
Alacritech, Ex. 2034 Page 1

Server Network Scalability and TCP Offload

Doug Freimuth, Elbert Hu, Jason LaVoie, Ronald Mraz,
Erich Nahum, Prashant Pradhan, John Tracey

IBM T. J. Watsan Research Center

Hawthorne, NY, 10532
{dmfreim, elbert, lavole, mraz, nahum, poradhan, tracey] }@us.ibm.com

Abstract

Server network performanceis increasingly dominated
by poorly scaling operations such as I/O bus crossings,
cache misses and interrupts. Their overhead prevents

' performance from scaling even with increased CPU, tink
or I/O bus bandwidths. These operations can be reduced
by redesigning the host/adapterinterface to exploit addi-
tional processing on the adapter. Offloading processing
to the adapter is beneficial not only because it allows
more cycles to be applied but also of the changesit en-
ables in the host/adapter interface. As opposed to other
approaches such as RDMA, TCP offioad provides bene-
fits without requiring changesto either the transport pro-
tocol or APL.

We have designed a new host/adapter interface that
exploits offloaded processing to reduce poorly scaling
operations. We have implemented a protatype ofthe
design inchiding both host and adapter software com-
ponents, Experimental evaluation with simple network
benchmarks indicates our design significantly reduces
/O bus crossings and holds promise to reduce other

poorly scaling operations as well,

1. Introduction

Server network throughpat is not scaling with CPU
speeds. Various studies have reported CPU sealing fac-
ors of43%[23], 60% [15], and 33% fo 68%[22] which
fall short of an ideal scaling of 100%. In this paper,
we showthat even increasing CPU speeds and link and
bus bandwidths does not generate a commensurate in-
crease in server network throughput. This lack of scala-
bility points to an increasing tendency for server network
hroughput to becomethe key bottleneck limiting system
performance. It motivates the need for an alternative de-

sign with better scalability.

Server network scalability is limited by operations
heavily used in current designs that themselves do not
scale well, most notably bus crossings, cache misses and
interrupts. Any significant improvement in scalability
must reduce these operations. Given that the problem is
one of scalability and not simply performance,it will not
be solved by faster processors, Faster processors merely

expend more cycles on poorly scaling operations.
Research in server network performance over the

years has yielded significant improvements including:
integrated checksum and copy, checksumoffload, copy
avoidance, interrupt coalescing, fast path protocol pro-
cessing, efficient state lookup, efficient timer manage-
ment and segmentation offload, a.k.a. large send. An-
other technique, full TCP offload, has been pursued for
many years. Work on offload has generated both promis-
ing and less than compelling results [1, 38, 40, 42].
Good performance data and analysis on offload is scarce.

Many improvements in server scalability were de-
scribed more than fifteen years ago by Clark et al. [9].
The authors demonstrated that the overhead incurred by
network protocol processing, per se, is small compared
to both per-byte (memory access) costs and operating
system overhead, such as buffer and timer management.
This motivated work to reduce or eliminate data touch-

ing operations, such as copies, and to improve the ef-
ficiency of operating system services heavily used by
the network stack. Later work [19] shewed that over-
head of non-data touching operationsis, in fact, signifi-
cant for real workloads, which tend to feature a prepon-
derance of small messages. Today, per-byte overhead.
has been greatly reduced through checksum offload and
zero-copy send. This leaves per-packet overhead, oper-
aling system services and zero-copy receive as the main
remaining areas for further improvement.

Nearly all of the enhancements described by Clark et
al. have seen widespread adoption. The one notable ex-
ception is “an efficient network interface.” This is a net-
work adapter with a fast general-purpose processor that
provides a much more efficient interface to the network
than the current frame-based interface devised decades

ago. In this paper, we describe an effort to develop a
much more efficient network interface and to make this

enhancement a reality as well,

Our work is pursued in the context of TCP for three
reasons: 1) TCP’s enormous installed base, 2) the
methodology employed with TCP wil transfer to other
protocols, and 3) the expectation that key new architec-
tural features, such as zero copy receive, will ultimately
demonstrate their viability with TCP.

ALA07620802

Alacritech, Ex. 2034 Page 1
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Alacritech, Ex. 2034 Page 2

The work described here is part of a larger effort to
improve server network scalability. We began by ana-
lyzing server network performance and recognizing, as
others have, a significant scalability problem. Next, we
identified specific operations to be the cause, specifi-
cally: bus crossings, cache misses, and interrupts. We
formulated a design that reduces the impact of these op-
erations. This design exploits additional processing at
the network adapter, ie. offload, to improve the effi-
ciency ofthe host/adapterinterface whichis our primary
focus. We have iniplemented a prototype of the new de-
sign. which consists of host and adapter software com-
ponents and have analyzed the impact of the new design
on bus crossings. Our findings indicate that offload can
substantially decrease bus crossings and holds promise
to reduce other scalability limiting operations such as
cache misses, Ultimately, we intend to evaluate the de-
sign in a cycle-accurate hardware simulator. This will
allow us to comprehensively quantify the impact of de-
sign alternatives on cache misses, interrupts and overali
performance overseveral generations of hardware.

This paper is organized as follows. Section 2 pro-
vides motivation and background. Section 3 presents
our design, and the current prototype implementation is
deseribed in Section 4. Section 5 presents our experi-
mental infrastructure and results. Section 6 surveys and
contrasts related work, and Section 7 summarizes our

contributions and plans for future work.

2-- Motivation and Background

To provide the proper motivation and background for
our work, we first describe the current best practices of
techniques and optimizations for network server perfor-
mance. Using industry standard benchmarks we then
show that, despite these practices, servers are still not
scaling with CPU speeds via several benchmarks. Since
TCP offioad has been a controversial topic in the re-
search community, we review the critiques of ofload,
providing counterarguments te each pomt. How TCPof-
fload addresses these scaling issues is described in more
detail in Section 3.

2.1 Current Best Practices

Current high-performance servers have adopted many
techniques to maximize performance. We provide a
brief overviewofthemhere.

Sendfile with zero copy. Most operating systems
have a sendfile or transmitfile operation that allows send-
ing a file over a socket without copying the contents of
the file into user space, This can have substantial perfor-
mance benefits [30]. However, the benefits are limited to
send-side processing; it does not affect receive-side pro-
cessing. In addition, it requires the server application to
maintain its data in the kernel, which may notbe feasible

for systems such as application servers, which generate
content dynamically.

Checksum offlead. Researchers have shown that

calculating the IP checksumover the body ofthe data
can be expensive [19]. Most high-performance adapters
have the ability to perform the IP checksum over both
the contents of the data and the TCP/IP headers. This

removes an expensive data-touching operation on both
send and receive. However, adapter-level checksums
will not catch errors introduced by transferring data over
the 1/O bus, which has ied some to advocate caution with
checksum offload [41].

Interrupt coalescing. Researchers have shown that
interrupts are costly, and generating an interrupt for each
packetarrival can severely throttle a system [28]. In re-
sponse, adapter vendors have enabled the ability to de-
lay interrupts by a certain amount of time or number of
packets in an effort to batch packets per interrupt and
amortize the costs [14]. While effective, it can be diffi-
cult to determine the proper trigger thresholds for firing
interrupts, and large amounts of batching may cause un-
acceptable latency for an individual connection.

Large send/segmentation offisaad. TCP/IP imple-
menters have long known that larger MTU sizes pro-
vide greater efficiency, both in terms of network utiliza-
tion (fewer headers per byte transferred) and in terms
of host CPU utilization (fewer per-packet operations in-
curred per byte sent or received}. Unfortunately, larger
MTUsizes are not usually available duc to Ethernet’s
1516 byte frame size. Gigabit Ethernet provides ‘jumbo
frames” of 9 KB, but these are only useful in specialized
local environments and cannot be preserved acress the
wide-area Internet. As an approximation,certain operat-
ing systems, such as ALX and Linux, provide large send
or TCP segmentation offload (TSO) where the TCP/IP
stack interacts with the network device as if it had a large
MTUsize. The device in turn segmentsthe larger buffers
into 1516-byte Ethernet frames and adjusts the TCP se-
quence numbers and checksums accordingly. However,
this technique is also limited to send-side processing. In
addition, as we demonstrate in Section 2.2, the technique
is Limited by the way TCP performs congestion control.

Efficient connection management. Early networked
servers did not handic large numbers ef TCP connec-
tions efficiently, for example by using a linear linked-
list to manage state [26]. This led to operating systems
using hash table based approaches [24] and separating
table entries in the TIME_WAIT state [2].

Asynchronous interfaces. To maximize concur-
rency, high-performance servers use asynchronous in-
terfaces as not to block on long-latency operations [33].
Server applications interact using an event notification
interface such as select () orpoll (), which in tum
can have performance nnplications [5]. Unfortunately,

ALA07620803

Alacritech, Ex. 2034 Page 2
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Alacritech, Ex. 2034 Page 3

BIOS

Release
Date

Machine

Workstation-Class
500 MHz P3
933 MHz P3
1.7 GHz P4.
Server-Class

Sep 2003

Jul 2000 2.000
Mar2001 1.070

0.590

450 MHz P2-Xeon
1.6 GHz P4-Xeon
3.2 GHz P4-Xeon

dan 2000
Oct 2001

May 2004

Table 1: Properties for Multiple Generations of Machines

these interfaces are typically only for network /O and
not file 1/Q, so ihey are not as general as they could be.

in-kernel implementations. Context switches, data
copies, and system calls can be avoidedaltogether by
implementing the server completely in kernel space
{17, 18]. While this provides the best performance, in-
kernel implementations are difficult to implement and
maintain, and the approachis hard to generalize across
multiple applications.

RDMA.Others have also noticed these scaling prob-
lems, particularly with respect to data copying, and have
offered RDMA as a solution. Interest in ROMA and

Infiniband [4] is growing in the local-area case, such
as in storage networks or chister-based supercomputing.
However, RDMArequires modifications to both sides of -
a conversation, whereas Offload can be deployedincre-
mentally on the server side only. Our interest is in sup-
porting existing applications in an inter-operable way,
which precludes using RDMA.

While effective, these optimizations are limited in that
they do not address the full range of scenarios seen by a
server, The main restrictions are: 1) that they do not ap-
ply to the receive side, 2} they are not fully asynchronous
in the way they interact with the operating system, 3}
they do not minimize the interaction with the network
interface, or 4) they are not inter-operable. Addition-
ally, many techniques de not address what we believe to
be the fundamental performance issue, which is overall
serverscalability.

2.2 Server Scalability

The recent arrival of 10 gigabit Ethermetand the promise
of 40 and 100 gigabit Ethernet in the near future show
that raw network bandwidth is scaling at least as quickly
as CPU speed. However, it is well-known that mem-
ory speeds are not scaling as quickly as CPU speed in-
creases [16]. As a consequence of this and other factors,
researchers have observed that the performance of host

TCP/IP implementations is not scaling at the same rate
as CPU speeds in spite of raw network bandwidth in-
creases,

To quantify how performance scales over time, we
ran a number of experiments using several generations
of machines, described in detail in Table 1. We break
the machines into 2 classes: desk-side workstations and

rack-mounted servers with aggressive memory systems
and 1/O busses. The workstations include a a 500 MHz

Intel Pentium 3, a 933 MHz Intel Pentiurn 3, and a a 1.7
GHz Pentium 4. The servers include a 456 MHz Pen-
trum H-Xeon, a 1.6 GHz P4 Xeon, and a 3.2 GHz P4
Xeon. In addition, each of the P4-Xeon servers have
1 MB L3 caches. Each machine runs Linux 2.6.9 and

has a number ofIntel E1000 MT server gigabit Ethernet
adapters, connected via a Dell gigabit switch. Load is
generated by five 3.2 GHz P4-Xeons acting as clients,
each using an £1000 client gigabit adapter and running
Linux 2.6.5. We chose the E1000 MT adapters for the
servers since these have been shown to be one of the

highest-performing conventional adapters on the market
{32], and we did not have access to a 10 gigabit adapter.

We measured the time to access various locations

in the memory hierarchy for these machines, includ-
ing from the L1 and L2 caches, main memory, and the
memory-mapped I/O registers on the E1000. Memory
hierarchy times were measured using LMBench[25]. To
measure the device I/O register times, we added same
modifications to the initialization routine of the Linux

2.6,9 E1000 device driver code. Table 2 presents the re-
sults. Note that while L1 and L? access times remain rel-

atively consistent in terms of processor cycles, the time
to access main memory and the device registers is in-
creasing over time. If access times were improving at
the same rate as CPU speeds, the number of clock cy-
cles would remain constant.

To see how actual server performance is scaling over

time, we ran the static portion of SPECweb99 [12] us-

ALA07620804

Alacritech, Ex. 2034 Page 3
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Alacritech, Ex. 2034 Page 4

Li Cache

Hit
Machine Main VO Register

Memory Read
VO Register

Write

Workstation-Class
500 MFiz P3
933 MHz P3
1.7 GHz P4

Time|Clock

ins}|Cycles

Server-Class
450 MHz P2-xXeon
6 GHz Xeon
3.2 GHz Xeon

Table 2: Memory Access Times for Multiple Generations of Machines

ing a recent version of Flash [33, 37].. In these experi-
ments, Flash exploits all the available performance opti-
mizations on Linux, including sendfile ¢) with zero
copy, TSO, and checksum offload on the E1000, Table
3 shows the results. Observe that server performanceis
not scaling with CPU speed, even thoughthis is a heavily
optimized server making use ofall current best practices.
This is not because of limitations in the network band-

“width; for example, the 3.2 GHz Xeon-based machine
has 4 gigabit interfaces and multiple 10 gigabit PCI-X

busses.

2.3 Offload: Critiques and Responses
In this paper, we study TCP offload as a solution to the .
scalability problem. However, TCP offload has been

. hotly debated by the research community, perhaps best
- exemplified by Mogul’s paper, “TCP offload is a dumb

idea whose time has come” [27]. That paper effectively
summarizes the criticisms of TCP offload, and so, we

use the structure ofthat paper to offer our counterargu-
ments here,

Limited precessing requirements. One argumentis
that Clark et al. [9] show that the main issue in TCP
performance is implementation, not the TCP protocol it-
self, and a major factor is data movement; thus Offload
does not address the real problem. We point out that
Offload does not simply mean TCP header processing;
it includes the entire TCP/IP stack, including peoorly-
scaling, performance-critical components such as data
movement, bus crossings, interrupts, and device inter-
action. Offload provides an improved interface to the
adapter that reduces the use of these scalability-limiting
operations.

Moore’s Law: Maore’s Lawstates thar CPU speeds
are doubling every 18 months, and thus one claimis that
Offlead cannot cumpete with general-purpose CPUs.
Historically, chips used by adapter vendors have not in-
creased at the same rate as general-purpose CPUs due to

the economies of scale. However, offload can use com-

modity CPUs with software implementations, which we
beHeve is the proper approach. In addition, speed needs
only to be matched with the interface (e.g., 10 giga-
bit Ethernet), and we argue proper design reduces the
code path relative to the non-offloaded case (e.g. with
fewer memory copies}. Sarkar et al. [38] and Ang [1]
show that when the NIC CPU is under-provisioned with
respect to the host CPU, performance can actually de-
grade. Clearly the NIC processing capacity must be
sized properly. Finally, increasing CPU speeds does not
address the scalability issue, which is what we focus on
here,

Efficient host interface: Early critiques are that
TCP Offload Engines (TOE) vendors recreated "TCP
over a bus”. Development of an elegant and efficient
host/adapter interface for offload is a fundamental re-
search challenge, one we are addressing in this paper.

Bad buffer management: Unless Offload engines
understand higher-level protocols, there is still an
apphcation-layer header copy. While true, copying of
application headers is not as performance-critical as
copying application data. One complication is the ap-
plication combining its own headers on the same con-
nection with its data. This can only be solved by chang-
ing the application, which is already proposed in RDMA
extensions for NFS and iSCSI [7, 8].

Connection management overhead: Unlike con-
ventional NICs, offload adapters must maintain per-
connection state. Opponents argue that offlead cannot
handle large numbers of connections, but Web server
workloads have forced host TCP stacks to discover tech-

niques to efficiently manage 10,000’s of connections.
These techniques are equally applicable for an interface-
based implementation.

Resource management averhead: Critics argue that
tracking resource management is "more difficult” for of-
fload. We do not believe this is the case, Ht is straight-

ALA07620805

Alacritech, Ex. 2034 Page 4
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Alacritech, Ex. 2034 Page 5

Machine Throughput Requested|Conforming Scale|Seale|}Ratio
{ops/sec)|Connections|Connections|(achieved)|{ideal) (%)

Workstation-Class 1
300 Milz P3 1231 375 378 1.00 1.06 £00
933 MHz P3 1318 400 399 1.06 1.87 56
1.7 GHz P4 3457 1200 1169 3,20 3.46 o4

Server-Class |
450 MHz P2-Xeon 2230 700 699 Loo TG 100
1.6 GHz P4-Xeon 8893 2800 2792 4.00) 3,56 112
3.2 GHz P4-Xeon liei4 2500 3490 5.00 7.10 Ti

Table 3: SPECWeb99 Performance Scalability over Multiple Generations of Machines

forward fo extend the notion of resource management
~ across the interface without making the adapter aware of

every process as we will showin Sections 3 and 4,

Event management: The claim is that offload does
“not address managing the large numbers of events that

_ occur in high-volume servers. It is true that offload, per
se, does not address application visible events, which
are better addressed by the API. However, offload can
shield the host operating system from spurious unneces-
sary adapter events, such as TCP acknowledgments or
window advertisements. In addition, it allows batching
ofother events to amortize the cost of interrupts and bus
crossings.

Partial offload is sufficiently effective: Partial of-
fload approaches include checksum offload and large
send (or TCP Segmentation Offload), as discussed in

_ Section 2.1. While useful, they have limited value and
_do not fully solve the scalability problem as was shown
in Section 2.2, Other arguments inchide that checksum
offioad actually masks errors to the host [41]. In con-
trast, offload allows larger batching and the opportunity
to perform more rigorous error checking (by including
the CRCin the data descriptors).

Maintainability: Opponents argue that offload-based
approaches are more difficult to update and maintamin
the presence of security and bug patches, While this
is true of an ASIC-based approach, it is not true of
a software-based approach using general-purpose hard-
ware,

Quality assurance: The argument here is that offload
is harder to test fo determine bugs. However, testing
tools such as TBIT [31] and ANVL [11] allow remote
testing of the offload interface. In addition, software
based approaches based on open-source TCP tmplemen-
tations such as Linux or FreeBSD facilitate both main-

tainability and quality assurance.

System management interface: Opponents claim
that offload adapters cannot have the same management
interface as the host OS. This is incorrect: one example

is SNMP. It is trivial to extend this to an offload adapter.
Concerns about NIC vendors: Third-party vendors

may go out of business and strand the customer. This has
nothing to do with offload; it is true of any 1/O device:
disk, NIC, or graphics card. Economic incentives seem
to address customer needs. In addition, one of the largest
NIC vendors is Intel.

3 System Design

__ In this Section we describe our Offload design and how
it addresses scalability.

3.14 How Offfoad Addresses Scalability

A higher-level interface. Offload allows the host oper-
ating system to interact with the device at a higher level
ofabstraction. Rather than simply queuing MTU-sized
packets for transmission or reception, the host issues
commands at the transport layer (e.g., connect (},
accept (}, send(), close()}). This allows the
adapier to shield the host from transport layer events
(and their attendant interrupt costs) that may be of no
interest to the host, suchas arrivals of TCP acknow!l-
edgments or window updates. Instead, the host is only
notified ofmeaningful events. Examples include a com-
pleted connection establishment or termimeation (rather
than every packet arrival for the 3-way handshake or
4-way fear-down} or application-level data units. Suf-
ficient intelligence on the adapter can determine the ap-
propriate time to transfer data to the host, either through
knowledge of standardized higher-level protocols (such
as HTTP or NFS) or through a programmable inter-
face that can provide an application signature (i.¢., an
application-level equivalentto a packet filter). By inter-
acting at this higher level of abstraction, the host will
transfer less data over the bus and incur fewer interrupts
and device register accesses.

Ability te move data in larger sizes. As described
in Section 2.1, the ability to use large MTUs has a sig-
nificant impact on performance for both sending and re-

ALA07620806

Alacritech, Ex. 2034 Page 5
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

