
Alacritech, Ex. 2041 Page 1

This page
is legacy
content.

Check out the current
usenIix

Website.

USENIX
Home *« About USENIX « Events * Membership « * Students

HotOS IX Paper [HotOS |X Program Index]

TCP offload is a dumb idea whose time has come

Jeffrey C. Mogul
Hewlett-Packard Laboratories

Palo Alto, CA, 94304

JeffMogul@acm.org

Abstract

Networkinterface implementors have repeatedly attempted to offload TCP processing from the host

CPU. Theseefforts metwithlittle success, because they were based onfaulty premises. TCP offload

per se is neither of much overall benefit nor free from significant costs and risks. But TCP offload in

the service of very specific goals might actually be useful. In the context of the replacementof

storage-specific interconnect via commoditized network hardware, TCP offload (and more generally,

offloading the transport protocol) appropriately solves an important problem.

Introduction

TCP [18] has been the main transport protocol for the Internet Protocol stack for twenty years. During

this time, there has been repeated debate over the implementation costs of the TCP layer.

Onecentral question of this debate has been whetherit is more appropriate to implementTCPin

host CPU software, or in the networkinterface subsystem. The latter approachis usually called “TCP

Offload" (the category is sometimes referred to as a “TCP Offload Engine," or TOE), althoughit in fact

includesall protocol layers below TCP,as well. Typical reasons given for TCP offload include the

06973-00001/8717886.1

ALA07370910

Alacritech, Ex. 2041 Page 1
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Alacritech, Ex. 2041 Page 2

reduction of host CPU requirements for protocol stack processing and checksumming, fewer

interrupts to the host CPU, fewer bytes copied over the system bus, and the potential for offloading

computationally expensive features such as encryption.

TCP offload poses somedifficulties, including both purely technical challenges (either generic to all

transports or specific to TCP), and some moresubtle issues of technology deployment.

In some variants of the argumentin favor of TCP offload, proponents assert the need for transport-

protocoloffload but recognize the difficulty of doing this for TCP, and have proposed deploying new

transport protocols that support offloading. For example, the XTP protocol[8] wasoriginally designed

specifically for efficient implementation in VLSI, although later revisions of the specification [23] omit
this rationale.

To this day, TCP offload has neverfirmly caught on in the commercial world (except sometimesas a

stopgap to add TCP support to immature systems[16]), and has been scorned by the academic

community and Internet purists. This paper starts by analyzing why TCP offload has repeatedly failed.

The lack of prior success with TCP offload does not, however, necessarily imply that this approachis

categorically without merit. Indeed, the analysis of past failures points out that novel applications of

TCP might benefit from TCP offload, but for reasons notclearly anticipated by early proponents. TCP

offload does appear to be appropriately suited whenused in the larger context in which storage-

interconnect hardware, such as SCSI or FiberChannel, is on the verge of being replaced by Ethernet-

based hardware and specific upper-level protocols (ULPs), such as iSCSI. These protocols can exploit

‘Remote Direct Memory Access" (RDMA)functionality provided by network interface subsystems.

This paper endsby analyzing how TCPoffload (and more generally, offloading certain transport

protocols) can prove useful, not as a generic protocol implementation strategy, but as a component

in an RDMAdesign.

This paperis not a defense of RDMA. Rather, it argues that the choice to use RDMA moreclearly

justifies offloading the transport protocol than has any previous application.

WhyTCPoffload is a dumbidea

TCP offload has been unsuccessful in the past for two kinds of reasons: fundamental performance

issues, and difficulties resulting from the complexities of deploying TCP offload in practice.

Fundamentalperformanceissues

Although TCP offload is usually justified as a performance improvement, in practice the performance

benefits are either minimized or actually negated, for many reasons:

Limited processing requirements:

Processing TCP headers simply doesn't (or shouldn't) take many cycles. Jacobson [11] showed how to

use “headerprediction" to process the commoncase for a TCP connection in very few instructions.

The overhead of the TCP protocol per se does notjustify offloading. Clark et al. [9] showed more

generally that TCP should not be expensive to implement.

06973-00001/8717886.1

ALA07370911

Alacritech, Ex. 2041 Page 2
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Alacritech, Ex. 2041 Page 3

Moore's Law:

Adding a transport protocol implementation to a NetworkInterface Controller (NIC) requires

considerably more hardware complexity than a simple MAC-layer-only NIC. Complexity increases

time-to-market, and because Moore's Law rapidly increases the performance of general-purpose CPU

chips, complex special-purpose NIC chips can fall behind CPU performance. The TOE can becomethe

bottleneck, especially if the vendor cannot afford to utilize the latest fab. (On the other hand, using a

general-purpose CPU as a TOE could lead to a poor tradeoff between cost and performance[1].)

Partridge [17] pointed out that the Moore's Law issue could beirrelevant once each NICchipis fast

enoughto handle packetsatfull line rate; further improvements in NIC performance might not

matter (except to reduce power consumption). Sarkar et a/. [21], however, showedthat current

protocol-offload NIC system products are not yet fast enough. Their results also imply that any extra

latency imposed byprotocol offload in the NIC will hurt performancefor real applications. Moore's

Law considerations may plague even “‘full-line-rate'"' NICs until they are fast enough to avoid adding

muchdelay.

Complex interfaces to TOEs:

O'Dell [14] has observed that ‘the problem has always been that the protocolfor talking to the front-

end processorand gluing it onto the API wasjust as complex (often moreso,in fact) as the protocol

being ‘offloaded'." Similarly, Partridge [16] observed that “The idea was that you passed your data

overthe busto an NIC thatdid all the TCP work for you. However,it didn't give a performance

improvementbecauseto a large degree,it recreated TCP overthe bus. Thatis, for each write, you

had to add a bus header, including context information (identifying the process and TCP connection

IDs) and then ship the packet downto the board. On inbound, you had to pass up the process and

TCP connection info and then the kernel had to demux the busunit of data to the right process (and

do all that nasty memory alignmentstuff to putit into the process's buffer in the right place)." While

better approaches are now known,in general TOE designers had trouble designing an efficient host
interface.

Suboptimal buffer management:

Although a TOE can deliver a received TCP data segmentto a chosen location in memory,this still

leaves ULP protocol headers mingled with ULP data, unless complex features are included in the TOE
interface.

Connection management:

The TOE must maintain connection state for each TCP connection, and must coordinatethis state

with the host operating system. Especially for short-lived connections, any savings gained from less

host involvementin processing data packet is wasted by this extra connection management
overhead.

Resource management:

If the transport protocolresides in the NIC, the NIC and the host OS must coordinate responsibility for

resources such as data buffers, TCP port numbers, etc. The ownership problem for TCP buffersis

06973-00001/8717886.1

ALA07370912

Alacritech, Ex. 2041 Page 3
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Alacritech, Ex. 2041 Page 4

more complex than the seemingly analogous problem for packet buffers, because outgoing TCP

buffers must be held until acknowledged, and received buffers sometimes must be held pending

reassembly. Resource management becomesevenharder during overload, when host OS policy

decisions must be supported. Noneof these problemsare insuperable, but they reduce the benefits

of offloading.

Event management:

Muchof the cost of processing a short TCP connection comes from the overhead of managing

application-visible events [2]. Protocol offload does nothing to reduce the frequency of such events,

and so fails to solve one of the primary costs of running a busy Web server(for example).

Muchsimpler NIC extensionscan be effective:

Numerousprojects have demonstrated that instead of offloading the entire transport protocol, a NIC

can be more simply extendedso as to support extremely efficient TCP implementations. These

extensionstypically eliminate the need for memorycopies, and/or offload the TCP checksum

(eliminating the need for the CPU to touch the data in many cases, and thus avoiding data cache

pollution). For example, Dalton et al. [10] described a NIC supporting a single-copy host OS

implementation of TCP. Chaseetal. [7] summarize several approaches to optimizing end-system TCP

performance.

Thesecriticisms of TCP offload apply most clearly when onestarts with a well-tuned, highly scalable

host OS implementation of TCP. TCP offload might be an expedient solution to the problems caused

by second-rate host OS implementations, but this is notitself an architectural justification for TOE.

Deploymentissues

Evenif TCP offload werejustified by its performance,it creates significant deployment, maintenance,

and managementproblems:

Scaling issues:

Someservers must maintain huge numbersof connections [2]. Modern host operating systems now

generally place no limits except those based on RAMavailability. If the TOE implementation has lower

limits (perhaps constrained by on-board RAM), this could limit system scalability. Scaling concerns

also apply to the IP routing table.

Bugs:

Protocol implementations have bugs. Mature implementations have fewerbugs, butstill require

patches from time to time. Updating the firmware of a programmable TOE could be moredifficult

than updating a host OS. Clearly, non-programmable TOEs are even worsein this respect[1].

Quality Assurance (QA):

System vendors musttest complete systemsprior to shipping them. Use of TOE increases the number

of complex componentsto be tested, and (especially if the TOE comes from a different supplier)

increases the difficulty of locating bugs.

06973-00001/8717886.1

ALA07370913

Alacritech, Ex. 2041 Page 4
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Alacritech, Ex. 2041 Page 5

Finger-pointing:

Whena TCP-related bug appearsin a traditional system,it is not hard to decide whether the NICis at

fault, because non-TOE NICs perform fairly simple functions. With a system using TCP offloading,

deciding whetherthe bugis in the NIC or the host could be much harder.

Subversion of NIC software:

O'Dell has argued that the programmability of TOE NICs offers a target for malicious

modifications [14]. This argument is somewhat weakenedbythereality that many(if not most) high-

speed NICs are already reprogrammable, but the extra capabilities of a TOE NIC might increase the

options for subversion.

System managementinterfaces:

System administrators prefer to use a consistent set of managementinterfaces (Uls and commands).

Especially if the TOE and OS comefrom different vendors, it might be hard to provide a consistent,

integrated managementinterface. Also, TOE NICs might not provide as muchstatevisibility to system

managersas can be provided by host OS TCP implementations.

Concerns about NIC vendors:

NIC vendorshave typically been smaller than host OS vendors,with less sophistication about overall

system design and fewer resources to apply to support and maintenance. If a TOE NIC vendorfails or

exits the market, customerscan be left without support.

While noneof these concernsare definitive arguments against TOE, they have tended to outweigh

the limited performancebenefits.

Analysis: mismatched applications

While it might appear from the preceding discussion that TCP offload is inherently useless, a more

accurate statement would be that past attempts to employ TCP offload were mismatchedto the

applications in question.

Traditionally, TCP has been used either for WAN networking applications (email, FTP, Web)or for

relatively low-bandwidth LAN applications (Telnet, X/11). Often, as is the case with email and the

Web, the TCP connectionlifetimes are quite short, and the connection count at a busy (server)

system is high.

Because these are seen as the important applications of TCP, they are often used as the rationale for

TCP offload. But these applications are exactly those for which the problems of TCP offload

(scalability to large numbers of connections, per-connection overhead, low ratio of protocol

processing cost to intrinsic network costs) are most obvious. In other words, in most WAN

applications, the end-host TCP-related costs are insignificant, except for the connection-management

costs that are either unsolved or worsenedby TOE.

06973-00001/8717886.1

ALA07370914

Alacritech, Ex. 2041 Page 5
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

