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(7) ABSTRACT

A system for protocol processing in a computer network has
an intelligent network interface card (INIC) or communica-
tion processing device (CPD) associated with a host com-
puter. The INIC provides a fast-path that avoids protocol
processing for most large multi-packet messages, greatly
accelerating data communication. The INIC also assists the
host for those message packets that are chosen for process-
ing by host software layers. A communication control block
for a message is defined that allows DMA controllers of the
INIC to move data, free of headers, directly to or from a
destination or source in the host. The context is stored in the
INIC as a communication control block (CCB) that can be
passed back to the host for message processing by the host.
The INIC contains specialized hardware circuits that are
much faster at their specific tasks than a general purpose
CPU. A preferred embodiment includes a trio of pipelined
processors with separate processors devoted to transmit,
receive and management processing, with full duplex com-
munication for four fast Ethernet nodes.
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SRAM requirements for the Receive and Transmit engines:

TCB buffers 256 bytes ~ * 16 4096
Header buffers [Bbytss *16 2048
TCB hash index 16 bytes  * 25 409
Timers 128
DRAM Fifo queucs 128 bytes ~ * 16 2048
~12K bytes
\ J

FIG. 38
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Summary of the main loop of Receive:

forever {
while there are any Receive events {
if (a new event) {
if (no new confext available)

ignore the even;
)
call appropniate event handler to service the event;
this may make a waiting process runnable or set up
a new process fo be run (get free context, hddr buffer,
TCB buffer, sct the context up).

)
while any process contexts are runable {

run them by jumping to the startiresume address;
if (process complete)
frec the context;

FIG. 39
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Format of the SMB héader of an SMB frame:

NetBIOS header TYPE FLAGS -~ LENGTH —
Sm header OXFF IISII llMlI |IB||
COM RCLS REH ERR..
-ERR REBFLG Reserved
Resgrved
Resgrved
Resqrved
TDD PD
UD MD
WCT VWV ]
BCC Data...
Notes (interesting fields):
LENGTH 17 bit Length of SMB message (0 - 128K)
COM SMB command
WCT Count (16 bit) of parameter words in VWV [ ]
VWV Variable number of parameter words
BCC Bytes of data followmg
- /

FIG. 40
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Smnmaryofﬂ:emainloopofoansnﬁt

forever {
while there are any Transmit events {
if (2 new event) {
if (no new context available)
ignore the event;
}
call appropriate event handler to service the event;
this may make a waiting process runnable or set up
a new process fo be run (get free context, hddr buffer,
‘ TCB buffer, set the context up).
}
while any process contexts are munable {
nun them by jumping to the start/resume address;
if (process complete)
frec the context;

FIG. 41
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Bit 23 - 0 Memory access

; 1 Configuration access

Bit22- 0 Read (to Host)

1 Write (fo Host)

Bit21 -1 Data Valid
Bit 20 - 16 Reserved

Bit 15 - 0 Address -
_ ( /)
Y
~ Configuration Space 1 SRAM Address Offset
00 00
04 )"
08 08
0C 0C
10 10
3C 14
Configuration Space 2

00 00
04 18
08 08
0C 1IC
10 20
3C 4

w All other reads to configuration space will retum (0. Y

FIG. 43

Alacritech, Ex. 2021 Page 34



Patent Application Publication

Bit§-1

Bit6-0
Bit 7-1
Bit§ -1

Bit 11 -
Bit 12 -
Bit 13 -
Bit 14 -
Bit 15 -

Bit 0-0
Bit1-1
Bit2-1
-0
1
0
1

Bit 3

Bit 4 -
Bit § -
Bit 6 -
Bit 7 -
Bit § -

0

Apr. 1,2004 Sheet 34 of 89  US 2004/0064578 Al

1/0 accesses are not enabled

Memory accesses are enabled
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FIG. 44

66 MHz capable is enabled, This bit will be set if the INIC
Detects the system running at 66 MHz on reset
User Definable Features is not enabled

Fast Back-to-Back slave transfers enabled

Parity Error enabled - This bit is initialized to (

Bit 9,10 - 00 - Fast device select will be set if we are at 33 MHz

01 - Medmm device select will be set if we are at 66 MHz

Target Abort is implemented, Initialized to 0.
Target Abort is implemented. Initialized to 0.
Master Abort is implemented. Initialized to 0.
SERR# is implemented. Initialized to 0.
Parity emror 15 implemented. Initialized to 0.

FIG. 45
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MIA MIB MIIC MID
MacA MacB MacC MacD
A A A A
Y \ \ J Y
XmtA XmtB XmiC XmtD
& & & &
RevA RevB RevC RevD
Seq Seq Seq Seq
A A A A
Y \J y y

A
REG FILE EXTFRNAL
8K1 WCS MEMORY
[KI ROM BUS
/ I
\ Y
| PN 1 KB X 128 Sram EXTERNAL
wROC > & DMA Ctrl < MEMORY Ctl
* A
:
4 ]
PCI BUS
INTERFACE UNIT
PCI BUS
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MODULE DESCR SPEED AREA
Serich RAM, 1Kx128 spor, 437 15 tom, 0677 mn”
WeS, | 849 sport, 640 15 om, 1829 mn’
MAP, 1287 sport, 350 ns nom, 0024 o
ROM, K49 ool 500 ns nom, 0045 mn”
REGs, 5123 tpor, 6.10 s nom, 0349 ma*
Macs, 75 mm? x 4 = 0330 mo”
PLL, 5 mm? = 00.55 mm?
MISC LOGIC, 117260 gaes / (5035 getes / mm) = B9 m?
TOTAL CORE 5620 mn’
v 2 2
(Core side) = 5622 mm
Core side : = 07.50 mm
Die side = core side + 1.0 mm (VO cells) = 08.50 mm
Die area =85 mm x 85 mm = NSm’
Pads needed =220 signals x 125 (vss, vdd) = 275 pins
LSI PBGA _ Mpis
_ J

FIG. 47
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(10MB/y/100Base) x 2 (full duplex) x 4 connections = §0 MBfs
Average frame size : = 512B
Frame rate = 80MBYs / 512B = 156,250 frames / s
Cpu overhead / frame = (256B context read) + (64B header read) +
(128B context write) + (128B misc.) = 512B/ frame
Total bandwidth = (5128 in) + (5128 out) + (5128 Cpu) = 1536B / frame
Dram Bandwidth required = (1536B/frame) x (156,250 frames/s) = 24MBjs
‘Dram Bandwidth @ 60MHz = (32 bytes / 167hs) = 20MBis
Dram Bandwidth @ 66MHz = (32 bytes / 150ns) = 204MBs
PCT Bandwidth requircd = §0MBJs
PCT Bandwidth available @ 30 MHz, 32b, average = 46MB/s
PCT Bandwidth available @ 33 MHz, 32b, average = 50MBfs
PCT Bandwidth available @ 60 MHz, 32b, average = 92MBk
PCT Bandwidth available @ 66 MHz, 32b, average = 100MB/s
PCT Bandwidth available @ 30 MHz, 64b, average = 9MB's
PCI Bandwidth available @ 33 MHz, 64b, average = 100MB/s
PCI Bandwidth available @ 60 Mz, 64b, average = 184MBfs
PCI Bandwidth available (@ 66 MHz, 64b, average = 200MB/s
\_ J

FIG. 48

Receive frame interval = 512B / 40MBs = 128us
Instructions / frame @ 60MHz = (12.8us/frame) / (50ns/instruction) = 25
instructions/frame
Instructions / frame (@ 66MHz = (12.8us/frame) / (45ns/instruction) = 284
mstructions/frame
Required instructions / frame = 250 instructions/frame
_ J

FIG. 49
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[48:47] [46:42] __ [41:33] [32:24] [23:16] [15:00]

TYPE _[55:49]
Jec  0b0000000
Jmp  0b0000000
Jsr 0b0000000
Rts 0b0000000
Nxt  0b0000000
Map MapAddr

0b00, AluOp, OpdASel, OpdBSel, TstSel, Literal
0b01, AluOp, OpdASel, OpdBSel, FlgSel, Literal
0b10, AluOp, OpdASel, OpdBSel, FlgSel, Literal
Obll, AluOp, OpdASel, OpdBSel, Ohff, Literal
Obll, AluOp, OpdASel, OpdBSel, FlgSel, Literal

0BXX, 0BXXXXX, (BXXXXXXXXX, OBXXXXXXXXX, (HXX, OHXXXX

FIG. 51
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SEQUENCER BEHAVIOR

if (MapEn & (MapAddr != 0b0000000)){ //re-map instr

Stacke = Stacke;
StackB = StackB;
StackA = StackA; ‘

InstrAddr = 0h8000 | Pc[2:0] | (MapAddr << 3);

Pc = InstrAddr + (Execute & ~DbgMd);
Fetch = DbgMd ? DbgAddr:InstrAddr;

DbgAddr = DbgAddr + (Execute & DbgMd);}

else if (PgmCtrl == Jce){ //conditional jump

Stacke = Stacke;

StackB = StackB;

StackA = StackA;

InstrAddr = ~Tst@TstSel ? Pc:(AluDst==Pc) ? AluOut:Literal;
Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

else if (PgmCtrl == jmp){ //jump
Stacke = Stacke;
StackB = StackB;
StackA = StackA;
InstrAddr = (AluDst == Pc) ? AluOut:Literal;
Pc = InstrAddr + (Execute & ~DbgMd)
Fetch =DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

else if PgmCtrl == Jsr){ //jump subroutine
Stackce = StackB,;
StackB = StackA;
StackA = Pc;
InstrAddr = (AluDst == Pc) ? AluOut:Literal;
Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

else if (FlgSel == Rts){ //return subroutine
InstrAddr = StackA;
StackA = StackB;
StackB = Stacke;
Stacke = ErrVec;
Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

else {
InstrAddr = Pc; //continue

StackA = StackA;

StackB = StackB;

Stacke = Stacke;

Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

FIG. 52
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-ALU OPERATIONS

AhuOp . OPERATION

0b00000 : (A & ~( 1 << B)); //bit clear
C = =B >=32)71:0;

0b00001 . A=(A & B), . /logical and

T C=0; V=0 )

0b00010 A = (Literal & B); /Nlogical and
C=0, V=0

0b00011 A = (~Literal & B); /Nlogical and not
C=0; V=0,

0b00100 A= (A | (1 <<B)); //bit set

0; V=B>=32)?1:0;

0b00101 A=(A|B); I/logical or
C=0;V=0; ‘

0b00110 A = (Literal | B); MNogical or

=0; V=0,

0b00111 A = (~Literal | B); /MNogical or not
C=0;V=0;

0b01000 for (i=31; i>=0; 1——) 1f B[i] continue; A=i; /fpriority enc
C=0; V—( )‘7

0b01001 A=(A"B); /Nogical xor
C=0,V=0;

0b01010 A = ({Literal} " B); /Nogical xor
C=0;V=0;

0b01011 A = ({~Literal} " B); /Nogical xor not

. C=0;vV=0;

0b01100 A =B; //move
C=0;V=0;

0b01101 A =B[31: 24] ~B[23:16] ~ B[15:08] ~ B[07:00]; //hash
C=0;V=

0b01110 A = {B[23:16],B[31:24],B[07:00],B[15:08]}; //[swap bytes
C=0;,V=0;

0b01111 A = {B[15:00], B[31:16]}; //swap doublets
C=0; V=0,

FIG. 53
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AluOp
0b10000

0b10001

0b10010

0b10011

0b10100

0b10101

0b10110

0bl10111

0b11000

0b11001

0b11010

0b11011

0bl11100

Ob11101

Ob11110

Obll111
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FUNCTION

A=(A+B),
C=(A+B)[32];V=0:

A=(A+B+ (),

C=(A+B+(C)[32); V=0;
A = (Literal + B);

- C=(Literal + B)[32]; V=0;

A= (-Literal + B);
C = (-Literal + B)[32]; V=0;

A=(A-B)
C=(A-B)32];V=0;

A=(A-B-~C)
C=(A-B-~C)32]; V=0,

(-A + B);
(-A +B)[32]; V=0;

A+ B-~C),
(-A +B - ~C)[32]; V = 0;

(I

A
C
A

C

A=(A<<B)
C= A[31]; V=(B>=32)?0:1;

A = (B << Literal);
C= B[31]; V = (Literal >=32) 2 0:1;

A=(B<<l)
C= B[31]; V=0,

n=(A-B)
C=(A-B)32];V=0;

A=(A>>B);
C= A[0]; V=(B>=32) ? 1:0;

A = (B >> Literal);
C= A[0]; V= (Literal >=32) ? 1:0;

A=(B>> 1),
C= A[0]; V=0;

n=(B-A);
C=(B-A)32];V=0;

FIG. 54
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//add B

/ladd B, carry
//add constant
//sub constant
//sub B

//sub B, borrow
//sub A

//sub A, borrow
//shift left A
//shift left B
//shift left B
/lcompare
//shift right A
//shift right B
//shift right B

//compare
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Opdsel SELECTED OPERANDs
0b0000azaaa File File@(OpdSel[4:0] | FileBase);

Allows paged access to any part of the register file.
0b0001aaaaa CpuReg File@{2b11, Cpuld, OpdSel[4:0]};

Allows direct access to Cpu specific registers.
0b00IXXXXXX reserved Reserved for future expansion.
0b0100000XX  CpuStatus 0b0000000000000BHDO0000000000000CC

This is a read-only register providing information about the Cpu cxecuting
(OpdSel[1:0]) cycles after the current cycle. '""CC" represents a value
indicating the Cpu. Currently, only Cpuld values of 0, 1 and 2 are returned.
"H" represents the current statc of HIt, "D" indicates DbgMd and "B"
indicates BigMd. Writing this register has no effect.

0b0100001XX  reserved Reserved for future expansion.

0b0100010XX Pc 0x0000AAAA
Writing to this address causes the program control logic to use AluQut as the
new Pc value in the event of a Jmp, Jee or Jsr instruction for the Cpu
executing during the current cycle. If the current instruction is Nxt, Map, or
Rits, the register writc has no effect. Reading this register returns the value in
Pc for the Cpu executing (OpdSel[1:0]) cycles after the current cycle.

0b0100011XX DbgAddr 0xDO0DAAAA
Writing to this register alters the contents of the debug address register

(DbgAddr) for the Cpu executing (OpdSel[1:0]) cycles after the current

cycle. DbgAddr provides the fetch address for the control-store when

DbgMd has been selected and the Cpu is executing. DbgAddr is also used

as the control-store address when performing a WrWes@DbgAddr or
RdWes@DbgAddr operation. “D” represents bit 31 of the register. It is a general
purpose flag that is used for event indication during simulation. Reading this
register returns a value of 0x00000000.

0b0100IXXXX reserved Reserved for future expansion.

0b010100000  RamAddr {0b1CCC, 0x000, Ob1, AAAA}
RamAddr = AluQut[15] ? AluOut : (AluOut | RamBase);
PrevCC = AluOut|31]? CCC : AluCC;

A read/write register. When reading this register, the Alu condition codes from the previous
instruction are returned together with RamAddr.

bit name description

31 Always 1.

30 PrevC Previous Alu Carry.

29 PrevV Previous Alu Overflow.

28 PrevZ Previous Alu Zero.

27:16 Always 0.

15 Always 1.

14:0 RamAddr Contents of last Sram address used.

When writing this register, if alu_out[31] is set, the previous condition codes will be overwritien with
bits 30:28 of AluOut. If AluQuit[15] is set, bits 14:0 will be written to the RamAddr. If AluOut [15]
is not set, bits 14:0 will be ored with the contents of the RamBase and written to the RamAddr

FIG. 55
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OpdSel SELECTED OPERANDs
0b010100001  AddrRegA 0x0000AAAA
AddrRegA = AluOut;

A read/write operand which loads AddrRegA used to provide the address for read and write
operations. en AddrRegA[15] is set, the contents will be presented directly to the ram, When
AddrRegA[15] is reset, the contents will first be ored with the contents of the RamBase register
before presentation to the ram. Writing to this register takes priority over Literal loads using
FlgOp. Reading this register returns the current value of the register.

0b010100010  AddrRegB 0x0000AAAA
AddrRegB = AluOut;
A read/write operand which loads AddrRegB used to provide the address for read and write

operations.

Vghen AddrRegB[15] is set, the contents will be presented directly to the ram. When
AddrRegB[lSﬁs resct, the contents will first be ored with the contents of the RamBase
register before presentation to the ram. Writing to this reglster takes priority over Literal loads
using FlgOp. Reading this register returns the current value of the register.

0b010100011 AddrRegAb O0x0000AAAA
AddrRegA = AluOut; AddrRegB = AluOut;

A destination only operand which loads AddrRegB and AddrRegA used to provide the address
for read and write operations Writing to this register takes &)norlty over Literal loads using
FlgOp. Reading this register returns the value 6x00000000.

0b010100100  RamBase 0x0000AAAA
RamBasc = AluQut;

A read/write register which provides the base address for ram read and write cycles. When
RamAddr({15]1s set, the contents will not be used. When RamAddr[15] is reset, the contents
will first be ored with the contents of the RamBase register before presentation to the ram,
Reading this register returns the value for the current Cpu.

06010100101  FileBase 0b00000000000000000000000AAAAAAAAA
FileBase — AluQut;
FileAddr = OpdSef[S] ? OpdSel:(OpdSel + FileBase);

A read/write register which provides the base address for file read and write caf_cles. When
OdpdSel 8] is set, the contents will not be used and OpdSel will be presented lirectly to the
address lines of the file. When OgdSel[S] is reset, the contents will first be ored with the
contents of the FileBase register before presentation to the file. Reading this register returns the

value for the current Cpu.
0b010100110  InstrRegL OxITIIIIII

This is a read-only register which returns the contents of InstrReg[31:0]. Writing to
this register has no etfect.

0b010100111 InstrRegH 0xO0TIIIH

This is a read-only register which returns the contents of InstrReg[55:32]). Writing to this
register has no effect.

FIG. 56
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OpdSel SELECTED OPERANDs

0b010101000  Minusl [D<diiiniig
This is a read-only register which supplies a value OxffFFffef.. Writing to this
register has no effect.

0b010101001 FreeTime A free-running timer with a resolution of 1.00 microseconds and a maximun count
of 71 minutes. This timer is cleared during reset.

0b010101010  LiteralL, Instr[15:0]
A read-only register. Writing to this register has no effect

0b010101011  LiteralH Instr[15:0]<<16;
A read-only register. Writing to this register has no effect

0b010101100  MacData - Writing to this address loads the AluOut data into the MacData register for use

during Mac operations. The Mac operation, resulting from writing to the MacOp register,
determines the definition of the MacData register contents as follows.

MacOp MacData definition
Mstop 100.0,0,0.9.0.0.0.:0.0.0.6.9.0.0.0.0.0.0.6.0.0.0.0.0.0:6.0.0.0:¢.0.¢
MacData is not used for the StopM operation.

WrMefg
hrstl, rsvd, rsvd, crcen, fulld, hrstl, hugen, nopre, paden, prtyl, xdi10,

ipgr1[6:0],

ipgr2[6:0], ipgt[6:0].

Loads the MacCfg register with the contents of the MacData register. Refer to
LSILogic's Ethernet-110 Core Technical Manual for detailed definitions of these

bits.

WrMrng OO XXX XXX XXX X KX XX KX KSSSSSSSSSSS
Loads seed[10:0] into the Mac's random number generator.

RdPhy ObXXXXRRRREXXXPPPPXXX XXX XXX XXXXXKXX
Reads register[R] of phy[P].

WrPhy 0bXXXXRRRRXXXXPPPPDDDDDDDDDDDDDDDD
Writes register[R] of phy[P] with MacData[15:0].

Reading this register returns prsd[15:0] of Mac@ which contains phy status data returned to the
Mac at the completion of a RdPhy command. This data is invalid while MacBsy is asserted

as a result of a RdPhy command. Refer to the appropriate phy technical manual for a
definition of the phy register contents.

FIG. 57
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FIG. 58A

FIG. 58B

FIG. 58C

FIG. 58
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OpdSel SELECTED OPERANDs

0b010101101  MacOp - A write only register. Writing to this address loads the MacSel register and staRts
' execution of the specified operation as follows.

AluOut - description
OXXOKXXOXM Mstop - Halts execution of a MacOp for Mac[M]. The user must wait for

MacBsy to be deasserted before issuing another command or changing the
. contents of MacData.

OXXXXXX1XM WrMefg - Writes the contents of MacData to the MacCfg register of MadM]
The user must wait for MacBsy to be deasserted before issuing another command
or changing the contents of MacData.

0x3C00C2 XM WrMrng - Writes the contents of MacData to the seed register of Mac[M]. The
user must wait for MacBsy to be deasserted before issuing another command or
changing the contents of MacData.

0XOXXX3XM RdPhy - Reads the contents of reg[R] for phy[P] on the MII management bus of
Mac[M]. The contents may be read from MacData after MacBsy has been de-

asserted.

OXXXXXXAXM WrPhy - Writes the contents of MacData[15:0] to e reg[R] of phy[P] on the MII
management bus of Mac[M]|. The user must wait for MacBsy to be deasserted
before issuing another command or changing the contents of MacData.

XXX XXM WrAddrAL - Writes the contents of MacData[15:0] to MacAddrA[15:0] for Mac[M].

OXXXXXX9XM  WrAddrAH - Writes the contents of MacData[11:0] to MacAddrA[47:16] for Mac[M].

OxXXXXXaXM WrAddrBL - Writes the contents of MacData[15:0] to MacAddrB[15:0] for Mac[M].

0xXXXXXbXM WrAddrBH - Writes the contents of MacData]11:0] to MacAddrB[47:16] for Mac[M].

b010101110 ChCmd A write-only register.

bit name description
31:11 reserved Data written to thesc bits is ignored.
10:8 command 0 - Stops execution of the current operation and clears the
corresponding event flag.
1 - Transfer data from ExtMem to ExtMem.
2 - Transfer data from Pci to ExtMem.
3 - Transfer data from ExtMem to Pci.
4 - Transfer data from Sram to ExtMem.
5 - Transfer data from ExtMem to Sram.
6 - Transfer data from Pci to Sram.
7 - Transfer data from Sram to Pci.
07:05 reserved Data written to these bits is ignored.
04:00 Chld Provides the channel number for the channel command.

FIG. 58A
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0b010101110  ChEvnt A read-only register.
bit name description
31:00 ChDn Each bit represents the done flag for the respective dma channel. These

bits are set by a dma sequencer upon completion of the channel
command. Cleared when the processor writes 0 to the corresponding
ChCmd register.

0b010101111  GenEvnt A read-only register.
bit name description
31 PciRdEvnt Indicates that a PCI initiator is attempting Lo read a mproc.
. register.
30 PciWrEvnt Indicates that a PCI initiator has posted a write to a mproc.
register.
29 TimeEvnt An event which occurs once every 2.00 milliseconds.
28:00 reserved Reserved for future use.
0b010110000  QCitrl A write-only register used to select and manipulate a Q.
bit name description
31:11  reserved Data written to these bits are ignored.
10:8 QSz Used only during InitQ operations to specify the size of the QBdy in Dram.

7 - Queue depth is 32K entries (128KB).
6 — Queue depth is 16K entries (64KB).
5 — Queue depth is 8K entries (32KB).
4 — Queue depth is 4K entries (16KB).
3 — Qucue depth is 2K entries (8KB).
2 —Queue depth is 1K  entries (4KB).
I — Queue depth is 512 entries (2KB).
0 — Queue depth is 256 entries (1KB).
7:5 QOp  Specifies the queue operation to perform.
7—-DblQ  Disables all queues.
6 —EnQ  Enables all queues.
5~ RdBdy Increments the QBdyRdPtr and increments the QTIWrPtr.
4 — WrBdy Decrements the QBdyWrPtr and increments the QHdRdPtr.
3-RdQ Returns a queue entry in register QData..
2—-rsvd  Reserved. Not to be used.
1 —InitQ  Set the queue status to empty and initializes QSz.
0-SelQ  Selects the QId to be utilized during writes to QData.

FIG. 58B
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4:0 QId Specifies the queue on which to perform all operations except DbIQ or EnQQ.

0b010110001  QData A read/write register. Writing this register will result in the data being pushed on
to the selected queue. Reading this register fetches queue data popped off during
the previous RAQ operation.

0b010110010  reserved Reserved for future expansion.

0b010110011  XevCtrl A wrrite-only register used to enable and disable Mac transmit and receive
sub-channels.

bit__ name___ description

31:09  reserved Data written to these bits are ignored.

8 enable  When set, indicates to the Mac transmit or receive sequencer that the subchannel
contains a transmit or receive descriptor.

07:05  reserved Data written to these bits is ignored.

04 RevCh Selects a Mac receive subchanne] when set. Selects a Mac transmit subchannel
when cleared.

03 reserved Data written to this bit are ignored.

02 SubCh Selects subchannel B when set or A when reset.

01:00 Macld Provides thc Mac number for the subchannel enable bit.

0b010110100  Lru 0x0000000A

A read/write operand indicating which of the 16 entries is least recently used.
When Reading This register the least recently used entry is returned, after which
itis automatically made the most recently used entry. This register should only be
read in conjunction with a '"Move' operation of the ALU, else the results are
unpredictable. Writing to this register forces the addressed entry to become the
least recently used entry.

0b010110101 Mru 0x0000000A
A write only operand forcing the addressed entry to become the most recently
used entry.
0b010111000  QInRdy A read-only register comprising QHd not full flags for each of the 32 queues.
0b010111001  QOutRdy A read-only register comprising QTI not empty flags for cach of the 32 queues.
0b010111010  QEmpty A read-only register comprising QEmpty flags for each of the 32 queues.
0b010111011  QFull A read-only register comprising QFull flags for each of the 32 queues.
ObOI0I1IIXX  reserved Reserved for future expansion.
O0b0110XXXXX Constants {0b000, OpdSel4:01}

0b01110XXXX reserved Reserved for future expansion.

FIG. 58C
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OpdSel SELECTED OPERANDs
0b0I1111XXXX Sram OPERATIONS
OpdSel[3] . PostAddrOp
0 nop
1 RamAddr = RamAddr + (OpdSel[ 1:0]);
OpdSel[2] .  transpose Ctrl
0 " don't transpose
1 " transpose bytes
OpdSel[1:0] RamOpdSz
0 quadlet
1 triplet
2 doublet
3 byte
RAM READ ATTRIBUTES SOURCE _OPERAND
endian trans- byte Sram

mode pose_ offs data sz=Q sz=T sz=D sz=B

little 0 0 abcd abed Obcd 00cd 000d
little 0 1 abcX  trap fabc  00bc  000c
little 0 2 abXX trap trap 00ab  000b
little 0 3 aXXX ftra trap trap 000a
little 1 0 abcd dcba 0dcb  00dc  000d
little 1 1 abcX  trap Ocba  00cb  000c
little 1 2 abXX trap trap 00ba  000b
little 1 3 aXXX trap trap trap 000a
BIG 0 0 abcd abcd Oabc  00ab  000a
BIG 0 1 Xbed  trap Obcd  00bc  000b
BIG 0 2 XXed trap trap 00cd  000c
BIG 0 3 XXXd trap trap trap 000d
BIG 1 0 abcd dcba Ocba 00ba  000a
BIG 1 1 Xbcd  trap Odcb  00cb  000b
BIG 1 2 XXed  trap trap 00dc  000c
BIG 1 3 XXXd trap trap trap 000d
RAM WRITE ATTRIBUTES SOURCE OPERAND

endian trans- Opd Alu '
mode pose_ size out OF=0 0F=1 OF=2 OF=3
0

little Q abcd  abcd  trap trap trap
little 0 T Xbed  -bed  bed-  trap trap
little 0 D XXed  --cd -cd- cd-- trap
little 0 B XXXd --d --d- -d-- d---
little 1 Q abcd dcba tra trap trap
little 1 T Xbed  -dcb deb-  trap trap
little 1 D XXed  --dc ~de- de-- trap
Little 1 B XXXd --d --d- -d-- d---
big 0 Q abcd  abed  trap trap trap
big 0 T Xbed  bed- -bed  trap trap
big 0 D XXed  cd-- -cd- --cd trap
big 0 B XXXd d-- -d-- --d- --d
big 1 Q abcd  dcba  trap trap trap
big | T Xbed  deb-  -dcb  trap trap
big l D XXed  de-- -dc- -~dc trap
big 1 B XXXd d--- -d-- -~d- --d

Oblaaaaaaaa File File@OpdSel[8:0]; )
Allows direct, non-paged, access to the top half of the register file.

FIG. 59
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TstSel

0bX00XXXXX
0bX0100000
0bX0100001
0bX0100010
0bX0100011
0bX0100100
0bX0100101
0bX0100110
0bX0100111
0bX0101000
0bX0101001
0bX010101X
0bX01011XX

0bX0110XXX

0bX0111XXX
ObXO01XXXXX

ObXIXXXXXX

'SELECTED TEST

Apr. 1,2004 Sheet 51 of 89  US 2004/0064578 Al

Tst = TstSel[7] ~ AluOut[TstSel[4:0]]

Tst=TstSel[7] ~ C

Tst = TstSel[7]~ V

Tst= Ts‘lSel[7] ~Z

Tst = TstSel[7] ~ (Z | ~C)
Tst=TstSel[7] ~ PrevC
Tst = TstSel[7] * PrevV
Tst = TstSel[7]  PrevZ
Tst = TstSel[7] * (PrevZ & Z)
Tst = TstSel[7] ~ QOpDn
Tst = reserved

Tst = reserved

Tst = reserved

Tst = TstSel[7] * Lock[TstSel[2:0]]
Lock(TstSel[2:0])=1;

Tst = TstSel[7] ~ Lock[TstSel[2:0]]
Tst = reserved

Tst = reserved

FIG. 60

//Alu bit
//cai-ry‘

/ferror

//zero

//less or equal
/fprevious carry
//previous error
//previous zero
//64b zero

/fqueue op okay

/ftests the current value of
//the Lock then set it.

/ftests the value of Lock.
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FlgSel FLAG OPERATION
0b00000000 No operation.
0b00000001 SelfRst Forces a self reset for the entire chip excluding the PCI configuration
registers
0b00000010 SelBigEnd Selects big-endian mode for ram accesses for the current Cpu.
0b00000011 SelLitEnd Selects little-endian mode for ram accesses for the current Cpu.
0b00000100 DblMap Disable instruction re-mapping for the current Cpu.
0b00000101 EnbMap Enable instruction re-mapping for the current Cpu.
0b0000011X reserved
0b0000IX XX reserved
0Ob00010XXX ClrLck Lock[FlgSel[2:0]] = 0;
Clears the semaphore register bit for the current Cpu only.
0b000TTXXX reserved
0b0010XXXX AddrOp
FlgSel[3 2 AddrSelect
0 RamAddr = Literal[15] ? Literal (Literal | RamBase);
1 - RamAddr = AddrRegA[15]  ? AddrRegA - (AddrRegA | RamBase),
2 RamAddr = AddrRegB{15] ? AddrRegB (AddrRegB | RamBase):
3 if (OpdA = RamAddr)
RamAddr = AluQut[15] ? AluOut . (AluOut | RamBase);
elsc if (OpdA == ram)
l}amAddr = AddrRegB[15]  ? AddrRegB ' (AddrRegB | RamBase):
else
RamAddr = AddrRegA[15]  ? AddrRegA . (AddrRegA | RamBase),
FlgOSclll 0 addr reg load
no
1 Adl:irRegA = Literal,
2 AddrRegB = Literal,
3 AddrRegA = Literal, AddrRegB = Literal,
note: When specifying the same register for both the load and select fields, the current value of the
register, before it is loaded with the new value, will be used for the ram address.
0b0011XXXX reserved
0b01000000 WrWesL@Dbg  Causes the bits [31:0] of the control-store at address DbgAddr to be
written with the current AluQOut data.
0b01000001 WrWesH@Dbg  Causes the bits [63:32] of the control-store at address DbgAddr to be
written with the current AluOut data then increments DbgAddr.
0b01000010 RdWesL@Dbg  Causes the bits [31:0] of the control-store at address DbgAddr to be
moved to file address 0x 11f.
0b01000011 RdWesH@Dbg  Causes the bits [63:32] of the control-store at address DbgAddr to be
moved to file address 0x1ff then increments DbgAddr.
0601000100 reserved
0b010001XX Step Allows the Cpu (FlgSel[1:0]) ctyclcs after the current cycle to execute a single
instruction. There is no effect if the Cpu is not halted. An offset of 0 is not allowed.
0b010010XX PcMd Selects the Pc as the address source for the control-store during
instruction fetches for the Cpu (FlgSel[1:0]) cycles after the current cycle.
0b010011XX DbgMd Selects the DbgAddr address register as the address source for the
control-store during instruction fetches for the Cpu (FlgSel[1:07)
cycles after the current cycle.
0b010100XX HIt Halts the Cpu (FlgSel[1:0]) cycles after the current cycle.
0b01010TXX Run Clears Halt for the Cpu (FlgSel[1:0]) cycles after the current cycle.
0b01011XXX reserved
ObOTIXXXXX reserved
ObIXXXXXXX reserved

FIG. 61
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AN
At )
> Grant » TO qull%tOIS

XrdReq e

XrdAddr S—

XrdState —_—

XrdCtrl —

XrdData -

XwrReq —> > XAddr A > T0 Xmem
XwrAddr —

XwiState — >

XwrCtrl —

MUX

Dcngeq —

DefgAddr —_—

DefyStae N > XDt [—— TO Xmem
DefuC N

Dcngata —>

BectrlReq —>

EectrlAddr —

EectrlState —

EectrlChrl — > /

TO Xm

FIG. 66
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D2p —>
D2s —
D2d —
Dl .
Pso N
- XmtA >
XmtB — >
XmiC N
XmiD — >
XctrDm —>
XctrlGnt ——
SramGnt —>
SramAck —
SramAckSz ———

Y

~\
Crant A—> TO Requester
XAddr A > T0 Xetd
EN
SramGnt
XData 4 {g SramData
Xl [~ T0 Xetd
| 2 oy

> Ack To requester

Y

XctrlReq
SramReq

Y

FIG. 67

SramGnt
§: SramParams
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\

> G A > T0 Roquester
2 e
S2s —> y,
Dd > XAddr > TO Xctrl
W — |
Psi — >  XDia A 10 Xetd
RevA -
RevB I
ReiC >  Xodl 44— 10 Xetl
RevD )

> DMCHkSum A—> 10 DM

> P2dChkSum A > 0P

> gﬁg —L—> TO Xt
XctrlGnt —>

> Ack TO requester
> XcirReq

SramGnt ~ —> > SramReq
SramAck —
SramAckSz  ———> SramGat
SramRdData —— > }\/[ SemParams

FIG. 69
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N\
CHANNEL y
> D
S 4 > 70X
S 4> 0P
. XFR /] .
> COUNT > 10 Xdd
> ngF— IQtr 4 > TO Pmo
= WR bt A— 10 Xud
_ XFR /
XrdAck —> OPTIONS
Xd Stats ~ — . SEQ |/
State
Pmo Ack — > FifoCnt
Pmo Status —> > Pmo Req
> XrdReq
Sam Ak — > SramReq
EN
From Sram
Sram Rd Data —— }£ SramParams

FIG. 73
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N\
CHANNEL
o D |/
b A—— 10 Xur
. PClI A ,
PTR > TO Pmi
. XFR A . :
- WFg_ 0 44— T0 Pmi
- S }Q‘I A——> 10 Xwr
XwrChksum — -
XFR
XwrAck — > OPTIONS
Xoats 1 s |
State
PmiAck  — > FifoCnt
PmiStatis ~ —»| > Pmi Req
> XwiReq
SamAck —» o > SramReq
E;: From Sram
SxadeData — SpmParams

FIG. 75
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AN
CHANNEL | |
> D
S A > 70 Pmo
. XFR A
COUNT > TO Pmo
o A > 70 Pmo
XFR |
OPTIONS
. SEQ |/
- State
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PmoStatus —
— SramReq
Sl'ﬂHlACk —
EN
From Sram
SramRdData — g_: SramParams
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RECEIVE BUFFER DESCRIPTOR

bit name description

31:30  reserved

29:28  size A copy of the bits in the FreeBufDscr. .

27:00  address Represents the last address +1 to which frame data was transferred. The address

wraps around at the boundary dictated by the S bits. This can be used to determine
the size of the frame received.

FIG. 89

TIME STAMP OFFSET 0x0008:0x000B
bit name description
31:00 RevTime ‘The contents of FreeClIk at the completion of the frame receive operation.

FIG. 90

CHECKSUM OFFSET 0x000C:0x000F
bit name description
31:16 TpChksum Reflects the value of the TP header checksum at frame completion or IP header

completion. If an IP datagram was not detected, the checksum provides a total for
the cntire data portion of the received frame. The data area is defined as those bytes
rcecived after the type field of an ethernet frame, the LLC header of an 802.3 frame
or the SNAP header of an 802.3-SNAP frame.

15:00 TepChksum Reflects the value of the transport checksum at IP completion or frame completion.

If IP was detected but session was unknown, the checksum will not include the
psuedo-header. If IP was not detected, the checksum will be 0x0000.

RESERVED OFFSET 0x0010:0x0011
FRAME Data OFFSET 0x0012:END OF BUFFER

FIG. 91
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RECEIVE BUFFER FORMAT
FRAME Status A

OFFSET 0x0000:0x0003

bit name description
31 attention . Indicates one or more of the following: CompositeErr, 1IpDn, IMacADet &
MacBDet, IpMcst, IpBcst, 'ethernet & !802.3Snap, !Ip4, Tcp .
30 CompositeErr  Set when any of the error bits of ErrStatus are set or if frame processing stops
while receiving a Tcp or Udp header.
29 CtrlFrame A control frame was received at our unicast or special MItCst address.
28 IpDn Frame processing Hlted due to exhaustion of the IP4 length counter.
27 802.3Dn - Frame processing Hlted due to exhaustion of the 802.3 length counter.
26 MacADet Frame's destination address matched the contents of MacAddrA.
25 MacBDet Frame's destination address matched the contents of MacAddrB.
24 MacMcst The Mac detected a MItCst address.
23 MacBecst The Mac detected a BrdCst address.
22 IpMcst The frame processor detected an IP MItCst address.
21 IpBest The frame processor detected an IP BrdCst address.
20 Frag The frame processor detected a Frag IP datagram.
19 IpOffst The frame processor detected a non-zero IP datagram offset.
18 IpFlgs The frame processor detected flags within the IP datagram.
17 IpOpts The frame processor detected a header length greater than 20 for the TP datagram.
16 TcepFlgs The frame processor detected an abnormal header flag for the TCP segment.
15 TepOpts The frame processor detected a header length greater than 20 for the TCP segment.
14 TepUrg The frame processor detected a non-zero urgent pointer for the TCP segment.
13 CarrierEvnt Refer to £110 Technical Manual.
12 LongEvnt Refter to E110 Technical Manual.
11 FrameLost Set when an incoming frame could not be processed as a result of an outstanding frame completion
event not yet serviced by the utility processor.
10 reserved
10 NoAck The frame processor detected a
09:08 FrameTyp 00 - Reserved.  01- ethernet. 10 - 802.3. 11 -802.3 Snap.
07:06 NwkTyp 00 - Unknown. 01-1Ip4. 10 - Ip6 11 - ip other.
05:04 TrosptTyp 00 - Unknown. 01-reserved. 10 - Tep 11 - Udp
03 NetBios A NetBios frame was detected.
02 reserved
01:00 channel The Mac on which this frame was received.
FRAME Status B OFFSET 0x0004:0x0007
bit name descriplion
31 802.3Shrt End of frame was encountered before the 802.3 length count was exhausted.
30 BufOvr The frame length exceded the buffer space available.
29 BadPkt Refer to E110 Technical Manual.
28 InvldPrmbl Refer to E110 Technical Manual.
27 CreErr Refer to £110 Technical Manual.
26 DrbINbbl Refer to E110 Technical Manual.
25 CodeErr Refer to £110 Technical Manual.
24 IpHdrShrt The IP4 header length field contained a value less than 0x5.
23 IpIncmplt The frame terminated before the IP length counter was exhausted.
22 IpSumErr The IP header checksum was not Oxffff at the completion of the IP header read.
21 TepSumErr The session checksum was not Oxffff at the termination of scssion processing.
20 TcpHdrShrt The TCP header length field contained a value less than 0x5.
19:16  PressCd The state of the frame processor at the time the frame processing terminated.
0b0000 Processing Mac header.
0b0001 Processing 802.3 L.LC header.
0b0010 Processing 802.3 SNAP header.
0b0011 Processing unknown network data.
0b0100 Processing IP header.
0b0101 Processing IP data (unknown transport).
0b0110 Processing transport header (IP data).
0b0111 Processing transport data (IP data).
0b1000 Processing IP processing complete.
0b1001 Reserved.
0b101x Reserved.
Obl1xx Reserved.
15:08 MacHsh The Mac destination-address hash, Refer to £710 Technical Manual.
07:00 CtxHsh The 8-bit context-hash generated by exclusive-oring all bytes of the IP source

address, IP destination-address, transport source port and the transport destination port.

FIG. 92
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TRANSMIT BUFFER DESCRIPTOR

bit name description

31 ChksumEn When set, XmtSeq will insert a'calculated checksum. When reset, XmtSeq will
not alter the outgoing data stream. )

30 reserved : .

29:28  size Represents the size of the buffer by indicating at what boundary the buffer should
start and terminate. This is used in combination with EndAddr to determine the
starting address of the buffer :

S=0  256B boundary. A[7:0] ignored.

S=1 2KB boundary. A[10:0] ignored.

S=2 4KB boundary. A[11:0] ignored.

S=3 32KB boundary. A[14:0] ignored.
27:00 EndAddr The address of the last byte to transmit plus one.
TRANSMIT BUFFER FORMAT

CHECKSUM PRIMER OFFSET 0x0000:0x0003

bit name description
31:00  Primer A value to be added during checksum accumulation. For IPV4, this should include
the psuedo-header values, protocol and Tcp-length.

RESERVED OFFSET 0x0004:0x0005
FRAME Data OFFSET 0x0006:END OF BUFFER

FIG. 96

TRANSMIT Status VECTOR

bit name description

31 LnkErr Indicates that a link status error occured before or during transmit.
30:15 reserved

14 ExcessDeferral Refer to E110 Technical Manual.

13 LateAbort Refer to E110 Technical Manual.

12 ExcessColl Refer to E110 Technical Manual.

11 UnderRun Refer to E110 Technical Manual.

10 ExcessLgth Refer to £/10 Technical Manual.

09 Okay Refer to £110 Technical Manual.
08 deferred Refer to £110 Technical Manual.
07 BrdCst Refer to E110 Technical Manual.
06 MItCst Refer to E110 Technical Manual.
05 CrcErr Refer to £110 Technical Manual.
04 LateColl Refer to E110 Technical Manual.
03:00 ColiCnt Refer to E110 Technical Manual.

FIG. 97
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DMA OPERATIONS

dma seq # name description

0 none This 1s a no operation address.

-1 D2dSeq Moves data from ExtMem to ExtMem.
2 D2sSeq Moves data from ExtMem bus to sram.
3 D2pSeq Moves data from ExtMem to Pci bus.
4 S2dSeq Moves data from sram to ExtMem.
3 S2pSeq " Moves data from sram to Pci bus.
6 P2dSeq Moves data from Pci bus to ExtMcm.
7 P2sSeq Moves data from Pci bus to sram.

FIG. 100

bit name description
31:11  reserved Data written to these bits 1s ignored.
10:8  ChCmd 0 - Stops execution of the current operation and clears the corresponding event flag,

1 - Transfcr data from ExtMem to ExtMem.
2 - Transfer data from ExtMem bus to sram.
3 - Transfer data from ExtMem to Pci bus.
4 - Transfer data from sram to ExtMem.
5 - Transfer data from sram to Pci bus.
6 - Transfer data from Pci bus to ExtMem.
7 - Transfer data from Pci bus to Sram.
07:05  reserved Data written to these bits is ignored.
04:00 Chld Provides the channel number for the channel command.

FIG. 101

bit name description

127:96 PciAddrH Bits [63:32] of the Pci address.

95:64 PciAddrL Bits [31:00] of the Pci address.

59:32 MemAddr Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
31 PciEndian When set, selects big endian mode for Pci transfers.

30 WideDbl When set, disables Pci 64-bit mode.

22 DstFlash Selects Flash for the external memory destination of P2d.

15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.

FIG. 102
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bit name

description

123:96 MemAddr
95:64 PciAddrH
63:32 PciAddrL
30 SrcFlash

Bits [27:00] of the ExtMem address or bits [ 15:00] of the Sram address.
Bits [63:32] of the Pci address.

Bits [31:00] of the Pci address.

Selects Flash for the external memory source of D2p.

23 PciEndian When set, selects big endian mode for Pci transfers.

22 WideDbl When set, disables Pci 64-bit mode.

15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.
bit name description

127:124 reserved Reserved for future use.

123:96 SrcAddr
95:60 reserved
50:32 DstAddr
30 FlashSel
22 FlashSel

Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
Reserved for future use.

Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
Selects Flash for the external memory source of D2d or D2s.

Selects Flash for the external memory destination of S2p or D2d.

15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.
bit name description
127:64 reserved Not used.

63:32 ChkSum

31:24  reserved
23.20  SrcStatus
19:16  DstStatus

Represents the 1's compliment sum of all halfwords transferred during a P2d or D2d

operation only.

Reserved for future use.

TBD.

TBD.

Bits [15:00] of the residual dma size expressed in bytes. This value will be zero if the

dma operation was successful

FI1G. 105

description

15:00 XfrSz
bit name
31.00 ChDn

Each bit represents the done flag for the respective dma channel. These bits are set by a
dma sequencer upon completion of the channel command. Cleared when the processor
writes 0 to the corresponding ChCmd register ChCmdOp field.

FIG. 106
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FAST-PATH APPARATUS FOR RECEIVING DATA
CORRESPONDING TO A TCP CONNECTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit under 35 U.S.C.
§120 of U.S. patent application Ser. No. 10/092,967, entitled
“FAST-PATH APPARATUS FOR RECEIVING DATA
CORRESPONDING TO A TCP CONNECTION,” filed
Mar. 6, 2002, by Laurence B. Boucher et al., which in turn
claims the benefit under 35 U.S.C. §120 of U.S. patent
application Ser. No. 10/023,240 (Attorney Docket No. ALA-
006A), entitled “TRANSMIT FAST-PATH PROCESSING
ON TCP/IP OFFLOAD NETWORK INTERFACE
DEVICE,” filed Dec. 15, 2001, by Laurence B. Boucher et
al., which in turn claims the benefit under 35 U.S.C. §120 of
US. patent application Ser. No. 09/464,283 (Attorney
Docket No. ALA-006), entitled “INTELLIGENT NET-
WORK INTERFACE DEVICE AND SYSTEM FOR
ACCELERATED COMMUNICATION”, filed Dec. 15,
1999, by Laurence B. Boucher et al., which in turn claims
the benefit under 35 U.S.C. §120 of U.S. patent application
Ser. No. 09/439,603 (Attorney Docket No. ALA-009),
entitled “INTELLIGENT NETWORK INTERFACE SYS-
TEM AND METHOD FOR ACCELERATED PROTOCOL
PROCESSING”, filed Nov. 12, 1999, by Laurence B.
Boucher et al., which in turn claims the benefit under 35
U.S.C. §120 of U.S. patent application Ser. No. 09/067,544
(Attorney Docket No. ALA-002), entitled “INTELLIGENT
NETWORK INTERFACE SYSTEM AND METHOD FOR
ACCELERATED PROTOCOL PROCESSING”, filed Apr.
27, 1998, which in turn claims the benefit under 35 U.S.C.
§ 1 19(e)(1) of the Provisional Application filed under 35
US.C. §111(b) entitled “INTELLIGENT NETWORK
INTERFACE CARD AND SYSTEM FOR PROTOCOL
PROCESSING,” Serial No. 60/061,809 (Attorney Docket
No. ALA-001), filed on Oct. 14, 1997.

[0002] This application also claims the benefit under 35
U.S.C. §120 of U.S. patent application Ser. No. 09/384,792
(Attorney Docket No. ALA-008), entitled “INTELLIGENT
NETWORK INTERFACE DEVICE AND SYSTEM FOR
ACCELERATED COMMUNICATION,” filed Aug. 27,
1999, which in turn claims the benefit under 35 U.S.C. §120
of U.S. patent application Ser. No. 09/141,713 (Attorney
Docket No. ALA-003), entitled “INTELLIGENT NET-
WORK INTERFACE DEVICE AND SYSTEM FOR
ACCELERATED PROTOCOL PROCESSING”, filed Aug.
28, 1998, which both claim the benefit under 35 US.C. §
119(e)(1) of the Provisional Application filed under 35
US.C. §111 (b) entitled “INTELLIGENT NETWORK
INTERFACE DEVICE AND SYSTEM FOR ACCELER-
ATED COMMUNICATION,” Serial No. 60/098,296 (Attor-
ney Docket No. ALA-004), filed Aug. 27, 1998.

[0003] This application also claims the benefit under 35
U.S.C. §120 of U.S. patent application Ser. No. 09/416,925
(Attorney Docket No. ALA-005), entitled “QUEUE SYS-
TEM FOR MICROPROCESSORS,” filed Oct. 13, 1999,
US. patent application Ser. No. 09/514,425 (Attorney
Docket No. ALA-007), entitled “PROTOCOL PROCESS-
ING STACK FOR USE WITH INTELLIGENT NET-
WORK INTERFACE CARD,” filed Feb. 28, 2000, U.S.
patent application Ser. No. 09/675,484 (Attorney Docket
No. ALA-010A), entitled “INTELLIGENT NETWORK
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STORAGE INTERFACE SYSTEM,,” filed Sep. 29, 2000,
U.S. patent application Ser. No. 09/675,700 (Attorney
Docket No. ALA-010B), entitled “INTELLIGENT NET-
WORK STORAGE INTERFACE DEVICE,” filed Sep. 29,
2000, U.S. patent application Ser. No. 09/789,366 (Attorney
Docket No. ALA-013), entitled “OBTAINING A DESTI-
NATION ADDRESS SO THAT A NETWORK INTER-
FACE DEVICE CAN WRITE NETWORK DATA WITH-
OUT HEADERS DIRECTLY INTO HOST MEMORY,”
filed Feb. 20, 2001, U.S. patent application Ser. No. 09/801,
488 (Attorney Docket No. ALA-011), entitled “PORT
AGGREGATION FOR NETWORK CONNECTIONS
THAT ARE OFFLOADED TO NETWORK INTERFACE
DEVICES,” filed Mar. 7, 2001, U.S. patent application Ser.
No. 09/802,551 (Attorney Docket No. ALA-012), entitled
“INTELLIGENT NETWORK STORAGE INTERFACE
SYSTEM,” filed Mar. 9, 2001, U.S. patent application Ser.
No. 09/802,426 (Attorney Docket No. ALA-014), entitled
“REDUCING DELAYS ASSOCIATED WITH INSERT-
ING A CHECKSUM INTO A NETWORK MESSAGE,”
filed Mar. 9, 2001, U.S. patent application Ser. No. 09/802,
550 (Attorney Docket No. ALA-015), entitled “INTELLI-
GENT INTERFACE CARD AND METHOD FOR ACCEL-
ERATED PROTOCOL PROCESSING,” filed Mar. 9, 2001,
U.S. patent application Ser. No. 09/855,979 (Attorney
Docket No. ALA-016), entitled “NETWORK INTERFACE
DEVICE EMPLOYING DMA COMMAND QUEUE,”
filed Mar. 14, 2001, U.S. patent application Ser. No. 09/970,
124 (Attorney Docket No. ALA-020), entitled “NETWORK
INTERFACE DEVICE THAT FAST-PATH PROCESSES
SOLICITED SESSION LAYER READ COMMANDS,”
filed Oct. 2, 2001.

[0004] The subject matter of all of the above-identified
patent applications (including the subject matter in the
Microfiche Appendix of U.S. application Ser. No. 09/464,
283), and of the two above-identified provisional applica-
tions, is incorporated by reference herein.

REFERENCE TO COMPACT DISC APPENDIX

[0005] The Compact Disc Appendix (CD Appendix),
which is a part of the present disclosure, includes three
folders, designated CD Appendix A, CD Appendix B, and
CD Appendix C on the compact disc. CD Appendix A
contains a hardware description language (verilog code)
description of an embodiment of a receive sequencer. CD
Appendix B contains microcode executed by a processor
that operates in conjunction with the receive sequencer of
CD Appendix A. CD Appendix C contains a device driver
executable on the host as well as AT'CP code executable on
the host. A portion of the disclosure of this patent document
contains material (other than any portion of the “free BSD”
stack included in CD Appendix C) which is subject to
copyright protection. The copyright owner of that material
has no objection to the facsimile reproduction by anyone of
the patent document or the patent disclosure, as it appears in
the Patent and Trademark Office patent files or records, but
otherwise reserves all copyright rights.

TECHNICAL FIELD

[0006] The present invention relates generally to computer
or other networks, and more particularly to processing of
information communicated between hosts such as comput-
ers connected to a network.
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BACKGROUND

[0007] The advantages of network computing are increas-
ingly evident. The convenience and efficiency of providing
information, communication or computational power to
individuals at their personal computer or other end user
devices has led to rapid growth of such network computing,
including internet as well as intranet devices and applica-
tions.

[0008] As is well known, most network computer com-
munication is accomplished with the aid of a layered soft-
ware architecture for moving information between host
computers connected to the network. The layers help to
segregate information into manageable segments, the gen-
eral functions of each layer often based on an international
standard called Open Systems Interconnection (OSI). OSI
sets forth seven processing layers through which informa-
tion may pass when received by a host in order to be
presentable to an end user. Similarly, transmission of infor-
mation from a host to the network may pass through those
seven processing layers in reverse order. Each step of
processing and service by a layer may include copying the
processed information. Another reference model that is
widely implemented, called TCP/IP (TCP stands for trans-
port control protocol, while IP denotes internet protocol)
essentially employs five of the seven layers of OSI.

[0009] Networks may include, for instance, a high-speed
bus such as an Ethernet connection or an internet connection
between disparate local area networks (LANSs), each of
which includes multiple hosts, or any of a variety of other
known means for data transfer between hosts. According to
the OSI standard, physical layers are connected to the
network at respective hosts, the physical layers providing
transmission and receipt of raw data bits via the network. A
data link layer is serviced by the physical layer of each host,
the data link layers providing frame division and error
correction to the data received from the physical layers, as
well as processing acknowledgment frames sent by the
receiving host. A network layer of each host is serviced by
respective data link layers, the network layers primarily
controlling size and coordination of subnets of packets of
data.

[0010] A transport layer is serviced by each network layer
and a session layer is serviced by each transport layer within
each host. Transport layers accept data from their respective
session layers and split the data into smaller units for
transmission to the other host’s transport layer, which con-
catenates the data for presentation to respective presentation
layers. Session layers allow for enhanced communication
control between the hosts. Presentation layers are serviced
by their respective session layers, the presentation layers
translating between data semantics and syntax which may be
peculiar to each host and standardized structures of data
representation. Compression and/or encryption of data may
also be accomplished at the presentation level. Application
layers are serviced by respective presentation layers, the
application layers translating between programs particular to
individual hosts and standardized programs for presentation
to either an application or an end user. The TCP/IP standard
includes the lower four layers and application layers, but
integrates the functions of session layers and presentation
layers into adjacent layers. Generally speaking, application,
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presentation and session layers are defined as upper layers,
while transport, network and data link layers are defined as
lower layers.

[0011] The rules and conventions for each layer are called
the protocol of that layer, and since the protocols and general
functions of each layer are roughly equivalent in various
hosts, it is useful to think of communication occurring
directly between identical layers of different hosts, even
though these peer layers do not directly communicate with-
out information transferring sequentially through each layer
below. Each lower layer performs a service for the layer
immediately above it to help with processing the commu-
nicated information. Each layer saves the information for
processing and service to the next layer. Due to the multi-
plicity of hardware and software architectures, devices and
programs commonly employed, each layer is necessary to
insure that the data can make it to the intended destination
in the appropriate form, regardless of variations in hardware
and software that may intervene.

[0012] In preparing data for transmission from a first to a
second host, some control data is added at each layer of the
first host regarding the protocol of that layer, the control data
being indistinguishable from the original (payload) data for
all lower layers of that host. Thus an application layer
attaches an application header to the payload data and sends
the combined data to the presentation layer of the sending
host, which receives the combined data, operates on it and
adds a presentation header to the data, resulting in another
combined data packet. The data resulting from combination
of payload data, application header and presentation header
is then passed to the session layer, which performs required
operations including attaching a session header to the data
and presenting the resulting combination of data to the
transport layer. This process continues as the information
moves to lower layers, with a transport header, network
header and data link header and trailer attached to the data
at each of those layers, with each step typically including
data moving and copying, before sending the data as bit
packets over the network to the second host.

[0013] The receiving host generally performs the converse
of the above-described process, beginning with receiving the
bits from the network, as headers are removed and data
processed in order from the lowest (physical) layer to the
highest (application) layer before transmission to a destina-
tion of the receiving host. Each layer of the receiving host
recognizes and manipulates only the headers associated with
that layer, since to that layer the higher layer control data is
included with and indistinguishable from the payload data.
Multiple interrupts, valuable central processing unit (CPU)
processing time and repeated data copies may also be
necessary for the receiving host to place the data in an
appropriate form at its intended destination.

[0014] The above description of layered protocol process-
ing is simplified, as college-level textbooks devoted prima-
rily to this subject are available, such as Computer Net-
works, Third Edition (1996) by Andrew S. Tanenbaum,
which is incorporated herein by reference. As defined in that
book, a computer network is an interconnected collection of
autonomous computers, such as internet and intranet
devices, including local area networks (LANs), wide arca
networks (WANs), asynchronous transfer mode (ATM), ring
or token ring, wired, wireless, satellite or other means for
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providing communication capability between separate pro-
cessors. A computer is defined herein to include a device
having both logic and memory functions for processing data,
while computers or hosts connected to a network are said to
be heterogeneous if they function according to different
operating devices or communicate via different architec-
tures.

[0015] As networks grow increasingly popular and the
information communicated thereby becomes increasingly
complex and copious, the need for such protocol processing
has increased. It is estimated that a large fraction of the
processing power of a host CPU may be devoted to con-
trolling protocol processes, diminishing the ability of that
CPU to perform other tasks. Network interface cards have
been developed to help with the lowest layers, such as the
physical and data link layers. It is also possible to increase
protocol processing speed by simply adding more process-
ing power or CPUs according to conventional arrangements.
This solution, however, is both awkward and expensive. But
the complexities presented by various networks, protocols,
architectures, operating devices and applications generally
require extensive processing to afford communication capa-
bility between various network hosts.

SUMMARY OF THE INVENTION

[0016] The current invention provides a device for pro-
cessing network communication that greatly increases the
speed of that processing and the efficiency of transferring
data being communicated. The invention has been achieved
by questioning the long-standing practice of performing
multilayered protocol processing on a general-purpose pro-
cessor. The protocol processing method and architecture that
results effectively collapses the layers of a connection-
based, layered architecture such as TCP/IP into a single
wider layer which is able to send network data more directly
to and from a desired location or buffer on a host. This
accelerated processing is provided to a host for both trans-
mitting and receiving data, and so improves performance
whether one or both hosts involved in an exchange of
information have such a feature.

[0017] The accelerated processing includes employing
representative control instructions for a given message that
allow data from the message to be processed via a fast-path
which accesses message data directly at its source or deliv-
ers it directly to its intended destination. This fast-path
bypasses conventional protocol processing of headers that
accompany the data. The fast-path employs a specialized
microprocessor designed for processing network communi-
cation, avoiding the delays and pitfalls of conventional
software layer processing, such as repeated copying and
interrupts to the CPU. In effect, the fast-path replaces the
states that are traditionally found in several layers of a
conventional network stack with a single state machine
encompassing all those layers, in contrast to conventional
rules that require rigorous differentiation and separation of
protocol layers. The host retains a sequential protocol pro-
cessing stack which can be employed for setting up a
fast-path connection or processing message exceptions. The
specialized microprocessor and the host intelligently choose
whether a given message or portion of a message is pro-
cessed by the microprocessor or the host stack.

[0018] One embodiment is a method of generating a
fast-path response to a packet received onto a network
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interface device where the packet is received over a TCP/IP
network connection and where the TCP/IP network connec-
tion is identified at least in part by a TCP source port, a TCP
destination port, an IP source address, and an IP destination
address. The method comprises: 1) Examining the packet
and determining from the packet the TCP source port, the
TCP destination port, the IP source address, and the IP
destination address; 2) Accessing an appropriate template
header stored on the network interface device. The template
header has TCP fields and IP fields; 3) Employing a finite
state machine that implements both TCP protocol processing
and IP protocol processing to fill in the TCP fields and IP
fields of the template header; and 4) Transmitting the
fast-path response from the network interface device. The
fast-path response includes the filled in template header and
a payload. The finite state machine does not entail a TCP
protocol processing layer and a discrete IP protocol process-
ing layer where the TCP and IP layers are executed one after
another in sequence. Rather, the finite state machine covers
both TCP and IP protocol processing layers.

[0019] Inone embodiment, buffer descriptors that point to
packets to be transmitted are pushed onto a plurality of
transmit queues. A transmit sequencer pops the transmit
queues and obtains the buffer descriptors. The buffer
descriptors are then used to retrieve the packets from buffers
where the packets are stored. The retrieved packets are then
transmitted from the network interface device. In one
embodiment, there are two transmit queues, one having a
higher transmission priority than the other. Packets identi-
fied by buffer descriptors on the higher priority transmit
queue are transmitted from the network interface device
before packets identified by the lower priority transmit
queue.

[0020] Other structures and methods are disclosed in the
detailed description below. This summary does not purport
to define the invention. The invention is defined by the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS
[0021] FIG. 1 is a plan view diagram of a device of the
present invention, including a host computer having a com-
munication-processing device for accelerating network
communication.

[0022] FIG. 2 is a diagram of information flow for the host
of FIG. 1 in processing network communication, including
a fast-path, a slow-path and a transfer of connection context
between the fast and slow-paths.

[0023] FIG. 3 is a flow chart of message receiving accord-
ing to the present invention.

[0024] FIG. 4A is a diagram of information flow for the
host of FIG. 1 receiving a message packet processed by the
slow-path.

[0025] FIG. 4B is a diagram of information flow for the
host of FIG. 1 receiving an initial message packet processed
by the fast-path.

[0026] FIG. 4C is a diagram of information flow for the
host of FIG. 4B receiving a subsequent message packet
processed by the fast-path.

[0027] FIG. 4D is a diagram of information flow for the
host of FIG. 4C receiving a message packet having an error
that causes processing to revert to the slow-path.

Alacritech, Ex. 2021 Page 93



US 2004/0064578 Al

[0028] FIG. 5is a diagram of information flow for the host
of FIG. 1 transmitting a message by either the fast or
slow-paths.

[0029] FIG. 6 is a diagram of information flow for a first
embodiment of an intelligent network interface card (INIC)
associated with a client having a TCP/IP processing stack.

[0030] FIG. 7 is a diagram of hardware logic for the INIC
embodiment shown in FIG. 6, including a packet control
sequencer and a fly-by sequencer.

[0031] FIG. 8 is a diagram of the fly-by sequencer of FIG.
7 for analyzing header bytes as they are received by the
INIC.

[0032] FIG. 9 is a diagram of information flow for a
second embodiment of an INIC associated with a server
having a TCP/IP processing stack.

[0033] FIG. 10 is a diagram of a command driver installed
in the host of FIG. 9 for creating and controlling a com-
munication control block for the fast-path.

[0034] FIG. 11 is a diagram of the TCP/IP stack and
command driver of FIG. 10 configured for NetBios com-
munications.

[0035] FIG. 12 is a diagram of a communication exchange
between the client of FIG. 6 and the server of FIG. 9.

[0036] FIG. 13 is a diagram of hardware functions
included in the INIC of FIG. 9.

[0037] FIG. 14 is a diagram of a trio of pipelined micro-
processors included in the INIC of FIG. 13, including three
phases with a processor in each phase.

[0038] FIG. 15A is a diagram of a first phase of the
pipelined microprocessor of FIG. 14.

[0039] FIG. 15B is a diagram of a second phase of the
pipelined microprocessor of FIG. 14.

[0040] FIG. 15C is a diagram of a third phase of the
pipelined microprocessor of FIG. 14.

[0041] FIG. 16 is a diagram of a plurality of queue storage
units that interact with the microprocessor of FIG. 14 and
include SRAM and DRAM.

[0042] FIG. 17 is a diagram of a set of status registers for
the queues storage units of FIG. 16.

[0043] FIG. 18 is a diagram of a queue manager, which
interacts, with the queue storage units and status registers of
FIG. 16 and FIG. 17.

[0044] FIGS. 19A-D are diagrams of various stages of a
least-recently-used register that is employed for allocating
cache memory.

[0045] FIG. 20 is a diagram of the devices used to operate
the least-recently-used register of FIGS. 19A-D.

[0046] FIG. 21 is another diagram of Intelligent Network
Interface Card (INIC) 200 of FIG. 13.

[0047] FIG. 22 is a diagram of the receive sequencer of
FIG. 21.

[0048] FIG. 23 is a diagram illustrating a “fast-path”
transfer of data of a multi-packet message from INIC 200 to
a destination 2311 in host 20.
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[0049] FIGS. 24-107 are associated with the description
below entitled “Disclosure From Provisional Application
No. 60/061,809.”

DETAILED DESCRIPTION

[0050] FIG. 1 shows a host 20 of the present invention
connected by a network 25 to a remote host 22. The increase
in processing speed achieved by the present invention can be
provided with an intelligent network interface card (INIC)
that is easily and affordably added to an existing host, or
with a communication processing device (CPD) that is
integrated into a host, in either case freeing the host CPU
from most protocol processing and allowing improvements
in other tasks performed by that CPU. The host 20 in a first
embodiment contains a CPU 28 and a CPD 30 connected by
a host bus 33. The CPD 30 includes a microprocessor
designed for processing communication data and memory
buffers controlled by a direct memory access (DMA) unit.
Also connected to the host bus 33 is a storage device 35,
such as a semiconductor memory or disk drive, along with
any related controls.

[0051] Referring additionally to FIG. 2, the host CPU 28
controls a protocol processing stack 44 housed in storage 35,
the stack including a data link layer 36, network layer 38,
transport layer 40, upper layer 46 and an upper layer
interface 42. The upper layer 46 may represent a session,
presentation and/or application layer, depending upon the
particular protocol being employed and message communi-
cated. The upper layer interface 42, along with the CPU 28
and any related controls can send or retrieve a file to or from
the upper layer 46 or storage 35, as shown by arrow 48. A
connection context 50 has been created, as will be explained
below, the context summarizing various features of the
connection, such as protocol type and source and destination
addresses for each protocol layer. The context may be passed
between an interface for the session layer 42 and the CPD
30, as shown by arrows 52 and 54, and stored as a commu-
nication control block (CCB) at either CPD 30 or storage 35.

[0052] When the CPD 30 holds a CCB defining a particu-
lar connection, data received by the CPD from the network
and pertaining to the connection is referenced to that CCB
and can then be sent directly to storage 35 according to a
fast-path 58, bypassing sequential protocol processing by
the data link 36, network 38 and transport 40 layers. Trans-
mitting a message, such as sending a file from storage 35 to
remote host 22, can also occur via the fast-path 58, in which
case the context for the file data is added by the CPD 30
referencing a CCB, rather than by sequentially adding
headers during processing by the transport 40, network 38
and data link 36 layers. The DMA controllers of the CPD 30
perform these transfers between CPD and storage 35.

[0053] The CPD 30 collapses multiple protocol stacks
each having possible separate states into a single state
machine for fast-path processing. As a result, exception
conditions may occur that are not provided for in the single
state machine, primarily because such conditions occur
infrequently and to deal with them on the CPD would
provide little or no performance benefit to the host. Such
exceptions can be CPD 30 or CPU 28 initiated. An advan-
tage of the invention includes the manner in which unex-
pected situations that occur on a fast-path CCB are handled.
The CPD 30 deals with these rare situations by passing back
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or flushing to the host protocol stack 44 the CCB and any
associated message frames involved, via a control negotia-
tion. The exception condition is then processed in a con-
ventional manner by the host protocol stack 44. At some
later time, usually directly after the handling of the excep-
tion condition has completed and fast-path processing can
resume, the host stack 44 hands the CCB back to the CPD.

[0054] This fallback capability enables the performance-
impacting functions of the host protocols to be handled by
the CPD network microprocessor, while the exceptions are
dealt with by the host stacks, the exceptions being so rare as
to negligibly effect overall performance. The custom
designed network microprocessor can have independent
processors for transmitting and receiving network informa-
tion, and further processors for assisting and queuing. A
preferred microprocessor embodiment includes a pipelined
trio of receive, transmit and utility processors. DMA con-
trollers are integrated into the implementation and work in
close concert with the network microprocessor to quickly
move data between buffers adjacent to the controllers and
other locations such as long term storage. Providing buffers
logically adjacent to the DMA controllers avoids unneces-
sary loads on the PCI bus.

[0055] FIG. 3 diagrams the general flow of messages
received according to the current invention. A large TCP/IP
message such as a file transfer may be received by the host
from the network in a number of separate, approximately 64
KB transfers, each of which may be split into many, approxi-
mately 1.5 KB frames or packets for transmission over a
network. Novell NetWare protocol suites running
Sequenced Packet Exchange Protocol (SPX) or NetWare
Core Protocol (NCP) over Internetwork Packet Exchange
(IPX) work in a similar fashion. Another form of data
communication which can be handled by the fast-path is
Transaction TCP (hereinafter T/TCP or TTCP), a version of
TCP which initiates a connection with an initial transaction
request after which a reply containing data may be sent
according to the connection, rather than initiating a connec-
tion via a several-message initialization dialogue and then
transferring data with later messages. In any of the transfers
typified by these protocols, each packet conventionally
includes a portion of the data being transferred, as well as
headers for each of the protocol layers and markers for
positioning the packet relative to the rest of the packets of
this message.

[0056] When a message packet or frame is received 47
from a network by the CPD, it is first validated by a
hardware assist. This includes determining the protocol
types of the various layers, verifying relevant checksums,
and summarizing 57 these findings into a status word or
words. Included in these words is an indication whether or
not the frame is a candidate for fast-path data flow. Selection
59 of fast-path candidates is based on whether the host may
benefit from this message connection being handled by the
CPD, which includes determining whether the packet has
header bytes indicating particular protocols, such as TCP/IP
or SPX/IPX for example. The small percent of frames that
are not fast-path candidates are sent 61 to the host protocol
stacks for slow-path protocol processing. Subsequent net-
work microprocessor work with each fast-path candidate
determines whether a fast-path connection such as a TCP or
SPX CCB is already extant for that candidate, or whether
that candidate may be used to set up a new fast-path
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connection, such as for a TTCP/IP transaction. The valida-
tion provided by the CPD provides acceleration whether a
frame is processed by the fast-path or a slow-path, as only
error free, validated frames are processed by the host CPU
even for the slow-path processing.

[0057] All received message frames which have been
determined by the CPD hardware assist to be fast-path
candidates are examined 53 by the network microprocessor
or INIC comparator circuits to determine whether they
match a CCB held by the CPD. Upon confirming such a
match, the CPD removes lower layer headers and sends 69
the remaining application data from the frame directly into
its final destination in the host using direct memory access
(DMA) units of the CPD. This operation may occur imme-
diately upon receipt of a message packet, for example when
a TCP connection already exists and destination buffers have
been negotiated, or it may first be necessary to process an
initial header to acquire a new set of final destination
addresses for this transfer. In this latter case, the CPD will
queue subsequent message packets while waiting for the
destination address, and then DMA the queued application
data to that destination.

[0058] A fast-path candidate that does not match a CCB
may be used to set up a new fast-path connection, by sending
65 the frame to the host for sequential protocol processing.
In this case, the host uses this frame to create 51 a CCB,
which is then passed to the CPD to control subsequent
frames on that connection. The CCB, which is cached 67 in
the CPD, includes control and state information pertinent to
all protocols that would have been processed had conven-
tional software layer processing been employed. The CCB
also contains storage space for per-transfer information used
to facilitate moving application-level data contained within
subsequent related message packets directly to a host appli-
cation in a form available for immediate usage. The CPD
takes command of connection processing upon receiving a
CCB for that connection from the host.

[0059] As shown more specifically in FIG. 4A, when a
message packet is received from the remote host 22 via
network 25, the packet enters hardware receive logic 32 of
the CPD 30, which checksums headers and data, and parses
the headers, creating a word or words which identify the
message packet and status, storing the headers, data and
word temporarily in memory 60. As well as validating the
packet, the receive logic 32 indicates with the word whether
this packet is a candidate for fast-path processing. FIG. 4A
depicts the case in which the packet is not a fast-path
candidate, in which case the CPD 30 sends the validated
headers and data from memory 60 to data link layer 36 along
an internal bus for processing by the host CPU, as shown by
arrow 56. The packet is processed by the host protocol stack
44 of data link 36, network 38, transport 40 and session 42
layers, and data (D) 63 from the packet may then be sent to
storage 35, as shown by arrow 65.

[0060] FIG. 4B, depicts the case in which the receive
logic 32 of the CPD determines that a message packet is a
candidate for fast-path processing, for example by deriving
from the packet’s headers that the packet belongs to a
TCP/IP, TTCP/IP or SPX/IPX message. A processor 55 in
the CPD 30 then checks to sece whether the word that
summarizes the fast-path candidate matches a CCB held in
a cache 62. Upon finding no match for this packet, the CPD
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sends the validated packet from memory 60 to the host
protocol stack 44 for processing. Host stack 44 may use this
packet to create a connection context for the message,
including finding and reserving a destination for data from
the message associated with the packet, the context taking
the form of a CCB. The present embodiment employs a
single specialized host stack 44 for processing both fast-path
and non-fast-path candidates, while in an embodiment
described below fast-path candidates are processed by a
different host stack than non-fast-path candidates. Some data
(D1) 66 from that initial packet may optionally be sent to the
destination in storage 35, as shown by arrow 68. The CCB
is then sent to the CPD 30 to be saved in cache 62, as shown
by arrow 64. For a traditional connection-based message
such as typified by TCP/IP, the initial packet may be part of
a connection initialization dialogue that transpires between
hosts before the CCB is created and passed to the CPD 30.

[0061] Referring now to FIG. 4C, when a subsequent
packet from the same connection as the initial packet is
received from the network 25 by CPD 30, the packet headers
and data are validated by the receive logic 32, and the
headers are parsed to create a summary of the message
packet and a hash for finding a corresponding CCB, the
summary and hash contained in a word or words. The word
or words are temporarily stored in memory 60 along with the
packet. The processor 55 checks for a match between the
hash and each CCB that is stored in the cache 62 and, finding
a match, sends the data (D2) 70 via a fast-path directly to the
destination in storage 35, as shown by arrow 72, bypassing
the session layer 42, transport layer 40, network layer 38 and
data link layer 36. The remaining data packets from the
message can also be sent by DMA directly to storage,
avoiding the relatively slow protocol layer processing and
repeated copying by the CPU stack 44.

[0062] FIG. 4D shows the procedure for handling the rare
instance when a message for which a fast-path connection
has been established, such as shown in FIG. 4C, has a packet
that is not easily handled by the CPD. In this case the packet
is sent to be processed by the protocol stack 44, which is
handed the CCB for that message from cache 62 via a
control dialogue with the CPD, as shown by arrow 76,
signaling to the CPU to take over processing of that mes-
sage. Slow-path processing by the protocol stack then results
in data (D3) 80 from the packet being sent, as shown by
arrow 82, to storage 35. Once the packet has been processed
and the error situation corrected, the CCB can be handed
back via a control dialogue to the cache 62, so that payload
data from subsequent packets of that message can again be
sent via the fast-path of the CPD 30. Thus the CPU and CPD
together decide whether a given message is to be processed
according to fast-path hardware processing or more conven-
tional software processing by the CPU.

[0063] Transmission of a message from the host 20 to the
network 25 for delivery to remote host 22 also can be
processed by either sequential protocol software processing
via the CPU or accelerated hardware processing via the CPD
30, as shown in FIG. 5. A message (M) 90 that is selected
by CPU 28 from storage 35 can be sent to session layer 42
for processing by stack 44, as shown by arrows 92 and 96.
For the situation in which a connection exists and the CPD
30 already has an appropriate CCB for the message, how-
ever, data packets can bypass host stack 44 and be sent by
DMA directly to memory 60, with the processor 55 adding
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to each data packet a single header containing all the
appropriate protocol layers, and sending the resulting pack-
ets to the network 25 for transmission to remote host 22.
This fast-path transmission can greatly accelerate processing
for even a single packet, with the acceleration multiplied for
a larger message.

[0064] A message for which a fast-path connection is not
extant thus may benefit from creation of a CCB with
appropriate control and state information for guiding fast-
path transmission. For a traditional connection-based mes-
sage, such as typified by TCP/IP or SPX/IPX, the CCB is
created during connection initialization dialogue. For a
quick-connection message, such as typified by TTCP/IP, the
CCB can be created with the same transaction that transmits
payload data. In this case, the transmission of payload data
may be a reply to a request that was used to set up the
fast-path connection. In any case, the CCB provides protocol
and status information regarding each of the protocol layers,
including which user is involved and storage space for
per-transfer information. The CCB is created by protocol
stack 44, which then passes the CCB to the CPD 30 by
writing to a command register of the CPD, as shown by
arrow 98. Guided by the CCB, the processor 55 moves
network frame-sized portions of the data from the source in
host memory 35 into its own memory 60 using DMA, as
depicted by arrow 99. The processor 55 then prepends
appropriate headers and checksums to the data portions, and
transmits the resulting frames to the network 25, consistent
with the restrictions of the associated protocols. After the
CPD 30 has received an acknowledgement that all the data
has reached its destination, the CPD will then notify the host
35 by writing to a response buffer. Thus, fast-path transmis-
sion of data communications also relieves the host CPU of
per-frame processing. A vast majority of data transmissions
can be sent to the network by the fast-path. Both the input
and output fast-paths attain a huge reduction in interrupts by
functioning at an upper layer level, i.e., session level or
higher, and interactions between the network microproces-
sor and the host occur using the full transfer sizes which that
upper layer wishes to make. For fast-path communications,
an interrupt only occurs (at the most) at the beginning and
end of an entire upper-layer message transaction, and there
are no interrupts for the sending or receiving of each lower
layer portion or packet of that transaction.

[0065] A simplified intelligent network interface card
(INIC) 150 is shown in FIG. 6 to provide a network
interface for a host 152. Hardware logic 171 of the INIC 150
is connected to a network 155, with a peripheral bus (PCI)
157 connecting the INIC and host. The host 152 in this
embodiment has a TCP/IP protocol stack, which provides a
slow-path 158 for sequential software processing of message
frames received from the network 155. The host 152 pro-
tocol stack includes a data link layer 160, network layer 162,
a transport layer 164 and an application layer 166, which
provides a source or destination 168 for the communication
data in the host 152. Other layers which are not shown, such
as session and presentation layers, may also be included in
the host stack 152, and the source or destination may vary
depending upon the nature of the data and may actually be
the application layer.

[0066] The INIC 150 has a network processor 170 which
chooses between processing messages along a slow-path
158 that includes the protocol stack of the host, or along a
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fast-path 159 that bypasses the protocol stack of the host.
Each received packet is processed on the fly by hardware
logic 171 contained in INIC 150, so that all of the protocol
headers for a packet can be processed without copying,
moving or storing the data between protocol layers. The
hardware logic 171 processes the headers of a given packet
at one time as packet bytes pass through the hardware, by
categorizing selected header bytes. Results of processing the
selected bytes help to determine which other bytes of the
packet are categorized, until a summary of the packet has
been created, including checksum validations. The pro-
cessed headers and data from the received packet are then
stored in INIC storage 185, as well as the word or words
summarizing the headers and status of the packet. For a
network storage configuration, the INIC 150 may be con-
nected to a peripheral storage device such as a disk drive
which has an IDE, SCSI or similar interface, with a file
cache for the storage device residing on the memory 185 of
the INIC 150. Several such network interfaces may exist for
a host, with each interface having an associated storage
device.

[0067] The hardware processing of message packets
received by INIC 150 from network 155 is shown in more
detail in FIG. 7. A received message packet first enters a
media access controller 172, which controls INIC access to
the network and receipt of packets and can provide statistical
information for network protocol management. From there,
data flows one byte at a time into an assembly register 174,
which in this example is 128 bits wide. The data is catego-
rized by a fly-by sequencer 178, as will be explained in more
detail with regard to FIG. 8, which examines the bytes of a
packet as they fly by, and generates status from those bytes
that will be used to summarize the packet. The status thus
created is merged with the data by a multiplexor 180 and the
resulting data stored in SRAM 182. A packet control
sequencer 176 oversees the fly-by sequencer 178, examines
information from the media access controller 172, counts the
bytes of data, generates addresses, moves status and man-
ages the movement of data from the assembly register 174
to SRAM 182 and eventually DRAM 188. The packet
control sequencer 176 manages a buffer in SRAM 182 via
SRAM controller 183, and also indicates to a DRAM
controller 186 when data needs to be moved from SRAM
182 to a buffer in DRAM 188. Once data movement for the
packet has been completed and all the data has been moved
to the buffer in DRAM 188, the packet control sequencer
176 will move the status that has been generated in the fly-by
sequencer 178 out to the SRAM 182 and to the beginning of
the DRAM 188 buffer to be prepended to the packet data.
The packet control sequencer 176 then requests a queue
manager 184 to enter a receive buffer descriptor into a
receive queue, which in turn notifies the processor 170 that
the packet has been processed by hardware logic 171 and its
status summarized.

[0068] FIG. 8 shows that the fly-by sequencer 178 has
several tiers, with each tier generally focusing on a particular
portion of the packet header and thus on a particular protocol
layer, for generating status pertaining to that layer. The
fly-by sequencer 178 in this embodiment includes a media
access control sequencer 191, a network sequencer 192, a
transport sequencer 194 and a session sequencer 195.
Sequencers pertaining to higher protocol layers can addi-
tionally be provided. The fly-by sequencer 178 is reset by the
packet control sequencer 176 and given pointers by the

Apr. 1, 2004

packet control sequencer that tell the fly-by sequencer
whether a given byte is available from the assembly register
174. The media access control sequencer 191 determines, by
looking at bytes 0-5, that a packet is addressed to host 152
rather than or in addition to another host. Offsets 12 and 13
of the packet are also processed by the media access control
sequencer 191 to determine the type field, for example
whether the packet is Ethernet or 802.3. If the type field is
Ethernet those bytes also tell the media access control
sequencer 191 the packet’s network protocol type. For the
802.3 case, those bytes instead indicate the length of the
entire frame, and the media access control sequencer 191
will check eight bytes further into the packet to determine
the network layer type.

[0069] For most packets the network sequencer 192 vali-
dates that the header length received has the correct length,
and checksums the network layer header. For fast-path
candidates the network layer header is known to be IP or IPX
from analysis done by the media access control sequencer
191. Assuming for example that the type field is 802.3 and
the network protocol is IP, the network sequencer 192
analyzes the first bytes of the network layer header, which
will begin at byte 22, in order to determine IP type. The first
bytes of the IP header will be processed by the network
sequencer 192 to determine what IP type the packet
involves. Determining that the packet involves, for example,
IP version 4, directs further processing by the network
sequencer 192, which also looks at the protocol type located
ten bytes into the IP header for an indication of the transport
header protocol of the packet. For example, for IP over
Ethernet, the IP header begins at offset 14, and the protocol
type byte is offset 23, which will be processed by network
logic to determine whether the transport layer protocol is
TCP, for example. From the length of the network layer
header, which is typically 20-40 bytes, network sequencer
192 determines the beginning of the packet’s transport layer
header for validating the transport layer header. Transport
sequencer 194 may generate checksums for the transport
layer header and data, which may include information from
the IP header in the case of TCP at least.

[0070] Continuing with the example of a TCP packet,
transport sequencer 194 also analyzes the first few bytes in
the transport layer portion of the header to determine, in part,
the TCP source and destination ports for the message, such
as whether the packet is NetBios or other protocols. Byte 12
of the TCP header is processed by the transport sequencer
194 to determine and validate the TCP header length. Byte
13 of the TCP header contains flags that may, aside from ack
flags and push flags, indicate unexpected options, such as
reset and fin, that may cause the processor to categorize this
packet as an exception. TCP offset bytes 16 and 17 are the
checksum, which is pulled out and stored by the hardware
logic 171 while the rest of the frame is validated against the
checksum.

[0071] Session sequencer 195 determines the length of the
session layer header, which in the case of NetBios is only
four bytes, two of which tell the length of the NetBios
payload data, but which can be much larger for other
protocols. The session sequencer 195 can also be used to
categorize the type of message as read or write, for example,
for which the fast-path may be particularly beneficial. Fur-
ther upper layer logic processing, depending upon the mes-
sage type, can be performed by the hardware logic 171 of
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packet control sequencer 176 and fly-by sequencer 178.
Thus hardware logic 171 intelligently directs hardware
processing of the headers by categorization of selected bytes
from a single stream of bytes, with the status of the packet
being built from classifications determined on the fly. Once
the packet control sequencer 176 detects that all of the
packet has been processed by the fly-by sequencer 178, the
packet control sequencer 176 adds the status information
generated by the fly-by sequencer 178 and any status infor-
mation generated by the packet control sequencer 176, and
prepends (adds to the front) that status information to the
packet, for convenience in handling the packet by the
processor 170. The additional status information generated
by the packet control sequencer 176 includes media access
controller 172 status information and any errors discovered,
or data overflow in either the assembly register or DRAM
buffer, or other miscellaneous information regarding the
packet. The packet control sequencer 176 also stores entries
into a receive buffer queue and a receive statistics queue via
the queue manager 184. An advantage of processing a packet
by hardware logic 171 is that the packet does not, in contrast
with conventional sequential software protocol processing,
have to be stored, moved, copied or pulled from storage for
processing each protocol layer header, offering dramatic
increases in processing efficiency and savings in processing
time for each packet. The packets can be processed at the
rate bits are received from the network, for example 100
megabits/second for a 100 baseT connection. The time for
categorizing a packet received at this rate and having a
length of sixty bytes is thus about 5 microseconds. The total
time for processing this packet with the hardware logic 171
and sending packet data to its host destination via the
fast-path may be about 16 microseconds or less, assuming a
66 MHz PCI bus, whereas conventional software protocol
processing by a 300 MHz Pentium II® processor may take
as much as 200 microseconds in a busy device. More than
an order of magnitude decrease in processing time can thus
be achieved with fast-path 159 in comparison with a high-
speed CPU employing conventional sequential software
protocol processing, demonstrating the dramatic accelera-
tion provided by processing the protocol headers by the
hardware logic 171 and processor 170, without even con-
sidering the additional time savings afforded by the reduc-
tion in CPU interrupts and host bus bandwidth savings.

[0072] The processor 170 chooses, for each received mes-
sage packet held in storage 185, whether that packet is a
candidate for the fast-path 159 and, if so, checks to see
whether a fast-path has already been set up for the connec-
tion that the packet belongs to. To do this, the processor 170
first checks the header status summary to determine whether
the packet headers are of a protocol defined for fast-path
candidates. If not, the processor 170 commands DMA
controllers in the INIC 150 to send the packet to the host for
slow-path 158 processing. Even for a slow-path 158 pro-
cessing of a message, the INIC 150 thus performs initial
procedures such as validation and determination of message
type, and passes the validated message at least to the data
link layer 160 of the host.

[0073] For fast-path 159 candidates, the processor 170
checks to see whether the header status summary matches a
CCB held by the INIC. If so, the data from the packet is sent
along fast-path 159 to the destination 168 in the host. If the
fast-path 159 candidate’s packet summary does not match a
CCB held by the INIC, the packet may be sent to the host
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152 for slow-path processing to create a CCB for the
message. Employment of the fast-path 159 may also not be
needed or desirable for the case of fragmented messages or
other complexities. For the vast majority of messages,
however, the INIC fast-path 159 can greatly accelerate
message processing. The INIC 150 thus provides a single
state machine processor 170 that decides whether to send
data directly to its destination, based upon information
gleaned on the fly, as opposed to the conventional employ-
ment of a state machine in each of several protocol layers for
determining the destiny of a given packet.

[0074] In processing an indication or packet received at
the host 152, a protocol driver of the host selects the
processing route based upon whether the indication is fast-
path or slow-path. A TCP/IP or SPX/IPX message has a
connection that is set up from which a CCB is formed by the
driver and passed to the INIC for matching with and guiding
the fast-path packet to the connection destination 168. For a
TTCP/IP message, the driver can create a connection context
for the transaction from processing an initial request packet,
including locating the message destination 168, and then
passing that context to the INIC in the form of a CCB for
providing a fast-path for a reply from that destination. A
CCB includes connection and state information regarding
the protocol layers and packets of the message. Thus a CCB
can include source and destination media access control
(MAC) addresses, source and destination IP or IPX
addresses, source and destination TCP or SPX ports, TCP
variables such as timers, receive and transmit windows for
sliding window protocols, and information indicating the
session layer protocol.

[0075] Caching the CCBs in a hash table in the INIC
provides quick comparisons with words summarizing
incoming packets to determine whether the packets can be
processed via the fast-path 159, while the full CCBs are also
held in the INIC for processing. Other ways to accelerate
this comparison include software processes such as a B-tree
or hardware assists such as a content addressable memory
(CAM). When INIC microcode or comparator circuits detect
a match with the CCB, a DMA controller places the data
from the packet in the destination 168, without any interrupt
by the CPU, protocol processing or copying. Depending
upon the type of message received, the destination of the
data may be the session, presentation or application layers,
or a file buffer cache in the host 152.

[0076] FIG. 9 shows an INIC 200 connected to a host 202
that is employed as a file server. This INIC provides a
network interface for several network connections employ-
ing the 802.3 u standard, commonly known as Fast Ethernet.
The INIC 200 is connected by a PCI bus 205 to the server
202, which maintains a TCP/IP or SPX/IPX protocol stack
including MAC layer 212, network layer 215, transport layer
217 and application layer 220, with a source/destination 222
shown above the application layer, although as mentioned
earlier the application layer can be the source or destination.
The INIC is also connected to network lines 210, 240, 242
and 244, which are preferably Fast Ethernet, twisted pair,
fiber optic, coaxial cable or other lines each allowing data
transmission of 100 Mb/s, while faster and slower data rates
are also possible. Network lines 210, 240, 242 and 244 are
each connected to a dedicated row of hardware circuits
which can each validate and summarize message packets
received from their respective network line. Thus line 210 is
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connected with a first horizontal row of sequencers 250, line
240 1s connected with a second horizontal row of sequencers
260, line 242 is connected with a third horizontal row of
sequencers 262 and line 244 is connected with a fourth
horizontal row of sequencers 264. After a packet has been
validated and summarized by one of the horizontal hardware
rows it is stored along with its status summary in storage
270.

[0077] A network processor 230 determines, based on that
summary and a comparison with any CCBs stored in the
INIC 200, whether to send a packet along a slow-path 231
for processing by the host. A large majority of packets can
avoid such sequential processing and have their data por-
tions sent by DMA along a fast-path 237 directly to the data
destination 222 in the server according to a matching CCB.
Similarly, the fast-path 237 provides an avenue to send data
directly from the source 222 to any of the network lines by
processor 230 division of the data into packets and addition
of full headers for network transmission, again minimizing
CPU processing and interrupts. For clarity only horizontal
sequencer 250 is shown active; in actuality each of the
sequencer rows 250, 260, 262 and 264 offers full duplex
communication, concurrently with all other sequencer rows.
The specialized INIC 200 is much faster at working with
message packets than even advanced general-purpose host
CPUs that processes those headers sequentially according to
the software protocol stack.

[0078] One of the most commonly used network protocols
for large messages such as file transfers is server message
block (SMB) over TCP/IP. SMB can operate in conjunction
with redirector software that determines whether a required
resource for a particular operation, such as a printer or a disk
upon which a file is to be written, resides in or is associated
with the host from which the operation was generated or is
located at another host connected to the network, such as a
file server. SMB and server/redirector are conventionally
serviced by the transport layer; in the present invention SMB
and redirector can instead be serviced by the INIC. In this
case, sending data by the DMA controllers from the INIC
buffers when receiving a large SMB transaction may greatly
reduce interrupts that the host must handle. Moreover, this
DMA generally moves the data to its final destination in the
file device cache. An SMB transmission of the present
invention follows essentially the reverse of the above
described SMB receive, with data transferred from the host
to the INIC and stored in buffers, while the associated
protocol headers are prepended to the data in the INIC, for
transmission via a network line to a remote host. Processing
by the INIC of the multiple packets and multiple TCP, IP,
NetBios and SMB protocol layers via custom hardware and
without repeated interrupts of the host can greatly increase
the speed of transmitting an SMB message to a network line.

[0079] As shown in FIG. 10, for controlling whether a
given message is processed by the host 202 or by the INIC
200, a message command driver 300 may be installed in host
202 to work in concert with a host protocol stack 310. The
command driver 300 can intervene in message reception or
transmittal, create CCBs and send or receive CCBs from the
INIC 200, so that functioning of the INIC, aside from
improved performance, is transparent to a user. Also shown
is an INIC memory 304 and an INIC miniport driver 306,
which can direct message packets received from network
210 to either the conventional protocol stack 310 or the
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command protocol stack 300, depending upon whether a
packet has been labeled as a fast-path candidate. The con-
ventional protocol stack 310 has a data link layer 312, a
network layer 314 and a transport layer 316 for conven-
tional, lower layer processing of messages that are not
labeled as fast-path candidates and therefore not processed
by the command stack 300. Residing above the lower layer
stack 310 is an upper layer 318, which represents a session,
presentation and/or application layer, depending upon the
message communicated. The command driver 300 similarly
has a data link layer 320, a network layer 322 and a transport
layer 325.

[0080] The driver 300 includes an upper layer interface
330 that determines, for transmission of messages to the
network 210, whether a message transmitted from the upper
layer 318 is to be processed by the command stack 300 and
subsequently the INIC fast-path, or by the conventional
stack 310. When the upper layer interface 330 receives an
appropriate message from the upper layer 318 that would
conventionally be intended for transmission to the network
after protocol processing by the protocol stack of the host,
the message is passed to driver 300. The INIC then acquires
network-sized portions of the message data for that trans-
mission via INIC DMA units, prepends headers to the data
portions and sends the resulting message packets down the
wire. Conversely, in receiving a TCP, TTCP, SPX or similar
message packet from the network 210 to be used in setting
up a fast-path connection, miniport driver 306 diverts that
message packet to command driver 300 for processing. The
driver 300 processes the message packet to create a context
for that message, with the driver 302 passing the context and
command instructions back to the INIC 200 as a CCB for
sending data of subsequent messages for the same connec-
tion along a fast-path. Hundreds of TCP, TTCP, SPX or
similar CCB connections may be held indefinitely by the
INIC, although a least recently used (LRU) algorithm is
employed for the case when the INIC cache is full. The
driver 300 can also create a connection context for a TTCP
request which is passed to the INIC 200 as a CCB, allowing
fast-path transmission of a TTCP reply to the request. A
message having a protocol that is not accelerated can be
processed conventionally by protocol stack 310.

[0081] FIG. 11 shows a TCP/IP implementation of com-
mand driver software for Microsoft® protocol messages. A
conventional host protocol stack 350 includes MAC layer
353, IP layer 355 and TCP layer 358. A command driver 360
works in concert with the host stack 350 to process network
messages. The command driver 360 includes a MAC layer
363, an IP layer 366 and an Alacritech TCP (ATCP) layer
373. The conventional stack 350 and command driver 360
share a network driver interface specification (NDIS) layer
375, which interacts with the INIC miniport driver 306. The
INIC miniport driver 306 sorts receive indications for pro-
cessing by either the conventional host stack 350 or the
ATCP driver 360. A TDI filter driver and upper layer
interface 380 similarly determines whether messages sent
from a TDI user 382 to the network are diverted to the
command driver and perhaps to the fast-path of the INIC, or
processed by the host stack.

[0082] FIG. 12 depicts a typical SMB exchange between
a client 190 and server 290, both of which have communi-
cation devices of the present invention, the communication
devices each holding a CCB defining their connection for
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fast-path movement of data. The client 190 includes INIC
150, 802.3 compliant data link layer 160, IP layer 162, TCP
layer 164, NetBios layer 166, and SMB layer 168. The client
has a slow-path 157 and fast-path 159 for communication
processing. Similarly, the server 290 includes INIC 200,
802.3 compliant data link layer 212, IP layer 215, TCP layer
217, NetBios layer 220, and SMB 222. The server is
connected to network lines 240, 242 and 244, as well as line
210 which is connected to client 190. The server also has a
slow-path 231 and fast-path 237 for communication pro-
cessing. Assuming that the client 190 wishes to read a 100
KB file on the server 290, the client may begin by sending
a Read Block Raw (RBR) SMB command across network
210 requesting the first 64 KB of that file on the server 290.
The RBR command may be only 76 bytes, for example, so
the INIC 200 on the server will recognize the message type
(SMB) and relatively small message size, and send the 76
bytes directly via the fast-path to NetBios of the server.
NetBios will give the data to SMB, which processes the
Read request and fetches the 64 KB of data into server data
buffers. SMB then calls NetBios to send the data, and
NetBios outputs the data for the client. In a conventional
host, NetBios would call TCP output and pass 64 KB to TCP,
which would divide the data into 1460 byte segments and
output each segment via IP and eventually MAC (slow-path
231). In the present case, the 64 KB data goes to the ATCP
driver along with an indication regarding the client-server
SMB connection, which indicates a CCB held by the INIC.
The INIC 200 then proceeds to DMA 1460 byte segments
from the host buffers, add the appropriate headers for TCP,
IP and MAC at one time, and send the completed packets on
the network 210 (fast-path 237). The INIC 200 will repeat
this until the whole 64 KB transfer has been sent. Usually
after receiving acknowledgement from the client that the 64
KB has been received, the INIC will then send the remaining
36 KB also by the fast-path 237.

[0083] With INIC 150 operating on the client 190 when
this reply arrives, the INIC 150 recognizes from the first
frame received that this connection is receiving fast-path
159 processing (TCP/IP, NetBios, matching a CCB), and the
ATCP may use this first frame to acquire buffer space for the
message. This latter case is done by passing the first 128
bytes of the NetBios portion of the frame via the ATCP
fast-path directly to the host NetBios; that will give NetBios/
SMB all of the frame’s headers. NetBios/SMB will analyze
these headers, realize by matching with a request ID that this
is a reply to the original RawRead connection, and give the
ATCP a 64 K list of buffers into which to place the data. At
this stage only one frame has arrived, although more may
arrive while this processing is occurring. As soon as the
client buffer list is given to the ATCP, it passes that transfer
information to the INIC 150, and the INIC 150 starts
DMAing any frame data that has accumulated into those
buffers.

[0084] FIG. 13 provides a simplified diagram of the INIC
200, which combines the functions of a network interface
controller and a protocol processor in a single ASIC chip
400. The INIC 200 in this embodiment offers a full-duplex,
four channel, 10/100-Megabit per second (Mbps) intelligent
network interface controller that is designed for high speed
protocol processing for server applications. Although
designed specifically for server applications, the INIC 200
can be connected to personal computers, workstations, rout-
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ers or other hosts anywhere that TCP/IP, TTCP/IP or SPX/
IPX protocols are being utilized.

[0085] The INIC 200 is connected with four network lines
210, 240, 242 and 244, which may transport data along a
number of different conduits, such as twisted pair, coaxial
cable or optical fiber, each of the connections providing a
media independent interface (MI) via commercially avail-
able physical layer chips, such as model 80220/80221 Eth-
ernet Media Interface Adapter from SEEQ Technology
Incorporated, 47200 Bayside Parkway, Fremont, Calif.
94538. The lines preferably are 802.3 compliant and in
connection with the INIC constitute four complete Ethernet
nodes, the INIC supporting 10Base-T, 10Base-T2, 100Base-
TX, 100Base-FX and 100Base-T4 as well as future interface
standards. Physical layer identification and initialization is
accomplished through host driver initialization routines. The
connection between the network lines 210, 240, 242 and 244
and the INIC 200 is controlled by MAC units MAC-A 402,
MAC-B 404, MAC-C 406 and MAC-D 408 which contain
logic circuits for performing the basic functions of the MAC
sublayer, essentially controlling when the INIC accesses the
network lines 210, 240, 242 and 244. The MAC units
402-408 may act in promiscuous, multicast or unicast
modes, allowing the INIC to function as a network monitor,
receive broadcast and multicast packets and implement
multiple MAC addresses for each node. The MAC units
402-408 also provide statistical information that can be used
for simple network management protocol (SNMP).

[0086] The MAC units 402, 404, 406 and 408 are each
connected to a transmit and receive sequencer, XMT &
RCV-A 418, XMT & RCV-B 420, XMT & RCV-C 422 and
XMT & RCV-D 424, by wires 410, 412, 414 and 416,
respectively. Each of the transmit and receive sequencers
can perform several protocol processing steps on the fly as
message frames pass through that sequencer. In combination
with the MAC units, the transmit and receive sequencers
418-422 can compile the packet status for the data link,
network, transport, session and, if appropriate, presentation
and application layer protocols in hardware, greatly reduc-
ing the time for such protocol processing compared to
conventional sequential software engines. The transmit and
receive sequencers 410-414 are connected, by lines 426,
428, 430 and 432 to an SRAM and DMA controller 444,
which includes DMA controllers 438 and SRAM controller
442. Static random access memory (SRAM) buffers 440 are
coupled with SRAM controller 442 by line 441. The SRAM
and DMA controllers 444 interact across line 446 with
external memory control 450 to send and receive frames via
external memory bus 455 to and from dynamic random
access memory (DRAM) buffers 460, which is located
adjacent to the IC chip 400. The DRAM buffers 460 may be
configured as 4 MB, 8 MB, 16 MB or 32 MB, and may
optionally be disposed on the chip. The SRAM and DMA
controllers 444 are connected via line 464 to a PCI Bus
Interface Unit (BIU) 468, which manages the interface
between the INIC 200 and the PCI interface bus 257. The
64-bit, multiplexed BIU 468 provides a direct interface to
the PCI bus 257 for both slave and master functions. The
INIC 200 is capable of operating in either a 64-bit or 32-bit
PCI environment, while supporting 64-bit addressing in
either configuration.

[0087] A microprocessor 470 is connected by line 472 to
the SRAM and DMA controllers 444, and connected via line
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475 to the PCI BIU 468. Microprocessor 470 instructions
and register files reside in an on chip control store 480,
which includes a writable on-chip control store (WCS) of
SRAM and a read only memory (ROM), and is connected to
the microprocessor by line 477. The microprocessor 470
offers a programmable state machine which is capable of
processing incoming frames, processing host commands,
directing network traffic and directing PCI bus traffic. Three
processors are implemented using shared hardware in a three
level pipelined architecture that launches and completes a
single instruction for every clock cycle. A receive processor
482 is primarily used for receiving communications while a
transmit processor 484 is primarily used for transmitting
communications in order to facilitate full duplex communi-
cation, while a utility processor 486 offers various functions
including overseeing and controlling PCI register access.

[0088] The instructions for the three processors 482, 484
and 486 reside in the on-chip control-store 480. Thus the
functions of the three processors can be easily redefined, so
that the microprocessor 470 can adapted for a given envi-
ronment. For instance, the amount of processing required for
receive functions may outweigh that required for either
transmit or utility functions. In this situation, some receive
functions may be performed by the transmit processor 484
and/or the utility processor 486. Alternatively, an additional
level of pipelining can be created to yield four or more
virtual processors instead of three, with the additional level
devoted to receive functions.

[0089] The INIC 200 in this embodiment can support up
to 256 CCBs which are maintained in a table in the DRAM
460. There is also, however, a CCB index in hash order in
the SRAM 440 to save sequential searching. Once a hash has
been generated, the CCB is cached in SRAM, with up to
sixteen cached CCBs in SRAM in this example. Allocation
of the sixteen CCBs cached in SRAM is handled by a least
recently used register, described below. These cache loca-
tions are shared between the transmit 484 and receive 486
processors so that the processor with the heavier load is able
to use more cache buffers. There are also eight header
buffers and eight command buffers to be shared between the
sequencers. A given header or command buffer is not
statically linked to a specific CCB buffer, as the link is
dynamic on a per-frame basis.

[0090] FIG. 14 shows an overview of the pipelined micro-
processor 470, in which instructions for the receive, transmit
and utility processors are executed in three alternating
phases according to Clock increments I, IT and III, the phases
corresponding to each of the pipeline stages. Each phase is
responsible for different functions, and each of the three
processors occupies a different phase during each Clock
increment. Each processor usually operates upon a different
instruction stream from the control store 480, and each
carries its own program counter and status through each of
the phases.

[0091] In general, a first instruction phase 500 of the
pipelined microprocessors completes an instruction and
stores the result in a destination operand, fetches the next
instruction, and stores that next instruction in an instruction
register. A first register set 490 provides a number of
registers including the instruction register, and a set of
controls 492 for first register set provides the controls for
storage to the first register set 490. Some items pass through
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the first phase without modification by the controls 492, and
instead are simply copied into the first register set 490 or a
RAM file register 533. A second instruction phase 560 has
an instruction decoder and operand multiplexer 498 that
generally decodes the instruction that was stored in the
instruction register of the first register set 490 and gathers
any operands which have been generated, which are then
stored in a decode register of a second register set 496. The
first register set 490, second register set 496 and a third
register set 501, which is employed in a third instruction
phase 600, include many of the same registers, as will be
seen in the more detailed views of FIGS. 15A-C. The
instruction decoder and operand multiplexer 498 can read
from two address and data ports of the RAM file register
533, which operates in both the first phase 500 and second
phase 560. A third phase 600 of the processor 470 has an
arithmetic logic unit (ALU) 602 which generally performs
any ALU operations on the operands from the second
register set, storing the results in a results register included
in the third register set 501. A stack exchange 608 can
reorder register stacks, and a queue manager 503 can arrange
queues for the processor 470, the results of which are stored
in the third register set. The instructions continue with the
first phase then following the third phase, as depicted by a
circular pipeline 505. Note that various functions have been
distributed across the three phases of the instruction execu-
tion in order to minimize the combinatorial delays within
any given phase. With a frequency in this embodiment of 66
MHz, cach Clock increment takes 15 nanoseconds to com-
plete, for a total of 45 nanoseconds to complete one instruc-
tion for each of the three processors. The rotating instruction
phases are depicted in more detail in FIGS. 15A-C, in which
each phase is shown in a different figure.

[0092] More particularly, FIG. 15A shows some specific
hardware functions of the first phase 500, which generally
includes the first register set 490 and related controls 492.
The controls for the first register set 492 includes an SRAM
control 502, which is a logical control for loading address
and write data into SRAM address and data registers 520.
Thus the output of the ALU 602 from the third phase 600
may be placed by SRAM control 502 into an address register
or data register of SRAM address and data registers 520. A
load control 504 similarly provides controls for writing a
context for a file to file context register 522, and another load
control 506 provides controls for storing a variety of mis-
cellaneous data to flip-flop registers 525. ALU condition
codes, such as whether a carried bit is set, get clocked into
ALU condition codes register 528 without an operation
performed in the first phase 500. Flag decodes 508 can
perform various functions, such as setting locks, that get
stored in flag registers 530.

[0093] The RAM file register 533 has a single write port
for addresses and data and two read ports for addresses and
data, so that more than one register can be read from at one
time. As noted above, the RAM file register 533 essentially
straddles the first and second phases, as it is written in the
first phase 500 and read from in the second phase 560. A
control store instruction 510 allows the reprogramming of
the processors due to new data in from the control store 480,
not shown in this figure, the instructions stored in an
instruction register 535. The address for this is generated in
a fetch control register 511, which determines which address
to fetch, the address stored in fetch address register 538.
Load control 515 provides instructions for a program
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counter 540, which operates much like the fetch address for
the control store. A last-in first-out stack 544 of three
registers is copied to the first register set without undergoing
other operations in this phase. Finally, a load control 517 for
a debug address 548 is optionally included, which allows
correction of errors that may occur.

[0094] FIG. 15B depicts the second microprocessor phase
560, which includes reading addresses and data out of the
RAM file register 533. A scratch SRAM 565 is written from
SRAM address and data register 520 of the first register set,
which includes a register that passes through the first two
phases to be incremented in the third. The scratch SRAM
565 is read by the instruction decoder and operand multi-
plexer 498, as are most of the registers from the first register
set, with the exception of the stack 544, debug address 548
and SRAM address and data register mentioned above. The
instruction decoder and operand multiplexer 498 looks at the
various registers of set 490 and SRAM 565, decodes the
instructions and gathers the operands for operation in the
next phase, in particular determining the operands to provide
to the ALU 602 below. The outcome of the instruction
decoder and operand multiplexer 498 is stored to a number
of registers in the second register set 496, including ALU
operands 579 and 582, AL.U condition code register 580, and
a queue channel and command 587 register, which in this
embodiment can control thirty-two queues. Several of the
registers in set 496 are loaded fairly directly from the
instruction register 535 above without substantial decoding
by the decoder 498, including a program control 590, a
literal field 589, a test select 584 and a flag select 585. Other
registers such as the file context 522 of the first phase 500
are always stored in a file context 577 of the second phase
560, but may also be treated as an operand that is gathered
by the multiplexer 572. The stack registers 544 are simply
copied in stack register 594. The program counter 540 is
incremented 568 in this phase and stored in register 592.
Also incremented 570 is the optional debug address 548, and
a load control 575 may be fed from the pipeline 505 at this
point in order to allow error control in each phase, the result
stored in debug address 598.

[0095] FIG. 15C depicts the third microprocessor phase
600, which includes ALU and queue operations. The ALU
602 includes an adder, priority encoders and other standard
logic functions. Results of the ALU are stored in registers
ALU output 618, ALU condition codes 620 and destination
operand results 622. A file context register 616, flag select
register 626 and literal field register 630 are simply copied
from the previous phase 560. A test multiplexer 604 is
provided to determine whether a conditional jump results in
a jump, with the results stored in a test results register 624.
The test multiplexer 604 may instead be performed in the
first phase 500 along with similar decisions such as fetch
control 511. A stack exchange 608 shifts a stack up or down
by fetching a program counter from stack 594 or putting a
program counter onto that stack, results of which are stored
in program control 634, program counter 638 and stack 640
registers. The SRAM address may optionally be incre-
mented in this phase 600. Another load control 610 for
another debug address 642 may be forced from the pipeline
505 at this point in order to allow error control in this phase
also. A QRAM & QALU 606, shown together in this figure,
read from the queue channel and command register 587,
store in SRAM and rearrange queues, adding or removing
data and pointers as needed to manage the queues of data,
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sending results to the test multiplexer 604 and a queue flags
and queue address register 628. Thus the QRAM & QALU
606 assume the duties of managing queues for the three
processors, a task conventionally performed sequentially by
software on a CPU, the queue manager 606 instead provid-
ing accelerated and substantially parallel hardware queuing.

[0096] FIG. 16 depicts two of the thirty-two hardware
queues that are managed by the queue manager 606, with
each of the queues having an SRAM head, an SRAM tail and
the ability to queue information in a DRAM body as well,
allowing expansion and individual configuration of each
queue. Thus FIFO 700 has SRAM storage units, 705, 707,
709 and 711, each containing eight bytes for a total of
thirty-two bytes, although the number and capacity of these
units may vary in other embodiments. Similarly, FIFO 702
has SRAM storage units 713, 715, 717 and 719. SRAM units
705 and 707 are the head of FIFO 700 and units 709 and 711
are the tail of that FIFO, while units 713 and 715 are the head
of FIFO 702 and units 717 and 719 are the tail of that FIFO.
Information for FIFO 700 may be written into head units 705
or 707, as shown by arrow 722, and read from tail units 711
or 709, as shown by arrow 725. A particular entry, however,
may be both written to and read from head units 705 or 707,
or may be both written to and read from tail units 709 or 711,
minimizing data movement and latency. Similarly, informa-
tion for FIFO 702 is typically written into head units 713 or
715, as shown by arrow 733, and read from tail units 717 or
719, as shown by arrow 739, but may instead be read from
the same head or tail unit to which it was written.

[0097] The SRAM FIFOS 700 and 702 are both connected
to DRAM 460, which allows virtually unlimited expansion
of those FIFOS to handle situations in which the SRAM
head and tail are full. For example a first of the thirty-two
queues, labeled Q-zero, may queue an entry in DRAM 460,
as shown by arrow 727, by DMA units acting under direc-
tion of the queue manager, instead of being queued in the
head or tail of FIFO 700. Entries stored in DRAM 460 return
to SRAM unit 709, as shown by arrow 730, extending the
length and fall-through time of that FIFO. Diversion from
SRAM to DRAM is typically reserved for when the SRAM
is full, since DRAM is slower and DMA movement causes
additional latency. Thus Q-zero may comprise the entries
stored by queue manager 606 in both the FIFO 700 and the
DRAM 460. Likewise, information bound for FIFO 702,
which may correspond to Q-twenty-seven, for example, can
be moved by DMA into DRAM 460, as shown by arrow 735.
The capacity for queuing in cost-effective albeit slower
DRAM 460 is user-definable during initialization, allowing
the queues to change in size as desired. Information queued
in DRAM 460 is returned to SRAM unit 717, as shown by
arrow 737.

[0098] Status for each of the thirty-two hardware queues is
conveniently maintained in and accessed from a set 740 of
four, thirty-two bit registers, as shown in FIG. 17, in which
a specific bit in each register corresponds to a specific queue.
The registers are labeled Q-Out_Ready 745, Q-In_Ready
750, Q-Empty 755 and Q-Full 760. If a particular bit is set
in the Q-Out, ; Ready register 750, the queue corresponding
to that bit contains information that is ready to be read, while
the setting of the same bit in the Q-In_Ready 752 register
means that the queue is ready to be written. Similarly, a
positive setting of a specific bit in the Q-Empty register 755
means that the queue corresponding to that bit is empty,
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while a positive setting of a particular bit in the Q-Full
register 760 means that the queue corresponding to that bit
is full. Thus Q-Out_Ready 745 contains bits zero 746
through thirty-one 748, including bits twenty-seven 752,
twenty-eight 754, twenty-nine 756 and thirty 758. Q-In-
_Ready 750 contains bits zero 762 through thirty-one 764,
including bits twenty-seven 766, twenty-cight 768, twenty-
nine 770 and thirty 772. Q-Empty 755 contains bits zero 774
through thirty-one 776, including bits twenty-seven 778,
twenty-eight 780, twenty-nine 782 arid thirty 784, and
Q-full 760 contains bits zero 786 through thirty-one 788,
including bits twenty-seven 790, twenty-eight 792, twenty-
nine 794 and thirty 796.

[0099] Q-zero, corresponding to FIFO 700, is a free buffer
queue, which holds a list of addresses for all available
buffers. This queue is addressed when the microprocessor or
other devices need a free buffer address, and so commonly
includes appreciable DRAM 460. Thus a device needing a
free buffer address would check with Q-zero to obtain that
address. Q-twenty-seven, corresponding to FIFO 702, is a
receive buffer descriptor queue. After processing a received
frame by the receive sequencer the sequencer looks to store
a descriptor for the frame in Q-twenty-seven. If a location
for such a descriptor is immediately available in SRAM, bit
twenty-seven 766 of Q-In_Ready 750 will be set. If not, the
sequencer must wait for the queue manager to initiate a
DMA move from SRAM to DRAM, thereby freeing space
to store the receive descriptor.

[0100] Operation of the queue manager, which manages
movement of queue entries between SRAM and the proces-
sor, the transmit and receive sequencers, and also between
SRAM and DRAM, is shown in more detail in FIG. 18.
Requests which utilize the queues include Processor Request
802, Transmit Sequencer Request 804, and Receive
Sequencer Request 806. Other requests for the queues are
DRAM to SRAM Request 808 and SRAM to DRAM
Request 810, which operate on behalf of the queue manager
in moving data back and forth between the DRAM and the
SRAM head or tail of the queues. Determining which of
these various requests will get to use the queue manager in
the next cycle is handled by priority logic Arbiter 815. To
enable high frequency operation the queue manager is
pipelined, with Register A 818 and Register B 820 providing
temporary storage, while Status Register 822 maintains
status until the next update. The queue manager reserves
even cycles for DMA, receive and transmit sequencer
requests and odd cycles for processor requests. Dual ported
QRAM 825 stores variables regarding each of the queues,
the variables for each queue including a Head Write Pointer,
Head Read Pointer, Tail Write Pointer and Tail Read Pointer
corresponding to the queue’s SRAM condition, and a Body
Write Pointer and Body Read Pointer corresponding to the
queue’s DRAM condition and the queue’s size.

[0101] After Arbiter 815 has selected the next operation to
be performed, the variables of QRAM 825 are fetched and
modified according to the selected operation by a QALU
828, and an SRAM Read Request 830 or an SRAM Write
Request 840 may be generated. The variables are updated
and the updated status is stored in Status Register 822 as
well as QRAM 825. The status is also fed to Arbiter 815 to
signal that the operation previously requested has been
fulfilled, inhibiting duplication of requests. The Status Reg-
ister 822 updates the four queue registers Q-Out_Ready 745,
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Q-In_Ready 750, Q-Empty 755 and Q-Full 760 to reflect the
new status of the queue that was accessed. Similarly updated
are SRAM Addresses 833, Body Write Request 835 and
Body Read Requests 838, which are accessed via DMA to
and from SRAM head and tails for that queue. Alternatively,
various processes may wish to write to a queue, as shown by
Q Write Data 844, which are selected by multiplexor 846,
and pipelined to SRAM Write Request 840. The SRAM
controller services the read and write requests by writing the
tail or reading the head of the accessed queue and returning
an acknowledge. In this manner the various queues are
utilized and their status updated.

[0102] FIGS. 19A-C show a least-recently-used register
900 that is employed for choosing which contexts or CCBs
to maintain in INIC cache memory. The INIC in this
embodiment can cache up to sixteen CCBs in SRAM at a
given time, and so when a new CCB is cached an old one
must often be discarded, the discarded CCB usually chosen
according to this register 900 to be the CCB that has been
used least recently. In this embodiment, a hash table for up
to two hundred fifty-six CCBs is also maintained in SRAM,
while up to two hundred fifty-six full CCBs are held in
DRAM. The least-recently-used register 900 contains six-
teen four-bit blocks labeled R0-R15, each of which corre-
sponds to an SRAM cache unit. Upon initialization, the
blocks are numbered 0-15, with number 0 arbitrarily stored
in the block representing the least recently used (LRU)
cache unit and number 15 stored in the block representing
the most recently used (MRU) cache unit. FIG. 19A shows
the register 900 at an arbitrary time when the LRU block R0
holds the number 9 and the MRU block R15 holds the
number 6.

[0103] When a different CCB than is currently being held
in SRAM is to be cached, the LRU block R0 is read, which
in FIG. 19A holds the number 9, and the new CCB is stored
in the SRAM cache unit corresponding to number 9. Since
the new CCB corresponding to number 9 is now the most
recently used CCB, the number 9 is stored in the MRU
block, as shown in FIG. 19B. The other numbers are all
shifted one register block to the left, leaving the number 1
in the LRU block. The CCB that had previously been cached
in the SRAM unit corresponding to number 9 has been
moved to slower but more cost-effective DRAM.

[0104] FIG. 19C shows the result when the next CCB
used had already been cached in SRAM. In this example, the
CCB was cached in an SRAM unit corresponding to number
10, and so after employment of that CCB, number 10 is
stored in the MRU block. Only those numbers which had
previously been more recently used than number 10 (register
blocks R9-R15) are shifted to the left, leaving the number 1
in the LRU block. In this manner the INIC maintains the
most active CCBs in SRAM cache.

[0105] Insome cases a CCB being used is one that is not
desirable to hold in the limited cache memory. For example,
it is preferable not to cache a CCB for a context that is
known to be closing, so that other cached CCBs can remain
in SRAM longer. In this case, the number representing the
cache unit holding the decacheable CCB is stored in the
LRU block RO rather than the MRU block R15, so that the
decacheable CCB will be replaced immediately upon
employment of a new CCB that is cached in the SRAM unit
corresponding to the number held in the LRU block RO.
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FIG. 19D shows the case for which number 8 (which had
been in block R9 in FIG. 19C) corresponds to a CCB that
will be used and then closed. In this case number 8 has been
removed from block R9 and stored in the LRU block R0. All
the numbers that had previously been stored to the left of
block R9 (R1-R8) are then shifted one block to the right.

[0106] FIG. 20 shows some of the logical units employed
to operate the least-recently-used register 900. An array of
sixteen, three or four input multiplexors 910, of which only
multiplexors MUX0, MUX7, MUXS8, MUX9 and MUX15
are shown for clarity, have outputs fed into the correspond-
ing sixteen blocks of least-recently-used register 900. For
example, the output of MUXO is stored in block RO, the
output of MUX7 is stored in block R7, etc. The value of each
of the register blocks is connected to an input for its
corresponding multiplexor and also into inputs for both
adjacent multiplexors, for use in shifting the block numbers.
For instance, the number stored in R8 is fed into inputs for
MUX7, MUXS8 and MUX9. MUXO0 and MUX15 each have
only one adjacent block, and the extra input for those
multiplexors is used for the selection of LRU and MRU
blocks, respectively. MUX1S is shown as a four-input mul-
tiplexor, with input 915 providing the number stored on R0.

[0107] An array of sixteen comparators 920 each receives
the value stored in the corresponding block of the least-
recently-used register 900. Each comparator also receives a
signal from processor 470 along line 935 so that the register
block having a number matching that sent by processor 470
outputs true to logic circuits 930 while the other fifteen
comparators output false. Logic circuits 930 control a pair of
select lines leading to each of the multiplexors, for selecting
inputs to the multiplexors and therefore controlling shifting
of the register block numbers. Thus select lines 939 control
MUXQO, select lines 944 control MUX7, select lines 949
control MUXS, select lines 954 control MUX9 and select
lines 959 control MUX1S5.

[0108] When a CCB is to be used, processor 470 checks
to see whether the CCB matches a CCB currently held in one
of the sixteen cache units. If a match is found, the processor
sends a signal along line 935 with the block number corre-
sponding to that cache unit, for example number 12. Com-
parators 920 compare the signal from that line 935 with the
block numbers and comparator C8 provides a true output for
the block R8 that matches the signal, while all the other
comparators output false. Logic circuits 930, under control
from the processor 470, use select lines 959 to choose the
input from line 935 for MUX1S, storing the number 12 in the
MRU block R1S. Logic circuits 930 also send signals along
the pairs of select lines for MUX8 and higher multiplexors,
aside from MUX135, to shift their output one block to the left,
by selecting as inputs to each multiplexor MUXS8 and higher
the value that had been stored in register blocks one block
to the right (R9-R15). The outputs of multiplexors that are
to the left of MUXS are selected to be constant.

[0109] If processor 470 does not find a match for the CCB
among the sixteen cache units, on the other hand, the
processor reads from LRU block RO along line 966 to
identify the cache corresponding to the LRU block, and
writes the data stored in that cache to DRAM. The number
that was stored in RO, in this case number 3, is chosen
by)select lines 959 as input 915 to MUX15 for storage in
MRU block R15. The other fifteen multiplexors output to
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their respective register blocks the numbers that had been
stored each register block immediately to the right.

[0110] For the situation in which the processor wishes to
remove a CCB from the cache after use, the LRU block RO
rather than the MRU block R15 is selected for placement of
the number corresponding to the cache unit holding that
CCB. The number corresponding to the CCB to be placed in
the LRU block RO for removal from SRAM (for example
number 1, held in block R9) is sent by processor 470 along
line 935, which is matched by comparator C9. The processor
instructs logic circuits 930 to input the number 1 to RO, by
selecting with lines 939 input 935 to MUXQ0. Select lines 954
to MUXY9 choose as input the number held in register block
RS, so that the number from R8 is stored in R9. The numbers
held by the other register blocks between RO and R9 are
similarly shifted to the right, whereas the numbers in register
blocks to the right of R9 are left constant. This frees scarce
cache memory from maintaining closed CCBs for many
cycles while their identifying numbers move through regis-
ter blocks from the MRU to the LRU blocks.

[0111] FIG. 21 is another diagram of Intelligent Network
Interface Card (INIC) 200 of FIG. 13. INIC card 200
includes a Physical Layer Interface (PHY) chip 2100, ASIC
chip 400 and Dynamic Random Access Memory (DRAM)
460. PHY chip 2100 couples INIC card 200 to network line
210 via a network connector 2101. INIC card 200 is coupled
to the CPU of the host (for example, CPU 28 of host 20 of
FIG. 1) via card edge connector 2107 and PCI bus 257.
ASIC chip 400 includes a Media Access Control (MAC) unit
402, a sequencers block 2103, SRAM control 442, SRAM
440, DRAM control 450, a queue manager 2103, a processor
470, and a PCI bus interface unit 468. Structure and opera-
tion of queue manager 2103 is described above in connec-
tion with FIG. 18 and in U.S. patent application Ser. No.
09/416,925, entitled “Queue System For Microprocessors”,
attorney docket no. ALA-005, filed Oct. 13, 1999, by Daryl
D. Starr and Clive M. Philbrick (the subject matter of which
is incorporated herein by reference). Sequencers block 2102
includes a transmit sequencer 2104, a receive sequencer
2105, and configuration registers 2106. A MAC destination
address is stored in configuration register 2106. Part of the
program code executed by processor 470 is contained in
ROM (not shown) and part is located in a writeable control
store SRAM (not shown). The program is downloaded into
the writeable control store SRAM at initialization from the
host 20.

[0112] FIG. 22 is a more detailed diagram of receive
sequencer 2105. Receive sequencer 2105 includes a data
synchronization buffer 2200, a packet synchronization
sequencer 2201, a data assembly register 2202, a protocol
analyzer 2203, a packet processing sequencer 2204, a queue
manager interface 2205, and a Direct Memory Access
(DMA) control block 2206. The packet synchronization
sequencer 2201 and data synchronization buffer 2200 utilize
a network-synchronized clock of MAC 402, whereas the
remainder of the receive sequencer 2105 utilizes a fixed-
frequency clock. Dashed line 2221 indicates the clock
domain boundary.

[0113] CD Appendix A contains a complete hardware
description (verilog code) of an embodiment of receive
sequencer 2105. Signals in the verilog code are named to
designate their functions. Individual sections of the verilog
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code are identified and labeled with comment lines. Each of
these sections describes hardware in a block of the receive
sequencer 2105 as set forth below in Table 1.

TABLE 1

SECTION OF VERILOG CODE BLOCK OF FIG. 22

Synchronization Interface 2201
Sync-Buffer Read-Ptr Synchronizers 2201
Packet-Synchronization Sequencer 2201
Data Synchronization Buffer 2201 and 2200
Synchronized Status for Link-Destination-Address 2201
Synchronized Status-Vector 2201
Synchronization Interface 2204
Receive Packet Control and Status 2204
Buffer-Descriptor 2201
Ending Packet Status 2201
AssyReg shift-in. Mac -> AssyReg. 2202 and 2204
Fifo shift-in. AssyReg -> Sram Fifo 2206
Fifo ShiftOut Burst. SramFifo -> DramBuffer 2206
Fly-By Protocol Analyzer; Frame, 2203
Network and Transport Layers

Link Pointer 2203
Mac address detection 2203
Magic pattern detection 2203
Link layer and network layer detection 2203
Network counter 2203
Control Packet analysis 2203
Network header analysis 2203
Transport layer counter 2203
Transport header analysis 2203
Pscudo-header stuff 2203
Free-Descriptor Fetch 2205
Receive-Descriptor Store 2205
Receive-Vector Store 2205
Queue-manager interface-mux 2205
Pause Clock Generator 2201
Pause Timer 2204

[0114] Operation of receive sequencer 2105 of FIGS. 21
and 22 is now described in connection with the receipt onto
INIC card 200 of a TCP/IP packet from network line 210. At
initialization time, processor 470 partitions DRAM 460 into
buffers. Receive sequencer 2105 uses the buffers in DRAM
460 to store incoming network packet data as well as status
information for the packet. Processor 470 creates a 32-bit
buffer descriptor for each buffer. A buffer descriptor indi-
cates the size and location in DRAM of its associated buffer.
Processor 470 places these buffer descriptors on a “free-
buffer queue”2108 by writing the descriptors to the queue
manager 2103. Queue manager 2103 maintains multiple
queues including the “free-buffer queue”2108. In this imple-
mentation, the heads and tails of the various queues are
located in SRAM 440, whereas the middle portion of the
queues are located in DRAM 460.

[0115] Lines 2229 comprise a request mechanism involv-
ing a request line and address lines. Similarly, lines 2230
comprise a request mechanism involving a request line and
address lines. Queue manager 2103 uses lines 2229 and
2230 to issue requests to transfer queue information from
DRAM to SRAM or from SRAM to DRAM.

[0116] The queue manager interface 2205 of the receive
sequencer always attempts to maintain a free buffer descrip-
tor 2207 for use by the packet processing sequencer 2204.
Bit 2208 is a ready bit that indicates that free-buffer descrip-
tor 2207 is available for use by the packet processing
sequencer 2204. If queue manager interface 2205 does not
have a free buffer descriptor (bit 2208 is not set), then queue
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manager interface 2205 requests one from queue manager
2103 via request line 2209. (Request line 2209 is actually a
bus which communicates the request, a queue ID, a read/
write signal and data if the operation is a write to the queue.)

[0117] In response, queue manager 2103 retrieves a free
buffer descriptor from the tail of the “free buffer queue”2108
and then alerts the queue manager interface 2205 via an
acknowledge signal on acknowledge line 2210. When queue
manager interface 2205 receives the acknowledge signal, the
queue manager interface 2205 loads the free buffer descrip-
tor 2207 and sets the ready bit 2208. Because the free buffer
descriptor was in the tail of the free buffer queue in SRAM
440, the queue manager interface 2205 actually receives the
free buffer descriptor 2207 from the read data bus 2228 of
the SRAM control block 442. Packet processing sequencer
2204 requests a free buffer descriptor 2207 via request line
2211. When the queue manager interface 2205 retrieves the
free buffer descriptor 2207 and the free buffer descriptor
2207 is available for use by the packet processing sequencer,
the queue manager interface 2205 informs the packet pro-
cessing sequencer 2204 via grant line 2212. By this process,
a free buffer descriptor is made available for use by the
packet processing sequencer 2204 and the receive sequencer
2105 is ready to processes an incoming packet.

[0118] Next, a TCP/IP packet is received from the network
line 210 via network connector 2101 and Physical Layer
Interface (PHY) 2100. PHY 2100 supplies the packet to
MAC 402 via a Media Independent Interface (MII) parallel
bus 2109. MAC 402 begins processing the packet and
asserts a “start of packet” signal on line 2213 indicating that
the beginning of a packet is being received. When a byte of
data is received in the MAC and is available at the MAC
outputs 2215, MAC 402 asserts a “data valid” signal on line
2214. Upon receiving the “data valid” signal, the packet
synchronization sequencer 2201 instructs the data synchro-
nization buffer 2200 via load signal line 2222 to load the
received byte from data lines 2215. Data synchronization
buffer 2200 is four bytes deep. The packet synchronization
sequencer 2201 then increments a data synchronization
buffer write pointer. This data synchronization buffer write
pointer is made available to the packet processing sequencer
2204 via lines 2216. Consecutive bytes of data from data
lines 2215 are clocked into the data synchronization buffer
2200 in this way.

[0119] A data synchronization buffer read pointer avail-
able on lines 2219 is maintained by the packet processing
sequencer 2204. The packet processing sequencer 2204
determines that data is available in data synchronization
buffer 2200 by comparing the data synchronization buffer
write pointer on lines 2216 with the data synchronization
buffer read pointer on lines 2219.

[0120] Data assembly register 2202 contains a sixteen-
byte long shift register 2217. This register 2217 is loaded
serially a single byte at a time and is unloaded in parallel.
When data is loaded into register 2217, a write pointer is
incremented. This write pointer is made available to the
packet processing sequencer 2204 via lines 2218. Similarly,
when data is unloaded from register 2217, a read pointer
maintained by packet processing sequencer 2204 is incre-
mented. This read pointer is available to the data assembly
register 2202 via lines 2220. The packet processing
sequencer 2204 can therefore determine whether room is
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available in register 2217 by comparing the write pointer on
lines 2218 to the read pointer on lines 2220.

[0121] If the packet processing sequencer 2204 deter-
mines that room is available in register 2217, then packet
processing sequencer 2204 instructs data assembly register
2202 to load a byte of data from data synchronization buffer
2200. The data assembly register 2202 increments the data
assembly register write pointer on lines 2218 and the packet
processing sequencer 2204 increments the data synchroni-
zation buffer read pointer on lines 2219. Data shifted into
register 2217 is examined at the register outputs by protocol
analyzer 2203 which verifies checksums, and generates
“status” information 2223.

[0122] DMA control block 2206 is responsible for moving
information from register 2217 to buffer 2114 via a sixty-
four byte receive FIFO 2110. DMA control block 2206
implements receive FIFO 2110 as two thirty-two byte ping-
pong buffers using sixty-four bytes of SRAM 440. DMA
control block 2206 implements the receive FIFO using a
write-pointer and a read-pointer. When data to be transferred
is available in register 2217 and space is available in FIFO
2110, DMA control block 2206 asserts an SRAM write
request to SRAM controller 442 via lines 2225. SRAM
controller 442 in turn moves data from register 2217 to FIFO
2110 and asserts an acknowledge signal back to DMA
control block 2206 via lines 2225. DMA control block 2206
then increments the receive FIFO write pointer and causes
the data assembly register read pointer to be incremented.

[0123] When thirty-two bytes of data has been deposited
into receive FIFO 2110, DMA control block 2206 presents
a DRAM write request to DRAM controller 450 via lines
2226. This write request consists of the free buffer descriptor
2207 ORed with a “buffer load count” for the DRAM
request address, and the receive FIFO read pointer for the
SRAM read address. Using the receive FIFO read pointer,
the DRAM controller 450 asserts a read request to SRAM
controller 442. SRAM controller 442 responds to DRAM
controller 450 by returning the indicated data from the
receive FIFO 2110 in SRAM 440 and asserting an acknowl-
edge signal. DRAM controller 450 stores the data in a
DRAM write data register, stores a DRAM request address
in a DRAM address register, and asserts an acknowledge to
DMA control block 2206. The DMA control block 2206 then
decrements the receive FIFO read pointer. Then the DRAM
controller 450 moves the data from the DRAM write data
register to buffer 2114. In this way, as consecutive thirty-two
byte chunks of data are stored in SRAM 440, DRAM control
block 2206 moves those thirty-two byte chunks of data one
at a time from SRAM 440 to buffer 2214 in DRAM 460.
Transferring thirty-two byte chunks of data to the DRAM
460 in this fashion allows data to be written into the DRAM
using the relatively efficient burst mode of the DRAM.

[0124] Packet data continues to flow from network line
210 to buffer 2114 until all packet data has been received.
MAC 402 then indicates that the incoming packet has
completed by asserting an “end of frame” (i.e., end of
packet) signal on line 2227 and by presenting final packet
status (MAC packet status) to packet synchronization
sequencer 2204. The packet processing sequencer 2204 then
moves the status 2223 (also called “protocol analyzer sta-
tus”) and the MAC packet status to register 2217 for
eventual transfer to buffer 2114. After all the data of the
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packet has been placed in buffer 2214, status 2223 and the
MAC packet status is transferred to buffer 2214 so that it is
stored prepended to the associated data as shown in FIG. 22.

[0125] After all data and status has been transferred to
buffer 2114, packet processing sequencer 2204 creates a
summary 2224 (also called a “receive packet descriptor”) by
concatenating the free buffer descriptor 2207, the buffer
load-count, the MAC ID, and a status bit (also called an
“attention bit”). If the attention bit is a one, then the packet
is not a “fast-path candidate”; whereas if the attention bit is
a zero, then the packet is a “fast-path candidate”. The value
of the attention bit represents the result of a significant
amount of processing that processor 470 would otherwise
have to do to determine whether the packet is a “fast-path
candidate”. For example, the attention bit being a zero
indicates that the packet employs both TCP protocol and IP
protocol. By carrying out this significant amount of process-
ing in hardware beforehand and then encoding the result in
the attention bit, subsequent decision making by processor
470 as to whether the packet is an actual “fast-path packet”
is accelerated. A complete logical description of the atten-
tion bit in verilog code is set forth in CD Appendix A in the
lines following the heading “Ending Packet Status™.

[0126] Packet processing sequencer 2204 then sets a ready
bit (not shown) associated with summary 2224 and presents
summary 2224 to queue manager interface 2205. Queue
manager interface 2205 then requests a write to the head of
a “summary queue”2112 (also called the “receive descriptor
queue”). The queue manager 2103 receives the request,
writes the summary 2224 to the head of the summary queue
2212, and asserts an acknowledge signal back to queue
manager interface via line 2210. When queue manager
interface 2205 receives the acknowledge, queue manager
interface 2205 informs packet processing sequencer 2204
that the summary 2224 is in summary queue 2212 by
clearing the ready bit associated with the summary. Packet
processing sequencer 2204 also generates additional status
information (also called a “vector”) for the packet by con-
catenating the MAC packet status and the MAC ID. Packet
processing sequencer 2204 sets a ready bit (not shown)
associated with this vector and presents this vector to the
queue manager interface 2205. The queue manager interface
2205 and the queue manager 2103 then cooperate to write
this vector to the head of a “vector queue”2113 in similar
fashion to the way summary 2224 was written to the head of
summary queue 2112 as described above. When the vector
for the packet has been written to vector queue 2113, queue
manager interface 2205 resets the ready bit associated with
the vector.

[0127] Once summary 2224 (including a buffer descriptor
that points to buffer 2114) has been placed in summary
queue 2112 and the packet data has been placed in buffer
2144, processor 470 can retrieve summary 2224 from sum-
mary queue 2112 and examine the “attention bit”.

[0128] If the attention bit from summary 2224 is a digital
one, then processor 470 determines that the packet is not a
“fast-path candidate” and processor 470 need not examine
the packet headers. Only the status 2223 (first sixteen bytes)
from buffer 2114 are DMA transferred to SRAM so proces-
sor 470 can examine it. If the status 2223 indicates that the
packet is a type of packet that is not to be transferred to the
host (for example, a multicast frame that the host is not
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registered to receive), then the packet is discarded (i.e., not
passed to the host). If status 2223 does not indicate that the
packet is the type of packet that is not to be transferred to the
host, then the entire packet (headers and data) is passed to
a buffer on host 20 for “slow-path” transport and network
layer processing by the protocol stack of host 20.

[0129] TIf, on the other hand, the attention bit is a zero, then
processor 470 determines that the packet is a “fast-path
candidate”. If processor 470 determines that the packet is a
“fast-path candidate”, then processor 470 uses the buffer
descriptor from the summary to DMA transfer the first
approximately 96 bytes of information from buffer 2114
from DRAM 460 into a portion of SRAM 440 so processor
470 can examine it. This first approximately 96 bytes
contains status 2223 as well as the IP source address of the
IP header, the IP destination address of the IP header, the
TCP source address of the TCP header, and the TCP desti-
nation address of the TCP header. The IP source address of
the IP header, the IP destination address of the IP header, the
TCP source address of the TCP header, and the TCP desti-
nation address of the TCP header together uniquely define a
single connection context (TCB) with which the packet is
associated. Processor 470 examines these addresses of the
TCP and IP headers and determines the connection context
of the packet. Processor 470 then checks a list of connection
contexts that are under the control of INIC card 200 and
determines whether the packet is associated with a connec-
tion context (TCB) under the control of INIC card 200.

[0130] If the connection context is not in the list, then the
“fast-path candidate” packet is determined not to be a
“fast-path packet.” In such a case, the entire packet (headers
and data) is transferred to a buffer in host 20 for “slow-path”
processing by the protocol stack of host 20.

[0131] If, on the other hand, the connection context is in
the list, then software executed by processor 470 including
software state machines 2231 and 2232 checks for one of
numerous exception conditions and determines whether the
packet is a “fast-path packet” or is not a “fast-path packet”.
These exception conditions include: 1) IP fragmentation is
detected; 2) an IP option is detected; 3) an unexpected TCP
flag (urgent bit set, reset bit set, SYN bit set or FIN bit set)
is detected; 4) the ACK field in the TCP header is before the
TCP window, or the ACK field in the TCP header is after the
TCP window, or the ACK field in the TCP header shrinks the
TCP window; 5) the ACK field in the TCP header is a
duplicate ACK and the ACK field exceeds the duplicate
ACK count (the duplicate ACK count is a user settable
value); and 6) the sequence number of the TCP header is out
of order (packet is received out of sequence). If the software
executed by processor 470 detects one of these exception
conditions, then processor 470 determines that the “fast-path
candidate” is not a “fast-path packet.” In such a case, the
connection context for the packet is “flushed” (the connec-
tion context is passed back to the host) so that the connection
context is no longer present in the list of connection contexts
under control of INIC card 200. The entire packet (headers
and data) is transferred to a buffer in host 20 for “slow-path”
transport layer and network layer processing by the protocol
stack of host 20.

[0132] TIf, on the other hand, processor 470 finds no such
exception condition, then the “fast-path candidate” packet is
determined to be an actual “fast-path packet”. The receive

Apr. 1, 2004

state machine 2232 then processes of the packet through
TCP. The data portion of the packet in buffer 2114 is then
transferred by another DMA controller (not shown in FIG.
21) from buffer 2114 to a host-allocated file cache in storage
35 of host 20. In one embodiment, host 20 does no analysis
of the TCP and IP headers of a “fast-path packet”. All
analysis of the TCP and IP headers of a “fast-path packet”
is done on INIC card 20.

[0133] FIG. 23 is a diagram illustrating the transfer of data
of “fast-path packets” (packets of a 64 k-byte session layer
message 2300) from INIC 200 to host 20. The portion of the
diagram to the left of the dashed line 2301 represents INIC
200, whereas the portion of the diagram to the right of the
dashed line 2301 represents host 20. The 64 k-byte session
layer message 2300 includes approximately forty-five pack-
ets, four of which (2302, 2303, 2304 and 2305) are labeled
on FIG. 23. The first packet 2302 includes a portion 2306
containing transport and network layer headers (for
example, TCP and IP headers), a portion 2307 containing a
session layer header, and a portion 2308 containing data. In
a first step, portion 2307, the first few bytes of data from
portion 2308, and the connection context identifier 2310 of
the packet 2300 are transferred from INIC 200 to a 256-byte
buffer 2309 in host 20. In a second step, host 20 examines
this information and returns to INIC 200 a destination (for
example, the location of a file cache 2311 in storage 35) for
the data. Host 20 also copies the first few bytes of the data
from buffer 2309 to the beginning of a first part 2312 of file
cache 2311. In a third step, INIC 200 transfers the remainder
of the data from portion 2308 to host 20 such that the
remainder of the data is stored in the remainder of first part
2312 of file cache 2311. No network, transport, or session
layer headers are stored in first part 2312 of file cache 2311.
Next, the data portion 2313 of the second packet 2303 is
transferred to host 20 such that the data portion 2313 of the
second packet 2303 is stored in a second part 2314 of file
cache 2311. The transport layer and network layer header
portion 2315 of second packet 2303 is not transferred to host
20. There is no network, transport, or session layer header
stored in file cache 2311 between the data portion of first
packet 2302 and the data portion of second packet 2303.
Similarly, the data portion 2316 of the next packet 2304 of
the session layer message is transferred to file cache 2311 so
that there is no network, transport, or session layer headers
between the data portion of the second packet 2303 and the
data portion of the third packet 2304 in file cache 2311. In
this way, only the data portions of the packets of the session
layer message are placed in the file cache 2311. The data
from the session layer message 2300 is present in file cache
2311 as a block such that this block contains no network,
transport, or session layer headers.

[0134] In the case of a shorter, single-packet session layer
message, portions 2307 and 2308 of the session layer
message are transferred to 256-byte buffer 2309 of host 20
along with the connection context identifier 2310 as in the
case of the longer session layer message described above. In
the case of a single-packet session layer message, however,
the transfer is completed at this point. Host 20 does not
return a destination to INIC 200 and INIC 200 does not
transfer subsequent data to such a destination.

[0135] CD Appendix B includes a listing of software
executed by processor 470 that determines whether a “fast-
path candidate” packet is or is not a “fast-path packet”. An
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example of the instruction set of processor 470 is found
starting on page 79 of the Provisional U.S. Patent Applica-
tion Serial No. 60/061,809, entitled “Intelligent Network
Interface Card And System For Protocol Processing”, filed
Oct. 14, 1997 (the subject matter of this provisional appli-
cation is incorporated herein by reference).

[0136] CD Appendix C includes device driver software
executable on host 20 that interfaces the host 20 to INIC card
200. There is also ATCP code that executes on host 20. This
ATCP code includes: 1) a “free BSD” stack (available from
the University of California, Berkeley) that has been modi-
fied slightly to make it run on the NT4 operating system (the
“free BSD” stack normally runs on a UNIX machine), and
2) code added to the free BSD stack between the session
layer above and the device driver below that enables the
BSD stack to carry out “fast-path” processing in conjunction
with INIC 200.

[0137] TRANSMIT FAST-PATH PROCESSING: The fol-
lowing is an overview of one embodiment of a transmit
fast-path flow once a command has been posted (for addi-
tional information, see provisional application No. 60/098,
296, filed Aug. 27, 1998). The transmit request may be a
segment that is less than the MSS, or it may be as much as
a full 64 K session layer packet. The former request will go
out as one segment, the latter as a number of MSS-sized
segments. The transmitting CCB must hold on to the request
until all data in it has been transmitted and ACKed. Appro-
priate pointers to do this are kept in the CCB. To create an
output TCP/IP segment, a large DRAM buffer is acquired
from the Q_FREEL queue. Then data is DMAd from host
memory into the DRAM buffer to create an MSS-sized
segment. This DMA also checksums the data. The TCP/IP
header is created in SRAM and DMAJ to the front of the
payload data. It is quicker and simpler to keep a basic frame
header (i.e., a template header) permanently in the CCB and
DMA this directly from the SRAM CCB buffer into the
DRAM buffer each time. Thus the payload checksum is
adjusted for the pseudo-header (ic., the template header)
and placed into the TCP header prior to DMAing the header
from SRAM. Then the DRAM buffer is queued to the
appropriate Q_UXMT transmit queue. The final step is to
update various window fields etc in the CCB. Eventually
either the entire request will have been sent and ACKed, or
a retransmission timer will expire in which case the context
is flushed to the host. In either case, the INIC will place a
command response in the response queue containing the
command buffer from the original transmit command and
appropriate status.

[0138] The above discussion has dealt with how an actual
transmit occurs. However the real challenge in the transmit
processor is to determine whether it is appropriate to trans-
mit at the time a transmit request arrives, and then to
continue to transmit for as long as the transport protocol
permits. There are many reasons not to transmit: the receiv-
er’s window size is less than or equal to zero, the persist
timer has expired, the amount to send is less than a full
segment and an ACK is expected/outstanding, the receiver’s
window is not half-open, etc. Much of transmit processing
will be in determining these conditions.

[0139] The fast-path is implemented as a finite state
machine (FSM) that covers at least three layers of the
protocol stack, i.e., IP, TCP, and Session. The following
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summarizes the steps involved in normal fast-path transmit
command processing: 1) get control of the associated CCB
(gotten from the command): this involves locking the CCB
to stop other processing (e.g. Receive) from altering it while
this transmit processing is taking place. 2) Get the CCB into
an SRAM CCB buffer. There are sixteen of these buffers in
SRAM and they are not flushed to DRAM until the buffer
space is needed by other CCBs. Acquisition and flushing of
these CCB buffers is controlled by a hardware LRU mecha-
nism. Thus getting into a buffer may involve flushing
another CCB from its SRAM buffer. 3) Process the send
command (EX_SCMD) event against the CCB’s FSM.

[0140] Eachevent and state intersection provides an action
to be executed and a new state. The following is an example
of the state/event transition, the action to be executed and the
new state for the SEND command while in transmit state
IDLE (SX_IDLE). The action from this state/event inter-
section is AX_NUCMD and the next state is XMIT COM-
MAND ACTIVE (SX_XMIT). To summarize, a command
to transmit data has been received while transmit is currently
idle. The action performs the following steps: 1) Store
details of the command into the CCB. 2) Check that it is
okay to transmit now (e.g. send window is not zero). 3) If
output is not possible, send the Check Output event to
Q_EVENT1 queue for the Transmit CCB’s FSM and exit. 4)
Get a DRAM 2 K-byte buffer from the Q-FREEL queue into
which to move the payload data. 5) DMA payload data from
the addresses in the scatter/gather lists in the command into
an offset in the DRAM buffer that leaves space for the frame
header. These DMAs will provide the checksum of the
payload data. 6) Concurrently with the above DMA, fill out
variable details in the frame header template in the CCB.
Also get the IP and TCP header checksums while doing this.
Note that base IP and TCP headers checksums are kept in the
CCB, and these are simply updated for fields that vary per
frame, viz. IP Id, IP length, IP checksum, TCP sequence and
ACK numbers, TCP window size, TCP flags and TCP
checksum. 7) When the payload is complete, DMA the
frame header from the CCB to the front of the DRAM buffer.
8) Queue the DRAM buffer (i.e., queue a buffer descriptor
that points to the DRAM buffer) to the appropriate
Q_UXMT queue for the interface for this CCB. 9) Deter-
mine if there is more payload in the command. If so, save the
current command transfer address details in the CCB and
send a CHECK OUTPUT event via the Q_EVENT1 queue
to the Transmit CCB. If not, send the ALL COMMAND
DATA SENT (EX_ACDS) event to the Transmit CCB. 10)
Exit from Transmit FSM processing.

[0141] Code that implements an embodiment of the Trans-
mit FSM (transmit software state machine 2231 of FIG. 21)
is found in CD Appendix B. In one embodiment, fast-path
transmit processing is controlled using write only transmit
configuration register (XmtCfg). Register XmtCfg has the
following portions: 1) Bit 31 (name: Reset). Writing a one
(1) will force reset asserted to the transmit sequencer of the
channel selected by XcvSel. 2) Bit 30 (name: XmtEn).
Writing a one (1) allows the transmit sequencer to run.
Writing a zero (0) causes the transmit sequencer to halt after
completion of the current packet. 3) Bit 29 (name: PauseEn).
Writing a one (1) allows the transmit sequencer to stop
packet transmission, after completion of the current packet,
whenever the receive sequencer detects an 802.3 X pause
command packet. 4) Bit 28 (name: LoadRng). Writing a one
(1) causes the data in RevAddrB[10:00] to be loaded in to
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the Mac’s random number register for use during collision
back-offs. 5) Bits 27:20 (name: Reserved). 6) Bits 19:15
(name: FreeQId). Selects the queue to which the freed buffer
descriptors will be written once the packet transmission has
been terminated, either successfully or unsuccessfully. 7)
Bits 14:10 (name: XmtQId). Selects the queue from which
the transmit buffer descriptors will be fetched for data
packets. 8) Bits 09:05 (name: CtrlQId). Selects the queue
from which the transmit buffer descriptors will be fetched
for control packets. These packets have transmission priority
over the data packets and will be exhausted before data
packets will be transmitted. 9) Bits 04:00 (name: VectQId).
Selects the queue to which the transmit vector data is written
after the completion of each packet transmit. In some
embodiments, transmit sequencer 2104 of FIG. 21 retrieves
buffer descriptors from two transmit queues, one of the
queues having a higher transmission priority than the other.
The higher transmission priority transmit queue is used for
the transmission of TCP ACKs, whereas the lower trans-
mission priority transmit queue is used for the transmission
of other types of packets. ACKs may be transmitted in
accordance with techniques set forth in U.S. patent appli-
cation Ser. No. 09/802,426 (the subject matter of which is
incorporated herein by reference). In some embodiments,
the processor that executes the Transmit FSM, the receive
and transmit sequencers, and the host processor that
executes the protocol stack are all realized on the same
printed circuit board. The printed circuit board may, for
example, be a card adapted for coupling to another com-
puter.

[0142] All told, the above-described devices and systems
for processing of data communication result in dramatic
reductions in the time and host resources required for
processing large, connection-based messages. Protocol pro-
cessing speed and efficiency is tremendously accelerated by
specially designed protocol processing hardware as com-
pared with a general purpose CPU running conventional
protocol software, and interrupts to the host CPU are also
substantially reduced. These advantages can be provided to
an existing host by addition of an intelligent network inter-
face card (INIC), or the protocol processing hardware may
be integrated with the CPU. In either case, the protocol
processing hardware and CPU intelligently decide which
device processes a given message, and can change the
allocation of that processing based upon conditions of the
message.

DISCLOSURE FROM PROVISIONAL
APPLICATION NO. 60/061,809

[0143] Background of the Invention.

[0144] Network processing as it exists today is a costly
and inefficient use of system resources. A 200 MHz Pen-
tium-Pro is typically consumed simply processing network
data from a 100 Mb/second-network connection. The rea-
sons that this processing is so costly are described here.

[0145] Too Many Data Moves.

[0146] When network packet arrives at a typical network
interface card (NIC), the NIC moves the data into pre-
allocated network buffers in system main memory. From
there the data is read into the CPU cache so that it can be
checksummed (assuming of course that the protocol in use
requires checksums. Some, like IPX, do not.). Once the data
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has been fully processed by the protocol stack, it can then be
moved into its final destination in memory. Since the CPU
is moving the data, and must read the destination cache line
in before it can fill it and write it back out, this involves at
a minimum two more trips across the system memory bus.
In short, the best one can hope for is that the data will get
moved across the system memory bus four times before it
arrives in its final destination. It can, and does, get worse. If
the data happens to get invalidated from system cache after
it has been checksummed, then it must get pulled back
across the memory bus before it can be moved to its final
destination. Finally, on some systems, including Windows
NT 4.0, the data gets copied yet another time while being
moved up the protocol stack. In NT 4.0, this occurs between
the miniport driver interface and the protocol driver inter-
face. This can add up to a whopping eight trips across the
system memory bus (the four trips described above, plus the
move to replenish the cache, plus three more to copy from
the miniport to the protocol driver). That’s enough to bring
even today’s advanced memory busses to their knees.

[0147] Too Much Processing by the CPU.

[0148] In all but the original move from the NIC to system
memory, the system CPU is responsible for moving the data.
This is particularly expensive because while the CPU is
moving this data it can do nothing else. While moving the
data the CPU is typically stalled waiting for the relatively
slow memory to satisfy its read and write requests. A CPU,
which can execute an instruction every 5 nanoseconds, must
now wait as long as several hundred nanoseconds for the
memory controller to respond before it can begin its next
instruction. Even today’s advanced pipelining technology
doesn’t help in these situations because that relies on the
CPU being able to do useful work while it waits for the
memory controller to respond. If the only thing the CPU has
to look forward to for the next several hundred instructions
is more data moves, then the CPU ultimately gets reduced to
the speed of the memory controller.

[0149] Moving all this data with the CPU slows the system
down even after the data has been moved. Since both the
source and destination cache lines must be pulled into the
CPU cache when the data is moved, more than 3 k of
instructions and or data resident in the CPU cache must be
flushed or invalidated for every 1500 byte frame. This is of
course assuming a combined instruction and data second
level cache, as is the case with the Pentium processors. After
the data has been moved, the former resident of the cache
will likely need to be pulled back in, stalling the CPU even
when we are not performing network processing. Ideally a
system would never have to bring network frames into the
CPU cache, instead reserving that precious commodity for
instructions and data that are referenced repeatedly and
frequently.

[0150] But the data movement is not the only drain on the
CPU. There is also a fair amount of processing that must be
done by the protocol stack software. The most obvious
expense is calculating the checksum for each TCP segment
(or UDP datagram). Beyond this, however, there is other
processing to be done as well. The TCP connection object
must be located when a given TCP segment arrives, IP
header checksums must be calculated, there are buffer and
memory management issues, and finally there is also the
significant expense of interrupt processing which we will
discuss in the following section.
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[0151] Too Many Interrupts.

[0152] A 64 k SMB request (write or read-reply) is typi-
cally made up of 44 TCP segments when running over
Ethernet (1500 byte MTU). Each of these segments may
result in an interrupt to the CPU. Furthermore, since TCP
must acknowledge all of this incoming data, it’s possible to
get another 44 transmit-complete interrupts as a result of
sending out the TCP acknowledgements. While this is
possible, it is not terribly likely. Delayed ACK timers allow
us to acknowledge more than one segment at a time. And
delays in interrupt processing may mean that we are able to
process more than one incoming network frame per inter-
rupt. Nevertheless, even if we assume four incoming frames
per input, and an acknowledgement for every two segments
(as is typical per the ACK-every-other-segment property of
TCP), we are still left with 33 interrupts per 64 k SMB
request.

[0153] Interrupts tend to be very costly to the system.
Often when a system is interrupted, important information
must be flushed or invalidated from the system cache so that
the interrupt routine instructions, and needed data can be
pulled into the cache. Since the CPU will return to its prior
location after the interrupt, it is likely that the information
flushed from the cache will immediately need to be pulled
back into the cache.

[0154] What’s more, interrupts force a pipeline flush in
today’s advanced processors. While the processor pipeline is
an extremely efficient way of improving CPU performance,
it can be expensive to get going after it has been flushed.

[0155] Finally, each of these interrupts results in expen-
sive register accesses across the peripheral bus (PCI). This
is discussed more in the following section.

[0156]

[0157] We noted earlier that when the CPU has to access
system memory, it may be stalled for several hundred
nanoseconds. When it has to read from PCI, it may be stalled
for many microseconds. This happens every time the CPU
takes an interrupt from a standard NIC. The first thing the
CPU must do when it receives one of these interrupts is to
read the NIC Interrupt Status Register (ISR) from PCI to
determine the cause of the interrupt. The most troubling
thing about this is that since interrupt lines are shared on
PC-based systems, we may have to perform this expensive
PCI read even when the interrupt is not meant for us.

Inefficient Use of the Peripheral Bus (PCI).

[0158] There are other peripheral bus inefficiencies as
well. Typical NICs operate using descriptor rings. When a
frame arrives, the NIC reads a receive descriptor from
system memory to determine where to place the data. Once
the data has been moved to main memory, the descriptor is
then written back out to system memory with status about
the received frame. Transmit operates in a similar fashion.
The CPU must notify that NIC that it has a new transmit.
The NIC will read the descriptor to locate the data, read the
data itself, and then write the descriptor back with status
about the send. Typically on transmits the NIC will then read
the next expected descriptor to see if any more data needs to
be sent. In short, each receive or transmit frame results in 3
or 4 separate PCI reads or writes (not counting the status
register read).
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[0159] Summary of the Invention.

[0160] Alacritech was formed with the idea that the net-
work processing described above could be offloaded onto a
cost-effective Intelligent Network Interface Card (INIC).
With the Alacritech INIC, we address each of the above
problems, resulting in the following advancements:

[0161] 1. The vast majority of the data is moved
directly from the INIC into its final destination. A
single trip across the system memory bus.

[0162] 2. There is no header processing, little data
copying, and no checksumming required by the
CPU. Because of this, the data is never moved into
the CPU cache, allowing the system to keep impor-
tant instructions and data resident in the CPU cache.

[0163] 3. Interrupts are reduced to as little as 4
interrupts per 64 k SMB read and 2 per 64 k SMB
write.

[0164] 4. There are no CPU reads over PCI and there
are fewer PCI operations per receive or transmit
transaction.

[0165] In the remainder of this document we will describe
how we accomplish the above.

[0166] Perform Transport Level Processing on the INIC.

[0167] In order to keep the system CPU from having to
process the packet headers or checksum, the packet, we must
perform this task on the INIC. This is a daunting task. There
are more than 20,000 lines of C code that make up the
FreeBSD TCP/IP protocol stack. Clearly this is more code
than could be efficiently handled by a competitively priced
network card. Furthermore, as noted above, the TCP/IP
protocol stack is complicated enough to consume a 200
MHz Pentium-Pro. Clearly in order to perform this function
on an inexpensive card, we need special network processing
hardware as opposed to simply using a general purpose
CPU.

[0168] Only Support TCP/IP.

[0169] In this section we introduce the notion of a “con-
text”. A context is required to keep track of information that
spans many, possibly discontiguous, pieces of information.
When processing TCP/IP data, there are actually two con-
texts that must be maintained. The first context is required to
reassemble IP fragments. It holds information about the
status of the IP reassembly as well as any checksum infor-
mation being calculated across the IP datagram (UDP or
TCP). This context is identified by the IP_ID of the datagram
as well as the source and destination IP addresses. The
second context is required to handle the sliding window
protocol of TCP. It holds information about which segments
have been sent or received, and which segments have been
acknowledged, and is identified by the IP source and desti-
nation addresses and TCP source and destination ports.

[0170] If we were to choose to handle both contexts in
hardware, we would have to potentially keep track of many
pieces of information. One such example is a case in which
a single 64 k SMB write is broken down into 44 1500 byte
TCP segments, which are in turn broken down into 131 576
byte IP fragments, all of which can come in any order
(though the maximum window size is likely to restrict the
number of outstanding segments considerably).

Alacritech, Ex. 2021 Page 110



US 2004/0064578 Al

[0171] Fortunately, TCP performs a Maximum Segment
Size negotiation at connection establishment time, which
should prevent IP fragmentation in nearly all TCP connec-
tions. The only time that we should end up with fragmented
TCP connections is when there is a router in the middle of
a connection which must fragment the segments to support
a smaller MTU. The only networks that use a smaller MTU
than Ethernet are serial line interfaces such as SLIP and PPP.
At the moment, the fastest of these connections only run at
128 k (ISDN) so even if we had 256 of these connections,
we would still only need to support 34 Mb/sec, or a little
over three 10 bT connections worth of data. This is not
enough to justify any performance enhancements that the
INIC offers. If this becomes an issue at some point, we may
decide to implement the MTU discovery algorithm, which
should prevent TCP fragmentation on all connections
(unless an ICMP redirect changes the connection route while
the connection is established).

[0172] With this in mind, it seems a worthy sacrifice to not
attempt to handle fragmented TCP segments on the INIC.
UDP is another matter. Since UDP does not support the
notion of a Maximum Segment Size, it is the responsibility
of IP to break down a UDP datagram into MTU sized
packets. Thus, fragmented UDP datagrams are very com-
mon. The most common UDP application running today is
NEFSV2 over UDP. While this is also the most common
version of NFS running today, the current version of Solaris
being sold by Sun Microsystems runs NFSV3 over TCP by
default. We can expect to see the NESV2/UDP traffic start to
decrease over the coming years. In summary, we will only
offer assistance to non-fragmented TCP connections on the
INIC.

[0173] Don’t Handle TCP “Exceptions”.

[0174] As noted above, we won’t provide support for
fragmented TCP segments on the INIC.

[0175] We have also opted to not handle TCP connection
and breakdown. Here is a list of other TCP “exceptions”
which we have elected to not handle on the INIC:

[0176] Fragmented Segments—Discussed above.

[0177] Retransmission Timeout—Occurs when we
do not get an acknowledgement for previously sent
data within the expected time period.

[0178] Out of order segments—Occurs when we
receive a segment with a sequence number other than
the next expected sequence number.

[0179] FIN segment—Signals the close of the con-
nection.

[0180] Since we have now eliminated support for so many
different code paths, it might seem hardly worth the trouble
to provide any assistance by the card at all. This is not the
case. According to W. Richard Stevens and Gary Write in
their book “TCP/IP Ilustrated Volume 27, TCP operates
without experiencing any exceptions between 97 and 100
percent of the time in local area networks. As network,
router, and switch reliability improve this number is likely to
only improve with time.

[0181] Two Modes of Operation.

[0182] So the next question is what to do about the
network packets that do not fit our criteria. The answer
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shown in FIG. 24 is to use two modes of operation: One in
which the network frames are processed on the INIC
through TCP and one in which the card operates like a
typical dumb NIC. We call these two modes fast-path, and
slow-path. In the slow-path case, network frames are handed
to the system at the MAC layer and passed up through the
host protocol stack like any other network frame. In the fast
path case, network data is given to the host after the headers
have been processed and stripped.

[0183] The transmit case works in much the same fashion.
In slow-path mode the packets are given to the INIC with all
of the headers attached. The INIC simply sends these
packets out as if it were a dumb NIC. In fast-path mode, the
host gives raw data to the INIC which it must carve into
MSS sized segments, add headers to the data, perform
checksums on the segment, and then send it out on the wire.

[0184] The TCB Cache.

[0185] Consider a situation in which a TCP connection is
being handled by the card and a fragmented TCP segment
for that connection arrives. In this situation, it will be
necessary for the card to turn control of this connection over
to the host.

[0186] This introduces the notion of a Transmit Control
Block (TCB) cache. A TCB is a structure that contains the
entire context associated with a connection. This includes
the source and destination IP addresses and source and
destination TCP ports that define the connection. It also
contains information about the connection itself such as the
current send and receive sequence numbers, and the first-hop
MAC address, etc. The complete set of TCBs exists in host
memory, but a subset of these may be “owned” by the card
at any given time. This subset is the TCB cache. The INIC
can own up to 256 TCBs at any given time.

[0187] TCBs are initialized by the host during TCP con-
nection setup. Once the connection has achieved a “steady-
state” of operation, its associated TCB can then be turned
over to the INIC, putting us into fast-path mode. From this
point on, the INIC owns the connection until either a FIN
arrives signaling that the connection is being closed, or until
an exception occurs which the INIC is not designed to
handle (such as an out of order segment). When any of these
conditions occur, the INIC will then flush the TCB back to
host memory, and issue a message to the host telling it that
it has relinquished control of the connection, thus putting the
connection back into slow-path mode. From this point on,
the INIC simply hands incoming segments that are destined
for this TCB off to the host with all of the headers intact.

[0188] Note that when a connection is owned by the INIC,
the host is not allowed to reference the corresponding TCB
in host memory as it will contain invalid information about
the state of the connection.

[0189] TCP Hardware Assistance.

[0190] When a frame is received by the INIC, it must
verify it completely before it even determines whether it
belongs to one of its TCBs or not. This includes all header
validation (is it IP, IPV4 or V6, is the IP header checksum
correct, is the TCP checksum correct, etc). Once this is done
it must compare the source and destination IP address and
the source and destination TCP port with those in each of its
TCBs to determine if it is associated with one of its TCBs.
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This is an expensive process. To expedite this, we have
added several features in hardware to assist us. The header
is fully parsed by hardware and its type is summarized in a
single status word. The checksum is also verified automati-
cally in hardware, and a hash key is created out of the IP
addresses and TCP ports to expedite TCB lookup. For full
details on these and other hardware optimizations, refer to
the INIC Hardware Specification sections (Heading 8).

[0191] With the aid of these and other hardware features,
much of the work associated with TCPis done essentially for
free. Since the card will automatically calculate the check-
sum for TCP segments, we can pass this on to the host, even
when the segment is for a TCB that the INIC does not own.

[0192] TCP Summary.

[0193] By moving TCP processing down to the INIC we
have offloaded the host of a large amount of work. The host
no longer has to pull the data into its cache to calculate the
TCP checksum. It does not have to process the packet
headers, and it does not have to generate TCP ACKs. We
have achieved most of the goals outlined above, but we are
not done yet.

[0194] Transport Layer Interface.

[0195] This section defines the INIC’s relation to the hosts
transport layer interface (Called TDI or Transport Driver
Interface in Windows NT). For full details on this interface,
refer to the Alacritech TCP (ATCP) driver specification
(Heading 4).

[0196] Receive.

[0197] Simply implementing TCP on the INIC does not
allow us to achieve our goal of landing the data in its final
destination. Somehow the host has to tell the INIC where to
put the data. This is a problem in that the host cannot do this
without knowing what the data actually is. Fortunately, NT
has provided a mechanism by which a transport driver can
“indicate” a small amount of data to a client above it while
telling it that it has more data to come. The client, having
then received enough of the data to know what it is, is then
responsible for allocating a block of memory and passing the
memory address or addresses back down to the transport
driver, which is in turn responsible for moving the data into
the provided location.

[0198] We will make use of this feature by providing a
small amount of any received data to the host, with a
notification that we have more data pending. When this
small amount of data is passed up to the client, and it returns
with the address in which to put the remainder of the data,
our host transport driver will pass that address to the INIC
which will DMA the remainder of the data into its final
destination.

[0199] Clearly there are circumstances in which this does
not make sense. When a small amount of data (500 bytes for
example), with a push flag set indicating that the data must
be delivered to the client immediately, it does not make
sense to deliver some of the data directly while waiting for
the list of addresses to DMA the rest. Under these circum-
stances, it makes more sense to deliver the 500 bytes directly
to the host, and allow the host to copy it into its final
destination. While various ranges are feasible, it is currently
preferred that anything less than a segment’s (1500 bytes)
worth of data will be delivered directly to the host, while
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anything more will be delivered as a small piece which may
be 128 bytes, while waiting until receiving the destination
memory address before moving the rest.

[0200] The trick then is knowing when the data should be
delivered to the client or not. As we’ve noted, a push flag
indicates that the data should be delivered to the client
immediately, but this alone is not sufficient. Fortunately, in
the case of NetBIOS transactions (such as SMB), we are
explicitly told the length of the session message in the
NetBIOS header itself. With this we can simply indicate a
small amount of data to the host immediately upon receiving
the first segment. The client will then allocate enough
memory for the entire NetBIOS transaction, which we can
then use to DMA the remainder of the data into as it arrives.
In the case of a large (56 k for example) NetBIOS session
message, all but the first couple hundred bytes will be
DMA’d to their final destination in memory.

[0201] But what about applications that do not reside
above NetBIOS? In this case we can not rely on a session
level protocol to tell us the length of the transaction. Under
these circumstances we will buffer the data as it arrives until
A) we have receive some predetermined number of bytes
such as 8 k, or B) some predetermined period of time passes
between segments or C) we get a push flag. If after any of
these conditions occur we will then indicate some or all of
the data to the host depending on the amount of data
buffered. If the data buffered is greater than about 1500 bytes
we must then also wait for the memory address to be
returned from the host so that we may then DMA the
remainder of the data.

[0202] Transmit.

[0203] The transmit case is much simpler. In this case the
client (NetBIOS for example) issues a TDI Send with a list
of memory addresses which contain data that it wishes to
send along with the length. The host can then pass this list
of addresses and length off to the INIC. The INIC will then
pull the data from its source location in host memory, as it
needs it, until the complete TDI request is satisfied.

[0204] Affects on Interrupts.

[0205] Note that when we receive a large SMB transac-
tion, for example, that there are two interactions between the
INIC and the host. The first in which the INIC indicates a
small amount of the transaction to the host, and the second
in which the host provides the memory location(s) in which
the INIC places the remainder of the data. This results in
only two interrupts from the INIC. The first when it indicates
the small amount of data and the second after it has finished
filling in the host memory given to it. A drastic reduction
from the 33/64 k SMB request that we estimate at the
beginning of this section. On transmit, we actually only
receive a single interrupt when the send command that has
been given to the INIC completes.

[0206] Transport Layer Interface Summary.

[0207] Having now established our interaction with
Microsoft’s TDI interface, we have achieved our goal of
landing most of our data directly into its final destination in
host memory. We have also managed to transmit all data
from its original location on host memory. And finally, we
have reduced our interrupts to 2 per 64 k SMB read and 1
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per 64 k SMB write. The only thing that remains in our list
of objectives is to design an efficient host (PCI) interface.

[0208] Host (PCI) Interface.

[0209] In this section we define the host interface. For a
more detailed description, refer to the “Host Interface Strat-
egy for the Alacritech INIC” section (Heading 3).

[0210] Avoid PCI Reads.

[0211] One of our primary objectives in designing the host
interface of the INIC was to eliminate PCI reads in either
direction. PCI reads are particularly inefficient in that they
completely stall the reader until the transaction completes.
As noted above, this could hold a CPU up for several
microseconds, a thousand times the time typically required
to execute a single instruction. PCI writes on the other hand,

are usually buffered by the memory-bus<=>PCI-bridge
allowing the writer to continue on with other instructions.
This technique is known as “posting”.

[0212] Memory-Based Status Register.

[0213] The only PCI read that is required by most NICs is
the read of the interrupt status register. This register gives the
host CPU information about what event has caused an
interrupt (if any). In the design of our INIC we have elected
to place this necessary status register into host memory.
Thus, when an event occurs on the INIC, it writes the status
register to an agreed upon location in host memory. The
corresponding driver on the host reads this local register to
determine the cause of the interrupt. The interrupt lines are
held high until the host clears the interrupt by writing to the
INIC’s Interrupt Clear Register. Shadow registers are main-
tained on the INIC to ensure that events are not lost.

[0214] Buffer Addresses are Pushed to the INIC.

[0215] Since it is imperative that our INIC operate as
efficiently as possible, we must also avoid PCI reads from
the INIC. We do this by pushing our receive buffer addresses
to the INIC. As mentioned at the beginning of this section,
most NICs work on a descriptor queue algorithm in which
the NIC reads a descriptor from main memory in order to
determine where to place the next frame. We will instead
write receive buffer addresses to the INIC as receive buffers
are filled. In order to avoid having to write to the INIC for
every receive frame, we instead allow the host to pass off a
pages worth (4 k) of buffers in a single write.

[0216] Support Small and Large Buffers on Receive.

[0217] In order to reduce further the number of writes to
the INIC, and to reduce the amount of memory being used
by the host, we support two different buffer sizes. A small
buffer contains roughly 200 bytes of data payload, as well as
extra fields containing status about the received data bring-
ing the total size to 256 bytes. We can therefore pass 16 of
these small buffers at a time to the INIC. Large buffers are
2 k in size. They are used to contain any fast or slow-path
data that does not fit in a small buffer. Note that when we
have a large fast-path receive, a small buffer will be used to
indicate a small piece of the data, while the remainder of the
data will be DMA’d directly into memory. Large buffers are
never passed to the host by themselves, instead they are
always accompanied by a small buffer which contains status
about the receive along with the large buffer address. By
operating in the manner, the driver must only maintain and
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process the small buffer queue. Large buffers are returned to
the host by virtue of being attached to small buffers. Since
large buffers are 2 k in size they are passed to the INIC 2
buffers at a time.

[0218] Command and Response Buffers.

[0219] In addition to needing a manner by which the INIC
can pass incoming data to us, we also need a manner by
which we can instruct the INIC to send data. Plus, when the
INIC indicates a small amount of data in a large fast-path
receive, we need a method of passing back the address or
addresses in which to put the remainder of the data. We
accomplish both of these with the use of a command buffer.
Sadly, the command buffer is the only place in which we
must violate our rule of only pushing data across PCI. For
the command buffer, we write the address of command
buffer to the INIC. The INIC then reads the contents of the
command buffer into its memory so that it can execute the
desired command. Since a command may take a relatively
long time to complete, it is unlikely that command buffers
will complete in order. For this reason we also maintain a
response buffer queue. Like the small and large receive
buffers, a page worth of response buffers is passed to the
INIC at a time. Response buffers are only 32 bytes, so we
have to replenish the INIC’s supply of them relatively
infrequently. The response buffers only purpose is to indi-
cate the completion of the designated command buffer, and
to pass status about the completion.

EXAMPLES

[0220] In this section we will provide a couple of
examples describing some of the differing data flows that we
might see on the Alacritech INIC.

[0221] Fast-Path 56 K NetBIOS Session Message.

[0222] Tet’s say a 56 k NetBIOS session message is
received on the INIC. The first segment will contain the
NetBIOS header, which contains the total NetBIOS length.
Asmall chunk of this first segment is provided to the host by
filling in a small receive buffer, modifying the interrupt
status register on the host, and raising the appropriate
interrupt line. Upon receiving the interrupt, the host will
read the ISR, clear it by writing back to the INIC’s Interrupt
Clear Register, and will then process its small receive buffer
queue looking for receive buffers to be processed. Upon
finding the small buffer, it will indicate the small amount of
data up to the client to be processed by NetBIOS. It will also,
if necessary, replenish the receive buffer pool on the INIC by
passing off a pages worth of small buffers. Meanwhile, the
NetBIOS client will allocate a memory pool large enough to
hold the entire NetBIOS message, and will pass this address
or set of addresses down to the transport driver. The trans-
port driver will allocate an INIC command buffer, fill it in
with the list of addresses, set the command type to tell the
INIC that this is where to put the receive data, and then pass
the command off to the INIC by writing to the command
register. When the INIC receives the command buffer, it will
DMA the remainder of the NetBIOS data, as it is received,
into the memory address or addresses designated by the host.
Once the entire NetBIOS transaction is complete, the INIC
will complete the command by writing to the response buffer
with the appropriate status and command buffer identifier.

[0223] In this example, we have two interrupts, and all but
a couple hundred bytes are DMA’d directly to their final
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destination. On PCI we have two interrupt status register
writes, two interrupt clear register writes, a command reg-
ister write, a command read, and a response buffer write.

[0224] With a standard NIC this would result in an esti-
mated 30 interrupts, 30 interrupt register reads, 30 interrupt
clear writes, and 58 descriptor reads and writes. Plus the data
will get moved anywhere from 4 to 8 times across the system
memory bus.

[0225] Slow-Path Receive.

[0226] 1If the INIC receives a frame that does not contain
a TCP segment for one of its TCB’s, it simply passes it to the
host as if it were a dumb NIC. If the frame fits into a small
buffer (~200 bytes or less), then it simply fills in the small
buffer with the data and notifies the host. Otherwise it places
the data in a large buffer, writes the address of the large
buffer into a small buffer, and again notifies the host. The
host, having received the interrupt and found the completed
small buffer, checks to see if the data is contained in the
small buffer, and if not, locates the large buffer. Having
found the data, the host will then pass the frame upstream to
be processed by the standard protocol stack. It must also
replenish the INIC’s small and large receive buffer pool if
necessary.

[0227] With the INIC, this will result in one interrupt, one
interrupt status register write and one interrupt clear register
write as well as a possible small and or large receive buffer
register write. The data will go through the normal path
although if it is TCP data then the host will not have to
perform the checksum.

[0228] With a standard NIC this will result in a single
interrupt, an interrupt status register read, an interrupt clear
register write, and a descriptor read and write. The data will
get processed as it would by the INIC, except for a possible
extra checksum.

[0229] Fast-Path 400 Byte Send.

[0230] In this example, lets assume that the client has a
small amount of data to send. It will issue the TDI Send to
the transport driver which will allocate a command buffer,
fill it in with the address of the 400 byte send, and set the
command to indicate that it is a transmit. It will then pass the
command off to the INIC by writing to the command
register. The INIC will then DMA the 400 bytes into its own
memory, prepare a frame with the appropriate checksums
and headers, and send the frame out on the wire. After it has
received the acknowledgement it will then notify the host of
the completion by writing to a response buffer.

[0231] With the INIC, this will result in one interrupt, one
interrupt status register write, one interrupt clear register
write, a command buffer register write a command buffer
read, and a response buffer write. The data is DMA’d
directly from the system memory.

[0232] With a standard NIC this will result in a single
interrupt, an interrupt status register read, an interrupt clear
register write, and a descriptor read and write. The data
would get moved across the system bus a minimum of 4
times. The resulting TCP ACK of the data, however, would
add yet another interrupt, another interrupt status register
read, interrupt clear register write, a descriptor read and
write, and yet more processing by the host protocol stack.
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[0233] Host Interface Strategy for the Alacritech INIC.

[0234] This section describes the host interface strategy
for the Alacritech Intelligent Network Interface Card (INIC).
The goal of the Alacritech INIC is to not only process
network data through TCP, but also to provide zero-copy
support for the SMP upper-layer protocol. It achieves this by
supporting two paths for sending and receiving data, the
fast-path and the slow-path. The fast path data flow corre-
sponds to connections that are maintained on the NIC, while
slow-path traffic corresponds to network data for which the
NIC does not have a connection. The fast-path flow works
by passing a header to the host and subsequently holding
further data for that connection on the card until the host
responds via an INIC command with a set of buffers into
which to place the accumulated data. In the slow-path data
flow, the INIC will be operating as a “dumb” NIC, so that
these packets are simply dumped into frame buffers on the
host as they arrive. To do either path requires a pool of
smaller buffers to be used for headers and a pool of data
buffers for frames/data that are too large for the header
buffer, with both pools being managed by the INIC. This
section discusses how these two pools of data are managed
as well as how buffers are associated with a given context.

[0235] Receive Interface.

[0236] The varying requirements of the fast and slow
paths and a desire to save PCI bandwidth are the driving
forces behind the host interface that is described herein. As
mentioned above, the fast-path flow puts a header into a
header buffer that is then forwarded to the host. The host
uses the header to determine what further data is following,
allocates the necessary host buffers, and these are passed
back to the INIC via a command to the INIC. The INIC then
fills these buffers from data it was accumulating on the card
and notifies the host by sending a response to the command.
Alternatively, the fast-path may receive a header and data
that is a complete request, but that is also too large for a
header buffer. This results in a header and data buffer being
passed to the host. This latter flow is identical to the
slow-path flow, which also puts all the data into the header
buffer or, if the header is too small, uses a large (2 K) host
buffer for all the data. This means that on the unsolicited
receive path, the host will only see either a header buffer or
a header and at most, one data buffer. Note that data is never
split between a header and a data buffer.

[0237] FIG. 25 illustrates both situations. Since we want
to fill in the header buffer with a single DMA, the header
must be the last piece of data to be written to the host for any
received transaction.

[0238] Receive Interface Details.
[0239] Header Buffers.

[0240] Header buffers in host memory are 256 bytes long,
and are aligned on 256 byte boundaries. There will be a field
in the header buffer indicating it has valid data. This field
will initially be reset by the host before passing the buffer
descriptor to the INIC. A set of header buffers are passed
from the host to the INIC by the host writing to the “Header
Buffer Address Register” on the INIC. This register is
defined as follows:
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Bits 31-8 Physical address in host memory of the first of
a set of contiguous header buffers.
Bits 7-0 Number of header buffers passed.
[0241] In this way the host can, say, allocate 16 buffers in

a 4 K page, and pass all 16 buffers to the INIC with one
register write. The INIC will maintain a queue of these
header descriptors in the SmallHType queue in it’s own local
memory, adding to the end of the queue every time the host
writes to the Header Buffer Address Register. Note that the
single entry is added to the queue; the eventual dequeuer will
use the count after extracting that entry.

[0242] The header buffers, will be used and returned to the
host in the same order that they were given to the INIC. The
valid field will be set by the INIC before returning the buffer
to the host. In this way a PCI interrupt, with a single bit in
the interrupt register, may be generated to indicate that there
is a header buffer for the host to process. When servicing this
interrupt, the host will look at its queue of header buffers,
reading the valid field to determine how many header buffers
are to be processed.

[0243] Receive Data Buffers.

[0244] Receive data buffers in host memory are aligned to
page boundaries, assumed here to be 2 K bytes long and
aligned on 4 K page boundaries, 2 buffers per page. In order
to pass receive data buffers to the INIC, the host must write
to two registers on the INIC. The first register to be written
is the “Data Buffer Handle Register.” The buffer handle is
not significant to the INIC, but will be copied back to the
host to return the buffer to the host. The second register
written is the Data Buffer Address Register. This is the
physical address of the data buffer. When both registers have
been written, the INIC will add the contents of these two
registers to FreeType queue of data buffer descriptors. Note
that the INIC host driver sets the handle register first, then
the address register. There needs to be some mechanism put
in place to ensure the reading of these registers does not get
out of sync with writing them. Effectively the INIC can read
the address register first and save its contents, then read the
handle register. It can then lock the register pair in some
manner such that another write to the handle register is not
permitted until the current contents have been saved. Both
addresses extracted from the registers are to be written to the
FreeType queue. The INIC will extract 2 entries each time
when dequeuing.

[0245] Data buffers will be allocated and used by the INIC
as needed. For each data buffer used by a slow-path trans-
action, the data buffer handle will be copied into a header
buffer. Then the header buffer will be returned to the host.

[0246] Transmit Interface.
[0247] Transmit Interface Overview.

[0248] The transmit interface shown in FIG. 26, like the
receive interface, has been designed to minimize the amount
of PCI bandwidth and latencies. In order to transmit data, the
host will transfer a command buffer to the INIC. This
command buffer will include a command buffer handle, a
command field, possibly a TCP context identification, and a
list of physical data pointers. The command buffer handle is
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defined to be the first word of the command buffer and is
used by the host to identify the command. This word will be
passed back to the host in a response buffer, since commands
may complete out of order, and the host will need to know
which command is complete. Commands will be used for
many reasons, but primarily to cause the INIC to transmit
data, or to pass a set of buffers to the INIC for input data on
the fast-path as previously discussed.

[0249] Response buffers are physical buffers in host
memory. They are used by the INIC in the same order as they
were given to it by the host. This enables the host to know
which response buffer(s) to next look at when the INIC
signals a command completion.

[0250] Transmit Interface Details.
[0251] Command Buffers.

[0252] Command buffers in host memory are a multiple of
32 bytes, up to a maximum of 1 K bytes, and are aligned on
32 byte boundaries. A command buffer is passed to the INIC
by writing to one of five “Command Buffer Address Reg-
isters.” These registers are defined as follows:

Bits 31-5
Bits 4-0

Physical address in host memory of the command buffer.
Length of command buffer in bytes/32 (i.e. number of
multiples of 32 bytes).

[0253] This is the physical address of the command buffer.
The register to which the command is written predetermines
the XMT interface number, or if the command is for the
RCV CPU; hence there will be 5 of them, 0-3 for XMT and
4 for RCV. When one of these registers has been written, the
INIC will add the contents of the register to it’s own internal
queue of command buffer descriptors. The first word of all
command buffers is defined to be the command buffer
handle. It is the job of the utility CPU to extract a command
from its local queue, DMA the command into a small INIC
buffer (from the FreeSType queue), and queue that buffer
into the Xmit#Type queue, where # is 0-3 depending on the
interface, or the appropriate RCV queue. The receiving CPU
will service the queues to perform the commands. When that
CPU has completed a command, it extracts the command
buffer handle and passes it back to the host via a response
buffer.

[0254] Response Buffers.

[0255] Response buffers in host memory are 32 bytes long
and aligned on 32 byte boundaries. They are handled in a
very similar fashion to header buffers. There will be a field
in the response buffer indicating it has valid data. This field
will initially be reset by the host before passing the buffer
descriptor to the INIC. A set of response buffers are passed
from the host to the INIC by the host writing to the
“Response Buffer Address Register” on the INIC. This
register is defined as follows:

Bits 31-8 Physical address in host memory of the first of a
set of contiguous response buffers.
Bits 7-0 Number of response buffers passed.
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[0256] In this way the host can, say, allocate 128 buffers
in a 4 K page, and pass all 128 buffers to the INIC with one
register write. The INIC will maintain a queue of these
header descriptors in it’s ResponseType queue, adding to the
end of the queue every time the host writes to the “Response
Buffer Address Register”. The INIC writes the extracted
contents including the count, to the queue in exactly the
same manner as for the header buffers.

[0257] The response buffers can be used and returned to
the host in the same order that they were given to the INIC.
The valid field will be set by the INIC before returning the
buffer to the host. In this way a PCI interrupt, with a single
bit in the interrupt register, may be generated to indicate that
there is a response buffer for the host to process. When
servicing this interrupt, the host will look at its queue of
response buffers, reading the valid field to determine how
many response buffers are to be processed.

[0258]

[0259] FIG. 27 shows the general format of this register.
The setting of any bits in the ISR will cause an interrupt,
provided the corresponding bit in the Interrupt Mask Reg-
ister is set. The default setting for the IMR is 0.

Interrupt Status Register/Interrupt Mask Register.

[0260] The INIC is configured so that the host should
never need to directly read the ISR from the INIC. To
support this, it is important for the host/INIC to arrange a
buffer area in host memory into which the ISR is dumped.
The address and size of that area ca be passed to the INIC
via a command on the XMT interface. That command will
also specity the setting for the IMR. Until the INIC receives
this command, it will not DMA the ISR to host memory, and
no events will cause an interrupt. The host could if neces-
sary, read the ISR directly from the INIC in this case.

[0261] For the host to never have to actually read the
register from the INIC itself, it is necessary for the INIC to
update this host copy of the register whenever anything in it
changes.

[0262] The host will Ack (or deassert) events in the
register by writing the register with 0’s in appropriate bit
fields. So that the host does not miss events, the following
scheme has been developed:

[0263] The INIC keeps a local copy of the register when-
ever it DMAs it to the host i.e. after some event(s). Call this
COPYA Then the INIC starts accumulating any new events
not reflected in the host copy in a separate word. Call this
NEWA. As the host clears bits by writing the register back
with those bits set to zero, the INIC clears these bits in
COPYA (or the host write-back goes directly to COPYA). If
there are new events in NEWA, it ORs them with COPYA,
and DMAs this new ISR to the host. This new ISR then
replaces COPYA, NEWA is cleared and the cycle then
repeats.

[0264] Register Address.

[0265] For the sake of simplicity, in this example of FIG.
28 the registers are at 4-byte increments from whatever the
base address is.
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[0266] Alacritech TCP (ATCP) Design Specification.

[0267] This section outlines the design specification for
the Alacritech TCP (ATCP) transport driver. The ATCP
driver consists of three components:

[0268] 1. The bulk of the protocol stack is based on
the FreeBSD TCP/IP protocol stack. This code per-
forms the Ethernet, ARP, IP, ICMP, and (slow path)
TCP processing for the driver.

[0269] 2. At the top of the protocol stack we intro-
duce an NT filter driver used to intercept TDI
requests destined for the Microsoft TCP driver.

[0270] 3. At the bottom of the protocol stack we
include an NDIS protocol-driver interface which
allows us to communicate with the INIC miniport
NDIS driver beneath the ATCP driver.

[0271] This section covers each of these topics, as well as
issues common to the entire ATCP driver.

[0272] Coding Style.

[0273] In order to ensure that our ATCP driver is written
in a consistent manner, we have adopted a set of coding
guidelines. These guidelines are introduced with the phi-
losophy that we should write code in a Microsoft style since
we are introducing an NT-based product. The guidelines
below apply to all code that we introduce into our driver.
Since a very large portion of our ATCP driver will be based
on FreeBSD, and since we are somewhat time-constrained
on our driver development, the ported FreeBSD code will be
exempt from these guidelines.

[0274] 1. Global symbols—All function names and
global variables in the ATCP driver should begin
with the “ATK” prefix (ATKSend( ) for instance).

[0275] 2. Variable names—Microsoft seems to use
capital letters to separate multi-word variable names
instead of underscores (VariableName instead of
variable_name). We should adhere to this style.

[0276] 3. Structure pointers—Microsoft typedefs all
of their structures. The structure types are always
capitals and they typedef a pointer to the structure as
“P”<name> as follows:

typedef struct_FOO {
INT bar;
} FOO, *PFOO;

[0277] We will adhere to this style.

[0278] 4. Function calls—Microsoft separates func-
tion call arguments on separate lines:

X = foobar(
argumentl,
argument2,

)
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[0279] We will adhere to this style.

[0280] 5. Comments—While Microsoft seems to
alternatively use // and /**/ comment notation, we
will exclusively use the /**/ notation.

[0281] 6. Function comments—Microsoft includes
comments with each function that describe the func-
tion, its arguments, and its return value. We will also
include these comments, but will move them from
within the function itself to just prior to the function
for better readability.

[0282] 7. Function arguments—Microsoft includes
the keywords IN and OUT when defining function
arguments. These keywords denote whether the
function argument is used as an input parameter, or
alternatively as a placeholder for an output param-
eter. We will include these keywords.

[0283] 8. Function prototypes—We will include
function prototypes in the most logical header file
corresponding to the .c file. For example, the proto-
type for function foo( ) found in foo.c will be placed
in foo.h.

[0284] 9. Indentation—Microsoft code fairly consis-
tently uses a tabstop of 4. We will do likewise.

[0285] 10. Header file #ifndef—ecach header file
should contain a #ifndef/#define/#fendif which is
used to prevent recursive header file includes. For
example, foo.h would include:

#ifndef FOO_H__
#define FOO_H__
<foo.h contents..>
#endif/*__FOO_H__*/
Note the. NAME_ H_ format.

[0286] 11. Each file must contain a comment at the
beginning which includes the $Id$ as follows:

/*
* $1d$

[0287] CVS (RCS) will expand this keyword to
denote RCS revision, timestamps, author, etc.

[0288] SMP

[0289] This section describes the process by which we will
make the ATCP driver SMP safe. The basic rule for SMP
kernel code is that any access to a memory variable must be
protected by a lock that prevents a competing access by code
running on another processor. Spinlocks are the normal
locking method for code paths which do not take a long time
to execute (and which do not sleep.)

[0290] In general each instance of a structure will include
a spinlock, which must be acquired before members of that
structure are accessed, and held while a function is accessing
that instance of the structure. Structures which are logically
grouped together may be protected by a single spinlock: for
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example, the ‘in_pcb’ structure, ‘tcpcb’ structure, and
‘socket’ structure which together constitute the administra-
tive information for a TCP connection will probably be
collectively managed by a single spinlock in the ‘socket’
structure.

[0291] In addition, every global data structure such as a
list or hash table must also have a protecting spinlock which
must be held while the structure is being accessed or
modified. The NT DDK in fact provides a number of
convenient primitives for SMP-safe list manipulation, and it
is recommended that these be used for any new lists.
Existing list manipulations in the FreeBSD code can prob-
ably be left as-is to minimize code disturbance, except of
course that the necessary spinlock acquisition and release
must be added around them.

[0292] Spinlocks should not be held for long periods of
time, and most especially, must not be held during a sleep,
since this will lead to deadlocks. There is a significant
deficiency in the N'T kernel support for SMP systems: it does
not provide an operation which allows a spinlock to be
exchanged atomically for a sleep lock. This would be a
serious problem in a UNIX environment where much of the
processing occurs in the context of the user process which
initiated the operation. (The spinlock would have to be
explicitly released, followed by a separate acquisition of the
sleep lock: creating an unsafe window.)

[0293] The NT approach is more asynchronous, however:
IRPs are simply marked as ‘PENDING’ when an operation
cannot be completed immediately. The calling thread does
NOT sleep at that point: it returns, and may go on with other
processing. Pending IRPs are later completed, not by waking
up the thread which initiated them, but by an “loCompl-
eteRequest” call which typically runs at DISPATCH level in
an arbitrary context.

[0294] Thus we have not in fact used sleep locks anywhere
in the design of the AT'CP driver, hoping the above issue will
not arise.

[0295] Data Flow Overview.

[0296] The ATCP driver supports two paths for sending
and receiving data, the fast-path and the slow-path. The
fast-path data flow corresponds to connections that are
maintained on the INIC, while slow-path traffic corresponds
to network data for which the INIC does not have a
connection. In order to set some groundwork for the rest of
this section, these two data paths are summarized here.

[0297] Fast-Path Input Data Flow.
[0298] There are 2 different cases to consider:

[0299] 1.NETBIOS traffic (identifiable by port num-
ber.)

[0300] 2. Everything else.
[0301] NetBIOS Input.

[0302] As soon as the INIC has received a segment
containing a NETBIOS header, it will forward it up to the
TCP driver, along with the NETBIOS length from the
header. (In principle the host could get this from the header
itself, but since the INIC has already done the decode, it
seem reasonable to just pass it.)
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[0303] From the TDI spec, the amount of data in the buffer
actually sent must be at least 128 bytes. For small SMBs, all
of the received SMB should be forwarded; it will be
absorbed directly by the TDI client without any further MDL
exchange. Experiments tracing the TDI data flow show that
the NETBIOS client directly absorbs up to 1460 bytes: the
amount of payload data in a single Ethernet frame. Thus the
initial system specifies that the INIC will indicate anything
up to a complete segment to the ATCP driver. [See note (1)].

[0304] Once the INIC has passed up an indication with an
NETBIOS length greater than the amount of data in the
packet it passed, it will continue to accumulate further
incoming data in DRAM on the INIC. Overflow of INIC
DRAM buffers will be avoided by using a receive window
on the INIC at this point, which can be 8 K.

[0305] On receiving the indicated packet, the ATCP driver
will call the receive handler registered by the TDI client for
the connection, passing the actual size of the data in the
packet from the INIC as “bytes indicated” and the NET-
BIOS length as “bytes available.”[See note (2)].

[0306] In the “large data input” case, where “bytes avail-
able” exceeds the packet length, the TDI client will then
provide an MDL, associated with an IRP, which must be
completed when this MDL is filled. (This IRP/MDL may
come back either in the response to TCP’s call of the receive
handler, or as an explicit TDI_RECEIVE request.)

[0307] The ATCP driver will build a “receive request”
from the MDL information, and pass this to the INIC. This
request will contain:

[0308] 1) The TCP context identifier; 2) Size and offset
information; 3) A list of physical addresses corresponding to
the MDL pages; 4) A context field to allow the ATCP driver
to identify the request on completion; and 5) “Piggybacked”
window update information.

[0309] Note: the ATCP driver must copy any remaining
data (which was not taken by the receive handler) from the
segment indicated by the INIC to the start of the MDL, and
must adjust the size & offset information in the request
passed to the INIC to account for this.

[0310] The INIC will fill the given page(s) with incoming
data up to the requested amount, and respond to the ATCP
driver when this is done [See note (3)]. If the MDL is large,
the INIC may open up its advertised receive window for
improved throughput while filling the MDL. On receiving
the response from the INIC, the ATCP driver will complete
the IRP associated with this MDL, to tell the TDI client that
the data is available. At this point the cycle of events is
complete, and the ATCP driver is now waiting for the next
header indication.

[0311] Other TCP Input.

[0312] In the general case we do not have a higher-level
protocol header to enable us to predict that more data is
coming. So on non-NETBIOS connections, the INIC will
just accumulate incoming data in INIC DRAM up to a
quantity of 8 K in this example. Again, a maximum adver-
tised window size, which may be 16 K, will be used to
prevent overflow of INIC DRAM buffers.

[0313] When the prescribed amount has been accumu-
lated, or when a PSH flag is seen, the INIC will indicate a
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small packet which may be 128 bytes of the data to the ATCP
driver, along with the total length of the data accumulated in
INIC DRAM.

[0314] On receiving the indicated packet, the ATCP driver
will call the receive handler registered by the TDI client for
the connection, passing the actual size of the data in the
packet from the INIC as “bytes indicated” and the total
INIC-buffer length as “bytes available.”

[0315] As in the NETBIOS case, if “bytes available”
exceeds “bytes indicated”, the TDI client will provide an
IRP with an MDL. The ATCP driver will pass the MDL to
the INIC to be filled, as before. The INIC will reply to the
ATCP driver, which in turn will complete the IRP to the TDI
client.

[0316] Using an MDL from the client avoids a copy step.
However, if we can only buffer 8 K and delay indicating to
the ATCP driver until we have done so, a question arises
regarding further segments coming in, since INIC DRAM is
a scarce resource. We do not want to ACK with a zero-size
window advertisement: this would cause the transmitting
end to go into persist state, which is bad for throughput. If
the transmitting end is also our INIC, this results in having
to implement the persist timer on the INIC, which we do not
wish to do. Instead for large transfers (i.e. no PSH flag seen)
we will not send an ACK until the host has provided the
MDL, and also, to avoid stopping the transmitting end, we
will use a receive window of twice the amount we will buffer
before calling the host. Since the host comes back with the
MDL quite quickly (measured at <100 microseconds), we do
not expect to experience significant overruns.

[0317] INIC Receive Window Updates.

[0318] If the INIC “owns” an MDL provided by the TDI
client (sent by ATCP as a receive request), it will treat this
as a “promise” by the TDI client to accept the data placed in
it, and may therefore ACK incoming data as it is filling the

pages.

[0319] However, for small requests, there will be no MDL
returned by the TDI client: it absorbs all of the data directly
in the receive callback function. We need to update the
INIC’s view of data which has been accepted, so that it can
update its receive window. In order to be able to do this, the
ATCP driver will accumulate a count of data which has been
accepted by the TDI client receive callback function for a
connection.

[0320] From the INIC’s point of view, though, segments
sent up to the ATCP driver are just “thrown over the wall”;
there is no explicit reply path. We will therefore “piggyback”
the update on requests sent out to the INIC. Whenever the
ATCP driver has outgoing data for that connection, it will
place this count in a field in the send request (and then clear
the counter.) Any receive request (passing a receive MDL to
the INIC) may also be used to transport window update info
in the same way.

[0321] Note: we will probably also need to design a
message path whereby the ATCP driver can explicitly send
an update of this “bytes consumed” information (either
when it exceeds a preset threshold or if there are no requests
going out to the INIC for more than a given time interval),
to allow for possible scenarios in which the data stream is
entirely one-way.
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[0322] Notes.

[0323] 1) The PSH flag can help to identify small SMB
requests that fit into one segment.

[0324] 2) Actually, the observed “bytes available” from
the N'T TCP driver to its client’s callback in this case is
always 1460. The NETBIOS-aware TDI client presum-
ably calculates the size of the MDL it will return from
the NETBIOS header. So strictly speaking we do not
need the NETBIOS header length at this point: just an
indication that this is a header for a “large” size.
However, we *do* need an actual “bytes available”
value for the non-NETBIOS case, so we may as well
pass it.

[0325] 3) We observe that the PSH flag is set in the
segment completing each NETBIOS transfer. The INIC
can use this to determine when the current transfer is
complete and the MDL should be returned. It can, at
least in a debug mode, sanity check the amount of
received data against what is expected, though.

[0326] Fast-Path Output Data Flow.

[0327] The fast-path output data flow is similar to the
input data-flow, but simpler. In this case the TDI client will
provide a MDL to the ATCP driver along with an IRP to be
completed when the data is sent. The ATCP driver will then
give a request (corresponding to the MDL) to the INIC. This
request will contain:

[0328] 1) The TCP context identifier; 2) Size and offset
information; 3) A list of physical addresses corresponding to
the MDL pages; 4) A context field to allow the ATCP driver
to identify the request on completion; 5) “Piggybacked”
window update information (as discussed in section 6.1.3.)

[0329] The INIC will copy the data from the given physi-
cal location(s) as it sends the corresponding network frames
onto the network. When all of the data is sent, the INIC will
notify the host of the completion, and the ATCP driver will
complete the IRP.

[0330] Note that there may be multiple output requests
pending at any given time, since SMB allows multiple SMB
requests to be simultaneously outstanding.

[0331] Slow-Path Data Flow.

[0332] For data for which there is no connection being
maintained on the INIC, we will have to perform all of the
TCP, IP, and Ethernet processing ourselves. To accomplish
this we will port the FreeBSD protocol stack. In this mode,
the INIC will be operating as a “dumb NIC”; the packets
which pass over the NDIS interface will just contain MAC-
layer frames.

[0333] The MBUFs in the incoming direction will in fact
be managing NDIS-allocated packets. In the outgoing direc-
tion, we need protocol-allocated MBUFs in which to
assemble the data and headers. The MFREE macro must be
cognizant of the various types of MBUFs, and “do the right
thing” for each type.

[0334] We will retain a (modified) socket structure for
each connection, containing the socket buffer fields expected
by the FreeBSD code. The TCP code that operates on socket
buffers (adding/removing MBUFs to & from queues, indi-
cating acknowledged & received data etc) will remain
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essentially unchanged from the FreeBSD base (though most
of the socket functions & macros used to do this will need
to be modified; these are the functions in kem/
uipc_socket2.c)

[0335] The upper socket layer (kern/uipc_socket.c), where
the overlying OS moves data in and out of socket buffers,
must be entirely re-implemented to work in TDI terms.
Thus, instead of sosend( ), there will be a function that
copies data from the MDL provided in a TDI_SEND call
into socket buffer MBUFs. Instead of soreceive( ), there will
be a handler that calls the TDI client receive callback
function, and also copies data from socket buffer MBUFs
into any MDL provided by the TDI client (either explicitly
with the callback response or as a separate TDI_RECEIVE
call))

[0336] We must note that there is a semantic difference
between TDI_SEND and a write( ) on a BSD socket. The
latter may complete back to its caller as soon as the data has
been copied into the socket buffer. The completion of a
TDI_SEND, however, implies that the data has actually been
sent on the connection. Thus we will need to keep the
TDI_SEND IRPs (and associated MDLs) in a queue on the
socket until the TCP code indicates that the data from them
has been ACK’d.

[0337] Data Path Notes:

[0338] 1. There might be input data on a connection
object for which there is no receive handler function
registered. This has not been observed, but we can
probably just ASSERT for a missing handler for the
moment. If it should happen, however, we must assume
that the TDI client will be doing TDI RECEIVE calls
on the connection. If we can’t make a callup at the time
that the indication from the INIC appears, we can queue
the data and handle it when a TDI_RECEIVE does
appear.

[0339] 2. NT has a notion of “canceling” IRPs. It is
possible for us to get a “cancel” on an IRP correspond-
ing to an MDL which has been “handed” to the INIC
by a send or receive request. We can handle this by
being able to force the context back off the INIC, since
IRPs will only get cancelled when the connection is
being aborted.

[0340] Context Passing between ATCP and INIC. from
ATCP to INIC.

[0341] There is a synchronization problem that must be
addressed here. The ATCP driver will make a decision on a
given connection that this connection should now be passed
to the INIC. It builds and sends a command identifying this
connection to the INIC.

[0342] Before doing so, it must ensure that no slow-path
outgoing data is outstanding. This is not difficult; it simply
pends and queues any new TDI_SEND requests and waits
for any unacknowledged slow path output data to be
acknowledged before initiating the context pass operation.

[0343] The problem arises with incoming slow-path data.
If we attempt to do the context-pass in a single command
handshake, there is a window during which the ATCP driver
has send the context command, but the INIC has not yet seen
this (or has not yet completed setting up its context.) During
this time, slow-path input data frames could arrive and be
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fed into the slow-path ATCP processing code. Should that
happen, the context information which the ATCP driver
passed to the INIC is no longer correct. We can simply abort
the outward pass of the context in this event, but it seems
better to have a reliable handshake.

[0344] Therefore, the command to pass context from
ATCP driver to INIC will be split into two halves, and there
will be a two-exchange handshake.

[0345] The initial command from ATCP to INIC expresses
an “intention” to hand out the context. It will include the
source and destination IP addresses and ports, which will
allow the INIC to establish a “provisional” context. Once it
has this “provisional” context in place, the INIC will not
send any more slow-path input frames for that src/dest
IP/port combination (it will queue them, if any are received.)

[0346] When the ATCP driver receives the response to this
initial “intent” command, it knows that the INIC will send
no more slow-path input. The ATCP driver then waits for
any remaining unconsumed slow-path input data for this
connection to be consumed by the client. (Generally speak-
ing there will be none, since the ATCP driver will not initiate
a context pass while there is unconsumed slow-path input
data; the handshake is simply to close the crossover win-
dow.)

[0347] Once any such data has been consumed, we know
things are in a quiescent state. The ATCP driver can then
send the second, “commit” command to hand out the con-
text, with confidence that the TCB values it is handing out
(sequence numbers etc) are reliable.

[0348] Note 1: it is conceivable that there might be situ-
ations in which the ATCP driver decides, after having sent
the original “intention” command, that the context is not to
be passed after all. (E.g. the local client issues a close.) So
we must allow for the possibility that the second command
may be a “abort”, which should cause the INIC to deallocate
and clear up its “provisional” context.

[0349] Note 2: to simplify the logic, the ATCP driver will
guarantee that only one context may be in process of being
handed out at a time: in other words, it will never issue
another initial “intention” command until it has completed
the second half of the handshake for the first one.

[0350] From INIC to ATCP.

[0351] There are two possible cases for this: a context
transfer may be initiated either by the ATCP driver or by the
INIC. However the machinery will be very similar in the two
cases. If the ATCP driver wishes to cause context to be
flushed from INIC to host, it will send a “flus” message to
the INIC specifying the context number to be flushed. Once
the INIC receives this, it will proceed with the same steps as
for the case where the flush is initiated by the INIC itself:

[0352] 1) The INIC will send an error response to any
current outstanding receive request it is working on
(corresponding to an MDL into which data is being
placed.) Before sending the response, it updates the
receive command “length” field to reflect the amount
of data which has actually been placed in the MDL
buffers at the time of the flush.

[0353] 2) Likewise it will send an error response for
any current send request, again reporting the amount
of data actually sent from the request.
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[0354] 3) The INIC will DMA the TCB for the
context back to the host. (Note: part of the informa-
tion provided with a context must be the address of
the TCB in the host.)

[0355] 4) The INIC will send a “flush” indication to
the host (very preferably via the regular input path as
a special type of frame) identifying the context
which is being flushed. Sending this indication via
the regular input path ensures that it will arrive
before any following slow-path frames.

[0356] At this point, the INIC is no longer doing fast-path
processing, and any further incoming frames for the con-
nection will simply be sent to the host as raw frames for the
slow input path. The ATCP driver may not be able to
complete the cleanup operations needed to resume normal
slow path processing immediately on receipt of the “flush
frame”, since there may be outstanding send and receive
requests to which it has not yet received a response. If this
is the case, the ATCP driver must set a “pend incoming TCP
frames” flag in its per-connection context. The effect of this
is to change the behavior of tcp_input( ). This runs as a
function call in the context of ip_input( ), and normally
returns only when incoming frames have been processed as
far as possible (queued on the socket receive buffer or
out-of-sequence reassembly queue.) However, if there is a
flush pending and we have not yet completed resynchroni-
zation, we cannot do TCP processing and must instead queue
input frames for TCP on a “holding queue” for the connec-
tion, to be picked up later when context flush is complete and
normal slow path processing resumes. (This is why we want
to send the “flush” indication via the normal input path: so
that we can ensure it is seen before any following frames of
slow-path input.)

[0357] Next we need to wait for any outstanding “send”
requests to be errored off:

[0358] 1) The INIC maintains its context for the
connection in a “zombie” state. As “send” requests
for this connection come out of the INIC queue, it
sends error responses for them back to the ATCP
driver. (It is apparently difficult for the INIC to
identify all command requests for a given context;
simpler for it to just continue processing them in
order, detecting ones that are for a “zombie” context
as they appear.)

[0359] 2) The ATCP driver has a count of the number
of outstanding requests it has sent to the INIC. As
error responses for these are received, it decrements
this count, and when it reaches zero, the ATCP driver
sends a “flush complete” message to the INIC.

[0360] 3) When the INIC receives the “flush com-
plete” message, it dismantles its “zombie” context.
From the INIC perspective, the flush is now com-
pleted.

[0361] 4) When the ATCP driver has received error
responses for all outstanding requests, it has all the
information needed to complete its cleanup. This
involves completing any IRPs corresponding to
requests which have entirely completed and adjust-
ing fields in partially-completed requests so that send
and receive of slow path data will resume at the right
point in the byte streams.
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[0362] 5) Once all this cleanup is complete, the ATCP
driver will loop pulling any “pended” TCP input
frames off the “pending queue” mentioned above and
feeding them into the normal TCP input processing.
Once all input frames on this queue have been
cleared off, the “pend incoming TCP frames” flag
can be cleared for the connection, and we are back to
normal slow-path processing.

[0363] FreeBSD Porting Specification.

[0364] The largest portion of the ATCP driver is either
derived, or directly taken from the FreeBSD TCP/IP proto-
col stack. This section defines the issues associated with
porting this code, the FreeBSD code itself, and the modifi-
cations required for it to suit our needs.

[0365] Porting Philosophy.

[0366] FreeBSD TCP/IP (current version referred to as
Net/3) is a general purpose TCP/IP driver. It contains code
to handle a variety of interface types and many different
kinds of protocols. To meet this requirement the code is
often written in a sometimes confusing, over-complex man-
ner. General-purpose structures are overlaid with other inter-
face-specific structures so that different interface types can
coexist using the same general-purpose code. For our pur-
poses much of this complexity is unnecessary since we are
only supporting a single interface type and a few specific
protocols. It is therefore tempting to modify the code and
data structures in an effort to make it more readable, and
perhaps a bit more efficient. There are, however, some
problems with doing this. First, the more we modify the
original FreeBSD, the more changes we will have to make.
This is especially true with regard to data structures. If we
collapse two data structures into one we might improve the
cleanliness of the code a bit, but we will then have to modify
every reference to that data structure in the entire protocol
stack. Another problem with attempting to “clean up” the
code is that we might later discover that we need something
that we had previously thrown away. Finally, while we might
gain a small performance advantage in cleaning up the
FreeBSD code, the FreeBSD TCP code will mostly only run
in the slow-path connections, which are not our primary
focus. Our priority is to get the slow-path code functional
and reliable as quickly as possible.

[0367] For the reasons above we have adopted the phi-
losophy that we should initially keep the data structures and
code at close to the original FreeBSD implementation as
possible. The code will be modified for the following
reasons:

[0368] 1) As required for NT interaction—Obviously
we can’t expect to simply “drop-in” the FreeBSD
code as is. The interface of this code to the NT
system will require some significant code modifica-
tions. This will mostly occur at the topmost and
bottommost portions of the protocol stack, as well as
the “ioctl” sections of the code. Modifications for
SMP issues are also needed.

[0369] 2) Unnecessary code can be removed—While
we will keep the code as close to the original
FreeBSD as possible, we will nonetheless remove
code that will never be used (UDP is a good example
of this).
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[0370] UNIX<&NT Conversion.

[0371] The FreeBSD TCP/IP protocol stack makes use of
many Unix system services. These include bcopy to copy
memory, malloc to allocate memory, timestamp functions,
etc. These will not be itemized in detail since the conversion
to the corresponding NT calls is a fairly trivial and mechani-
cal operation.

[0372] An area which will need non-trivial support rede-
sign is MBUFs.

[0373] Network Buffers.

[0374] Under FreeBSD, network buffers are mapped using
mbufs. Under NT network buffers are mapped using a
combination of packet descriptors and buffer descriptors (the
buffer descriptors are really MDLs). There are a couple of
problems with the Microsoft method. First it does not
provide the necessary fields which allow us to easily strip off
protocol headers. Second, converting all of the FreeBSD
protocol code to speak in terms of buffer descriptors is an
unnecessary amount of overhead. Instead, in our port we
will allocate our own mbuf structures and remap the NT
packets as shown in FIG. 29.

[0375] The mbuf structure will provide the standard fields
provided in the FreeBSD mbuf including the data pointer,
which points to the current location of the data, data length
fields and flags. In addition each mbuf will point to the
packet descriptor which is associated with the data being
mapped. Once an NT packet is mapped, our transport driver
should never have to refer to the packet or buffer descriptors
for any information except when we are finished and are
preparing to return the packet.

[0376] There are a couple of things to note here. We have
designed our INIC such that a packet header should never be
split across multiple buffers. Thus, we should never require
the equivalent of the “m_pullup” routine included in Unix.
Also note that there are circumstances in which we will be
accepting data that will also be accepted by the Microsoft
TCP/IP. One such example of this is ARP frames. We will
need to build our own ARP cache by looking at ARP replies
as they come off the network. Under these circumstances, it
is absolutely imperative that we do not modify the data, or
the packet and buffer descriptors. We will discuss this further
in the following sections.

[0377] We will allocate a pool of mbuf headers at ATCP
initialization time. It is important to remember that unlike
other NICs, we can not simply drop data if we run out of the
system resources required to manage/map the data. The
reason for this is that we will be receiving data from the card
that has already been acknowledged by TCP. Because of this
it is essential that we never run out of mbuf headers. To solve
this problem we will statically allocate mbuf headers for the
maximum number of buffers that we will ever allow to be
outstanding. By doing so, the card will run out of buffers in
which to put the data before we will run out of mbufs, and
as a result, the card will be forced to drop data at the link
layer instead of us dropping it at the transport layer.
DhXXX: as we’ve discussed, I don’t think this is really true
anymore. The INIC won’t ACK data until either it’s gotten
a window update from ATCP to tell it the data’s been
accepted, or it’s got an MDL. Thus it seems workable,
though undesirable, if we can’t accept a frame from the INIC
& return an error to it saying it was not taken.
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[0378] We will also require a pool of actual mbufs (not just
headers). These mbufs are required in order to build transmit
protocol headers for the slow-path data path, as well as other
miscellaneous purposes such as for building ARP requests.
We will allocate a pool of these at initialization time and we
will add to this pool dynamically as needed. Unlike the mbuf
headers described above, which will be used to map
acknowledged TCP data coming from the card, the full
mbufs will contain data that can be dropped if we can not get
an mbuf.

[0379] The Code.

[0380] In this section we describe each section of the
FreeBSD TCP/IP port. These sections include Interface
Initialization, ARP, Route, IP, ICMP, and TCP.

[0381]
[0382] Structures.

Interface Initialization.

[0383] There are a variety of structures, which represent a
single interface in FreeBSD. These structures include: ifnet,
arpeom, ifaddr, in ifaddr, sockaddr, sockaddr_in, and sock-
addr_dl. FIG. 30 shows the relationship between all of these
structures:

[0384] In the example of FIG. 30 we show a single
interface with a MAC address of 00:60:97:DB:9B:A6 con-
figured with an IP address of 192.100.1.2. As illustrated
above, the in_faddr is actually an ifaddr structure with some
extra fields tacked on to the end. Thus the ifaddr structure is
used to represent both a MAC address and an IP address.
Similarly the sockaddr structure is recast as a sockaddr_dl or
a sockaddr_in depending on its address type. An interface
can be configured to multiple IP addresses by simply chain-
ing in_ifaddr structures after the in_ifaddr structure shown
in FIG. 30.

[0385] As mentioned in the Porting Philosophy section,
many of the above structures could likely be collapsed into
fewer structures. In order to avoid making unnecessary
modifications to FreeBSD, for the time being we will leave
these structures mostly as is. We will however eliminate the
fields from the structure that will never be used. These
structure modifications are discussed below.

[0386] We also show above a structure called iface. This
is a structure that we define. It contains the arpcom structure,
which in turn contains the ifnet structure. It also contains
fields that enable us to blend our FreeBSD implementation
with NT NDIS requirements. One such example is the NDIS
binding handle used to call down to NDIS with requests
(such as send).

[0387] The Functions.

[0388] FreeBSD initializes the above structures in two
phases. First when a network interface is found, the ifnet,
arpcom, and first ifaddr structures are initialized first by the
network layer driver, and then via a call to the if_attach
routine. The subsequent in_ifaddr structure(s) are initialized
when a user dynamically configures the interface. This
occurs in the in_ioctl and the in_ifinit routines. Since NT
allows dynamic configuration of a network interface we will
continue to perform the interface initialization in two
phases, but we will consolidate these two phases as
described below:
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[0389] IFINIT.

[0390] The IfInit routine will be called from the ATKPro-
tocolBindAdapter function. The IfInit function will initialize
the Iface structure and associated arpcom and ifnet struc-
tures. It will then allocate and initialize an ifaddr structure in
which to contain link-level information about the interface,
and a sockaddr_dl structure to contain the interface name
and MAC address. Finally it will add a pointer to the ifaddr
structure into the ifnet_addrs array (using the if_index field
of the ifnet structure) contained in the extended device
object. Iflnit will then call IfConfig for each IP address that
it finds in the registry entry for the interface.

[0391] IFCONFIG.

[0392] IfConfig is called to configure an IP address for a
given interface. It is passed a pointer to the ifnet structure for
that interface along with all the information required to
configure an IP address for that interface (such as IP address,
netmask and broadcast info, etc). IfConfig will allocate an
in_ifaddr structure to be used to configure the interface. It
will chain it to the total chain of in_ifaddr structures con-
tained in the extended device object, and will then configure
the structure with the information given to it. After that it
will add a static route for the newly configured network and
then broadcast a gratuitous ARP request to notify others of
our.Mac/IP address and to detect duplicate IP addresses on
the net.

[0393] ARP.

[0394] We will port the FreeBSD ARP code to NT mostly
as-is. For some reason, the FreeBSD ARP code is located in
afile called if_ether.c. While the functionality of this file will
remain the same, we will rename it to a more logical arp.c.
The main structures used by ARP are the 1linfo_arp struc-
ture and the rtentry structure (actually part of route). These
structures will not require major modifications. The func-
tions that will require modification are defined here.

[0395] IN_ARPINPUT.

[0396] This function is called to process an incoming ARP
frame. An ARP frame can either be an ARP request or an
ARP reply. ARP requests are broadcast, so we will see every
ARP request on the network, while ARP replies are directed
so we should only see ARP replies that are sent to us. This
introduces the following possible cases for an incoming ARP
frame:

[0397] 1. ARP request trying to resolve our IP
address—Under normal circumstances, ARP would
reply to this ARP request with an ARP reply con-
taining our MAC address. Since ARP requests will
also be passed up to the Microsoft TCP/IP driver, we
need not reply. Note however, that FreeBSD also
creates or updates an ARP cache entry with the
information derived from the ARP request. It does
this in anticipation of the fact that any host that
wishes to know our MAC address is likely to wish to
talk to us soon. Since we will need to know his MAC
address in order to talk back, we might as well add
the ARP information now rather than issuing our
own ARP request later.

[0398] 2. ARP request trying to resolve someone
else’s IP address—Since ARP requests are broadcast,
we see every one on the network. When we receive
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an ARP request of this type, we simply check to see
if we have an entry for the host that sent the request
in our ARP cache. If we do, we check to see if we still
have the correct MAC address associated with that
host. If it is incorrect, we update our ARP cache
entry. Note that we do not create a new ARP cache
entry in this case.

[0399] 3. ARP reply—In this case we add the new
ARP entry to our ARP cache. Having resolved the
address, we check to see if there is any transmit
requests pending for the resolve IP address, and if so,
transmit them.

[0400] Given the above three possibilities, the only major
change to the in_arpinput code is that we will remove the
code which generates an ARP reply for ARP requests that are
meant for our interface.

[0401] ARPINTR.

[0402] This is the FreeBSD code that delivers an incoming
ARP frame to in_arpinput. We will be calling in_arpinput
directly from our ProtocolReceiveDPC routine (discussed in
the NDIS section below) so this function is not needed.

[0403] ARPWHOHAS.

[0404] This is a single line function that serves only as a
wrapper around arprequest. We will remove it and replace all
calls to it with direct calls to arprequest.

[0405] ARPREQUEST.

[0406] This code simply allocates a mbuf, fills it in with an
ARP header, and then passes it down to the ethernet output
routine to be transmitted. For us, the code remains essen-
tially the same except for the obvious changes related to how
we allocate a network buffer, and how we send the filled in
request.

[0407] ARP_IFINIT.

[0408] This is simply called when an interface is initial-
ized to broadcast a gratuitous ARP request (described in the
interface initialization section) and to set some ARP related
fields in the ifaddr structure for the interface. We will simply
move this functionality into the interface initialization code
and remove this function.

[0409] ARPTIMER.

[0410] This is a timer-based function that is called every
5 minutes to walk through the ARP table looking for entries
that have timed out. Although the time-out period for
FreeBSD is 20 minutes, RFC 826 does not specify any timer
requirements with regard to ARP so we can modify this
value or delete the timer altogether to suit our needs. Either
way the function won’t require any major changes. All other
functions in if_ether.c will not require any major changes.

[0411] Route.

[0412] On first thought, it might seem that we have no
need for routing support since our ATCP driver will only
receive IP datagrams whose destination IP address matches
that of one of our own interfaces. Therefore, we will not
“route” from one interface to another. Instead, the
MICROSOFT TCP/P driver will provide that service. We
will, however, need to maintain an up-to-date routing table
so that we know a) whether an outgoing connection belongs
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to one of our interfaces, b) to which interface it belongs, and
¢) what the first-hop IP address (gateway) is if the destina-
tion is not on the local network.

[0413] We discuss four aspects on the subject of routing in
this section. They are as follows:

[0414] 1. The mechanics of how routing information
is stored.

[0415] 2. The manner in which routes are added or
deleted from the route table.

[0416] 3. When and how route information is
retrieved from the route table.

[0417] 4. Notification of route table changes to inter-
ested parties.

[0418] The Route Table.

[0419] In FreeBSD, the route table is maintained using an
algorithm known as PATRICIA (Practical Algorithm To
Retrieve Information Coded in Alphanumeric). This is a
complicated algorithm that is a bit costly to set up, but is
very efficient to reference. Since the routing table should
contain the same information for both NT and FreeBSD, and
since the key used to search for an entry in the routing table
will be the same for each (the destination IP address), we
should be able to port the routing table software to NT
without any major changes.

[0420] The software which implements the route table (via
the PATRICIA algorithm) is located in the FreeBSD file,
radix.c. This file will be ported directly to the ATCP driver
with no significant changes required.

[0421] Adding and Deleting Routes.

[0422] Routes can be added or deleted in a number of
different ways. The kernel adds or deletes routes when the
state of an interface changes or when an ICMP redirect is
received. User space programs such as the RIP daemon, or
the route command also modify the route table.

[0423] For kernel-based route changes, the changes can be
made by a direct call to the routing software. The FreeBSD
software that is responsible for the modification of route
table entries is found in route.c. The primary routine for all
route table changes is called rtrequest( ). It takes as its
arguments, the request type (ADD, RESOLVE, DELETE),
the destination IP address for the route, the gateway for the
route, the netmask for the route, the flags for the route, and
a pointer to the route structure (struct rtentry) in which we
will place the added or resolved route. Other routines in the
route.c file include rtinit( ), which is called during interface
initialization time to add a static route to the network,
rtredirect, which is called by ICMP when we receive a ICMP
redirect, and an assortment of support routines used for the
modification of route table entries. All of these routines
found in route.c will be ported with no major modifications.

[0424] For user-space-based changes, we will have to be a
bit more clever. In FreeBSD, route changes are sent down to
the kernel from user-space applications via a special route
socket. This code is found in the FreeBSD file, rtsock.c.
Obviously this will not work for our AT'CP driver. Instead
the filter driver portion of our driver will intercept route
changes destined for the Microsoft TCP driver and will
apply those modifications to our own route table via the
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rtrequest routine described above. In order to do this, it will
have to do some format translation to put the data into the
format (sockaddr_in) expected by the rtrequest routine.
Obviously, none of the code from rtsock.c will be ported to
the ATCP driver. This same procedure will be used to
intercept and process explicit ARP cache modifications.

[0425] Consulting the Route Table.

[0426] InFreeBSD, the route table is consulted in ip_out-
put when an IP datagram is being sent. In order to avoid a
complete route table search for every outgoing datagram, the
route is stored into the in_pcb for the connection. For
subsequent calls to ip_output, the route entry is then simply
checked to ensure validity. While we will keep this basic
operation as is, we will require a slight modification to allow
us to coexist with the Microsoft TCP driver. When an active
connection is being set up, our filter driver will have to
determine whether the connection is going to be handled by
one of the INIC interfaces. To do this, we will have to
consult the route table from the filter driver portion of our
driver. This is done via a call to the rtallocl function (found
in route.c). If a valid route table entry is found, then we will
take control of the connection and set a pointer to the rtentry
structure returned by rtallocl in our in_pcb structure.

[0427] What to do when a Route Changes.

[0428] When a route table entry changes, there may be
connections that have pointers to a stale route table entry.
These connections will need to be notified of the new route.
Free BSD solves this by checking the validity of a route entry
during every call to ip output. If the entry is no longer valid,
its reference to the stale route table entry is removed, and an
attempt is made to allocate a new route to the destination.
For our slow path, this will work fine. Unfortunately, since
our IP processing is handled by the INIC for our fast path,
this sanity check method will not be sufficient. Instead, we
will need to perform a review of all of our fast path
connections during every route table modification. If the
route table change affects our connection, we will need to
advise the INIC with a new first-hop address, or if the
destination is no longer reachable, close the connection
entirely.

[0429]

[0430] Like the ARP code above, we will need to process
certain types of incoming ICMP frames. Of the 10 possible
ICMP message types, there are only three that we need to
support. These include ICMP_REDIRECT, ICMP_UN-
REACH, and ICMP_SOURCEQUENCH. Any FreeBSD
code to deal with other types of ICMP traffic will be
removed. Instead, we will simply return NDIS_STATUS-
_NOT_ACCEPTED for all but the above ICMP frame types.
This section describes how we will handle these ICMP
frames.

[0431] ICMP_REDIRECT.

[0432] Under FreeBSD, an ICMP_REDIRECT causes two
things to occur. First, it causes the route table to be updated
with the route given in the redirect. Second, it results in a call
back to TCP to cause TCP to flush the route entry attached
to its associated in_pcb structures. By doing this, it forces
ip_output to search for a new route. As mentioned in the
Route section above, we will also require a call to a routine
which will review all of the TCP fast-path connections, and

ICMP.
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update the route entries as needed (in this case because the
route entry has been zeroed). The INIC will then be notified
of the route changes.

[0433] ICMP_UNREACH.

[0434] In both FreeBSD and Microsoft TCP, the ICM-
P_UNREACH results in no more than a simple statistic
update. We will do the same.

[0435] ICMP_SOURCEQUENCH.

[0436] A source quench is sent to cause a TCP sender to
close its congestion window to a single segment, thereby
putting the sender into slow-start mode. We will keep the
FreeBSD code as-is for slow-path connections. For fast path
connections we will send a notification to the card that the
congestion window for the given connection has been
reduced. The INIC will then be responsible for the slow-start
algorithm.

[0437] IP.

[0438] The FreeBSD IP code should require few modifi-
cations when porting to the ATCP driver. What few modi-
fications will be required will be discussed in this section.

[0439]

[0440] During initialization time, ip_init is called to ini-
tialize the array of protosw structures. These structures
contain all the information needed by IP to be able to pass
incoming data to the correct protocol above it. For example,
when a UDP datagram arrives, IP locates the protosw entry
corresponding to the UDP protocol type value (0x11) and
calls the input routine specified in that protosw entry. We
will keep the array of protosw structures intact, but since we
are only handling the TCP and ICMP protocols above IP, we
will strip the protosw array down substantially.

[0441]

[0442] Following are the changes required for IP input
(function ip intr( )).

[0443] No IP Forwarding.

IP Initialization.

IP Input.

[0444] Since we will only be handling datagrams for
which we are the final destination, we should never be
required to forward an IP datagram. All references to IP
forwarding, and the ip_forward function itself, can be
removed.

[0445]

[0446] The only options supported by FreeBSD at this
time include record route, strict and loose source and record
route, and timestamp. For the timestamp option, FreeBSD
only logs the current time into the IP header so that before
it is forwarded. Since we will not be forwarding IP data-
grams, this seems to be of little use to us. While FreeBSD
supports the remaining options, N'T essentially does nothing
useful with them. For the moment, we will not bother
dealing with IP options. They will be added in later if
needed.

[0447]

[0448] There is a small problem with the FreeBSD IP
reassembly code. The reassembly code reuses the IP header
portion of the IP datagram to contain IP reassembly queue
information. It can do this because it no longer requires the

IP Options.

IP Reassembly.
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original IP header. This is an absolute no-no with the NDIS
4.0 method of handling network packets. The NT DDK
explicitly states that we must not modify packets given to us
by NDIS. This is not the only place in which the FreeBSD
code modifies the contents of a network buffer. It also does
this when performing endian conversions. At the moment
we will leave this code as is and violate the DDK rules. We
believe we can do this because we are going to ensure that
no other transport driver looks at these frames. If this
becomes a problem we will have to modify this code
substantially by moving the IP reassembly fields into the
mbuf header.

[0449] 1P Output.

[0450] There are only two modifications required for IP
output. The first is that since, for the moment, we are not
dealing with IP options, there is no need for the code that
inserts the IP options into the IP header. Second, we may
discover that it is impossible for us to ever receive an output
request that requires fragmentation. Since TCP performs
Maximum Segment Size negotiation, we should theoreti-
cally never attempt to send a TCP segment larger than the
MTU.

[0451] NDIS Protocol Driver.

[0452] This section defines protocol driver portion of the
ATCP driver. The protocol driver portion of the ATCP driver
is defined by the set of routines registered with NDIS via a
call to NdisRegisterProtocol. These routines are limited to
those that are called (indirectly) by the INIC miniport driver
beneath us. For example, we register a ProtocolReceive-
Packet routine so that when the INIC driver calls Ndis-
MlndicateReceivePacket it will result in a call from NDIS to
our driver. Strictly speaking, the protocol driver portion of
our driver does not include the method by which our driver
calls down to the miniport (for example, the method by
which we send network packets). Nevertheless, we will
describe that method here for lack of a better place to put it.
That said, we cover the following topics in this section of the
document: 1) Initialization, 2) Receive; 3) Transmit; 4)
Query/Set Information; 5) Status indications; 6) Reset; and
7) Halt.

[0453]

[0454] The protocol driver initialization occurs in two
phases. The first phase occurs when the ATCP DriverEntry
routine calls ATKProtoSetup. The ATKProtoSetup routine
performs the following:

[0455] 1. Allocate resources—We attempt to allocate
many of the required resources as soon as possible so
that we are more likely to get the memory we want.
This mostly applies to allocating and initializing our
mbuf and mbuf header pools.

[0456] 2. Register Protocol—We call NdisRegister-
Protocol to register our set of protocol driver rou-
tines.

[0457] 3.TLocate and initialize bound NICs—We read
the Linkage parameters of the registry to determine
which NIC devices we are bound to. For each of
these devices we allocate and initialize a IFACE
structure (defined above). We then read the TCP
parameters out of the registry for each bound device
and set the corresponding fields in the IFACE struc-
ture.

Initialization.
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[0458] After the underlying INIC devices have completed
their initialization, NDIS will call our driver’s ATKBind-
Adapter function for each underlying device. It will perform
the following:

[0459] 1. Open the device specified in the call the
ATKBindAdapter.

[0460] 2. Find the IFACE structure that was created
in ATKProtoSetup for this device.

[0461] 3. Query the miniport for adapter information.
This includes such things as link speed and MAC
address. Save relevant information in the IFACE
structure.

[0462] 4. Perform the interface initialization as speci-
fied in the section on Interface Initialization.

[0463] Receive.

[0464] Receive is handled by the protocol driver routine
ATKReceivePacket. Before we describe this routine, it is
important to consider each possible receive type and how it
will be handled.

[0465] Receive Overview.

[0466] Our INIC miniport driver will be bound to our
transport driver as well as the generic Microsoft TCP driver
(and possibly others). The ATCP driver will be bound
exclusively to INIC devices, while the Microsoft TCP driver
will be bound to INIC devices as well as other types of NICs.
This is illustrated in FIG. 31. By binding the driver in this
fashion, we can choose to direct incoming network data to
our own ATCP transport driver, the Microsoft TCP driver, or
both. We do this by playing with the ethernet “type” field as
follows.

[0467] To NDIS and the transport drivers above it, our
card is going to be registered as a normal ethernet card.
When a transport driver receives a packet from our driver, it
will expect the data to start with an ethernet header, and
consequently, expects the protocol type field to be in byte
offset 12. If Microsoft TCP finds that the protocol type field
is not equal to either IP, or ARP, it will not accept the packet.
So, to deliver an incoming packet to our driver, we must
simply map the data such that byte 12 contains a non-
recognized ethernet type field. Note that we must choose a
value that is greater than 1500 bytes so that the transport
drivers do not confuse it with an 802.3 frame. We must also
choose a value that will not be accepted by other transport
driver such as Appletalk or IPX. Similarly, if we want to
direct the data to Microsoft TCP, we can then simply leave
the ethernet type field set to IP (or ARP). Note that since we
will also see these frames we can choose to accept or
not-accept them as necessary. Incoming packets are deliv-
ered as follows:

[0468] A.Packets delivered to ATCP only (not accepted
by MSTCP):

[0469] 1. All TCP packets destined for one of our IP
addresses. This includes both slow-path frames and
fast-path frames. In the slow-path case, the TCP
frames are given in there entirety (headers included).
In the fast-path case, the ATKReceivePacket is given
a header buffer that contains status information and
data with no headers (except those above TCP).
More on this later.
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[0470] B. Packets delivered to Microsoft TCP only (not
accepted by ATCP):

[0471] 1. All non-TCP packets.

[0472] 2. All packets that are not destined for one of
our interfaces (packets that will be routed). Continu-
ing the above example, if there is an IP address
144.48.252 .4 associated with the 3com interface, and
we receive a TCP connect with a destination IP
address of 144.48.252.4, we will actually want to
send that request up to the ATCP driver so that we
create a fast-path connection for it. This means that
we will need to know every IP address in the system
and filter frames based on the destination IP address
in a given TCP datagram. This can be done in the
INIC miniport driver. Since it will be the ATCP
driver that learns of dynamic IP address changes in
the system, we will need a method to notify the INIC
miniport of all the IP addresses in the system. More
on this later.

[0473] C. Packets delivered to both:
[0474] 1. All ARP frames.
[0475] 2. All ICMP frames.
[0476] Two Types of Receive Packets.

[0477] There are several circumstances in which the INIC
will need to indicate extra information about a receive
packet to the ATCP driver. One such example is a fast path
receive in which the AT'CP driver will need to be notified of
how much data the card has buffered. To accomplish this, the
first (and sometimes only) buffer in a received packet will
actually be an INIC header buffer. The header buffer con-
tains status information about the receive packet, and may or
may not contain network data as well. The ATCP driver will
recognize a header buffer by mapping it to an ethernet frame
and inspecting the type field found in byte 12. We will
indicate all TCP frames destined for us in this fashion, while
frames that are destined for both our driver and the
Microsoft TCP driver (ARP, ICMP) will be indicated with-
out a header buffer. FIG. 32 shows an example of an
incoming TCP packet. FIG. 33 shows an example of an
incoming ARP frame.

[0478] NDIS 4 Protocolreceivepacket Operation.

[0479] NDIS has been designed such that all packets
indicated via NdisMIndicateReceivePacket by an underly-
ing miniport are delivered to the ProtocolReceivePacket
routine for all protocol drivers bound to it. These protocol
drivers can choose to accept or not accept the data. They can
either accept the data by copying the data out of the packet
indicated to it, or alternatively they can keep the packet and
return it later via a call to NdisReturnPackets. By imple-
menting it in this fashion, NDIS allows more than one
protocol driver to accept a given packet. For this reason,
when a packet is delivered to a protocol driver, the contents
of the packet descriptor, buffer descriptors and data must all
be treated as read-only. At the moment, we intend to violate
this rule. We choose to violate this because much of the
FreeBSD code modifies the packet headers as it examines
them (mostly for endian conversion purposes). Rather than
modify all of the FreeBSD code, we will instead ensure that
no other transport driver accepts the data by making sure that
the ethernet type field is unique to us (no one else will want
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it). Obviously this only works with data that is only deliv-
ered to our ATCP driver. For ARP and ICMP frames we will
instead copy the data out of the packet into our own buffer
and return the packet to NDIS directly. While this is less
efficient than keeping the data and returning it later, ARP and
ICMP traffic should be small enough, and infrequent
enough, that it doesn’t matter.

[0480] The DDK specifies that when a protocol driver
chooses to keep a packet, it should return a value of 1 (or
more) to NDIS in its ProtocolReceivePacket routine. The
packet is then later returned to NDIS via the call to Ndis-
ReturnPackets. This can only happen after the ProtocolRe-
ceivePacket has returned control to NDIS. This requires that
the call to NdisReturnPackets must occur in a different
execution context. We can accomplish this by scheduling a
DPC, scheduling a system thread, or scheduling a kernel
thread of our own. For brevity in this section, we will
assume it is a done through a DPC. In any case, we will
require a queue of pending receive buffers on which to place
and fetch receive packets.

[0481] After a receive packet is dequeued by the DPC it is
then either passed to TCP directly for fast-path processing,
or it is sent through the FreeBSD path for slow-path pro-
cessing. Note that in the case of slow-path processing, we
may be working on data that needs to be returned to NDIS
(TCP data) or we may be working on our own copy of the
data (ARP and ICMP). When we finish with the data we will
need to figure out whether or not to return the data to NDIS
or not. This will be done via fields in the mbuf header used
to map the data. When the mfreem routine is called to free
a chain of mbufs, the fields in the mbuf will be checked and,
if required, the packet descriptor pointed to by the mbuf will
be returned to NDIS.

[0482] MBUF<=>Packet Mapping.

[0483] As noted in the section on mbufs above, we will
map incoming data to mbufs so that our FreeBSD port
requires fewer modifications. Depending on the type of data
received, this mapping will appear differently. Here are
some examples:

[0484] In FIG. 34A, we show incoming data for a TCP
fast-path connection. In this example, the TCP data is fully
contained in the header buffer. The header buffer is mapped
by the mbuf and sent upstream for fast-path TCP processing.
In this case it is required that the header buffer be mapped
and sent upstream because the fast-path TCP code will need
information contained in the header buffer in order to
perform the processing. When the mbuf in this example is
freed, the mfreem routine will determine that the mbuf maps
a packet that is owned by NDIS and will then free the mbuf
header only and call NdisReturnPackets to free the data.

[0485] In FIG. 34B, we show incoming data for a TCP
slow-path connection. In this example the mbuf points to the
start of the TCP data directly instead of the header buffer.
Since this buffer will be sent up for slow-path FreeBSD
processing, we can not have the mbuf pointing to a header
buffer (FreeBSD would get awfully confused). Again, when
mfreem is called to free the mbuf, it will discover the
mapped packet, free the mbuf header, and call NDIS to free
the packet and return the underlying buffers. Note that even
though we do not directly map the header buffer with the
mbuf we do not lose it because of the link from the packet
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descriptor. Note also that we could alternatively have the
INIC miniport driver only pass us the TCP data buffer when
it receives a slow-path receive. This would work fine except
that we have determined that even in the case of slow-path
connections we are going to attempt to offer some assistance
to the host TCP driver (most likely by checksum processing
only). In this case there may be some special fields that we
need to pass up to the ATCP driver from the INIC driver.
Leaving the header buffer connected seems the most logical
way to do this.

[0486] Finally, in FIG. 34C, we show a received ARP
frame. Recall that for incoming ARP and ICMP frames we
are going to copy the incoming data out of the packet and
return it directly to NDIS. In this case the mbuf simply
points to our data, with no corresponding packet descriptor.
When we free this mbuf, mfreem will discover this and free
not only the mbuf header, but the data as well.

[0487] Other Receive Packets.

[0488] We use this receive mechanism for other purposes
besides the reception of network data. It is also used as a
method of communication between the ATCP driver and the
INIC. One such example is a TCP context flush from the
INIC. When the INIC determines, for whatever reason, that
it can no longer manage a TCP connection, it must flush that
connection to the ATCP driver. It will do this by filling in a
header buffer with appropriate status and delivering it to the
INIC driver. The INIC driver will in turn deliver it to the
protocol driver which will treat it essentially like a fast-path
TCP connection by mapping the header buffer with an mbuf
header and delivering it to TCP for fast-path processing.
There are two advantages to communicating in this manner.
First, it is already an established path, so no extra coding or
testing is required. Second, since a context flush comes in,
in the same manner as received frames, it will prevent us
from getting a slow-path frame before the context has been
flushed.

[0489] Summary

[0490] Having covered all of the various types of receive
data, following are the steps that are taken by the ATKPro-
tocolReceivePacket routine.

[0491] 1. Map incoming data to an ethernet frame
and check the type field;

[0492] 2. If the type field contains our custom INIC
type then it should be TCP;

[0493] 3. If the header buffer specifies a fast-path
connection, allocate one or more mbufs headers to
map the header and possibly data buffers. Set the
packet descriptor field of the mbuf to point to the
packet descriptor, set the mbuf flags appropriately,
queue the mbuf, and return 1;

[0494] 4. If the header buffer specifies a slow-path
connection, allocate a single mbuf header to map the
network data, set the mbuf fields to map the packet,
queue the mbuf and return 1. Note that we design the
INIC such that we will never get a TCP segment split
across more than one buffer;

[0495] 5. If the type field of the frame indicates ARP
or ICMP;
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[0496] 6. Allocate a mbuf with a data buffer. Copy the
contents of the packet into the mbuf. Queue the
mbuf, and return 0 (not accepted); and

[0497] 7.If the type field is not either the INIC type,
ARP or ICMP, we don’t want it. Return 0.

[0498] The receive processing will continue when the
mbufs are dequeued. At the moment this is done by a routine
called ATKProtocolReceiveDPC. It will do the following:

[0499] 1. Dequeue a mbuf from the queue; and

[0500] 2.Inspect the mbuf flags. If the mbuf is meant
for fast-path TCP, it will call the fast-path routine
directly. Otherwise it will call the ethernet input
routine for slow-path processing.

[0501]
[0502]
[0503]

[0504] The NDIS 4 send operation works as follows.
When a transport/protocol driver wishes to send one or more
packets down to an NDIS 4 miniport driver, it calls Ndis-
SendPackets with an array of packet descriptors to send. As
soon as this routine is called, the transport/protocol driver
relinquishes ownership of the packets until they are
returned, one by one in any order, via a NDIS call to the
ProtocolSendComplete routine. Since this routine is called
asynchronously, our ATCP driver must save any required
context into the packet descriptor header so that the appro-
priate resources can be freed. This is discussed further in the
following sections.

[0505] Types of “Sends™.

[0506] Like the Receive path described above, the trans-
mit path is used not only to send network data, but is also
used as a communication mechanism between the host and
the INIC. Here are some examples of the types of sends
performed by the ATCP driver.

[0507] Fast-Path TCP Send.

[0508] When the ATCP driver receives a transmit request
with an associated MDL, it will package up the MDL
physical addresses into a command buffer, map the com-
mand buffer with a buffer and packet descriptor, and call
NdisSendPackets with the corresponding packet. The under-
lying INIC driver will issue the command buffer to the INIC.
When the corresponding response buffer is given back to the
host, the INIC miniport will call NdisMSendComplete
which will result in a call to the ATCP ProtocolSendCom-
plete (ATKSendComplete) routine, at which point the
resources associated with the send can be freed. We will
allocate and use a mbuf to hold the command buffer. By
doing this we can store the context necessary in order to
clean up after the send completes. This context includes a
pointer to the MDL and presumably some other connection
context as well. The other advantage to using a mbuf to hold
the command buffer is that it eliminates having another
special set of code to allocate and return command buffer.
We will store a pointer to the mbuf in the reserved section
of the packet descriptor so we can locate it when the send is
complete. FIG. 35 illustrates the relationship between the
client’s MDL, the command buffer, and the buffer and
packet descriptors.

Transmit.
In this section we discuss the ATCP transmit path.

NDIS 4 Send Operation.
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[0509] Fast-Path TCP Receive.

[0510] As described in the Fast-Path Input Data Flow
section above, the receive process typically occurs in two
phases. First the INIC fills in a host receive buffer with a
relatively small amount of data, but notifies the host of a
large amount of pending data (either through a large amount
of buffered data on the card, or through a large amount of
expected NetBios data). This small amount of data is deliv-
ered to the client through the TDI interface. The client will
then respond with a MDL in which the data should be
placed. Like the Fast-path TCP send process, the receive
portion of the AT'CP driver will then fill in a command buffer
with the MDL information from the client, map the buffer
with packet and buffer descriptors and send it to the INIC via
a call to NdisSendPackets. Again, when the response buffer
is returned to the INIC miniport, the ATKSendComplete
routine will be called and the receive will complete. This
relationship between the MDL, command buffer and buffer
and packet descriptors are the same as shown in the Fast-
path send section above.

[0511] Slow-Path (FreeBSD).

[0512] Slow-path sends pass through the FreeBSD stack
until the ethernet header is prepended in ether_output and
the packet is ready to be sent. At this point a command buffer
will be filled with pointers to the ethernet frame, the com-
mand buffer will be mapped with a packet and buffer
descriptor and NdisSendPackets will be called to hand the
packet off to the miniport. FIG. 36 shows the relationship
between the mbufs, command buffer, and buffer and packet
descriptors. Since we will use a mbuf to map the command
buffer, we can simply link the data mbufs directly off of the
command buffer mbuf. This will make the freeing of
resources much simpler.

[0513] Non-Data Command Buffer.

[0514] The transmit path is also used to send non-data
commands to the card. As shown in FIG. 37, for example,
the ATCP driver gives a context to the INIC by filling in a
command buffer, mapping it with a packet and buffer
descriptor, and calling NdisSendPackets.

[0515] ATKPROTOCOLSENDCOMPLETE.

[0516] Given the above different types of sends, the ATK-
ProtocolSendComplete routine will perform various types of
actions when it is called from NDIS. First it must examine
the reserved area of the packet descriptor to determine what
type of request has completed. In the case of a slow-path
completion, it can simply free the mbufs, command buffer,
and descriptors and return. In the case of a fast-path comple-
tion, it will need to notify the TCP fast path routines of the
completion so TCP can in turn complete the client’s IRP.
Similarly, when a non-data command buffer completes, TCP
will again be notified that the command sent to the INIC has
completed.

[0517] TDI Filter Driver.

[0518] In a first embodiment of the product, the INIC
handles only simple-case data transfer operations on a TCP
connection. (These of course constitute the large majority of
CPU cycles consumed by TCP processing in a conventional
driver.) There are many other complexities of the TCP
protocol which must still be handled by host driver software:
connection setup and breakdown, out-of-order data, non-
standard flags, etc.
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[0519] The NT OS contains a fully functional TCP/IP
driver, and one solution would be to enhance this so that it
is able to detect our INIC and take advantage of it by
“handing off” data-path processing where appropriate.

[0520] Unfortunately, we do not have access to NT source,
let alone permission to modify N'T. Thus the solution above,
while a goal, cannot be done immediately. We instead
provide our own custom driver software on the host for those
parts of TCP processing which are not handled by the INIC.

[0521] This presents a challenge. The NT network driver
framework does make provision for multiple types of pro-
tocol driver: but it does not easily allow for multiple
instances of drivers handling the SAME protocol.

[0522] For example, there are no “hooks” into the
Microsoft TCP/IP driver which would allow for routing of IP
packets between our driver (handling our INICs) and the
Microsoft driver (handling other NICs).

[0523] Our approach to this is to retain the Microsoft
driver for all non-TCP network processing (even for traffic
on our INICs), but to invisibly “steal” TCP traffic on our
connections and handle it via our own (BSD-derived) driver.
The Microsoft TCP/IP driver is unaware of TCP connections
on interfaces we handle.

[0524] The network “bottom end” of this artifice is
described earlier in the document. In this section we will
discuss the “top end”: the TDI interface to higher-level NT
network client software.

[0525] We make use of an NT facility called a filter driver.
NT allows a special type of driver (“filter driver”) to attach
itself “on top” of another driver in the system. The NT I/O
manager then arranges that all requests directed to the
attached driver are sent first to the filter driver; this arrange-
ment is invisible to the rest of the system.

[0526] The filter driver may then either handle these
requests itself, or pass them down to the underlying driver
it is attached to. Provided the filter driver completely rep-
licates the (externally visible) behavior of the underlying
driver when it handles requests itself, the existence of the
filter driver is invisible to higher-level software.

[0527] The filter driver attaches itself on top of the
Microsoft TCP/IP driver; this gives us the basic mechanism
whereby we can intercept requests for TCP operations and
handle them in our driver instead of the Microsoft driver.

[0528] However, while the filter driver concept gives us a
framework for what we want to achieve, there are some
significant technical problems to be solved. The basic issue
is that setting up a TCP connection involves a sequence of
several requests from higher-level software, and it is not
always possible to tell, for requests early in this sequence,
whether the connection should be handled by our driver or
by the Microsoft driver.

[0529] Thus for many requests, we store information
about the request in case we need it later, but also allow the
request to be passed down to the Microsoft TCP/IP driver in
case the connection ultimately turns out to be one which that
driver should handle.

[0530] Let us look at this in more detail, which will
involve some examination of the TDI interface: the NT
interface into the top end of NT network protocol drivers.
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Higher-level TDI client software which requires services
from a protocol driver proceeds by creating various types of
NT FILE_OBIJECTs, and then making various DEVICE-
_IO_CONTROL requests on these FILE_OBJECTs.

[0531] There are two types of FILE_OBJECT of interest
here. Local IP addresses that are represented by ADDRESS
objects, and TCP connections that are represented by CON-
NECTION objects. The steps involved in setting up a TCP
connection (from the “active” client side, for a CONNEC-
TION object) are:

[0532] 1) Create an ADDRESS object; 2) Create a CON-
NECTION object; 3) Issue a TDI_ASSOCIATE_AD-
DRESS io-control to associate the CONNECTION object
with the ADDRESS object; and 4) Issue a TDI_CONNECT
io-control on the CONNECTION object, specifying the
remote address and port for the connection.

[0533] Initial thoughts were that handling this would be
straightforward: we would tell, on the basis of the address
given when creating the ADDRESS object, whether the
connection is for one of our interfaces or not. After which,
it would be easy to arrange for handling entirely by our code,
or entirely by the Microsoft code: we would simply examine
the ADDRESS object to see if it was “one of ours” or not.

[0534] There are two main difficulties, however. First,
when the CONNECTION object is created, no address is
specified: it acquires a local address only later when the
TDI_ASSOCIATE_ADDRESS is done. Also, when a CON-
NECTION object is created, the caller supplies an opaque
“context cookie” which will be needed for later communi-
cations with that caller. Storage of this cookie is the respon-
sibility of the protocol driver: it is not directly derivable just
by examination of the CONNECTION object itself. If we
simply passed the “create” call down to the Microsoft
TCP/IP driver, we would have no way of obtaining this
cookie later if it turns out that we need to handle the
connection. Therefore, for every CONNECTION object
which is created we allocate a structure to keep track of
information about it, and store this structure in a hash table
keyed by the address of the CONNECTION object itself, so
that we can locate it if we later need to process requests on
this object. We refer to this as a “shadow” object: it
replicates information about the object stored in the
Microsoft driver. (We must, of course, also pass the create
request down to the Microsoft driver too, to allow it to set
up its own administrative information about the object.)

[0535] A second major difficulty arises with ADDRESS
objects. These are often created with the TCP/IP “wildcard”
address (all zeros); the actual local address is assigned only
later during connection setup (by the protocol driver itself.)
Of course, a “wildcard” address does not allow us to
determine whether connections that will be associated with
this ADDRESS object should be handled by our driver or by
the Microsoft one. Also, as with CONNECTION objects,
there is “opaque™ data associated with ADDRESS objects
that cannot be derived just from examination of the object
itself. (In this case addresses of callback functions set on the
object by TDI_SET_EVENT io-controls.)

[0536] Thus, as in the CONNECTION object case, we
create a “shadow” object for each ADDRESS object which
is created with a wildcard address. In this we store infor-
mation (principally addresses of callback functions) which
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we will need if we are handling connections on CONNEC-
TION objects associated with this ADDRESS object. We
store similar information, of course, for any ADDRESS
object which is explicitly for one of our interface addresses;
in this case we don’t need to also pass the create request
down to the Microsoft driver.

[0537] With this concept of “shadow” objects in place, let
us revisit the steps involved in setting up a connection, and
look at the processing required in our driver.

[0538] First, the TDI client makes a call to create the
ADDRESS object. Assuming that this is a “wildcard”
address, we create a “shadow” object before passing the call
down to the Microsoft driver.

[0539] The next step (omitted in the earlier list for brevity)
is normally that the client makes a number of TDI_S-
ET_EVENT io-control calls to associate various callback
functions with the ADDRESS object. These are functions
that should be called to notify the TDI client when certain
events (such arrival of data or disconnection requests etc)
occur. We store these callback function pointers in our
“shadow” address object, before passing the call down to the
Microsoft driver.

[0540] Next, the TDI client makes a call to create a
CONNECTION object. Again, we create our “shadow” of
this object.

[0541] Next, the client issues the TDI_ASSOCIATE_AD-
DRESS io-control to bind the CONNECTION object to the
ADDRESS object. We note the association in our “shadow”
objects, and also pass the call down to the Microsoft driver.

[0542] Finally the TDI client issues a TDI_CONNECT
io-control on the CONNECTION object, specifying the
remote IP address (and port) for the desired connection. At
this point, we examine our routing tables to determine if this
connection should be handled by one of our interfaces, or by
some other NIC. If it is ours, we mark the CONNECTION
object as “one of ours” for future reference (using an opaque
field which NT FILE_OBIJECTS provide for driver use.) We
then proceed with connection setup and handling in our
driver, using information stored in our “shadow™ objects.
The Microsoft driver does not see the connection request or
any subsequent traffic on the connection.

[0543] If the connection request is NOT for one of our
interfaces, we pass it down to the Microsoft driver. Note
carefully, however, that we can not simply discard our
“shadow” objects at this point. The TDI interface allows
re-use of CONNECTION objects: on termination of a con-
nection, it is legal for the TDI client to dissociate the
CONNECTION object from its current . Thus our “shadow”
objects must be retained for the lifetime ADDRESS object,
re-associate it with another, and use it for another connection
of the NT FILE_OBIJECTS: the subsequent connection
could turn out to be via one of our interfaces.

[0544] Timers.
[0545] Keepalive Timer.

[0546] We don’t want to implement keepalive timers on
the INIC. It would in any case be a very poor use of
resources to have an INIC context sitting idle for two hours.
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[0547] 1dle Timer.

[0548] We will keep an idle timer in the ATCP driver for
connections that are managed by the INIC (resetting it
whenever we see activity on the connection), and cause a
flush of context back to the host if this timer expires. We may
want to make the threshold substantially lower than 2 hours,
to reclaim INIC context slots for useful work sooner. May
also want to make that dependent on the number of contexts
which have actually been handed out: don’t need to reclaim
them if we haven’t handed out the max.

[0549] Receive and Transmit Microcode Design.

[0550] This section provides a general description of the
design of the microcode that will execute on two of the
sequencers of the Protocol Processor on the INIC. The
overall philosophy of the INIC is discussed in other sections.
This section will discuss the INIC microcode in detail.

[0551] Design Overview.

[0552] As specified in other sections, the INIC supplies a
set of 3 custom processors that will provide considerable
hardware-assist to the microcode running thereon. The para-
graphs immediately following list the main hardware-assist
features:

[0553] 1) Header processing with specialized DMA
engines to validate an input header and generate a
context hash, move the header into fast memory and
do header comparisons on a DRAM-based TCP
control block;

[0554] 2) DRAM fifos for free buffer queues (large &
small), receive-frame queues, event queues etc.;

[0555] 3) Header compare logic;
[0556] 4) Checksum generation;

[0557] 5) Multiple register contexts with register
access controlled by simply setting a context register.
The Protocol Processor will provide 512 SRAM-
based registers to be shared among the 3 sequencers;

[0558] 6) Automatic movement of input frames into
DRAM buffers from the MAC Fifos;

[0559] 7) Run receive processing on one sequencer
and transmit processing on the other. This was cho-
sen as opposed to letting both sequencers run receive
and transmit. One of the main reasons for this is that
the header-processing hardware can not be shared
and interlocks would be needed to do this. Another
reason is that interlocks would be needed on the
resources used exclusively by receive and by trans-
mit;

[0560] 8) The INIC will support up to 256 TCP
connections (TCB’s). A TCB is associated with an
input frame when the frame’s source and destination
IP addresses and source and destination ports match
that of the TCB. For speed of access, the TCB’s will
be maintained in a hash table in NIC DRAM to save
sequential searching. There will however, be an
index in hash order in SRAM. Once a hash has been
generated, the TCB will be cached in SRAM. There
will be up to 8 cached TCBs in SRAM. These cache
locations can be shared between both sequencers so
that the sequencer with the heavier load will be able
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to use more cache buffers. There will also be 8
header buffers to be shared between the sequencers.
Note that each header buffer is not statically linked
to a specific TCB buffer. In fact the link is dynamic
on a per-frame basis. The need for this dynamic
linking will be explained in later sections. Suffice to
say here that if there is a free header buffer, then
somewhere there is also a free TCB SRAM buffer;

[0561] 9) There were 2 basic implementation options

considered here. The first was single-stack and the
second was a process model. The process model was
chosen here because the custom processor design is
providing zero-cost overhead for context switching
through the use of a context base register, and
because there will be more than enough process slots
(or contexts) available for the peak load. It is also
expected that all “local” variables will be held per-
manently in registers whilst an event is being pro-
cessed;

[0562] 10) The features that provide this are 256 of

the 512 SRAM-based registers that will be used for
the register contexts. This can be divided up into 16
contexts (or processes) of 16 registers each. Then 8
of these will be reserved for receive and 8 for
transmit. A Little’s Law analysis has shown that in
order to support 512 byte frames at maximum arrival
rate of 4*100 Mbits, requires more than 8 jobs to be
in process in the NIC. However each job requires an
SRAM buffer for a TCB context and at present, there
are only 8 of these currently specified due to SRAM
space limits. So more contexts (e.g. 32*8 regs each)
do not seem worthwhile. Refer to the section entitled
“LOAD CALCULATIONS” for more details of this
analysis. A context switch simply involves reloading
the context base register based on the context to be
restarted, and jumping to the appropriate address for
resumption;

[0563] 11) To better support the process model cho-

sen, the code will lock an active TCB into an SRAM
buffer while either sequencer is operating on it. This
implies there will be no swapping to and from
DRAM of a TCB once it is in SRAM and an
operation is started on it. More specifically, the TCB
will not be swapped after requesting that a DMA be
performed for it. Instead, the system will switch to
another active “process”. Then it will resume the
former process at the point directly after where the
DMA was requested. This constitutes a zero-cost
switch as mentioned above;

[0564] 12) Individual TCB state machines will be run

from within a “process”. There will be a state
machine for the receive side and one for the transmit
side. The current TCB states will be stored in the
SRAM TCB index table entry;

[0565] 13) The INIC will have 16 MB of DRAM.

The current specification calls for dividing a large
portion of this into 2 K buffers and control alloca-
tion/deallocation of these buffers through one of the
DRAM fifos mentioned above. These fifos will also
be used to control small host buffers, large host
buffers, command buffers and command response
buffers;
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[0566] 14) For events from one sequencer to the other

(i.e. RCV<>XMT), the current specification calls for
using simple SRAM CIO buffers, one for each
direction;

[0567] 15) Each sequencer handles its own timers
independently of the others;

[0568] 16) Contexts will be passed to the INIC
through the Transmit command and response buffers.
INIC-initiated TCB releases will be handled through
the Receive small buffers. Host-initiated releases
will use the Command buffers. There needs to be
strict handling of the acquisition and release of
contexts to avoid windows where for example, a
frame is received on a context just after the context
was passed to the INIC, but before the INIC has
“accepted” it; and

[0569] 17)T/TCP (Transaction TCP): the initial INIC
will not handle T/TCP connections. This is because
they are typically used for the HT'TP protocol and the
client for that protocol typically connects, sends a
request and disconnects in one segment. The server
sends the connect confirm, reply and disconnect in
his first segment. Then the client confirms the dis-
connect. This is a total of 3 segments for the life of
a context. Typical data lengths are on the order of
300 bytes from the client and 3 K from the server.
The INIC will provide as good an assist as seems
necessary here by checksumming the frame and
splitting headers and data. The latter is only likely
when data is forwarded with a request such as when
a filled-in form is sent by the client.

[0570] SRAM Requirements.

[0571] SRAM requirements for the Receive and Transmit
engines are shown in FIG. 38. Depending upon the available
space, the number of TCB buffers may be increased to 16.

[0572] General Philosophy.

[0573] The basic plan is to have the host determine when
a TCP connection is able to be handed to the INIC, setup the
TCB and pass it to the card via a command in the Transmit
queue. TCBs that the INIC owns can be handed back to the
host via a request from the Receive or Transmit sequencers
or from the host itself at any time.

[0574] When the INIC receives a frame, one of its imme-
diate tasks is to determine if the frame is for a TCB that it
controls. If not, the frame is passed to the host on a generic
interface TCB. On transmit, the transmit request will specify
a TCB hash number if the request is on a INIC-controlled
TCB. Thus the initial state for the INIC will be transparent
mode in which all received frames are directly passed
through and all transmit requests will be simply thrown on
the appropriate wire. This state is maintained until the host
passes TCBs to the INIC to control. Note that frames
received for which the INIC has no TCB (or it is with the
host) will still have the TCP checksum verified if TCP/IP,
and may split the TCPIP header off into a separate buffer.

[0575] Register Usage.

[0576] There will be 512 registers available. The first 256
will be used for process contexts. The remaining 256 will be
split between the three sequencers as follows: 1) 257-320:
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64 for RCV general processing/main loop; 2) 321-384: 64
for XMT general processing/main loop; and 3) 385-512: 128
for three sequencer use.

[0577] Receive Processing.
[0578] Main Loop.
[0579] FIG. 39 is a summary of the main loop of Receive.

[0580]

[0581] The events that will be processed on a given
context are:

Receive Events.

[0582] 1) accept a context;

[0583] 2) release a context command (from the host
via Transmit);

[0584] 3) release a context request (from Transmit),

[0585] 4) receive a valid frame; this will actually
become 2 events based on the received frame—
receive an ACK, receive a segment;

[0586] 5) receive an “invalid” frame i.ec. one that
causes the TCB to be flushed to the host;

[0587] 6) avalid ACK needs to be sent (delayed ACK
timer expiry); and

[0588] 7) There are expected to be the following
sources of events: a) Receive input queue: it is
expected that hardware will automatically DMA
arriving frames into frame buffers and queue an
event into a RCV-event queue; b) Timer event queue:
expiration of a timer will queue an event into this
queue; and ¢) Transmit sequencer queue: for requests
from the transmit processor.

[0589] For the sake of brevity the following only discusses
receive-frame processing.

[0590] Receive Details—Valid Context.

[0591] The base for the receive processing done by the
INIC on an existing context is the fast-path or “header
prediction” code in the FreeBSD release. Thus the process-
ing is divided into three parts: header validation and check-
summing, TCP processing and subsequent SMB processing.

[0592] Header Validation.

[0593] There is considerable hardware assist here. The
first step in receive processing is to DMA the frame header
into an SRAM header buffer. It is useful for header valida-
tion to be implemented in conjunction with this DMA by
scanning the data as it flies by. The following tests need to
be “passed”:

[0594] 1) MAC header: destination address is our MAC
address (not MC or BC too), the Ethertype is IP; 2) IP
header: header checksum is valid, header length=5, IP
length>header length, protocol=TCP, no fragmentation, des-
tination IP is our IP address; and 3) TCP header: checksum
is valid (incl. pseudo-header), header length=5 or 8 (times-
tamp option), length is valid, dest port=SMB or FTP data, no
FIN/SYN/URG/PSH/RST bits set, timestamp option is valid
if present, segment is in sequence, the window size did not
change, this is not a retransmission, it is a pure ACK or a
pure receive segment, and most important, a valid context
exists. The valid-context test is non-trivial in the amount of
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work involved to determine it. Also note that for pure ACKs,
the window-size test will be relaxed. This is because initially
the output PERSIST state is to be handled on the INIC.

[0595] Many but perhaps not all of these tests will be
performed in hardware—depending upon the embodiment.

[0596] TCP Processing.

[0597] Once a frame has passed the header validation
tests, processing splits based on whether the frame is a pure
ACK or a pure received segment.

[0598] Pure RCV Packet.

[0599] The design is to split off headers into a small header
buffer and pass the aligned data in separate large buffers.
Since a frame has been received, eventually some receiver
process on the host will need to be informed. In the case of
FTP, the frame is pure data and it is passed to the host
immediately. This involves getting large buffers and DMA-
ing the data into them, then setting the appropriate details in
a small buffer that is used to notify the host. However for
SMB, the INIC is performing reassembly of data when the
frame consists of headers and data. So there may not yet be
a complete SMB to pass to the host. In this case, a small
buffer will be acquired and the header moved into it. If the
received segment completes an SMB, then the procedures
are pretty much as for FTP. If it does not, then the scheme
is to at least move the received data (not the headers) to the
host to free the INIC buffers and to save latency. The list of
in-progress host buffers is maintained in the TCB and moved
to the header buffer when the SMB is complete.

[0600] The final part of pure-receive processing is to fire
off the delayed ACK timer for this segment.

[0601] Pure ACK.

[0602] Pure ACK processing implies this TCB is the
sender, so there may be transmit buffers that can be returned
to the host. If so, send an event to the Transmit processor (or
do the processing here). If there is more output available,
send an event to the transmit processor.

[0603] Then appropriate actions need to be taken with the
retransmission timer.

[0604] SMB Processing.

[0605] FIG. 40 shows the format of the SMB header of an
SMB frame. The LENGTH field of the NetBIOS header will
be used to determine when a complete SMB has been
received and the header buffer with appropriate details can
be posted to the host. The interesting commands are the
write commands: SMBwrite (0xB), SMBwriteBraw (0x1D),
SMBwriteBmpx (0x1E), SMBwriteBs (0x1F), SMBwrite-
close (0x2C), SMBwriteX (0x2F), SMBwriteunlock (0x14).
These are interesting because they will have data to be
aligned in host memory. The point to note about these
commands is that they each have a different WCT field, so
that the start offset of the data depends on the command type.
SMB processing will thus need to be cognizant of these

types.
[0606] Receive Details—No Valid Context.
[0607] The design here is to provide as much assist as

possible. Frames will be checksummed and the TCPIP
headers may be split off.
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[0608] Receive Notes.

[0609] 1.PRU_RCVD or the equivalent in Microsoft
language: the host application has to tell the INIC
when he has accepted the received data that has been
queued. This is so that the INIC can update the
receive window. It is an advantage for this mecha-
nism to be efficient. This may be accomplished by
piggybacking these on transmit requests (not neces-
sarily for the same TCB).

[0610] 2. Keepalive Timer: for a INIC-controlled
TCB, the INIC will not maintain this timer. This
leaves the host with the job of determining that the
TCB is still active.

[0611] 3. Timestamp option: it is useful to support
this option in the fast path because the BSD imple-
mentation does. Also, it can be very helpful in
getting a much better estimate of the round-trip time
(RTT) which TCP needs to use.

[0612] 4. Idle timer: the INIC will not maintain this
timer (see Note 2 above).

[0613] 5.Frame with no valid context: The INIC may
split TCP/IP headers into a separate header buffer.

[0614] Transmit Processing.

[0615] Main Loop.

[0616] FIG. 41 is a summary of the main loop of Transmit.
[0617] Transmit Events.

[0618] The events that will be processed on a given
context and their sources are: 1) accept a context (from the
Host); 2) release a context command (from the Host); 3)
release a context command (from Receive); 4) valid send
request and window=>0 (from host or RCV sequencer); 5)
valid send request and window=0 (from host or RCV
sequencer); 6) send a window update (host has accepted
data); 7) persist timer expiration (persist timer); 8) context-
release event e.g. window shrank (XMT processing or
retransmission timer); and 9) receive-release request ACK(
from RCV sequencer).

[0619] Transmit Details—Valid Context.

[0620] The following is an overview of the transmit flow:
The host posts a transmit request to the INIC by filling in a
command buffer with appropriate data pointers etc and
posting it to the INIC via the Command Buffer Address
register. Note that there is one host command buffer queue,
but there are four physical transmit lines. So each request
needs to include an interface number as well as the context
number. The INIC microcode will DMA the command in
and place it in one of four internal command queues which
the transmit sequencer will work on. This is so that transmit
processing can round-robin service these four queues to
keep all four interfaces busy, and not let a highly-active
interface lock out the others (which would happen with a
single queue). The transmit request may be a segment that is
less than the MSS, or it may be as much as a full 64 K SMB
READ. Obviously the former request will go out as one
segment, the latter as a number of MSS-sized segments. The
transmitting TCB must hold on to the request until all data
in it has been transmitted and acked. Appropriate pointers to
do this will be kept in the TCB. A large buffer is acquired
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from the free buffer fifo, and the MAC and TCP/IP headers
are created in it. It may be quicker/simpler to keep a basic
frame header set up in the TCB and either DMA directly this
into the frame each time. Then data is DMA’d from host
memory into the frame to create an MSS-sized segment.
This DMA also checksums the data. Then the checksum is
adjusted for the pseudo-header and placed into the TCP
header, and the frame is queued to the MAC transmit
interface which may be controlled by the third sequencer.
The final step is to update various window fields etc in the
TCB. Eventually either the entire request will have been sent
and acked, or a retransmission timer will expire in which
case the context is flushed to the host. In either case, the
INIC will place a command response in the Response queue
containing the command buffer handle from the original
transmit command and appropriate status.

[0621] The above discussion has dealt how an actual
transmit occurs. However the real challenge in the transmit
processor is to determine whether it is appropriate to trans-
mit at the time a transmit request arrives. There are many
reasons not to transmit: the receiver’s window size is <=0,
the Persist timer has expired, the amount to send is less than
a full segment and an ACK is expected/outstanding, the
receiver’s window is not half-open etc. Much of the transmit
processing will be in determining these conditions.

[0622] Transmit Details—No Valid Context.

[0623] The main difference between this and a context-
based transmit is that the queued request here will already
have the appropriate MAC and TCP/IP (or whatever) head-
ers in the frame to be output. Also the request is guaranteed
not to be greater than MSS-sized in length. So the processing
is fairly simple. A large buffer is acquired and the frame is
DMAed into it, at which time the checksum is also calcu-
lated. If the frame is TCP/IP, the checksum will be appro-
priately adjusted if necessary (pseudo-header etc) and placed
in the TCP header. The frame is then queued to the appro-
priate MAC transmit interface. Then the command is imme-
diately responded to with appropriate status through the
Response queue.

[0624] Transmit Notes.

[0625] 1) Slow-start: the INIC will handle the slow-
start algorithm that is now a part of the TCP standard.
This obviates waiting until the connection is sending
a full-rate before passing it to the INIC.

[0626] 2) Window Probe vs Window Update—an
explanation for posterity. A Window Probe is sent
from the sending TCB to the receiving TCB, and it
means the sender has the receiver in PERSIST state.
Persist state is entered when the receiver advertises
a zero window. It is thus the state of the transmitting
TCB. In this state, he sends periodic window probes
to the receiver in case an ACK from the receiver has
been lost. The receiver will return his latest window
size in the ACK. A Window Update is sent from the
receiving TCB to the sending TCB, usually to tell
him that the receiving window has altered. It is
mostly triggered by the upper layer when it accepts
some data. This probably means the sending TCB is
viewing the receiving TCB as being in PERSIST
state.

[0627] 3) Persist state: it is designed to handle Persist
state on the INIC. It seems unreasonable to throw a
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TCB back to the host just because its receiver
advertised a zero window. This would normally be a
transient situation, and would tend to happen mostly
with clients that do not support slow-start. Alterna-
tively, the code can easily be changed to throw the
TCB back to the host as soon as a receiver advertises
a zero window.

[0628] 4) MSS-sized frames: the INIC code will
expect all transmit requests for which it has no TCB
to not be greater than the MSS. If any request is, it
will be dropped and an appropriate response status
posted.

[0629] 5) Silly Window avoidance: as a receiver, the
INIC will do the right thing here and not advertise
small windows—this is easy. However it is neces-
sary to also do things to avoid this as a sender, for the
cases where a stupid client does advertise small
windows. Without getting into too much detail here,
the mechanism requires the INIC code to calculate
the largest window advertisement ever advertised by
the other end. It is an attempt to guess the size of the
other end’s receive buffer and assumes the other end
never reduces the size of its receive buffer. See
Stevens, “TCP/IP Illustrated”, Vol. 1, pp. 325-326
(1994).

[0630] The Utility Processor.
[0631] Summary.

[0632] The following is a summary of the main functions
of the utility sequencer of the microprocessor:

[0633] 1) Look at the event queues: Event13Type &
Event23Type (we assume there will be an event
status bit for this—USE_EV13 and USE_EV23) in
the events register; these are events from sequencers
1 and 2; they will mainly be XMIT requests from the
XMT sequencer. Dequcue request and place the
frame on the appropriate interface.

[0634] 2) RCV-frame support: in the model, RCV is
done through VinicReceive( ) which is registered by
the lower-edge driver, and is called at dispatch-level.
This routine calls VinicTransferDataComplete( ) to
check if the xfer (possibly DMA) of the frame into
host buffers is complete. The latter rtne is also called
at dispatch level on a DMA-completion interrupt. It
queues complete buffers to the RCV sequencer via
the normal queue mechanism.

[0635] 3) Other processes may also be employed here
for supporting the RCV sequencer.

[0636] 4) Service the following registers (this will
probably involve micro-interrupts):

[0637]

[0638] Buffers are 256 bytes long on 256-byte
boundaries.

[0639] 31-8—physical addr in host of a set of
contiguous hddr buffers.

[0640] 7-0—number of hddr buffers passed.

[0641] Use contents to add to SmallHType
queue.

a) Header Buffer Address register:
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[0642] b) Data Buffer Handle & Data Buffer
Address registers:

[0643] Buffers are 4 K long aligned on 4 K
boundaries.

[0644] Use contents to add to the FreeType
queue.

[0645]

[0646] Buffers are multiple of 32 bytes up to 1
K long (2¥*5%32).

[0647] 31-5—physical addr in host of cmd
buffer.

[0648] 4-0—Ilength of cmd in bytes/32 (i.e. mul-
tiples of 32 bytes).

[0649] Points to host cmd; get FreeSType buffer
and move.

[0650] command into it; queue to Xmit0-
Xmit3Type queues.

[0651] d) Response Buffer Address register:

[0652] Buffers are 32 bytes long on 32-byte
boundaries.

[0653] 31-8—physical addr in host of a set of
contiguous resp buffers.

[0654] 7-0—number of resp buffers passed.

[0655] Use contents to add to the ResponseType
queue.

¢) Command Buffer Address register:

[0656] 5) Low buffer threshold support: set approp
bits in the ISR when the available-buffers count in
the various queues filled by the host falls below a
threshold.

[0657] Further Operations of the Utility Processor.

[0658] The utility processor of the microprocessor housed
on the INIC is responsible for setting up and implementing
all configuration space and memory mapped operations, and
also as described below, for managing the debug interface.

[0659] All data transfers, and other INIC initiated transfers
will be done via DMA. Configuration space for both the
network processor function and the utility processor func-
tion will define a single memory space for each. This
memory space will define the basic communication structure
for the host. In general, writing to one of these memory
locations will perform a request for service from the INIC.
This is detailed in the memory description for each function.
This section defines much of the operation of the Host
interface, but should be read in conjunction with the Host
Interface Strategy for the Alacritech INIC to fully define the
Host/INIC interface.

[0660] Two registers, DMA hardware and an interrupt
function comprise the INIC interface to the Host through
PCI. The interrupt function is implemented via a four bit
register (PCI_INT) tied to the PCI interrupt lines. This
register is directly accessed by the microprocessor.

[0661] THE MICROPROCESSOR uses two registers, the
PCI_Data_Reg and the PCI_Address Reg, to enable the
Host to access Configuration Space and the memory space
allocated to the INIC. These registers are not available to the
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Host, but are used by THE MICROPROCESSOR to enable
Host reads and writes. The function of these two registers is
as follows.

[0662] 1) PCI_Data_Reg: This register can be both
read and written by THE MICROPROCESSOR. On
write operations from the host, this register contains
the data being sent from the host. On read operations,
this register contains the data to be sent to the host.

[0663] 2) PCI_Address Reg: This is the control reg-
ister for memory reads and writes from the host. The
structure of the register is shown in FIG. 42. During
a write operation from the Host the PCI_Data_Reg
contains valid data after Data Valid is set in the
PCI_Address_Reg. Both registers are locked until
THE MICROPROCESSOR writes the PCI_Da-
ta_Reg, which resets Data Valid. All read operations
will be direct from SRAM. Memory space based
reads will return 00. Configuration space reads will
be mapped as shown in FIG. 43.

[0664] Configuration Space.

[0665] The INIC is implemented as a multi-function
device. The first device is the network controller, and the
second device is the debug interface. An alternative produc-
tion embodiment may implement only the network control-
ler function. Both configuration space headers will be the
same, except for the differences noted in the following
description.

[0666] Vendor ID—This field will contain the Alac-
ritech Vendor ID. One field will be used for both
functions. The Alacritech Vendor ID is hex 139A.

[0667] Device ID—Chosen at Alacritech on a device
specific basis. One field will be used for both func-
tions.

[0668] Command—Initialized to 00. All bits defined
below as not enabled (0) will remain 0. Those that
are enabled will be set to 0 or 1 depending on the
state of the system. Each function (network and
debug) will have its own command field, as shown in
FIG. 44.

[0669] Status—This is not initialized to zero. Each
function will have its own field. The configuration is
as shown in FIG. 45.

[0670] Revision ID—The revision field will be
shared by both functions.

[0671] Class Code—This is 02 00 00 for the network
controller, and for the debug interface. The field will
be shared.

[0672] Cache Line Size—This is initialized to zero.
Supported sizes are 16, 32, 64 and 128 bytes. This
hardware register is replicated in SRAM and sup-
ported separately for each function, but THE
MICROPROCESSOR will implement the value set
in Configuration Space 1 (the network processor).

[0673] Latency Timer—This is initialized to zero.
The function is supported. This hardware register is
replicated in SRAM. Each function is supported
separately, but THE MICROPROCESSOR will
implement the value set in Configuration Space 1
(the network processor).
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[0674] Header Type—This is set to 80 for both func-
tions, but will be supported separately.
[0675] BIST—Is implemented. In addition to

responding to a request to run self test, if test after
reset fails, a code will be set in the BIST register.
This will be implemented separately for each func-
tion.

[0676] Base Address Register—A single base address
register is implemented for each function. It is 64 bits
in length, and the bottom four bits are configured as
follows: Bit 0-0, indicates memory base address; Bit
1,2-00, locate base address anywhere in 32 bit
memory space; and Bit 3-1, memory is prefetchable.

[0677] CardBus CIS Pointer—Not implemented-ini-
tialized to 0.

[0678] Subsystem Vendor ID—Not implemented-ini-
tialized to 0.

[0679] Subsystem ID—Not implemented-initialized
to 0.

[0680] Expansion ROM Base Address—Not imple-
mented-initialized to 0.

[0681] Interrupt Line—Implemented-initialized to 0.
This is implemented separately for each function.

[0682] Interrupt Pin—This is set to 01, corresponding
to INTA# for the network controller, and 02, corre-
sponding to INTB# for the debug interface. This is
implemented separately for each function.

[0683] Min_Gnt—This can be set at a value in the
range of 10, to allow reasonably long bursts on the
bus. This is implemented separately for each func-
tion.

[0684] Max_Lat—This can be set to 0 to indicate no
particular requirement for frequency of access to
PCI. This is implemented separately for each func-
tion.

[0685] Memory Space.

[0686] Because each of the following functions may or
may not reside in a single location, and may or may not need
to be in SRAM at all, the address for each is really only used
as an identifier (label). There is, therefore, no control block
anywhere in memory that represents this memory space.
When the host writes one of these registers, the utility
processor will construct the data required and transfer it.
Reads to this memory will generate 00 for data.

[0687] Network Processor.

[0688] The following four byte registers, beginning at
location hOO of the network processor’s allocated memory,
are defined.

[0689] 00—Interrupt Status Pointer—Initialized by the
host to point to a four byte area where status is stored.

[0690] 04—Interrupt Status—Returned status from
host. Sent after one or more status conditions have been
reset. Also an interlock for storing any new status. Once
status has been stored at the Interrupt Status Pointer
location, no new status will be ORed until the host
writes the Interrupt Status Register. New status will be

45
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ored with any remaining uncleared status (as defined by
the contents of the returned status) and stored again at
the Interrupt Status Pointer location. Bits are as fol-
lows:

[0691] Bit 31 —ERR—Error bits are set;
[0692] Bit 30—RCV—Receive has occurred,

[0693] Bit 29—XMT—Transmit command com-
plete; and

[0694] Bit 25 RMISS—Receive drop occurred due to
no buffers.

[0695] 08—Interrupt Mask—Written by the host. Inter-
rupts are masked for each of the bits in the interrupt
status when the same bit in the mask register is set.
When the Interrupt Mask register is written and as a
result a status bit is unmasked, an interrupt is generated.
Also, when the Interrupt Status Register is written,
enabling new status to be stored, when it is stored if a
bit is stored that is not masked by the Interrupt Mask,
an interrupt is generated.

[0696] OC—Header Buffer Address—Written by host to
pass a set of header buffers to the INIC.

[0697] 10—Data Buffer Handle—First register to be
written by the Host to transfer a receive data buffer to
the INIC. This data is Host reference data. It is not used
by the INIC, it is returned with the data buffer. How-
ever, to insure integrity of the buffer, this register must
be interlocked with the Data Buffer Address register.
Once the Data Buffer Address register has been written,
neither register can be written until after the Data
Buffer Handle register has been read by THE MICRO-
PROCESSOR.

[0698] 14— Data Buffer Address—Pointer to the data
buffer being sent to the INIC by the Host. Must be
interlocked with the Data Buffer Handle register.

[0699] 18—Command Buffer Address XMT0—Pointer
to a set of command buffers sent by the Host. THE
MICROPROCESSOR will DMA the, buffers to local
DRAM found on the FreeSType queue and queue the
Command Buffer Address XMTO0 with the local address
replacing the host Address.

[0700] 1C—Command Buffer Address SMT1.
[0701] 20—Command Buffer Address SMT2.
[0702] 24—Command Buffer Address SMT3.
[0703] 28— Response Buffer Address—Pointer to a set

of response buffers sent by the Host. These will be
treated in the same fashion as the Command Buffer
Address registers.

[0704] Utility Processor.

[0705] Ending status will be handled by the utility pro-
cessor in the same fashion as it is handled by the network
processor. At present two ending status conditions are
defined B31—command complete, and B30—error. When
end status is stored an interrupt is generated.

[0706] Two additional registers are defined, Command
Pointer and Data Pointer. The Host is responsible for insur-
ing that the Data Pointer is valid and points to sufficient
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memory before storing a command pointer. Storing a com-
mand pointer initiates command decode and execution by
the debug processor. The Host must not modify either
command or Data Pointer until ending status has been
received, at which point a new command may be initiated.
Memory space is write only by the Host, reads will receive
00. The format is as follows:

[0707] 00—Interrupt Status Pointer—Initialized by the
host to point to a four byte area where status is stored.

[0708] 04—Interrupt Status—Returned status from
host. Sent after one or more status conditions have been
reset. Also an interlock for storing any new status. Once
status has been stored at the Interrupt Status Pointer
location, no new status will be stored until the host
writes the Interrupt Status Register. New status will be
ored with any remaining uncleared status (as defined by
the contents of the returned status) and stored again at
the Interrupt Status Pointer location. Bits are as fol-
lows:

[0709] Bit 31 —CC—Command Complete;
[0710] Bit 30—ERR—Error;

[0711] Bit29—Transmit Processor Halted;
[0712] Bit28—Receive Processor Halted; and
[0713] Bit27—Utility Processor Halted.

[0714] 08—Interrupt Mask—Written by the host. Inter-
rupts are masked for each of the bits in the interrupt
status when the same bit in the mask register is set.
When the Interrupt Mask register is written and as a
result a status bit is unmasked, an interrupt is generated.
Also, when the Interrupt Status Register is written,
enabling new status to be stored, when it is stored if a
bit is stored that is not masked by the Interrupt Mask,
an interrupt is generated.

[0715] 0C—Command Pointer—Points to command to
be executed. Storing this pointer initiates command
decode and execution.

[0716] 10—Data Pointer—Points to the data buffer.
This is used for both read and write data, determined by
the command function.

[0717] Debug Interface.

[0718] In order to provide a mechanism to debug the
microcode running on the microprocessor sequencers, a
debug process has been defined which will run on the utility
sequencer. This processor will interface with a control
program on the host processor over PCL.

[0719] PCI Interface.

[0720] This interface is defined in the combination of the
Utility Processor and the Host Interface Strategy sections,
above.

[0721] Command Format.

[0722] The first byte of the command, the command byte,
defines the structure of the remainder of the command.
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[0723] Command Byte.

[0724] The first five bits of the command byte are the
command itself. The next bit is used to specify an alternate
processor, and the last two bits specify which processors are
intended for the command.

[0725] Processor Bits.
[0726] 00—Any Processor;
[0727] 01—Transmit Processor;
[0728] 10—Receive Processor; and
[0729] 11—Utility Processor.
[0730] Alternate Processor.

[0731] This bit defines which processor should handle
debug processing if the utility processor is defined as the
processor in debug.

[0732] 0—Transmit Processor; and
[0733] 1—Receive Processor.
[0734] Single Byte Commands.

[0735] 00—Halt—This command asynchronously
halts the processor.

[0736] 08—Run—This command starts the proces-
SOr.

[0737] 10—Step—This command steps the proces-
SOr.

[0738] Eight Byte Commands.

18 - Break
0 1 2-3 4-7
Command Reserved Count Address

[0739] This command sets a stop at the specified address.
A count of 1 causes the specified processor to halt the first
time it executes the instruction. A count of 2 or more causes
the processor to halt after that number of executions. The
processor is halted just before executing the instruction. A
count of 0 does not halt the processor, but causes a sync
signal to be generated. If a second processor is set to the
same break address, the count data from the first break
request is used, and each time either processor executes the
instruction the count is decremented.

20 - Reset Break
0 1-3 4-7
Command Reserved Address

[0740] This command resets a previously set break point
at the specified address. Reset break fully resets that address.
If multiple processors were set to that break point, all will be
reset.
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28 - Dump 30 - Load
0 1 2-3 4-7 0 1 2-3 4-7
Command Descriptor Count Address Command Descriptor Count Address

[0741] This command transfers to the host the contents of
the descriptor. For descriptors larger than four bytes, a count,
in four byte increments is specified. For descriptors utilizing
an address the address field is specified.

[0742] Descriptor.

[0743] 00—Register—This descriptor uses both
count and address fields. Both fields are four byte
based (a count of 1 transfers four bytes).

[0744] 01—Sram—This descriptor uses both count
and address fields. Count is in four byte blocks.
Address is in bytes, but if it is not four byte aligned,
it is forced to the lower four byte aligned address.

[0745] 02—DRAM—This descriptor uses both count
and address fields. Count is in four byte blocks.
Address is in bytes, but if it is not four byte aligned,
it is forced to the lower four byte aligned address.

[0746] 03—Cstore—This descriptor uses both count
and address fields. Count is in four byte blocks.
Address is in bytes, but if it is not four byte aligned,
it is forced to the lower four byte aligned address.

[0747] Stand-alone descriptors: The following descriptors
do not use either the count or address fields. They transfer
the contents of the referenced register.

[0748] 04—CPU_STATUS;
[0749] 05—PC;

[0750] 06—ADDR_REGA;
[0751] 07—ADDR_REGB;
[0752] 08—RAM BASE;
[0753] 09—FILE_BASE;
[0754] 0A—INSTR _REG_L;
[0755] OB—INSTR_REG_H;
[0756] 0C—MAC DATA;
[0757] 0D—DMA_EVENT;
[0758] OE—MISC_EVENT;
[0759] 0F—Q_IN_RDY:
[0760] 10—Q_OUT RDY;
[0761] 11—LOCK STATUS;
[0762] 12—STACK—This returns 12 bytes; and
[0763] 13—SENSE_REG.

[0764] This register contains four bytes of data. If error
status is posted for a command, if the next command that is
issued reads this register, a code describing the error in more
detail may be obtained. If any command other than a dump
of this register is issued after error status, sense information
will be reset.

[0765] This command transfers from the host the contents
of the descriptor. For descriptors larger than four bytes, a
count, in four byte increments is specified. For descriptors
utilizing an address the address field is specified.

[0766] Descriptor.

[0767] 00—Register—This descriptor uses both
count and address fields. Both fields are four byte
based.

[0768] 01—Sram—This descriptor uses both count
and address fields. Count is in four byte blocks.
Address is in bytes, but if it is not four byte aligned,
it is forced to the lower four byte aligned address.

[0769] 02—DRAM—This descriptor uses both count
and address fields. Count is in four byte blocks.
Address is in bytes, but if it is not four byte aligned,
it is forced to the lower four byte aligned address.

[0770] 03—Cstore—This descriptor uses both count
and address fields. Count is in four byte blocks.
Address is in bytes, but if it is not four byte aligned,
it is forced to the lower four byte aligned address.
This applies to WCS only.

[0771] Stand-alone descriptors: The following descriptors
do not use either the count or address fields. They transfer
the contents of the referenced register.

[0772] 04—ADDR_REGA;
[0773] 05—ADDR_REGB;
[0774] 06—RAM_BASE;
[0775] 07—FILE_BASE;

[0776] 08—MAC _DATA;
[0777] 09—Q_IN_RDY;

[0778] 0A—Q_OUT RDY;

[0779]
[0780]

0B—DBG_ADDR; and
38—MAP.

[0781] This command allows an instruction in ROM to be
replaced by an instruction in WCS. The new instruction will
be located in the Host buffer. It will be stored in the first eight
bytes of the buffer, with the high bits unused. To reset a
mapped out instruction, map it to location 00.

0 1-3 4-7
Command Address to Address to
Map To Map Out
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[0782] Hardware Specification.
[0783] Features:

[0784] 1) Peripheral Component Interconnect (PCI) Inter-
face.

[0785] a) Universal PCI interface supports both 5.0V
and 3.3V signaling environments;

[0786] b) Supports both 32-bit and 64 bit PCI inter-
face;

[0787] c¢) Supports PCI clock frequencies from 15
MHz to 66 MHz;

[0788] d) High performance bus mastering architec-
ture;

[0789] e¢) Host memory based communications
reduce register accesses;

[0790] f) Host memory based interrupt status word
reduces register reads;

[0791]
[0792]
[0793]

[0794]
bytes;

[0795] k) Both big-endian and little-endian byte
alignments supported; and

g) Plug and Play compatible;

h) PCI specification revision 2.1 compliant;
i) PCI bursts up to 512 bytes;

j) Supports cache line operations up to 128

[0796] 1) Supports Expansion ROM.
[0797] 2) Network Interface.
[0798] a) Four internal 802.3 and ethernet compliant

Macs;

edia Independent Interface sup-
0799] b) Media Ind dent Interf MII
ports external PHYs;

[0800] ¢) 10BASE-T,
100BASE-T4 supported;

[0801] d) Full and half-duplex modes supported,

[0802] e) Automatic PHY status polling notifies sys-
tem of status change;

[0803] ) Provides SNMP statistics counters;

100BASE-TX/FX  and

[0804] g) Supports broadcast and multicast packets;

[0805] h) Provides promiscuous mode for network
monitoring or multiple unicast address detection;

[0806]
[0807] j) Mac-layer loop-back test mode; and

i) Supports “huge packets” up to 32 KB;

[0808] k) Supports auto-negotiating Phys.
[0809] 3) Memory Interface.

[0810] a) External DRAM buffering of transmit and
receive packets;

[0811] b) Buffering configurable as 4 MB, 8 MB, 16
MB or 32 MB;

[0812]
MB/s;

¢) 32-bit interface supports throughput of 224
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[0813] d) Supports external FLASH ROM up to 4
MB, for diskless boot applications; and

[0814] e) Supports external serial EEPROM for cus-
tom configuration and Mac addresses.

[0815] 4) Protocol Processor.

[0816] a) High speed, custom, 32-bit processor
executes 66 million instructions per second;

[0817] b) Processes IP, TCP and NETBIOS proto-

cols;
[0818] c¢) Supports up to 256 resident TCP/IP con-
texts; and

[0819] d) Writable control store (WCS) allows field
updates for feature enhancements.

[0820] 5) Power.

[0821] a) 3.3V chip operation; and

[0822] b) PCI controlled 5.0V/3.3V I/O cell opera-
tion.

[0823] 6) Packaging.

[0824] a) 272-pin plastic ball grid array;

[0825] b) 91 PCI signals;

[0826] c) 68 MII signals;

[0827] d) 58 external memory signals;

[0828] e) 1 clock signal;

[082?1] f) 54 signals split between power and ground,
an

[0830]
[0831] General Description.

[0832] The microprocessor (see FIG. 46) is a 32-bit,
full-duplex, four channel, 10/100-Megabit per second
(Mbps), Intelligent Network Interface Controller (INIC),
designed to provide high-speed protocol processing for
server applications. It combines the functions of a standard
network interface controller and a protocol processor within
a single chip. Although designed specifically for server
applications, the microprocessor can be used by PCs, work-
stations and routers or anywhere that TCP/IP protocols are
being utilized.

[0833] When combined with four 802.3/MII compliant
Phys and Synchronous DRAM (SDRAM), the INIC com-
prises four complete ethernet nodes. It contains four 802.3/
ethernet compliant Macs, a PCI Bus Interface Unit (BIU), a
memory controller, transmit fifos, receive fifos and a custom
TCP/IP/NETBIOS protocol processor. The INIC supports
10Base-T, 100Base-TX, 100Base-FX and 100Base-T4 via
the MII interface attachment of appropriate Phys.

g) 272 total pins.

[0834] The INIC Macs provide statistical information that
may be used for SNMP. The Macs operate in promiscuous
mode allowing the INIC to function as a network monitor,
receive broadcast and multicast packets and implement
multiple Mac addresses for each node.

[0835] Any 802.3/MII compliant PHY can be utilized,
allowing the INIC to support 10BASE-T, 10BASE-T2,
100BASE-TX, 100Base-FX and 100BASE-T4 as well as
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future interface standards. PHY identification and initializa-
tion is accomplished through host driver initialization rou-
tines. PHY status registers can be polled continuously by the
INIC and detected PHY status changes reported to the host
driver. The Mac can be configured to support a maximum
frame size of 1518 bytes or 32768 bytes.

[0836] The 64-bit, multiplexed BIU provides a direct
interface to the PCI bus for both slave and master functions.
The INIC is capable of operating in either a 64-bit or 32-bit
PCI environment, while supporting 64-bit addressing in
either configuration. PCI bus frequencies up to 66 MHz are
supported yielding instantaneous bus transfer rates of 533
MB/s. Both 5.0V and 3.3V signaling environments can be
utilized by the INIC. Configurable cache-line size up to 256
B will accommodate future architectures, and Expansion
ROM/Flash support allows for diskless system booting.
Non-PC applications are supported via programmable big
and little endian modes. Host based communication has
been utilized to provide the best system performance pos-
sible.

[0837] The INIC supports Plug-N-Play auto-configuration
through the PCI configuration space. External pull-up and
pull-down resistors, on the memory I/O pins, allow selection
of various features during chip reset. Support of an external
eeprom allows for local storage of configuration information
such as Mac addresses.

[0838] External SDRAM provides frame buffering, which
is configurable as 4 MB, 8 MB, 16 MB or 32 MB using the
appropriate SIMMs. Use of -10 speed grades yields an
external buffer bandwidth of 224 MB/s. The buffer provides
temporary storage of both incoming and outgoing frames.
The protocol processor accesses the frames within the buffer
in order to implement TCP/IP and NETBIOS. Incoming
frames are processed, assembled then transferred to host
memory under the control of the protocol processor. For
transmit, data is moved from host memory to buffers where
various headers are created before being transmitted out via
the Mac.

[0839] 1) Cores/Cells.

[0840] a) LSI Logic Ethernet—110 Core, 100Base
and 10Base Mac with MII interface;

[0841] b) LSI Logic single port SRAM, triple port
SRAM and ROM available;

[0842] c¢)LSI Logic PCI 66 MHz, 5V compatible I/O
cell; and

[0843] d) LSI Logic PLL.
[0844] 2) Die Size/Pin Count.

[0845] LSI Logic G10 process. FIG. 47 shows the area on
the die of each module.

[0846] 3) Datapath Bandwidth (See FIG. 48).
[0847] 4) CPU Bandwidth (See FIG. 49).
[0848] 5) Performance Features.

[0849] a) 512 registers improve performance through
reduced scratch ram accesses and reduced instruc-
tions;

[0850] b) Register windowing eliminates context-
switching overhead,;
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[0851] c¢) Separate instruction and data paths elimi-
nate memory contention;

[0852] d) Totally resident control store eliminates
stalling during instruction fetch;

[0853] e) Multiple logical processors eliminate con-
text switching and improve real-time response;

[0854] ©) Pipelined architecture increases operating
frequency;

[0855] g) Shared register and scratch ram improve
inter-processor communication;

0856] h) Fly-by state-Machine assists address com-
y-0y
pare and checksum calculation;

[0857] i) TCP/IP-context caching reduces latency;

[0858] j) Hardware implemented queues reduce CPU
overhead and latency;

[0859] k) Horizontal microcode greatly improves
instruction efficiency;

[0860] 1) Automatic frame DMA and status between
Mac and DRAM buffer; and

[0861] m) Deterministic architecture coupled with
context switching eliminates processor stalls.

[0862] Processor.

[0863] The processor is a convenient means to provide a
programmable state-machine which is capable of processing
incoming frames, processing host commands, directing net-
work traffic and directing PCI bus traffic. Three processors
are implemented using shared hardware in a three-level
pipelined architecture which launches and completes a
single instruction for every clock cycle. The instructions are
executed in three distinct phases corresponding to each of
the pipeline stages where each phase is responsible for a
different function.

[0864] The first instruction phase writes the instruction
results of the last instruction to the destination operand,
modifies the program counter (Pc), selects the address
source for the instruction to fetch, then fetches the instruc-
tion from the control store. The fetched instruction is then
stored in the instruction register at the end of the clock cycle.

[0865] The processor instructions reside in the on-chip
control-store, which is implemented as a mixture of ROM
and SRAM. The ROM contains 1 K instructions starting at
address 0x0000 and aliases each 0x0400 locations through-
out the first 0x8000 of instruction space. The SRAM (WCS)
will hold up to 0x2000 instructions starting at address
0x8000 and aliasing each 0x2000 locations throughout the
last 0x8000 of instruction space. The ROM and SRAM are
both 49-bits wide accounting for bits [48:0] of the instruc-
tion microword. A separate mapping ram provides bits
[55:49] of the microword (MapAddr) to allow replacement
of faulty ROM based instructions. The mapping ram has a
configuration of 128x7 which is insufficient to allow a
separate map address for each of the 1 K ROM locations. To
allow re-mapping of the entire 1 K ROM space, the map ram
address lines are connected to the address bits Fetch[9:3].
The result is that the ROM is re-mapped in blocks of 8
contiguous locations.
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[0866] The second instruction phase decodes the instruc-
tion which was stored in the instruction register. It is at this
point that the map address is checked for a non-zero value
which will cause the decoder to force a Jmp instruction to
the map address. If a non-zero value is detected then the
decoder selects the source operands for the Alu operation
based on the values of the OpdASel, OpdBSel and AluOp
fields. These operands are then stored in the decode register
at the end of the clock cycle. Operands may originate from
File, SRAM, or flip-flop based registers. The second instruc-
tion phase is also where the results of the previous instruc-
tion are written to the SRAM.

[0867] The third instruction phase is when the actual Alu
operation is performed, the test condition is selected and the
Stack push and pop are implemented. Results of the Alu
operation are stored in the results register at the end of the
clock cycle.

[0868] FIG. 50 is a block diagram of the CPU. FIG. 50
shows the hardware functions associated with each of the
instruction phases. Note that various functions have been
distributed across the three phases of the instruction execu-
tion in order to minimize the combinatorial delays within
any given phase.

[0869]

[0870] The micro-instructions are divided into six types
according to the program control directive. The micro-
instruction is further divided into sub-fields for which the
definitions are dependent upon the instruction type. The six
instruction types are listed in FIG. 51.

[0871] All instructions (see FIG. 51) include the Alu
operation (AluOp), operand “A” select (OpdASel), operand
“B” select (OpdBSel) and Literal fields. Other field usage
depends upon the instruction type.

Instruction Set.

[0872] The “jump condition code” (Jec) instruction causes
the program counter to be altered if the condition selected by
the “test select” (TstSel) field is asserted. The new program
counter (Pc) value is loaded from either the Literal field or
the AluOut as described in the following section and the
Literal field may be used as a source for the Alu or the ram
address if the new Pc value is sourced by the Alu.

[0873] The “jump” (Jmp) instruction causes the program
counter to be altered unconditionally. The new program
counter (Pc) value is loaded from either the Literal field or
the AluOut as described in the following section. The format
allows instruction bits 23:16 to be used to perform a flag
operation and the Literal field may be used as a source for
the Alu or the ram address if the new Pc value is sourced by
the Alu.

[0874] The “jump subroutine” (Jsr) instruction causes the
program counter to be altered unconditionally. The new
program counter (Pc) value is loaded from either the Literal
field or the AluOut as described in the following section. The
old program counter value is stored on the top location of the
Pc-Stack which is implemented as a LIFO memory. The
format allows instruction bits 23:16 to be used to perform a
flag operation and the Literal field may be used as a source
for the Alu or the ram address if the new Pc value is sourced
by the Alu.

[0875] The “Nxt” (Nxt) instruction causes the program
counter to increment. The format allows instruction bits
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23:16 to be used to perform a flag operation and the Literal
field may be used as a source for the Alu or the ram address.

[0876] The “return from subroutine” (Rts) instruction is a
special form of the Nxt instruction in which the “flag
operation” (FlIgSel) field is set to a value of Ohff. The current
Pc value is replaced with the last value stored in the stack.
The Literal field may be used as a source for the Alu or the
ram address.

[0877] The Map instruction is provided to allow replace-
ment of instructions which have been stored in ROM and is
implemented any time the “map enable” (MapEn) bit has
been set and the content of the “map address” (MapAddr)
field is non-zero. The instruction decoder forces a jump
instruction with the Alu operation and destination fields set
to pass the MapAddr field to the program control block.

[0878] The program control is determined by a combina-
tion of PgmCitrl, DstOpd, FlgSel and TstSel. The behavior of
the program control is defined with the “C-like” description
in FIG. 52. FIGS. 53-61 show ALU operations, selected
operands, selected tests, and flag operations.

[0879] SRAM Control Sequencer (SramCtrl).

[0880] SRAM is the nexus for data movement within the
INIC. Ahierarchy of sequencers, working in concert, accom-
plish the movement of data between DRAM, SRAM, CPU,
ethernet and the Pci bus. Slave sequencers, provided with
stimulus from master sequencers, request data movement
operations by way of the SRAM, Pci bus, DRAM and Flash.
The slave sequencers prioritize, service and acknowledge
the requests.

[0881] The data flow block diagram of FIG. 62 shows all
of the master and slave sequencers of the INIC product.
Request information such as r/w, address, size, endian and
alignment are represented by each request line. Acknowl-
edge information to master sequencers include only the size
of the transfer being acknowledged.

[0882] The block diagram of FIG. 63 illustrates how data
movement is accomplished for a Pci slave write to DRAM.
Note that the Psi (Pci slave in) module functions as both a
master sequencer. Psi sends a write request to the SramCirl
module. Psi requests Xwr to move data from SRAM to
DRAM. Xwr subsequently sends a read request to the
SramCtrl module then writes the data to the DRAM via the
Xctrl module. As each piece of data is moved from the
SRAM to Xwr, Xwr sends an acknowledge to the Psi
module.

[0883] The SRAM control sequencer services requests to
store to, or retrieve data from an SRAM organized as 1024
locations by 128 bits (16 KB). The sequencer operates at a
frequency of 133 MHz, allowing both a CPU access and a
DMA access to occur during a standard 66 MHz CPU cycle.
One 133 MHz cycle is reserved for CPU accesses during
each 66 MHz cycle while the remaining 133 MHz cycle is
reserved for DMA accesses on a prioritized basis.

[0884] The block diagram of FIG. 64 shows the major
functions of the SRAM control sequencer. A slave sequencer
begins by asserting a request along with r/w, ram address,
endian, data path size, data path alignment and request size.
SramCitrl prioritizes the requests. The request parameters are
then selected by a multiplexer which feeds the parameters to
the SRAM via a register. The requestor provides the SRAM
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address which when coupled with the other parameters
controls the input and output alignment. SRAM outputs are
fed to the output aligner via a register. Requests are
acknowledged in parallel with the returned data.

[0885] FIG. 65 is a timing diagram depicting two ram
accesses during a single 66 MHz clock cycle.

[0886] External Memory Control (Xetrl).

[0887] Xctrl (See FIG. 66) provides the facility whereby
Xwr, Xrd, Dcfg and Eectrl access external Flash and
DRAM. Xectrl includes an arbiter, i/o registers, data multi-
plexers, address multiplexers and control multiplexers.
Ownership of the external memory interace is requested by
each block and granted to each of the requesters by the
arbiter function. Once ownership has been granted the
multiplexers select the address, data and control signals
from owner, allowing access to external memory.

[0888] External Memory Read Sequencer (Xrd).

[0889] The Xrd sequencer acts only as a slave sequencer.
Servicing requests issued by master sequencers, the Xrd
sequencer moves data from external SDRAM or flash to the
SRAM, via the Xctrl module, in blocks of 32 bytes or less.
The nature of the SDRAM requires fixed burst sizes for each
of it’s internal banks with ras precharge intervals between
each access. By selecting a burst size of 32 bytes for
SDRAM reads and interleaving bank accesses on a 16 byte
boundary, we can ensure that the ras precharge interval for
the first bank is satisfied before burst completion for the
second bank, allowing us to re-instruct the first bank and
continue with uninterrupted DRAM access. SDRAMs
require a consistent burst size be utilized each and every
time the SDRAM is accessed. For this reason, if an SDRAM
access does not begin or end on a 32 byte boundary,
SDRAM bandwidth will be reduced due to less than 32 bytes
of data being transferred during the burst cycle.

[0890] FIG. 67 depicts the major functional blocks of the
Xrd external memory read sequencer. The first step in
servicing a request to move data from SDRAM to SRAM is
the prioritization of the master sequencer requests. Next the
Xrd sequencer takes a snapshot of the DRAM read address
and applies configuration information to determine the cor-
rect bank, row and column address to apply. Once sufficient
data has been read, the Xrd sequencer issues a write request
to the SramCtrl sequencer which in turn sends an acknowl-
edge to the Xrd sequencer. The Xrd sequencer passes the
acknowledge along to the level two master with a size code
indicating how much data was written during the SRAM
cycle allowing the update of pointers and counters. The
DRAM read and SRAM write cycles repeat until the original
burst request has been completed at which point the Xrd
sequencer prioritizes any remaining requests in preparation
for the next burst cycle.

[0891] Contiguous DRAM burst cycles are not guaranteed
to the Xrd sequencer as an algorithm is implemented which
ensures highest priority to refresh cycles followed by flash
accesses, DRAM writes then DRAM reads.

[0892] FIG. 68 is a timing diagram illustrating how data
is read from SDRAM. The DRAM has been configured for
a burst of four with a latency of two clock cycles. Bank A
is first selected/activated followed by a read command two
clock cycles later. The bank select/activate for bank B is next
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issued as read data begins returning two clocks after the read
command was issued to bank A. Two clock cycles before we
need to receive data from bank B we issue the read com-
mand. Once all 16 bytes have been received from bank A we
begin receiving data from bank B.

[0893] External Memory Write Sequencer (Xwr).

[0894] The Xwr sequencer is a slave sequencer. Servicing
requests issued by master sequencers, the Xwr sequencer
moves data from SRAM to the external SDRAM or flash,
via the Xctrl module, in blocks of 32 bytes or less while
accumulating a checksum of the data moved. The nature of
the SDRAM requires fixed burst sizes for each of it’s
internal banks with ras precharge intervals between each
access. By selecting a burst size of 32 bytes for SDRAM
writes and interleaving bank accesses on a 16 byte boundary,
we can ensure that the ras prechage interval for the first bank
is satisfied before burst completion for the second bank,
allowing us to re-instruct the first bank and continue with
uninterrupted DRAM access. SDRAMs require a consistent
burst size be utilized each and every time the SDRAM is
accessed. For this reason, if an SDRAM access does not
begin or end on a 32 byte boundary, SDRAM bandwidth will
be reduced due to less than 32 bytes of data being transferred
during the burst cycle.

[0895] FIG. 69 depicts the major functional blocks of the
Xwr sequencer. The first step in servicing a request to move
data from SRAM to SDRAM is the prioritization of the level
two master requests. Next the Xwr sequencer takes a Snap-
shot of the DRAM write address and applies configuration
information to determine the correct DRAM, bank, row and
column address to apply. The Xwr sequencer immediately
issues a read command to the SRAM to which the SRAM
responds with both data and an acknowledge. The Xwr
sequencer passes the acknowledge to the level two master
along with a size code indicating how much data was read
during the SRAM cycle allowing the update of pointers and
counters. Once sufficient data has been read from SRAM,
the Xwr sequencer issues a write command to the DRAM
starting the burst cycle and computing a checksum as the
data flys by. The SRAM read cycle repeats until the original
burst request has been completed at which point the Xwr
sequencer prioritizes any remaining requests in preparation
for the next burst cycle.

[0896] Contiguous DRAM burst cycles are not guaranteed
to the Xwr sequencer as an algorithm is implemented which
ensures highest priority to refresh cycles followed by flash
accesses then DRAM writes.

[0897] FIG. 70 is a timing diagram illustrating how data
is written to SDRAM. The DRAM has been configured for
a burst of four with a latency of two clock cycles. Bank A
is first selected/activated followed by a write command two
clock cycles later. The bank select/activate for bank B is next
issued in preparation for issuing the second write command.
As soon as the first 16 byte burst to bank A completes we
issue the write command for bank B and begin supplying
data.

[0898] PCI Master-Out Sequencer (Pmo).

[0899] The Pmo sequencer (See FIG. 71) acts only as a
slave sequencer. Servicing requests issued by master
sequencers, the Pmo sequencer moves data from an SRAM
based fifo to a Pci target, via the PciMstrIO module, in bursts
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of up to 256 bytes. The nature of the PCI bus dictates the use
of the write line command to ensure optimal system perfor-
mance. The write line command requires that the Pmo
sequencer be capable of transferring a whole multiple (1x,
2x, 3x, . . . ) of cache lines of which the size is set through
the Pci configuration registers. To accomplish this end, Pmo
will automatically perform partial bursts until it has aligned
the transfers on a cache line boundary at which time it will
begin usage of the write line command. The SRAM fifo
depth, of 256 bytes, has been chosen in order to allow Pmo
to accommodate cache line sizes up to 128 bytes. Provided
the cache line size is less than 128 bytes, Pmo will perform
multiple, contiguous cache line bursts until it has exhausted
the supply of data.

[0900] Pmo receives requests from two separate sources;
the DRAM to Pci (D2p) module and the SRAM to Pci (S2p)
module. An operation first begins with prioritization of the
requests where the S2p module is given highest priority.
Next, the Pmo module takes a Snapshot of the SRAM fifo
address and uses this to generate read requests for the
SramCtr]l sequencer. The Pmo module then proceeds to
arbitrate for ownership of the Pci bus via the PciMstrlO
module. Once the Pmo holding registers have sufficient data
and Pci bus mastership has been granted, the Pmo module
begins transferring data to the Pci target. For each successful
transfer, Pmo sends an acknowledge and encoded size to the
master sequencer, allow it to update it’s internal pointers,
counters and status. Once the Pci burst transaction has
terminated, Pmo parks on the Pci bus unless another initiator
has requested ownership. Pmo again prioritizes the incom-
ing requests and repeats the process.

[0901] PCI Master-Out Sequencer (Pmi).

[0902] The Pmi sequencer (See FIG. 72) acts only as a
slave sequencer. Servicing requests issued by master
sequencers, the Pmi sequencer moves data from a Pci target
to an SRAM based fifo, via the PciMstrlO module, in bursts
of up to 256 bytes. The nature of the PCI bus dictates the use
of the read multiple command to ensure optimal system
performance. The read multiple command requires that the
Pmi sequencer be capable of transferring a cache line or
more of data. To accomplish this end, Pmi will automatically
perform partial cache line bursts until it has aligned the
transfers on a cache line boundary at which time it will begin
usage of the read multiple command. The SRAM fifo depth,
of 256 bytes, has been chosen in order to allow Pmi to
accommodate cache line sizes up to 128 bytes. Provided the
cache line size is less than 128 bytes, Pmi will perform
multiple, contiguous cache line bursts until it has filled the
fifo.

[0903] Pmi receive requests from two separate sources;
the Pci to DRAM (P2d) module and the Pci to SRAM (P2s)
module. An operation first begins with prioritization of the
requests where the P2s module is given highest priority. The
Pmi module then proceeds to arbitrate for ownership of the
Pci bus via the PciMstrlO module. Once the Pci bus mas-
tership has been granted and the Pmi holding registers have
sufficient data, the Pmi module begins transferring data to
the SRAM fifo. For each successful transfer, Pmi sends an
acknowledge and encoded size to the master sequencer,
allowing it to update it’s internal pointers, counters and
status. Once the Pci burst transaction has terminated, Pmi
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parks on the Pci bus unless another initiator has requested
ownership. Pmi again prioritizes the incoming requests and
repeats the process.

[0904] DRAM to PCI Sequencer (D2p).

[0905] The D2p sequencer (See FIG. 73) acts is a master
sequencer. Servicing channel requests issued by the CPU,
the D2p sequencer manages movement of data from DRAM
to the Pci bus by issuing requests to both the Xrd sequencer
and the Pmo sequencer. Data transfer is accomplished using
an SRAM based fifo through which data is staged.

[0906] D2p can receive requests from any of the proces-
sor’s thirty-two DMA channels. Once a command request
has been detected, D2p fetches a DMA descriptor from an
SRAM location dedicated to the requesting channel which
includes the DRAM address, Pci address, Pci endian and
request size. D2p then issues a request to the D2s sequencer
causing the SRAM based fifo to fill with DRAM data. Once
the fifo contains sufficient data for a Pci transaction, D2s
issues a request to Pmo which in turn moves data from the
fifo to a Pci target. The process repeats until the entire
request has been satisfied at which time D2p writes ending
status in to the SRAM DMA descriptor area and sets the
channel done bit associated with that channel. D2p then
monitors the DMA channels for additional requests. FIG. 74
is an illustration showing the major blocks involved in the
movement of data from DRAM to Pci target.

[0907] PCI to DRAM Sequencer (P2d).

[0908] The P2d sequencer (See FIG. 75) acts as both a
slave sequencer and a master sequencer. Servicing channel
requests issued by the CPU, the P2d sequencer manages
movement of data from Pci bus to DRAM by issuing
requests to both the Xwr sequencer and the Pmi sequencer.
Data transfer is accomplished using an SRAM based fifo
through which data is staged.

[0909] P2d can receive requests from any of the proces-
sor’s thirty-two DMA channels. Once a command request
has been detected, P2d, operating as a slave sequencer,
fetches a DMA descriptor from an SRAM location dedicated
to the requesting channel which includes the DRAM
address, Pci address, Pci endian and request size. P2d then
issues a request to Pmo which in turn moves data from the
Pci target to the SRAM fifo. Next, P2d issues a request to the
Xwr sequencer causing the SRAM based fifo contents to be
written to the DRAM. The process repeats until the entire
request has been satisfied at which time P2d writes ending
status in to the SRAM DMA descriptor area and sets the
channel done bit associated with that channel. P2d then
monitors the DMA channels for additional requests. FIG. 76
is an illustration showing the major blocks involved in the
movement of data from a Pci target to DRAM.

[0910] SRAM to PCI Sequencer (S2p).

[0911] The S2p sequencer (See FIG. 77) acts as both a
slave sequencer and a master sequencer.

[0912] Servicing channel requests issued by the CPU, the
S2p sequencer manages movement of data from SRAM to
the Pci bus by issuing requests to the Pmo sequencer S2p can
receive requests from any of the processor’s thirty-two
DMA channels. Once a command request has been detected,
S2p, operating as a slave sequencers fetches a DMA descrip-
tor from an SRAM location dedicated to the requesting
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channel which includes the SRAM address, Pci address, Pci
endian and request size. S2p then issues a request to Pmo
which in turn moves data from the SRAM to a Pci target.
The process repeats until the entire request has been satisfied
at which time S2p writes ending status in to the SRAM
DMA descriptor area and sets the channel done bit associ-
ated with that channel. S2p then monitors the DM A channels
for additional requests. FIG. 78 is an illustration showing
the major blocks involved in the movement of data from
SRAM to Pci target.

[0913] PCI to SRAM Sequencer (P2s).

[0914] The P2s sequencer (See FIG. 79) acts as both a
slave sequencer and a master sequencer.

[0915] Servicing channel requests issued by the CPU, the
P2s sequencer manages movement of data from Pci bus to
SRAM by issuing requests to the Pmi sequencer. P2s can
receive requests from any of the processor’s thirty-two
DMA channels. Once a command request has been detected,
P2s, operating as a slave sequencer, fetches a DMA descrip-
tor from an SRAM location dedicated to the requesting
channel which includes the SRAM address, Pci address, Pci
endian and request size. P2s then issues a request to Pmo
which in turn moves data from the Pci target to the SRAM.
The process repeats until the entire request has been satisfied
at which time P2s writes ending status in to the DMA
descriptor area of SRAM and sets the channel done bit
associated with that channel. P2s then monitors the DMA
channels for additional requests. FIG. 80 is an illustration
showing the major blocks involved in the movement of data
from a Pci target to DRAM.

[0916] DRAM to SRAM Sequencer (D2s).

[0917] The D2s sequencer (See FIG. 81) acts as both a
slave sequencer and a master sequencer. Servicing channel
requests issued by the CPU, the D2s sequencer manages
movement of data from DRAM to SRAM by issuing
requests to the Xrd sequencer.

[0918] D2s can receive requests from any of the proces-
sor’s thirty-two DMA channels. Once a command request
has been detected, D2s, operating as a slave sequencer,
fetches a DM A descriptor from an SRAM location dedicated
to the requesting channel which includes the DRAM
address, SRAM address and request size. D2s then issues a
request to the Xrd sequencer causing the transfer of data to
the SRAM. The process repeats until the entire request has
been satisfied at which time D2s writes ending status in to
the SRAM DMA descriptor area and sets the channel done
bit associated with that channel. D2s then monitors the DMA
channels for additional requests. FIG. 82 is an illustration
showing the major blocks involved in the movement of data
from DRAM to SRAM.

[0919] SRAM to DRAM Sequencer (S2d).

[0920] The S2d sequencer (See FIG. 83) acts as both a
slave sequencer and a master sequencer. Servicing channel
requests issued by the CPU, the S2d sequencer manages
movement of data from SRAM to DRAM by issuing
requests to the Xwr sequencer.

[0921] S2d can receive requests from any of the proces-
sor’s thirty-two DMA channels. Once a command request
has been detected, S2d, operating as a slave sequencer,
fetches a DM A descriptor from an SRAM location dedicated
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to the requesting channel which includes the DRAM
address, SRAM address, checksum reset and request size.
S2d then issues a request to the Xwr sequencer causing the
transfer of data to the DRAM. The process repeats until the
entire request has been satisfied at which time S2d writes
ending status in to the SRAM DMA descriptor area and sets
the channel done bit associated with that channel. S2d then
monitors the DMA channels for additional requests. FIG. 84
is an illustration showing the major blocks involved in the
movement of data from SRAM to DRAM.

[0922] PCI Slave Input Sequencer (Psi).

[0923] The Psi sequencer (See FIG. 85) acts as both a
slave sequencer and a master sequencer. Servicing requests
issued by a Pci master, the Psi sequencer manages move-
ment of data from Pci bus to SRAM and Pci bus to DRAM
via SRAM by issuing requests to the SramCtrl and Xwr
sequencers.

[0924] Psi manages write requests to configuration space,
expansion rom, DRAM, SRAM and memory mapped reg-
isters. Psi separates these Pci bus operations in to two
categories with different action taken for each. DRAM
accesses result in Psi generating write request to an SRAM
buffer followed with a write request to the Xwr sequencer.
Subsequent write or read DRAM operations are retry ter-
minated until the buffer has been emptied. An event notifi-
cation is set for the processor allowing message passing to
occur through DRAM space.

[0925] All other Pci write transactions result in Psi posting
the write information including Pci address, Pci byte marks
and Pci data to a reserved location in SRAM, then setting an
event flag which the event processor monitors. Subsequent
writes or reads of configuration, expansion rom, SRAM or
registers are terminated with retry until the processor clears
the event flag. This allows the INIC pipelining levels to a
minimum for the posted write and give the processor ample
time to modify data for subsequent Pci read operations.

[0926] FIG. 85 depicts the sequence of events when Psi is
the target of a Pci write operation. Note that events 4 through
7 occur only when the write operation targets the DRAM.

[0927] PCI Slave Output Sequencer (Pso).

[0928] The Pso sequencer (See FIG. 86) acts as both a
slave sequencer and a master sequencer. Servicing requests
issued by a Pci master, the Pso sequencer manages move-
ment of data to Pci bus from SRAM and to Pci bus from
DRAM via SRAM by issuing requests to the SramCtrl and
Xrd sequencers.

[0929] Pso manages read requests to configuration space,
expansion rom, DRAM, SRAM and memory mapped reg-
isters. Pso separates these Pci bus operations in to two
categories with different action taken for each. DRAM
accesses result in Pso generating read request to the Xrd
sequencer followed with a read request to SRAM buffer.
Subsequent write or read DRAM operations are retry ter-
minated until the buffer has been emptied.

[0930] All other Pci read transactions result in Pso posting
the read request information including Pci address and Pci
byte marks to a reserved location in SRAM, then setting an
event flag which the event processor monitors. Subsequent
writes or reads of configuration, expansion rom, SRAM or
registers are terminated with retry until the processor clears
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the event flag. This allows the INIC to use a microcoded
response mechanism to return data for the request. The
processor decodes the request information, formulates or
fetches the requested data and stores it in SRAM then clears
the event flag allowing Pso to fetch the data and return it on
the Pci bus.

[0931] FIG. 78 depicts the sequence of events when Pso
is the target of a Pci read operation.

[0932] Frame Receive Sequencer (RevX).

[0933] The receive sequencer (See FIG. 87) (RcvSeq)
analyzes and manages incoming packets, stores the result in
DRAM buffers, then notifies the processor through the
receive queue (RevQ) mechanism. The process begins when
a buffer descriptor is available at the output of the FreeQ.
RevSeq issues a request to the Qmg which responds by
supplying the buffer descriptor to RcvSeq. RevSeq then
waits for a receive packet. The Mac, network, transport and
session information is analyzed as each byte is received and
stored in the assembly register (AssyReg). When four bytes
of information is available, RevSeq requests a write of the
data to the SRAM. When sufficient data has been stored in
the SRAM based receive fifo, a DRAM write request is
issued to Xwr. The process continues until the entire packet
has been received at which point RevSeq stores the results
of the packet analysis in the beginning of the DRAM buffer.
Once the buffer and status have both been stored, RevSeq
issues a write-queue request to Qmg. Qmg responds by
storing a buffer descriptor and a status vector provided by
RevSeq. The process then repeats. If RevSeq detects the
arrival of a packet before a free buffer is available, it ignores
the packet and sets the FrameLost status bit for the next
received packet.

[0934] FIG. 88 depicts the sequence of events for suc-
cessful reception of a packet followed by a definition of the
receive buffer and the buffer descriptor as stored on the
RevQ. FIG. 89 shows the Receive Buffer Descriptor. FIGS.
90-92 show the Receive Buffer Format.

[0935] Frame Transmit Sequencer (XmtX).

[0936] The transmit sequencer (See FIG. 93) (XmtSeq)
analyzes and manages outgoing packets, using buffer
descriptors retrieved from the transmit queue (XmtQ) then
storing the descriptor for the freed buffer in the free buffer
queue (FreeQ). The process begins when a buffer descriptor
is available at the output of the XmtQ. XmtSeq issues a
request to the Qmg which responds by supplying the buffer
descriptor to XmtSeq. XmtSeq then issues a read request to
the Xrd sequencer. Next, XmtSeq issues a read request to
SramCitrl then instructs the Mac to begin frame transmis-
sion. Once the frame transmission has completed, XmtSeq
stores the buffer descriptor on the FreeQ thereby recycling
the buffer.

[0937] FIG. 94 depicts the sequence of events for suc-
cessful transmission of a packet followed by a definition of
the receive buffer and the buffer descriptor as stored on the
XmtQ. FIG. 95 shows the Transmit Buffer Descriptor. FIG.
96 shows the Transmit Buffer Format. FIG. 97 shows the
Transmit Status Vector.

[0938] Queue Manager (Qmg).

[0939] The INIC includes special hardware assist for the
implementation of message and pointer queues. The hard-
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ware assist is called the queue manager (See FIG. 98)
(Qmg) and manages the movement of queue entries between
CPU and SRAM, between DMA sequencers and SRAM as
well as between SRAM and DRAM. Queues comprise three
distinct entities; the queue head (QHd), the queue tail (QT1)
and the queue body (QBdy). QHd resides in 64 bytes of
scratch ram and provides the area to which entries will be
written (pushed). QT1 resides in 64 bytes of scratch ram and
contains queue locations from which entries will be read
(popped). QBdy resides in DRAM and contains locations for
expansion of the queue in order to minimize the SRAM
space requirements. The QBdy size depends upon the queue
being accessed and the initialization parameters presented
during queue initialization.

[0940] Qmg accepts operations from both CPU and DMA
sources (See FIG. 99). Executing these operations at a
frequency of 133 MHz, Qmg reserves even cycles for DMA
requests and reserves odd cycles for CPU requests. Valid
CPU operations include initialize queue (InitQ), write queue
(WrQ) and read queue (RdQ). Valid DMA requests include
read body (RdBdy) and write body (WrBdy). Qmg working
in unison with Q2d and D2q generate requests to the Xwr
and Xrd sequencers to control the movement of data
between the QHd, QTI1 and QBdy.

[0941] FIG. 98 shows the major functions of Qmg. The
arbiter selects the next operation to be performed. The
dual-ported SRAM holds the queue variables HdWrAddr,
HdRdAddr, TIWrAddr, TIRdAddr, BdyWrAddr,
BdyRdAddr and QSz. Qmg accepts an operation request,
fetches the queue variables from the queue ram (Qram),
modifies the variables based on the current state and the
requested operation then updates the variables and issues a
read or write request to the SRAM controller. The SRAM
controller services the requests by writing the tail or reading
the head and returning an acknowledge.

[0942] DMA Operations.

[0943] DMA operations are accomplished through a com-
bination of thirtytwo DMA channels (DmaCh) and seven
DMA sequencers (DmaSeq). Each DMA channel provides a
mechanism whereby a CPU can issue a command to any of
the seven DMA sequencers. Where as the DMA channels are
multi-purpose, the DMA sequencers they command are
single purpose as shown in FIG. 100.

[0944] The processors manage DMA in the following way.
The processor writes a DMA descriptor to an SRAM loca-
tion reserved for the DMA channel. The format of the DMA
descriptor is dependent upon the targeted DMA sequencer.
The processor then writes the DMA sequencer number to the
channel command register.

[0945] Each of the DMA sequencers polls all thirtytwo
DMA channels in search of commands to execute. Once a
command request has been detected, the DMA sequencer
fetches a DMA descriptor from a fixed location in SRAM.
The SRAM location is fixed and is determined by the DMA
channel number. The DMA sequencer loads the DMA
descriptor in to it’s own registers, executes the command,
then overwrites the DMA descriptor with ending status.
Once the command has halted, due to completion or error,
and the ending status has been written, the DMA sequencer
sets the done bit for the current DMA channel.

[0946] The done bit appears in a DMA event register
which the CPU can examine. The CPU fetches ending status
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from SRAM, then clears the done bit by writing zeroes to the
channel command (ChCmd) register. The channel is now
ready to accept another command.

[0947] The format of the channel command register is as
shown in FIG. 101. The format of the P2d or P2s descriptor
is as shown in FIG. 102. The format of the S2p or D2p
descriptor is as shown in FIG. 103. The format of the S2d,
D2d or D2s descriptor is as shown in FIG. 104. The format
of the ending status of all channels is as shown in FIG. 105.
The format of the ChEvnt register is as shown in FIG. 106.
FIG. 107 is a block diagram of MAC CONTROL (Macctrl).

[0948] Load Calculations.

[0949] The following load calculations are based on the
following basic formulae:

N=X*R (Little’s Law)
[0950] where:

[0951] N=number of jobs in the system (either in
progress or in a queue),

[0952] X=system throughput,

[0953] R=response time (which includes time wait-
ing in queues).

U=X*$ (from Little’s Law)
[0954] where:

[0955] S=service time,

[0956] U=utilization.

R=S/(1-U)

[0957] for exponential service times (which is the worst-
case assumption).

[0958] A 256-byte frame at 100 Mb/sec takes 20 usec per
frame.

[0959] 4*100 Mbit ethernets receiving at full frame rate is:

[0960] 51200 (4*12800) frames/sec@1024 bytes/
frame,

[0961] 102000 frames/sec@512 bytes/frame,
[0962] 204000 frames/sec@?256 bytes/frame.

[0963] The following calculations assume 250 instruc-
tions/frame, 45 nsec clock. Thus S=250%45 nsecs=11.2
usecs.

Thruput  Utilization  Response  Nbr in system
Av Frame Size x (o)} ® (Y]
1024 51200 0.57 26 usecs 1.3
512 102000 >1 — —
256 204000 >1 — —
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[0964] Lets look at it for varying instructions per frame
assuming 512 bytes per frame average.

Nbr in

Instns Per Service Thruput Utilization ~ Response system
Frame Time (S) (X) ) R) (Y]
250 11.2 usec 102000 >1 — —
250 112 85000 (*) 0.95 224 usecs 19
250 112 80000 (**) 0.89 101 8
225 10 102000 1.0 — —
225 10 95000 (*) 0.95 200 19
225 10 89000 (**) 0.89 90 8
200 9 102000 0.9 90 9
150 6.7 102000 0.68 20 2

(*) shows what frame rate can be supported to get a utilization of less
than 1.

(**) shows what frame rate can be supported with 8 SRAM CCB buffers
and at least 8 process contexts.

[0965] If 100 instructions/frame is used, S=100*45 nsecs=
4.5 usecs, and we can support 256 frames:

100 4.5 204000 0.91 50 10

[0966] Note that these calculations assume that response
times increase exponentially as utilization increases. This is
the worst-case assumption, and probably may not be true for
our system. The figures show that to support a theoretical
full 4*100 Mbit receive load with an average frame size of
512 bytes, there will need to be 19 active “jobs” in the
system, assuming 250 instructions per frame. Due to SRAM
limitations, the current design specifies 8 SRAM buffers for
active TCBs, and not to swap a TCB out of SRAM once it
is active. So under these limitations, the INIC will not be
able to keep up with the full frame rate. Note that the initial
implementation is trying to use only 8 KB of SRAM,
although 16 KB may be available, in which case 19 TCB
SRAM buffers could be used. This is a cost trade-off. The
real point here is the effect of instructions/frame on the
throughput that can be maintained. If the instructions/frame
drops to 200, then the INIC is capable of handling the full
theoretical load (102000 frames/second) with only 9 active
TCBs. If it drops to 100 instructions per frame, then the
INIC can handle full bandwidth at 256 byte frames (204000
frames/second) with 10 active CCBs. The bottom line is that
all hardware-assist that reduces the instructions/frame is
really worthwhile. If header-assist hardware can save us 50
instructions per frame then it goes straight to the throughput
bottom line.

1. A method for network communication, the method
comprising:

receiving a plurality of packets from the network, each of
the packets including a media access control layer
header, a network layer header and a transport layer
header;

processing the packets by a first mechanism, so that for
each packet the network layer header and the transport
layer header are validated without an interrupt dividing
the processing of the network layer header and the
transport layer header;
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sorting the packets, dependent upon the processing, into
first and second types of packets, so that the packets of
the first type each contain data;

sending the data from each packet of the first type to a
destination without sending any of the media access
control layer headers, network layer headers or trans-
port layer headers to the destination.

2. The method of claim 1, wherein processing the packets

by a first mechanism further comprises:

processing the media access control layer header for each
packet without an interrupt dividing the processing of
the media access control layer header and the network
layer header.

3. The method of claim 1, further comprising:

processing an upper layer header of at least one of the
packets by a second mechanism, thereby determining
the destination, wherein the upper layer header corre-
sponds to a protocol layer above the transport layer.
4. The method of claim 1, further comprising:

processing an upper layer header of at least one of the
packets of the second type by a second mechanism,
thereby determining the destination.

5. The method of claim 1, further comprising:

processing a transport layer header of another packet by
a second mechanism, prior to receiving the plurality of
packets from the network, thereby establishing a Trans-
port Control Protocol (TCP) connection for the packets
of the first type.

6. The method of claim 1, wherein sorting the packets
includes classifying each of the packets of the first type as
having an Internet Protocol (IP) header and a Transport
Control Protocol (TCP).

7. The method of claim 1, further comprising:

transmitting a second plurality of packets to the network,
each of the second plurality of packets containing a
media access control layer header, a network layer
header and a transport layer header, including process-
ing the second plurality of packets by the first mecha-
nism, so that for each packet the media access control
layer header, the network layer header and the transport
layer header are processed without an interrupt dividing
the processing of the media access control layer header,
the network layer header and the transport layer header.
8. The method of claim 1, wherein the first mechanism is
a sequencer running microcode.
9. A method for communicating information over a net-
work, the method comprising:

obtaining data from a source allocated by a first processor;
dividing the data into multiple segments;

prepending a packet header to each of the segments by a
second processor, thereby forming a packet corre-
sponding to each segment, each packet header contain-
ing a media access control layer header, a network layer
header and a transport layer header, wherein the
prepending of each packet header occurs without an
interrupt dividing the prepending of the network layer
header and the transport layer header; and

transmitting the packets to the network.
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10. The method of claim 9, wherein prepending a packet
header to each of the segments by a second processor further
comprises:

prepending the media access control layer header for each
packet without an interrupt dividing the prepending of
the media access control layer header and the network
layer header.

11. The method of claim 9, wherein each packet header
contains an Internet Protocol (IP) header and a Transport
Control Protocol (TCP) header. the media access control
layer header,

12. The method of claim 9, further comprising establish-
ing a Transport Control Protocol (TCP) connection by the
first processor and using the connection to prepend the
packet header to each of the segments by the second
Processor.

13. The method of claim 9, further comprising creating a
template header and forming each packet header based upon
the template header.

14. The method of claim 9, wherein obtaining data from
the source in memory allocated by the first processor is
performed by a Direct Memory Access (DMA) unit con-
trolled by the second processor.

15. The method of claim 9, further comprising prepending
an upper layer header to the data, prior to dividing the data
into multiple segments.

16. The method of claim 9, further comprising:

receiving another packet from the network, the other
packet containing a receive header including informa-
tion corresponding to a network layer and a transport
layer; and

selecting whether to process the other packet by the first
processor or by the second processor.
17. A method for communicating information over a
network, the method comprising:

providing multiple segments of data;

prepending an outbound packet header to each of the
segments, thereby forming an outbound packet corre-
sponding to each segment, the outbound packet header
containing an outbound media access control layer
header, an outbound network layer header and an
outbound transport layer header, wherein the prepend-
ing of each outbound packet header occurs without an
interrupt dividing the prepending of the outbound
media access control layer header, the outbound net-
work layer header and the outbound transport layer
header;

transmitting the outbound packets to the network;

receiving multiple inbound packets from the network,
each of the inbound packets including an inbound
media access control layer header, an inbound network
layer header and an inbound transport layer header;

processing the inbound packets, so that for each packet
the inbound network layer header and the inbound
transport layer header are validated without an interrupt
dividing the processing of the inbound network layer
header and the inbound transport layer header.

18. The method of claim 17, wherein the processing the
inbound packets is performed simultaneously with the
prepending the outbound packet header to each of the
segments.
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19. The method of claim 17, further comprising creating
a template header and using the template header to form
each outbound packet header.

20. The method of claim 17, wherein providing multiple
segments of data includes dividing a block of data into the
segments.

21. The method of claim 20, further comprising prepend-
ing an upper layer header to the block of data, prior to
dividing the block of data into multiple segments.

22. The method of claim 17, further comprising:

sending data from each inbound packet to a destination
without sending any of the media access control layer
headers, network layer headers or transport layer head-
ers to the destination.
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23. The method of claim 17, further comprising:

processing an upper layer header of at least one of the
packets by a second mechanism, thereby determining
the destination, wherein the upper layer header corre-
sponds to a protocol layer above the transport layer.

24. The method of claim 17, further comprising:

processing a transport layer header of another inbound
packet, prior to receiving the plurality of packets from
the network, thereby establishing a Transport Control
Protocol (TCP) connection for the inbound packets.
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