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1 Background of the Invention 

Network processing as it exists today is a costlr and inefficient use of system resources. 
A 200 MHz Pentium-Pro is typically consumed simply processing network data from a 
1OOMb/second-network connection. The reasons that this processing is so costly are 
described here. 

1.1 Too Many Data Moves 

When network packet arrives at a typical network interface card (NIC), the NIC moves 
the data into pre-allocated network buffers in system main memory. From there the data 
is read into the CPU cache so that it can be checksummed (assuming of course that the 
protocol in use requires checksums. Some, like IPX, do not.). Once the data has been 
fully processed by the protocol stack, it can then be moved into its final destination in 
memory. Since the CPU is moving the data, and must read the destination cache line in 
before it can fill it and write it back out, this involves at a minimum 2 more trips across 
the system memory bus. In short, the best one can hope for is that the data will get 
moved across the system memory bus 4 times before it arrives in its final destination. It 
can, and does, get worse. If the data happens to get invalidated from system cache after it 
has been checksummed, then it must get pulled back across the memory bus before it can 
be moved to its fmal destination. Finally, on some systems, including Windows NT 4.0, 
the data gets copied yet another time while being moved up the protocol stack. In NT 
4.0, this occurs between the miniport driver interface and the protocol driver interface. 
This can add up to a whopping 8 trips across the system memory bus (the 4 trips 
described above, plus the move to replenish the cache, plus 3 more to copy from the 
miniport to the protocol driver). That's enough to bring even today's advanced memory 
busses to their knees. 
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1 Background of the Invention 

Network processing as it exists today is a costly and inefficient use of system resources. 
A 200 MHz Pentium-Pro is typically consumed simply processing network data from a 
100Mb/second-network connection. The reasons that this processing is so costly are 
described here. 

1.1 Too Many Data Moves 

When network packet arrives at a typical network interface card (NIC), the NIC moves 
the data into pre-allocated network buffers in system main memory. From there the data 
is read into the CPU cache so that it can be checksummed (assuming of course that the 
protocol in use requires checksums. Some, like IPX, do not.). Once the data has been 
fully processed by the protocol stack, it can then be moved into its final destination in 
memory. Since the CPU is moving the data, and must read the destination cache line in 
before it can fill it and write it back out, this involves at a minimum 2 more trips across 
the system memory bus. In short, the best one can hope for is that the data will. get 
moved across the system memory bus 4 times before it arrives in its final destination. It 
can, and does, get worse. If the data happens to get invalidated from system ca~he after it 
has been checksummed, then it must get pulled back across the memory bus before it can 
be moved to its final destination. Finally, on some systems, including Windows NT 4.0, 
the data gets copied yet another time while being moved up the protocol stack. In NT 
4.0, this occurs between the miniport driver interface and the protocol driver interface. 
This can add up to a whopping 8 trips across the system memory bus (the 4 trips 
described above, plus the move to replenish the cache, plus 3 more to copy from the 
miniport to the protocol driver). That's enough to bring even today's advanced memory 
busses to their knees. 
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1.2 Too Much Processing by the CPU 

In all but the original move from the NIC to system memory, the system CPU is 
responsible for moving the data. This is particularly expensive because while the CPU is 
moving this data it can do nothing else. While moving the data the CPU is typically 
stalled waiting for the relatively slow memory to satisfy its read and write requests. A 
CPU, which can execute an instruction every 5 nanoseconds, must now wait as lcmg as 
several hundred nanoseconds for the memory controller to respond before it can,begin its 
next instruction. Even today's advanced pipelining technology doesn't help in these 
situations because that relies on the CPU being able to do useful work while it waits for 
the memory controller to respond. If the only thing the CPU has to look forward to for 
the next several hundred instructions is more data moves, then the CPU ultimately gets 
reduced to the speed of the memory controller. 

Moving all this data with the CPU slows the system down even after the data has been 
moved. Since both the source and destination cache lines must be pulled into the CPU 
cache when the data is moved, more than 3k of instructions and or data resident in the 
CPU cache must be flushed or invalidated for every 1500 byte frame. This is of course 
assuming a combined instruction and data second level cache, as is the case with the 
Pentium processors. After the data has been moved, the former resident of the cache will 
likely need to be pulled back in, stalling the CPU even when we are not performing 
network processing. Ideally a system would never have to bring network frames into the 
CPU cache, instead reserving that precious commodity for instructions and data that are 
referenced repeatedly and frequently. 

But the data movement is not the only drain on the CPU. There is also a fair amount of 
processing that must be done by the protocol stack software. The most obvious expense 
is calculating the checksum for each TCP segment (or UDP datagram). Beyond this, 
however, there is other processing to be done as well. The TCP connection object must 
be located when a given TCP segment arrives, IP header checksums must be calculated, 
there are buffer and memory management issues, and finally there is also the significant 
expense of interrupt processing which we will discuss in the following section. 

1.3 Too Many Interrupts 

A 64k SMB request (write or read-reply) is typically made up of 44 TCP segments when 
running over Ethernet (1500 byte MTU). Each of these segments may result in an 
interrupt to the CPU. Furthermore, since TCP must acknowledge all of this incoming 
data, it's possible to get another 44 transmit-complete interrupts as a result of sending out 
the TCP acknowledgements. While this is possible, it is not terribly likely. Delayed 
ACK timers allow us to acknowledge more than one segment at a time. And delays in 
interrupt processing may mean that we are able to process more than one incoming 
network frame per interrupt. Nevertheless, even if we assume 4 incoming frames per 
input, and an acknowledgement for every 2 segments (as is typical per the ACK-every
other-segment property ofTCP), we are still left with 33 interrupts per 64k SMB request. 

Interrupts tend to be very costly to the system. Often when a system is interrupted, 
important information must be flushed or invalidated from the system cache so that the 
interrupt routine instructions, and needed data can be pulled into the cache. Sirice the 
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CPU will return to its prior location after the interrupt, it is likely that the information 
flushed from the cache will immediately need to be pulled back into the cache. 

What's more, interrupts force a pipeline flush in today's advanced processors. While the 
processor pipeline is an extremely efficient way of improving CPU performance, it can 
be expensive to get going after it has been flushed. 

Finally, each of these interrupts results in expensive register accesses across the 
peripheral bus (PCI). This is discussed more in the following section. 

1.4 Inefficient Use ofthe Peripheral Bus (PCI) 

We noted earlier that when the CPU has to access system memory, it may be stalled for 
several hundred nanoseconds. When it has to read from PCI, it may be stalled for many 
microseconds. This happens every time the CPU takes an interrupt from a stan~ard NIC. 
The first thing the CPU must do when it receives one of these interrupts is to read the 
NIC Interrupt Status Register (ISR) from PCI to determine the cause ofthe interrupt. The 
most troubling thing about this is that since interrupt lines are shared on PC-based 
systems, we may have to perform this expensive PCI read even when the interrupt is not 
meant for us! 

There are other peripheral bus inefficiencies as well. Typical NICs operate using 
descriptor rings. When a frame arrives, the NIC reads a receive descriptor from system 
memory to determine where to place the data. Once the data has been moved to main 
memory, the descriptor is then written back out to system memory with status about the 
received frame. Transmit operates in a similar fashion. The CPU must notify that NIC 
that it has a new transmit. The NIC will read the descriptor to locate the data, read the 
data itself, and then write the descriptor back with status about the send. Typically on 
transmits the NIC will then read the next expected descriptor to see if any more data 
needs to be sent. In short, each receive or transmit frame results in 3 or 4 separate PCI 
reads or writes (not counting the status register read). 

2 Summary of the Invention 

Alacritech was formed with the idea that the network processing described above could 
be offloaded onto a cost-effective Intelligent Network Interface Card (INIC). With the 
Alacritech INIC, we address each of the above problems, resulting in the following 
advancements: 
1. The vast majority of the data is moved directly from the INIC into its final 

destination. A single trip across the system memory bus. 
2. There is no header processing, little data copying, and no checksumming required by 

the CPU. Because of this, the data is never moved into the CPU cache, allowing the 
system to keep important instructions and data resident in the CPU cache. 

3. Interrupts are reduced to as little as 4 interrupts per 64k SMB read and 2 per 64k 
SMB write. 

4. There are no CPU reads over PCI and there are fewer PCI operations per receive or 
transmit transaction. 

In the remainder of this document we will describe how we accomplish the above. 
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2.1 Perform Transport Level Processing on the INIC 

In order to keep the system CPU from having to process the packet headers or checksum 
the packet, we must perform this task on the INIC. This is a daunting task. There are 
more than 20,000 lines ofC code that make up the FreeBSD TCPIIP protocol stack. 
Clearly this is more code than could be efficiently handled by a competitively priced 
network card. Furthermore, as we've noted above, the TCP/IP protocol stack is. 
complicated enough to consume a 200 MHz Pentium-Pro. Clearly in order to perform 
this function on an inexpensive card, we need special network processing hardware as 
opposed to simply using a general purpose CPU. 

2.1.1 Only Support TCP/IP 

In this section we introduce the notion of a "context". A context is required to keep track 
of information that spans many, possibly discontiguous, pieces of information. When 
processing TCPIIP data, there are actually two contexts that must be maintained. The 
first context is required to reassemble IP fragments. It holds information about the status 
of the IP reassembly as well as any checksum information being calculated across the IP 
datagram (UDP or TCP). This context is identified by the IP _ ID of the datagram as well 
as the source and destination IP addresses. The second context is required to handle the 
sliding window protocol ofTCP. It holds information about which segments have been 
sent or received, and which segments have been acknowledged, and is identified by the 
IP source and destination addresses and TCP source and destination ports. 

If we were to choose to handle both contexts in hardware, we would have to potentially 
keep track of many pieces of information. One such example is a case in which a single 
64k SMB write is broken down into 44 1500 byte TCP segments, which are in turn 
broken down into 131 576 byte IP fragments, all of which can come in any order (though 
the maximum window size is likely to restrict the number of outstanding segments 
considerably). 

Fortunately, TCP performs a Maximum Segment Size negotiation at connection 
establishment time, which should prevent IP fragmentation in nearly all TCP 
connections. The only time that we should end up with fragmented TCP connections is 
when there is a router in the middle of a connection which must fragment the segments to 
support a smaller MTU. The only networks that use a smaller MTU than Ethernet are 
serial line interfaces such as SLIP and PPP. At the moment, the fastest of these 
connections only run at 128k (ISDN) so even if we had 256 of these connections, we 
would still only need to support 34Mb/sec, or a little over three 1 ObT connections worth 
of data. This is not enough to justify any performance enhancements that the INIC 
offers. Ifthis becomes an issue at some point, we may decide to implement the MTU 
discovery algorithm, which should prevent TCP fragmentation on all connections (unless 
an ICMP redirect changes the connection route while the connection is established). 

With this in mind, it seems a worthy sacrifice to not attempt to handle fragmented TCP 
segments on the INIC. 

UDP is another matter. Since UDP does not support the notion of a Maximum Segment 
Size, it is the responsibility ofiP to break down a UDP datagram into MTU sized 
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packets. Thus, fragmented UDP datagrams are very common. The most common UDP 
application running today is NFSV2 over UDP. While this is also the most common 
version ofNFS running today, the current version of Solaris being sold by Sun 
Microsystems runs NFSV3 over TCP by default. We can expect to see the NFSV2/UDP 
traffic start to decrease over the coming years. 

In summary, we will only offer assistance to non-fragmented TCP connections on the 
INIC. 

2.1.2 Don't handle TCP "exceptions" 

As noted above, we won't provide support for fragmented TCP segments on the INIC. 
We have also opted to not handle TCP connection and breakdown. Here is a list of other 
TCP "exceptions" which we have elected to not handle on the INIC: 

Fragmented Segments -Discussed above. 

Retransmission Timeout- Occurs when we do not get an acknowledgement for 
previously sent data within the expected time period. 

Out of order segments - Occurs when we receive a segment with a sequence number 
other than the next expected sequence number. 

FIN segment- Signals the close of the connection. 

Since we have now eliminated support for so many different code paths, it might seem 
hardly worth the trouble to provide any assistance by the card at all. This is not the case. 
According toW. Richard Stevens and Gary Write in their book "TCPIIP Illustrated 
Volume 2", TCP operates without experiencing any exceptions between 97 and 100 
percent of the time in local area networks. As network, router, and switch reliability 
improve this number is likely to only improve with time. 
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2.1.3 Two modes of operation 

So the next question is what to do about the network packets that do not fit our criteria. 
The answer is to use two modes of operation: One in which the network frames are 
processed on the INIC through TCP and one in which the card operates like a typical 
dumb NIC. We call these two modes fast-path, and slow-path. In the slow-path case, 
network frames are handed to the system at the MAC layer and passed up through the 
host protocol stack like any other network frame. In the fast path case, network data is 
given to the host after the headers have been processed and stripped. 

CLIENT 
..4 ~ INIC 

FAST-PATH TDI 
NetBIOS 

TCP 
TCP 

it' 
IP 

MAC SLOW-PATH 
lVlAC 

PHYSICAL 

Ethernet 
PCI 

The transmit case works in much the same fashion. In slow-path mode the packets are 
given to the INIC with all of the headers attached. The INIC simply sends these packets 
out as if it were a dumb NIC. In fast-path mode, the host gives raw data to the INIC 
which it must carve into MSS sized segments, add headers to the data, perform 
checksums on the segment, and then send it out on the wire. 

2.1.4 The TCB cache 

Consider a situation in which a TCP connection is being handled by the card and a 
fragmented TCP segment for that connection arrives. In this situation, it will be 
necessary for the card to turn control of this connection over to the host. 

This introduces the notion of a Transmit Control Block (TCB) cache. A TCB is a 
structure that contains the entire context associated with a connection. This includes the 
source and destination IP addresses and source and destination TCP ports that define the 
connection. It also contains information about the connection itself such as the current 
send and receive sequence numbers, and the first-hop MAC address, etc. The complete 
set ofTCBs exists in host memory, but a subset ofthese may be "owned" by the card at 
any given time. This subset is the TCB cache. The INIC can own up to 256 TCBs at any 
given time. 

TCBs are initialized by the host during TCP connection setup. Once the connection has 
achieved a "steady-state" of operation, its associated TCB can then be turned over to the 
INIC, putting us into fast-path mode. From this point on, the INIC owns the connection 
until either a FIN arrives signaling that the connection is being closed, or until an 
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exception occurs which the INIC is not designed to handle (such as an out of order 
segment). When any of these conditions occur, the INIC will then flush the TCB back to 
host memory, and issue a message to the host telling it that it has relinquished control of 
the connection, thus putting the connection back into slow-path mode. From thi~ point 
on, the INIC simply hands incoming segments that are destined for this TCB off to the 
host with all of the headers intact. 

Note that when a connection is owned by the INIC, the host is not allowed to reference 
the corresponding TCB in host memory as it will contain invalid information about the 
state of the connection. 

2.1.5 TCP hardware assistance 

When a frame is received by the INIC, it must verify it completely before it even 
determines whether it belongs to one of its TCBs or not. This includes all header 
validation (is it IP, IPV4 or V6, is the IP header checksum correct, is the TCP checksum 
correct, etc). Once this is done it must compare the source and destination IP address and 
the source and destination TCP port with those in each of its TCBs to determine if it is 
associated with one of its TCBs. This is an expensive process. To expedite this, we have 
added several features in hardware to assist us. The header is fully parsed by hardware 
and its type is summarized in a single status word. The checksum is also verified 
automatically in hardware, and a hash key is created out of the IP addresses and TCP 
ports to expedite TCB lookup. For full details on these and other hardware optimizations, 
refer to the INIC Hardware Specification sections (Heading 8). 

With the aid of these and other hardware features, much of the work associated with TCP 
is done essentially for free. Since the card will automatically calculate the checksum for 
TCP segments, we can pass this on to the host, even when the segment is for a TCB that 
the INIC does not own. 

2.1.6 TCP Summary 

By moving TCP processing down to the INIC we have offloaded the host of a large 
amount of work. The host no longer has to pull the data into its cache to calculate the 
TCP checksum. It does not have to process the packet headers, and it does not have to 
generate TCP ACKs. We have achieved most of the goals outlined above, but we are not 
done yet. 

2.2 Transport Layer Interface 

This section defines the INIC's relation to the hosts transport layer interface (Called TDI 
or Transport Driver Interface in Windows NT). For full details on this interface, refer to 
the Alacritech TCP (ATCP) driver specification (Heading 4). 

2.2.1 Receive 

Simply implementing TCP on the INIC does not allow us to achieve our goal oflanding 
the data in its final destination. Somehow the host has to tell the INIC where t<I> put the 
data. This is a problem in that the host can not do this without knowing what the data 
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actually is. Fortunately, NT has provided a mechanism by which a transport driver can 
"indicate" a small amount of data to a client above it while telling it that it has more data 
to come. The client, having then received enough of the data to know what it is,. is then 
responsible for allocating a block of memory and passing the memory address or 
addresses back down to the transport driver, which is in turn responsible for moving the 
data into the provided location. 

We will make use of this feature by providing a small amount of any received d<),ta to the 
host, with a notification that we have more data pending. When this small amount of data 
is passed up to the client, and it returns with the address in which to put the remainder of 
the data, our host transport driver will pass that address to the INIC which will DMA the 
remainder of the data into its final destination. 

Clearly there are circumstances in which this does not make sense. When a small amount 
of data (500 bytes for example), with a push flag set indicating that the data must be 
delivered to the client immediately, it does not make sense to deliver some of the data 
directly while waiting for the list of addresses to DMA the rest. Under these 
circumstances, it makes more sense to deliver the 500 bytes directly to the host, and 
allow the host to copy it into its final destination. While various ranges are feasible, it is 
currently preferred that anything less than a segment's (1500 bytes) worth of data will be 
delivered directly to the host, while anything more will be delivered as a small piece 
which may be128 bytes, while waiting until receiving the destination memory address 
before moving the rest. 

The trick then is knowing when the data should be delivered to the client or not. As 
we've noted, a push flag indicates that the data should be delivered to the client 
immediately, but this alone is not sufficient. Fortunately, in the case ofNetBIOS 
transactions (such as SMB), we are explicitly told the length of the session message in the 
NetBIOS header itself. With this we can simply indicate a small amount of data to the 
host immediately upon receiving the first segment. The client will then allocate enough 
memory for the entire NetBIOS transaction, which we can then use to DMA the 
remainder ofthe data into as it arrives. In the case of a large (56k for example) NetBIOS 
session message, all but the first couple hundred bytes will be DMA' d to their final 
destination in memory. 

But what about applications that do not reside above NetBIOS? In this case we can not 
rely on a session level protocol to tell us the length of the transaction. Under these 
circumstances we will buffer the data as it arrives until A) we have receive some 
predetermined number ofbytes such as 8k, or B) some predetermined period of time 
passes between segments or C) we get a push flag. If after any of these conditions occur 
we will then indicate some or all of the data to the host depending on the amount of data 
buffered. If the data buffered is greater than about 1500 bytes we must then also wait for 
the memory address to be returned from the host so that we may then DMA the 
remainder of the data. 

2.2.2 Transmit 

The transmit case is much simpler. In this case the client (NetBIOS for example) issues a 
TDI Send with a list of memory addresses which contain data that it wishes to send along 
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with the length. The host can then pass this list of addresses and length off to the INIC. 
The INIC will then pull the data from its source location in host memory, as it needs it, 
until the complete TDI request is satisfied. 

2.2.3 Affect on interrupts 

Note that when we receive a large SMB transaction, for example, that there are two 
interactions between the INIC and the host. The first in which the INIC indicates a small 
amount of the transaction to the host, and the second in which the host provides the 
memory location(s) in which the INIC places the remainder of the data. This results in 
only two interrupts from the INIC. The first when it indicates the small amount of data 
and the second after it has finished filling in the host memory given to it. A drastic 
reduction from the 33/64k SMB request that we estimate at the beginning of this section. 

On transmit, we actually only receive a single interrupt when the send command that has 
been given to the INIC completes. 

2.2.4 Transport Layer Interface Summary 

Having now established our interaction with Microsoft's TDI interface, we have achieved 
our goal oflanding most of our data directly into its final destination in host memory. 
We have also managed to transmit all data from its original location on host memory. 
And finally, we have reduced our interrupts to 2 per 64k SMB read and 1 per 64k SMB 
write. The only thing that remains in our list of objectives is to design an efficient host 
(PCI) interface. 

2.3 Host (PCI) Interface 

In this section we define the host interface. For a more detailed description, refer to the 
"Host Interface Strategy for the Alacritech INIC" section (Heading 3). 

2.3.1 Avoid PCI reads 

One of our primary objectives in designing the host interface of the INIC was to 
eliminate PCI reads in either direction. PCI reads are particularly inefficient in that they 
completely stall the reader until the transaction completes. As we noted above, this could 
hold a CPU up for several microseconds, a thousand times the time typically required to 
execute a single instruction. PCI writes on the other hand, are usually buffered by the 
memory-bus¢> PCI-bridge allowing the writer to continue on with other instructions. 
This technique is known as "posting". 

2.3.1.1 Memory-based status register 

The only PCI read that is required by most NICs is the read of the interrupt status 
register. This register gives the host CPU information about what event has caused an 
interrupt (if any). In the design of our INIC we have elected to place this necessary status 
register into host memory. Thus, when an event occurs on the INIC, it writes the status 
register to an agreed upon location in host memory. The corresponding driver on the host 
reads this local register to determine the cause of the interrupt. The interrupt lines are 
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1 .. 
held high until the host clears the interrupt by writing to the INIC's Interrupt Cle.ar 
Register. Shadow registers are maintained on the INIC to ensure that events are :not lost. 

2.3.1.2 Buffer Addresses are pushed to the INIC 

Since it is imperative that our INIC operate as efficiently as possible, we must also avoid 
PCI reads from the INIC. We do this by pushing our receive buffer addresses to the 
INIC. As mentioned at the beginning of this section, most NICs work on a descriptor 
queue algorithm in which the NIC reads a descriptor from main memory in order to 
determine where to place the next frame. We will instead write receive buffer addresses 
to the INIC as receive buffers are filled. In order to avoid having to write to the INIC for 
every receive frame, we instead allow the host to pass off a pages worth ( 4k) of buffers in 
a single write. 

2.3.2 Support small and large buffers on receive 

In order to reduce further the number of writes to the INIC, and to reduce the amount of 
memory being used by the host, we support two different buffer sizes. A small buffer 
contains roughly 200 bytes of data payload, as well as extra fields containing status about 
the received data bringing the total size to 256 bytes. We can therefore pass 16 of these 
small buffers at a time to the INIC. Large buffers are 2k in size. They are used to 
contain any fast or slow-path data that does not fit in a small buffer. Note that when we 
have a large fast-path receive, a small buffer will be used to indicate a small piece of the 
data, while the remainder of the data will be DMA'd directly into memory. Large 
buffers are never passed to the host by themselves, instead they are always accompanied 
by a small buffer which contains status about the receive along with the large buffer 
address. By operating in the manner, the driver must only maintain and process the small 
buffer queue. Large buffers are returned to the host by virtue of being attached to small 
buffers. Since large buffers are 2k in size they are passed to the INIC 2 buffers at a time. 

2.3.3 Command and response buffers 

In addition to needing a manner by which the INIC can pass incoming data to us, we also 
need a manner by which we can instruct the INIC to send data. Plus, when the INIC 
indicates a small amount of data in a large fast-path receive, we need a method of passing 
back the address or addresses in which to put the remainder of the data. We aceomplish 
both of these with the use of a command buffer. Sadly, the command buffer is the only 
place in which we must violate our rule of only pushing data across PCI. For the 
command buffer, we write the address of command buffer to the INIC. The INIC then 
reads the contents of the command buffer into its memory so that it can execute the 
desired command. Since a command may take a relatively long time to complete, it is 
unlikely that command buffers will complete in order. For this reason we also maintain a 
response buffer queue. Like the small and large receive buffers, a page worth of response 
buffers is passed to the INIC at a time. Response buffers are only 32 bytes, so we have to 
replenish the INIC's supply of them relatively infrequently. The response buffers only 
purpose is to indicate the completion of the designated command buffer, and to pass 
status about the completion. 
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2.4 Examples 

In this section we will provide a couple of examples describing some of the differing data 
flows that we might see on the Alacritech INIC. 

2.4.1 Fast-path 56k NetBIOS session message 

Let's say a 56k NetBIOS session message is received on the INIC. The first segment will 
contain the NetBIOS header, which contains the total NetBIOS length. A small chunk of 
this first segment is provided to the host by filling in a small receive buffer, modifying 
the interrupt status register on the host, and raising the appropriate interrupt line. Upon 
receiving the interrupt, the host will read the ISR, clear it by writing back to the INIC' s 
Interrupt Clear Register, and will then process its small receive buffer queue looking for 
receive buffers to be processed. Upon finding the small buffer, it will indicate the small 
amount of data up to the client to be processed by NetBIOS. It will also, if necessary, 
replenish the receive buffer pool on the INIC by passing off a pages worth of small 
buffers. Meanwhile, the NetBIOS client will allocate a memory pool large eno~gh to 
hold the entire NetBIOS message, and will pass this address or set of addresses down to 
the transport driver. The transport driver will allocate an INIC command buffer, fill it in 
with the list of addresses, set the command type to tell the INIC that this is where to put 
the receive data, and then pass the command off to the INIC by writing to the command 
register. When the INIC receives the command buffer, it will DMA the remainder of the 
NetBIOS data, as it is received, into the memory address or addresses designated by the 
host. Once the entire NetBIOS transaction is complete, the INIC will complete the 
command by writing to the response buffer with the appropriate status and command 
buffer identifier. 

In this example, we have two interrupts, and all but a couple hundred bytes are DMA' d 
directly to their final destination. On PCI we have two interrupt status register writes, 
two interrupt clear register writes, a command register write, a command read, and a 
response buffer write. · 

With a standard NIC this would result in an estimated 30 interrupts, 30 interrupt register 
reads, 30 interrupt clear writes, and 58 descriptor reads and writes. Plus the data will get 
moved anywhere from 4 to 8 times across the system memory bus. 

2.4.2 Slow-path receive 

Ifthe INIC receives a frame that does not contain a TCP segment for one of its TCB's, it 
simply passes it to the host as if it were a dumb NIC. If the frame fits into a small buffer 
(~200 bytes or less), then it simply fills in the small buffer with the data and notifies the 
host. Otherwise it places the data in a large buffer, writes the address of the large buffer 
into a small buffer, and again notifies the host. The host, having received the interrupt 
and found the completed small buffer, checks to see if the data is contained in the small 
buffer, and if not, locates the large buffer. Having found the data, the host willthen pass 
the frame upstream to be processed by the standard protocol stack. It must also replenish 
the INIC's small and large receive buffer pool if necessary. 
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With the INIC, this will result in one interrupt, one interrupt status register write and one 
interrupt clear register write as well as a possible small and or large receive buffer 
register write. The data will go through the normal path although if it is TCP data then 
the host will not have to perform the checksum. 

With a standard NIC this will result in a single interrupt, an interrupt status register read, 
an interrupt clear register write, and a descriptor read and write. The data will get 
processed as it would by the INIC, except for a possible extra checksum. 

2.4.3 Fast-path 400 byte send 

In this example, lets assume that the client has a small amount of data to send. It will 
issue the TDI Send to the transport driver which will allocate a command buffer, fill it in 
with the address of the 400 byte send, and set the command to indicate that it is a 
transmit. It will then pass the command off to the INIC by writing to the command 
register. The INIC will then DMA the 400 bytes into its own memory, prepare a frame 
with the appropriate checksums and headers, and send the frame out on the wire. After it 
has received the acknowledgement it will then notify the host of the completion by 
writing to a response buffer. 

With the INIC, this will result in one interrupt, one interrupt status register write, one 
interrupt clear register write, a command buffer register write a command buffer read, 
and a response buffer write. The data is DMA'd directly from the system memory. 

With a standard NIC this will result in a single interrupt, an interrupt status register read, 
an interrupt clear register write, and a descriptor read and write. The data would get 
moved across the system bus a minimum of 4 times. The resulting TCP ACK of the data, 
however, would add yet another interrupt, another interrupt status register read, interrupt 
clear register write, a descriptor read and write, and yet more processing by the host 
protocol stack. 

3 Host Interface Strategy for the Alacritech INIC 

This section describes the host interface strategy for the Alacritech Intelligel).t Network 
Interface Card (INIC). The goal ofthe Alacritech INIC is to not only process network 
data through TCP, but also to provide zero-copy support for the SMP upper-lay~r 
protocol. It achieves this by supporting two paths for sending and receiving data, the fast
path and the slow-path. The fast path data flow corresponds to connections that are 
maintained on the NIC, while slow-path traffic corresponds to network data for· which the 
NIC does not have a connection. The fast-path flow works by passing a header to the host 
and subsequently holding further data for that connection on the card until the host 
responds via an INIC command with a set ofbuffers into which to place the accumulated 
data. In the slow-path data flow, the INIC will be operating as a "dumb" NIC, so that 
these packets are simply dumped into frame buffers on the host as they arrive. To do 
either path requires a pool of smaller buffers to be used for headers and a pool of data 
buffers for frames/data that are too large for the header buffer, with both pools being 
managed by the INIC. This section discusses how these two pools of data are managed 
as well as how buffers are associated with a given context. 
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3.1 Receive Interface 

The varying requirements of the fast and slow paths and a desire to save PCI bandwidth 
are the driving forces behind the host interface that is described herein. As mentioned 
above, the fast-path flow puts a header into a header buffer that is then forwarded to the 
host. The host uses the header to determine what further data is following, allocates the 
necessary host buffers, and these are passed back to the INIC via a command to the INIC. 
The INIC then fills these buffers from data it was accumulating on the card and notifies 
the host by sending a response to the command. Alternatively, the fast-path may receive 
a header and data that is a complete request, but that is also too large for a header buffer. 
This results in a header and data buffer being passed to the host. This latter flow .is 
identical to the slow-path flow, which also puts all the data into the header buffer or, if 
the header is too small, uses a large (2K) host buffer for all the data. This means that on 
the unsolicited receive path, the host will only see either a header buffer or a header and 
at most, one data buffer. Note that data is never split between a header and a data buffer. 
The diagram below illustrates both situations: 

Header buffer descriptors 

Header a 

Headerb 

Header buffers 

Status 

. TCP/SMB 
Headers 
(fast-path) 

Status 

DATA 
buffer handle 

(slow-path) 

Data buffers 

Data buffer descriptors 

DATA 

DATA 

DATA 

Since we want to fill in the header buffer with a single DMA, the header must be the last 
piece of data to be written to the host for any received transaction. 

3 .1.1 Receive Interface Details 

3 .1.2 Header Buffers 

Header buffers in host memory are 256 bytes long, and are aligned on 256 byte 
boundaries. There will be a field in the header buffer indicating it has valid data. This 
field will initially be reset by the host before passing the buffer descriptor to the INIC. A 
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set of header buffers are passed from the host to the INIC by the host writing to the 
Header Buffer Address Register on the INIC. This register is defined as follows: · 

Bits31-8 Physical address in host memory of the first of a set of contiguous 
header buffers 
Bits 7-0 Number of header buffers passed. 
In this way the host can, say, allocate 16 buffers in a 4K page, and pass a1116 buffers to 
the INIC with one register write. The INIC will maintain a queue of these header 
descriptors in the SmallHType queue in it's own local memory, adding to the end of the 
queue every time the host writes to the Header Buffer Address Register. Note that the 
single entry is added to the queue; the eventual dequeuer will use the count after 
extracting that entry. 

The header buffers, will be used and returned to the host in the same order that they were 
given to the INIC. The valid field will be set by the INIC before returning the buffer to 
the host. In this way a PCI interrupt, with a single bit in the interrupt register, may be 
generated to indicate that there is a header buffer for the host to process. When servicing 
this interrupt, the host will look at its queue of header buffers, reading the valid field to 
determine how many header buffers are to be processed. 

3 .1.3 Receive Data Buffers 

Receive data buffers in host memory are aligned to page boundaries, assumed here to be 
2K bytes long and aligned on 4K page boundaries, 2 buffers per page. In order to pass 
receive data buffers to the INIC, the host must write to two registers on the INIC. The 
first register to be written is the Data Buffer Handle Register. The buffer handle is not 
significant to the INIC, but will be copied back to the host to return the buffer to the host. 
The second register written is the Data Buffer Address Register. This is the physical 
address of the data buffer. When both registers have been written, the INIC wiH add the 
contents of these two registers to FreeType queue of data buffer descriptors. N0te that 
the INIC host driver sets the handle register first, then the address register. There needs to 
be some mechanism put in place to ensure the reading of these registers does not get out 
of sync with writing them. Effectively the INIC can read the address register first and 

. save its contents, then read the handle register. It can then lock the register pair in some 
manner such that another write to the handle register is not permitted until the current 
contents have been saved. Both addresses extracted from the registers are to be written to 
the FreeType queue. The INIC will extract 2 entries each time when dequeuing, 

Data buffers will be allocated and used by the INIC as needed. For each data buffer used 
by a slow-path transaction, the data buffer handle will be copied into a header buffer. 
Then the header buffer will be returned to the host. 

3.2 Transmit Interface 

3.2.1 Transmit Interface Overview 

The transmit interface, like the receive interface, has been designed to minimize the 
amount of PCI bandwidth and latencies. In order to transmit data, the host will transfer a 
command buffer to the INIC. This command buffer will include a command buffer 
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handle, a command field, possibly a TCP context identification, and a list of physical data 
pointers. The command buffer handle is defined to be the first word of the command 
buffer and is used by the host to identify the command. This word will be passecl back to 
the host in a response buffer, since commands may complete out of order, and the host 
will need to know which command is complete. Commands will be used for many 
reasons, but primarily to cause the INIC to transmit data, or to pass a set ofbuffers to the 
INIC for input data on the fast-path as previously discussed. 

Response buffers are physical buffers in host memory. They are used by the INIC in the 
same order as they were given to it by the host. This enables the host to know which 
response buffer(s) to next look at when the INIC signals a command completion. 
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3.2.2 Transmit Interface Details 

3.2.2.1 Command Buffers 

Command buffers in host memory are a multiple of 32 bytes, up to a maximum of 1K 
bytes, and are aligned on 32 byte boundaries. A command buffer is passed to the INIC 
by writing to one of 5 Command Buffer Address Registers. These registers are defined as 
follows: 

Bits 31-5 
Bits 4-0 
32 bytes) 

Physical address in host memory of the command buffer. 
Length of command buffer in bytes I 32 (i.e. number of multiples of 

This is the physical address of the command buffer. The register to which the command 
is written predetermines the XMT interface number, or if the command is for the RCV 
CPU; hence there will be 5 of them, 0-3 for XMT and 4 for RCV. When one of these 
registers has been written, the INIC will add the contents of the register to it's own 
internal queue of command buffer descriptors. The first word of all command buffers is 
defined to be the command buffer handle. It is the job of the utility CPU to extract a 
command from its local queue, DMA the command into a small INIC buffer (from the 
FreeSType queue), and queue that buffer into the Xmit#Type queue, where# is 0-3 
depending on the interface, or the appropriate RCV queue. The receiving CPU will 
service the queues to perform the commands. When that CPU has completed a command, 
it extracts the command buffer handle and passes it back to the host via a response buffer. 

3.2.2.2 Response Buffers 

Response buffers in host memory are 32 bytes long and aligned on 32 byte boundaries. 
They are handled in a very similar fashion to header buffers. There will be a field in the 
response buffer indicating it has valid data. This field will initially be reset by the host 
before passing the buffer descriptor to the INIC. A set of response buffers are passed 
from the host to the INIC by the host writing to the Response Buffer Address Register on 
the INIC. This register is defined as follows: 

Bits 31-8 
response buffers 
Bits 7-0 

Physical address in host memory of the first of a set of contiguous 

Number of response buffers passed. 

In this way the host can, say, allocate 128 buffers in a 4K page, and pass all128 buffers 
to the INIC with one register write. The INIC will maintain a queue of these header 
descriptors in it's ResponseType queue, adding to the end of the queue every time the 
host writes to the Response Buffer Address Register. The INIC writes the extracted 
contents including the count, to the queue in exactly the same manner as for the header 
buffers. 

The response buffers can be used and returned to the host in the same order that they 
were given to the INIC. The valid field will be set by the INIC before returning the buffer 
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. . 
to the host. In this way a PCI interrupt, with a single bit in the interrupt register, may be 
generated to indicate that there is a response buffer for the host to process. When 
servicing this interrupt, the host will look at its queue of response buffers, reading the 
valid field to determine how many response buffers are to be processed. 

3.2.3 Interrupt Status Register I Interrupt Mask Register: 

The following is the general format of this register: 

ERR 
RCV 
XMT 

RMISS 

31 

Error bits are set 
RCV has occurred. 
Command has been completed 

Rev drop occurred due to no buffers 

0 

The setting of any bits in the ISR will cause an interrupt, provided the corresponding bit 
in the Interrupt Mask Register is set. The default setting for the lMR is 0. 

The INIC is configured so that the host should never need to directly read the ISR from 
the INIC. To support this, it is important for the host/INIC to arrange a buffer area in host 
memory into which the ISR is dumped. The address and size of that area ca be passed to 
the INIC via a command on the XMT interface. That command will also specify the 
setting for the IMR. Until the INIC receives this command, it will not DMA the ISR to 
host memory, and no events will cause an interrupt. The host could if necessary, read the 
ISR directly from the INIC in this case. 

For the host to never have to actually read the register from the INIC itself, it is necessary 
for the INIC to update this host copy of the register whenever anything in it changes. The 
host will Ack (or deassert) events in the register by writing the register with O's in 
appropriate bit fields. So that the host does not miss events, the following scheme has 
been developed: 

The INIC keeps a local copy of the register whenever it DMAs it to the host i.e. after 
some event(s). Call this COPY A Then the INIC starts accumulating any new events not 
reflected in the host copy in a separate word. Call this NEW A. As the host clears bits by 
writing the register back with those bits set to zero, the INIC clears these bits in COPY A 
(or the host write-back goes directly to COPY A). If there are new events in NEW A, it 
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. ' 
ORs them with COPY A, and DMAs this new ISR to the host. This new ISR then replaces 
COPY A, NEW A is cleared and the cycle then repeats. 

3 .2.4 Register Addresses 

For the sake of simplicity, in this example the registers are at 4-byte increments from 
whatever the base address is. Hence: 

ISR OxO Interrupt Status 
IMR Ox4 Interrupt Mask 
HBAR Ox8 Header Buffer Address 
DBHR OxC Data Buffer Handle 
DBAR OxlO Data Buffer Address 
CBARO Ox14 Command Buffer Address XMTO 
CBARl Ox18 Command Buffer Address XMTl 
CBAR2 OxlC Command Buffer Address XMT2 
CBAR3 Ox20 Command Buffer Address XMT3 
CBAR4 Ox24 Command Buffer Address RCV 
RBAR Ox28 Response Buffer Address 

4 Alacritech TCP (ATCP) Design Specification 

This section outlines the design specification for the Alacritech TCP (ATCP) transport 
driver. The ATCP driver consists ofthree components: 

1. The bulk of the protocol stack is based on the FreeBSD TCPIIP protocol stack. 
This code performs the Ethernet, ARP, IP, ICMP, and (slow path) TCP processing 
for the driver. 

2. At the top of the protocol stack we introduce an NT filter driver used to intercept 
TDI requests destined for the Microsoft TCP driver. 

3. At the bottom of the protocol stack we include an NDIS protocol-driver interface 
which allows us to communicate with the INIC miniport NDIS driver beneath the 
ATCP driver. 

This section covers each of these topics, as well as issues common to the entire ATCP 
driver. 

4.1 Coding style 

In order to ensure that our ATCP driver is written in a consistent manner, we have 
adopted a set of coding guidelines. These guidelines are introduced with the philosophy 
that we should write code in a Microsoft style since we are introducing an NT -based 
product. The guidelines below apply to all code that we introduce into our driver. Since 
a very large portion of our ATCP driver will be based on FreeBSD, and since we are 
somewhat time-constrained on our driver development, the ported FreeBSD code will be 
exempt from these guidelines. 
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1. Global symbols- All function names and global variables in the ATCP driver 
should begin with the "ATK" prefix (ATKSendO for instance). 

2. Variable names- Microsoft seems to use capital letters to separate multi-word 
variable names instead of underscores (VariableName instead ofvariable_name). 
We should adhere to this style. 

3. Structure pointers - Microsoft typedefs all of their structures. The structure types 
are always capitals and they typedef a pointer to the structure as "P"<name> as 
follows: 

typedef struct _ FOO { 
INT bar; 

} FOO, *PFOO; 
We will adhere to this style. 

4. Function calls- Microsoft separates function call arguments on separate lines: 
X= foobar( 

argument I, 
argument2, 
); 

We will adhere to this style. 

5. Comments- While Microsoft seems to alternatively use II and I* *I comment 
notation, we will exclusively use the/* *I notation. 

6. Function comments - Microsoft includes comments with each function that 
describe the function, its arguments, and its return value. We will also include 
these comments, but will move them from within the function itself to just prior to 
the function for better readability. 

7. Function arguments- Microsoft includes the keywords IN and OUT when 
defining function arguments. These keywords denote whether the function 
argument is used as an input parameter, or alternatively as a placeholder for an 
output parameter. We will include these keywords. 

8. Function prototypes -We will include function prototypes in the most logical 
header file corresponding to the .c file. For example, the prototype for function 
fooO found in foo.c will be placed in foo.h. 

9. Indentation- Microsoft code fairly consistently uses a tab stop of 4. We will do 
likewise. 

10. Header file #i:fudef- each header file should contain a #i:fude£'#definel#endif 
which is used to prevent recursive header file includes. For example, foo;h would 
include: 

#i:fudef FOO H - --
#define _FOO _H_ 
<foo.h contents .. > 
#endif I* _FOO _ H_ *I 

Note the NAME H format. 
- --

11. Each file must contain a comment at the beginning which includes the $Id$ as 
follows: 

I* 
* $Id$ 
*I 
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CVS (RCS) will expand this keyword to denote RCS revision, timestamps, author, 
etc. 

4.2 SMP 

This section describes the process by which we will make the ATCP driver SMP safe. 

The basic rule for SMP kernel code is that any access to a memory variable must be 
protected by a lock that prevents a competing access by code running on another 
processor. Spinlocks are the normal locking method for code paths which do not take a 
long time to execute (and which do not sleep.) 

In general each instance of a structure will include a spinlock, which must be acquired 
before members of that structure are accessed, and held while a function is accessing that 
instance of the structure. Structures which are logically grouped together may be 
protected by a single spinlock: for example, the 'in_pcb' structure, 'tcpcb' structure, and 
'socket' structure which together constitute the administrative information for a TCP 
connection will probably be collectively managed by a single spinlock in the 'sdcket' 
structure. 

In addition, every global data structure such as a list or hash table must also have a 
protecting spinlock which must be held while the structure is being accessed or modified. 
The NT DDK in fact provides a number of convenient primitives for SMP-safe list 
manipulation, and it is recommended that these be used for any new lists. Existing list 
manipulations in the FreeBSD code can probably be left as-is to minimize code 
disturbance, except of course that the necessary spinlock acquisition and release must be 
added around them. 

Spinlocks should not be held for long periods of time, and most especially, must not be 
held during a sleep, since this will lead to deadlocks. There is a significant deficiency in 
the NT kernel support for SMP systems: it does not provide an operation which allows a 
spinlock to be exchanged atomically for a sleep lock. This would be a serious problem in 
a UNIX environment where much of the processing occurs in the context of the user 
process which initiated the operation. (The spinlock would have to be explicitly released, 
followed by a separate acquisition of the sleep lock: creating an unsafe window.) 

The NT approach is more asynchronous, however: IRPs are simply marked as 
'PENDING' when an operation cannot be completed immediately. The calling thread 
does NOT sleep at that point: it returns, and may go on with other processing. Pending 
IRPs are later completed, not by waking up the thread which initiated them, but by an 
'IoCompleteRequest' call which typically runs at DISPATCH level in an arbitrary 
context. 

Thus we have not in fact used sleep locks anywhere in the design of the ATCP driver, 
hoping the above issue will not arise. 

4.3 Data flow overview 
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The ATCP driver supports two paths for sending and receiving data, the fast-path and the 
slow-path. The fast-path data flow corresponds to connections that are maintained on the 
INIC, while slow-path traffic corresponds to network data for which the INIC does not 
have a connection. In order to set some groundwork for the rest of this section, these two 
data paths are summarized here. 

4.3.1 Fast-path input data flow 

There are 2 different cases to consider: 

1. NETBIOS traffic (identifiable by port number.) 
2. Everything else. 

4.3.1.1 NETBIOS input 

As soon as the INIC has received a segment containing a NETBIOS header, it will 
forward it up to the TCP driver, along with the NETBIOS length from the header. (In 
principle the host could get this from the header itself, but since the INIC has already 
done the decode, it seem reasonable to just pass it.) 

From the TDI spec, the amount of data in the buffer actually sent must be at least 128 
bytes. For small SMBs, all of the received SMB should be forwarded; it will be absorbed 
directly by the TDI client without any further MDL exchange. Experiments tracing the 
TDI data flow show that the NETBIOS client directly absorbs up to 1460 bytes: the 
amount of payload data in a single Ethernet frame. Thus the initial system specifies that 
the INIC will indicate anything up to a complete segment to the ATCP driver. [See note 
(1 )] 

Once the INIC has passed up an indication with an NETBIOS length greater than the 
amount of data in the packet it passed, it will continue to accumulate further incoming 
data in DRAM on the INIC. Overflow ofiNIC DRAM buffers will be avoided by using 
a receive window on the INIC at this point, which can be 8K. 

On receiving the indicated packet, the ATCP driver will call the receive handler 
registered by the TDI client for the connection, passing the actual size of the data in the 
packet from the INIC as "bytes indicated" and the NETBIOS length as "bytes available." 
[See note (2)]. 

In the "large data input" case, where "bytes available" exceeds the packet length, the TDI 
client will then provide an MDL, associated with an IRP, which must be completed when 
this MDL is filled. (This IRP/MDL may come back either in the response to TCP's call of 
the receive handler, or as an explicit TDI_RECEIVE request.) 

The ATCP driver will build a "receive request" from the MDL information, and pass this 
to the INI C. This request will contain: 

• The TCP context identifier. 
• Size and offset information. 
• A list of physical addresses corresponding to the MDL pages. 
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• A context field to allow the ATCP driver to identify the request on completion. 
• "Piggybacked" window update information (this will be discussed in section 6.1.3.) 

Note: the ATCP driver must copy any remaining data (which was not taken by the 
receive handler) from the segment indicated by the INIC to the start of the MDL, and 
must adjust the size & offset information in the request passed to the INIC to account for 
this. 

The INIC will fill the given page(s) with incoming data up to the requested amount, and 
respond to the ATCP driver when this is done [see note (3)]. If the MDL is large, the 
INIC may open up its advertised receive window for improved throughput while filling 
the MDL. 

On receiving the response from the INIC, the ATCP driver will complete the IRP 
associated with this MDL, to tell the TDI client that the data is available. 

At this point the cycle of events is complete, and the ATCP driver is now waiting for the 
next header indication. 

4.3.1.2 Other TCP input. 

In the general case we do not have a higher-level protocol header to enable us to predict 
that more data is coming. So on non-NETBIOS connections, the INIC will just 
accumulate incoming data in INIC DRAM up to a quantity of 8K in this example. Again, 
a maximum advertised window size, which may be 16K, will be used to prevent overflow 
ofiNIC DRAM buffers. 

When the prescribed amount has been accumulated, or when a PSH flag is seen, the INIC 
will indicate a small packet which may be 128 bytes of the data to the ATCP driver, 
along with the total length of the data accumulated in INIC DRAM. 

On receiving the indicated packet, the ATCP driver will call the receive handler 
registered by the TDI client for the connection, passing the actual size of the data in the 
packet from the INIC as "bytes indicated" and the total INIC-buffer length as "bytes 
available." 

As in the NETBIOS case, if "bytes available" exceeds "bytes indicated", the TDI client 
will provide an IRP with an MDL. The ATCP driver will pass the MDL to the.INIC to 
be filled, as before. The INIC will reply to the ATCP driver, which in turn will complete 
the IRP to the TDI client. 

Using an MDL from the client avoids a copy step. However, if we can only buffer 8K 
and delay indicating to the ATCP driver until we have done so, a question arisys 
regarding further segments coming in, since INIC DRAM is a scarce resource. We do not 
want to ACK with a zero-size window advertisement: this would cause the transmitting 
end to go into persist state, which is bad for throughput. If the transmitting end is also our 
INIC, this results in having to implement the persist timer on the INIC, which we do not 
wish to do. Instead for large transfers (i.e. no PSH flag seen) we will not send an ACK 
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until the host has provided the MDL, and also, to avoid stopping the transmitting end, we 
will use a receive window of twice the amount we will buffer before calling the host. 
Since the host comes back with the MDL quite quickly (measured at< 100 
microseconds), we do not expect to experience significant overruns. 

4.3.1.3 INIC Receive window updates 

If the INIC "owns" an MDL provided by the TDI client (sent by ATCP as a receive 
request), it will treat this as a "promise" by the TDI client to accept the data placed in it, 
and may therefore ACK incoming data as it is filling the pages. 

However, for small requests, there will be no MDL returned by the TDI client: it absorbs 
all of the data directly in the receive callback function. We need to update the INIC's 
view of data which has been accepted, so that it can update its receive window. In order 
to be able to do this, the ATCP driver will accumulate a count of data which has been 
accepted by the TDI client receive callback function for a connection. 

From the INIC's point of view, though, segments sent up to the ATCP driver are just 
''thrown over the wall"; there is no explicit reply path. We will therefore "piggyback" the 
update on requests sent out to the INIC. Whenever the ATCP driver has outgoing data 
for that connection, it will place this count in a field in the send request (and then clear 
the counter.) Any receive request (passing a receive MDL to the INIC) may also be used 
to transport window update info in the same way. 

Note: we will probably also need to design a message path whereby the ATCP driver can 
explicitly send an update of this "bytes consumed" information (either when it exceeds a 
preset threshold or if there are no requests going out to the INIC for more than a given 
time interval), to allow for possible scenarios in which the data stream is entirely one
way. 

4.3.1.4 Notes 

1) The PSH flag can help to identify small SMB requests that fit into one segment. 

2) Actually, the observed "bytes available" from the NT TCP driver to its client's 
callback in this case is always 1460. The NETBIOS-aware TDI client presumably 
calculates the size of the MDL it will return from the NETBIOS header. So strictly 
speaking we do not need the NETBIOS header length at this point: just an indication 
that this is a header for a "large" size. However, we *do* need an actual "bytes 
available" value for the non-NETBIOS case, so we may as well pass it. 

3) We observe that the PSH flag is set in the segment completing each NETBIOS 
transfer. The INIC can use this to determine when the current transfer is complete 
and the MDL should be returned. It can, at least in a debug mode, sanity check the 
amount of received data against what is expected, though. 
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4.3.2 Fast-path output data flow 

The fast-path output data flow is similar to the input data-flow, but simpler. In this case 
the TDI client will provide a MDL to the ATCP driver along with an IRP to be cpmpleted 
when the data is sent. The ATCP driver will then give a request (corresponding to the 
MDL) to the INIC. This request will contain: 

• The TCP context identifier. 
• Size and offset information. 
• A list of physical addresses corresponding to the MDL pages. 
• A context field to allow the ATCP driver to identify the request on completion. 
• "Piggybacked" window update information (as discussed in section 6.1.3.) 

The INIC will copy the data from the given physicallocation(s) as it sends the 
corresponding network frames onto the network. When all ofthe data is sent, the INIC 
will notify the host of the completion, and the ATCP driver will complete the IRP. 

Note that there may be multiple output requests pending at any given time, since SMB 
allows multiple SMB requests to be simultaneously outstanding. 

4.3.3 Slow-path data flow 

For data for which there is no connection being maintained on the INIC, we will have to 
perform all of the TCP, IP, and Ethernet processing ourselves. To accomplish this we 
will port the FreeBSD protocol stack. 
In this mode, the INIC will be operating as a "dumb NIC"; the packets which pass over 
the NDIS interface will just contain MAC-layer frames. 

The MBUFs in the incoming direction will in fact be managing NDIS-allocated packets. 
In the outgoing direction, we need protocol-allocated MBUFs in which to assemble the 
data and headers. The MFREE macro must be cognizant of the various types of MBUFs, 
and "do the right thing" for each type. (See more extensive discussion ofMBUFs in 
section XXX.) 

We will retain a (modified) socket structure for each connection, containing the socket 
buffer fields expected by the FreeBSD code. The TCP code that operates on socket 
buffers (adding/removing MBUFs to & from queues, indicating acknowledged& 
received data etc) will remain essentially unchanged from the FreeBSD base (though 
most of the socket functions & macros used to do this will need to be modified; these are 
the functions in kern/uipc_socket2.c) 

The upper socket layer (kern/uipc_socket.c), where the overlying OS moves data in and 
out of socket buffers, must be entirely re-implemented to work in TDI terms. Thus, 
instead of sosend(), there will be a function that copies data from the MDL provided in a 
TDI_SEND call into socket buffer MBUFs. Instead ofsoreceive(), there will be a handler 
that calls the TDI client receive callback function, and also copies data from socket buffer 
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MBUFs into any MDL provided by the TDI client (either explicitly with the callback 
response or as a separate TDI_RECENE call.) 

We must note that there is a semantic difference between TDI_SEND and a write() on a 
BSD socket. The latter may complete back to ~ts caller as soon as the data has been 
copied into the socket buffer. The completion of a TDI _SEND, however, implies that the 
data has actually been sent on the connection. Thus we will need to keep the TDI_SEND 
IRPs (and associated MDLs) in a queue on the socket until the TCP code indicates that 
the data from them has been ACK' d. 

4.3.4 Data Path Notes 

1. There might be input data on a connection object for which there is no receive 
handler function registered. This has not been observed, but we can probably just 
ASSERT for a missing handler for the moment. If it should happen, however, we 
must assume that the TDI client will be doing TDI_RECENE calls on the 
connection. If we can't make a call up at the time that the indication from the INIC 
appears, we can queue the data and handle it when a TDI_RECEIVE does appear. 

2. NT has a notion of "canceling" IRPs. It is possible for us to get a "cancel" on an IRP 
corresponding to an MDL which has been "handed" to the INIC by a send or receive 
request. We can handle this by being able to force the context back off the INIC, 
since IRPs will only get cancelled when the connection is being aborted. 

4.4 Context Passing Between ATCP and INIC 

4.4.1 From ATCP to INIC 

There is a synchronization problem that must be addressed here. The ATCP driver will 
make a decision on a given connection that this connection should now be passed to the 
INIC. It builds and sends a command identifying this connection to the INIC. 

Before doing so, it must ensure that no slow-path outgoing data is outstanding. This is 
not difficult; it simply pends and queues any new TDI_SEND requests and waits for any 
unacknowledged slow path output data to be acknowledged before initiating the context 
pass operation. 

The problem arises with incoming slow-path data. If we attempt to do the context-pass in 
a single command handshake, there is a window during which the ATCP driver has send 
the context command, but the INIC has not yet seen this (or has not yet completed setting 
up its context.) During this time, slow-path input data frames could arrive and be fed into 
the slow-path ATCP processing code. Should that happen, the context information which 
the ATCP driver passed to the INIC is no longer correct. We can simply abort' the 
outward pass of the context in this event, but it seems better to have a reliable handshake. 

Therefore, the command to pass context from ATCP driver to INIC will be split into two 
halves, and there will be a two-exchange handshake. 
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The initial command from ATCP to INIC expresses an "intention" to hand out the 
context. It will include the source and destination IP addresses and ports, which will 
allow the INIC to establish a "provisional" context. Once it has this "provisional'.' context 
in place, the INIC will not send any more slow-path input frames for that src/dest IP/port 
combination (it will queue them, if any are received.) 

When the ATCP driver receives the response to this initial "intent" command, it knows 
that the INIC will send no more slow-path input. The ATCP driver then waits for any 
remaining unconsumed slow-path input data for this connection to be consumed by the 
client. (Generally speaking there will be none, since the ATCP driver will not initiate a 
context pass while there is unconsumed slow-path input data; the handshake is simply to 
close the crossover window.) 

Once any such data has been consumed, we know things are in a quiescent state. The 
ATCP driver can then send the second, "commit" command to hand out the context, with 
confidence that the TCB values it is handing out (sequence numbers etc) are reliable. 

Note 1: it is conceivable that there might be situations in which the ATCP driver decides, 
after having sent the original "intention" command, that the context is not to be passed 
after all. (E.g. the local client issues a close.) So we must allow for the possibility that 
the second command may be a "abort", which should cause the INIC to deallocate and 
clear up its "provisional" context. 

Note 2: to simplify the logic, the ATCP driver will guarantee that only one context may 
be in process of being handed out at a time: in other words, it will never issue another 
initial "intention" command until it has completed the second half of the handshake for 
the first one. 

4.4.2 From INIC to ATCP 

There are two possible cases for this: a context transfer may be initiated either by the 
ATCP driver or by the INIC. 

However the machinery will be very similar in the two cases. If the ATCP driver wishes 
to cause context to be flushed from INIC to host, it will send a "flush" message to the 
INIC specifying the context number to be flushed. Once the INIC receives this, it will 
proceed with the same steps as for the case where the flush is initiated by the OOC itself: 

• The INIC will send an error response to any current outstanding receive request it is 
working on (corresponding to an MDL into which data is being placed.) Before 
sending the response, it updates the receive command "length" field to reflect the 
amount of data which has actually been placed in the MDL buffers at the time of the 
flush. 

• Likewise it will send an error response for any current send request, again reporting 
the amount of data actually sent from the request. 

• The INIC will DMA the TCB for the context back to the host. (Note: part of the 
information provided with a context must be the address of the TCB in the host.) 
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• The INIC will send a "flush" indication to the host (very preferably via the regular 

input path as a special type of frame) identifying the context which is being flushed. 
Sending this indication via the regular input path ensures that it will arrive before any 
following slow-path frames. 

At this point, the INIC is no longer doing fast-path processing, and any further incoming 
frames for the connection will simply be sent to the host as raw frames for the slow input 
path. 

The ATCP driver may not be able to complete the cleanup operations needed to resume 
normal slow path processing immediately on receipt of the "flush frame", since there may 
be outstanding send and receive requests to which it has not yet received a response. 

If this is the case, the ATCP driver must set a "pend incoming TCP frames" flag in its 
per-connection context. The effect of this is to change the behavior of tcp _input(). This 
runs as a function call in the context of ip _input(), and normally returns only when 
incoming frames have been processed as far as possible (queued on the socket receive 
buffer or out-of-sequence reassembly queue.) However, ifthere is a flush pending and 
we have not yet completed resynchronization, we cannot do TCP processing and must 
instead queue input frames for TCP on a "holding queue" for the connection, to be picked 
up later when context flush is complete and normal slow path processing resumes. (This 
is why we want to send the "flush" indication via the normal input path: so that we can 
ensure it is seen before any following frames of slow-path input.) 

Next we need to wait for any outstanding "send" requests to be errored off: 

• The INIC maintains its context for the connection in a "zombie" state. As "send" 
requests for this connection come out of the INIC queue, it sends error responses for 
them back to the ATCP driver. (It is apparently difficult for the INIC to identify all 
command requests for a given context; simpler for it to just continue processing them 
in order, detecting ones that are for a "zombie" context as they appear.) 

• The ATCP driver has a count of the number of outstanding requests it has sent to the 
INIC. As error responses for these are received, it decrements this count, and when it 
reaches zero, the ATCP driver sends a "flush complete" message to the INIC. 

• When the INIC receives the "flush complete" message, it dismantles its "zombie" 
context. From the INIC perspective, the flush is now completed. 

• When the ATCP driver has received error responses for all outstanding requests, it 
has all the information needed to complete its cleanup. This involves completing any 
IRPs corresponding to requests which have entirely completed and adjusting fields in 
partially-completed requests so that send and receive of slow path data will resume at 
the right point in the byte streams. 

• Once all this cleanup is complete, the ATCP driver will loop pulling any "pended" 
TCP input frames off the "pending queue" mentioned above and feeding them into 
the normal TCP input processing. Once all input frames on this queue have been 
cleared off, the "pend incoming TCP frames" flag can be cleared for the connection, 
and we are back to normal slow-path processing. 
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4.5 FreeBSD Porting Specification 

The largest portion of the ATCP driver is either derived, or directly taken from the 
FreeBSD TCPIIP protocol stack. This section defines the issues associated with porting 
this code, the FreeBSD code itself, and the modifications required for it to suit our needs. 

4.5.1 Porting philosophy 

FreeBSD TCPIIP (current version referred to as Net/3) is a general purpose TCPIIP 
driver. It contains code to handle a variety of interface types and many different kinds of 
protocols. To meet this requirement the code is often written in a sometimes confusing, 
over-complex manner. General-purpose structures are overlaid with other interface
specific structures so that different interface types can coexist using the same general
purpose code. For our purposes much of this complexity is unnecessary since we are 
only supporting a single interface type and a few specific protocols. It is therefore 
tempting to modify the code and data structures in an effort to make it more readable, and 
perhaps a bit more efficient. There are, however, some problems with doing this. First, 
the more we modify the original FreeBSD, the more changes we will have to make. This 
is especially true with regard to data structures. If we collapse two data structures into 
one we might improve the cleanliness of the code a bit, but we will then have to modify 
every reference to that data structure in the entire protocol stack. Another problem with 
attempting to "clean up" the code is that we might later discover that we need something 
that we had previously thrown away. Finally, while we might gain a small perf0rmance 
advantage in cleaning up the FreeBSD code, the FreeBSD TCP code will mostly only run 
in the slow-path connections, which are not our primary focus. Our priority is to get the 
slow-path code functional and reliable as quickly as possible. 

For the reasons above we have adopted the philosophy that we should initially keep the 
data structures and code at close to the original FreeBSD implementation as possible. 
The code will be modified for the following reasons: 

5. As required for NT interaction- Obviously we can't expect to simply "drop-in" the 
FreeBSD code as is. The interface of this code to the NT system will require some 
significant code modifications. This will mostly occur at the topmost and 
bottommost portions of the protocol stack, as well as the "ioctl" sections of the code. 
Modifications for SMP issues are also needed. 

6. Unnecessary code can be removed- While we will keep the code as close to the 
original FreeBSD as possible, we will nonetheless remove code that will never be 
used (UDP is a good example of this). 

4.5.2 Unix~ NT conversion 

The FreeBSD TCP/IP protocol stack makes use of many Unix system services. These 
include bcopy to copy memory, malloc to allocate memory, timestamp functions, etc. 
These will not be itemized in detail since the conversion to the corresponding NT calls is 
a fairly trivial and mechanical operation. 

An area which will need non-trivial support redesign is MBUFs. 
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4.5.2.1 Network buffers 

Under FreeBSD, network buffers are mapped using mbufs. Under NT network buffers 
are mapped using a combination of packet descriptors and buffer descriptors (the buffer 
descriptors are really MDLs). There are a couple of problems with the Microsoft 
method. First it does not provide the necessary fields which allow us to easily strip off 
protocol headers. Second, converting all of the FreeBSD protocol code to speak in terms 
of buffer descriptors is an unnecessary amount of overhead. Instead, in our port we will 
allocate our own mbuf structures and remap the NT packets as follows: 

Mbuf Mbuf 

... .... 
- -

.~r Packet Desc Buffer Desc BufferDesc 

... .. 

... + ... + ... ... 

Data Data 

The mbuf structure will provide the standard fields provided in the FreeBSD mbuf 
including the data pointer, which points to the current location of the data, data length 
fields and flags. In addition each mbuf will point to the packet descriptor which is 
associated with the data being mapped. Once an NT packet is mapped, our transport 
driver should never have to refer to the packet or buffer descriptors for any information 
except when we are finished and are preparing to return the packet. 

There are a couple ofthings to note here. We have designed our INIC such that a packet 
header should never be split across multiple buffers. Thus, we should never require the 
equivalent of the "m _pull up" routine included in Unix. Also note that there are 
circumstances in which we will be accepting data that will also be accepted by the 
Microsoft TCP/IP. One such example of this is ARP frames. We will need to build our 
own ARP cache by looking at ARP replies as they come off the network. Under these 
circumstances, it is absolutely imperative that we do not modify the data, or the packet 
and buffer descriptors. We will discuss this further in the following sections. 
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We will allocate a pool ofmbufheaders at ATCP initialization time. It is importimt to 
remember that unlike other NICs, we can not simply drop data if we run out of the system 
resources required to manage/map the data. The reason for this is that we will be 
receiving data from the card that has already been acknowledged by TCP. Because of 
this it is essential that we never run out ofmbufheaders. To solve this problem we will 
statically allocate mbufheaders for the maximum number ofbuffers that we will ever 
allow to be outstanding. By doing so, the card will run out ofbuffers in which to put the 
data before we will run out of mbufs, and as a result, the card will be forced to drop data 
at the link layer instead of us dropping it at the transport layer. 
DhXXX: as we've discussed, I don't think this is really true anymore. The INIC won't 
ACK data until either it's gotten a window update from ATCP to tell it the data's been 
accepted, or it's got an MDL. 
Thus it seems workable, though undesirable, if we can't accept a frame from the INIC & 
return an error to it saying it was not taken. 

We will also require a pool of actual mbufs (not just headers). These mbufs are required 
in order to build transmit protocol headers for the slow-path data path, as well as other 
miscellaneous purposes such as for building ARP requests. We will allocate a pool of 
these at initialization time and we will add to this pool dynamically as needed. Unlike 
the mbufheaders described above, which will be used to map acknowledged TCP data 
coming from the card, the full mbufs will contain data that can be dropped if we can not 
get anmbuf. 

4.5.3 The code 

In this section we describe each section of the FreeBSD TCPIIP port. These sections 
include Interface Initialization, ARP, Route, IP, ICMP, and TCP. 

4. 5.3 .1 Interface initialization 

4.5.3.1.1 Structures 

There are a variety of structures, which represent a single interface in FreeBSD. These 
structures include: 
ifnet, arpcom, ifaddr, in_ifaddr, sockaddr, sockaddr_in, and sockaddr_dl. The following 
illustration shows the relationship between all of these structures: 

arpcom 

r---------
1 
I 
I 

: ifnet 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I ---------

-

-

If ace 

u 

I I 

ifaddr 

... sockaddr dl 

•.. J 00:60:97:DB:9B:A6 .... , 
r--

in ifaddr .. 
sockaddr. in ... 

ifaddr ... 
.... ll92.100.1.2 I 
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In this example we show a single interface with a MAC address of00:60:97:DB:9B:A6 
configured with an IP address of 192.100.1.2. As illustrated above, the in_ifaddr is 
actually an ifaddr structure with some extra fields tacked on to the end. Thus the ifaddr 
structure is used to represent both a MAC address and an IP address. Similarly the 
sockaddr structure is recast as a sockaddr _ d1 or a sockaddr _in depending on its address 
type. An interface can be configured to multiple IP addresses by simply chaining 
in _ifaddr structures after the in _ifaddr structure shown above. 

As mentioned in the Porting Philosophy section, many of the above structures could 
likely be collapsed into fewer structures. In order to avoid making unnecessary 
modifications to FreeBSD, for the time being we will leave these structures mostly as is. 
We will however eliminate the fields from the structure that will never be used. These 
structure modifications are discussed below. 

We also show above a structure called iface. This is a structure that we define. It 
contains the arpcom structure, which in tum contains the ifnet structure. It also contains 
fields that enable us to blend our FreeBSD implementation with NT NDIS requirements. 
One such example is the NDIS binding handle used to call down to NDIS with requests 
(such as send). 

4.5.3.1.2 The functions 

FreeBSD initializes the above structures in two phases. First when a network interface is 
found, the ifnet, arpcom, and first ifaddr structures are initialized first by the network 
layer driver, and then via a call to the if_ attach routine. The subsequent in_ifaddr 
structure(s) are initialized when a user dynamically configures the interface. This occurs 
in the in _ioctl and the in _ifinit routines. Since NT allows dynamic configuration of a 
network interface we will continue to perform the interface initialization in two phases, 
but we will consolidate these two phases as described below: 

4.5.3.1.2.1 ~nit 

The Iflnit routine will be called from the ATK.ProtocolBindAdapter function. The Iflnit 
function will initialize the Iface structure and associated arpcom and ifnet structures. It 
will then allocate and initialize an ifaddr structure in which to contain link-level 
information about the interface, and a sockaddr _ dl structure to contain the interface name 
and MAC address~ Finally it will add a pointer to the ifaddr structure into the ifnet_addrs 
array (using the if_index field of the ifnet structure) contained in the extended device 
object. Iflnit will then call IfConfig for each IP address that it finds in the registry entry 
for the interface. 

4.5.3.1.2.2 JfConfig 

IfConfig is called to configure an IP address for a given interface. It is passed a pointer 
to the ifnet structure for that interface along with all the information required to configure 
an IP address for that interface (such as IP address, netmask and broadcast info, etc). 
IfConfig will allocate an in_ifaddr structure to be used to configure the interface. It will 
chain it to the total chain of in _ifaddr structures contained in the extended device object, 
and will then configure the structure with the information given to it. After that it will 
add a static route for the newly configured network and then broadcast a gratuitous ARP 
request to notify others of our Mac/IP address and to detect duplicate IP addresses on the 
net. 
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4.5.3.2 ARP 

We will port the FreeBSD ARP code to NT mostly as-is. For some reason, the FreeBSD 
ARP code is located in a file called if_ether.c. While the functionality of this file will 
remain the same, we will rename it to a more logical arp.c. The main structures used by 
ARP are the llinfo _ arp structure and the rtentry structure (actually part of route). These 
structures will not be require major modifications. The functions that will requi:r~e 
modification are defined here. 

4.5.3.2.1 In_arpinput 

This function is called to process an incoming ARP frame. An ARP frame can either be 
an ARP request or an ARP reply. ARP requests are broadcast, so we will see every ARP 
request on the network, while ARP replies are directed so we should only see ARP 
replies that are sent to us. This introduces the following possible cases for an incoming 
ARP frame: 

1. ARP request trying to resolve our IP address- Under normal circumstances, ARP 
would reply to this ARP request with an ARP reply containing our MAC address. 
Since ARP requests will also be passed up to the Microsoft TCPIIP driver, we 
need not reply. Note however, that FreeBSD also creates or updates an ARP cache 
entry with the information derived from the ARP request. It does this in 
anticipation of the fact that any host that wishes to know our MAC address is 
likely to wish to talk to us soon. Since we will need to know his MAC address in 
order to talk back, we might as well add the ARP information now rather than 
issuing our own ARP request later. 

2. ARP request trying to resolve someone else's IP address- Since ARP requests are 
broadcast, we see every one on the network. When we receive an ARP request of 
this type, we simply check to see if we have an entry for the host that sent the 
request in our ARP cache. If we do, we check to see if we still have the correct 
MAC address associated with that host. If it is incorrect, we update our ARP 
cache entry. Note that we do not create a new ARP cache entry in this case. 

3. ARP reply- In this case we add the new ARP entry to our ARP cache. Having 
resolved the address, we check to see if there is any transmit requests pending for 
the resolve IP address, and if so, transmit them. 

Given the above three possibilities, the only major change to the in_arpinput code is that 
we will remove the code which generates an ARP reply for ARP requests that are meant 
for our interface. 

4.5.3.2.2 Arpintr 

This is the FreeBSD code that delivers an incoming ARP frame to in_arpinput. We will 
be calling in_ arpinput directly from our ProtocolReceiveDPC routine (discussed in the 
NDIS section below) so this function is not needed. 
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4.5.3.2.3 Arpwhohas 

This is a single line function that serves only as a wrapper around arprequest. We will 
remove it and replace all calls to it with direct calls to arprequest. 

4.5.3.2.4 Arprequest 

This code simply allocates a mbuf, fills it in with an ARP header, and then passes it down 
to the ethemet output routine to be transmitted. For us, the code remains essentially the 
same except for the obvious changes related to how we allocate a network buffer, and 
how we send the filled in request. 

4.5.3.2.5 Arp_ifinit 

This is simply called when an interface is initialized to broadcast a gratuitous ARP 
request (described in the interface initialization section) and to set some ARP related 
fields in the ifaddr structure for the interface. We will simply move this functionality into 
the interface initialization code and remove this function. 

4.5.3.2.6 Arptimer 

This is a timer-based function that is called every 5 minutes to walk through the ARP 
table looking for entries that have timed out. Although the time-out period for FreeBSD 
is 20 minutes, RFC 826 does not specify any timer requirements with regard to ARP so 
we can modify this value or delete the timer altogether to suit our needs. Either way the 
function won't require any major changes. 

All other functions in if_ether.c will not require any major changes. 

4.5.3.3 Route 

On first thought, it might seem that we have no need for routing support since our ATCP 
driver will only receive IP datagrams who's destination IP address matches that of one of 
our own interfaces. Therefore, we will not "route" from one interface to another. 
Instead, the MICROSOFT TCPIIP driver will provide that service. We will, however, 
need to maintain an up-to-date routing table so that we know a) whether an outgoing 
connection belongs to one of our interfaces, b) to which interface it belongs, and c) what 
the first-hop IP address (gateway) is if the destination is not on the local network. 

We discuss four aspects on the subject of routing in this section. They are as follows: 

1. The mechanics ofhow routing information is stored 

2. The manner in which routes are added or deleted from the route table. 

3. When and how route information is retrieved from the route table. 

4. Notification of route table changes to interested parties. 
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4.5.3.3.1 The route table 

In FreeBSD, the route table is maintained using an algorithm known as PATRICIA 
(Practical Algorithm To Retrieve Information Coded in Alphanumeric). This is a 
complicated algorithm that is a bit costly to set up, but is very efficient to reference. 
Since the routing table should contain the same information for both NT and FreeBSD, 
and since the key used to search for an entry in the routing table will be the same for each 
(the destination IP address), we should be able to port the routing table software to NT 
without any major changes. 

The software which implements the route table (via the PATRICIA algorithm) is located 
in the FreeBSD file, radix.c. This file will be ported directly to the ATCP driver with no 
significant changes required. 

4.5.3.3.2 Adding and deleting routes 

Routes can be added or deleted in a number of different ways. The kernel adds or deletes 
routes when the state of an interface changes or when an ICMP redirect is received. User 
space programs such as the RIP daemon, or the route command also modify the route 
table. 

For kernel-based route changes, the changes can be made by a direct call to the routing 
software. The FreeBSD software that is responsible for the modification of route table 
entries is found in route.c. The primary routine for all route table changes is called 
rtrequest(). It takes as its arguments, the request type (ADD, RESOLVE, DELETE), the 
destination IP address for the route, the gateway for the route, the netmask for the route, 
the flags for the route, and a pointer to the route structure (struct rtentry) in which we will 
place the added or resolved route. Other routines in the route.c file include rtinit(), which 
is called during interface initialization time to add a static route to the network, rtredirect, 
which is called by ICMP when we receive a ICMP redirect, and an assortment of support 
routines used for the modification of route table entries. All of these routines found in 
route.c will be ported with no major modifications. 

For user-space-based changes, we will have to be a bit more clever. In FreeBSD, route 
changes are sent down to the kernel from user-space applications via a special route 
socket. This code is found in the FreeBSD file, rtsock.c. Obviously this will not work 
for our ATCP driver. Instead the filter driver portion of our driver will intercept route 
changes destined for the Microsoft TCP driver and will apply those modifications to our 
own route table via the rtrequest routine described above. In order to do this, it will have 
to do some format translation to put the data into the format (sockaddr_in) expected by 
the rtrequest routine. Obviously, none of the code from rtsock.c will be ported to the 
ATCP driver. This same procedure will be used to intercept and process explicit ARP 
cache modifications. 

4.5.3.3.3 Consulting the route table 

In FreeBSD, the route table is consulted in ip_output when an IP datagram is being sent. 
In order to avoid a complete route table search for every outgoing datagram, the route is 
stored into the in_pcb for the connection. For subsequent calls to ip_output, the route 
entry is then simply checked to ensure validity. While we will keep this basic operation 
as is, we will require a slight modification to allow us to coexist with the Microsoft TCP 
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driver. When an active connection is being set up, our filter driver will have to determine 
whether the connection is going to be handled by one of the INIC interfaces. To do this, 
we will have to consult the route table from the filter driver portion of our driver. This is 
done via a call to the rtalloc 1 function (found in route.c ). If a valid route table entry is 
found, then we will take control ofthe connection and set a pointer to the rtentry:Structure 
returned by rtalloc1 in our in_pcb structure. 

4.5.3.3.4 What to do when a route changes. 

When a route table entry changes, there may be connections that have pointers to a stale 
route table entry. These connections will need to be notified of the new route. FteeBSD 
solves this by checking the validity of a route entry during every call to ip _output. If the 
entry is no longer valid, its reference to the stale route table entry is removed, and an 
attempt is made to allocate a new route to the destination. For our slow path, this will 
work fine. Unfortunately, since our IP processing is handled by the INIC for our fast 
path, this sanity check method will not be sufficient. Instead, we will need to perform a 
review of all of our fast path connections during every route table modification. If the 
route table change affects our connection, we will need to advise the INIC with a new 
first-hop address, or if the destination is no longer reachable, close the connection 
entirely. 

4.5.3.4 ICMP 

Like the ARP code above, we will need to process certain types of incoming ICMP 
frames. Of the 10 possible ICMP message types, there are only three that we need to 
support. These include ICMP _REDIRECT, ICMP _ UNREACH, and 
ICMP _SOURCEQUENCH. Any FreeBSD code to deal with other types ofiCMP traffic 
will be removed. Instead, we will simply return NDIS_STATUS_NOT_ACCEPTED for 
all but the above ICMP frame types. This section describes how we will handle these 
ICMP frames. 

4.5.3.4.1 ICMP REDIRECT 

Under FreeBSD, an ICMP _REDIRECT causes two things to occur. First, it causes the 
route table to be updated with the route given in the redirect. Second, it results in a call 
back to TCP to cause TCP to flush the route entry attached to its associated in _pcb 
structures. By doing this, it forces ip _output to search for a new route. As mentioned in 
the Route section above, we will also require a call to a routine which will review all of 
the TCP fast-path connections, and update the route entries as needed (in this case 
because the route entry has been zeroed). The INIC will then be notified of the route 
changes. 

4.5.3.4.2 ICMP UNREACH 

In both FreeBSD and Microsoft TCP, the ICMP _UNREACH results in no more than a 
simple statistic update. We will do the same. 

4.5.3.4.3 ICMP _SOURCEQUENCH 

A source quench is sent to cause a TCP sender to close its congestion window to a single 
segment, thereby putting the sender into slow-start mode. We will keep the FreeBSD 
code as-is for slow-path connections. For fast path connections we will send a 
notification to the card that the congestion window for the given connection has been 
reduced. The INIC will then be responsible for the slow-start algorithm. 
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4.5.3.5 IP 

The FreeBSD IP code should require few modifications when porting to the ATCP 
driver. What few modifications will be required will be discussed in this section. 

4.5.3.5.1 IP initialization 

During initialization time, ip_init is called to initialize the array ofprotosw structures. 
These structures contain all the information needed by IP to be able to pass incoming data 
to the correct protocol above it. For example, when a UDP datagram arrives, IP locates 
the protosw entry corresponding to the UDP protocol type value (Oxll) and calls the 
input routine specified in that protosw entry. We will keep the array ofprotosw 
structures intact, but since we are only handling the TCP and ICMP protocols above IP, 
we will strip the protosw array down substantially. 

4.5.3.5.2 IP input 

Following are the changes required for IP input (function ip_intr()). 

4.5.3.5.2.1 No IP forwarding 

Since we will only be handling datagrams for which we are the final destination, we 
should never be required to forward an IP datagram. All references to IP forwarding, and 
the ip _forward function itself, can be removed. 

4.5.3.5.2.2 IP options 

The only options supported by FreeBSD at this time include record route, strict and loose 
source and record route, and timestamp. For the timestamp option, FreeBSD only logs 
the current time into the IP header so that before it is forwarded. Since we will not be 
forwarding IP datagrams, this seems to be of little use to us. While FreeBSD supports the 
remaining options, NT essentially does nothing useful with them. For the moment, we 
will not bother dealing with IP options. They will be added in later if needed. 

4.5.3.5.2.3 IP reassembly 

There is a small problem with the FreeBSD IP reassembly code. The reassembly code 
reuses the IP header portion of the IP datagram to contain IP reassembly queue 
information. It can do this because it no longer requires the original IP header. This is an 
absolute no-no with the NDIS 4.0 method of handling network packets. The NT DDK 
explicitly states that we must not modify packets given to us by NDIS. This is not the 
only place in which the FreeBSD code modifies the contents of a network buffer. It also 
does this when performing endian conversions. At the moment we will leave this code as 
is and violate the DDK rules. We believe we can do this because we are going to ensure 
that no other transport driver looks at these frames. If this becomes a problem we will 
have to modify this code substantially by moving the IP reassembly fields into the mbuf 
header. 

4.5.3.5.3 IP output 

There are only two modifications required for IP output. The first is that since, for the 
moment, we are not dealing with IP options, there is no need for the code that inserts the 
IP options into the IP header. Second, we may discover that it is impossible for us to ever 
receive an output request that requires fragmentation. Since TCP performs Maximum 
Segment Size negotiation, we should theoretically never attempt to send a TCP segment 
larger than the MTU .. 
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4.6 NDIS Protocol Driver 

This section defines protocol driver portion of the ATCP driver. The protocol driver 
portion of the ATCP driver is defined by the set of routines registered with NDIS via a 
call to NdisRegisterProtocol. These routines are limited to those that are called 
(indirectly) by the INIC miniport driver beneath us. For example, we register a 
ProtocolReceivePacket routine so that when the INIC driver calls 
NdisMindicateReceivePacket it will result in a call from NDIS to our driver. Strictly 
speaking, the protocol driver portion of our driver does not include the method hy which 
our driver calls down to the miniport (for example, the method by which we send 
network packets). Nevertheless, we will describe that method here for lack of a better 
place to put it. That said, we cover the following topics in this section of the document: 

1. Initialization 
2. Receive 
3. Transmit 
4. Query/Set Information 
5. Status indications 
6. Reset 
7. Halt 

4.6.1 Initialization 

The protocol driver initialization occurs in two phases. The first phase occurs when the 
ATCP DriverEntry routine calls ATK.ProtoSetup. The ATK.ProtoSetup routine performs 
the following: 

1. Allocate resources - We attempt to allocate many ofthe required resour9es as soon 
as possible so that we are more likely to get the memory we want. This mostly 
applies to allocating and initializing our mbuf and mbuf header pools. 

2. Register Protocol- We call NdisRegisterProtocol to register our set of protocol 
driver routines. 

3. Locate and initialize bound NICs- We read the Linkage parameters ofthe registry 
to determine which NIC devices we are bound to. For each of these devices we 
allocate and initialize a IF ACE structure (defined above). We then read the TCP 
parameters out of the registry for each bound device and set the corresponding 
fields in the IF ACE structure. 

After the underlying INIC devices have completed their initialization, NDIS will call our 
driver's ATKBindAdapter function for each underlying device. It will perform the 
following: 

1. Open the device specified in the call the ATKBindAdapter 
2. Find the IF ACE structure that was created in ATK.ProtoSetup for this device. 
3. Query the miniport for adapter information. This includes such things as link 

speed and MAC address. Save relevant information in the IF ACE structure. 
4. Perform the interface initialization as specified in section 4.5 .3 .1 Interface 

initialization 
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4.6.2 Receive 

Receive is handled by the protocol driver routine ATKReceivePacket. Before we 
describe this routine, it is important to consider each possible receive type and how it will 
be handled. 

4.6.2.1 Receive overview 
Our INIC miniport driver will be bound to our transport driver as well as the generic 
Microsoft TCP driver (and possibly others). The ATCP driver will be bound exclusively 
to INIC devices, while the Microsoft TCP driver will be bound to INIC devices as well as 
other types ofNICs. This is illustrated below: 

Filter Driver 

ATCP 
Microsoft Driver 
TCP/IP 
Driver 

3COM INIC 
Miniport Miniport 
Driver Driver 

By binding the driver in this fashion, we can choose to direct incoming network data to 
our own ATCP transport driver, the Microsoft TCP driver, or both. We do this by 
playing with the ethemet "type" field as follows. 

To NDIS and the transport drivers above it, our card is going to be registered as a normal 
ethemet card. When a transport driver receives a packet from our driver, it will expect 
the data to start with an ethemet header, and consequently, expects the protocol type field 
to be in byte offset 12. IfMicrosoft TCP finds that the protocol type field is not, equal to 
either IP, or ARP, it will not accept the packet. So, to deliver an incoming packet to our 
driver, we must simply map the data such that byte 12 contains a non-recognized ethemet 
type field. Note that we must choose a value that is greater than 1500 bytes so that the 
transport drivers do not confuse it with an 802.3 frame. We must also choose a value that 
will not be accepted by other transport driver such as Appletalk or IPX. Similarly, if we 
want to direct the data to Microsoft TCP, we can then simply leave the ethemet type field 
set to IP (or ARP). Note that since we will also see these frames we can choose to accept 
or not-accept them as necessary. 
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Incoming packets are delivered as follows: 

Packets delivered to ATCP only (not accepted by MSTCP): 

1. All TCP packets destined for one of our IP addresses. This includes both slow
path frames and fast-path frames. In the slow-path case, the TCP frames are given 
in there entirety (headers included). In the fast-path case, the ATKReceivePacket 
is given a header buffer that contains status information and data with no headers 
(except those above TCP). More on this later. 

Packets delivered to Microsoft TCP only (not accepted by ATCP): 

1. All non-TCP packets. 

2. All packets that are not destined for one of our interfaces (packets that will be 
routed). Continuing the above example, if there is an IP address 144.48.252.4 
associated with the 3com interface, and we receive a TCP connect with a 
destination IP address of 144.48.252.4, we will actually want to send that request 
up to the ATCP driver so that we create a fast-path connection for it. This means 
that we will need to know every IP address in the system and filter frames based 
on the destination IP address in a given TCP datagram. This can be done in the 
INIC miniport driver. Since it will be the ATCP driver that learns of dynamic IP 
address changes in the system, we will need a method to notify the INIC miniport 
of all the IP addresses in the system. More on this later. 

Packets delivered to both: 

1. All ARP frames 

2. All ICMP frames 

4.6.2.2 Two types of receive packets 

There are several circumstances in which the INIC will need to indicate extra information 
about a receive packet to the ATCP driver. One such example is a fast path receive in 
which the ATCP driver will need to be notified of how much data the card has buffered. 
To accomplish this, the first (and sometimes only) buffer in a received packet will 
actually be an INIC header buffer. The header buffer contains status informatipn about 
the receive packet, and may or may not contain network data as well. The ATCP driver 
will recognize a header buffer by mapping it to an ethemet frame and inspecting the type 
field found in byte 12. We wi11 indicate all TCP frames destined for us in this fashion, 
while frames that are destined for both our driver and the Microsoft TCP driver (ARP, 
ICMP) will be indicated without a header buffer. 
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Buffer Desc 

TCP Packet 

Example of incoming TCP pkt Example of incoming ARP Frame 

4.6.2.3 NDIS 4 ProtocolReceivePacket operation 

NDIS has been designed such that all packets indicated via NdisMindicateReceivePacket 
by an underlying miniport are delivered to the ProtocolReceivePacket routine for all 
protocol drivers bound to it. These protocol drivers can choose to accept or not accept 
the data. They can either accept the data by copying the data out of the packet indicated 
to it, or alternatively they can keep the packet and return it later via a call to 
NdisReturnPackets. By implementing it in this fashion, NDIS allows more than one 
protocol driver to accept a given packet. For this reason, when a packet is deliv;ered to a 
protocol driver, the contents of the packet descriptor, buffer descriptors and data must all 
be treated as read-only. At the moment, we intend to violate this rule. We choose to 
violate this because much of the FreeBSD code modifies the packet headers as it 
examines them (mostly for endian conversion purposes). Rather than modify all of the 
FreeBSD code, we will instead ensure that no other transport driver accepts the data by 
making sure that the ethernet type field is unique to us (no one else will want it). 
Obviously this only works with data that is only delivered to our ATCP driver. For ARP 
and ICMP frames we will instead copy the data out of the packet into our own buffer and 
return the packet to NDIS directly. While this is less efficient than keeping the data and 
returning it later, ARP and ICMP traffic should be small enough, and infrequent enough, 
that it doesn't matter. 

The DDK specifies that when a protocol driver chooses to keep a packet, it should return 
a value of 1 (or more) to NDIS in its ProtocolReceivePacket routine. The packet is then 
later returned to NDIS via the call to NdisReturnPackets. This can only happen after the 
ProtocolReceivePacket has returned control to NDIS. This requires that the call to 
NdisReturnPackets must occur in a different execution context. We can accomplish this 
by scheduling a DPC, scheduling a system thread, or scheduling a kernel thread of our 
own. For brevity in this section, we will assume it is a done through a DPC. In any case, 
we will require a queue of pending receive buffers on which to place and fetch receive 
packets. 

After a receive packet is dequeued by the DPC it is then either passed to TCP directly for 
fast-path processing, or it is sent through the FreeBSD path for slow-path processing. 
Note that in the case of slow-path processing, we may be working on data that needs to 
be returned to NDIS (TCP data) or we may be working on our own copy of the data 
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(ARP and ICMP). When we finish with the data we will need to figure out whether or 
not to return the data to NDIS or not. This will be done via fields in the mbufhe~der 
used to map the data. When the mfreem routine is called to free a chain of mbufs, the 
fields in the mbufwill be checked and, if required, the packet descriptor pointed to by the 
mbufwill be returned to NDIS. 

4.6.2.4 Mbuf ~ Packet mapping 

As noted in the section on mbufs above, we will map incoming data to mbufs so that our 
FreeBSD port requires fewer modifications. Depending on the type of data received, this 
mapping will appear differently. Here are some examples: 

Addr 
Packetdesc 
... 

mbuf 

.. BufferDe~ 
... 

Packet 

~ 
Data 
Next-0 

Buffer 

.. ... 
Header 
Buffer 

Example A. 
TCP Fast-path 

Addr 
Packetdesc 

l 
. .. 

mbuf 

-1 Buffer Desc 
. .. 

Packet 

"' Data I Data 
Next Next-0 

Buffer Buffer 

Header \. 
~~ _.. buffer Data 

Buffer 

Example B. 
TCP Slow-path 

;---

... ... 

1-Addr 
Packet desc - 0 
... 

mbuf 

Data 
Buffer 

Example C. 
ARPFrame 

In Example A, we show incoming data for a TCP fast-path connection. In this example, 
the TCP data is fully contained in the header buffer. The header buffer is mapped by the 
mbuf and sent upstream for fast-path TCP processing. In this case it is required that the 
header buffer be mapped and sent upstream because the fast-path TCP code will need 
information contained in the header buffer in order to perform the processing. When the 
mbuf in this example is freed, the mfreem routine will determine that the mbuf maps a 
packet that is owned by NDIS and will then free the mbufheader only and call 
NdisReturnPackets to free the data. 

In Example B, we show incoming data for a TCP slow-path connection. In this example 
the mbufpoints to the start of the TCP data directly instead of the header buffer. Since 
this buffer will be sent up for slow-path FreeBSD processing, we can not have the mbuf 
pointing to a header buffer (FreeBSD would get awfully confused). Again, when mfreem 
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is called to free the mbuf, it will discover the mapped packet, free the mbufheader, and 
call NDIS to free the packet and return the underlying buffers. Note that even though we 
do not directly map the header buffer with the mbufwe do not lose it because of the link 
from the packet descriptor. Note also that we could alternatively have the INIC miniport 
driver only pass us the TCP data buffer when it receives a slow-path receive. This would 
work fine except that we have determined that even in the case of slow-path connections 
we are going to attempt to offer some assistance to the host TCP driver (most likely by 
checksum processing only). In this case there may be some special fields that we need to 
pass up to the ATCP driver from the INIC driver. Leaving the header buffer connected 
seems the most logical way to do this. 

Finally, in Example C, we show a received ARP frame. Recall that for incoming ARP 
and ICMP frames we are going to copy the incoming data out of the packet and J;eturn it 
directly to NDIS. In this case the mbuf simply points to our data, with no corresponding 
packet descriptor. When we free this mbuf, mfreem will discover this and free not only 
the mbufheader, but the data as well. 

4.6.2.5 Other receive packets 

We use this receive mechanism for other purposes besides the reception of network data. 
It is also used as a method of communication between the ATCP driver and the INIC. 
One such example is a TCP context flush from the INIC. When the INIC determines, for 
whatever reason, that it can no longer manage a TCP connection, it must flush that 
connection to the ATCP driver. It will do this by filling in a header buffer with 
appropriate status and delivering it to the INIC driver. The INIC driver will in turn 
deliver it to the protocol driver which will treat it essentially like a fast-path TCP 
connection by mapping the header buffer with an mbufheader and delivering it to TCP 
for fast-path processing. There are two advantages to communicating in this manner. 
First, it is already an established path, so no extra coding or testing is required. Second, 
since a context flush comes in, in the same manner as received frames, it will prevent us 
from getting a slow-path frame before the context has been flushed. 

4.6.2.6 Summary 

Having covered all of the various types of receive data, following are the steps that are 
taken by the ATKProtocolReceivePacket routine. 

1. Map incoming data to an ethernet frame and check the type field. 
2. If the type field contains our custom INIC type then it should be TCP 
3. Ifthe header buffer specifies a fast-path connection, allocate one or more mbufs 

headers to map the header and possibly data buffers. Set the packet descriptor 
field ofthe mbufto point to the packet descriptor, set the mbufflags appropriately, 
queue the mbuf, and return 1. 

4. If the header buffer specifies a slow-path connection, allocate a single mbufheader 
to map the network data, set the mbuf fields to map the packet, queue the mbuf 
and return 1. Note that we design the INIC such that we will never get a TCP 
segment split across more than one buffer. 
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5. If the type field ofthe frame indicates ARP or ICMP 
6. Allocate a mbufwith a data buffer. Copy the contents of the packet into the mbuf. 

Queue the mbuf, and return 0 (not accepted). 
7. If the type field is not either the INIC type, ARP or ICMP, we don't want it. 

RetumO. 

The receive processing will continue when the mbufs are dequeued. At the moment this 
is done by a routine called ATKProtocolReceiveDPC. It will do the following: 

1. Dequeue a mbuf from the queue. 
2. Inspect the mbufflags. If the mbufis meant for fast-path TCP, it will call the fast

path routine directly. Otherwise it will call the ethernet input routine for slow-path 
processing. 

4.6.3 Transmit 

In this section we discuss the ATCP transmit path. 

4.6.3.1 NDIS 4 send operation 

The NDIS 4 send operation works as follows. When a transport/protocol driver wishes to 
send one or more packets down to an NDIS 4 miniport driver, it calls NdisSendPackets 
with an array of packet descriptors to send. As soon as this routine is called, the 
transport/protocol driver relinquishes ownership of the packets until they are returned, 
one by one in any order, via a NDIS call to the ProtocolSendComplete routine. Since this 
routine is called asynchronously, our ATCP driver must save any required context into 
the packet descriptor header so that the appropriate resources can be freed. This is 
discussed further in the following sections. 

4.6.3.2 Types of"sends" 

Like the Receive path described above, the transmit path is used not only to send network 
data, but is also used as a communication mechanism between the host and the INIC. 
Here are some examples ofthe types of sends performed by the ATCP driver. 

4.6.3.2.1 Fast-path TCP send 

When the ATCP driver receives a transmit request with an associated MDL, it will 
package up the MDL physical addresses into a command buffer, map the command 
buffer with a buffer and packet descriptor, and call NdisSendPackets with the 
corresponding packet. The underlying INIC driver will issue the command buffer to the 
INIC. When the corresponding response buffer is given back to the host, the INIC 
miniport will call NdisMSendComplete which will result in a call to the ATCP 
ProtocolSendComplete (ATKSendComplete) routine, at which point the resources 
associated with the send can be freed. We will allocate and use a mbuf to hold the 
command buffer. By doing this we can store the context necessary in order to clean up 
after the send completes. This context includes a pointer to the MDL and presumably 
some other connection context as well. The other advantage to using a mbuf to hold the 
command buffer is that it eliminates having another special set of code to allocate and 
return command buffer. We will store a pointer to the mbufin the reserved section of the 

Provisional Pat. App. of Alacritech, Inc. 43 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 
Alacritech, Ex. 2019 Page 47



packet descriptor so we can locate it when the send is complete. The following diagram 
illustrates the relationship between the client's MDL, the command buffer, and the buffer 
and packet descriptors. 

Packet ~ mbuf L.~oo. 

Desc MDL ,. 
... 

T Command ."'-.-

Buffer Buffer ~ -------~r f- .. ... 
Desc. ... 

Data Data Data 

4.6.3.2.2 Fast-path TCP Receive 

As described in section 4.3.1 above, the receive process typically occurs in two phases. 
First the INIC fills in a host receive buffer with a relatively small amount of data, but 
notifies the host of a large amount of pending data (either through a large amount of 
buffered data on the card, or through a large amount of expected NetBios data). This 
small amount of data is delivered to the client through the TDI interface. The client will 
then respond with a MDL in which the data should be placed. Like the Fast-path TCP 
send process, the receive portion of the ATCP driver will then fill in a command buffer 
with the MDL information from the client, map the buffer with packet and buffer 
descriptors and send it to the INIC via a call to NdisSendPackets. Again, when the 
response buffer is returned to the INIC miniport, the ATKSendComplete routine will be 
called and the receive will complete. This relationship between the MDL, corninand 
buffer and buffer and packet descriptors are the same as shown in the Fast-path send 
section above. 

4.6.3.2.3 Slow-path (FreeBSD) 

Slow-path sends pass through the FreeBSD stack until the ethemet header is prepended in 
ether_ output and the packet is ready to be sent. At this point a command buffer will be 
filled with pointers to the ethemet frame, the command buffer will be mapped with a 
packet and buffer descriptor and NdisSendPackets will be called to hand the packet off to 
the miniport. In the illustration below we show the relationship between the mbufs, 
command buffer, and buffer and packet descriptors. Since we will use a mbuf to map the 
command buffer, we can simply link the data mbufs directly off of the command buffer 
mbuf. This will make the freeing of resources much simpler. 

Packet 
Desc 

Command 
Buffer Buffer 
Desc. Data Data Data 
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4.6.3.2.4 Non-data command buffer 

The transmit path is also used to send non-data commands to the card. For example, the 
ATCP driver gives a context to the INIC by filling in a command buffer, mapping it with 
a packet and buffer descriptor, and calling NdisSendPackets . 

... 
Packet l mbuf 

Desc .. ./ 
~ ... Command 

Buffer Buffer 

Desc. 

4.6.3.3 ATK.ProtocolSendComplete 

Given the above different types of sends, the ATK.ProtocolSendComplete routine will 
perform various types of actions when it is called from NDIS. First it must examine the 
reserved area of the packet descriptor to determine what type of request has completed. 
In the case of a slow-path completion, it can simply free the mbufs, command buffer, and 
descriptors and return. In the case of a fast-path completion, it will need to notify the 
TCP fast path routines of the completion so TCP can in turn complete the client's IRP. 
Similarly, when a non-data command buffer completes, TCP will again be notified that 
the command sent to the INIC has completed. 

4. 7 TDI Filter Driver 

In a first embodiment of the product, the INIC handles only simple-case data transfer 
operations on a TCP connection. (These of course constitute the large majority of CPU 
cycles consumed by TCP processing in a conventional driver.) 

There are many other complexities of the TCP protocol which must still be handled by 
host driver software: connection setup and breakdown, out-of-order data, nonstandard 
flags, etc. 

The NT OS contains a fully functional TCPIIP driver, and one solution would be to 
enhance this so that it is able to detect our INIC and take advantage of it by "handing off' 
data-path processing where appropriate. 

Unfortunately, we do not have access to NT source, let alone permission to modify NT. 
Thus the solution above, while a goal, cannot be done immediately. We instead. provide 
our own custom driver software on the host for those parts ofTCP processing which are 
not handled by the INIC. 

This presents a challenge. The NT network driver framework does make provision for 
multiple types of protocol driver: but it does not easily allow for multiple instances of 
drivers handling the SAME protocol. 
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For example, there are no "hooks" into the Microsoft TCP/IP driver which would allow 
for routing ofiP packets between our driver (handling our INICs) and the Microsoft 
driver (handling other NICs). 

Our approach to this is to retain the Microsoft driver for all non-TCP network pl.'ocessing 
(even for traffic on our INICs), but to invisibly "steal" TCP traffic on our connections and 
handle it via our own (BSD-derived) driver. The Microsoft TCPIIP driver is unaware of 
TCP connections on interfaces we handle. 

The network "bottom endn of this artifice is described earlier in the document. In this 
section we will discuss the "top end": the TDI interface to higher-level NT network client 
software. '· 

We make use of an NT facility called a filter driver. NT allows a special type of driver 
("filter driver") to attach itself"on top" of another driver in the system. The NT.I/0 
manager then arranges that all requests directed to the attached driver are sent first to the 
filter driver; this arrangement is invisible to the rest of the system. 

The filter driver may then either handle these requests itself, or pass them down to the 
underlying driver it is attached to. Provided the filter driver completely replicates the 
(externally visible) behavior of the underlying driver when it handles requests itself, the 
existence of the filter driver is invisible to higher-level software. 

The filter driver attaches itself on top ofthe Microsoft TCPIIP driver; this gives us the 
basic mechanism whereby we can intercept requests for TCP operations and handle them 
in our driver instead of the Microsoft driver. 

However, while the filter driver concept gives us a framework for what we want to 
achieve, there are some significant technical problems to be solved. The basic issue is 
that setting up a TCP connection involves a sequence of several requests from higher
level software, and it is not always possible to tell, for requests early in this sequence, 
whether the connection should be handled by our driver or by the Microsoft driver. 

Thus for many requests, we store information about the request in case we need it later, 
but also allow the request to be passed down to the Microsoft TCP/IP driver in case the 
connection ultimately turns out to be one which that driver should handle. 

Let us look at this in more detail, which will involve some examination of the TDI 
interface: the NT interface into the top end of NT network protocol drivers. Higher-level 
TDI client software which requires services from a protocol driver proceeds by creating 
various types of NT FILE_ OBJECTs, and then making various DEVICE _IO _CONTROL 
requests on these FILE_ OBJECTs. 

There are two types ofFILE_OBJECT of interest here. Local IP addresses that are 
represented by ADDRESS objects, and TCP connections that are represented by 
CONNECTION objects. The steps involved in setting up a TCP connection (from the 
"active", client, side) are: 
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• • 
(for a CONNECTION object) 

1) Create an ADDRESS object. 
2) Create a CONNECTION object. 
3) Issue a TDI_ASSOCIATE_ADDRESS io-control to associate the CONNECTION 
object with the ADDRESS object. 
4) Issue a TDI_CONNECT io-control on the CONNECTION object, specifying the 
remote address and port for the connection. 

Initial thoughts were that handling this would be straightforward: we would tell, on the 
basis ofthe address given when creating the ADDRESS object, whether the connection is 
for one of our interfaces or not. After which, it would be easy to arrange for handling 
entirely by our code, or entirely by the Microsoft code: we would simply examiNe the 
ADDRESS object to see if it was "one of ours" or not. 

There are two main difficulties, however. 

First, when the CONNECTION object is created, no address is specified: it acquires a 
local address only later when the TDI _ASSOCIATE_ ADDRESS is done. Also, when a 
CONNECTION object is created, the caller supplies an opaque "context cookie" which 
will be needed for later communications with that caller. Storage of this cookie is the 
responsibility of the protocol driver: it is not directly derivable just by examination of the 
CONNECTION object itself. If we simply passed the "create" call down to the Microsoft 
TCPIIP driver, we would have no way of obtaining this cookie later if it turns out that we 
need to handle the connection. 

Therefore, for every CONNECTION object which is created we allocate a structure to 
keep track of information about it, and store this structure in a hash table keyed by the 
address of the CONNECTION object itself, so that we can locate it if we later need to 
process requests on this object. We refer to this as a "shadow" object: it replicates 
information about the object stored in the Microsoft driver. (We must, of course, also 
pass the create request down to the Microsoft driver too, to allow it to set up its own 
administrative information about the object.) 

A second major difficulty arises with ADDRESS objects. These are often created with 
the TCPIIP "wildcard" address (all zeros); the actual local address is assigned only later 
during connection setup (by the protocol driver itself.) Of course, a "wildcard" address 
does not allow us to determine whether connections that will be associated with this 
ADDRESS object should be handled by our driver or by the Microsoft one. Also, as with 
CONNECTION objects, there is "opaque" data associated with ADDRESS objects that 
cannot be derived just from examination ofthe object itself. (In this case addresses of 
callback functions set on the object by TDI_SET_EVENT io-controls.) 

Thus, as in the CONNECTION object case, we create a "shadow" object for each 
ADDRESS object which is created with a wildcard address. In this we store information 
(principally addresses of callback functions) which we will need ifwe are handling 
connections on CONNECTION objects associated with this ADDRESS object. We store 
similar information, of course, for any ADDRESS object which is explicitly for one of 
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our interface addresses; in this case we don't need to also pass the create request down to 
the Microsoft driver. 

With this concept of "shadow" objects in place, let us revisit the steps involved in setting 
up a connection, and look at the processing required in our driver. 

First, the TDI client makes a call to create the ADDRESS object. Assuming that this is a 
"wildcard" address, we create a "shadow" object before passing the call down t0 the 
Microsoft driver. 

The next step (omitted in the earlier list for brevity) is normally that the client makes a 
number of TDI SET EVENT io-control calls to associate various callback functions - -
with the ADDRESS object. These are functions that should be called to notify the TDI 
client when certain events (such arrival of data or disconnection requests etc) occur. We 
store these callback function pointers in our "shadow" address object, before passing the 
call down to the Microsoft driver. 

Next, the TDI client makes a call to create a CONNECTION object. Again, we create 
our "shadow" ofthis object. 

Next, the client issues the TDI_ASSOCIATE_ADDRESS io-control to bind the 
CONNECTION object to the ADDRESS object. We note the association in our 
"shadow" objects, and also pass the call down to the Microsoft driver. 

Finally the TDI client issues a TDI _CONNECT io-control on the CONNECTION object, 
specifying the remote IP address (and port) for the desired connection. At this point, we 
examine our routing tables (see section XXX for details of routing) to determine if this 
connection should be handled by one of our interfaces, or by some other NIC. If it is 
ours, we mark the CONNECTION object as "one of ours" for future reference (using an 
opaque field which NT FILE_ OBJECTS provide for driver use.) We then 
proceed with connection setup and handling in our driver, using information stored in our 
"shadow" objects. The Microsoft driver does not see the connection request or any 
subsequent traffic on the connection. 

If the connection request is NOT for one of our interfaces, we pass it down to the 
Microsoft driver. Note carefully, however, that we can not simply discard our "shadow" 
objects at this point. The TDI interface allows re-use of CONNECTION objects: on 
termination of a connection, it is legal for the TDI client to dissociate the 
CONNECTION object from its current. Thus our "shadow" objects must be retained for 
the lifetime ADDRESS object, re-associate it with another, and use it for another 
connection of the NT FILE_OBJECTS: the subsequent connection could turn out to be 
via one of our interfaces! 
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4.7.1 Timers 

4. 7 .1.1 Keepalive Timer 

We don't want to implement keepalive timers on the INIC. It would in any case be a 
very poor use of resources to have an INIC context sitting idle for two hours. 

4.7.1.2 Idle Timer 

We will keep an idle timer in the ATCP driver for connections that are managed by the 
INIC (resetting it whenever we see activity on the connection), and cause a flush of 
context back to the host if this timer expires. We may want to make the threshold 
substantially lower than 2 hours, to reclaim INIC context slots for useful work sooner. 
May also want to make that dependent on the number of contexts which have actually 
been handed out: don't need to reclaim them if we haven't handed out the max. 

5 Receive & Transmit Microcode Design 

This section provides a general description of the design of the microcode that 
will execute on two of the sequencers of the Protocol Processor on the INIC. The overall 
philosophy of the INIC is discussed in other sections. This section will discuss the INIC 
microcode in detail. 

5.1 Design Overview 

As specified in other sections, the INIC supplies a set of 3 custom processors that 
will provide considerable hardware-assist to the microcode running thereon. The 
following lists the main hardware-assist features: 
• header processing with specialized DMA engines to validate an input header and 

generate a context hash, move the header into fast memory and do header 
comparisons on a DRAM-based TCP control block. 

• DRAM fifos for free buffer queues (large & small), receive-frame queues, event 
queues etc. 

• header compare logic 
• checksum generation 
• multiple register contexts with register access controlled by simply setting a context 

register. The Protocol Processor will provide 512 SRAM-based registers to be shared 
among the 3 sequencers. 

• automatic movement of input frames into DRAM buffers from the MAC Fifos. 
• run receive processing on one sequencer and transmit processing on the other. This 

was chosen as opposed to letting both sequencers run receive and transmit. One of the 
main reasons for this is that the header-processing hardware can not be shared and 
interlocks would be needed to do this. Another reason is that interlocks would be 
needed on the resources used exclusively by receive and by transmit. 

• The INIC will support up to 256 TCP connections (TCB's). A TCB is associated with 
an input frame when the frame's source and destination IP addresses and source and 
destination ports match that ofthe TCB. For speed of access, the TCB's will be 
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maintained in a hash table in NIC DRAM to save sequential searching. There will 
however, be an index in hash order in SRAM. Once a hash has been generated, the 
TCB will be cached in SRAM. There will be up to 8 cached TCBs in SRAM. These 
cache locations can be shared between both sequencers so that the sequencer with the 
heavier load will be able to use more cache buffers. There will also be 8 header 
buffers to be shared between the sequencers. Note that each header buffer is not 
statically linked to a specific TCB buffer. In fact the link is dynamic on a pet-frame 
basis. The need for this dynamic linking will be explained in later sections. Suffice to 
say here that if there is a free header buffer, then somewhere there is also a free TCB 
SRAM buffer. 

• There were 2 basic implementation options considered here. The first was single
stack and the second was a process model. The process model was chosen here 
because the custom processor design is providing zero-cost overhead for coritext 
switching through the use of a context base register, and because there will be more 
than enough process slots (or contexts) available for the peak load. It is also expected 
that all "local" variables will be held permanently in registers whilst an event is being 
processed. 

• The features that provide this are: 
256 of the 512 SRAM-based registers will be used for the register contexts. This 
can be divided up into 16 contexts (or processes) of 16 registers each. Then 8 of 
these will be reserved for receive and 8 for transmit. A Little's Law analysis has 
shown that in order to support 512 byte frames at maximum arrival rate of 4 * 100 
Mbits, requires more than 8 jobs to be in process in the NIC. However each job 
requires an SRAM buffer for a TCB context and at present, there are only 8 of 
these currently specified due to SRAM space limits. So more contexts (e.g. 32 * 8 
regs each) do not seem worthwhile. Refer to Appendix A for more details of this 
analysis. 
A context switch simply involves reloading the context base register based on the 
context to be restarted, and jumping to the appropriate address for resumption. 

• To better support the process model chosen, the code will lock an active TCB into an 
SRAM buffer while either sequencer is operating on it. This implies there will be no 
swapping to and from DRAM of a TCB once it is in SRAM and an operation is 
started on it. More specifically, the TCB will not be swapped after requesting that a 
DMA be performed for it. Instead, the system will switch to another active "process". 
Then it will resume the former process at the point directly after where the DMA was 
requested. This constitutes a zero-cost switch as mentioned above. 

• individual TCB state machines will be run from within a "process". There will be a 
state machine for the receive side and one for the transmit side. The current TCB 
states will be stored in the SRAM TCB index table entry. 

• The INIC will have 16MB ofDRAM. The current specification calls for dividing a 
large portion of this into 2K buffers and control allocation I deallocation of these 
buffers through one of the DRAM fifos mentioned above. These fifos will also be 
used to control small host buffers, large host buffers, command buffers and command 
response buffers. 

• For events from one sequencer to the other (i.e. RCV ~ XMT), the current 
specification calls for using simple SRAM CIO buffers, one for each direction. 

• Each sequencer handles its own timers independently of the others. 
• Contexts will be passed to the INIC through the Transmit command and response 

buffers. INIC-initiated TCB releases will be handled through the Receive small 
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buffers. Host-initiated releases will use the Command buffers. There needs to be strict 
handling of the acquisition and release of contexts to avoid windows where for 
example, a frame is received on a context just after the context was passed to the 
INIC, but before the INIC has "accepted" it. 

• T/TCP (Transaction TCP): the initial INIC will not handle T/TCP connections. This 
is because they are typically used for the HTTP protocol and the client for that 
protocol typically connects, sends a request and disconnects in one segment. The 
server sends the connect confirm, reply and disconnect in his first segment. Then the 
client confirms the disconnect. This is a total of 3 segments for the life of a context. 
Typical data lengths are on the order of 300 bytes from the client and 3K from the 
server. The INIC will provide as good an assist as seems necessary here by 
checksumming the frame and splitting headers and data. The latter is only likely when 
data is forwarded with a request such as when a filled-in form is sent by the client. 

5 .1.1 SRAM Requirements 

The following are SRAM requirements for the Receive and Transmit engines: 
TCB buffers 256 bytes* 16 4096 
Header buffers 128 bytes* 16 2048 
TCB hash index 16 bytes * 256 4096 
Timers 128 
DRAM Fifo queues 128 bytes* 16 2048 

~12K bytes 

Depending upon the available space, the number ofTCB buffers may be increased to 16. 

5 .1.2 General Philosophy 

The basic plan is to have the host determine when a TCP connection is able to be handed 
to the INIC, setup the TCB and pass it to the card via a command in the Transmit queue. 
TCBs that the INIC owns can be handed back to the host via a request from the Receive 
or Transmit sequencers or from the host itself at any time. 

When the INIC receives a frame, one of its immediate tasks is to determine if the frame is 
for a TCB that it controls. If not, the frame is passed to the host on a generic interface 
TCB. On transmit, the transmit request will specify a TCB hash number if the request is 
on a INIC-controlled TCB. Thus the initial state for the INIC will be transparent mode in 
which all received frames are directly passed through and all transmit requests will be 
simply thrown on the appropriate wire. This state is maintained until the host passes 
TCBs to the INIC to control. Note that frames received for which the INIC has no TCB 
(or it is with the host) will still have the TCP checksum verified ifTCPIIP, and may split 
the TCPIP header off into a separate buffer. 
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5.1.3 Register Usage 

There will be 512 registers available. The first 256 will be used for process contexts. The 
remaining 256 will be split between the 3 sequencers as follows: 
257- 320: 64 for RCV general processing I main loop. 
321- 384: 64 for XMT general processing I main loop. 
385- 512: 128 for 3rd sequencer use. 

5.2 Receive Processing 

5 .2.1 Main Loop 

The following is a summary of the main loop ofReceive: 

forever { 

} 

while there are any Receive events { 
if (a new event) { 

} 

} 

if (no new context available) 
ignore the event; 

call appropriate event handler to service the event; 
this may make a waiting process runnable or set up 
a new process to be run (get free context, hddr buffer, 
TCB buffer, set the context up). 

while any process contexts are runable { 

} 

run them by jumping to the start/resume address; 
if (process complete) 

free the context; 

5.2.2 Receive Events 

The events that will be processed on a given context are: 
• accept a context 
• release a context command (from the host via Transmit) 
• release a context request (from Transmit) 
• receive a valid frame; this will actually become 2 events based on the received frame 
- receive an ACK, receive a segment 
• receive an "invalid" frame i.e. one that causes the TCB to be flushed to the host 
• a valid ACK needs to be sent (delayed ACK timer expiry). 
• There are expected to be the following sources of events: 

1. Receive input queue: it is expected that hardware will automatically DMA arriving 
frames into frame buffers and queue an event into a RCV -event queue. 

2. Timer event queue: expiration of a timer will queue an event into this queue. 
3. Transmit sequencer queue: for requests from the transmit processor. 
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For the sake ofbrevity the following only discusses receive-frame processing. 

5 .2.3 Receive Details - Valid Context 

The base for the receive processing done by the INIC on an existing context is the fast
path or "header prediction" code in the FreeBSD release. Thus the processing is divided 
into 3 parts: header validation and checksumming, TCP processing and subsequent SMB 
processing. 

5.2.3.1 Header Validation 

There is considerable hardware assist here. The first step in receive processing is to dma 
the frame header into an SRAM header buffer. It is useful for header validation to be 
implemented in conjunction with this dma by scanning the data as it flies by. The 
following tests need to be "passed": 
• MAC header: destination address is our MAC address (not MC or BC too), the 
Ethertype is IP. 
• IP header: header checksum is valid, header length = 5, IP length > header length, 
protocol= TCP, no fragmentation, destination IP is our IP address. 
• TCP header: checksum is valid (incl. pseudo-header), header length = 5 or 8 
(timestamp option), length is valid, dest port= SMB or FTP data, no 
FIN/SYNIURG/PSHIRST bits set, timestamp option is valid if present, segment is in 
sequence, the window size did not change, this is not a retransmission, it is a pure ACK 
or a pure receive segment, and most important, a valid context exists. The valid-context 
test is non-trivial in the amount of work involved to determine it. Also note that for pure 
ACKs, the window-size test will be relaxed. This is because initially the output PERSIST 
state is to be handled on the INIC. 
Many but perhaps not all of these tests will be performed in hardware - depending upon 
the embodiment 

5.2.3.2 TCP Processing 

Once a frame has passed the header validation tests, processing splits based on whether 
the frame is a pure ACK or a pure received segment. 

5.2.3.2.1 Pure RCV Packet 

The design is to split off headers into a small header buffer and pass the aligned data in 
separate large buffers. Since a frame has been received, eventually some receiver process 
on the host will need to be informed. In the case ofFTP, the frame is pure data ftnd it is 
passed to the host immediately. This involves getting large buffers and dmaing the data 
into them, then setting the appropriate details in a small buffer that is used to notify the 
host. However for SMB, the INIC is performing reassembly of data when the fliame 
consists of headers and data. So there may not yet be a complete SMB to pass to the host. 
In this case, a small buffer will be acquired and the header moved into it. If the received 
segment completes an SMB, then the procedures are pretty much as for FTP. lfi it does 
not, then the scheme is to at least move the received data (not the headers) to the host to 
free the INIC buffers and to save latency. The list of in-progress host buffers is 
maintained in the TCB and moved to the header buffer when the SMB is complete. 
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The final part of pure-receive processing is to fire off the delayed ACK timer for this 
segment. 

5.2.3.2.2 Pure ACK 

Pure ACK processing implies this TCB is the sender, so there may be transmit buffers 
that can be returned to the host. If so, send an event to the Transmit processor (or do the 
processing here). Ifthere is more output available, send an event to the transmit 
processor. Then appropriate actions need to be taken with the retransmission timer. 

5.2.3.3 SMB Processing 

The following is the format of the SMB header of an SMB frame: 

31 
NetBIOS header 

TYPE FLAGS ~ LENGTH -7 

SMB header OxFF "S" "M" "B" 

COM RCLS REH ERR ... 

.... ERR REB/FLG Reserved 

Rese ved 

Rese ved 

Rese ved 

TID PID 

UID MID 

WCT VWV[] 

BCC Data ......... . 

Notes (interesting fields): 
LENGTH 17 bit Length ofSMB message (0 -128K) 
COM SMB command 
WCT Count (16 bit) of parameter words in VWV[] 
VWV Variable number of parameter words 
BCC Bytes of data following 

Provisional Pat. App. of Alacritech, Inc. 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 

0 

54 

Alacritech, Ex. 2019 Page 58



The LENGTH field of the NetBIOS header will be used to determine when a complete 
SMB has been received and the header buffer with appropriate details can be posted to 
the host. 
The interesting commands are the write commands: SMBwrite (OxB), SMBwriteBraw 
(OxlD), SMBwriteBmpx (OxlE), SMBwriteBs (OxlF), SMBwriteclose (Ox2C), 
SMBwriteX (Ox2F), SMBwriteunlock (Ox14). These are interesting because they will 
have data to be aligned in host memory. The point to note about these commands is that 
they each have a different WCT field, so that the start offset of the data depends on the 
command type. SMB processing will thus need to be cognizant of these types. 

5.2.4 Receive Details- No Valid Context 

The design here is to provide as much assist as possible. Frames will be checksummed 
and the TCPIP headers may be split off. 

5.2.5 Receive Notes 

1. PRU _ RCVD or the equivalent in Microsoft language: the host application. has to 
tell the INIC when he has accepted the received data that has been queued. This is 
so that the INIC can update the receive window. It is an advantage for this 
mechanism to be efficient. This may be accomplished by piggybacking these on 
transmit requests (not necessarily for the same TCB). 

2. Keepalive Timer: for a INIC-controlled TCB, the INIC will not maintain this 
timer. This leaves the host with the job of determining that the TCB is still active. 

3. Timestamp option: it is useful to support this option in the fast path because the 
BSD implementation does. Also, it can be very helpful in getting a much 'better 
estimate of the round-trip time (RTT) which TCP needs to use. 

4. Idle timer: the INIC will not maintain this timer (see Note 2 above). 
5. Frame with no valid context: The INIC may split TCP/IP headers into a separate 

header buffer. 
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5.3 Transmit Processing 

5.3.1 Main Loop. 

The following is a summary of the main loop of Transmit: 

forever { 

} 

while there are any Transmit events { 
if (a new event) { 

} 

} 

if (no new context available) 
ignore the event; 

call appropriate event handler to service the event; 
this may make a waiting process runnable or set up 
a new process to be run (get free context, hddr buffer, 
TCB buffer, set the context up). 

while any process contexts are runable { 

} 

run them by jumping to the start/resume address; 
if (process complete) 

free the context; 

5.3.2 Transmit Events 

The events that will be processed on a given context and their sources are: 
• accept a context (from the Host). 
• release a context command (from the Host). 
• release a context command (from Receive). 
• valid send request and window> 0 (from host or RCV sequencer). 
• valid send request and window = 0 (from host or RCV sequencer). 
• send a window update (host has accepted data). 
• persist timer expiration (persist timer). 
• context-release event e.g. window shrank (XMT processing or retransmission timer). 
• receive-release request ACK( from RCV sequencer). 

5.3.3 Transmit Details- Valid Context 

The following is an overview of the transmit flow: 

The host posts a transmit request to the INIC by filling in a command buffer with 
appropriate data pointers etc and posting it to the INIC via the Command Buffer Address 
register. Note that there is one host command buffer queue, but there are 4 phy~ical 
transmit lines. So each request needs to include an interface number as well as the context 
number. The INIC microcode will dma the command in and place it in 1 of 4 internal 
command queues which the transmit sequencer will work on. This is so that transmit 
processing can round-robin service these 4 queues to keep al14 interfaces busy, and not 
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let a highly-active interface lock out the others (which would happen with a single 
queue). 
The transmit request may be a segment that is less than the MSS, or it may be as.much as 
a full64K SMB READ. Obviously the former request will go out as one segment, the 
latter as a number ofMSS-sized segments. The transmitting TCB must hold on tb the 
request until all data in it has been transmitted and acked. Appropriate pointers to do this 
will be kept in the TCB. A large buffer is acquired from the free buffer fifo, and the MAC 
and TCPIIP headers are created in it. It may be quicker/simpler to keep a basic frame 
header set up in the TCB and either dma directly this into the frame each time. 'rhen data 
is dmad from host memory into the frame to create an MSS-sized segment. This dma also 
checksums the data. Then the checksum is adjusted for the pseudo-header and placed into 
the TCP header, and the frame is queued to the MAC transmit interface which may be 
controlled by the third sequencer. The final step is to update various window fields etc in 
the TCB. Eventually either the entire request will have been sent and acked, or a 
retransmission timer will expire in which case the context is flushed to the host. In either 
case, the INIC will place a command response in the Response queue containing the 
command buffer handle from the original transmit command and appropriate staitus. 
The above discussion has dealt how an actual transmit occurs. However the real 
challenge in the transmit processor is to determine whether it is appropriate to transmit at 
the time a transmit request arrives. There are many reasons not to transmit: the receiver's 
window size is <= 0, the Persist timer has expired, the amount to send is less than a full 
segment and an ACK is expected I outstanding, the receiver's window is not half-open 
etc. Much of the transmit processing will be in determining these conditions. 

5.3.4 Transmit Details- No Valid Context 

The main difference between this and a context-based transmit is that the queued request 
here will already have the appropriate MAC and TCPIIP (or whatever) headers in the 
frame to be output. Also the request is guaranteed not to be greater than MSS-sized in 
length. So the processing is fairly simple. A large buffer is acquired and the frame is 
dmad into it, at which time the checksum is also calculated. If the frame is TCP/IP, the 
checksum will be appropriately adjusted if necessary (pseudo-header etc) and placed in 
the TCP header. The frame is then queued to the appropriate MAC transmit inte~face. 
Then the command is immediately responded to with appropriate status through the 
Response queue. 

5.3.5 Transmit Notes 

1. Slow-start: the INIC will handle the slow-start algorithm that is now a part of the 
TCP standard. This obviates waiting until the connection is sending a full-rate 
before passing it to the INIC. 

2. Window Probe vs Window Update: an explanation for posterity .... 
A Window Probe is sent from the sending TCB to the receiving TCB, and it means the 
sender has the receiver in PERSIST state. Persist state is entered when the receiver 
advertises a zero window. It is thus the state of the transmitting TCB. In this state, he 
sends periodic window probes to the receiver in case an ACK from the receiver has been 
lost. The receiver will return his latest window size in the ACK. 
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A Window Update is sent from the receiving TCB to the sending TCB, usually to tell him 
that the receiving window has altered. It is mostly triggered by the upper layer when it 
accepts some data. This probably means the sending TCB is viewing the receiving TCB 
as being in PERSIST state. 

3. Persist state: it is designed to handle Persist state on the INIC. It seems 
unreasonable to throw a TCB back to the host just because its receiver advertised a 
zero window. This would normally be a transient situation, and would tend to 
happen mostly with clients that do not support slow-start. Alternatively, the code 
can easily be changed to throw the TCB back to the host as soon as a receiver 
advertises a zero window. 

4. MSS-sized frames: the INIC code will expect all transmit requests for which it has 
no TCB to not be greater than the MSS. If any request is, it will be dropped and an 
appropriate response status posted. 

5. Silly Window avoidance: as a receiver, the INIC will do the right thing here and 
not advertise small windows- this is easy. However it is necessary to also do 
things to avoid this as a sender, for the cases where a stupid client does advertise 
small windows. Without getting into too much detail here, the mechanism requires 
the INIC code to calculate the largest window advertisement ever advertised by the 
other end. It is an attempt to guess the size of the other end's receive buffer and 
assumes the other end never reduces the size of its receive buffer. See Stevens Vol. 
1 pp. 325-326. 

6 The Utility Processor 

6.1 Summary 

The following is a summary of the main functions of the utility sequencer ofthe 
microprocessor: 

• look at the event queues: Event13Type & Event23Type (we assume there will be an 
event status bit for this- USE_EV13 and USE_EV23) in the events register; these 
are events from sequencers 1 and 2; they will mainly be XMIT requests from the XMT 
sequencer. Dequeue request and place the frame on the appropriate interface. 
• RCV-frame support: in the model, RCV is done through VinicReceive() which is 
registered by the lower-edge driver, and is called at dispatch-level. This routine calls 
VinicTransferDataComplete() to check ifthe xfer (possibly DMA) of the frame into host 
buffers is complete. The latter rtne is also called at dispatch level on a DMA-completion 
interrupt. It queues complete buffers to the RCV sequencer via the normal queue 
mechanism. 
• Other processes may also be employed here for supporting the RCV sequencer. 
• service the following registers: (this will probably involve micro-interrupts) 

Header Buffer Address register: 
buffers are 256 bytes long on 256-byte boundaries. 
31-8 - physical addr in host of a set of 

contiguous hddr buffers 
7-0 - number of hddr buffers passed. 
Use contents to add to SmallHType queue 
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Data Buffer Handle & Data Buffer Address registers: 
buffers are 4K long aligned on 4K boundaries ... 
Use contents to add to the Free Type queue. 

Command Buffer Address register: 
buffers are multiple of 32 bytes up to lK long (2**5 * 32) 
31-5 -physical addr in host of cmd buffer 
4-0 - length of cmd in bytes/32 

(i.e. multiples of32 bytes) 
Points to host cmd; get FreeSType buffer and move 
command into it; queue to Xmit0-Xmit3Type queues. 

Response Buffer Address register: 
buffers are 32 bytes long on 32-byte boundaries 
31-8 - physical addr in host of a set of 

contiguous resp buffers 
7-0 -number ofresp buffers passed. 
Use contents to add to the ResponseType queue. 

• low buffer threshold support: set approp bits in the ISR when the available-buffers 
count in the various queues filled by the host falls below a threshold. 

6.2 Further Operations of the Utility Processor 

The utility processor of the microprocessor housed on the INIC is responsible for setting 
up and implementing all configuration space and memory mapped operations, and also as 
described below, for managing the debug interface. 

All data transfers, and other INIC initiated transfers will be done via DMA. 
Configuration space for both the network processor function and the utility processor 
function will define a single memory space for each. This memory space will d¢fine the 
basic communication structure for the host. In general, writing to one of these memory 
locations will perform a request for service from the INIC. This is detailed in the 
memory description for each function. This section defines much of the operation of the 
Host interface, but should be read in conjunction with the Host Interface Strategy for the 
Alacritech INIC to fully define the Host!INIC interface. 

Two registers, DMA hardware and an interrupt function comprise the INIC interface to 
the Host through PCI. The interrupt function is implemented via a four bit register 
(PCI _ INT) tied to the PCI interrupt lines. This register is directly accessed by the 
microprocessor. 

THE MICROPROCESSOR uses two registers, the PCI_Data_Reg and the 
PCI _Address_ Reg, to enable the Host to access Configuration Space and the memory 
space allocated to the INIC. These registers are not available to the Host, but are used by 
THE MICROPROCESSOR to enable Host reads and writes. The function of these two 
registers is as follows. 
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PCI _Data_ Reg 

This register can be both read and written by THE MICROPROCESSOR. On write 
operations from the host, this register contains the data being sent from the host. . On read 
operations, this register contains the data to be sent to the host. 

PCI _Address_ Reg 

This is the control register for memory reads and writes from the host. The structure of 
the register is as follows: 

Bit 31 - 24 Byte enable 7 - 0. Only the low order four bits are 
valid for 32 bit addressing mode. 

Bit 23 - 0 Memory access 
1 Configuration access 

Bit 22- 0 Read (to Host) 
1 Write (from Host) 

1 Bit 21- 1 Data Valid 
Bit 20 - 16 Reserved 
Bit 15 - 0 Address 

During a write operation from the Host the PCI_Data_Reg contains valid data after Data 
Valid is set in the PCI_Address_Reg. Both registers are locked until THE 
MICROPROCESSOR writes the PCI_Data_Reg, which resets Data Valid. 

All read operations will be direct from SRAM. Memory space based reads will return 00. 
Configuration space reads will be mapped as follows: 

Configuration Space 1 
00 

SRAM Address Offset 
00 

04 
08 
oc 
10 
3C 

Configuration Space 2 

00 
04 
08 
oc 
10 
3C 

All other reads to configuration space will return 00. 
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6.2.1 CONFIGURATION SPACE 

The INIC is implemented as a multi-function device. The first device is the network 
controller, and the second device is the debug interface. An alternative producti0n 
embodiment may implement only the network controller function. Both configuration 
space headers will be the same, except for the differences noted in the following' 
description. 

Vendor ID- This field will contain the Alacritech Vendor ID. One field will be,used for 
both functions. The Alacritech Vendor ID is hex 139A. 

Device ID - Chosen at Alacritech on a device specific basis. One field will be used for 
both functions. 

Command- Initialized to 00. All bits defined below as not enabled (0) will remain 0. 
Those that are enabled will be set to 0 or 1 depending on the state of the system. Each 
function (network and debug) will have its own command field. 

Bit 0 - 0 110 accesses are not enabled 
Bit 1 - 1 Memory accesses are enabled 
Bit 2 - 1 Bus master is enabled 
Bit 3 - 0 Special Cycle is not enabled 
Bit 4 - 1 Memory Write and Invalidate is enabled 
Bit 5 - 0 VGA palette snooping is not enabled 
Bit 6 - 1 Parity checking is enabled 
Bit 7 - 0 Address data stepping is not enabled 
Bit 8 - SERR# is enabled 
Bit 9 - 0 Fast back to back is not enabled 

Status - This is not initialized to zero. Each function will have its own field. The 
configuration is as follows: 

Bit 5- 1 66 MHz capable is enabled. This bit will be set if the INIC 
Detects the system running at 66 MHz on reset 

Bit 6- 0 User Defmable Features is not enabled 
Bit 7- 1 Fast Back-to-Back slave transfers enabled 
Bit 8 - 1 Parity Error enabled- This bit is initialized to 0 
Bit 9,10-00- Fast device select will be set if we are at 33 MHz 

01 - Medium device select will be set if we are at 

Bit 11- 1 
Bit 12-1 
Bit 13-1 
Bit 14-1 
Bit 15-1 

66MHz 
Target Abort is implemented. Initialized to 0. 
Target Abort is implemented. Initialized to 0. 
Master Abort is implemented. Initialized to 0. 

· SERR# is implemented. Initialized to 0. 
Parity error is implemented. Initialized to 0. 

Revision ID - The revision field will be shared by both functions. 

Class Code- This is 02 00 00 for the network controller, and for the debug interface. 
The field will be shared. 
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Cache Line Size- This is initialized to zero. Supported sizes are 16, 32, 64 and 128 
bytes. This hardware register is replicated in SRAM and supported separately for each 
function, but THE MICROPROCESSOR will implement the value set in Configuration 
Space 1 (the network processor). 

Latency Timer- This is initialized to zero. The function is supported. This hardware 
register is replicated in SRAM. Each function is supported separately, but THE 
MICROPROCESSOR will implement the value set in Configuration Space 1 (the 
network processor). 

Header Type - This is set to 80 for both functions, but will be supported separately. 

BIST- Is implemented. In addition to responding to a request to run self test, if test after 
reset fails, a code will be set in the BIST register. This will be implemented separately 
for each function. · 

Base Address Register- A single base address register is implemented for each function. 
It is 64 bits in length, and the bottom four bits are configured as follows: 

Bit 0 - 0 Indicates memory base address 
Bit 1,2-00 Locate base address anywhere in 32 bit memory space 
Bit 3 - 1 Memory is prefetchable 

CardBus CIS Pointer- Not implemented-initialized to 0. 

Subsystem Vendor ID- Not implemented-initialized to 0. 

Subsystem ID -Not implemented-initialized to 0. 

Expansion ROM Base Address- Not implemented-initialized to 0. 

Interrupt Line - Implemented-initialized to 0. This is implemented separately for each 
function. 

Interrupt Pin- This is set to 01, corresponding to INTA# for the network controller, and 
02, corresponding to INTB# for the debug interface. This is implemented separately for 
each function. 

Min_ Gnt- This can be set at a value in the range of 10, to allow reasonably long bursts 
on the bus. This is implemented separately for each function. 

Max _Lat- This can be set to 0 to indicate no particular requirement for frequency of 
access to PCI. This is implemented separately for each function. 

6.2.2 MEMORY SPACE 

Because each ofthe following functions may or may not reside in a single location, and 
may or may not need to be in SRAM at all, the address for each is really only used as an 
identifier (label). There is, therefore, no control block anywhere in memory that 
represents this memory space. When the host writes one of these registers, the utility 
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. . 
processor will construct the data required and transfer it. Reads to this memory will 
generate 00 for data. 

6.2.2.1 Network Processor 

The following four byte registers, beginning at location hOO of the network processor's 
allocated memory, are defined. 

00 - Interrupt Status Pointer -- Initialized by the host to point to a four byte area 
where status is stored 

04 - Interrupt Status - Returned status from host. Sent after one or more 
status conditions have been reset. Also an interlock for storing any 
new status. Once status has been stored at the Interrupt Status Pointer 
location, no new status will be stored until the host writes the Interrupt 
Status Register. New status will be ored with any remaining 
uncleared status (as defmed by the contents of the returned status) 
and stored again at the Interrupt Status Pointer location. Bits are 
as follows: 
Bit 31 - ERR -- Error bits are set 
Bit 30 - RCV - Receive has occurred 
Bit 29 - XMT - Transmit command complete 
Bit 25 - RMISS - Receive drop occurred due to no buffers 

08- Interrupt Mask- Written by the host. Interrupts are masked for each 
of the bits in the interrupt status when the same bit in the mask 
register is set. When the Interrupt Mask register is written and as 
a result a status bit is unmasked, an interrupt is generated. Also, 
when the Interrupt Status Register is written, enabling new status 
to be stored, when it is stored if a bit is stored that is not masked 
by the Interrupt Mask, an interrupt is generated. 

OC- Header Buffer Address- Written by host to pass a set of header buffers to the 
INIC. 

10- Data Buffer Handle- First register to be written by the Host to transfer a receive 
data buffer to the INIC. This data is Host reference data. It is not used by the 
INIC, it is returned with the data buffer. However, to insure integrity ofthe 
buffer, this register must be interlocked with the Data Buffer Address register. 
Once the Data Buffer Address register has been written, neither register can be 
written until after the Data Buffer Handle register has been read by THE 
MICROPROCESSOR. 

14- Data Buffer Address- Pointer to the data buffer being sent to the INIC by the 
Host. Must be interlocked with the Data Buffer Handle 
register. 

18 - Command Buffer Address XMTO - Pointer to a set of command 
buffers sent by the Host. THE MICROPROCESSOR will DMA the buffers to 
local DRAM found on the FreeSType queue and queue the Command 
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Buffer Address XMTO with the local address replacing the host 
Address. 

1 C- Command Buffer Address SMTl 

20 - Command Buffer Address SMT2 

24 - Command Buffer Address SMT3 

28 - Response Buffer Address -- Pointer to a set of response buffers sent 
by the Host. These will be treated in the same fashion as the 
Command Buffer Address registers. 

6.2.2.2 Utility Processor 

Ending status will be handled by the utility processor in the same fashion as it is.handled 
by the network processor. At present two ending status conditions are defined B31 -
command complete, and B30- error. When end status is stored an interrupt is 
generated. 

Two additional registers are defined, Command Pointer and Data Pointer. The Host is 
responsible for insuring that the Data Pointer is valid and points to sufficient memory 
before storing a command pointer. Storing a command pointer initiates commru:;t.d decode 
and execution by the debug processor. The Host must not modify either command or 
Data Pointer until ending status has been received, at which point a new commaild may 
be initiated. Memory space is write only by the Host, reads will receive 00. The format 
is as follows: 

00 - Interrupt Status Pointer -- Initialized by the host to point to a four byte area 
where status is stored 

04 - Interrupt Status -Returned status from host. Sent after one or more 
status conditions have been reset. Also an interlock for storing any 
new status. Once status has been stored at the Interrupt Status Pointer 
location, no new status will be stored until the host writes the Interrupt 
Status Register. New status will be ored with any remaining 
uncleared status (as defined by the contents of the returned status) 
and stored again at the Interrupt Status Pointer location. Bits are 
as follows: 
Bit 31 - CC - Command Complete 
Bit 30 - ERR -- Error 
Bit29 - Transmit Processor Halted 
Bit28 -Receive Processor Halted 
Bit27- Utility Processor Halted 

08 - Interrupt Mask- Written by the host. Interrupts are masked for each 
of the bits in the interrupt status when the same bit in the mask 
register is set. When the Interrupt Mask register is written and as 
a result a status bit is unmasked, an interrupt is generated. Also, 
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. ' 
when the Interrupt Status Register is written, enabling new status 
to be stored, when it is stored if a bit is stored that is not masked 
by the Interrupt Mask, an interrupt is generated. 

OC - Command Pointer- Points to command to be executed. Storing 
this pointer initiates command decode and execution. 

10- Data Pointer- Points to the data buffer. This is used for both read and write data, 
determined by the command function. 

7 Debug Interface 

In order to provide a mechanism to debug the microcode running on the micropmcessor 
sequencers, a debug process has been defined which will run on the utility sequencer. 
This processor will interface with a control program on the host processor over FCI. 

7.1 PCI Interface 

This interface is defined in the combination of the Utility Processor and the Host 
Interface Strategy sections, above. 

7.2 Command Format 

The first byte of the command, the command byte, defines the structure of the remainder 
of the command. The first five bits ofthe command byte are the command itsel£ The 
next bit is used to specify an alternate processor, and the last two bits specify wfu.ich 
processors are intended for the command. 

7 .2.1 Command Byte 

7-3 
Command 

7 .2.2 Processor Bits 

00 - Any Processor 
01 - Transmit Processor 
10 - Receive Processor 
11 -Utility Processor 

2 
Alt. Proc. 
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. ' 
7 .2.3 Alternate Processor 

This bit defines which processor should handle debug processing if the utility processor 
is defined as the processor in debug. 

0 - Transmit Processor 
1 - Receive Processor 

7 .2.4 Single Byte Commands 

00 -Halt 

This command asynchronously halts the processor. 

08-Run 

This command starts the processor. 

10- Step 

This command steps the processor. 

7 .2.5 Eight Byte Commands 

18- Break 

0 
Command 

1 
Reserved 

2-3 
Count 

4-7 
Address 

This command sets a stop at the specified address. A count of 1 causes the specified 
processor to halt the first time it executes the instruction. A count of 2 or more ~causes the 
processor to halt after that number of executions. The processor is halted just before 
executing the instruction. A count ofO does not halt the processor, but causes a sync 
signal to be generated. If a second processor is set to the same break address, the count 
data from the first break request is used, and each time either processor executes the 
instruction the count is decremented. 

20 - Reset Break 

0 
Command 

1- 3 
Reserved 
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This command resets a previously set break point at the specified address~ Reset break 
fully resets that address. If multiple processors were set to that break point, all will be 
reset. 

28-Dump 

0 
Command 

1 
Descriptor 

2-3 
Count 

4-7 
Address 

This command transfers to the host the contents of the descriptor. For descriptors larger 
than four bytes, a count, in four byte increments is specified. For descriptors utilizing an 
address the address field is specified. 

7.2.6 Descriptor 

00 - Register 

This descriptor uses both count and address fields. Both fields are four byte based (a 
count of 1 transfers four bytes). 

01- Sram 

This descriptor uses both count and address fields. Count is in four byte blocks. Address 
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned 
address. 

02 -Dram 

This descriptor uses both count and address fields. Count is in four byte blocks. Address 
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned 
address 

03- Cstore 

This descriptor uses both count and address fields. Count is in four byte blocks. Address 
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned 
address 

Stand-alone descriptors: 

The following descriptors do not use either the count or address fields. They transfer the 
contents of the referenced register. 

04- CPU_STATUS 

05-PC 
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06- ADDR REGA 

07- ADDR REGB 

08-RAM BASE 

09- FILE BASE 

OA- INSTR REG L 

OB - INSTR REG H - -

OC-MAC DATA 

OD- DMA EVENT 

OE- MISC EVENT 

OF- Q_IN_RDY 

10-Q_OUT_RDY 

11-LOCKSTATUS 

12- STACK- This returns 12 bytes 

13 - Sense _Reg 

This register contains four bytes of data. If error status is posted for a command, if the 
next command that is issued reads this register, a code describing the error in more detail 
may be obtained. If any command other than a dump of this register is issued after error 
status, sense information will be reset. 

30- Load 

0 
Command 

1 
Descriptor 

2-3 
Count 

4-7 
Address 

This command transfers from the host the contents of the descriptor. For descriptors 
larger than four bytes, a count, in four byte increments is specified. For descriptors 
utilizing an address the address field is specified. 

7 .2. 7 Descriptor 

00 - Register 

This descriptor uses both count and address fields. Both fields are four byte based. 
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01-Sram 

This descriptor uses both count and address fields. Count is in four byte blocks .. Address 
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned 
address. 

02-Dram 

This descriptor uses both count and address fields. Count is in four byte blocks. Address 
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned 
address 

03- Cstore 

This descriptor uses both count and address fields. Count is in four byte blocks. Address 
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned 
address. This applies to WCS only. 

Stand-alone descriptors: 

The following descriptors do not use either the count or address fields. They transfer the 
contents of the referenced register. 

04- ADDR REGA 

05 - ADDR REGB 

06-RAM BASE 

07 -FILE BASE 

08-MAC DATA 

09-Q_IN_RDY 

OA-Q_OUT_RDY 

OB-DBG ADDR 

38 -Map 

This command allows an instruction in ROM to be replaced by an instruction in WCS. 
The new instruction will be located in the Host buffer. It will be stored in the first eight 
bytes of the buffer, with the high bits unused. To reset a mapped out instruction, map it 
to location 00. 

0 
Command 

1-3 
Address to 

Map To 
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8 HARDWARE SPECIFICATION 

FEATURES 

• Peripheral Component Interconnect (PCI) Interface 

-Universal PCI interface supports both 5.0V and 3.3V signaling environments. 

- Supports both 32-bit and 64 bit PCI interface. 

-Supports PCI clock frequencies from 15MHz to 66MHz 

- High performance bus mastering architecture. 

- Host memory based communications reduce register accesses. 

-Host memory based interrupt status word reduces register reads. 

-Plug and Play compatible. 

- PCI specification revision 2.1 compliant. 

- PCI bursts up to 512 bytes. 

- Supports cache line operations up to 128 bytes. 

-Both big-endian and little-endian byte alignments supported. 

-Supports Expansion ROM. 

• Network Interface 

-Four internal 802.3 and ethernet compliant Macs. 

-Media Independent Interface (Mil) supports external PHYs. 

- 10BASE-T, lOOBASE-TX/FX and 100BASE-T4 supported. 

- Full and half-duplex modes supported. 

- Automatic PRY status polling notifies system of status change. 

-Provides SNMP statistics counters. 

- Supports broadcast and multicast packets. 

- Provides promiscuous mode for network monitoring or multiple unicast address detection. 

- Supports "huge packets" up to 32KB. 

-Mac-layer loop-back test mode. 

- Supports auto-negotiating Phys. 
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• Memory Interface 

-External Dram buffering of transmit and receive packets. 

-Buffering configurable as 4MB, 8MB, 16MB or 32MB. 

- 32-bit interface supports throughput of 224MB/s 

-Supports external FLASH ROM up to 4MB, for diskless boot applications. 

-Supports external serial EEPROM for custom configuration and Mac addresses. 

• Protocol Processor 

-High speed, custom, 32-bit processor executes 66 million instructions per second. 

-Processes IP, TCP and NETBIOS protocols. 

-Supports up to 256 resident TCP/IP contexts. 

-Writable control store (WCS) allows field updates for feature enhancements. 

• Power 

- 3.3V chip operation. 

- PCI controlled 5.0V/3.3V 1/0 cell operation. 

• Packaging 

- 272-pin plastic ball grid array. 

- 91 PCI signals. 

- 68 Mil signals. 

-58 external memory signals. 

- 1 clock signal. 

-54 signals split between power and ground. 

- 272 total pins. 
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GENERAL DESCRIPTION 

The microprocessor is a 32-bit, full-duplex, four channel, 10/100-Megabit per second (Mbps), Intelligent 
Network Interface Controller, designed to provide high-speed protocol processing for server applications. It 
combines the functions of a standard network interface controller and a protocol processor with~ a single 
chip. Although designed specifically for server applications, The microprocessor can be used by PCs, 
workstations and routers or anywhere that TCP/IP protocols are being utilized. · 

When combined with four 802.3/MII compliant Phys and Synchronous Dram (SDram), the INIC comprises 
four complete ethernet nodes. It contains four 802.3/ethernet compliant Macs, a PCI Bus Interface Unit (BIU), 
a memory controller, transmit fifos, receive fifos and a custom TCP/IP/NETBIOS protocol processor. The 
INIC supports lOBase-T, lOOBase-TX, lOOBase-FX and 100Base-T4 via the Mil interface attachment of 
appropriate Phys. 

The INIC Macs provide statistical information that may be used for SNMP. The Macs operate in promiscuous 
mode allowing the INIC to function as a network monitor, receive broadcast and multicast packets and 
implement multiple Mac addresses for each node. 

Any 802.3/MII compliant PHY can be utilized, allowing the INIC to support lOBASE-T, 10BASE-T2, 
lOOBASE-TX, lOOBase-FX and 100BASE-T4 as well as future interface standards. PHY identification and 
initialization is accomplished through host driver initialization routines. PHY status registers cart be polled 
continuously by the INIC and detected PHY status changes reported to the host driver. The Mac can be 
configured to support a maximum frame size of 1518 bytes or 32768 bytes. 

The 64-bit, multiplexed BIU provides a direct interface to the PCI bus for both slave and master functions. 
The INIC is capable of operating in either a 64-bit or 32-bit PCI environment, while supporting 64-bit 
addressing in either configuration. PCI bus frequencies up to 66MHz are supported yielding ins~antaneous bus 
transfer rates of 533MB/s. Both 5.0V and 3.3V signaling environments can be utilized by the INIC. 
Configurable cache-line size up to 256B will accommodate future architectures, and Expansion ~OM/Flash 
support allows for diskless system booting. Non-PC applications are supported via programmable big and little 
endian modes. Host based communication has been utilized to provide the best system performance possible. 

The INIC supports Plug-N-Play auto-configuration through the PCI configuration space. External pull-up and 
pull-down resistors, on the memory 110 pins, allow selection of various features during chip reset. Support of 
an external eeprom allows for local storage of configuration information such as Mac addresses. 

External SDram provides frame buffering, which is configurable as 4MB, 8MB, 16MB or 32MB using the 
appropriate SIMMs. Use of -10 speed grades yields an external buffer bandwidth of 224MB/s. The buffer 
provides temporary storage of both incoming and outgoing frames. The protocol processor accesses the frames 
within the buffer in order to implement TCP/IP and NETBIOS. Incoming frames are processed, assembled 
then transferred to host memory under the control of the protocol processor. For transmit, data is moved from 
host memory to buffers where various headers are created before being transmitted out via the Mac. 
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-

OUTLINE 

• Cores/Cells 

LSI Logic Ethernet-110 Core, 100Base & lOBase Mac with Mil interface. 

LSI Logic single port Sram, triple port Sram and ROM available. 

LSI Logic PCI 66MHz, 5V compatible 110 cell. 

LSI Logic PLL 

• Die Size I Pin Count 

LSI Logic G10 process. 

MODULE 

Scratch RAM, 

wcs. 
MAP, 

ROM, 

REGs, 

Macs, 

PLL, 

MISC LOGIC, 

TOTAL CORE 

(Core side)2 

Core side 

Die side 

Die area 

Pads needed 

LSIPBGA 

DESCR SPEED 

1Kx128 sport, 4.37 ns nom., 

8Kx49 sport, 6.40 ns nom., 

128x7 sport, 3.50 ns nom., 

1Kx49 32col, 5.00 ns nom., 

512x32 tport, 6.10 ns nom., 

.75 mm2 x4 = 

.5 mm2 = 
117,260 gates I (5035 gates I mm2> 

= core side + 1.0 mm (IIO cells) 

= 8.5 mm x 8.5 mm 

= 220 signals x 1.25 (vss, vdd) 
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06.77 mm2 

18.29 mm2 

00.24 mm2 

00.45 mm2 

03.49 mm2 

03.30 mm2 

00.55 mm2 

23.29 mm2 

56.22mm2 

56.22 mm2 

07.50 mm 

08.50 mm 

72.25 mm2 

275 pins 

272 pins 
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• Datapath Bandwidth 

(lOMB/s/lOOBase) x 2 (full duplex) x 4 connections 

Average frame size 

Frame rate = 80MB/s I 512B 

Cpu overhead I frame = (256 B context read) + (64B header read) + 
(128B context write) + (128B misc.) 

Total bandwidth = (512B in) + (512B out) + (512B Cpu) 

Dram Bandwidth required = (1536B/frame) x (156,250 frames/s) 

Dram Bandwidth@ 60MHz = (32 bytes I 167ns) 

Dram Bandwidth@ 66MHz = (32 bytes I 150ns) 

PCI Bandwidth required 

PCI Bandwidth available @ 30 MHz, 32b, average 

PCI Bandwidth available@ 33 MHz, 32b, average 

PCI Bandwidth available @ 60 MHz, 32b, average 

PCI Bandwidth available@ 66 MHz, 32b, average 

PCI Bandwidth available @ 30 MHz, 64b, average 

PCI Bandwidth available@ 33 MHz, 64b, average 

PCI Bandwidth available @ 60 MHz, 64b, average 

PCI Bandwidth available @ 66 MHz, 64b, average 

• Cpu Bandwidth 

Receive frame interval = 512B I 40MB!s 

Instructions I frame@ 60MHz = (12.8us/frame) I (SOns/instruction) 

instructions/frame 

Instructions I frame@ 66MHz = (12.8us/frame) I (45ns/instruction) 

instructions/frame 

Required instructions I frame (per Clive) 
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• Performance Features 

- 512 registers improve performance through reduced scratch ram accesses and reduced instructions. 

- Register windowing eliminates context-switching overhead. 

- Separate instruction and data paths eliminate memory contention. 

-Totally resident control store eliminates stalling during instruction fetch. 

- Multiple logical processors eliminate context switching and improve real-time response. 

- Pipelined architecture increases operating frequency. 

-Shared register and scratch ram improve inter-processor communication. 

-Fly-by state-Machine assists address compare and checksum calculation. 

- TCP/IP-context caching reduces latency. 

- Hardware implemented queues reduce Cpu overhead and latency. 

- Horizontal microcode greatly improves instruction efficiency. 

-Automatic frame DMA and status between Mac and dram buffer. 

-Deterministic architecture coupled with context switching eliminates processor stalls. 
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PROCESSOR 

The processor is a convenient means to provide a programmable state-machine which is capable of processing 
incoming frames, processing host commands, directing network traffic and directing PCI bus traffic. Three 
processors are implemented using shared hardware in a three-level pipelined architecture which launches and 
completes a single instruction for every clock cycle. The instructions are executed in three distinct phases 
corresponding to each of the pipeline stages where each phase is responsible for a different function. 

The first instruction phase writes the instruction results of the last instruction to the destination 0perand, 
modifies the program counter (Pc), selects the address source for the instruction to fetch, then f~tches the 
instruction from the control store. The fetched instruction is then stored in the instruction register at the end of 
the clock cycle. 

The processor instructions reside in the on-chip control-store, which is implemented as a mixture of ROM and 
Sram. The ROM contains lK instructions starting at address OxOOOO and aliases each Ox0400 locations 
throughout the first Ox8000. of instruction space. The Sram (WCS) will hold up to Ox2000 instructions starting 
at address Ox8000 and aliasing each Ox2000 locations throughout the last Ox8000 of instruction space. The 
ROM and Sram are both 49-bits wide accounting for bits [48:0] of the instruction microword. A separate 
mapping ram provides bits [55:49] of the microword (MapAddr) to allow replacement of faulty ROM based 
instructions. The mapping ram has a configuration of 128x7 which is insufficient to allow a separate map 
address for each of the lK ROM locations. To allow re-mapping of the entire lK ROM space, the map ram 
address lines are connected to the address bits Fetch[9:3]. The result is that the ROM is re-mapped in blocks 
of 8 contiguous locations. 

The second instruction phase decodes the instruction which was stored in the instruction register. It is at this 
point that the map address is checked for a non-zero value which will cause the decoder to force a Jmp 
instruction to the map address. If a non-zero value is detected then the decoder selects the sourc~ operands for 
the Alu operation based on the values of the OpdASel, OpdBSel and AluOp fields. These operands are then 
stored in the decode register at the end of the clock cycle. Operands may originate from File, Sram, or flip
flop based registers. The second instruction phase is also where the results of the previous instruction are 
written to the Sram. 

The third instruction phase is when the actual Alu operation is performed, the test condition is selected and the 
Stack push and pop are implemented. Results of the Alu operation are stored in the results register at the end 
of the clock cycle. 

Following is a block diagram which shows the hardware functions associated with each of the instruction 
phases. Note that various functions have been distributed across the three phases of the instruction execution in 
order to minimize the combinatorial delays within any given phase. 
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INSTRUCTION SET 

The micro-instructions are divided into six types according to the program control directive. The micro
instruction is further divided into sub-fields for which the defmitions are dependent upon the instruction type. 
The six instruction types are listed below. 

INSTRUCTION-WORD FORMAT 

TYPE [55:49] [48:47] [46:42] [41:33] [32:24] [23:16] [15: 00] 

Jcc ObOOOOOOO ObOO, AluOp, OpdASel, OpdBSel, TstSel, Literal 

Jmp ObOOOOOOO Ob01, AluOp, OpdASe1, OpdBSel, FlgSel, Literal 

Jsr ObOOOOOOO Ob10, AluOp, OpdASel, OpdBSel, FlgSel, Literal 

Rts ObOOOOOOO Ob11, AluOp, OpdASel, OpdBSel, OhEf, Literal 

Nxt ObOOOOOOO Obll, AluOp, OpdASel, OpdBSel, 'FlgSel, Literal 

Map MapAddr ObXX, ObXXXXX, ObXXXXXXXXX, ObXXXXXXXXX, OhXX, OhXXXX 

All instructions include the Alu operation (AluOp), operand "A" select (OpdASel), operand "B" select 
(OpdBSel) and Literal fields. Other field usage depends upon the instruction type. 

The "jump condition code" (Jcc) instruction causes the program counter to be altered if the condition selected 
by the "test select" (TstSel) field is asserted. The new program counter (Pc) value is loaded frotn either the 
Literal field or the AluOut as described in the following section and the Literal field may be used as a source 
for the Alu or the ram address if the new Pc value is sourced by the Alu. 

The "jump" (Jmp) instruction causes the program counter to be altered unconditionally. The new program 
counter (Pc) value is loaded from either the Literal field or the AluOut as described in the following section. 
The format allows instruction bits 23: 16 to be used to perform a flag operation and the Literal field may be 
used as a source for the Alu or the ram address if the new Pc value is sourced by the Alu. 

The "jump subroutine" (Jsr) instruction causes the program counter to be altered unconditionally. The new 
program counter (Pc) value is loaded from either the Literal field or the AluOut as described in the following 
section. The old program counter value is stored on the top location of the Pc-Stack which is implemented as a 
LIFO memory. The format allows instruction bits 23: 16 to be used to perform a flag operation :and the Literal 
field may be used as a source for the Alu or the ram address if the new Pc value is sourced by the Alu. 

The "Nxt" (Nxt) instruction causes the program counter to increment. The format allows instruction bits 
23: 16 to be used to perform a flag operation and the Literal field may be used as a source for the Alu or the 
ram address. 

The "return from subroutine" (Rts) instruction is a special form of the Nxt instruction in whic.h the "flag 
operation" (FlgSel) field is set to a value of Ohff. The current Pc value is replaced with the last value stored in 
the stack. The Literal field may be used as a source for the Alu or the ram address. 

The Map instruction is provided to allow replacement of instructions which have been stored in ROM and is 
implemented any time the "map enable" (MapEn) bit has been set and the content of the "ma:R address" 
(MapAddr) field is non-zero. The instruction decoder forces a jump instruction with the Alu ~peration and 
destination fields set to pass the MapAddr field to the program control block. 

The program control is determined by a combination of PgmCtrl, DstOpd, FlgSel and TstSel. The behavior 
of the program control is defmed with the following "C-like" description. 
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SEQUENCER BEHAVIOR 

if (MapEn & (MapAddr != ObOOOOOOO)) { 
Stackc Stackc; 
StackB StackB; 
StackA 

InstrAddr 
Pc 

Fetch 
DbgAddr 

StackA; 
Oh8000 I Pc[2:0] I (MapAddr « 3); 
InstrAddr + (Execute & -DbgMd) ; 
DbgMd ? DbgAddr:InstrAddr; 
DbgAddr + (Execute & DbgMd) ;} 

else if (PgmCtrl == Jcc) { 
Stackc 
StackB 
StackA 

Stackc; 
StackB; 
StackA; 

//re-map instr 

//conditional jump 

InstrAddr 
Pc 

Fetch 
DbgAddr 

-Tst®TstSel ? Pc: (AluDst==Pc) ? AluOut:Literal; 
InstrAddr + (Execute & -DbgMd) 
DbgMd ? DbgAddr:InstrAddr; 
DbgAddr + (Execute & DbgMd) ;} 

else if (PgmCtrl == Jmp) { 
Stackc Stackc; 
StackB 
StackA 

InstrAddr 
Pc 

Fetch 
DbgAddr 

StackB; 
StackA; 
(AluDst == Pc} ? AluOut:Literal; 
InstrAddr + (Execute & -DbgMd) 
DbgMd ? DbgAddr:InstrAddr; 
DbgAddr + (Execute & DbgMd) ;} 

else if (PgmCtrl == Jsr) { 
Stackc StackB; 
StackB 
StackA 

InstrAddr 
Pc 

Fetch 
DbgAddr 

StackA; 
Pc; 
(AluDst == Pc) ? AluOut:Literal; 
InstrAddr + (Execute & -DbgMd} 
DbgMd ? DbgAddr:InstrAddr; 
DbgAddr + (Execute & DbgMd} ;} 

else if (FlgSel == Rts) { 
InstrAddr StackA; 

else 

StackA 
StackB 
Stackc 

Pc 
Fetch 

DbgAddr 

InstrAddr 
StackA 
StackB 
Stackc 

Pc 
Fetch 

DbgAddr 

StackB; 
Stackc; 
ErrVec; 
InstrAddr + (Execute & -DbgMd) 
DbgMd ? DbgAddr:InstrAddr; 
DbgAddr + (Execute & DbgMd) ;} 

Pc; 
StackA; 
StackB; 
Stackc; 
InstrAddr + (Execute & -DbgMd) 
DbgMd ? DbgAddr:InstrAddr; 
DbgAddr + (Execute & DbgMd) ;} 
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" 
ALU OPERATIONS 

AluOp OPERATION 

ObOOOOO A (A & -(1 << B)); //bit clear 
c 0; v = (B >= 32) ? 1:0; 

Ob00001 A (A & B); //logical and 
c 0; v = 0; 

Ob00010 A (Literal & B); //logical and 
c 0; v = 0; 

ObOOOll A (-Literal & B); //logical and not 
c 0; v = 0; 

Ob00100 A (A I (1 << B)); //bit set 
c 0. 

' v = (B >= 32) ? 1: 0; 

Ob00101 A (A I B); //logical or 
c 0; v = 0; 

ObOOllO A (Literal I B); //logical or 
c 0; v = 0; 

Ob00111 A (-Literal I B); //logical or not 
c 0; v = 0; 

Ob01000 for (i=31; i>=O; i--) if B [i] continue; A=i; //priority enc 
c 0 i v (B) ? 0:1; 

Ob01001 A (A A B); //logical xor 
c 0 i v = 0 i 

:;: 

Ob01010 A ({Literal} A B); //logical xor 
c 0; v = 0; 

Ob01011 A ({-Literal} A B); //logical xor not 
c 0 i v = 0; 

ObOllOO A B; //move 
c 0; v = 0; 

Ob01101 A B[31:24] A B [23: 16] A B[15:08] A 
B[07:00] ;//hash 

c 0; v = 0; 

Ob01110 A {B[23:16] ,B[31:24] ,B[07:00] ,B[15:08] }; //swap bytes 
c 0. 

' v = 0; 

ObOllll A {B[15:00], B[31:16]}; //swap doublets 
c 0; v = 0. 

' 
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" 
~ 

AluOp FUNCTION 

OblOOOO A (A + B); //add B 

c (A + B) [32]; v 0; 

OblOOOl A (A+ B + C); //add B, carry 

c (A+ B + C) [32] ; v 0; 

OblOOlO A (Literal + B); //add constant 

c (Literal + B) [32]; v 0; 

OblOOll A (-Literal + B); //sub constant 

c (-Literal + B) [32]; v 0; 

OblOlOO A (A - B); //sub B 
c (A - B) [32]; v 0; 

Obl0101 A (A - B - -C); //sub B, borrow 

c (A - B - -C) [32]; v 0. 
' 

OblOllO A (-A + B); //sub A 

c (-A + B) [32]; v 0 i 

OblOlll A (-A + B - -C); I /sub A, borrow 

c (-A + B - -C) [32]; v 0 i 

ObllOOO A (A << B); //shift left A 

c A[31]; v = (B >= 32) ? 0:1 i 

ObllOOl A (B << Literal) ; //shift left B 

c B[31]; v = (Literal >= 32) ? 0: 1; 

ObllOlO A (B << 1) ; //shift left B 

c B [31]; v 0; 
:::; 

ObllOll n (A - B) i //compare 

c (A - B) [32]; v 0; 

OblllOO A (A » B); //shift right A 

c A[O]; v = (B >= 32) ? 1:0 i 

OblllOl A (B >> Literal) ; I I shift right B 

c A[O]; v = (Literal >= 32) ? 1:0; 

ObllllO A (B >> 1) i //shift right B 

c A [0]; v 0 i 

Oblllll n (B - A); //compare 

c (B - A) [32]; v 0; 
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OpdSel SELECTED OPERANDs 

ObOOOOaaaaa File 

ObOOOlaaaaa CpuReg 

ObOOlXXXXXX reserved 

ObOlOOOOOXX CpuStatus 

ObOlOOOOlXX reserved 

Ob0100010XX Pc 

Ob0100011XX DbgAddr 

File®(OpdSel[4:0] FileBase); 
Allows paged access to any part of the register file. 

File®{2'bll, Cpuid, OpdSel[4:0] }; 
Allows direct access to Cpu specific registers. 

Reserved for future expansion. 

ObOOOOOOOOOOOOOBHDOOOOOOOOOOOOOOCC 
This is a read-only register providing information about the Cpu executing 
(OpdSel[l:O]) cycles after the current cycle. "CC" represents a value 
indicating the Cpu. Currently, only Cpuld values ofO, 1 and 2 are ieturned. 
"H" represents the current state ofiDt, "D" indicates DbgMd and "B" 
indicates BigMd. Writing this register has no effect. 

Reserved for future expansion. 

OxOOOOAAAA 
Writing to this address causes the program control logic to use AluOut as the 
new Pc value in the event of a Jmp, Jcc or Jsr instruction for the Cpu 
executing during the current cycle. If the current instruction is Nxt, Map, or 
Rts, the register write has no effect. Reading this register returns the value in 
Pc for the Cpu executing (OpdSel[1 :0]) cycles after the current cycle. 

OxDOOOAAAA 
Writing to this register alters the contents of the debug address register 
(DbgAddr) for the Cpu executing (OpdSel[1 :0]) cycles after the current 
cycle. DbgAddr provides the fetch address for the control-store wh~n 
DbgMd has been selected and the Cpu is executing. DbgAddr is also used 
as the control-store address when performing a WrWcs@DbgAddr or 
RdWcs@DbgAddr operation. "D" represents bit 31 of the register. It is a general 
purpose flag that is used for event indication during simulation. Reading this 
register returns a value of OxOOOOOOOO. 

ObOlOOlXXXX reserved Reserved for future expansion. 

ObOlOlOOOOO RamAddr {OblCCC, OxOOO, Obl, AAAA} 
RamAddr = Alu0ut[15]? AluOut: (AluOut I RamBase); 
PrevCC = Alu0ut[31]? CCC : AluCC; 

A read/write register. When reading this register, the Alu condition codes from the previous 
instruction are returned together with RamAddr. 

bit name description 
31 Always 1. 
30 PrevC Previous Alu Carry. 
29 PrevV Previous Alu Overflow. 
28 PrevZ Previous Alu Zero. 
27:16 Always 0. 
15 Always 1. 
14:0 RamAddr Contents of last Sram address used. 

When writing this register, if alu _ out[31] is set, the previous condition codes will be overwritten with 
bits 30:28 of AluOut. If Alu0ut[15] is set, bits 14:0 will be written to the RamAddr. If AluOut (15] 
is not set, bits 14:0 will be ored with the contents of the RamBase and written to the RamAddr. 
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OpdSel SELECTED OPERANDs 

Ob010100001 AddrRegA OxOOOOAAAA 

AddrRegA = AluOut; 

A read/write operand which loads AddrRegA used to provide the address for read and write 
operations. 

the 

When AddrRegA[15] is set, the contents will be presented directly to the ram. When AddrRegA[15] is 
reset, the contents will first be ored with the contents of the RamBase register before presentation to 

ram. Writing to this register takes priority over Literal loads using FlgOp. Reading this! register returns 
the current value of the register. 

Ob010100010 AddrRegB OxOOOOAAAA 

AddrRegB = AluOut; 

A read/write operand which loads AddrRegB used to provide the address for read and write 
operations. 

the 

When AddrRegB[15] is set, the contents will be presented directly to the ram. When AddrRegB[l5] is 
reset, the contents will first be ored with the contents of the RamBase register before presentation to 

ram. Writing to this register takes priority over Literal loads using FlgOp. Reading this register returns 
the current value of the register. 

Ob010100011 AddrRegAb OxOOOOAAAA 

read 

AddrRegA = AluOut; AddrRegB = AluOut; 

A destination only operand which loads AddrRegB and AddrRegA used to provide the address for 

and write operations Writing to this register takes priority over Literal loads using FlgOp. Reading this 
register returns the value OxOOOOOOOO. 

Ob010100100 RamBase OxOOOOAAAA 

RamBase = AluOut; 

A read/write register which provides the base address for ram read and write cycles. When 
RamAddr[15] is set, the contents will not be used. When RamAddr[15] is reset, the contents will first 
be ored with the contents of the RamBase register before presentation to the ram. Reading this register 
returns the value for the current Cpu. 

Ob010100101 FileBase ObOOOOOOOOOOOOOOOOOOOOOOOAAAAAAAAA 

FileBase = AluOut; 
FileAddr = OpdSel[S]? OpdSel:(OpdSel + FileBase); 

A read/write register which provides the base address for file read and write cycles. When OpdSel[S] 
is 
set, the contents will not be used and OpdSel will be presented directly to the address lines of the file. 
When OpdSel[8] is reset, the contents will first be ored with the contents of the FileBase register 
before presentation to the file. Reading this register returns the value for the current Cpu. 

Ob010100110 InstrRegL Oxiiiiiiii 

This is a read-only register which returns the contents oflnstrReg[31:0]. Writing to this register has no 
effect. 

Ob010100111 lnstrRegH OxOOIIIIII 

This is a read-only register which returns the contents of InstrReg[55 :32]. Writing to this register has 
no 

effect. 
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OpdSel SELECTED OPERANDs 

ObOlOlOlOOO Minusl Oxffffffff 
This is a read-only register which supplies a value Oxffffffff .. Writing to this 
register has no effect. 

Ob010101001 FreeTime A free-running timer with a resolution of 1.00 microseconds and a maximum count 
of 71 minutes. This timer is cleared during reset. 

Ob010101010 LiteralL Instr[15:0] 
A read-only register. Writing to this register has no effect 

Ob010101011 LiteralH lnstr[15:0] < < 16; 
A read-only register. Writing to this register has no effect 

Ob010101100 MacData- Writing to this address loads the AluOut data into the MacData register for use 
during Mac operations. The Mac operation, resulting from writing to the MacOp register, 
determines the definition of the MacData register contents as follows. 

MacOp 
Mstop 

WrMcfg 

WrMrng 

RdPhy 

WrPhy 

MacData definition 
ObXXXXXXXXXXXXXXXXXXXXXXXXX 
MacData is not used for the StopM operation. 

hrstl, rsvd, rsvd, crcen, fulld, hrstl, hugen, nopre, paden, prtyl, xdllO, ipgrl[6:0], 
ipgr2[6:0], ipgt[6:0]. 
Loads the MacCfg register with the contents of the MacData register. Refer to LSI Logic's 
Ethernet-11 0 Core Technical Manual for detailed definitions of these bits. 

ObXXXXXXXXXXXXXXXSSSSSSSSSSS 

Loads seed[lO:O] into the Mac's random number generator. 

ObXXXXRRRRXXXXPPPPXXXXXXXXXXXXXXX 
Reads register[R] of phy[P]. 

ObXXXXRRRRXXXXPPPPDDDDDDDDDDDDDDDD 
Writes register[R] ofphy[P] with MacData[15:0]. 

Reading this register returns prsd[15:0] of MacO which contains phy status data returned to the 
Mac at the completion of a RdPhy command. This data is invalid while MacBsy is asserted 
as a result of a RdPhy command. Refer to the appropriate phy technical manual for a 
definition of the phy register contents. 
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OpdSel SELECTED OPERANDs 

Ob010101101 MacOp- A write only register. Writing to this address loads the MacSel register and staRts 

execution of the specified operation as follows. 

AluOut 
OXXXXXXOXM 

OXXXXXXlXM 

OXXXXXX2XM 

OXXXXXX3XM 

descrintion 
Mstop- Halts execution of a MacOp for Mac[M]. The user must wait for Maf!Bsy to be 
deasserted before issuing another command or changing the contents of MacData. 
WrMcfg - Writes the contents of MacData to the MacCfg register of Mac(M]. The user 
must wait for MacBsy to be deasserted before issumg another command or changing the 
contents of MacData. 
WrMrng - Writes the contents of MacData to the seed register of Mac[M]. The user must 
wait for MacBsy to be deasserted before issuing another command or changing the contents 
ofMacData. 
RdPhy - Reads the contents of reg[R] for phy[P] on the Mil management bus pf Mac[M]. 
The contents may be read from MacData after MacBsy has been de-asserted. 

OxXXXXX4XM WrPhy- Writes the contents ofMacData[l5:0] to the reg[R] of phy[P] on the MII 
management bus of Mac(M]. The user must wait for MacBsy to be deasserted before issuing 
another command or changing the contents of MacData. 

OXXXXXXBXM 

OxXXXXX9XM 

OXXXXXXaXM 

OxXXXXXbXM 

WrAddrAL- Writes the contents ofMacData[15:0] to MacAddrA[lS:O] for Mac[M]. 
WrAddrAH- Writes the contents of MacData[ll:O] to MacAddrA[47:16] for Mac[M]. 
WrAddrBL - Writes the contents of MacData[15:0] to MacAddrB[lS:O] for Mac[M]. 
WrAddrBH- Writes the contents ofMacData[ll:O] to MacAddrB[47:16] for Mac(M]. 

Ob010101110 ChCmd A write-only register. 

flag. 

Ob010101110 

bit 
31:11 
10:8 

07:05 
04:00 

ChEvnt 

bit 
31:00 

ObOlOlOllll GenEvnt 

bit 
31 
30 
29 
28:00 

name 
reserved 
command 

reserved 
Chid 

description 
Data written to these bits is ignored. 
0 - Stops execution of the current operation and clears the corresponding event 

1 - Transfer data from ExtMem to ExtMem. 
2 - Transfer data from Pci to ExtMem. 
3 - Transfer data from ExtMem to Pci. 
4 - Transfer data from Sram to ExtMem. 
5 - Transfer data from ExtMem to Sram. 
6 - Transfer data from Pci to Sram. 
7 - Transfer data from Sram to Pci. 
Data written to these bits is ignored. 
Provides the channel number for the channel command. 

A read-only register. 

name 
ChDn 

description 
Each bit represents the done flag for the respective dma channel. These 
bits are set by a dma sequencer upon completion of the channel 
command. Cleared when the processor writes 0 to the cmresponding 
ChCmd register. 

A read-only register. 

name 
PciRdEvnt 
PciWrEvnt 
TimeEvnt 
reserved 

description 
Indicates that a PCI initiator is attempting to read a J..lproc. register. 
Indicates that a PCI initiator has posted a write to a J..lproc. register. 
An event which occurs once every 2.00 milliseconds. 
Reserved for future use. 
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ObOlOllOOOO QCtrl 

bit 
31:11 
10:8 

7:5 

4:0 

ObOlOllOOOl QData 

Ob010110010 reserved 

Ob0101100ll XcvCtrl 

bit 
31:09 
8 

07:05 
04 

when 

A write-only register used to select and manipulate a Q. 

name descriotion 
reserved Data written to these bits are ignored. 
QSz Used only during InitQ operations to specify the size of the QBdy in Dram. 

7- Queue depth is 32K entries (128KB). 
6- Queue depth is 16K entries (64KB). 
5- Queue depth is 8K entries (32KB). 
4- Queue depth is 4K entries (16KB). 
3 - Queue depth is 2K entries (8KB). 
2- Queue depth is 1K entries (4KB). 
1 -Queue depth is 512 entries (2KB). 
0 - Queue depth is 256 entries (lKB). 

QOp Specifies the queue operation to perform. 

Qld 

7 - DblQ Disables all queues. 
6- EnQ Enables all queues. 
5- RdBdy Increments the QBdyRdPtr and increments the QTIWrPtr. 
4- WrBdy Decrements the QBdyWrPtr and increments the QHdRdPtr. 
3 - RdQ Returns a queue entry in register QData .. 
2 - rsvd Reserved. Not to be used. 
1 - InitQ Set the queue status to empty and initializes QSz. 
0 - SeiQ Selects the Qld to be utilized during writes to QData. 

Specifies the queue on which to perform all operations except DblQ or EnQ. 

A read/write register. Writing this register will result in the data being pushed on to 
the selected queue. Reading this register fetches queue data popped off during the 
previous RdQ operation. 

Reserved for future expansion. 

A write-only register used to enable and disable Mac transmit and receive 
sub-channels. 

name_ descriotion 
reserved Data written to these bits are ignored. 
enable When set, indicates to the Mac transmit or receive sequencer that the subchannel 

contains a transmit or receive descriptor. 
reserved Data written to these bits is ignored. 
RcvCh Selects a Mac receive subchannel when set. Selects a Mac transmit subchannel 

cleared. 
03 reserved Data written to this bit are ignored. 
02 SubCh Selects subchannel B when set or A when reset. 
01:00 Macld Provides the Mac number for the subchannel enable bit. 

Ob010110100 Lru 

Ob010110101 Mru 

OxOOOOOOOA 

A read/write operand indicating which of the 16 entries is least recently used. When 
Reading This register the least recently used entry is returned, after which it is 
automatically made the most recently used entry. This register should only be read 
in conjunction with a 'Move' operation of the ALU, else the results are 
unpredictable. Writing to this register forces the addressed entry to become the least 
recently used entry. 

OxOOOOOOOA 

A write only operand forcing the addressed entry to become the most recently used 
entry. 
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Ob010111000 QlnRdy A read-only register comprising QHd not full flags for each of the 32 queues. 

Ob010111001 QOutRdy A read-only register comprising QTI not empty flags for each of the 32 queues. 

Ob010111010 QEmpty A read-only register comprising QEmpty flags for each of the 32 queues. 

Ob010111011 QFull A read-only register comprising QFull flags for each of the 32 queues. 

Ob0101111XX reserved Reserved for future expansion. 

ObOllOXXXXX Constants {ObOOO, OpdSel[4:0]} 

ObOlllOXXXX reserved Reserved for future expansion. 
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OpdSel SELECTED OPERANDs 

ObOllllXXXX Sram OPERATIONS 

OgdSel[3] PostAddrO!:! 
0 nop 
1 RamAddr = RamAddr + (OpdSel[1:0]); 

Q:QdSe1[2] trans:Qose Ctrl 
0 don't transpose 
1 transpose bytes 

Q:QdSel[l:O] RamOgd~z 

0 quadlet 
1 triplet 
2 doublet 
3 byte 

RAM READ ATTRIBUTES SOJ:lECE OPERAND 

end ian trans- byte Sram 
mode _:Qose_ offs data sz=O sz.,T sz.,D sz.,B 

little 0 0 abed abed abed OOed OOOd 
little 0 1 abeX trap Oabe OObe OOOe 
little 0 2 abXX trap trap OOab OOOb 
little 0 3 axxx trap trap trap oooa 
little 1 0 abed deb a Odeb OOde OOOd 
little l 1 abeX trap Oeba OOeb OOOe 
little l 2 abXX trap trap OOba OOOb 
little l 3 axxx trap trap trap oooa 

BIG 0 0 abed abed Oabe OOab oooa 
BIG 0 l Xbed trap Obed OObe OOOb 
BIG 0 2 xxed trap trap OOed OOOe 
BIG 0 3 XXXd trap trap trap OOOd 
BIG l 0 abed deba Oeba OOba oooa 
BIG l 1 Xbed trap a deb ooeb OOOb 
BIG 1 2 xxed trap trap OOde OOOe 
BIG l 3 XXXd trap trap trap OOOd 

RAM WRITE ATTRIBUTES SOURCE OPERAND 

en dian trans- Opd Alu 
mode :Qose_ size out_ oF .. o OF"l OF"2 OF"3 

little 0 Q abed abed trap trap trap 
little 0 T Xbed -bed bed- trap trap 
little 0 D xxed --ed -ed- ed-- trap 
little 0 B XXXd ---d --d- -d-- d---
little l Q abed deba trap trap trap 
little l T Xbed -deb deb- trap trap 
little l D XXed --de -de- de-- trap 
little l B XXXd ---d --d- -d-- d---
big 0 Q abed abed trap trap trap 
big 0 T Xbed bed- -bed trap trap 
big 0 D XXed ed-- -ed- --cd trap 
big 0 B XXXd d--- -d-- --d- ---d 
big l Q abed deb a trap trap trap 
big l T Xbed deb- -deb trap trap 
big l D xxed de-- -de- --de trap 
big l B XXXd d--- -d-- --d- ---d 

Oblaaaaaaaa File File®OpdSel[8:0]; 
Allows direct, non-paged, access to the top half of the register file. 
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TstSel 

ObXOOXXXXX 

ObXOlOOOOO 

ObXOlOOOOl 

ObXOlOOOlO 

ObXOlOOOll 

ObXOlOOlOO 

ObX0100101 

ObX0100110 

ObXOlOOlll 

ObX0101000 

ObX0101001 

ObX010101X 

ObXOlOllXX 

ObXOllOXXX 

ObXOlllXXX 

... ObXOlXXXXX 

ObXlXXXXXX 

FlgSel 

ObOOOOOOOO 

ObOOOOOOOl 

ObOOOOOOlO 

ObOOOOOOll 

ObOOOOOlOO 

Ob00000101 

ObOOOOOllX 

ObOOOOlXXX 

ObOOOlOXXX 

ObOOOllXXX 

SELECTED TEST 

Tst TstSel[7] A AluOut[TstSel[4:0]] 

Tst TstSel[7] A c 

Tst TstSel [7] A v 

Tst TstSel[7] A z 

Tst TstSel[7] A (Z I -C) 

Tst TstSel [7] A PrevC 

Tst TstSel[7] A PrevV 

Tst TstSel[7] A PrevZ 

Tst TstSel[7] A (Prevz & Z) 

Tst TstSel[7] A QOpDn 

Tst reserved 

Tst reserved 

Tst reserved 

Tst TstSel [7] A Lock[TstSel[2:0]] 
Lock(TstSel[2:0]) = 1; 

Tst TstSel[7] A Lock[TstSel[2:0]] 

Tst reserved 

Tst reserved 

FLAG OPERATION 

No operation. 

//Alu bit 

//carry 

//error 

//zero 

//less or equal 

//previous carry 

//previous error 

//previous zero 

//64b zero 

//queue op okay 

I /tests the current value of 
I /the Lock then set it. 

I /tests the value of Lock. 

SeltRst Forces a self reset for the entire chip excluding the PCI configuration 
registers 

SeffiigEnd Selects big-endian mode for ram accesses for the current Cpu. 

SelLitEnd Selects little-endian mode for ram accesses for the current Cpu. 

DblMap Disable instruction re-mapping for the current Cpu. 

EnbMap Enable instruction re-mapping for the current Cpu. 

reserved 

reserved 

ClrLck Lock[FlgSel[2:0]] = 0; 
Clears the semaphore register bit for the current Cpu only. 

reserved 
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FlgSel 

ObOOlOXXXX 

ObOOllXXXX 

ObOlOOOOOO 

Ob01000001 

Ob01000010 

·.t: 

Ob01000011 

Ob01000100 

Ob010001XX 

Ob010010XX 

Ob010011XX 

Ob010100XX 

Ob010101XX 

Ob01011XXX 

ObOllXXXXX 

OblXXXXXXX 

FLAG OPERATION 

AddrOp 

FlgSel[3:21 

0 

1 

2 
3 

FlgSel[l:Ol 
0 

1 
2 

3 

AddrSelect 
RamAddr = Literal[l5] 
RamAddr = AddrRegA[l5] 
RamAddr = AddrRegB[l5] 
if (OpdA = = RamAddr) 

RamAddr = Alu0ut[15] 
else if (OpdA = = ram) 

RamAddr = AddrRegB[l5] 
else 

? Literal : (Literal I RamBase); 
? AddrRegA : (AddrRegA I RamBase); 
? AddrRegB : (AddrRegB I RamBase); 

? AluOut : (AluOut I RamBase); 

? AddrRegB: (AddrRegB \ RamBase); 

RamAddr = AddrRegA[l5] ? AddrRegA : (AddrRegA I RamBase); 

addr reg load 
nop 
AddrRegA = Literal; 
AddrRegB =Literal; 
AddrRegA = Literal; AddrRegB = Literal; 

note: When specifying the same register for both the load and select fields, the current value of the 
register, before it is loaded with the new value, will be used for the ram address. 

reserved 

WrWcsL@Dbg Causes the bits [31 :0] of the control-store at address DbgAddr to be 
written with the current AluOut data. 

WrWcsH@Dbg Causes the bits [63:32] of the control-store at address DbgAddr to be 
written with the current AluOut data then increments DbgAddr. 

RdWcsL@Dbg Causes the bits [31 :0] of the control-store at address DbgAddr to be 
moved to file address Oxlff. 

RdWcsH@Dbg Causes the bits [63:32] of the control-store at address DbgAddr to be 
moved to file address Oxl ff then increments DbgAddr. 

reserved 

Step Allows the Cpu (FlgSel[l:O]) cycles after the current cycle to execute a single 
instruction. There is no effect if the Cpu is not halted. An offset of 0 is not allowed. 

PcMd Selects the Pc as the address source for the control-store during 
instruction fetches for the Cpu (FlgSel[l:O]) cycles after the current cycle. 

DbgMd Selects the DbgAddr address register as the address source for the 
control-store during instruction fetches for the Cpu (FlgSel[l :0]) 
cycles after the current cycle. 

Hit Halts the Cpu (FlgSel[l :0]) cycles after the current cycle. 

Run Clears Halt for the Cpu (FlgSel[l :0]) cycles after the current cycle. 

reserved 

reserved 
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. ' 
DATAFLOW 
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. ' 
SRAM CONTROL SEQUENCER (SramCtrl) 

Sram is the nexus for data movement within the INIC. A hierarchy of sequencers, working in concert, 
accomplish the movement of data between dram, Sram, Cpu, ethernet and the Pci bus. Slave sequencers, 
provided with stimulus from master sequencers, request data movement operations by way of the Sram, Pci 
bus, Dram and Flash. The slave sequencers prioritize, service and acknowledge the requests 

The preceding block diagram shows all of the master and slave sequencers of the INIC product. :Request 
information such as r/w, address, size, endian and alignment are represented by each request line. 
Acknowledge information to master sequencers include only the size of the transfer being acknowledged. 

The following block diagram illustrates how data movement is accomplished for a Pci slave write to Dram. 
Note that the Psi (Pci slave in) module functions as both a master sequencer. Psi sends a write request to the 
SramCtrl module. Psi requests Xwr to move data from Sram to dram. Xwr subsequently sends a read request 
to the SramCtrl module then writes the data to the dram via the Xctrl module. As each piece of data is moved 
from the Sram to Xwr, Xwr sends an acknowledge to the Psi module . 
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SRAM CONTROL SEQUENCER (SramCtrl) 
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The ·sram control sequencer services requests to store to, or retrieve data from an Sram organized as 1024 
locations by 128 bits (16KB). The sequencer operates at a frequency of 133MHz, allowing both a Cpu access 
and a dma access to occur during a standard 66MHz Cpu cycle. One 133MHz cycle is reserved for Cpu 
accesses during each 66MHz cycle while the remaining 133MHz cycle is reserved for dma accesses on a 
prioritized basis. 

The preceding block diagram shows the major functions of the Sram control sequencer. A slave sequencer 
begins by asserting a request along with r/w, ram address, endian, data path size, data path alignment and 
request size. SramCtrl prioritizes the requests. The request parameters are then selected by a multiplexer 
which feeds the parameters to the Sram via a register. The requestor provides the Sram address 'Yhich when 
coupled with the other parameters controls the input and output alignment. Sram outputs are fed to the output 
aligner via a register. Requests are acknowledged in parallel with the returned data. 

Following is a timing diagram depicting two ram accesses during a single 66MHz clock cycle. 
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EXTERNAL MEMORY CONTROL (Xctrl) 

Xctrl provides the facility whereby Xwr, Xrd, Dcfg and Eectrl access external Flash and Dram .. Xctrl 
includes an arbiter, i/o registers, data multiplexers, address multiplexers and control multiplexers. Ownership 
of the external memory interface is requested by each block and granted to each of the requesters by the 
arbiter function. Once ownership has been granted the multiplexers select the address, data and control signals 
from owner, allowing access to external memory. 
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EXTERNAL MEMORY READ SEQUENCER (Xrd) 

The Xrd sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Xrd 
sequencer moves data from external sdram or flash to the Sram, via the Xctrl module, in blocks of 32 bytes 
or less. The nature of the sdram requires fixed burst sizes for each of it's internal banks with ras precharge 
intervals between each access. By selecting a burst size of 32 bytes for sdram reads and interleavmg bank 
accesses on a 16 byte boundary, we can ensure that the ras precharge interval for the first bank is. satisfied 
before burst completion for the second bank, allowing us tore-instruct the first bank and continu(f with 
uninterrupted dram access. Sdrams require a consistent burst size be utilized each and every timeithe sdram is 
accessed. For this reason, if an sdram access does not begin or end on a 32 byte boundary, sdram bandwidth 
will be reduced due to less than 32 bytes of data being transferred during the burst cycle. 

The following block diagram depicts the major functional blocks of the Xrd sequencer. The first step in 
servicing a request to move data from sdram to Sram is the prioritization of the master sequencer requests. 
Next the Xrd sequencer takes a snapshot of the dram read address and applies configuration information to 
determine the correct bank, row and column address to apply. Once sufficient data has been read, the Xrd 
sequencer issues a write request to the SramCtrl sequencer which in tum sends an acknowledge :to the Xrd 
sequencer. The Xrd sequencer passes the acknowledge along to the level two master with a size code 
indicating how much data was written during the Sram cycle allowing the update of pointers and' counters. The 
dram read and Sram write cycles repeat until the original burst request has been completed at which point the 
Xrd sequencer prioritizes any remaining requests in preparation for the next burst cycle. 

Contiguous dram burst cycles are not guaranteed to the Xrd sequencer as an algorithm is implemented which 
ensures highest priority to refresh cycles followed by flash accesses, dram writes then dram reads. 

Following is a timing diagram illustrating how data is read from sdram. The dram has been configured for a 
burst of four with a latency of two clock cycles. Bank A is first selected/activated followed by a read 
command two clock cycles later. The bank select/activate for bank B is next issued as read data begins 
returning two clocks after the read command was issued to bank A. Two clock cycles before we need to 
receive data from bank B we issue the read command. Once all 16 bytes have been received from bank A we 
begin receiving data from bank B. 
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EXTERNAL MEMORY READ SEQUENCER (Xrd) 
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EXTERNAL MEMORY WRITE SEQUENCER (Xwr) 

The Xwr sequencer is a slave sequencer. Servicing requests issued by master sequencers, the Xwr sequencer 
moves data from Sram to the external sdram or flash, via the Xctrl module, in blocks of 32 bytes :or less while 
accumulating a checksum of the data moved. The nature of the sdram requires fixed burst sizes for each of it's 
internal banks with ras precharge intervals between each access. By selecting a burst size of 32 bytes for 
sdram writes and interleaving bank accesses on a 16 byte boundary, we can ensure that the ras prechage 
interval for the first bank is satisfied before burst completion for the second bank, allowing us to re-instruct 
the first bank and continue with uninterrupted dram access. Sdrams require a consistent burst size be utilized 
each and every time the sdram is accessed. For this reason, if an sdram access does not begin or end on a 32 
byte boundary, sdram bandwidth will be reduced due to less than 32 bytes of data being transferred during the 
burst cycle. · 

The following block diagram depicts the major functional blocks of the Xwr sequencer. The first step in 
servicing a request to move data from Sram to sdram is the prioritization of the level two master requests. 
Next the Xwr sequencer takes a Snapshot of the dram write address and applies configuration information to 
determine the correct dram, bank, row and column address to apply. The Xwr sequencer immediately issues a 
read command to the Sram to which the Sram responds with both data and an acknowledge. TheXwr 
sequencer passes the acknowledge to the level two master along with a size code indicating how much data 
was read during the Sram cycle allowing the update of pointers and counters. Once sufficient data has been 
read from Sram, the X wr sequencer issues a write command to the dram starting the burst cycle and 
computing a checksum as the data flies by. The Sram read cycle repeats until the original burst request has 
been completed at which point the Xwr sequencer prioritizes any remaining requests in preparation for the 
next burst cycle. 

Contiguous dram burst cycles are not guaranteed to the Xwr sequencer as an algorithm is implemented which 
ensures highest priority to refresh cycles followed by flash accesses then dram writes. 

Following is a timing diagram illustrating how data is written to sdram. The dram has been configured for a 
burst of four with a latency of two clock cycles. Bank A is first selected/activated followed by a, write 
command two clock cycles later. The bank select/activate for bank B is next issued in preparation for issuing 
the second write command. As soon as the first 16 byte burst to bank A completes we issue the write 
command for bank B and begin supplying data. 
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EXTERNAL MEMORY WRITE SEQUENCER (Xwr) 
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PCI MASTER-OUT SEQUENCER (Pmo) 

The Pmo sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Pmo 
sequencer moves data from an Sram based fifo to a Pci target, via the PciMstriO module, in bursts of up to 
256 bytes. The nature of the PCI bus dictates the use of the write line command to ensure optimal system 
performance. The write line command requires that the Pmo sequencer be capable of transferring a whole 
multiple (lX, 2X, 3X, ... )of cache lines of which the size is set through the Pci configuration registers. To 
accomplish this end, Pmo will automatically perform partial bursts until it has aligned the transfers on a cache 
line boundary at which time it will begin usage of the write line command. The Sram fifo depth, of 256 bytes, 
has been chosen in order to allow Pmo to accommodate cache line sizes up to 128 bytes. Provide~ the cache 
line size is less than 128 bytes, Pmo will perform multiple, contiguous cache line bursts until it has exhausted 
the supply of data. 

Pmo receives requests from two separate sources; the dram to Pci (D2p) module and the Sram to Pci (S2p) 
module. An operation first begins with prioritization of the requests where the S2p module is given highest 
priority. Next, the Pmo module takes a Snapshot of the Sram fifo address and uses this to generate read 
requests for the SramCtrl sequencer. The Pmo module then proceeds to arbitrate for ownership of the Pci bus 
via the PciMstriO module. Once the Pmo holding registers have sufficient data and Pci bus mastership has 
been granted, the Pmo module begins transferring data to the Pci target. For each successful transfer, Pmo 
sends an acknowledge and encoded size to the master sequencer, allow it to update it's internal pointers, 
counters and status. Once the Pci burst transaction has terminated, Pmo parks on the Pci bus unless another 
initiator has requested ownership. Pmo again prioritizes the incoming requests and repeats the process. 
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PCI MASTER-IN SEQUENCER (Pmi) 

The Pmi sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Pmi 
sequencer moves data from a Pci target to an Sram based fifo, via the PciMstriO module, in bur~ts of up to 
256 bytes. The nature of the PCI bus dictates the use of the read multiple command to ensure optimal system 
performance. The read multiple command requires that the Pmi sequencer be capable of transferr~g a cache 
line or more of data. To accomplish this end, Pmi will automatically perform partial cache line barsts until it 
has aligned the transfers on a cache line boundary at which time it will begin usage of the read m"\]ltiple 
command. The Sram fifo depth, of 256 bytes, has been chosen in order to allow Pmi to accomm9date cache 
line sizes up to 128 bytes. Provided the cache line size is less than 128 bytes, Pmi will perform multiple, 
contiguous cache line bursts until it has filled the fifo. 

Pmi receive requests from two separate sources; the Pci to dram (P2d) module and the Pci to Sram (P2s) 
module. An operation first begins with prioritization of the requests where the P2s module is given highest 
priority. The Pmi module then proceeds to arbitrate for ownership of the Pci bus via the PciMstriO module. 
Once the Pci bus mastership has been granted and the Pmi holding registers have sufficient data,, the Pmi 
module begins transferring data to the Sram fifo. For each successful transfer, Pmi sends an acknowledge and 
encoded size to the master sequencer, allowing it to update it's internal pointers, counters and status. Once the 
Pci burst transaction has terminated, Pmi parks on the Pci bus unless another initiator has reque~ted 
ownership. Pmi again prioritizes the incoming requests and repeats the process . 
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Dram TO PCI SEQUENCER (D2p) 

The D2p sequencer acts is a master sequencer. Servicing channel requests issued by the Cpu, the D2p 
sequencer manages movement of data from dram to the Pci bus by issuing requests to both the XJ:id sequencer 
and the Pmo sequencer. Data transfer is accomplished using an Sram based fifo through which da:ta is staged. 

D2p can receive requests from any of the processor's thirty-two dma channels. Once a command request has 
been detected, D2p fetches a dma descriptor from an Sram location dedicated to the requesting channel which 
includes the dram address, Pci address, Pci endian and request size. D2p then issues a request to ,the D2s 
sequencer causing the Sram based fifo to fill with dram data. Once the fifo contains sufficient data for a Pci 
transaction, D2s issues a request to Pmo which in tum moves data from the fifo to a Pci target. The process 
repeats until the entire request has been satisfied at which time D2p writes ending status in to the Sram dma 
descriptor area and sets the channel done bit associated with that channel. D2p then monitors the dma channels 
for additional requests. Following is an illustration showing the major blocks involved in the movement of data 
from dram to Pci target. 
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Dram TO PCI SEQUENCER (D2p) 
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PCI TO DRAM SEQUENCER (P2d) 

The P2d sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requ~sts issued 
by the Cpu, the P2d sequencer manages movement of data from Pci bus to dram by issuing requests to both 
the Xwr sequencer and the Pmi sequencer. Data transfer is accomplished using an Sram based fifo through 
which data is staged. 

P2d can receive requests from any of the processor's thirty-two dma channels. Once a command request has 
been detected, P2d, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated 
to the requesting channel which includes the dram address, Pci address, Pci endian and request siZe. P2d then 
issues a request to Pmo which in tum moves data from the Pci target to the Sram fifo. Next, P2d issues a 
request to the Xwr sequencer causing the Sram based fifo contents to be written to the dram. The process 
repeats until the entire request has been satisfied at which time P2d writes ending status in to the :Sram dma 
descriptor area and sets the channel done bit associated with that channel. P2d then monitors the dma channels 
for additional requests. Following is an illustration showing the major blocks involved in the movement of data 
from a Pci target to dram. 
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PCI TO DRAM SEQUENCER (P2d) 
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.. 
SRAM TO PCI SEQUENCER (S2p) 

The S2p sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued 
by the Cpu, the S2p sequencer manages movement of data from Sram to the Pci bus by issuing rtjquests to the 
Pmo sequencer 

S2p can receive requests from any of the processor's thirty-two dma channels. Once a command request has 
been detected, S2p, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated 
to the requesting channel which includes the Sram address, Pci address, Pci endian and request size. S2p then 
issues a request to Pmo which in tum moves data from the Sram to a Pci target. The process repeats until the 
entire request has been satisfied at which time S2p writes ending status in to the Sram dma descriptor area and 
sets the channel done bit associated with that channel. S2p then monitors the dma channels for additional 
requests. Following is an illustration showing the major blocks involved in the movement of data from Sram to 
Pci target. 
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SRAM TO PCI SEQUENCER (S2p) 
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PCI TO SRAM SEQUENCER (P2s) 

The P2s sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requysts issued by 
the Cpu, the P2s sequencer manages movement of data from Pci bus to Sram by issuing requests to the Prni 
sequencer. 

P2s can receive requests from any of the processor's thirty-two dma channels. Once a command request has 
been detected, P2s, operating as a slave sequencer, fetches a dma descriptor from an Sram locatiqn dedicated 
to the requesting channel which includes the Sram address, Pci address, Pci endian and request siZe. P2s then 
issues a request to Pmo which in tum moves data from the Pci target to the Sram. The process repeats until 
the entire request has been satisfied at which time P2s writes ending status in to the dma descriptor area of 
Sram and sets the channel done bit associated with that channel. P2s then monitors the dma chamiels for 
additional requests. Following is an illustration showing the major blocks involved in the movement of data 
from a Pci target to dram. 
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PCI TO SRAM SEQUENCER (P2s) 
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DRAM TO SRAM SEQUENCER (D2s) 

The D2s sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued 
by the Cpu, the D2s sequencer manages movement of data from dram to Sram by issuing requests to the Xrd 
sequencer. 

D2s can receive requests from any of the processor's thirty-two dma channels. Once a command request has 
been detected, D2s, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated 
to the requesting channel which includes the dram address, Sram address and request size. D2s thyn issues a 
request to the Xrd sequencer causing the transfer of data to the Sram. The process repeats until th:e entire 
request has been satisfied at which time D2s writes ending status in to the Sram dma descriptor area and sets 
the channel done bit associated with that channel. D2s then monitors the dma channels for additional requests. 
Following is an illustration showing the major blocks involved in the movement of data from dram to Sram. 
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DRAM TO SRAM SEQUENCER (D2s) 

'-+ ~ 
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SRAM TO DRAM SEQUENCER (S2d) 

The S2d sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued 
by the Cpu, the S2d sequencer manages movement of data from Sram to dram by issuing requestli to the Xwr 
sequencer. 

S2d can receive requests from any of the processor's thirty-two dma channels. Once a command request has 
been detected, S2d, operating as a slave sequencer, fetches a dma descriptor from an Sram locatipn dedicated 
to the requesting channel which includes the dram address, Sram address, checksum reset and request size. 
S2d then issues a request to the X wr sequencer causing the transfer of data to the dram. The proeess repeats 
until the entire request has been satisfied at which time S2d writes ending status in to the Sram dma descriptor 
area and sets the channel done bit associated with that channel. S2d then monitors the dma channels for 
additional requests. Following is an illustration showing the major blocks involved in the movement of data 
from Sram to dram. 
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SRAM TO DRAM SEQUENCER (S2d) 
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PCI SLAVE INPUT SEQUENCER (Psi) 

The Psi sequencer acts as both a slave sequencer and a master sequencer. Servicing requests issued by a Pci 
master, the Psi sequencer manages movement of data from Pci bus to Sram and Pci bus to dram via Sram by 
issuing requests to the SramCtrl and Xwr sequencers. 

Psi manages write requests to configuration space, expansion rom, dram, Sram and memory ma:Bped registers. 
Psi separates these Pci bus operations in to two categories with different action taken for each. Dram accesses 
result in Psi generating write request to an Sram buffer followed with a write request to the X wr i sequencer. 
Subsequent write or read dram operations are retry terminated until the buffer has been emptied. 'An event 
notification is set for the processor allowing message passing to occur through dram space. 

All other Pci write transactions result in Psi posting the write information including Pci address, Pci byte 
marks and Pci data to a reserved location in Sram, then setting an event flag which the event processor 
monitors. Subsequent writes or reads of configuration, expansion rom, Sram or registers are tenhlnated with 
retry until the processor clears the event flag. This allows the INIC to keep pipelining levels to a minimum for 
the posted write and give the processor ample time to modify data for subsequent Pci read operations. 

The following diagram depicts the sequence of events when Psi is the target of a Pci write operation. Note that 
events 4 through 7 occur only when the write operation targets the dram. 
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PCI SLAVE OUTPUT SEQUENCER (Pso) 

The Pso sequencer acts as both a slave sequencer and a master sequencer. Servicing requests issued by a Pci 
master, the Pso sequencer manages movement of data to Pci bus form Sram and to Pci bus from dram via 
Sram by issuing requests to the SramCtrl and Xrd sequencers. 

Pso manages read requests to configuration space, expansion rom, dram, Sram and memory mapj:>ed registers. 
Pso separates these Pci bus operations in to two categories with different action taken for each. Dram accesses 
result in Pso generating read request to the Xrd sequencer followed with a read request to Sram buffer. 
Subsequent write or read dram operations are retry terminated until the buffer has been emptied. 

All other Pci read transactions result in Pso posting the read request information including Pci address and Pci 
byte marks to a reserved location in Sram, then setting an event flag which the event processor monitors. 
Subsequent writes or reads of configuration, expansion rom, Sram or registers are terminated with retry until 
the processor clears the event flag. This allows the INIC to use a microcoded response mechanism to return 
data for the request. The processor decodes the request information, formulates or fetches the requested data 
and stores it in Sram then clears the event flag allowing Pso to fetch the data and return it on the Pci bus. 

The following diagram depicts the sequence of events when Pso is the target of a Pci read operation. 
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FRAME RECEIVE SEQUENCER (RcvX) 

The receive sequencer (RcvSeq) analyzes and manages incoming packets, stores the resl,llt in dram 
buffers, then notifies the processor through the receive queue (RcvQ) mechanism. The process begins 
when a buffer descriptor is available at the output of the FreeQ. RcvSeq issues a request to the Qmg 
which responds by supplying the buffer descriptor to RcvSeq. RcvSeq then waits for a receive packet. 
The Mac, network, transport and session information is analyzed as each byte is received ~nd stored 
in the assembly register (AssyReg). When four bytes of information is available, RcvSeq requests a 
write of the data to the Sram. When sufficient data has been stored in the Sram based rece.ive fifo, a 
dram write request is issued to Xwr. The process continues until the entire packet has bee111 received 
at which point RcvSeq stores the results of the packet analysis in the beginning of the dram buffer. 
Once the buffer and status have both been stored, RcvSeq issues a write-queue request to Qmg. 
Qmg responds by storing a buffer descriptor provided by RcvSeq. The process then repeats. If 
RcvSeq detects the arrival of a packet before a free buffer is available, it ignores the packet and sets 
the Framelost status bit for the next received buffer. 

The following diagram depicts the sequence of events for successful reception of a packet followed by 
a definition of the receive buffer and the buffer descriptor as stored on the RcvQ. 
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FRAME RECEIVE SEQUENCER (RcvX) 
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:;: 

RECEIVE BUFFER DESCRIPTOR 

bit_ name 
31:30 reserved 
29:28 size 
27:00 address 

description 

A copy of the bits in the FreeBuiDscr. 
Represents the last address + 1 to which frame data was transferred. The address 
wraps around at the boundary dictated by the S bits. This can be used to determine 
the size of the frame received. 

RECEIVE BUFFER FORMAT 

FRAME Status A 

bit_ name 
31 attention 

30 CompositeErr 

29 CtrlFrame 
28 IpDn 
27 802.3Dn 
26 MacADet 
25 MacBDet 
24 MacMcst 
23 MacBcst 
22 lpMcst 
21 lpBcst 
20 Frag 
19 lpOffst 
18 IpFlgs 
17 IpOpts 
16 TcpFlgs 
15 TcpOpts 
14 TcpUrg 
13 CarrierEvnt 
12 LongEvnt 
11 FrameLost 

10 reserved 
10 NoAck 
09:08 FrameTyp 
07:06 NwkTyp 
05:04 TrnsptTyp 
03 NetBios 
02 reserved 
01:00 channel 

OFFSET OxOOOO:Ox0003 

description 
Indicates one or more of the following: CompositeErr, !lpDn, !MacA:Det & 
!MacBDet, IpMcst, IpBcst, !ethernet & !802.3Snap, !lp4, !Tcp . 
Set when any of the error bits of ErrStatus are set or if frame processing stops 
while receiving a Tcp or Udp header. 
A control frame was received at our unicast or special MltCst address. 
Frame processing Hlted due to exhaustion of the IP4 length counter. 
Frame processing Hlted due to exhaustion of the 802.3 length counter. 
Frame's destination address matched the contents ofMacAddrA. 
Frame's destination address matched the contents ofMacAddrB. 
The Mac detected a MltCst address. 
The Mac detected a BrdCst address. 
The frame processor detected an IP MltCst address. 
The frame processor detected an IP BrdCst address. 
The frame processor detected a Frag IP datagram. 
The frame processor detected a non-zero IP datagram offset. 
The frame processor detected flags within the IP datagram. 
The frame processor detected a header length greater than 20 for the IP datagram. 
The frame processor detected an abnormal header flag for the TCP segment. 
The frame processor detected a header length greater than 20 for the 'JlCP segment. 
The frame processor detected a non-zero urgent pointer for the TCP segment. 
Refer to EllO Technical Manual. 
Refer to EllO Technical Manual. 
Set when an incoming frame could not be processed as a result of an outstanding 
frame completion event not yet serviced by the utility processor. 

The frame processor detected a 
00- Reserved. 01- ethemet. 
00- Unknown. 01- Ip4. 
00- Unknown. 01- reserved. 
A NetBios frame was detected. 

10- 802.3. 
10- Ip6 
10- Tcp 

The Mac on which this frame was received. 
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FRAME Status B 

bit_ 
31 
30 
29 
28 
27 
26 
25 
24 
23 
22 
21 
20 
19:16 

15:08 
07:00 

name 
802.3Shrt 
BufOvr 
BadPkt 
InvldPrmbl 
CrcErr 
DrblNbbl 
CodeErr 
IpHdrShrt 
Iplncmplt 
lpSumErr 
TcpSumErr 
TcpHdrShrt 
PrcssCd 

MacHsh 
CtxHsh 

TIMESTAMP 

bit 
31:00 

name 
RcvTime 

CHECKSUM 

bit_ 
31:16 

15:00 

name 
IpChksum 

TcpChksum 

RESERVED 

FRAME Data 

OFFSET Ox0004:0x0007 

description 
End of frame was encountered before the 802.3 length count was exhausted. 
The frame length exceded the buffer space available. 
Refer to EllO Technical Manual. 
Refer to EllO Technical Manual. 
Refer to EllO Technical Manual. 
Refer to EllO Technical Manual. 
Refer to EllO Technical Manual. 
The IP4 header length field contained a value less than Ox5. 
The frame terminated before the IP length counter was exhausted. 
The IP header checksum was not Oxffff at the completion of the IP header read. 
The session checksum was not Oxffff at the termination of session processing. 
The TCP header length field contained a value less than Ox5. 
The state of the frame processor at the time the frame processing terminated. 
ObOOOO Processing Mac header. 
ObOOOl Processing 802.3 LLC header. 
ObOOlO Processing 802.3 SNAP header. 
ObOOll Processing unknown network data. 
ObOlOO Processing IP header. 
ObOlOl Processing IP data (unknown transport) . 
ObOllO Processing transport header (IP data) . 
ObOlll Processing transport data (IP data) . 
OblOOO Processing IP processing complete. 
OblOOl Reserved. 
OblOlx Reserved. 
Obllxx Reserved. 

The Mac destination-address hash. Refer to EllO Technical Manual. 
The 8-bit context-hash generated by exclusive-oring all bytes of the IP source 
address, IP destination-address, transport source port and the transport destination 
port. 

OFFSET OxOOOS:OxOOOB 

description 
The contents of FreeClk at the completion of the frame receive operation. 

OFFSET OxOOOC:OxOOOF 

description 
Reflects the value of the IP header checksum at frame completion or IP header 
completion. If an IP datagram was not detected, the checksum provides a total for 
the entire data portion of the received frame. The data area is defm~d as those bytes 
received after the type field of an ethemet frame, the LLC header of an 802.3 frame 
or the SNAP header of an 802.3-SNAP frame. 

Reflects the value of the transport checksum at IP completion or frame completion. 
If IP was detected but session was unknown, the checksum will not include the 
psuedo-header. If IP was not detected, the checksum will be OxOOOO. 

OFFSET Ox001 O:Ox0011 

OFFSET Ox0012:END OF BUFFER 
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FRAME TRANSMIT SEQUENCER {XmtX.) 

The transmit sequencer (XmtSeq) analyzes and manages outgoing packets, using buffer descriptors 
retrieved from the transmit queue (XmtQ) then storing the descriptor for the freed buffer in the free 
buffer queue (FreeQ). The process begins when a buffer descriptor is available at the output of the 
XmtQ. XmtSeq issues a request to the Qmg which responds by supplying the buffer desc~iptor to 
XmtSeq. XmtSeq then issues a read request to the Xrd sequencer. Next, XmtSeq issues .a read 
request to SramCtrl then instructs the Mac to begin frame transmission. The Mac accepts data from 
XmtSeq which analyzes the packet as it flys-by in order to generate checksums to insert in the data 
stream. Once the frame transmission has completed, XmtSeq stores the buffer descriptor on the 
FreeQ thereby recycling the buffer. 

The following diagram depicts the sequence of events for successful transmission of a packet followed 
by a definition of the receive buffer and the buffer descriptor as stored on the XmtQ. 
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FRAME TRANSMIT SEQUENCER (XmtX) 
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} 

TRANSMIT BUFFER DESCRIPTOR 

bit_ ""na..,m""e"'==== 
31 ChksumEn 

30 reserved 
29:28 size 

27:00 EndAddr 

description 
When set, XmtSeq will insert a calculated checksum. When reset, XmtSeq will 
not alter the outgoing data stream. 

Represents the size of the buffer by indicating at what boundary the bll'ffer should 
start and terminate. This is used in combination with EndAddr to determine the 
starting address of the buffer : 

S == 0 256B boundary. A[7:0] ignored. 
S = 1 2KB boundary. A[lO:O] ignored. 
S = 2 4KB boundary. A[ll:O] ignored. 
S = 3 32KB boundary. A[14:0] ignored. 

The address of the last byte to transmit plus one. 

TRANSMIT BUFFER FORMAT 

CHECKSUM PRIMER OFFSET OxOOOO:Ox0003 

bit ..,.na...,m~e=== 
31:00 Primer 

RESERVED 

FRAME Data 

description 
A value to be added during checksum accumulation. For IPV4, this should include 
the psuedo-header values, protocol and Tcp-length. 

OFFSET Ox0004:0x0005 

OFFSET Ox0006:END OF BUFFER 

TRANSMIT Status VECTOR 

bit name description 
31 LnkErr Indicates that a link status error occured before or during transmit. 
30:15 reserved 
14 ExcessDeferral Refer to EllO Technical Manual. 
13 LateAbort Refer to EllO Technical Manual. 
12 ExcessColl Refer to EllO Technical Manual. 
11 Under Run Refer to EJJO Technical Manual. 
10 ExcessLgth Refer to EllO Technical Manual. 
09 Okay Refer to EllO Technical Manual. 
08 deferred Refer to EllO Technical Manual. 
07 BrdCst Refer to EJJO Technical Manual. 
06 MltCst Refer to EllO Technical Manual. 
05 CrcErr Refer to EJIO Technical Manual. 
04 LateColl Refer to EIIO Technical Manual. 
03:00 CollCnt Refer to EllO Technical Manual. 
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.l 

QUEUE MANAGER (Qmg) 
The INIC includes special hardware assist for the implementation of message and pointer queues. The 

hardware assist is called the queue manager (Qmg) and manages the movement of queue entries between Cpu 
and Sram, between dma sequencers and Sram as well as between Sram and dram. Queues comprise three distinct 
entities; the queue head (QHd), the queue tail (QTI) and the queue body (QBdy). QHd resides in 64 bytes of 
scratch ram and provides the area to which entries will be written (pushed). QTI resides in 64 bytes .of scratch 
ram and contains queue locations from which entries will be read (popped) . QBdy resides in dram and contains 
locations for expansion of the queue in order to minimize the Sram space requirements. The QBdy size depends 
upon the queue being accessed and the initialization parameters presented during queue initialization. 

Qmg accepts operations from both Cpu and dma sources. Executing these operations at a frequency of 
133MHz, Qmg reserves even cycles for dma requests and reserves odd cycles for Cpu requests. Valid Cpu 
operations include initialize queue (InitQ), write queue (WrQ) and read queue (RdQ). Valid dma requests 
include read body (RdBdy) and write body (WrBdy). Qmg working in unison with Q2d and D2q generate 
requests to the Xwr and Xrd sequencers to control the movement of data between the QHd, QTI and QBdy. 

The preceding block diagram shows the major functions of Qmg. The arbiter selects the next op(fration to be 
performed. The dual-ported Sram holds the queue variables HdWrAddr, Hd.RdAddr, TlWrAddr, 
TIRdAddr, BdyWr Addr, BdyRdAddr and QSz. Qmg accepts an operation request, fetches the queue 
variables from the queue ram (Qram), modifies the variables based on the current state and the requested 
operation then updates the variables and issues a read or write request to the Sram controller. The Sram 
controller services the requests by writing the tail or reading the head and returning an acknowledge. 
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QUEUE MANAGER (Qmg) 
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DMA OPERATIONS 

DMA operations are accomplished through a combination of thirtytwo dma channels (DmaCh) and seven dma 
sequencers (DmaSeq). Each dma channel provides a mechanism whereby a Cpu can issue a coilllpand to any 
of the seven dma sequencers. Where as the dma channels are multi-purpose, the dma sequencers they 
command are single purpose as follows. 

dmaseq # 
0 
1 
2 
3 
4 
5 
6 
7 

mune 
none 
D2dSeq 
D2sSeq 
D2pSeq 
S2dSeq 
S2pSeq 
P2dSeq 
P2sSeq 

descriotion 
This is a no operation address. 
Moves data from ExtMem to ExtMem. 
Moves data from ExtMem bus to sram. 
Moves data from ExtMem to Pci bus. 
Moves data from sram to ExtMem. 
Moves data from sram to Pci bus. 
Moves data from Pci bus to ExtMem. 
Moves data from Pci bus to sram. 

The processors manage dma in the following way. The processor writes a dma descriptor to an Sram location 
reserved for the dma channel. The format of the dma descriptor is dependent upon the targeted dma sequencer. 
The processor then writes the dma sequencer number to the channel command register. 

Each of the dma sequencers polls all thirtytwo dma channels in search of commands to execute. Once a 
command request has been detected, the dma sequencer fetches a dma descriptor from a fixed lot:;ation in 
Sram. The Sram location is fixed and is determined by the dma channel number. The dma sequencer loads the 
dma descriptor in to it's own registers, executes the command, then overwrites the dma descriptor with ending 
status. Once the command has halted, due to completion or error, and the ending status has been written, the 
dma sequencer sets the done bit for the current dma channel. 

The done bit appears in a dma event register which the Cpu can examine. The Cpu fetches ending status from 
Sram, then clears the done bit by writing zeroes to the channel command (ChCmd) register. The channel is 
now ready to accept another command. 

The format of all channel command registers is as follows. 

bit_ 
31:11 
10:8 

07:05 
04:00 

name 
reserved 
ChCmd 

reserved 
Chid 

description 
Data written to these bits is ignored. 
0 - Stops execution of the current operation and clears the corresponding event flag. 
1 - Transfer data from ExtMem to ExtMem. 
2 - Transfer data from ExtMem bus to sram. 
3 - Transfer data from ExtMem to Pci bus. 
4 - Transfer data from sram to ExtMem. 
5 - Transfer data from sram to Pci bus. 
6 - Transfer data from Pci bus to ExtMem. 
7 - Transfer data from Pci bus to Sram. 
Data written to these bits is ignored. 
Provides the channel number for the channel command. 
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The format of the P2d or P2s descriptor is as follows. 

bit_ 
127:96 
95:64 
59:32 
31 
30 
22 
15:00 

name 
PciAddrH 
PciAddrL 
MemAddr 
PciEndian 
WideDbl 
DstFiash 
XfrSz 

description 
Bits [63:32] of the Pci address. 
Bits [31 :00] of the Pci address. 
Bits [27 :00] of the ExtMem address or bits [15 :00] of the Sram address. 
When set, selects big endian mode for Pci transfers. 
When set, disables Pci 64-bit mode. 
Selects Flash for the external memory destination of P2d. 
Bits [15:00] of the requested dma size expressed in bytes. 

The format of the S2p or D2p descriptor is as follows. 

bit 
123:96 
95:64 
63:32 
30 
23 
22 
15:00 

name 
MemAddr 
PciAddrH 
PciAddrL 
SrcFlash 
PciEndian 
WideDbl 
XfrSz 

description 
Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address. 
Bits [63:32] of the Pci address. 
Bits [31:00] of the Pci address. 
Selects Flash for the external memory source of D2p. 
When set, selects big endian mode for Pci transfers. 
When set, disables Pci 64-bit mode. 
Bits [15:00] of the requested dma size expressed in bytes. 

The format of the S2d, D2d or D2s descriptor is as follows. 

bit_ 
127:124 
123:96 
95:60 
59:32 
30 
22 
15:00 

name 
reserved 
SrcAddr 
reserved 
DstAddr 
FlashSel 
FlashSel 
XfrSz 

description 
Reserved for future use. 
Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address. 
Reserved for future use. 
Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address. 
Selects Flash for the external memory source of D2d or D2s. 
Selects Flash for the external memory destination of S2p or D2d. 
Bits [15 :00] of the requested dma size expressed in bytes. 

The format of the ending status or all channels is as follows. 

bit_ name 
127:64 reserved 
63:32 ChkSum 

31:24 reserved 
23:20 SrcStatus 
19:16 DstStatus 
15:00 XfrSz 

description 
Not used. 
Represents the 1 's compliment sum of all halfwords transferred during a P2d or D2d 
operation only. 
Reserved for future use. 
TBD. 
TBD. 
Bits [15:00] of the residual dma size expressed in bytes. This value will be zero if the dma 
operation was successful 

The format of the ChEvnt register is as follows. 

bit ._.n..,am"""e === 

31:00 ChDn 
description 
Each bit represents the done flag for the respective dma channel. These bits are set by a 
dma sequencer upon completion of the channel command. Cleared when the processor 
writes 0 to the corresponding ChCmd register ChCmdOp field. 
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MAC CONTROL (Macctrl) 

From Cpu 

Cpu_CLK ! J J j ~ ~ .. PHY PHY .. RNG .. CFG .. Reqs Mac ... ... ... ... 
WR RD WR WR TO OTHER 

ReqO ReqO _. ReqO _. ReqO Macs Data 

l TO OTHER Macs 

u , 
.. CK* .. CK* 

Xmt_CLK ... 
REG REG 

Xmt_CLK .. j_ .. j_ 
K K 

... REG ... 
REG 

'-r- '-r- / 

+ 
K ... 
CFG 
REG 

.,, .,, .,, 

* 
., 

LCTLD RStatus LRNG CFG 
!HWD,CTLD 

MacA 
g+ 

L+ ___. 
.. OR ... 

__.. ... 

+ ., 
Mac BUSY TO Cpu 

Provisional Pat. App. of Alacritech, Inc. 128 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 
Alacritech, Ex. 2019 Page 132



;';: 

Appendix A 

The following load calculations are based on the following basic formulae: 

N =X* R (Little's Law) where 
N = number of jobs in the system (either in progress or in a queue), 
X = system throughput, 
R =response time (which includes time waiting in queues). 

U =X * S (from Little's Law) where 
S = service time, 
U = utilization. 

R = S I (1-U) for exponential service times (which is the worst-case assumption), 

A 256 byte frame at 100Mb/sec takes 20 11sec per frame. 
4 * 100 Mbit ethemets receiving at full frame rate is: 

51200 (4 * 12800) frames/sec@ 1024 bytes/frame 
102000 frames/sec@ 512 bytes/frame 
204000 frames/sec@ 256 bytes/frame. 

The following calculations assume 250 instructions/frame, 45nsec clock. Thus 
S = 250 * 45 nsecs = 11.2 11secs. 

Av. Frame Size Thruput Utilization Response Nbr. in system 
(X) (U) (R) (N) 

1024 51200 .57 26 usecs 1.3 
512 102000 >1 
256 204000 >1 

Lets look at it for varying instructions per frame assuming 512 bytes per frame average. 

lnstns Service Thruput Utilization Response Nbr. in system 
Per Frame Time (S) (X) (U) (R) (N) 
250 11.2 usee 102000 >1 
250 11.2 85000 (*) .95 224 usecs 19 
250 11.2 80000 (**) .89 101 8 
225 10 102000 1.0 
225 10 95000 (*) .95 200 19 
225 10 89000 (**) .89 90 8 
200 9 102000 .9 90 9 
150 6.7 102000 .68 20 2 

(*) shows what frame rate can be supported to get a utilization of less than 1. 
(**)shows what frame rate can be supported with 8 SRAM TCB buffers and at least 8 
process contexts. 
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If 100 instructions I frame is used, S = 100 * 45 nsecs = 4.5 usecs, and we can su:wport 
256 byte frames: 
100 4.5 204000 .91 50 10 

Firstly note that these calculations assume that response times increase exponentially as 
utilization increases. This is the worst-case assumption, and probably may not be true for 
our system. 
The figures show that to support a theoretical full 4 * 100 Mbit receive load with, an 
average frame size of512 bytes, there will need to be 19 active 'jobs" in the system, 
assuming 250 instructions per frame. Due to SRAM limitations, the current design 
specifies 8 SRAM buffers for active TCBs, and not to swap a TCB out of SRAM once it 
is active. So under these limitations, the INIC will not be able to keep up with the full 
frame rate. Note that the initial implementation is trying to use only 8KB of SRAM, 
although 16KB may be available, in which case 19 TCB SRAM buffers could be used. 
This is a cost trade-off. 
The real point here is the effect of instructions/frame on the throughput that can be 
maintained. If the instructions/frame drops to 200, then the INIC is capable ofhandling 
the full theoretical load (102000 frames/second) with only 9 active TCBs. If it dr;ops to 
100 instructions per frame, then the INIC can handle full bandwidth at 256 byte frames 
(204000 frames/second) with 10 active TCBs. The bottom line is that ALL hardware
assist that reduces the instructions/frame is really worthwhile. If header-assist ha;rdware 
can save us 50 instructions per frame then it goes straight to the throughput bottom line. 
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1 Background of the Invention 

Network processing as it exists today is a costly and inefficient use of system resources. 
A 200 MHz Pentium-Pro is typically consumed simply processing network data from a 
1OOMb/second-network connection. The reasons that this processing is so costly are 
described here. 

1.1 Too Many Data Moves 

When network packet arrives at a typical network interface card (NIC), the NIC moves 
the data into pre-allocated network buffers in system main memory. From there the data 
is read into the CPU cache so that it can be checksummed (assuming of course that the 
protocol in use requires checksums. Some, like IPX, do not.). Once the data has been 
fully processed by the protocol stack, it can then be moved into its final destination in 
memory. Since the CPU is moving the data, and must read the destination cache line in 
before it can fill it and write it back out, this involves at a minimum 2 more trips across 
the system memory bus. In short, the best one can hope for is that the data will get 
moved across the system memory bus 4 times before it arrives in its final destination. It 
can, and does, get worse. If the data happens to get invalidated from system cache after it 
has been checksummed, then it must get pulled back across the memory bus before it can 
be moved to its final destination. Finally, on some systems, including Windows NT 4.0, 
the data gets copied yet another time while being moved up the protocol stack. In NT 
4.0, this occurs between the miniport driver interface and the protocol driver interface. 
This can add up to a whopping 8 trips across the system memory bus (the 4 trips 
described above, plus the move to replenish the cache, plus 3 more to copy from the 
miniport to the protocol driver). That's enough to bring even today's advanced memory 
busses to their knees. 
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1.2 Too Much Processing A. CPU • 
In all but the original move from the NIC to system memory, the system CPU is 
responsible for moving the data. This is particularly expensive because while the CPU is 
moving this data it can do nothing else. While moving the data the CPU is typically 
stalled waiting for the relatively slow memory to satisfy its read and write requests. A 
CPU, which can execute an instruction every 5 nanoseconds, must now wait as long as 
several hundred nanoseconds for the memory controller to respond before it can begin its 
next instruction. Even today's advanced pipelining technology doesn't help in these 
situations because that relies on the CPU being able to do useful work while it waits for 
the memory controller to respond. If the only thing the CPU has to look forward to for 
the next several hundred instructions is more data moves, then the CPU ultimately gets 
reduced to the speed of the memory controller. 

Moving all this data with the CPU slows the system down even after the data has beep. 
moved. Since both the source and destination cache lines must be pulled into the CPU 
cache when the data is moved, more than 3k of instructions and or data resident in the 
CPU cache must be flushed or invalidated for every 1500 byte frame. This is of course 
assuming a combined instruction and data second level cache, as is the case with the 
Pentium processors. After the data has been moved, the former resident of the cache will· 
likely need to be pulled back in, stalling the CPU even when we are not performing 
network processing. Ideally a system would never have to bring network frames into the 
CPU cache, instead reserving that precious commodity for instructions and data that are 
referenced repeatedly and frequently. 

But the data movement is not the only drain on the CPU. There is also a fair amount of 
processing that must be done by the protocol stack software. The most obvious expense 
is calculating the checksum for each TCP segment (or UDP datagram). Beyond this, 
however, there is other processing to be done as well. The TCP connection object must 
be located when a given TCP segment arrives, IP header checksums must be calculated, 
there are buffer and memory management issues, and finally there is also the significant 
expense of interrupt processing which we will discuss in the following section. 

1.3 Too Many Interrupts 

A 64k SMB request (write or read-reply) is typically made up of 44 TCP segments when 
running over Ethernet (1500 byte MTU). Each of these segments may result in an 
interrupt to the CPU. Furthermore, since TCP must acknowledge all of this incoming 
data, it's possible to get another 44 transmit-complete interrupts as a result of sending out 
the TCP acknowledgements. While this is possible, it is not terribly likely. Delayed 
ACK timers allow us to acknowledge more than one segment at a time. And delays in 
interrupt processing may mean that we are able to process more than one incoming 
network frame per interrupt. Nevertheless, even if we assume 4 incoming frames per 
input, and an acknowledgement for every 2 segments (as is typical per the ACK-every
other-segment property ofTCP), we are still left with 33 interrupts per 64k SMB request. 

Interrupts tend to be very costly to the system. Often when a system is interrupted, 
important information must be flushed or invalidated from the system cache so that the 
interrupt routine instructions, and needed data can be pulled into the cache. Since the 

Provisional Pat. App. of Alacritech, Inc. 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 

2 

Alacritech, Ex. 2019 Page 136



CPU will return to its prior loin after the interrupt, it is likely that .nformation 
flushed from the cache will immediately need to be pulled back into the cache. 

What's more, interrupts force a pipeline flush in today's advanced processors. While the 
processor pipeline is an extremely efficient way of improving CPU performance, it can 
be expensive to get going after it has been flushed. 

Finally, each of these interrupts results in expensive register accesses across the 
peripheral bus (PCI). This is discussed more in the following section. 

1.4 Inefficient Use ofthe Peripheral Bus (PCI) 

We noted earlier that when the CPU has to access system memory, it may be stalled for 
several hundred nanoseconds. When it has to read from PCI, it may be stalled for many 
microseconds. This happens every time the CPU takes an interrupt from a standard NIC. 
The first thing the CPU must do when it receives one of these interrupts is to read the 
NIC Interrupt Status Register (ISR) from PCI to determine the cause of the interrupt. The 
most troubling thing about this is that since interrupt lines are shared on PC-based 
systems, we may have to perform this expensive PCI read even when the interrupt is not 
meant for us! 

There are other peripheral bus inefficiencies as well. Typical NICs operate using 
descriptor rings. When a frame arrives, the NIC reads a receive descriptor from system 
memory to determine where to place the data. Once the data has been moved to main 
memory, the descriptor is then written back out to system memory with status about the 
received frame. Transmit operates in a similar fashion. The CPU must notify that NIC 
that it has a new transmit. The NIC will read the descriptor to locate the data, read the 
data itself, and then write the descriptor back with status about the send. Typically on 
transmits the NIC will then read the next expected descriptor to see if any more data 
needs to be sent. In short, each receive or transmit frame results in 3 or 4 separate PCI 
reads or writes (not counting the status register read). 

2 Summary of the Invention 

Alacritech was formed with the idea that the network processing described above could 
be offloaded onto a cost-effective Intelligent Network Interface Card (INIC). With the 
Alacritech INIC, we address each of the above problems, resulting in the following 
advancements: 
1. The vast majority of the data is moved directly from the INIC into its final 

destination. A single trip across the system memory bus. 
2. There is no header processing, little data copying, and no checksumming required by 

the CPU. Because ofthis, the data is never moved into the CPU cache, allowing the 
system to keep important instructions and data resident in the CPU cache. 

3. Interrupts are reduced to as little as 4 interrupts per 64k SMB read and 2 per 64k 
SMB write. 

4. There are no CPU reads over PCI and there are fewer PCI operations per receive or 
transmit transaction. 

In the remainder of this document we will describe how we accomplish the above. 
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2.1 Perform Transport JProeessing on the INIC • 
In order to keep the system CPU from having to process the packet headers or checksum 
the packet, we must perform this task on the INIC. This is a daunting task. There are 
more than 20,000 lines ofC code that make up the FreeBSD TCPIIP protocol stack. 
Clearly this is more code than could be efficiently handled by a competitively priced 
network card. Furthermore, as we've noted above, the TCPIIP protocol stack is 
complicated enough to consume a 200 MHz Pentium-Pro. Clearly in order to perform 
this function on an inexpensive card, we need special network processing hardware as 
opposed to simply using a general purpose CPU. 

2.1.1 Only Support TCPIIP 

In this section we introduce the notion of a "context". A context is required to keep track 
of information that spans many, possibly discontiguous, pieces of information. When 
processing TCPIIP data, there are actually two contexts that must be maintained. The 
first context is required to reassemble IP fragments. It holds information about the status 
of the IP reassembly as well as any checksum information being calculated across the IP 
datagram (UDP or TCP). This context is identified by the IP _ ID of the datagram as well 
as the source and destination IP addresses. The second context is required to handle the 
sliding window protocol ofTCP. It holds information about which segments have been 
sent or received, and which segments have been acknowledged, and is identified by the 
IP source and destination addresses and TCP source and destination ports. 

If we were to choose to handle both contexts in hardware, we would have to potentially 
keep track of many pieces of information. One such example is a case in which a single 
64k SMB write is broken down into 44 1500 byte TCP segments, which are in turn 
broken down into 131 576 byte IP fragments, all ofwhich can come in any order (though 
the maximum window size is likely to restrict the number of outstanding segments 
considerably). 

Fortunately, TCP performs a Maximum Segment Size negotiation at connection 
establishment time, which should prevent IP fragmentation in nearly all TCP 
connections. The only time that we should end up with fragmented TCP connections is 
when there is a router in the middle of a connection which must fragment the segments to 
support a smaller MTU. The only networks that use a smaller MTU than Ethernet are 
serial line interfaces such as SLIP and PPP. At the moment, the fastest of these 
connections only run at 128k (ISDN) so even if we had 256 ofthese connections, we 
would still only need to support 34Mb/sec, or a little over three I ObT connections worth 
of data. This is not enough to justify any performance enhancements that the INIC 
offers. If this becomes an issue at some point, we may decide to implement the MTU 
discovery algorithm, which should prevent TCP fragmentation on all connections (unless 
an ICMP redirect changes the connection route while.~he connection is established). 

With this in mind, it seems a worthy sacrifice to not attempt to handle fragmented TCP 
segments on the INIC. 

UDP is another matter. Since UDP does not support the notion of a Maximum Segment 
Size, it is the responsibility of IP to break down a UDP datagram into MTU sized 
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packets. Thus, fragmented ~atagrarns are very common. The mltommon UDP 
application running today is NFSV2 over UDP. While this is also the most common 
version ofNFS running today, the current version ofSolaris being sold by Sun 
Microsystems runs NFSV3 over TCP by default. We can expect to see the NFSV2/UDP 
traffic start to decrease over the coming years. 

In summary, we will only offer assistance to non-fragmented TCP connections on the 
INIC. 

2.1.2 Don't handle TCP "exceptions" 

As noted above, we won't provide support for fragmented TCP segments on the INIC. 
We have also opted to not handle TCP connection and breakdown. Here is a list of other 
TCP "exceptions" which we have elected to not handle on the INIC: 

Fragmented Segments -Discussed above. 

Retransmission Timeout- Occurs when we do not get an acknowledgement for 
previously sent data within the expected time period. 

Out of order segments - Occurs when we receive a segment with a sequence number 
other than the next expected sequence number. 

FIN segment - Signals the close of the connection. 

Since we have now eliminated support for so many different code paths, it might seem 
hardly worth the trouble to provide any assistance by the card at all. This is not the case. 
According to W. Richard Stevens and Gary Write in their book "TCPIIP Illustrated 
Volume 2", TCP operates without experiencing any exceptions between 97 and 100 
percent of the time in local area networks. As network, router, and switch reliability 
improve this number is likely to only improve with time. 
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So the next question is what to do about the network packets that do not fit our criteria. 
The answer is to use two modes of operation: One in which the network frames are 
processed on the INIC through TCP and one in which the card operates like a typical 
dumb NIC. We call these two modes fast-path, and slow-path. In the slow-path case, 
network frames are handed to the system at the MAC layer and passed up through the 
host protocol stack like any other network frame. In the fast path case, network data is 
given to the host after the headers have been processed and stripped. 

CLIENT 
J ~ INIC 

FAST-PATH TDI 
NetBIOS 

TCP 
TCP 

ll' 
IP 

MAC SLOW-PATH 
lV.u\.\.., 

PHYSICAl 

· Ethernet 
PCI 

The transmit case works in much the same fashion. In slow-path mode the packets are 
given to the INIC with all of the headers attached. The INIC simply sends these packets 
out as if it were a dumb NIC. In fast-path mode, the host gives raw data to the INIC 
which it must carve into MSS sized segments, add headers to the data, perform 
checksums on the segment, and then send it out on the wire. 

2.1.4 The TCB cache 

Consider a situation in which a TCP connection is being handled by the card and a 
fragmented TCP segment for that connection arrives. In this situation, it will be 
necessary for the card to turn control of this connection over to the host. 

This introduces the notion of a Transmit Control Block (TCB) cache. A TCB is a 
structure that contains the entire context associated with a connection. This includes the 
source and destination IP addresses and source and destination TCP ports that define the 
connection. It also contains information about the connection itself such as the current 
send and receive sequence numbers, and the first-hop MAC address, etc. The complete 
set ofTCBs exists in host memory, but a subset of these may be "owned" by the card at 
any given time. This subset is the TCB cache. The INIC can own up to 256 TCBs at any 
given time. 

TCBs are initialized by the host during TCP connection setup. Once the connection has 
achieved a "steady-state" of operation, its associated TCB can then be turned over to the 
INIC, putting us into fast-path mode. From this point on, the INIC owns the connection 
until either a FIN arrives signaling that the connection is being closed, or until an 
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exception occurs which the nls not designed to handle (such as ant of order 
segment). When any of these conditions occur, the INIC will then flush the TCB back to 
host memory, and issue a message to the host telling it that it has relinquished control of 
the connection, thus putting the connection back into slow-path mode. From this point 
on, the INIC simply hands incoming segments that are destined for this TCB off to the 
host with all of the headers intact. 

Note that when a connection is owned by the INIC, the host is not allowed to reference 
the corresponding TCB in host memory as it will contain invalid information about the 
state of the connection. 

2.1.5 TCP hardware assistance 

When a frame is received by the INIC, it must verify it completely before it even 
determines whether it belongs to one of its TCBs or not. This includes all header 
validation (is it IP, IPV4 or V6, is the IP header checksum correct, is the TCP checksum 
correct, etc). Once this is done it must compare the source and destination IP address and 
the source and destination TCP port with those in each of its TCBs to determine if it is 
associated with one of its TCBs. This is an expensive process. To expedite this, we have 
added several features in hardware to assist us. The header is fully parsed by hardware 
and its type is summarized in a single status word. The checksum is also verified 
automatically in hardware, and a hash key is created out ofthe IP addresses and TCP 
ports to expedite TCB lookup. For full details on these and other hardware optimizations, 
refer to the INIC Hardware Specification sections (Heading 8). 

With the aid ofthese and other hardware features, much of the work associated with TCP 
is done essentially for free. Since the card will automatically calculate the checksum for 
TCP segments, we can pass this on to the host, even when the segment is for a TCB that 
the INIC does not own. 

2.1.6 TCP Summary 

By moving TCP processing down to the INIC we have offloaded the host of a large 
amount of work. The host no longer has to pull the data into its cache to calculate the 
TCP checksum. It does not have to process the packet headers, and it does not have to 
generate TCP ACKs. We have achieved most of the goals outlined above, but we are not 
done yet. 

2.2 · Transport Layer Interface 

This section defines the INIC's relation to the hosts transport layer interface (Called TDI 
or Transport Driver Interface in Windows NT). For full details on this interface, refer to 
the Alacritech TCP (ATCP) driver specification (Heading 4). 

2.2.1 Receive 

Simply implementing TCP on the INIC does not allow us to achieve our goal oflanding 
the data in its final destination. Somehow the host has to tell the INIC where to put the 
data. This is a problem in that the host can not do this without knowing what the data 
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actually is. Fortunately, NT lrovided a mechanism by which a tr.trt driver can 
"indicate" a small amount of data to a client above it while telling it that it has more data 
to come. The client, having then received enough of the data to know what it is, is then 
responsible for allocating a block of memory and passing the memory address or 
addresses back down to the transport driver, which is in turn responsible for moving the 
data into the provided location. 

We will make use of this feature by providing a small amount of any received data to the 
host, with a notification that we have more data pending. When this small amount of data 
is passed up to the client, and it returns with the address in which to put the remainder of 
the data, our host transport driver will pass that address to the INIC which will DMA the 
remainder of the data into its final destination. 

Clearly there are circumstances in which this does not make sense. When a small amount 
of data (500 bytes for example), with a push flag set indicating that the data must be 
delivered to the client immediately, it does not make sense to deliver some of the data 
directly while waiting for the list of addresses to DMA the rest. Under these 
circumstances, it makes more sense to deliver the 500 bytes directly to the host, and 
allow the host to copy it into its final destination. While various ranges are feasible, it is 
currently preferred that anything less than a segment's (1500 bytes) worth of data will be 
delivered directly to the host, while anything more will be delivered as a small piece 
which may be128 bytes, while waiting until receiving the destination memory address 
before moving the rest. 

The trick then is knowing when the data should be delivered to the client or not. As 
we've noted, a push flag indicates that the data should be delivered to the client 
immediately, but this alone is not sufficient. Fortunately, in the case ofNetBIOS 
transactions (such as SMB), we are explicitly told the length of the session message in the 
NetBIOS header itself. With this we can simply indicate a small amount of data to the 
host immediately upon receiving the first segment. The client will then allocate enough 
memory for the entire NetBIOS transaction, which we can then use to DMA the 
remainder of the data into as it arrives. In the case of a large (56k for example) NetBIOS 
session message, all but the first couple hundred bytes will be DMA' d to their final 
destination in memory. 

But what about applications that do not reside above NetBIOS? In this case we can not 
rely on a session level protocol to tell us the length of the transaction. Under these 
circumstances we will buffer the data as it arrives until A) we have receive some 
predetermined number of bytes such as 8k, or B) some predetermined period oftime 
passes between segments or C) we get a push flag. If after any of these conditions occur 
we will then indicate some or all of the data to the host depending on the amount of data 
buffered. If the data buffered is greater than about 1500 bytes we must then also wait for 
the memory address to be returned from the host so that we may then DMA the 
remainder of the data. 

2.2.2 Transmit 

The transmit case is much simpler. In this case the client (NetBIOS for example) issues a 
TDI Send with a list of memory addresses which contain data that it wishes to send along 
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with the length. The host cant. pass this list of addresses and lenA to the INIC. 
The INIC will then pull the data from its source location in host memory, as it needs it, 
until the complete TDI request is satisfied. 

2.2.3 Affect on interrupts 

Note that when we receive a large SMB transaction, for example, that there are two 
interactions between the INIC and the host. The first in which the INIC indicates a small 
amount of the transaction to the host, and the second in which the host provides the 
memory location(s) in which the INIC places the remainder of the data. This results in 
only two interrupts from the INIC. The.first when it indicates the small amount of data 
and the second after it has finished filling in the host memory given to it. A drastic 
reduction from the 33/64k SMB request that we estimate at the beginning of this section. 

On transmit, we actually only receive a single interrupt when the send command that has 
been given to the INIC completes. 

2.2.4 Transport Layer Interface Summary 

Having now established our interaction with Microsoft's TDI interface, we have achieved 
our goal oflanding most of our data directly into its final destination in host memory. 
We have also managed to transmit all data from its original location on host memory. 
And finally, we have reduced our interrupts to 2 per 64k SMB read and 1 per 64k SMB 
write. The only thing that remains in our list of objectives is to design an efficient host 
(PCI) interface. 

2.3 Host (PCI) Interface 

In this section we define the host interface. For a more detailed description, refer to the 
"Host Interface Strategy for the Alacritech INIC" section (Heading 3). 

2.3.1 Avoid PCI reads 

One of our primary objectives in designing the host interface of the INIC was to 
eliminate PCI reads in either direction. PCI reads are particularly inefficient in that they 
completely stall the reader until the transaction completes. As we noted above, this could 
hold a CPU up for several microseconds, a thousand times the time typically required to 
execute a single instruction. PCI writes on the other hand, are usually buffered by the 
memory-bus~PCI-bridge allowing the writer to continue on with other instructions. 
This technique is known as "posting". 

2.3.1.1 Memory-based status register· 

The only PCI read that is required by most NICs is the read ofthe interrupt status 
register. This register gives the host CPU information about what event has caused an 
interrupt (if any). In the design of our INIC we have elected to place this necessary status 
register into host memory. Thus, when an event occurs on the INIC, it writes the status 
register to an agreed upon location in host memory. The corresponding driver on the host 
reads this local register to determine the cause of the interrupt. The interrupt lines are 
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held high until the host clears .interrupt by writing to the INIC's ln.pt Clear 
Register. Shadow registers are maintained on the INIC to ensure that events are not lost. 

2.3.1.2 Buffer Addresses are pushed to the INIC 

Since it is imperative that our INIC operate as efficiently as possible, we must also avoid 
PCI reads from the INIC. We do this by pushing our receive buffer addresses to the 
INIC. As mentioned at the beginning of this section, most NICs work on a descriptor 
queue algorithm in which the NIC reads a descriptor from main memory in order to 
detel'mine where to place the next frame. We will instead write receive buffer addresses 
to the INIC as receive buffers are filled. In order to avoid having to write to the INIC for 
every receive frame, we instead allow the host to pass off a pages worth ( 4k) of buffers in 
a single write. 

2.3.2 Support small and large buffers on receive 

In order to reduce further the number of writes to the INIC, and to reduce the amount of 
memory being used by the host, we support two different buffer sizes. A small buffer 
contains roughly 200 bytes of data payload, as well as extra fields containing status about 
the received data bringing the total size to 256 bytes. We can therefore pass 16 of these 
small buffers at a time to the INIC. Large buffers are 2k in size. They are used to 
contain any fast or slow-path data that does not fit in a small buffer. Note that when we 
have a large fast-path receive, a small buffer will be used to indicate a small piece of the 
data, while the remainder of the data will be DMA'd directly into memory. Large 
buffers are never passed to the host by themselves, instead they are always accompanied 
by a small buffer which contains status about the receive along with the large buffer 
address. By operating in the manner, the driver must only maintain and process the small 
buffer queue. Large buffers are returned to the host by virtue of being attached to small 
buffers. Since large buffers are 2k in size they are passed to the INIC 2 buffers at a time. 

2.3.3 Command and response buffers 

In addition to needing a manner by which the INIC can pass incoming data to us, we also 
need a manner by which we can instruct the INIC to send data. Plus, when the INIC 
indicates a small amount of data in a large fast-path receive, we need a method of passing 
back the address or addresses in which to put the remainder of the data. We accomplish 
both of these with the use of a command buffer. Sadly, the command buffer is the only 
place in which we must violate our rule of only pushing data across PCI. For the 
command buffer, we write the address of command buffer to the INIC. The INIC then 
reads the contents of the command buffer into its memory so that it can execute the 
desired command. Since a command may take a relatively long time to complete, it is 
unlikely that command buffers will complete in order. For this reason we also maintain a 
response buffer queue. Like the small and large receive buffers, a page worth of response 
buffers is passed to the INIC at a time. Response buffers are only 32 bytes, so we have to 
replenish the INIC's supply of them relatively infrequently. The response buffers only 
purpose is to indicate the completion of the designated command buffer, and to pass· 
status about the completion. 
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2.4 Examples • •• 
In this section we will provide a couple of examples describing some of the differing data 
flows that we might see on the Alacritech INIC. 

2.4.1 Fast-path 56k NetBIOS session message 

Let's say a 56k NetBIOS session message is received on the INIC. The first segment will 
contain the NetBIOS header, which contains the total NetBIOS length. A small chunk of 
this first segment is provided to the host by filling in a small receive buffer, modifying 
the interrupt status register on the host, and raising the appropriate interrupt line. Upon 
receiving the interrupt, the host will read the ISR, clear it by writing back to the INIC's 
Interrupt Clear Register, and will then process its small receive buffer queue looking for 
receive buffers to be processed. Upon finding the small buffer, it will indicate the small 
amount of data up to the client to be processed by NetBIOS. It will also, if necessary, 
replenish the receive buffer pool on the INIC by passing off a pages worth of small 
buffers. Meanwhile, the NetBIOS client will allocate a memory pool large enough to 
hold the entire NetBIOS message, and will pass this address or set of addresses down to 
the transport driver. The transport driver will allocate an INIC command buffer, fill it in 
with the list of addresses, set the command type to tell the INIC that this is where to put 
the receive data, and then pass the command off to the INIC by writing to the command 
register. When the INIC receives the command buffer, it will DMA the remainder of the 
NetBIOS data, as it is received, into the memory address or addresses designated by the 
host. Once the entire NetBIOS transaction is complete, the INIC will complete the 
command by writing to the response buffer with the appropriate status and command 
buffer identifier. 

In this example, we have two interrupts, and all but a couple hundred bytes are DMA'd 
directly to their final destination. On PCI we have two interrupt status register writes, 
two interrupt clear register writes, a command register write, a command read, and a 
response buffer write. · 

With a standard NIC this would result in an estimated 30 interrupts, 30 interrupt register 
reads, 30 interrupt clear writes, and 58 descriptor reads and writes. Plus the data will get 
moved anywhere from 4 to 8 times across the system memory bus. 

2.4.2 Slow-path receive 

If the INIC receives a frame that does not contain a TCP segment for one of its TCB's, it 
simply passes it to the host as if it were a dumb NIC. If the frame fits into a small buffer 
(-200 bytes or less), then it simply fills in the small buffer with the data and notifies the 
host. Otherwise it places the data in a large buffer, writes the address ofthe large buffer 
into a small buffer, and again notifies the host. The host, having received the interrupt 
and found the completed small buffer, checks to see if the data is contained in the small 
buffer, and if not, locates the large buffer. Having found the data, the host will then pass 
the frame upstream to be processed by the standard protocol stack. It must also replenish 
the INIC's small and large receive buffer pool if necessary. 
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With the INIC, this will resullone interrupt, one interrupt status re-write and one 
interrupt clear register write as well as a possible small and or large receive buffer 
register write. The data will go through the normal path although if it is TCP data then 
the host will not have to perform the checksum. 

With a standard NIC this will result in a single interrupt, an interrupt status register read, 
an interrupt dear register write, and a descriptor read and write. The data will get 
processed as it would by the INIC, except for a possible extra checksum. 

2.4.3 Fast-path 400 byte send 

In this example, lets assume that the client has a small amount of data to send. It will 
issue the TDI Send to the transport driver which will allocate a command buffer, fill it in 
with the address ofthe 400 byte send, and set the command to indicate that it is a 
transmit. It will then pass the command off to the INIC by writing to the command 
register. The INIC will then DMA the 400 bytes into its own memory, prepare a frame 
with the appropriate checksums and headers, and send the frame out on the wire. After it 
has received the acknowledgement it will then notify the host of the completion by 
writing to a response buffer. 

With the INIC, this will result in one interrupt, one interrupt status register write, one 
interrupt clear register write, a command buffer register write a command buffer read, 
and a response buffer write. The data is DMA'd directly from the system memory. 

With a standard NIC this will result in a single interrupt, an interrupt status register read, 
an interrupt clear register write, and a descriptor read and write. The data would get 
moved across the system bus a minimum of 4 times. The resulting TCP ACK of the data, 
however, would add yet another interrupt, another interrupt status register read, interrupt 
clear register write, a descriptor read and write, and yet more processing by the host 
protocol stack. 

3 Host Interface Strategy for the Alacritech INIC 

This section describes the host interface strategy for the Alacritech Intellige1_1t Network 
Interface Card (INIC). The goal of the Alacritech INIC is to not only process network 
data through TCP, but also to provide zero-copy support for the SMP upper-layer 
protocol. It achieves this by supporting two paths for sending and receiving data, the fast
path and the slow-path. The fast path data flow corresponds to connections that are 
maintained on the NIC, while slow-path traffic corresponds to network data for which the 
NIC does not have a connection. The fast-path flow works by passing a header to the host 
and subsequently holding further data for that connection on the card until the host 
responds via an INIC command with a set of buffers into which to place the accumulated 
data. In the slow-path data flow, the INIC will be operating as a "dumb" NIC, so that 
these packets are simply dumped into frame buffers on the host as they arrive. To do 
either path requires a pool of smaller buffers to be used for headers and a pool of data 
buffers for frames/data that are too large for the header buffer, with both pools being 
managed by the INIC. This section discusses how these two pools of data are managed 
as well as how buffers are associated with a given context. 
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3.1 Receive Interface • • 
The varying requirements of the fast and slow paths and a desire to save PCI bandwidth 
are the driving forces behind the host interface that. is described herein. As mentioned 
above, the fast-path flow puts a header into a header buffer that is then forwarded to the 
host. The host uses the header to determine what further data is following, allocates the 
necessary host buffers, and these are passed back to the INIC via a command to the INIC. 
The INIC then fills these buffers from data it was accumulating on the card and notifies 
the host by sending a response to the command. Alternatively, the fast-path may receive 
a header and data that is a complete request, but that is also too large for a header buffer. 
This results in a header and data buffer being passed to the host. This latter flow is 
identical to the slow-path flow, which also puts all the data into the header buffer or, if 
the header is too small, uses a large (2K) host buffer for all the data. This means that on 
the unsolicited receive path, the host will only see either a header buffer or a header and 
at most, one data buffer. Note that data is never split between a header and a data buffer. 
The diagram below illustrates both situations: 

Header buffer descriptors 

Header a 

Headerb 

Header buffers 

Status 

TCP/SMB 
Headers 
(fast-path) 

Status 

DATA 
buffer handle 

(slow-path) 

Data buffers 

Data buffer descriptors 
DATA 

DATA 

Since we want to fill in the header buffer with a single DMA, the header must be the last 
piece of data to be written to the host for any received transaction. 

3.1.1. Receive Interface Details 

3 .1.2 Header Buffers 

Header buffers in host memory are 256 bytes long, and are aligned on 256 byte 
boundaries. There will be a field in the header buffer indicating it has valid data. This 
field will initially be reset by the host before passing the buffer descriptor to the INIC. A 
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• • • set ofheaderbuffers are pass~om the host to the INIC by the host wnting to the 
Header Buffer Address Register on the INIC. This register is defined as follows: 

Bits 31-8 Physical address in host memory of the first of a set of contiguous 
header buffers 
Bits 7-0 Number of header buffers passed. 
In this way the host can, say, allocate 16 buffers in a 4K page, and pass all16 buffers to 
the INIC with one register write. The INIC will maintain a queue of these header 
descriptors in the SmallHType queue in it's own local memory, adding to the end of the 
queue every time the host writes to the Header Buffer Address Register. Note that the 
single entry is added to the queue; the eventual dequeuer will use the count after 
extracting that entry. 

The header buffers, will be used and returned to the host in the same order that they were 
given to the INIC. The valid field will be set by the INIC before returning the buffer to 
the host. In this way a PCI interrupt, with a single bit in the interrupt register, may be 
generated to indicate that there is a header buffer for the host to process. When servicing 
this interrupt, the host will look at its queue ofheader buffers, reading the valid field to 
determine how many header buffers are to be processed. 

3.1.3 Receive Data Buffers 

Receive data buffers in host memory are aligned to page boundaries, assumed here to be 
2K bytes long and aligned on 4K page boundaries, 2 buffers per page. In order to pass 
receive data buffers to the INIC, the host must write to two registers on the INIC. The 
first register to be written is the Data Buffer Handle Register. The buffer handle is not 
significant to the INIC, but will be copied back to the host to return the buffer to the host. 
The second register written is the Data Buffer Address Register. This is the physical 
address of the data buffer. When both registers have been written, the INIC will add the 
contents of these two registers to Free Type queue of data buffer descriptors. Note that 
the INIC host driver sets the handle register first, then the address register. There needs to 
be some mechanism put in place to ensure the reading of these registers does not get out 
of sync with writing them. Effectively the INIC can read the address register first and 

. save its contents, then read the handle register. It can then lock the register pair in some 
manner such that another write to the handle register is not permitted until the current 
contents have been saved. Both addresses extracted from the registers are to be written to 
the FreeType queue. The INIC will extract 2 entries each time when dequeuing. 

Data buffers will be allocated and used by the INIC as needed. For each data buffer used 
by a slow-path transaction, the data buffer handle will be copied into a header buffer. 
Then the header buffer will be returned to the host. 

3.2 Transmit Interface 

3.2.1 Transmit Interface Overview 

The transmit interface, like the receive interface, has been designed to minimize the 
amount ofPCI bandwidth and latencies. In order to transmit data, the host will transfer a 
command buffer to the INIC. This command buffer will include a command buffer 
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handle, a command field, pos! a TCP context identification, and alofphysical data 
pointers. The command buffer handle is defined to be the first word of the command 
buffer and is used by the host to identify the command. This word will be passed back to 
the host in a response buffer, since commands may complete out of order, and the host 
will need to know which command is complete. Commands will be used for many 
reasons, but primarily to cause the INIC to transmit data, or to pass a set of buffers to the 
INIC for input data on the fast-path as previously discussed. 

Response buffers are physical buffers in host memory. They are used by the INIC in the 
same order as they were given to it by the host. This enables the host to know which 
response buffer(s) to next look at when the INIC signals a command completion. 

Command 
Command buffers Response 

buffer queue Buffer queue 

Command pointer Command Command 
buffer handle y buffer handle 

Command pointer I TCP context Status 

I Command pointer I 
identifier 

Command I ""' Command I 
buffer handle Data pointers I Status 

Command Command 

buffer handle 

I 
buffer handle 

TCP context Status 

identifier 

Command 

I Data pointers 

I 

Command 
buffer handle 

TCP context 
identifier 

Command 

Data pointers 
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• • 3 .2.2 Transmit Interface Details 

3 .2.2.1 Command Buffers 

Command buffers in host memory are a multiple of32 bytes, up to a maximum of 1K 
bytes, and are aligned on 32 byte boundaries. A command buffer is passed to the INIC 
by writing to one of 5 Command Buffer Address Registers. These registers are defined as 
follows: 

Bits31-5 
Bits 4-0 
32 bytes) 

Physical address in host memory ofthe command buffer. 
Length of command buffer in bytes I 32 (i.e. number of multiples of 

This is the physical address of the command buffer. The register to which the command 
is written predetermines the XMT interface number, or ifthe command is for the RCV 
CPU; hence there will be 5 of them, 0-3 for XMT and 4 for RCV. When one of these 
registers has been written, the INIC will add the contents of the register to it's own 
internal queue of command buffer descriptors. The first word of all command buffers is 
defined to be the command buffer handle. It is the job of the utility CPU to extract a 
command from its local queue, DMA the command into a small INIC buffer (from the 
FreeS Type queue), and queue that buffer into the Xmit#Type queue, where # is 0 - 3 
depending on the interface, or the appropriate RCV queue. The receiving CPU will 
service the queues to perform the commands. When that CPU has completed a command, 
it extracts the command buffer handle and passes it back to the host via a response buffer. 

3.2.2.2 Response Buffers 

Response buffers in host memory are 32 bytes long and aligned on 32 byte boundaries. 
They are handled in a very similar fashion to header buffers. There will be a field in the 
response buffer indicating it has valid data. This field will initially be reset by the host 
before passing the buffer descriptor to the INIC. A set of response buffers are passed 
from the host to the INIC by the host writing to the Response Buffer Address Register on 
the INIC. This register is defined as follows: 

Bits 31-8 Physical address in host memory of the first of a set of contiguous 
response buffers 
Bits 7-0 Number of response buffers passed. 

In this way the host can, say, allocate 128 buffers in a 4K page, and pass all128 buffers 
to the INIC with one register write. The INIC will maintain a queue of these header 
descriptors in it's ResponseType queue, adding to the end of the queue every time the 
host writes to the Response Buffer Address Register. The INIC writes the extracted 
contents including the count, to the queue in exactly the same manner as for the header 
buffers. 

The response buffers can be used and returned to the host in the same order that they 
were given to the INIC. The valid field will be set by the INIC before returning the buffer 
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to the host. In this way a PCI,errupt, with a single bit in the interrulgister, may be 
generated to indicate that there is a response buffer for the host to process. When 
servicing this interrupt, the host will look at its queue of response buffers, reading the 
valid field to determine how many response buffers are to be processed. 

3.2.3 Interrupt Status Register I Interrupt Mask Register: 

The following is the general format of this register: 

ERR 
RCV 
XMT 

RMISS 

31 

Error bits are set 
RCV has occurred. 
Command has been completed 

Rev drop occurred due to no buffers 

0 

The setting of any bits in the ISR will cause an interrupt, provided the corresponding bit 
in the Interrupt Mask Register is set. The default setting for the IMR is 0. 

The INIC is configured so that the host should never need to directly read the ISR from 
the INIC. To support this, it is important for the host/INIC to arrange a buffer area in host 
memory into which the ISR is dumped. The address and size of that area ca be passed to 
the INIC via a command on the XMT interface. That command will also specify the 
setting for the IMR. Until the INIC receives this command, it will not DMA the ISR to 
host memory, and no events will cause an interrupt. The host could if necessary, read the 
ISR directly from the INIC in this case. 

For the host to never have to actually read the register from the INIC itself, it is necessary 
for the INIC to update this host copy of the register whenever anything in it changes. The 
host will Ack (or deassert) events in the register by writing the register with O's in 
appropriate bit fields. So that the host does not miss events, the following scheme has 
been developed: 

The INIC keeps a local copy of the register whenever it DMAs it to the host i.e. after 
some event(s). Call this COPY A Then the INIC starts accumulating any new events not 
reflected in the host copy in a separate word. Call this NEW A. As the host clears bits by 
writing the register back with those bits set to zero, the INIC clears these bits in COPY A 
(or the host write-back goes directly to COPY A). If there are new events in NEWA, it 
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ORs them with COPY A, and L this new ISR to the host. This ne~R then replaces 
COPY A, NEW A is cleared and the cycle then repeats. 

3.2.4 Register Addresses 

For the sake of simplicity, in this example the registers are at 4-byte increments from 
whatever the base address is. Hence: 

ISR OxO Interrupt Status 
IMR Ox4 Interrupt Mask 
HBAR Ox8 Header Buffer Address 
DBHR OxC Data Buffer Handle 
DBAR OxlO Data Buffer Address 
CBARO Ox14 Command Buffer Address XMTO 
CBARl Ox18 Command Buffer Address XMTl 
CBAR2 OxiC Command Buffer Address XMT2 
CBAR3 Ox20 Command Buffer Address XMT3 
CBAR4 Ox24 Command Buffer Address RCV 
RBAR Ox28 Response Buffer Address 

4 Alacritech TCP (ATCP) Design Specification 

This section outlines the design specification for the Alacritech TCP (ATCP) transport 
driver. The ATCP driver consists of three components: 

1. The bulk of the protocol stack is based on the FreeBSD TCPIIP protocol stack. 
This code performs the Ethernet, ARP, IP, ICMP, and (slow path) TCP processing 
for the driver. 

2. At the top ofthe protocol stack we introduce an NT filter driver used to intercept 
TDI requests destined for the Microsoft TCP driver. 

3. At the bottom ofthe protocol stack we include an NDIS protocol-driver interface 
which allows us to communicate with the INIC miniport NDIS driver beneath the 
ATCP driver. 

This section covers each of these topics, as well as issues common to the entire ATCP 
driver. 

4.1 Coding style 

In order to ensure that our ATCP driver is written in a consistent manner, we have 
adopted a set of coding guidelines. These guidelines are introduced with the philosophy 
that we should write code in a Microsoft style since we are introducing an NT -based 
product. The guidelines below apply to all code that we introduce into our driver. Since 
a very large portion of our ATCP driver will be based on FreeBSD, and since we are 
somewhat time-constrained on our driver development, the ported FreeBSD code will be 
exempt from these guidelines. 
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I. Global symbols- All !on names and global variables in tbt,CP driver 
should begin with the "ATK" prefix (ATKSend() for instance). 

2. Variable names- Microsoft seems to use capital letters to separate multi-word 
variable names instead ofunderscores (VariableName instead ofvariable_name). 
We should adhere to this style. 

3. Structure pointers- Microsoft typedefs all of their structures. The structure types 
are always capitals and they typedef a pointer to the structure as "P"<name> as 
follows: 

typedef struct _FOO { 
INT bar; 

} FOO, *PFOO; 
We will adhere 'to this style. 

4. Function calls - Microsoft separates function call arguments on separate lines: 
X=foobar( 

argumentl, 
argument2, 
); 

We will adhere to this style. 

5. Comments- While Microsoft seems to alternatively use II and I* *I comment 
notation, we will exclusively use the/* *I notation. 

6. Function comments - Microsoft includes comments with each function that 
describe the function, its arguments, and its return value. We will also include 
these comments, but will move them from within the function itself to just prior to 
the function for better readability. 

7. Function arguments -Microsoft includes the keywords IN and OUT when 
defining function arguments. These keywords denote whether the function 
argument is used as an input parameter, or alternatively as a placeholder for an 
output parameter. We will include these keywords. 

8. Function prototypes- We will include function prototypes in the most logical 
header file corresponding to the .c file. For example, the prototype for function 
foo() found in foo.c will be placed in foo.h. 

9. Indentation- Microsoft code fairly consistently uses a tabstop of 4. We will do 
likewise. 

10. Header file #ifndef- each header file should contain a #ifndef/#definel#endif 
which is used to prevent recursive header file includes. For example, foo.h would 
include: 

#ifndef FOO H - --
#define FOO H - --
<foo.h contents .. > 
#endif I* _FOO _H_ *I 

Note the _NAME_ H_ format. 
11. Each file must contain a comment at the beginning which includes the $Id$ as 

follows: 
I* 
* $Id$ 
*I 
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0: 

' 

CVS (RCS) will expand lkeyword to denote RCS revision, ti~amps, author, 
etc. 

4.2 SMP 

This section describes the process by which we will make the ATCP driver SMP safe. 

The basic rule for SMP kernel code is that any access to a memory variable must be 
protected by a lock that prevents a competing access by code running on another 
processor. Spinlocks are the normal locking method for code paths which do not take a 
long time to execute (and which do not sleep.) 

In general each instance of a structure will include a spinlock, which must be acquired 
before members of that structure are accessed, and held while a function is accessing that 
instance of the structure. Structures which are logically grouped together may be 
protected by a single spinlock: for example, the 'in_pcb' structure, 'tcpcb' structure, and 
'socket' structure which together constitute the administrative information for aTCP 
connection will probably be collectively managed by a single spinlock in the 'socket' 
structure. 

In addition, every global data structure such as a list or hash table must also have a 
protecting spinlock which must be held while the structure is being accessed or modified. 
The NT DDK in fact provides a number of convenient primitives for SMP-safe list 
manipulation, and it is recommended that these be used for any new lists. Existing list 
manipulations in the FreeBSD code can probably be left as-is to minimize code 
disturbance, except of course that the necessary spinlock acquisition and release must be 
added around them. 

Spinlocks should not be held for long periods oftime, and most especially, must not be 
held during a sleep, since this will lead to deadlocks. There is a significant deficiency in 
the NT kernel support for SMP systems: it does not provide an operation which allows a 
spinlock to be exchanged atomically for a sleep lock. This would be a serious problem in 
a UNIX environment where much of the processing occurs in the context of the user 
process which initiated the operation. (The spinlock would have to be explicitly released, 
followed by a separate acquisition of the sleep lock: creating an unsafe window.) 

The NT approach is more asynchronous, however: IRPs are simply marked as 
'PENDING' when an operation cannot be completed immediately. The calling thread 
does NOT sleep at that point: it returns, and may go on with other processing. Pending 
IRPs are later completed, not by waking up the thread which initiated them, but by an 
'IoCompleteRequest' call which typically runs at DISPATCH level in an arbitrary 
context. 

Thus we have not in fact used sleep locks anywhere in the design of the ATCP driver, 
hoping the above issue will not arise. 

4.3 Data flow overview 
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The ATCP driver supports tW~ths for sending and receiving data, .. t-path and the 
slow-path. The fast-path data flow corresponds to connections that are maintained on the 
INIC, while slow-path traffic corresponds to network data for which the INIC does not 
have a connection. In order to set some groundwork for the rest of this section, these two 
data paths are summarized here. 

4.3.1 Fast-path input data flow 

There are 2 different cases to consider: 

1. NETBIOS traffic (identifiable by port number.) 
2. Everything else. 

4.3.1.1 NETBIOS input 

As soon as the INIC has received a segment containing a NETBIOS header, it will 
forward it up to the TCP driver, along with the NETBIOS length from the header. (In 
principle the host could get this from the header itself, but since the INIC has already 
done the decode, it seem reasonable to just pass it.) 

From the TDI spec, the amount of data in the buffer actually sent must be at least 128 
bytes. For small SMBs, all of the received SMB should be forwarded; it will be absorbed 
directly by the TDI client without any further MDL exchange. Experiments tracing the 
TDI data flow show that the NETBIOS client directly absorbs up to 1460 bytes: the 
amount of payload data in a single Ethernet frame. Thus the initial system specifies that 
the INIC will indicate anything up to a complete segment to the ATCP driver. (See note 
(1)] 

Once the INIC has passed up an indication with an NETBIOS length greater than the 
amount of data in the packet it passed, it will continue to accumulate further incoming 
data in DRAM on the INIC. Overflow ofiNIC DRAM buffers will be avoided by using 
a receive wip_dow on the INIC at this point, which can be 8K. 

On receiving the indicated packet, the ATCP driver will call the receive handler 
registered by the TDI client for the connection, passing the actual size ofthe data in the 
packet from the INIC as "bytes indicated" and the NETBIOS length as "bytes available." 
[See note (2)]. 

In the "large data input" case, where "bytes available" exceeds the packet length, the TDI 
client will then provide an MDL, associated with an IRP, which must be completed when 
this MDL is filled. (This IRPIMDL may come back either in the response to TCP's call of 
the receive handler, or as an explicit TDI_RECEIVE request.) 

The ATCP driver will build a "receive request" from the MDL information, and pass this 
to the INIC. This request will contain: 

• The TCP context identifier. 
• Size and offset information. 
• A list of physical addresses corresponding to the MDL pages. 
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• A context field to allow th~TCP driver to identify the request o,!,pletion. 
• "Piggybacked" window update information {this will be discussed in section 6.1.3.) 

Note: the ATCP driver must copy any remaining data {which was not taken by the 
receive handler) from the segment indicated by the INIC to the start of the MDL, and 
must adjust the size & offset information in the request passed to the INIC to account for 
this. 

The INIC will fill the given page(s) with incoming data up to the requested amount, and 
respond to the ATCP driver when this is done [see note (3)]. If the MDL is large, the 
INIC may open up its advertised receive window for improved throughput while filling 
the MDL. 

On receiving the response from the INIC, the ATCP driver will complete the IRP 
associated with this MDL, to tell the TDI client that the data is available. 

At this point the cycle of events is complete, and the ATCP driver is now waiting for the 
next header indication. 

4.3.1.2 Other TCP input. 

In the general case we do not have a higher-level protocol header to enable us to predict 
that more data is coming. So on non-NETBIOS connections, the INIC will just 
accumulate incoming data in INIC DRAM up to a quantity of 8K in this example. Again, 
a maximum advertised window size, which may be 16K, will be used to prevent overflow 
ofiNIC DRAM buffers. 

When the prescribed amount has been accumulated, or when a PSH flag is seen, the INIC 
will indicate a small packet which may be 128 bytes of the data to the ATCP driver, 
along with the total length of the data accumulated in INIC DRAM. 

On receiving the indicated packet, the ATCP driver will call the receive handler. 
registered by the TDI client for the connection, passing the actual size ofthe data in the 
packet from the INIC as "bytes indicated" and the total INIC-buffer length as "bytes 
available." 

As in the NETBIOS case, if"bytes available" exceeds "bytes indicated", the TDI client 
will provide an IRP with an MDL. The ATCP driver will pass the MDL to the INIC to 
be filled, as before. The INIC will reply to the ATCP driver, which in turn will complete 
the IRP to the TDI client. 

Using an MDL from the client avoids a copy step. However, if we can only buffer 8K 
and delay indicating to the ATCP driver until we have done so, a question arises 
regarding further segments coming in, since INIC DRAM is a scarce resource. We do not 
want to ACK with a zero-size window advertisement: this would cause the transmitting 
end to go into persist state, which is bad for throughput. If the transmitting end is also our 
INIC, this results in having to implement the persist timer on the INIC, which we do not 
wish to do. Instead for large transfers (i.e. no PSH flag seen) we will not send an ACK 
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until the host has provided thAL, and also, to avoid stopping the -itting end, we 
will use a receive window of twice the amount we will buffer before calling the host. 
Since the host comes back with the MDL quite quickly (measured at < 100 
microseconds), we do not expect to experience significant overruns. 

4.3.1.3 INIC Receive window updates 

If the INIC "owns" an MDL provided by the TDI client (sent by ATCP as a receive 
request), it will treat this as a "promise" by the TDI client to accept the data placed in it, 
and may therefore ACK incoming data as it is filling the pages. 

However, for small requests, there will be no MDL returned by the TDI client: it absorbs 
all of the data directly in the receive callback function. We need to update the INIC's 
view of data which has been accepted, so that it can update its receive window. In order 
to be able to do this, the ATCP driver will accumulate a count of data which has been 
accepted by the TDI client receive callback function for a connection. 

From the INIC's point of view, though, segments sent up to the ATCP driver are just 
"thrown over the wall"; there is no explicit reply path. We will therefore "piggyback" the 
update on requests sent out to the INIC. Whenever the ATCP driver has outgoing data 
for that connection, it will place this count in a field in the send request (and then clear 
the counter.) Any receive request (passing a receive MDL to the INIC) may also be used 
to transport window update info in the same way. 

Note: we will probably also need to design a message path whereby the ATCP driver can 
explicitly send an update of this "bytes consumed" information (either when it exceeds a 
preset threshold or if there are no requests going out to the INIC for more than a given 
time interval), to allow for possible scenarios in which the data stream is entirely one
way. 

4.3.1.4 Notes 

1) The PSH flag can help to identify small SMB requests that fit into one segment. 

2) Actually, the observed "bytes available" from the NT TCP driver to its client's 
callback in this case is always 1460. The NETBIOS-aware TDI client presumably 
calculates the size of the MDL it will return from the NETBIOS header. So strictly 
speaking we do not need the NETBIOS header length at this point: just an indication 
that this is a header for a "large" size. However, we *do* need an actual "bytes 
available" value for the non-NETBIOS case, so we may as well pass it. 

3) We observe that the PSH flag is set in the segment completing each NETBIOS 
transfer. The INIC can use this to determine when the current transfer is complete 
and the MDL should be returned. It can, at least in a debug mode, sanity check the 
amount of received data against what is expected, though. 
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• • 4.3.2 Fast-path output data flow 

The fast-path output data flow is similar to the input data-flow, but simpler. In this case 
the TDI client will provide a MDL to the ATCP driver along with an IRP to be completed 
when the data is sent. The ATCP driver will then give a request (corresponding to the 
MDL) to the INIC. This request will contain: 

• The TCP context identifier. 
• Size and offset information. 
• A list of physical addresses corresponding to the MDL pages. 
• A context field to allow the ATCP driver to identify the request on completion. 
• "Piggybacked" window update information (as discussed in section 6.1.3.) 

The INIC will copy the data from the given physicallocation(s) as it sends the 
corresponding network frames onto the network. When all of the data is sent, the INIC 
will notify the host of the completion, and the ATCP driver will complete the IRP. 

Note that there may be multiple output requests pending at any given time, since SMB 
allows multiple SMB requests to be simultaneously outstanding. 

4.3.3 Slow-path data flow 

For data for which there is no connection being maintained on the INIC, we will have to 
perform all of the TCP, IP, and Ethernet processing ourselves. To accomplish this we 
will port the FreeBSD protocol stack. 
In this mode, the INIC will be operating as a "dumb NIC"; the packets which pass over 
the NDIS interface will just contain MAC-layer frames. 

The MBUFs in the incoming direction will in fact be managing NDIS-allocated packets. 
In the outgoing direction, we need protocol-allocated MBUFs in which to assemble the 
data and headers. The MFREE macro must be cognizant of the various types of MBUFs, 
and "do the right thing" for each type. (See more extensive discussion ofMBUFs in 
section XXX.) 

We will retain a (modified) socket structure for each connection, containing the socket 
buffer fields expected by the FreeBSD code. The TCP code that operates on socket 
buffers (adding/removing MBUFs to & from queues, indicating acknowledged & 
received data etc) will remain essentially unchanged from the FreeBSD base (though 
most of the socket functions & macros used to do this will need to be modified; these are 
the functions in kem/uipc _ socket2.c) 

The upper socket layer (kem/uipc_socket.c), where the overlying OS moves data in and 
out of socket buffers, must be entirely re-implemented to work in TDI terms. Thus, 
instead of sosend(), there will be a function that copies data from the MDL provided in a 
TDI_SEND call into socket buffer MBUFs. Instead of soreceive(), there will be a handler 
that calls the TDI client receive callback function, and also copies data from socket buffer 
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• • • MBUFs into any MDL provi=by the TDI client (either explicitly with the callback 
response or as a separate TDI_RECEIVE call.) 

We must note that there is a semantic difference between TDI_SEND and a write() on a 
BSD socket. The latter may complete back to ~ts caller as soon as the data has been 
copied into the socket buffer. The completion of a TDI_ SEND, however, implies that the 
data has actually been sent on the connection. Thus we will need to keep the TDI_SEND 
IRPs (and associated MDLs) in a queue on the socket until the TCP code indicates that 
the data from them has been ACK'd. 

4.3.4 Data Path Notes 

1. There might be input data on a connection object for which there is no receive 
handler function registered. This has not been observed, but we can probably just 
ASSERT for a missing handler for the moment. If it should happen, however, we 
must assume that the TDI client will be doing TDI_RECEIVE calls on the 
connection. If we can't make a callup at the time that the indication from the INIC 
appears, we can queue the data and handle it when a TDI_RECEIVE does appear. 

2. NT has a notion of "canceling" IRPs. It is possible for us to get a "cancel" on an IRP 
corresponding to an MDL which has been "handed" to the INIC by a send or receive 
request. We can handle this by being able to force the context back off the INIC, 
since IRPs will only get cancelled when the connection is being aborted. 

4.4 Context Passing Between ATCP and INIC 

4.4.1 From ATCP to INIC 

There is a synchronization problem that must be addressed here. The ATCP driver will 
make a decision on a given connection that this connection should now be passed to the 
INIC. It builds and sends a command identifying this connection to the INIC. 

Before doing so, it must ensure that no slow-path outgoing data is outstanding. This is 
not difficult; it simply pends and queues any new TDI_SEND requests and waits for any 
unacknowledged slow path output data to be acknowledged before initiating the context 
pass operation. 

The problem arises with incoming slow-path data. If we attempt to do the context-pass in 
a single command handshake, there is a window during which the ATCP driver has send 
the context command, but the INIC has not yet seen this (or has not yet completed setting 
up its context.) During this time, slow-path input data frames could arrive and be fed into 
the slow-path ATCP processing code. Should that happen, the context information which 
the ATCP driver passed to the INIC is no longer correct. We can simply abort the 
outward pass of the context in this event, but it seems better to have a reliable handshake. 

Therefore, the command to pass context from ATCP driver to INIC will be split into two 
halves, and there will be a two-exchange handshake. 
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The initial command from Alto INIC expresses an "intention" to I out the 
context. It will include the source and destination IP addresses and ports, which will 
allow the INIC to establish a "provisional" context. Once it has this "provisional" context 
in place, the INIC will not send any more slow-path input frames for that src/dest IP/port 
combination (it will queue them, if any are received.) 

When the ATCP driver receives the response to this initial "intent" command, it knows 
that the INIC will send no more slow-path input. The ATCP driver then waits for any 
remaining unconsumed slow-path input data for this connection to be consumed by the 
client. (Generally speaking there will. be none, since the ATCP driver will not initiate a 
context pass while there is unconsumed slow-path input data; the handshake is simply to 
close the crossover window.) 

Once any such data has been consumed, we know things are in a quiescent state. The 
ATCP driver can then send the second, "commit" command to hand out the context, with 
confidence that the TCB values it is handing out (sequence numbers etc) are reliable. 

Note 1: it is conceivable that there might be situations in which the ATCP driver decides, 
after having sent the original "intention" command, that the context is not to be passed 
after.all. (E.g. the local client issues a close.) So we must allow for the possibility that 
the second command may be a "abort", which should cause the INIC to deallocate and 
clear up its "provisional" context. 

Note 2: to simplify the logic, the ATCP driver will guarantee that only one context may 
be in process of being handed out at a time: in other words, it will never issue another 
initial "intention" command until it has completed the second half of the handshake for 
the first one. 

4.4.2 From INIC to ATCP 

There are two possible cases for this: a context transfer may be initiated either by the 
ATCP driver or by the INIC. 

However the machinery will be very similar in the two cases. If the ATCP driver wishes 
to cause context to be flushed from INIC to host, it will send a "flush" message to the 
INIC specifying the context number to be flushed. Once the INIC receives this, it will 
proceed with the same steps as for the case where the flush is initiated by the INIC itself: 

• The INIC will send an error response to any current outstanding receive request it is 
working on (corresponding to an MDL into which data is being placed.) Before 
sending the response, it updates the receive command "length" field to reflect the 
amount of data which has actually been placed in the MDL buffers at the time of the 
flush. 

• Likewise it will send an error response for any current send request, again reporting 
the amount of data actually sent from the request. 

• The INIC will DMA the TCB for the context back to the host. (Note: part of the 
information provided with a context must be the address of the TCB in the host.) 
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• The INIC will send a "fl~ndication to the host (very preferab~a the regular 
input path as a special type of frame) identifying the context which is being flushed. 
Sending this indication via the regular input path ensures that it will arrive before any 
following slow-path frames. 

At this point, the INIC is no longer doing fast-path processing, and any further incoming 
frames for the connection will simply be sent to the host as raw frames for the slow input 
path. 

The ATCP driver may not be able to complete the cleanup operations needed to resume 
normal slow path processing immediately on receipt of the "flush frame", since there may 
be outstanding send and receive requests to which it has not yet received a response. 

If this is the case, the ATCP driver must set a "pend incoming TCP frames" flag in its 
per-connection context. The effect of this is to change the behavior oftcp_input(). This 
runs as a function call in the context ofip_input(), and normally returns only when 
incoming frames have been processed as far as possible (queued on the socket receive 
buffer or out-of-sequence reassembly queue.) However, if there is a flush pending and 
we have not yet completed resynchronization, we cannot do TCP processing and must 
instead queue input frames for TCP on a "holding queue" for the connection, to be picked 
up later when context flush is complete and normal slow path processing resumes. (This 
is why we want to send the "flush" indication via the normal input path: so that we can 
ensure it is seen before any following frames of slow-path input.) 

Next we need to wait for any Qutstanding "send" requests to be errored off: 

• The INIC maintains its context for the connection in a "zombie" state. As "send" 
requests for this connection come out of the INIC queue, it sends error responses for 
them back to the ATCP driver. (It is apparently difficult for the INIC to identify all 
command requests for a given context; simpler for it to just continue processing them 
in order, detecting ones that are for a "zombie" context as they appear.) 

• The ATCP driver has a count of the number of outstanding requests it has sent to the 
INIC. As error responses for these are received, it decrements this count, and when it 
reaches zero, the ATCP driver sends a "flush complete" message to the INIC. 

• When the INIC receives the "flush complete" message, it dismantles its "zombie" 
context. From the INIC perspective, the flush is now completed. 

• When the ATCP driver has received error responses for all outstanding requests, it 
has all the information needed to complete its cleanup. This involves completing any 
IRPs corresponding to requests which have entirely completed and adjusting fields in 
partially-completed requests so that send and receive of slow path data will resume at 
the right point in the byte streams. 

• Once all this cleanup is complete, the ATCP driver will loop pulling any "pended" 
TCP input frames off the "pending queue" mentioned above and feeding them into 
the normal TCP input processing. Once all input frames on this queue have been 
cleared off, the "pend incoming TCP frames" flag can be cleared for the connection, 
and we are back to normal slow-path processing. 
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4.5 FreeBSD Porting Spec,atioo • 
The largest portion of the ATCP driver is either derived, or directly taken from the 
FreeBSD TCPIIP protocol stack. This section defines the issues associated with porting 
this code, the FreeBSD code itself, and the modifications required for it to suit our needs. 

4.5.1 Porting philosophy 

FreeBSD TCPIIP (current version referred to as Net/3) is a general purpose TCPIIP 
driver. It contains code to handle a variety of interface types and many different kinds of 
protocols. To meet this requirement the code is often written in a sometimes confusing, 
over-complex manner. General-purpose structures are overlaid with other interface
specific structures so that different interface types can coexist using the same general
purpose code. For our purposes much of this complexity is unnecessary since we are 
only supporting a single interface type and a few specific protocols. It is therefore 
tempting to modify the code and data structures in an effort to make it more readable, and 
perhaps a bit more efficient. There are, however, some problems with doing this. First, 
the more we modify the original FreeBSD, the more changes we will have to make. This 
is especially true with regard to data structures. If we collapse two data structures into 
one we might improve the cleanliness ofthe code a bit, but we will then have to modify 
every reference to that data structure in the entire protocol stack. Another problem with 
attempting to "clean up" the code is that we might later discover that we need something 
that we had previously thrown away. Finally, while we might gain a small performance 
advantage in cleaning up the FreeBSD code, the FreeBSD TCP code will mostly only run 
in the slow-path connections, which are not our primary focus. Our priority is to get the 
slow-path code functional and reliable as quickly as possible. 

For the reasons above we have adopted the philosophy that we should initially keep the 
data structures and code at close to the original FreeBSD implementation as possible. 
The code will be modified for the following reasons: 

5. As required for NT interaction- Obviously we can't expect to simply "drop-in" the 
FreeBSD code as is. The interface ofthis code to the NT system will require some 
significant code modifications. This will mostly occur at the topmost and 
bottommost portions of the protocol stack, as well as the "ioctl" sections of the code. 
Modifications for SMP issues are also needed. 

6. Unnecessary code can be removed- While we will keep the code as close to the 
original FreeBSD as possible, we will nonetheless remove code that will never be 
used (UDP is a good example of this). 

4.5.2 Unix ~ NT conversion 

The FreeBSD TCPIIP protocol stack makes use of many Unix system services. These 
include bcopy to copy memory, malloc to allocate memory, timestamp functions, etc. 
These will not be itemized in detail since the conversion to the corresponding NT calls is 
a fairly trivial and mechanical operation. 

An area which will need non-trivial support redesign is MBUFs. 
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• • 4.5.2.1 Network buffers 

Under FreeBSD, network buffers are mapped using mbufs. Under NT network buffers 
are mapped using a combination of packet descriptors and buffer descriptors (the buffer 
descriptors are really MDLs). There are a couple of problems with the Microsoft 
method. First it does not provide the necessary fields which allow us to easily strip off 
protocol headers. Second, converting all of the FreeBSD protocol code to speak in terms 
of buffer descriptors is an unnecessary amount of overhead. Instead, in our port we will 
allocate our own mbuf structures and remap the NT packets as follows: 

Mbuf Mbuf 

.. .... 
- ,.--

".,, Packet Desc BufferDesc BufferDesc 

.. .. , , 

.. ~ .. ~ , , 

Data Data 

The mbuf structure will provide the standard fields provided in the FreeBSD mbuf 
including the data pointer, which points to the current location of the data, data length 
fields and flags. In addition each mbuf will point to the packet descriptor which is 
associated with the data being mapped. Once an NT packet is mapped, our transport 
driver should never have to refer to the packet or buffer descriptors for any information 
except when we are finished and are preparing to return the packet. 

There are a couple of things to note here. We have designed our INIC such that a packet 
header should never be split across multiple buffers. Thus, we should never require the 
equivalent of the "m _pullup" routine included in Unix. Also note that there are 
circumstances in which we will be accepting data that will also be accepted by the 
Microsoft TCPIIP. One such example of this is ARP frames. We will need to build our 
own ARP cache by looking at ARP replies as they come off the network. Under these 
circumstances, it is absolutely imperative that we do not modify the data, or the packet 
and buffer descriptors. We will discuss this further in the following sections. 
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We will allocate a pool ofm~eaders at ATCP initialization time. ~important to 
remember that unlike other NICs, we can not simply drop data if we run out of the system 
resources required to manage/map the data. The reason for this is that we will be 
receiving data from the card that has already been acknowledged by TCP. Because of 
this it is essential that we never run out ofmbufheaders. To solve this problem we will 
statically allocate mbufheaders for the maximum number of buffers that we will ever 
allow to be outstanding. By doing so, the card will run out of buffers in which to put the 
data before we will run out of mbufs, and as a result, the card will be forced to drop data 
at the link layer instead of us dropping it at the transport layer. 
DhXXX: as we've discussed, I don't think this is really true anymore. The INIC won't 
ACK data until either it's gotten a window update from ATCP to tell it the data's been 
accepted, or it's got an MDL. 
Thus it seems workable, though undesirable, ifwe can't accept a frame from the INIC & 
return an error to it saying it was not taken. 

We will also require a pool of actual mbufs (not just headers). These mbufs are required 
in order to build transmit protocol headers for the slow-path data path, as well as other 
miscellaneous purposes such as for building ARP requests. We will allocate a pool of 
these at initialization time and we will add to this pool dynamically as needed. Unlike 
the mbufheaders described above, which will be used to map acknowledged TCP data 
coming from the card, the full mbufs will contain data that can be dropped if we can not 
get anmbuf. 

4.5.3 The code 

In this section we describe each section of the FreeBSD TCPIIP port. These sections 
include Interface Initialization, ARP, Route, IP, ICMP, and TCP. 

4.5.3.1 Interface initialization 

4.5.3.1.1 Structures 

There are a variety of structures, which represent a single interface in FreeBSD. These 
structures include: 
ifuet, arpcom, ifaddr, in_ifaddr, sockaddr, sockaddr_in, and sockaddr_dl. The following 
illustration shows the relationship between all of these structures: 

arpcom 

:------,--
1 I 
I I 

: ifnet t 
I I 
I I 
I I 
I I 
I I 
I I 
I ! 
I --
1 
I 
I 
I 
I 
I 
I 
I 

-

----------

Iface 

u 

I I 

ifaddr 
.. sockaddr dl ..-

.I 00:60:97:DB:9B:A6 
.... I -

in ifaddr 
... 

sockaddr in .... 
ifaddr 

... I 192.100.1.2 I 
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In this example we show a si,interface with a MAC address of 00t7:DB:9B:A6 
configured with an IP address of 192.100.1.2. As illustrated above, the in_ifaddr is 
actually an ifaddr structure with some extra fields tacked on to the end. Thus the ifaddr 
structure is used to represent both a MAC address and an IP address. Similarly the 
sockaddr structure is recast as a sockaddr_dl or a sockaddr_in depending on its address 
type. An interface can be configured to multiple IP addresses by simply chaining 
in_ifaddr structures after the in_ifaddr structure shown above. 

As mentioned in the Porting Philosophy section, many of the above structures could 
likely be collapsed into fewer structures. In order to avoid making unnecessary 
modifications to FreeBSD, for the time being we will leave these structures mostly as is. 
We will however eliminate the fields from the structure that will never be used. These 
structure modifications are discussed below. 

We also show above a structure called iface. This is a structure that we define. It 
contains the arpcom structure, which in turn contains the ifuet structure. It also contains 
fields that enable us to blend our FreeBSD implementation with NT NDIS requirements. 
One such example is the NDIS binding handle used to call down to NDIS with requests 
(such as send). 

4.5.3.1.2 The functions 

FreeBSD initializes the above structures in two phases. First when a network interface is 
found, the ifuet, arpcom, and first ifaddr structures are initialized first by the network 
layer driver, and then via a call to the if_attach routine. The subsequent in_ifaddr 
structure(s) are initialized when a user dynamically configures the interface. This occurs 
in the in_ioctl and the in_ifinit routines. Since NT allows dynamic configuration of a 
network interface we will continue to perform the interface initialization in two phases, 
but we will consolidate these two phases as described below: 

4.5.3.1.2.1 Iftnit 

The lflnit routine will be called from the ATKProtocolBindAdapter function. The lflnit 
function will initialize the Iface structure and associated arpcom and ifuet structures. It 
will then allocate and initialize an ifaddr structure in which to contain link-level 
information about the interface, and a sockaddr _ dl structure to contain the interface name 
and MAC address: Finally it will add a pointer to the ifaddr structure into the ifuet_ addrs 
array (using the if_index field of the ifuet structure) contained in the extended device 
object. Iflnit will then call IfConfig for each IP address that it finds in the registry entry 
for the interface. 

4.5.3.1.2.2 IfConfig 

IfConfig is called to configure an IP address for a given interface. It is passed a pointer 
to the ifuet structure for that interface along with all the information required to configure 
an IP address for that interface (such as IP address, netmask and broadcast info, etc). 
IfConfig will allocate an in _ifaddr structure to be used to configure the interface. It will 
chain it to the total chain of in ifaddr structures contained in the extended device object, 
and will then configure the structure with the information given to it. After that it will 
add a static route for the newly configured network and then broadcast a gratuitous ARP 
request to notify others of our Mac/IP address and to detect duplicate IP addresses on the 
net. 
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4.5.3.2 ARP • • 
We will port the FreeBSD ARP code to NT mostly as-is. For some reason, the FreeBSD 
ARP code is located in a file called if_ether.c. While the functionality of this file will 
remain the same, we will rename it to a more logical arp.c. The main structures used by 
ARP are the llinfo_arp structure and the rtentry structure (actually part of route). These 
structures will not be require major modifications. The functions that will require 
modification are defined here. 

4.5.3.2.1 In_arpinput 

This function is called to process an incoming ARP frame. An ARP frame can either be 
an ARP request or an ARP reply. ARP requests are broadcast, so we will see every ARP 
request on the network, while ARP replies are directed so we should only see ARP 
replies that are sent to us. This introduces the following possible cases for an incoming 
ARP frame: 

1. ARP request trying to resolve our IP address -Under normal circumstances, ARP 
would reply to this ARP request with an ARP reply containing our MAC address. 
Since ARP requests will also be passed up to the Microsoft TCPIIP driver, we 
need not reply. Note however, that FreeBSD also creates or updates an ARP cache 
entry with the information derived from the ARP request. It does this in 
anticipation of the fact that any host that wishes to know our MAC address is 
likely to wish to talk to us soon. Since we will need to know his MAC address in 
order to talk back, we might as well add the ARP information now rather than 
issuing our own ARP request later. 

2. ARP request trying to resolve someone else's IP address- Since ARP requests are 
broadcast, we see every one on the network. When we receive an ARP request of 
this type, we simply check to see if we have an entry for the host that sent the 
request in our ARP cache. If we do, we check to see if we still have the correct 
MAC address associated with that host. If it is incorrect, we update our ARP 
cache entry. Note that we do not create a new ARP cache entry in this case. 

3. ARP reply- In this case we add the new ARP entry to our ARP cache. Having 
resolved the address, we check to see if there is any transmit requests pending for 
the resolve IP address, and if so, transmit them. · 

Given the above three possibilities, the only major change to the in_ arpinput code is that 
we will remove the code which generates an ARP reply for ARP requests that are meant 
for our interface. 

4.5.3.2.2 ilrpintr 

This is the FreeBSD code that delivers an incoming ARP frame to in_arpinput. We will 
be calling in_arpinput directly from our ProtocolReceiveDPC routine (discussed in the 
NDIS section below) so this function is not needed. 
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4.5.3.2.3 Arpwhohas • • 
This is a single line function that serves only as a wrapper around arprequest. We will 
remove it and replace all calls to it with direct calls to arprequest. 

4.5.3.2.4 Arprequest 

This code simply allocates a mbuf, fills it in with an ARP header, and then passes it down 
to the ethemet output routine to be transmitted. For us, the code remains essentially the 
same except for the obvious changes related to how we allocate a network buffer, and 
how we send the filled in request. 

4.5.3.2.5 Arp_ifinit 

This is simply called when an interface is initialized to broadcast a gratuitous ARP 
request (described in the interface initialization section) and to set some ARP related 
fields in the ifaddr structure for the interface. We will simply move this functionality into 
the interface initialization code and remove this function. 

4.5.3.2.6 Arptimer 

This is a timer-based ,function that is called every 5 minutes to walk through the ARP 
table looking for entries that have timed out. Although the time-out period for FreeBSD 
is 20 minutes, RFC 826 does not specify any timer requirements with regard to ARP so 
we can modify this value or delete the timer altogether to suit our needs. Either way the 
function won't require any major changes. 

All other functions in if_ether.c will not require any major changes. 

4.5.3.3 Route 

On first thought, it might seem that we have no need for routing support since our A TCP 
driver will only receive IP datagrams who's destination IP address matches that of one of 
our own interfaces. Therefore, we will not "route" from one interface to another. 
Instead, the MICROSOFT TCPIIP driver will provide that service. We will, however, 
need to maintain an up-to-date routing table so that we know a) whether an outgoing 
connection belongs to one of our interfaces, b) to which interface it belongs, and c) what 
the first-hop IP address (gateway) is if the destination is not on the local network. 

We discuss four aspects on the subject of routing in this section. They are as follows: 

1. The mechanics of how routing information is stored 

2. The manner in which routes are added or deleted from the route table. 

3. When and how route information is retrieved from the route table. 

4. Notification of route table changes to interested parties. 
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• • 4.5.3.3.1 The route table 

In FreeBSD, the route table is maintained using an algorithm known as PATRICIA 
(Practical Algorithm To Retrieve Information Coded in Alphanumeric). This is a 
complicated algorithm that is a bit costly to set up, but is very efficient to reference. 
Since the routing table should contain the same information for both NT and FreeBSD, 
and since the key used to search for an entry in the routing table will be the same for each 
(the destination IP address), we should be able to port the routing table software to NT 
without any major changes. 

The software which implements the route table (via the PATRICIA algorithm) is located 
in the FreeBSD file, radix.c. This file will be ported directly to the ATCP driver with no 
significant changes required. 

4.5.3.3.2 Adding and deleting routes 

Routes can be added or deleted in a number of different ways. The kernel adds or deletes 
routes when the state of an interface changes or when an ICMP redirect is received. User 
space programs such as the RIP daemon, or the route command also modify the route 
table. 

For kernel-based route changes, the changes can be made by a direct call to the routing 
software. The FreeBSD software that is responsible for the modification of route table 
entries is found in route.c. The primary routine for all route table changes is called 
rtrequest(). It takes as its arguments, the request type (ADD, RESOLVE, DELETE), the 
destination IP address for the route, the gateway for the route, the netmask for the route, 
the flags for the route, and a pointer to the route structure (struct rtentry) in which we will 
place the added or resolved route. Other routines in the route.c file include rtinit(), which 
is called during interface initialization time to add a static route to the network, rtredirect, 
which is called by ICMP when we receive a ICMP redirect, and an assortment of support 
routines used for the modification of route table entries. All of these routines found in 
route.c will be ported with no major modifications. 

For user-space-based changes, we will have to be a bit more clever. In FreeBSD, route 
changes are sent down to the kernel from user-space applications via a special route 
socket. This code is found in the FreeBSD file, rtsock.c. Obviously this will not work 
for our ATCP driver. Instead the filter driver portion of our driver will intercept route 
changes destined for the Microsoft TCP driver and will apply those modifications to our 
own route table via the rtrequest routin~ described above. In order to do this, it will have 
to do some format translation to put the data into the format (sockaddr_in) expected by 
the rtrequest routine. Obviously, none of the code from rtsock.c will be ported to the 
ATCP driver. This same procedure will be used to inter<~ept and process explicit ARP 
cache modifications. 

4.5.3.3.3 Consulting the route table 

In FreeBSD, the route table is consulted in ip_output when an IP datagram is being sent. 
In order to avoid a complete route table search for every outgoing datagram, the route is 
stored into the in_pcb for the connection. For subsequent calls to ip_output, the route 
entry is then simply checked to ensure validity. While we will keep this basic operation 
as is, we will require a slight modification to allow us to coexist with the Microsoft TCP 
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driver .. When an active conn!n is being set up, our filter driver wilve to dete~ne 
whether the connection is going to be handled by one of the INIC interfaces. To do this, 
we will have to consult the route table from the filter driver portion of our driver. This is 
done via a call to the rtalloc 1 function (found in route.c ). If a valid route table entry is 
found, then we will take control of the connection and set a pointer to the rtentry structure 
returned by rtalloc 1 in our in _pcb structure. 

4.5.3.3.4 What to do when a route changes. 

When a route table entry changes, there may be conilections that have pointers to a stale 
route table entry. These connections will need to be notified of the new route. FreeBSD 
solves this by checking the validity of a route entry during every call to ip _output. If the 
entry is no longer valid, its reference to the stale route table entry is removed, and an 
attempt is made to allocate a new route to the destination. For our slow path, this will 
work fine. Unfortunately, since our IP processing is handled by the INIC for our fast 
path, this sanity check method will not be sufficient. Instead, we will need to perform a 
review of all of our fast path connections during every route table modification. If the 
route table change affects our connection, we will need to advise the INIC with a new 
first-hop address, or ifthe destination is no longer reachable, close the connection 
entirely. 

4.5.3.4 ICMP 

Like the ARP code above, we will need to process certain types of incoming ICMP 
frames. Of the 10 possible ICMP message types, there are only three that we need to 
support. These include ICMP _REDIRECT, ICMP _ UNREACH, and 
ICMP _SOURCEQUENCH. Any FreeBSD code to deal with other types ofiCMP traffic 
will be removed. Instead, we will simply return NDIS_STATUS_NOT_ACCEPTED for 
all but the above ICMP frame types. This section describes how we will handle these 
ICMP frames. 

4.5.3.4.1 ICMP _REDIRECT 

Under FreeBSD, an ICMP _REDIRECT causes two things to occur. First, it causes the 
route table to be updated with the route given in the redirect. Second, it results in a call 
back to TCP to cause TCP to flush the route entry attached to its associated in _pcb 
structures. By doing this, it forces ip _output to search for a new route. As mentioned in 
the Route section above, we will also require a call to a routine which will review all of 
the TCP fast-path connections, and update the route entries as needed (in this case 
because the route entry has been zeroed). The INIC will then be notified of the route 
changes. 

4.5.3.4.2 ICMP UNREACH 

In both FreeBSD and Microsoft TCP, the ICMP _ UNREACH results in no more than a 
simple statistic update. We will do the same. 

4.5.3.4.3 ICMP _SOURCEQUENCH 

A source quench is sent to cause a TCP sender to close its congestion window to a single 
segment, thereby putting the sender into slow-start mode. We will keep the FreeBSD 
code as-is for slow-path connections. For fast path connections we will send a 
notification to the card that the congestion window for the given connection has been 
reduced. The INIC will then be responsible for the slow-start algorithm. 
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4.5.3.5 IP • • 
The FreeBSD IP code should require few modifications when porting to the ATCP 
driver. What few modifications will be required will be discussed in this section. 

4.5.3.5.1 IP initialization 

During initialization time, ip _ init is called to initialize the array of protosw structures. 
These structures contain all the information needed by IP to be able to pass incoming data 
to the correct protocol above it. For example, when a UDP datagram arrives, IP locates 
the protosw entry corresponding to the UDP protocol type value (Oxll) and calls the 
input routine specified in that protosw entry. We will keep the array ofprotosw 
structures intact, but since we are only handling the TCP and ICMP protocols above IP, 
we will strip the protosw array down substantially. 

4.5.3.5.2 IP input 

Following are the changes required for IP input (function ip_intr()). 

4.5.3.5.2.1 No IP forwarding 

Since we will only be handling datagrams for which we are the final destination, we 
should never be required to forward an IP datagram. All references to IP forwarding, and 
the ip_forward function itself, can be removed. 

4.5.3.5.2.2 IP options 

The only options supported by FreeBSD at this time include record route, strict and loose 
source and record route, and timestamp. For the timestamp option, FreeBSD only logs 
the current time into the IP header so that before it is forwarded. Since we will not be 
forwarding IP datagrams, this seems to be of little use to us. While FreeBSD supports the 
remaining options, NT essentially does nothing useful with them. For the moment, we 
will not bother dealing with IP options. They will be added in later if needed. 

4.5.3.5.2.3 IP reassembly 

There is a small problem with the FreeBSD IP reassembly code. The reassembly code 
reuses the IP header portion of the IP datagram to contain IP reassembly queue 
information. It can do this because it no longer requires the original IP header. This is an 
absolute no-no with the NDIS 4.0 method of handling network packets. The NT DDK 
explicitly states that we must not modify packets given to us by NDIS. This is not the 
only place in which the FreeBSD code modifies the contents of a network buffer. It also 
does this when performing endian conversions. At the moment we will leave this code as 
is and violate the DDK rules. We believe we can do this because we are going to ensure 
that no other transport driver looks at these frames. If this becomes a problem we will 
have to modify this code substantially by moving the IP reassembly fields into the mbuf 
header. 

4.5.3.5.3 IP output 

There are only two modifications required for IP output. The first is that since, for the 
moment, we are not dealing with IP options, there is no need for the code that inserts the 
IP options into the IP header. Second, we may discover that it is impossible for us to ever 
receive an output request that requires fragmentation. Since TCP performs Maximum 
Segment Size negotiation, we should theoretically never attempt to send a TCP segment 
larger than the MTU .. 
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• • 4.6 NDIS Protocol Driver 

This section defines protocol driver portion of the ATCP driver. The protocol driver 
portion of the ATCP driver is defined by the set of routines registered with NDIS via a 
call to NdisRegisterProtocol. These routines are limited to those that are called 
(indirectly) by the INIC miniport driver beneath us. For example, we register a 
ProtocolReceivePacket routine so that when the INIC driver calls 
NdisMindicateReceivePacket it will result in a call from NDIS to our driver. Strictly 
speaking, the protocol driver portion of our driver does not include the method by which 
our driver calls down to the miniport (for example, the method by which we send 
network packets). Nevertheless, we will describe that method here for lack of a better 
place to put it. That said, we cover the following topics in this section of the document: 

1. Initialization 
2. Receive 
3. Transmit , 
4. Query/Set Information 
5. Status indications 
6. Reset 
7. Halt 

4.6.1 Initialization 

The protocol driver initialization occurs in two phases. The first phase occurs when the 
ATCP DriverEntry routine calls ATKProtoSetup. The ATKProtoSetup routine performs 
the following: 

1. Allocate resources - We attempt to allocate many of the required resources as soon 
as possible so that we are more likely to get the memory we want. This mostly 
applies to allocating and initializing our mbuf and mbufheader pools. 

2. Register Protocol- We call NdisRegisterProtocol to register our set of protocol 
driver routines. 

3. Locate and initialize bound NICs- We read the Linkage parameters of the registry 
to determine which NIC devices we are bound to. For each of these devices we 
allocate and initialize a IF ACE structure (defined above). We then read the TCP 
parameters out of the registry for each bound device and set the corresponding 
fields in the IF ACE structure. 

After the underlying INIC devices have completed their initialization, NDIS will call our 
driver's ATKBindAdapter function for each underlying device. It will perform the 
following: 

1. Open the device specified in the call the ATKBindAdapter 
2. Find the IF ACE structure that was created in ATKProtoSetup for this device. 
3. Query the mini port for adapter information. This includes such things as link 

speed and MAC address. Save relevant information in the IF ACE structure. 
4. Perform the interface initialization as specified in section 4.5.3.1 Interface 

initialization 
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• • • 4.6.2 Receive 

Receive is handled by the protocol driver routine ATKReceivePacket. Before we 
describe this routine, it is important to consider each possible receive type and how it will 
be handled. 

4.6.2.1 Receive overview 
Our INIC miniport driver will be bound to our transport driver as well as the generic 
Microsoft TCP driver (and possibly others). The ATCP driver will be bound exclusively 
to INIC devices, while the Microsoft TCP driver will be bound to INIC devices as well as 
other types of NICs. This is illustrated below: 

Filter Driver 

ATCP 
Microsoft Driver 
TCPIIP 
Driver 

3COM INIC 
Mini port Mini port 
Driver Driver 

By binding the driver ih this fashion, we can choose to direct incoming network data to 
our own ATCP transport driver, the Microsoft TCP driver, or both. We do this by 
playing with the ethemet "type" field as follows. 

To NDIS and the transport drivers above it, our card is going to be registered as a normal 
ethemet card. When a transport driver receives a packet from our driver, it will expect 
the data to start with an ethemet header, and consequently, expects the protocol type field 
to be in byte offset 12. If Microsoft TCP finds that the protocol type field is not equal to 
either IP, or ARP, it will not accept the packet. So, to deliver an incoming packet to our 
driver, we must simply niap the data such that byte 12 contains a non-recognized ethemet 
type field. Note that we must choose a value that is greater than 1500 bytes so that the 
transport drivers do not confuse it with an 802.3 frame. We must also choose a value that 
will not be accepted by other transport driver such as Appletalk or IPX. Similarly, if we 
want to direct the data to Microsoft TCP, we can then simply leave the ethemet type field 
set to IP (or ARP). Note that since we will also see these frames we can choose to accept 
or not-accept them as necessary. 
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Incoming packets are deliver! follows: • 
Packets delivered to ATCP only (not accepted by MSTCP): 

1. All TCP packets destined for one of our IP addresses. This includes both slow
path frames and fast-path frames. In the slow-path case, the TCP frames are given 
in there entirety (headers included). In the fast-path case, the ATKReceivePacket 
is given a header buffer that contains status information and data with no headers 
(except those above TCP). More on this later. 

Packets delivered to Microsoft TCP only (not accepted by ATCP): 

1. All non-TCP packets. 

2. All packets that are not destined for one of our interfaces (packets that will be 
routed). Continuing the above example, ifthere is an IP address 144.48.252.4 
associated with the 3com interface, and we receive a TCP connect with a 
destination IP address of 144.48.252.4, we will actually want to send that request 
up to the ATCP driver so that we create a fast-path connection for it. This means 
that we will need to know every IP address in the system and filter frames based 
on the destination IP address in a given TCP datagram. This can be done in the 
INIC miniport driver. Since it will be the ATCP driver that learns of dynamic IP 
address changes in the system, we will need a method to notify the INIC miniport 
of all the IP addresses in the system. More on this later. 

Packets delivered to both: 

1. All ARP frames 

2. All ICMP frames 

4.6.2.2 Two types of receive packets 

There are several circumstances in which the INIC will need to indicate extra information 
about a receive packet to the ATCP driver. One such example is a fast path receive in 
which the ATCP driver will need to be notified of how much data the card has buffered. 
To accomplish this, the first (and sometimes only) buffer in a received packet will 
actually be an INIC header buffer. The header buffer contains status information about 
the receive packet, and may or may not contain network data as well. The ATCP driver 
will recognize a header buffer by mapping it to an ethemet frame and inspecting the type 
field found in byte 12. We will indicate all TCP frames destined for us in this fashion, 
while frames that are destined for both our driver and the Microsoft TCP driver (ARP, 
ICMP) will be indicated without a header buffer. 
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• • 
BufferDesc 

TCPPacket 

Example of incoming TCP pkt Example of incoming ARP Frame 

4.6.2.3 NDIS 4 ProtocolReceivePacket operation 

NDIS has been designed such that all packets indicated via NdisMindicateReceivePacket 
by an underlying miniport are delivered to the ProtocolReceivePacket routine for all 
protocol drivers bound to it. These protocol drivers can choose to accept or not accept 
the data. They can either accept the data by copying the data out of the packet indicated 
to it, or alternatively they can keep the packet and return it later via a call to 
NdisRetumPackets. By implementing it in this fashion, NDIS allows more than one 
protocol driver to accept a given packet. For this reason:, when a packet is delivered to a 
protocol driver, the contents of the packet descriptor, buffer descriptors and data must all 
be treated as read-only. At the moment, we intend to violate this rule. We choose to 
violate this because much of the FreeBSD code modifies the packet headers as it 
examines them (mostly for endian conversion purposes). Rather than modify all of the 
FreeBSD code, we will instead ensure that no other transport driver accepts the data by 
making sure that the ethernet type field is unique to us (no one else will want it). 
Obviously this only works with data that is only delivered to our ATCP driver. For ARP 
and ICMP frames we will instead copy the data out of the packet into our own buffer and 
return the packet to NDIS directly. While this is less efficient than keeping the data and 
returning it later, ARP and ICMP traffic should be small enough, and infrequent enough, 
that it doesn't matter. 

The DDK specifies that when a protocol driver chooses to keep a packet, it should return 
a value of 1 (or more) to NDIS in its ProtocolReceivePacket routine. The packet is then 
later returned to NDIS via the call to NdisRetumPackets. This can only happen after the 
ProtocolReceivePacket has returned control to NDIS. This requires that the call to 
NdisRetumPackets must occur in a different execution context. We can accomplish this 
by scheduling a DPC, scheduling a system thread, or scheduling a kernel thread of our 
own. For brevity in this section, we will assume it is a done through a DPC. In any case, 
we will require a queue of pending receive buffers on which to place and fetch receive 
packets. 

After a receive packet is dequeued by the DPC it is then either passed to TCP directly for 
fast-path processing, or it is sent through the FreeBSD path for slow-path processing. 
Note that in the case of slow-path processing, we may be working on data that needs to 
be returned to NDIS (TCP data) or we may be working on our own copy of the data 
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(ARP and ICMP). When we Ish with the data we will need to figur!t whether or 
not to return the data to NDIS or not. This will be done via fields in the mbufheader 
used to map the data. When the mfreem routine is called to free a chain of mbufs, the 
fields in the mbuf will be checked and, if required, the packet descriptor pointed to by the 
mbufwill be returned to NDIS. 

4.6.2.4 Mbuf ~ Packet mapping 

As noted in the section on mbufs above, we will map incoming data to mbufs so that our 
FreeBSD port requires fewer modifications. Depending on the type of data received, this 
mapping will appear differently. Here are some examples: 

Addr 
Packet desc 
... 

mbuf l ... Buffer Desc.__ 
... 

Packet 

~ ~ 

Data 
Next-0 

Buffer 

.. ,.. _. 
Header 
Buffer 

Example A. 
TCP Fast-path 

Addr 
Packetdesc 
. .. 

mbuf 

Buffer Desc 
. .. 

Packet 

Data r Data 
Next Next-0 

Buffer Buffer 

Header \ 
'1111 .. 

buffer Data 
Buffer 

Example B. 
TCP Slow-path 

.. ... 

Addr 
Packet desc - 0 
... 

mbuf 

Data 
Buffer 

Example C. 
ARPFrame 

In Example A, we show incoming data for a TCP fast-path connection. In this example, 
the TCP data is fully contained in the header buffer. The header buffer is mapped by the 
mbuf and sent upstream for fast-path TCP processing. In this case it is required that the 
header buffer be mapped and sent upstream because the fast-path TCP code will need 
information contained in the header buffer in order to perform the processing. When the 
mbuf in this example is freed, the mfreem routine will determine that the mbuf maps a 
packet that is owned by NDIS and will then free the mbufheader only and call 
NdisReturnPackets to free the data. 

In Example B, we show incoming data for a TCP slow-path connection. In this example 
the mbuf points to the start of the TCP data directly instead of the header buffer. Since 
this buffer will be sent up for slow-path FreeBSD processing, we can not have the mbuf 
pointing to a header buffer (FreeBSD would get awfully confused). Again, when mfreem 
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is called to free the mbuf, it ,!iscover the mapped packet, free the !fheader, and 
call NDIS to free the packet and return the underlying buffers. Note that even though we 
do not directly map the header buffer with the mbufwe do not lose it because of the link 
from the packet descriptor. Note also that we could alternatively have the INIC miniport 
driver only pass us the TCP data buffer when it receives a slow-path receive. This would 
work fine except that we have determined that even in the case of slow-path connections 
we are going to attempt to offer some assistance to the host TCP driver (most likely by 
checksum processing only). In this case there may be some special fields that we need to 
pass up to the ATCP driver from the INIC driver. Leaving the header buffer connected 
seems the most logical way to do this. 

Finally, in Example C, we show a received ARP frame. Recall that for incoming ARP 
and ICMP frames we are going to copy the incoming data out ofthe packet and return it 
directly to NDIS. In this case the mbuf simply points to our data, with no corresponding 
packet descriptor. When we free this mbuf, mfreem will discover this and free not only 
the mbufheader, but the data as well. 

4.6.2.5 Other receive packets 

We use this receive mechanism for other purposes besides the reception of network data. 
It is also used as a method of communication between the ATCP driver and the INIC. 
One such example is a TCP context flush from the INIC. When the INIC determines, for 
whatever reason, that it can no longer manage a TCP connection, it must flush that 
connection to the ATCP driver. It will do this by filling in a header buffer with 
appropriate status and delivering it to the INIC driver. The INIC driver will in tum 
deliver it to the protocol driver which will treat it essentially like a fast-path TCP 
connection by mapping the header buffer with an mbufheader and delivering it to TCP 
for fast-path processing. There are two advantages to communicating in this manner. 
First, it is already an established path, so no extra coding or testing is required. Second, 
since a context flush comes in, in the same manner as received frames, it will prevent us 
from getting a slow-path frame before the context has been flushed. 

4.6.2.6 Summary 

Having covered all of the various types of receive data, following are the steps that are 
taken by the ATKProtocolReceivePacket routine. 

l. Map incoming data to an ethemet frame and check the type field. 
2. If the type field contains our custom INIC type then it should be TCP 
3. If the header buffer specifies a fast-path connection, allocate one or more mbufs 

headers to map the header and possibly data buffers. Set the packet descriptor 
field of the mbuf to point to the packet descriptor, set the mbuf flags appropriately, 
queue the mbuf, and return 1. 

4. If the header buffer specifies a slow-path connection, allocate a single mbufheader 
to map the network data, set the mbuf fields to map the packet, queue the mbuf 
and return 1. Note that we design the INIC such that we will never get a TCP 
segment split across more than one buffer. 
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• • 5. If the type field ofthe frame indicates ARP or ICMP 
6. Allocate a mbufwith a data buffer. Copy the contents ofthe packet into the mbuf. 

Queue the mbuf, and return 0 (not accepted). 
7. If the type field is not either the INIC type, ARP or ICMP, we don't want it. 

Return 0. 

The receive processing will continue when the mbufs are dequeued. At the moment this 
is done by a routine called ATK.ProtocoiReceiveDPC. It will do the following: 

1. Dequeue a mbuf from the queue. 
2. Inspect the mbufflags. If the mbufis meant for fast-path TCP, it will call the fast

path routine directly. Otherwise it will call the ethemet input routine for slow-path 
processing. 

4.6.3 Transmit 

In this section we discuss the ATCP transmit path. 

4.6.3.1 NDIS 4 send operation 

The NDIS 4 send operation works as follows. When a transport/protocol driver wishes to 
send one or more packets down to an NDIS 4 miniport driver, it calls NdisSendPackets 
with an array of packet descriptors to send. As soon as this routine is called, the 
transport/protocol driver relinquishes ownership of the packets until they are returned, 
one by one in any order, via a NDIS call to the ProtocolSendComplete routine. Since this 
routine is called asynchronously, our ATCP driver must save any required context into 
the packet descriptor header so that the appropriate resources can be freed. This is 
discussed further in the following sections. 

4.6.3.2 Types of"sends" 

Like the Receive path described above, the transmit path is used not only to send network 
data, but is also used as a communication mechanism between the host and the INIC. 
Here are some examples ofthe types of sends performed by the ATCP driver. 

4.6.3.2.1 Fast-path TCP send 

When the ATCP driver receives a transmit request with an associated MDL, it will 
package up the MDL physical addresses into a command buffer, map the command 
buffer with a buffer and packet descriptor, and call NdisSendPackets with the 
corresponding packet. The underlying INIC driver will issue the command buffer to the 
INIC. When the corresponding response buffer is given back to the host, the INIC 
miniport will call NdisMSendComplete which will result in a call to the ATCP 
ProtocolSendComplete (ATKSendComplete) routine, at which point the resources 
associated with the send can be freed. We will allocate and use a mbuf to hold the 
command buffer. By doing this we can store the context necessary in order to clean up 
afterthe send completes. This context includes a pointer to the MDL and presumably 
some other connection context as well. The other advantage to using a mbuf to hold the 
command buffer is that it eliminates having another special set of code to allocate and 
return command buffer. We will store a pointer to the mbuf in the reserved section of the 
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• • packet descriptor so we can locate it when the send is complete. The following diagram 
illustrates the relationship between the client's MDL, the command buffer, and the buffer 
and packet descriptors. 

Packet mbuf I .. 

----.! ... 
Desc MDL .. ,.. 

... 
_y Command ,....._ 
Buffer Buffer 

"" T ~. ----1111' 
Desc. 

~ 

Data Data Data 

4.6.3.2.2 Fast-path TCP Receive 

As described in section 4.3.1 above, the receive process typically occurs in two phases. 
First the INIC fills in a host receive buffer with a relatively small amount of data, but 
notifies the host of a large amount of pending data (either through a large amount of 
buffered data on the card, or through a large amount of expected NetBios data). This 
small amount of data is delivered to the client through the TDI interface. The client will 
then respond with a MDL in which the data should be placed. Like the Fast-path TCP 
send process, the receive portion of the ATCP driver will then fill in a command buffer 
with the MDL information from the client, map the buffer with packet and buffer 
descriptors and send it to the INIC via a call to NdisSendPackets. Again, when the 
response buffer is returned to the INIC miniport,.the ATKSendComplete routine will be 
called and the receive will complete. This relationship between the MDL, command 
buffer and buffer and packet descriptors are the same as shown in the Fast-path send 
section above. 

4.6.3.2.3 Slow-path (FreeBSD) 

Slow-path sends pass through the FreeBSD stack until the ethemet header is prepended in 
ether:.... output and the packet is ready to be sent. At this point a command buffer will be 
filled with pointers to the ethemet frame, the command buffer will be mapped with a 
packet and buffer descriptor and NdisSendPackets will be called to hand the packet off to 
the miniport. In the illustration below we show the relationship between the mbufs, 
command buffer, and buffer and packet descriptors. Since we will use a mbufto map the 
command buffer, we can simply link the data mbufs directly off of the command buffer 
mbuf. This will make the freeing of resources much simpler. 

Packet 
Desc 

Buffer 
Desc. Data Data Data 
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• • 4.6.3.2.4 Non-data command buffer 

The transmit path is also used to send non-data commands to the card. For example, the 
ATCP driver gives a context to the INIC by filling in a command buffer, mapping it with 
a packet and buffer descriptor, and calling NdisSendPackets . 

... 
Packet 1 mbuf 

Desc _..~ .... 
• Command 

Buffer Buffer 

Desc. 

4.6.3.3 ATKProtocolSendComplete 

Given the above different types of sends, the ATKProtocolSendComplete routine will 
perform various types of actions when it is called from NDIS. First it must examine the 
reserved area of the packet descriptor to determine what type of request has completed. 
In the case of a slow-path completion, it can simply free the mbufs, command buffer, and 
descriptors and return. In the case of a fast-path completion, it will need to notify the 
TCP fast path routines of the completion so TCP can in tum complete the client's IRP. 
Similarly, when a non-data command buffer completes, TCP will again be notified that 
the command sent to the INIC has completed. 

4.7 TDI Filter Driver 

In a first embodiment of the product, the INIC handles only simple-case data transfer 
operations on a TCP connection. (These of course constitute the large majority of CPU 
cycles consumed by TCP processing in a conventional driver.) 

There are many other complexities of the TCP protocol which must still be handled by 
host driver software: connection setup and breakdown, out-of-order data, nonstandard 
flags, etc. 

The NT OS contains a fully functional TCPIIP driver, and one solution would be to 
enhance this so that it is able to detect our INIC and take advantage of it by "handing off" 
data-path processing where appropriate. 

Unfortunately, we do not have access to NT source, let alone permission to modify NT. 
Thus the solution above, while a goal, cannot be done immediately. We instead provide 
our own custom driver software on the host for those parts of TCP processing which are 
not handled by the INIC. 

This presents a challenge. The NT network driver framework does make provision for 
multiple types of protocol driver: but it does not easily allow for multiple instances of 
drivers handling the SAME protocol. 
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For example, there are no "h!' into the 'Microsoft TCPIIP driver~ would allow 
for routing ofiP packets between our driver (handling our INICs) and the Microsoft 
driver (handling other NICs). 

Our approach to this is to retain the Microsoft driver for all non-TCP network processing 
(even for traffic on our INICs), but to invisibly "steal" TCP traffic on our connections and 
handle it via our own (BSD-derived) driver. The Microsoft TCPIIP driver is unaware of 
TCP connections on interfaces we handle. 

The network "bottom end" of this artifice is described earlier in the document. In this 
section we will discuss the "top end": the TDI interface to higher-level NT network client 
software. • 

We make use of an NT facility called a filter driver. NT allows a special type of driver 
("filter driver") to attach itself "on top" of another driver in the system. The NT 1/0 
manager then arranges that all requests directed to the attached driver are sent first to the 
filter driver; this arrangement is invisible to the rest of the system. 

The filter driver may then either handle these requests itself, or pass them down to the 
underlying driver it is attached to. Provided the filter driver completely replicates the 
(externally visible) behavior of the underlying driver when it handles requests itself, the 
existence ofthe filter driver is invisible to higher-level software. 

The filter driver attaches itself on top ofthe Microsoft TCPIIP driver; this gives us the 
basic mechanism whereby we can intercept requests for TCP operations and handle them 
in our driver instead of the Microsoft driver. 

However, while the filter driver concept gives us a framework for what we want to 
achieve, there are some significant technical problems to be solved. The basic issue is 
that setting up a TCP connection involves a sequence of several requests from higher
level software, and it is not always possible to tell, for requests early in this sequence, 
whether the connection should be handled by our driver or by the Microsoft driver. 

Thus for many requests, we store information about the request in case we need it later, 
but also allow the request to be passed down to the Microsoft TCPIIP driver in case the 
connection ultimately turns out to be one which that driver should handle. 

Let us look at this in more detail, which will involve some examination of the TDI 
interface: the NT interface into the top end of NT network protocol drivers. Higher-level 
TDI client software which requires services from a protocol driver proceeds by creating 
various types ofNT FILE_OBJECTs, and then making various DEVICE_IO_CONTROL 
requests on these FILE_ OBJECTs. 

There are two types ofFILE_OBJECT of interest here. Local IP addresses that are 
represented by ADDRESS objects, and TCP connections that are represented by 
CONNECTION objects. The steps involved in setting up a TCP connection (from the 
"active", client, side) are: 
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. . 
(for a CONNECTION object~ • 
1) Create an ADDRESS object. 
2) Create a CONNECTION object. 
3) Issue a TDI ASSOCIATE ADDRESS io-control to associate the CONNECTION - -
object with the ADDRESS object. 
4) Issue a TDI_CONNECT io-control on the CONNECTION object, specifying the 
remote address and port for the connection. 

Initial thoughts were that handling this would be straightforward: we would tell, on the 
basis of the address given when creating the ADDRESS object, whether the connection is 
for one of our interfaces or not. After which, it would be easy to arrange for handling 
entirely by our code, or entirely by the Microsoft code: we would simply examine the 
ADDRESS object to see if it was "one of ours" or not. 

There are two main difficulties, however. 

First, when the CONNECTION object is created, no address is specified: it acquires a 
local address only later when the TDI_ASSOCIATE_ADDRESS is done. Also, when a 
CONNECTION object is created, the caller supplies an opaque ~'context cookie" which 
will be needed for later communications with that caller. Storage of this cookie is the 
responsibility of the protocol driver: it is not directly derivable just by examination of the 
CONNECTION object itself. If we simply passed the "create" call down to the Microsoft 
TCPIIP driver, we would have no way of obtaining this cookie later if it turns out that we 
need to handle the connection. 

Therefore, for every CONNECTION object which is created we allocate a structure to 
keep track of information about it, and store this structure in a hash table keyed by the 
address of the CONNECTION object itself, so that we can locate it if we later need to 
process requests on this object. We refer to this as a "shadow" object: it replicates 
information about the object stored in the Microsoft driver. (We must, of course, also 
pass the create request down to the Microsoft driver too, to allow it to set up its own 
administrative information about the object.) 

A second major difficulty arises with ADDRESS objects. These are often created with 
the TCPIIP "wildcard" address (all zeros); the actual local address is assigned only later 
during connection setup (by the protocol driver itself.) Of course, a "wildcard" address 
does not allow us to determine whether connections that will be associated with this 
ADDRESS object should be handled by our driver or by the Microsoft one. Also, as with 
CONNECTION objects, there is "opaque" data associated with ADDRESS objects that 
cannot be derived just from examination of the object itself. (In this case addresses of 
callback functions set on the object by TDI_SET_EVENT io-controls.) 

Thus, as in the CONNECTION object case, we create a "shadow" object for each 
ADDRESS object which is created with a wildcard address. In this we store information 
(principally addresses of callback functions) which we will need if we are handling 
connections on CONNECTION objects associated with this ADDRESS object. We store 
similar information, of course, for any ADDRESS object which is explicitly for one of 
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~; 

• • our interface addresses; in this case we don't need to also pass the create request down to 
the Microsoft driver. 

With this concept of "shadow" objects in place, let us revisit the steps involved in setting 
up a connection, and look at the processing required in our driver. 

First, the TDI client makes a call to create the ADDRESS object. Assuming that this is a 
"wildcard" address, we create a "shadow" object before passing the call down to the 
Microsoft driver. 

The next step (omitted in the earlier list for brevity) is normally that the client makes a 
number ofTDI SET EVENT io-control calls to associate various callback functions - -
with the ADDRESS object. These are functions that should be called to notify the TDI 
client when certain events (such arrival of data or disconnection requests etc) occur. We 
store these callback function pointers in our "shadow" address object, before passing the 
call down to the Microsoft driver. 

Next, the TDI client makes a call to create a CONNECTION object. Again, we create 
our "shadow" of this object. 

Next, the client issues the TDI_ASSOCIATE_ADDRESS io-control to bind the 
CONNECTION object to the ADDRESS object. We note the association in our 

. "shadow" objects, and also pass the call down to the Microsoft driver. 

Finally the TDI client issues a TDI_ CONNECT io-control on the CONNECTION object, 
specifying the remote IP address (and port) for the desired connection. At this point, we 
examine our routing tables (see section XXX for details of routing) to determine ifthis 
connection should be handled by one of our interfaces, or by some other NIC. If it is 
ours, we mark the CONNECTION object as "one of ours" for future reference (using an 
opaque field which NT FILE_OBJECTS provide for driver use.) We then 
proceed with connection setup and handling in our driver, using information stored in our 
"shadow" objects. The Microsoft driver does not see the connection request or any 
subsequent traffic on the connection. 

If the connection request is NOT for one of our interfaces, we pass it down to the 
Microsoft driver. Note carefully, however, that we can not simply discard our "shadow" 
objects at this point. The TDI interface allows re-use of CONNECTION objects: on 
termination of a connection, it is legal for the TDI client to dissociate the 
CONNECTION object from its current . Thus our "shadow" objects must be retained for 
the lifetime ADDRESS object, re-associate it with another, and use it for another 
connection of the NT FILE_ OBJECTS: the subsequent connection could turn out to be 
via one of our interfaces! 
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. . • • 4. 7.1 Timers 

4. 7 .1.1 Keepalive Timer 

We don't want to implement keepalive timers on the INIC. It would in any case be a 
very poor use of resources to have an INIC context sitting idle for two hours. 

4.7.1.2 Idle Timer 

We will keep an idle timer in the ATCP driver for connections that are managed by the 
INIC (resetting it whenever we see activity on the connection), and cause a flush of 
context back to the host if this timer expires. We may want to make the threshold 
substantially lower than 2 hours, to reclaim INIC context slots for useful work sooner. 
May also want to make that dependent on the number of contexts which have actually 
been handed out: don't need to reclaim them if we haven't handed out the max. 

5 Receive & Transmit Microcode Design 

This section provides a general description of the design of the microcode that 
will execute on two of the sequencers of the Protocol Processor on the INIC. The overall 
philosophy ofthe INIC is discussed in other sections. This section will discuss the INIC 
microcode in detail. 

5.1 Design Overview 

As specified in other sections, the INIC supplies a set of3 custom processors that 
will provide considerable hardware-assist to the microcode running thereon. The 
following lists the main hardware-assist features: 
• header processing with specialized DMA engines to validate an input header and 

generate a context hash, move the header into fast memory and do header 
comparisons on a DRAM-based TCP control block. 

• DRAM fifos for free buffer queues (large & small), receive-frame queues, event 
queues etc. 

• header compare logic 
• checksum generation 
• multiple register contexts with register access controlled by simply setting a context 

register. The Protocol Processor will provide 512 SRAM-based registers to be shared 
among the 3 sequencers. 

• automatic movement of input frames into DRAM buffers from the MAC Fifos. 
• run receive processing on one sequencer and transmit processing on the other. This 

was chosen as opposed to letting both sequencers run receive and transmit. One of the 
main reasons for this is that the header-processing hardware can not be shared and 
interlocks would be needed to do this. Another reason is that interlocks would be 
needed on the resources used exclusively by receive and by transmit. 

• The INIC will support up to 256 TCP connections (TCB's). A TCB is associated with 
an input frame when the frame's source and destination IP addresses and source and 
destination ports match that of the TCB. For speed of access, the TCB's will be 
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• • maintained in a hash table in NIC DRAM to save sequential searching. There will 
however, be an index in hash order in SRAM. Once a hash has been generated, the 
TCB will be cached in SRAM. There will be up to 8 cached TCBs in SRAM. These 
cache locations can be shared between both sequencers so that the sequencer with the 
heavier load will be able to use more cache buffers. There will also be 8 header 
buffers to be shared between the sequencers. Note that each header buffer is not 
statically linked to a specific TCB buffer. In fact the link is dynamic on a per-frame 
basis. The need for this dynamic linking will be explained in later sections. Suffice to 
say here that ifthere is a free header buffer, then somewhere there is also a free TCB 
SRAM buffer. 

• There were 2 basic implementation options considered here. The first was single
stack and the second was a process model. The process model was chosen here 
because the custom processor design is providing zero-cost overhead for context 
switching through the use of a context base register, and because there will be more 
than enough process slots (or contexts) available for the peak load. It is also expected 
that all "local" variables will be held permanently in registers whilst ail event is being 
processed. 

• The features that provide this are: 
256 of the 512 SRAM -based registers will be used for the register contexts. This 
can be divided up into 16 contexts (or processes) of 16 registers each. Then 8 of 
these will be reserved for receive and 8 for transmit. A Little's Law analysis has 
shown that in order to support 512 byte frames at maximum arrival rate of 4 * 100 
Mbits, requires more than 8 jobs to be in process in the NIC. However each job 
requires an SRAM buffer for a TCB context and at present, there are only 8 of 
these currently specified due to SRAM space limits. So more contexts (e.g. 32 * 8 
regs each) do not seem worthwhile. Refer to Appendix A for more details of this 
analysis. 
A context switch simply involves reloading the context base register based on the 
context to be restarted, and jumping to the appropriate address for resumption. 

• To better support the process model chosen, the code will lock an active TCB into an 
SRAM buffer while either sequencer is operating on it. This implies there will be no 
swapping to and from DRAM of a TCB once it is in SRAM and an operation is 
started on it. More specifically, the TCB will not be swapped after requesting that a 
DMA be performed for it. Instead, the system will switch to another active "process". 
Then it will resume the former process at the point directly after where the DMA was 
requested. This constitutes a zero-cost switch as mentioned above. 

• individual TCB state machines will be run from within a "process". There will be a 
state machine for the receive side and one for the transmit side. The current TCB 
states will be stored in the SRAM TCB index table entry. 

• The INIC will have 16 MB of DRAM. The current specification calls for dividing a 
large portion of this into 2K buffers and control allocation I deallocation of these 
buffers through one of the DRAM fifos mentioned above. These fifos will also be 
used to control small host buffers, large host buffers, command buffers and command 
response buffers. 

• For events from one sequencer to the other (i.e. RCV ¢> XMT), the current 
specification calls for using simple SRAM CIO buffers, one for each direction. 

• Each sequencer handles its own timers independently of the others. 
• Contexts will be passed to the INIC through the Transmit command and response 

buffers. INIC-initiated TCB releases will be handled through the Receive small 
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• • • buffers. Host-initiated releases will use the Command buffers. There needs to be strict 
handling of the acquisition and release of contexts to avoid windows where for 
example, a frame is received on a context just after the context was passed to the 
INIC, but before the INIC has "accepted" it. 

• T/TCP (Transaction TCP): the initial INIC will not handle T/TCP connections. This 
is because they are typically used for the HTTP protocol and the client for that 
protocol typically connects, sends a request and disconnects in one segment. The 
server sends the connect confirm, reply and disconnect in his first segment. Then the 
client confirms the disconnect. This is a total of 3 segments for the life of a context. 
Typical data lengths are on the order of 300 bytes from the client and 3K from the 
server. The INIC will provide as good an assist as seems necessary here by 
checksumming the frame and splitting headers and data. The latter is only likely when 
data is forwarded with a request such as when a filled-in form is sent by the client. 

5.1.1 SRAM Requirements 

The following are SRAM requirements for the Receive and Transmit engines: 
TCB buffers 256 bytes * 16 4096 
Header buffers 128 bytes* 16 2048 
TCB hash index 16 bytes* 256 4096 
Timers 128 
DRAM Fifo queues 128 bytes* 16 2048 

~12K bytes 

Depending upon the available space, the number of TCB buffers may be increased to 16. 

5.1.2 General Philosophy 

The basic plan is to have the host determine when a TCP connection is able to be handed 
to the INIC, setup the TCB and pass it to the card via a command in the Transmit queue. 
TCBs that the INIC owns can be handed back to the host via a request from the Receive 
or Transmit sequencers or from the host itself at any time. 

When the INIC receives a frame, one of its immediate tasks is to determine if the frame is 
for a TCB that it controls. If not, the frame is passed to the host on a generic interface 
TCB. On transmit, the transmit request will specify a TCB hash number if the request is 
on a INIC-controlled TCB. Thus the initial state for the INIC will be transparent mode in 
which all received frames·are directly passed through and all transmit requests will be 
simply thrown on the appropriate wire. This state is maintained until the host passes 
TCBs to the INIC to control. Note that frames received for which the INIC has no TCB 
(or it is with the host) will still have the TCP checksum verified ifTCP/IP, and may split 
the TCPIP header off into a separate buffer. 
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• • 5.1.3 Register Usage 

There will be 512 registers available. The first 256 will be used for process contexts. The 
remaining 256 will be split between the 3 sequencers as follows: 
257 - 320: 64 for RCV general processing I main loop. 
321 - 384: 64 for XMT general processing I main loop. 
385-512: 128 for 3rd sequencer use. 

5.2 Receive Processing 

5.2.1 Main Loop 

The following is a summary of the main loop ofReceive: 

forever { 

} 

while there are any Receive events { 
if(anew event) { 

} 

} 

if(no new context available) 
ignore the event; 

call appropriate event handler to service the event; 
this may make a waiting process runnable or set up 
a new process to be run (get free context, hddr buffer, 
TCB buffer, set the context up). 

while any process contexts are runable { 

} 

run them by jumping to the start/resume address; 
if (process complete) 

free the context; 

5.2.2 Receive Events 

The events that will be processed on a given context are: 
• accept a context 
• release a context command (from the host via Transmit) 
• release a context request (from Transmit) 
• receive a valid frame; this will actually become 2 events based on the received frame 
- receive an ACK, receive a segment 
• receive an "invalid" frame i.e. one that causes the TCB to be flushed to the host 
• a valid ACK needs to be sent (delayed ACK timer expiry). 
• There are expected to be the following sources of events: 

1. Receive input queue: it is expected that hardware will automatically DMA arriving 
frames into frame buffers and queue an event into a RCV -event queue. 

2. Timer event queue: expiration of a timer will queue an event into this queue. 
3. Transmit sequencer queue: for requests from the transmit processor. 
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• • For the sake of brevity the following only discusses receive-frame processing. 

5.2.3 Receive Details- Valid Context 

The base for the receive processing done by the INIC on an existing context is the fast
path or "header prediction" code in the FreeBSD release. Thus the processing is divided 
into 3 parts: header validation and checksumming, TCP processing and subsequent SMB 
processing. 

5 .2.3 .1 Header Validation 

There is considerable hardware assist here. The first step in receive processing is to dma 
the frame header into an SRAM header buffer. It is useful for header validation to be 
implemented in conjunction with this dma by scanning the data as it flies by. The 
following tests need to be "passed": 
• MAC header: destination address is our MAC address (not MC or BC too), the 
Ethertype is IP. 
• IP header: header checksum is valid, header length= 5, IP length> header length, 
protocol= TCP, no fragmentation, destination IP is our IP address. 
• TCP header: checksum is valid (incl. pseudo-header), header length= 5 or 8 
(timestamp option), length is valid, dest port= SMB or FTP data, no 
FIN/SYNIURG/PSH!RST bits set, timestamp option is valid if present, segment is in 
sequence, the window size did not change, this is not a retransmission, it is a pure ACK 
or a pure receive segment, and most important, a valid context exists. The valid-context 
test is non-trivial in the amount of work involved to determine it. Also note that for pure 
ACKs, the window-size test will be relaxed. This is because initially the output PERSIST 
state is to be handled on the INIC. 
Many but perhaps not all of these tests will be performed in hardware - depending upon 
the embodiment 

5.2.3.2 TCP Processing 

Once a frame has passed the header validation tests, processing splits based on whether 
the frame is a pure ACK or a pure received segment. 

5.2.3.2.1 Pure RCV Packet 

The design is to split off headers into a small header buffer and pass the aligned data in 
separate large buffers. Since a frame has been received, eventually some receiver process 
on the host will need to be informed. In the case ofFTP, the frame is pure data and it is 
passed to the host immediately. This involves getting large buffers and dmaing the data 
into them, then setting the appropriate details in a small buffer that is used to notify the 
host. However for SMB, the INIC is performing reassembly of data when the frame 
consists of headers and data. So there may not yet be a complete SMB to pass to the host. 
In this case, a small buffer will be acquired and the header moved into it. If the received 
segment completes an SMB, then the procedures are pretty much as for FTP. If it does 
not, then the scheme is to at least move the received data (not the headers) to the host to 
free the INIC buffers and to save latency. The list of in-progress host buffers is 
maintained in the TCB and moved to the header buffer when the SMB is complete. 
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• • The final part of pure-receive processing is to fire off the delayed ACK timer for this 
segment. 

5.2.3.2.2 Pure ACK 

Pure ACK processing implies this TCB is the sender, so there may be transmit buffers 
that can be returned to the host. If so, send an event to the Transmit processor (or do the 
processing here). Ifthere is more output available, send an event to the transmit 
processor. Then appropriate actions need to be taken with the retransmission timer. 

5.2.3.3 SMB Processing 
The following is the format of the SMB header of an SMB frame: 

31 
NetBIOS header 

TYPE FLAGS ~ LENGTH -7 

SMB header OxFF "S" "M" "B" 

COM RCLS REH ERR ... 

.... ERR REB/FLG Reserved 

Rese tved 

Rese "Ved 

Rese ved 

TID PID 

UID MID 

WCT VWV[] 

BCC Data ......... . 

Notes (interesting fields): 
LENGTH 17 bit Length ofSMB message (0- 128K) 
COM SMB command 
WCT Count (16 bit) of parameter words in VWV[] 
VWV Variable number of parameter words 
BCC Bytes of data following 

0 
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• • 
The LENGTH field of the NetBIOS header will be used to determine when a complete 
SMB has been received and the header buffer with appropriate details can be posted to 
the host. 
The interesting commands are the write commands: SMBwrite (OxB), SMBwriteBraw 
(OxlD), SMBwriteBmpx (OxlE), SMBwriteBs (OxlF), SMBwriteclose (Ox2C), 
SMBwriteX (Ox2F), SMBwriteunlock (Ox14). These are interesting because they will 
have data to be aligned in host memory. The point to note about these commands is that 
they each have a different WCT field, so that the start offset of the data depends on the 
command type. SMB processing will thus need to be cognizant of these types. 

5.2.4 Receive Details- No Valid Context 

The design here is to provide as much assist as possible. Frames will be checksummed 
and the TCPIP headers may be split off. 

5.2.5 Receive Notes 

1. PRU _ RCVD or the equivalent in Microsoft language: the host application has to 
tell the INIC when he has accepted the received data that has been queued. This is 
so that the INIC can update the receive window. It is an advantage for this 
mechanism to be efficient. This may be accomplished by piggybacking these on 
transmit requests (not necessarily for the same TCB). 

2. Keepalive Timer: for a INIC-controlled TCB, the INIC will not maintain this 
timer. This leaves the host with the job of determining that the TCB is still active. 

3. Timestamp option: it is useful to support this option in the fast path because the 
BSD implementation does. Also, it can be very helpful in getting a much better 
estimate of the round-trip time (RTT) which TCP needs to use. 

4. Idle timer: the INIC will not maintain this timer (see Note 2 above). 
5. Frame with no valid context: The INIC may split TCP/IP headers into a separate 

header buffer. 
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• 5.3 Transmit Processing 

5.3.1 Main Loop. 

The following is a summary of the main loop ofTransmit: 

forever { 

} 

while there are any Transmit events { 
if(anew event) { 

} 

} 

if (no new context available) 
ignore the event; 

call appropriate event handler to service the event; 
this may make a waiting process runnable or set up 
a new process to be run (get free context, hddr buffer, 
TCB buffer, set the context up). 

while any process contexts are runable { 

} 

run them by jumping to the start/resume address; 
if (process complete) 

free the context; 

5.3.2 Transmit Events 

• 

The events that will be processed on a given context and their sources are: 
• accept a context (from the Host). 
• release a context command (from the Host). 
• release a context command (from Receive). 
• valid send request and window> 0 (from host or RCV sequencer) . 
• valid send request and window= 0 (from host or RCV sequencer). 
• send a window update (host has accepted data). 
• persist timer expiration (persist timer). 
• context-release event e.g. window shrank (XMT processing or retransmission timer). 
• receive-release request ACK( from RCV sequencer). 

5.3.3 Transmit Details- Valid Context 

The following is an overview of the transmit flow: 

The host posts a transmit request to the INIC by filling in a command buffer with 
appropriate data pointers etc and posting it to the INIC via the Command Buffer Address 
register. Note that there is one host command buffer queue, but there are 4 physical 
transmit lines. So each request needs to include an interface number as well as the context 
number. The INIC microcode will dma the command in and place it in 1 of 4 internal 
command queues which the transmit sequencer will work on. This is so that transmit 
processing can round-robin service these 4 queues to keep all4 interfaces busy, and not 
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• • let a highly-active interface lock out the others (which would happen with a single 
queue). 
The transmit request may be a segment that is less than the MSS, or it may be as much as 
a full 64K SMB READ. Obviously the former request will go out as one segment, the 
latter as a number of MSS-sized segments. The transmitting TCB must hold on to the 
request until all data in it has been transmitted and acked. Appropriate pointers to do this 
will be kept in the TCB. A large buffer is acquired from the free buffer fifo, and the MAC 
and TCP/IP headers are created in it. It may be quicker/simpler to keep a basic frame 
header set up in the TCB and either dma directly this into the frame each time. Then data 
is dmad from host memory into the frame to create an MSS-sized segment. This dma also 
checksums the data. Then the checksum is adjusted for the pseudo-header and placed into 
the TCP header, and the frame is queued to the MAC transmit interface which may be 
controlled by the third sequencer. The final step is to update various window fields etc in 
the TCB. Eventually either the entire request will have been sent and acked, or a 
retransmission timer will expire in which case the context is flushed to the host. In either 
case, the INIC will place a command response in the Response queue containing the 
command buffer handle from the original transmit command and appropriate status. 
The above discussion has dealt how an actual transmit occurs. However the real 
challenge in the transmit processor is to determine whether it is appropriate to transmit at 
the time a transmit request arrives. There are many reasons not to transmit: the receiver's 
window size is <= 0, the Persist timer has expired, the amount to send is less than a full 
segment and an ACK is expected I outstanding, the receiver's window is not half-open 
etc. Much of the transmit processing will be in determining these conditions. 

5.3.4 Transmit Details- No Valid Context 

The main difference between this and a context-based transmit is that the queued request 
here will already have the appropriate MAC and TCP/IP (or whatever) headers in the 
frame to be output. Also the request is guaranteed not to be greater than MSS-sized in 
length. So the processing is fairly simple. A large buffer is acquired and the frame is 
dmad into it, at which time the checksum is also calculated. If the frame is TCPIIP, the 
checksum will be appropriately adjusted if necessary (pseudo-header etc) and placed in 
the TCP header. The frame is then queued to the appropriate MAC transmit interface. 
Then the command is immediately responded to with appropriate status through the 
Response queue. 

5.3.5 Transmit Notes 

1. Slow-start: the INIC will handle the slow-start algorithm that is now a part of the 
TCP standard. This obviates waiting until the connection is sending a full-rate 
before passing it to the INIC. 

2. Window Probe vs Window Update: an explanation for posterity .... 
A Window Probe is sent from the sending TCB to the receiving TCB, and it means the 
sender has the receiver in PERSIST state. Persist state is entered when the receiver 
advertises a zero window. It is thus the state of the transmitting TCB. In this state, he 
sends periodic window probes to the receiver in case an ACK from the receiver has been 
lost. The receiver will return his latest window size in the ACK. 
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A Window Update is sent from the receiving TCB to the sending TCB, usually to tell him 
that the receiving window has altered. It is mostly triggered by the upper layer when it 
accepts some data. This probably means the sending TCB is viewing the receiving TCB 
as being in PERSIST state. 

3. Persist state: it is designed to handle Persist state on the INIC. It seems 
unreasonable to throw a TCB back to the host just because its receiver advertised a 
zero window. This would normally be a transient situation, and would tend to 
happen mostly with clients that do not support slow-start. Alternatively, the code 
can easily be changed to throw the TCB back to the host as soon as a receiver 
advertises a zero window. 

4. MSS-sized frames: the INIC code will expect all transmit requests for which it has 
no TCB to not be greater than the MSS. If any request is, it will be dropped and an 
appropriate response status posted. 

5. Silly Window avoidance: as a receiver, the INIC will do the right thing here and 
not advertise small windows- this is easy. However it is necessary to also do 
things to avoid this as a sender, for the cases where a stupid client does advertise 
small windows. Without getting into too much detail here, the mechanism requires 
the INIC code to calculate the largest window advertisement ever advertised by the 
other end. It is an attempt to guess the size of the other end's receive buffer and 
assumes the other end never reduces the size of its receive buffer. See Stevens Vol. 
1 pp. 325-326. 

6 The Utility Processor 

6.1 Summary 

The following is a summary of the main functions of the utility sequencer of the 
microprocessor: 

• look at the event queues: Event13Type & Event23Type (we assume there will be an 
event status bit for this- USE_EV13 and USE_EV23) in the events register; these 
are events from sequencers 1 and 2; they will mainly be XMIT requests from the XMT 
sequencer. Dequeue request and place the frame on the appropriate interface. 
• RCV-frame support: in the model, RCV is done through VinicReceive() which is 
registered by the lower-edge driver, and is called at dispatch-level. This routine calls 
VinicTransferDataComplete() to check if the xfer (possibly DMA) of the frame into host 
buffers is complete. The latter rtne is also called at dispatch level on a DMA-completion 
interrupt. It queues complete buffers to the RCV sequencer via the normal queue 
mechanism. 
• Other processes may also be employed here for supporting the RCV sequencer. 
• service the following registers: (this will probably involve micro-interrupts) 

· Header Buffer Address register: 
buffers are 256 bytes long on 256-byte boundaries. 
31-8 - physical addr in host of a set of 

contiguous hddr buffers 
7-0 -number ofhddr buffers passed. 
Use contents to add to SmallHType queue 
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Data Buffer Handle ~a Buffer Address registers: • 
buffers are 4K long aligned on 4K boundaries ... 
Use contents to add to the FreeType queue. 

Command Buffer Address register: 
buffers are multiple of 32 bytes up to 1K long (2**5 * 32) 
31-5 - physical addr in host of cmd buffer 
4-0 - length of cmd in bytes/32 

(i.e. multiples of 32 bytes) 
Points to host cmd; get FreeSType buffer and move 
command into it; queue to Xmit0-Xmit3Type queues. 

Response Buffer Address register: 
buffers are 32 bytes long on 32-byte boundaries 
31-8 - physical addr in host of a set of 

contiguous resp buffers 
7-0 - number of resp buffers passed. 
Use contents to add to the Response Type queue. 

• low buffer threshold support: set approp bits in the ISR when the available-buffers 
count in the various queues filled by the host falls below a threshold. 

6.2 Further Operations of the Utility Processor 

The utility processor of the microprocessor housed on the INIC is responsible for setting 
up and implementing all configuration space and memory mapped operations, and also as 
described below, for managing the debug interface. 

All data transfers, and other INIC initiated transfers will be done via DMA. 
Configuration space for both the network processor function and the utility processor 
function will define a single memory space for each. This memory space will define the 
basic communication structure for the host. In general, writing to one of these memory 
locations will perform a request for service from the INIC. This is detailed in the 
memory description for each function. This section defines much of the operation of the 
Host interface, but should be read in conjunction with the Host Interface Strategy for the 
Alacritech INIC to fully define the Host/INIC interface. 

Two registers, DMA hardware and an interrupt function comprise the INIC interface to 
the Host through PCI. The interrupt function is implemented via a four bit register 
(PCI _ INT) tied to the PCI interrupt lines. This register is directly accessed by the 
microprocessor. 

THE MICROPROCESSOR uses two registers, the PCI_Data_Reg and the 
PCI _Address_ Reg, to enable the Host to access Configuration Space and the memory 
space allocated to the INIC. These registers are not available to the Host, but are used by 
THE MICROPROCESSOR to enable Host reads and writes. The function of these two 
registers is as follows. 
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PCI _Data_ Reg • • 
This register can be both read and written by THE MICROPROCESSOR. ·On write 
operations from the host, this register contains the data being sent from the host. On read 
operations, this register contains the data to be sent to the host. 

PCI _Address_ Reg 

This is the control register for memory reads and writes from the host. The structure of 
the register is as follows: 

Bit 31 - 24 Byte enable 7- 0. Only the low order four bits are 
valid for 32 bit addressing mode. 

Bit 23 - 0 Memory access 
1 Configuration access 

Bit 22 - 0 Read (to Host) 
1 Write (from Host) 

1 Bit 21- 1 Data Valid 

Bit 20 - 16 Reserved 
Bit 15- 0 Address 

During a write operation from the Host the PCI_Data_Reg contains valid data after Data 
Valid is set in the PCI _Address_ Reg. Both registers are locked until THE 
MICROPROCESSOR writes the PCI_Data_Reg, which resets Data Valid. 

All read operations will be direct from SRAM. Memory space based reads will return 00. 
Configuration space reads will be mapped as follows: 

· Configuration Space 1 
00 

SRAM Address Offset 
00 

04 
08 
oc 
10 
3C 

· Configuration Space 2 

00 
04 
08 
oc 
10 
3C 

All other reads to configuration space will return 00. 
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08 
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6.2.1 CONFIGURATION IcE • 
The INIC is implemented as a multi-function device. The first device is the network 
controller, and the second device is the debug interface. An alternative production 
embodiment may implement only the network controller function. Both configuration 
space headers will be the same, except for the differences noted in the following 
description. 

Vendor ID- This field will contain the Alacritech Vendor ID. One field will be used for 
both functions. The Alacritech Vendor ID is hex 139A. 

Device ID - Chosen at Alacritech on a device specific basis. One field will be used for 
both functions. 

Command- Initialized to 00. All bits defined below as not enabled (0) will remain 0. 
Those that are enabled will be set to 0 or 1 depending on the state of the system. Each 
function (network and debug) will have its own command field. 

Bit 0 - 0 1/0 accesses are not enabled 
Bit 1 - 1 Memory accesses are enabled 
Bit 2- 1 Bus master is enabled 
Bit 3 - 0 Special Cycle is not enabled 
Bit 4 - 1 Memory Write and Invalidate is enabled 
Bit 5-0 VGA palette snooping is not enabled 
Bit 6 - 1 Parity checking is enabled 
Bit 7 - 0 Address data stepping is not enabled 
Bit 8 - SERR# is enabled 
Bit 9- 0 Fast back to back is not enabled 

Status - This is not initialized to zero. Each function will have its own field. The 
configuration is as follows: 

Bit 5-1 66 MHz capable is enabled. This bit will be set if the INIC 
Detects the system running at 66 MHz on reset 

Bit 6- 0 User Definable Features is not enabled 
Bit 7- 1 Fast Back-to-Back slave transfers enabled 
Bit 8 - 1 Parity Error enabled- This bit is initialized to 0 
Bit 9,10-00- Fast device select will be set if we are at 33 MHz 

01- Medium device select will be set if we are at 

Bit 11- 1 
Bit 12-1 
Bit 13- 1 
Bit 14- 1 
Bit 15-1 

66MHz 
Target Abort is implemented. Initialized to 0. 
Target Abort is implemented. Initialized to 0. 
Master Abort is implemented. Initialized to 0. 

· SERR# is implemented. Initialized to 0. 
Parity error is implemented. Initialized to 0. 

Revision ID - The revision field will be shared by both functions. 

Class Code- This is 02 00 00 for the network controller, and for the debug interface. 
The field will be shared. 
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Cache Line Size- This is initized to zero. Supported sizes are 16, !4 and 128 
bytes. This hardware register is replicated in SRAM and supported separately for each 
function, but THE MICROPROCESSOR will implement the value set in Configuration 
Space 1 (the network processor). 

Latency Timer- This is initialized to zero. The function is supported. This hardware 
register is replicated in SRAM. Each function is supported separately, but THE 
MICROPROCESSOR will implement the value set in Configuration Space 1 (the 
network processor). 

Header Type- This is set to 80 for both functions, but will be supported separately. 

BIST - Is implemented. In addition to responding to a request to run self test, if test after 
reset fails, a code will be set in the BIST register. This will be implemented separately 
for each function. 

Base Address Register- A single base address register is implemented for each function. 
It is 64 bits in length, and the bottom four bits are configured as follows: 

Bit 0 - 0 Indicates memory base address 
Bit 1,2 - 00 Locate base address anywhere in 32 bit memory space 
Bit 3 - 1 Memory is prefetchable 

CardBus CIS Pointer- Not implemented-initialized to 0. 

Subsystem Vendor ID -Not implemented-initialized to 0. 

Subsystem ID -Not implemented-initialized to 0. 

Expansion ROM Base Address -Not implemented-initialized to 0. 

Interrupt Line - Implemented-initialized to 0. This is implemented separately for each 
function . 

Interrupt Pin- This is set to 01, corresponding to INTA# for the network controller, and 
02, corresponding to INTB# for the debug interface. This is implemented separately for 
each function. 

Min_ Gnt- This can be set at a value in the range of 10, to allow reasonably long bursts 
on the bus. This is implemented separately for each function. 

Max_ Lat - This can be set to 0 to indicate no particular requirement for frequency of 
access to PCI. This is implemented separately for each function. 

6.2.2 MEMORY SPACE 

Because each of the following functions may or may not reside in a single location, and 
may or may not need to be in SRAM at all, the address for each is really only used as an 
identifier (label). There is, therefore, no control block anywhere in memory that 
represents this memory space. When the host writes one of these registers, the utility 
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processor will construct the .~required and transfer it. Reads to th!emory will 
generate 00 for data. 

6.2.2.1 ~etvvorkProcessor 

The following four byte registers, beginning at location hOO of the netvvork processor's 
allocated memory, are defined. 

00-

04-

Interrupt Status Pointer -- Initialized by the host to point to a four byte area 
where status is stored 
Interrupt Status - Returned status from host. Sent after one or more 
status conditions have been reset. Also an interlock for storing any 
new status. Once status has been stored at the Interrupt Status Pointer 
location, no new status will be stored until the host writes the Interrupt 
Status Register. ~ew status will be ored with any remaining 
uncleared status (as defined by the contents of the returned status) 
and stored again at the Interrupt Status Pointer location. Bits are 
as follows: 
Bit 31 -ERR -- Error bits are set 
Bit 30 - RCV - Receive has occurred 
Bit 29 - XMT - Transmit command complete 
Bit 25 - RMISS -Receive drop occurred due to no buffers 

08 - Interrupt Mask - Written by the host. Interrupts are masked for each 
of the bits in the interrupt status when the same bit in the mask 
register is set. When the Interrupt Mask register is written and as 
a result a status bit is unmasked, an interrupt is generated. Also, 
when the Interrupt Status Register is written, enabling new status 
to be stored, when it is stored if a bit is stored that is not masked 
by the Interrupt Mask, an interrupt is generated. 

OC - Header Buffer Address - Written by host to pass a set of header buffers to the 
ooc. 

10- Data Buffer Handle- First register to be written by the Host to transfer a receive 
data buffer to the OOC. This data is Host reference data. It is not used by the 
OOC, it is returned with the data buffer. However, to insure integrity of the 
buffer, this register must be interlocked with the Data Buffer Address register. 
Once the Data Buffer Address register has been written, neither register can be 
written until after the Data Buffer Handle register has been read by THE 
MICROPROCESSOR. 

14- Data Buffer Address- Pointer to the data buffer being sent to the OOC by the 
Host. Must be interlocked with the Data Buffer Handle 
register. 

18 - Command Buffer Address XMTO -Pointer to a set of command 
buffers sent by the Host. THE MICROPROCESSOR will DMA the buffers to 
local DRAM found on the FreeSType queue and queue the Command 

Provisional Pat. App. of Alacritech, Inc. 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 

63 

Alacritech, Ex. 2019 Page 197



:=::qr 
~~t 

':; : 

Buffer Address XMT~th the local address replacing the ho, 
Address. 

1 C - Command Buffer Address SMT 1 

20 - Command Buffer Address SMT2 

24 - Command Buffer Address SMT3. 

28 - Response Buffer Address -- Pointer to a set of response buffers sent 
by the Host. These will be treated in the same fashion as the 
Command Buffer Address registers. 

6.2.2.2 Utility Processor 

Ending status will be handled by the utility processor in the same fashion as it is handled 
by the network processor. At present two ending status conditions are defined B31 -
command complete, and B30- error. When end status is stored an interrupt is 
generated. 

Two additional registers are defined, Command Pointer and Data Pointer. The Host is 
responsible for insuring that the Data Pointer is valid and points to sufficient memory 
before storing a command pointer. Storing a command pointer initiates command decode 
and execution by the debug processor. The Host must not modify either command or 
Data Pointer until ending status has been received, at which point a new command may 
be initiated. Memory space is write only by the Host, reads will receive 00. The format 
is as follows: 

00- Interrupt Status Pointer -- Initialized by the host to point to a four byte area 
where status is stored 

04 - Interrupt Status - Returned status from host. Sent after one or more 
status con'ditions have been reset. Also an interlock for storing any 
new status. Once status has been stored at the Interrupt Status Pointer 
location, no new status will be stored until the host writes the Interrupt 
Status Register. New status will be ored with any remaining 
uncleared status (as defined by the contents of the returned status) 
and stored again at the Interrupt Status Pointer location. Bits are 
as follows: · 
Bit 31 - CC -Command Complete 
Bit 30 - ERR -- Error 
Bit29 - Transmit Processor Halted 
Bit28 - Receive Processor Halted 
Bit27- Utility Processor Halted 

08 - Interrupt Mask- Written by the host. Interrupts are masked for each 
of the bits in the interrupt status when the same bit in the mask 
register is set. When the Interrupt Mask register is written and as 
a result a status bit is unmasked, an interrupt is generated. Also, 
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when the Interrupt St! Register is written, enabling new st! 
to be stored, when it is stored if a bit is stored that is not masked 
by the Interrupt Mask, an interrupt is generated. 

OC - Command Pointer- Points to command to be executed. Storing 
this pointer initiates command decode and execution. 

10 - Data Pointer- Points to the data buffer. This is used for both read and write data, 
determined by the command function. 

7 Debug Interface 

In order to provide a mechanism to debug the microcode running on the microprocessor 
sequencers, a debug process has been defined which will run on the utility sequencer. 
This processor will interface with a control program on the host processor over PCI. 

7.1 PCI Interface 

This interface is defined in the combination of the Utility Processor and the Host 
Interface Strategy sections, above. 

7.2 Command Format 

The first byte of the command, the command byte, defines the structure of the remainder 
of the command. The first five bits of the command byte are the command itself. The 
next bit is used to specify an alternate processor, and the last two bits specify which 
processors are intended for the command. 

7.2.1 Command Byte 

7-3 
Command 

7.2.2 Processor Bits 

00 - Any Processor 
01- Transmit Processor 
10 - Receive Processor 
11 -Utility Processor 

2 
Alt. Proc. 
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• • 7 .2.3 Alternate Processor 

This bit defines which processor should handle debug processing if the utility processor 
is defined as the processor in debug. 

0- Transmit Processor 
1 -Receive Processor 

7 .2.4 Single Byte Commands 

00-Halt 

This command asynchronously halts the processor. 

08-Run 

This command starts the processor. 

10- Step 

This command steps the processor. 

7.2.5 Eight Byte Commands 

18- Break 

0 
Command 

1 
Reserved 

2-3 
Count 

4-7 
Address 

This command sets a stop at the specified address. A count of 1 causes the specified 
processor to halt the first time it executes the instruction. A count of2 or more causes the 
processor to halt after that number of executions. The processor is halted just before 
executing the instruction. A count of 0 does not halt the processor, but causes a sync 
signal to be generated. If a second processor is set to the same break address, the count 
data from the first break request is used, and each time either processor executes the 
instruction the count is decremented. 

20 -Reset Break 

0 
Command 

1-3 
Reserved 
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.. 
This command resets a previ!y set break point at the specified ad.! Reset break 
fully resets that address. If multiple processors were set to that break point, all will be 
reset. 

28-Dump 

0 
Command 

1 
Descriptor 

2-3 
Count 

4-7 
Address 

This command transfers to the host the contents ofthe descriptor. For descriptors larger 
than four bytes, a count, in four byte increments is specified. For descriptors utilizing an 
address the address field is specified. 

7.2.6 Descriptor 

00 - Register 

This descriptor uses both count and address fields. Both fields are four byte based (a 
count of 1 transfers four bytes). 

01- Sram 

This descriptor uses both count and address fields. Count is in four byte blocks. Address 
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned 
address. 

02-Dram 

This descriptor uses both count and address fields. Count is in four byte blocks. Address 
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned 
address 

03 -Cstore 

This descriptor uses both count and address fields. Count is in four byte blocks. Address 
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned 
address 

Stand-alone descriptors: 

The following descriptors do not use either the count or address fields. They transfer the 
contents of the referenced register. 

04-CPU STATUS 

05-PC 
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06-ADDR_REGA. 

07- ADDR REGB 

08-RAM BASE 

09 -FILE BASE 

OA- INSTR REG L - -

OB - INSTR _REG_ H 

OC-MAC DATA 

OD - DMA EVENT 

OE- MISC EVENT 

OF-Q_IN_RDY 

10-Q_OUT_RDY 

11-LOCKSTATUS 

12- STACK- This returns 12 bytes 

13- Sense_ Reg 

• 

This register contains four bytes of data. If error status is posted for a command, if the 
next command that is issued reads this register, a code describing the error in more detail 
may be obtained. If any command other than a dump of this register is issued after error 
status, sense information will be reset. 

30-Load 

0 
Command 

1 
Descriptor 

2-3 
Count 

4-7 
Address 

This command transfers from the host the contents of the descriptor. For descriptors 
larger than four bytes, a count, in four byte increments is specified. For descriptors 
utilizing an address the address field is specified. 

7.2.7 Descriptor 

00 - Register 

This descriptor uses both count and address fields. Both fields are four byte based. 

Provisional Pat. App. of Alacritech, Inc. 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 

68 

Alacritech, Ex. 2019 Page 202



01-Sram • • 
This descriptor uses both count and address fields. Count is in four byte blocks. Address 
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned 
address. 

02-Dram 

This descriptor uses both count and address fields. Count is in four byte blocks. Address 
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned 
address 

03- Cstore 

This descriptor uses both count and address fields. Count is in four byte blocks. Address 
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned 
address. This applies to WCS only. 

Stand-alone descriptors: 

The following descriptors do not use either the count or address fields. They transfer the 
contents of the referenced register. 

04- ADDR REGA 

05 - ADDR REGB 

06- RAM_BASE 

07- FILE_ BASE 

08-MAC DATA 

09- Q_IN_RDY 

OA-Q_OUT_RDY 

OB-DBG ADDR 

38 -Map 

This command allows an instruction in ROM to be replaced by an instruction in WCS. 
The new instruction will be located in the Host buffer. It will be stored in the first eight 
bytes of the buffer, with the high bits unused. To reset a mapped out instruction, map it 
to location 00. 

0 
Command 

1-3 
Address to 

Map To 
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• • 8 HARDWARE SPECIFICATION 

FEATURES 

• Peripheral Component Interconnect (PCI) Interface 

- Universal PCI interface supports both 5.0V and 3.3V signaling environments. 

- Supports both 32-bit and 64 bit PCI interface. 

- Supports PCI clock frequencies from 15MHz to 66MHz 

- High performance bus mastering architecture. 

- Host memory based communications reduce register accesses. 

- Host memory based interrupt status word reduces register reads. 

- Plug and Play compatible. 

- PCI specification revision 2.1 compliant. 

- PCI bursts up to 512 bytes. 

-Supports cache line operations up to 128 bytes. 

-Both big-endian and little-endian byte alignments supported. 

-Supports Expansion ROM. 

• Network Interface 

-Four internal 802.3 and ethernet compliant Macs. 

-Media Independent Interface (Mil) supports external PHYs. 

- IOBASE-T, lOOBASE-TX/FX and 100BASE-T4 supported. 

- Full and half-duplex modes supported. 

-Automatic PHY status polling notifies system of status change. 

- Provides SNMP statistics counters. 

-Supports broadcast and multicast packets. 

- Provides promiscuous mode for network monitoring or multiple unicast address detection. 

-Supports "huge packets" up to 32KB. 

- Mac-layer loop-back test mode. 

-Supports auto-negotiating Phys. 
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• • • Memory Interface 

- External Dram buffering of transmit and receive packets. 

- Buffering configurable as 4MB, 8MB, 16MB or 32MB. 

- 32-bit interface supports throughput of 224MB/s 

-Supports external FLASH ROM up to 4MB, for diskless boot applications. 

- Supports external serial EEPROM for custom configuration and Mac addresses. 

• Protocol Processor 

- High speed, custom, 32-bit processor executes 66 million instructions per second. 

-Processes IP, TCP and NETBIOS protocols. 

-Supports up to 256 resident TCP/IP contexts. 

-Writable control store (WCS) allows field updates for feature enhancements. 

• Power 

- 3.3V chip operation. 

- PCI controlled 5.0V/3.3V I/0 cell operation. 

• Packaging 

- 272-pin plastic ball grid array. 

- 91 PCI signals. 

- 68 Mil signals. 

- 58 external memory signals. 

- 1 clock signal. 

- 54 signals split between power and ground. 

- 272 total pins. 
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• • GENERAL DESCRIPTION 

The microprocessor is a 32-bit, full-duplex, four channel, 101100-Megabit per second (Mbps), Intelligent 
Network Interface Controller, designed to provide high-speed protocol processing for server applications. It 
combines the functions of a standard network interface controller and a protocol processor within a single 
chip. Although designed specifically for server applications, The microprocessor can be used by PCs, 
workstations and routers or anywhere that TCP/IP protocols are being utilized. 

When combined with four 802.3/MII compliant Phys and Synchronous Dram (SDram), the INIC comprises 
four complete ethernet nodes. It contains four 802.3/ethernet compliant Macs, a PCI Bus Interface Unit (BIU), 
a memory controller, transmit fifos, receive fifos and a custom TCP/IP/NETBIOS protocol processor. The 
INIC supports lOBase-T, 100Base-TX, lOOBase-FX and 100Base-T4 via the Mil interface attachment of 
appropriate Phys. 

The INIC Macs provide statistical information that may be used for SNMP. The Macs operate in promiscuous 
mode allowing the INIC to function as a network monitor, receive broadcast and multicast packets and 
implement multiple Mac addresses for each node. 

Any 802.3/MII compliant PHY can be utilized, allowing the INIC to support 10BASE-T, 10BASE-T2, 
lOOBASE-TX, 100Base-FX and 100BASE-T4 as well as future interface standards. PHY identification and 
initialization is accomplished through host driver initialization routines. PHY status registers can be polled 
continuously by the INIC and detected PHY status changes reported to the host driver. The Mac can be 
configured to support a maximum frame size of 1518 bytes or 32768 bytes. 

The 64-bit, multiplexed BIU provides a direct interface to the PCI bus for both slave and master functions. 
The INIC is capable of operating in either a 64-bit or 32-bit PCI environment, while supporting 64-bit 
addressing in either configuration. PCI bus frequencies up to 66MHz are supported yielding instantaneous bus 
transfer rates of 533MB/s. Both 5.0V and 3.3V signaling environments can be utilized by the INIC. 
Configurable cache-line size up to 256B will accommodate future architectures, and Expansion ROM/Flash 
support allows for diskless system booting. Non-PC applications are supported via programmable big and little 
endian modes. Host based communication has been utilized to provide the best system performance possible. 

The INIC supports Plug-N-Play auto-configuration through the PCI configuration space. External pull-up and 
pull-down resistors, on the memory 110 pins, allow selection of various features during chip reset .. Support of 
an external eeprom allows for local storage of configuration information such as Mac addresses. 

External SDram provides frame buffering, which is configurable as 4MB, 8MB, 16MB or 32MB using the 
appropriate SIMMs. Use of -10 speed grades yields an external buffer bandwidth of 224MB/s. The buffer 
provides temporary storage of both incoming and outgoing frames. The protocol processor accesses the frames 
within the buffer in order to implement TCP/IP and NETBIOS. Incoming frames are processed, assembled 
then transferred to host memory under the control of the protocol processor. For transmit, data is moved from 
host memory to buffers where various headers are created before being transmitted out via the Mac. 
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• • BLOCK DIAGRAM 
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OUTLINE • 
• Cores/Cells 

LSI Logic Ethernet-110 Core, lOOBase & lOBase Mac with Mil interface. 

LSI Logic single port Sram, triple port Sram and ROM available. 

LSI Logic PCI 66MHz, 5V compatible 1/0 cell. 

LSI Logic PLL 

• Die Size I Pin Count 

LSI Logic GIO process. 

MODULE .QESCR SPEED 

Scratch RAM, 1Kx128 sport, 4.37 ns nom., 

WCS, 8Kx49 sport, 6.40 ns nom., 

MAP, 128x7 sport, 3.50 ns nom., 

ROM, 1Kx49 32col, 5.00 ns nom., 

REGs, 512x32 tport, 6.10 ns nom., 

Macs, .75 mm2 x4 = 

PLL, .5mm2 = 

MISC LOGIC, 117,260 gates I (5035 gates I mm2
> 

TOTAL CORE 

(Core sidef ~ 

Core side 

Die side =core side+ 1.0 mm (110 cells) 

Die area = 8.5 mm x 8.5 mm 

Pads needed = 220 signals x 1.25 (vss, vdd) 

LSIPBGA 
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AREA 

06.77 mm2 

18.29 mm2 

00.24 mm2 

00.45 mm2 

03.49 mm2 

03.30 mm2 

00.55 mm2 

23.29 mm2 

56.22 mm2 

56.22 mm2 

07.50 mm 

08.50 mm 

72.25 mmz 

275 pins 

272 pins 
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• • Datapath Bandwidth 

(lOMB/s/lOOBase) x 2 (full duplex) x 4 connections 

Average frame size 

Frame rate = 80MB/s I 512B 

Cpu overhead I frame = (256 B context read) + (64B header read) + 
(l28B context write) + (128B misc.) 

Total bandwidth = (512B in) + (512B out) + (512B Cpu) 

Dram Bandwidth required = (1536B/frame} x (156,250 frames/s) 

Dram Bandwidth@ 60MHz := (32 bytes /167ns) 

Dram Bandwidth@ 66MHz = (32 bytes I 150ns) 

PCI Bandwidth required 

PCI Bandwidth available @ 30 MHz, 32b, average 

PCI Bandwidth available @ 33 MHz, 32b, average 

PCI Bandwidth available @ 60 MHz, 32b, average 

PCI Bandwidth available @ 66 MHz, 32b, average 

PCI Bandwidth available@ 30 MHz, 64b, average 

PCI Bandwidth available @ 33 MHz, 64b, average 

PCI Bandwidth available@ 60 MHz, 64b, average 

PCI Bandwidth available @ 66 MHz, 64b, average 

• Cpu Bandwidth 

Receive frame interval = 512B /40MB/s = 
Instructions I frame@ 60MHz = (l2.8us/frame) I (SOns/instruction) 

instructions/frame 

Instructions I frame@ 66MHz = (12.8us/frame) I (45nslinstruction) 

instructions/frame 

Required instructions I frame (per Clive) 
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• • • Performance Features 

- 512 registers improve performance through reduced scratch ram accesses and reduced instructions. 

-Register windowing eliminates context-switching overhead. 

-Separate instruction and data paths eliminate memory contention. 

- Totally resident control store eliminates stalling during instruction fetch. 

- Multiple logical processors eliminate context switching and improve real-time response. 

- Pipelined architecture increases operating frequency. 

-Shared register and scratch ram improve inter-processor communication. 

-Fly-by state-Machine assists address compare and checksum calculation. 

- TCP/IP-context caching reduces latency. 

- Hardware implemented queues reduce Cpu overhead and latency. 

- Horizontal microcode greatly improves instruction efficiency. 

-Automatic frame DMA and status between Mac and dram buffer. 

·- Deterministic architecture coupled with context switching eliminates processor stalls. 
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• • PROCESSOR 

The processor is a convenient means to provide a programmable state-machine which is capable of processing 
incoming frames, processing host commands, directing network traffic and directing PCI bus traffic. Three 
processors are implemented using shared hardware in a three-level pipelined architecture which launches and 
completes a single instruction for every clock cycle. The instructions are executed in three distinct phases 
corresponding to each of the pipeline stages where each phase is responsible for a different function. 

The first instruction phase writes the instruction results of the last instruction to the destination operand, 
modifies the program counter (Pc), selects the address source for the instruction to fetch, then fetches the 
instruction from the control store. The fetched instruction is then stored in the instruction register at the end of 
the clock cycle. 

The processor instructions reside in the on-chip control-store, which is implemented as a mixture of ROM and 
Sram. The ROM contains IK instructions starting at address OxOOOO and aliases each Ox0400 locations 
throughout the first Ox8000.of instruction space. The Sram (WCS) will hold up to Ox2000 instructions starting 
at address Ox8000 and aliasing each Ox2000 locations throughout the last Ox8000 of instruction space. The 
ROM and Sram are both 49-bits wide accounting for bits [48:0] of the instruction microword. A separate 
mapping ram provides bits [55:49] of the microword (MapAddr) to allow replacement of faulty ROM based 
instructions. The mapping ram has a configuration of 128x7 which is insufficient to allow a separate map 
address for each of the IK ROM locations. To allow re-mapping of the entire IK ROM space, the map ram 
address lines are connected to the address bits Fetch[9:3]. The result is that the ROM is re-mapped in blocks 
of 8 contiguous locations. 

The second instruction phase decodes the instruction which was stored in the instruction register. It is at this 
point that the map address is checked for a non-zero value which will cause the decoder to force a Jmp 
instruction to the map address. If a non-zero value is detected then the decoder selects the source operands for 
the Alu operation based on the values of the OpdASel, OpdBSel and AluOp fields. These operands are then 
stored in the decode register at the end of the clock cycle. Operands may originate from File, Sram, or flip
flop based registers. The second instruction phase is also where the results of the previous instruction are 
written to the Sram. 

The third instruction phase is when the actual Alu operation is performed, the test condition is selected and the 
Stack push and pop are implemented. Results of the Alu operation are stored in the results register at the end 
of the clock cycle. 

Following is a block diagram which shows the hardware functions associated with each of the instruction 
phases. Note that various functions have been distributed across the three phases of the instruction execution in 
order to minimize the combinatorial delays within any given phase .. 
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• • INSTRUCTION SET 

The micro-instructions are divided into six types according to the program control directive. The micro
instruction is further divided into sub-fields for which the defmitions are dependent upon the instruction type. 
The six instruction types are listed below. 

INSTRUCTION-WORD FORMAT 

TYPE [55: 4~] [48: 4:Zl [46: 42] [41::U] [J2: 2~] [23: 16] [15:QQ] 

Jcc ObOOOOOOO ObOO, AluOp, OpdASel, OpdBSel, TstSel, Literal 

Jmp ObOOOOOOO ObOl, AluOp, OpdASel, OpdBSel, FlgSel, Literal 

Jsr ObOOOOOOO OblO, AluOp, OpdASel, OpdBSel, FlgSel, Literal 

Rts ObOOOOOOO Obll, AluOp, OpdASel, OpdBSel, Ohff, Literal 

Nxt ObOOOOOOO Obll, AluOp, OpdASel, OpdBSel, FlgSel, Literal 

Map MapAddr ObXX, ObXXXXX, ObXXXXXXXXX, ObXXXXXXXXX, OhXX, OhXXXX 

All instructions include the Alu operation (AluOp), operand "A" select (OpdASel), operand "B" select 
(OpdBSel) and Literal fields. Other field usage depends upon the instruction type. 

The "jump condition code" (Jcc) instruction causes the program counter to be altered if the condition selected 
by the "test select" (TstSel) field is asserted. The new program counter (Pc) value is loaded from either the 
Literal field or the AluOut as described in the following section and the Literal field may be used as a source 
for the Alu or the ram address if the new Pc value is sourced by the Alu. 

The "jump" (Jmp) instruction causes the program counter to be altered unconditionally. The new program 
counter (Pc) value is loaded from either the Literal field or the AluOut as described in the following section. 
The format allows instruction bits 23: 16 to be used to perform a flag operation and the Literal field may be 
used as a source for the Alu or the ram address if the new Pc value is sourced by the Alu. 

The "jump subroutine" (Jsr) instruction causes the program counter to be altered unconditionally. The new 
program counter (Pc) value is loaded from either the Literal field or the AluOut as described in the following 
section. The old program counter value is stored on the top location of the Pc-Stack which is implemented as a 
LIFO memory. The format allows instruction bits 23: 16 to be used to perform a flag operation and the Literal 
field may be used as a source for the Alu or the ram address if the new Pc value is sourced by the Alu. 

The "Nxt" (Nxt) instruction causes the program counter to increment. The format allows instruction bits 
23: 16 to be used to perform a flag operation and the Literal field may be used as a source for the Alu or the 
ram address. 

The "return from subroutine" (Rts) instruction is a special form of the Nxt instruction in which the "flag 
operation" (FlgSel) field is set to a value of Ohff. The current Pc value is replaced with the last value stored in 
the stack. The Literal field may be used as a source for the Alu or the ram address. 

The Map instruction is provided to allow replacement of instructions which have been stored in ROM and is 
implemented any time the "map enable" (MapEn) bit has been set and the content of the "map address" 
(MapAddr) field is non-zero. The instruction decoder forces a jump instruction with the Alu operation and 
destination fields set to pass the MapAddr field to the program control block. 

The program control is determined by a combination of PgmCtrl, DstOpd, FlgSel and TstSel. The behavior 
of the program control is defmed with the following "C-like" description. 
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= 
' = = 

SEQUENCER BEHAVIOR • 
if (MapEn & (MapAddr != ObOOOOOOO)) { 

Stackc = Stackc; 
StackB = StackB; 
StackA = StackA; 

InstrAddr 
Pc 

Fetch 
DbgAddr 

Oh8000 I Pc[2:0] I {MapAddr « 3); 
= InstrAddr + (Execute & -DbgMd); 

DbgMd ? DbgAddr:InstrAddr; 
DbgAddr + (Execute & DbgMdl;} 

• 
//re-map instr 

else if (PgmCtrl == Jcc){ //conditional jump 
Stackc = Stackc; 
StackB = StackB; 
StackA = StackA; 

InstrAddr -Tst®TstSel ? Pc: (AluDst==Pc) ? AluOut:Literal; 
Pc InstrAddr + (Execute & -DbgMd) 

Fetch = DbgMd ? DbgAddr:InstrAddr; 
DbgAddr DbgAddr + (Execute & DbgMd) ;} 

else if (PgmCtrl == Jmp){ //jump 
Stackc Stackc; 
StackB = StackB; 
StackA = StackA; 

InstrAddr (AluDst == Pc) ? AluOut:Literal; 
Pc InstrAddr + (Execute & -DbgMd) 

Fetch DbgMd ? DbgAddr:InstrAddr; 
DbgAddr DbgAddr + (Execute & DbgMd);} 

else if (PgmCtrl == Jsr){ 
Stackc StackB; 
StackB StackA; 
StackA 

InstrAddr 
Pc 

Fetch 
DbgAddr 

Pc; 
(AluDst == Pc) ? AluOut:Literal; 
InstrAddr + (Execute & -DbgMd) 

= DbgMd ? DbgAddr:InstrAddr; 
DbgAddr + (Execute & DbgMd) ;} 

else if (FlgSel == Rtsl{ 

else 

InstrAddr 
StackA 

StackA; 
StackB; 

StackB = Stackc; 
Stackc = 

Pc 
Fetch 

DbgAddr 

ErrVec; 
InstrAddr + (Execute & -DbgMd) 
DbgMd ? DbgAddr:InstrAddr; 
DbgAddr + (Execute & DbgMd) ;} 

InstrAddr Pc; 
StackA = StackA; 
StackB = StackB; 
Stackc 

Pc 
Fetch 

DbgAddr 

= Stackc; 
= InstrAddr + (Execute & -DbgMd) 

DbgMd ? DbgAddr:InstrAddr; 
DbgAddr + (Execute & DbgMd) ;} 
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• • ALU OPERATIONS 

OPERATION 

ObOOOOO A (A&-(l«B)); //bit clear 
C = 0; V = (B >= 32) ? 1:0; 

ObOOOOl A (A & B); //logical and 
c 0; v = 0; 

ObOOOlO A (Literal & B); //logical and 
c 0; v = 0; 

ObOOOll A (-Literal & B); //logical and not 
c 0; v = 0; 

ObOOlOO A (A l (1 << B)); //bit set 
c 0; v = (B >= 32) ? 1:0; 

Ob00101 A (A I B) ; //logical or 
c 0; v = 0; 

ObOOllO A (Literal I B); //logical or 
c 0; v = 0; 

ObOOlll A (-Literal I B); //logical or not 
c 0; v = 0; 

ObOlOOO for (i=31; i>=O; i--) if B[i] continue; A=i; //priority enc 
C 0; V = (B) ? 0: 1; 

Ob01001 A (A A B); //logical xor 
c 0; v = 0; 

Ob01010 A ({Literal} A B); //logical xor 
c 0; v = 0; 

Ob01011 A ({-Literal} A B); //logical xor not 
c = 0; v = 0; 

ObOllOO A B; //move 
c =, 0 i v = 0; 

Ob01101 A B[31:24] A B[23:16] A B[l5:08] "B[07:00];//hash 

ObOlllO 

ObOllll 

c = 0; v = 0; 

A 

c 
{B[23:16] ,B[31:24] ,B[07:00] ,B[l5:08]}; 

0; v = 0; 

A {B[lS:OO] I B[31:16] }; 

c = 0; v = 0; 
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• • AluOp FUNCTION 

OblOOOO A (A + B) ; //add B 
c (A + B) [32); v 0; 

OblOOOl A (A + B + C); //add B, carry 
c = (A + B + C) [32}; v 0; 

OblOOlO A (Literal + B); //add constant 
c = (Literal + B) [32}; v 0; 

OblOOll A (-Literal + B); //sub constant 
c = (-Literal + B) [32]; v 0; 

OblOlOO A (A - B); //sub B 
c (A - B) [32]; v 0; 

Obl0101 A (A - B - -C); //sub B, borrow 
c (A - B - -C) [32) ; v 0; 

Ob10110 A (-A + B) i //sub A 
c (-A + B) [32]; v 0; 

OblOlll A (-A + B - -C); //sub A, borrow 

~ c (-A + B - -C) [32] ; v 0; 

0 ObllOOO A (A << B); //shift left A 
A :::=: c A[31]; v = (B >= 32) ? 0:1; 
~ 
~' ObllOOl A (B << Literal); //shift left B 

w c B [31] ; v = (Literal >= 32) ? 0:1; 
,;=, 
61 

Obl1010 (B 1) ; I /shift 
~ 

A << left B 
c B[31]; v 0; 

= 
~ Obl1011 n (A B); //compare 
=· c (A B) [32]; 0; :r .: - v ~ 

~::&: 

~ OblllOO A (A >> B); //shift right A 

~; c A[O]; v = (B >= 32) ? 1:0; 

"=~] Obl1101 A (B >> Literal); //shift right B 
c A [0]; v = (Literal >= 32) ? 1:0; 

ObllllO A (B >> 1) i //shift right B 
c A [0] ; v 0; 

Oblllll n (B - A); //compare 
c (B - A) [32]; v 0; 
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• • OpdSel SELECTED OPERANDs 

ObOOOOaaaaa File 

ObOOOlaaaaa CpuReg 

ObOOlXXXXXX reserved 

ObOlOOOOOXX CpuStatus 

ObOlOOOOlXX reserved 

Ob0100010XX Pc 

Ob0100011XX DbgAddr 

File®(OpdSel[4:0] FileBase); 
Allows paged access to any part of the register file. 

File®{2'bll, Cpuid, OpdSel[4:0] }; 
Allows direct access to Cpu specific registers. 

Reserved for future expansion. 

ObOOOOOOOOOOOOOBHDOOOOOOOOOOOOOOCC 
This is a read-only register providing information about the Cpu executing 
(0pdSel[1:0]) cycles after the current cycle. "CC" represents a value 
indicating the Cpu. Currently, only Cpuld values ofO, 1 and 2 are returned. 
"H" represents the current state of Hit, "D" indicates DbgMd and "B" 
indicates BigMd. Writing this register has no effect. 

Reserved for future expansion. 

OxOOOOAAAA 
Writing to this address causes the program control logic to use AluOut as the 
new Pc value in the event of a Jmp, Jcc or Jsr instruction for the Cpu 
executing during the current cycle. If the current instruction is Nxt, Map, or 
Rts, the register write has no effect. Reading this register returns the value in 
Pc for the Cpu executing (OpdSel[l :0]) cycles after the current cycle. 

OxDOOOAAAA 
Writing to this register alters the contents of the debug address register 
(DbgAddr) for the Cpu executing (0pdSel[1 :0]) cycles after the current 
cycle. DbgAddr provides the fetch address for the control-store when 
DbgMd has been selected and the Cpu is executing. DbgAddr is also used 
as the control-store address when performing a WrWcs@DbgAddr or 
RdWcs@DbgAddr operation. "D" represents bit 31 of the register. It is a general 
purpose flag that is used for event indication during simulation. Reading this 
register returns a value of OxOOOOOOOO. 

ObOlOOlXXXX reserved Reserved for future expansion. 

ObOlOlOOOOO RamAddr {OblCCC, OxOOO, Ob1, AAAA} 
RamAddr = Alu0ut[15] ? AluOut : (AluOut I RamBase); 
PrevCC = Alu0ut[31]? CCC : AluCC; 

A read/write register. When reading this register, the Alu condition codes from the previous 
instruction are returned together with RamAddr. 

bit name descriotion 
31 Always l. 
30 PrevC Previous Alu Carry. 
29 PrevV Previous Alu Overflow. 
28 PrevZ Previous Alu Zero. 
27:16 Always 0. 
15 Always 1. 
14:0 RamAddr Contents of last Sram address used. 

When writing this register, if alu_out[31] is set, the previous condition codes will be overwritten with 
bits 30:28 of AluOut. If Alu0ut[15] is set, bits 14:0 will be written to the RamAddr. If AluOut [15] 
is not set, bits 14:0 will be ored with the contents of the RamBase and written to the RamAddr. 
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• OpdSel SELECTED OPERANDs 

Ob010100001 AddrRegA OxOOOOAAAA 

AddrRegA = AluOut; 

A read/write operand which loads AddrRegA used to provide the address for read and write 
operations. 

the 

When AddrRegA[l5] is set, the contents will be presented directly to the ram. When AddrRegA[15] is 
reset, the contents will first be ored with the contents of the RamBase register before presentation to 

ram. Writing to this register takes priority over Literal loads using FlgOp. Reading this register returns 
the current value of the register. 

Ob010100010 AddrRegB OxOOOOAAAA 

AddrRegB = AluOut; 

A read/write operand which loads AddrRegB used to provide the address for read and write 
operations. 

the 

When AddrRegB[15] is set, the contents will be presented directly to the ram. When AddrRegB[15] is 
reset, the contents will first be ored with the contents of the RaniBase register before presentation to 

ram. Writing to this register takes priority over Literal loads using FlgOp. Reading this register returns 
the current value of the register. 

Ob010100011 AddrRegAb OxOOOOAAAA 

read 

AddrRegA = AluOut; AddrRegB = AluOut; 

A destination only operand which loads AddrRegB and AddrRegA used to provide the address for 

and write operations Writing to this register takes priority over Literal loads using FlgOp. Reading this 
register returns the value OxOOOOOOOO. 

ObOlOlOOlOO RamBase OxOOOOAAAA 

RamBase = AluOut; 

A read/write register which provides the base address for ram read and write cycles. When 
RamAddr[15] is set, the contents will not be used. When RamAddr[15] is reset, the contents will first 
be ored with the contents of the RamBase register before presentation to the ram. Reading this register 
returns the value for the current Cpu. 

Ob010100101 FileBase ObOOOOOOOOOOOOOOOOOOOOOOOAAAAAAAAA 

FileBase = AluOut; 
FileAddr = OpdSel[8]? OpdSei:(OpdSel + FileBase); 

A read/write register which provides the base address for file read and write cycles. When OpdSel[8] 
is 
set, the contents will not be used and OpdSel will be presented directly to the address lines of the file. 
When OpdSel[8] is reset, the contents will first be ored with the contents of the FileBase register 
before presentation to the file. Reading this register returns the value for the current Cpu. 

Ob010100110 lnstrRegL Oxiiiiiiii 

This is a read-only register which returns the contents of lnstrReg[31 :0]. Writing to this register has no 
effect. 

ObOlOlOOlll InstrRegH OxOOIIIIII 

This is a read-only register which returns the contents of InstrReg[55:32]. Writing to this register has 
no 

effect. 
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• • OpdSel SELECTED OPERANDs 

Ob010101000 Nfin~l Oxffffffff 
This is a read-only register which supplies a value Oxffffffff .. Writing to this 
register has no effect. 

Ob010101001 FreeTime A free-running timer with a resolution of 1.00 microseconds and a maximum count 
of71 minutes. This timer is cleared during reset. 

Ob010101010 LiteralL Instr[15:0] 
A read-only register. Writing to this register has no effect 

Ob010101011 LiteralH Instr[15:0] < < 16; 
A read-only register. Writing to this register has no effect 

Ob010101100 MacData- Writing to this address loads the AluOut data into the MacData register for use 
during Mac operations. The Mac operation, resulting from writing to the MacOp register, 
determines the definition of the MacData register contents as follows. 

~ 
Mstop 

WrMcfg 

WrMrng 

RdPhy 

WrPhy 

MacData ciefmition 
Ob 

MacData is not used for the StopM operation. 

hrstl, rsvd, rsvd, crcen, fuUd, hrstl, hugen, nopre, paden, prtyl, xdllO, ipgrl[6:0], 
ipgr2[6:0], ipgt[6:0]. 
Loads the MacCfg register with the contents of the MacData register. Refer to LSI Logic's 
Ethernet-110 Core Technical Manual for detailed definitions of these bits. 

ObXXXXXXXXXXXXXXXSSSSSSSSSSS 

Loads seed[lO:O] into the Mac's random number generator. 

ObXXXXRRRRXXXXPPPPXXXXXXXXXXXXXXX 
Reads register[R) of phy[P]. 

ObXXXXRRRRXXXXPPPPDDDDDDDDDDDDDDDD 
Writes register[R] of phy[P] with MacData[l5:0]. 

Reading this register returns prsd[15:0] of MacO which contains phy status data returned to the 
Mac at the completion of a RdPhy command. This data is invalid while MacBsy is asserted 
as a result of a RdPhy command. Refer to the appropriate phy technical manual for a 
definition of the phy register contents. 
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• • OpdSel SELECTED OPERANDs 

Ob010101101 MacOp- A write only register. Writing to this address loads the MacSel register and staRts 
execution of the specified operation as follows. 

Ah!Q.yt 
OXXXXXXOXM 

OXXXXXX1XM 

OXXXXXX2XM 

OXXXXXX3XM 

description 
Mstop- Halts execution of a MacOp for Mac[M]. The user must wait for MacBsy to be 
deasserted before issuing another command or changing the contents of MacData. 
WrMcfg - Writes the contents of MacData to the MacCfg register of Mac[M]. The user 
must wait for MacBsy to be deasserted before issuing another command or changing the 
contents of MacData. 
WrMrng- Writes the contents ofMacData to the seed register ofMac[M]. The user must 
wait for MacBsy to be deasserted before issuing another command or changing the contents 
ofMacData. 
RdPhy - Reads the contents of reg[R] for phy[P] on the Mil management bus of Mac[M]. 
The contents may be read from MacData after MacBsy has been de-asserted. 

OXXXXXX4XM WrPhy- Writes the contents ofMacData[15:0] to the reg[R] of phy[P] on the Mil 
management bus of Mac[M]. The user must wait for MacBsy to be deasserted before issuing 
another command or changing the contents of MacData. 

OXXXXXXSXM 

OXXXXXX9XM 

OxXXXXXaXM 

OXXXXXXbXM 

WrAddrAL- Writes the contents ofMacData[l5:0] to MacAddrA[lS:O] for Mac[M]. 
WrAddrAH- Writes the contents ofMacData[ll:O] to MacAddrA[47:16] for Mac[M]. 
WrAddrBL- Writes the contents of MacData[l5:0] to MacAddrB[lS:OJ for Mac[M]. 
WrAddrBH- Writes the contents ofMacData[ll:O] to MacAddrB[47:16] for Mac[M]. 

Ob010101110 ChCmd A write-only register. 

hL 
31:11 
10:8 

flag. 

07:05 
04:00 

Ob010101110 ChEvnt 

bit_ 
31:00 

Ob010101111 GenEvnt 

h!L 
31 
30 
29 
28:00 

name 
reserved 
command 

reserved 
Chid 

description 
Data written to these bits is ignored. 
0 - Stops execution of the current operation and clears the corresponding event 

1 - Transfer data from ExtMem to ExtMem. 
2 - Transfer data from Pci to ExtMem. 
3 - Transfer data from ExtMem to Pci. 
4 - Transfer data from Sram to ExtMem. 
5 - Transfer data from ExtMem to Sram. 
6 - Transfer data from Pci to Sram. 
7 - Transfer data from Sram to Pci. 
Data written to these bits is ignored. 
Provides the channel number for the channel command. 

A read-only register. 

name 
ChDn 

description 
Each bit represents the done flag for the respective dma channel. These 
bits are set by a dma sequencer upon completion of the channel 
command. Cleared when the processor writes 0 to the corresponding 
ChCmd register. 

A read-only register. 

game 
PciRdEvnt 
PciWrEvnt 
TimeEvnt 
reserved 

description 
Indicates that a PCI initiator is attempting to read a Jlproc. register. 
Indicates that a PCI initiator has posted a write to a Jlproc. register. 
An event which occurs once every 2.00 milliseconds. 
Reserved for future use. 
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Ob010110000 QCtrl 

bit_ 
31:11 
10:8 

7:5 

4:0 

=· 
y~ Ob010110001 QData 
=· 
~_l1 

65 
~J:::. 

hi·~ 

~ 
w: Ob010110010 reserved 
F; 
;;.:;:: 

:P:.r 
~ Ob010110011 XcvCtrl 
"' 
~; 
F-i bit_ i=i' 

Fi· 31:09 
:::!l 8 
= 
~; 

07:05 
·~~ 04 

when 

03 
02 
01:00 

Ob010110100 Lru 

Ob010110101 Mru 

nmruL_ 

reserved 
QSz 

QOp 

Qld 

name 
reserved 
enable 

reserved 
RcvCh 

reserved 
SubCh 
Macld 

• • A write-only register used to select and manipulate a Q. 

d~iDtiQn 
Data written to these bits are ignored. 
Used only during lnitQ operations to specify the size of the QBdy in Dram. 
7 - Queue depth is 32K entries (128KB). 
6- Queue depth is 16K entries (64KB). 
5 - Queue depth is 8K entries (32KB). 
4 - Queue depth is 4K entries (16KB). 
3 - Queue depth is 2K entries (8KB). 
2 - Queue depth is lK entries {4KB). 
1 -Queue depth is 512 entries (2KB). 
0 - Queue depth is 256 entries (1KB). 
Specifies the queue operation to perform. 
7 -DblQ Disables all queues. 
6-EnQ Enables all queues. 
5- RdBdy Increments the QBdyRdPtr and increments the QTIWrPtr. 
4- WrBdy Decrements the QBdyWrPtr and increments the QHdRdPtr. 
3-RdQ Returns a queue entry in register QData .. 
2- rsvd Reserved. Not to be used. 
1- InitQ Set the queue status to empty and initializes QSz. 
0- SelQ Selects the Qld to be utilized during writes to QData. 

Specifies the queue on which to perform all operations except DblQ or EnQ. 

A read/write register. Writing this register will result in the data being pushed on to 
the selected queue. Reading this register fetches queue data popped off during the 
previous RdQ operation. 

Reserved for future expansion. 

A write-only register used to enable and disable Mac transmit and receive 
sub-channels. 

d§tdntion 
Data written to these bits are ignored. 
When set, indicates to the Mac transmit or receive sequencer that the subchannel 
contains a transmit or receive descriptor. 
Data written to these bits is ignored. 
Selects a Mac receive subchannel when set. Selects a Mac transmit subchannel 

cleared. 
Data written to this bit are ignored. 
Selects subchannel B when set or A when reset. 
Provides the Mac number for the subchannel enable bit. 

OxOOOOOOOA 

A read/write operand indicating which of the 16 entries is least recently used. When 
Reading This register the least recently used entry is returned, after which it is 
automatically made the most recently used entry. This register should only be read 
in conjunction with a 'Move' operation of the ALU, else the results are 
unpredictable. Writing to this register forces the addressed entry to become the least 
recently used entry. 

OxOOOOOOOA 

A write only operand forcing the addressed entry to become the most recently used 
entry. 

Provisional Pat. App. of Alacritech, Inc. 87 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 
Alacritech, Ex. 2019 Page 221



• • 
Ob010111000 QlnRdy A read-only register comprising QHd not full flags for each of the 32 queues. 

Ob010111001 QOutRdy A read-only register comprising QTI not empty flags for each of the 32 queues. 

Ob010111010 QEmpty A read-only register comprising QEmpty flags for each of the 32 queues. 

Ob010111011 QFuU A read-only register comprising QFuU flags for each of the 32 queues. 

Ob0101111XX reserved Reserved for future expansion. 

ObOllOXXXXX Constants {ObOOO, OpdSel[4:0]} 

ObOlllOXXXX reserved Reserved for future expansion. 
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• OpdSel SELECTED OPERANDs 

ObOllllXXXX Sram OPERATIONS 

OpdSelf3l 
0 

PostAddrOp 
nop 

1 RamAddr = RamAddr + (OpdSe1[1:0]); 

OpdSe1f2l 
0 
1 

transpose Ctr1 
don't transpose 
transpose bytes 

OpdSe1[1:0l 
0 

RamQpdSz 
quadlet 
triplet 
doublet 
byte 

1 

2 

3 

RAM READ ATTRIBUTES 

end ian trans- byte Sram 
~ ..,P.Q.U.. 2..tl1l data 
little 0 0 abed· 
little 0 1 abeX 
little 0 2 abXX 
little 0 3 axxx 
little 1 0 abed 
little 1 1 abe X 
little 1 2 abXX 
little 1 3 axxx 

BIG 0 0 abed 
BIG 0 1 Xbed 
BIG 0 2 XXed 
BIG 0 3 XXXd 
BIG 1 0 abed 
BIG 1 1 Xbed 
BIG 1 2 XXed 
BIG 1 3 XXXd 

RAM WRITE ATTB~BUTES 

end ian trans- Opd Alu 

~ ..,P.Q.U.. .§.in .QY.t,.. 
little 0 Q abed 
little 0 T Xbed 
little 0 D XXed 
little 0 B XXXd 
little 1 Q abed 
little 1 T Xbed 
little 1 D XXed 
little 1 B XXXd 
big 0 Q abed 
big 0 T Xbed 
big 0 D XXed 
big 0 B XXXd 
big 1 Q abed 
big 1 T Xbed 
big 1 D XXed 
big 1 B XXXd 

Oblaaaaaaaa File File®OpdSel[S:O]; 

~ 
abed 
trap 
trap 
trap 
deb a 
trap 
trap 
trap 
abed 
trap 
trap 
trap 
deb a 
trap 
trap 
trap 

~ 
abed 
-bed 
--ed 
-- -d 
deba 
-deb 
--de 
---d 
abed 
bed-
ed--
d---
deba 
deb-
de--
d---

SOURCE OPERAND 

sz=T sz=D 
Obed OOed 
Oabe OObe 
trap OOab 
trap trap 
Odeb OOde 
Oeba OOeb 
trap OOba 
trap trap 
Oabe OOab 
Obed OObe 
trap OOed 
trap trap 
Oeba OOba 
Odeb OOeb 
trap OOde 
trap trap 

SOURCE QPERAND 

OF=l 0F=2 
trap trap 
bed- trap 
-ed- ed--
--d- -d--
trap trap 
deb- trap 
-de- de--
--d- -d--
trap trap 
-bed trap 
-ed- --ed 
-d-- --d-
trap trap 
-deb trap 
-de- --de 
-d-- --d-

• 

sz=B 
OOOd 
OOOe 
OOOb 
oooa 
OOOd 
OOOe 
OOOb 
oooa 
oooa 
OOOb 
OOOe 
OOOd 
oooa 
OOOb 
OOOe 
OOOd 

0F=3 
trap 
trap 
trap 
d---
trap 
trap 
trap 
d~--

trap 
trap 
trap 
-- -d 
trap 
trap 
trap 
---d 

Allows direct, non-paged, access to the top half of the register file. 
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TstSel 

ObXOOXXXXX 

ObXOlOOOOO 

ObXOlOOOOl 

ObXOlOOOlO 

ObXOlOOOll 

ObXOlOOlOO 

ObX0100101 

ObX0100110 

ObXOlOOlll 

ObXOlOlOOO 

ObX0101001 

ObX010101X 

ObX01011XX 

ObXOllOXXX 

ObXOlllXXX 

ObXOlXXXXX 

ObXlXXXXXX 

FlgSel 

ObOOOOOOOO 

ObOOOOOOOl 

ObOOOOOOlO 

ObOOOOOOll 

ObOOOOOlOO 

Ob00000101 

ObOOOOOllX 

ObOOOOlXXX 

ObOOOlOXXX 

ObOOOllXXX 

• SELECTED TEST 

Tst TstSel(7] A AluOut[TstSel[4:0]] 

Tst TstSel[7] A c 

Tst TstSel[7] A v 

Tst TstSel[7] A z 

Tst TstSel[7] A (Z I -C) 

Tst TstSel[7] A PrevC 

Tst TstSel[7] A PrevV 

Tst TstSel[7] A Prevz 

Tst TstSel[7] A (PrevZ & Z) 

Tst TstSel[7] A QOpDn 

Tst reserved 

Tst reserved 

Tst reserved 

Tst TstSel [7] A Lock[TstSel[2:0]] 
Lock(TstSel[2:0]) = 1; 

Tst TstSel [7] A Lock[TstSel[2:0]] 

Tst reserved 

Tst reserved 

FLAG OPERATION 

No operation. 

• 
//Alu bit 

//carry 

//error 

//zero 

//less or equal 

//previous carry 

//previous error 

//previous zero 

//64b zero 

//queue op okay 

//tests the current value of 
//the Lock then set it. 

//tests the value of Lock. 

SelfRst Forces a self reset for the entire chip excluding the PCI configuration 
registers 

SeffiigEnd Selects big-endian mode for ram accesses for the current Cpu. 

SelLitEnd Selects little-endian mode for ram accesses for the current Cpu. 

DblMap Disable instruction re-mapping for the current Cpu. 

EnbMap Enable instruction re-mapping for the current Cpu. 

reserved 

reserved 

ClrLck Lock[FigSel[2:0]] = 0; 
Clears the semaphore register bit for the current Cpu only. 

reserved 
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FlgSel 

ObOOlOXXXX 

ffl; ObOOllXXXX 
~-.. 

~di ObOlOOOOOO =· 
~ 

if~ 
: =: Ob01000001 

~~=i 
~=4 
-:=-.:· 
·~~: Ob01000010 ;;..;6: 

-
~~ 

Ob01000011 
~ 
: :: 
~; Ob01000100 

~ 
~~i! Ob010001XX 

Ob010010XX 

Ob010011XX 

Ob010100XX 

Ob010101XX 

Ob01011XXX 

Ob011XXXXX 

OblXXXXXXX 

• • FLAG OPERATION 

AddrOp 

FlgSelf3:21 

0 
1 

2 

3 

FlqSelfl:OJ 
0 

1 

2 

3 

AddrSelect 
RamAddr = Literal[l5] 
RamAddr = AddrRegA[l5] 
RamAddr = AddrRegB[l5] 
if (OpdA = = RamAddr) 

RamAddr = Alu0ut[l5] 
else if (OpdA = = ram) 

? Literal : (Literal I RamBase); 
? AddrRegA: (AddrRegA I RamBase); 
? AddrRegB : (AddrRegB I RamBase); 

? AluOut : (AluOut I RamBase); 

RamAddr = AddrRegB[l5] ? AddrRegB: (AddrRegB I RamBase); 
else 

RamAddr = AddrRegA[l5] ? AddrRegA : (AddrRegA I RamBase); 

addr reg load 
nop 
AddrRegA = Literal; 
AddrRegB = Literal; 
AddrRegA = Literal; AddrRegB = Literal; 

note: When specifying the same register for both the load and select fields, the current value of the 
register, before it is loaded with the new value, will be used for the ram address. 

reserved 

WrWcsL@Dbg 

WrWcsH@Dbg 

RdWcsL@Dbg 

RdWcsH@Dbg 

reserved 

Causes the bits {31 :0] of the control-store at address DbgAddr to be 
written with the current AluOut data. 

Causes the bits [63:32] of the control-store at address DbgAddr to be 
written with the current AluOut data then increments DbgAddr. 

Causes the bits [31 :OJ of the control-store at address DbgAddr to be 
moved to file address Oxlff. 

Causes the bits [63:32} of the control-store at address DbgAddr to be 
moved to file address Oxl ff then increments DbgAddr. 

Step Allows the Cpu (FigSel[l:O]) cycles after the current cycle to execute a single 
instruction. There is no effect if the Cpu is not halted. An offset ofO is not allowed. 

PcMd 

DbgMd 

Hit 

Run 

reserved 

reserved 

reserved 

Selects the Pc as the address source for the control-store during 
instruction fetches for the Cpu (FigSel[l :0]) cycles after the current cycle. 

Selects the DbgAddr address register as the address source for the 
control-store during instruction fetches for the Cpu (FigSel[l:O]) 
cycles after the current cycle. 

Halts the Cpu (FigSel[l :0]) cycles after the current cycle. 

Clears Halt for the Cpu (FlgSel[l :0]) cycles after the current cycle. 
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• • DATAFLOW 

J~ 

,r - .. 
..... .. Pso 

~ .. 
Eectrl 

~ .. - ~ 

~ • 
.... ~ .... • 

·~ - ~ S2p ~ • 
•r 

~ .... ~ Cpu .... .. 
•lr 

.... .. "' .. 

Pmo .... ... .. 
Cfg .... .. .... ... 

·~ Eeprom 
~ .. ~ .. Xrd 

lr 

.... ... D2p .... .... 
~ .. ~· -. 
..... .. D2s .... ... .... ... .... .. 

.... .... 
.... XmtX 

....- --.. 
~ ... ..... ... --.. 

..... ... 
.... ... D2q 

... 
~ .. .... .. .... ... 

Xctrl -Dram .... .. .... ... ~ ... 
D2d ..... ... ..... ... Qmg ... .. 

~ .. .... ... ... .... ... ~ .. 
"' .... .. 
.... ... Q2d 

.... ... 
~ .. - ... 

~ .. 
.... ... 

.... Rev X 
~· - .. 

~ ... ..... ... .... ... 

..... .. S2d ..... .. .... ....- --.. 

.... .. P2d .... ~ .... .. ~ ... 

·~ 
Flash .... .. .... .. ... .... .. ~ .. Xwr 

Pmi ..... ... .. 

·~ - Srarn .... • 
·~ 

•lr 

P2s ..... ... 
~ .. 

•lr 

..... ... 
Dcfg 

.... .. 
.... .. 

..... ... Psi 
~ .. 

.4~ 
.... .. .... _. ....- .. 

~r 
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• • SRAM CONTROL SEQUENCER (SramCtrl) 

Sram is the nexus for data movement within the INIC. A hierarchy of sequencers, working in concert, 
accomplish the movement of data between dram, Sram, Cpu, ethernet and the Pci bus. Slave sequencers, 
provided with stimulus from master sequencers, request data movement operations by way of the Sram, Pci 
bus, Dram and Flash. The slave sequencers prioritize, service and acknowledge the requests 

The preceding block diagram shows all of the master and slave sequencers of the INIC product. Request 
information such as r/w, address, size, endian and alignment are represented by each request line. 
Acknowledge information to master sequencers include only the size of the transfer being acknowledged. 

The following block diagram illustrates how data movement is accomplished for a Pci slave write to Dram. 
Note that the Psi (Pci slave in) module functions as both a master sequencer. Psi sends a write request to the 
SramCtrl module. Psi requests Xwr to move data from Sram to dram. Xwr subsequently sends a read request 
to the SramCtrl module then writes the data to the dram via the Xctrl module. As each piece of data is moved 
from the Sram to Xwr, Xwr sends an acknowledge to the Psi module . 

1 ... 4 WrReq 
Req 

Req 
.... RdReq .... .. .... Addr Addr Sram . .... 

Addr 
..... 

DIN Addr 

....,2 .... DIN Ctrl s: Ack 

DOut DOut Addr .. ..... .... .... 
Xwr Xctrl PCIBUS Ack 

.... .. Data .. ..... .... 
Psi 

.. 
3 I 7 ... WrReq .. Qrl .... 

WrReq .. SramAddr 

DramAddr 

SramAddr 6 .. 
Ack ... ..... 
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• SRAM CONTROL SEQUENCER (SramCtrl) 

ReqO •••••• ReqN 

I33MHz .----~L..r _____ _,~r'-----1 
-----1-""~ CLK ... 

Arbiter 

Addr/ 
CtrV 

DataO 

~, 

y 

• 
Addr/ 
Ctrl/ 

DataN 

1J 

y 
~, ~ 

133MHz..,r1c=LK:-:---------..1_------------I....-----------, .. 

133MHz 
CLK .. 

Register 

__... ... 

1 

• 
Register 

r 

• .. 

133M Hz ,, 
-----1""~ !CLK ... 

.. 
Align 

• ddr DIN 

E 

Sram 
DOut 

• 
Partial Align 

_i 

Register 

~ 

Ack 
I 

Ack_sz 
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• • The ·sram control sequencer services requests to store to, or retrieve data from an Sram organized as 1024 
locations by 128 bits (16KB). The sequencer operates at a frequency of 133MHz, allowing both a Cpu access 
and a dma access to occur during a standard 66MHz Cpu cycle. One 133MHz cycle is reserved for Cpu 
accesses during each 66MHz cycle while the remaining 133MHz cycle is reserved for dma accesses on a 
prioritized basis. 

The preceding block diagram shows the major functions of the Sram control sequencer. A slave sequencer 
begins by asserting a request along with r/w, ram address, endian, data path size, data path alignment and 
request size. SramCtrl prioritizes the requests. The request parameters are then selected by a multiplexer 
which feeds the parameters to the Sram via a register. The requestor provides the Sram address which when 
coupled with the other parameters controls the input and output alignment. Sram outputs are fed to the output 
aligner via a register. Requests are acknowledged in parallel with the returned data. 

Following is a timing diagram depicting two ram accesses during a single 66MHz clock cy~le. 

Cpu 
CLOCK 

Dma 
CLOCK 

DMA 
Gnt 

Sram 
CLOCK 

valid xxxx 

GRA."'TTO lnDMASEQUENCER 
In DMAJ>amns SElECTED 

valid xxxx 

ORANTTO lf<t> DMA. SEQUENCER 

1110 DMAP&n:ms SELECTED 

AekA.."'D Ad SIZE FOR In DMA R.q Ad AND Ack SIZE FOR Cpu. 

APPLY lnCp•Addr 
AUON in C,.INPUT O..tr; 

READ OR. WRITE In Cpu Data 

APPlY ln DMA Addr 
AUGN l-tf DMA INl'UT Data 

READ OR WJUTB tst DMA O..ta 

API't.YlND CpuAUr
AUGN 2ND CpalNPUT O..tr; 

READ OR WRIT£ z111tepa O.ta 
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~l 
0 
:_= 

~E 

F 
= 
~-: 

~di 
~[ 

-
f.~: 

~ 
a: :t 
f'-:;:r 

:;;:: -r: 
~~ 
~~ 

• • EXTERNAL MEMORY CONTROL (Xctrl) 

Xctrl provides the facility whereby Xwr, Xrd, Dcfg and Eectrl access external Flash and Dram. Xctrl 
includes an arbiter, i/o registers, data multiplexers, address multiplexers and control multiplexers. Ownership 
of the external memory interface is requested by each block and granted to each of the requesters by the 
arbiter function. Once ownership has been granted the multiplexers select the address, data and control signals 
from owner, allowing access to external memory. 

Arbiter Grant TO requestors 

XrdReq 

XrdAddr 

XrdState 

XrdCtrl 

Xrd.Data 

XAddr 
XwrReq 

TOXmem 

XwrAddr 

XwrState 

XwrCtrl 

XwrData 
Mux 

DcfgReq 

DcfgAddr 
X Data TOXmem 

DcfgState 

DcfgCtrl 

DcfgData 

EectrlReq 

EectrlAddr 

EectrlState 

EectrlCtrl 
XCtrl 

EectrlData 
TOXmem 
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• • EXTERNAL MEMORY READ SEQUENCER (Xrd) 

The Xrd sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Xrd 
sequencer moves data from external sdram or flash to the Sram, via the Xctrl module, in blocks of 32 bytes 
or less. The nature of the sdram requires fixed burst sizes for each of it's internal banks with ras precharge 
intervals between each access. By selecting a burst size of 32 bytes for sdram reads and interleaving bank 
accesses on a 16 byte boundary, we can ensure that the ras precharge interval for the first bank is satisfied 
before burst completion for the second bank, allowing us to re-instruct the first bank and continue with 
uninterrupted dram access. Sdrams require a consistent burst size be utilized each and every time the sdram is 
accessed. For this reason, if an sdram access does not begin or end on a 32 byte boundary, sdram bandwidth 
will be reduced due to less than 32 bytes of data being transferred during the burst cycle. 

The following block diagram depicts the major functional blocks of the Xrd sequencer. The first step in 
servicing a request to move data from sdram to Sram is the prioritization of the master sequencer requests. 
Next the Xrd sequencer takes a snapshot of the dram read address and applies configuration information to 
determine the correct bank, row and column address to apply. Once sufficient data has been read, the Xrd 
sequencer issues a write request to the SramCtrl sequencer which in turn sends an acknowledge to the Xrd 
sequencer. The Xrd sequencer passes the acknowledge along to the level two master with a size code 
indicating how much data was written during the Sram cycle allowing the update of pointers and counters. The 
dram read and Sram write cycles repeat until the original burst request has been completed at which point the 
Xrd sequencer prioritizes any remaining requests in preparation for the next burst cycle. 

Contiguous dram burst cycles are not guaranteed to the Xrd sequencer as an algorithm is implemented which 
ensures highest priority to refresh cycles followed by flash accesses, dram writes then dram reads. 

Following is a timing diagram illustrating how data is read from sdram. The dram has been configured for a 
burst of four with a latency of two clock cycles. Bank A is first selected/activated followed by a read 
command two clock cycles later. The bank select/activate for bank B is next issued as read data begins 
returning two clocks after the read command was issued to bank A. Two clock cycles before we need to 
receive data from bank B we issue the read command. Once all16 bytes have been received from bank A we 
begin receiving data from bank B. 

66MHz 

controls 

read data 

write data 

Provisional Pat. App. of Alacritech, Inc. 97 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 
Alacritech, Ex. 2019 Page 231



• EXTERNAL MEMORY READ SEQUENCER (Xrd) 

D2p 

D2s 

D2d 

D2q 

Pso 

XmtA 

XmtB 

XmtC 

XmtD 

XctrlDin 

XctrlGnt 

SramGnt 

SramAck 

SramAckSz 

~ 

... ... 

... ... 

... ... 
~ 

... ... 

... ... 

... ... 

... ... 

... ... 

___. 
___. 

___. 
___. 
___. 

_.. 
~ 

Grant / 

... XAddr / ... 

... 
~ 

XData / 

... XCtrl ... 

SEQ 
.... ... State 
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... ... To Requester 

... ... To Xctrl 

EN 

c>= SramGnt 

SramData 

... To Xctrl 

.... ... To Xctrl 

... ... Ack To requester 

... ... XctrlReq 

... ... SramReq 

c>= SramGnt 

SramParams 
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• • EXTERNAL MEMORY WRITE SEQUENCER (Xwr) 

The Xwr sequencer is a slave sequencer. Servicing requests issued by master sequencers, the Xwr sequencer 
moves data from Sram to the external sdram or flash, via the Xctrl module, in blocks of 32 bytes or less while 
accumulating a checksum of the data moved. The nature of the sdram requires fixed burst sizes for each of it's 
internal banks with ras precharge intervals between each access. By selecting a burst size of 32 bytes for 
sdram writes and interleaving bank accesses on a 16 byte boundary, we can ensure that the ras prechage 
interval for the first bank is satisfied before burst completion for the second bank, allowing us to re-instruct 
the first bank and continue with uninterrupted dram access. Sdrams require a consistent burst size be utilized 
each and every time the sdram is accessed. For this reason, if an sdram access does not begin or end on a 32 
byte boundary, sdram bandwidth will be reduced due to less than 32 bytes of data being transferred during the 
burst cycle. 

The following block diagram depicts the major functional blocks of the Xwr sequencer. The first step in 
servicing a request to move data from Sram to sdram is the prioritization of the level two master requests. 
Next the Xwr sequencer takes a Snapshot of the dram write address and applies configuration information to 
determine the correct dram, bank, row and column address to apply. The Xwr sequencer immediately issues a 
read command to the Sram to which the Sram responds with both data and an acknowledge. The Xwr 
sequencer passes the acknowledge to the level two master along with a size code indicating how much data 
was read during the Sram cycle allowing the update of pointers and counters. Once sufficient data has been 
read from Sram, the Xwr sequencer issues a write command to the dram starting the burst cycle and 
computing a checksum as the data flies by. The Sram read cycle repeats until the original burst request has 
been completed at which point the Xwr sequencer prioritizes any remaining requests in preparation for the 
next burst cycle. 

Contiguous dram burst cycles are not guaranteed to the Xwr sequencer as an algorithm is implemented which 
ensures highest priority to refresh cycles followed by flash accesses then dram writes. 

Following is a timing diagram illustrating how data is written to sdram. The dram has been configured for a 
burst of four with a latency of two clock cycles. Bank A is first selected/activated followed by a write 
command two clock cycles later. The bank select/activate for bank B is next issued in preparation for issuing 
the second write command. As soon as the first 16 byte burst to bank A completes we issue the write 
command for bank B and begin supplying data. 

66MHz 

controls 

write data 

read data 
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• EXTERNAL MEMORY WRITE SEQUENCER (Xwr) 

P2d 

S2d 

D2d 

Q2d 

Psi 

Rev A 

RcvB 

RcvC 

RcvD 

XctrlGnt 

~ 

~ 

.. 
r' .. ... .. .. .. ... .. ,.. .. ... .. .. .. ... .. .. 

____. 

____. 

.. ... 

.. ... 

.. 
r' 

... .. 

.. 
r' 

.. 
r' 

.. .. 

Grant 

XAddr 

XData 

XCtrl 

D2dChkSum 

P2dChkSum 

SEQ 
State 

• 
.. ... TO Requester 

.. ... TO Xctrl 

... TO Xctrl 

... ... TO Xctrl 

... TOD2d 

... TOP2d 

.. ... TO Xctrl 

~AckT 

:: XctrlR 

0 requester 

eq 

"" SrarnR ... eq 
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____. 
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____. . k=<amG 

SramP 

ional Pat. App. of Alacrite( , Inc. 

nt 

arams 

Inventors Laurence B. Boucher et al. 
Express Mail Label# EH756230105US 

100 

Alacritech, Ex. 2019 Page 234



• • PCI MASTER-OUT SEQUENCER (Pmo) 

The Pmo sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Pmo 
sequencer moves data from an Sram based fifo to a Pci target, via the PciMstriO module, in bursts of up to 
256 bytes. The nature of the PCI bus dictates the use of the write line command to ensure optimal system 
performance. The write line command requires that the Pmo sequencer be capable of transferring a whole 
multiple (IX, 2X, 3X, ... ) of cache lines of which the size is set through the Pci configuration registers. To 
accomplish this end, Pmo will automatically perform partial bursts until it has aligned the transfers on a cache 
line boundary at which time it will begin usage of the write line command. The Sram fifo depth, of 256 bytes, 
has been chosen in order to allow Pmo to accommodate cache line sizes up to 128 bytes. Provided the cache 
line size is less than 128 bytes, Pmo will perform multiple, contiguous cache line bursts until it has exhausted 
the supply of data. 

Pmo receives requests from two separate sources; the dram to Pci (D2p) module and the Sram to Pci (S2p) 
module. An operation first begins with prioritization of the requests where the S2p module is given highest 
priority. Next, the Pmo module takes a Snapshot of the Sram fifo address and uses this to generate read 
requests for the SramCtrl sequencer. The Pmo module then proceeds to arbitrate for ownership of the Pci bus 
via the PciMstriO module. Once the Pmo holding registers have sufficient data and Pci bus mastership has 
been granted, the Pmo module begins transferring data to the Pci target. For each successful transfer, Pmo 
sends an: acknowledge and encoded size to the master sequencer, allow it to update it's internal pointers, 
counters and status. Once the Pci burst transaction has terminated, Pmo parks on the Pci bus unless another 
initiator has requested ownership. Pmo again prioritizes the incoming requests and repeats the process . 

.... 2 Req 
RdReq ~ 

Addr Sram ... .... 
Addr DIN 

Ctrl ... 3: Ack 
DOut Addr ... 

~ .... 
S2p Pmo Pmstr PCIBU s 

Data .. ..... ... .. ~ .. 
WrReq 1 ... 4 5 

... WrReq ... Ctrl .... ... 
SramAddr .. SramAddr .. 

PciAddr 
PciAddr 

6 ... , 
Ack 

..... 
Ack ~ 
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• • PCI MASTER-IN SEQUENCER (Pmi) 

The Pmi sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Pmi 
sequencer moves data from a Pci target to an Sram based fifo, via the PciMstriO module, in bursts of up to 
256 bytes. The nature of the PCI bus dictates the use of the read multiple command to ensure optimal system 
performance. The read multiple command requires that the Pmi sequencer be capable of transferring a cache 
line or more of data. To accomplish this end, Pmi will automatically perform partial cache line bursts until it 
h~ aligned the transfers on a cache line boundary at which time it will begin usage of the read multiple 
command. The Sram fifo depth, of 256 bytes, has been chosen in order to allow Pmi to accommodate cache 
line sizes up to 128 bytes. Provided the cache line size is less than 128 bytes, Pmi will perform multiple, 
contiguous cache line bursts until it has ftlled the fifo. 

Pmi receive requests from two separate sources; the Pci to dram (P2d) module and the Pci to Sram (P2s) 
module. An operation first begins with prioritization of the requests where the P2s module is given highest 
priority. The Pmi module then proceeds to arbitrate for ownership of the Pci bus via the PciMstriO module. 
Once the Pci bus mastership has been granted and the Pmi holding registers have sufficient data, the Pmi 
module begins transferring data to the Sram fifo. For each successful transfer, Pmi sends an acknowledge and 
encoded size to the master sequencer, allowing it to update it's internal pointers, counters and status. Once the 
Pci burst transaction has terminated, Pmi parks on the Pci bus unless another initiator has requested 
ownership. Pmi again prioritizes the incoming requests and repeats the process . 

... 4 Req 
WrReq "' Addr Sram .... 

"' Addr DOur 
Ctrl .... 

"'5 .. Ack 
Din PciAddr .. 

P2s r ,. 
Pmi Pmstr PCIBUS 

.... .... .. 
Data "' r 

Req 1 2 3 .. 
~ RdReq ... ~ 

SramAddr .. Ctrl 
~ SramAddr 

PciAddr ... 
PciAddr 

6 r 

.... ... Ack 
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• • Dram TO PCI SEQUENCER (D2p) 

The D2p sequencer acts is a master sequencer. Servicing channel requests issued by the Cpu, the D2p 
sequencer manages movement of data from dram to the Pci bus by issuing requests to both the Xrd sequencer 
and the Pmo sequencer. Data transfer is accomplished using an Sram based fifo through which data is staged. 

D2p can receive requests from any of the processor's thirty-two dma channels. Once a command request has 
been detected, D2p fetches a dma descriptor from an Sram location dedicated to the requesting channel which 
includes the dram address, Pci address, Pci endian and request size. D2p then issues a request to the D2s 
sequencer causing the Sram based fifo to fill with dram data. Once the fifo contains sufficient data for a Pci 
transaction, D2s issues a request to Pmo which in turn moves data from the fifo to a Pci target. The process 
repeats until the entire request has been satisfied at which time D2p writes ending status in to the Sram dma 
descriptor area and sets the channel done bit associated with that channel. D2p then monitors the dma channels 
for additional requests. Following is an illustration showing the major blocks involved in the movement of data 
from dram to Pci target. 
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• Dram TO PCI SEQUENCER (D2p) 
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• • 
PCI TO DRAM SEQUENCER (P2d) 

The P2d sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued 
by the Cpu, the P2d sequencer manages movement of data from Pci bus to dram by issuing requests to both 
the X wr sequencer and the Pmi sequencer. Data transfer is accomplished using an Sram based fifo through 
which data is staged. 

P2d can receive requests from any of the processor's thirty-two drna channels. Once a command request has 
been detected, P2d, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated 
to the requesting channel which includes the dram address, Pci address, Pci endian and request size. P2d then 
issues a request to Pmo which in turn moves data from the Pci target to the Sram fifo. Next, P2d issues a 
request to the Xwr sequencer causing the Sram based fifo contents to be written to the dram. The process 
repeats until the entire request has been satisfied at which time P2d writes ending status in to the Sram dma 
descriptor area and sets the channel done bit associated with that channel. P2d then monitors the dma channels 
for additional requests. Following is an illustration showing the major blocks involved in the movement of data 
from a Pci target to dram. 

10 .. l«!Req ""'6 Req 
Req ... ~rReq Addr .. ddr ""' ... 

f-\ddr 
~ 

DOut Addr .... Sram 
~ 

pOut Ctrl ~ Ack ... ... 11 7 Addr .... Din ..... in ... ... 
Xctrl Addr f-\ck Pmi Pmstr Ack ~ck 

""' .. ... 1,14 t t • + 2,15 ... ... " ..... .... ~ Xwr Data .... .... ... 
Rq AD D Ack 

Data 

.... l3 .... 9 ~q P2d 3 .. 
Req 

.... 4 .. ..... ..... ~eq ... 
Ctrl 

..... ... 
Ctrl ""' ddr .. 

~ 

f-\ddr 
r SramAddr 

Req 
""' .. 
~ ~ddr r PciAddr 

SramAddr 12 ~ddr ... Jl ... ~ Ack 

Provisional Pat. App. of Alacritech, Inc. 105 
Inventors Laurence B. Boucher et al. 

Express Mail Label # EH756230105US 
Alacritech, Ex. 2019 Page 239



• PCI TO DRAM SEQUENCER (P2d) 
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• • SRAM TO PCI SEQUENCER (S2p) 

The S2p sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued 
by the Cpu, the S2p sequencer manages movement of data from Sram to the Pci bus by issuing requests to the 
Pmo sequencer · 

S2p can receive requests from any of the processor's thirty-two dma channels. Once a command request has 
been detected, S2p, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated 
to the requesting channel which includes the Sram address, Pci address, Pci endian and request size. S2p then 
issues a request to Pmo which in turn moves data from the Sram to a Pci target. The process repeats until the 
entire request has been satisfied at which time S2p writes ending status in to the Sram dma descriptor area and 
sets the channel done bit associated with that channel. S2p then monitors the dma channels for additional 
requests. Following is an illustration showing the major blocks involved in the movement of data from Sram to 
Pci target. 
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• • SRAM TO PCI SEQUENCER (S2p) 

~ 
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• • PCI TO SRAM SEQUENCER (P2s) 

The P2s sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued by 
the Cpu, the P2s sequencer manages movement of data from Pci bus to Sram by issuing requests to the Pmi 
sequencer. 

P2s can receive requests from any of the processor's thirty-two dma channels. Once a command request has 
been detected, P2s, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated 
to the requesting channel which includes the Sram address, Pci address, Pci endian and request size. P2s then 
issues a request to Pmo which in turn moves data from the Pci target to the Sram. The process repeats until 
the entire request has been satisfied at which time P2s writes ending status in to the dma descriptor area of 
Sram and sets the channel done bit associated with that channel. P2s then monitors the dma channels for 
additional requests. Following is an illustration showing the major blocks involved in the movement of data 
from a Pci target to dram. 
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• • PCI TO SRAM SEQUENCER (P2s) 
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• • DRAM TO SRAM SEQUENCER (D2s) 

The D2s sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued 
by the Cpu, the D2s sequencer manages movement of data from dram to Sram by issuing requests to the Xrd 
sequencer. 

D2s can receive requests from any of the processor's thirty-two dma channels. Once a command request has 
been detected, D2s, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated 
to the requesting channel which includes the dram address, Sram address and request size. D2s then issues a 
request to the Xrd sequencer causing the transfer of data to the Sram. The process repeats until the entire 
request has been satisfied at which time D2s writes ending status in to the Sram dma descriptor area and sets 
the channel done bit associated with that channel. D2s then monitors the dma channels for additional requests. 
Following is an illustration showing the major blocks involved in the movement of data from dram to Sram. 
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• • DRAM TO SRAM SEQUENCER (D2s) 
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• • SRAM TO DRAM SEQUENCER (S2d) 

The S2d sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued 
by the Cpu, the S2d sequencer manages movement of data from Sram to dram by issuing requests to the Xwr 
sequencer. 

S2d can receive requests from any of the processor's thirty-two dma channels. Once a command request has 
been detected, S2d, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated 

' to the requesting channel which includes the dram address, Sram address, checksum reset and request size. 
S2d then issues a request to the Xwr sequencer causing the transfer of data to the dram. The process repeats 
until the entire request has been satisfied at which time S2d writes ending status in to the Sram drna descriptor 
area and sets the channel done bit associated with that channel. S2d then monitors the drna channels for 
additional requests. Following is an illustration showing the major blocks involved in the movement of data 
from Sram to dram. 
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• • SRAM TO DRAM SEQUENCER (S2d) 
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• • PCI SLAVE INPUT SEQUENCER (Psi) 

The Psi sequencer acts as both a slave sequencer and a master sequencer. Servicing requests issued by a Pci 
master, the Psi sequencer manages movement of data from Pci bus to Sram and Pci bus to dram via Sram by 
issuing requests to the SramCtrl and X wr sequencers. 

Psi manages write requests to configuration space, expansion rom, dram, Sram and memory mapped registers. 
Psi separates these Pci bus operations in to two categories with different action taken for each. Dram accesses 
result in Psi generating write request to an Sram buffer followed with a write request to the Xwr sequencer. 
Subsequent write or read dram operations are retry terminated until the buffer has been emptied. An event 
notification is set. for the processor allowing message passing to occur through dram space. 

All other Pci write transactions result in Psi posting the write information including Pci address, Pci byte 
marks and Pci data to a reserved location in Sram, then setting an event flag which the event processor 
monitors. Subsequent writes or reads of configuration, expansion rom, Sram or registers are terminated with 
retry until the processor clears the event flag. This allows the INIC to keep pipelining levels to a minimum for 
the posted write and give the processor ample time to modify data for subsequent Pci read operations. 

The following diagram depicts the sequence of events when Psi is the target of a Pci write operation. Note that 
events 4 through 7 occur only when the write operation targets the dram. 
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• • PCI SLAVE OUTPUT SEQUENCER (Pso} 

The Pso sequencer acts as both a slave sequencer and a master sequencer. Servicing requests issued by a Pci 
master, the Pso sequencer manages movement of data to Pci bus form Sram and to Pci bus from dram via 
Sram by issuing requests to the SramCtrl and Xrd sequencers. 

Pso manages read requests to configuration space, expansion rom, dram, Sram and memory mapped registers. 
Pso separates these Pci bus operations in to two categories with different action taken for each. Dram accesses 
result in Pso generating read request to the Xrd sequencer followed with a read request to Sram buffer. 
Subsequent write or read dram operations are retry terminated until the buffer has been emptied. 

All other Pci read transactions result in Pso posting the read request information including Pci address and Pci 
byte marks to a reserved location in Sram, then setting an event flag which the event processor monitors. 
Subsequent writes or reads of configuration, expansion rom, Sram or registers are terminated with retry until 
the processor clears the event flag. This allows the INIC to use a microcoded response mechanism to return 
data for the request. The processor decodes the request information, formulates or fetches the requested data 
and stores it in Sram then clears the event flag allowing Pso to fetch the data and return it on the Pci bus. 

The following diagram depicts the sequence of events when Pso is the target of a Pci read operation. 
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• • FRAME RECEIVE SEQUENCER (RcvX) 

The receive sequencer {RcvSeq) analyzes and manages incoming packets, stores the result in dram 
buffers, then notifies the processor through the receive queue (RcvQ) mechanism. The process begins 
when a buffer descriptor is available at the output of the FreeQ. RcvSeq issues a request to the Qmg 
which responds by supplying the buffer descriptor to RcvSeq. RcvSeq then waits for a receive packet. 
The Mac, network, transport and session information is analyzed as each byte is received and stored 
in the assembly register {AssyReg). When four bytes of information is available, RcvSeq requests a 
write of the data to the Sram. When sufficient data has been stored in the Sram based receive fifo, a 
dram write request is issued to Xwr. The process continues until the entire packet has been received 
at which point RcvSeq stores the results of the packet analysis in the beginning of the dram buffer. 
Once the buffer and status have both been stored, RcvSeq issues a write-queue request to Qmg. 
Qmg responds by storing a buffer descriptor provided by RcvSeq. The process then repeats. If 
RcvSeq detects the arrival of a packet before a free buffer is available, it ignores the packet and sets 
the Framelost status bit for the next received buffer. 

The following diagram depicts the sequence of events for successful reception of a packet followed by 
a definition of the receive buffer and the buffer descriptor as stored on the RcvQ. 
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• • FRAME RECEIVE SEQUENCER (RcvX) 
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• • RECEIVE BUFFER DESCRIPTOR 

bit_ 
31:30 
29:28 
27:00 

name 
reserved 
size 
address 

description 

A copy of the bits in the FreeBuiDscr. 
Represents the last address + 1 to which frame data was transferred. The address 
wraps around at the boundary dictated by the S bits. This can be used to determine 
the size of the frame received. 

RECEIVE BUFFER FORMAT 

FRAME Status A 

bit l!l!me 
31 attention 

30 CompositeErr 

29 CtriFrame 
28 IpDn 
27 802.3Dn 
26 MacADet 
25 MacBDet 
24 MacMcst 
23 MacBcst 
22 lpMcst 
21 lpBcst 
20 Frag 
19 IpOffst 
18 lpFlgs 
17 IpOpts 
16 TcpFlgs 
15 TcpOpts 
14 TcpUrg 
13 CarrierEvnt 
12 LongEvnt 
11 FrameLost 

10 reserved 
10 NoAck 
09:08 FrameTyp 
07:06 NwkTyp 
05:04 TrnsptTyp 
03 NetBios 
02 reserved 
01:00 channel 

OFFSET OxOOOO:Ox0003 

description 
Indicates one or more of the following: CompositeErr, !IpDn, !MacADet & 
!MacBDet, IpMcst, lpBcst, !ethernet & !802.3Snap, !Ip4, !Tcp . 
Set when any of the error bits of ErrStatus are set or if frame processing stops 
while receiving a Tcp or Udp header. 
A control frame was received at our unicast or special MltCst address. 
Frame processing Hlted due to exhaustion of the IP4 length counter. 
Frame processing Hlted due to exhaustion of the 802.3 length counter. 
Frame's destination address matched the contents of MacAddrA. 
Frame's destination address matched the contents of MacAddrB. 
The Mac detected a MltCst address. 
The Mac detected a BrdCst address. 
The frame processor detected an IP MltCst address. 
The frame processor detected an IP BrdCst address. 
The frame processor detected a Frag IP datagram. 
The frame processor detected a non-zero IP datagram offset. 
The frame processor detected flags within the IP datagram. 
The frame processor detected a header length greater than 20 for the IP datagram. 
The frame processor detected an abnormal header flag for the TCP segment. 
The frame processor detected a header length greater than 20 for the TCP segment. 
The frame processor detected a non-zero urgent pointer for the TCP segment. 
Refer to El 10 Technical Manual. 
Refer to EJJO Technical Manual. 
Set when an incoming frame could not be processed as a result of an outstanding 
frame completion event not yet serviced by the utility processor. 

The frame processor detected a 
00- Reserved. 01- ethemet. 
00 - Unknown. 01- Ip4. 
00- Unknown. 01- reserved. 
A NetBios frame was detected. 

10- 802.3. 
10- lp6 
10- Tcp 

The Mac on which this frame was received. 
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FRAME Status B 

bit_ 
31 
30 
29 
28 
27 
26 
25 
24 
23 
22 
21 
20 
19:16 

15:08 
07:00 

n~m~ 

802.3Shrt 
BufOvr 
BadPkt 
lnvldPrmbl 
CrcErr 
DrbiNbbl 
CodeErr 
lpHdrShrt 
lplncmplt 
lpSumErr 
TcpSumErr 
TcpHdrShrt 
·Pressed 

MacHsh 
CtxHsh 

TIMESTAMP 

bit_ 
31:00 

name 
RcvTime 

CHECKSUM 

bit_ 
31:16 

15:00 

name 
IpChksum 

TcpChksum 

RESERVED 

FRAME Data 

• • OFFSET Ox0004:0x0007 

description 
End of frame was encountered before the 802.3 length count was exhausted. 
The frame length exceded the buffer space available. 
Refer to EJJO Technical Manual. 
Refer to EI 10 Technical Manual. 
Refer to EIJO Technical Manual. 
Refer to EJJO Technical Manual. 
Refer to El 10 Technical Manual. 
The IP4 header length field contained a value less than Ox5. 
The frame terminated before the IP length counter was exhausted. 
The IP header checksum was not Oxffff at the completion of the IP header read. 
The session checksum was not Oxffff at the termination of session processing. 
The TCP header length field contained a value less than Ox5. 
The state of the frame processor at the time the frame processing terminated. 
ObOOOO Processing Mac header. 
ObOOOl Processing 802. 3 LLC header. 
ObOOlO Processing 802.3 SNAP header. 
ObOOll Processing unknown network data. 
ObOlOO Processing IP header. 
Ob0101 Processing IP data (unknown transport). 
ObOllO Processing transport header (IP data). 
ObOlll Processing transport data (IP data) . 
OblOOO Erocessing IP processing complete. 
OblOOl Reserved. 
OblOlx Reserved. 
Obllxx Reserved. 

The Mac destination-address hash. Refer to El 10 Technical Manual. 
The 8-bit context-hash generated by exclusive-oring all bytes of the IP source 
address, IP destination-address, transport source port and the transport destination 
port. 

OFFSET OxOOOS:OxOOOB 

description 
The contents of FreeClk at the completion of the frame receive operation. 

OFFSET OxOOOC:OxOOOF 

description 
Reflects the value of the IP header checksum at frame completion or IP header 
completion. If an IP datagram was not detected, the checksum provides a total for 
the entire data portion of the received frame. The data area is defmed as those bytes 
received after the type field of an ethemet frame, the LLC header of an 802.3 frame 
or the SNAP header of an 802.3-SNAP frame. 

Reflects the value of the transport checksum at IP completion or frame completion. 
If IP was detected but session was unknown, the checksum will not include the 
psuedo-header. If IP was not detected, the checksum will be OxOOOO. 

OFFSET Ox0010:0x0011 

OFFSET Ox0012:END OF BUFFER 
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• • 
FRAME TRANSMIT SEQUENCER (XmtX) 

The transmit sequencer (XmtSeq) analyzes and manages outgoing packets. using buffer descriptors 
retrieved from the transmit queue (XmtQ) then storing the descriptor for the freed buffer in the free 
buffer queue (FreeQ). The process begins when a buffer descriptor is available at the output of the 
XmtQ. XmtSeq issues a request to the Qmg which responds by supplying the buffer descriptor to 
XmtSeq. XmtSeq then issues a read request to the Xrd sequencer. Next. XmtSeq issues a read 
request to SramCtrl then instructs the Mac to begin frame transmission. The Mac accepts data from 
XmtSeq which analyzes the packet as it flys-by in order to generate checksums to insert in the data 
stream. Once the frame transmission has completed, XmtSeq stores the buffer descriptor on the 
FreeQ thereby recycling the buffer. 

The following diagram depicts the sequence of events for successful transmission of a packet followed 
by a definition of the receive buffer and the buffer descriptor as stored on the XmtQ. 

Mac Ctrl 
OPTIONS OPTIONS 

v 
.... From PROCESSOR 

~LR_Pause ~ 

.... From RCV _SEQ 
~ 

PauseDet ...... From PROCESSOR .... 
PauseReq !" TO PROCESSOR 

~, 

PauseD 4 ... Req ... 
Sram AD 

9 ... ... ... 
~talUS ~ ~ 

D 

Mac .... .. Req .. ram AD .... Xctrl 
b .. "' ~ 

Status 
~ 

D 
~ 

...... s .....__5 
~ 

ramAddr 
~ Ack 

Dwr ... 
r trl DramAddr Arl 

p 
t.ck XmtX +++t 

Rq AD D Ack 

Rq .... 1.1n 6 .. Rq 
~ ... D 

~~ 
....... ... .... ,.. Ack 

Qmg ...... 3.7.12 
AD 

p .. ... 
t.ddr Sram 

PTR 

~ 
Ctrl 

... 
Req ... ck 

Addr 2.11 .. 
Ac Serv 

... 
.... 1.12 .... 

Provisional Pat. App. of Alacritech, Inc. 121 
Inventors Laurence B. Boucher et al. 

Express Mail Label# EH756230105US 
Alacritech, Ex. 2019 Page 255



• • FRAME TRANSMIT SEQUENCER (XmtX) 

SramAck 

SrarnRdData 

FREEQ_ID 

Ctrl_Q_ID 

XmtQ_ID 

PauseClr + 
XmtData 

PauseDet + XwrReq 

PauseD 

Cpu _PauseReq + QmgRReq 

SrarnReq 

FromSram 

SramParams 
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• TRANSMIT BUFFER DESCRIPTOR • 
bit_ ...,na ... m'""e"=== 
31 ChksumEn 

30 reserved 
29:28 size 

27:00 EndAddr 

descriotion 
When set, XmtSeq will insert a calculated checksum. When reset, XmtSeq will 
not alter the outgoing data stream. 

Represents the size of the buffer by indicating at what boundary the buffer should 
start and terminate. This is used in combination with EndAddr to determine the 
starting address of the buffer : 

S = 0 256B boundary. A[7:0] ignored. 
S = l 2KB boundary. A{lO:O] ignored. 
S = 2 4KB boundary. A[ll:O] ignored. 
S = 3 32KB boundary. A[14:0] ignored. 

The address of the last byte to transmit plus one. 

TRANSMIT BUFFER FORMAT 

CHECKSUM PRIMER OFFSET OxOOOO:Ox0003 

bit_ ='n=am~e === 
31 :00 Primer 

RESERVED 

FRAME Data 

description 
A value to be added during checksum accumulation. For IPV4, this should include 
the psuedo-header values, protocol and Tcp-length. 

OFFSET Ox0004:0x0005 

OFFSET Ox0006:END OF BUFFER 

TRANSMIT Status VECTOR 

bit name description 
31 LnkErr Indicates that a link status error occured before or during transmit. 
30:15 reserved 
14 ExcessDeferral Refer to EJJO Technical Manual. 
13 Late Abort Refer to EJJO Technical Manual. 
12 ExcessColl Refer to EJJO Technical Manual. 
11 Under Run Refer to EJJO Technical Manual. 
10 ExcessLgth Refer to EJJO Technical Manual. 
09 Okay Refer to EJJO Technical Manual. 
08 deferred Refer to EJJO Technical Manual. 
07 BrdCst Refer to EllO Technical Manual. 
06 MltCst Refer to EJJO Technical Manual. 
05 CrcErr Refer to EJJO Technical Manual. 
04 LateColl Refer to EllO Technical Manual. 
03:00 CollCnt Refer to EJJO Technical Manual. 
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• • QUEUE MANAGER (Qmg) 
The INIC includes special hardware assist for the implementation of message and pointer queues. The 

hardware assist is called the queue manager (Qmg) and manages the movement of queue entries between Cpu 
and Sram, between dma sequencers and Sram as well as between Sram and dram. Queues comprise three distinct 
entities; the queue head (QHd), the queue tail (QTl) and the queue body (QBdy). QHd resides in 64 bytes of 
scratch ram and provides the area to which entries will be written (pushed). QTI resides in 64 bytes of scratch 
ram and contains queue locations from which entries will be read (popped) . QBdy resides in dram and contains 
locations for expansion of the queue in order to minimize the Sram space requirements. The QBdy size depends 
upon the queue being accessed and the initialization parameters presented during queue initialization. 

Qmg accepts operations from both Cpu and dma sources. Executing these operations at a frequency of 
133MHz, Qmg reserves even cycles for dma requests and reserves odd cycles for Cpu requests. Valid Cpu 
operations include initialize queue (lnitQ), write queue (WrQ) and read queue (RdQ). Valid dma requests 
include read body (RdBdy) and write body (WrBdy). Qmg working in unison with Q2d and D2q generate 
requests to the Xwr and Xrd sequencers to control the movement of data between the QHd, QTI and QBdy. 

The preceding block diagram shows the major functions of Qmg. The arbiter selects the next operation to be 
performed. The dual-ported Sram holds the queue variables HdWrAddr, HdRdAddr, TIWrAddr, 
TIRdAddr, BdyWrAddr, BdyRdAddr and QSz. Qmg accepts an operation request, fetches the queue 
variables from the queue ram (Qram), modifies the variables based on the current state and the requested 
operation then updates the variables and issues a read or write request to the Sram controller. The Sram 
controller services the requests by writing the tail or reading the head and returning an acknowledge. 

66MHz 
CLK 

DmaQmgReq AND 
DmaQWrData 

QmgDmaAck AND 
QmgOmaRdData 

. - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - -:- - - - - - - - - - - - -i : 
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1,',,,, ' Write Write 

. -~~---------- ---- ----- ~~~~-~-1-~~~~- ~ ~:·~~ ~ 
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CLK 

·-----------------------------------------------
Qmg ! ::::: I :=~= ! ---w~ [ = ! . 

·--------~-------~--------~-------~--------~----
66MHz I 
CLK! 

QmgCpuAck AND 
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-· • QUEUE MANAGER (Qmg) 
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• • DMA OPERATIONS 

DMA operations are accomplished through a combination of thirtytwo dma channels (DmaCh) and seven dma 
sequencers (DmaSeq). Each dma channel provides a mechanism whereby a Cpu can issue a command to any 
of the seven dma sequencers. Where as the dma channels are multi-purpose, the dma sequencers they 
command are single purpose as follows. 

dma~gf/. name descriotion 
0 none This is a no operation address. 
1 D2dSeq Moves data from ExtMem to ExtMem. 
2 D2sSeq Moves data from ExtMem bus to sram. 
3 D2pSeq Moves data from ExtMem to Pci bus. 
4 S2dSeq Moves data from sram to ExtMem. 
5 S2pSeq Moves data from sram to Pci bus. 
6 P2dSeq Moves data from Pci bus to ExtMem. 
7 P2sSeq Moves data from Pci bus to sram. 

The processors manage dma in the following way. The processor writes a dma descriptor to an Sram location 
reserved for the dma channel. The format of the dma descriptor is dependent upon the targeted dma sequencer. 
The processor then writes the dma sequencer number to the channel command register. 

Each of the dma sequencers polls all thirtytwo dma channels in search of commands to execute. Once a 
command request has been detected, the dma sequencer fetches a dma descriptor from a fixed location in 
Sram. The Sram location is fixed and is determined by the dma channel number. The dma sequencer loads the 
dma descriptor in to it's own registers, executes the command, then overwrites the dma descriptor with ending 
status. Once the command has halted, due to completion or error, and the ending status has been written, the 
dma sequencer sets the done bit for the current dma channel. 

The done bit appears in a dma event register which the Cpu can examine. The Cpu fetches ending status from 
Sram, then clears the done bit by writing zeroes to the channel command (ChCmd) register. The channel is 
now ready to accept another command. 

The format of all channel command registers is as follows. 

bit_ 
31:11 
10:8 

07:05 
04:00 

name 
reserved 
ChCmd 

reserved 
Chid 

description 
Data written to these bits is ignored. 
0 - Stops execution of the current operation and clears the corresponding event flag. 
1 - Transfer data from ExtMem to ExtMem. 
2 - Transfer data from ExtMem bus to sram. 
3 - Transfer data from ExtMem to Pci bus. 
4 - Transfer data from sram to ExtMem. 
5 - Transfer data from sram to Pci bus. 
6 - Transfer data from Pci bus to ExtMem. 
7- Transfer data from Pci bus to Sram. 
Data written to these bits is ignored. 
Provides the channel number for the channel command. 
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• • The format of the P2d or P2s descriptor is as follows. 

bit 
127:96 
95:64 
59:32 
31 
30 
22 
15:00 

name 
PciAddrH 
PciAddrL 
MemAddr 
PciEndian 
WideDbl 
DstFlash 
XfrSz 

descriPtion 
Bits [63:32] of the Pci address. 
Bits [31 :00] of the Pci address. 
Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address. 
When set, selects big endian mode for Pci transfers. 
When set, disables Pci 64-bit mode. 
Selects Flash for the external memory destination of P2d. 
Bits [15:00] of the requested dma size expressed in bytes. 

The format of the S2p or D2p descriptor is as follows. 

bit 
123:96 
95:64 
63:32 
30 
23 
22 
15:00 

name 
MemAddr 
PciAddrH 
PciAddrL 
SrcFiash 
PciEndian 
WideDbl 
XfrSz 

description 
Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address. 
Bits [63:32] of the Pci address. 
Bits [31:00] of the Pci address. 
Selects Flash for the external memory source of D2p. 
When set, selects big endian mode for Pci transfers. 
When set, disables Pci 64-bit mode. 
Bits [15:00] of the requested dma size expressed in bytes. 

The format of the S2d, D2d or D2s descriptor is as follows. 

bit 
127:124 
123:96 
95:60 
59:32 
30 
22 
15:00 

name 
reserved 
SrcAddr 
reserved 
DstAddr 
FlashSel 
FlashSel 
XfrSz 

description 
Reserved for future use. 
Bits [27:00] of the ExtMem address or bits {15:00] of the Sram address. 
Reserved for future use. 
Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address. 
Selects Flash for the external memory source of D2d or D2s. 
Selects Flash for the external memory destination of S2p or D2d. 
Bits [15:00] of the requested dma size expressed in bytes. 

The format of the ending status or all channels is as follows. 

bit name 
127:64 reserved 
63:32 ChkSum 

31:24 reserved 
23:20 SrcStatus 
19:16 DstStatus 

description 
Not used. 
Represents the 1 's compliment sum of all halfwords transferred during a P2d or D2d 
operation only. 
Reserved for future use. 
TBD. 
TBD. 

15:00 XfrSz Bits [15:00] of the residual dma size expressed in bytes. This value will be zero if the dma 
operation was successful 

The format of the ChEvnt register is as follows. 

bit .. n..,am.._e === 

31:00 ChDn 
description 
Each bit represents the done flag for the respective dma channel. These bits are set by a 
dma sequencer upon completion of the channel command. Cleared when the processor 
writes 0 to the corresponding ChCrnd register ChCmdOp field. 
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• • 
MAC CONTROL (Macctrl) 
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•• 
Appendix A 

The following load calculations are based on the following basic formulae: 

N =X * R {Little's Law) where 
N = number of jobs in the system {either in progress or in a queue), 
X = system throughput, 
R =response time {which includes time waiting in queues). 

U =X* S (from Little's Law) where 
S = service time, 
U = utilization. 

R = S I {1-U) for exponential service times (which is the worst-case assumption). 

A 256 byte frame at 1OOMb/sec takes 20 J.!Sec per frame. 
4 * 100 Mbit ethemets receiving at full frame rate is: 

51200 (4 * 12800) frames/sec@ 1024 bytes/frame 
102000 frames/sec @ 512 bytes/frame 
204000 frames/sec @ 256 bytes/frame. 

The following calculations assume 250 instructions/frame, 45nsec clock. Thus 
S = 250 * 45 nsecs = 11.2 J.!Secs. 

Av. Frame Size Thruput. Utilization Response Nbr. in system 
(X) (U) (R) (N) 

1024 51200 .57 26 usecs 1.3 
512 102000 >1 
256 204000 >1 

Lets look at it for varying instructions per frame assuming 512 bytes per frame average. 

Instns Service Thruput Utilization Response Nbr. in system 
Per Frame Time (S) .(X) (U) (R) (N) 
250 11.2 usee 102000 >1 
250 11.2 85000 (*) .95 224 usecs 19 
250 11.2 80000 (**) .89 101 8 
225 10 102000 1.0 
225 10 95000 (*) .95 200 19 
225 10 89000 {**) .89 90 8 
200 9 102000 .9 90 9 
150 6.7 102000 .68 20 2 

{*) shows what frame rate can be supported to get a utilization of less than 1. 
{**) shows what frame rate can be supported with 8 SRAM TCB buffers and at least 8 
process contexts. 
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If 100 instructions I frame is used, S =.:_l 00 * 45 nsecs = -4.5 usecs, and we can support 
-256 byte frame~: - - -
100 4.5 - ---204000 .91 50 10 

Firstly note that these calculations assume that response times increase-exponentiaJJy as 
utilization increases. This is the worst-case assumption, and probably may not be true for -
our system. 
The figures show that to support a theoretical full 4 * 100 Mbit receive load with an 
average frame size of512 bytes, there will need to be 19 active ')obs" in the system, 
assuming 250 instructions per frame. Due to SRAM limitations, the current design 
specifies 8 SRAM buffers for active TCBs, and not to swap a TCB out of SRAM once it 
is active. So under these limitations, the INIC will not be able to keep up with the full 
frame rate. Note that the initial implementation is trying to use only 8KB of SRAM, 
although 16KB may be available, in which case 19 TCB SRAM buffers could be used. 
This is a cost trade-off. 
The real point here is the effect of instructions/frame on the throughput that can be 
maintained. If the instructions/frame drops to 200, then the INIC is capable of handling 
the full theoretical load {102000 frames/second) with only 9 active TCBs. If it drops to 
100 instructions per frame, then the INIC can handle full bandwidth at 256 byte frames 
{204000 frames/second) with 10 active TCBs. The bottom line is that ALL hardware
assist that reduces the instructions/frame is really worthwhile. If header-assist hardware 
can save us 50 instructions per frame then it goes straight to the throughput bottom line. 
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