Petitioner's Updated Exhibit List IPR2017-01373

EXHIBIT NO.	DESCRIPTION
1001	U.S. Patent No. 6,407,213, <i>Method for making humanized antibodies</i> (filed Jul. 17, 1993) (issued June 18, 2002)
1002 Part I	File History for U.S. Patent No. 6,407,213 Part I
1002 Part II	File History for U.S. Patent No. 6,407,213 Part II
1003	Declaration of Dr. Lutz Riechmann, Ph.D. in Support of Petition for <i>Inter Partes</i> Review of Patent No. 6,407,213
1003A	Curriculum Vitae of Dr. Lutz Riechmann, Ph.D.
1003B	Materials Reviewed by Dr. Lutz Riechmann, Ph.D.
1003C	Exhibits A-O of Dr. Lutz Riechmann, Ph.D.
1004	Declaration of Dr. Robert Charles Fredrick Leonard, M.D. in Support of Petition for <i>Inter Partes</i> Review of Patent No. 6,407,213
1004A	Curriculum Vitae of Dr. Robert Charles Fredrick Leonard, M.D.
1004B	Materials Reviewed by Dr. Robert Charles Fredrick Leonard, M.D.
1005	Ball E.D., et al. Studies on the ability of monoclonal antibodies to selectively mediate complement-dependent cytotoxicity of human myelogenous leukemia blast cells. J. Immunol. 128(3):1476–81 (March 1982)
1006	Ball, E.D., et al. <i>Monoclonal antibodies reactive with small cell carcinoma of the lung</i> . J. Nat'l Cancer Inst. 72(3):593–98 (March 1984)
1007	Magnani, J.L., Ball, E.D., et al. <i>Monoclonal antibodies PMN 6, PMN 29 and PM-81 bind differently to glycolipids containing a sugar sequence occurring in lacto-N-fucopentaose III</i> , Arch. Biochem. Biophys. 233(2):501–06 (September 1984)

EXHIBIT NO.	DESCRIPTION
1008	Memoli, V.A., Jordan, A.G., and Ball, E.D. <i>A novel monoclonal antibody, SCCL 175, with specificity for small cell neuroendocrine carcinoma of the lung.</i> Cancer Res. 48:7319–22 (December 15, 1988)
1009	Ball E.D., et al. Monoclonal antibodies to myeloid differentiation antigens: in vivo studies of three patients with acute myelogenous leukemia. Blood 62(6):1203–10 (December 1983)
1010	Ball E.D., et al. <i>Phase I clinical trial of serotherapy in patients with acute myeloid leukemia with an immunoglobulin M monoclonal antibody to CD15</i> . Clin Cancer Res 1:965–72 (September 1995)
1011	Bashey A., Ball E.D., et al. CTLA4 Blockade with Ipilimumab to Treat Relapse of Malignancy after Allogeneic Hematopoietic Cell Transplantation. Blood 113(7):1581–88 (2009)
1012	Armand P., Ball E.D., et al. <i>Disabling Immune Tolerance by Programmed Death-1 Blockade with Pidilizumab after Autologous Hematopoietic Stem-Cell Transplantation for Diffuse Large B-Cell Lymphoma: Results of an International Phase II Trial.</i> J. Clin. Oncol. 31(33):4199–4206 (November 20, 2013)
1013	Ball E.D., et al. <i>Initial trial of bispecific antibody-mediated immunotherapy of CD15-bearing tumors: cytotoxicity of human tumor cells using a bispecific antibody comprised of anti-CD15 (MoAb PM81) and anti-CD64/Fc gamma RI (MoAb 32)</i> . J. Hematotherapy 1:85–94 (1992)
1014	Chen J, Zhou J.H., Ball E.D. <i>Monocyte-mediated lysis of acute myeloid leukemia cells in the presence of the bispecific antibody 251 x 22 (anti-CD33 x anti-CD64)</i> . Clin. Can. Res. 1:1319–25(November 1995)
1015	Balaian, L. and Ball, E.D. <i>Direct effect of bispecific anti-CD33 x anti-CD64 antibody on proliferation and signaling in myeloid cells</i> . Leukemia Res. 25:1115–25 (2001)
1016	Chen J., Ball, E.D., et al. An immunoconjugate of Lys3-bombesin and

EXHIBIT	
NO.	DESCRIPTION
	monoclonal antibody 22 can specifically induce FcgammaRI (CD64)-dependent monocyte- and neutrophil-mediated lysis of small cell carcinoma of the lung cells. Clin. Can. Res. 1:425–34 (April 1995)
1017	Chen J., Ball, E.D., et al. <i>Monocyte- and neutrophil-mediated lysis of SCCL by a bispecific molecule comprised of Lys3-BN and mAb22</i> . Peptides 1994. 819–20(1995)
1018	Zhou J.H., Ball E.D., et al. <i>Immunotherapy of a human small cell lung carcinoma (SCLC) xenograft model by the bispecific molecule (BsMol) mAb22xLys3-Bombesin (M22xL-BN)</i> . Peptides 1996, 935–36 (1998)
1019	Ball, E.D. and Balaian, L. Cytotoxic activity of gemtuzumab ozogamicin (Mylotarg) in acute myeloid leukemia correlates with the expression of protein kinase Syk. Leukemia, 20:2093–2101 (2006)
1020	Ball E.D., et al. <i>Update of a phase I/II trial of5-azacytidine prior to gemtuzumab ozogamicin (GO) for patients with relapsed acute myeloid leukemia with correlative biomarker studies [abstract]</i> . Blood (ASH Annual Meeting Abstracts) 116: Abstract 3286 (2010)
1021	Hudziak et al. p185 ^{HER2} Monoclonal Antibody Has Antiproliferative Effects In Vitro and Sensitizes Human Breast Tumor Cells to Tumor Necrosis Factor. Mol. Cell Biol. 9(3):1165–72 (March 1989)
1022	Kohler and Milstein, Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity. Nature 256(5517):495–97 (August 7, 1975)
1023	Prabakaran, S. <i>The Quest for a Magic Bullet Science</i> , 349(6246):389 (July 24, 2015)
1024	Marks, L. The story of Cesar Milstein and Monoclonal Antibodies: A Healthcare Revolution in the Making at http://www.whatisbiotechnology.org/exhibitions/milstein (last accessed September 08, 2015)
1025	Cosimi et al., Treatment of Acute Renal Allograft Rejection with OKT3

EXHIBIT NO.	DESCRIPTION
	Monoclonal Antibody. Transplantation 32:535–39 (1981)
1026	Ortho Multicenter Transplant Study Group, A Randomized Clinical Trial of OKT3 Monoclonal Antibody for Acute Rejection of Cadveric Renal Transplants. N. Engl. J. Med. 313(6):337–42 (August 8, 1985)
1027	Jaffers et al. Monoclonal Antibody Therapy. Anti-idiotypic and Non- anti-idiotypic antibodies to OKT3 Arising Despite Intense Immunosuppression. Transplantation 41(5):572–78 (1986)
1028	Sears et al. <i>Phase-I clinical trial of monoclonal antibody in treatment of gastrointestinal tumours</i> . The Lancet 762–65 (April 3, 1982)
1029	Sikora <i>Monoclonal antibodies in oncology</i> . J. Clin. Pathol. 35:369–75 (1982)
1030	"Protein Data Bank - Chronology" at https://www.nsf.gov/news_summ_jsp?cntn_id=100689 (accessed August 29, 2016)
1031	Morrison et al., Chimeric Human Antibody Molecules: Mouse Antigen-Binding Domains with Human Constant Region Domains. Pro. Nat'l Acad. Sci. 81:6851–55 (November 1984).
1032	Liu et al., Chimeric Mouse-human IgG1 Antibody that can Mediate Lysis of Cancer cells. Pro. Nat'l Acad. Sci. 84:3439–43 (May 1987).
1033	Jones et al. Replacing the Complementarity-Determining Regions in a Human Antibody with those from a Mouse. Nature 321:522–25 (1986)
1034	Queen et al. A Humanized Antibody that Binds to the Interleukin 2 Receptor. Pro. Nat'l Acad. Sci. 86:10029–33 (1989)
1035	Kirkman et al., Early Experience with anti-Tac in Clinical Renal Transplantation. Transplant. Proc. 21:1766–68 (1989)
1036	Waldmann et al. The Interleukin-2 Receptor: A Target for Monoclonal Antibody Treatment of Human T-Cell Lymphotrophic Virus I-Induced Adult T-Cell Leukemias. Blood 72:1705–16 (1988)

EXHIBIT	DEGGDYDEYON.
NO.	DESCRIPTION
1037	Hakimi et al. Reduced Immunogenicity and Improved Pharmacokinetics of Humanized anti-Tac in Cynomolgus Monkeys. J. Immunol. 147:1352–59 (August 15, 1991)
1038	Vincenti et al., Interleukin 2-Receptor Blockade with Daclizumab to Prevent Acute Rejection in Renal Transplantation. N. Engl. J. Med. 338(3):161–65 (January 15, 1998)
1039	SEER Stat Fact Sheets: Breast Cancer at http://seer.cancer.gov/statfacts/html/breast.html (last accessed September 08, 2015)
1040	Harris, J.R., et al. <i>Medical Progress: Breast Cancer</i> . N. Engl. J. Med. 327(5):319–28 (1992)
1041	King C.R., Kraus M.H., and Aaronson, S.A. <i>Amplification of a Novel v- erbB-Related Gene in a Human Mammary Carcinoma</i> . Science 229:974–76 (1985)
1042	Semba K., et al. A v-erbB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. Pro. Nat'l Acad. Sci. 82:6497–6501 (1985)
1043	Coussens L., et al. <i>Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene</i> . Science 230:1132–39 (December 6, 1985)
1044	Fukushige S., et al. Localization of a Novel v-erbB-Related Gene, c-erbB-2, on Human Chromosome 17 and its Amplification in a Gastric Cancer Cell Line. Mol. Cell. Biol. 6:955–58 (1986)
1045	Slamon, D.J. et al. <i>Human Breast Cancer Correlation of Relapse and Survival with Amplification of the HER-2/neu Oncogene</i> . Science 235:177–82 (1987)
1046	Kraus, M.H., et al. Overexpression of the EGF receptor-related proto- oncogene erbB-2 in human mammary tumor cell lines by different

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

