers to control the movement of data between the QHd, QT] and QBdy.
Fig. 98 showsthe major functions of Qmg. The arbiter selects the next operation to be

performed. The dual-ported SRAM holds the queue variables HdWrAddr, HdRdAddr,

TlWrAddr, TIRdAddr, BdyWrAddr, BdyRdAddr and QSz. Qmg accepts an operation request,

fetches the queue variables from the queue ram (Qram), modifies the variables based on the
. current state and the requested operation then updates the variables and issues a read or write

request to the SRAM controller. The SRAM controller services the requests by writing the tail

or reading the head and returning an acknowledge.

~ DMA OPERATIONS.

DMAopcrations are accomplished through a combination of thirtytwo DMA channels

(DmaCh) and seven DMA sequencers (DmaSeq). Each DMA channel provides a mechanism

whereby a CPU can issue a commandtoany of the seven DMA sequencers. Whereas the

DMAchannels are multi-purpose, the DMA sequencers they commandare single purpose as

shownin Fig. 100.

The processors manage DMAin the following way. The processor writes a DMA

descriptor to an SRAM location reserved for the DMA channel. The format of the DMA

~ descriptor is dependent upon the targeted DMA sequencer. The processor then writes the

DMAsequencer number to the channel] commandregister.

Each of the DMA sequencerspolls all thirtytwo DMA channels in search of commands

to execute. Once a command request has been detected, the DMA sequencer fetches a DMA

descriptor from a fixed location in SRAM. The SRAMlocationis fixed and is determined by

the DMA channel number. The DMAsequencer loads the DMAdescriptorin to it's own

registers, executes the command, then overwrites the DMA descriptor with endingstatus.

Once the commandhashalted, due to completion or error, and the ending status has been

written, the DMA sequencersets the done bit for the current DMA channel.

142

INTEL Ex.1002.147

INTEL Ex.1002.148

ALA-006E

10

15

20

25

The donebit appears in a DMA event register which the CPU can examine. The CPU

fetches ending status from SRAM,then clears the done bit by writing zeroes to the channel

command (ChCmd)register. The channel is now ready to accept another command.

The format of the channel commandregister is as shownin Fig. 101. The format of the

P2d or P2s descriptor is as shown in Fig. 102. The format of the S2p or D2p descriptor is as

shownin Fig. 103. The format of the S2d, D2d or D2s descriptor is as shownin Fig. 104. The

format of the endingstatus of all channels is as shownin Fig. 105. The format of the ChEvnt

register is as shownin Fig. 106. Fig. 107 is a block diagram of MAC CONTROL(Macctrl).

LOAD CALCULATIONS.

The following load calculations are based on the following basic formulae:

N=X*R_ (Little’s Law) where:

N = numberofjobsin the system (either in progress or in a queue),

X = system throughput,

R — response time (which includes time waiting in queues).

U=X * § (from Little’s Law) where:

S = service time,

U = utilization.

R=S/(1-U) for exponential service times (whichis the worst-case assumption).

A 256-byte frame at 100Mb/sec takes 20 usec per frame.

4 * 100 Mbit ethernets receiving at full frame rate is:

51200 (4 * 12800) frames/sec @ 1024 bytes/frame,

102000 frames/sec @ 512 bytes/frame,
204000 frames/sec @ 256 bytes/frame.

143

INTEL Ex.1002.148

INTEL Ex.1002.149

ALA-006E

10

‘| 250

The following calculations assume 250 instructions/frame, 45nsec clock. Thus

S = 250 * 45 nsecs = 11.2 usecs.

Av FrameSize Thruput

Utilization Response Nbrin system

(X) (U) (R)

1024 51200 0.57 26 usecs

512 102000 >]

256 204000

Utilization

(U)

>I

Service Response

Time(8) .

Instns Per

Frame

 102000

85000 (*)

80000 (#*)

0.95 224 usecs

 101 0.89

225 10 102000 1.0

225 10 95000 (*)

225 10 “89000 (**)

102000

102000

(*) shows what frame rate can be supported to get a utilization of less than 1.

(**) shows what frame rate can be supported with 8 SRAM CCBbuffers andat least 8 process

contexts.

If 100 instructions / frame is used, S = 100 * 45 nsecs = 4.5 usecs, and we can support 256

byte frames:

100 4.5 204000 0.91 50 10

Note that these calculations assume that response times increase exponentially as

utilization increases. This is the worst-case assumption, and probably may notbe true for our

144

INTEL Ex.1002.149

INTEL Ex.1002.150

Lk ges ee Un eei.BEBe

ALA-006E

system. The figures show that to support a theoretical full 4 * 100 Mbitreceive load with an
average framesize of 512 bytes, there will need to be 19 active “jobs” in the system, assuming

250 instructions per frame. Due to SRAM limitations, the current design specifies 8 SRAM

buffers for active TCBs, and not to swap a TCB out of SRAM onceitis active. So under these
5 limitations, the INIC will not be able to keep up with the full frame rate. Note that the initial

implementation is trying to use only 8KB of SRAM,although 16KB maybeavailable, in

which case 19 TCB SRAM buffers could be used. This is a cost trade-off. The real point here

is the effect of instructions/frame on the throughput that can be maintained. If the

instructions/frame drops to 200, then the INIC is capable ofhandling the full theoretical load

10 (102000 frames/second) with only 9 active TCBs.If it drops to 100 instructions per frame,

then the INIC can handle full bandwidth at 256 byte frames (204000 frames/second) with 10

active CCBs. The bottom lineis that all hardware-assist that reduces the instructions/frameis

really worthwhile. Ifheader-assist hardware can save us 50 instructions per frame then it goes

straight to the throughput bottom line.

145

INTEL Ex.1002.150

INTEL Ex.1002.151

ALA-006E

CLAIMS

1. A method for network communication, the method comprising:

receiving a plurality of packets from the network, each of the packets including

a media access control layer header, a network layer header and a transport layer header;

processing the packcts byafirst mechanism, so that for each packet the

network layer header andthe transport layer headerare validated without an interrupt dividing

the processing of the network layer header and the transport layer header;

sorting the packets, dependent uponthe processing,into first and second types

ofpackets, so that the packets ofthe first type each contain data;
sending the data from each packetofthe first type to a destination without

sending any of the media access control layer headers, network layer headersortransport layer
headers to the destination.

2. The method of claim 1, wherein processing the packets by a first mechanism further

comprises:

processing the media access control layer header for each packet without an

interrupt dividing the processing of the media access control layer header and the network

layer header.

3. The method of claim 1, further comprising:

processing an upperlayer headerofat least one of the packets by a second

mechanism,thereby determining the destination, wherein the upper Jayer header corresponds

to a protocol layer above the transport layer.

4. The method of claim 1, further comprising:

processing an upperlayer headerofat least one of the packets of the second

type by a second mechanism,thereby determining the destination.

146

INTEL Ex.1002.151

INTEL Ex.1002.152

ALA-006E

5. The method of claim 1, further comprising:

processing a transport layer header of another packet by a second mechanism,

prior to receiving the plurality ofpackets from the network, thereby establishing a Transport

Control Protocol (TCP) connection for the packets of the first type.

6. The method of claim 1, wherein sorting the packets includes classifying each of the

packets ofthe first type as having an Internet Protocol (IP) header and a Transport Control

Protocol (TCP).

7. The method of claim 1, further comprising:

transmitting a second plurality ofpackets to the network, each of the second

plurality of packets containing a media access control layer header, a network layer header and

a transport layer header, including processing the second plurality ofpackets by thefirst

mechanism, so that for each packet the media access control layer header, the network layer

header and the transport layer header are processed without an interrupt dividing the

processing of the media access control layer header, the network layer header and the transport

layer header.

8. The methodofclaim |, wherein the first mechanism is a sequencer running microcode.

9. A method for communicating information over a network, the method comprising:

obtaining data from a source allocated bya first processor;

dividing the data into multiple segments;

- prepending a packet header to each of the segments by a second processor,

thereby forming a packet corresponding to each segment, each packet header containing a

media access control layer header, a network layer header anda transport layer,header,

_ wherein the prepending of each packet header occurs without an interrupt dividing the

prepending of the network layer header and the transport layer header; and

transmitting the packets to the network.

147

INTEL Ex.1002.152

INTEL Ex.1002.153

SF ee REM rte etsy& yop ete e
43 ee Ae oe ee =hdl bt Saal BP Shee 27 Sa Bae +

ALA-006E

10. The methodof claim 9, wherein prepending a packet headerto each of the segments by

a second processor further comprises: /

prepending the media access control layer header for each packet without an

interrupt dividing the prepending of the media access control layer header and the network

layer header.

- di. The method of claim 9, wherein each packet header contains an Internet Protocol (IP)

header and a Transport Control Protocol (TCP) header.

the media access control layer header,

12. The method of claim 9, further comprising establishing a Transport Control Protocol
(TCP) connection by the first processor and using the connection to prepend the packet header
to each of the segments by the second processor.

13. The method of claim 9, further comprising creating a template header and forming each

packet header based upon the template header.

14. The methodof claim 9, wherein obtaining data from the source in memory allocated by

the first processor is performed by a Direct Memory Access (DMA)unit controlled by the

second processor.

15. The method of claim 9, further comprising prepending an upperlayer headerto the

data, prior to dividing the data into multiple segments.

16. The method of claim 9, further comprising:

receiving another packct from the network, the other packet containing a

receive header including information corresponding to a network layer and a transport layer;

and

selecting whether to process the other packet by the first processor or by the

second processor.

148

INTEL Ex.1002.153

INTEL Ex.1002.154

header and an inboundtransport layer header;

ALA-006E

17. A method for communicating information over a network, the method comprising:

providing multiple segments ofdata; ,

prepending an outbound packet header to each of the segments, thereby
forming an outbound packet corresponding to each segment, the outbound packet header

containing an outbound mediaaccess control layer header, an outbound network layer header

and an outboundtransport layer header, wherein the prepending of each outbound packet

header occurs without an interrupt dividing the prepending of the outbound media access
control layer header, the outbound network layer header and the outboundtransport layer

header;

transmitting the outbound packets to the network;

receiving multiple inbound packets from the network, each of the inbound

packets including an inbound media access control layer header, an inbound network layer

. processing the inboundpackets, so that for each packet the inbound network
layer header and the inbound transport layer header are validated without an interrupt dividing

the processing of the inbound network layer header and the inbound transport layer header.

18. The method of claim 17, wherein the processing the inbound packets is performed

simultaneously with the prepending the outbound packet header to each of the segments.

19. The method of claim 17, further comprising creating a template header and using the

template header to form each outbound packet header.

20. The method of claim 17, wherein providing multiple segments of data includes

dividing a block of data into the segments.

21. The method of claim 20, further comprising prepending an upper layer headerto the

block of data, prior to dividing the block of data into multiple segments.

149

INTEL Ex.1002.154

INTEL Ex.1002.155

4:4, / . ey = wus we + = >seeks Beas vee Sa Be 3. ve ii ai? "TE" RAG. Ratt Rite *
*} .

ALA-006E

ee

aTawyor 4

22. The method of claim 17, further comprising:

sending data from cach inbound packet to a destination without sending any of

the media access control layer headers, network layer headers or transport layer headers to the
destination.

23. The method of claim 17, further comprising:

__ processing an upperlayer header ofat least one of the packets by a second

mechanism,thereby determining the destination, wherein the upper layer header corresponds

to a protocol laycr above the transport layer.

24. The method of claim 17, further comprising:

processing a transport layer header of another inboundpacket, prior to receiving

the plurality of packets from the network, thereby establishing a Transport Control Protocol

(TCP) connection for the inbound packets.

150

INTEL Ex.1002.155

INTEL Ex.1002.156

Cb
pePE ea

10

15

20

Thya

“en

“1 ALA-006E

FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

Laurence B. Boucher

Stephen E. J. Blightman

Peter K. Craft

David A. Higgen

Clive M.Philbrick

Daryl] D. Starr

ABSTRACT OF THE DISCLOSURE

A system for protocol processing in a computer network hasan intelligent network
interface card (INIC) or communication processing device (CPD) associated with a host

computer. The INIC provides a fast-path that avoids protocol processing for most large multi-
packet messages, greatly accelerating data communication. The INIC also assists the host for
those message packets that are chosen for processing by host software layers. A
communication control block for a message is defined that allows DMA controllers of the

INIC to movedata, free of headers, directly to or from a destination or source in the host. The

context is stored in the INIC as a communication control block (CCB) that can be passed back

to the host for message processing by the host. The INIC contains specialized hardware
circuits that are muchfaster at their specific tasks than a general purpose CPU. A preferred

embodimentincludesa trio of pipclined processors with separate processors devoted to

transmit, receive and management processing, with full duplex communication for four fast

Ethernet nodes.

151

INTEL Ex.1002.156

INTEL Ex.1002.157

50) UPPER
LAYER

UPPER LAYER

INTERFACE

TRANSPORT

NETWORK

DATA LINK

INIC/CPD

FIG. 2

52

INTEL Ex.1002.157

INTEL Ex.1002.158

67

CACHE

CCB IN

CPD

ae aftye AS ESa IESap cepeasgr ot
edhe MLBoBePA Bae ee BodO RoR

2/89

 RECEIVE PACKET

FROM NETWORK

BY CPD

VALIDATE PACKET,

SUMMARIZE 57

HEADERS

61

59———,

PAST PATH NO SEND PACKET TO
CANDIDATE? STACK FOR SLOW-

PATH PROCESSING

5 65
YES 5, 5

NO SEND PACKET TO
MATCH WITH STACK FOR SLOW-

CCB? PATH PROCESSING

YES a
SEND TO

DESTINATION CREATE CCB FOR

IN HOST VIA MESSAGE
FAST-PATH

FIG.3

INTEL Ex.1002.158

INTEL Ex.1002.159

| —_4327OO

CCB |]
MEM \cACHE

PROCESSOR} +-55
RECEIVE LOGIC

64|SESS

INTEL Ex.1002.159

INTEL Ex.1002.160

AR RIAA gt pete pee mee gaary TTeecab. BedBop BRoe Roe eo Bo

4/89

152-~,- —--—-—-—-——---,

FAST-PATH
 166

164

162

 160

 eee ae ee

INTEL Ex.1002.160

INTEL Ex.1002.161

5/89

MEDIA ACCESS
CONTROLLER

ASSEMBLY

REGISTER

176

 PACKET

‘CONTROL

SEQUENCER

 MULTIPLEXOR

182

SRAM

SRAM CONTROL

DRAM CONTROL

FIG. 7

QUEUE |
184°™| ‘MANAGER

fe gy AHN wm BS
tat Ho

INTEL Ex.1002.161

INTEL Ex.1002.162

6/89

174

ASSEMBLY

‘REGISTER

 PACKET

CONTROL

SEQUENCER

176

MAC

SEQUENCER

 ‘ NETWORK
SEQUENCER

178

TRANSPORT 194
SEQUENCER

SESSION 195
SEQUENCER

180

MULTIPLEXOR

FIG. 8

OPO tb otk Tm Reweeks BPOA CRP OP OGBa UF BL
Bh Te ER Be tnairy ens

a Ed Bees

INTEL Ex.1002.162

INTEL Ex.1002.163

PROCESSORT
HARDWARE LOGIC4

HARDWARE LOGIC 3] 5

HARDWARE LOGIC 2

HARDWARE LOGIC1)

 262

 242

240 202

FIG. 9

TDI USERS 382

LN TDI FILTER DRIVER
& UPPER LAYER INTERFACE

360

350

377 INIC MINIPORT DRIVER
FIG. 11

INTEL Ex.1002.163

INTEL Ex.1002.164

Bose wey ‘aaS ey SR Sie ey
edie Gol Mw WAP Ba Ga a Ht= 3 st test BY fkBey

E # oe € be f

8/89

reoot tre rea eeee

300 318\ UPPER LAYER 4
|
{

330 UPPER LAYER INTERFACE !|
I

|

325-™N TRANSPORT TRANSPORT 316
|
|

322™ NETWORK NETWORK 314
|
|

320 N DATA LINK DATA LINK 312

I | na
310

306 INIC MINIPORT DRIVER

240

200

INIC

210

INIC 304
MEMORY -

FIG. 10

INTEL Ex.1002.164

INTEL Ex.1002.165

9/89

ZzOrzpez{|;—Yyyy;002INIIZZor[ezLIZZZeeeqs

SOIGLAN

 UHAMAS

OI?LET

6ST.

aS

 LNAITIO
SOIGLYN

O91c9lLSIv9991

Seeaeeeeee

INTEL Ex.1002.165

INTEL Ex.1002.166

c~—-—

i
I
I
I
|
|
{
I
I
I
I
I
|
|
ia

460

AE ey, ATT,

MEMORY

CTRL

tt
u.Hate

t#a,tdBy08,aybaat
!

“EXTERNAL

8
oul.

40/89

PCI BUS INTERFACE UNIT

WCS

ROM

MICRO-

REG FILE

I
|
|
|
|
l
|
|
|
|
I
I
|

475

INTEL Ex.1002.166

FIG. 13

INTEL Ex.1002.167

VvOOTTTTFTTTTTTTTT —
|

!
CONTROLS FOR FIRST REGISTER SET

| .

500 505
* 533

|

mt FIRST REGISTER SET .
| 7 RAM FILE
\ 7 REGISTER

> —~bEowee a e he e E e —_—— 4 —

vo

| 498
I
| -

to INSTRUCTION DECODER
} AND

“ | OPERAND MULTIPLEXER
5608 496.

1 SECOND REGISTER SET
|

l

Deepacnefossaasapnnnpm
|
| \
I

STACK -

||EXCHANGE ARITHMETIC LOGIC UNIT
I

“ 608600< 602
‘)

|

qr THIRD REGISTER SET
I

(\00or[tt Ww
FIG. 14 :

INTEL Ex.1002.167

INTEL Ex.1002.168

12/89

9Nnddd
SOS

VSTDIA YALSIDAaWWdWVea
 oe oes|zs|sz&%°[[[somalsoovevaX10“qdova]Ai|")|amd|ay

g

INTEL Ex.1002.168

INTEL Ex.1002.169

BopBle BOPa
SAI, GeOe

ane

13/89

dotOld

Z8S}6LS|ars|
res}zes|0

||

aayTALawooltas|tas|ao|soo|saao|x10_ongadeS)24|gg)ETlapnolowt!isaBeatv|at!

YAXATILIAWAUNVUAdOCNYWACOOACNOILOMALSNI
|

c€S
Sos4

89!
I

WYus|HOLVUOS||
YALSIOTYATAWve~i_toe~-too2-~UELULL__|

-

20NIG’wadav

INTEL Ex.1002.169

INTEL Ex.1002.170

ORD Baassee git meceeeetEE TE Es
reooy SHEN HEY,

AP ow RE
™ re ry a”

cba Bod Bee a Ba) Bi
Ba, Ng AL beng, gp egy sane

14/89

YWyovis)og[PHO]p14uadvoJas|11suasoo |Eno|x19OnagaWDdsora(OVE|SAL|peae,|ATV|ay|atTHLOovexa||VuO
FONVHOXaAOVIS

dvolISHL(YIVW

INTEL Ex.1002.170

INTEL Ex.1002.171

LB wtp Soh eeeos ei rey Shge ey ep atte eevalk, Wah Hanc Moe BLP Mt ug og BB ek a ot EE BL,

705

707

709

711

74S

748 758 756 754

364 712 449 768 7660762 740
755

~~. 784 780 778 .
776 782

760

788 796 794 792 790786

FIG. 17

INTEL Ex.1002.171

INTEL Ex.1002.172

gh aROHA Lov uti ihe Gea yet poy gy sey Sey Me Lyval. Thdt Fics WL ee ABGA la MP MIREPP Ea.

16/89

Proc D2Q\ /Q2D\/XMT\ /RCV 806
802 Re Seq||Seq||Seq],Seq 844

4 Req/ \Req/ \Reqg/ \Req

808|810 804 .
815 846

ARBITER

818

REGISTER A

In

 820

REGISTER B

QALU

| \
|

| Sram||Sram Body||Body |
| Re Addr Write||Read

a 4 Req e |\830 ker\esga $40
FIG. 18

INTEL Ex.1002.172

INTEL Ex.1002.173

pp Oe Mae arth, ott th opty Sy SA A ee Oe
wiih, Bed? Mow ROB PeTha USB et UP Bas

17/89

LRU MRU

O Ro R7|R8|RO R13/R14] R152 12 {10 | | 13 4 6
FIG. 19A

900 LRU . MRU
RO|RI|R2 R7|R8|RO R13|R14|R15

1 7 5}. 12|10 3 |e «| 4 6 9

FIG. 19B

900 LRU MRU
RO|]RI R7|R8|RO R13 |R14|R15

1 7 12 3 8S |. -| 6 9 10

FIG. 19C

0 LRU MRURO Rl R7|R8|RO R13 |R14|R152 12 ZF je «| 64|9 10|-

FIG. 19D

INTEL Ex.1002.173

INTEL Ex.1002.174

18/89

YOSsSAOUd

INTEL Ex.1002.174

INTEL Ex.1002.175

Caan cone ayyNS yee ie oy ey

19/89

NETWORK

en2101 INIC 200
—— a

 PHYSICAL

LAYER

INTERF.

 2100

PROCESSOR

470

TX }} RX

2231|| 2232

ACCESS

CTRL

2102

RXSEQ TXSEQ

2105 2104

2228 442 .

DRAM

460 STATUS

2223 } BUFFERa
2114

INTEL Ex.1002.175

eS tegra ee re alae TO PeEewe, LP Tide Hed BRUaBOBIL Thee

INTEL Ex.1002.176

Bort ot ow at geadhe Teel! Rote HAP Ig

20/89

QUEUE

MAC MANAGER
2213 2214 2227

a 2221-4 2210|2209
2105aLe

QUEUE
MANAGER +t

SYNC INTERFACE
SEQUENCER 2205 2230

STATUS ©

PROTOCOL

ANALYZER

2203

beea—_w_ J

fee222509226

SRAM DRAM
CONTROLLER CONTROLLER

2214

| STATUS DATA i

2223

INTEL Ex.1002.176

INTEL Ex.1002.177

21/89

INIC 200 HOST 20

DESTINATION

(FILE CACHE)
2311

2301

2306 2307

TCPMAP|SES|DATA 30g DATA|DATA
} |

PpataJ

|

2315

—_na

TCP/IP DATA ~
MULTIT- 2313 2303

‘PACKET .
MESSAGE 2304|foeee

5300. TCP/IP DATA x
2316

2305

e

oo

DATA] “

FIG. 23

INTEL Ex.1002.177

INTEL Ex.1002.178

aS Sty TTP SpTy ER oo AOR Pa MR TE ee peah BEL. BO PLA oa Bu TR AP ae.

22/89 _

INIC

NetBIOS J

Data buffer descriptors

INTEL Ex.1002.178

INTEL Ex.1002.179

23/89

Command Response
buffer queue Command buffers bufferqueue

Command
buffer handle

Command

 Command
buffer handle

TCP context
identifier onCommant

INTEL Ex.1002.179

INTEL Ex.1002.180

24/89

31 0

Errorbits are sent
RCV has occured.

ERR Command has been completed
RCV
XMT

Rev drop occured due to no buffers

RMISS

ISR Ox0 Interrupt Status
IMR Ox4 Interrupt Mask
HBAR Ox8 Header Buffer Address

DBHR . OxC Data Buffer Handle

DBAR 0x10 Data Buffer Address

CBARO Oxl4 Command Buffer Address XMTO

CBARI 0x18 Command Buffer Address XMT1

CBAR2 OxIC Command Buffer Address XMT2

CBAR3 0x20 Command Buffer Address XMT3

CBAR4 0x24 Command Buffer Address RCV

RBAR 0x28 Response Buffer Address

KY

HIG. 28

INTEL Ex.1002.180

INTEL Ex.1002.181

posana sockaddrdl

thet | 00:60:97-DB:9B:A6

arpcom I |

sockaddrin

|] 192.100.12

INTEL Ex.1002.181

INTEL Ex.1002.182

Example of incoming TCP pkt Example of incoming ARP Frame

FIG, 32 FIG. 33

INTEL Ex.1002.182

INTEL Ex.1002.183

oh aFig (Mgae ee ay mieMi Kise. Rett ABataR,

27/89

OreDIA

drtDiPedaoysdL
pt|SSPPY|PY

Woe‘OIL

INTEL Ex.1002.183

INTEL Ex.1002.184

ep Hy Cat tee gery ee we
BORBa tant Belt A

28/89°

INTEL Ex.1002.184

INTEL Ex.1002.185

29/89

SRAM requirements for the Receive and Transmit engines:

TCB butter 256 bytes —* 16 4096
Header buffers 128 bytes * 16 2048
TCB hash index 16 bytes * 256 4096
Timers 128

DRAM Fifo queues 128 bytes«=16 2048,

~12K bytes

Ke

FIG. 38

INTEL Ex.1002.185

INTEL Ex.1002.186

30/89

Summary of the main loop of Receive:

forever {
while there are any Receive events {

if (a new event) {
if (no new context available)

ignore the event;
}
call appropriate event handler to service the event;
this may make a waiting process runnable or set up
a new process to be run (get free context, hddr buffer,
TCB buffer, set the context up).

}
while any process contexts are runable {

tun them by jumping to the start/resume address;
if (process complete)

free the context;
}

}

\

FIG. 39

INTEL Ex.1002.186

INTEL Ex.1002.187

31/89

NetBIOS header

SMB header
Notes (interesting fields):
LENGTH 17 bit Length of SMB message (0 - 128K)
COM SMB command

WCT Count (16 bit) of parameter words in VWV[]
VWV Variable number of parameter words
BCC Bytes of data following

X——_- —’
FIG. 40

INTEL Ex.1002.187

INTEL Ex.1002.188

32/89 °

Summary of the mam loop of Transmit:

forever {
while there are any Transmit events {

if (a new event) {
if (no new context available)

ignore the event;
}
call appropnate event handler to service the event;
this may make a waiting process runnable or set up
a new process to be run (get free context, hddr buffer,
TCB buffer, set the context up).

}
while any process contexts are runable {

tun them by jumping to the start/resume address;
if (process complete)

free the context;
}

KS

HG, 41

INTEL Ex.1002.188

INTEL Ex.1002.189

nn ApoARS LAR EL ee oe ty May Ptrtp BEA geHyfe Heel BaPP OL OR TP BaoT,ante Tow

33/89

~ Bit 31 - 24 Byte enable 7 - 0. Only the low order four bits are
- valid for 32 bit addressing mode, -

~~ Bit 23 - 0 Memory access
os 1 Configuration access

Bit 22- 0 Read (to Host)
1 Write (to Host)

Bit 21-1 Data Valid

- Bit 20 - 16 Reserved

Bit 15- 0 Address -

ee J

FIG, 42

_ Configuration Space | SRAM Address Offset

) 00
04 04
08 08
0C 0C
10 10
3C 14

Configuration Space 2

00 00
04 18
08 08
0C IC
10 20
3C 24

All other reads to configuration space will retum 00. 7

INTEL Ex.1002.189

INTEL Ex.1002.190

JS EUS aegsce Te he wy SaaaELBLaBREa BP CURPPOOLY B

34/89

Bit 0-0 1/0 accesses are not enabled

Bit 1-1 Memory accesses are enabled
Bit 2-1 Bus master is enabled

Bit 3-0 Special Cycle is not enabled
Bit4-1 Memory White and Invalidate is enabled
Bit5-0 VGA palette snooping is not enabled
Bit 6-1 Parity checking is enabled
Bit 7-0 Address data stepping is not enabled
Bit 8 - SERR# is enabled

Bit9-0 Fast back to back is not enabled

FIG. 44

Bit 5-1 66 MHz capable is enabled. This bit will be set if the INIC
Detects the system running at 66 MHz on reset

Bit6-0—User Definable Features is not enabled

Bit7-1 Fast Back-to-Back slave transfers enabled

Bit8-1 Parity Error enabled - This bit is initialized to 0
Bit 9,10 - 00 - Fast device select will be set if we are at 33 MHz

01 - Medium device select will be set if we are at 66 MHz

Bit 11-1 Target Abort is implemented. Initialized to 0.
Bit 12-1 Target Abort is implemented. Initialized to 0.
Bit 13-1 Master Abort is implemented. Initialized to 0.
Bit 14-1 SERR¢# is implemented. Initialized to 0.
Bit 15-1 Parity error is implemented. Initialized to 0.

FIG. 45

INTEL Ex.1002.190

INTEL Ex.1002.191

35/89

=

“fi £ErEe=
RevC

Seetsepsis atts pep pitts ay ee poy
al ah er Pa le aoa, ER el BPR

INTEL Ex.1002.191

INTEL Ex.1002.192

Beer? Bese
36/89

MODULE DESCR SPEED AREA

Scratch RAM, IKx128 sport, 437 ns nom, 06.77 mm”
WCS,. 8Kx49 sport, 6.40 ns nom, 18.29 mm”
MAP, 128x7 sport 350 ns nom, 00.24 mm”
ROM, 1Kx49 32col, 500 ns nom, 00.45 mm?
REGs, §12x32._tport, 6.10 ns nom, 03.49 mm?
Macs, 5 mm x4= 0330 mm?
PLL, 5 mm= 00.55 mm?
MISC LOGIC, 117,260 gates / (5035 gates / mm?) = 23.29 mm?
TOTAL CORE 56.22 mm

«1y2 2
(Core side) = 56.22 mm
Core side = 07.50 mm

Die side = core side + 1.0 mm (V/Ocells) = 08.50 mm
Die area = 85 mm x 85 mm = 72.25 mm?

Pads needed = 220 signals x 1.25 (vss, vdd) = 275 pins
LSI PBGA _ 272 pins

 Ke J

FIG. 47

INTEL Ex.1002.192

INTEL Ex.1002.193

CR Bp ey one mee pee iy pets . ea Ry EE ee ETDvandh. PUP Pl Wet Badr al LP ode Thad CTRF Bi ah Boy Bow

37/89

(10MB/s/100Base) x 2 (full duplex) x heconnections . = 80 MBs
Average frame size . = 512B
Frame rate = 80MB/s / 512B . = 156,250 frames / s

Cpu overhead / frame = (256B context read) + (64B header read) +

(128B context write) + (128B misc) = 512B/ frame
Total bandwidth = (512B in) + (512B out) + (512B Cpu) = 1536B / frame
Dram Bandwidth required = (1536B/frame) x (156,250 frames/s) = 240MB/s

‘Dram Bandwidth @ 60MHz = (32 bytes / 167ns) = 202MB/s
Dram Bandwidth @ 66MHz = (32 bytes / 150ns) = 224MBis

PCI Bandwidth required = 80MB/s

PCT Bandwidth available @ 30 MHz, 32b, average = 46MB/s

PCI Bandwidth available @ 33 MHz, 32b, average = 50MB/s
PCI Bandwidth available @ 60 MHz, 32b, average = 92MB/s

PCI Bandwidth available @ 66 MHz, 32b, average = 00MB/s

PCI Bandwidth available @ 30 MHz, 64b, average = 92MBis

PCI Bandwidth available @ 33 MHz, 64b, average - 100MB/s
PCI Bandwidth available @ 60 MHz, 64b, average = 184MB/s

PCI Bandwidth available @ 66 MHz, 64b, average - 200MB/s

LO . J

FIG. 48

Receive frame interval = 512B / 40MB/s = 128us

Instructions / frame @ 60MHz = (12.8us/frame) / (SOns/instruction) = 256
instructions/frame

Instructions / frame @ 66MHz = (12.8us/frame) / (45ns/instruction) = 284
instructions/frame

Required instructions / frame = 250 instructions/frame

KY

HG. 49

INTEL Ex.1002.193

INTEL Ex.1002.194

38/89

eeDECODERliasesaaiLoTESTam Sen DEBUG
STAck| A

TtOCsepsSEL|SEL|CMD eeAdda a
ALU INCR

TPaLoLiTEST|FLAG (65) cualmI_
ae (Cs RSLT sa ade otAddr

INTEL Ex.1002.194

INTEL Ex.1002.195

INSTRUCTION-WORD FORMAT

TYPE : [55:49] [48:47] [46:42] [41:33] [32:24] [23:16] [15:00]
Jee

Jmp

Jsr

Rts

Nxt

Map

0b0000000

0b0000000

0b0000000

0b0000000

0b0000000

MapAddr

0b00, AluOp, OpdASel, OpdBSel,

0b01, AluOp, OpdASel, OpdBSel,

0bi0, AluOp, OpdASel, OpdBSel,

Ob11, AluOp, OpdASel, OpdBSel,

Obil, AluOp, OpdASel, OpdBSel,

TstSel, Literal

FlgSel, Literal

FlgSel, Literal

Ohff, Literal

FigSel, Literal

OBXX, OBXXXXX, OBXXXXXXXXX, OBXXXXXKXXX, OHXX, OHXXXX

FIG. 51

INTEL Ex.1002.195

INTEL Ex.1002.196

 40/89

SEQUENCERBEHAVIOR

if (MapEn& (MapAddr != 060000000)){ //re-map instr
Stacke = Stackce;
StackB = StackB;
StackA = StackA;

~- InstrAddr = 0h8000| Pc[2:0] | (MapAddr<< 3);
Pe = InstrAddr + (Execute & ~DbgMd);

Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

else if (PgmCtrl == Jec){ /feonditional jump
Stacke = Stackc;
StackB = StackB;
StackA = StackA;

InstrAddr = ~Tst@TstSel ? Pe:(AluDst==Pc) ? AluOut:Literal;
Pe = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr+ (Execute & DbgMd);}

else ifgmCtrl == jmp){ /ump
Stackc = Stackc;
StackB = StackB;
StackA = StackA;

InstrAddr = (AluDst == Pc) ? AluOut:Literal;
Pe = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

else if (PgmCtrl == Jsr){ /4jump subroutine
Stacke = StackB;
StackB = StackA;
StackA = Pc;

InstrAddr = (AluDst == Pc) ? AluOut:Literal,
Pc = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr+ (Execute & DbgMd);}

else if (FlgSel == Rts) { //return subroutine
InstrAddr = StackA;

StackA = StackB;
StackB = Stackc;
Stacke = ErrVec;:

Pe = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;

DbgAddr = DbgAddr+ (Execute & DbgMd);}

else {
InstrAddr = Pc; //continue

StackA = StackA;
StackB = StackB;
Stacke = Stackc;

Pe = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;

DbgAddr = DbgAddr+ (Execute & DbgMd);}

FIG, 52

INTEL Ex.1002.196

INTEL Ex.1002.197

“41/89

 - ALU OPERATIONS

AluOp - OPERATION

0b00000 =(A & ~(1 <<B));
= 0; V = (B >= 32) ? 1:0;

0b00001 A=(A & B);
'C=0; V=0;

0b00010 = (Literal & B);
C=0; V=0;

0b00011 = (~Literal & B);e =0; V=0;
0b00100 A=(A|(1 <<B));C=0:V=(B>232)? 1:0;
0b00101 A=(A/B);

C=0; V=0;

0b00110 A = (Literal| B);
C=0; V=0;

0b00111 A=(~~Literal | B);
Cc = 0; 3

0b01000 for (i=31; i>=0;oO)BU) continue; A=i;C=0; V=(B)? 0:1

0b01001 A=(A“B);
C=0; V=0;

0b01010 A= ({Literal} * B);
C=0; V=0;

O0b01011 A= ({~Literal} * B);
. C=0; V=0;

0b01100 A=B;
C=0; V=0;

0b01101 A = B[31:24] * B[23:16] * B[15:08] * B[07:00];
C=0; V=0;

0b01110 A = {B[23:16],B[3 1:24],B[07:00],B[15:08]};
C=0; V=0;

Ob01111 A= {B[15:00], B[31:16]};
C=0; V=0;

FIG. 53.

//bit clear

/Aogical and

logical and

/flogical and not

//bit set

/Nogical or

/Nogical or

/Mogical or not

//priority enc

/Nogical xor

/Nogical xor

/Nogical xor not

/{move

/fhash

/Iswap bytes .

//swap doublets

INTEL Ex.1002.197

INTEL Ex.1002.198

AluOp

0b10000

0b10001

0b10010

0b10011

0b10100

0b10101

0b10110

0b10111

0b11000

0b11001

0b11010

0b11011

0b11100

0611101

0b11110

Ob11111

42/89

* FUNCTION—Sees

A=(A +B);
C =(A + BY[32]; V = 0:

A=(A+B+C‘C= (A+ B+ O32I: V=0;
A = (Literal + B);

C= (Literal + B)[32]; V = 0;

A = (Literal + B);
C = (-Litcral + B)[32]; V = 0;

A=(A -B);
C= (A - B)[32]; V = 0;

A=(A-B-~C);
C=(A-B-~C)[32]; V = 0;

A=(-A+B);
C=(-A + B)[32]; V — 0;

A=(-A+B-~C);
C=(-A+t+B-~-C)[32]; V=0;

A=(A << B);
C= A[31]; V = (B>=32) ? 0:1;

a = (B << Literal);= B31]; V = (Literal >= 32) ? 0:1:

= (B << 1);
C= B31]; V=

n=(A-B);
C=(A - B)B2]; V=0;

A=(A>> B);
C= A[0]; V=(B >= 32)? 1:0;

A = (B >> Literal);
C= A[0]; V = (Literal >= 32) ? 1:0;

A=(B>> 1);
C= A[0]; V=0;

n=(B-A);
C=(B- A)[32]; V=0;

FIG. 54

 pHaey =aBacal, aseer

/fadd B

/fadd B, carry

//fadd constant

//sub constant

//sub B

sub B, borrow

Hsub A

sub A, borrow

/fshift left A

//shift left B

//shift left B

//compare

//shift right A

//shift right B

//shift right B

//compare

INTEL Ex.1002.198

INTEL Ex.1002.199

Opdsel

Ob000Qaaaaa

0b000 1 aaaaa

Ob001XXXXXX

0b0100000K%

0b0 100001 XX

O0b0100010KX

0b0 100011XX

0b01001XXKX

0b010100000

SELECTED OPERANDS

File

CpuReg

reserved

CpuStatus

reserved

Pc

DbgAddr

reserved

File@(OpdSel[4:0] | FileBase);
Allows paged acccss to any part ofthe registerfile.

File@{2'b11, Cpuld, OpdSel[4:0]};
Allowsdirect access to Cpu specific registers.

Reserved for future expansion.

0b0000000000000BHD00000000000000CC
This is a read-only register providing information about the Cpu executing
(OpdSel[1:0}) cycles after the current cycle. "CC" represents a value
indicating the Cpu. Currently, only Cpuld values of 0, 1 and 2 are returned.
"H"represents the current state of HIt, "D" indicates DbgMd and "B"
indicates BigMd. Writing this register has no effect.

Reserved for future expansion.

0x0000AAAA

Writing to this address causes the program control logic to use AluOutas the
new Pc value in the event of a Jmp, Jce or Jsr instruction for the Cpu
executing during the current cycle. If the current instruction is Nxt, Map, or
Rts, the register write has no effect. Reading this register returns the value in
Pc for the Cpu executing (OpdSel[1:0]) cycles after the current cycle.

OxDO00AAAA

Writing to this register alters the contents of the debug address register
(DbgAddr)for the Cpu executing (OpdSel[1:0]) cycles after the current
cycle. DbgAddrprovides the fetch address for the control-store when
DbgMdhasbeenselected and the Cpu is executing. DbgAddris also used
as the control-store address when performing a WrWes@DbgAddror
RdWces@DbgAddroperation. “D”represents bit 31 of the register. It is a general
purposeflag that is used for event indication during simulation. Reading this
register returns a value of 0x00000000.

Reserved for future expansion.

RamAddr{0b1CCC, 0x000, 0b1, AAAA}
RamAddr= AluOut[15] ? AluOut : (AluOut | RamBase);
PrevCC = AluOut[31]? CCC : AluCC;

A read/write register. When reading this register, the Alu condition codes from the previous
instruction are returned together with RamAddr.

bit name description
31 Always 1.
30 PrevC Previous Alu Carry.
29 PrevV Previous Alu Overflow.
28 PrevZ Previous Alu Zero.
27:16 Always 0.
15 Always 1.
14:0 RamAddr Contents of last Sram address used.

Whenwriting this register, if alu_out{31] is set, the previous condition codes will be overwritten with
bits 30:28 of AluOut. If AluOut[15] is set, bits 14:0 will be written to the RamAddr.If AluOut[15]
js not set, bits 14:0 will be ored with the contents of the RamBase and written to the RamAddr

FIG. 55

INTEL Ex.1002.199

INTEL Ex.1002.200

OpdSel . SELECTED OPERANDs

0b010100001 AddrRegA Ox0000AAAA

AddrRegA = AluOut;

A read/write operand which loads AddrRegAusedto provide the address for read and write
opcrations. en AddrRegA[15] is set, thc contents will be presented directly to the ram. When
AddrRegA[15]is reset, the contents will first be ored with thecontents of the RamBase register
before presentation to the ram. Writing to this register takes priority over Literal loads usingFigOp. Reading this register returns the currentvalue of the register.

0b010100010 AddrRegB Ox0000AAAA

AddrRegB = AluOut;

A read/write operand which loads AddrRegB used to provide the address for read and writeoperations.

When AddrRegB[15] is set, the contents will be presented directly to the ram. WhenAdd rRegBl15tis reset, the contents will first be ored with the contents of the RamBase
register before presentation to the ram. Writing to this resister takespriority over Literal loadsusing FlgOp. Readingthis register returns the current value of the register.

0b010100011 AddrRegAb Ox0000AAAA
AddrRegA = AluOut; AddrRegB = AluOut;

A destination only operand which loads AddrRegB and AddrRegAused to provide the address
for read and write operations Writing to this resister takesPrionty over Literal loads usingFilgOp.Reading this register returns the value 6x00000000.

0b010100100 Ram Base Ox0000AAAA
RamBase = AluOut;

A read/write register which providesthe base address for ram read and write cycles. When
RamAddr[15} 1sset, the contents will not be used. When RamAddr{15] is reset, the contents
will first be ored with the contents of the RamBaseregister before presentation to the ram.
Readingthis register returns the value for the current pu.

0b010100101 FileBase 0b00000000000000000000000AAAAAAAAAFileBase = AluOut;

FileAddr = OpdSel[8] ? OpdSel:(OpdSel + FileBase);

A read/write register which provides the base addressfor file read and write cycles. WhenOo dSel/8] is set, the contents will not be used and OpdSelwill be presented irectly to theaddress ines of the file. When OpdSel[3] is reset, the contents will first be oréd with thecontents of the FileBase register before presentationto the file. Reading this register returns the
value for the current Cpu.

0b010100110 InstrRegL OxTITWIT

This is a read-only register which returns the contents of InstrReg[3 1:0]. Writing tothis register has no eftect.

0b010100111 InstrRegH OxOOMNTI

This is a read-only register which returns the contents of InstrReg[55:32]. Writing to this
register has noeffect.

FIG. 56

INTEL Ex.1002.200

INTEL Ex.1002.201

OpdSel

0b010101000

0b010101001

0b010101010

0b010101011

0b0 10101100

SELECTED OPERANDs

Minus] Oxffttfttt

This is a read-only register which supplies a value Oxftfftfff.. Writing to this
register has noeffect.

FreeTime A free-running timerwith a resolution of 1.00 microseconds and a maximum count
of 71 minutes. This timer is cleared duringreset.

LiteralL Instr[15:0]
A read-only register. Writing to this register has no effect

LiteralH Instr[15:0]<<16;
A read-only register. Writing to this register has no effect

MacData - Writing to this address loads the AluOut data into the MacData register for use
during Macoperations. The Mac operation, resulting from writing to the MacOpregister,
determines the definition of the MacDataregister contents as follows.

MacOp MacData definition
Mstop ObDXXXXXXXXXKXKKKXXXXKXKXXKXXKKKKXKK

MacDatais not used for the StopM operation.
WrMcfg

hrstl, rsvd, rsvd, ercen, fulld, hrstl, hugen, nopre, paden, prtyl, xdl10,
iperl[6:0],
ipgr2(6:0), ipgt[6:0].
Loads the MacCfgregister with the contents of the MacDataregister. Refer to
LSI Logic's Ethernet-1 10 Core TechnicalManualfor detailed definitions ofthese
bits.

WrMrng ODXXXXXXXKXXXXXXXXKKKXXXXSSSSSSSSSSS

Loads seed[10:0] into the Mac's random number generator.

RdPhy ObDXXXXRRRRXXXXPPPPXXXXXXKKXXXXXKKKX
Readsregister[R] of phy[P].

WrPhy ObXXXXRRRRXXXXPPPPDDDDDDDDDDDDDDDD

Writes register[R] ofphy[P] with MacData[15:0].

Readingthis register returns prsd[15:0] of Mac0 whichcontains phystatus data returned to the
Macat the completion of a RdPhy command.This data is invalid while MacBsyis asserted
us a result of a RdPhy command.Referto the appropriate phy technical manualfor a
definition of the phy register contents.

FIG. 57

INTEL Ex.1002.201

INTEL Ex.1002.202

46/89 -

INTEL Ex.1002.202

INTEL Ex.1002.203

TH SABkyaes te
Met a tad

OpdScl SELECTED OPERANDs

0b010101101 MacOp- A write only register. Writing to this address loads the MacSel register and staRts
execution ofthe specified operation as follows.

AluOut " description
OxXXXXXOXM Mstop - Halts execution of a MacOp for Mac[M]. The user must wait for

MacBsyto be deasserted before issuing another command or changing the
contents of MacData. |

OxXXXXX1XM WrMcfg- Writes the contents of MacData to the MacCfgregister of MadM|.
The user must wait for MacBsy tobe deasserted before issuing another command
or changing the contents ofMacData.

OxXXXXX2XM WrMrng- Writes the contents ofMacDatato the seed register ofMac[M]. The
user must wait for MacBsyto be deasserted before issuing another command or
changing the contents of MacData.

OxXXKXX3KM RdPhy- Readsthe contents ofreg[R] for phy[P] on the MII managementbus of
Mac[M]. The contents may be read from MacDataafter MacBsyhas been de-

asserted. ‘

OxXXXXX4XM WrPhy- Writes the contents ofMacData[15:0] toc reg[R] of phy[P] on the MIL
management bus of Mac[M]. The user must wait for MacBsy to be deasserted
before issuing another commandor changing the contents of MacData.

OxXXXXX8XM WrAddrAL- Writes the contents of MacData[15:0] to MacAddrA[I15:0] for Mac{[M].
OxXXXXX9XM WrAddrAH - Writes the contents ofMacData[1 1:0] to MacAddrA[47:16] for Mac[M].
OxXXXXXaXM WrAddrBL - Writes the contents of MacData[15:0] to MacAddrB[15:0] for Mac[M].
OxXXXXXbXM WrAddrBH - Writes the contents ofMacData[1 1:0] to MacAddrB[47:16] for Mac[M].

b010101110 ChCmd A write-only register.

bit name description

31:11 reserved Data written to these bits is ignored.
10:8. command 0 - Stops execution of the current operation and clears the

corresponding eventflag.
1 - Transfer data from ExtMem to ExtMem.
2 - Transfer data from Pci to ExtMem.

3 - Transfer data from ExtMemto Pci.

4 - Transfer data from Sram to ExtMem.
5 - Transfer data from ExtMem to Sram.

6 - Transfer data from Pci to Sram.
7 - Transfer data from Sram to Pci.

07:05 reserved Data written to these bits is ignored.
04:00 ChId Provides the channel number for the channel command.

FIG. 58A

INTEL Ex.1002.203

INTEL Ex.1002.204

sea FG, UM oe ey ah8. Soe ARE Rt LLUBa

0b010101110 ChEvnt A read-only register.

bit name description
31:00 ChDn Eachbit represents the doneflag for the respective dma channel. These

bits are set by a dma sequencer upon completion of the channel
command. Cleared when the processor writes 0 to the corresponding
ChCmdregister.

0b010101111 GenEvnt A read-only register.

bit name description

31 PciRdEvnt Indicates that a PCIinitiator is attempting to read a mproc.
: register.

30 PciWrEvnt Indicates that a PCI initiator has posted a write to a mproc.
register.

29 TimeEvnt An event which occurs once every 2.00 milliseconds.
28:00 reserved Reservedfor future use.

06010110000 =QcCtrl A write-only register used to select and manipulate a Q.

bit name description

31:11 reserved Data written to thesebits are ignored.
10:8 QSsz Used only during InitQ operationsto specify the size of the QBdy in Dram.

7 — Queue depth is 32K cntries (128KB).
6 — Queue depth is 16K entries (64KB).
5 — Queue depth is 8K entries (32KB).
4 — Queue depth is 4K entries (16KB).
3 — Queue depth is 2K entries (SKB).
2 — Queue depth is 1K entries (4KB).
1 — Queuedepth is 512 entries (2KB).
0 — Queuedepth is 256 entries (1 KB).

7:5 QOp Specifies the queue operation to perform.
7—DbIQ Disables all queues.
6—EnQ_Enablesall queues.
5-—RdBdy Increments the QBdyRdPtr and increments the QTIWrPtr.
4—WrBdy Decrements the QBdyWrPtr and increments the QHdRdPtr.
3—RdQ__Returns a queue entry in register QData..
2—rsyd Reserved. Not to be used.

1—InitQ Set the queue status to empty andinitializes QSz.,
0-—SelQ Selects the Qld to beutilized during writes to QData.

FIG. 58B

INTEL Ex.1002.204

INTEL Ex.1002.205

4:0

0b010110001

"_ 0b010110010

0b010110011

0b010110100

0b010110101

0b010111000

0b010111001

0b010111010

0b010111011

0b01011 11 XX

ObO110XXXXX

ObOLILOXXKX

Qld Specifies the queue on which to perform all operations except DbIQ or EnQ.

QData A read/write register. Writing this register will result in the data being pushed on
to the selected queue. Reading this register fetches queue data poppedoffduring
the previous RdQ operation.

reserved Reserved for future expansion.

XevCtrl A write-only register used to enable and disable Mactransmit and receive
sub-channels.

bit name description

31:09 reserved Data written to these bits are ignored.
8 enable Whenset, indicates to the Mactransmit or receive sequencerthat the subchannel

contains a transmit or receive descriptor.
07:05 reserved Data written to these bits is ignored.
04 RevCh Selects a Mac receive subchannel! whenset. Selects a Mac transmit subchannel

whencleared.

03 reserved Data written to this bit are ignored.
02 SubCh Selects subchannel B when set or A whenreset.
01:00 Macld Provides the Mac numberfor the subchannel enablebit.

Lru 0x0000000A

A read/write operand indicating which of the 16 entries is least recently used.
When Reading This register the least recently used entry is returned, after which
it is automatically madethe mostrecently used entry. This register should only be
read in conjunction with a 'Move'opcration of the ALU,else the results are
unpredictable. Writing to this register forces the addressed entry to becomethe
least recently used entry.

Mru 0x0000000A

A write only operand forcing the addressed entry to become the most recently
used entry.

QInRdy A read-only register comprising QHd notfull flags for each of the 32 queues.

QoutRdy A read-only register comprising QT! not empty flags for each of the 32 queues.

QEmpty A read-only register comprising QEmptyflags for each of the 32 queues.

QFull A read-only register comprising QFull flags for each of the 32 queues.

reserved Reserved for future expansion.

Constants {0b000, OpdSel[4:0]}

reserved Reserved for future expansion.

FIG. 58C

INTEL Ex.1002.205

INTEL Ex.1002.206

QOpdSel

0b011 11XXX

Obl aaaaaaaa

SELECTED OPERANDs

Sram OPERATIONS

OpdSelf3]
0
1

OpdSel[2]
0
1

OpdSelf 1:0]

WHR@e
RAM READ ATTRIBUTES

endian
mode

little
little
little
little
little
little
little
little
BIG
BIG
BIG
BIG
BIG
BIG
BIG
BIG

RAM WRITE ATTRIBUTES

. PostAddrOp
nop
RamAddr = RamAddr+ (OpdSel[1:0]);

transpose Ctrl —
don't transpose
transpose bytes

RamOpdSz
quadlet
triplet
doublet
byte

trans- byte Sram
pose_ offs data sz=QO—_ sz=T sz=D

merereOOOOEeRHOOOO

abcd abcd Obed 00cd
abcX trap Oabce 00bc
abXX trap trap 00ab
axXX trap trap trap
abcd dcba Odcb 00dc
abcX trap Ocba 00cb
abXX trap trap 00ba
aXXX trap trap trap
abcd abcd Oabc O00ab
Xbed trap Obcd 00bc
XXcd__ trap trap 00cd
XXXd~ trap trap trap
abcd deba Ocba O0ba
Xbed_ trap Odcb 00cb
XXcd_— trap trap 00dc
XXXd_~ trap trap trap

WNHEOWYNEOWNEROWNS

endian
mode

little
little
little
little
little
little
little
little

big
big
big
big
big
big
big
big

File

trans- Opd Alu
pose_ size out OF=0 OF=1 OF=2 OF=30

errOOOOFBEHHOOO

SOURCE OPERAND

sz=B
000d
000c
000b
000a
000d
000c
000b
000a
000a
000b
000c
000d
000a
000b
000c
000d

SOURCE OPERAND

Q abed abcd trap trap trap
T Xbed=-bed bed- trap trap
D XXed_=--cd -cd- cd-- trap
B XXXd --d --d- -d-- ---
Q abcd dcba tra trap trap
T Xbed=-deb dceb- trap trap
D XXed_=--de -dc- de-- trap
B XXXd_ ---d --d- -d-- ---
Q abed abcd trap trap trap
T Xbed__bed- -bed trap trap
D XXcd_ cd-- -cd- cd trap
B XXXd_= d--- -d-- --d- ---d
Q abcd deba trap trap trap
T Xbed—dcb- -deb trap trap
D XXed_— de-- -de- --de trap
B XXXd_= d--- -d-- --d- —

File@OpdSel[8:0];
Allowsdirect, non-paged,access to the top half oftheregisterfile.

FIG. 59

INTEL Ex.1002.206

INTEL Ex.1002.207

‘TstSel

ObXOOXKXKXX

0bX0100000

0bX0100001

0bX0100010

0bX0100011

0bX0100100

0bX0100101

0bX0100110

0bX0100111

0bX0101000

0bX0101001

0bX010101X

ObX01011XX

ObX0110XXKX

ObX0111.XXX

ObXOIXXXXX

—ObDXIXXXXXX

SELECTED TEST

Tst = TstSel[7] * AluOut[TstSel[4:0]]

Tst = TstSel[7] “ C

Tst = TstSel[7] “ V

Tst = TstSel(7] AZ

Tst = TstSel[7] * (Z| ~C)

Tst = TstSel[7] * PrevC

Tst = TstSel[7] * PrevV

Tst = TstSel[{7] * PrevZ,

Tst = TstSel[7] “ (PrevZ & 7)

Tst = TstSel(7] * QOpDn

Tst = reserved

Tst = reserved

Tst = reserved

Tst = TstSel[7] “ Lock[TstSel[2:0]]
Lock(TstSel[2:0]) = 1;

Tst = TstSel[7] * Lock[TstSel(2:0]]

Tst = reserved

Tst = reserved

FIG. 60

/fAlu bit

carry

//error

//zero

//ess or equal

//previous carry

//previous error

//previous zero

/164b zero

/queue op okay

//tests the current value of

//the Lock thensetit.

//tests the value of Lock.

INTEL Ex.1002.207

INTEL Ex.1002.208

FigSel
0b00000000

0b00000001

0b00000010

0b0000001 1

0b00000100

0b00000101

0b0000011K

Ob0000IXKX

0b00010XXX

0b00011XKX

ObOO1OXXXX

Ob001IXXXKX

0b01000000

0b01000001

0b01000010

0601000011

0b0 1000100

0b010001XXK

0b010010XK

0b010011XX

0b010100XX

Ob010101XX

ObOLONI XXX

Ob01 IXXXKX

ObIXXXXXKXK

52/89 ~ - oo

FLAG OPERATION

No operation.

SelfRst

SelBigEnd

SelLitEnd

DbiIMap

EnbMap

reserved

reserved

ClrLek

reserved

AddrOp

FlgSel[3 2

Wh=

FigSelf1 0

WheroO

Forcesa self reset for the entire chip excluding the PCI configuration
registers

Selects big-endian mode for ram accesses for the current Cpu.

Selects little-endian mode for ram accesses for the current Cpu.

Disable instruction re-mapping for the current Cpu.

Enableinstruction re-mapping for the current Cpu.

Lock[FlgSel[2:0]] = 0;
Clears the semaphoreregister bit for the current Cpu only.

AddrSelect
RamAd¢r= Literal[15]
RamAddr= AddrRegA[15]

? Literal (Literal | RamBase);
? AddrRegA - (AddrRegA | RamBase),

RamAddr= AddrRegB([15] ? AddrRegB (AddrRegB | RamBase):
if (OpdA == RamAddr)
RamAddr = AluOut[15] > AluOut . (AluOut | RamBase);
elsc if (OpdA = ram)
RamAddr = AddrRegB[15]else
RamAddr = AddrRegA[15]

addr reg load
nop
AddrRegA = Literal,
AddrRegB = Literal,
AddrRegA = Literal;

? AddrRegB - (AddrRegB | RamBase);

9 AddrRegA . (AddrRegA | RamBase);

AddrRegB = Literal,

note: Whenspecifying the same register for both the load and select fields, the current value of the
register, before it is loaded with the new valuc, will be used for the ram address.
reserved

WrWesL@Dbg

WrWcsH@Dbg

RdWcsL@Dbg

RdWcsH@Dbg
reserved

Step

PcMd

DbgMd

Hit

Run

reserved

reserved

reserved

Causes thebits [31:0] of the control-store at address DbgAddrto be
written with the current AluOutdata.

Causes the bits [63:32] of the control-store at address DbgAddr to be
written with the current AluOutdata then increments DbgAddr.

Causesthe bits [31:0] of the control-store at address DbgAddr to bemoved to file address Ox1ff.

Causesthe bits [63:32] of the control-store al address DbgAddrto be
moved to file address Ox1ff then increments DbgAddr.

Allows the Cpu (FlgSel[1:0]) cycles after the current cycle to execute a single
instruction. Thereis no effect if the Cpu is not halted. An offset of 0 is not allowed.

Selects the Pe as the address source for the control-store during
instruction fetches for the Cpu (FigSel[1:0]) cycles after the current cycle.

Selects the DbgAddr address register as the address source for the
control-store during instruction fetches for the Cpu (FlgSel[1:0])
cycles afier the current cycle.

Halts the Cpu (FigSelf1:0]) cycles after the current cycle.

Clears Halt for the Cpu (FigSel[]:0]) cycles after the current cycle.

FIG. 61

INTEL Ex.1002.208

INTEL Ex.1002.209

53/89

 eeu

 Sigleaeetse|ee

lee pt

INTEL Ex.1002.209

INTEL Ex.1002.210

54/89

FIG.63
INTEL Ex.1002.210

INTEL Ex.1002.211

55/89

Regd *** RegN Add Addt/
Ctr . Ctrl/

133MHz

133MHz

CLK Register

Addr DIN

CLK Register

Partial Align

133MHz

INTEL Ex.1002.211

INTEL Ex.1002.212

56/89

PCLWA)OYNULLCNYNOMICLVAC]NERYCYNOMTYwegty8]NTNCNYNOMTYcg‘OUmedYNAargDiLT40PRATVCBIALUMYOCVE:RCM48)SPHYOVEY§+MeCLINGNIVACPONOTTY$CLNeN]MOpoyNOTTY}BRCINUNTVACSTNOFTY}PRCLAAN698NOPTYAPYYANGPYAld}|MPVMC)POYATV=}PYVACSIATV{pyMA)ByATdd¥nd)YOAZISOVCNYPYDEYN)YOURSBYWYNyYOMa7ISPYCNYPY|CALOATASSMRREVINCPur;:(HIOATHSSURRY4|waVACPaOLLN|CHLOTTESSmereyndpug}eatVACS|OLIN|CALOATASsureegndo

INTEL Ex.1002.212

INTEL Ex.1002.213

XwiReq
XwrAddr

XwrState

XwiCtrl

XwrData

DefgReq

DefgAddr

DefgsState

DefgCtrl

DefgData

EectrlReq
BectrlAddr

EectrlState

EectrlCul

EectrlData

57/89

INTEL Ex.1002.213

INTEL Ex.1002.214

BoM RUS 88 kab ae bkeee oy oy
wh. Tha? Bie, HES ELLP atgg GLCTP RB

"58/89

Grant < TO Requester
D2p
Dds

Did XAddr “| TO Xetrl
Dg EN
Pso SramGnt

XmtA XData 4 e SramData
XmtB

XmtC

XmiD XCul 4 TO Xetl

XctriDin Ack To requester

SramReq

SramGnt

SramAck

SramAckSz SramGnt

> SramParams

FIG. 67

INTEL Ex.1002.214

INTEL Ex.1002.215

89“Dl

saeTE ee Bay

ryBe338
a

o,20vftadPeaahhwt

59/89

INTEL Ex.1002.215

INTEL Ex.1002.216

 . < TO Requester
P2pgp,
Did XAddr 4 TO Xctl

Psi L > TO Xetrl
RevA

44
Reve XCtl TO Xctrl

an TO Ket

XctrlGnt

Ack TO requester

> XcirlReq

SramGut SramReq

SramAck

SramAckSz SramGnt

SramRdData > SramParams

FIG. 69

INTEL Ex.1002.216

INTEL Ex.1002.217

61/89

0LDl

INTEL Ex.1002.217

INTEL Ex.1002.218

AB SUE Bos arin See Oe ey avy apSe
wh aeGe Re Lea nap “me pittat pe

. 62/89

FIG.7]

INTEL Ex.1002.218

INTEL Ex.1002.219

PhS say8 SyON oe BPE Bop Hy ae 2aul Zool Thee IOP BAP RGa GL ag BO Ba 8! PB

' 63/89

FIG,72

INTEL Ex.1002.219

INTEL Ex.1002.220

64/89

PTR TO Pmo

: ak - TO Xrd
£4

TO Xrd

XFR

XrdAck a OPTIONS
Xrd Status SEQ

State

Pmo Ack FifoCnt

PmoStatus Fmo Req
XrdReq

Sram Ack Sramoq
EN

From Sram

Sram Rd Data > SramParams

FIG. 73

INTEL Ex.1002.220

INTEL Ex.1002.221

(rep tty8 sesee oe eyad LH Bo Bot GB aa l
Teorey sete

BP me

- 65/89

INTEL Ex.1002.221

INTEL Ex.1002.222

“XwrChksum

XwrAck

XwrStatus

PmiAck

PmiStatus

SramAck

SramRdData

EN

>

FIG.75

TO Xwr

> TO Pmi

TO Pmi

TO Pmi

TO Xwr

FifoCnt

Pmi Req
XwrReq

> SramReq

From Sram

SramParams

INTEL Ex.1002.222

INTEL Ex.1002.223

et Be oh ey
Re RP On, ‘TRS nl

67/89

INTEL Ex.1002.223

INTEL Ex.1002.224

68/89 -

TO Pmo

> TO Pmo

TO Pmo

PmoAck PmoReq
PmoStatus

SramReq

SramAck

From Sram

SramRdData SramParams

INTEL Ex.1002.224

INTEL Ex.1002.225

69/89

INTEL Ex.1002.225

INTEL Ex.1002.226

70/89

TO Pm

TO Pmi

TO Pm

PmiAck .
PmiReq

PmiStatus

SramReq

SramAck

From Sram

INTEL Ex.1002.226

INTEL Ex.1002.227

Aa en setsBAeoer
kh etre be hb ia

71/89

INTEL Ex.1002.227

INTEL Ex.1002.228

72/89

XrdAck

XrdStatus

SramAck

SramRdData

INTEL Ex.1002.228

INTEL Ex.1002.229

SAS Tyyy ea pany 2 aay
Todt SOP oP

AOI weeaea
.B

ot EEwh HO oa

73/89

INTEL Ex.1002.229

INTEL Ex.1002.230

' 74/89

TO Xwr

TO Xwr

TO Xwr

XwrAck

XwrReq

Xwrstatus

SramReq
SramAck

From Sram

SramRdData SramParams

INTEL Ex.1002.230

INTEL Ex.1002.231

75/89

INTEL Ex.1002.231

INTEL Ex.1002.232

76/89

INTEL Ex.1002.232

INTEL Ex.1002.233

Wa SRS ony eos
a

3 FH yeA
ade Hl? Boot

77/89

YVaTDINHATAATLONINAAT

INTEL Ex.1002.233

INTEL Ex.1002.234

MacDataln

MacCtrlln

MacStatusIN

MacAddrA

MacAddrB

SramAck

SramRdData

FREEQID

| RCVQD
Crl.QID

PauseDetEn

FIG. 87

INTEL Ex.1002.234

2288y STee ee Ey te ryt oe oe
ke Ct BBLSR Pog RFC RL Ba

78/89

S COMMAND P TO QmgR
DESCR |RP| . From Sram

>> 10SamP Sram | From Sram
ogSP
OR

| HFO WR

HES
| AORD w TO XwrData

| ASSY REG »RCV SEQ

teANALYZER

sy|oe|a
RTTRANSPORT

p“}Hranee_~
aPAYLOAD

aeCONTEXT
HASH

XwrReq
PauseDet

QmgRReq
SramReq

From Sram

> SramParams

INTEL Ex.1002.235

79/89

INTEL Ex.1002.235

INTEL Ex.1002.236

80/89

RECEIVE BUFFER DESCRIPTOR

bit hame
31:30 reserved
29:28 size
27:00 address

TIME STAMP

bit name
31:00 RevTime

CHECKSUM.

bit name

31:16 IpChksum

15:00 TepChksum

RESERVED

FRAME Data

description

A copy ofthe bits in the FreeBufDscr. :
Represents the last address +1 to which frame data wastransferred. The address
wraps aroundat the boundary dictated by the S bits. This can be used to determine
the size of the frame received.

FIG. 89

OFFSET0x0008:0x000B

description
The contents of FreeClk at the completion of the frame receive operation.

FIG. 90

OFFSET 0x000C:0x000F

description

Reflects the value of the IP header checksum at frame completion or IP header
completion. If an IP datagram was not detected, the checksum providesa total for
the entire data portion of the received frame. The data area is defined as thosc bytes
received after the type field of an ethernet frame, the LLC header of an 802.3 frame
or the SNAPheaderof an 802.3-SNAPframe.

Reflects the value ofthe transport checksum at IP completion or frame completion.
If IP was detected but session was unknown, the checksum will not include the
psuedo-header.If IP was not detected, the checksum will be 0x0000.

OFFSET 0x0010:0x0011

OFFSET0x0012:END OF BUFFER

FIG. 91

INTEL Ex.1002.236

INTEL Ex.1002.237

 RaBate oy

81/89 oan Be

RECEIVE BUFFER FORMAT

FRAMEStatus A

bit
31

30

10
10
09:08
07:06
05:04
03
02
01:00

name
attention

CompositeErr

CtrilFrame

IpDn
802.3Dn
MacADet
MacBDet
MacMest
MacBest

IpMest
TpBest
Frag
IpOffst
IpFlgs
IpOpts
TepFlgs
TcpOpts
TcepUrg
CarrierEvnt

LongEvnt
FrameLost

reserved
NoAck

FrameTyp
NwkTyp
TrnsptTypNetBios
reserved
channel

FRAMEStatus B

bit
31
30
29
28
27
26
25
24
23
22
21
20
19:16

15:08
07:00

name
802.3Shrt
BufOvr
BadPkt
InvldPrmbl
CrcErr
DrbINbbl
CodeErr

IpHdrShrt
IpIncmplt
IpSumErr
TepSumErr
TepHdrShrt
PressCd

MacHsh
CtxHsh

OFFSET 0x0000:0x0003

description

_ Indicates one or more of the following: CompositeErr, 'IpDn, !MacADet &
{MacBDet, IpMest, IpBest, !ethernet & !802.3Snap, !Ip4, !Tep .
Sct when any of the error bits of ErrStatus are set or if frame processing stops
while receiving a Tcp or Udp header.
A control frame was received at our unicast or special MItCst address.
Frame processing Hlted due to exhaustion of the IP4 length counter.
Frame processing Hlted due to exhaustion of the 802.3 length counter.
Frame's destination address matched the contents of MacAddrA.
Frame's destination address matched the contents of MacAddrB.
The Mac detected a MitCst address.
The Macdetected a BrdCst address.
The frame processor detected an IP MltCst address.
The frame processor detected an IP BrdCst address.
The frame processor detected a Frag IP datagram.
The frame processor detected a non-zero IP datagram offset.
The frame processor detected flags within the IP datagram.
The frame processor detected a header length greater than 20 for the IP datagram.
The frame processor detected an abnormal header flag for the TCP segment.
The frame processor detected a header length greater than 20 for the TCP segment.
The frame processor detected a non-zero urgent pointer for the TCP segment.
Refer to £/ 10 Technical Manual.
Refer to E110 Technical Manual.

Set whenan incoming framecould notbe processed as a result ofan outstanding frame completion
event not yet serviced by the utility processor.

The frame processor detected a
00-Reserved. 01- ethernet. 10 - 802.3. 11 - 802.3 Snap.
00- Unknown. 01- Ip4. 10 - Ip6 11 - ip other.
00- Unknown. 01- reserved. 10-Tcp 11 - Udp
A NetBios frame was detected.

The Mac on which this frame wasreceived.

OFFSET 0x0004:0x0007

description
Endof frame was encountered before the 802.3 length count was exhausted.
‘The frame length exccded the buffer space available.
Refer to E/ 10 Technical Manual.
Refer to £110 Technical Manual.
Refer to E110 Technical Manual.
Refer to E/10 Technical Manual.
Refer to E/10 Technical Manual.
The IP4 headerlength ficld contained a value less than 0x5.
The frame terminated before the IP length counter was exhausted.
The IP header checksum wasnot Oxffff at the completion of the IP header read.
The session checksum wasnot Oxffff at the termination of session processing.
The TCP header length field contained a value less than 0x5.
Thestate of the frame processoratthe time the frame processing terminated.
0b0000 Processing Mac header.
0b0001 Processing 802.3 LLC header.
0b0010 Processing 802.3 SNAP header.
0b0011 Processing unknown network data.
0b0100 Processing IP header.
0b0101 Processing IP data (unknowntransport).
0b0110 Processing transport header(IP data).
0b0111 Processing transport data (IP data).
0b1000 Processing IP processing complete.
0b1001 Reserved.
O0b101x Reserved,
Obl1xx Reserved.
The Mac destination-address hash. Refer to E110 Technical Manual.

The 8-bit context-hash generated by exclusive-oringall bytes of the IP source _
address, IP destination-address, transport source port and the transport destination port.

FIG. 92

INTEL Ex.1002.237

INTEL Ex.1002.238

7

iPERT
MacDataIN

MaoCtlIN

MacStatusIN

MacAddrA

MacAddrB

SramAck

SramRdData

FREEQID

CrlQID

XmiQID

PauseClr

PauseDet

Cou_PauseReq

FIG. 93

3,43<P2
a]eeEceS/SptytLeTyyyyil
Els

a8=e
J

ze Ge
s55

pd BS
:2

\/

TO Qmgk

From Sram

TO Sram
From Sram

TO Sram
From Xwr

TO Xwr

\A\/

TO Xwr

XmtData

XwrReq
PauseD

QungkReq
SramReq

From Sram

SramParams

INTEL Ex.1002.238

INTEL Ex.1002.239

From PROCESSOR

From RCVSEQ

FROM PROCESSOR

TO PROCESSOR

INTEL Ex.1002.239

INTEL Ex.1002.240

84/89

~ TRANSMIT BUFFER DESCRIPTOR

description

Whenset, XmtSeq wi Tinsert acalculated checksum. When reset, XmtSeq wil
bit
31

30
29:28

27:00

name
ChksumEn

reserved
size

EndAddr

notalter the outgoing data stream.

aDal, TDF

Represents the size of the buffer by indicating at what boundary the buffer should
starl and terminate. This is used in combination with EndAddrto determine the
starting address ofthe buffer:

HoiwaNAH WheoS
256B boundary. A[7:0] ignored.
2KB boundary. A[10:0] ignored.
4KB boundary. A[11:0] ignored.
32KB boundary. A[14:0] ignored.

The addressofthe last byte to transmit plus one.

FIG. 95

TRANSMIT BUFFER FORMAT

CHECKSUM PRIMER OFFSET 0x0000:0x0003

description

A value to be added during checksum accumulation. For IPV4,this should include
the psuedo-header values, protocol and Tcp-length.

31:00
name
Primer

RESERVED

FRAMEData

OFFSET0x0004:0x0005

OFFSET0x0006:END OF BUFFER

FIG. 96

TRANSMIT Status VECTOR

description :
Indicates that a link status error occured before or during transmit.

bit
31
30:15
14
13
12
11
10
09
08
07
06
05
04
03:00

name
LnakErr
reserved
ExcessDeferral
LateAbort
ExcessColl
UnderRun

ExcessLgth
Okay
deferred
BrdCst
MItCst
CrcErr
LateColl
CollCnt

Refer to £110 Technical Manual.
Refer to E/ 10 Technical Manual.
Refer to E/ 70 Technical Manual.
Refer to E/10 Technical Manual.
Refer to E/10 Technical Manual.
Refer to £7 /0 Technical Manual.
Refer to E/ 10 Technical Manual.
Refer to E/ 10 Technical Manual.
Refer to £110 Technical Manual.
Refer to E//0 Technical Manual.
Refer to E//0 Technical Manual.
Refer to E110 Technical Manual.

FIG. 97

INTEL Ex.1002.240

INTEL Ex.1002.241

. 85/89

 ee]boyboyAMAMiMaYM1n0NTWyAdyDYbayWegXGOd@=ACO0000WegWegate
ZHWEETZAWEET

 aPC,boyboy=boy)boyboy86Olaubasasbyby0AMwxpdbea
INTEL Ex.1002.241

INTEL Ex.1002.242

86/89

CNYPmt)ZHING)dgeuq,dgndy|10}SAK+AQ}OWAwe)|wel)wu)dgengJoypaysa)cgay1qQyfadpm10}boise)‘dndsoyboyueag)|fond)10}ToreySN)| ma10}yoySumsind)JoyyoySumer|!mdWoyeHausnd)oympiuhusndyi''wDLyER|3erepe)|:!URIG“emggy||SN!BED)uy:nd’)soyrept)Moy|

INTEL Ex.1002.242

INTEL Ex.1002.243

87/89

. DMA OPERATIONS ‘

dma seq # name description
0 none This 1s a no operation address.

re D2dSeq Movesdata from ExtMem to ExtMem.
2 D2sSeq Movesdata from ExtMem busto sram.
3 D2pSeq Movesdata from ExtMem to Pci bus.
4 S2dSeq Moves data from sram to ExtMem.
5 S2pSeq ~ Movesdata from sram to Pci bus.
6 P2dSeq Movesdata from Pci bus to ExtMem.
7 P2sSeq Movesdata from Pci bus to sram.

FIG. 100

bit name description
31:1 reserved Data written to these bits 1s ignored.
10:8 ChCmd 0 - Stops execution of the current operation and clears the corresponding event flag.

1 - Transfer data from ExtMem to ExtMem.
2 - Transfer data from ExtMem bus to sram.
3 - Transfer data from ExtMem to Pci bus.
4 - Transfer data from sram to ExtMem.
5 - Transfer data from sram to Pci bus.
6 - Transfer data from Pci bus to ExtMem.
7 - Transfer data from Pci bus to Sram.

07:05 reserved Data written to these bits is ignored.
04:00 ChiId Provides the channel numberfor the channel command.

FIG. 101

bit name description “
127:96 PciAddrH Bits [63:32] ofthe Pci address.
95:64 PciAddrL Bits [31:00] of the Pci address.
59:32 MemAddr Bits [27:00] of the ExtMem addressor bits [15:00] of the Sram address.
31 PciEndian Whenset, selects big endian modefor Pci transfers.
30 WideDbi Whenset, disables Pci 64-bit modc.
22 DstFliash Selects Flash for the external memory destination of P2d.
15:00 XfrSz Bits [15:00] of the requested dmasize expressed in bytes.

FIG. 102

INTEL Ex.1002.243

INTEL Ex.1002.244

a

bit | name
123:96 MemAddr
95:64 PciAddrH
63:32 PciAddrL
30 SrcFlash
23 PciEndian
22 WideDb!I
15:00 XfrSz

bit name
127:124 reserved
123:96 SrceAddr
95:60 reserved
59:32. DstAddr
30 FlashSel
22 FlashSel
15:00 XfrSz

bit name
127:64 reserved
63:32 ChkSum

31:24 reserved
23:20 SrcStatus
19:16 DstStatus
15:00 »=-XfrSz

bit name
31:00 ChDn

88/89

description

Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
Bits [63:32] of the Pci address.
Bits [31:00] of the Pci address.
Selects Flash for the external memory source ofD2p.
Whenset, selects big endian modefor Pci transfers.
Whenset, disables Pci 64-bit mode.
Bits [15:00] of the requested dma size expressedin bytes.

FIG. 103

description
Reserved for future use.

Bits [27:00] of the ExtMem addressorbits [15:00] of the Sram address.
Reserved for future use.
Bits [27:00] of the ExtMem address orbits [15:00] of the Sram address.
Selects Flash for the external memory source of D2d or D2s.
Sclects Flash for the external memory destination of S2p or D2d.
Bits [15:00] of the requested dma size expressed in bytes.

FIG. 104

description
Not used.

Represents the I's compliment sum ofall halfwords transferred during a P2d or D2d
operation only.
Reserved for future use.
TBD.
TBD.

Bits [15:00] of the residual dma size expressed in bytes. This value will be zero if the
dmaoperation was successful

FIG. 105

description

Eachbit represents the done flag for the respective dma channel. These bits are set by a
dma sequencer upon completion of the channel command. Cleared when the processor
writes 0 to the corresponding ChCmdregister ChCmdOpfield.

FIG. 106

INTEL Ex.1002.244

INTEL Ex.1002.245

fd

89/89

LOIOld
nd)OL

||
bayd

boy0WMaONYxH, qbey.
UAAHd

INTEL Ex.1002.245

INTEL Ex.1002.246

BoP Bo

Attorney Docket No.: ALA-006C

it) 8 a

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below named inventor, I hereby declarethat:

Myresidence, post-officeaddress, and citizenship are as stated below next to my name. IJ believe I am the original, first and sole
inventor Gif only one nameis listed below), or an orginal, first and joint inventor (if plural names are listed below) ofthe subject
matter which 1s claimed and for whicha patent is sought by wayof the application entitled:

“FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO A TCP CONNECTION”

which (check) x is attached hereto.

and 1s amended by the Preliminary Amendmentattached hereto.
wasfiled on , as Application Serial No.
and was amended on (if applicable). -

Lhereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended
by any amendmentreferred to above. I acknowledgethe duty to disclose all information which is material to patentability as defined in37 CFR 1.56.

Foreign Application(s) and/or Claim of Forcign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119(a)-(d), of any foreign application(s) for patent
or inventor’s certificate, or any PCT international application(s) designating at least one country other than the United States of
America listed below, and have also identified below any foreign application(s) for patent or inventor’s certificate or an PCT
international application(s) designating at least one country other than the United States
matter havinga filing date before that of the application(s) on which priority is claimed:

of America filed by me on the same subject

Provisional Application ;
T hereby claim the benefit under Title 35, United States Code Section 119
below: (e) of any United States provisional application(s) listed

yx

U.S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) or PCT international
application(s) designating the United States of Americalisted on the following page and, insofar as the subject matter of each of the
claims of this application is not disclosed in the prior United States application(s) in the manner provided by the first paragraph of
Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which became available between the filing date of the prior application(s) and the national or
PCTinternational filing date of this application:

Declaration and Power of Attorney

INTEL Ex.1002.246

INTEL Ex.1002.247

a gyserthe Teac

Ne

Powerof Attorney

As a namedinventor, I hereby appointthe following attorney(s) and/or agent(s) listed below to prosecute this
all business in the Patent and Trademark Office connected therewith.

application and transact

MarkA. Lauer, Reg. No. 36,578 T. Lester Wallace, Reg. No. 34,748

I hereby declarethatall statements made herein of my own knowledge are true and that all statements made on information and belief
are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so‘
made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful
false statements may jeopardize the validity of the application or any patent issued thereof.

Full Nameof Inventor: Laurence B. Boucher Citizenship: United States of America

Residence: 20605 Montalvo Heights Drive
Saratoga, CA 95070

Post Office Address: Sameas above

Inventor’s Signature Date

Declaration and Power of Attorney

INTEL Ex.1002.247

INTEL Ex.1002.248

Full Nameof Inventor:

Residence:

Post Office Address:

eet?

Stephen E. J. Blightman

3733 Arlen Court

San Jose, CA 95132.

Same as above

Inventor’s Signature

Full Nameof Inventor:

Residence:

Post. Office Address:

Peter K. Craft

156 Henry Street
San Francisco, CA 94114

Same as above

Inventor’s Signature

Full Name of Inventor:

Residence:

Post Office Address:

_Payd
Inventor’s Signature

David A. Higgen

17880 Los Alamos Drive

Saratoga, CA 95070 -

Same as above

by Te

Declaration and Power of Attorney

Attorney Docket No.: ALA-006C

Citizenship: United Kingdom

Date

Citizenship: United States of America

Date

Date

Citizenship: United Kingdom

8 { S Sy (-

INTEL Ex.1002.248

INTEL Ex.1002.249

Full Nameof Inventor:

Residence:

Post Office Address:

Clive M. Philbrick

1170 Roycott Way
San Jose, CA 95125

Same as above

JInventor’s Signature

Full Name of Inventor:

Residence:

Post Office Address:

Dary! D. Starr

446 Folsom Court

Milpitas, CA 95035

Same as above |

Inventor’s Signature

Date

Date

Declaration and Power of Attorney

Citizenship: Australia

Citizenship: United States of America

INTEL Ex.1002.249

INTEL Ex.1002.250

 Zn. Pp

et No.: ALA-006C

a2 Thad

Attorney Dock

:+
(a?

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

Myresidence, post-office address, and citizenship are as stated below next to my name. I believe I am the original, first and sole
inventor (if only one nameis listed below), or an original, first and joint inventor (if plural namesare listed below) of the subyect
matler which ts claimed and for which a patent is sought by way of the application entitled:

“FAST-PATH APPARATUS FOR RECEIVING DATA CORRESPONDING TO A TCP CONNECTION”

which (check) x is attached hereto.

and is amended by the Preliminary Amendmentattached hereto.
was filed on , as Application Serial No.
and was amended on Gf applicable).

I hereby state that I have reviewed and understoodthe contents of the above-identified specification, including the claims, as amended
by any amendmentreferred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in
37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under‘litle 35, United States Code Section 119(a)-(d), of any foreign application(s) for patent
or inventor’s certificate, or any PCT international application(s) designating at least one country other than the United States of

’ America listed below, and have also identified below any foreign application(s) for patent or inventor’s certificate or an PCT
, international application(s) designating at least one country other than the United States of America filed by me on the same subyect

matter having a filing date before that ofthe application(s) on which priority is claimed:

Provisional Application . .

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed
below:

XN

USS. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) or PCT international
application(s) designating the United States of America listed on the following page and, insofar as the subject matter of each of the
claims of this application is not disclosed in the prior United States application(s) in the manner provided bythe first paragraph of
Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which became available between the filing date of the prior application(s) and the national or
PCTinternational filing date of this application:

Declaration and Power of Attorneye

INTEL Ex.1002.250

INTEL Ex.1002.251

2 wae Shey eee Hon epaa Os Tad TE Ths 2 BF

Attorney Docket No.: ALA-006C

Power of A ttorney
As.a named inventor, I hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact
all business in the Patent and Trademark Office connected therewith.

MarkA. Lauer, Reg. No. 36,578 T. Lester Wallace, Reg. No. 34,748

I hereby declare that all statements made herein of my own knowledgeare true and that all statements made on information and belief
are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so
made are punishable by fine or imprisonment, or both, under Section 1001 ofTitle 18 of the United States Code and that such willful
false statements may jeopardize the validity of the application or any patentissued thereof.

Full Name of Inventor: Laurence B. Boucher Citizenship: United States of America

Residence: 20605 Montalvo Heights Drive
Saratoga, CA 95070

Post Office Same as above

221 [or

Date fiventor’s Signature

Declaration and Power of Attorney 2

INTEL Ex.1002.251

INTEL Ex.1002.252

Attorney Docket No.: ALA-006C

Full Name of Inventor: Stephen E. J. Blightman Citizenship: United Kingdom

Residence: 3733 Arlen Court
San Jose, CA 95132

Citizenship: United States of AmericaFull Name of Inventor: Peter K. Craft

Residence: 156 Henry Street

San Francisco, CA 94114

PGSPom

Post Office Address:

Inventor’s Signattre Date

Full Name of Inventor: David A. Higgen Citizenship: United Kingdom

Residence: 17880 Los Alamos Drive

, Saratoga, CA 95070

Post Office Address: Same as above

DateInventor’s Signature

Declaration and Power of Attorney

INTEL Ex.1002.252

INTEL Ex.1002.253

Full Nameof Inventor: Clive M. Philbrick

Residence: 1170 Roycott Way
San Jose, CA 95125

Post Office Address: Same as above

OrplMoke
Inventor’s Signature

Full Name of Inventor: Daryl D. Starr

446 Folsom CourtResidence:

Milpitas, CA 95035

 Aa \
Inventor’s Signatpre

Declaration and Power of Attorney

“pew
jot Hho

ALA-006C

Citizenship: Australia

2[rbfoa
Date

Citizenship: United States of Amenca

Zles [oz
Date

INTEL Ex.1002.253

INTEL Ex.1002.254

.
, . tS se “4

: ,

=, ™ y

PATENT APPLICATION SERIAL NO.

U.S. DEPARTMENT OF COMMERCE

PATENT AND TRADEMARK OFFICE

FEE RECORD SHEET

10/03/2002 DTESSEM! 00000026 10260878

O1 FCs101 740.00 OP
02 FCsi03 72.00 OP

PTO-1556

(5/87)

“U.S. GovermentPrinting Otfica: 2002 — 489-267/69033
nt ag

INTEL Ex.1002.254

INTEL Ex.1002.255

PATENT APPLICATION FEE DETERMINATION RECORD

Effective October 1, 2001

CLAIMS AS FILED - PART | SMALL ENTITY

TOTAL CLAIMS |
J fe

roa[a
TOTAL CHARGEABLE CLAIMS|/>¢minus20|

MULTIPLE DEPENDENT CLAIM PRESENT Oo

* If the difference in column 1 is less than zero, enter “0” in column 2

CLAIMS AS AMENDED - PARTIl OTHERTHAN
SMALLENTITY OR SMALL ENTITY

OTHER THAN

OR SWNALL ENTITY

HIGHEST
REMAINING NUMBER

AFTER PREVIOUSLY
AMENDMENT|-

<
b=
= |
Ww
=
a
z
us
Ss
gf

TOTAL
ORapport. FEE

HIGHEST
REMAINING NUMBER

AFTER PREVIOUSLY

|_ AMENDMENTAMENDMENTB
CLAIMS HIGHEST

REMAINING NUMBER
AFTER PREVIOUSLY

AMENDMENT

Independent

FIRST PRESENTATION OF MULTIPLE DEPENDENTCLAIM

AMENDMENTC
* If the entry in column1 is less than the entry in column2,write “0” in column3.
** If the ‘Highest NumberPreviously Paid For" IN THIS SPACEis less than 20, enter “20.”
***If the “Highest Number Previously Paid For” IN THIS SPACEis less than 3,enter“3.”

The “Highest Number Previously Paid For” (Total or Independent) is the highest numberfoundin the appropriate box in column1.

FORM PTO-875 (Rev. 8/01) Patent and Trademark Office, U.S. DEPARTMENT OF COMMERCE$TU.S GPO,2001 482-124 759197

INTEL Ex.1002.255

INTEL Ex.1002.256

FILING DATESERIAL NO.

LICANT(S.‘APP

(FOR USE WITH FORM PTO-875)

MULTIPLE DEPENDENT CLAIM
FEE CALCULATION SHEET

 aETTTaTTLTPTTELEELE
&xralaole° wowooaNy}!+)wlcole]olaaoelo4a|fae°-SPPeleee]a0|0a!&DI]aS[Ra[<

=159fouloZ[FoiF
CLAIMS

*MAY BE USED FOR ANNITINNG© 71h antcne yey nuowne US. DEPARTMENT af COMMEACE

TOTAL

ALEEE|BHLLETTTTTrETh~aleworxOe
qstp]cofe-LEEECEREEE4444UC“EEE“PPP°.“7-

o°a

15

PTO-1360(

bags“yet:acide*
OY

 INTEL Ex.1002.256

INTEL Ex.1002.257

ARTIFACT SHEET

Enter artifact number below. Artifact numberis application number +
artifacttype code (seelist below) + sequentialletter (A, B, C ...). Thefirst
artifact folder for an’artifact type receives the letter A, the second B,etc..
Examples: 59123456PA, LOCI. 59123456ZA, 59123456ZB
Indicate quantity ofa single type of artifact received but not scanned. Create
individualartifact folder/box and artifact numberfor each Artifact Type.

im CD(s) containing: [7
computer program listing
Doc Code: Computer Artifact Type Code: P
pagesofspecification

and/or sequencelisting [+]
and/or table

Doc Code: Artifact Artifact Type Code: Scontent unspecified or combined rf
Doc Code: Artifact Artifact Type Code: U

Stapled Set(s) Color Documents or B/W Photographs
Doc Code:Artifact Artifact Type Code: C

Microfilm(s)
Doc Code: Artifact Artifact Type Code: F

Video tape(s)
Doc Code: Artifact Artifact Type Code: V

Model(s)
Doc Code: Artifact Artifact Type Code: M

Bound Document(s)
Doc Code: Artifact - Artifact Type Code: B

Confidential Information Disclosure Statement or Other Documents
marked Proprietary, Trade Secrets, Subject to Protective Order,
Material Submitted under MPEP 724.02, etc.

Doc Code: Artifact Artifact Type Code X

PIOOOO
' Other, description:

Doc Code: Artifact Artifact Type Code: Z
[|
‘March 8, 2004

INTEL Ex.1002.257

INTEL Ex.1002.258

a(S1s

Zz
Sp

7-23-02

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Ser. No: 10/260,878

Filing Date: September 27, 2002 Examiner: Unknown

Atty. Docket No: ALA-006E GAU: 2154

For: FAST-PATH APPARATUSFOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

RECEIVED
July 11, 2003

JUL 17 2003
Commissioner for Patents TechP.O. Box 1450 chnology Center 2100
Alexandria, VA 22313-1450

Information Disclosure Statement per 37 C.F.R. §1.98

Sir:

Pursuant to 37 C.F.R. §§ 1.56, 1.97 and 1.98, applicants bring one hundred and

forty-six documentslisted on the enclosed fourteen-page form PTO-1449to the attention

of the Examiner in the above-identified application.

Citation of these documents shall not be construed as an admission that the

documentsare prior art with respectto the instant invention, a representation that a search

has been made, or an admissionthat the information cited herein is, or is considered to

be, material to patentability as defined in 37 C.F.R. § 1.56(b). Copies of the documents

listed on the enclosed fourteen-page form PTO-1449 are not submitted because they were

submitted in an earlier application (09/801 ,488,) which is relied upon for anearlier filing

date under 35 U.S.C. §120.

Respectfully submitted,

CERTIFICATE OF MAILING

I hereby certify that this correspondenceis being deposited with Mark Lauer

the United States Postal Service as first class mail in an envelope Reg. No. 36,578
addressed to the Commissionerfor Patents, P.O. Box 1450, 6601 Koll Center Parkway
Alexandria, VA 22313-1450, on July 11, 2003. Suite 245

Pleasanton, CA 94566Date:_7- 47-23 be Tel: (925) 484-9295
Mark Lauer Fax: (925) 484-9291

INTEL Ex.1002.258

INTEL Ex.1002.259

Inventors: Laurence Boucher,etal.

Group Art Unit: 2154

Examiner name: Unknown

Attorney Docket No.: ALA-006E

; U.S. Patent Documents

Faaee a
fa

c

:

aeSY Ne,

ECEIVED

200

230 .
78

200

00 T nology Center 21 00

—

e{<[-|=[ol=[elelel=|>|
K|5,448,566 09/05/95 94.1

Foreign Patent Documents
Translation

L|WO 00/13091 03/09/00 PCT/US98/24943

WO 99/65219 12/16/99 PCT/US99/13184 pf
OTHER ART(Including Author, Title, Date, Pertinent Pages, Etc. |

E°

=

¥

Internet pages entitled "Hardware Assisted Protocol Processing”, (which Eugene Feinberg is working on), | page,
printed 11/25/98.

*EXAMINER:Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Draw line through citationif not
in conformance and not considered. Include copyof this form with your communicationto applicant.

Sheet 1 of 14

INTEL Ex.1002.259

INTEL Ex.1002.260

> =pS.°= Zz° — |<nv a io oO ~~ oO

| i)

Filing date: September 27, 2002

Inventors: Laurence Boucher,et al.

Group Art Unit: 2154

Examiner name: Unknown

CORRESPONDINGTO A TCP CONNECTION
Attorney Docket No.: ALA-006E

U.S. Patent Documents

Document Filing Date,|[Rumer|date|Name|cass|sucess|Traee
5,485,579 01/16/96 200.12

Fe [as0asee ——[ov00se own
Fe [sani [oun [asRECEIVED
Fo [sseam0 [oss

5

1

*Examiner

Initial

.

FF[55651700/566|aikewar|>v0[oo___Teplogy Canter 270

1[seas|osise7|Depeat

.

Translation

5,634,127 05/27/97|Cloudetal.

Foreign Patent Documents

L WO01/05107 Al 01/18/01 PCT/US00/19006 Pf

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

Internet pages entitled: A Guide to the Paragon XP/S-A7 Supercomputerat Indiana University, 13 pages, printed
N|1221/98.

po|Richard Stevens, “TCP/IP Illustrated, Volume 1, The Protocols”, pages 325-326 (1994),
|

pe Internet pages entitled: Northridge/Southbridge vs. Intel Hub Architecture, 4 pages, printed 2/19/01.

.
N So S _ in

Gj ¢ {_.

Zz

Gigabit Ethernet Technical Brief, Achieving End-to-End Performance, Alteon Networks, Inc., First Edition,
September 1996. l

}L
f

*EXAMINER:Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communicationto applicant.

Sheet 2 of 14

INTEL Ex.1002.260

INTEL Ex.1002.261

Application No.: 10/260,878

DISCLOSURE STATEMENT BY Filing date: September 27, 2002

APPLICANT . Inventors: Laurence Boucher,et al.

Group Art Unit: 2154

Examiner name: Unknown

Attorney Docket No.: ALA-006E

U.S. Patent Documents

oe,
A

c[sensss|ovasie7|cottins3952002[RECEIVED _|

[5659317|rane|Sartoreetal|395|230.06 ‘T¢chnology Center 2109|

*Examiner

Initial

Foreign Patent Documents

F°

Translation

WO 01/05123 Al 01/18/01 PCT/US00/1 8976

WO 01/40960A1 06/07/01 PCT/US00/32660 Pf
OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

N Internet pages directed to Technical Brief on Alteon Ethernet Gigabit NIC technology, www.alteon.com, 14 pages,
printed 3/15/97.

VIA Technologies,Inc.article entitled "VT8501 Apollo MVP4", pagesi-iv, 1-11, cover and copyright page,
revision 1.3, Feb. 1, 2000.

iReady NewsArchivesarticle entitled "iReady Rounding Out Management Team with Two Key Executives",
http://www.ireadyco.com/archives/keyexec.html, 2 pages, printed | 1/28/98.

“Toshiba Delivers First Chips to Make Consumer Devices Internet-Ready Based On iReady’s Design,” Press
Release October, 1998, 3 pages, printed 11/28/98.

*EXAMINER:Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

~Sheet 3 of14

INTEL Ex.1002.261

INTEL Ex.1002.262

Application No.: 10/260,878

ETRRORMATION DISCLOSURE STATEMENTBY_|Filing date: September 27, 2002
Bs APPLICANT Inventors: Laurence Boucher,et al.

nS G
f Group Art Unit: 2154

€aFAST-PATH APPARATUSFOR RECEIVING DATA Examiner name: Unknown
_.<. CORRESPONDING TO A TCP CONNECTION

:Lif
Attorney Docket No.: ALA-006E

|2OS”
U.S. Patent Documents

fa|[Rew|a = ie

Te[saseces Posse

To[srssise [ose rsRECEIVED _|
riser_|

oo Ww —_

395

395

395

395

395

395

395

711

395

395

395

86

||| 5,802,580 09/01/98|McAlpice
|tt|5,809,328 09/15/98|Nogaleset al 25

||K|5,815,646 09/29/98|Purcell etal.
Foreign Patent Documents

200.43

S|§ Sce —< ©wo=

cr

@a
N —_ OooO

Translation

OTHER ART(Including Author, Title, Date, Pertinent Pages, Etc.

Internet pages from iReady Products, websitehttp://www.ireadyco.com/products,html, 2 pages, downloaded
11/25/98.

E°

iReady News Archives, Toshiba, iReady shipping Internet chip, | page, printed 11/25/98.

Interprophet article entitled "Technology", http://www.interprophet.com/technology.htm!, 17 pages, printed 3/1/00.

iReady Corporation,article entitled "The I-1000 Internet Tuner", 2 pages, date unknown.

*EXAMINER:Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet4of14

INTEL Ex.1002.262

INTEL Ex.1002.263

 Application No.: 10/260,878

Filing date: September 27, 2002 RMATION DISCLOSURE STATEMENT BY

APPLICANT Inventors: Laurence Boucher,et al.

Group Art Unit: 2154 |

Attorney Docket No.: ALA-006E

U.S. Patent Documents

*Examiner Document Filing Date,

Po A|5,878,225 03/02/99 Bilansky etal. 200.57

5,

878, 395 ,

Row ea 709 [300RECEIVED _|

,937, 95

07

70

09

ofe|>|
mio

5,941,972 Hoeseet al.

|||5,950,203 Stakuis etal.

|K|]5,996,024=|11/3099|Blumenau
Foreign Patent Documents

ry

710 nology Center 2100

0

128

29

0

92

Q

710

7

3

7

301

Translation

WO/98/50852 11/12/98 PCT/US98/08719 P|
WO/99/04343 01/28/99 PCT/US98/14729 po

OTHER ART(Including Author, Title, Date, Pertinent Pages, Etc.

iReadyarticle entitled "About Us Introduction", Internet pages fromhttp://www.iReadyco.com/about.html, 3 pages,
printed 11/25/98.

E°

Pe|

 iReady NewsArchive article entitled “Revolutionary Approach to Consumer Electronics Internet Connectivity
Funded”, San Jose, CA, November 20,1997. 2 pages, printed 11/2/98.

iReady NewsArchive article entitled “Seiko Instruments Inc. (SII) INTRODUCES WORLD’S FIRST INTERNET-
READY INTELLIGENT LCD MODULES BASEDON IREADY TECHNOLOGY,”Santa Clara, CA and Chiba,
Japan, October 26, 1998, 2 pages, printed 11/2/98.

{I

!

NEWSwatcharticle entitled "iReady internet Tuner to Web Enable Devices", Tuesday, November5, 1996, printed
11/2/98.

|

*EXAMINER:Initial if reference considered, whetheror notcitation is in conformance with MPEP 609; Drawline throughcitation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet5of 14

INTEL Ex.1002.263

INTEL Ex.1002.264

Filing date: September 27, 2002

APPLICANT Inventors: Laurence Boucher, etal.

Group Art Unit: 2154

“”AST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION4 a |

PCusrencnamns|

Examiner name: Unknown
Attorney Docket No.: ALA-006E

U.S. Patent Documents

Document Filing Date,

i299|

*Examiner
Initial

oO

»VU, . 5

,057,863 i 345

3 370

’ 711

frre 5s

[anise[oanawo—[andosonaat[11[129Tamora 210
[eosnasi[osnow[owig[es
[sassen[0900[rintoape0
Fs0esi96|anceosyera,[me

K|6,141,705 10/31/00|Anandeta.===|710sfs,
Foreign Patent Documents

oe

76

50

6

520

37

15

Translation

OTHER ART(Including Author, Title, Date, Pertinent Pages, Etc.)

EETimesarticle entitled "Tuner for Toshiba, Toshiba Taps iReady for Internet Tuner", by David Lammers,2 pages,
printed | 1/02/98.| N

|fo “Comparison of Novell Netware and TCP/IP Protocol Architectures", by J.S. Carbone, 19 pages, printed 4/10/98.
Adaptecarticle entitled "AEA-71 10C-a DuraSAN product", 11 pages, printed 10/1/01.

fl

iSCSI HBA article entitled "iSCSI and 2Gigabit fibre Channel Host Bus Adapters from Emulex, QLogic, Adaptec,
JNI", 8 pages, printed 10/01/01.

wen

Zz

={e]

i|Examiner Date Considered

 *EXAMINER:Initial if reference considered, whetheror notcitation is in conformance with MPEP 609; Drawline through citationif not
in conformance and not considered. Include copy of this form with your communication to applicant.

~Sheet 6of14

INTEL Ex.1002.264

INTEL Ex.1002.265

Application No.: 10/260,878

\ PINRORMATION DISCLOSURE STATEMENTBY_|Filing date: September 27, 2002
APPLICANT|tnvenors:LaurenceBourezera.|

SU ¥pom Pipntse|‘

wrFAST-PATH APPARATUS FOR RECEIVING DATA
aoey CORRESPONDING TO A TCP CONNECTION

| Attorney Docket No.: ALA-006E

U.S. Patent Documents

*Examiner Document Filing Date,

230

392

238

230

Zz°

Feaossa0|idler 07/18/97

™

Technplogy Center 2100eie[-[=/o[=/e[elol=>| Tt

a
a
—
aa
a

Foreign Patent Documents
Translation

[DooumentWunber[Dae[County[Class[Sibelass[Yes

po
pe

|
OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

Pie

“Two-Way TCP Traffic Over Rate Controlled Channels: Effects and Analysis”, by Kalampoukaset al., IEEE
Transactions on Networking, vol. 6, no. 6, December 1998.

IReady Newsarticle entitled “Toshiba Delivers First Chips to Make ConsumerDevices Internet-Ready Based on
iReady Design", Santa Clara, CA, and Tokyo, Japan, October 14, 1998, printed 11/2/98.

||

*EXAMINER:Initial if reference considered, whetheror not citation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

“Sheet7of 14

INTEL Ex.1002.265

INTEL Ex.1002.266

Application No.: 10/260,878

ATION DISCLOSURE STATEMENT BY Filing date: September 27, 2002
APPLICANT Inventors: Laurence Boucher,etal.

W G3
2 f Group Art Unit: 2154

&/
2 maneAST-PATH APPARATUSFOR RECEIVING DATA

“CORRESPONDING TO A TCP CONNECTION
Examiner name: Unknown

 Attorney Docket No.: ALA-006E

U.S. Patent Documents

*Examiner Document Filing Date,

™m

< wo

QO |1-7-2003
cD cD

pL

eal

°

Foreign Patent Documents

Translation

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

|
United States Patent Application No. 08/964,304, by Napolitano,et al., entitled “File Array Storage Architecture”,
filed 11/04/97.
“File System Design For An NFSFile Server Appliance”, Article by D. Hitz, et al., 13 pages.

Adaptec Press Releasearticle entitled “Adaptec Announces EtherStorage Technology”, 2 pages, May 4, 2000,
printed 6/14/00.

Adaptec article entitled “EtherStorage Frequently Asked Questions”, 5 pages, printed 7/19/00.

pelsfel=
Examiner Date Considered

*EXAMINER:Initial if reference considered, whether or not citation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

- Sheet 8 of 14

INTEL Ex.1002.266

INTEL Ex.1002.267

Application No.: 10/260,878

Filing date: September 27, 2002

Inventors: Laurence Boucher,et al.

Group Art Unit: 2154

Examiner name: Unknown

Attorney Docket No.: ALA-006E

U.S. Patent Documents

Document Filing Date,

‘

Wet
*Examiner

Initial

Ju1 7 2003isLfai-[-[sfolmfelelolel>|| oreign Patent Documents

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.)

Translation

°

Zz Adaptecarticle entitled “EtherStorage White Paper”, 7 pages, printed 7/19/00.

CIBC World Markets article entitled “Computers; Storage”, by J. Berlino et al., 9 pages, dated August 7, 2000.

Merrill Lyncharticle entitled “Storage Futures”, by S. Milunovich, 22 pages, dated May 10, 2000.

CBS Market Watcharticle entitled "Montreal Start-Up Battles Data Storage Botttleneck”, by S. Taylor, dated March
5, 2000, 2 pages, printed 3/7/00.

Examiner Date Considered

*EXAMINER:Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet 9 of 14

INTEL Ex.1002.267

INTEL Ex.1002.268

Filing date: September 27, 2002

Inventors: Laurence Boucher,et al.

Group Art Unit: 2154

KFAST-PATH APPARATUS FOR RECEIVING DATA Examiner name: Unknown

Trane CORRESPONDINGTO A TCP CONNECTION

*Examiner Document

Initial Number

Attorney Docket No.: ALA-006E

Filing Date,
Class If Appropriate

f\
KC

U.S. Patent Documents

Name

RECEIVED

|
|

nology Center 2100

Tc> dc

Foreign Patent Documents

Translation

pt

OTHER ART(Including Author, Title, Date, Pertinent Pages, Etc.)

N Internet-draft article entitled ““SCSI/TCP (SCSI over TCP)”, by J. Satran et al., 38 pages, dated February 2000, |
printed 5/19/00.

Zz3

Internet pagesentitled “Technical White Paper-Xpoint’s Disk to LAN Acceleration Solution for Windows NT
Server,” 16 pages, printed 6/5/97.

pode Jato Technologies article entitled “Network Accelerator Chip Architecture,” twelve-slide presentation, printed8/19/98.

EETimesarticle entitled “Enterprise System Uses Flexible Spec,” dated August 10,1998, printed 11/25/98.

*EXAMINER:Initial if reference considered, whether or not citation is in conformance with MPEP 609; Drawline throughcitation if not
in conformance and not considered. Include copy of this form with your communicationto applicant.

Sheet 10 of14.

INTEL Ex.1002.268

INTEL Ex.1002.269

Application No.: 10/260,878

IN ORMATION DISCLOSURE STATEMENT BY Filing date: September 27, 2002
e. APPLICANT Inventors: Laurence Boucher,et al.

Group Art Unit: 2154

Examiner name: Unknown

Attorney Docket No.: ALA-006E

pou72003

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

Internet pages entitled “Smart Ethernet Network Interface Cards”, which Berend Ozceri is developing, printed
11/25/98.

Internet pages of Xaqti corporation entitled “GigaPower Protocol Processor Product Review,” printed 11/25/99.

Internet pages entitled “DART: Fast Application Level Networking via Data-Copy Avoidance,” by Robert J. Walsh,
printed 6/3/99.

Examiner

*EXAMINER:Initial if reference considered, whether ornot citation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copy ofthis form with your communicationto applicant.

SheetIl of14

INTEL Ex.1002.269

INTEL Ex.1002.270

D

Filing date: September 27, 2002

Inventors: Laurence Boucher,etal.

Group Art Unit: 2154

examinername:Unknown|
Attorney Docket No.: ALA-006E :

asraembocmens

poi”|foe”{ome{nefoesfe aggre —_|ap
FS
a
pe
Fs
a
a
aa
aa

CKAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

a

©

7

Foreign Patent Documents

a

pe

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.)

© Technology Center 210

F°

Internet pages of InterProphet entitled “Frequently Asked Questions”, by LynneJolitz, printed 6/14/00.

M|Internet pages entitled “iReady Products,” printed | 1/25/98.

PN] Andrew S, Tanenbaum,“Computer Networks,” Third Edition, 1996, ISBN 0-13-349945-6.
feeretianeneenm
feetaninantentine
pe “Second Supplemental Information Disclosure Statement per 37 C.F.R. §1.97(i)”, dated July 29, 2002 relating to |Exelan Inc. as submitted in Application Serial No. 09/464,283.

|
|

||

*EXAMINER:Initial if reference considered, whetheror not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

‘Sheet12 of 14

INTEL Ex.1002.270

INTEL Ex.1002.271

rcpt - es EET — a EE — ee

| * « U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878il

> \FRR @RMATION DISCLOSURE STATEMENTBY
$ APPLICANT

Filing date: September 27, 2002

Inventors: Laurence Boucher,etal.

Group Art Unit: 2154

Examiner name: UnknowniG maneFAST-PATH APPARATUSFOR RECEIVING DATA
he CORRESPONDING TO A TCP CONNECTION
f

|

Fsusitmentdocuments

ttorney Docket No.: ALA-006E

U.S. Patent Documents

Document Filing Date,

A

2001/0025315A1

c

*Examiner
Initial

RAECEIVH[=lel=|elelole|>| JUL 1 7 2003
2

Translation

Foreign Patent Documents

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.)

WindRiverarticle entitled “Tornado: For Intelligent Network Acceleration”, copyright Wind River Systems, 2001, 2
pages.

 io

zis|
WindRiver White Paperentitled “Complete TCP/IP Offload for High-Speed Ethernet Networks”, Copyright Wind
River Systems, 2002, 7 pages.

Intel article entitled “Solving Server Bottlenecks with Intel Server Adapters”, Copyright Intel Corporation, 1999, 8
pages.

Examiner Date Considered i

*EXAMINER:Initial if reference considered, whetheror not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

 pefet=zfete)

—_ Sheet| 3of 14

INTEL Ex.1002.271

INTEL Ex.1002.272

Application No.: 10/260,878

Filing date: September 27, 2002

Inventors: Laurence Boucher,et al.

Group Art Unit: 2154

b, ,SAST-PATH APPARATUS FOR RECEIVING DATA Examiner name: Unknown
TRave®””=~CORRESPONDING TO A TCP CONNECTION

U.S. Patent Documents

FieDa

[a[snnaes|o20vo0|Gemy,‘(709

[9[saesace|osiaon|wutereias[709
fe[soni|ovsona[enw=i

-
—
a

Attorney Docket No.: ALA-006E

*Examiner
Initial

RECEIVED

|
ee
ee
ee

[250]
—emoayconerzr

Foreign Patent Documents

Translation
Zz

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

N Article from Rice University, Department of Computer Science entitled “Lazy Receiver Processing (LRP): A New
Network Subsystem Architecture for Server Systems”, by Peter Druschel and Gaurav Banga,15 pages.

Interdependence”, web address http://www. faqs.org/rfcs/rfc2140.html, 9 pages, printed 9/20/02.

Examiner Date Considered

*EXAMINER: Initial if reference considered, whether ornotcitation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

jo Internet RFC/STD/FY1/BCP Archives article with heading “RFC2140”entitled “TCP Control Block

Sheet 14 of 14

INTEL Ex.1002.272

INTEL Ex.1002.273

2/S¥,

 NS IN THEUNITED STATES PATENT AND TRADEMARK OFFICE
evreg

Application of Laurence B. Boucher,etal. Ser. No: 10/260,878

Filing Date: September 27, 2002 Examiner: Unknown

Atty. Docket No: ALA-006E GAU: 2154

For: FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDINGTO A TCP CONNECTION

June 7, 2004

Commissionerfor Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Supplemental Information Disclosure Statement per 37 C.F.R. §1.98

Sir: ;

Pursuant to 37 C.F.R. §§ 1.56, 1.97 (e)(1), 1.98, applicants bring the following

documentto the Examiner’s attention. Included withthisletter is one U.S. Patent

documentthat wasfirst cited in a communication from a foreign patentoffice in a

— counterpart foreign application not more than three monthspriorto thefiling of this

information disclosure statement. Also included is a one-page form PTO-1449listing

this document.

Citation of this documentshall not be construed as an admission that the

documentis prior art withrespect to the instant invention, a representation that a search
has been made, or an admission that the information cited herein is, or is considered to

be, material to patentability as defined in 37 C.F.R. § 1.56(b).

Respectfully submitted,

CERTIFICATE OF MAILING LE
I hereby certify that this correspondenceis being deposited with Mark Lauer

the United States Postal Service as first class mail in an envelope Reg. No. 36,578
addressed to the Commissioner for Patents, P.O. Box 1450 6601 Koll Center Parkway
Alexandria, VA 22313-1450, on June 7, 2004. Suite 245

Pleasanton, CA 94566
Date: 6-7-7 B= Tel: (925) 484-9295

Mark Lauer Fax: (925) 484-9291

4

INTEL Ex.1002.273

INTEL Ex.1002.274

NTAL INFORMATION DISCLOSURE

3 Inventors: Laurence Boucher,et al.

A =>, ATH APPARATUS FOR RECEIVING DATA Examiner name: Unknown
CORRESPONDING TO A TCP CONNECTION

Attorney Docket No.: ALA-006E

U.S. Patent Documents

*ED amin Document Filing Date,psa| [eee_{ee—_/|__vowe_feter_[rovts_|sus[iti
Pte

Foreign Patent Documents

Translation

a
*EXAMINER:Initial if reference considered, whether ornotcitation is in conformance with MPEP 609; Drawline throughcitation if not
in conformance and not considered. Include copyofthis form with your communicationto applicant.

~~Sheetlof1

INTEL Ex.1002.274

INTEL Ex.1002.275

9.15$
TPL/

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
s ‘Application of Laurence B. Boucher,et al. Ser. No: 10/260,878

Filing Date: September 27, 2002 Examiner: Unknown

Atty. Docket No: ALA-006E ' GAU: 2154

For: FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

June 21, 2004

Commissioner for Patents

P.O. Box 1450
Alexandria, VA 22313-1450

ond Supplemental Information Disclosure Statement per 37 C.F.R. §1.98

Sirs

- - Pursuant to 37 C.F.R. §§ 1.56, 1.97 and 1.98, applicants bring the following

documentto the Examiner’s attention. Includedis one U.S.Patent reference document

and a one-page form PTO-1449listing this document.

Citation of this documentshall not be construed as an admission that the

documentis prior art with respect to the instant invention, a representation that a search

has been made,or an admission that the information cited herein is, or is considered to

be, material to patentability as defined in 37 C.F.R. § 1.56(b).

Respectfully submitted,

CERTIFICATE OF MAILING

I herebycertify that this correspondenceis being deposited with Mark Lauer

the United States Postal Service as first class mail in an envelope Reg. No. 36,578
addressed to the Commissioner for Patents, P.O. Box 1450 6601 Koll Center Parkway
Alexandria, VA 22313-1450, on June 21, 2004. Suite 245

Pleasanton, CA 94566
Date: 6 72/7 2Y fE— Tel: (925) 484-9295

Mark Lauer Fax: (925) 484-9291

INTEL Ex.1002.275

INTEL Ex.1002.276

Application No.:|appticaionNo:1026087878
Filing date: September 27, 2002

Inventors: Laurence Boucher,et al.

Group Art Unit: 2154 |

[parrarmarranatus ron ecerinc pata|tasinrsmeVain|
< IPA” CORRESPONDING TO A TCP CONNECTION

Attorney Docket No.: ALA-006E

U.S. Patent Documents

*Examiner Document Filing Date,

a Number Name Class Subclass If Appropriate

Foreign Patent Documents
Translation

*EXAMINER:Initial if reference considered, whetheror not citation is in conformance with MPEP 609; Drawline through citationif not
in conformanceand notconsidered. Include copyofthis form with your communicationto applicant.

Sheet1 of1

INTEL Ex.1002.276

INTEL Ex.1002.277

SY

Ser.No: > 10/260,878

Filing Date: September 27, 2002 Examiner: Unknown

Atty. Docket No: = ALA-006E GAU: 2154 }

For: FAST-PATH APPARATUS FOR RECEIVING DATA
CORRESPONDING TO A TCP CONNECTION

February 24, 2005

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

34 Supplemental Information Disclosure Statement

Sir:

Pursuant to 37 C.F.R. §§ 1.56, 1.97 and 1.98, applicants bring sixteen documents

to the Examiner’s attention. Included are copies of nine non-patent reference documents,

and a one-page form PTO-1449listing these documents separately from seven U.S.

Patent reference documents. Copies of the seven U.S. Patent reference documents are not

enclosed.

Citation of these documents shall not be construed as an admission that the

documents are prior art with respect to the instant invention, a representation that a search

has been made, or an admissionthat the information citedherein is, or is considered to
be, material to patentability as defined in 37 CFR.§ 1.56(b).

Respectfully submitted,

CERTIFICATE OF MAILING Br
I hereby certify that this correspondenceis being deposited with Mark Lauer
the United States Postal Service as first class mail in an envelope Reg. No. 36,578
addressed to the Commissioner for Patents, P.O. Box 1450 6601 Koll Center Parkway
Alexandria, VA 22313-1450, on February 24, 2005. Suite 245

Pleasanton, CA 94566
Date. 2 —24-a57 Bo Tel: (925) 484-9295

Mark Lauer Fax: (925) 484-9291

INTEL Ex.1002.277

INTEL Ex.1002.278

: Sheet 1 of 1

U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

Filing date: September 27, 2002

 6sbpeLEMENTAL INFORMATION DISCLOSURE
a Inventors: Laurence Boucher, etal.

CORRESPONDING TO A TCP CONNECTION

| Attorney Docket No.: ALA-006E

U.S. Patent Documents

*Examiner Document Filing Date,
Initial Number Date Name Class Subclass If Appropriate

[ssza20|ase|chenonetaroa
[—sersos|aeor|ewe|os
[rere[arose|cronids|
ee
a

ra
700
|

200.01

182.08

OTHER ART—NONPATENT LITERATURE DOCUMENTS

*Examiner

initial Cite (Including Author, Title, Date, Pertinent Pages, Etc.) Schwadereret al., IEEE Computer Society Press publication entitled, “XTP in VLSI Protocol
Decomposition for ASIC Implementation’, from 15" Conference on Local Computer Networks, 5
pages, Sept. 30 — Oct. 3, 1990.

Beach, Bob, IEEE Computer Society Press publication entitled, “UltraNet: An Architecture for
Gigabit Networking”, from 15" Conference on Local Computer Networks, 18 pages, Sept. 30 —
Oct. 3, 1990.

Chessonet al., IEEE Syposium Record entitled, “The Protocol Engine Chipset”, from Hot Chips Ill,
16 pages, Aug. 26-27, 1991.

Macleanet al., IEEE Global Telecommunications Conference, Globecom ‘91, presentation

entitled, “An Outboard Processorfor High Performance Implementation of Transport Layer
Protocols”, 7 pages, Dec. 2-5, 1991.

Rosset al., IEEE article entitled “FX1000: A high performancesingle chip Gigabit Ethernet NIC’,
from Compcon ’97 Proceedings, 7 pages, Feb. 23-26, 1997.

Strayer etal., “Ch. 9: The Protocol Engine” from XTP: The Transfer Protocol, 12 pages, July 1992.

Publication entitled “Protocol Engine Handbook’, 44 pages, Oct. 1990.
Koufopavlou et al., IEEE Globat Telecommunications Conference, Globecom ‘92, presentation
entitled, “Parallel TCP for High Performance Communication Subsystems’, 7 pages, Dec.6-9,

°

Lilienkampet al., Publication entitled “Proposed Host-Front End Protocol”, 56 pages, Dec. 1984.

*EXAMINER:Initial if reference considered, whetherornotcitation is in conformance with MPEP 609; Drawline ‘through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Examiner Date Considered .

UEsreeanaBaeoea2
yn

INTEL Ex.1002.278

INTEL Ex.1002.279

Ref Hits|Search Query DBs Default Plurals|Time Stamp
Operator

LS 10|(((session OR application OR US-PGPUB;|OR ON 2006/01/18 09:30
presentation OR upper) ADJ layer) USPAT;
NEAR2 header) AND ((tcp OR EPO; JPO;
“transport control") NEAR2 IBM_TDB
connection) AND (header NEAR2
(template OR default))

L6 86|(((session OR application OR US-PGPUB;|OR ON 2006/01/18 10:14
presentation OR upper) ADJ layer) USPAT;
NEAR2 header) AND ((tcp OR EPO; JPO;
"transport control") NEAR2 IBM_TDB
connection)

L7 9|(((transport OR tcp) ADJ layer) US-PGPUB;|OR ON 2006/01/18 10:03
NEAR2 header) SAME((tcp OR USPAT;
"transport control") NEAR2 EPO; JPO;
connection) IBM_TDB

L8 155|(((transport OR tcp) ADJ layer) US-PGPUB;|OR ON 2006/01/18 10:03
NEAR2 header) AND ((tcp OR USPAT;
"transport control") NEAR2 EPO; JPO;
connection) IBM_TDB

L9 157|(((session OR application OR US-PGPUB;|OR ON 2006/01/18 13:23
presentation OR upper) ADJ layer) USPAT;
NEAR2 header) SAME (destination EPO; JPO;
OR address) IBM_TDB

L13 269|(((session OR application OR US-PGPUB;|OR ON 2006/01/18 11:27
presentation OR upper) ADJ layer) USPAT;
NEAR2 header) AND ((destination EPO; JPO;
OR address) WITH header) IBM_TDB

L14 120|(((session OR application OR US-PGPUB;|;OR ON 2006/01/18 11:27
presentation OR upper) ADJ layer) USPAT;
NEAR2 header) AND ((destination EPO;.JPO;
OR address) WITH header) NOT L9|IBM_TDB

Lis 1920|(header WITH (template OR US-PGPUB;|OR ON 2006/01/18 13:24
default)) USPAT;

EPO; JPO;
IBM_TDB

L16 8|((prepend OR append ORattach) US-PGPUB;|OR ON 2006/01/18 13:37
WITH header WITH (template OR USPAT;
default)) EPO; JPO;

IBM_TDB

L17 121|((write OR form) WITH header US-PGPUB;|OR ON 2006/01/18 13:37
WITH (template OR default)) USPAT;

EPO; JPO;
IBM_TDB

SS 1|"260878".apn. US-PGPUB;|OR ON 2006/01/13 13:59
USPAT;
EPO; JPO;
IBM_TDB

Search History 1/18/2006 2:34:29 PM Pagel
C:\Documents and Settings\ekuiper\My Documents\EAST\Workspaces\applications\10260878.wsp

INTEL Ex.1002.279

INTEL Ex.1002.280

56

S7
$8

Search History

48|("5983271" "6141705" "5937169"
"6161123" "5619650" "5841764"

"5898713" "5940598" "6219697"
"6226680" "6219697" "6226680"

"6247060" "6400712" "6405247"

"6415313" "6424650" "6591302"

"6963921" "6965941" "5684954"

"5309437" "5805572" "5706508"

"5727142" "5931916" "5941988"

"6021507" "6032183" "6073180"

"6078733" "6324183" "6356951"

"6389468" "6434620" "6453360"

"6480489" "6483804" "6606301"

"6650640" "6658002" "6721806"

"6751665" "6823437" "6907042"

"6920493" "6938092" "6947430"

"5995741" "6370599").pn.

50|("6904519" "6208620" "6134245"
"6229823" "5307413" "5682534"

"S764645" "5793958" "5923659"

"6084892" "6091710" "6097719"
"6181695" "6195425" "6236652"
"6246683" "6262976" "6292479"

"6330250" "6430595" "6571272"

"6625170" "6697352" "6714541"

"6738361" "6771673" "6779033"

"6826620" "6850495" "6880017"
"6885678" "6956853" "5434976"

"5274768" "6065064" "6208651"
"5574919" "5706429" "6134244"
"6208650" "5235644" "5303344"

"5386542" "5594869" "5903724"
"S920703" "5983259" "5983274"

"6081846" "6085215").pn.

49|("6088777" "6108782" "6263444"
"6334153" "6353619" "6389479"

"6393487" "6427173" "6449631"
"6470391" "6625662" "6658480"

"6798743" "6006268" "6226267"

"6226267" "6463470" "6466984"
"6675218" "6760304" "5740371"

"6535509" "6920484" "6049833"
"5619645" "6055237" "6192411"

"4893307" "5021949" "5815516"
"5950195" "6148410" "5777989"

"5867636" "5898830" "6021263"

"6052788" "6098108" "6097697"
"6119170" "6122276" "6128662"

"6151300" "6185617" "6195705"
"5278955" "5412654" "5442633"

"5550984" "5636371").pn.

1/18/2006 2:34:29 PM Page 2

US-PGPUB;|OR ON 2006/01/13 15:25
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;|OR ON 2006/01/13 16:28
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;|OR ON 2006/01/15 16:33
USPAT;
EPO; JPO;
IBM_TDB

C:\Documents and Settings\ekuiper\My Documents\EAST\Workspaces\applications\10260878.wsp

INTEL Ex.1002.280

INTEL Ex.1002.281

310

Search History

81

("5650993" "5664116" "5673322"
"5699361" "5757924" "5764756"

"5774640" "5799016" "5822523"
"5838682" "5907610" "5917997"

"5931913" "5935215" "5944783"

"5951650" "5964891" "6006264"
"6018766" "6041041" "6061341"

"6075796" "6104716" "6115385"

"6119171" "6137792" "6147976"

"6151679" "6169795" "6212175"

"6226686" "6212175" "6226686"

"6233249" "6233626" "6240513"

"6249294" "6252857" "6263371"

"6266701" "6269099" "6286047"

"6314284" "6321267" "6324161"

"6324582" "6345301" "6351775"

"6353891" "6370144").pn.

("20010004354"|"20010025315"|"43
66538" |"4991133"|"5056058"|"5058
110"|"5097442"|"5163131"|"521277
8"|"5280477"|"5289580"|"5303344"
["5412782"|"5448566"|"5485579"|"
5506966"|"5511169"}"5548730"|"55
66170"|"5588121"|"5590328"|"5592
622"|"5629933"|"5634099"|"563412
7"|"5642482"|"5664114"|"5671355"
{"5678060"|"5692130"|"5699317"|"
5701434"|"5701516"|"5749095"|"57
51715"|"5752078"|"5758084"|"5758
089"|"5758186"|"5758194"|"577134
9"|"5790804"|"5794061"|"5802580"
|"5809328"|"5812775"|"5815646"|"
5878225"|"5913028"|"5930830"|"59
31918"|"5935205"|"5937169"|"5941
969" |"5941972"|"5950203"|"599129
9"|"5996024"|"6005849"|"6009478"
1"6016513"|"6021446"|"6026452"|"
6034963" |"6044438"|"6047356"|"60
57863"|"6061368"|"6065096"|"6141
705"|"6173333"|"6226680"|"624668
3"|"6247060"|"6247169"|"6345301"
|"6356951"|"6389468"|"6434651"|"
6449656"|"6453360").PN.

1/18/2006 2:34:29 PM Page 3

USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;

OR ON

C:\Documents and Settings\ekuiper\My Documents\EAST\Workspaces\applications\10260878.wsp

2006/01/15 16:34

2006/01/15 18:18

INTEL Ex.1002.281

INTEL Ex.1002.282

("4366538"}"4991133"|"S056058"|"
5097442"|"5163131"|"5212778"|"52
80477" |"5289580"|"5303344"|"5412
782"|"5448566"|"5485579"|"S50696
6"|"5511169"|"5548730"|"5566170"
"5588121"|"5590328"|"5592622"|"
5629933" |"5634127"|"5642482"|"56
64114"}"5671355"|"5678060"("5692
130"]"5699317"|"5701516"|"574909
5"|"5751715"|"5752078"|"5758084"
"5758089" |"5758194"|"5771349"|"
5790804"|"5794061"|"5802580"|"58
09328"|"5812775"|"5815646"|"5878
225"|"5913028"|"5930830"|"593191
8"|"5935205"|"5937169"|"5941972"
{"5950203"]"5991299"|"5996024"|"
6005849"|"6009478"|"6016513"|"60
26452"|"6034963" "6044438"|"6047
356"|"6057863"|"6061368"|"606509
6"|"6141705"|"6226680"|"6246683"
"6247060" |"6345301").PN.

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

$12 1|("5598410").PN. US-PGPUB;|OR ON

USPAT;
EPO; JPO;
IBM_TDB

$13 1|("5517668").PN. US-PGPUB;|OR ON
USPAT;
EPO; JPO;
IBM_TDB

S14 36|(interrupt WITH header) AND US-PGPUB;|OR ON
(network ADJ layer) AND (transport|USPAT;
AD) layer) AND (header WITH EPO; JPO;
validat$4) AND (header WITH IBM_TDB
prepend$4)

$15 28|((network ADJ layer) WITH header)|US-PGPUB;|OR ON
AND ((transport ADJ layer) WITH USPAT;
header) AND (header WITH EPO; JPO;
validat$4) AND (header WITH IBM_TDB
prepend$4)

S16 33|((network ADJ layer) WITH header)|US-PGPUB;|OR ON
AND ((transport ADJ layer) WITH USPAT;
header) AND (header WITH EPO; JPO;
validat$4) IBM_TDB

$17 174|((network ADJ layer) WITH header)|US-PGPUB;;OR ON
AND ((transport ADJ layer) WITH USPAT;
header) AND (header WITH EPO; JPO;
(validat¢4 OR check OR checksum IBM_TDB
OR "crc"))

Search History 1/18/2006 2:34:29 PM Page 4
C:\Documents and Settings\ekuiper\My Documents\EAST\Workspaces\applications\10260878.wsp

 2006/01/15 18:27

2006/01/15 18:15

2006/01/15 18:17

2006/01/16 12:36

2006/01/16 12:38

2006/01/16 12:43

2006/01/16 13:04

INTEL Ex.1002.282

INTEL Ex.1002.283

$20

S21

S22

$23

524

40

45

2427

549

15

((network AD) layer) WITH header)
AND ((transport ADJ layer) WITH
header) AND (((mac OR "media
access" OR datalink OR "data link")
AD] layer) WITH header) AND
(header WITH (validat$4 OR check
OR checksum OR "crc"))

((network ADJ layer) WITH header)
AND ((transport ADJ layer) WITH
header) AND (((mac OR "media
access control" OR datalink OR

"data link”) ADJ layer) WITH
header)

("5077732"| "5428615" | "5651002"
| "5729543"| "5732081"|
"S825774").PN. OR ("5991299").
URPN.

("5088090"| "5274631"| "5406643"
| "5452294" | "5473599"|
"5504866" | "5570466"|
"5583996").PN. OR ("5845091").
URPN.

(network ADJ layer) AND (transport
AD) layer) AND ((mac OR "media
access control” OR datalink OR

"data link") ADJ layer)

(network ADJ layer) AND (transport
AD) layer) AND ((mac OR "media
access control" OR datalink OR

"data link") ADJ layer) AND
(protocol WITH header WITHlayer)

(network ADJ layer) AND (transport
AD) layer) AND ((mac OR "media
access control” OR datalink OR

"data link") ADJ layer) AND
(protocol WITH header WITHlayer)
AND (inbound SAME outbound

{| SAME header)

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

2006/01/16 14:20

US-PGPUB;
USPAT;
EPO; JPO;
IBM_TDB

2006/01/16 19:20

US-PGPUB;|OR ON
USPAT;
USOCR

2006/01/16 16:42

US-PGPUB;|OR ON
USPAT;
USOCR

2006/01/16 16:50

US-PGPUB;|OR ON
USPAT;
EPO; JPO;
IBM_TDB

US-PGPUB;|OR ON
USPAT;
EPO; JPO;
IBM_TDB

2006/01/16 17:16

2006/01/16 17:29

US-PGPUB;|OR ON
USPAT;
EPO; JPO;
IBM_TDB

2006/01/18 09:27

Search History 1/18/2006 2:34:29 PM Page5S
C:\Documents and Settings\ekuiper\My Documents\EAST\Workspaces\applications\10260878.wsp

INTEL Ex.1002.283

INTEL Ex.1002.284

("4652874" | "4807111" | "4850042"
| "4899333" | "4922503" |
"4933938" | "5150358" | "5210746"
| "5220562" | "5231633" |
"5251205" | "5278830" | "5291482"
| "5293379" | "5301333" |
"5309437" | "5313454" | "5343471"
| "5386413" | "5392432" |
"5394402" | "5410540" | "5410722"
| "5422838" | "5425028" |
"5426736" | "5450399" | "5455820"
1 "5457681" | "5459714"|
"5459717" | "5461611" | "5461624"
| "5473607" | "5477537" |
"5481540" | "5485455"| "5485578"
| "5490139" | "5490252" |
"5500860" | "5515376" | "5535202"
| "5555405" | "5561666" |
"5570365" | "5572522" | "5583981"
| "5592476" | "5594727"|
"5600641" | "5602841" | "5608726"
| "5610905" | "5619500"|
"5619661" | "5633865" | "5636371"
| "5640605" | "5649109"|
"5651002" | "5675741" | "5684800"
| "5691984" | "5706472" |
"5720032" | "5724358" | "5726977"
| "5734865" | "5740171" |
"5740175" | "5740375" | "5742604"
| "5742760" | "5745048"|
"5748905" | "5751967" | "5754540"
| "5754801" | "5757771" |
"5757795" | "5764634" | "5781549"
| "5784573" | "5790546" |
"5802047" | "5802052").PN. OR
("5920566").URPN.

$26 58|S25 AND header AND layer AND
protocol

Search History 1/18/2006 2:34:29 PM Page 6

US-PGPUB;
USPAT;
USOCR

US-PGPUB;
USPAT;
USOCR

OR

ON

C:\Documents and Settings\ekuiper\My Documents\EAST\Workspaces\applications\10260878.wsp

2006/01/16 18:03

2006/01/16 18:03

INTEL Ex.1002.284

INTEL Ex.1002.285

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450
Alexandria, Virginia 22313-1450WWwW.UuSspto.gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKETNO. CONFIRMATION NO.

10/260,878 09/27/2002 Laurence B. Boucher ALA-006E 9902

MARK A LAUER KUIPER, ERIC J
6601 KOLL CENTER PARKWAY
SUITE 245 PAPER NUMBER

PLEASANTON, CA 94566 2154

DATE MAILED: 01/27/2006

Please find below and/orattached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 10/03)

INTEL Ex.1002.285

INTEL Ex.1002.286

Application No. Applicant(s)

10/260,878 BOUCHER ETAL.

~ Office Action Summary Examiner AaUni

2154 a-- The MAILING DATEof this communication appears on the cover sheet with the correspondenceaddress--
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLYIS SET TO EXPIRE 3 MONTH(S) OR THIRTY(30) DAYS,

WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.Extensions of time may be available underthe provisions of 37 CFR 1.136(a). [In no event, however, may a reply betimely filed
after SIX (6) MONTHSfrom the mailing date of this communication.

- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHSfrom the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office later than three months.after the mailing date cf-this communication, even if timely filed, may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status

1)—X] Responsive to communication(s)filed on 27 September 2002.
2a)L] This action is FINAL. 2b)KX] This actionis non-final.
3)L Sincethis application is in condition for allowance except for formal matters, prosecution as to the merits is

closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4)K] Claim(s) 1-24 is/are pending in the application.

4a) Of the above claim(s) is/are withdrawn from consideration.

5)L] Claim(s) is/are allowed.
6) Claim(s) 1-24 is/are rejected.

) (s)

) (

7)Kx] Claim(s) 17 is/are objected to.

8)L] Claim(s)__ are subjectto restriction and/orelection requirement.

Application Papers

9)CJ Thespecification is objected to by the Examiner.
10)L] The drawing(s)filed on is/are: a)[_] accepted or b)[_] objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

1)LJ The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12)[_] Acknowledgmentis madeof a claim forforeign priority under 35 U.S.C. § 119(a)-(d) or(f).
a)LIJA! b)(J Some * c)LJ Noneof:

1.) Certified copies of the priority documents have been received.
2.) Certified copies of the priority documents have been received in Application No.
3.L] Copies of the certified copies of the priority documents have been received in this National Stage

application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) EX] Notice of References Cited (PTO-892) 4) 1 interview Summary (PTO-413)
2) L] Notice of Draftsperson's Patent Drawing Review (PTO-948) Paper No(s)/Mail Date.___.
3) EX] information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) 5) L] Notice of Informal Patent Application (PTO-152)

Paper No(s)/Mail Date__. 6) LJ Other:

U.S. Patent and Trademark Office

PTOL-326 (Rev. 7-05) Office Action Summary Part of Paper No./Mail Date 01162006

INTEL Ex.1002.286

INTEL Ex.1002.287

Application/Contro! Number: 10/260,878 Page 2
Art Unit: 2154

DETAILED ACTION

1. Claims 1-24 have been presented for examination.

Claim Objections

2. Claim 11 is objected to becauseofthe following informalities: line 3 contains only the

phrase “the media access control layer header,” which appears to be a typographicalerror in the

addition of this phrase to the claim. Appropriate correction is required.

Claim Rejections - 35 USC § 102

3. Thefollowing is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the

basis for the rejections under this section made in this Office action:

A personshall be entitled to a patent unless —

(e) the invention was described in (1) an application for patent, published under section 122(b), by anotherfiled
in the United States before the invention by the applicant for patent or (2) a patent granted on an application for
patent by anotherfiled in the United States before the invention by the applicant for patent, except that an
international application filed under the treaty defined in section 351(a) shall have the effects for purposes ofthis
subsection ofan application filed in the United States only if the international application designated the United
States and was published under Article 21(2) of such treaty in the English language.

4, Claims 1, 2, 6 and 7 are rejected under 35 U.S.C. 102(e) as being anticipated by Hendel

et al. (US 5,920,566, hereinafter Hendel).

5. As per claim 1, Hendel teaches a method for network communication (e.g. Hendel, col. 4,

lines 53-55), the method comprising:

receiving a plurality of packets from the network, each of the packets including a media

access control layer header, a network layer header and a transport layer header(e.g. Hendel, col.

4, lines 56-67; col. 5, lines 1-8);

INTEL Ex.1002.287

INTEL Ex.1002.288

‘

'. ’ Application/Control Number: 10/260,878 Page3
Art Unit: 2154

processing the packets bya first mechanism,so that for each packet the network layer

headerandthe transport layer header are validated without an interrupt dividing the processing

of the network layer header and the transport layer header (e.g. Hendel, col. 12, lines 66-67; col.

13, lines 1-16);

sorting the packets, dependent uponthe processing,into first and second types of packets,

so that the packets of the first type each contain data (e.g. Hendel, col. 5, lines 26-33);

sending the data from each packetofthefirst type to a destination without sending any of

the media access control layer headers, network layer headers or transport layer headers to the

destination (e.g. Hendel, col. 13, lines 63-67; col. 14, lines 1-9).

6. As per claim 2, Hendel teaches the method of claim 1, wherein processing the packets by

a first mechanism further comprises:

processing the media access control layer header for each packet withoutan interrupt

dividing the processing of the media access control layer header and the network layer header

(e.g. Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

7. As per claim 6, Hendel teaches the method of claim 1, wherein sorting the packets

includesclassifying each of the packets of the first type as having an Internet Protocol(IP)

header and a Transport Control Protocol (TCP)(e.g. Hendel, col. 6, lines 50-61).

8. As per claim 7, Hendel teaches the method of claim 1, further comprising:

INTEL Ex.1002.288

INTEL Ex.1002.289

.

Application/Control Number: 10/260,878 Page 4
Art Unit: 2154

transmitting a secondplurality of packets to the network, each of the secondplurality of

packets containing a media access control layer header, a network layer header and a transport

layer header, including processing the secondplurality of packets by the first mechanism,so that

for each packet the media accesscontrol layer header, the network layer header andthe transport

layer header are processed without an interrupt dividing the processing of the media access

control layer header (e.g. Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

‘Claim Rejections - 35 USC § 103

9. The following is a quotation of 35 U.S.C. 103(a) which formsthe basis forall

obviousnessrejections set forth in this Office action:

(a) A patent may notbe obtained though the invention is not identically disclosed or described as set forth in
section 102 ofthistitle, if the differences between the subject matter sought to be patented and thepriorart are
such that the subject matter as a whole would have been obviousat the time the invention was made to a person
having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the
mannerin whichthe invention was made.

10. Thefactual inquiries set forth in Graham v. John Deere Co., 383 U.S. 1, 148 USPQ 459

(1966), that are applied for establishing a background for determining obviousness under 35

U.S.C. 103(a) are summarizedas follows:

Determining the scope and contents of the priorart.
Ascertaining the differences between the prior art and the claimsat issue.
Resolving the level of ordinary skill in the pertinentart.
Considering objective evidence present in the application indicating obviousness
or nonobviousness.

AWN>
11. Claims 3 and 4 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hendelet

al. (US 5,920,566, hereinafter Hendel) in view of Ota et al. (US 6,115,615, hereinafter Ota).

INTEL Ex.1002.289

INTEL Ex.1002.290

Application/Control Number: 10/260,878 Page 5
Art Unit: 2154

12. As perclaim 3, Hendel teaches the method of claim 1, but fails to teach the method

further comprising: processing an upperlayer headerof at least one of the packets by a second .

mechanism, thereby determining the destination, wherein the upperlayer header correspondsto a

protocol layer above the transport layer.

However,in a similar art, Ota teaches a network communications system that uses an

application layer level addressto indicate the destination and route packets through the network

(e.g. Ota, col. 7, lines 18-25, 40-53).

It would have been obviousto oneskilled in theart at the time the invention was made to

combine Ota with Hendel because of the advantagesof using an upperlayer header to determine

the destination of packets in a network. Network layer andtransport layers also generally

include addressesorindications of destination for the packets and including this feature into the

application layer as well provides anotherfail-safe step for the network in the even of a failure in

someportion of the network. Havingfail-safe routes for information decreases the amount of

network downtimesince routes can be switched almost instantaneously upon therealization of a

fault or error. This is a benefit in any communications network system.

13. Asperclaim 4, Hendel teaches the methodofclaim 1, but fails to teach the method

further comprising: processing an upperlayer headerofat least one ofthe packets of the second

type by a second mechanism,thereby determining the destination.

However,in a similar art, Ota teaches a network communications system that uses an

application layer level addressto indicate the destination and route packets through the network

(e.g. Ota, col. 7, lines 18-25, 40-53).

INTEL Ex.1002.290

INTEL Ex.1002.291

" “Application/Control Number: 10/260,878 Page 6
Art Unit: 2154

It would have been obviousto one skilled in the art at the time the invention was made to

combine Ota with Hendel for similar reasons as stated abovein regards to claim 3.

14. Claim5is rejected under 35 U.S.C. 103(a) as being unpatentable over Hendelet al. (US

5,920,566, hereinafter Hendel) in view of Klaus (US 5,892,903, hereinafter Klaus).

15. As per claim 5, Hendel teaches the method ofclaim 1, further comprising:

processinga transport layer header of another packet by a second mechanism,prior to

receivingthe plurality of packets from the network (e.g. Hendel, col. 12, lines 66-67; col. 13,

lines 1-16).

Hendelfails to teach establishing a Transport Control Protocol (TCP) connection for the

packetsofthe first type.

However,in a similar art, Klaus teaches the use of a transport layer header to create a

TCP connection over a network(e.g. Klaus,col. 5, lines 8-23).

It would have been obviousto oneskilled in the art at the time the invention was made to

combine Klaus with Hendel because of the advantages of using a transport layer header to

provide a TCP connection over a network. The usetransport layer, included in the well-known

OSI model, is advantageous becauseit provides segregation of communication functions across

the various layers of the protocol stack and modularizes the functions required to implement

network communication, which simplifies computer communication operation and maintenance

(e.g. Klaus, col. 2, lines 14-23). The use of the OSI model also allows for communication across

various systems and platforms without the need for conversion or modification of the

INTEL Ex.1002.291

INTEL Ex.1002.292

. ” Application/Control Number: 10/260,878 Page 7
Art Unit: 2154

communication method. This can greatly increase the efficiency of communication across a

network, whichis beneficial in any communications network system.

16. Claim8is rejected under 35 U.S.C. 103(a) as being unpatentable over Hendelet al. (US

5,920,566, hereinafter Hendel) in view of Radognaet al. (US 5,991,299, hereinafter Radogna).

17. Asper claim 8, Hendel teaches the methodofclaim 1, but fails to teach the method

whereinthe first mechanism is a sequencer running microcode.

However,in a similar art, Radogna teaches a dedicated sequencer using microcode to

perform network communication and headertranslation and processing(e.g. col. 4, lines 25-30).

It would have been obviousto one skilled in the art at the time the invention was madeto

combine Radogna with Hendel becauseofthe benefits of using a specialized processor to handle

various tasks ina communications system. Using a sequencer for processing header information

can greatly accelerate a frame or packet through a network sincethe central processing unit does

not become overburdened when manypackets need to be processed. This frees up the central

processorto handle other networkingtasks, therefore increasing the speed andefficiency of

transmissions through the network. The use of software microcode for this processing easily

accommodates new protocols and can bypass hardware processing in the event of a hardware

failure. These are beneficial in any computer network system.

INTEL Ex.1002.292

INTEL Ex.1002.293

" Application/Control Number: 10/260,878 Page 8
Art Unit: 2154

18. Claims 9, 10, 14, 16-18, 20 and 22 are rejected under 35 U.S.C. 103(a) as being

unpatentable over Radognaet al. (US 5,991,299, hereinafter Radogna) in view of Hendeletal.

(US 5,920,566, hereinafter Hendel).

19. As per claim 9, Radogna teaches a method for communicating information over a

network (e.g. Radogna,col. 2, lines 63-67), the method comprising:

obtaining data from a source allocated byafirst processor (e.g. Radogna,col. 3, lines 50-

59);

dividing the data into multiple segments (e.g. Radogna,col. 3, lines 50-59);

prependinga packetheaderto each of the segments by a second processor, thereby

forming a packet corresponding to each segment(e.g. Radogna,col. 14, lines 22-36);

transmitting the packets to the network (e.g. Radogna, col. 5, lines 9-17).

Radognafails to teach the method comprising each packet header containing a media

access control layer header, a network layer header and a transport layer header, wherein the

prependingof each packet header occurs without an interrupt dividing the prependingof the

network layer header and the transport layer header.

However, in a similar art, Hendel teaches a network communications system based on

packetsutilizing media access control layer headers, network layer headers and transport layer

headers, the processing of these headersall occurring without interrupts between each layer(e.g.

Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

It would have been obviousto one skilled in the art at the time the invention was madeto

combine Hendel with Radogna becauseof the advantages of including headers for each of the

INTEL Ex.1002.293

INTEL Ex.1002.294

" Application/Control Number: 10/260,878 Page 9
Art Unit: 2154

MAC(data link) layer, network layer and transport layer when communicating over a packetized

network conforming to the OSI model. The use of each of these layers is well known in theart

since the OSI model was developed. Prepending a header associated with eachlayeris a

common methodfor allowing the network to process the packets layer by layer, in accordance

with the OSI model. Performing the processing and prepending of headers withoutthe use of an

interrupt between layers provides the benefit of speeding up the entire processing method and

increasing the efficiency of packet transmission across a network. This is beneficial in any

computer network system.

20. Asper claim 10, Radogna and Hendel teach the methodof claim 9, wherein prepending a

packet header to each of the segments by a second processor further comprises:

prepending the media access control layer header for each packet without an interrupt

dividing the prepending of the media accesscontrol layer header and the network layer header

(e.g. Radogna,col. 14, lines 22-36; Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

21. As per claim 11, Radogna and Hendel teach the method of claim 9, wherein each packet

header contains an Internet Protocol (IP) header and a Transport Control Protocol (TCP) header

(e.g. Hendel, col. 6, lines 50-61).

22. As perclaim 14, Radogna and Hendel teach the methodofclaim 9, wherein obtaining

data from the source in memory allocated by thefirst processor is performed by a Direct

INTEL Ex.1002.294

INTEL Ex.1002.295

~ Application/Control Number: 10/260,878 Page 10
Art Unit: 2154

Memory Access (DMA)unit controlled by the second processor(e.g. Radogna,col. 5, lines 5-

17).

23. As perclaim 16, Radogna and Hendelteach the method of claim 9, further comprising:

receiving another packet from the network, the other packet containing a receive header

including information corresponding to a networklayer and a transport layer (e.g. Hendel, col. 4,

lines 56-67; col. 5, lines 1-8); and

selecting whether to process the other packet by the first processor or by the second

processor(e.g. Hendel, col. 5, lines 26-33).

24. As per claim 17, Radogna teaches a method for communicating information over a

network(e.g. Radogna,col. 2, lines 63-67), the method comprising:

providing multiple segments of data (e.g. Radogna, col. 3, lines 50-59);

prepending an outbound packet headerto each of the segments, thereby forming an

outbound packet corresponding to each segment(e.g. Radogna, col. 14, lines 22-36);

transmitting the outbound packetsto the network (e.g. Radogna,col. 5, lines 9-17); and

receiving multiple inbound packets from the network (e.g. Radogna,col. 3, lines 50-59).

Radognafails to teach the method comprising the outbound packet header containing an

outbound media access control layer header, an outbound network layer header and an outbound -

transport layer header, wherein the prepending of each outbound packet header occurs without an

interrupt dividing the prepending of the outbound media access control layer header, the

outbound network layer header and the outboundtransport layer header; processing the inbound

INTEL Ex.1002.295

INTEL Ex.1002.296

 Application/Control Number: 10/260,878 Page 11
Art Unit: 2154

packets,so that for each packet the inbound network layer header and the inboundtransport layer

headerare validated without an interrupt dividing the processing of the inbound network layer

header and the inboundtransport layer header.

However, in a similar art, Hendel teaches a network communications system based on

packets utilizing media access control layer headers, network layer headers andtransport layer

headers, the processing and validating of these headersall occurring without interrupts between

each layer (e.g. Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

It would have been obviousto one skilled in the art at the time the invention was made to

combine Hendel with Radognabecauseof the advantages of including headers for each of the

' MAC (data link) layer, network layer and transport layer when communicating over a packetized

network conforming to the OSI model. The use of each of these layers is well known in the art

since the OSI model was developed. Prepending a header associated with each layeris a

common methodfor allowing the network to process the packets layer by layer, in accordance

with the OSI model. Performing the processing and prepending of headers without the use of an

interrupt between layers provides the benefit of speeding up the entire processing method and

increasing the efficiency of packet transmission across a network. This is beneficial in any

computer network system.

25. Asper claim 18, Radogna and Hendel teach the method of claim 17, wherein the

processing the inbound packets is performed simultaneously with the prepending the outbound

packet header to each of the segments(e.g. Radogna, separate processors for receive

INTEL Ex.1002.296

INTEL Ex.1002.297

" Application/Control Number: 10/260,878 Page 12
Art Unit: 2154

functionality and transmit functionality, col. 3, lines 50-59; col. 5, lines 9-17; col. 14; lines 22-

36).

26. As per claim 20, Radogna and Hendel teach the method of claim 17, wherein providing

multiple segments of data includes dividing a block of data into the segments (e.g. Radogna, col.

3, lines 50-59).

27. Asper claim 22, Radogna and Hendelteach the method of claim 17, further comprising:

sending data from each inboundpacketto a destination without sending any of the media

access control layer headers, network layer headersor transport layer headers to the destination

(e.g. Hendel, col. 13, lines 63-67; col. 14, lines 1-9).

28. Claims 12 and 24 are rejected under 35 U.S.C. 103(a) as being unpatentable over

Radognaet al. (US 5,991,299, hereinafter Radogna) in view of Hendelet al. (US 5,920,566,

hereinafter Hendel) as applied to claims 9 and 17 above, and further in view of Klaus (US

5,892,903, hereinafter Klaus).

29. Asper claim 12, Radogna and Hendelteach the method of claim 9, comprising

prepending the packet header to each of the segments by the second processor(e.g. Radogna,

col. 14, lines 22-36).

INTEL Ex.1002.297

INTEL Ex.1002.298

Application/Control Number: 10/260,878 Page 13
Art Unit: 2154

Radognaand Hendelfail to teach the method further comprising establishing a Transport

Control Protocol (TCP) connection bythe first processor and using the connection to prepend the

packet headerto each of the segments by the second processor.

However,in a similar art, Klaus teaches the use of a transport layer header to create and

utilize a TCP connection over a communications network(e.g. Klaus, col. 5, lines 8-23).

It would have been obviousto oneskilled in the art at the time the invention was made to

combine Klaus with Radogna and Hendel because of the advantages of using a transport layer

header to provide a TCP connection over a network. The usetransport layer, included in the

well-known OSI model, is advantageous becauseit provides segregation of communication

functions across the variouslayers of the protocol stack and modularizes the functions required

to implement network communication, which simplifies computer communication operation and

maintenance(e.g. Klaus, col. 2, lines 14-23). The use of the OSI model also allows for

communication across various systems and platforms without the need for conversion or

modification of the communication method. This can greatly increase the efficiency of

communication across a network, whichis beneficial in any communications network system.

30. As per claim 24, Radogna and Hendel teach the method of claim 17, further comprising:

processing a transport layer header of another inbound packet, prior to receiving the

plurality of packets from the network (e.g. Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

Radogna and Hendel fail to teach the method further comprising establishing a Transport

Control Protocol (TCP) connection for the inbound packets.

INTEL Ex.1002.298

INTEL Ex.1002.299

Application/Control Number: 10/260,878 Page 14

Art Unit: 2154

However,in a similar art, Klaus teaches the use of a transport layer header to create and

utilize a TCP connection over a communications network(e.g. Klaus, col. 5, lines 8-23).

It would have been obviousto oneskilled in the art at the time the invention was made to

combine Klaus with Radogna and Hendelfor similar reasons as stated above in regards to claim

12.

31. Claims 15, 21 and 23 are rejected under 35 U.S.C. 103(a) as being unpatentable over

Radognaet al. (US 5,991,299, hereinafter Radogna) in view of Hendelet al. (US 5,920,566,

hereinafter Hendel) as applied to claims 9, 20 and 17, respectively, above, and further in view of

Ota et al. (US 6,115,615, hereinafter Ota).

32. As perclaim 15, Radogna and Hendelteach the methodof claim 9, butfail to teach the

method further comprising prepending an upperlayer headerto the data, prior to dividing the

data into multiple segments.

However,in a similar art, Ota teaches a network communication system that attaches and

uses a headerin the application layer (e.g. Ota, col. 7, lines 18-25, 40-53).

It would have been obviousto oneskilled in the art at the time the invention was madeto

combine Ota with Radogna and Hendel because of the advantages of attaching a headerto an

upper layer, such as the application layer, along with the other layers well-known by the OSI

model. The use of an upper layer header can provide a great deal offlexibility to the system

sinceit is able to transmit more data with the packet itself. The OSI model is designed to attach

and process headers from each ofthe sevenlayers efficiently to ensure that the data within the

INTEL Ex.1002.299

INTEL Ex.1002.300

Application/Control Number: 10/260,878 Page 15
Art Unit: 2154

packetis transmitted properly across the network. Including an application layer headerfurther

ensures the properreceipt of the data. This is beneficial in any communication network system.

33. As per claim 21, Radogna and Hendelteach the method of claim 20,but fail to teach the

method further comprising prepending an upperlayer headerto the block ofdata,prior to

dividing the block of data into multiple segments.

However,in a similar art, Ota teaches a network communication system that attaches and

uses a headerin the application layer (e.g. Ota, col. 7, lines 18-25, 40-53).

It would have been obviousto oneskilled in the art at the time the invention was madeto

combine Ota with Radogna and Hendel for similar reasons as stated above in regards to claim

15.

34. As per claim 23, Radogna and Hendelteach the method of claim 17, but fail to teach the

method further comprising: processing an upperlayer headerof at least one of the packets by a

second mechanism, thereby determining the destination, wherein the upper layer header

correspondsto a protocol layer abovethe transport layer.

However, in a similar art, Ota teaches a network communications system that uses an

application layer level addressto indicate the destination and route packets through the network

(e.g. Ota, col. 7, lines 18-25, 40-53).

It would have been obviousto oneskilled in the art at the time the invention was madeto

combine Ota with Hendel because of the advantages of using an upper layer header to determine

the destination of packets in a network. Network layer and transport layers also generally

INTEL Ex.1002.300

INTEL Ex.1002.301

Application/Control Number: 10/260,878 Page 16
Art Unit: 2154

include addressesorindications of destination for the packets and includingthis feature into the

application layer as well provides anotherfail-safe step for the network in the evenofa failure in

someportion of the network. Having fail-safe routes for information decreases the amount of

network downtime since routes can be switched almost instantaneously upontherealization of a

fault or error. This is a benefit in any communications network system.

35. Claims 13 and 19 are rejected under 35 U.S.C. 103(a) as being unpatentable over

Radognaet al. (US 5,991,299, hereinafter Radogna) in view of Hendelet al. (US 5,920,566,

hereinafter Hendel) as appliedto claims 9 and 17 above, and further in view of Hansenet al. (US

5,778,419, hereinafter Hansen).

36. As per claim 13, Radogna and Hendel teach the method of claim 9, but fail to teach the

method further comprising creating a template header and forming each packet header based

upon the template header.

However, in a similar art, Hansen teaches the use of a header template from whichall

packet headersare based (e.g. Hansen,col. 6, lines 4-21).

It would have been obviousto oneskilled in the art at the time the invention was madeto

combine Hansen with Radogna and Hendelbecauseof the advantages of using a template when

creating a similar header for each packet. A template is a well-known method forcreatingfiles,

or in this case, a header, which needsto be attached to manypackets containing altogether the

same, or very similar data. The structure of each packet header should always consist of the

same elements in the same arrangementso a processor doesnothaveto locate the informationit

INTEL Ex.1002.301

INTEL Ex.1002.302

”

Application/Contro! Number: 10/260,878 Page 17
Art Unit: 2154

needsprior to performing processing functions. When a template is used, a large amountof time

can be saved when performing a large numberoftransmissions,since it 1s not necessary to create

an entire packet header during eachiteration. This increases the overall speed andefficiency of

the network, which is beneficial in any communication network system.

37.|Asperclaim 19, Radogna and Hendelteach the method of claim 17, but fail to teach the

method further comprising creating a template header and using the template header to form each

outboundpacket header.

However,in a similar art, Hansen teaches the use of a header template from whichall

packet headers are based (e.g. Hansen,col. 6, lines 4-21).

It would have been obviousto oneskilled in the art at the time the invention was madeto

combine Hansen with Radogna and Hendelfor similar reasons as stated above in regardsto

claim 13.

Conclusion

Any inquiry concerning this communication or earlier communications from the

examiner should be directed to Eric Kuiper whose telephone numberis (571) 272-0953. The

examiner can normally be reached on MondaythroughFriday, 8:00am to 4:30pm.

If attempts to reach the examinerby telephone are unsuccessful, the examiner’s

supervisor, John Follansbee can be reached on (571) 272-3964. The fax phone numberfor the

organization where this application or proceeding is assigned is 571-273-8300.

INTEL Ex.1002.302

INTEL Ex.1002.303

Application/Control Number: 10/260,878 Page 18
Art Unit: 2154

Information regarding the status of an application may be obtained from the Patent

Application Information Retrieval (PAIR) system. Status information for published applications

may be obtained from either Private PAIR or Public PAIR. Status information for unpublished

applications is available through Private PAIR only. For more information about the PAIR

system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR

system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Eric Kuiper
18 January 2006 LLANSBEE

* NT EXAMINER
TRCHNOLOG ENTER 2100

INTEL Ex.1002.303

INTEL Ex.1002.304

Application/Control No. Applicant(s)/Patent Under
Reexamination

10/260,878 BOUCHER ETAL.
Notice of References Cited Examiner Art Unit

U.S. PATENT DOCUMENTS

[canto [ww|ee
Pa[usssensce__fortes0[RendeietasSSCS~S~dCSCSC«OMT

Klaus, Christopher W. 709/227

po

FOREIGN PATENT DOCUMENTS

Document Number Date
Country Code-Number-Kind Code MM-YYYY

*A copyof this referenceis not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US orforeign.
U.S. Patent and Trademark Office

PTOQ-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 01162006

INTEL Ex.1002.304

INTEL Ex.1002.305

—_— __. Sheet 1 of 1

U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

Filing date: September 27, 2002

, ah: Inventors: Laurence Boucher,etal.rs ©
g

TTR SEPATH APPARATUS FOR RECEIVING DATA Examiner name: Unknown

CORRESPONDING TO A TCP CONNECTION|anomeyDocketNo:ALA-OOSE|: : Attorney Docket No.: ALA-006E

 FsDPHLEMENTAL INFORMATION DISCLOSURE

U.S. Patent Documents

*Examiner Document Filing Date,
Initial Number Date Name Class Subclass If Appropriate
coe[A[sean|“eee[ese|

serses0|aon[sonore|vs|
EC
[—saczase|_oweo|cron|05|toane_|

=
aH
709
__

g

ale|21aa8

a

5,898,713 4/27/99 Meizeretal.

ek|F[_aenisor[ann [ce a
ESL G’ 6,047,323 4/4/00 227

OTHER ART—NON PATENTLITERATURE DOCUMENTS

an w

*Examiner

Initial (Including Author, Title, Date, Pertinent Pages, Etc.)

oo6

 Schwadereret al., IEEE Computer Society Press publication entitled, “XTP in VLSI Protocol
Decomposition for ASIC Implementation’, from 15" Conference on Local Computer Networks, 5
pages, Sept. 30 — Oct. 3, 1990.

Beach, Bob, IEEE Computer Society Press publication entitled, “UltraNet: An Architecture for
Gigabit Networking", from 15" Conference on Local Computer Networks, 18 pages, Sept. 30 -
Oct. 3, 1990.

Chessonetal., IEEE Syposium Record entitled, “The Protocol Engine Chipset”, from Hot ChipsIII,
16 pages, Aug. 26-27, 1991.
Macleanetal., IEEE Global Telecommunications Conference, Globecom ‘91, presentation

entitled, “An Outboard Processorfor High Performance Implementation of Transport Layer
Protocols”, 7 pages, Dec. 2-5, 1991.

Rosset al., IEEE article entitled “FX1000: A high performance single chip Gigabit Ethernet NIC’,
from Compcon '97 Proceedings, 7 pages, Feb. 23-26, 1997.

Strayeret al., “Ch. 9: The Protocol Engine” from XTP: The Transfer Protocol, 12 pages, July 1992.

Publication entitled “Protocol Engine Handbook’, 44 pages,Oct. 1990.

tt. nn

™~a
Vv 3

a ~:x
 Koufopavlou et al., IEEE Global Telecommunications Conference, Globecom '92, presentation

entitled, “Parallel TCP for High Performance Communication Subsystems’, 7 pages, Dec. 6-9, +.et:
est

Examiner / - [- — Date Considered i (3/2006
*EXAMINER:Initial if reference considered, whetheror notcitation is in conformance with MPEP 609; Drawline throughcitation if not
in conformance and not considered. Include copyof this form with your communication to applicant.

Litienkampet al., Publication entitled “Proposed Host-Front End Protocol’, 56 pages, Dec. 1984.

 iywnee

INTEL Ex.1002.305

INTEL Ex.1002.306

LA? &« SspPLEMENTAL INFORMATION DISCLOSURE
“\\ STATEMENT BY APPLICANT

z[=[=[p]o]=[e]o]o]o]>

U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

Filing date: September 27, 2002
 Inventors: Laurence Boucher, etal.ooa

Group Art Unit: 2154

BAST-PATH APPARATUSFOR RECEIVING DATA
<zpe" CORRESPONDING TO A TCP CONNECTION

Attorne E

Examiner name: Unknown

c-006aS3 oOgg Zz°

U.S. Patent Documents

*Examiner * Document
Initial Number Date Name

exe A|5,517,668 5/14/1996

Filing Date,
C If Appropriate

800

APLE
Foreign Patent Documents

Translation
~<oO“A 3Document Number

OTHERART(including Author, Title, Date, Pertinent Pages, Etc.

pete|

Examiner Lo i ae Date Considered \ | 2(2006
*EXAMINER:Initial if reference considered, whetherornotcitation is in conformance with MPEP 609; Draw line through citationif not
in conformance and not considered. Include copyof this form with your communication to applicant.

Sheet 1 of |

INTEL Ex.1002.306

INTEL Ex.1002.307

U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

Filing date: September 27, 2002

Inventors: Laurence Boucher, etal.

Ap sft ATH APPARATUS FOR RECEIVING DATA Examiner name: Unknown

 “ CORRESPONDINGTO A TCP CONNECTION
Attomey Docket No.: ALA-006E.

7 U.S. Patent Documents

Initial Number Name Class If Appropriate

pofet

|

[DesaneatNanber[Dae|

: OTHERART(including Author, Title, Date, Pertinent Pages, Etc.

etel

ee
Examiner Ak ° ~ Date Considered l [13 [2006
*EXAMINER:Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copyofthis form with your communication to applicant.

Sheet } of |

INTEL Ex.1002.307

INTEL Ex.1002.308

partment ofCommerce, Patent and Trademark Office Application No.: 10/260,878

eST-PATH APPARATUS FOR RECEIVING DATA
mans” CORRESPONDING TO A TCP CONNECTION

. U.S. Patent Documenis

*Examiner Document[ronber™|Ove|Namectss_|sutctss

[500

:

Filing Date,
If Appropriate

F

[ex |e Tehnoigy Oster 2700
g

[sax|
Foreign Patent Documents

Translation

Yes °

Internet pages entitled "Hardware Assisted Protocol Processing”, (which Eugene Feinberg is working on), | page,
printed 11/25/98.

Examiner 7 ~ l ‘ Date Considered i 12/100
*EXAMINER:Initial if reference considered, whetheror not citation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered, Include copy ofthis form with your communication to applicant.

Sheet 1 of 14

INTEL Ex.1002.308

INTEL Ex.1002.309

a

* . U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

K<iRir’SgMATION DISCLOSURE STATEMENTBY
aw APPLICANT

Filing date: September 27, 2002

 Inventors: Laurence Boucher,etal.
ans

Group Art Unit: 2154

Examiner name: Unknown
Attomey Docket No.: ALA-006E

US. Patent Documents

*Examiner Document Filing Date,

[es[a [s05566|ownnss[om———*ds
Teste[saints[owns[se__————idios

Po[ssaan0|ana09s|vomennas|_|
Penk[eps|ranase[Reisner‘(95

no
G [95

Ea
[a0
95

395

395

395

395

[5566170|10nsps|oatew [0
95

95

370

395

395

}280RECEIVED
|230

60 '

675

580

Ban

2

5,566,170 3|60Teci{nology Center 2100 |

|H|5,592,622 01/07/97|Isfeld et al. 3 200.02|
|ese|1|5,629,933 05/13/97|Delpetal. fan

Foreign Patent Documents

NO So So SonN

Translation

L|WO 01/05107 Al 01/18/01 PCT/US00/19006

Bak WO 01/05116 A2 01/18/01 PCT/US00/19243 Pf|
OTHER ART(Including Author, Title, Date, Pertinent Pages, Etc.

Internet pages entitled: A Guide to the Paragon XP/S-A7 Supercomputerat Indiana University, 13 pages, printed
Edie N|12/21/98.

Ea Richard Stevens, “TCP/IP Illustrated, Volume 1, The Protocols”, pages 325-326 (1994).
pest| Internet pages entitled: Northridge/Southbridge vs. Intel Hub Architecture, 4 pages, printed 2/19/01.

. Gigabit Ethernet Technical Brief, Achieving End-to-End Performance, Alteon Networks,Inc., First Edition,
Esk September 1996.

Examiner - bh. Date Considered \[1froee
*EXAMINER:Initial if reference considered, whetheror not citation is in conformance with MPEP 609; Drawline through citation if not

i°

Esk

in conformance and not considered. Include copy of this form with your communication to applicant.
Sheet 2 of 14

INTEL Ex.1002.309

INTEL Ex.1002.310

ae

U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

\2NFGRMATION DISCLOSURE STATEMENTBY
JN" APPLICANT |

5 e/ReemaTPATH APPARATUS FOR RECEIVING DATA
CORRESPONDINGTO A TCP CONNECTION

Filing date: September 27, 2002

Inventors: Laurence Boucher, et al.

Group An Unit: 2154

Examiner name: Unknown

Attorney Docket No.: ALA-006E

Filing Date,
If Appropriate

U.S. Patent Documents

200.2

200.64

A|5,642,482 06/24/97 Pardillos

5,664,114 09/02/97 Krech, Jr. et alEIt

Initial Number ame ass
i 3

> * 3

RECEIVED

,

: :

c

7 [soa[dor[Seon|95|006Thay Carter 2700
:

’ 395

es
ES

E

E.

k

k

EIK

gk

k

k

tT

J

EI

K|5,752,078 05/12/98 Delp etal. f395[827
Foreign Patent Documents

[ecinanNinier[DateComiy—_—[Cas

L|WO 01/05123 Al 01/18/01 PCT/US00/18976 |
WO 01/40960A1 06/07/01 PCT/US00/32660 po

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

N Internet pages directed to Technical Brief on Alteon Ethemet Gigabit NIC technology, www.alteon.com, 14 pages,ESIC printed 3/15/97.

VIA Technologies,Inc. article entitled "VT8501 Apollo MVP4",pagesi-iv, 1-11, cover and copyright page,
revision 1.3, Feb. 1, 2000.Ean .

jeefe iReady News Archivesarticle entitled "iReady Rounding Out Management Team with Two Key Executives”,

5,701,516 12/23/97|Chengetal

; 455

827

ww

Translation

<8 E°

—

as
n eter

http://www.ireadyco.com/archives/keyexec.html, 2 pages, printed | 1/28/98. EIKk “Toshiba Delivers First Chips to Make Consumer Devices Internet-Ready Based On iReady’s Design,”PressJ Release October, 1998, 3 pages, printed 11/28/98.

eeoe
*EXAMINER:Initial if reference considered, whether ornot citation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet 3 or l4

INTEL Ex.1002.310

INTEL Ex.1002.311

” . U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

VP? EESRORMATION DISCLOSURE STATEMENT BY
a APPLICANT

Filing date: September 27, 2002

Inventors: Laurence Boucher,etal.

Group Art Unit: 2154

 gSFAST-PATH APPARATUSFOR RECEIVING DATA
i=":CORRESPONDING TO A TCP CONNECTION

Examiner name: Unknown

a=
= =

Attorney Docket No.: ALA-006E

U.S. Patent Documents

Initial Number ame ass If Appropriate

nose |P6

z rss8i0¢|osname|Kwma—SSS=«di398_—*
é5 samo|oasis|Pieazo,iretal.——=«(395—~=*:«wOT

a [395
z 3 a

[395

2|[sssRECEIVED _|

5,794,061 08/11/98 800.01 Teph

5,802,580 09/01/98|McAlpice 149
EIJK 5,809,328 09/15/98|Nogales etal.

395

395

395

395

395

395

395

711

395

:

Foreign Patent Documents

a

L|WO 01/04770 A2 01/18/01 PCT/US00/18939 pS
M|WO/98/19412 05/07/98 PCT/US97/17257 |

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

pl6
;

\c

k

7aa

o

Q*

8

5SoSQo< 5=<
@-@ nN —_ 2ad é

Translation

Yes

EJk

Eye

Internet pages from iReady Products, web sitehttp://www.ireadyco.con/products,html, 2 pages, downloaded
11/25/98.mM nw

éJk iReady News Archives, Toshiba, iReady shipping Internet chip, | page, printed 11/25/98.

Interprophetarticle entitled "Technology", http://www. interprophet.com/technology.htm!, 17 pages, printed 3/1/00.
vr iReady Corporation,article entitled "The I-1000 Internet Tuner", 2 pages, date unknown.

Fhpet=e
Examiner = pT . Date Considered

AW. LK 12] 1006

*EXAMINER: Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Draw line through citation if not
in conformanceand not considered. Include copyofthis form with your communication to applicant.

Sheet 4 of 14

INTEL Ex.1002.311

INTEL Ex.1002.312

: . . U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

Filing date: September 27, 2002

 Inventors: Laurence Boucher,etal.

Group Art Unit: 2154

Examiner name: Unknown

Attomey Docket No.; ALA-006E

U.S. Patent Documents

tial| [Nanter”|a Name [case|sues
pest[a[savezas[oso|iansiyerat[95|20057
(ese|e[sis[osnses|wangerat[95|20008

=

[ese||sense|osmes[rows [09300RECEIVED
935,

Filing Date,
If Appropriate

song [axa logy Ctr 27 q

709
|esn[&|5935205|ossi0i99|Murayamaetal.|709|

[710
710

395

395

709

709

395

710

[Pere[wTsees|orause[vou [10
Tene[1[95020[avons|swiokerar[07|
exe[1[sse1a|nian|Radogmerat——_—iro

|Class|

129

392

301

Foreign Patent Documents
Translation
E8 Fo

WO/98/50852 11/12/98 PCT/US98/08719 pe
on WO0/99/04343 01/28/99 PCT/US98/14729 |

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

aK iReadyarticle entitled “About Us Introduction”, Internet pages fromhttp://www.iReadyco.com/about.html, 3 pages,

 printed 11/25/98.

an iReady News Archivearticle entitled “Revolutionary Approach to ConsumerElectronics Internet Connectivity
Ede Funded”, San Jose, CA, November20,1997. 2 pages,printed 11/2/98.

iReady News Archivearticle entitled “Seiko Instruments Inc. (SII) INTRODUCES WORLD’S FIRST INTERNET-

EFI READY INTELLIGENT LCD MODULES BASED ON IREADY TECHNOLOGY,”Santa Clara, CA and Chiba,J Japan, October 26, 1998, 2 pages, printed 11/2/98. NEWSwatcharticle entitled "iReady internet Tuner to Web Enable Devices", Tuesday, November5, 1996, printed
FIL 11/2/98.

Examiner . , Date Considered |

*EXAMINER:Initial if reference considered, whether ornotcitation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet 5 of 14

INTEL Ex.1002.312

INTEL Ex.1002.313

. « U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

Filing date: September 27, 2002

 Inventors: Laurence Boucher, etal.

Group Ant Unit: 2154

Examiner name: Unknown

Attorney Docket No.: ALA-006E

U.S. Patent Documents

*Examiner Document Filing Date,

[eovaese|osano|omewin[mo
047, 129 |

, 345 0

1061, 370 37

069, 711

: 15

on

OH[OH[oO
a

LUESk

EJk

E

| (7[-|-]=/]=]°/elol=|>]ST 6erase|ovawon|andenoneia|m1[129Tedhnogy Contr 2700 |

Faosisee—[asrano|rates|a0_|
Faossass[asnsoo|owes.|mi_|

ac

Foreign Patent Documents

[—[BosimenrNanber_—[DaeCayCia]

ep

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

BpJk

,r

On u

Translation

Yes °o

-
EETimesarticle entitled "Tuner for Toshiba, Toshiba Taps iReady for Internet Tuner”, by David Lammers, 2 pages, printed 11/02/98.ESE N

esefo|"Comparison of Novell Netware and TCP/IP Protocol Architectures", by J.S. Carbone, 19 pages, printed 4/10/98.
an Adaptecarticle entitled "AEA-7110C-a DuraSANproduct", | 1 pages, printed 10/1/01,

Est iSCSI HBAarticle entitled "iSCSI and 2Gigabit fibre Channel Host Bus Adapters from Emulex, QLogic, Adaptec,
JNI", 8 pages, printed 10/01/01.

Exami - l Date Consideredxaminer Cn | Ce ate Considere \ 3 2006
*EXAMINER:Initial if reference considered, whether or not citation is in conformance with MPEP 609; Drawline through citationif not
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet 6 of 14

INTEL Ex.1002.313

INTEL Ex.1002.314

o

. - U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

\ PENRORMATION DISCLOSURE STATEMENTBY
‘ APPLICANT

Filing date: September 27, 2002

Inventors: Laurence Boucher, etal.

Group Art Unit: 2154

@FAST-PATH APPARATUS FOR RECEIVING DATA Examiner name: Unknown
CORRESPONDING TO A TCP CONNECTION

= we ne

>3°o3ao gO6aPe2 Zzco) >cc> So°nN om

U.S. Patent Documents

*Examiner Document

Initial Number Date Name Class
Filing Date,
If Appropriate

Cok 6,226,680 05/01/01

cok|B|6,246,683 06/12/01

cK
"pale

a<S ian w& to>2 oo 2.=N a2 2 07/18/97

709

370

709

709

ci
[|
|

en

-

logy Center 2100

a

Foreign Patent Documents
Translation

Document Number <& Fo

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

 iSCSI HBAarticle entitled "FCE-3210/6410 32 and 64-bit PCI-to-Fibre Channel HBA", 6 pages,printed 10/01/01.

exe|0 ISCSI.com article entitled "iSCSI Storage", 2 pages, printed 10/01/01.
“Two-Way TCP Traffic Over Rate Controlled Channels: Effects and Analysis”, by Kalampoukas et al., IEEE

Egic Transactions on Networking,vol. 6, no. 6, December 1998.

Est IReady Newsarticle entitled "Toshiba Delivers First Chips to Make Consumer Devices Intemet-Ready Based on
iReady Design", Santa Clara, CA, and Tokyo, Japan, October 14, 1998, printed 11/2/98.

Examiner an Date Considered / (2 |re¢
*EXAMINER:Initial if reference considered, whether or notcitation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copyofthis form with your communication to applicant.

Sheet 7 of 14

INTEL Ex.1002.314

INTEL Ex.1002.315

U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

6 \FiGr@RMATION DISCLOSURE STATEMENTBY_|Filing date: September 27, 2002
\ APPLICANT Inventors: Laurence Boucher,et al.

: Group Art Unit: 2154
f

CORRESPONDINGTO A TCP CONNECTION
Attomey Docket No.: ALA-006E

n

‘

_ U.S. Patent Documents

* Examiner Document|ate N Cl Filing Date,Initial Number ame ass If Appropriate

7 2003a

q

}wo p

poy Uerite

~[-[=[o]*]efefole|>|
Foreign Patent Documents

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

Translation

ete||
o

EIt N United States Patent Application No. 08/964,304, by Napolitano,et al., entitled “File Array Storage Architecture”,filed | 1/04/97.

Esk po “File System Design For An NFSFile Server Appliance”, Article by D. Hitz, et al., 13 pages.
Ea Adaptec Press Releasearticle entitled “Adaptec Announces EtherStorage Technology”, 2 pages, May 4, 2000,

printed 6/14/00.

eae a Adaptecarticle entitled “EtherStorage Frequently Asked Questions”, 5 pages, printed 7/19/00.
Examiner Ly IAS ~ Date Considered | 13 [100%

*EXAMINER:Initial if reference considered, whether or not citation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet 8 of 14

INTEL Ex.1002.315

INTEL Ex.1002.316

4

° - U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

INE ORMATION DISCLOSURE STATEMENT BY Filing date: September 27, 2002
GPES APPLICANT Inventors: Laurence Boucher,et al.

% APAST-PATH APPARATUS FOR RECEIVING DATA Examiner name: Unknown
CORRESPONDING TO A TCP CONNECTION

 Attorney Docket No.: ALA-006E

U.S. Patent Documents

Document

Number
Filing Date,
If Appropriate

*Examiner
Initial

iy H

< C7

17 2003e[-[-|=[o|~]e[elole|>|
‘T)g2, & = ~~2o=5 9°oa=3@5=mn

Document Number Yes

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

Zz

Esk Adaptec article entitled “EtherStorage White Paper”, 7 pages, printed 7/19/00.

peefo CIBC World Markets article entitled “Computers; Storage”, by J. Berlino et al., 9 pages, dated August 7, 2000.
vet|e Merrill Lynch article entitled “Storage Futures”, by S. Milunovich, 22 pages, dated May 10, 2000.

y CBS Market Watch article entitled "Montreal Start-Up Battles Data Storage Bottleneck”, by S. Taylor, dated March€5 5, 2000, 2 pages, printed 3/7/00.

Examiner 27 \ : Date Considered {13 2006
*EXAMINER:Initial if reference considered, whetherornot citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet 9 of 14,

INTEL Ex.1002.316

INTEL Ex.1002.317

oe

} + U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

Filing date: September 27, 2002

 Inventors: Laurence Boucher,etal.

Group Art Unit: 2154

KAST-PATH APPARATUSFOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION

Examiner name: Unknown
 Alttomey Docket No.. ALA-006E

U.S. Patent Documents

Filing Date,
If Appropriate

*Examiner Document
Initial Number

RECEIVED |

nology Center 2100=[~|-|=[o]=]e[elo]=|> Ui
Foreign Patent Documents

a

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

Internet-draft article entitled “SCSI/TCP (SCSI over TCP)”, by J. Satran et al., 38 pages, dated February 2000,

Translation

~& Zz

printed 5/19/00.
aye

Internet pages entitled “Technical White Paper-Xpoint’s Disk to LAN Acceleration Solution for Windows NT Esk po. Server,” 16 pages, printed 6/5/97.
ek|e Jato Technologies article entitled “Network Accelerator Chip Architecture,” twelve-slide presentation, printed8/19/98.

Esl | EETimesarticle entitled “Enterprise System Uses Flexible Spec,” dated August 10,1998, printed 11/25/98.
Examiner - I~ — Date Considered | 32006

*EXAMINER:Initial if reference considered, whetheror notcitation is in conformance with MPEP 609; Draw line through citation if not
in conformance and not considered. Include copy ofthis form with your communicationto applicant.

Sheet 10 of 14

INTEL Ex.1002.317

INTEL Ex.1002.318

z[-|-[=[o|~]@]>]o]=[>

 e,

-” + U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

RMATION DISCLOSURE STATEMENT BY Filing date: September 27, 2002

APPLICANT Inventors: Laurence Boucher,etal.

 @PaST-PATH APPARATUSFOR RECEIVING DATA
Ke matt’ CORRESPONDING TO A TCP CONNECTION

Examiner name: Unknown Attomey Docket No.: ALA-006E

U.S. Patent Documents

*Examiner
Initial

Document
Number

Filing Date,
If Appropriate

1)
<j io

UL172003 |
anhanryarn aeeessan_|poGy-Gent 0

 ‘

Foreign Patent Documents

OTHER ART(Including Author, Title, Date, Pertinent Pages,Etc.

Translation

Document Number

Ovr

-_

CvCy Ce

oNu rX

Internet pages entitled “Smart Ethernet NetworkInterface Cards”, which Berend Ozceri is developing, printed
11/25/98.

Internet pages of Xaqti corporation entitled “GigaPower Protocol Processor Product Review,” printed 11/25/99.

Internet pages entitled “DART: Fast Application Level Networking via Data-Copy Avoidance,” by Robert J. Walsh,
printed 6/3/99.

Examiner La t - Date Considered | 3 2.006
*EXAMINER:Initial if reference considered, whetheror not citation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet 11 of 14

INTEL Ex.1002.318

INTEL Ex.1002.319

Application No.: 10/260,878

Filing date: September 27, 2002

Inventors: Laurence Boucher, etal.

Group Art Unit: 2154
 FAST-PATH APPARATUS FOR RECEIVING DATA

CORRESPONDING TO A TCP CONNECTION
Examiner name: Unknown

3Aa 93abaa& z9° >CcP2Sa1

U.S. Patent Documents

*Examiner Document ,
Number Date

pf
pa
Poet
Pf
Pofef
Por
Poof
Po
po

Filing Date,
If Appropriate

re
Q U

Technology Center 2104

“r}oO=2, 3 ~~i]=a |] = oO Soae3a3=a

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

Internet pages of InterProphet entitled “Frequently Asked Questions”, by Lynne Jolitz, printed 6/14/00.

|eefw Internet pagesentitled “iReady Products,” printed 11/25/98.
ESIc N|Andrew S. Tanenbaum, “Computer Networks,” Third Edition, 1996, ISBN 0-13-349945-6. ‘

|eaefo] Form 10-K for Exelan, Inc., for the fiscal year ending December 31, 1987 (10 pages).
|exe|e Form 10-K for Exelan, Inc., for the fiscal year ending December 31, 1988 (10 pages).

z

“Second Supplemental Information Disclosure Statement per 37 C.F.R. §1.97(i)”, dated July 29, 2002 relating to
Exelan Inc. as submitted in Application Serial No. 09/464,283.

ee ee

*EXAMINER:Initial if reference considered, whetheror notcitation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copy of this form with your communication to applicant.

Sheet 12 of 14

INTEL Ex.1002.319

INTEL Ex.1002.320

|

| « U.S. Department of Commerce, Patent and Trademark Office Application No.: 10/260,878

IRRMATION DISCLOSURE STATEMENTBY
APPLICANT

Filing date: September 27, 2002 .o

Inventors: Laurence Boucher,etal.
Group Art Unit: 2154

fe mageFAST-PATH APPARATUSFOR RECEIVING DATA Examiner name: Unknown
CORRESPONDINGTO A TCP CONNECTION >2o3a 96 Qaxg z9 >72.! 006E

U.S. Patent Documents

*Examiner Document

x[oinan[oer[rien«dtd
Paooinmssisn|[aie

| aoimonsear|_[vote——idC
|
|
||

A
8
¢|
0|
Gi

a|
pt

Filing Date,
If Appropriate

01/10/01

01/10/01

<1] uw

JUL 17 2003 |

°

Foreign Patent Documents

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

WindRiverarticle entitled “Tornado:For Intelligent Network Acceleration”, copyright Wind River Systems, 2001, 2
pages.

Translation

Yes

WindRiver White Paperentitled “Complete TCP/IP Offload for High-Speed Ethernet Networks”, Copyright Wind
River Systems, 2002, 7 pages.

Intel article entitled “Solving Server Bottlenecks with Intel Server Adapters”, Copyright Intel Corporation, 1999, 8

*EXAMINER:Initial if reference considered, whether ornot citation is in conformance with MPEP609; Drawline through citation if not
in conformance and not considered. Include copy ofthis form with your communication to applicant.

Sheet 13 of 14.

INTEL Ex.1002.320

INTEL Ex.1002.321

Application No.; 10/260,878

Filing date: September 27, 2002DISCLOSURE STATEMENTBY

APPLICANT
Inventors: Laurence Boucher,etal.

Group Art Unit: 2154

 Examiner name: Unknown

I
c ,fAST-PATH APPARATUS FOR RECEIVING DATA

Taaot®"” CORRESPONDING TO A TCP CONNECTION
 >c>-006E2o3@ 83~g z°

_ U.S. Patent Documents

*Examiner Document|Dae|Name - tess|Filing Date,Initial Number ame Class IfAppropriate

Ente C|6,356,951 03/12/02

eak 6,389,468 05/14/02

370

709

709

709

Ese 709
710

709

709

[a0
[09
[09

[aasmace [stereo|
[aszrisy[arson[ene‘(tm[am

esk|F[swees:[oxrama[Gear‘|no_[a0RECEIVED
é [os

[709
ESIC

ex

nology Center 2100

Translation
md ©n E°

Foreign Patent Documents

es

OTHERART(Including Author, Title, Date, Pertinent Pages, Etc.

pete]
Article from Rice University, Department ofComputer Science entitled “Lazy Receiver Processing (LRP): A New
Network Subsystem Architecture for Server Systems”, by Peter Druschel and Gaurav Banga,15 pages.

aa a
Internet RFC/STD/FYI/BCP Archives article with heading “RFC2140”entitled “TCP Control Block
Interdependence”, web address http://www.faqs.org/rfcs/rfc2140.html, 9 pages, printed 9/20/02.

Examiner Date Considered li 2 /2e0¢|
*EXAMINER:Initial if reference considered, whether ornotcitation is in conformance with MPEP 609; Drawline through citation if not
in conformance and not considered. Include copy ofthis form with your communication to applicant.

Sheet 14 of 14

INTEL Ex.1002.321

INTEL Ex.1002.322

Page 1 of 2

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTSPO. Box 1450

Alexandria, Virginia 22313-1450v

www.uspto.g0"

* cy
BIBDATASHEET CONFIRMATIONNO. 9902

Bib Data Sheet

FILING OR 371(c)

SERIAL NUMBER DATE CLASS GROUP ARTUNIT| SoaknS
10/260.878 09/27/2002 E .0/260, 709 2154 ALA.OOGE

RULE

APPLICANTS

Laurence B. Boucher, Saratoga, CA;
Stephen E. J. Blightman, San Jose, CA;
Peter K. Craft, San Francisco, CA;
David A. Higgen, Saratoga, CA;
Clive M. Philbrick, San Jose, CA;
Daryl D. Starr, Milpitas, CA;

te CONTINUING DATA RREREKKARREREEREEERAERREAE

This application is a CIP of 10/092,967 03/06/2002 PAT 6,591,302
whichis a CIP of 10/023,240 12/17/2001 PAT 6,965,941
and is a CIP of 09/464 ,283 12/15/1999 PAT 6,427,173
whichis a CIP of 09/439,603 11/12/1999 PAT 6,247,060
whichis a CIP of 09/067,544 04/27/1998 PAT 6,226,680
which claims benefit of 60/061 ,809 10/14/1997
and said 10/092,967 03/06/2002
is a CIP of 09/384,792 08/27/1999 PAT 6,434,620
which claims benefit of 60/098,296 08/27/1998
and is a CIP of 09/141,713 08/28/1998 PAT 6,389,479
whichclaims benefit of 60/098,296 08/27/1998
and said 10/092,967 03/06/2002
is a CIP of 09/514,425 02/28/2000 PAT 6,427,171
and is a CIP of 09/416,925 10/13/1999 PAT 6,470,415
and is a CIP of 09/675,484 09/29/2000 PAT 6,807,581
and is a CIP of 09/675,700 09/29/2000
andis a CIP of 09/789,366 02/20/2001 PAT 6,757,746
and is a CIP of 09/801,488 03/07/2001 PAT 6,687,758
and is a CIP of 09/802,551 03/09/2001
and is a CIP of 09/802,426 03/09/2001
andis a CIP of 09/802,550 03/09/2001 PAT 6,658,480
and is a CIP of 09/855,979 05/14/2001 *
andis a CIP of 09/970,124 10/02/2001

(*)Data provided by applicant is not consistent with PTO records.

+ FOREIGN APPLICATIONS RRRAREERERAEERREREEES

IF REQUIRED, FOREIGN FILING LICENSE GRANTED

Foreign Priority daimed Ct) CQ)

wes ne STATE OR|SHEETS TOTAL |INDEPENDEN
85 USC 119 (2-4) conditions CD yes OD no O) mt after COUNTRY|DRAWING|CLAIMS CLAIMS
met Allowance CA 89 4 3

Examiner's Signature Initials

ADDRESS

INTEL Ex.1002.322

INTEL Ex.1002.323

Page 2 of 2

Fast-path apparatus for receiving data corresponding to a TCP connection

C) alt Fees

C) 1.16 Fees(Filing)

FILING FEE |FEES:Authority has been given in Paper a 117 Fees (Processing Ext. ofitime }RECEIVED _INo, to charge/credit DEPOSIT ACCOUNT
. for following:

orvonowing C) 148 Fees (Issue)

Q) credit

INTEL Ex.1002.323

INTEL Ex.1002.324

Applicant(s)/Patent under
Reexamination

BOUCHERET AL.
Art Unit

2154

N Non-Elected a Appeal

NTlLWOLOIR-/O/DO!—(NIMO]+1WWO[r-|ol1mNOpstpoyolrr-|ol/a/oSoSC/OlOsOyOo/Ofelef[ef[c(cl(cleicic[eNININIATSINNINA.crSfppe(e[epee(cq(eccielcinSiri[e(—-
131

Application/Control No.

10/260,878
Examiner

Eric Kuiper

(Through numeral)

Cancelled

Restricted

oleomwywto

ll
Index of Claims

-

 N8-

Osa}00

INTEL Ex.1002.324

Part of Paper No. 01162006U.S. Patent and Trademark Office

INTEL Ex.1002.325

Search Notes

~ AM

SEARCHED

cos[sea[oe[ene

INTERFERENCE SEARCHED

U.S. Patent and Trademark Office

Application/Control No.

10/260,878 BOUCHERETAL.
Examiner Art Unit

Eric Kuiper 2154

 Applicant(s)/Patent under
Reexamination

SEARCH NOTES

(INCLUDING SEARCH STRATEGY)

1/13/2006

PerformedInventor search in PALM

Searched EAST Databases

See attached Search History

1/16/2006

1/6/2006
 Conducted PLUS search

Part of Paper No. 01162006

INTEL Ex.1002.325

INTEL Ex.1002.326

N DISCLOSURE STATEMENT BY
APPLICANT

‘te matt’FAST-PATH APPARATUSFOR RECEIVING DATA
“ CORRESPONDING TO A TCP CONNECTION|attomeyDocketNo:ALA-OUSE|: __| Attomey Docket No.: ALA-O06E

Filing Date,
If Appropriate

[BesarNone]

. OTHER ART(including Author, Title, Date, Pertinent Pages, Etc.

WindRiver article entitled “Tornado: For Intelligent Network Acceleration”, copyright Wind River Systems, 2001, 2
pages.

WindRiver White Paperentitled “Complete TCP/IP Offload for High-Speed Ethemet Networks", Copyright Wind
River Systems, 2002, 7 pages.

Inte] article entitled “Solving Server Boitlenecks with Inte! Server Adapters”, Copyright Intel Corporation, 1999,8
pages. ,

| Examiner a Lt Date Considered |[200% S/25]06
*EXAMINER:Initialif reference considered, whether or notcitation is in conformance with MPEP 609; Draw line through citation if not

| in conformance and nol considered. Include copy ofthis form with your communication to applicant.

Sheet 13 of 14

INTEL Ex.1002.326

INTEL Ex.1002.327

lication of Laurence B. Boucher,etal. Ser. No: 10/260,878

Filing Date: September 27, 2002 Examiner: Eric J. Kuiper

Atty. Docket No:|ALA-006E GAU: 2154

For: FAST-PATH APPARATUSFOR RECEIVING DATA |
CORRESPONDINGTO A TCP CONNECTION

April 23, 2006

MS Amendment

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Amendment

Sir:

In response to an Office Action dated January 27, 2006, please enter the following

Amendmentto the Claims and consider the following Remarks.

j
INTEL Ex.1002.327

INTEL Ex.1002.328

Amendmentto the Claims

1. (currently amended) A method for network communication, the method
comprising:

receiving a plurality of packets from the network, each of the packets
including a media access control layer header, a network layer header and a transport
layer header; .

processing the packets by a first mechanism,so that for each packet the

network layer header and the transport layer header are validated without an interrupt

dividing the processing of the network layer header andthe transport layer header;

sorting the packets, dependent uponthe processing,into first and second

types of packets, so that the packets ofthe first type each contain data;

sending the data from each packetofthefirst type to a destination in

memory allocated to an application without sending any of the media access control layer

headers, network layer headers or transport layer headersto the destination.

2. (original) The method of claim 1, wherein processing the packets bya first

mechanism further comprises: .

processing the media access control layer header for each packet without

an interrupt dividing the processing of the media access control layer header and the

network layer header.

3. (original) The methodofclaim 1, further comprising:

processing an upperlayer headerofat least one of the packets by a second

mechanism, thereby determining the destination, wherein the upper layer header

correspondsto a protocol layer abovethe transport layer.

4; (original) The method of claim 1, further comprising:

processing an upperlayer headerofat least one of the packets ofthe

second type by a second mechanism,thereby determining the destination.

Amendmentof App. Ser. No. 10/260,878 2

INTEL Ex.1002.328

INTEL Ex.1002.329

5. (currently amended) The methodof claim 1, further comprising:

processing a transport layer header of another packet by a second

mechanism,prior to receiving the plurality of packets from the network, thereby

establishing a Franspert Transmission Control Protocol (TCP) connection for the packets

ofthe first type. .

6. {currently amended) The method of claim 1, wherein sorting the packets

includes classifying each of the packets of the first type as having an Internet Protocol

(IP) header and a Franspert Transmission Control Protocol (TCP).

7. (original) The methodofclaim 1, further comprising:

transmitting a secondplurality of packets to the network, each of the second

plurality of packets containing a media access control layer header, a network layer

header anda transport layer header, including processing the second plurality of packets

by the first mechanism, so that for each packet the media access control layer header, the

network layer header and the transport layer header are processed without an interrupt

dividing the processing of the media access control layer header, the network layer

header andthe transport layer header.

8. (original) The methodofclaim 1, wherein the first mechanism is a sequencer

running microcode.

9. (currently amended) A method for communicating information over a network,

the method comprising: |
obtaining data from a source allocated bya first processor;

dividing the data into multiple segments;

prepending a packet headerto each of the segments by a second processor,

thereby forming a packet corresponding to each segment, each packet header containing a

media access control layer header, a network layer header and a transport layer header,

wherein the network layer header is Internet Protocol (IP), the transport layer headeris

Amendmentof App.Ser. No. 10/260,878 3

INTEL Ex.1002.329

INTEL Ex.1002.330

Transmission Control Protocol (TCP) and the prepending of each packet header occurs

without an interrupt dividing the prepending of the network layer header and the transport

layer header; and

transmitting the packets to the network.

10.—(original) -The method of claim 9, wherein prepending a packet header to

each of the segments by a second processor further comprises:

prepending the media access control layer header for each packet without

an interrupt dividing the prepending of the media access control layer header and the

networklayer header.

11. (currently amended) The methodofclaim 9, wherein each packet header

contains an Internet Protocol (IP) header and a Franspert Transmission Control Protocol

(TCP) header.

the-media-access-controllayerheader,

12. (currently amended) The methodof claim 9, further comprising establishing a

Franspert Transmission Control Protocol (TCP) connectionby the first processor and

using the connection to prepend the packet headerto each of the segments by the second

processor.

13.=(original) The method of claim 9, further comprising creating a template

header and forming each packet header based upon the template header.

14.~~(original) The method of claim 9, wherein obtaining data from the source in

memory allocated by the first processor is performed by a Direct Memory Access (DMA)

unit controlled by the second processor.

15. (original) The method of claim 9, further comprising prepending an upper

layer headerto the data, prior to dividing the data into multiple segments.

Amendmentof App. Ser. No. 10/260,878 4

INTEL Ex.1002.330

INTEL Ex.1002.331

16. (original) The method ofclaim 9, further comprising:

receiving another packet from the network, the other packet containing a

receive headerincluding information corresponding to a network layer and a transport

layer; and

selecting whether to process the other packet by the first processor or by

the second processor.

17. (original) A method for communicating information over a network, the
method comprising:

providing multiple segments ofdata;

prepending an outbound packet header to each of the segments, thereby

forming an outbound packet corresponding to each segment, the outbound packet header

containing an outbound media accesscontrol layer header, an outbound networklayer

header and an outboundtransport layer header, wherein the prepending of each outbound

packet header occurs without an interrupt dividing the prepending of the outbound media

access controllayer header, the outbound network layer header and the outbound

transport layer header;

transmitting the outbound packets to the network;

receiving multiple inbound packets from the network, each of the inbound

packets including an inbound media access control layer header, an inbound network

layer header and an inboundtransport layer header;

processing the inbound packets, so that for each packet the inbound

network layer header and the inboundtransport layer header are validated without an

interrupt dividing the processing of the inbound network layer header and the inbound

transport layer header.

18. (original) The method ofclaim 17, wherein the processing the inbound
packets is performed simultaneously with the prepending the outbound packet headerto

each of the segments.

AmendmentofApp. Ser. No. 10/260,878 5

INTEL Ex.1002.331

INTEL Ex.1002.332

19. (original). The methodofclaim 17, further comprising creating a template

headerand using the template header to form each outbound packet header.

20.—(original) The method of claim 17, wherein providing multiple segments of

data includes dividing a block of data into the segments.

21.—(original) The method of claim 20, further comprising prepending an upper

layer headerto the block ofdata, prior to dividingthe block of data into multiple

segments.

22. (currently amended) The method ofclaim 17, further comprising:

sending data from each inbound packetto a destination in memory

allocated to an application without sending any of the media access control layer headers,

network layer headers or transport layer headers to the destination.

23. (currently amended) The method of claim +4 22, further comprising:

processing an upper layer headerof at least one of the packets by a second

mechanism, thereby determining the destination, wherein the upper layer header

correspondsto a protocol layer abovethe transport layer.

24. (currently amended) The methodofclaim 17, further comprising:

processing a transport layer header of another inbound packet, prior to

receiving the plurality of packets from the network, thereby establishing a Transport

Transmission Control Protocol (TCP) connection for the inbound packets.

Amendment of App. Ser. No. 10/260,878 6

INTEL Ex.1002.332

INTEL Ex.1002.333

Remarks

I Claim Objections

Applicants have amended claim 11 to removethe phrase: “the media access

control layer header,”. Applicants respectfully assert that claim 11, as amended,is no

longer objectionable.

Il. Claim Rejections

A. 35 U.S.C. §102

The Office Action rejects claims 1, 2, 6 and 7 under 35 U.S.C. §102(e) as being

anticipated by U.S. Patent No. 5,920,566 to Hendelet al. (hereinafter “Hendel”).

Regarding claim 1, the Office Action states:

As per claim 1, Hendel teaches a method for network
communication (e.g. Hendel, col. 4, lines 53-55), the method comprising:

receiving a plurality of packets from the network, each of the .
packets including a media access control layer header, a network layer
header anda transport layer header(e.g. Hendel, col. 4, lines 56-67; col. 5,
lines 1-8);

processing the packets by a first mechanism, so that for each
packet the network layer header and the transport layer header are
validated without an interrupt dividing the processing of the network layer
header and the transport layer header (e.g. Hendel, col. 12, lines 66-67;
col. 13, lines 1-16);

sorting the packets, dependent upon the processing, into first and
second types of packets, so that the packets of the first type each contain
data (e.g. Hendel, col. 5, lines 26-33);

sending the data from each packetofthe first type to a destination
without sending any of the media access control layer headers, network
layer headers or transport layer headers to the destination (e.g. Hendel,
col. 13, lines 63-67; col. 14, lines 1-9).

Applicants respectfully disagree with the Office Action assertion that Hendel

teaches “processing the packets by a first mechanism,so that for each packet the network

layer header and the transport layer headerare validated without an interrupt dividing the

processing of the network layer header and thetransport layer header(e.g. Hendel, col.

12, lines 66-67; col. 13, lines 1-16).” Column 12, lines 66-67 and column 13, lines 1-16

of Hendelstate: .

An innovative structure and methodfor transmitting the packet and
control information across the internal link will now be described with

Amendmentof App. Ser. No. 10/260,878 7

INTEL Ex.1002.333

INTEL Ex.1002.334

reference to FIGS. 8A and 8B. FIG. 8A is a simplified diagram of the
packet structure utilized. More particularly, as the inbound subsystem has
determined certain information regarding the packet, e.g., routing, it is
advantageous to simply convey this information to the outbound
subsystem so that subsequent processing, such as the header field
replacement, can easily be performed without reperforming the same steps
performed by the inbound subsystem. Furthermore, it is desirable to
maintain end-to-end error robustness. Thus, the inbound subsystem
encapsulates the packet 800 with control information 805 and a cycle
redundancy code (CRC) 810. The outbound system receives the
encapsulated packet, determines frame validity using CRC 810,strips the
CRC 810 and removes the control information 805 to determine the

subsequent processing to be performed to output the packet.

This paragraph does not teach any processing of a network layer headeror a

transport layer header, let alone “processing the packets by a first mechanism, sothat for

each packet the network layer headerandthe transport layer headerare validated without

an interrupt dividing the processing of the network layer header and the transport layer

header.” As noted in column 2, lines 24-25 of Hendel, “Layer 2 provides for

transmission of frames of data and error detection.” The “outbound system”that

“determines frame validity using: CRC 810”appears to be directed to layer 2 rather than

layer 3 (networklayer)or layer 4 (transport layer), in contrast to claim 1. For example,

IP and TCP (network and transport layer protocols) headers each have checksumsthat

would be checked to validate the IP and TCP headers of a packet. Applicants

respectfully assert that Hendel does not teach such validation, and further does not teach

such validation “without an interrupt dividing the processing of the network layer header

and the transport layer header.”

Applicants also respectfully disagree with the Office Action assertion that Hendel

teaches “‘sending the data from each packetofthefirst type to a destination without

sending any of the media access control layer headers, network layer headers or transport

layer headersto the destination (e.g. Hendel, col. 13, lines 63-67; col. 14, lines 1-9).”

Column 13, lines 63-67 and column 14, lines 1-9 of Hendelstate:

The input interface 845 outputs to the cascading input process
(CIP) 850 the packet stripped of the CRC and the CIP 850 removes the
control information and forwardsthe packet, stripped of the encapsulating
CRC and control information, to the packet memory 855. The control
information is stored in the control field 857 corresponding to the packet

Amendment of App. Ser. No. 10/260,878 8

INTEL Ex.1002.334

INTEL Ex.1002.335

stored in the memory 855. The output port process 860 retrieves the
packetandthe control information from the packet memory 855 and based
upon the control information, selectively performs modifications to the
packet andissues control signals to the outputinterface 865 (i.e., MAC).

Applicants respectfully assert that this paragraph does not teach “sending the data
from each packetofthefirst type to a destination without sending any of the media
access control layer headers, network layer headersor transport layer headersto the

destination.” As shownin FIG. 8A of Hendel, stripping the “control information 805”

and “CRC 810”that“encapsulates the packet 800” leaves the header and data that form

the “packet 800”intact. .
For at least these reasons, applicants respectfully assert that Hendel does not

anticipate claim 1 or any claim that depends from claim 1.

Regarding claim 2, the Office Actionstates:

As per claim 2, Hendel teaches the method of claim 1, wherein
processing the packets by a first mechanism further comprises:

processing the media access control layer header for each packet
without an interrupt dividing the processing of the media access control
layer header and the network layer header(e.g. Hendel, col. 12, lines 66-
67; col. 13, lines 1-16).

Column 12, lines 66-67 and column 13,'lines 1-16 of Hendel are quoted above.

Applicants respectfully assert that this paragraph does not teach any processing of a

network layer header, let alone “(processing the media access control layer header for

each packet without an interrupt dividing the processing of the media access control layer

header and the network layer header.” Forat least this reason, applicants respectfully

assert that Hendeldoes notanticipate claim 2.

Regarding claim 6, the Office Actionstates:

As per claim 6, Hendel teaches the method of claim 1, wherein
sorting the packets includes classifying each of the packetsofthe first type
as having an Internet Protocol (IP) header and a Transport Control
Protocol (TCP) (e.g. Hendel, col. 6, lines 50-61).

Column 6, lines 50-61 of Hendelstate:

The MLDNE's distributed architecture can be configured to route
messagetraffic in accordance with a number of knownrouting algorithms
such as RIP and OSPF. In a preferred embodiment, the MLDNEis
configured to handle messagetraffic using the Internet suite of protocols,

AmendmentofApp. Ser. No. 10/260,878 9

INTEL Ex.1002.335

INTEL Ex.1002.336

and morespecifically the Transmission Control Protocol (TCP) and the
Internet Protocol (IP) over the Ethernet LAN standard and medium access
control (MAC) data link layer. The TCP is also referred to here as an
exemplary Layer 4 protocol, while the IP is referred to repeatedly as a
Layer 3 protocol. However, other protocols can be used to implement the
concepts of the invention.

Applicants respectfully assert that this paragraph does not teach “wherein sorting

the packets includesclassifying each of the packets ofthe first type as having an Internet

Protocol (IP) header and a Transport Control Protocol (TCP).” Forat least this reason,

applicants respectfully assert that Hendel does notanticipate claim 6.

Regarding claim 7, the Office Action states:

As per claim 7, Hendel teaches the method of claim 1, further
comprising:

transmitting a second plurality of packets to the network, each of
the second plurality of packets containing a media access control layer
header, a network layer header and a transport layer header, including
processing the second plurality of packets by the first mechanism, so that
for each packet the media access control layer header, the network layer
header and the transport layer header are processed without an interrupt
dividing the processing of the media access control layer header, the
network layer header and the transport layer header (e.g. Hendel, col. 12,
lines 66-67; col. 13, lines 1-16).

Column 12, lines 66-67 and column 13, lines 1-16 of Hendel are quoted above.

Applicants respectfully assert that this paragraph does not teach any processing of a

network layer headeror a transport layer header,let alone “transmitting a secondplurality

ofpackets to the network, each ofthe secondplurality of packets containing a media

access control layer header, a network layer header and a transport layer header,

including processing the secondplurality of packets by the first mechanism, so that for

each packet the media access control layer header, the network layer header and the

transport layer header are processed without an interrupt dividing the processing ofthe

media access control layer header, the network layer header and the transport layer

header.” Forat least this reason, applicants respectfully assert that Hendel does not

anticipate claim 7.

Amendment of App. Ser. No. 10/260,878 10

INTEL Ex.1002.336

INTEL Ex.1002.337

B. 35 U.S.C. §103

_ The Office Action rejects claims 3 and 4 under 35 U.S.C. §103(a) as being

unpatentable over Hendelin view of U.S. Patent No. 6,115,615 to Ota etal. (hereinafter

“Ota”). Regarding claim 3, the Office Actionstates:

As per claim 3, Hendel teaches the method ofclaim 1, but fails to
teach the method further comprising:

processing an upperlayer headerofat least one of the packets by a
second mechanism,thereby determining the destination, wherein the upper
layer header correspondsto a protocol layer above the transport layer.

However, in a similar art, Ota teaches a network communications
system that uses an application layer level address to indicate the
destination and route packets through the network (e.g. Ota, col. 7, lines
18-25, 40-53).

It would have been obviousto one skilled in the art at the time the

invention was made to combine Ota with Hendel because of the

advantages of using an upper layer header to determine the destination of
packets in a network. Network layer and transport layers also generally
include addresses or indications of destinations for the packets and
including this feature into the application layer as well provides another
fail-safe step for the network in the event of a failure in some portion of
the network. Havingfail-safe routes for information decreases the amount
of network downtimesince routes can be switched almost instantaneously
upon the realization of a fault or error. This is a benefit in any
communications network system.

Applicants have amendedclaim|to recite, in part, “sending the data.from each

packetofthe first type to a destination in memory allocated to an application without

sending any of the media access control layer headers, network layer headers or transport

layer headers to the destination.” Applicants respectfully assert that Ota does not teach

“sending the data from each packetofthe first type to a destination in memory allocated

to an application without sending any of the media access control layer headers, network

layer headersor transport layer headersto the destination.” Ota instead allegedly “gives

a unique application layer level address to a mobile station, and regards a network layer

level address (IP address in this embodiment) as an addressindicating a route.” Ota,

column 7, lines 40-43. Forat least this reason, applicants respectfully assert that claim 3

is nonobvious over the combination of Ota and Hendel proposed by the Office Action.

Amendment of App. Ser. No. 10/260,878 11

INTEL Ex.1002.337

INTEL Ex.1002.338

Regardingclaim 4, the Office Action states:

Asper claim 4, Hendel teaches the method of claim 1, but fails to
teach the method further comprising:

processing an upperlayer header of at least one of the packets of
the second type by a second mechanism, thereby determining the
destination.

However, in a similar art, Ota teaches a network communications
system that uses an application layer level address to indicate the
destination and route packets through the network(e.g. Ota, col. 7, lines
18-25, 40-53).

It would have been obviousto one skilled in the art at the time the

invention was made to combine Ota with Hendel for similar reasons as

stated above in regardsto claim 3.

Applicants respectfully assert that claim 4 is nonobvious over the combination of

Ota and Hendel proposed by the Office Action for similar reasonsas stated above in

regardsto claim 3.

The Office Actionrejects claim 5 under 35 U.S.C. §103(a) as being unpatentable

over Hendel in view of U.S. Patent No. 5,892,903 to Klaus (hereinafter ‘““Klaus”).

Regarding claim 5, the Office Actionstates:

As per claim 5, Hendel teaches the method of claim 1, further
comprising:

processing a transport layer header of another packet by a second
mechanism, prior to receiving the plurality of packets from the network
(e.g. Hendel, col. 13, lines 63-67; col. 14,lines 1-9).

Hendel fails to teach establishing a Transport Control Protocol
(TCP) connection for the packets ofthefirst type.

However,in a similar art, Klaus teaches the use of a transport layer
header to create a TCP connection over a network(e.g. Klaus, col. 5, lines
8-23).

It would have been obviousto one skilled in the art at the time the

invention was made to combine Klaus with Hendel because of the

advantages of using a transport layer header to provide a TCP connection
over a network. The use transport layer, included in the well-known OSI
model, is advantageous because it provides segmentation of
communication functions across the various layers of the protocol stack
and modularizes the functions required to implement network
communication, which simplifies computer communication operation and
maintenance (e.g. Klaus, col. 2, lines 14-23). The use of the OSI model
allows for communication across various systems and platforms without
the need for conversion or modification of the communication method.

This can greatly increase the efficiency of communication across a
network, which is beneficial in any communications network system.

AmendmentofApp. Ser. No. 10/260,878 12

INTEL Ex.1002.338

INTEL Ex.1002.339

Applicants respectfully disagree with the Office Action assertion that “It would
havebeen obviousto oneskilled in the art at the time the invention was made to combine

Klaus with Hendel because of the advantages of using a transport layer header to provide

a TCP connection over a network.”

Hendelis directed to “‘an apparatus and related method for relaying packets by a

multi-layer distributed network element according to knownrouting protocols.” Hendel,

column 4, lines 53-55. “The network element should be able to operate at bridge-like

speeds,yet be capable of routing packets across different subnetworks and provide upper

layer functionalities such as quality of service.” Hendel, column4,lines 47-50.

Establishing a TCP connection, which is complicated and performed in software, would

contradict Hendel’s “need for a network element that can handle changing network

conditions such as topology and messagetraffic yet makeefficient use of high

performance hardware to switch packets based on their Layer 2, Layer 3, and Layer 4

headers.” Hendel, column 4, lines 53-55.

Moreover, as noted in column3, lines 29-49 of Klaus, “In the TCP/IP protocol, a

communication connection is established through a three handshake open network

protocol. The first handshake or data message is from a source computerandistypically

called a "synchronization" or "sync" message. In response to a sync message, the

destination computer transmits a synchronization-acknowledgment("sync-ack") message.

The source computer then transmits an acknowledgment("ack") message and a

communication connection between the source and destination computeris established.”

This multi-step procedure, performed in software and over a network, would appear to

one of ordinary skill to slow the routing and switching of packets that Hendelis directed

to.

In addition, it is not asserted in the Office Action, andit 1s certainly not apparent

from the cited references, what computerthe “network element” of Hendel would

establish a TCP connection with, if combined with Klaus as proposed by the Office

Action. Stated differently, applicants respectfully assert that the combination of Klaus

and Hendelthat is proposed by the Office Action may be inoperable, teaching one of

ordinary skill in the art away from making such a combination.

AmendmentofApp. Ser. No. 10/260,878 13

INTEL Ex.1002.339

INTEL Ex.1002.340

Applicants respectfully assert that these disadvantages of establishing a TCP

‘connection would far outweigh the advantagesalleged by the Office Action, which for
the most part would not even be applicable to the proposed combination of Klaus and
Hendel.

Forat least this reason, applicants respectfully assert that claim 5 is nonobvious

over the combination of Klaus and Hendel proposed by the Office Action.

The Office Action rejects claim 8 under 35 U.S.C. §103(a) as being unpatentable
over Hendel in view of U.S. Patent No. 5,991,299 to Radognaet al. (hereinafter

“Radogna”). Regarding claim 8, the Office Actionstates:

As per claim 8, Hendel teaches the methodof claim 1, butfails to
teach the method wherein the first mechanism is a sequencer running
microcode.

However, in a similar art, Radogna teaches the use of a dedicated
"sequencer running microcode to perform network communication and

headertranslation and processing(e.g. col. 4, lines 25-30).
It would have been obviousto one skilled in the art at the time the

invention was made to combine Radogna with Hendel because of the
benefits of using a specialized processor to handle various tasks in a
communications system. Using a sequencer for processing header
information can greatly accelerate a frame or packet through a network
since the central processing unit does not become overburdened when
many packets need to be processed. This frees up the central processor to
handle other networking tasks, therefore increasing the speed and
efficiency of transmissions through the network. The use of software
microcodefor this processing easily accommodates new protocols and can -
bypass hardware processing in the event of a hardware failure. This is
beneficial in any communications network system.

Applicants respectfully assert that, assuming arguendo Radogna and Hendel were

combinedas proposed bythe Office Action, the resulting device would not be processing

the packets by a sequencer running microcode,so that for each packet the network layer

header and thetransport layer headerare validated without an interrupt dividing the

processing of the network layer header and the transport layer header, in contrast to claim

8. There is, for example, no teaching in Radogna or Hendel of validating a transport

layer header, let alone the limitation of “for each packet the network layer header and the

transport layer header are validated without an interrupt dividing the processing of the

network layer header andthe transport layer header.” Radogna,like Hendel, is directed

AmendmentofApp.Ser. No. 10/260,878 14

INTEL Ex.1002.340

INTEL Ex.1002.341

to high speed headertranslation processing for bridges and routers. Validating transport

layer headers would not only be a waste of time in such devices, but may cause

unnecessary errorsif, for example, checksums were removedas is typical for such

validation, to be replaced with new checksumsonretransmission.

Forat least this reason, applicants respectfully assert that claim 8 is nonobvious

over the combination of Radogna and Hendel proposed by the Office Action.

The Office Action rejects claims 9, 10, 14, 16-18 and 22 under 35 U.S.C. §103(a)

as being unpatentable over Radognain view of Hendel. Regarding claim 9, the Office

Actionstates:

As per claim 9, Radogna teaches a method for communicating
information over a network (e.g. Radogna, col. 2, lines 63-67), the method
comprising:

obtaining data from a source allocated by a first processor (e.g.
Radogna,col. 3, lines 50-59);

dividing the data into multiple segments (e.g. Radogna, col. 3,
lines 50-59);

prepending a packet header to each of the segments by a second
processor, thereby forming a packet corresponding to each segment(e.g.-
Radogna,col. 14, lines 22-36);

transmitting the packets to the network (e.g. Radogna,col. 5, lines
9-17). -

Radognafails to teach the method comprising each packet header
containing a media access control layer header, a network layer header and
a transport layer header, wherein the prepending of each packet header

occurs without an interrupt dividing the prepending of the network layer
headerandthe transport layer header.

However, in a_similar art, Hendel teaches a_network
communications system teach the method comprising each packet header
containing a media access control layer header, a network layer header and
a transport layer header, wherein the prepending of each packet header
occurs without an interrupt dividing the prepending of the network layer
header and the transport layer header (e.g. Hendel, col. 12, lines 66-67;
col. 13, lines 1-16).

It would have been obviousto one skilled in the art at the time the

invention was made to combine Radogna with Hendel because of the
advantages of including headers for each of the MAC (data link) layer,
network layer and transport layer when communicating over a packetized
network conforming to the OSI model. The use of these layers is well
known since the OSI model was developed. Prepending a header
associated with each layer is a common method for allowing the network
to process the packets layer by layer, in accordance with the OSI model.
Performing the processing and prepending of headers without an interrupt

Amendmentof App.Ser. No. 10/260,878 15

INTEL Ex.1002.341

INTEL Ex.1002.342

between layers provides the benefits of speeding up the entire processing
method and increasing the efficiency of packet transmission across a
network. This is beneficial in any communications network system.

Applicants respectfully disagree with the Office Action assertion that “Hendel

teaches a network communications system teach the method comprising each packet

header containing a media access control layer header, a network layer header and a
transport layer header, wherein the prepending of each packet header occurs without an

interrupt dividing the prepending of the network layer header andthe transport layer

header(e.g. Hendel, col. 12, lines 66-67; col. 13, lines 1-16).” Column 12, lines 66-67

and column 13, lines 1-16 of Hendelstate:

An innovative structure and methodfor transmitting the packet and
control information across the internal link will now be described with

reference to FIGS. 8A and 8B. FIG. 8A is a simplified diagram of the
packetstructure utilized. More particularly, as the inbound subsystem has
determined certain information regarding the packet, e.g., routing, it is
advantageous to simply convey this information to the outbound
subsystem so that subsequent processing, such as the header field
replacement, can easily be performed without reperforming the samesteps
performed by the inbound subsystem. Furthermore, it is desirable to
maintain end-to-end error robustness. Thus, the inbound subsystem
encapsulates the packet 800 with control information 805 and a cycle
redundancy code (CRC) 810. The outbound system receives the
encapsulated packet, determines frame validity using CRC 810,strips the
CRC 810 and removes the control information 805 to determine the

subsequentprocessing to be performed to output the packet.

This paragraph does not teach any processing of a network layer header or a

transport layer header, let alone “processing the packets by a first mechanism,sothat for

each packet the network layer header andthe transport layer headerare validated without

an interrupt dividing the processing of the network layer header and the transport layer

header.” As noted in column 2, lines 24-25 of Hendel, “Layer 2 provides for

transmission of frames of data and error detection.” The “outbound system”that

“determines frame validity using CRC 810” appears to be directed to layer 2 rather than

layer 3 (network layer) or layer 4 (transport layer), in contrast to claim 1. For example,

IP and TCP (network and transport layer protocols) headers each have checksumsthat

would be checkedto validate the IP and TCP headers of a packet. Applicants

respectfully assert that Hendel does not teach such validation, and further does not teach

AmendmentofApp.Ser. No. 10/260,878 16

INTEL Ex.1002.342

INTEL Ex.1002.343

such validation ‘“‘without an interrupt dividing the processing of the network layer header

andthe transport layer header.” As shownin FIG. 8A of Hendel, adding and stripping

the “control information 805” and “CRC 810”that “encapsulates the packet 800” leaves

the header and data that form the “packet 800”intact.

Forat least these reasons, applicants respectfully assert that claim 9 and any claim

that depends from claim 9 is nonobviousover the combination of Radogna and Hendel

proposed by the Office Action.

‘Regarding claim 10, the Office Actionstates:

As per claim 10, Radogna and Hendel teach the methodofclaim 9,
wherein prepending a packet header to each of the segments by a second
processor further comprises:

prepending the media access control layer header for each packet
without an interrupt dividing the prepending of the media access control
layer header and the network layer header (e.g. Radogna,col. 14, lines 22-
36; Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

Applicants respectfully disagree with the Office Action assertion that “Radogna

and Hendel teach the method of claim 9, wherein prepending a packet headerto each of

the segments by a secondprocessorfurther comprises: prepending the media access

control layer header for each packet without an interrupt dividing the prepending ofthe

media access control layer header and the network layer header (e.g. Radogna,col. 14,

lines 22-36; Hendel, col. 12, lines 66-67; col. 13, lines 1-16). Column 12, lines 66-67

and column 13, lines 1-16 of Hendel are quoted above and do notteach this. Column 14,

lines 22-36 of Radognastate:

The methodof operation of the hardware microsequencer 100 and
associated support hardware comprising the THP engine is generally
illustrated in FIGS. 6a-6c. Frames are delivered to Transmit Segmentation
Unit (TSEG) FIFOs 59 from the Buffer RAM 22 based upon per port
queues maintained within the MBAas depicted in step 200. The Transmit
Segmentation Unit (TSEG) 58 queues transmit vectors from the Master
Buffer ASIC (MBA) 32, which indicate where in the Buffer RAM 22,
respective segments of transmit frames are stored. The frames are packed
into the TSEG FIFO 59 so that there are no spaces between bytes.
Information needed by the THP 60 to identify and execute the proper
translation routine is contained within the transmit vector which is

prepended to each framepresented to the THP for headertranslation.

AmendmentofApp. Ser. No. 10/260,878 17

INTEL Ex.1002.343

INTEL Ex.1002.344

Ascan be seen, this paragraph also does not teach the limitations of claim 10. For

at least these reasons, applicants respectfully assert that claim 10 is nonobviousover the

combination of Radogna and Hendel proposed by the Office Action.

Regarding claim 14, the Office Action states:

As per claim 10, Radogna and Hendelteach the methodof claim 9,
wherein obtaining data from the source in memory allocated by the first
processor is performed by a Direct Memory Access (DMA)unit controlled
by the second processor(e.g. Radogna, col. 5, lines 5-17).

Applicants respectfully disagree with the Office Action assertion that “Radogna

and Hendel teach the method ofclaim 9, wherein obtaining data from the source in
memory allocated by the first processor is performed by a Direct Memory Access (DMA)

unit controlled by the second processor. (e.g. Radogna,col. 5, lines 5-17).” Column 14,

lines 22-36 of Radognastate:

The RSEG 50 comprises a DMA controller which controls storage
of received frame data within appropriate Buffer RAM 22 locations.

The Transmit ASIC

The transmit ASIC includes a Transmit Segmentation Unit (TSEG)
58, a plurality of Transmit Segment Unit (TSEG) FIFOs 59, a Transmit
Header Processor (THP) 60, a Transmit State Machine ("TXSM") 62 and
Transmit State Machine FIFOs 64. The TSEG 58 comprises a DMA
controller which. serves to move frame data segments from locations
within the Buffer RAM 22 into an input FIFO designated as the TSEG
FIFO 59. The TSEG FIFO 59 comprises an input to the THP 60.

As can be seen, these paragraphsdo notteach thelimitations of claim 14. Thatis,

although a DMAcontroller is mentioned, these paragraphs do not teach “wherein

obtaining data from the source in memory allocated by thefirst processor is performed by

a Direct Memory Access (DMA)unit controlled by the second processor.” Forat least

this reason, applicants respectfully assert that claim 14 is nonobvious over the

combination of Radogna and Hendel proposed by the Office Action.

Regarding claim 16, the Office Action states:

As per claim 16, Radogna and Hendel teach the methodofclaim 9,
further comprising:

receiving another packet from the network, the other packet
containing a receive header including information corresponding to a
network layer and a transport layer (e.g. Hendel, col. 4, lines 56-67;col. 5,
lines 1-8); and

AmendmentofApp. Ser. No. 10/260,878 18

INTEL Ex.1002.344

INTEL Ex.1002.345

selecting whetherto process the other packet by the first processor
or by the second processor(e.g. Hendel, col. 5, lines 26-33).

Applicants respectfully disagree with the Office Action assertion that “Radogna

and Hendel teach the method of claim 9, further comprising: ...selecting whether to

process the other packet bythe first processor or by the second processor.(e.g. Hendel,

col. 5, lines 26-33).” Column5, lines 26-33 of Radognainsteadstate:

When the packet is received over the internal link by a second
subsystem,the packet is forwarded to the neighbor node in responseto the
packet's new first header portion matching a type 1 entry in the second
forwarding memory. The type 1 entry in the second subsystem contains
the address of the neighbor node or endstation and had been created
independently of the matching type 2 entry of the inbound subsystem.

Ascan beseen,this paragraph doesnot teach the limitations of claim 16. Thatis,

this paragraph doesnotteach “selecting whether to process the other packet bythefirst

processoror by the second processor.” For at least this reason, applicants respectfully

assert that claim 16 is nonobvious over the combination of Radogna and Hendel proposed
by the Office Action.

Regarding claim 17, the Office Actionstates:

As per claim 17, Radogna teaches a method for communicating
information over a network, the method comprising:

providing multiple segments of data (e.g. Radogna, col. 3, lines 50-
59); .

prepending an outbound packet header to each of the segments,
thereby forming an outbound packet corresponding to each segment(e.g.
Radogna,col. 14, lines 22-36);

transmitting the outbound packets to the network (e.g. Radogna,
col. 5, lines 9-17);

receiving multiple inbound packets from the network, each of the
inbound packets including an inbound media access control layer header,
an inbound network layer header and an inbound transport layer header
(e.g. Radogna,col. 3, lines 50-59).

Radognafails to teach the method comprising the outbound packet
header containing an outbound media access control layer header, an
outbound network layer header and an outboundtransport layer header,

wherein the prepending of each outbound packet header occurs without an
interrupt dividing the prepending of the outbound media access control
layer header, the outbound network layer header and the outbound
transport layer header;

AmendmentofApp. Ser. No. 10/260,878 19

INTEL Ex.1002.345

INTEL Ex.1002.346

However, in a similar art, Hendel teaches a network
communications system based on packets utilizing media access control
layer headers, network layer headers and transport layer headers, the
processing and validating of these headersall occurring withoutinterrupts
between each layer(e.g. Hendel, col. 12, lines 66-67; col. 13, lines 1-16).

It would have been obviousto one skilled in the art at the time the

invention was made to combine Hendel with Radogna because of the
advantages of including headers for each of the MAC (data link) layer,
network layer and transport layer when communicating over a packetized
network conforming to the OSI model. The use of these layers is well
known since the OSI model was developed. Prepending a header
associated with each layer is a common methodfor allowing the network
to process the packets layer by layer, in accordance with the OSI model.
Performing the processing and prepending of headers without an interrupt
between layers provides the benefits of speeding up the entire processing
method and increasing the efficiency of packet transmission across a
network. This is beneficial in any communications network system.

Applicants respectfully disagree with the Office Action assertion that “Hendel

teaches a network communications system based on packets utilizing media access

control layer headers, network layer headers and transport layer headers, the processing

and validating of these headersall occurring without interrupts between eachlayer(e.g.

Hendel, col. 12, lines 66-67; col. 13, lines 1-16).” As discussed above for claim 1 and

claim 9, Hendel teaches no such thing. Moreover, applicants respectfully note that the

Office Action does not assert that Hendel and Radogna teach, and Hendel and Radogna

do notteach, “processing the inbound packets, so that for each packet the inbound

network layer header and the inboundtransport layer header are validated without an

interrupt dividing the processing of the inbound network layer header and the inbound

transport layer header,” in contrast to claim 17. .
For at least these reasons, applicants respectfully assert that claim 17 and any

claim that depends from claim 17 is nonobvious over the combination of Radogna and

Hendel proposed by the Office Action.

Regarding claim 18, the Office Action states:

As per claim 18, Radogna and Hendel teach the method of claim
17, wherein the processing the inbound packets is performed
simultaneously with the prepending the outbound packet header to each of
the segments (e.g. Radogna, separate processors for receive functionality
and transmit functionality, col. 3, lines 50-59; col. 5, lines 9-17; col. 14,
lines 22-36).

AmendmentofApp. Ser. No. 10/260,878 20

INTEL Ex.1002.346

INTEL Ex.1002.347

Asnoted above, the proposed combination Radogna and Hendel doesnot process
inbound packets or prepend outboundpacket headers,as recited, so assuming arguendo

that Radogna has separate processors for receive functionality and transmit functionality

is immaterial to the claim. Forat least this reason, applicants respectfully assert that

claim 18 is nonobvious over the combinationof Radogna and Hendelproposed bythe

Office Action.

Regarding claim 22, the Office Action states:

As per claim 22, Radogna and Hendel teach the method of claim
17, further comprising:

sending data from each inbound packet to a destination without
sending any of the media access control layer headers, network layer
headers or transport layer headers to the destination (e.g. Hendel, col. 12,
lines 66-67; col. 13, lines 1-16; col. 14, lines 1-9).

_ Applicants respectfully assert that Hendel does not teach, in column 12-14 or

elsewhere, “sending data from each inbound packetto a destination without sending any

of the media access control layer headers, network layer headers or transport layer

headers to the destination,” as recited in claim 22. For at least this reason, applicants

respectfully assert that claim 22 is nonobvious over the combination of Radogna and

Hendel proposed by the Office Action.

The Office Action rejects claims 12 and 24 under 35 U.S.C. §103(a) as being

unpatentable over Radognain view of Hendel and Klaus. Regarding claim 12, the Office

Actionstates:

Asper claim 12, Radogna and Hendel teach the method of claim 9,
comprising prepending the packet header to each of the segments by the
second processor(e.g. Radogna,col. 14, lines 22-36).

Radogna and Hendelfail to teach the method further comprising
establishing a Transport Control Protocol (TCP) connection by thefirst
processor and using the connection to prepend the packet header to each of
the segments by the secondprocessor.

However,in a similar art, Klaus teaches the use of a transport layer
header to create and utilize a TCP connection over a network(e.g. Klaus,
col. 5, lines 8-23).

It would have been obviousto oneskilled in the art at the time the

invention was made to combine Klaus with Radogna and Hendel because
of the advantages of using a transport layer header to provide a TCP
connection over a network. The use transport layer, included in the well-
known OSI model, is advantageous because it provides segmentation of

Amendment of App. Ser. No. 10/260,878 21

INTEL Ex.1002.347

INTEL Ex.1002.348

communication functions across the various layers of the protocol stack
and modularizes the functions required to implement network
communication, which simplifies computer communication operation and
‘maintenance (e.g. Klaus, col. 2, lines 14-23). The use of the OSI model
allows for communication across various systems and platforms without
the need for conversion or modification of the communication method.

This can greatly increase the efficiency of communication across a
network, which is beneficial in any communications network system.

Applicants respectfully disagree with the Office Action assertion that “It would

have been obviousto oneskilled in the art at the time the invention was made to combine

Klaus with Radogna and Hendel because of the advantagesofusing a transport layer

headerto provide a TCP connection over a network.”

Hendelis directed to “an apparatus and related method for relaying packets by a

multi-layer distributed network element according to knownrouting protocols.” Hendel,

- column 4, lines 53-55. “The network element should be able to operate at bridge-like

speeds, yet be capable of routing packets across different subnetworks and provide upper ©

layer functionalities such as quality of service.” Hendel, column 4,lines 47-50.

Establishing a TCP connection, which is complicated and performed in software, would

contradict Hendel’s “need for a network element that can handle changing network

conditions such as topology and messagetraffic yet make efficient use of high

performance hardware to switch packets based on their Layer 2, Layer 3, and Layer 4

headers.” Hendel, column 4,lines 53-55.

Radogna,like Hendel, is directed to high speed headertranslation processing for

bridges and routers. Establishing a TCP connection, which is complicated and performed

in software, would contradict Radogna’s desire “to be able to perform headertranslations

in a network device, such as a router, at or near the frame reception rate for the device.”

Radogna, column 1, lines 63-65.

Moreover,as noted in column 3, lines 29-49 ofKlaus, “In the TCP/IP protocol, a

communication connection is established through a three handshake open network

protocol. The first handshake or data messageis from a source computerandis typically

called a "synchronization" or "sync" message. In response to a sync message,the

destination computer transmits a synchronization-acknowledgment("sync-ack") message.

The source computer then transmits an acknowledgment("ack") message and a

Amendmentof App. Ser. No. 10/260,878 22

INTEL Ex.1002.348

INTEL Ex.1002.349

communication connection between the source and destination computeris established.”
This multi-step procedure, performed in software and over a network, would appearto

one ofordinary skill to slow the routing and switching of packets that Hendelis directed

to.

In addition,it is not asserted in the Office Action,andit is certainly not apparent
from the cited references, what computer the “network element” of Hendel would

establish a TCP connection with, if combined with Radogna and Klausas proposed by

the Office Action. Stated differently, applicants respectfully assert that the combination

of Klaus and Radogna and Hendelthat is proposed by the Office Action may be

inoperable, teaching oneofordinary skill in the art away from making such a

combination.

Applicants respectfully assert that these disadvantages of establishing a TCP

connection would far outweigh the advantages alleged by the Office Action, which for

the most part would not even be applicable to the proposed combination of Klaus and
Radogna and Hendel.

Forat least this reason, applicants respectfully assert that claim 12 isnonobvious

over the combination of Klaus and Radogna and Hendel proposed by the Office Action.

Regarding claim 24, the Office Actionstates:

Asper claim 24, Radogna and Hendel teach the method of claim
17, further comprising:

processing a transport layer header of another inbound packet,
prior to receiving the plurality of packets from the network (e.g. Hendel,
col. 12, lines 66-67; col. 13, lines 1-16),

Radogna and Hendel fail to teach the method further comprising
establishing a Transport Control Protocol (TCP) connection for the
inboundpackets.

However,in a similar art, Klaus teaches the use of a transport layer
header to create and utilize a TCP connection over a network (e.g. Klaus,
col. 5, lines 8-23).

It would have been obviousto one skilled in the art at the time the

invention was made to combine Klaus with Radogna and Hendel for
similar reasonsas stated above in regards to claim 12.

Applicants respectfully assert that Hendel does not teach, in column 12,lines 66-

67; column 13, lines 1-16, or elsewhere,“processing a transport layer header of another

inbound packet”as recited in claim 24, for similar reasonsas stated above in regards to

AmendmentofApp. Ser. No. 10/260,878 23

INTEL Ex.1002.349

INTEL Ex.1002.350

claim 12.. Applicants also respectfully assert that it would not have been obvious to one

skilled in the art at the time the invention was made to combine Klaus with Radogna and

Hendel, for similar reasons as stated above in regards to claim 12. Forat least these

reasons, applicants respectfully assert that claim 24 is nonobvious over the combination

of Radogna and Hendelproposed by the Office Action.

The Office Action rejects claims 15, 21 and 23 under 35 U.S.C. §103(a) as being

unpatentable over Radogna in view of Hendel and Ota. Regarding claim 15, the Office

Actionstates:

As per claim 15, Radogna and Hendel teach the methodofclaim 9,
but fail to teach the method further comprising prepending an upperlayer
headerto the data, prior to dividing the data into multiple segments.

However, in a similar art, Ota teaches a network communication
system that attaches and uses a headerin the application layer (e.g. Ota,
col. 7, lines 18-25, 40-53).

It would have been obviousto one skilled in the art at the time the

invention was made to combine Ota with Radogna and Hendel because of
the advantages of attaching a header to an upper layer, such as the
application layer, along with the other layers of the well-known OSI
model. The use of an upper layer header can provide a great deal of
flexibility to the system since it is able to transmit more data with the
packet itself. The OSI model is designed to attach and process headers
from each ofthe seven layers efficiently to ensure that the data within the
packet is transmitted properly across the network. Including an
application layer header further ensures the proper receipt of the data.
This is beneficial in any communications network system.

Applicants respectfully note that the Office Action does not assert, and even the

combination of the references proposed by the Office Action would not teach,

“‘prepending an upperlayer headerto the data, priorto dividing the data into multiple
segments,”as recited in claim 15. This may be because the advantagesalleged by Ota

and the Office Action would not work in this case. That is, Ota allegedly “gives a unique

application layer level address to a mobile station, and regards a network layerlevel

address (IP address in this embodiment) as an address indicating a route.” Ota, column 7,

lines 40-43. But should such a “unique application layer level address” be prepended as

“an upper layer headerto the data, prior to dividing the data into multiple segments,”that

header would presumably only be attachedto the first segment of the multiple segments,

after dividing the data into multiple segments. In other words, the upper layer addressing

AmendmentofApp. Ser. No. 10/260,878 24

INTEL Ex.1002.350

INTEL Ex.1002.351

scheme proposed by Ota would fail for all but the first packet of multiple packets,
resulting in multiple problems and showing howuseless the upperlayer addressing

scheme proposedby Ota really is. Because the OSI model does not have any mechanism

for providing upper layer headers to each packet for blocks of data that are divided for

transmission over a network, and the addressing scheme of Ota reduces network layer

level addresses such as IP addresses as merely “indicating a route,” Ota is probably

inoperable, teaching one ofordinary skill in the art away from using Ota or combiningit

with any functional reference.

Forat least these reasons, applicants respectfully assert that claim 15 is

nonobvious over the combination of Radogna, Hendel and Ota proposed bythe Office

Action.

Regarding claim 21, the Office Action states:

Asper claim 21, Radogna and Hendel teach the method of claim
20, but fail to teach the method further comprising prepending an upper
layer headerto the data, prior to dividing the data into multiple segments.

However, in a similar art, Ota teaches a network communication
system that attaches and uses a header in the application layer (e.g. Ota,
col. 7, lines 18-25, 40-53).

It would have been obvious to one skilled in the art at the time the

invention was made to combine Ota with Radogna and Hendelfor similar
reasonsas stated abovein regards to claim 15.

Applicants respectfully note that the Office Action does not assert, and even the

combination of the references proposed by the Office Action would not teach,

“prepending an upper layer header to the data, prior to dividing the data into multiple

segments,” as recited in claim 21. This may be because the advantages alleged by Ota

and the Office Action would not work in this case. That is, Ota allegedly “gives a unique

application layer level address to a mobile station, and regards a networklayer level

address (IP address in this embodiment) as an address indicating a route.” Ota, column 7,

lines 40-43. But should such a “unique application layer level address” be prepended as

“an upperlayer headerto the data, prior to dividing the data into multiple segments,”that

header would presumably only be attachedto the first segment of the multiple segments,

after dividing the data into multiple segments. In other words, the upper layer addressing

scheme proposed by Ota would fail for all but the first packet of multiple packets,

AmendmentofApp. Ser. No. 10/260,878 25

INTEL Ex.1002.351

INTEL Ex.1002.352

INTEL Ex.1002.353

INTEL Ex.1002.354

INTEL Ex.1002.355

INTEL Ex.1002.356

INTEL Ex.1002.357

INTEL Ex.1002.358

INTEL Ex.1002.359

INTEL Ex.1002.360

INTEL Ex.1002.361

INTEL Ex.1002.362

INTEL Ex.1002.363

INTEL Ex.1002.364

INTEL Ex.1002.365

INTEL Ex.1002.366

INTEL Ex.1002.367

INTEL Ex.1002.368

INTEL Ex.1002.369

INTEL Ex.1002.370

INTEL Ex.1002.371

INTEL Ex.1002.372

INTEL Ex.1002.373

INTEL Ex.1002.374

INTEL Ex.1002.375

INTEL Ex.1002.376

INTEL Ex.1002.377

INTEL Ex.1002.378

INTEL Ex.1002.379

INTEL Ex.1002.380

INTEL Ex.1002.381

INTEL Ex.1002.382

INTEL Ex.1002.383

INTEL Ex.1002.384

INTEL Ex.1002.385

INTEL Ex.1002.386

INTEL Ex.1002.387

INTEL Ex.1002.388

INTEL Ex.1002.389

INTEL Ex.1002.390

INTEL Ex.1002.391

INTEL Ex.1002.392

INTEL Ex.1002.393

INTEL Ex.1002.394

INTEL Ex.1002.395

INTEL Ex.1002.396

INTEL Ex.1002.397

INTEL Ex.1002.398

INTEL Ex.1002.399

INTEL Ex.1002.400

INTEL Ex.1002.401

INTEL Ex.1002.402

INTEL Ex.1002.403

INTEL Ex.1002.404

INTEL Ex.1002.405

INTEL Ex.1002.406

INTEL Ex.1002.407

INTEL Ex.1002.408

INTEL Ex.1002.409

INTEL Ex.1002.410

INTEL Ex.1002.411

INTEL Ex.1002.412

INTEL Ex.1002.413

INTEL Ex.1002.414

INTEL Ex.1002.415

INTEL Ex.1002.416

INTEL Ex.1002.417

INTEL Ex.1002.418

INTEL Ex.1002.419

INTEL Ex.1002.420

INTEL Ex.1002.421

INTEL Ex.1002.422

INTEL Ex.1002.423

INTEL Ex.1002.424

INTEL Ex.1002.425

INTEL Ex.1002.426

INTEL Ex.1002.427

INTEL Ex.1002.428

INTEL Ex.1002.429

INTEL Ex.1002.430

INTEL Ex.1002.431

INTEL Ex.1002.432

INTEL Ex.1002.433

INTEL Ex.1002.434

INTEL Ex.1002.435

INTEL Ex.1002.436

INTEL Ex.1002.437

INTEL Ex.1002.438

INTEL Ex.1002.439

INTEL Ex.1002.440

INTEL Ex.1002.441

INTEL Ex.1002.442

INTEL Ex.1002.443

INTEL Ex.1002.444

INTEL Ex.1002.445

INTEL Ex.1002.446

INTEL Ex.1002.447

INTEL Ex.1002.448

INTEL Ex.1002.449

INTEL Ex.1002.450

INTEL Ex.1002.451

INTEL Ex.1002.452

INTEL Ex.1002.453

INTEL Ex.1002.454

INTEL Ex.1002.455

INTEL Ex.1002.456

INTEL Ex.1002.457

INTEL Ex.1002.458

INTEL Ex.1002.459

INTEL Ex.1002.460

INTEL Ex.1002.461

INTEL Ex.1002.462

INTEL Ex.1002.463

INTEL Ex.1002.464

INTEL Ex.1002.465

INTEL Ex.1002.466

INTEL Ex.1002.467

INTEL Ex.1002.468

INTEL Ex.1002.469

INTEL Ex.1002.470

INTEL Ex.1002.471

INTEL Ex.1002.472

INTEL Ex.1002.473

INTEL Ex.1002.474

INTEL Ex.1002.475

INTEL Ex.1002.476

INTEL Ex.1002.477

INTEL Ex.1002.478

INTEL Ex.1002.479

INTEL Ex.1002.480

INTEL Ex.1002.481

INTEL Ex.1002.482

INTEL Ex.1002.483

INTEL Ex.1002.484

INTEL Ex.1002.485

INTEL Ex.1002.486

INTEL Ex.1002.487

INTEL Ex.1002.488

INTEL Ex.1002.489

INTEL Ex.1002.490

INTEL Ex.1002.491

INTEL Ex.1002.492

INTEL Ex.1002.493

INTEL Ex.1002.494

INTEL Ex.1002.495

INTEL Ex.1002.496

INTEL Ex.1002.497

INTEL Ex.1002.498

INTEL Ex.1002.499

INTEL Ex.1002.500

INTEL Ex.1002.501

INTEL Ex.1002.502

INTEL Ex.1002.503

INTEL Ex.1002.504

INTEL Ex.1002.505

INTEL Ex.1002.506

INTEL Ex.1002.507

INTEL Ex.1002.508

INTEL Ex.1002.509

INTEL Ex.1002.510

INTEL Ex.1002.511

INTEL Ex.1002.512

INTEL Ex.1002.513

INTEL Ex.1002.514

INTEL Ex.1002.515

INTEL Ex.1002.516

INTEL Ex.1002.517

INTEL Ex.1002.518

INTEL Ex.1002.519

INTEL Ex.1002.520

INTEL Ex.1002.521

INTEL Ex.1002.522

INTEL Ex.1002.523

INTEL Ex.1002.524

INTEL Ex.1002.525

INTEL Ex.1002.526

INTEL Ex.1002.527

INTEL Ex.1002.528

INTEL Ex.1002.529

INTEL Ex.1002.530

INTEL Ex.1002.531

INTEL Ex.1002.532

INTEL Ex.1002.533

INTEL Ex.1002.534

INTEL Ex.1002.535

INTEL Ex.1002.536

INTEL Ex.1002.537

INTEL Ex.1002.538

INTEL Ex.1002.539

INTEL Ex.1002.540

INTEL Ex.1002.541

INTEL Ex.1002.542

INTEL Ex.1002.543

INTEL Ex.1002.544

INTEL Ex.1002.545

INTEL Ex.1002.546

INTEL Ex.1002.547

INTEL Ex.1002.548

INTEL Ex.1002.549

INTEL Ex.1002.550

INTEL Ex.1002.551

INTEL Ex.1002.552

INTEL Ex.1002.553

INTEL Ex.1002.554

INTEL Ex.1002.555

INTEL Ex.1002.556

INTEL Ex.1002.557

INTEL Ex.1002.558

INTEL Ex.1002.559

INTEL Ex.1002.560

INTEL Ex.1002.561

INTEL Ex.1002.562

INTEL Ex.1002.563

INTEL Ex.1002.564

INTEL Ex.1002.565

INTEL Ex.1002.566

INTEL Ex.1002.567

INTEL Ex.1002.568

INTEL Ex.1002.569

INTEL Ex.1002.570

INTEL Ex.1002.571

INTEL Ex.1002.572

INTEL Ex.1002.573

INTEL Ex.1002.574

INTEL Ex.1002.575

INTEL Ex.1002.576

INTEL Ex.1002.577

INTEL Ex.1002.578

INTEL Ex.1002.579

INTEL Ex.1002.580

INTEL Ex.1002.581

INTEL Ex.1002.582

INTEL Ex.1002.583

INTEL Ex.1002.584

INTEL Ex.1002.585

INTEL Ex.1002.586

INTEL Ex.1002.587

INTEL Ex.1002.588

INTEL Ex.1002.589

INTEL Ex.1002.590

INTEL Ex.1002.591

INTEL Ex.1002.592

INTEL Ex.1002.593

INTEL Ex.1002.594

INTEL Ex.1002.595

INTEL Ex.1002.596

INTEL Ex.1002.597

INTEL Ex.1002.598

INTEL Ex.1002.599

INTEL Ex.1002.600

INTEL Ex.1002.601

INTEL Ex.1002.602

INTEL Ex.1002.603

INTEL Ex.1002.604

INTEL Ex.1002.605

INTEL Ex.1002.606

INTEL Ex.1002.607

INTEL Ex.1002.608

INTEL Ex.1002.609

INTEL Ex.1002.610

INTEL Ex.1002.611

INTEL Ex.1002.612

INTEL Ex.1002.613

INTEL Ex.1002.614

INTEL Ex.1002.615

INTEL Ex.1002.616

INTEL Ex.1002.617

INTEL Ex.1002.618

INTEL Ex.1002.619

INTEL Ex.1002.620

INTEL Ex.1002.621

INTEL Ex.1002.622

INTEL Ex.1002.623

INTEL Ex.1002.624

INTEL Ex.1002.625

INTEL Ex.1002.626

INTEL Ex.1002.627

INTEL Ex.1002.628

INTEL Ex.1002.629

INTEL Ex.1002.630

INTEL Ex.1002.631

INTEL Ex.1002.632

INTEL Ex.1002.633

INTEL Ex.1002.634

INTEL Ex.1002.635

INTEL Ex.1002.636

